


Abstract

The finite element method is the reference technique in the simulation

of metal forming and provides excellent results with both Eulerian and

Lagrangian implementations. The latter approach is more natural and

direct but the large deformations involved in such processes require

remeshing-rezoning algorithms that increase the computational times

and affect the quality of the results. For this reasons alternative tech-

niques based on modified FEM formulations or meshless approximants

are worth to be investigated. In particular, in this project, the finite

element method with nodal integration and the maximum entropy

meshfree approximants are studied and applied to the simulation of

selected problems in metal forming and orthogonal cutting.

Il metodo degli elementi finiti è attualmente la tecnica di riferimento

nella simulazione di processi di formatura e fornisce ottimi risultati

sia con formulazioni Euleriane che Lagranzgiane. Quest’ultimo ap-

proccio è più naturale e diretto ma le grosse deformazioni che entrano

in gioco in questi processi richiedono l’applicazione di algoritmi di

remeshing-rezoning che aumentano i tempi computazionali e peggio-

rano la qualità dei risultati. Per questi motivi assume particolare

interesse lo sviluppo di tecniche alternative, basate su formulazioni

FEM modificate o su approssimazioni senza maglia (meshless). In

particolare, in questo lavoro, sono studiati il metodo degli elementi

finiti con integrazione nodale e le tecniche meshless di tipo maximum

entropy e, inoltre, sono applicati alla simulazione di processi di for-

matura e taglio.
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Introduction

The finite element method (FEM) has been successfully applied to the simula-

tion of all the types of metal forming process (1, 2) and, thanks to the increasing

computer power, it can provide excellent results with reasonable computational

times. Thanks to its flexibility and robustness commercial FEM codes are a stan-

dard tool in the industry. However, the main limitation of the FEM in this kind

of applications is that the quality of the results displays mesh dependency (3).

When a Lagrangian formulation is used the mesh moves with the material and,

if the element become too distorted, the numerical results loose their accuracy.

In this case nodal adaptation procedures, that in the FEM framework are known

as remeshing techniques, are required to proceed with the analysis. As draw-

back, these techniques increase the computational cost and introduce additional

errors when the variables are mapped from the old mesh to the new one. In

addition the flexibility of the method is reduced especially in three dimensions

where, although some commercial codes show a good performance with tetrahe-

dral meshes and extensive remeshing, good mesh generation algorithms are still

a topic of investigation (4).

Eulerian formulations have been also employed in several metal forming (5,

6, 7) and cutting (8) applications but other drawbacks such as determining the

geometry of the free surface of the flow are present with this approach. Also the

arbitrary Lagrangian-Eulerian formulation (ALE) has been shown to perform
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well both for metal forming (9, 10, 11) and cutting (12, 13) but it presents some

limitations such as controlling the mesh motion.

For these reasons, even if the classical FEM provides very good results in

many applications, researchers are currently focusing their attentions also on

innovative techniques based on modified FEM formulations or on meshless ap-

proximation schemes (14). Within the former framework nodal integration (NI)

has been recently proposed as a technique which improves the performance of

standard tetrahedral elements and avoids volumetric locking in the study of in-

compressible materials (15). On noting that the NI formulation is not affected

by mesh distortions the method appears extremely suitable for the simulation of

material forming processes. This motivated the investigation on the NI schemes

and on their application to this field. In particular, in this work, different NI

formulations are analysed and applied to benchmark metal forming and orthogo-

nal cutting processes. The results found in such investigation are satisfactory for

many aspects and constitute an encouraging starting point to further develop the

method. However, some issues associated to improper oscillations in the numer-

ical solutions of the problems provided an additional motivation to investigate

also on the application of meshless methods.

These methods, also known as meshfree techniques, have been used in the last

years for treating a large variety of problems, especially where large deformations

are involved, such us in the forming processes. In contrast to finite elements,

meshless methods require only nodal data to construct the approximants (winch

are usually called basis functions in opposition to the FEM shape functions) and

no explicit connectivity between nodes has to be defined. The approximation

accuracy is not significantly affected by the nodal topology and therefore, in

problems involving large deformations, the natural evolution of the initial nodal

discretization can be used in Lagrangian implementations. In addition the even-

tual introduction, elimination or repositioning of nodes become a trivial task,

since no geometrical restriction on the characteristics of the mesh exists.

Within the family of meshfree approximation schemes the local maximum en-

tropy approximants have been recently proposed and have been shown to posses

interesting advantages respect to other meshless approximants (16). For this rea-

son, in this work, their application is extended also to metal forming and cutting
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problems. Furthermore original contributions to the numerical development of

maximum entropy methods are introduced.

The outline of the thesis is the following: in chapter 2 the application of nodal

integration to the FEM is discussed and the relative numerical results are pre-

sented. In Chapter 3 after a brief review on meshless methods the formulation

of the maximum entropy approximants is introduced. In chapter 4 some orig-

inal contributions to the blending between maximum entropy and isogeometric

approximants (17) are exposed. Then in chapter 5 a formulation to apply the

maximum entropy approximants to viscoplastic flows is presented. Also in this

case some numerical results in the simulation of benchmark metal forming and

orthogonal cutting processes are shown. Finally in chapter 6 some concluding

remarks are given and possible future developments are analysed.

3



2

The Nodal Integrated Finite

Element Method

2.1 Introduction

The nodal integration (NI) is a technique that has been introduced in both FE

and meshless methods. In the first case it has been proposed as an alternative to

the standard integration that requires the generation of a mesh in opposition to

the meshfree character that this family of methods should supply. Furthermore

with nodal integration the computation of the derivatives of the basis functions

can be avoided in a standard Galerkin implementation, which simplifies the nu-

merical implementation for those approximants whose derivatives are difficult to

calculate.

In the FEM case the integration is straightforward to realize. However, the

nodal integration showed some interesting properties that encouraged the re-

searchers to apply this technique also to finite elements. As it is well known, in

the FEM environment, the performances of the analysis depend on the type of el-

ement. The constant strain elements (triangle with 3 nodes or tetrahedrons with

4 nodes in the 3D case) would be preferable for different reasons, especially when

non-linear problems are investigated. Nevertheless their poor performances in

acute bending problems and incompressible materials simulation force researchers
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2.1 Introduction

to use high-order elements, such as 8 nodes tetrahedral or hexahedral elements.

Anyway these formulations are not free from the results worsening due to the

mesh deterioration and, besides, the remeshing procedure is very costly to be

implemented, particularly for the hexahedral elements.

A great drawback of traditional FEM methods is that the numerical model

is always stiffer than the studied material. What is more, any mesh distortion

gives a further spurious stiffness to the model. Introducing a Nodal Integration

scheme the FEM model is generally less stiff and, therefore, a distorted mesh

could paradoxically have a beneficial effect on the performances. The remeshing

step can then be avoided in many applications or anyway consistently reduced.

Another advantage that is introduced with the nodal integration is that the

volumetric locking problems in the study of incompressible materials (this is the

case of metal forming), that are typical of standard finite elements, are avoided

with the new formulation. Thanks to this property mixed formulations are no

longer necessary to deal with incompressibility and the performance is signifi-

cantly improved.

The basics of nodal integration in FE analysis were firstly introduced in (15)

where they showed that applying the new technique the performances of the

constant strain elements are significantly improved in the study of acute bending

problems. Moreover the method was shown to be free from volumetric locking

in the simulation of quasi-incompressible materials. In (18) they noted that the

formulation proposed in (15) was prone to spurious low energy oscillations and

introduced a new stabilized nodal integrated tetrahedral element. They also

analytically showed that their new element was stable and consistent for linear

elasticity.

In the meshless environment the nodal integration was firstly introduced in

(19) and then modified in (20, 21) to avoid spurious zero energy oscillations. This

approach is based on an averaging of the strain that is analogous to the method

employed in (15) for the finite elements and, in fact, low energy oscillations are

still present. In (22) the stabilization approach presented in (18) for the FEM is

extended also to meshless methods.

In this chapter the numerical formulation of nodal integration is reviewed in

section 2.2 and the different NI schemes are presented. Then their performance
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2.2 The nodal integration formulation

and the effect of the stabilization are studied in the simulation of an extrusion

process in section 2.3, while in section 2.4 the method is applied to the simulation

of an orthogonal cutting process.

Figure 2.1: An example of Voronoi diagram.

2.2 The nodal integration formulation

Let Ω be a 2D computational domain discretized by a cloud of nodes, enumerated

from 1 to NN and denoted by I, and a mesh of triangular elements, enumerated

from 1 to NE and denoted by J . In a traditional finite element code, the strain

is calculated using the gradient matrix B, that, if ϕ1, ϕ2 · · ·ϕNN
are the shape

functions, is defined as:

B =

 ϕ1, x
0
ϕ1, y

0
ϕ1, y
ϕ1, x

. . .

. . .

. . .

0
ϕNN

, y
ϕNN

, x

 (2.1)

Thus, if d is the vector containing the (unknown) nodal displacements, the strain

is given by:

ε(x) = B(x)d (2.2)

If three-node triangular elements are used, the shape functions derivates are con-

stant in every element, and also the matrix B. Thus the elements strain can be

expressed as:

εJ = BJd (2.3)
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2.2 The nodal integration formulation

and, if E is the constitutive matrix, the stiffness matrix K is assembled in the

following way:

K =

∫
Ω

BTEB dΩ =

NE∑
J=1

BT
JEBJAJ (2.4)

where AJ is the area of each element.

When the nodal integration is applied to FEM a constant strain field ε̃I is

assumed within a particular volume ṼI , associated to each node. The easiest to

interpret NI scheme is the one proposed in (20), that is based on the Voronoi

diagram (23). According to figure 2.1 the Voronoi diagram is a subdivision of

the computational domain in regions ΩI , where each region is associated with a

node I, so that any point in ΩI is closer to the node I than to any other node in

the domain. In this case the nodal volume ṼI is, for each node, the areaAI of the

corresponding cell in the diagram and the assumed strain is the average strain in

this cell:

ε̃I =
1

AI

∫
ΩI

ε(x) dΩ (2.5)

Since constant strain elements are used, equation 2.5 could be rewritten as:

ε̃I =
1

AI

NE∑
J=1

εJ Area(ΩI ∩ TJ) (2.6)

where TJ are the triangular elements in which the strain remains constant (figure

2.2). Observing that
∑NE

J=1Area(ΩI ∩ TJ) = AI we can note that the strain ε̃I

is a weighted average of the strain of the elements. From now on we will refer to

this scheme as Global Voronoi Integration (GV).

