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Introduction

The theoretical framework which describes the strong interaction of quarks and gluons,

fundamental constitutes of matter, is the gauge theory of quantum chromodynamics

(QCD), which enables to calculate not only the properties of protons and neutrons, but

in principle also those of atomic nuclei.

Once the QCD has been proposed, it became field of research to study the predictions

for nuclear matter in extreme conditions.

The investigation of the confined-deconfined phase transition and of the quark gluon

plasma (QGP) is intensively studied and searched experimentally in ultra-relativistic

heavy-ion collisions at RHIC in Brookhaven and, in the next feature, at LHC in CERN.

Theoretically, solving the equations of motion of the theory is still a challenge as

well as determining simple hadronic properties. A way to solve this problem is based

on the observation of a formal mathematical equivalence between statistical mechanics

and quantum field theory, written using the Feynman path integral formulation. And

to give the path integrals a precise meaning has been introduced a space-time lattice, a

tool to study the theory non perturbatively.

The lattice approach that we use is based on a Monte Carlo simulations.

Although up today there are powerful computers, simulating the full QCD is very

time consuming and rather difficult. For these reasons in these years different kind of

approximations have been introduced.

Firstly, the essential features of confinement, of the deconfinement phase transition

at finite temperature and of the deconfined phase in QCD can be studied without loss

of relevant dynamics in the regime of infinitely massive quarks or, equivalently, in the
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pure gauge theory.

Moreover, it has been suggested (and already proved) that some of the main prop-

erties of a theory of interest can be studied looking at the more simple models, the spin

systems, if these two theories belong to the same universality class.

But also a huge contribution to the explanation and comprehension of the theory is

given by effective theories which describe phenomena such as high temperature phases

(Polyakov loop Models).

All of these are subjects of the present Thesis. In particular, after a review of the

theoretical background necessary to understand the subsequent work (Introduction), we

focus on the Universality between the pure gauge theory which describes the strong

interactions and a spin model (Chapter 2), then studying the structure of the hadronic

“tube” in the confined and in the deconfined phase (Chapter 3), and finally (Chapter

4), studying a particular tool of the theory with the aim to improve the quality of the

description of the effective low energy string theories.
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Chapter 1

Theoretical background

1.1 Gauge Theories

Quantum field theories have been successful in predicting physical observables related

to the world of elementary particles. In particular, the interactions among elementary

particles are described by a particular class of field theories namely by gauge theories.

These theories are characterized by the property of invariance under gauge symmetry.

Up today, strong, weak and electromagnetic interactions are described by gauge theories;

only the gravitational interaction is subtracted from this description.

Gauge field theories are field theories based on the gauge principle. The gauge princi-

ple is the requirement that the theory is invariant under local gauge transformations. In

a global invariance the same transformation is carried out at all space-time points: it has

an ’everywhere simultaneously’ character. In a local invariance different transformations

are carried out at different individual space-time points. In general, a theory that is

globally invariant will not be invariant under locally varying transformations. However,

by introducing new force fields that interact with the original particles in the theory in a

specific way, and which also transform in a particular way under local transformations,

a sort of local invariance can be restored. In this sense, one may view these special force

fields and their interactions as existing in order to permit certain local invariances to
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be true. As an example, the particular local invariance relevant to electromagnetism is

the gauge invariance of Maxwell’s equations (in the quantum form of the theory this

property is directly related to an invariance under local phase transformations of the

quantum fields). A generalized form of this phase invariance also underlies the theories

of the weak and strong interactions. For this reason they are all ’gauge theories’ [1].

When a certain global invariance is generalized to a local one, the existence of a

new ’compensating’ field is entailed, interacting in a specified way. The first example of

dynamical theory ’derived’ from a local invariance requirement is the theory of Yang-

Mills [2]. Their work was extended by Utiyama [3], who developed a general formalism

for such compensating fields.

The strong interactions, responsible for the hadronic and nuclear structure, are de-

scribed by a quantum field theory, which is a non-Abelian gauge theory called quantum

chromodynamics (QCD) and was originally introduced by Yang and Mills [2]. 1

Non-Abelian gauge field theories are gauge theories similar to quantum electrody-

namics though differing from it in that the corresponding gauge symmetries are not

Abelian, i.e., generators of the symmetry group are non-commutative.

The non-Abelian gauge theories are generated by symmetries described by a non

commutative Lie algebra. The Lie algebra 2 corresponding to the G group is generated

by n generators T a, a = 1, 2, · · · , n, which are subject to the commutation relations

[T a, T b] = ifabcT c, (1.1)

where fabc are the structure constants characterizing the algebra of the group G. The

non-Abelian local gauge transformations for a field ψ(x), belonging to a N -dimensional

fundamental representation of the G group (thus ψ(x) has N components) under the

1Later ’t Hooft [4], Gross and Wilczek [5] and Politzer [6] examined non-Abelian gauge field theories

using the renormalization group method and found that they satisfied the property called asymptotic

freedom.
2A Lie group is a group with elements labeled by a finite number of continuous parameters and a

multiplication law depending smoothly on the parameters.
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operation of the group element U of G is

ψ
′

i = Uijψj , U = exp(−iT aθa) , (1.2)

where θa are parameters which may depend on x as well. The general form of the

Lagrangian invariant under the non-Abelian local gauge transformations (1.2) is the

following

L = −1

4
F a
µνF

aµν + ψ̄(iγµDµ −m)ψ , (1.3)

where Dµ is the covariant derivative

Dµ = ∂µ − igT aAaµ , (1.4)

g is the coupling of the theory and Aaµ obeys the transformation rule

T aA
′a
µ = U(T aAaµ −

i

g
U−1∂µU)U−1 . (1.5)

If G ∈ SU(2) then T a = τa/2 (a = 1, 2, 3) where τa are the Pauli matrices and fabc =

ǫabc is the totally antisymmetric tensor. Otherwise, if G ∈ SU(3) then T a = τa/2

(a = 1, 2, · · · , 8) where τa are the Gell-Mann matrices.

Gauge theories are characterized by a close interrelation between three conceptual

elements: symmetries, conservation laws and dynamics. In fact, it is now believed that

the only exact quantum number conservation laws are those which have an associated

gauge theory force field.

The Quantum Electrodynamics (QED) and the Quantum Chromodynamics (QCD)

posses a local symmetry, in particular, the local symmetry group is a continuous one

(for the former U(1), and for the latter SU(3)). The action in these theories is obtained

by gauging the global symmetry of the free fermions and by adding a kinetic term for

the gauge fields.

