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1

Introduction

1.1 Background and Motivations

In recent times, distributed computing has considerably changed due to new
developments of information technology. New environments has emerged such
as massively large-scale, wide-area computer networks and mobile ad-hoc net-
works. These environments represent an enormous potential for future appli-
cations: they enable communication, storage, and computational services to be
built in a bottom-up fashion (e.g. peer-to-peer system and Grid Computing).
However, these environments present a few problems because they can be
extremely dynamic and unreliable. Traditional approaches to the design of
distributed systems which assume reliable components or based on central
and explicit control are not applicable for these environments. Furthermore,
central control introduces a single-point-of-failure which should be avoided
whenever possible [4]. In order to tackle these issues, an artificial intelli-
gence technique based on the study of collective behavior in decentralized,
self-organized systems, namely Swarm Intelligence [7], appears particularly
suitable. Swarm Intelligence systems are typically made up of a population of
simple agents interacting locally with one another and with their environment.
Although there is normally no centralized control structure dictating how in-
dividual agents should behave, local interactions between such agents often
lead to the emergence of global behavior. Examples of systems like these can
be found in nature, including ant colonies, bird flocking, animal herding, bac-
teria molding and fish schooling. Swarms offer several advantages compared
to traditional systems:

- robustness,
- flexibility,
- scalability,
- adaptability,
- suitability for analysis.
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Simple agents are less likely to fail than more complex ones. If they do fail,
they can be pulled out entirely or replaced without significantly impacting the
overall performance of the system. Distributed systems are therefore, tolerant
of agent error and failure. They are also highly scalable: increasing the number
of agents or task size does not greatly affect performance. The inherent par-
allelism and scalability make the swarm-based algorithms very suitable to be
used in environment whose structure dynamically changes. In systems using
central control, the high communications and computational costs required
to coordinate agent behavior limit the size of the system to at most a few
dozen agents. The simplicity of agent’s interactions with other agents make
swarms amenable to quantitative mathematical analysis. There are multiple
examples of complex collective behavior among social insects: trail formation
in ants, hive building by bees and mound construction by termites are just
few examples. The apparent success of these organisms has inspired computer
scientists and engineers to design algorithms and distributed problem-solving
systems modelled after them [8], especially for systems which are characterized
by decentralized control, large scale and extreme dynamism of their operating
environment as peer-to-peer system, Grid Computing, etc..

1.2 Main Contributions of the Thesis

In this thesis, some novel algorithms based on swarm intelligent paradigm
are proposed. In particular, the swarm agents, was exploited to tackle the
following issues:

- P2P Clustering. A swarm-based algorithm is used to cluster distributed
data in a peer-to-peer environment through a small worlds topology. More-
over, to perform spatial clustering in every peer, two novel algorithms are
proposed. They are based on the stochastic search of the flocking algo-
rithm and on the main principles of two popular clustering algorithms,
DBSCAN and SNN.

- Resource discovery in Grids. An approach based on ant systems is
exploited to replicate and map Grid services information on Grid hosts
according to the semantic classification of such services. To exploit this
mapping, a semi-informed resource discovery protocol which makes use of
the ants’ work has been achieved. Asynchronous query messages (agents)
issued by clients are driven towards ”representative peers” which main-
tain information about a large number of resources having the required
characteristics.
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1.3 Thesis Organization

The thesis organized as follows:

Chapter 2 I present some of the critical notions of Swarm Intelligence and the
research work that has addressed them. These notions, organized around
the concept of problem-solving which is one of the most overall character-
istics that an SI exhibits.

Chapter 3 presents an adaptive flocking algorithm based on the biology-
inspired paradigm of a flock of birds. We used swarming agents (SA),
i.e. a population of simple agents interacting locally with each other and
with the environment. They provide models of distributed adaptive orga-
nization and they are useful to solve difficult optimization, classification,
distributed control problems, etc...

Chapter 4 describes P-SPARROW, a algorithm for distributed clustering of
data in peer-to-peer environments combining a smart exploratory strategy
based on a flock of birds with a density-based strategy to discover clusters
of arbitrary shape and size in spatial data.

Chapter 5 shows as an Ant-based Replication and MApping Protocol
(ARMAP) is used to disseminate resource information by a decentralized
mechanism, and its effectiveness is evaluated by means of an entropy in-
dex. Information is disseminated by agents - ants - that traverse the Grid
by exploiting P2P interconnections among Grid hosts. A mechanism in-
spired by real ants’ pheromone is used by each agent to autonomously
drive its behavior on the basis of its interaction with the environment.

Chapter 6 proposes a semi-informed discovery protocol (namely ARDIP, Ant-
based Resource DIscovery Protocol) to exploit the logical resource orga-
nization achieved by ARMAP.





2

Swarm-Based Systems

2.1 Introduction

The term Swarm, in a general sense, refers to any such loosely structured
collection of interacting agents. The classic example of a swarm is a swarm
of bees, but the metaphor of a swarm can be extended to other systems with
a similar architecture. An ant colony can be thought of as a swarm whose
individual agents are ants, a flock of birds is a swarm whose agents are birds,
traffic is a swarm of cars, a crowd is a swarm of people, an immune system is a
swarm of cells and molecules, and an economy is a swarm of economic agents.
A high-level view of a swarm suggests that the N agents in the swarm are
cooperating to achieve some goal. This apparent collective intelligence seems
to emerge from what are often large groups of relatively simple agents. The
agents use simple local rules to govern their actions and via the interactions of
the entire group, the swarm achieves its objectives. A type of self-organization
emerges from the collection of actions of the group. Swarm intelligence is the
emergent collective intelligence of groups of simple autonomous agents. Here,
an autonomous agent is a subsystem that interacts with its environment,
which probably consists of other agents, but acts relatively independently
from all other agents. The autonomous agent does not follow commands from
a leader, or some global plan.

For example, for a bird to participate in a flock, it only adjusts its move-
ments to coordinate with the movements of its flock mates, typically its neigh-
bors that are close to it in the flock. A bird in a flock simply tries to stay close
to its neighbors, but avoid collisions with them. Each bird does not take com-
mands from any leader bird since there is no lead bird. Any bird can fly in
the front, center and back of the swarm. Swarm behavior helps birds take ad-
vantage of several things including protection from predators (especially for
birds in the middle of the flock), and searching for food (essentially each bird
is exploiting the eyes of every other bird). Researchers try to examine how
collections of animals, such as flocks, herds and schools, move in a way that
appears to be orchestrated. In 1987, Reynolds created a boid model, which
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Fig. 2.1. Reynolds showed that a realistic bird flock could be programmed by im-
plementing three simple rules: match your neighbors velocity, steer for the perceived
center of the flock, and avoid collisions.

is a distributed behavioral model, to simulate on a computer the motion of
a flock of birds [103] (see in Fig. 2.1). Each boid is implemented as an inde-
pendent actor that navigates according to its own perception of the dynamic
environment. A boid must observe the following rules. A boid must:

- move away from boids that are too close;
- follows direction and velocity of the flock;
- move towards boids that are too distant.

The swarm behavior of the simulated flock is the result of the dense interaction
of the relatively simple behaviors of the individual boids. Swarm robotics is
currently one of the most important application areas for swarm intelligence.
Swarms provide the possibility of enhanced task performance, high reliabil-
ity (fault tolerance), low unit complexity and decreased cost over traditional
robotic systems. They can accomplish some tasks that would be impossible
for a single robot to achieve. Swarm robots can be applied to many fields,
such as flexible manufacturing systems, spacecraft, inspection/maintenance,
construction, agriculture, and medicine work [7].
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2.2 Self-Organization

Self-Organization is a set of dynamical mechanism whereby structures appear
at the global level of system from interactions among its lower-level compo-
nents. The rules specifying the interactions among the system’s constituent
unit are executed on the basis of purely local information, without reference
to the global pattern, which is an emergent property of the system rather than
a property imposed upon the system by an external ordering influence. For
example, the emerging structures in the case of foraging in ants include spa-
tiotemporally organized networks of pheromone trails. Self-organization relies
on four basic ingredients:

- Positive feedback amplifies a certain behavior, e.g. bees may recruit other
bees to follow them to good food sources.

- Negative feedback on the other hand limits a behavior, e.g. if a food source
is too crowded.

- The amplification of fluctuations enables discovery of a new collective be-
havior resulting from random walks or errors of individuals.

- Multiple interactions between individuals are necessary for a new behavior
to be adopted by the swarm.

When a given phenomenon is self-organized, it can usually be characterized
by a few properties:

1. The creation of spatiotemporal structures in an initially homogeneous
medium. Such structures include nest architectures, foraging trail, or so-
cial organization. For example, a characteristic well-organized pattern de-
velops on the combos honeybee colonies, i.e. three concentric regions.

2. The possible coexistence of several stable states (multistability). Because
structures emerge by amplification of random deviations, any such devi-
ation can be amplified, and the system converges to one among several
possible stable state, depending on initial conditions.

3. The existence of bifurcations when some parameters are varied. The be-
havior of a self-organized system changes dramatically at bifurcations.

2.2.1 Stigmergy

Self-Organization in social insect often required interactions among insect:
such interactions can be direct or indirect. Direct interactions are the ”obvi-
ous” interactions: antennation, trophallaxis (food or liquid exchange), mandibu-
lar contact, visual contact, chemical contact (the odor of nearby nestmates),
etc. Indirect interactions are more suitable: two individuals interact indirectly
when one of them modifies the environment and the other respond to the
new environment at a later time. The indirect form of communication among
individuals was first described by French entomologist Pierre-Paul Grass in
the 1950s and denominated stigmergy (from the Greek sigma: sting and er-
gon: work) [40]. Stigmergy has helped researchers understand the connection
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between individual and collective behaviour. The basic principle of stigmergy
is extremely simple:

- Traces left and modifications made by individuals in their environment
may feed back on them.

The colony records its activity in part in the physical environment and uses
this record to organize the collective behaviour. Various forms of storage are
used:

- gradients of pheromones;
- material structures;
- spatial distribution of colony elements.

Such structures materialize the dynamics of the colonys collective behaviour
and constrain the behaviour of the individuals through a feedback loop. Hol-
land and Beckers distinguish between cue-based and sign-based stigmergy. In
cue-based stigmergy, the change in the environment simply provides a cue for
the behavior of other actors, while in sign-based stigmergy the environmental
change actually sends a signal to other actors. Termite arch-building contains
both kinds of stigmergy, with pheromones providing signals while the growing
pillars provide cues. Ant corpse-piling has been described as a cue-based stig-
mergic activity. When an ant dies in the nest, the other ants ignore it for the
first few days, until the body begins to decompose. The release of chemicals
related to oleic acid stimulates a passing ant to pick up the body and carry it
out of the nest. Some species of ants actually organize cemeteries where they
deposit the corpses. If dead bodies of these species are scattered randomly
over an area, the survivors will hurry around picking up the bodies, moving
them, and dropping them again, until soon all the corpses are arranged into a
small number of distinct piles. The piles might form at the edges of an area or
on a prominence or other heterogeneous feature of the landscape. Deneubourg
[24] have shown that ant cemetery formation can be explained in terms of sim-
ple rules. The essence of the rule set is that isolated items should be picked
up and dropped at some other location where more items of that type are
present. A similar algorithm appears to be able to explain larval sorting, in
which larvae are stored in the nest according to their size, with smaller larvae
near the center and large ones at the periphery, and also the formation of
piles of woodchips by termites. In the latter, termites may obey the following
rules:

- If you are not carrying a woodchip and you encounter one, pick it up.
- If you are carrying a woodchip and you encounter another one, set yours

down.

Thus a woodchip that has been set down by a termite provides a stigmergic
cue for succeeding termites to set their woodchips down. If a termite sets a
chip down where another chip is, the new pile of two chips becomes proba-
bilistically more likely to be discovered by the next termite that comes past
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carrying a chip, since its bigger. Each additional woodchip makes the pile more
conspicuous, increasing its growth more and more in an autocatalytic loop.
Stigmergy alone is not sufficient to explain collective intelligence, as it only
refers to animal-animal interactions. Therefore, it has to be complemented
with an additional mechanism that makes use of these interactions to coor-
dinate and regulate the collective task in a particular way. One of the best
examples of this mechanism was studied by Grass: the building behaviour of
termites. Grass showed that the coordination and regulation of building ac-
tivities do not depend on the workers themselves but are mainly achieved by
the nest structure: A stimulating configuration triggers a building action of
a termite worker, transforming the configuration into another configuration
that may trigger in turn another (possibly different) action performed by the
same termite or any other termite in the colony. The use of stigmergy is not
confined to building structures. It also occurs in cooperative foraging strate-
gies such as trail recruitment in ants, where the interactions between foragers
are mediated by pheromones put on the ground in quantities determined by
the local conditions of the environment. For example, trail recruitment in ant
species are able to select and preferentially exploit the richest food source in
the neighbourhood or the shortest path between the nest and a food source:
foragers are initially evenly distributed between the two sources, but one of
the sources randomly becomes slightly favoured, and this difference may be
amplified by recruitment, since the more foragers there are at a given source,
the more individuals recruited to that source . Michener describes in [85] many
activities in bee colonies that result in nest structures, conditions of brood or
stored food, to which other bees respond. Referring to this as indirect social
interactions, where the construct is made for other primary objectives, not
for signalling, although the information content becomes essential for colony
integration. In nectar source decision making in honey bees it is less clear if
only direct communication through the recruitment dances of the bees pro-
duce the self-organizing behaviour, or if also the indirect communication given
by the waiting time for downloading the honey is affecting the collective be-
haviour [108]. As a consequence of stigmergy and self-organization, complex
behaviours which had been explained on the basis of certain rules of interac-
tion among individuals were later accounted for even simpler behaviours in
the context of environmental stimuli. Stigmergy seems indeed at the root of
several collective behaviours of social insects, especially in their building activ-
ities. This is certainly a powerful principle, as social insect constructions are
remarkable for their complexity, size and adaptive value. However, it is possi-
ble to extend the idea easily to other domains; it can be seen as an even more
impressive and general account of how simple systems can produce a range
of apparently highly organized and coordinated behaviours and behavioural
outcomes, simply by exploiting the influence of the environment.
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2.3 Foraging behavior of ants

Ant colony expresses a complex collective behavior providing intelligent solu-
tions to problems such as carrying large items, forming bridges and finding
the shortest routes from the nest to a food source. A single ant has no global
knowledge about the task it is performing. The ant’s actions are based on
local decisions and are usually unpredictable. The intelligent behavior natu-
rally emerges as a consequence of the self-organization and indirect commu-
nication between the ants. This is what is usually called Emergent Behavior
or Emergent Intelligence. Ants use a signaling communication system based
on the deposition of pheromone over the path it follows, marking a trail.
Pheromone is a hormone produced by ants that establishes a sort of indirect
communication among them. Basically, an isolated ant moves at random, but
when it finds a pheromone trail there is a high probability that this ant will
decide to follow the trail. An ant foraging for food lay down pheromone over
its route. When this ant finds a food source, it returns to the nest reinforcing
its trail. Pheromone evaporates with passing of the time with evaporation rate
Ev (see formula 2.1).Other ants in the proximities are attracted by this sub-
stance and have greater probability to start following this trail and thereby
laying more pheromone on it.

Φ = Ev ∗ Φi−1 + φi (2.1)

This process works as a positive feedback loop system because the higher
the intensity of the pheromone over a trail, the higher the probability of an ant
start traveling through it.This elementary behavior of real ants can be used
to explain how they can find the shortest path which reconnects a broken line
after the sudden appearance of an unexpected obstacle has interrupted the
initial path (see Fig. 2.2). In fact, once the obstacle has appeared, those ants
which are just in front of the obstacle cannot continue to follow the pheromone
trail and therefore they have to choose between turning right or left. In this
situation we can expect half the ants to choose to turn right and the other
half to turn left. The very same situation can be found on the other side of the
obstacle. It is interesting to note that those ants which choose, by chance, the
shorter path around the obstacle will more rapidly reconstitute the interrupted
pheromone trail compared to those which choose the longer path. Hence, the
shorter path will receive a higher amount of pheromone in the time unit and
this will in turn cause a higher number of ants to choose the shorter path.
Due to this positive feedback (autocatalytic) process, very soon all the ants
will choose the shorter path. The most interesting aspect of this autocatalytic
process is that finding the shortest path around the obstacle seems to be
an emergent property of the interaction between the obstacle shape and ants
distributed behavior: Although all ants move at approximately the same speed
and deposit a pheromone trail at approximately the same rate, it is a fact that
it takes longer to contour obstacles on their longer side than on their shorter
side which makes the pheromone trail accumulate quicker on the shorter side.
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Fig. 2.2. Pheromones accumulate on the shorter path because any ant that sets
out on that path returns sooner.

It is the ants preference for higher pheromone trail levels which makes this
accumulation still quicker on the shorter path.

2.3.1 Ant colony optimization

”Ant colony optimization” [8] is based on the observation that ants will find
the shortest path around an obstacle separating their nest from a target such
as a piece of candy simmering on a summer sidewalk. As ants move around
they leave pheromone trails, which dissipate over time and distance. The
pheromone intensity at a spot, that is, the number of pheromone molecules
that a wandering ant might encounter,is higher either when ants have passed
over the spot more recently or when a greater number of ants have passed over
the spot. Thus ants following pheromone trails will tend to congregate simply
from the fact that the pheromone density increases with each additional ant
that follows the trail. Ants meandering from the nest to the candy and back
will return more quickly, and thus will pass the same points more frequently,
when following a shorter path. Passing more frequently, they will lay down a
denser pheromone trail. As more ants pick up the strengthened trail, it be-
comes increasingly stronger (see in Fig. 2.2). In computer adaptation of these
behaviors [8] let a population of ”ants” search a traveling salesman map sto-
chastically, increasing the probability of following a connection between two
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cities as a function of the number of other simulated ants that had already
followed that link. By exploitation of the positive feedback effect, that is, the
strengthening of the trail with every additional ant, this algorithm is able to
solve quite complicated combinatorial problems where the goal is to find a way
to accomplish a task in the fewest number of operations. Research on live ants
has shown that when food is placed at some distance from the nest, with two
paths of unequal length leading to it, they will end up with the swarm follow-
ing the shorter path. If a shorter path is introduced, though, for instance, if an
obstacle is removed, they are unable to switch to it. If both paths are of equal
length, the ants will choose one or the other. If two food sources are offered,
with one being a richer source than the other, a swarm of ants will choose the
richer source; if a richer source is offered after the choice has been made, most
species are unable to switch, but some species are able to change their pat-
tern to the better source. If two equal sources are offered, an ant will choose
one or the other arbitrarily.The movements of ants are essentially random as
long as there is no systematic pheromone pattern; activity is a function of
two parameters, which are the strength of pheromones and the attractiveness
of the pheromone to the ants. If the pheromone distribution is random, or if
the attraction of ants to the pheromone is weak, then no pattern will form.
On the other hand, if a too-strong pheromone concentration is established,
or if the attraction of ants to the pheromone is very intense, then a subop-
timal pattern may emerge, as the ants crowd together in a sort of pointless
conformity. In real and simulated examples of insect accomplishments, we see
optimization of various types, whether clustering items or finding the shortest
path through a landscape, with certain interesting characteristics. None of
these instances include global evaluation of the situation: an insect can only
detect its immediate environment. Optimization traditionally requires some
method for evaluating the fitness of a solution, which seems to require that
candidate solutions be compared to some standard, which may be a desired
goal state or the fitness of other potential solutions.