In (15) two NI schemes are proposed. They also provide a strain averaging,

but the weights are different. In particular it is imposed that the strain ε̃I depends

only on the strain of the set of elements SI that contain the node I. According

to this constraint, one of the two schemes is also based on the Voronoi Diagram,

but in this case the Diagram is locally calculated the triangles. In particular each

triangle TJ is divided in three zones tJI , associated to its nodes, so that every

point in ε̃I is closer to the node I than to any other node in TJ . Then the nodal
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2.2 The nodal integration formulation

Figure 2.2: The GV integration scheme - The assumed strain is a weighted

average of the elements strain. In the numerical implementation all the coloured

areas have to be calculated.

volume and the assumed strain are calculated as:

ṼI =
∑
J∈SI

Area(tJI) (2.7)

ε̃I =
1

ṼI

∑
J∈SI

εJ Area(tJI) (2.8)

We will refer to this scheme as Local Voronoi Integration (LV). The other tech-

nique proposed in (15) is not based on geometrical considerations but provides a

heuristic calculation of the assumed strain, imposing that the area of the triangles

is divided in three equal parts, associated to its nodes. Hence:

ṼI =
∑
J∈SI

Area(TJ)

3
(2.9)

ε̃I =
1

ṼI

∑
J∈SI

εJ
Area(TJ)

3
(2.10)

This scheme will be called Direct Averaging Integration (DA).

Similarly to a traditional FE interpolation the assumed strain could be related

to the displacement field using an equivalent gradient matrix:

ε̃I = B̃Id (2.11)
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2.2 The nodal integration formulation

It is easy to demonstrate that the matrices B̃I will be a weighted average of

the elements matrices BJ , calculated using the same weight coefficients of the

strain case, depending on the specific NI scheme. Thus, in the implementation

of the method, the matrices B̃I are calculated and the global stiffness matrix is

assembled as:

K̃ =

NN∑
I=1

B̃I
T
EB̃I ṼI (2.12)

This last calculation takes an additional computational time that is negligible

respect to a traditional FEM code when DA scheme is used. In fact, only the

volume of the elements has to be calculated and the equivalent gradient matrixes

are directly calculated as a linear combination of the element gradient matrixes.

The situation changes in the Voronoi-based (GV and LV) techniques. In particu-

lar in the GV case all the areas of the intersections between a given Voronoi cell

and the elements have to be calculated (see figure 2.2). In this work this oper-

ation has been carried out describing both the cells and the elements as convex

polygons and then applying the Lasserre algorithm (24). Although the compu-

tational complexity is linear with the number of nodes this is a significant time

consuming operation that could take a computational time of the same order or

slightly higher than the total time consumed for the analysis by a traditional

FEM code. Anyway, the asymptotical linear complexity ensures that for clouds

composed by a high enough number of nodes this time tends to be smaller than

the time requested for the resolution of the equations. The LV scheme could be

also implemented describing the geometrical entities by convex inequalities and

applying the Lasserre algorithm or other similar. Nevertheless in order to advan-

tage the rapidity of the simulation other more efficient strategies are possible. In

particular, after determining the coordinates of the circumcenters of the trian-

gular elements, the intersections areas could be find out calculating the areas of

particular triangles. This operation takes a practically negligible time, as in the

DA case.
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

2.2.1 Stabilization

According to (18), in order to avoid the low energy spurious mode typical of

standard Nodal Integration, a stabilized stiffness matrix KS is assembled using

a stabilization parameter α and the modified behaviour matrix Ẽ. In particular

for linear problems we have:

KS = KNOD +KELEM =

NN∑
I=1

B̃I
T

(E − αẼ)B̃I ṼI + α

NE∑
J=1

BT
J ẼBJAJ (2.13)

The influence of α on the results will be discussed in section 2.3; the matrix Ẽ

differs from E because when incompressible materials are studied it is assembled

using a different Poissons coefficient ν, since locking problems would be present

in the elementary matrix KELEM . A value of ν ∼ 0.4 is generally employed.

2.3 A comparison between the different NI schemes

and their stabilization in the simulation of

extrusion

Extrusion is a typical example of forming process in which the large deformations

stress the classical FE formulation. Therefore the performances of the three NI

schemes have been compared in the simulation of the plain stress extrusion process

illustrated in figure 2.3.

As far as the material behaviour is considered, in the forming processes and

in particular in extrusion, strains are very large as compared to elastic ones.

Thus the most extended approach employed in the last decades in the FEM

environment is the so called flow formulation(25), that was firstly proposed by

Zienkiewicz (5, 6). Even if an elastic recover exists at the die outlet it is an ac-

cepted assumption to neglect it and therefore to relate the Cauchy stress only to

the strain rate tensor. This gives a viscoplastic formulation that resembles that

of non-newtonian fluids, which inspired the term flow formulation. The great

advantage of this approach is that velocities can be directly assumed as essential

10



2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

Figure 2.3: Simulation of a plain strain extrusion process - Sketch of the

model.

variables of the problem instead of displacements. Within the viscoplastic formu-

lation several models can be adopted to describe the material behaviour. Among

these the so called Sellarg-Tegart law (26) has been used in many references ap-

plications (27, 28). Anyway, since the scope of this work was only to investigate

on the potentialities of the new techniques a simpler Northon-Hoff model (29)

was preferred. Other simplifications were made, such as neglecting friction and

thermal phenomena. The Northon-Hoff model takes the form of a power law:

Sf = C ¯̇εn (2.14)

where Sf is the flow stress and ¯̇ε is the equivalent strain rate. The coefficients

employed in this study were C and n = 0.2 that, according to (30), are typical of

some aluminium alloys.

When nodal integration is introduced the model is free of volumetric locking

and, therefore, it is not necessary to employ mixed formulation to deal with

incompressibility. The stress is related directly to the strain rate, analogously to

an elastic problem:

σ = Eε̇ (2.15)

where, in the case of plain strain:

E = µ
2ν

1− 2ν

 1− ν ν 0
ν 1− ν 0

0 0
1− 2ν

2

 . (2.16)
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

In order to impose incompressibility a value of ν → 0.5 is adopted. In fact,

the choice ν = 0.5 is not possible since a singular constitutive matrix would

be obtained. In the practice the problem is solved by introducing a numerical

penalization that consists in assuming a value of ν very close to 0.5. In this

application the value of ν = 0.499999 was used. The viscosity µ also depends on

the strain rate and gives non-linearity to the problem:

µ = µ0
¯̇εn−1 =

C

3
¯̇εn−1. (2.17)

An iterative approach is required for the resolution of the constitutive equations.

The Newton Raphson would be the best choice because of his rapidity but when

highly non-linear problems are studied it does not converge unless an initial so-

lution close enough to the final one is used. On the contrary the Direct Iteration

Method (1) requires some more iterations but it is more robust and less sensible

to the values of the initial solution, even in highly non-linear problems. For this

reasons it was preferred for this application.

In the numerical simulation of the process the problem was discretized in

time using an updated Lagrangian approach. The displacement is updated from

a given displacement u(t) and the calculated velocity v(t + ∆t) in the following

way:

u(t+ ∆t) = u(t) + v(t+ ∆t) ∆t (2.18)

the velocities v(t+∆t) are then the only unknowns that are calculated by solving

the equilibrium equations with the Direct Iteration Method at each time step.

The method is started assuming µ = µ0 and then the stiffness matrix at the

iteration n is calculated from the values of the previous iteration in the following

way:

Kn
S =

NN∑
I=1

B̃I
T

(E(µn−1) − αẼ(µn−1))B̃I ṼI + α

NE∑
J=1

BT
J Ẽ(µn−1)BJAJ (2.19)

once vn = vn−1 the iteration is stopped and the values of the velocity are used

to update the problem in time and start the following time step.

The model in figure 2.3 was studied assuming a punch speed of 1mm/s and

considering 50 time steps of 1s each. The performances of the NI schemes were

12



2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

analysed on both the regular and the irregular mesh in figure 2.4, that have about

1000 nodes each. The evolution of the initial cloud of nodes was followed during

the simulations without introducing remeshing and the shape of the cloud was

determined at each step using the alpha-shape criterion (31).

In figure 2.5 the LV scheme was applied and no stabilization was introduced.

Looking at the velocity field of the regular mesh the presence of the spurious

modes is clearly observable; the pressure field presents strong oscillations in the

direction of the mesh as well. The situation is quite different with the irregular

mesh. In this case the velocity field is quite more regular and the pressure field

has a satisfactory trend, considering the reduced number of nodes.

(a) (b)

Figure 2.4: The meshes used for the simulation - (a) regular and (b) irreg-

ular.

This proves that the nodal integration performs poorly with regular meshes

due to the spurious low energy modes, while the irregularity of the mesh gives a

partial stabilization to the method. The effect of the stabilizing method proposed

in (18) is analysed in figure 2.6 where again the LV scheme was used with both

regular and irregular meshes. We can observe that with α = 0.05 we already have

a significant stabilizing effect and that α = 0.10 in this application is enough to

have a a completely stabilized field, as in a traditional FEM simulation.
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

(a) (b)

(c) (d)

Figure 2.5: The effects of the regularity of the mesh at the beginning

of the simulation (no stabilization) - velocity field with a regular (a) and an

irregular (b) mesh and pressure field with a regular (c) and an irregular (d) mesh.
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

(a) Regular mesh, α = 0.05 (b) Irregular mesh, α = 0.05

(c) Regular mesh, α = 0.10 (d) Irregular mesh, α = 0.10

Figure 2.6: The effects of the stabilization on the velocity field
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

As far as the performances of the different NI schemes are concerned in figure

2.7 we can observe the trend of the flow stress at the end of the simulation, for an

irregular mesh of 5000 nodes and without stabilization. In this case the Voronoi-

based schemes are quite similar, while the DA presents a slightly lower and more

irregular field. Since, according to section 2.2, the DA and LV schemes would be

preferable for the computational times and considering the more regular trend of

LV results, that are in excellent agreement with the GV ones, the Local Voronoi

integration scheme appears the most convenient choice.