Let us briefly review how one arrives at the gauge-invariant action in continuum

QED (for this section we follow the description of [7]), which is the simplest gauge

theory. The starting point is the action of the free Dirac field:

S
(0)
F =

∫
d4xψ̄(x)(iγµ∂µ −M)ψ(x) , (1.6)
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which is invariant under transformations

ψ(x) → Gψ(x)

ψ̄(x) → ψ̄(x)G−1 ,

where G is an element of the abelian U(1) group

G = eiλ ,

with λ independent of x. The next step consists in requiring the action to be invariant

under local U(1) transformations. This means to introduce the four-vector potential

Aµ(x) and to replace the ordinary four-derivative ∂µ by the covariant derivative Dµ,

defined by

Dµ = ∂µ + ieAµ . (1.7)

The action so obtained

SF =
∫
d4xψ̄(x)(iγµD

µ −M)ψ(x) , (1.8)

is invariant under the following set of local transformations

ψ(x) → G(x)ψ(x) ,

ψ̄(x) → ψ̄(x)G−1,

Aµ(x) → G(x)Aµ(x)G
−1(x) − i

e
G(x)∂µG

−1(x) , (1.9)

where

G(x) = eiΛ(x) . (1.10)

Having ensured the local gauge invariance of the action (1.8) by introducing a four-

vector field Aµ, we must add a kinetic term which allows Aµ to propagate. Also this

term must be invariant under the local transformations (1.9), and is given by

SG = −1

4

∫
d4xFµνF

µν , (1.11)
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where Fµν = ∂µAν − ∂νAµ is the gauge invariant field strength tensor. The full gauge

invariant action is then

SQED = −1

4

∫
d4xFµνF

µν +
∫
d4xψ̄(iγµDµ −M)ψ . (1.12)

Now we pass to the euclidean version of the (1.8) and (1.11); making the following

transformations:

x0 → −ix4

A0 → +iA4 ,

then the (1.11) becomes

S
(eucl)
G =

1

4

∫
d4xFµνFµν , (1.13)

where a sum over µ and ν (µ, ν = 1, 2, 3, 4) is understood. For the (1.8) we obtain

S
(eucl)
F =

∫
d4xψ̄(x)(γEµ ∂µ +M)ψ(x) . (1.14)

Here γEµ is the set of γ matrices which satisfy the following algebra

{γEµ , γEν } = 2δµν ,

with γE4 = γ0, γEi = −iγi. We stress, moreover, that in the euclidean space, the group

of Lorentz is substituted with that of four-dimensional rotations.

Since we shall work with the euclidean formulation, to simplify the notation we shall

drop the symbols E and (eucl).

1.2 The Lattice Gauge Theories

The lattice represents a mathematical tool [8], which provides a cutoff removing the

ultraviolet infinities in the quantum field theory and, as with any regulator, it must

be removed after renormalization. We stress that physics can only be extracted in the

continuum limit, where the lattice spacing is taken to zero. 3

3For a more detailed description of the continuum limit see the next paragraphs.
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Let us briefly recall the renormalization program in continuum perturbation the-

ory. The renormalization of the Green function first requires the regularization of the

corresponding Feynman integrals (which will be introduced in the next paragraph) in

momentum space. These integrals will depend on one or more parameters which are

introduced in the regularization process. Since the effect of any regularization procedure

is to render the momentum integrations ultraviolet finite, this step corresponds in the

introduction of a momentum cutoff. The second step consists in defining renormalized

Green functions, which approach a finite limit as the cutoff is removed. The dependence

of the cutoff is “absorbed” by the bare parameters of the theory. This dependence is

determined by imposing a set of renormalization conditions.

In the lattice approach this program can be formulated without reference to pertur-

bation theory. Let us see how. The first step (regularization) consists in introducing a

space-time lattice at the level of the path integral. The second step of the renormaliza-

tion corresponds to removing the lattice structure (which means to study the continuum

limit). We stress that the introduction of a space-time lattice corresponds to a partic-

ular way of regularizing Feynman integrals without introducing a momentum cutoff.

In particular the momentum space integrals will indeed be cut off at a momentum of

the order of the inverse lattice spacing, but the integrands of Feynman integrals will

be modified in a non-trivial way. Just to have an idea of how the lattice-regularization

works, let us consider a function f(x) of a single continuous variable. If its absolute

value is square integrable, then f(x) has the following Fourier representation:

f(x) =
∫ +∞

−∞

dk

2π
f̃(k)eikx . (1.15)

If x is restricted to a multiple of a lattice spacing a (x = na with n an integer), then

f(na) can be Fourier-decomposed

f(na) =
∫ π

a

−π
a

dk

2π
f̃a(k) e

ikna , (1.16)

where f̃a(−π
a
) = f̃a(

π
a
). Here the momentum integration is now restricted to the so-

called first Brillouin zone [−π
a
, π
a
]. This is the cut of the momentum of the order of
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the inverse lattice spacing. If f̃a(k) satisfies the Dirichlet conditions, then it can be

represented by a Fourier series

f̃a(k) = a
∞∑

n=−∞
f(na) e−inka , (1.17)

which is just the discretized version of the expression for f̃ obtained by inverting

the (1.15).

The above formulas are trivially extended to functions depending on an arbitrary

number of variables. In particular, in four space-time dimensions, all four components

of momenta will be restricted to the interval [−π
a
, π
a
].

In the next three paragraphs we will introduce the path integral formulation, the

study of the continuum limit and the lattice approach for the case of our interest.

1.2.1 The Path Integrals Formulation

The theory of quantized fields has its origin in the early days of quantum mechanics [9].

After a seminal work of Heisenberg [10], the subsequent article of Born and Jordan [11]

already contains a section in which the quantization of the electromagnetic field is

sketched.

In the following years the idea of quantizing classical fields was pursued further by

P. Jordan [11]. He also aimed at a representation of matter by quantized fields. The

Schrödinger wave is considered as classical fields and so he called this procedure second

quantization.

Quantization is not at all a unique procedure and a variety of quantization methods

may exist which lead to the same physical prediction [12].

The path integral method is an alternative formulation of quantum mechanics, which

has been reviewed by Feynman [13, 14] and since its introduction has became a very

important tool for elementary particle physics.

It was his genius to realize 4 that the propagator of the time-evolution operator can

4Surprisingly enough, the same calculus, in the sense of a näive analytical continuation, was already
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be expressed as a sum over all possible paths connecting the points (q, t) and (q′, t′) with

weight factor exp[iS(q′, t′; q, t)], where S is the classical action.