2.4 Particle swarm optimization

Particle swarm optimization (PSO) was originally developed by Eberhart and
Kennedy in 1995 [64]. It is a global optimization algorithm for dealing with
problems in which a best solution can be represented as a point or surface in
an n-dimensional space. Hypotheses are plotted in this space and seeded with
an initial velocity, as well as a communication channel between the particles.
Particles then move through the solution space, and are evaluated according
to some fitness criterion after each timestep. Over time, particles are acceler-
ated towards those particles within their communication grouping which have
better fitness values. The main advantage of such an approach over other
global minimization strategies such as simulated annealing is that the large
number of members that make up the particle swarm make the technique



2.5 Multiagent Systems 13

impressively resilient to the problem of local minima. PSO was inspired by
the social behavior of a flock of birds. In the PSO algorithm, the birds in a
flock are symbolically represented as particles. These particles can be consid-
ered as simple agents ”flying” through a problem space. A particles location
in the multi-dimensional problem space represents one solution for the prob-
lem. When a particle moves to a new location, a different problem solution
is generated. This solution is evaluated by a fitness function that provides a
quantitative value of the solutions utility. The velocity and direction of each
particle moving along each dimension of the problem space will be altered
with each generation of movement. In combination, the particles personal ex-
perience, Pid and its neighbors’ experience, Pgd influence the movement of
each particle through a problem space. The random values rand1 and rand2

are used for the sake of completeness, that is, to make sure that particles
explore a wide search space before converging around the optimal solution.
The values of c1 and c2 control the weight balance of Pid and Pgd in deciding
the particles next movement velocity. At every generation, the particles new
location is computed by adding the particles current velocity, vid, to its loca-
tion, xid. Mathematically, given a multi-dimensional problem space, the ith
particle changes its velocity and location according to the following equations
[64]:

vid = w ∗ vid + c1 ∗ rand1 ∗ (pid − xid) + c2 ∗ rand2 ∗ (pgd − xid) (2.2)

xid = xid + vid (2.3)

where w denotes the inertia weight factor; pid is the location of the particle
that experiences the best fitness value; pgd is the location of the particles that
experience a global best fitness value; c1 and c2 are constants and are known
as acceleration coefficients; d denotes the dimension of the problem space;
rand1, rand2 are random values in the range of (0, 1).

2.5 Multiagent Systems

Multiagent systems are computational systems in which two or more agents
interact or work together to perform some set of tasks or to satisfy some set
of goals. These systems may be comprised of homogeneous or heterogeneous
agents. An agent in the system is considered a locus of problem-solving ac-
tivity, it operates asynchronously with respect to other agents, and it has a
certain level of autonomy. Agent autonomy relates to an agents ability to make
its own decisions about what activities to do, when to do them, what type
of information should be communicated and to whom, and how to assimilate
the information received. Autonomy can be limited by policies built into the
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agent by its designer, or as a result of an agent organization dynamically com-
ing to an agreement that specific agents should take on certain roles or adopt
certain policies for some specified period. Closely associated with agent au-
tonomy is agent adaptability the more autonomy an agent possesses the more
adaptable it is to the emerging problem solving and network context. The
degree of autonomy and the range of adaptability are usually associated with
the level of intelligence/sophistication that an agent possesses. Agents may
also be characterized by whether they are benevolent (cooperative) or self-
interested. Cooperative agents work toward achieving some common goals,
whereas self-interested agents have distinct goals but may still interact to
advance their own goals. In the latter case, self-interested agents may, by
exchanging favors or currency, coordinate with other agents in order to get
those agents to perform activities that assist in the achievement of their own
objectives. For example, in a manufacturing setting where agents are respon-
sible for scheduling different aspects of the manufacturing process, agents in
the same manufacturing company would behave in a cooperative way while
agents representing two separate companies where one company was outsourc-
ing part of its manufacturing process to the other company would behave in
a selfinterested way. Scientific research and practice in multiagent systems,
which in the past has been called Distributed Artificial Intelligence (DAI),
focuses on the development of computational principles and models for con-
structing, describing, implementing and analyzing the patterns of interaction
and coordination in both large and small agent societies. Multiagent systems
research brings together a diverse set of research disciplines and thus there is
a wide range of ideas currently being explored. Multiagent systems over the
past few years have come to be perceived as crucial technology not only for
effectively exploiting the increasing availability of diverse, heterogeneous, and
distributed on-line information sources, but also as a framework for building
large, complex, and robust distributed information processing systems which
exploit the efficiencies of organized behavior. Multiagent systems also provide
a powerful model for computing , in which networks of interacting, real-time,
intelligent agents seamlessly integrate the work of people and machines, and
dynamically adapt their problem solving to effectively deal with changing us-
age patterns, resource configurations and available sources of expertise and
information. Application domains in which multiagent system technology is
appropriate typically have a naturally spatial, functional or temporal decom-
position of knowledge and expertise. By structuring such applications as a
multiagent system rather than as a single agent, the system will have the
following advantages:

- speed-up due to concurrent processing;
- less communication bandwidth requirements because processing is located

nearer the source of information;
- more reliability because of the lack of a single point of failure;
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- improved responsiveness due to processing, sensing and effecting being
co-located;

- easier system development due to modularity coming from the decompo-
sition into semiautonomous agents.

Examples of application domains that have used a multiagent approach in-
clude:

- Distributed situation assessment, which emphasizes how (diagnostic) agents
with different spheres of awareness and control (network segments) should
share their local interpretations to arrive at consistent and comprehen-
sive explanations and responses (e.g., network diagnosis [112]; information
gathering on the Internet [22] [92]; distributed sensor networks [13].

- Distributed resource scheduling and planning, which emphasizes how
(scheduling) agents (associated with each work cell) should coordinate
their schedules to avoid and resolve conflicts over resources, and to max-
imize system output (e.g., factory scheduling [90]; network management
[2]; and intelligent environments [50]).

- Distributed expert systems, which emphasize how agents share informa-
tion and negotiate over collective solutions (designs) given their different
expertise and solution criteria (e.g., concurrent engineering [72]; network
service restoral [55]).

The next generation of applications will integrate characteristics of each of
these generic domains. The need for a multiagent approach can also come
from applications in which agents represent the interests of different orga-
nizational entities (e.g., electronic commerce and enterprise integration [6]).
Other emerging uses of multiagent systems are in layered systems architec-
tures in which agents at different layers need to coordinate their decisions
(e.g., to achieve appropriate configurations of resources and computational
processing), and in the design of survivable systems in which agents dynam-
ically reorganize to respond to changes in resource availability, software and
hardware malfunction, and intrusions. In general, multiagent systems provide
a framework in which both the inherent distribution of processing and infor-
mation in an application and the complexities that come from issues of scale
can be handled in a natural way [74]. There are two ways in order to design
the multi-agent systems :

- the traditional paradigm, based on deliberative agents and (usually) cen-
tral control;

- the swarm paradigm, based on simple agents and distributed control;

In the past, researchers in the Artificial Intelligence and related communities
have, for the most part, operated within the first paradigm. They focused
on making the individual agents, be they software agents or robots, smarter
and more complex by giving them the ability to reason, negotiate and plan
action. In these deliberative systems complex tasks can be done either in-
dividually or collectively. If collective action is required to complete some
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task, a central controller is often used to coordinate group behavior. Swarm
Intelligence represents an alternative approach to the design of multi-agent
systems. Swarms are composed of many simple agents. These systems are
self-organizing, meaning collective behavior emerges from local interactions
among agents and between agents and the environment, there is no central
controller.



3

Approximate Clustering by Adaptive Flock

3.1 Introduction

Clustering data is the process of grouping similar objects according to their
distance, connectivity, or relative density in space [44]. There are a large num-
ber of algorithms for discovering natural clusters in a data set, but they are
usually implemented in a centralized way. These algorithms can be classi-
fied into partitioning methods [62], hierarchical methods [61], density-based
methods [105], grid-based methods [123]. Han, Kamber and Tung’s paper [45]
is a good introduction to this subject. Many of these algorithms work on
data contained in a file or database. In general, clustering algorithms focus
on creating good compact representation of clusters and appropriate distance
functions between data points. For this purpose, they generally need one or
more parameters chosen by a user that indicate the characteristics of the ex-
pected clusters. Centralized clustering is problematic if we have large data to
explore or data are widely distributed. Parallel and distributed computing is
expected to relieve current mining methods from the sequential bottleneck,
providing the ability to scale to massive datasets, and improving the response
time. Achieving good performance on today’s high performance systems is a
non-trivial task. The main challenges include synchronization and communi-
cation minimization, work-load balancing, finding good data decomposition,
etc. Some existing centralized clustering algorithms have been parallelized and
the results have been encouraging. Centralized schemes require high level of
connectivity, impose a substantial computational burden, are typically more
sensitive to failures than decentralized schemes, and are not scalable. Recently,
innovative algorithms based on biological models [24] [70] [79] [89] have been
introduced to solve the clustering problem in a decentralized fashion. These
algorithms are characterized by the interaction of a large number of simple
agents that sense and change their environment locally. Furthermore, they ex-
hibit complex, emergent behavior that is robust with respect to the failure of
individual agents. Ant colonies, flocks of birds, termites, swarms of bees etc.
are agent-based insect models that exhibit a collective intelligent behavior
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(swarm intelligence) [8]. SI models have many features in common with Evo-
lutionary Algorithms (EA). Like EA, SI models are population-based and the
system is initialized with a population of individuals (i.e., potential solutions).
These individuals are then manipulated over many iteration steps by mimick-
ing the social behavior of insects or animals, in an effort to find the optima in
the problem space. Unlike EAs, SI models do not explicitly use evolutionary
operators such as crossover and mutation. A potential solution simply ’flies’
through the search space by modifying itself according to its past experience
and its relationship with other individuals in the population and the envi-
ronment. In these models, the emergent collective behavior is the outcome
of a process of self-organization, in which insects are engaged through their
repeated actions and interaction with their evolving environment. Intelligent
behavior frequently arises through indirect communication between the agents
using the principle of stigmergy [40]. This mechanism is a powerful principle of
cooperation in insect societies. According to this principle, an agent deposits
something in the environment that makes no direct contribution to the task
being undertaken but is used to influence the subsequent behavior that is task
related. The advantages of SI are twofold. Firstly, it offers intrinsically dis-
tributed algorithms that can use parallel computation quite easily. Secondly,
these algorithms show a high level of robustness to change by allowing the
solution to dynamically adapt itself to global changes by letting the agents
self-adapt to the associated local changes. In this section, I present a new
algorithm based on a flock of birds that move together in a complex manner
using simple local rules, to explore spatial data for searching interesting ob-
jects. The flocking algorithm, inspired by the principles of Macgill [81], was
used to design two novel clustering algorithms based on the main principles
of two popular clustering methods: DBSCAN and SNN. We consider cluster-
ing as a search problem in a multi-agent system in which individuals agents
have the goal of finding specific elements in the search space, represented by a
large data set of tuples, by walking efficiently through this space. Our meth-
ods take advantage of the parallel search mechanism a flock implies, by which
if a member of a flock finds an area of interest, the mechanics of the flock
will draw other members to scan that area in more detail. Our algorithms
select interesting subsets of tuples without inspecting the whole search space
guaranteeing a fast placing of points correctly in the clusters. We have applied
this strategy as a data reduction technique to perform efficiently approximate
clustering [67]. In the algorithm, each agent can use hierarchical, partitioned,
density-based and grid-based clustering methods to discovery if a tuple be-
longs to a cluster. Particle Swarm Optimization [64], inspired to the behavior
of flocks of birds, school of fish, etc.., is a population based optimization tool,
quite different from our approach. PSO consists of a swarm of particles, each
of them representing the solution of an optimization problem, moving in the
problem search space. At the beginning, each particle has a random position
and velocity. A particle moves on the basis of its own experience (its best past
position) and of the best of particles in the swarm. Note that, not differently
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from our model, variants of PSO consider the best of a local neighborhood
instead of all the swarm. Furthermore, the best particle is an attractor for
the other particles as the red birds of our algorithm are the attractors for the
other birds. However, the similarities with our model ended here since our
flock moves for searching representative points and merge them in order to
find clusters, while each PSO particle represents itself a solution of a problem
and as a consequence it is less flexible in searching clusters (see related works
section for more details). Moreover, in the flock algorithm, there is a more
strict interrelation, while particles only look at the best particle in the group.
Then PSO does not use any repulsion force to avoid uninteresting zones, while
our white agents are repulsive for the others.

To better illustrate the usefulness of the method, we present two algo-
rithms: SPARROW (SPAtial ClusteRing AlgoRithm thrOugh SWarm Intel-
ligence) and SPARROW-SNN (Shared Nearest-Neighbor similarity). SPAR-
ROW combines the flocking algorithm with the density-based DBSCAN al-
gorithm [32]. SPARROW-SNN couples the flocking algorithm with a shared
nearest neighbor (SNN) cluster algorithm [31] to discover clusters with differ-
ing sizes, shapes and densities in noise, high dimensional data. We have built
a SWARM [86] simulation of both algorithms to investigate the interaction of
the parameters that characterize them.

The rest of this chapter is organized as follows. Section 3.2 presents the
multi agent adaptive flocking algorithm, first introducing the classical model
of Reynolds and then the modified behavioral rules of our algorithm that
add an adaptive behavior. Section 3.3 shows how the stochastic search of
the adaptive flocking algorithm can be used as a basis for clustering spatial
data, combining our strategy respectively with DBSCAN and SNN to consti-
tute the SPARROW and SPARROW-SNN algorithms. Section 3.4 presents
the obtained results for both the approximate clustering algorithms. Section
3.5 presents an entropy-based model to theoretically explain the behavior of
the algorithm. Finally, section 3.6 discusses some related works concerning
clustering algorithms based on the Swarm Intelligence paradigm.

3.2 Flocking algorithm

In this section, we will present a multi-agent stochastic search based on a clas-
sical flocking algorithm that has the advantage of being easily implementable
on parallel and distributed machines and is robust compared to the failure of
individual agents. We first introduce the Reynolds’ flock model that describes
the standard movement rules of birds. Then, we illustrate the modified be-
havioral rules of the swarm agents that, adding an adaptive behavior, make
the flock more effective in searching points having some desired properties in
the space.
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3.2.1 The Reynolds’ model

The flocking algorithm was originally proposed by Reynolds [103] as a method
for mimicking the flocking behavior of birds on a computer both for animation
and as a way to study emergent behavior. Flocking is an example of emergent
collective behavior: there is no leader, i.e., no global control. Flocking behavior
emerges from the local interactions. In the flock algorithm each agent has
direct access to the geometric description of the whole scene, but reacts only
to flock mates within a certain small radius. The basic flocking model consists
of three simple steering behaviors:

Separation gives an agent the ability to maintain a certain distance from
others nearby. This prevents agents from crowding too closely together, al-
lowing them to scan a wider area.

Cohesion supplies an agent the ability to cohere (approach and form
a group) with other nearby agents. Steering for cohesion can be computed
by finding all agents in the local neighborhood and computing the average
position of the nearby agents. The steering force is then applied in the direction
of that average position.

Alignment gives an agent the ability to align with other nearby char-
acters. Steering for alignment can be computed by finding all agents in the
local neighborhood and averaging together the ’heading’ vectors of the nearby
agents.

3.2.2 Searching objects in spatial data

Different techniques can be used to cope with the problem of searching inter-
esting object in spatial data. We introduced a multi-agent adaptive algorithm
able to discover these points in parallel. Our algorithm uses a modified version
of standard flocking algorithm, described above, that incorporates the capac-
ity for learning that we can find in many social insects. In this algorithm, the
agents are transformed into hunters with a foraging behavior that allow them
to explore efficiently spatial data. Our algorithm starts with a fixed number
of agents that occupy a randomly generated position in this space. Each agent
moves around the spatial data testing the neighborhood of each location in
order to verify if a point can have some desired properties. Each agent follows
the rules of movement described in Reynolds’ model. In addition, our model
considers four different kinds of agents, classified on the basis of some prop-
erties of data in their neighborhood. Different agents are characterized by a
different color: red, revealing interesting patterns in the data, green, a medium
one, yellow, a low one, and white, indicating a total absence of patterns.

The main idea behind our approach is to take advantage of the colored
agent in order to explore more accurately the most interesting regions (sig-
naled by the red agents) and avoid the ones without interesting points (sig-
naled by the white agents). Red and white agents stop moving in order to
signal this type of regions to the others, while green and yellow ones fly to
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find more dense zones. Indeed, each flying agent computes its heading by tak-
ing the weighted average of alignment, separation and cohesion (as illustrated
in figure 3.1). The following are the main features which make our model

Fig. 3.1. Computing the direction of a green agent.

different from Reynolds’ model:

• Alignment and cohesion do not consider yellow agents, since they move in
a not very attractive zone.

• Cohesion is the resultant of the heading towards the average position of
the green flockmates (centroid), of the attraction towards reds, and of the
repulsion from whites, as illustrated in figure 3.1.

• A separation distance is maintained from all the agents, apart from their
color.

Now, we give a more formal description of our extension of the flocking al-
gorithm. Consider a multidimensional space with dimension d. Each bird k can
be represented by its position in this space xk1, xk2, . . . , xkd, by its direction
dirk1, dirk2, . . . , dirkd, where dirki represent the component along the axis i of
the direction of bird k and by a color (white, yellow, green or red), indicating
the type of the bird. Let B be set of the birds and dist max and dist min re-
spectively the radius indicating the limited sight of the birds and the minimum
distance that must be maintained among them. We denoted by Neigh(k), the
neighborhood of bird k, i.e. the set {α ∈ B | dist(k, α) ≤ dist max}, that
is the set of the birds visible from the bird k and by Neigh(col, k) the set
{α ∈ B | dist(k, α) ≤ dist max, color(α) = col}.