(a) GV (b) LV

(c) DA

Figure 2.7: The flow stress at the end of the simulation - No stabilization
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2.3 A comparison between the different NI schemes and their
stabilization in the simulation of extrusion

Since no stabilization was considered in figure 2.7 a little error can be observed

in the shape of the extruded profile. This is due to the fact that some irregularities

are present in the velocity of the nodes that exit from the die. On regularizing

such a field with the stabilization (figure 2.8) a better prediction of the shape is

obtained.

(a) α = 0.05 (b) α = 0.10

(c) α = 0.15 (d) α = 0.20

Figure 2.8: Effects of the stabilization on the stress filed - The shape of

the extruded profile is improved but some oscillation are still present in the stress

field.
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2.4 Simulation of orthogonal cutting

However no benefit is given to the regularity of the stress field, that still ex-

hibits some oscillations due to the nodal averaging of the strains. This is perhaps

the main limitation of the nodal integration, which improves the performances

of the constant strain finite elements from a mathematical point of view but,

in doing so, alters the physical foundation of the model. This is more evident

observing the DA results, where the strain is averaged only from a numerical

prospective and therefore the oscillations are even bigger.

2.4 Simulation of orthogonal cutting

Orthogonal cutting is a typical process where the classical FEM formulation is

stressed by the heavy mesh distortions. On the contrary, in the nodal integrated

formulation, the quality of the results is not expected to be affected by the dete-

rioration of the mesh. In this section the two approaches have been compared in

the simulation of the process outlined in figure 2.9.

t

3

0.6

Figure 2.9: Simulation of orthogonal cutting - Sketch of the model.

In order to have a reference FEM result the problem was also studied with

the commercial FEM code DEFORMTM.

In the NI simulation the piece was modelled with the cloud of nodes shown

in figure 2.10. About 2000 nodes were randomly generated within the work-piece

and about 8000 nodes were placed in the cutting zone. Then, during the advance-

ment of the process, no rezoning was applied but, in a very strictly Lagrangian

framework, the evolution of the initial cloud of nodes was followed by calcu-

lating at each step the alpha-shape of the Delaunay triangulation of the cloud.
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2.4 Simulation of orthogonal cutting

(a) (b)

(c) (d)

Figure 2.10: The mesh generation in the NI code - The initial cloud of

nodes (a) and the initial mesh (b); the mesh at two steps of the simulation (c) and

(d).

The Delaunay triangulation can be generated very quickly and it is a very good

quality mesh for 2D applications but the situation changes in three dimensions

where the quality is no more guaranteed and, in a standard FEM implementation,

remeshing-rezoning are required. With nodal integration the quality requirement

is less strict and therefore this step can be avoided. Instead in the DEFORMTM

simulation the case study was modelled with quadrilateral elements and an au-

tomatic remeshing algorithm was applied at each step. Since an irregular mesh

was used for the NI analysis no stabilization was applied.
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2.4 Simulation of orthogonal cutting

(a) t = 0.10 mm (b) t = 0.15 mm

Figure 2.11: The cutting force.

In order to analyse different chip formation dynamics two values of the uncut

chip thickness t were considered: 0.10 and 0.15mm. The cutting speed was

2000mm/s. For the same reasons outlined in section 2.3 friction and thermal

aspects were neglected and the material was described with a Northon-Hoff power

law, characterised by µ0 = 50 and n = 0.4, that are typical of common titanium

alloys for aerospace applications (30).

An important variable to calculate in the simulation of cutting is the force

required to the tool. Although its evaluation does not strongly depend on local

phenomena that could affect the code prediction, the cutting force is a relevant

variable from an industrial point of view because it is responsible of mechanical

stress on the tooling. As it can be observed in figure 2.11, the trends calculated

with the two methods are similar but the NI code predicts a slight higher value.

The reason of this higher estimation is explained observing the pressure distribu-

tion on the rake face in figure 2.12. We can note that the NI code (dashed lines)

presents a better simulation capability close to the tool tip. The commercial

code, in fact, losses the contacts in this zone and the new equilibrium reduces

the pressure on the rake face. In the NI case the nodes are not rezoned and this

ensures a better efficiency of the contact algorithm. Since the load depends on

the pressure distribution this justifies also the differences in the load predictions.

The quality of the NI prediction is roughly demonstrated also observing the

geometries calculated using both the approaches that are simultaneously reported

in figure 2.13. Nevertheless the strong simplification in the NI formulation the
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2.4 Simulation of orthogonal cutting

(a) t = 0.10 mm (b) t = 0.15 mm

Figure 2.12: The pressure on the rake face.

Figure 2.13: The predicted geometry with the two codes - Nodal integrated

FEM (shaded line) and DEFORMTM (dark line).

two predicted shapes are very similar. This confirms the overall performance of

the NI code since other investigations assessed the quality of the DEFORMTM

predictions in cases such the one considered in this example.
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3

The maximum entropy

approximants

3.1 Introduction

After their first introduction in the late seventies meshless methods had a strong

development only in the last two decades due to their potentialities in the simu-

lation of several problems not well suited to conventional computational methods

(finite elements, finite volume and finite difference methods) such as manufac-

turing processes like extrusion and moulding, failure propagation problems and

simulation of castings.

The starting point of meshless methods is considered to be the Smooth Particle

Hydrodynamics (SPH) method (32) that was introduced to model astrophysical

phenomena without boundaries such as exploding stars and dust clouds. On

introducing a correction function for kernels in the SPH formulation the Repro-

ducing Kernel Particle Methods (RKPM) were later obtained (33, 34).

A parallel path to construct meshless approximants was based on the use of

moving least square (MLS) approximations. In (35) the so called Diffuse Element

Method (DEM) is presented as an alternative to the conventional FEM in which

the MLS approximation is used in a Galerkin method. By refining and modifying

the DEM a new class of methods, called Element Free Galerkin Methods (EFGM)
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3.1 Introduction

was introduced (36, 37). This class was shown to be consistent and, in the

forms proposed, quite stable although substantially more expensive than SPH

(14). In (38) the EFG method was further developed and it was proved that the

shape functions constitute a partition of unity and that, despite the order of the

approximation there is the possibility to enrich these functions in order to make

them reproduce a polynomial or arbitrary order. This approach was further

generalized to define the so called Partition of Unity Finite Element Method

(PUFEM) (39, 40).

As it was shown in (14) the RKPM, the EFGM and the PUFEM share many

features of the same framework and, in most cases, MLS methods are identical

to kernel methods; in particular any kernel method in which the parent kernel is

identical to the weight function of a MLS approximation and is rendered consis-

tent by the same basis is identical.

Thanks to this developments meshless methods come to an age of maturity

in the middle nineties and, after then, only two methods with really different

characteristics were introduced: the Natural Element Method (NEM) (41, 42, 43)

and the Maximum Entropy (max-ent) methods. The latter will be introduced in

section 3.2 and then some original developments realised in this project will be

presented in sections 3.3 and 4 . Finally in chapter 5 their application will be

extended to metal forming and cutting problems.

Although MLS based methods acquired a great popularity for some years

they still present some notable drawbacks such as the lack of the Kronecker-delta

property (i.e., the approximated function does not pass through nodal values) for

the imposition of the boundary conditions and the errors related to the numer-

ical integration. In the quest of a method free of interpolation errors along the

boundary the NEM was the first successful attempt. It was presented a Galerkin

method where interpolation was given by Natural Neighbour methods (44, 45).

To compute the NEM basis functions the Voronoi diagram and the Delaunay

triangulation (that is its dual structure (23)) are required. Although a triangular

mesh is employed the NEM was shown to provide a good accuracy despite the

quality or distortion of such a mesh (41, 46). Despite these interesting properties

the main drawback of NEM is its high computational cost, especially for Sibson
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3.1 Introduction

interpolation (44). However, in non-linear computations, while frequent Newton-

Raphson iterations are needed, the relative cost of shape function computation

is obscured by the cost of updating tangent stiffness matrices.

As introduced before a very delicate matter to take into account for most of

meshless methods is the imposition of the essential boundary conditions (47, 48).

This is due to the fact that, because of the inherent unstructured connectivity

between nodes in the model, interior nodes could eventually influence the result

on the boundary. In general EFGM and RKPM present this problem. A possible

solution to deal with this inconvenient that was presented for the EFG methods

was simply to couple them with a strip of finite elements close to the the bound-

ary (49). Unfortunately, although it is very simple to implement, this method

somehow eliminates the meshless character of the approximation. Other possible

techniques rely on constrained variational principles (50), penalty formulations

or Lagrange multipliers but, anyway, a true interpolation along the boundary is

not achieved.

The situation changes in the NEM case, where the NN basis functions are in

general interpolant along convex boundaries and, with some modifications, can

be interpolant also on non-convex domains (51, 52).

Another aspect to take into account in the framework of Galerkin implementa-

tions of meshless methods is the numerical integration. In fact in general meshless

formulations do not employ polynomial shape functions and therefore an error is

introduced on employing Gauss quadrature formulas. What is more the integra-

tion cells that are required to perform the integration do not generally conform

with the support of the basis functions which gives another source of error. Al-

though some strategies are possible to deal with the latter problem (53, 54), the

non polynomial character of the approximation remains a source of error that can

not be avoided in most methods.

As mentioned in chapter 2 an important advancement in the numerical inte-

gration of meshless methods arose with the development of the Stabilized Con-

forming Nodal Integration scheme (SCNI) (20). In the meshless framework equa-

tion 2.5 is modified applying the Gauss’s divergence theorem. In this way the

displacements substitute the strains in the calculation of the assumed strain and

therefore the shape functions are used instead of their derivatives in the numerical
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3.2 The maximum entropy approximants

implementation. It is worth to note that this approach is possible in the meshless

case due to the smoother character of the basis functions, while in the FEM the

reduced support of the shape functions could give too high integration errors.