Following the description by Rothe [7], we illustrate briefly the principal lines of the

so important Feynman’s formulation. 5 In quantum mechanics the transition amplitude

is given by the Green function:

G(q′, t′; q, t) = 〈q′|e−iH(t′−t)|q〉 , (1.18)

where H is the Hamiltonian. For reasons which will be clearer later, we shall need the

corresponding representation for the Green function continued to imaginary time (pass-

ing from the Minkowski space-time to the euclidean one), which means t→ −iτ, t′ →
−iτ ′. So we obtain:

G(q′, τ ′; q, τ) = 〈q′|e−H(τ ′−τ)|q〉 . (1.19)

To obtain a path integral representation let us split the time interval [τ, τ ′] into N

infinitesimal segments of length ǫ = (τ ′ − τ)/N and assume that the Hamiltonian has

the form

H =
1

2

n∑

α=1

P 2
α + V (Q) , (1.20)

where Pα are the momenta canonically conjugate to Qα. It is easily showed that, for

small ǫ

〈q′|e−H(τ ′−τ)|q〉 ≈
(

1√
2πǫ

)nN ∫ N−1∏

l′=1

dq(l′)e−
∑N−1

l=0
ǫLE(q(l),q̇(l)) , (1.21)

known to mathematicians due to Wiener in the study of stochastic process. This calculus in the

functional space, “Wiener measure”, attracted several mathematicians, including Kac and was further

developed by several authors, where the best known is the work of Cameron and Martin. The standard

reference concerning these achievements is the review paper of Gelfand and Yaglom [15].
5In classical physics the time evolution of the system is given by the Lagrange equations of motion

which follow from the principle of least action. To quantize the system, one then constructs the

Hamiltonian, and writes the equations of motion in term of Poisson brackets. This provides the starting

point for the canonical quantization of the theory. Proceeding in this way, one has moved far away

from the original action principle. The path integral representation reestablishes the connection with

the classical action principle.
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where

LE(q(l), q̇(l)) =
∑

α

1

2
(q̇(l)
α )2 + V (q(l)),

q̇(l)
α ≡ q̇(l+1)

α − q(l)
α

ǫ
, (1.22)

with q(0) ≡ q, q(N) ≡ q′. The subscript “E” is to remind us that we are working on

the “euclidean” space-time. Let us pass to the interpretation of the right-hand side

of (1.21). Consider an arbitrary path in q-space connecting the space-time points (q, τ)

and (q′, τ ′), consisting of straight line segments in every infinitesimal time interval. The

action associated with the path is given by

SE [q] =
N−1∑

l=0

ǫ[
∑

α

1

2
(q̇α(τl))

2 + V (q(τl))] , (1.23)

which is just the expression appearing in the argument of the exponential in (1.21).

In conclusion, it is possible to summarize the prescriptions for calculating the Green

function for imaginary time in four steps:

1. divide the interval [τ, τ ′] into infinitesimal segments of length ǫ;

2. consider all possible paths connecting the points (q, τ) and (q′, τ ′) and calculate

the action (1.23) for each path;

3. weight each path with e−SE [q] and sum these exponentials over all paths, by inte-

grating over all possible values of the coordinates at intermediate times;

4. multiply the resulting expression with ( 1√
2πǫ

)nN , where n is the number of coordi-

nate degrees of freedom and take the limit ǫ→ 0, N → ∞, keeping the product

Nǫ = (τ ′ − τ) fixed.

The result of this procedure is denoted by

(q′, τ ′|q, τ) =
∫ q′

q
Dqe−SE [q] , (1.24)

where

SE [q] =
∫ τ ′

τ
dτ ′′LE(q(τ ′′), q̇(τ ′′)) . (1.25)
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For convenience we have adopted the following short-hand notation

(q′, τ ′|q, τ) ≡ 〈q′|e−H(τ ′−τ)|q〉 . (1.26)

In the real time formulation, the analogous procedure leads to the following path integral

representation:

〈q′|e−iH(t′−t)|q〉 =
∫ q′

q
DqeiS[q] , (1.27)

where S[q] is the action for the real time. Now we can understand the convenience

and geniality of passing to imaginary time. Notice in fact, that since the paths in

(1.24) are weighted with e−SE , the important contributions come from the paths for

which the action takes values close to the minimum. As said in the previous note, the

Feynman’s formalism leads to the principle of least action which in its turn brings, to

the classical euclidean equations of motion. In the path integral (1.27) the paths are

instead weighted with an oscillating function and for this reason this representation is

not suited for numerical calculations. Some comments are now necessary. The first one

is that for the path integrals (1.24) or (1.27) an exact evaluation is possible only in a few

case (for example the harmonic oscillator in the real time formulation). The second is

that the path integral representation of Green function opens the possibility of studying

field theories non-perturbatively. If the action is bounded from below, then the (1.24)

has the form of a statistical ensemble average with a Boltzmann distribution given by

e−SE . Because of this similarity with the statistical mechanics we call the euclidean

Green functions as correlation functions and the expression

Z =
∫

Dqe−SE [q] , (1.28)

as the partition function. So to calculate Green functions in theories with a large number

of degrees of freedom we will use statistical methods.

For completeness of exposition we report the formalism extended to a field theory 6

(obtained by allowing the number of variables to approach infinity). For bosonic fields

6In quantum mechanics all physical information about the quantum system is contained in the

Green function (1.18), instead in field theory this information is stored in an infinite set of vacuum

expectation values of time-ordered products of Heisenberg field operators.

16



the Green function in the path integral representation is given by [7]

G(x1, x2, · · · , xl) = 〈0|T (φ̂(x1)φ̂(x2) · · · φ̂(xl))|0〉 =

∫
Dφ φ(x1)φ(x2) · · ·φ(xl) e

−SE [φ]

∫
Dφ e−SE [φ]

(1.29)

For fermionic fields the path integral is [7]

〈0|T (ψ̂α1(x1) · · · ψ̂αl
(xl)ψ̂β1(y1) · · · ψ̂βl

(yl))|0〉 =
∫
D(ψ̄ψ) ψα1(x1) · · ·ψαl

(xl)ψβ1(y1) · · ·ψβl
(yl)) e

−SE [φ]

∫
Dφ e−SE [φ]

, (1.30)

where the integration is over Grassmann variables (anti-commuting c-numbers).

In the traditional canonical operator formalism, one regards fields as operators and

sets up canonical commutation relations for them. All Green functions which character-

ize the quantum theory of fields may be calculated as vacuum expectation values of the

product of the field operators. In Feynman functional-integral formalism, the fields are

c-numbers and the Lagrangian is of the classical form. The Green functions are obtained

by integrating the product of the fields over all of their possible functional forms with

a suitable weight. In the stochastic formalism, one notes the similarity between the

functional-integral expression of Green functions in Euclidean space and the statistical

averaging and regards the field as a stochastic variable. The Green functions are then

given by the statistical average of the product of fields in equilibrium.

1.2.2 Gauge Theories on the Lattice

The path integral expression for the Green functions has only a well-defined meaning for

systems with a denumerable number of degree of freedom [7]. In field theory, however,

the degrees of freedom are an infinite number, and the multiple integrals are only for-

mally defined. To give a precise meaning to the path integrals it is necessary discretize

time and space, which leads the introduction of a space-time lattice with lattice spacing

a.

In this section we introduce Wilson’s formulation of gauge fields on a space-time

lattice, following the description of [8].
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Every point on the lattice is specified by integers collectively denoted by n =

(n1, n2, n3, n4) (in the case of 3 spatial dimension). By convention the last component

will denote euclidean time.

Let us start our description of the lattice gauge theories considering the “construc-

tion” of the lattice QED, having dealt with in the previous section this simplest gauge

theory (for a more detailed description see [7]).

