Please use this identifier to cite or link to this item: https://hdl.handle.net/10955/1320
Title: Vegetated roofs as a low impact development (LID) approach: hydrologic and hydraulic modeling for stormwater runodd mitifation in urban environment
Authors: Principato, Francesca
Berardi, Luigi
Bertrand-Krajewski, Jean-Luc
Carbone, Marco
Piro, Patrizia
Macchione, Francesco
Keywords: Ingegneria idraulica
Deflusso
Acque piovane
Issue Date: 19-Feb-2016
Series/Report no.: ICAR/02;
Abstract: Nei paesi sviluppati, il livello di urbanizzazione è in continuo aumento e dovrebbe raggiungere l’83% nel 2030 (United Nations, 2002; Antrop, 2004). Il notevole incremento della popolazione comporta una continua espansione areale delle città che si traduce nella progressiva cementificazione di aree vegetate sempre più grandi. L’effetto combinato di urbanizzazione (che riduce la disponibilità di spazi naturali e allo stesso tempo modifica la rete di scorrimento superficiale) e cambiamenti climatici (che incrementano la frequenza e l’intensità delle precipitazioni) (Piro et al., 2012) ha comportato una maggiore vulnerabilità delle aree urbane ed uno sconvolgimento del ciclo idrologico naturale. Durante gli eventi di pioggia intensi, i tassi di infiltrazione ed evapotraspirazione si sono notevolmente ridotti, e di conseguenza si è verificato un incremento del volume di deflusso delle acque meteoriche che sovraccarica il sistema di drenaggio urbano (Piro et al., 2012). In un’ottica di sviluppo ambientale sostenibile, nasce quindi l’esigenza di potenziare la rete di deflusso superficiale mediante l’introduzione di soluzioni sostenibili che consentano di rispristinare, per quanto possibile, le condizioni idrologiche che caratterizzavano il bacino prima dello sviluppo urbano (Cannata, 1994). L’insieme di queste tipologie di interventi a basso impatto che, seguendo un approccio ecologicamente basato, consente una gestione delle acque piovane direttamente alla fonte così da prevenire molti problemi che possono accorrere lungo il percorso di trasporto, viene identificato in letteratura con l’acronimo LID (Low Impact Development). Tra queste, la tecnica del verde pensile che protegge, ripristina o imita il ciclo idrologico di pre-sviluppo e, sfruttando gli spazi disponibili sulle coperture a tetto (altrimenti inutilizzate), può essere applicata anche in ambienti urbani densamente edificati, è di particolare interesse ambientale per l’insieme dei benefici che comporta su scala del singolo edificio e del comprensorio urbano circostante (Tillinger, et al., 2006). Diversi studi hanno evidenziato come le coperture vegetate possano avere effetti sulla ritenzione degli eventi di pioggia (DeNardo et al., 2005; VanWoert et al., 2005; Getter et al., 2007; Gregoire and Clausen, 2011), riducendo il volume di deflusso e la portata al colmo (Berntsson, 2010; Palla et al., 2010; Voyde et al., 2010; Stovin et al., 2012) e ritardando il picco di piena (Carter e Rasmussen, 2006; Spolek, 2008). Da queste premesse nasce il seguente lavoro di tesi, che ha riguardato lo studio del Verde pensile come sistema a basso impatto ambientale, per la mitigazione dei deflussi nell’idraulica urbana, focalizzando l’attenzione sulla Modellazione Idrologico-Idraulica: “Vegetated roofs as a Low Impact Development (LID) approach: hydrologic and hydraulic modeling for stormwater runoff mitigation in urban environment”. Il principale obiettivo della ricerca è stato quello di definire, migliorare ed implementare una metodologia per la progettazione dei tetti verdi utilizzando i dati provenienti da diverse aree geografiche (nel caso specifico sono stati analizzati i dati provenienti da due diverse realtà geografiche: Cosenza in Italia e Lione in Francia), al fine di individuare alcuni fattori chiave per la caratterizzazione della risposta di un sistema a verde pensile. Più nello specifico, dopo un’introduzione generale ed una panoramica sui benefici che l’adozione delle LID offre alla gestione delle acque meteoriche in ambiente urbano rispetto ai sistemi convenzionali, nel Capitolo 1 sono stati definiti i principali obiettivi del progetto di ricerca. Tra le soluzioni naturalistiche che operano il controllo della formazione dei deflussi superficiali mediante i processi di ritenzione e detenzione, quella del Verde Pensile viene particolarmente trattata nel Capitolo 2; vengono descritte le componenti stratigrafiche ed illustrati i più importanti effetti benefici conseguibili dall’installazione di coperture vegetate, con particolare attenzione al contributo nella regimazione delle acque meteoriche.Dal momento che la risposta idrologico-idraulica di una copertura vegetata è influenzata da diversi fattori quali le condizioni