According to (20) this nodal quadrature scheme has rendered excellent results

when applied to EFGM. It looks also very well suited to be applied in the NEM

framework, since most of the entities required in the SCNI implementations has

to be anyway calculated for the NN basis functions. Another advantage of the

SCNI scheme is that it leads to a truly nodal implementation of meshless methods

since no recovery of secondary variables nor nodal averaging must be performed.

3.2 The maximum entropy approximants

Within the family of meshfree approximation methods, a recent advance in com-

putational mechanics has been the development and application of maximum-

entropy (max-ent) based approximation schemes (16, 70, 71, 72). These approxi-

mations are linked to elements from information theory (73), convex analysis (74),

and convex optimization (75).

Initially, these convex approximants were introduced by Sukumar (70) for con-

structing polygonal interpolants and by Arroyo and Ortiz (16) for use in meshfree

methods. Since then, many new developments and applications of max-ent ba-

sis functions have emerged: unifying formulation using relative entropy and an

extension to higher-order schemes with signed basis functions (76), quadrati-

cally complete convex approximations (77, 78, 79), epi-convergence to establish

continuity of max-ent basis functions (80) and convergence analysis of max-ent

approximation schemes (81, 82), constructing barycentric coordinates on arbi-

trary polytopes (83), fluid and plastic flow using optimal transportation the-

ory (84), compressible and nearly incompressible elasticity (85, 86, 87, 88), vari-

ational adaptivity for finite-deformation elasticity (89), thin-shell analysis (90,

91), modeling Mindlin-Reissner shear-deformable plates (92), nonlinear struc-

tural analyses (93, 94), convection-diffusion problems (95, 96, 97), phase-field

model of biomembranes (98, 99), curvature and bending rigidity of membrane

networks (100), and Kohn-Sham density functional calculations (101).
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3.2 The maximum entropy approximants

In information theory (73), the notion of entropy as a measure of uncertainty

or incomplete knowledge was firstly introduced by Shannon (102). Then Jaynes

proposed the principle of maximum entropy (103) in which it was shown that

maximizing entropy provides the least-biased statistical inference when insuffi-

cient information is available.

Consider a set of distinct nodes in <d that are located at xa (a = 1, 2, . . . , n),

with Ω = con(x1, . . . ,xn) ⊂ <d denoting the convex hull of the nodal set. For a

real-valued function u(x) : Ω→ <, the numerical approximation for u(x) is:

uh(x) =
n∑
a=1

φa(x)ua, (3.1)

where φa(x) is the basis function associated with node a, and ua are coefficients.

In the maximum-entropy approach an entropy functional that depends on a dis-

crete probability measure {pa}na=1 is maximized, subject to linear constraints on

pa. On noting the correspondence between basis functions {φa}na=1 and discrete

probability measures {pa}na=1, the max-ent formalism was recently applied to

construct basis functions. The idea was firstly introduced by Sukumar for the

construction of polygonal interpolants (70). The associated max-ent variational

formulation was: find x 7→ φ(x) : Ω → <n+ as the solution of the following

constrained (concave) optimization problem:

max
φ∈<n

+

−
n∑
a=1

φa(x) lnφa(x), (3.2)

subject to the linear reproducing conditions:

n∑
a=1

φa(x) = 1, (3.3a)

n∑
a=1

φa(x)(xa − x) = 0, (3.3b)

where <n+ is the non-negative orthant, and the linear constraints form an un-

derdetermined system. The aforementioned approach is suitable for polygonal

meshes, where the max-ent basis functions are calculated in each polygon but

can not be directly applied to scattered clouds of nodes because too many nodes

would have influence in the calculations.
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3.2 The maximum entropy approximants

In order to extend the max-ent approach to the application in meshfree im-

plementations in (16) they tried to modify the character of the basis functions

introducing a Pareto optimum between the maximization of the entropy and their

locality. Firstly they noted that, according to (104), the piecewise affine shape

functions defined on the Delaunay triangulation of a set of nodes can be obtained

through convex optimization by solving the following minimization problem

min
φ∈<n

+

n∑
a=1

φa(x)|x− xa|2, (3.4)

subject to the linear reproducing constraints given by equation 3.3. Since the total

width is minimized these shape functions are the most local possible functions for

a given cloud of nodes. Therefore they propose to modify the max-ent formulation

by introducing a Pareto optimum between eq. 3.4 and eq. 3.2. In particular the

following optimization problem is solved:

min
φ∈<n

+

n∑
a=1

βaφa(x)|x− xa|2 +
n∑
a=1

φa(x) ln (φa(x)) (3.5)

always subject to the constraints in eq. 3.3. The basis functions obtained with

this scheme are known in the literature as local maximum entropy (LME) ap-

proximants. The Pareto parameter βa controls the locality of the basis function

of each node. In particular the functions become more local when βa increases

until the case of βa → ∞ where the Delaunay shape functions are recovered.

On the contrary for βa = 0 purely max-ent basis functions are obtained. This

behaviour is illustrated in Figure 3.1 for a one-dimensional domain. Since the

influence of β depends on the mesh size normally a non-dimensional parame-

ter {γa = βah
2
a}a=1,...,N is preferred. Typical values of γ used in the reference

applications are in the range from 0.8 to 1.6.

In a more recent development (76) Sukumar proposed, as a generalization,

to substitute Shannon entropy in equation 3.2 with the Shannon-Jaynes entropy

measure (105), also known as relative entropy. The resulting optimization prob-

lem is then

max
φ∈<n

+

−
n∑
a=1

φa(x) ln

(
φa(x)

wa(x)

)
, (3.6)
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3.2 The maximum entropy approximants

0 0.5 1 1.5 2 2.5 3
0
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γ = [0.6  1.2  1.8  2.4  3  3.6  4.2  4.8  5.4  6]

Figure 3.1: Seamless and smooth transition from meshfree to Delaunay

affine basis functions. The transition is controlled by the non-dimensional nodal

parameters γa, which here take linearly varying values from 0.6 (left) to 6 (right).

subject to the constraints in eq. 3.3. In this expression wa(x) : Ω → <+ is

a non-negative weight function that is called prior estimate to φa. Different

max-ent basis functions can then be obtained depending on the choice of the

prior. We can note that for wa(x) = 1 ∀a the global max-ent approximants are

recovered, while choosing wa(x) = βa|x−xa|2 due to the property of the logarithm

operator equation 3.6 recovers the LME formulation. Although many different

approximants can be obtained with this formulation the LME basis functions have

been preferred in all the numerical applications (see aforementioned references)

due to their properties and to the facility of their implementation.

On using the method of Lagrange multipliers, the solution of the variational

problem in eq. 3.6 is (76):

φa(x) =
Za(x;λ)

Z(x;λ)
, Za(x;λ) = wa(x) exp(−λ · x̃a) (3.7)

where x̃a = xa − x (x,xa ∈ <d) are shifted nodal coordinates, λ(x) ∈ <d are the

d Lagrange multipliers associated with the constraints in eq. 3.3b, and Z(x) is

known as the partition function in statistical mechanics. On considering the dual

formulation, the solution for the Lagrange multipliers can be written as (75)

λ∗ = argmin F (λ), F (λ) := lnZ(λ), (3.8)

where λ∗ is the optimal solution that is desired. Since F is strictly convex in the

interior of Ω, a convex optimization algorithm such as Newton’s method is used

to determine λ∗.
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3.3 Derivatives of max-ent basis functions on the boundary of the
domain

Let φ∗a(x) be the max-ent basis function that corresponds to the converged

λ∗(x), and ∇φ∗a(x) and ∇∇φ∗a(x) be the gradient and Hessian of φ∗a(x), respec-

tively. We obtain φ∗a(x) from eq.3.7:

φ∗a(x) =
Za(x;λ∗)

Z(x;λ∗)
, Za(x;λ∗) = wa(x) exp(−λ∗ · x̃a). (3.9)

The gradient of φ∗a(x) for the LME prior is presented in (16), and that for an

arbitrary prior weight function appears in References (93, 106). The latter is

reproduced below:

∇φ∗a = φ∗a
{
x̃a ·

[
(H∗)−1 − (H∗)−1 ·A∗

]
−

n∑
b=1

∇wb exp(−λ∗ · x̃b)
Z

+
∇wa exp(−λ∗ · x̃a)

Z

(3.10a)

where

H∗ =
n∑
b=1

φ∗b x̃b ⊗ x̃b, A∗ =
n∑
b=1

x̃b ⊗
∇wb exp(−λ∗ · x̃b)

Z
(3.10b)

The derivation and expression for the Hessian of φ∗a(x) is presented in Refer-

ences (79, 100, 106). In figure 3.2 the LME basis functions are plotted together

with their derivatives on a one-dimensional domain uniformly discretized and

using a dimensionless parameter γ = 0.8.

LME approximants are endowed with features such as monotonicity, smoothnes

and variation diminishing property, as illustrated in Figure 3.3. They also satisfy

ab initio a weak Kronecker-delta property at the boundary of the convex hull

of the nodes. With this property, the imposition of essential boundary condi-

tions in Galerkin methods is straightforward. Moreover, the approximants are

multidimensional and lead to well behaved mass matrices.

3.3 Derivatives of max-ent basis functions on

the boundary of the domain

As noted in References (70) and (16), the Lagrange multipliers blow up for a

point x ∈ ∂Ω, and hence the expressions derived therein for ∇φa can not be used
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3.3 Derivatives of max-ent basis functions on the boundary of the
domain
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Figure 3.2: One-dimensional local maximum-entropy basis functions (a), and

its first (b) and second (c) derivatives, computed with a dimensionless parameter

γ = 0.8.
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3.3 Derivatives of max-ent basis functions on the boundary of the
domain

(a) (b)

Figure 3.3: Illustration of non-negativity, smoothness and weak Kronecker-delta

properties for two-dimensional local maximum-entropy basis functions (a), and the

variation diminishing property (b).

to evaluate the derivatives of the basis functions on the boundary. As an origi-

nal contribution of this project, a solution for this problem is provided in (107).