We want to rewrite the (1.14) in terms of dimensionless lattice variables. This

simply means to make the appropriate substitutions for M , ψ e ψ̄ with respect the

lattice spacing a. The transformations are:

M → 1

a
M̂ ,

ψα(x) → 1

a
3
2

ψ̂α(n) ,

ψ̄α(x) → 1

a
3
2

¯̂
ψα(n) ,

∂µψ(x) → 1

a
5
2

∂̂µψ̂α(n) , (1.31)

where ∂̂µ is defined as

∂̂µψ̂α(n) =
1

2
[ψ̂α(n + µ̂) − ψ̂α(n− µ̂)] . (1.32)

Then the lattice version of the desired action is

SF =
∑

n,m

α,β

¯̂
ψα(n)Kαβ(n,m)ψ̂β(m) , (1.33)

with

Kαβ(n,m) =
∑

µ

1

2
(γµ)αβ [δm,n+µ̂ − δm,n−µ̂] + M̂δmnδαβ . (1.34)

After making a shift in the summation variable, the corresponding action can be written

in the form

SF = M̂
∑

n

ˆ̄ψ(n)ψ̂(n) +
1

2

∑

n,µ

[ ˆ̄ψ(n)γµψ̂(n+ µ̂) − ˆ̄ψ(n + µ̂)γµψ̂(n)] . (1.35)

The action (1.35) is invariant under the global transformations

ψ(n) → Gψ(n) ,

ψ̄(n) → ψ̄(n)G−1 ,
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where G is an element of the U(1) group.

Now we require that the theory be invariant under local U(1) transformations, with

the group element G depending on the lattice site. Concentrating on the off-diagonal

elements of the (1.35), we introduce a factor which depends on the gauge potential

Aµ(x). It is possible to demonstrate that to arrive at a gauge-invariant expression for

the fermionic action on the lattice, we have to make the following substitutions in (1.35)

ˆ̄ψ(n)γµψ̂(n+ µ̂) → ˆ̄ψ(n)γµUn,n+µ̂ψ̂(n+ µ̂)

ˆ̄ψ(n+ µ̂)γµψ̂(n) → ˆ̄ψ(n+ γµ)γµUn+µ̂,nψ̂(n) , (1.36)

where

Un+µ̂,n = U †
n,n+µ̂ , (1.37)

is an element of the U(1) gauge group. It can therefore be written as

Un,n+µ̂ = eiφµ(n) , (1.38)

where φµ(n) is restricted to the compact domain [0, 2π]. We stress that the group

element Un,n+µ̂ lives on the links connecting two neighboring lattice sites; we refer them

as link variables and sometimes simply as links.

In the continuum limit the (1.35) must be of the form (1.14). This establishes a

relation between the link variables and the vector potential Aµ(n). The vector potential

Aµ(n) at the lattice site n is real-valued and carries a Lorentz index. The same is true

for φµ (which parametrizes the link variable (1.38)). But φµ takes only values in the

interval [0, 2π], while the Aµ’s values extend over the entire real line. However, Aµ

carries the dimension of inverse length, while φµ is dimensionless. It is so possible to

make the following ansatz:

φµ = caAµ ,

where a is the lattice spacing and c is a constant to be determined. Using (1.31) and

substituting in Un,n+µ̂ its expression for small a,

Un,n+µ̂ ≈ 1 + icaAµ ,
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equation (1.35) is reduced to (1.14) in the naive continuum limit, if we choose c = e. We

underline the connection between Un,n+µ̂ and Aµ(n) using the more suggestive notation

Uµ(n) ≡ Un,n+µ̂ = eieaAµ . (1.39)

To complete our construction of the lattice action for the QED, we must obtain the

lattice version of (1.13), which should be strictly gauge-invariant and be a functional

of the link variables only. Such gauge-invariant functionals are constructed by taking

the product of link variables around closed loops on the euclidean space-time lattice.

Since the integrand of the (1.13) has a local structure, we should focus on the smallest

possible loops. It is so defined the path-ordered product of link variables around an

elementary plaquette. Let this plaquette lying in the µ− ν plane, we then define it as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n) . (1.40)

Inserting (1.39) in the (1.40), one finds

Uµν(n) = eiea
2Fµν(n) , (1.41)

where Fµν(n) is the discretized version of the field strength tensor:

Fµν(n) =
1

a
[(Aν(n+ µ̂) − Aν(n)) − (Aµ(n + ν̂) − Aµ(n))] .

From (1.41) it follows that, for small lattice spacing,

1

4

∑

n
µ,ν

a4Fµν(n)Fµν(n) ≈ 1

e2
∑

n

∑

µ,ν
µ<ν

[1 − 1

2
(Uµν(n) + U †

µν(n))] . (1.42)

In conclusion, the lattice action for the QED gauge potential in the compact form is

SG[U ] =
1

e2
∑

P

[1 − 1

2
(UP + U †

P )] , (1.43)

where UP (plaquette variable) stands for the product of link variables around the bound-

ary of a plaquette “P” taken in the counterclockwise direction. We want to stress that,

with respect to the continuum limit, the coupling now appears as an inverse power in

the action for the gauge field.
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1.2.3 The QCD on the Lattice

The lattice gauge theory we have discussed since now can be easily extended to the case

of non-abelian unitary group, which is the case of the QCD.

We only have to replace the Dirac fields ψ and ψ̂ by N -component vectors and the

link variables Uµ(n) by the corresponding group elements of SU(N) in the fundamental

(N dimensional) representation.

The simplest way to obtain a gauge-invariant quantity from the group elements Uµ(n)

is to take the trace of the path ordered product of link variables along the boundary of

an elementary plaquette,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n) . (1.44)

In analogy to the abelian case we find

SG[U ] = cTr
∑

n,µ<ν

[
1 − 1

2
(Uµν(n) + U †

µν(n))
]
, (1.45)

where c is a constant to be determined

Since we are interested in describing the strong interactions, we focus on SU(3)

group. Any elements Θ lying in the Lie algebra of SU(3) can be written in the form

Θ =
8∑

B=1

ΘBλ
B

2
,

where the eight group generators λB are usually chosen to be the Gell-Mann matrices,

satisfying the commutation relations

[λA, λB] = 2i
8∑

C=1

fABCλ
C . (1.46)

The fABC are the completely antisymmetric structure constants of the group.

Let us study the continuum limit of the (1.45) for the case N = 3. To this effect we

introduce a dimensioned matrix valued lattice field Aµ(n) as follows,

φµ(n) = g0aAµ(n) , (1.47)
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with φµ(n) defined by an expression analogous to that of the abelian case,

Uµ(n) = eiφµ(n) , (1.48)

where g0 is the bare coupling constant. Since Aµ(n) is an element of the Lie algebra of

SU(3), it is of the form

Aµ(n) =
8∑

B=1

ABµ (n)
λB

2
, (1.49)

where ABµ (n) are eight real-valued vector fields corresponding to the eight generators of

SU(3).