meteo-climatiche e le caratteristiche costruttive della copertura vegetata, la revisione della letteratura (Capitolo 3) è organizzata in relazione agli obiettivi della ricerca: (1) la prima parte fornisce una panoramica dei modelli per l’analisi del comportamento idraulico dei tetti verdi, visti come strumento di supporto alla gestione quantitativa delle acque di pioggia; (2) nella seconda parte è stata eseguita una ricognizione degli studi scientifici effettuati per analizzare l’influenza dei suddetti parametri sulle prestazioni idrologiche ed idrauliche di una copertura vegetata di tipo estensivo. Tali considerazioni suggeriscono che se il verde pensile deve essere parte delle strategie di gestione delle acque piovane, è fondamentale capire come specifici sistemi di copertura rispondano ad eventi pluviometrici specifici; questo richiede strumenti di modellazione affidabili che consentano di ottimizzare le prestazioni dei sistemi a verde pensile su una vasta gamma di tipi di costruzione e in diverse condizione operative. Come risultato di tali considerazioni, i capitoli 4 e 5 riguardano le sperimentazioni condotte utilizzando due diversi modelli. In particolare il Capitolo 4 indaga l’affidabilità di un modello concettuale di tetto verde, sviluppato congiuntamente dalla Le Prieuré e l’INSA di Lione, per simulare il comportamento di una specifica tecnologia di tetto verde pre-fabbricato (Hydropack® & Stock&Flow®). Il modello si basa sul percorso dell’acqua attraverso quattro serbatoi disposti in serie, ciascuno caratterizzato da uno specifico processo idrologico e/o idraulico rappresentato da equazioni concettuali o semi-dettagliate: Serbatoio di Intercettazione, Substrato, Serbatoio Alveolare ed un Serbatoio di Raccolta. Il modello, adattabile a qualsiasi tipo di copertura attraverso l’attivazione/disattivazione di serbatoi e funzioni opzionali, intende simulare il comportamento dinamico del tetto verde a diversi intervalli di tempo, indagarne l'affidabilità ed ottimizzarne le prestazioni. Il modello è stato testato e calibrato utilizzando un database raccolto su due siti sperimentali, rispettivamente per un anno e nove mesi, misurati al passo temporale di 1 minuto: 1) per l’unità prefabbricata di 1 m2 (Hydropack®) prodotta ed installato a Moisy (Francia) da Le Prieuré, la calibrazione è stata condotta a scala d’evento per valutare il contenuto idrico nel substrato; 2) per il tetto verde a grandezza naturale di 282 m2 presso il Centro Congressi di Lione (Francia),la calibrazione è stata condotta a scala mensile per valutare il deflusso totale in uscita dal tetto verde. Tutte le simulazioni del modello sono state effettuate utilizzando il linguaggio ddi programmazione MatLab. Come indicatori delle performance del modello sono stati utilizzati il criterio di Nash-Sutcliffe (NS) e il Root Mean Squared Error (RMSE). I risultati delle simulazioni effettuate sull’unità Hydropack hanno mostrano che il modello ha una elevata capacità di replicare il comportamento osservato per il contenuto idrico nel substrato durante eventi piovosi, come confermato dagli alti valori di NS (sopra 0,6 per il 78% dei casi, e sopra 0,97 per il 46%) e valori RMSE bassi. I primi risultati hanno inoltre indicato che la risposta del modello è fortemente determinata dal contenuto iniziale di acqua nel substrato (Hs0) che andrà considerato come uno dei parametri chiave del modello quando è usato a scala di evento. Per quanto riguarda le simulazioni mensile effettuate sul tetto verde a scala reale, i primi risultati hanno mostrato una buona capacità del modello di replicare il comportamento osservato per la portata in uscita dal tetto, solo per alcuni eventi; prestazioni inferiori si osservano per alcuni eventi a causa di dubbia affidabilità dei dati o nel caso di eventi con precipitazioni molto piccole. Nel Capitolo 5 viene proposto un modello concettuale (SIGMA DRAIN), sviluppato nel corso del progetto PON01_02543 per simulare il comportamento idraulico della copertura vegetata di tipo estensivo installata nel sito sperimentale dell’Unical. SIGMA DRAIN utilizza, per la simulazione dei fenomeni idrologici e idraulici, il motore di calcolo del software EPA SWMM (Storm Water Management Model), pur essendo completamente svincolato dall’interfaccia utente del software. Il nuovo modello idealizza il tetto verde come un sistema costituito da tre componenti disposte in serie, ognuna caratterizzata da uno specifico processo idrologico-idraulico, corrispondenti ai tre moduli tecnologici principali della copertura: lo strato superficiale è concettualizzato come un sottobacino mentre i successivi strati di terreno e di accumulo sono schematizzati attraverso due serbatoi lineari che descrivono rispettivamente