In particular the l’Hôpital’s rule is applied to obtain explicit expressions for the

derivatives of the basis functions on the boundary, which is guided by theoretical

analysis and supportive numerical experiments. Furthermore, on choosing appro-

priate prior weight functions, a means to obtain bounded Lagrange multipliers

on the boundary is presented, which leads to bounded first- and higher-order

derivatives of max-ent basis functions on ∂Ω. In addition, in (107), optimal

convergence rates for Euler-Bernoulli beam problems and for plate bending prob-

lems are demonstrated for a Galerkin approach with a quadratically complete

partition-of-unity enriched max-ent approximation.
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4

Blending between isogeometric

and max-ent approximants

4.1 Introduction

In the last years a lot of research has been carried out in the field of Isogeometric

Analysis (IGA) (108, 109), a technique that aims at integrating the Computer

Aided Design (CAD) with the FE analysis by parameterizing the domain and

discretizing the PDE with the same basis functions, e.g. B-Splines or NURBS.

In this way the exact CAD geometry is preserved and, what is more, the two

processes of CAD design and FE analysis can be integrated not only in the sense

of using the same software (all the reference CAD software includes finite element

tools) but also in the mathematical approach to the two operations.

The main drawback arising from this technique is that the NURBS framework

imposes some rigidity on volume meshing, which requires special technologies to

accommodate trimmed surfaces, local refinement, or incongruent surface descrip-

tions at opposing faces (110, 111, 112, 113, 114, 115, 116). On the contrary

the max-ent approximants present more flexibility and easily handle volume dis-

cretization and unstructured grids but posses the inherent limitation of meshfree

methods to represent complex boundaries with high fidelity. In fact, the only

boundaries that can be represented by a mere collection of points are polytopes,
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4.2 The IGA-LME formulation

either the convex hull or more controllable domains like the alpha shapes (31).

In addition the Kronecker-delta property of LME approximants does not hold on

non-convex boundaries (16). This fact suggests that limitations of IGA and LME

approximants are in some sense complementary.

For this reasons, recently the IGA-LME approximants were proposed (17).

The idea of this method is to use isogeometric functions to parametrize the bound-

ary of the domain and, introducing a thin layer of control points, to construct

the approximants for the nodes that lead on it. The basis functions of the in-

ternal nodes are calculated using the standard LME formulation, while in the

parametrized domain a blending between the isogeometric basis functions and

the basis functions of the internal nodes is realized using a modified maximum

entropy approach. In this way any arbitrary shape can be described without loss

of precision on the boundary and, at the same time, without the limitations given

by the isogeometric representation, since it is required only on a thin zone.

4.2 The IGA-LME formulation

When the IGA-LME approach is employed, focusing on 2D for simplicity, the

boundary of the domain ∂Ω is parameterized with a B-Spline curve Γ (Fig. 4.1a),

which is obtained trough a function C : [ξ1, ξ2] 7→ Γ defined as:

C(ξ) =
∑
i

Mi(ξ)Pi, (4.1)

where Mi(ξ) are the one dimensional basis functions calculated on a knot span

in the interval [ξ1, ξ2] (Fig. 4.1b), and Pi ∈2 are the control points. In figure 4.1

as well as in (17) cubic B-Spline functions (order p = 3) are used. However, the

method can be implemented also with different values of p.

In the IGA-LME formulation a ring of isogeometric basis functions associated

with the boundary nodes is then defined in a subset Ω? of the two dimensional

computational domain Ω (see Fig. 4.1a). For this purpose an isogeometric map-

ping S : [ξ1, ξ2]× [η1, η2] 7→ Ω? is defined as

S(ξ, η) =
∑
i

∑
j

Mi(ξ)Pj(η)Pi,j. (4.2)
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4.3 Numerical Integration

where Pj(η) are again one dimensional basis functions calculated on a knot span

in the interval [η1, η2] (Fig. 4.1c). Associating to each point x = S(ξ, η) the value

Nb(x) = Mi(ξ)P1(η) the two dimensional basis functions are obtained in Ω? (blue

function in Fig. 4.1d). In the example in the figure, since cubic B-Splines are

used, other three internal rings of control points are needed to define S(ξ, η).

At this point the blending with the LME approximants is realized in Ω? by

including the B-spline basis functions associated to the control points on the

boundary in the constraints of the maximum entropy optimization problem that

becomes

For fixed x minimize
∑
a∈IME

ma(x) lnma(x) +
∑
a∈IME

βama(x)|x− xa|2

subject to ma(x) ≥ 0, a ∈ IME∑
a∈IME

ma(x) +
∑
b∈IBS

Nb(x) = 1∑
a∈IME

ma(x) xa +
∑
b∈IBS

Nb(x) xb = x,

(4.3)

where ma(x) represents the blended approximants (dark green function in Fig.

4.1d), indicated with IME so that the global set of indices {1, 2, . . . , N} is given by

IBS∪IME. This algorithm is employed for all the nodes that leads in the blending

zone, while for all the internal nodes a standard maximum entropy procedure is

used.

4.3 Numerical Integration

In the purely isogeometric formulation (108) the numerical integration is realyzed

in the parametric domain, as for isoparametric finite elements. On the contrary in

the meshfree environment the quadrature is realized directly in the physical space,

normally using a background integration mesh. On coupling the two methods

different approaches can be employed.

Consider for sake of clarity the circular domain of Fig. 4.1. In (17) the

integration is realized in the physical space for both the purely meshless and

the blending zone. In this part of the domain an inverse mapping is required to
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Figure 4.1: IGA-LME blending for a circular domain. (a) The four rings of

control points (green squares) that together with B-Spline basis function are used

to define the blending zone, circumscribed between the two red lines. (b) The B-

Spline basis function in the radial direction. (c) The B-Spline basis function in the

tangential direction for the first 5 knots. (d) The three types of basis functions; the

blue is fully isogeometric, it is associated to a control point on the boundary and

its supports corresponds to the blending zone; the dark green is a blended function

associated to a node in such zone and the red is a fully LME basis function. Note

that the three internal rings of control points are used only to compute the B-

spline basis functions associated to the external ring and then the blending zone is

populated with the nodes (green circles) that are used for the computation of the

basis functions.
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4.3 Numerical Integration

compute the value of the basis funciotns and their derivatives in the quadrature

points. In fact, while it is straightforward to project a point form the parametric

to the physical space, the inverse problem (ξ, η) = S−1(x) requires the resolution

of a non linear set of equations. This increases the computation times and requires

supplementary implementation efforts because since the B-Spline functions have

a limited support the resolution of the equations with the Newton method is not

straightforward.

For this reasons, as an original contribution of this project, the integration

in the blending zone has been performed directly in the parametric space. Thus,

like in the FEM formulation, the derivatives of the basis functions in the physical

space are related to the derivatives in the parametric space using the Jacobian

matrix

J(ξ) =
∑
i

∑
j

Pi,j ⊗∇Ni,j(ξ)

and the determinant of J is included into the integrals to take into account the

ratio between the areas. The quadrature points are fixed in the parametric space

using a Gauss Legendre tensor product rule. For a given number of quadrature

points np there will be np points in the radial direction and np points in each

interval between two knots in the tangential direction. On using such approach

a second mesh is required to complete the integration in the physical space. This

mesh is generated using as external nodes the imagine of the knots in the internal

border of the blending zone (Fig. 4.2b)). Note that this mesh is used only to

generate the Gauss points in the physical domain, while the nodes are given by

the primary mesh. This mesh can be generated by using as external nodes either

the first or the second ring of control points. The latter approach is preferable

because it ensures that the second ring of nodes has the properly distance from

the first one. In fact the feasibility of the computation of LME basis functions in

the merge zone depends on the regularity of the distribution of the nodes.

In using the aforementioned integration scheme an error is introduced in the

zone where the parametric domain ends and the internal mesh is used for the

integration. The error is due to the fact that the mesh cannot exactly reproduce

the curvature of the parametric domain and hence some contribution is missed

in the integration. In (17) this problem is avoided in the internal border of the
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(a) (b)

Figure 4.2: Numerical integration. In (17) the mesh is generated with the

external ring of control points (green squares) and it is used for the integration and

for the computation of the basis functions (a). With the new approach proposed

in this project in the blending zone the integration is realized directly in the para-

metric domain. The red points represent the projection of the integration points

in thee physical domain. Then the black mesh is used to generate the integration

points (in black) in the rest of the physical domain. The nodes (green circles) are

generated independently (b) .

parametric zone but it is present on the external border of the domain. In fact,

also in this case, the mesh used for the computation of the nodes and for the

integration cannot exactly reproduce the curvature of the domain. In addition

the influence of the error is more relevant in this zone, where the IGA-LME

approach is supposed to give a higher geometric precision. For this reason in

(17) the integration in the boundary cells is realized using quadrature rules for

high order curved elements. On the contrary, with the new strategy proposed

herein, the error due to the curvature is limited to a zone where its influence is

less significant and therefore a standard approach can be used for the quadrature;

at the same time the performances of the method are improved since the reverse

mapping is avoided.
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Figure 4.3: The linear elasticity patch test. (a) The refined integration mesh

(nr = 4); (b) the L2 norm of the relative error without refinement; (c) the L2 norm

of the relative error with refinement.

To confirm the accuracy of this approach the linear elasticity patch test has

been considered for the domain in Fig. 4.2b. With the proposed integration

strategy three seeds of error are present:

• the integration in the parametric space for the blending zone

• the integration in the internal mesh

• the error due to the curvature

The influence of the latter can anyway be reduced by the mesh refinement. As

illustrated in Fig. 4.3a in the generation of the internal mesh a higher number of

virtual nodes can be used in order to reduce the influence of the curvature. This

refinment is applied only to the external triangles, while in the internal part a

mesh size coherent with the nodal spacing is used. We define nr as the number of

virtual nodes, for each knot interval, used in the generation of the internal mesh.

Therefore the original mesh has nr = 1 while the mesh in Fig. 4.3a has nr = 4.