We define, in analogy to (1.41), the matrix-valued lattice field tensor Fµν(n) by

Uµν(n) = eig0a
2
Fµν(n) . (1.50)

To determine the relation between Fµν(n) and Aµ(n) we use the Baker-Hausdorff formula

eAeB = eA+B+ 1
2
[A,B]+··· . (1.51)

Recalling that for the (1.47), φµ(n) is proportional to the lattice spacing a (which has

to be small), then it will be calculated only the quadratic terms in a of the exponential

(1.51). One finds

Fµν
a→0→ Fµν = ∂µAν − ∂νAµ + ig0[Aµ, Aν ] . (1.52)

Since the (1.52) is again an element of the Lie algebra, it can be written in the form

Fµν =
8∑

B=1

FB
µν

λB

2
. (1.53)

Making use of the (1.46) and of the orthogonality relation of the Gell-Mann matrices,

Tr(λAλC) = 2δBC , (1.54)

one arrives at

FB
µν = ∂µA

B
ν − ∂νA

B
µ − g0fBCDA

C
µA

D
ν . (1.55)

We now compute the continuum limit of the action SG. Approximating the (1.50) for

small lattice spacing by the first two non-trivial terms in the expansion of the exponential

and inserting this expression into (1.45) we find

SG → c
g2
0

2

1

2
Tr
∫
d4xFµνFµν , (1.56)
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where it is understood a sum over µ and ν. We have obtained the well-known gauge

field action of QCD; this leads us to choice c = 2/g2
0.

Following the same procedure for the most general case of SU(N), one finds that

the gauge part of the lattice action is

S
(SU(N))
G = β

∑

P

[1 − Tr

2N
(UP + U †

P )] , (1.57)

where

β =
2N

g2
0

. (1.58)

As in the abelian case, the sum in (1.57) extends over all distinct plaquettes on the

lattice, and we have introduced the short notation UP for the path-ordered product

(1.44) of link variables around the boundary of a plaquette P . For this product both

orientations are taken into account (ensuring the hermiticity of the action). The (1.57)

is commonly known as Wilson action.

1.2.4 The Wilson Loop

One of the most important test of QCD is whether it accounts for confinement in

hadronic phase. Hence one expects that quarks within an hadron are sources of chro-

moelectric flux, which is concentrated within narrow tubes (strings) connecting the con-

stituents. Since the energy is not allowed to spread, the potential of a quark-antiquark

pair will increase with their separation, as long as vacuum polarization effects do not

screen their color charge. For sufficiently large separations of quarks, the energy stored

in the string will be enough to produce a real quark pair, and the system will lower

its energy by going over into a new hadronic state. This phenomenon is known as

hadronization process.

Many informations can be obtained computing the non perturbative potential be-

tween a quark-antiquark pair.

On the lattice, for the QCD case, we define the Wilson loop operator by [7]

WC [U ] = Tr
∏

l∈C
Ul , (1.59)
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where C is a rectangular contour which spatial length is R̂ in the spatial dimension and

T̂ in the temporal one. The Ul are the links variables taking the ordered product. Its

ground state expectation value

W (R̂, T̂ ) = 〈WC [U ]〉 , (1.60)

is given by

W (R̂, T̂ ) =

∫
DUDψ̄DψWC [U ] e−SQCD [U,ψ,ψ̄]

∫
DUDψ̄Dψ e−SQCD [U,ψ,ψ̄]

. (1.61)

Let us explain the physical meaning of the Wilson loop.

The Wilson loop essentially measures the response of the gauge fields to an external

quarklike source passing around its perimeter. For the timelike loop (as that one we

have presented here), this represents the production of a quark pair at the earliest time,

moving them along the world lines dictated by the sides of the loop and then annihilating

at the latest time. A transfer matrix arguments [8] suggests that for large T̂

W (R̂, T̂ )
T̂→∞∼ exp(−E(R̂)T̂ ) , (1.62)

where E(R̂) is the gauge field energy associated with the static quark-antiquark sources

separated by distance R̂. If the interquark energy for large separations grows linearly

E(R̂)
R̂→∞→ σ̂R̂ , (1.63)

with σ̂ is the string tension measured in lattice units. Then we expect for large loops of

long rectangular shape

W (R̂, T̂ ) ∼ exp(−σ̂R̂T̂ ) . (1.64)

The (1.64) is known as area law behavior. Physically this area law represents the action

of the world sheet of a flux tube connecting the sources.

1.2.5 Lattice Formulation of QCD at Finite Temperature

An important field of research in lattice QCD is the study on the phase transition from

the low temperature confining phase to an high temperature phase where quarks and
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gluons are deconfined. The search of signatures of the quark gluon plasma (QGP) is

object of experiments which use collisions between large massive ions as that ones at

CERN [16, 17, 18].

Hence the subject of this section is the lattice formulation of QCD at finite tem-

perature, which allows us to study the non-perturbative behavior of thermodynamical

observables in the transition region.

The thermodynamic of a system at temperature T is described by the partition

function

Z(T, V ) = Tr e−
H
T , (1.65)

where H is the Hamiltonian and V is the volume of the system. For convenience we pone

the Boltzmann constant equal to one. The thermal expectation value of any observable

O is given by

〈O〉 =
1

Z
Tr(Oe−

H
T ) . (1.66)

Let us consider the path integral representation for the partition function. For

a quantum mechanical system consisting of a finite number of degrees of freedom

qi(i = 1, · · · , N) we have

Z(T, V ) =
∫ N∏

i

dqi 〈q|e−
H
T |q〉 , (1.67)

where q = (q1, · · · , qN), and where |q〉 denotes the simultaneous eigenstates of the coordi-

nate operators Qi with eigenvalues qi. The path integral representation of the integrand

is

〈q|e−H
T |q〉 =

∫ q

q
Dq e−

∫ 1
T

o
dτLE(q,q̇) , (1.68)

where LE is the euclidean version of the Lagrangian describing the interacting system,

and where the path integral is understood to be a sum over all periodic paths starting

from q t time τ = 0, and terminating at q at time τ = 1/T . Inserting (1.68) into the

(1.67), we see that the partition function is given by the weighted sum over all periodic

paths starting and ending at an arbitrary point in coordinate space.

All we found can be easily obtained for a field theory (we consider only bosonic

variables). Details can be found in [7].
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Let us introduce β as the inverse of the temperature:

β =
1

T
. (1.69)

In this case the partition function is a weighted sum over all field configurations which

live on a euclidean space-time surface compactified along the time direction.

We can summarize that, within the path integral formulation, the concept of temper-

ature is introduced by simply compactifying the euclidean time direction and identifying

the inverse temperature with the temporal extension of the space-time manifold.

For completeness of exposition we will report in the following the description of

the lattice formulation of QCD at finite temperature, having this formulation a very

important physical meaning.

We will consider only the case of pure SU(3) gauge theory, because in our research

work we did not use fermions at all (see [7] for the complete description of QCD).