Each bird moves with speed vk, depending on the color of the agents (green
agents’ speed is slower, because they are exploring interesting zones). Then,
for each iteration t, the new position of the bird k can be computed as:

∀i = 1 . . . d xki(t + 1) = xki(t) + vk × dirki (3.1)
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Note also that for each iteration the new direction of the agent is obtained
summing the three components of alignment, separation and cohesion (i.e.
dirki = dir alki − dir sepki + dir coki). and they can be computed using the
following formulas (considering as dir(a, b) the normalized direction of the
vector between the bird a and the bird b):

dir alki =
1

|Neigh(green, k)|
·

∑

α∈Neigh(green,k)

dirαi (3.2)

and considering centr(green, k) as the centroid of the green agents in the
neighborhood of k with generic coordinate i:

1

|Neigh(green, k)|
·

∑

α∈Neigh(green,k)

xαi (3.3)

then:

dir coki = ∆ + Φ − Ω (3.4)

where:

∆ = dir(centr(green, k), k)i (3.5)

Φ =
∑

α∈Neigh(red,k)

dir(α, k)i (3.6)

Ω =
∑

α∈Neigh(white,k)

dir(α, k)i (3.7)

and:
dir sepki =

∑

α∈Neigh(k),dist(α,kappa)<dist min

dir(alpha, k)i (3.8)

In figure 3.2, we summarized the pseudo code of the overall algorithm.
Yellow and green agents will compute their direction, according to the

rules previously described, and will move following this direction and with
the speed corresponding to their color.

Agents will move towards the computed direction with a speed depending
from their color: green agents more slowly than yellow agents since they will
explore more interesting regions. An agent will speed up to leave an empty
or uninteresting region whereas will slow down to investigate an interesting
region more carefully.

The variable speed introduces an adaptive behavior in the algorithm. In
fact, agents adapt their movement and change their behavior (speed) on the
basis of their previous experience represented from the red and white agents.
Red and white agents will stop signaling to the others respectively the inter-
esting and desert regions. Note that, for any agent has become red or white, a
new agent will be generated in order to maintain a constant number of agents
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for i=1 . . . MaxIterations

foreach agent (yellow, green)

age=age+1;

if (age > Max Life)

generate new agent();die();

endif

if (not visited (current point))

property = compute local property(current point);

mycolor= color agent(property);

endif

end foreach

foreach agent (yellow, green)

dir= compute dir();

end foreach

foreach agent (all)

switch (mycolor){

case yellow, green: move(dir, speed(mycolor)); break;

case white: stop(); generate new agent(); break;

case red: stop(); generate new close agent(); break; }

end foreach

end for

Fig. 3.2. The pseudo-code of the adaptive flocking algorithm.

exploring the data. In the first case (red), the new agent will be generated
in a close random point, since the zone is considered interesting, while in the
latter it will be generated in a random point over all the space. In case the
agent falls in the same position of an older it will be regenerated using the
same policy described above.

Note that the color of the agent is assigned on the basis of the desired
property of the point in which it falls; the assignment is made on a scale
going from white (property = 0) to red (property > threshold), passing for
yellow and green, corresponding to intermediate values.

Fig. 3.3. The cage effect.
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Yellow and green agents try to avoid the ’cage effect ’ (see figure 3.3); in
fact, some agents could remain trapped inside regions surrounded by red or
white agents and would have no way to go out, wasting useful resources for the
exploration. So, a limit was imposed on their life. When their age exceeded a
determined value (Max Life) they die and are regenerated in a new randomly
chosen position of the space.

3.3 Clustering spatial data

In this section, we show how the stochastic search of the adaptive flocking
described in the previous section can be used as a basis for implementing
algorithms for clustering spatial data. Our approach has a number of nice
properties. It can be easily implemented on parallel computers and is robust
compared to the failure of individual agents. It can also be applied to per-
form efficiently approximate clustering since the points, that are visited and
analyzed by the agents, represent a significant (in ergodic sense) subset of the
entire dataset. The subset reduces the size of the dataset while keeping the
accuracy loss as small as possible.

In particular, we implemented SPARROW and SPARROW-SNN that re-
spectively combine our flocking strategy with the DBSCAN heuristics for
discovering clusters with differing sizes, shapes in noise data, and with the
SNN heuristics in order to discover clusters with differing densities.

In the following, the DBSCAN algorithm and the SPARROW are de-
scribed, then, SNN and SPARROW SNN are illustrated.

3.3.1 The DBSCAN algorithm

One of the most popular spatial clustering algorithms is DBSCAN, which is
a density-based spatial clustering algorithm. A complete description of the
algorithm and its theoretical basis is presented in the paper by Ester et al.
[32]. In the following, we briefly present the main principles of DBSCAN. The
algorithm is based on the idea that all points of a data set can be regrouped
into two classes: clusters and noise. Clusters are defined as a set of dense
connected regions with a given radius (Eps) and containing at least a minimum
number (MinPts) of points. Data are regarded as noise if the number of points
contained in a region falls below a specified threshold. The two parameters,
Eps and MinPts, must be specified by the user and allow to control the density
of the cluster that must be retrieved. The algorithm defines two different kinds
of points in a clustering: core points and non-core points. A core point is a
point with at least MinPts number of points contained in an Eps-neighborhood
of the point. The non-core points in turn are either border points if are not
core points but are density-reachable from another core point or noise points
if they are not core points and are not density-reachable from other points. To
find the clusters in a data set, DBSCAN starts from an arbitrary point and
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retrieves all points with the same density reachable from that point using Eps
and MinPts as controlling parameters. A point p is density reachable from a
point q, if the two points are connected by a chain of points such that each
point has a minimal number of data points, including the next point in the
chain, within a fixed radius. If the point is a core point, then the procedure
yields a cluster. If the point is on the border, then DBSCAN goes on to the
next point in the database and the point is assigned to the noise. DBSCAN
builds clusters in sequence (that is, one at a time), in the order in which
they are encountered during space traversal. The retrieval of the density of a
cluster is performed by successive spatial queries. Such queries are supported
efficiently by spatial access methods such as R*-trees.

3.3.2 SPARROW algorithm

SPARROW is a multi-agent adaptive algorithm able to discover clusters in
parallel. It uses the modified version of standard flocking algorithm that incor-
porates the capacity for learning that can find in many social insects. Flocking
agents are transformed into hunters with a foraging behavior that allow them
to explore the spatial data and to search for clusters.

SPARROW starts with a fixed number of agents that occupy a randomly
generated position. Each agent moves around the spatial data testing the
neighborhood of each location in order to verify if the point can be identified
as a core (representative) point. Such a case, a temporary label is assigned to
all the points of the neighborhood of the core point. The labels are updated
concurrently as multiple clusters take shape. Contiguous points belonging to
the same cluster take the label corresponding to the smallest label in the group
of contiguous points.

The algorithm follows the same pseudo-code described in figure 5.1, but the
compute property function is derived from DBSCAN and computes the local
density of the points of clusters in the data belonging to the neighborhood
of the current point, then the myColor procedure chooses the color and the
speed of the agents with regard to this local density. The algorithm is based on
the same parameters used in the DBSCAN algorithm: MinPts, the minimum
number of points to form a cluster and Eps, the maximum distance that the
agents can look at. In practice, the agent computes the local density (density)
in a circular neighborhood (with a radius determined by its limited sight, i.e.
Eps) and then it chooses the color in accordance to the following simple rules:

density > MinPts ⇒ mycolor = red (speed = 0)
MinPts

4
< density ≤ MinPts ⇒ mycolor = green (speed = 1)

0 < density ≤
MinPts

4
⇒ mycolor = yellow (speed = 2)

density = 0 ⇒ mycolor = white (speed = 0)
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In the running phase, the yellow and green agents will compute their di-
rection, according to the rules previously described, and will move following
this direction and with the speed corresponding to their color.

In addition, new red agents will run the merge procedure, which will merge
the neighboring clusters. The merging phase considers two different cases:
when we have never visited points in the circular neighborhood and when we
have points belonging to different clusters. In the first case, the points will be
labeled and will constitute a new cluster; in the second case, all the points
will be merged into the same cluster, i.e. they will get the label of the cluster
discovered first.

SPARROW suffers the same limitation as DBSCAN, i.e. it can not cope
with clusters of different densities. A new algorithm SPARROW-SNN, intro-
duced in the next subsection, is more general and overcomes these drawbacks.
It can be used to discover clusters with differing sizes, shapes and densities in
noise data.

3.3.3 The SNN algorithm

SNN is a clustering algorithm developed by Ertöz, Steinbach and Kumar [31]
to discover clusters with differing sizes, shapes and densities in noise, high di-
mensional data. The algorithm extends the nearest-neighbor non-hierarchical
clustering technique by Jarvis-Patrick [54] redefining the similarity between
pairs of points in terms of how many nearest neighbors the two points share.
Using this new definition of similarity, the algorithm eliminates noise and
outliers, identifies representative points, and then builds clusters around the
representative points. These clusters do not contain all the points, but rather
represent relatively uniform group of points. The SNN algorithm starts per-
forming the Jarvis-Patrick scheme. In the Jarvis-Patrick algorithm a set of ob-
jects is partitioned into clusters on the basis of the number of shared nearest-
neighbors. The standard implementation is constituted by two phases. The
first is a pre-processing stage that identifies the K nearest-neighbors of each
object in the dataset. In the subsequent clustering stage, two objects i and j
join the same cluster if:

• i is one of the Knearest − neighbors of j;
• j is one of the Knearest − neighbors of i;
• i and j have at least Kmin of their Knearest − neighbours in common;

where K and Kmin are used-defined parameters. For each pair of points
i and j is defined a link with an associate weight. The strength of the link
between i and j is defined as:

strength(i, j) =
∑

(k + 1 − m)(k + 1 − n) where im = jn

In the equation above, k is the nearest neighbor list size, m and n are
the positions of a shared nearest neighbor in i and j’s lists. At this point,
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clusters can be obtained by removing all edges with weights less than a user
specified threshold and taking all the connected components as clusters. A
major drawback of the Jarvis-Patrick algorithm is that, the threshold needs
to be set high enough since two distinct set of points can be merged into
same cluster even if there is only link across them. On the other hand, if a
high threshold is applied, then a natural cluster will be split into many small
clusters due to the variations in the similarity in the cluster.

SNN addresses these problems introducing the following steps.

1. For every node (data point) calculates the total strength (connectivity) of
links coming out of the point;

2. Identify representative points by choosing the points that have high den-
sity ( > core threshold);

3. Identify noise points by choosing the points that have low density
( < noise threshold) and remove them;

4. Remove all links between points that have weight smaller than a threshold
(merge threshold);

5. Take connected components of points to form clusters, where every point
in a cluster is either a representative point or is connected to a represen-
tative point.

The number of clusters is not given to the algorithm as a parameter. Also
note that not all the points are clustered.

3.3.4 SPARROW-SNN algorithm

Sparrow-SNN follows the pseucode of figure 3.2 and starts a fixed number
of agents that will occupy a randomly generated position. From their initial
position, each agent moves around the spatial data testing the neighborhood of
each location in order to verify if the point can be identified as a representative
(or core) point.

The compute property function represents the connectivity of the point as
defined in SNN algorithm. In practice, when an agent falls on a data point
A, not yet visited, it computes the connectivity, conn(A), of the point, i.e.
computes the total number of strong links the points has, according to the
rules of the SNN algorithm. Note that SPARROW-SNN computes for each
data element the nearest-neighbor list using a similarity-threshold that reduces
the number of data elements to take in consideration. The introduction of
the similarity-threshold produces variable-length nearest-neighbor lists and
therefore i and j must have at least Pmin of the shorter nearest-neighbor list
in common; where Pmin is a user-defined percentage.

Points having connectivity smaller than a fixed threshold (noise threshold)
are classified as noise and are considered for removal from clustering. Then
a color is assigned to each agent, on the basis of the value of the connec-
tivity computed in the visited point, using the following procedure (called
color agent() in the pseudocode):
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conn > core threshold ⇒ mycolor = red (speed = 0)
noise threshold < conn ≤ core threshold ⇒ mycolor = green (speed = 1)
0 < conn < noise threshold ⇒ mycolor = yellow (speed = 2)
conn = 0 ⇒ mycolor = white (speed = 0)

The colors assigned to the agents are: red, revealing representative points,
green, border points, yellow, noise points, and white, indicating an obstacle
(uninteresting region). After the coloration step, the green and yellow agents
compute their movement observing the positions of all other agents that are at
most at some fixed distance (dist max ) from their and applying the same rules
as SPARROW. In any case, each new red agent (placed on a representative
point) will run the merge procedure, as described in the Sparrow subsection,
so that it will include, in the final cluster, the representative point discovered,
and together to the points that share with it a significant (greater that Pmin)
number of neighbors and that are not noise points. The merging phase con-
siders two different cases: when we have visited none of these points in the
neighborhood and when we have points belonging to different clusters. In the
former, the same temporary label will be assigned and a a new cluster will be
constituted; in the latter, all the points will be merged into the same cluster,
i.e. they will get the label corresponding to the smallest label. So clusters will
be built incrementally.

3.4 Experimental results

The following section shows the experimental results obtained for the two
clustering algorithms. Both algorithms have been implemented using Swarm, a
multi-agent software platform for the simulation of complex adaptive systems.
In the Swarm system the basic unit of simulation is the swarm, a collection
of agents executing a schedule of actions. Swarm provides object oriented
libraries of reusable components for building models and analyzing, displaying,
and controlling experiments on those models. More information about Swarm
can be obtained from [86].

All the experiments were averaged over 30 tries. Where not differently
specified, we run our algorithm using 50 agents and we set the visibility radius
of the agents (dist max) to 6 and the minimum distance among the agents
(dist min) to 2.

3.4.1 SPARROW results

We evaluated the accuracy of the solution supplied by SPARROW in com-
parison with the one of DBSCAN and the performance of the search strategy
of SPARROW in comparison with the standard flocking search strategy and
with the linear randomized search. Furthermore, we studied the impact of the
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number of agents on foraging for clusters performance. Results are compared
with the ones obtained using a publicly available version of DBSCAN. Our
algorithm uses the same parameters as DBSCAN. Therefore, if we visited all
the points of the dataset, we would obtain the same results. Then, in our
experiments we consider as 100% the cluster points found by DBSCAN (note
DBSCAN visit all the points). We want to verify how we come close to this
percentage visiting only a portion of the entire dataset. For the experiments,
we used two synthetic data sets and one real, shown in figure 3.4. The first
data set, called GEORGE, consists of 5463 points. The second data set, called
DS4, contains 8843 points. Each point of the two data sets has two attributes
that define the x and y coordinates. Furthermore, both data sets have a con-
siderable quantity of noise. The third called SEQUOIA is composed by 62556
names of landmarks (and their coordinates), and was extracted from the US
Geological Survey’s Geographic Name Information System. We set eps to 9
for all the datasets and MinPts to 20 for George and DS4 and 40 for Sequoia.

Fig. 3.4. The three data sets used in our experiments.

Although DBSCAN and SPARROW would produce the same results if we
examined all points of the data set, our experiments showed that SPARROW
can obtain, with an average accuracy about 93% on GEORGE dataset and
about 78% on DS4, the same number of clusters with a slightly smaller per-
centage of points for each cluster using only 22% of the spatial queries used
by DBSCAN. The same results cannot be obtained by DBSCAN because of
the different strategy of attribution of the points to the clusters. In fact, if
we stopped DBSCAN before which it had performed the spatial queries on
all the points, we should obtain a correct number of points for the clusters
already individuated and probably a smaller number of points for the cluster
that it was building, but obviously we will not discover all the clusters.
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Perc. of data points for cluster
7% 12% 22% 60%

G 57.6 % 83.2 % 92.4 % 99.4 %

E 58.2 % 71.1 % 91.3 % 99.7 %

O 61.3 % 85.8 % 94.2 % 99.6 %

R 50.6 % 72.7 % 93.3 % 99.1%

G 48.8 % 77.2 % 89.7 % 98.8 %

E 61.1 % 81.2 % 94.5 % 99.6 %

Table 3.1. Number of clusters and number of points for clusters for GEORGE data
set (percentage in comparison to the total point for cluster found by DBSCAN)
when SPARROW analyzes 7%, 12%, 22% and 60% points.

Perc. of data points for cluster
7% 12% 22% 70%

1 51.16% 70.99% 78.86% 95.76 %

2 45.91% 64.74% 74.40% 95.45 %

3 40.68% 59.36% 81.95% 97.55 %

4 44.21% 60.66% 81.67% 98.05 %

5 54.65% 58.72% 71.54% 94.99 %

6 48.77% 59.91% 78.10% 97.76 %

7 54.29% 66.43% 79.18% 96.12 %

8 51.16% 70.99% 78.86% 96.33 %

9 45.91% 64.74% 74.40% 95.25 %

Table 3.2. Number of clusters and number of points for clusters for DS4 data set
(percentage in comparison to the total point for cluster found by DBSCAN) when
SPARROW analyzes 7%. 12%. 22% and 70% points.

Perc. of data points for cluster
7% 12% 22% 70%

S. Francisco 48.12% 66.22% 79.32% 98.88%

Sacramento 44.03% 61.11% 80.34% 97.56%

Los Angeles 51.21% 68.65% 81.92% 98.32%

Table 3.3. Number of clusters and number of points for clusters for Sequoia data
set (percentage in comparison to the total point for cluster found by DBSCAN)
when SPARROW analyzes 7%. 12%. 22% and 70% points.
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Fig. 3.5. Number of core points found for SPARROW, random and flock strategy
vs. total number of visited points for the DS4 dataset.
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Fig. 3.6. Number of core points found for SPARROW, random and flock strategy
vs. total number of visited points for the GEORGE dataset.

Table 1 and table 2 show, for the two data sets, the number of clusters and
the percentage of points for each cluster found by DBSCAN and SPARROW.

To verify the effectiveness of the search strategy, we have also compared
SPARROW with the random-walk search (RWS) strategy of the Reynolds’
flock algorithm and with the linear randomized search (LRS) strategy.

Figure 3.5, 3.6 and 3.7 show the number of core points found for the three
different strategies versus number of visited points respectively for the DS4,
GEORGE and Sequoia data set. At the beginning, the random strategy, and
also (to a minor extent) the flock, overcomes SPARROW, but, after 200-250
visited points SPARROW presents a superior behavior on both the search
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Fig. 3.7. Number of core points found for SPARROW, random and flock strategy
vs. total number of visited points for the Sequoia dataset.
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Fig. 3.8. The impact of the number of agents on the foraging for clusters strategy
(DS4).

strategies because of the adaptive behavior of the algorithm that allows agents
to learn on their previous experience.