To study the error in the patch test the following linear transformation has

been imposed to the boundary of the domain:(
u
v

)
=

(
1
1

)
+

(
1 0.5
−1 0.5

)
×
(
x
y

)
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4.4 Simulation of contact problems

The integration was realized using a np × np tensor product rule in the para-

metric space, with np = {1, 2, 3, 5, 10} while in the rest of the physical space

four of the first five Dunavant’s quadrature rules (117), with a number of points

nf = {1, 3, 7, 16}, were used in the triangles of the integration mesh. In Fig. 4.3

we can see the relative error in the L2 norm in function of np and for different

values of nf , using nr = 1 and nr = 4. We can note that for each value of nr

there is a limit of the value of the error that cannot be improved increasing the

number of Gauss points. However when nr is increased a higher number of Gauss

points allows to further reduce the error. The values that we found in the refined

mesh are not far from those reported on (16) (∼ 10−6). Anyway we can note that

the value of 2× 10−4 that is obtained with nr = 1 is already acceptable for most

of the practical applications.

4.4 Simulation of contact problems

The simulation of contact problems is still a challenge in several engineering ap-

plications due to the high non-linearity intrinsically involved in the phenomenon.

The use of FEM or alpha-shapes meshless methods cannot avoid a geometrical

error in the reproduction of the boundary which reduces the accuracy of the sim-

ulations. On the other hand the isogeometric approach allows us to overcome

to this problem by giving a correct representation of the geometries and a more

straightforward imposition of the contact constraints. What is more thanks to

the coupling with LME approximants the method becomes more flexible and can

reproduce arbitrary geometries. For this reasons the IGA-LME approach appears

suitable for the simulation of metal forming and manufacturing processes, where

the correct simulation of the interaction between the work-piece and the die or

the tools can improve the performance of the numerical analysis. Therefore, as an

original contribution of this project the IGA-LME formulation has been applied

to the simulation of contact problems. In particular some benchmark small defor-

mation contact problems in linear elasticity has been considered. In the following

the relative formulation is presented. Then three numerical examples are shown.

In all the applications a plain strain state, with E = 1 and ν = 0.3, is assumed.
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4.4 Simulation of contact problems

Figure 4.4: The master and the slave surfaces and the gap function.

4.4.1 Formulation

According to (118) the contact between two bodies is simulated by defining a

master and a slave surface and imposing the constraints to the points on the

slave surface with respect to the master. In particular, for a given point xs on

the slave surface, a gap function is defined as the distance between xs and the

closest point on the master surface x̄:

gN = (xs − x̄) · n (4.4)

where n is the (unit) normal to the master surface in x̄ (Fig. 4.4). Then the

so called Signorini condition (? ) is imposed in the formulation of the elastic

problem:

∇ · σ = f̄ in Ω (4.5a)

u = ūin Γd (4.5b)

σ · n = t̄in Γσ (4.5c)

gN ≥ 0, pN ≤ 0, pNgN = 0in Γc (4.5d)

where pN = t ·n is the normal component of the traction vector. On discretizing

the aforementioned equations the inequality gN ≥ 0 is included into the integral

formulation of the problem. For this purpose the most used methods are the La-

grange multipliers, penalty formulations or combinations of both. Independently

of the method that is used a spatial discretization is required to evaluate the

contact integral. In the FEM environment several strategy have been studied

such the node to segment (NTS) approach, where the contact integral is collo-

cated to enforce the contact condition between a node on the slave surface and an
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4.4 Simulation of contact problems

edge of the master, the segment to segment (STS) approach, where the contact

condition is enforced in an integral manner and other classes of spatial discretiza-

tions with integrally formulated contact constrains based on the mortar method,

surface smoothing algorithms etc. When the isogeometric representation of the

boundary is used the NTS technique can be applied without the drawbacks that

appear in standard Lagrange polynomials finite elements (119). Furthermore the

implementation of the method is straightforward for small deformation contact

problems in linear elasticity. In fact the discretized variational formulation con-

sists in:

minimize
1

2
dTKd (4.6a)

subject to giN ≥ 0, i = 1, . . . , ncoll (4.6b)

where K is the stiffness matrix, d the unknowns vector (that for meshfrre meth-

ods does not correspond to the nodal displacements) and giN are the contact

constraints evaluated in each collocation point. In (119) the properly chose of

the collocation points is discussed. In particular some problem arise when non

periodic B-spilines are used and the contact integrals have to be evaluated close

to the boundary of the 1d isogeometric patch. In the applications shown in the

following, since the integrals are evaluated far away from such boundary, good

results are achieved by choosing the collocation points in correspondence of the

knots.

Once the stiffness matrix and the constraint inequalities are calculated eq. 4.6

can be directly solved with a quadratic optimization code.

4.4.2 Hertz’s cylinders problem

The Hertz’s problem are a typical benchmark in the linear elasticity contact

mechanics. In this example the problem of the two cylinders with parallel axes

that are forced in contact by a force concentrated on their top has been considered.

In the hypothesis of small deformations the normal pressure on the contact zone

is given by:

p = pmax

√
1− y2

b2
, (4.7)

41



4.4 Simulation of contact problems

where b is the length of the contact interface and pmax the maximum pressure,

that if E and ν are the elastic parameters of the cylinders, R their radius and

P/l the force per unit length is given by

pmax =

√
1

π(1− ν2)

P

l

E

R
. (4.8)

In the numerical solution the contact force can be calculated starting from the

values of the Lagrange multipliers in the collocation points. Here the approach

presented in (119) has been recovered. In particular for each control point a

contact force is extrapolated from the multipliers using the basis functions

Pi =

ncoll∑
j=1

Ni(ξj)λj, (4.9)

where Ni is the value of the B-Spline basis function of node i and λj the value of

the Lagrange multiplier in the collocation point j. Then, exploiting the partition

of unit property, a nodal length is defined as

`i =

ξ2∫
ξ1

Nidl(ξ), (4.10)

where l(ξ) is the position on the boundary of the domain. The nodal contact

stress σi is therefore given by

σi =
Pi
`i

Finally, respect to (119), in this application the B-Spline basis functions has been

employed to obtain a smooth stress distribution on the contact interface:

σ(l) =
n∑
i=1

Ni(l)σi.

The cloud of nodes used for the discretization of the problem is represented in

Fig. 4.5a. The density of nodes has been increased in the contact zone. In Fig.

4.5b we can observe how the values of the contact pressure, calculate form the

Lagrange multipliers (Fig. 4.5d) are in good agreement with the Hertz’s analytical

solution. Thanks to the smoothness of the shape functions a very regular trend

of the stress is obtained (4.5e). Furthermore with the isogeometric representation

of the boundary a very good reproduction of the shape of the surfaces involved

in the contact is obtained (4.5c).
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Figure 4.5: Simulation of the Hertz’s problem of the two cylinders; (a)

the clouds of nodes; (b) the normal stress along the boundary; (c) the deformation

of the two cylinders; (d) the Lagrange multipliers in the collocation points; (e) the

σy stress in the contact zone;
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Figure 4.6: Contact of semicircular indenter with a rigid surface; (a)

outline of the problem; (b) the cloud of nodes of the IGA-LME simulation; (c) the

global contact force in function of the gravity and (d) the relative error respect to a

reference solution calculated with a refined mesh. Note how the standard meshless

simulation is outperformed by the IGA-LME approach.

4.4.3 Contact of a semi-circular indenter

In order to study the improvement of the accuracy of the method respect to a

standard meshless formulation the problem outlined in Fig. 4.6(a) has been also

considered. A semicircular domain (r = 1) is forced by the gravity to enter in

contact with a rigid surface. The problem has been studied using both the IGA-

LME and a purely LME approach. In the latter case the contact constrains has

been collocated in correspondence of the external nodes with a NTS approach.
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4.4 Simulation of contact problems

In the previous application and in all the problems studied in (17) the whole

boundary is parametrized with a periodic B-Spline curve. With this approach the

discontinuity between the circular and the straight line on the top of the domain

cannot be reproduced unless non uniform knot vectors are used. In addition

the isogeometric parametrization is actually required only on the zones of the

boundary involved in the contact. Therefore, in this case, the semicircular arc

was parameterized with B-pline functions defined on a non periodic knot vector

and standard LME interpolants where employed for the top of the domain.

A mesh size of 0.15 was employed for the two simulations. The IGA-LME

cloud of nodes is plotted in Fig. 4.6b. When the gravity is increased the semicircle

enters in contact with the surface, that reacts with a force. The global value of

this force will be the sum of the Lagrange multipliers obtained in the analysis.

From a physical point of view we expect that for an increasing value of the gravity

we will have an increasing value of the global contact force as well, whose value

will depend smoothly on the gravity.

In Fig. 4.6c-d the capacity of the two numerical techniques to reproduce this

phenomenon has been studied. On the left the global contact force is plotted in

function of the gravity, while on the right the error respect to a reference solution

obtained with a very fine mesh (h = 0.04) is plotted. In particular we can observe

that the standard LME curve presents two significant discontinuities. This is

due to the fact then when the gravity is increased a larger part of the domain

enters in contact with the rigid surface. However, since with LME approximants

the boundary is represented by the polygonal mesh used for the integration, a

discontinuity occurs when a different number of nodes reaches the contact with

the surface. On the contrary, we notice that the IGA-LME approach allows

us to have a smoother reproduction of the phenomenon. Moreover the better

representation of the boundary allows to reduce the error.

4.4.4 Contact of a complex-shaped indenter

To assess the findings of the previous section a second application where the

boundary of the domain is defined by a given complex-shaped B-spline curve

was considered. The cloud of nodes (external ring of control points + internal
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Figure 4.7: Contact of a complex-shaped indenter with a rigid surface;

(a) the domain and the cloud of nodes used for the analysis; (b) the global contact

force in function of the imposed displacement ∆y. In the graph we assume ∆y

= 0 when the contact starts. Note that the slope changes in three different zones

because the stiffness depends on how many parts of the domain enters in contact

with the rigid surface; (c) the σy stress for ∆y= 0.1.

nodes) used for the simulation is represented in Fig. 4.7a. Again the isogeometric

parametrization was employed only on the inferior patch of the domain while in

the top standard LME interpolants was used. In this problem the intender was

forces to enter in contact with a rigid surface imposing a fixed displacement to

the above segment.