The path integral representation in the continuum formulation of the partition func-

tion is

ZG = N
∫

DAe−S
(β)
G

[A] , (1.70)

where N is a normalization constant and S
(β)
G [A] is the finite temperature action

S
(β)
G [A] =

1

2

∫ β

0
dτ
∫
d3xTr(FµνFµν) . (1.71)

The path integral (1.70) is to be carried out over all field configurations which satisfy

the periodic boundary conditions

ABµ (~x, 0) = ABµ (~x, β), (B = 1, 2 · · · , 8) . (1.72)

The lattice-regularized version of (1.70) is given by:

ZG = N
∫
DUe−S

(β)
G

[U ] , (1.73)

where the lattice action has the same structure as in (1.57) except that now the sum

over the lattice sites is restricted to a lattice whose temporal extension measured in

units of lattice spacing a is

β̂ =
1

T̂
, (1.74)

with T̂ = Ta.
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1.2.6 The Polyakov Loop

At zero temperature, the potential of a static quark-antiquark pair can be determined,

as we mentioned before, by studying the ground state expectation value of the Wilson

loop for large euclidean time. At finite temperatures the lattice has finite extension

in the time direction, and the Wilson loop no longer plays this role. Which is then

the corresponding object to be considered when studying QCD at finite temperature?

We can construct a periodic gauge quantity by taking the trace of the product of link

variables along loops winding around the time direction, that is

L(~n) = Tr
β̂∏

n4=1

U4(~n, n4) , (1.75)

where β̂ is the inverse temperature measured in units of the lattice spacing. We refer to

L(~n) as Wilson line or Polyakov loop. This quantity is invariant under periodic gauge

transformations

U4(~n, n4) → G(~n, n4)U4(~n, n4)G
−1(~n, n4 + 1)

G(~n, 1) = G(~n, β̂ + 1) .

In the continuum formulation the expression of the Polyakov loop is given by

L(~x) = P
(
eig
∫ β

0
A4(~x,τ)dτ

)
, (1.76)

where P is the path ordered product, A4 is the temporal component of the vector

potential and g is the coupling constant of the theory. The Polyakov loop in the (1.76)

is the product of matrices belonging to SU(N) group (in the most general case) and so

it is a element of this group, which means that

L†(x)L(x) = 1 , det(L(x)) = 1 . (1.77)

Let us consider the simplest local gauge transformation Ω belonging to SU(N) group.

It consists of a factor phase times the unitary matrix:

Ω = eiφ1 . (1.78)
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Since (1.78) is an element of SU(N), the determinant must be equal to one this implies

that

φ =
2πj

N
, j = 0, 1 · · · (N − 1) . (1.79)

Since an integer does not change continuously from point to point, the expression (1.79)

introduces a global symmetry under Z(N). We introduce the quantity l1 called some-

times in literature Polyakov loop [19], is defined as the trace of the Wilson line in the

fundamental representation

l1 =
1

N
TrL(~x) , (1.80)

where L is given by (1.76). Under Z(N) global transformation, the Polyakov loop l is

transformed as a field of charge one

l1 → eiφl1 . (1.81)

Let us consider a case of our interest: the group SU(3). In this case, l1 has global

symmetry Z(3). According the (1.79), for N = 3, the elements for which there is a

global symmetry are e2iπj/3 ∈ Z(3), where j = 0, 1, 2. These elements of SU(3) belong

to the center C of the gauge group.7

It is possible to show [7] that the free energy of a system with a single heavy quark,

measured relative to that in the absence of the quark, is given by

e−βFq = 〈L(~x)〉 = 〈L〉 . (1.82)

In writing this last equality we have made use of the translational invariance of the

vacuum. On the lattice the (1.82) is replaced by e−β̂F̂q , with β̂ and F̂q, inverse of the

temperature and the free energy measured in lattice units. Furthermore, the free energy

of a static quark and antiquark located at ~x = ~na and ~y = ~ma can be obtained from

the correlation function of two such loops with base at ~n and ~m, and having opposite

orientations:

Γ(~n, ~m) = 〈L(~n)L†(~m)〉 . (1.83)

7The center C of the group G is defined by all the elements z for which zgz−1 = g, with g ∈ G.
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One can put in relation Γ(~n, ~m) with the free energy F̂qq(~n, ~m) of a pair quark-

antiquark [7]:

Γ(~n, ~m) = e−β̂F̂qq(~n,~m) . (1.84)

and using the fact that

〈L(~n)L†(~m)〉 |~n−~m|→∞→ |〈L〉|2 . (1.85)

we can conclude that, if 〈L〉 = 0, then the free energy increases for large separation of

the quarks.

We interpret this as a signal of confinement. On the other hand, if 〈L〉 6= 0, then the

free energy of a static quark-antiquark pair approaches a constant for large separations.

We interpret this as a signal of deconfinement. The expectation value of the Polyakov

loop in a pure gauge theory is an order parameter (see later for more details) by which

we can understand if the theory is in a confined or deconfined phase.

In statistical mechanics phase transitions are usually associated with a breakdown

of a global symmetry. Since the case of SU(3) is the most physical one, let us deal with

this gauge group which also presents a spontaneous breakdown of the global symmetry.

The lattice action of a pure SU(3) gauge theory is invariant under periodic gauge

transformation but also posses a further symmetry which is not shared by the Polyakov

loop.

Consider the elements of SU(3) belonging to the center C of the group; they are

given by e2iπl/3 ∈ Z(3) where l = 0, 1, 2. The action of SU(3) gauge theory is invariant

if we multiply all time-like link variables U4 between two neighboring spatial sections of

the lattice by an element of the center

U4(~n, n4) → zU4(~n, n4) ∀ ~n, n4 ,

where z ∈ C. These transformations form a global symmetry of the theory to which we

will refer as the center symmetry. Otherwise the Polyakov loop is not invariant under

these transformations since it contains an element which transforms non-trivially:

L(~n) → zL(~n) .
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If the ground state of the quantum system respects the symmetry of the classical action,

the expectation value of the Polyakov loop must vanish. Indeed, if we call V the operator

which realizes the center transformation, |Ω〉 the ground state and if V |Ω〉 = |Ω〉, then

we have

〈L〉 = 〈Ω|L|Ω〉 = 〈Ω|V −1V LV −1V |Ω〉 = 〈Ω|V LV −1|Ω〉 = z〈Ω|L|Ω〉 = z〈L〉 ,

that is 〈L〉 = 0. But we have interpreted this as a signal of confinement. Hence we

expect that the center symmetry is realized in the low temperature regime. On the

other hand, if 〈L〉 6= 0, then the center symmetry is broken. Hence we expect that the

deconfined phase transition is accompanied by the breakdown of the center symmetry

abd the values of the Polyakov loops cluster around the Z(3) roots. 8

Svetitsky and Yaffe [20] first in the 1982 argued that the Z(3) symmetry played a

crucial role in the confinement. They argued that the critical behavior of the SU(3)

pure gauge theory would be comparable with that the Z(3) spin system (the three states

Potts model). And since this model undergoes a first order phase transition, they expect

that the deconfined phase transition of SU(3) pure gauge theory is first order as well.