Finally, we present the impact of the number of agents on the foraging for
clusters performance. Figure 3.8, 3.9 and 3.10 give the number of core points
found in 100 time steps (iterations) for 25, 50 and 100 agents. A comparative
analysis reveals that a 100-agents population discovers a larger number of
points than the other two populations with a smaller number of agents (the
scalability is almost linear). This scalable behavior of the algorithm determines
a faster completion time because a smaller number of iterations are necessary
to produce the solution.
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Fig. 3.9. The impact of the number of agents on the foraging for clusters strategy
(GEORGE).
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Fig. 3.10. The impact of the number of agents on the foraging for clusters strategy
(Sequoia).

3.4.2 SPARROW-SNN results

This section presents an experimental evaluation of SPARROW-SNN algo-
rithm. We intent to explore the following issues:

1. determine the accuracy of the approximate solution that we would obtain
if we run our cluster algorithm on only a small per cent of points, as
opposed to running the SNN clustering algorithm on the entire dataset;

2. determine the effects of using SPARROW-SNN searching strategy as op-
posed to the random-walk search strategy of the Reynolds’ flock algorithm
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and with the linear randomized search strategy, in order to identify clus-
ters;

3. determine the impact of the number agents on the foraging for clusters
performance.

For the experiments we used a synthetic dataset and two real life datasets.
The structures of these data sets are shown in figure 3.11 a, b and c.

Fig. 3.11. The three datasets used in our experiments a) DS1, b) Sequoia, c) North-
East (circles surround the three towns of the North-East dataset).

Perc. of data points for cluster
7% 12% 22% 70%

1 41.35 % 58.31 % 70.37 % 98.25 %

2 30.08 % 53.58% 60.72 % 97.02 %

3 29.28 % 40.99 % 53.02 % 91.10 %

4 20.9 % 30.5 % 51.41 % 89.65 %

5 53.38 % 65.36 % 76.56% 99.46 %

6 56.89 % 69.87 % 73.63 % 98.90 %

7 33.89 % 43.5 % 61.58 % 99.59 %

Table 3.4. Number of clusters and number of points for clusters for the DS1 data
set (percentage in comparison to the total point for cluster found by SNN) when
SPARROW-SNN analyzes 7%, 12%, 22% and 70% points.

The first dataset, called DS1, contains 8000 points and presents differ-
ent densities in the clusters. The second, Sequoia, is the same described in
subsection 5.1. The third dataset, called North-East, contains 123593 points
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Perc. of data points for cluster
7% 12% 22% 70%

Philadelphia 42.5 % 65.2 % 79.4 % 99.65 %

New York 38.7 % 52.3 % 67.6 % 96.61 %

Boston 46.5 % 68.6 % 82.3 % 99.94 %

Table 3.5. Number of clusters and number of points for clusters for the DS4 data
set (percentage in comparison to the total point for cluster found by SNN) when
SPARROW-SNN analyzes 7%, 12%, 22% and 70% points.

Perc. of data points for cluster
7% 12% 22% 70%

S. Francisco 49,11% 67,75% 80,38% 99,55%

Sacramento 44,81% 61,72% 80,86% 98,22%

Los Angeles 51,03% 71,99% 84,68% 98,86%

Table 3.6. Number of clusters and number of points for clusters for the Sequoia
data set (percentage in comparison to the total point for cluster found by SNN)
when SPARROW-SNN analyzes 7%, 12%, 22% and 70% points.
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Fig. 3.12. Number of core points found for SPARROW-SNN, random and flock
strategy vs. total number of visited points for the DS1 dataset.

representing postal addresses of three metropolitan areas (New York, Boston
and Philadelphia) in the North East States. We set noise threshold and
core threshold respectively to 5 and 10 for the DS4 dataset and to 10 and
20 for Sequoia and North East. K and Pmin were set respectively to 30 and
0.8 for all the datasets.

We first illustrate the accuracy of our SPARROW-SNN algorithm in com-
parison with SNN algorithm when SPARROW-SNN is used as a technique
for approximate clustering. To this purpose, we implemented SNN and we
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Fig. 3.13. Number of core points found for SPARROW-SNN, random and flock
strategy vs. total number of visited points for the North-East dataset.
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Fig. 3.14. Number of core points found for SPARROW-SNN, random and flock
strategy vs. total number of visited points for the Sequoia dataset.

computed the number of clusters and the number of points for cluster for
the above described datasets. Tables 3.4, 3.5 and 3.6 present a comparison
of these results with respect to ones obtained from SPARROW-SNN when a
population of 50 agents has visited respectively 7%, 12% and 22% and 70%
of the entire dataset.

Note that with only 7% of points we can have a cler vision of the found
clusters and with a few more points we can obtain the nearly totality of the
points. This trend is well marked in the North-East dataset. For the DS1
dataset, the results are not so well defined because the clusters called number
3 and 4 have very few points, so they are very hard to discover. For the real
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datasets, we only reported the results for the three main clusters representing
respectively the towns of Boston, New York and Philadelphia (Sequoia) and
the regions of S. Francisco, Sacramento and Los Angeles (North-East).

We can explain the good results thought the adaptive search strategy of
SPARROW-SNN that requires to the individual agents to first explore the
data searching for representative points whose position is not known a priori,
and then, after the representative points are located, all the flock member are
steered to move towards the representative points, that represent the interest-
ing regions, in order to help them, avoiding the uninteresting areas that are
instead marked as obstacles and adaptively changing their speed.

To verify the effectiveness of the search strategy we have compared
SPARROW-SNN with the random-walk search strategy and with the standard
flocking search strategy. Figures 13, 14 and 15 show the number of represen-
tative points found with SPARROW-SNN and those found with the random
search and with the standard flock vs. the total number of visited points. All
the figures reveal that the number of representative points discovered at the
beginning (and until about 170 visited points for DS1, 150 for North-East
and 190 for Sequoia dataset) from the random strategy, and also (to a minor
extent) for the flock, is greater than those discovered by SPARROW-SNN.
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Fig. 3.15. The impact of the number of agents on the foraging for clusters strategy
(DS1).

Finally, in order to study the scalability of our approach, we present the
impact of the number of agents on the foraging for clusters performance.
Figures 3.15, 3.16 and 3.17 give, respectively for the DS1, North-East and
Sequoia dataset, the number of clusters found in 100 time steps (iterations)
for 25, 50 and 100 agents. A comparative analysis reveals that a 100-agents
population discovers a larger number of clusters (almost linear) than the other
two populations with a smaller number of agents. This scalable behavior of
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Fig. 3.16. The impact of the number of agents on the foraging for clusters strategy
(North-East).
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Fig. 3.17. The impact of the number of agents on the foraging for clusters strategy
(Sequoia).

the algorithm determine a faster completion time because a smaller number
of iterations is necessary to produce the solution. We try to partially give a
theoretically explanation of the behavior observed in figure 3.12, 3.13 and 3.14,
i.e. the improvement in accuracy of the SPARROW-SNN strategy, introducing
an entropy based model in the next section.
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3.5 Entropy model

In order to verify and explain the behavior of our system, we used a model
based on the entropy introduced in [95] by Parunak and Brueckner. The au-
thors adopted a measure of entropy to analyze emergence in multi-agent sys-
tems. Their fundamental claim is that the relation between self-organization
based on emergence in multi-agent systems and concepts as entropy is not
just a loose metaphor, but it can provide quantitative and analytical guide-
lines for designing and operating agent systems. These concepts can be applied
in measuring the behavior of multi-agent systems. The main result, that the
above cited paper suggests, concerns the principle that the key to reduce dis-
order in a multi-agent system and to achieve a coherent global behavior is
coupling that system to another in which disorder increases. This corresponds
to a macro-level where the order increases, i.e. a coherent behavior arises,
and a micro-level where an increase in disorder is the cause for this coherent
behavior at the macro-level.

A multi-agent system follows the second law of thermodynamics ”Energy
spontaneously disperses from being localized to becoming spread out if it is
not hindered”, if agents move without any constriction. However, if we add
information in an intelligent way, the agents’ natural tendency to maximum
entropy will be contrasted and the system will go towards self-organization.

3.5.1 Spatial Entropy

In the following, we analyze the behavior of our flocking algorithm; all the
considerations can be applied to SPARROW or SPARROW-SNN. Really, as
stated in [95], we can observe two levels of entropy: a macro level in which
organization takes place, balanced by the micro in that we have an increase
of entropy. For the sake of clarity, in the flocking algorithm, micro-level is
represented by red and white agents’ positions, signaling respectively inter-
esting and desert zones, and the macro level is computed considering all the
agents positions. So, we expect to observe an increase of micro entropy by the
birth of new red and white agents and, on the contrary, a decrease in macro
entropy indicating organization in the coordination model of the agents. In
fact, at the beginning, the agents move and spread out randomly. Afterward,
the red agents act as catalyzers towards the most interesting zones, organi-
zation increases and entropy should decrease. Note that in the case of ants,
attraction is produced by the effect of pheromone, while for our flock, it is
caused by the attractive power of the red birds.

We introduce a more formal description of the entropy-based model. In
information theory, entropy can be defined as:

S = −
∑

i

pilogpi (3.9)
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Now, to adapt this formula to our aims, a location-based entropy is in-
troduced. Consider an agent moving in a space of data divided in a grid
N ×M = K, where all the cells have the same dimensions. So, if N and M are
quite large, each random agent will have the same probability to be in one of
the K cells of the grid. The entropy can be measured experimentally running
the flocking algorithm for T tries and counting how many times an agent falls
in the same cell i for each time-step. Dividing this number by T we obtain
the probability pi that the agent be in this cell.

Then, the locational entropy will be:

S = −

∑k

i=1 pilogpi

logk
(3.10)

In the case of a random distribution of the agents, every state has prob-
ability 1

k
, so the overall entropy will be logk

logk
= 1; this explains the factor of

normalization log k in the formula.
This equation can be generalized for P agents, summing over all the agents

and averaging dividing by P. Equation 3.10 represents the macro-entropy; if
we consider only red and white points, it represents the micro one.

We run our algorithm (averaged over 100 tries) for 2000 time-steps using 50
agents and computed the micro and macro locational entropy for the North-
East dataset. The results are showed in figure 3.18 and 3.19. As expected,
we can observe an increase in micro entropy and a decrease in macro entropy
due to the organization introduced in the coordination model of the agents by
the attraction towards red agents and the repulsion of white agents. On the
contrary, in random and standard flock model, the curve of macro entropy is
almost constant, confirming the absence of organization.
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Fig. 3.18. Micro Entropy (red and white agents) for the North-East dataset using
Sparrow-SNN.
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Fig. 3.19. Macro Entropy (all the agents) for the North-East dataset using
SPARROW-SNN, random and standard flock.

The same behavior was observed for the algorithm Sparrow and for the
other datasets.

3.5.2 Autocatalytic property

[96] defines autocatalytic property for agent systems as follows: ”A set of
agents has autocatalytic potential if in some regions of their joint state space,
their interaction causes system entropy to decrease (and thus leads to in-
creased organization). In that region of state space, they are autocatalytic”.
That behavior is not in contrast with the second law of thermodynamics, as
the macro entropy is balanced by the reduction in the micro one and in the
catalytic zones. In our modified flock, we have some zones of attraction due to
the presence of red birds and some zones of repulsion due to the white birds.

We conducted simulations in order to verify the property of autocatalysm
of our system and to better understand the behavior of our algorithm. We
used our algorithm with the same parameters described in the previous sub-
section considering the CURE dataset, showed in figure 3.20. We have used
this dataset, as it has a cluster distribution quite regular and that permits our-
selves to better study the catalytical properties; in fact, the dataset contains
100000 points distributed in three circles and two ellipsoids and connected by
a chain of outliers and random noise scattered in the entire space.

In figures 3.21 and 3.22 it is shown respectively the entropy in the cluster
zones and outsides the clusters.

Entropy decreases both in cluster zones and outsides the clusters zones, as
the flock visits more often cluster zones and keeps away from the other zones
(this behavior also causes a decrease in the entropy). However these curves are
not sufficient to verify the goodness of the algorithm as organization alone is
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Fig. 3.20. CURE dataset.
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Fig. 3.21. Macro Entropy in the cluster zones for the Cure dataset using
SPARROW-SNN, random and standard flock.

not sufficient to solve problems, but it must bring the search in the appropriate
zones. In fact, the main idea behind our algorithm is to let the flocks dynamics
explore the space and, when the birds reach a desirable region (zone dense of
clusters), an autocatalytic force should be applied to the system (red birds)
to keep the search in these zones.

Thus, we analyzed the average percentage of birds present in the two
different zones (figure 3.23). In cluster zones we have about the 80% of the
entire flock (while the space occupied from the clusters is about 65%) and
this confirms that, in the interesting zones of the clusters, not only there is
organization but there also a larger presence of searching agents.
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Fig. 3.22. Macro Entropy outside the cluster zones for the Cure dataset using
SPARROW-SNN, random and standard flock.
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Fig. 3.23. Percentage of agents exploring cluster and non cluster zones for the Cure
dataset using SPARROW-SNN.

3.6 Related works

Clustering problem has been faced in the recent past using algorithms based
on the Swarm Intelligence paradigm. Termites, swarms of bees and especially
ant colonies have polarized the attention of researchers but, to the best of
our knowledge, the interesting property of flock of birds have not sufficiently
exploited in the clustering task.

First pioneering work on clustering using artificial ants was conducted
by Deneuborg in [24]. Ants-like agents clusterize together objects, moving
through a two-dimensional grid and picking and dropping them with a prob-
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ability based on an estimation of the density of objects of the same type in
the neighborhood.

Lumer and Faieta in [79] extended this work including a distance function
between data objects for the purpose of exploratory data analysis and applied
these techniques to a database of customer profiles, projecting the space of
attributes into a two-dimensional space. Moreover, they introduced ants with
different moving speeds (fast ants group clusters on large scales, while slow
ants work at smaller scales by placing data with more accuracy), a short term
memory (ants can remembers the last m dropped data, avoiding to create
equivalent clusters) and behavioral switches (ants destroy clusters if they have
not performed any deposit or pick up actions for a given number of time steps
in order to escape local non-optimal spatial configurations).

The ACluster algorithm overcomes the drawback associated with these
three last characteristics and simplifies the model of Lumer and Faieta, intro-
ducing the concept of bio-inspired spatial transition probabilities that increase
pheromone in locations where objects are more diffuse and adding two differ-
ent threshold responses, one associated to the density of data and the other
to their similarity. The algorithm is used for the task of image retrieval [101],
for the clustering of textual documents [100] and extended in [99] for applying
it to continuous data stream.

In [46], Handl and Meyer added adaptive scaling (when few pickup and
drop action occurred over a specified time period the ants’ sensitivity was
reduced, in the opposite case was increased), ant jumps (more efficient ex-
ploration of the space), stagnation control (after a number of unsuccessful
dropping attempts an ant drops its load regardless of the neighborhood’s sim-
ilarity) and eager ants (ant was put immediately on a data point) to the
classical model. The algorithms yield significant improvements in terms of
quality and speed and was employed in a document retrieval system.

Monmarché et al. in [89] proposed an algorithm that combines in an in-
telligent way clustering ants and k-means. Moreover many data can be put
on the same cell and each cell with a non-zero number of items corresponds
to a cluster. At the same way, each ant can carry more data until a maxi-
mum capacity. Initially, ants cluster data objects, then k-means was applied
to refine the clusters, and this procedure is repeated for heap of objects. The
evaluation on some synthetic and simple real world datasets gave good results
in comparison with classical clustering algorithms.

Kanade and Hall in [59] developed an ant algorithm that, in a first stage,
moves the cluster centers (and not the data points) in the feature space. As
a second stage, the found centers are evaluated using the Fuzzy C Means or
Hard C Means algorithm. These two stages are repeated until a fixed number
of epochs. Results on some datasets are superior to the behavior of FCM and
HCM initialized randomly.

In [122] an adaptive ant clustering algorithm (A2CA) was introduced.
Among the novelty in comparison with the other algorithms, it is interesting
the concept of progressive vision that permits to cope with cluster with differ-
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ent dimension, making ants augment their vision when encounter a big cluster.
The algorithm was also evaluated on a real world bioinformatics dataset in
which the classical ant clustering algorithms fails, while A2CA worked quite
well.

First idea of employing a flock of birds to perform the task of clustering
can be found in [94]. The authors used a flock of colored birds to drive a ge-
ographical analysis machine (GAM); in practice, a flock of circles of different
sizes explore the search space in order to find interesting geographical pat-
terns. The system was validated on the city of Baltimore for discovering crime
patterns. Note that the problem coped in this paper is not really clustering,
as different kind of clusters are not discovered neither merged together, but
only the problem of discovering interesting patterns was faced.

Kazemian et al. [63] introduced a data clustering strategy based on Flower
Pollination by Artificial Bees (FPAB) in which the flowers represents the data
and the gardens the clusters and pollen is used to move the flowers with lowest
growth (probably not belonging to that cluster) from a garden to another.
Then, the Fuzzy C Means algorithm is applied to refine the clusters and the
new centers found are used as new flowers and the algorithm is repeated until
an appropriate number of clusters is reached. FPAB is applied to some simple
datasets and was compared with an ant algorithm.

Particle Swarm Optimization was also appled to the clustering task, but
the point of view is quite different from the swarm based one. In fact, PSO was
applied to discover clusters using an approach in that each particle represents
a cluster centroid, as in [120], for example. This limits the applicability of the
algorithm and presents all the problem of the centroid based approach.
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P2P clustering algorithm

4.1 Introduction

In this chapter, I present P-SPARROW a novel algorithm which uses the con-
cepts of a flock of birds that move together in a complex manner using simple
local rules, to cluster distributed spatial data in P2P systems. P-SPARROW
discovers the objects to be clustered at local sites. Each local site situates its
own objects in a local 2D cellular space. P-SPARROW clusterizes data inde-
pendently on the different local sites by a smart exploratory strategy based on
a colored flock of birds combined with a density-based clustering method. On
each cellular space, a set of agents, having different features (color and speed),
discover local models of the clusters, represented by core objects, i.e. data
points in which the cardinality of the neighborhood exceeds a fixed threshold.
At intervals each node transfers the core points to the neighboring nodes. On
each node, all the objects that are in the neighborhood of these core points
are considered belonging to the same cluster. Furthermore, as the clusters are
discovered, they are merged using an iterative distributed labeling strategy to
generate global labels with which identify the global clusters. P-SPARROW
has a number of nice properties. It has the advantages of being easily imple-
mentable on distributed systems as P2P networks and it is robust compared to
the failure of individual agents and also of entire nodes. It can also be applied
to perform efficiently approximate clustering since the points that are, to each
iteration, visited and analyzed by the flock of agents represent a significant (in
ergodic sense) subset of the entire dataset. The subset reduces the execution
time since reduces the space of solutions that a clustering algorithm has to
search keeping the accuracy loss as small as possible. P-SPARROW has no
centralized coordinator. Each node acts independently from each other and
intermediate results may be overturned as new data arrives. P-SPARROW
behaves as an anytime algorithm in which the quality of results improves as
computational time increases. Each node maintains an assumption of the cor-
rect result and updates it whenever new core points are discovered. During
the execution of the algorithm, if the system remains static, then the solu-



48 4 P2P clustering algorithm

tion will quickly converge toward the correct solution. However, in a dynamic
system, in which nodes dynamically join or depart and the data changes over
time, the changes are quickly and locally adjusted to, and the solution con-
tinues to converge. This property is particularly interesting if continuous data
are analyzed. Furthermore, each node communicates only with its immediate
neighbors. Locality implies that the algorithm is scalable to very large net-
works. Another outcome of the algorithm’s locality is that the communication
load it produces is small and decreases with the time. We have implemented
P-SPARROW in a P2P network using the Jxta Protocol [1] to investigate the
interaction of the parameters that characterize the algorithm.