The density of nodes was increased in the bottom of the domain in order
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4.4 Simulation of contact problems

to better reproduce the contact. The mesh generation was realized using the

distmesh code for Matlab (120).

In Fig. 4.7b we can observe a plot of the global contact force in function of

the displacement. Also for this application a smooth dependence is obtained. In

Fig. 4.7c a map of the vertical stress σy for an advancement ∆y = 0.1 is plotted.
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5

Simulation of forming processes

with max-ent approximants

5.1 Introduction

Once meshless methods acquired an important maturity several applications arose

in the simulations of metal forming processes. Although in some studies the strong

form of the problem was directly treated with collocation techniques (55, 56, 57),

in the majority of the literature a Galerkin approximation based on the weak

form was preferred. In fact the applicability of collocation formulations to metal

forming is limited by aspects such as the description occurring in the vicinity of

the boundary of the domain, or contact and friction implementation (58).

In the Galerkin framework the first reference works are due to Chen(59, 60)

that applied the RKPM together with elasto-plastic material models. In (61) the

SCNI scheme was also introduced to improve the rapidity of the method. Some

examples of bulk metal forming are shown in these papers.

Then the majority of the literature is due to Cueto and Alfaro that employed

the NEM approximants and assumed a viscoplastic behaviour of the material.

In fact, according to chapter 2, it is an accepted assumption to neglect elastic

deformations and therefore treat the material as a non-newtonian viscoplastic

fluid, in the so called flow formulation. This aspect is discussed in detail in
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(4). Other works on the application of the NEM to the simulation of extrusion

are (28, 62, 63, 64, 65). In the latter reference numerical aspects related to

computational cost and accuracy were deeply studied. In particular, Natural

Element and Finite Element methods were compared and it was found than

the computational cost of NEM was higher, especially if Sibson shape functions

are used. However, as mentioned before, this problem is negligible for highly

nonlinear applications. Besides the simulation of extrusion the NEM has been

employed also in many other applications and produced appealing results for

many forming processes like friction stir welding (66), forging (67), casting (63),

laser surface coating (68), machining (69), and many others.

The application of meshless formulations to this type of processes is not

straightforward due to the issues related to the imposition of incompressibility. In

fact, in the simulation of incompressible flows, even if meshless methods are less

sensible then FEM to volumetric locking it is still preferable to employ mixed

pressure-velocity formulations. This poses some issues regarding the construc-

tion of a discretization that satisfies the inf-sup or LBB compatibility condition

(121, 122). While in the FEM environment different type of shape functions,

defined on the same elements, can be used for the velocity and the pressure the

problem become more complicated for meshless methods. In the works based on

the Natural Element Method the NN approximants are used for the velocities

and constant approximants directly defined on the Voronoi diagram are used for

the pressure. However, even if the method performs well, some oscillation are

still present.

As an original contribution of this project a stabilized mixed formulation

based on LME approximants is proposed. Since the same basis functions ap-

proximate the velocity and the pressure a stabilization approach is employed to

circumvent the LBB condition. As it was already mentioned in chapters 2 and

??, a good approximation for metal forming problems is to treat the material as

a non-newtonian incompressible viscoplastic fluid. Therefore, due to the analogy

with the Stokes equations, a stabilization method proposed for fluid dynamics

was extended to metal forming applications. Recently a family of consistent sta-

bilization techniques has been widely studied in the literature (123, 124, 125). In

particular, in this chapter, a modification of the technique used in (125), that is
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5.2 The stabilized viscoplastic formulation

equivalent to the penalization of the incompressibility equation with the gradient

of the pressure is proposed. This approach recovers a strategy already proposed in

(126). In the following the resulting formulation is presented together with some

implementation details and then some reference metal forming and orthogonal

cutting problems are studied.

5.2 The stabilized viscoplastic formulation

The governing equations for the flow formulation of viscoplasticity take the form:

∇ · σ = f in Ω (5.1a)

∇ · v = 0 in Ω (5.1b)

v = vd in Γd (5.1c)

where Ω is the computational domain, v the velocity vector, vd the imposed

velocity for the Dirichilet conditions in Γd, and f the body force ; σ is the Cauchy

stress tensor. In the flow formulation the elastic deformations are neglected and

the stress tensor follows from

σ = 2µd− pI (5.2)

where d is the rate-of-deformation and p is the pressure; µ is the viscosity that

in the general case depends on d and on the temperature T . Here, for simplicity,

we assume isothermal conditions. Thus, once µ(d) is given the above equations

provide a boundary value problem for v and p. As a far as the material behaviour

is concerned in the numerical applications presented in this chapter a simplified

Northon-Hoff power law has been adopted like in section 2.3:

Sf = Cdn (5.3)

where Sf is the flow stress and d =
√

2
3
dijdij is the equivalent strain rate. The

viscosity then also depends on d with the relation:

µ = µ0(
√

3d)n−1 (5.4)
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5.2 The stabilized viscoplastic formulation

where C = 3µ0.

The weak form of the equilibrium equation is:∫
Ω

∇σ : δd dΩ−
∫

Ω

f · δv dΩ = 0 (5.5a)∫
Ω

∇ · vδp dΩ = 0 (5.5b)

According to (124) the general way to stabilize the problem is to add to the

aforementioned equations a consistent term in the form:

δΠS =

∫
Ω

τP(δv, δp) R (v, p) dΩ (5.6)

where R(v, p) is the residual of the strong form of the problem (which ensures the

consistency of the new weak form), τ is a parameter which controls the amount

of stabilization and P(δv, δp) is a partition of the differential operator. Choosing

P(δv, δp) = ∇δp we recover the simplified Galerkin Least Squares scheme that

was firstly proposed by Hughes (127) and it is also known as pressure-Poisson

stabilized Galerkin method (125):

δΠS =

∫
Ω

τ∇δp (∇σ − f) dΩ =

∫
Ω

τ∇δp (∇ · (2µd)−∇p− f) dΩ (5.7)

As commonly done in finite element methods the second order term ∇·(2µd) will

be neglected in the new formulation. Indeed, for low order finite elements, the

first part of the consistent term is zero. A stabilization approach that involves

only the gradient of the pressure has been also independently proposed in (126).

This simplification avoids the computation of the second derivatives of the basis

functions, which can be cumbersome and ill-posed near the boundary (90, 107).

Thus the stabilization is given only by:

δΠS =

∫
Ω

τ∇δp (−∇p− f) dΩ (5.8)

This formulation is still numerically consistent, by making the parameter τ de-

pendent on the nodal spacing as

τ =
Cs
µ
ρ̄2 (5.9)
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For regular meshes ρ̄ is equal to the nodal spacing h, while for irregular meshes

excellent results were found by calculating ρ̄ as a simple average of the neighbours

to a given integration point. The following algorithm was used:

• calculate the Delaunay triangulation of the cloud of nodes which is used for

the integration

• for each node calculate the local mesh size hi as a mean of the distance

from its natural neighbours in the triangulation

• for each integration point calculate the max-ent shape functions using for

the nodes βi = γ/h2
i

• for each integration point calculate ρ̄ as a mean of hi of its neighbours

Note that τ → 0 with the mesh refinement and, therefore, the numerical method

is consistent. This aspect is further discussed in (125, 128).

The choice of Cs is in general problem dependent. For the finite elements this

topic has been analyzed in (129) and is also discussed in (123). In general, when

Cs is increased, the quality of the results in terms of regularity of the solutions is

improved but the accuracy is worsened due to the error in the penalization. In

the numerical applications studied in this project very good results were achieved

with Cs in the range from 0.5 to 2. In particular a value of Cs = 0.5 was set in

all the applications shown in the following.

Finally the weak form of the problem has to be completed with a contribution

associated to the Dirichlet and the contact conditions on the boundary. As men-

tioned before the LME basis function posses the Kronecker-delta property on all

the convex part of the domain, so the imposition of the essential condition has

to be included in the weak form only if it is required in some non-convex part of

the domain. Using a Lagrange multipliers approach the following term has to be

added to the energy:

δΠD =

∫
Ω

λ · (v − vd) dΓ (5.10)

In the case of contact (118), according to section 4.4.1, a gap function gn is

defined for any point on the work-piece (slave surface) and the constraint gn ≥ 0

is imposed. From a mathematical point of view the strong form of the problem is
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modified with the Signorini condition (118) that for sake of clarity was omitted in

eq. 5.1. However, from the implementation point of view, the contact conditions

are imposed by adding to the weak form a contribution known as contact energy.

On using a Lagrange multipliers approach the following energy is added:

δΠC =

∫
Γc

λgn dΓ (5.11)

this term enforces the condition gn = 0; thus an iterative approach is required

to determine the correct region of the workpiece that enters in contact with the

tool. Since also the non-linear character of the governing equations requires an

iterative resolution, this task is normally carried in coupling with the resolution.

It is worth to note that in most of the practical applications (see Section 5.3)

the domain become non convex in those zones where the contact with the tool is

imposed. The lack of the Kronecker-delta property, that the max-ent interpolants

exhibit in the non-convex part of the domain, requires a Lagrange multipliers

approach to impose the Dirichlet conditions in the boundary of such parts, while

in other techniques like FEM or NEM the conditions can be directly imposed

on the nodes. However, when contact conditions are introduced, a Lagrange

multipliers approach is anyway required also for the methods that are interpolant

on the boundary. For this reasons, although some modifications of the max-

ent formulation that gives interpolant functions also in the non-convex parts of

the domain are possible (17, 83), the lack of this property does not have a big

influence on the performance of the method.

Once the weak form of the problem is obtained it is discretized in space and

in time. The latter task is performed using an updated Lagrangian approach.

The displacement is updated from a given displacement u(t) and the calculated

velocity v(t+ ∆t) in the following way:

u(t+ ∆t) = u(t) + v(t+ ∆t) ∆t (5.12)

The velocity and the pressure are discretized likewise. Using the FEM standard

notation, we define:

N =

(
ϕ1

0
0
ϕ1

. . .