1.3 The Continuum Limit

We have just constructed a lattice gauge theory based on the non-abelians group SU(3)

and have given arguments which suggest that in the continuum limit it describes the

QCD, based on the observation that the lattice action reduces to the correct expression

in the naive continuum limit. But there exists an infinite number of lattice actions which

have the same naive continuum limit (we have chosen the simplest). What does exactly

ensure that the theory have a continuum limit corresponding to QCD? The answer is

that the lattice theory must exhibit first of all a critical region in parameter space where

correlation lengths diverge.

8When quarks are coupled to the gauge fields the action is no longer Z(3) symmetric and the

Polyakov loop is no longer the order parameter, even if at least for large quark masses, it is still

expected to show a rapid variation across the transition region.
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Let us explain this last statement.

To do this let us consider the case of the pure SU(3) gauge theory (the theory

without fermions), with the following partition function

Z =
∫
DUe

1

g2
0

Tr
∑

P
(UP +U†

P
)
. (1.86)

Then suppose we want to extract the mass spectrum of the corresponding field theory

by studying the appropriate correlation functions for large euclidean times (see later

for more details). The fundamental mass is in fact the inverse of the correlation length

ξ. So if the corresponding physical mass m is to be finite, then the mass measured in

lattice units m̂, must vanish in the continuum limit. This implies that the correlation

length measured in lattice units ξ̂, must diverge. Hence the continuum field theory can

only be realized at a critical point of the statistical mechanical system described by the

partition function (1.86). It follows that if the above system is not critical for any value

of the coupling, it cannot describe QCD.

To study a system near criticality means tuning the parameters accordingly. In our

case, the only parameter is the bare coupling g0. The correlation length ξ̂ measured in

lattice units will depend only on it. Hence the continuum limit is realized for g0 → g∗0,

while

ξ̂(g0)
g0→g∗0→ ∞ . (1.87)

We remember that the physical quantities should be finite in the limit of zero lattice

spacing.

The important thing is so to know how the coupling g0 depends on the lattice spacing

a 9. It is in principle possible to know this dependence, let us see how.

Consider an observable Θ with mass dimension dθ, and denoting with Θ̂ the cor-

responding lattice quantity (which may in principle be determined numerically). As

9We would underline that is not surprising that the bare parameters will depend on the lattice

spacing. Making the lattice finer and finer, the number of lattice sites and links within a given physical

volume increases, hence if the physics is to remain the same, the bare parameters must be tuned to a

(in a way depending in general on the dynamics of the theory).

31



above, Θ̂ will depend on the bare parameters of the theory. Let us suppose that there

is just one parameter g0, the existence of a continuum limit then implies that

Θ(g0, a) =
(

1

a

)dΘ
Θ̂(g0) , (1.88)

approaches a finite limit for a → 0, i.e. when g0 approaches the critical coupling g∗0.

Informally we write

Θ(g0(a), a)
a→0→ Θphys. . (1.89)

If we know the functional dependence of Θ̂ on g0, we can determine g0(a) from the

(1.88) for sufficiently small lattice spacing by fixing the left-hand side at its physical

value Θphys.. In this discussion we did not use any particular observable, but it may

appear that the functional dependence of g0(a) will depend on the observable considered.

In that case a universal function g0(a) should exist, which ensures the finiteness of any

observable.

But how do we know whether we are extracting continuum physics when performing

calculations on finite lattices? The answer to this question is found in following relations

which give the relation between g0 and the lattice spacing (derived from the first two

universal coefficients in the power series expansion of the β-function for NF flavors of

massless quarks) 10

β(g0) = −β0g
3
0 − β1g

5
0 + · · · , (1.90)

with

β0 =
1

16π2

(
11 − 2

3
NF

)
, β1 =

(
1

16π2

)2(
102 − 38

3
NF

)
, (1.91)

a =
1

ΛL
R(g0) , (1.92)

R(go) = (β0g
2
0)

−β1
2β2

0 e
− 1

2β0g2
0 . (1.93)

This relations tell us how the bare coupling constant controls the lattice spacing. In-

serting (1.92) into (1.88), the requirement (1.89) implies that for g0 ≈ g∗0 = 0, Θ̂(g0)

must behave as follows:

Θ̂(g0)
g0→0≈ ĈΘ

(
R(g0)

)dΘ
, (1.94)

10See [7] and [8] for a more detailed description.
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where ĈΘ is a dimensionless constant. Quantities behaving like (1.94) are said to show

asymptotic scaling.

On a lattice of finite size there will exist in general only a narrow region in coupling

constant space where ĈΘ(g0) scales according to (1.94). This region is called the scaling

region. (By studying the ratio Θ̂(g0)/(R(g0))
dΘ as a function of g0 in the scaling region

one determines the constant ĈΘ.)

This leads us to introduce another important concept for numerical simulations:

finite size effects. Since the lattice spacing is controlled by the bare coupling according

to (1.92), physics will no longer fit on the lattice if g0 (and hence a) becomes too small.

On the other hand, by increasing the bare coupling, the lattice may become too

coarse to account for fluctuations taking place on a small scale.

1.4 Monte Carlo simulations and algorithms used

The lattice formulation reduces the Feynman path formula for the gauge theory into a

multiple ordinary integral [8]. However, the high multidimensionality of the integrals

makes conventional mesh techniques impractical. We need a statistical treatment, also

suggested in the previous paragraphs. The goal of the Monte Carlo approach is to

provide a “small” number of configurations which are typical of thermal equilibrium in

the statistical analog.

An efficient method to compute the ensemble average

〈O〉 =

∫
DUO[U ]e−S[U ]

∫
DUe−S[U ]

, (1.95)

is generating a sequence of link variable configurations with a probably distribution given

by the Boltzmann factor exp[−S(U)]. This technique is called importance sampling.

If the sequence generated constitutes a representative set of configurations, then the

ensemble average will be given by

〈O〉 =
1

N

N∑

i=1

O({U}i) , (1.96)

where {U}i (i = 1, ..N) indicates the link configurations generated.
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1.4.1 Construction principles for algorithms

Henceforth, it is explained the general strategy to calculate the expectation value (1.95),

following the [7] description. First we construct an algorithm, that generates a sequence

of configurations which will be distributed with the desired probability and then measure

the observable using the thermalized configurations (obtained in a time depending on

the algorithm used).

As with real experiments, Monte Carlo simulations have a certain inherent source

of error. We can divide them in statistical fluctuations, systematic effects and system-

atic errors. The statistical fluctuations are always present and if N is the number of

measurements statistically independent, then the error in the mean value will be of the

order 1/
√
N . In praxis, however, the configurations generated will not be statistically

independent, so it will be necessary use appropriate tools to determine the errors. The

systematic effects may arise from the finite lattice size and spacing. The nature of finite

volume effects depends very much on the theory under consideration. A more detailed

description of this effects and the technique to control them can be found in [21]. Finally,

a systematic error arises in determining when equilibrium has been reached.

In the following we discuss some principles for constructing algorithms which en-

sure for the sequence of configurations generated being a representative ensemble. Let

C1, C2, .. indicate a countable set of states of the system. We consider a stochastic pro-

cess in which a finite set of configurations is generated one after the other according to

some transition probability P (Ci → Cj) ≡ Pij for going from configuration Ci to Cj .