4.2 P-Sparrow

P-SPARROW, a multi-agent distributed clustering algorithm implemented
in a P2P network, combines the stochastic search of an adaptive flocking
with a density-based clustering method and an iterative self-labeling strategy
to generate global labels with which identify the clusters of all peers. Since
P-SPARROW utilizes the principles of the conventional density-based algo-
rithms, some of them are described first, then the algorithm is explained and
the overall distributed architecture is illustrated.

4.2.1 Density-based clustering

Density-based clustering methods try to find clusters on the basis of the den-
sity of points in regions. Dense regions that are reachable from each other
are merged to formed clusters. DBSCAN [32] is one the most popular density
based methods and it is based on the idea that all the points of a data set can
be regrouped into two classes: clusters and noise. Clusters are defined as a set
of dense connected regions with a given radius (Eps) and containing at least a
minimum number (MinPts) of points. The two parameters, Eps and MinPts,
must be specified by the user and allow to control the density of the cluster
that must be retrieved. The algorithm defines two different kinds of points
in a cluster: core points and non-core points. A core point is a point with
at least MinPts number of points in an Eps-neighborhood of the point. The
non-core points in turn are either border points if they are not core points but
they are density-reachable from another core point or noise points if they are
not core points and are not density-reachable from other points. To find the
clusters in a data set, DBSCAN starts from an arbitrary point and retrieves
all points that are density-reachable from that point. A point p is density
reachable from a point q, if the two points are connected by a chain of points
such that each point has a minimal number of data points, including the next
point in the chain, within a fixed radius. If the point is a core point, then the
procedure yields a cluster. If the point is on the border, then DBSCAN goes
on to the next point in the database and the point is assigned to the noise.
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DBSCAN builds clusters in sequence (that is, one at a time), in the order in
which they are encountered during space traversal. The retrieval of the den-
sity of a cluster is performed by successive spatial queries. Such queries are
supported efficiently by spatial access methods such as R*-trees. DBSCAN is
not suitable for finding approximate clusters in very large datasets. DBSCAN
starts to create and expand a cluster from a randomly picked point. It works
very thoroughly and completely accurately on this cluster until all points in
the cluster have been found. Then another point outside the cluster is ran-
domly selected and the procedure is repeated. This method is not suited to
stopping early with an approximate identification of clusters.

Recently, DBDC a distributed version of DBSCAN algorithm has been
presented in [47]. DBDC uses DBSCAN to make local clustering and deter-
minate a local model after the local clustering is finished. All information
which is comprised within the local model, i.e. the representatives and their
corresponding e-ranges, is sent to a global server site, where a global cluster-
ing representation is produced from local representations. Based on this small
number of representatives, the global clustering can be done very efficiently.
After having created a global clustering, the complete global model is sent
back to all client sites. The client sites relabel all objects located on their site
independently from each other. DBDC does not scale-up well since, in a P2P
scenario, no centralized coordinator and limited communications are required.

4.2.2 Distributed clustering

As in DBSCAN, P-SPARROW finds cluster performing region-queries on core
points but it replaces the exhaustive search of the core points with a stochas-
tic multi-agent search that discovers in parallel the points. P-SPARROW is
constituted of two phases: a local phase for the discovery of the core points
on each peer and a merge phase that concerns a global relaxation process in
which nodes exchange cluster labels with nearest neighbors until a fixed point
(i.e. all nodes detect no change in the labels) is reached.

All the data are partitioned among the peers, proportionally to the com-
puting power and to the cpu-load of the peer itself. Each peer implements
the flocking algorithm, described in figure 4.1, using a fixed number of agents
that initially occupy a randomly generated position in the space. Each agent
moves testing the neighborhood of each object (data point) it visits in order to
verify if the point can be identified as a core point. Then, P-SPARROW uses
a flocking algorithm with an exploring behavior in which individual members
(agents) search some goals, whose positions are not known a priori, in paral-
lel and signal the presence or the lack of significant patterns into the data to
other flock members, by changing color. The entire flock then moves towards
the agents (attractors) that have discovered interesting regions to help them,
avoiding the uninteresting areas that are instead marked as obstacles. The
color is assigned to the agents by a function associated to the data analyzed
during the exploration, according to the DBSCAN density-based rules and
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for i=1 . . . MaxIterations

foreach agent (yellow, green)

if (not visited (current point))

density = compute local density();

mycolor= color agent(density);

endif

end foreach

foreach agent (yellow, green)

dir= compute dir();

end foreach

foreach agent (all)

switch (mycolor){

case yellow, green: move(dir, speed(mycolor)); break;

case white: stop ();generate new agent();break;

case red: stop (); merge(); if (new red()) clone agent(); break; }

end foreach

if ((bag out.dimension()> threshold)or(i%IterMigr==0)) send bag();

if (bag in full()) notify changes();

end for

Fig. 4.1. The pseudo-code of P-SPARROW executed on every peer.

with the same parameters: MinPts, the minimum number of points to form a
cluster and Eps, the radius of the circle containing these points. In practice,
the agent computes the local density (density) in a circular neighborhood
(with a radius determined by its limited sight, i.e. Eps) and then it chooses
the color (and the speed) in accordance to some simple rules. So red, reveals
a high density of interesting patterns in the data (density > MinPts and the
agent takes speed=0), green, a medium one ( MinPts

4 < density ≤ MinPts

and speed=1), yellow, a low one(0 < density ≤ MinPts
4 and speed=2), and

white, indicates a total absence of patterns (density = 0 and speed=0). The
color is used as a communication mechanism among flock members to indicate
them the roadmap to follow. The main idea behind our approach is to take
advantage of the colored agent in order to explore more accurately the most
interesting regions (signaled by the red agents) and avoid the ones without
clusters (signaled by the white agents). Red and white agents stop moving in
order to signal these regions to the others, while green and yellow ones fly to
find clusters. Green agents will move more slowly than yellow agents in order
to explore more carefully zones with an higher density of points. The variable
speed introduces an adaptive behavior in the algorithm. In fact, agents adapt
their movement and change their behavior (speed) on the basis of their previ-
ous experience represented from the red and white agents. Anyway, each flying
agent computes its heading by taking the weighted average of alignment, sep-
aration and cohesion (as illustrated in previous chapter). Green and yellow
agents compute their movement observing the positions of all the agents that
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are at most at some fixed distance (dist max ) from them and applying the
rules of Reynolds’ [103] with the following modifications: alignment and co-
hesion do not consider yellow agents, since they move in a not very attractive
zone; cohesion is the resultant of the heading towards the average position
of the green flockmates (centroid), of the attraction towards red agents, and
of the repulsion by white agents; a separation distance is maintained from all
the agents, whatever their color is.

New red agents executes the merge procedure; in practise a temporary
label will be given to these agents and to all the points of their neighborhood,
if they are not already labeled. Otherwise the minimum of all the labels will
be assigned to all the core points in this neighborhood, in order to make them
belong to the same cluster. In this way, on each peer the set of red agents (core
points) determinates the local model of clustering. Neighboring peers must be
informed about the new core points or about the new labels in order to merge
all the points belonging to the same cluster. To this end, red agents create
clone agents and put them in an apposite bag and, when a fixed number of
clone agents is achieved (i.e. a bag of agents has reached the desired dimension)
or a certain number of iterations have been performed, each peer will send the
bag containing the cloned red agents to the neighboring peers. Consequently,
the agents received from the other peers will be put in another bag that will
be used in the next iteration (or when it become full) for the merge phase. In
practise, the new agents continuously update the labels as multiple clusters
take shape concurrently. This continues until nothing changes, by which time
all the clusters will have been labeled with the minimum initial label of all the
sites containing the data. All the points having the same label form a cluster.

4.2.3 The software architecture

The software architecture of P-Sparrow is described in figure 4.2.
The flock platform manages the cellular space in which the agents move.

Furthermore, it supplies the main procedures concerning the agents (move,
remote move, create new agent, clone agents, etc..) using the underlying levels.
Agents of different colors will be scheduled by means of the agents scheduler.

The resource manager (RM) execute efficiently range queries (i.e. com-
pute density) in the dataset, accessing the repository, in order to choose the
new color of the agents. The RM is also responsible of putting new agents
received by the neighboring peers in the appropriate zone in order to start
a new phase of merge. The arrival of a new bag of agents is signaled by the
notifier manager that supplies also information about new events such as
the fall of a peer, the convergence of the algorithm, etc... The network man-

ager handles the send and the receive of the bags of agents on the basis of
the topology of the system (see subsection 4.3.2 for more details about the
topology used), using JXTA sockets.
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Fig. 4.2. The software architecture of P-Sparrow.

4.3 Experimental Results

In this section, we want to analyze the goodness of our algorithm in the task
of performing approximate clustering and we want to verify some interesting
properties of our distributed system (i.e. accuracy, scalability, etc..). In our
experiments, we used two spatial datasets: one synthetic (called DS1-CURE)
and one real (SEQUOIA). DS1-CURE (used in [43]) contains 100000 points
in three circles and two ellipsoids connected by a chain of outliers and random
noise scattered in the entire space; SEQUOIA was composed by 62556 names
of landmarks (and their coordinates), and was extracted from the US Geolog-
ical Survey’s Geographic Name Information System. The three main clusters
in this dataset represent respectively the areas of S. Francisco, Sacramento
and Los Angeles.

4.3.1 Accuracy and Scalability

We run our algorithm using 100 agents working until they explore the 1%, 2%,
5% and 10% of the entire data set, using 16, 32 and 80 peers. All the exper-
iments were averaged over 30 tries. Our algorithm uses the same parameters
as DBSCAN. Therefore, if we visited all the points of the dataset, we would
obtain the same results as DBSCAN. Then, in our experiments we consider
as 100% the cluster points found by DBSCAN (note DBSCAN visit all the
points). We want to verify how we come close to this percentage visiting only
a portion of the entire dataset and that must be effective for different number
of peers involved in the computation. Note that the dominant operation in
the computation is the execution of the range queries, effectuated each time
a point is visited, while the time of the other operations is negligible. So, the
fact of reducing the % of visited points considerably reduces the execution
time.
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Fig. 4.3. Number of points for cluster for Cure dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 1% of total
points, using 16, 32 and 80 peers.

Fig. 4.4. Number of points for cluster for Cure dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 2% of total
points, using 16, 32 and 80 peers.

Fig. 4.5. Number of points for cluster for Cure dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 5% of total
points, using 16, 32 and 80 peers.

For a large number of peers, the density of points for cluster for peer
necessarily decreases; so we have to choose a different value of the parameter
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Fig. 4.6. Number of points for cluster for Cure (percentage in comparison to the
total number of points for cluster) when P-SPARROW analyzes 10% of total points,
using 16, 32 and 80 peers.

Fig. 4.7. Number of points for cluster for Sequoia dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 1% of total
points, using 16, 32 and 80 peers.

Fig. 4.8. Number of points for cluster for Sequoia dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 2% of total
points, using 16, 32 and 80 peers.

MinPts to keep into account this aspect. In practice, we choose a value of
MinPts inversely proportional to the number of peers (i.e. if we fix MinPts
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Fig. 4.9. Number of points for cluster for Sequoia dataset (percentage in comparison
to the total number of points for cluster) when P-SPARROW analyzes 5% of total
points, using 16, 32 and 80 peers.

Fig. 4.10. Number of points for cluster for Sequoia (percentage in comparison to
the total number of points for cluster) when P-SPARROW analyzes 10% of total
points, using 16, 32 and 80 peers.

as 8 on 16 peers, we have to fix as 4 on 32 peers and so on). Form figure 4.3
to figure 4.10, we show the experimental results concerning the accuracy and
scalability of the algorithm by varying the number of peers for the SEQUOIA
and DS1-Cure dataset.

For instance, on 80 peers, visiting only the 5% of points, on average, we
obtain an accuracy of about 80% for Sequoia and about 85% for Cure and
visiting the 10% of data we reach 93% and 95% of accuracy for the same
datasets.

Furthermore, the scalability (i.e. the effect on the accuracy of increasing
the number of peers and so reducing the number of data points for peer)
is quite good for both the datasets. In fact, if look at the Cure dataset, for
the 5% case, we obtained a reduction from 95% for 16 peers to 84% for 80
peers while for the 10% case, we have a little reduction from 97% to 95%.
For Sequoia, for the same cases, we have respectively a reduction from 88%
to 81% and from 99% to 94%. Visiting only 1% of the dataset we have low
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percentage of point found, however they are sufficient to have an approximate
idea of shape of the clusters.

4.3.2 The impact of Small World topology

During the first experimentations, peers were arranged using a logical ring
topology. However, using this topology the merge phase can waste many it-
erations before to merge all the clusters. This is due mainly to the main
characteristics of the ring topology, i.e. we have a high average hop count be-
tween two nodes. Furthermore, the fall of a node (event not infrequent in p2p
networks) causes a dramatic increase in the hop count. On the other hand, if
we used a completely connected topology, the network will be congested by
the large number of messages exchanged. An interesting alternative is using
the small world topology, introduced in [125] to describe the social phenom-
enon that two arbitrary persons in the world are linked by a short chain of
acquaintances. We can characterize network topologies using two parameters:
characteristic path length CPL (i.e. the length of the shortest path between
each pair of nodes averaged over all possible pairs) and clustering coefficient
CC (i.e. the ratio between the number of edges in the neighborhood of a node
and the total number of possible edges averaged over all nodes). Small world
topology, showed in figure 4.11 b have a high CC but a low CPL and that is a
really useful property in p2p networks, as we need a few hops to reach a node,
but the disconnection of a node does not change the behavior/performance of
the system.

Fig. 4.11. (a) Regular Lattice β = 0 (b) Small World β = 0.1 (c) Random β = 0.8

Small world network can be built starting from a regular one dimensional
lattice (an extension of ring topology, with each node having k neighbors
instead of 1, see figure 4.11 a, with k � N and k

2 edges to the left and k
2 to

the right node respectively). We start from a node of the lattice and we rewire
each its edge with a probability β, i.e. if the right probability is extracted, we
deleted the edge and reconnect the node with another node randomly chosen
among all the nodes. If the edge was already present in the network the older
remains unchanged. The procedure go on for the next right neighbor node
until all the graph is visited and it is repeated for the second link of each
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node. The topology of the network depends on the parameter β, if it → 0 we
will have a regular lattice topology, if it varies from 0.01 to 0.1 we will have
a small world topology and higher values will bring to a random topology
(figure 4.11 c).

Fig. 4.12. Avg number of messages exchanged for the three different topologies
(regular lattice, small world and random) using 32 peers for Sequoia.

Fig. 4.13. Avg number of messages exchanged for the three different topologies
(regular lattice, small world and random) using 80 peers for Sequoia.

We run P-Sparrow with the same parameters reported in the previous sub-
section using the three different topologies (β = 0, β = 0.1 and β = 0.8). In
figure 4.12 and 4.13, we reported the average number of messages exchanged
for peer (peers exchange core points each 100 generation) for the three differ-
ent topologies for the Sequoia dataset. Note that when the number of messages
approach to 0 means that the algorithm does not discover new solutions (core
points) and then it converged. The SW topology reach a higher peak in com-
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parison with the regular (but less than the random), but then converges more
quickly, probably because of the effect of the long-range links that accelerates
the diffusion of the core points and then the process of clustering. In the case
of the random topology, the low clustering coefficient disperses many core
points and this slow down the convergence.The same behavior was observed
for different rate of exchanging messages (50 and 200) and for the DS1-Cure
dataset, but the figures are not reported for lack of space.
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An Ant-Inspired Protocol for Mapping

Resources in Grid

5.1 Introduction

This chapter examines an approach based on ant systems to replicate and
map Grid services information on Grid hosts according to the semantic clas-
sification of such services. A Grid information system should rely upon two
basic features:

- the replication and dissemination of information about Grid services and
resources;

- the distribution of such information among Grid hosts.

The ARMAP protocol(Ant-based Replication and MApping Protocol) aims
to disseminate information in a controlled way, in order to maximize the ben-
efit of the replication mechanism and facilitate discovery operations. Replicas
are spatially mapped on the Grid so that resource descriptors belonging to the
same class are placed in nearby Grid hosts. The mapping of resource descrip-
tors is managed through a multi agent approach, inspired by the model that
was introduced in [24]to emulate the behavior of ants which cluster and map
items within their environment. This section proposes a variant of that model,
in which items (in our case the resource descriptors) are both replicated and
mapped. A number of agents traverse the Grid via the underlying P2P inter-
connections and copy or move resource descriptors from one host to another,
by means of appropriate pick and drop random functions. In particular, each
agent is tailored to pick resource descriptors of a given class from a region in
which that class of resources is scarcely present, and drop them in a region
where those resources are already being accumulated. A spatial entropy func-
tion is defined to evaluate the effectiveness of the ARMAP protocol in the
logical reorganization of resources. Each agent can operate in either the copy
modality or the move modality. If the copy modality is used, the agent, when
executing a pick operation, leaves the resource descriptors on the current host,
generates a replica of them, and carries the replicas until it will drop them
in another host. Conversely, with the move modality, as an agent picks the
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resource descriptors, it removes them from the current host, thus preventing
an excessive proliferation of replicas. In a first phase, the copy modality is
used to generate an adequate number of resource descriptor replicas on the
network. However, the copy modality cannot be maintained for a long time,
since eventually every host would have a huge number of resource descrip-
tors of all classes, thus weakening the efficacy of resource mapping. Therefore,
each generated agent must switch from the copy to the move modality, and
a mechanism must be defined to determine the correct time at which this
modality switch must be performed. The analysis of the entropy trend al-
lowed for the definition of a decentralized self-organizing mechanism through
which each agent can tune its modality by itself, by analyzing its activeness,
i.e. the frequency of pick and drop operations it performs. This decentralized
mechanism, inspired on ants’ pheromone [8], guarantees that the ARMAP pro-
tocol is fully scalable and fault-tolerant, since agents can tune their behavior
without having a global knowledge of the state of the system.