. . .
0
ϕN

)
, ϕ = (ϕ1, x . . . ϕN) (5.13)
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5.2 The stabilized viscoplastic formulation

and

B =

 ϕ1, x
0
ϕ1, y

0
ϕ1, y
ϕ1, x

. . .

. . .

. . .

0
ϕN , y
ϕN , x

 (5.14)

the approximated weak form of the problem, in matricial form, will be: K G L
GT MS 0
LT 0 0

 VP
Λ

 =

 F
FS
0

 (5.15)

where

K =

∫
Ω

BTµB dΩ, µ =

 2µ
0
0

0
2µ
0

0
0
µ

 , F =

∫
Ω

NTf dΩ (5.16)

G =

∫
Ω

−BT1ϕ dΩ, 1 =

 1
1
0

 (5.17)

MS =

∫
Ω

−τ (∇ϕ)T ∇ϕ dΩ, FS =

∫
Ω

τ (∇ϕ)T f dΩ (5.18)

Observing that the viscosity µ depends on the equivalent strain rate d, that

is a function of the derivatives of the velocity, a non-linearity is present in the

matrixK. As mentioned for the nodal integrated FEM the most used methods to

treat this non-linearity are the Newton-Raphson scheme and the Direct Iteration

Method (1).

In the first case a system analogous to eq. 5.15 is iteratively solved but the

matrix µ is substituted with the material tangent matrix and the right hand side

contains also the residuals of the weak form (4). The problem of such a scheme is

that when highly non-linear problems are studied the method does not converge

unless an initial solution close enough to the final one is used.

The Direct Iteration Method starts assuming the viscosity constant and given

by the value form the previous instant. Then the velocity is obtained and the

viscosity is recalculated. The new values of the viscosity give a new velocity field

and so on the method is iterated until convergence. Even if a slightly higher

number of iterations is required this approach is more robust than the Newton

scheme. Anyway the best strategy is in fact to combine the two schemes, using
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5.3 Numerical examples

the Direct Iteration Method to find an initial solution and then refining it with

the Newton Raphson method.

Concerning the numerical integration it was performed using the Delaunay

triangulation of the cloud of nodes in combination with the alpha-shape technique

(31). The Delaunay algorithm is the easiest way to obtain a triangulation for a

given cloud of nodes but such triangulation is extended to the whole convex hull of

the cloud. Therefore using the alpha-shape criterion the mesh has to be modified

removing the triangles whose circum-radius is bigger than a given value. This

approach has been already successfully applied in other reference works such (63),

where its application is discussed in detail.

5.3 Numerical examples

In this section the validity of the stabilized viscoplastic formulation is confirmed

some numerical results in the simulation of reference manufacturing processes.

Since the scope of this project was only to investigate on the potentialities of

the new technique some simplifications were introduced in the modelling of the

problems, such as neglecting friction and thermal phenomenon. As far as the

material behaviour is concerned the coefficients for the Norton-Hoff power were

µ0 = 150 and n = 0.2. According to (30) these values are typical of some

aluminium alloys.

In all the examples the LME basis functions were constructed with a value of

γ = 1.6.

5.3.1 Upsetting

The first application that was considered is the upsetting of a cylindrical billet

that is progressively flattened between two plates. The domain represented in fig.

5.1 has been discretized with 524 nodes and 100 time steps (∆t = 1) has been

considered.

This process is a very good benchmark to test the efficiency of the stabilization

because due to the regularity of the domain a likewise trend of the variables is
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Figure 5.1: Upsetting; (a) sketch of the geometry; (b-d) pressure at different

time steps; (e) vertical velocity at the end of the process.
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5.3 Numerical examples

expected and eventual oscillations can be easily detached. According to fig. 5.1

the method performs very well and perfectly smoothed maps are obtained for

both the velocity and the pressure field.

5.3.2 Extrusion

Extrusion is a typical forming process where the application of the finite element

method is stressed by the heavy mesh distortions. For this reason and for the

importance of its simulation in the industrial applications this process has been

widely studied in the literature on the meshless methods for metal forming.

In this example a simple model were considered (fig. 5.2). The initial domain

was discretized with a 32 × 32 grid of nodes; 100 time steps (∆t = 0.3) were

considered. The shape of the profile during the process was determined only by

the means of the alpha-shape criterion. Despite the simplicity of this approach

we can note that also in this case very high quality maps are obtained for both

the velocity and the pressure field, even in the zones where high deformations are

present.

It is also interesting to observe a comparison between the trend of the pressure

field predicted with the LME approximants in this application and the pressure

field predicted with the NI-FEM in the problem studied in section 2.3. In figure

5.3 we can observe a significant improvement in the regularity of the field. Al-

though the two problems studied are slightly different it is evident that the LME

approximants outperform the NI-FEM in the quality of the approximation.

To assess the accuracy of the max-ent solution the process was also simulated

with the commercial FEM code DEFORMTM. In fig. 5.4 a comparison was

made between the prediction of the pressure trend with the two codes along the

x and the y axes (see fig. 5.2a) at the first step of the simulation. A good

agreement between the curves can be observed on the symmetry axis (x) and

they are expected to match with mesh refinement. The two codes give the same

prediction also along the y axes in the first part of the bottom of the die and in

the zone where the material is free to flow but the commercial code provides a

higher prediction of the pressure peak. In this case the smoothness of the max-

ent basis functions does not allow to reproduce such a sharp trend with only a
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Figure 5.2: Extrusion; (a) sketch of the geometry; (b-d) pressure at different

time steps; (e) horizontal velocity at the tenth step; (f) vertical velocity at the

tenth step.
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(a) (b) 

Figure 5.3: A comparison between the NI-FEM (a) and LME (b) predictions of

pressure fileds. Note that the two problems are different.

reduced number of nodes. However, the simplified model that has been used for

both simulations assumes a rigid and perfectly straight die (fig. 5.2a) while in the

reality the dies have some curvature as well as the trend of the pressure field is

more regular. This consideration is confirmed observing that, if the DEFORMTM

die is smoothed with a curvature of a given radius r, the peak progressively

decreases when r is increased.
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Figure 5.4: Pressure along the symmetry axis x for y = 300 (left) and on the

bottom of the die along the y axis for x = 300 (right) at the beginning of the

simulation. A comparison between the max-ent and the DEFORM predictions.
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5.3 Numerical examples

5.3.3 Orthogonal cutting

The simulation of machining processes is another application where the mesh is

heavily distorted during the analysis; therefore the use of meshfree approximants

is a possible alternative to the FEM that is worth to be investigated also in this

field. However, while in metal forming several applications are available in the

literature, nothing has been done yet, to the author of this work’s knowledge, in

the simulation of cutting or others machining processes. Here a simple model of

orthogonal cutting (fig. 5.5) was considered. The domain was discretized using a

5000 nodes mesh with a node spacing h ≈ 0.33 in the cutting zone. The simulation

was subdivided in 350 time steps with an increment ∆t = 2 · 10−5. As we can see

in fig. 5.5(b-f) also in this application a regular trend for the pressure is obtained

and the method performs well in the prediction of the pressure pick close to the

tool tip. The results however are worsened at the end of the simulation (fig. 5.5

(f)) because although the method is not sensible to the distorsions of the mesh

(that is used only for the integration) their quality is anyway affected by the

regularity of the node distribution. As we can note fig. 5.5 (g) the mesh that was

originally regular becomes heavily distorted and, in addition, the density of the

nodes is no more regular in some zones. Even if the method performs well for

such a distorted mesh (this would not be the case of finite elements) a rezoning

would be beneficial to continue the simulation. In fact, this operation is not

significantly time consuming when meshfree approximants are used.
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Figure 5.5: Orthogonal cutting; (a) sketch of the geometry; (b-f) pressure at

different time steps; (g) mesh at the 350th step; (h) vertical velocity at the 350th

step.
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6

Concluding remarks

In this work two numerical techniques recently proposed as an alternative to the

classical FEM has been analysed and applied to the simulation of benchmark

problems in metal forming and orthogonal cutting. Some original developments

has been provided to both techniques as well.

The biggest drawback of the traditional FEM formulation is that the quality of

the results deeply depends on the characteristic of the mesh and therefore the large

deformations involved in forming processes require remeshing-rezoning techniques

that affect the computational times and the flexibility of the analysis. In this

framework, the Nodal Integrated Finite Element Method is a valid alternative

since it performs well also with very distorted meshes. Different nodal integration

schemes have been studied and applied to metal forming simulation in this work.

Also the stabilization of the spurious low energy modes, a recurrent problem in

the nodal integration context, has been taken into account. The results provided

in the numerical examples confirmed the validity of the method particularly in the

applications were the standard FEM formulation is forced to deal with high mesh

distortions. As drawback, the nodal averaging of the strain gives some numerical

irregularities in the pressure fields which do not have a physical matching.

In the family of meshless methods the Maximum Entropy approximants, de-

spite their recent introduction, have shown a lot of potentialities in several ap-

plications. In this work, as an original contribution to the numerical develop-

ment of the method, the problem of the computation of the derivatives of the
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basis functions on the boundary of the domain has been solved. Furthermore

the blending with Iso-geometric functions has been studied in the simulation of

small deformation contact problems in linear elasticity. Finally the application

of such approximants has been extended also to material forming. In doing so

the problem of the construction of an LBB compliant approximation has been

circumvented by means of consistent stabilization techniques already proposed

in fluid dynamics. The numerical results in both bulk metal forming and man-

ufacturing applications assessed the validity of the formulation and showed very

high quality results. Thanks to the smoothness of the max-ent basis functions

a better regularity of the variables approximation has been observed respect to

the nodal integrated FEM. In addition, the physical consistency of the model is

preserved. This is not the case of the NI-FEM where the numerical fluctuations

affect the regularity of the stress fields. The results found in this work are a very

encouraging starting point to further develop the method and to extend it to more

applications. In particular the generalization of the isogeometric formulation to

large deformation contact problems would be suitable for the simulation of all

the material forming processes. The extension to three-dimensional applications

and the introduction of more elaborated material models would be an important

development as well.
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