la percolazione attraverso il substrato colturale e il trasporto attraverso lo strato drenante. Un’equazione di bilancio di massa viene applicata a ciascun blocco, tenendo conto dei fenomeni fisici specifici che si verificano in ciascun modulo; il flusso è invece regolato dall’equazione di Richards. Al fine di stimarne l’affidabilità, il modello è stato prima calibrato e poi validato con il software HYDRUS-1D, che modella l’infiltrazione dell’acqua nel sottosuolo; visti i parametri idraulici richiesti dal software, tale operazione ha riguardato essenzialmente lo strato di terreno piuttosto che quello di vegetazione ed accumulo. Osservando i risultati in termini di deflusso dei singoli eventi di pioggia, è possibile constatare che il modello Sigma Drain approssima bene il modello HYDRUS-1D per precipitazioni al di sopra dei 20 mm, mentre per eventi con altezza di pioggia inferiore le performance del modello non risultano soddisfacenti; tale comportamento è attribuibile al fatto che nel modello Sigma Drain, differentemente da HYDRUS-1D, non si tiene conto del contenuto idrico iniziale del substrato. A conferma di ciò, le simulazioni effettuate in continuo, hanno mostrato in media un valore dell’indice di NS pari a 0.8, a dimostrazione che le condizioni idrologicoidrauliche antecedenti l’evento considerato sono rilevanti nella valutazione della risposta del modello. Particolare attenzione è stata riposta all’analisi del coefficiente di deflusso e ai fattori idrologici che sono determinanti nelle performances del tetto quali: la precipitazione, l’intensità e la durata di pioggia, nonché il periodo intra-evento che intercorre tra due eventi indipendenti. A seguito delle simulazioni effettuate con SIGMA DRAIN, dal confronto dei risultati ottenuti in termini di deflusso tra gli eventi di pioggia registrati con passo temporale di 1 minuto sul sito sperimentale dell’Unical e presso Lione, si è evidenziato per entrambi gli scenari un comportamento analogo, stimando un valore soglia delle precipitazioni di 13mm, al di sotto del quale il tetto verde trattiene la quasi totalità dell’evento. Per eventi con altezza di pioggia superiore a 13 mm, è stata rilevata, invece, un coefficiente di deflusso che si attesta in media attorno al 46% e 38% rispettivamente per il set di dati regisrati all’Unical e a Lione; è possibile osservare, inoltre, l’esistenza di una proporzionalità diretta tra precipitazione e deflusso. Per analizzare al meglio l’influenza dei singoli parametri idrologici sull’efficienza idraulica del tetto verde, è stata poi ricavata, con i dati di pioggia dell’Unical, un’equazione statistica sulla base di analisi di regressione lineare multipla, successivamente validata con i dati di Lione, che consenta di avere una prima stima della capacità di ritenzione del tetto verde in funzione della durata dell’evento e dell’altezza di pioggia. In definitiva è possibile osservare che ogni singolo parametro, sia esso idrologico o fisico, apporta un’influenza significativa sulle prestazioni idrauliche di una copertura vegetata. Risulta, dunque, approssimativo valutare l’efficienza di una copertura vegetata mediamente su scala annuale o stagionale, in quanto ogni singolo evento di pioggia, in funzione delle proprie caratteristiche e di quelle della copertura stessa, sarà trattenuto in maniera differente. I risultati ottenuti dalle sperimentazioni hanno evidenziato come la copertura vegetata di tipo estensivo, progettata e realizzata all’Unical, in clima Mediterraneo, presenti un ottima efficienza idraulica anche considerando i dati di pioggia di un’altra realtà come Lione, caratterizzata da un clima Temperato. Infine, nel Capitolo 6 vengono esposte le conclusioni generali sul progetto di ricerca e i possibili sviluppi futuri. Con questo lavoro di tesi, che fornisce indicazioni utili alla realizzazione di una pianificazione urbanistica sostenibile che consenta di attuare una gestione integrata della risorsa idrica, si intende promuovere il verde pensile non solo quale strumento di mitigazione e compensazione ambientale in generale, ma nello specifico quale soluzione di drenaggio urbano sostenibile per il ripristino dei processi fondamentali del ciclo idrologico naturale nell’ambiente urbano.
Description: Dottorato di Ricerca in Ingegneria Idraulica per l'Ambiente e il Territorio Ciclo XXVIII, a.a. 2015-2016
URI: http://hdl.handle.net/10955/1320
https://doi.org/10.13126/unical.it/dottorati/1320
Appears in Collections:Dipartimento di Ingegneria dell'Ambiente - Tesi di Dottorato

Files in This Item:
File Description SizeFormat 
_frontespizio_tesi_corso_XXX.pdf75,93 kBAdobe PDFView/Open
PRINCIPATO Francesca_Tesi.pdf3,66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.