5.2 ARMAP protocol

ARMAP aims to disseminate Grid resource descriptors and spatially map
them on the Grid according to their semantic classification, in order to gather
a consistent number of resource descriptors of the same class in a restricted
region of the Grid. It is assumed that the resources have been previously
classified into a number of classes Nc, according to their semantics and func-
tionalities (see [17] and [84]). ARMAP exploits the random movements and
operations of a number of mobile agents that travel the Grid using P2P inter-
connections. This approach is inspired by biological systems, in particular by
ant systems [8][18][24], in which swarm intelligence emerges from the collective
behavior of very simple mobile agents (ants), and a complex overall objective
is achieved. In ARMAP, each mobile agent can pick a number of resource
descriptors on a Grid host, carry such descriptors while moving form host to
host, and deposit them on another Grid host. Initially, it is assumed that each
agent is ”class-specific”, i.e. it manages the resource descriptors of only one
class. This assumption will be released later. Section 5.3 describes the basic
features of the ARMAP protocol (agent movements and pick and drop oper-
ations) and the approach used to tackle the dynamic nature of the system.
Section 5.4 introduces the entropy function used to evaluate the effectiveness
of ARMAP, and explains the advantage of switching the ARMAP modality
from copy to move. Furthermore, section 5.4 discusses a decentralized ap-
proach, based on ants’ pheromone, that is used by each agent to evaluate the
correct time at which it must operate the modality switch. Section 5.4.1 dis-
cusses the role of the ARMAP protocol in the design of a Grid information
system.
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5.3 Basic operations

5.3.1 Agent Movement

Each agent travels over the Grid through P2P interconnections among Grid
hosts. The ARMAP protocol has been analyzed in a P2P network in which
peers are arranged in a mesh topology, as in the SWARM simulator [86],
and each peer is connected to at most 8 neighbor peers, including horizontal,
vertical and diagonal neighbors. The mesh topology was chosen to achieve
a more intuitive and immediate graphical representation of the system evo-
lution, which helps to understand the involved dynamics. However, it is also
assumed that peers frequently leave and re-join the network, as discussed later,
which assures that at a specific time a peer is actually connected to a random
number of active peers (at most 8), so relaxing the rigid mesh assumption.
At random times, each agent makes a random number of hops along the P2P
network (the maximum number of hops Hmax is a protocol parameter), exe-
cutes the agent’s algorithm specified by the ARMAP protocol, and possibly
performs a pick or drop operation.

5.3.2 Pick operation

Once an agent specialized in a class Ci gets to a Grid host, if it is currently
unloaded, it must decide whether or not to pick the resource descriptors of
class Ci that are managed by that host. In order to achieve the replication
and mapping functionalities, a pick random function Ppick is defined with the
intention that the probability of picking the resource descriptors of a given
class decreases as the local region of the Grid accumulates such descriptors.
This way resource mapping is further facilitated. The Ppick random function,
defined in formula 5.1, is the product of two factors, which take into account,
respectively, the relative accumulation of resource descriptors of a given class
(with respect to the other classes), and their absolute accumulation (with
respect to the initial number of resource descriptors of that class).

Ppick =

(

k1

k1 + fr

)2

+

(

fa2

k2 + fa2

)2

(5.1)

In particular, the fr fraction is computed as the number of resource de-
scriptors of class Ci accumulated in the peers located in the visibility region
divided by the overall number of resource descriptors that are accumulated in
the same region. The visibility region includes all the peers that are reachable
from the current peer with a given number of hops (i.e. within the visibility
radius). Here it is assumed that the visibility radius is equal to one, so that the
visibility region is composed of at most 9 hosts, the current one included. It
is assumed that each host is informed, through a soft state mechanism, about
the resource descriptors that are maintained by the hosts located within the
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visibility region. The fa fraction is computed as the number of resource de-
scriptors of class Ci that are owned by the hosts located in the visibility region
out of the number of resource descriptors that are presently maintained by
such hosts, including the descriptors deposited by the agents. The inverse of
fa gives an estimation of the extent to which the hosts under interest have
accumulated resource descriptors of class Ci so far. k1 and k2 are threshold
constants which are both set to 0.1. If the ARMAP protocol works in the
copy modality, when an agent picks the resource descriptors of class Ci, it
leaves a copy of them in the current host; conversely, if the move modality is
assumed, such resource descriptors are removed from the current host. In the
latter case, the current host will only maintain the descriptors of class Ci that
it owns, but loses all the information about the descriptors of class Ci which
have been deposited by the agents.

5.3.3 Drop operation

Whenever an agent specialized in a class Ci gets to a new Grid host, it must
decide whether or not to drop the resource descriptors of class Ci, in the case
that it is carrying any of them. As opposed to the pick operation, the dropping
probability is directly proportional to the relative and absolute accumulation
of resource descriptors of class Ci in the visibility region. The Pdrop function
is shown below.

Ppick =

(

fr

k3 + fr

)2

+

(

k4

k4 + fa2

)2

(5.2)

In formula 5.2, the threshold constants k3 and k4 are set to 0.3 and 0.1,
respectively. A high-level description of the ARMAP algorithm executed by
each agent is given in figure 5.1: the role of the protocol modality (copy or
move) is highlighted. So far, only class-specific agents were considered: with
this assumption, each peer casually selects the class of resources in which the
generated agent will be specialized. However, to improve performance, it is also
possible to generate generic agents, which are able to pick and drop resource
descriptors belonging to all the resource classes or a subset of them. In such
a case, the algorithm shown in 5.1 is slightly modified: the agent computes
the pick and drop random functions separately for each class it can manage.
This way an agent may pick the resource descriptors of class Ci from a Grid
host, and drop the descriptors of another class Cj into the same host. The
performance increase obtained with generic agents will be shown in section
5.7.

5.3.4 Dynamic Grid

In a dynamic Grid, peers can, more or less frequently, go down and recon-
nect again. As a consequence of this dynamic nature, two different and op-
posite issues must be tackled. The first one is related to the management of
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new resources provided by new or reconnected hosts: once all the agents have
switched to the move modality, it becomes impossible to replicate and dissem-
inate information about the new resources; hence agents cannot live forever,
and must be gradually be replaced by new agents that set off in the copy
modality. At the same time, the system must deal with obsolete resources,
i.e. with resources, provided by peers that has left the system, that are no
more exploitable. To tackle these two issues, it is necessary to manage the
lifecycle and the gradual turnover of agents, and control the overall number
of agents that travel the Grid. The proposed solution is to correlate the lifecy-
cle of agents to the lifecycle of peers. An assumption is made that the average
amount of time for which a peer remains connected to the Grid is known and
equal to PlifeTime. When joining the Grid, each peer generates a number
of agents given by a discrete Gamma stochastic function, with average Ngen,
and sets the life time of these new agents to PlifeTime. This setting assures
that (i) the relation between the number of peers and the number of agents
is maintained over the time (more specifically, the overall number of agents
is approximately equal to the number of active peers times Ngen) and (ii) a
proper turnover of agents is achieved, which allows for the dissemination of
new resource descriptors, since new agents start with the copy modality. Fur-
thermore, a peer, when leaving the Grid, looses all the information about the
resource descriptor replicas that it has collected during its connection time.
This solves the problem of managing obsolete resources: indeed the descrip-
tors related to an obsolete resource are gradually eliminated by the Grid, as
the peers that are storing such replicas leave the system and the agents that
are carrying them expire. Finally, it is worth highlighting that the described
approach implicitly manages any unexpected peer fault, because this occur-
rence is handled in exactly the same way as a peer disconnection is. Indeed,
the two events are indistinguishable, since (i) a peer does not have to perform
any procedure before leaving the system, and (ii) in both cases the resource
descriptors that the peer has accumulated so far are discarded.

5.4 Spatial entropy and pheromone mechanism

A spatial entropy function is defined to evaluate the effectiveness of the
ARMAP protocol, as shown in formula 5.4. For each peer p, the entropy
Ep gives an estimation of the extent to which the visibility region centered
in p has accumulated resource descriptors belonging to one class. This func-
tion, inspired by the Shannon entropy formula, is constructed upon the value
of fr(i), defined as the fraction of resource descriptors of class Ci within the
visibility region. The Ep formula is normalized, so that possible values are
comprised between 0 (when all the resource descriptors in the visibility region
belong to just one class) and 1 (when the resource descriptors are equally
distributed among the different classes). The overall spatial entropy E of the
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// Na = number of agents: each one is specialized in a class of resources

// Hmax = max number of P2P hops that an agent can perform between two

// successive operations

// mod =ARMAP modality (copy or move)

For each agent a (specialized in class Ci) do forever{

Compute integer number h between 1 and Hmax;

a makes h P2P hops;

if (a is unladen) {

compute Ppick;

draw random real number r between 0 and 1;

if (r¡=Ppick) then {

pick resource descriptors of class Ci from current host;

if (mod == move)

remove resource descriptors of class Ci from current host;

}

}

else {

compute Pdrop;

draw random real number r between 0 and 1;

if (r¡=Pdrop) then

drop resource descriptors of class Ci into current host;

}

}

Fig. 5.1. High-level description of the ARMAP algorithm

network is defined as the average of the entropy values Ep computed at all
Grid hosts.

Ep =

∑

i=1...Nc fr(i) ∗ lg 1
fr(i)

lg Nc
(5.3)

E =

∑

pεGrid Ep

Np
(5.4)

Simulation runs were executed to evaluate the correct time at which the
modality switch (from copy to move) should be performed in order to min-
imize the spatial entropy. Results are given in section 5.6. The assumption
here is that each agent knows the value of the overall entropy at every instant
of time. However, in the real world an agent maintains only a local view of
the environment, and cannot determine its behavior on the basis of global
system parameters such as the overall system entropy. Therefore, a method is
introduced with the purpose of enabling a single agent to perform the modal-
ity switch only on the basis of local information. Such a method is based on
the observation that an increase in the overall entropy value corresponds to
a significant decrease in the activity of agents, i.e. in the frequency of pick
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and drop operations that are performed by agents. Indeed a low agent activ-
ity is a clue that a high degree of resource reorganization has already been
achieved. Accordingly, a single agent can evaluate its own activeness by using
a pheromone mechanism [97]. In particular, at given time intervals, i.e. every
2000 seconds, each agent counts up the number of successful and unsuccessful
pick and drop operations (a pick or drop operation attempt is considered suc-
cessful when the operation actually takes place - i.e. when the random number
extracted is lower than the value of the operation probability function). At
the end of each time interval, the agent makes a deposit into its pheromone
base, by adding a pheromone amount equal to the fraction of unsuccessful
operations with respect to the total number of operation attempts. An evap-
oration mechanism is used to give a higher weigh to the recent behavior of
the agent. In more details, at the end of the ith time interval, the pheromone
level Φi is computed with formula 5.5.

Φ = Ev ∗ Φi−1 + φi (5.5)

The evaporation rate Ev is set to 0.9, and i is the fraction of unsuccessful
operations performed in the last time interval. As soon as the pheromone level
exceeds a given threshold Tf, the agent realizes that the frequency of pick and
drop operations has remarkably reduced, and switches its protocol modality
from copy to move. The value of Tf is set by observing the global system
behavior, as explained in section 5.6. The choice of updating the pheromone
level every time interval, instead of every single operation, has been made to
fuse multiple observations into a single variable, so giving a higher strength
to agents’ decisions.

5.4.1 Design of P2P information systems in Grids

I believe that the ARMAP protocol can be a significant step towards the
efficient design and implementation of a P2P-based information system in a
Grid environment. However, to better understand its role, it is necessary to
discuss how ARMAP can be related to the overall information system design
process, which could be composed of the following three components/steps:

• classification of Grid resources;
• replication and mapping of resource descriptors with the ARMAP protocol;
• construction of a discovery service.

The first component allows users to identify the features and functionalities
of the resources they need (i.e. a particular resource class). Classification of
resources can be performed with different techniques, as discussed in section
5.9. The second component, ARMAP, is the subject of this chapter. The third
component, the discovery service, assumes that the Grid resources have been
logically reorganized through the ARMAP protocol, or at least that ARMAP
is working while discovery requests are being forwarded. The use of ARMAP
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permits to handle discovery requests by combining the flexible and scalable
features of a blind approach with the efficiency and fastness of an informed
approach. A discovery protocol that takes full advantage of the ARMAP work
is briefly described in the following and is analyzed in following chapter. Query
messages first travel the Grid network with a blind mechanism, according
to the random walk technique [17]; however, the search procedure is turned
into an informed one as soon as a query message approaches a region which
has gathered resource descriptors belonging to the requested class. A number
of peers, i.e. the peers that collect a large number of resource descriptors
belonging to a specific class, are elected as representative peers, and assume
the role of attractors for query messages. This way, a query can be routed
towards the nearest representative peer of the class under consideration, and
there it will easily find a large number of useful results.

5.5 Protocol Analysis

In this section we introduce and discuss the parameters and performance in-
dices used to evaluate the ARMAP protocol (in section 5.5.1), than we report
and discuss simulation results which demonstrate the protocol effectiveness
in a Grid environment. In particular, the trend of the overall system entropy
(Section 5.6) confirms the advantage of using the ARMAP protocol with two
modalities, copy and move. In Section 5.6, it is also shown how agents can
autonomously choose the protocol modality with a pheromone mechanism.
Section 5.7 analyzes the performance of ARMAP achieved by varying the
number, type and mobility of agents. Finally, section 5.8 investigates the im-
pact of the number of resource classes and the Grid size on ARMAP behavior.

5.5.1 Simulation Parameters and Performance Indices

Simulation runs were performed by exploiting the software architecture and
the visual facilities offered by the SWARM environment [86]. SWARM is
a software package for multi-agent simulation of complex systems, developed
at the Santa Fe Institute. Table 5.1 and Table 5.2 report, respectively, the
simulation parameters and the performance indices used in our analysis. The
number of peers Np (or Grid size) was varied from 225 (a 15x15 grid) to 10000
(a 100x100 grid). The number of resources (Grid services) owned and pub-
lished by a single peer is determined through a gamma stochastic function
having an average value equal to 15 (see [53]). Grid resources are classified in
a number of classes Nc varying from 3 to 9; the class to which each resource
belongs is selected by the simulator with an uniform random function. When
an agent moves to a destination peer, it performs the algorithm shown in
5.1, possibly picks and/or drops a number of resource descriptors, and finally
moves to another peer. Each peer generates a random number of agents with
average equal to Pgen: by modulating this parameter, the overall number of
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agents Na was varied from Np/4 to 2Np. Both class-specific and generic agents
were considered in the simulation analysis. The average connection time of a
peer (PlifeTime) is set to 100,000 sec. Each time a peer joins the Grid, it gen-
erates its current connection time by using a stochastic Gamma function with
average PlifeTime. The average time between two successive agent move-
ments (i.e. between two successive evaluations of the pick and drop functions)
is set to 60 sec. To move towards a remote host, an agent exploits P2P in-
terconnections among Grid hosts. The number of hops performed within a
single agent movement is a random function: the maximum number of hops,
Hmax, is varied from 1 to D/2, where D is the square root of Np. Finally, the
visibility radius Rv, defined in section 5.3, is set to 1. Among the performance
indices, the overall entropy E, defined in section 5.4, is the most important
one, since it is used to estimate the effectiveness of the ARMAP protocol in
the logical reorganization of resources. The Nrep index is defined as the mean
number of replicas per resource that are available (i.e. that are maintained by
active peers) on the Grid. Fop is the frequency of successful operations (pick
and drop) that are performed by each agent; this index gives an estimation
of agents’ activeness and system stability, since successful operations are less
frequent when a low level of entropy has been achieved. Finally, the traffic
load L is defined as the number of hops per second that are performed by all
the active agents.

Table 5.1. Simulation parameters

Parameter Symbol Value

Grid size (number of peer) Np 225 to 10000

Mean number of resources
published by a peer not used 15

Number of classes of resources Nc 3 to 9

Number of agents (class-specific or generic) Na Np/4 to 2Np

Mean life time of a peer Plifetime 100,000s

Mean amount of time between two
successive movements of an agent not used 60 s

Maximum number of hops Hmax 1 to D/2

Visibility radius Rv 1

5.6 Protocol modality

The results shown in this section and in section 5.7 are relative to simulations
performed for a network with 2,500 (50x50) hosts that provide resources be-
longing to 5 different classes, unless otherwise stated. In particular, results
shown in this section are obtained by setting the number of agents Na to half
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Table 5.2. Performance indices

Symbol Definition

E Mean Spatial Entropy - Defined in section 5.4

Nrep
Mean number of replicas per
resource(included the original copy)
which are available in the Grid

Fop
Mean number of successful operations
- pick or drop - that are performed by
a single agent per unit time (operations/s)

L
Mean number of hops that are
performed by all the agents of the Grid
per unit time (hops/s)

the number of peers Np(Pgen is set to 0.5), and the maximum number of hops
Hmax to 3. All agents are generic, therefore they can pick and drop resource
descriptors belonging to every class. A comparison with class-specific agents is
shown in section 5.7. Graphs of performance measures, reported versus time,
illustrate the gradual effect of the ARMAP protocol in the reorganization and
mapping of resource descriptors. Figure 5.2 shows that the exclusive use of
the copy modality is not effective: the overall system entropy decreases very
fast in a first phase, but increases again when the agents create an excessive
number of replicas (figure 5.3). Indeed, if agents continue to create new repli-
cas, eventually all peers will possess a huge number of resource descriptors
of all classes, thus completely undoing the mapping work. The curve labeled
as ”copy/move” in figure 5.2 is obtained by switching the protocol modality,
from copy to move, when it is observed that the entropy function (calculated
every 2000 seconds) increases two times in succession. The effect of this switch
is very interesting: the system entropy not only stops increasing but decreases
to much lower values. This behavior is the effect of the action of the agents,
which do not generate further replicas, as shown in figure 5.3, but continue
their work in creating low-entropy regions specialized in particular classes of
resources. In these tests a global parameter of the system - the value of the
overall system entropy - is assumed to be known by all the agents. In the
following, this approach will be referred to as the global one. Figure 5.2 and
5.4 show that, with the copy modality, at approximately the same time as the
system entropy begins to increase, the frequency of operations performed by a
single agent stops increasing and begins to decrease. This experimental result
can be exploited to define a local approach that allows agents to perform the
modality switch on their own. This is achieved through the pheromone mecha-
nism explained in section 5.4. However, it is necessary to set a proper value of
the pheromone threshold Tf, that is used by agents to realize when the modal-
ity switch must be performed. This value was set with the following method:
by running simulations with the global approach, we calculated the mean
pheromone value of a generic agent at the time at which the system entropy
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begins to increase. This value was used as the pheromone threshold in the
local approach. Figure 5.5 and 5.6 compare the curves of system entropy and
average number of replicas obtained with the global and local approaches. It is
seen that the local approach is effective, since it approximates the global one
very strictly. Figure 5.7 gives a graphical description of the mapping process:
the 50x50 square grid represents the simulated network, and each cell repre-
sents a peer. To facilitate the comprehension of the process, the number of
resource classes is set to 3. The local approach is assumed. Each cell is marked
with a circle, a square or a cross: such symbols correspond to class C1, C2

and C3, respectively. The presence of a circle means that in the correspond-
ing node the number of resource descriptors of class C1 exceeds the numbers
of descriptors belonging to the other 2 classes; the presence of a square or
a cross has an analogous meaning. Furthermore, the thickness of the symbol
represents how much the peer is specialized in one class, i.e. it is proportional
to the difference between the number of descriptors belonging to the most
numerous class and the number of descriptors belonging to the second most
numerous class. To depict the gradual accumulation of resource descriptors,
four snapshots of the network are shown. Such snapshots are taken at time 0
(when the ARMAP protocol is started), and after 25,000, 50,000 and 100,000
seconds, respectively. The sequence of snapshots confirms the effectiveness of
the accumulation process, which is very fast in the first phase, thus allowing
for a notable performance enhancement of discovery operations after a short
amount of time.
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with the copy modality and ARMAP with the copy/move modality switch.

5.7 Number and mobility of agents

In section 5.6 the number of agents Na was set to Np/2, and the parameter
Hmax was set to 3. The aim of this section is to analyze how the performance
of ARMAP is affected by the number, type and mobility of agents. A first
consideration is that the value of the pheromone threshold Tf depends on the
number of agents per peer, i.e. on the ratio Na/Np. Table 6.2 shows, for different
values of the ratio Na/Np, the corresponding instants of time at which the
switch modality should be performed (calculated with the global approach),
and the mean pheromone levels reached by a generic agent at those instants.
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Fig. 5.6. Mean number of replicas vs. time; comparison between global and local
approaches.

It can be observed that as the number of agents increases, the time interval
after which such agents should stop creating new replicas becomes shorter,
since the overall activity of agents is higher. As a consequence, the pheromone
threshold Tf decreases as well: a single agent will reach the threshold after
a shorter interval of time. Figure 5.8 reports the trend of the overall system
entropy obtained with different numbers of agents; the local approach is used
and the pheromone thresholds are set to the corresponding values shown in
Table 6.2. An increase in the number of agents makes the system entropy
decrease faster and reach lower values. However, a higher activity of agents
also causes an increase in the traffic load (Figure 5.9). A correct setting of
the ratio Na/Np should take into account the trend of these performance
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Fig. 5.7. Gradual mapping of resources in a network with 2,500 peers and 3 resource
classes. Each peer contains a symbol (circle, square or cross) that corresponds to the
class of resources which is the most numerous in such a peer. The symbol thickness
represents the level of specialization of the peer.

indices and in general should depend on system features and requirements,
for example on the system capacity of sustaining a high traffic load. Figure
5.10 compares the trend of the overall system entropy obtained with generic
and specialized (class-specific) agents: in both cases the number of agents is set
to Np/2. The performance increase achieved with the use of generic agents
is confirmed, since they permit to obtain much lower values of the system
entropy. Finally, the effect of the parameter Hmax is analyzed in Figures 5.11
- 5.13. Here, the number of (generic) agents Na is set to Np/2. An increase
in Hmax speeds up the mapping of resources (Figure 5.11), since an agent
can move resource descriptors between more distant peers, and causes an
increase in the mean number of replicas (Figure 5.12) and in the traffic load
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(Figure 5.15). Again, a correct setting of Hmax should take into consideration
the network requirements. We chose to set Hmax to 3, because this is the
minimum value that permits to move an agent between two visibility regions
that are completely disjoint, given that the visibility radius is set to 1.

Table 5.3. Modality switch time and pheromone level at switch time with different
numbers of agents.

Number of agents Na Modality switch time (s)
Pheromone level
at switch time

Np/4 64,000 8.33

Np/2 42,000 7.73

Np 22,000 6.17

2Np 16,000 5.20
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Fig. 5.8. Mean spatial entropy vs. time, with different numbers of agents.

5.8 Number of classes and network size

So far, it was assumed that the resources are pre-classified in exactly 5 classes,
and that the network is composed of 2,500 (50x50) peers. The aim of this sec-
tion is to investigate how the number of classes Nc and the Grid size Np affect
the behavior of the ARMAP protocol. The results shown in this section are
obtained with Na=Np/2 and Hmax=3. The results shown in Table 5.4 were
obtained by adopting the global approach with different values of Nc, and
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Fig. 5.9. Mean traffic load (hops/s), with different numbers of agents.

Fig. 5.10. Mean spatial entropy vs. time. Comparison between generic and special-
ized agents. The number of agents Na is set to Np/2.

Np equal to 2,500. As the number of classes increases, the optimum modal-
ity switch time increases. In fact, when the number of classes is higher, the
agents have to replicate a larger number of resource descriptors to achieve a
significant reduction of the system entropy. As a consequence, the pheromone
threshold must be higher, as also appears from Table 5.4. Figure 5.14 shows
the trend of the overall entropy achieved with the local approach and the
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Fig. 5.12. Mean number of replicas vs. time, with different values of Hmax.

pheromone threshold values reported in Table 5.4. It is interesting to note
that initially the entropy function decreases more rapidly when the number
of classes is small; the reason is that in the first phase it is easier to separate
resource descriptors belonging to 3 classes rather than 7 or 9. However, in the
long term the agents’ work permits to reach entropy values that are smaller
and smaller as the number of classes increases. Indeed, the entropy curves
cross and completely invert their order within a time interval time comprised
between 25,000 and 50,000 seconds from the start of the simulation. A set
of simulation runs was performed to evaluate the effect of the network size
on performance results. Figures 5.15 and 5.16 show, respectively, the overall
entropy and the mean number of replicas for different values of the number of
peers Np. The number of classes is set to 5. It can be seen that the effect of
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Fig. 5.13. Mean traffic load (hops/s), with different values of Hmax.

the Grid size is almost irrelevant: we can deduce that a single peer does not
need to have any knowledge about the size of the network to regulate its be-
havior. Other simulation results, not reported here, show that also the mean
number of resources published by each peer has little effect on the behavior
of the ARMAP protocol. As a conclusion, an effective tuning of ARMAP can
be obtained by setting the pheromone threshold to a proper value, as shown
in Tables 5.3 and 5.4. This value essentially depends on two parameters: the
number of agents per peer, i.e. the ratio Na/Np, and the number of classes
Nc. The former parameter is known because it is equal to Pgen, the average
number of agents that a peer generates when joining the Grid. The latter
parameter is also known if it is assumed that the resources are categorized in
a predetermined number of classes.

Table 5.4. Modality switch time and pheromone level at switch time with different
numbers of classes of resources.

Number of classes Modality switch time (s)
Pheromone level
at switch time

3 40,000 7.69

5 42,000 7.73

7 48,000 7.97

9 56,000 8.18
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Fig. 5.14. . Mean spatial entropy vs. time, with different values of the number of
classes Nc.
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Fig. 5.15. Mean spatial entropy vs. time, with different values of the network size
Np.

5.9 Related Work

Since Grid hosts provide a large set of distributed and heterogeneous resources,
an efficient Grid information service is a pillar component of a Grid. Current
Grid information services offer centralized or hierarchical information services,
but this kind of approach is going to be replaced by a decentralized one, sup-
ported by P2P interconnection among Grid hosts. In the last years, a number
of P2P techniques and protocols have been proposed to deploy Grid infor-
mation services: for example, super-peer networks [84][128] achieve a balance
between the inherent efficiency of centralized search, and the autonomy, load
balancing and fault-tolerant features offered by distributed search. P2P search
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Fig. 5.16. Mean number of replicas vs. time, with different values of the network
size Np.

methods can be categorized as structured or unstructured. The structured ap-
proach assumes that hosts and resources are made available on the network
with a global overlay planning. In Grids, users do not usually search for single
resources (e.g. MP3 or MPEG files), but for software or hardware resources
that match an extensible set of features. Accordingly, while structured pro-
tocols, based on highly structured overlays and Distributed Hash Tables (e.g.
Chord [111]), are usually very efficient in file sharing P2P networks, unstruc-
tured or hybrid protocols seem to be preferable in largely heterogeneous Grids.
Unstructured search methods can be further classified as blind or informed
[119]. In a blind search (e.g. using flooding or random walks [80]), nodes hold
no information that relates to resource locations, while in informed methods
(e.g. routing indices [17] and adaptive probabilistic search [118]), there exists
a centralized or distributed information service that drives the search for the
requested resources. As discussed in section 5.4.1, the approach presented in
this section aims to combine the flexible and scalable features of a blind ap-
proach with the efficiency and rapidity of an informed approach. The ARMAP
protocol introduced in this chapter is based on the features of Multi-Agent
Systems (MAS), and in particular of ant-based algorithms. A MAS can be
defined as a loosely coupled network of problem solvers (agents) that interact
to solve problems that are beyond the individual capabilities or knowledge
of each problem solver [114]. Research in MASs is concerned with the study,
behavior, and construction of a collection of autonomous agents that inter-
act with each other and the environment. Ant-based algorithms are a class
of agent systems which aim to solve very complex problems by imitating the
behavior of some species of ants [8]. The Anthill system [5] is a framework
that supports the design, implementation and evaluation of P2P applications
based on multi-agent and evolutionary programming. In Anthill, societies of
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adaptive agents travel through the network, interacting with nodes and co-
operating with other agents in order to solve complex problems. Reference
[18] introduces an approach based on ant behavior and genetic algorithms to
search resources on a P2P network. A sub-optimal route of query messages
is learnt by using positive and negative pheromone feedbacks and a genetic
method that combines and improves the routes discovered by different ants.
Whereas in [18] the approach is tailored to improve search routes with a
given distribution of resources in the network, this work proposes to logically
reorganize and replicate the resources in order to decrease the intrinsic com-
plexity of discovery operations. Instead of directly using ant-based algorithms
to search resources, the ARMAP protocol exploits an ant-based replication
and mapping algorithm to replicate and reorganize resource descriptors ac-
cording to their categorization. Our protocol is a variant of the basic sorting
algorithm proposed in [24]. However, the latter assumes that only one item
can be placed in a cell of a toroidal grid, and items can only be moved form
one cell to another, without the possibility of performing any replication. Con-
versely, the ARMAP protocol assumes that a cell (i.e. a Grid host) can store
several items (i.e. resource descriptors) and agents can create many replicas of
the same item. The problem of driving the behavior of a single agent, which
should autonomously be able to take actions without having an overall view
of the system, is discussed in [97]. There, a decentralized scheme, inspired
by insect pheromone, is used to limit the activity of a single agent when it
is no more concurring to accomplish the system goal. A similar approach is
used to drive the behavior of an agent, in particular to evaluate the correct
time at which it should switch from the copy to the move modality. Infor-
mation dissemination is a fundamental and frequently occurring problem in
large, dynamic, distributed systems, since it consents to lower query response
times and increase system reliability. Reference [52] proposes to disseminate
information selectively to groups of users with common interests, so that data
is sent only to where it is wanted. In this work, instead of classifying users, it
is proposed to exploit a given classification of resources: resource descriptors
are replicated and disseminated with the purpose of creating low-entropy re-
gions of the network that are specialized in a specific class of resources. The
so obtained information system allows for the definition and usage of a semi-
informed search method, as explained in section 5.4.1. The ARMAP protocol
assumes that a classification of resources has already been performed. This
assumption is common in similar works: in [17], performance of a discovery
technique is evaluated by assuming that resources have been previously clas-
sified in 4 disjoint classes. Classification can be done by characterizing the
resources with a set of parameters that can have discrete or continuous val-
ues. Classes can be determined with the use of Hilbert curves that represent
the different parameters on one dimension [3]; alternatively, an n-dimension
distance metric can be used to determine the similarity among resources [69].
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Discovering Categorized Resources in Grids

6.1 Introduction

To discover Grid resources having specific characteristics, i.e. belonging to
a given class, we showed, in this section, the ARDIP protocol (Ant-based
Resource DIscovery Protocol). The objective of ARDIP is to drive a query
message towards a region of the Grid in which the needed class of resources is
being accumulated. Because ARDIP fully exploits the replication and spatial
mapping of resources achieved by ARMAP, the two protocols should be used
together: as ARMAP agents perform the logical reorganization of resources
and build the Grid information system, the number of useful resources that
can be discovered by a query message increases and at the same time the
query response time decreases, as shown in 6.5.2. The ARDIP protocol is
based upon three modules:

- a module for the identification of representative peers which work as at-
tractors for query messages;

- a module which defines the semi-informed search algorithm;
- a stigmergy mechanism that allow query messages to take advantage of

the positive outcome of previous search requests.

These modules are described in the following.

6.2 Identification of representative peers

As resources of a given class are accumulated in a Grid region, the peer that,
within this region, collects the maximum number of resources belonging to
that class is elected as a representative peer for that class. The objective of a
search operation is to let a query message get to a representative peer in an
amount of time as low as possible, since such a peer, as well as its neighbors,
certainly manages a large number of useful resources. Each peer periodically
verifies if it can elect itself as a representative peer for a class of resources.
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The ARDIP protocol assumes that a peer is a representative peer of a given
class if the following condition is satisfied:

• the peer maintains a number of logical resources (i.e. of metadata docu-
ments) of that class that exceeds Fg times the mean number of physical
resources, belonging to the same class, which are offered by a generic peer;
hereafter, Fg is referred to as gathering factor.

Moreover, to limit the number of representative peers in the same region,
each representative peer periodically checks if other representative peers are
present in its neighborhood, specifically within the comparison radius Rc: two
neighbor representative peers must compare the number of resources that they
maintain, and the ”loser” will be downgraded to a simple peer.

6.3 Semi-informed search

When a client or user needs to discover resources belonging to a given class,
a number of asynchronous query messages are issued by ARDIP. The semi-
informed search algorithm includes a blind search phase and an informed
search phase. For the blind search phase, the random walk paradigm [80] is
used: the query messages travel the Grid through the P2P interconnections by
following a random path. The network load is limited by means of a caching
mechanism that avoids the formation of cycles and the use of a time-to-live
parameter TTL: the TTL value is equivalent to the maximum number of hops
that can be performed by a query message before being discarded. The blind
search procedure is switched to an informed one as soon as one of the issued
query messages approaches a representative peer of the class of interest, i.e.
when such a message is delivered to a peer which knows the existence of
a representative peer and knows a route to it (see the description of the
stigmergy module below). During the informed search phase, the query is
driven towards the representative peer, and the TTL parameter is ignored so
that the query cannot be discarded until it actually reaches the representative
peer. Therefore, the semi-informed walk of the query message ends in one of
the two following cases: (i) when the TTL is decremented to 0 during the
blind phase; (ii) when the query reaches a representative peer. In both cases
a queryHit message is created, and all the resources of the class of interest,
which are found in the current peer, are put in this message. The queryHit
follows the same path back to the requesting peer and, along the way, collects
all the resources of the class of interest that are managed by the peers through
which it passes.

6.4 Stigmergy mechanism

As showed in chapter 2, Grass coined the term ”stigmergy” in the 1950’s [40]
to describe a broad class of multi-agent coordination mechanisms that rely
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on information exchange through a shared environment. For example, in ant
colonies, each ant adjusts its activity according to the state of the environ-
ment, which in turn can be modified by the activity of other ants. An ant that
finds a food source leaves a pheromone along its way back to the nest, and
such a pheromone will signal to other ants the presence of the food source.
The term is formed from the Greek words stigma ”sign” and ergon ”action”,
and captures the notion that an agent’s actions leave signs in the environment,
signs that it and other agents sense and that determine their subsequent ac-
tions. Two varieties of stigmergy are distinguished [11]. Such a distinction is
whether the signs consist of special markers that agents deposit in the en-
vironment (”marker-based” or ”sign-based” strigmergy) or whether agents
base their actions on the current state of the environment (”sematectonic”
or ”cue-based” strigmergy). The approach proposed in this chapter uses both
types of stigmergy. Indeed sematectonic stigmergy is used by ARMAP agents
to choose their operation modality (copy or move), as mentioned in previous
chapter. Conversely marker-based stigmergy is exploited by the ARDIP pro-
tocol: when a query accidentally gets to a representative peer for the first time,
the returning queryHit will deposit an amount of pheromone in the peers that
it encounters as it retreats from the representative peer. In this work, it is as-
sumed the pheromone is deposited only in the first two peers of the queryHit
path. A pheromone base is maintained for each resource class, and informa-
tion is given about the right direction (i.e. the next neighbor peer) to get to
the representative peer of the desired class. Accordingly, when a query gets to
a peer along its blind search, it checks the amount of pheromone which has
been deposited in that peer for the resource class of interest; if the pheromone
exceeds a threshold Tf, it means that a representative peer is close, so the
search becomes informed and the query is driven towards the representative
peer. Since the set of representative peers can change as the ARMAP cluster-
ing process proceeds, an evaporation mechanism is defined to assure that the
pheromone deposited on a peer does not drive queryHits to ex-representative
peers. The pheromone level at each peer is computed every time interval of
5 minutes, which is equal to the mean time interval between the issue of two
successive query messages from a peer (see Table 6.1 in Section 6.5.1). The
amount of pheromone Φ, after the ith time interval, is given by formula 6.1.

Φ = Ev ∗ Φi−1 + φi (6.1)

The evaporation rate Ev is set to 0.9; i is equal to 1 if a pheromone deposit
has been made in the last time interval by at least one agent, otherwise it is
equal to 0. The pheromone level can assume values comprised between 0 and
10: the superior limit can be obtained by equalizing Φi to Φi−1 and setting Φi

to 1 in formula 6.1. The threshold Tf is set to 2. With these parameters, it
is assured that the threshold is exceeded as soon as a few number of query-
Hits deposit their pheromone in different time intervals, while the algorithm
is more conservative when it has to recognize that a representative peer has
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been ”downgraded”: indeed, up to 15 time intervals are necessary to let such
a level assume a value lower than the threshold. It can also happen, though
quite rarely, that a peer collects pheromone deposited by two (or more) differ-
ent queryHits which are related to the same resource class but come from two
(or more) different representative peers. To which neighbor should a query
for that resource class be forwarded. In such cases the peer maintains a dif-
ferent pheromone quantity for each neighbor. The query is forwarded to the
neighbor peer associated to the higher amount of pheromone, provided that
it succeeds the threshold. It corresponds to sending the query to the ”oldest”
representative peer, which intuitively is most likely the representative peer
that has collected the largest number of resources so far.

6.5 Protocol Analysis

6.5.1 Description of the environment

A wide set of simulation runs were performed by exploiting a simulation envi-
ronment, the core component of which is a Java event-based object-oriented
simulator, that has already been used for other research issues [84]. In the
simulator, both peers and agents are associated to objects which communi-
cate among them through events. Such events are ordered on the basis of
their expiration time, i.e. the time at which they have to be delivered to des-
tination objects. When an event is received by an object, the latter (e.g. a
peer) reacts according to its automaton, and may send other events to other
objects (e.g. an ARDIP query message to neighbor peers). Furthermore, the
simulator was extended in order to integrate and exploit a set of libraries of-
fered by the SWARM environment [86]: graphical libraries which allowed for
monitoring the behavior of the ARMAP and ARDIP protocols, and libraries
for setting the network topology. For each simulation session, 10 simulation
runs were performed and, by tuning the length of each run, all performance
values were computed with a pre-determined statistical relevance, i.e. with
at least 0.95 probability that the statistical error was below 5%. Table 6.1
reports the main parameters used in the simulation analysis, categorized in
network parameters, ARMAP parameters and ARDIP parameters. The num-
ber of peers Np (or Grid size) is set to 2500, and each peer is connected to
a maximum of 8 neighbor peers, as discussed before. Grid resources are clas-
sified into Nc different classes, with Nc set to 5 in this work. The number of
physical Grid resources owned and published by a single peer is determined
through a Gamma stochastic function having an average value equal to 15
(see [53]). Such resources are uniformly distributed among the Nc classes.

ARMAP parameters are defined in the second section of Table 6.1; their
impact was analyzed in previous chapter. Each peer, whenever connecting
to the Grid, spawns a random number of ARMAP agents; this number is
generated by a Gamma random function the average of which is equal to
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Table 6.1. Network, ARMAP and ARDIP parameters

Grid Parameter Symbol Value

Grid size (number of peer) Np 2500

Maximum number of neighbor peers not used 8

Mean number of resources published by a peer not used 15

Number of resource classes Nc 5

ARMAP Parameter Symbol Value

Number of ARMAP agents Na Np/2

Mean life time of a peer Plifetime 100,000 s

Mean time interval between two successive
movements of an ARMAP agent not used 60 s

Maximum number of hops for each ARMAP
agent’s movement Hmax 3
Visibility radius Rv 1

ARDIP Parameter Symbol Value

Mean query generation frequency not used 1/300 (1/s)

Number of query messages generated when
issuing a query Nqm 2-8

Time to live TTL 3-7

Gathering factor for the identification
of representative peers Fg 24-48

Comparison radius for the identification
of representative peers Rc 2

Mean message processing time not used 50 ms

Mean link delay not used 50 ms

Pgen. In this work, Pgen was set to 0.5, so that the number of agents Na is
approximately equal to half the number of peers Np. The average connection
time of a peer (PlifeTime) is set to 100,000 sec. At random times, specifically
every 60 seconds on average, each agent moves in the P2P network (each
movement is composed of a number of hops not greater than Hmax, which is
set to 3), and possibly performs a pick or drop operation, as described in the
previous chapter. The visibility radius Rv, defined in Section 5.3, is set to 1.
ARDIP parameters are defined in the last section of Table 6.1. When a peer
issues a query for a class of resources (queries are uniformly distributed among
the Nc classes), a number Nqm of asynchronous query messages, with Nqm set
to values ranging from 2 to 8 in different simulation sessions, are forwarded to
neighbor peers. They follow different directions and move in parallel through
the Grid according to the semi-informed mechanism described in section 6.3.
The TTL parameter was varied from 3 to 7. Table 6.1 also specifies the values
of the gathering factor Fg and of the comparison radius Rc, used to elect the
representative peers. Finally, the mean amount of time for processing a query
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or queryHit message and the mean link delay between two neighbor peer were
both assumed to be 50 ms on average, with Gamma statistical distributions.

6.5.2 Performance

The performance of the ARDIP protocol was analyzed by evaluating the per-
formance indices defined in Table 6.2. In the following such indices are plotted
w.r.t. time, to evaluate the expected outcome of a discovery request at different
stages of the ARMAP process. It is worth highlighting that results obtained
at time 0 are achieved without exploiting the ARDIP informed phase, be-
cause no representative peers have been selected yet. Therefore it is possible
to compare the ARDIP protocol with the classical random walk technique,
since in the ARDIP blind phase the random walk paradigm is adopted. The
Nrep index is the overall number of representative peers (of all classes) that
are selected by ARDIP with the mechanism described in Section 6.2. Figure
6.1 depicts the trend of this index evaluated as the ARMAP mapping process
proceeds. Curves obtained with different values of the gathering factor Fg are
compared: since Fg is a threshold used to elect the representative peers, ob-
viously its increase causes a decrease in the number of representative peers.
The gathering factor is hereafter set to 36. With this value, Nrep converges
to a value slightly higher than 200, corresponding to about 40 representative
peers (out of 2500 peers) per class. A snapshot of the state of the network
was taken 300,000 seconds after the start of the ARMAP process (this value
was chosen because at that time the system has reached a stable condition,
as can be observed in previous figures) and is shown in figure 6.2. For two
of the five resource classes, this figure confirms that representative peers are
located in the core of the respective accumulation regions, and that nearby
peers are able to drive query messages to a representative peer. The presence
of a significant number of representative peers of the same class guarantees a
high probability of reaching at least one of those in a limited amount of time.

The index Fsq is defined as the fraction of queries for which at least one of
the Nqm issued query messages enters the informed phase and gets to a repre-
sentative peer. In the following, a query message that reaches a representative
peer, as well as the related query request, are referred to as striking message
and striking query, respectively. Since the ARDIP discovery protocol aims at
driving query messages towards representative peers, the index Fsq is essential
to evaluate the extent to which the replication and organization of resources
performed by ARMAP helps to increases the effectiveness of ARDIP. Figures
6.3 and 6.4 confirm the valuable effect caused by the combined use of ARMAP
and ARDIP protocols. In fact, after a very small amount of time, the work
of ARMAP produces a significant increase in Fsq. Results in figure 6.3 are
obtained by setting the parameter Nqm to 4 and varying the TTL parameter
from 3 to 7, whereas in figure 6.4 the TTL was set to 5 and Nqm was varied
from 2 to 8.
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Table 6.2. Performance indices for the ARDIP protocol

Performance Index Definition

Nrep
Mean number of representative peers of
all classes that are selected by ARDIP
to attract query messages

Fsq
Fraction of query requests that are
successfully driven towards a
representative peer

Nres, Nres(stk), Nres(no-stk)

Mean number of resources that a node
discovers after its query (computed for
all the queries and separately for striking
and non-striking queries).

Tavg, Tavg(stk), Tavg(no-stk)

Mean amount of time that elapses between
the generation of a query and the reception
of a corresponding queryHit (computed
for all the queries and separately for striking
and non-striking queries).

Tfst, Tfst(stk), Tfst(no-stk)

Mean amount of time that elapses between
the generation of a query and the reception
of the first corresponding queryHit (computed
for all the queries and separately for
striking and non - striking queries).

Lq, Lq(rep)

Mean frequency of query messages
(messages/sec) received by a peer (calculated
for all the peers and for the
representative peers only)

Figure 6.3 shows that Fsq increases with the value of TTL, since a search
request can extend the blind search phase and has more chances to get to
a representative peer. An analogous effect is achieved by increasing the Nqm

parameter, since representative peers are searched by a larger number of query
messages in parallel. The most important performance measure is obviously
Nres, the mean number of results that are discovered by a query - to be precise
by all the query messages generated by a single query request - issued to search
resources belonging to a specific class. Indeed, it is generally argued that
the satisfaction of the query depends on the number of discovered resources
returned to the user that issued the query: for example, in [127] a resource
discovery operation is considered satisfactory only if the number of results
exceeds a given threshold. Figure 6.5 shows the number of results that are
collected on average by striking queries, by non-striking queries, and by all
the queries, for two different values of TTL and Nqm set to 4. Many interesting
conclusions can be drawn by observing this figure. The most obvious one is
that the number of results increases with the TTL value, since a larger fraction
of the network can be explored; however response times and traffic increase
as well, as shown later.
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Fig. 6.1. Selection of representative peers as the ARMAP mapping process pro-
ceeds. The number of representative peers is reported for different values of the
gathering factor Fg.

Fig. 6.2. Representative peers, belonging to two classes (out of five), selected by
ARDIP 300,000 seconds after the start of the ARMAP process, with a gathering
factor Fg set to 36. In the two figures, the squares are the representative peers
respectively belonging to classes A and B, the dots are the peers that are able
to drive the query messages to a nearby representative peer, and the number of
resources of the respective classes is represented with a grey scale.

More important, the mean number of results increases as resources are
being organized by ARMAP, meaning that specialized regions are able to offer
a significant number of resources. Moreover, it is noted that striking queries
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Fig. 6.3. Use of representative peers as the ARMAP process proceeds: fraction of
search requests that are successfully driven to a representative peer, for different
values of TTL and Nqm set to 4.

Fig. 6.4. Use of representative peers as the ARMAP process proceeds: fraction of
search requests that are successfully driven to a representative peer, for different
values of Nqm and TTL set to 7.

can discover considerably more results than non-striking queries, and such a
difference increases with time, mostly because the progressive clustering of
resources reduces the number of results that can be collected by non-striking
queries (which however tend to be very rare, as figure 6.4 shows). Similar
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Fig. 6.5. Mean number of results achieved as the mapping process proceeds. Perfor-
mance values, calculated for different values of TTL and Nqm set to 4, are reported
for all the queries, and separately for striking and non striking queries.

considerations raise from the observation of figure 6.6, in which the TTL value
is set to 7 and the number of query messages is varied from 2 to 8. The number
of results increases with the Nqm parameter, but the traffic load increases
as well, as will be shown in the following. The use of the ARMAP/ARDIP
protocols not only increases the number of results, but also allows users to
discover them in a shorter amount of time.

Figure 6.7 and 6.8 show the average response time experienced by varying
the TTL value and the parameter Nqm, respectively. From figure 6.7, it ap-
pears that a higher TTL causes an increase in the response time, due to the
fact that the queryHit messages have to travel a longer path. Whereas the re-
sponse time of non-striking queries is almost constant over time, since all the
query messages exploit the entire value of the TTL parameter, the reorgani-
zation of resources produces a significant decreases of average response times
for striking queries and, since the relative weight of striking queries increases,
for generic queries as well. In fact, when a query message gets to a represen-
tative peer, the discovery operation is stopped even if the TTL value is still
greater than 0, and a queryHit is immediately issued. Therefore the presence
of a striking message decreases the average response time. This can be clearly
observed in figure 6.8: the average response time of a striking query decreases
with the value of Nqm because the relative impact of the response time experi-
enced by the striking message is higher for a lower number of query messages.
Figures 16 and 17 depict the values of the response times corresponding to the
first received queryHit, obtained by varying the TTL value and the parameter
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Fig. 6.6. Mean number of results achieved as the mapping process proceeds. Perfor-
mance values, calculated for different values of Nqm and TTL set to 7, are reported
separately for striking and non striking queries.

Nqm, respectively. These response times are significantly lower than average
response times (figures 6.7 and 6.8), due to two phenomena.

Fig. 6.7. Average response time achieved as the mapping process proceeds. Perfor-
mance values, calculated for different values of TTL and Nqm set to 4, are reported
for all the queries and separately for striking and non- striking queries.
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The first one is related to the statistical nature of message processing time
(the minimum processing time is lower than the average), and has impact on
all the queries; the second one, which has impact only on striking queries,
comes from the fact that the first queryHit most likely corresponds to a strik-
ing query message, which generally performs a lower number of hops. It is also
interesting to note, from figure 6.10, that the time interval necessary to obtain
the first result decreases as the Nqm parameter increases, which is different to
what happens on average response times shown in figure 6.8. The reason is
that a larger number of query messages allows for a more massive exploration
of the Grid and hence a faster discovery of representative peers. The trend
of the query traffic load, defined in the last row of Table 6.2, is depicted in
figures 6.11 and 6.12.

Fig. 6.8. Average response time achieved as the mapping process proceeds. Perfor-
mance values, calculated for different values of Nqm and TTL set to 7, are reported
separately for striking and non striking queries.

Average response time achieved as the mapping process proceeds. Perfor-
mance values, calculated for different values of TTL and Nqm set to 4, are
reported for all the queries and separately for striking and non - striking
queries. As expected, it increases with the TTL value and with the number of
query messages Nqm. Since the increase of these two parameters also allows for
achieving a larger number of results, it is necessary to reach a trade-off that
takes into account the expected number of results and the processing load that
a Grid node can undergo. However, a very interesting consideration is that the
logical reorganization of resources, and the use of the ARDIP protocol, allows
for decreasing the query traffic load experienced by a single peer. Indeed, when
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Fig. 6.9. Response time of the first queryHit achieved as the mapping process
proceeds. Performance values, calculated for different values of TTL and Nqm set
to 4, are reported for all the queries, and separately for striking and non striking
queries.

Fig. 6.10. Response time of the first queryHit achieved as the mapping process
proceeds. Performance values, calculated for different values of Nqm and TTL set
to 7, are reported separately for striking and non striking queries.
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Fig. 6.11. Query traffic load experienced by generic peers and representative peers
as the mapping process proceeds. Performance values are calculated for different
values of TTL and Nqm set to 4.

Fig. 6.12. Query traffic load experienced by generic peers and representative peers
as the mapping process proceeds. Performance values are calculated for different
values of Nqm and TTL set to 7.

a query messages is successfully driven towards a representative peers, on av-
erage it has to perform a lower number of hops than that experienced with a
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blind search. A further benefit coming from the use of ARMAP/ARDIP pro-
tocols is that representative peers experience an even lower query load than a
generic peer. In fact, when a query is issued by a peer which is adjacent to a
representative one, the route to the representative peer is most likely known
in advance, thanks to the pheromone mechanism described in section 6.4, and
the blind search phase can be entirely skipped. In such a case, only one query
message is generated by the requesting peer instead of Nqm (in fact all the Nqm
queries would follow the same informed path that leads to the adjacent rep-
resentative peer and would collect the same results), thus reducing the query
traffic load at the nearby representative peer.





7

Conclusions & Future Works

Distributed systems have been a very active research field for a number of
decades. Many current systems and infrastructure, such as the Grid Com-
puting, Peer-to-Peer systems, and ad hoc wireless and sensor networks have
the characteristic of being decentralized, pervasive, and composed of a large
number of autonomous entities. Often systems deployed on such infrastruc-
ture need to run in highly dynamic environments, where content, network
topologies and work loads are continuously changing. Adaptation thus be-
comes a key feature of a system’s behavior. In addition, such systems involve
a social dimension, for example, the entities within such systems can engage
in interactions, discover suitable other participants, negotiate, and perform
transactions. In certain cases, the complexity of the system is such that no
centralized or hierarchical control is possible. In other cases, it is the unfore-
seeable context, in which the system evolves or moves, which makes any direct
supervision difficult. These characteristics are similar to those which one finds
in self-organizing systems we see in nature, such as physical, biological and
social systems. Indeed, natural self-organizing systems have the characteristic
to function without central control, and through contextual local interactions.
Each component within such a system carries out a simple task, but as a whole
such systems are able to carry out much more complex tasks. Such behavior
emerges in a coherent way through the local interactions of the various com-
ponents. These systems are particularly robust, because they adapt to the
environmental changes, and are able to ensure their own maintenance or re-
pair. There is currently an increasing appreciation that modern applications
and systems can gain (in robustness, and simplicity) if they are developed
by following the principles of self-organization which one finds in nature. In
first section of this thesis, I describe P-SPARROW, a algorithm for distributed
clustering of data in peer-to-peer environments combining a smart exploratory
strategy based on a flock of birds with a density-based strategy to discover
clusters of arbitrary shape and size in spatial data. The algorithm has been
implemented in a peer-to-peer system and evaluated using a synthetic and
a real word dataset. Experimental results show that P-SPARROW can be
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efficiently applied as a data reduction strategy to perform approximate clus-
tering. Moreover, the algorithm scales well when the number of peer increases.
Finally, the use of a small world topology helps the algorithm to merge clus-
ters more quickly with a slightly higher number of messages exchanged and
permits a better fault tolerance because of high clustering coefficient charac-
teristic of this topology. Furthermore, we have described an adaptive flocking
algorithm and its application to the problem of clustering spatial data. The
approach is based on the use of swarm intelligence techniques. Two novel al-
gorithms that combine density-based and shared nearest neighbor clustering
strategy with a flocking algorithm have been presented. The algorithms have
been implemented in SWARM and evaluated using synthetic and real word
datasets. Measures of accuracy of the results show that the flocking algorithm
can be efficiently applied as a data reduction strategy to perform approxi-
mate clustering. Moreover, the algorithm presents a good scalable behavior.
Finally, an entropy-based model has been applied to study the behavior of
the algorithm. It has confirmed that the adaptive search strategy of our flock-
ing algorithm is more efficient than the random-walk search strategy and the
standard flocking algorithm and this can be explained because, in the in-
teresting zones of the clusters, not only there is more organization but also
a larger presence of searching agents. Last section, introduces an approach
based on multi agent systems for building an efficient information system in
Grids. A number of self-organizing agents travel the network by exploiting
P2P interconnections; agents replicate and gather information related to re-
sources having similar characteristics in restricted regions of the Grid. Such
a logical reorganization of resources is exploited by a semi-informed resource
discovery protocol, namely the ARDIP protocol, which is tailored to route a
query message towards a ”representative peer” that collects a large number of
resources having the desired characteristics. Simulation analysis showed that,
as the reorganization of resources proceeds, the ARDIP protocol allows users
to discover more and more resources in a shorter amount of time, and at the
same time to decrease the traffic load experienced by Grid hosts. It must be
remarked that performance results are related to a particular choice of para-
meter values: for example resources are categorized in 5 different classes and
most results are computed for a Grid of 2,500 hosts. However, performance
evaluation w.r.t several parameters, e.g. Grid size, number of agents, and
TTL, suggests that an imperfect choice of parameter values cannot spoil the
reorganization and discovery process, but can only make such process faster
or slower, and final achievements (for example the decrease in overall entropy
and the increase in the number of results) seem to be preserved in any case.
Furthermore the self-organizing and decentralized nature of the involved algo-
rithms, along with the analysis of performance results obtained with variable
Grid sizes, suggest that the proposed approach is scalable and can be adopted
in a Grid framework regardless of the Grid size. Current work focuses on the
implementation of ARDIP for the discovery of WSRF-compliant Web services.
Web services can be categorized according to their syntactic and semantic fea-
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tures (e.g. WSDL specification of input and output parameters, pre and post
conditions, ontology concepts) and QoS information (e.g. information about
service availability, reliability, execution time, price).
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