Let Cτ1, Cτ2 ... be the configurations generated sequentially in this way. The state of

the system will be a random variable whose distribution will depend only on the state

preceding it, that is, the transition probability is independent of all states except for

its immediate predecessor; this defines a Markov chain whose elements are the random

variables defined above.

It is possible to show that for a Markov process, to sample the distribution

exp[−S(C)], it is sufficient to require that the transition probability satisfies the de-
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tailed balance:

e−S(C)P (C → C ′) = e−S(C′)P (C ′ → C) , (1.97)

for every pair C and C ′. If we consider a set of configurations {Cτi} generated by a

Markov process and an observable O evaluated on this set of states, we can define a

“time” average of O taken over N elements of the Markov chain by

〈O〉N =
1

N

N∑

i=1

O(Cτi) .

It is this quantity which we compute in praxis, and which we want to equal the ensemble

average corresponding to a given Boltzmann distribution.

1.4.2 Metropolis Algorithm

This method, proposed by Metropolis et al. [22] in the 1953, is in principle applicable to

any system and it has became the most popular in practice. Let C be any configuration

which is to be updated and C ′ the new one with a transition probability P0(C → C ′)

which satisfies the following micro reversibility requirement:

P0(C → C ′) = P0(C
′ → C) . (1.98)

We must decide whether the new configuration suggested C ′ should be accepted. If

the transition probability P (C → C ′) is to satisfy (1.98), the choice depends on the

actions S(C) and S(C ′). If e−S(C′)/e−S(C), i.e. if the action has been lowered, then the

configuration C ′ is accepted. Otherwise, if the action has increased, one accepts the trial

configuration only with probability e−S(C′)/e−S(C). It is generated a random number R

in the interval [0, 1] and it is taken C ′ as the new configuration if

R ≤ e−S(C′)

e−S(C)
. (1.99)

Otherwise C ′ is rejected and the old configuration is kept. It is possible to show that this

algorithm satisfies the detailed balance [7]. Some other considerations: this algorithm

is used to update a single variable at time. Otherwise the updating procedure would

involve large changes in the action and consequentially the acceptance rate will be very

small. The system will move slowly through the configuration space.
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1.4.3 Heat Bath Algorithm

For SU(2) we use the standard Kennedy-Pendleton [23] heat bath algorithm. This is

extended to higher groups using the Cabibbo-Marinari [24] algorithm where effectively

one updates some of the SU(2) subgroups of the SU(N) matrices.

An important practical question here is how many of these subgroups to update.

Clearly the more subgroups one updates the faster we will explore phase space. To

determine an appropriate number of these subgroups we have chosen a criterion which

involves monitoring how efficiently the action of the SU(N) fields is reduced by cooling

the fields [25, 26], when the cooling is applied through different numbers of SU(2)

subgroups. We recall that to cool an SU(2) lattice link we simply replace the matrix

that is on that link by the matrix which minimizes the action. This matrix is easy to

determine [25, 26]. A link appears in 4 plaquettes and hence its contribution to the

action can be written as

δSl = −β
2

Tr{UlΣ} (1.100)

where the matrix Σ is the sum of the ‘staples’ enclosing the link l. Each staple is an

SU(2) matrix and hence Σ is proportional to an SU(2) matrix. Then it is easy to see

that the matrix that minimizes δSl is given by

Ul =
Σ†

|Σ| (1.101)

We note that this is just the choice of matrix that the heat bath algorithm makes if we

set β = ∞. Once we have applied this procedure to every link of the lattice we have

performed a cooling sweep. And we can systematically reduce the action by performing

a sequence of such cooling sweeps. We can extend this to SU(N) fields by using the

Cabibbo-Marinari algorithm and cooling within the chosen SU(2) subgroups. In this

case the algorithm no longer exactly minimizes the action. Instead the rate at which

it reduces the action is a measure of how rapidly it moves through phase space. So

our procedure is to generate some (plausibly) thermalized SU(N) fields, and then to

cool these fields using various numbers of SU(2) subgroups. We choose the smallest
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number of subgroups that will reduce the action reasonably fast. We then use these

same subgroups in the Monte Carlo. In practice we have used 3, 4 and 8 subgroups in

the case of SU(3), SU(4) and SU(5) respectively. (There is obviously some ambiguity

in the precise choice.)

1.4.4 Over-relaxation

To reduce the correlation between the configurations it is useful to use the over-relaxation

technique. It consists in updating the link after that the Metropolis updating procedure

is done. In this way the action does not change. [9, 27]

In addition to heat-bath sweeps one can also use over-relaxation sweeps [28, 29, 30]. In

SU(2) this corresponds to replacing our old link matrix, Uold, by a new link matrix,

Unew, defined by

Unew =
Σ†

|Σ|U
†
old

Σ†

|Σ| , (1.102)

where the notation is as in (1.100). It is easy to see that this change does not alter the

action. Moreover it can be extended to SU(N) using the Cabibbo-Marinari algorithm.

An over-relaxation step involves a large change in the link matrix and so it is plausible

that it will increase the rate at which we traverse our phase space [28, 29, 30]. We find

that for physical quantities, such as masses, a suitable mix of over-relaxation and heat

bath sweeps decorrelates field configurations significantly, although not dramatically

faster than pure heat bath. There is an additional gain that arises from the fact that

an over-relaxation step is faster then a heat bath step, which in any case involves the

calculation of all the staples. (This gain is greater in 3 than in 4 dimensions since there

are fewer staples to calculate in the former case.)

Thus in the calculations of the works presented we shall typically choose to make 4

or 5 over-relaxation sweeps for each heat bath sweep.
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1.4.5 Cooling

Cooling [31, 32] is a well established method for locally suppressing quantum fluctuations

in gauge field configurations. The locality of the method allows topologically nontrivial

field configurations to survive numerous iterations of the cooling algorithm. Application

of such algorithms are central to removing short-distance fluctuations responsible for

causing renormalization constants to significantly deviate from one as is the case for the

topological charge operator [33].

Cooling [34, 31, 32, 35] consists in freezing the quantum fluctuations of equilibrium

field configurations by an upgrading procedure in which only changes are accepted which

make the action smaller. All the links of the lattice are upgraded one after the other; a

complete sweep over the lattice will be called a cooling step in what follows.

If the changes of the links are kept sufficiently small each cooling step can be viewed

as the lattice version of a smooth deformation of a continuum field configuration to a new

configuration with smaller action. The effect of cooling will then be to bring smoothly

the field configuration to a minimum of the action, which means to a configuration

which is a solution of the classical equation of motion. Due to the smoothness of the

deformations, the topology of the initial configuration will be preserved during cooling.

It is known [36], however, that classical solutions of the equations of motion only corre-

spond to approximate solutions on the lattice: they will therefore be only metastable,

instead of stable. Care must be put in controlling the speed of cooling process to avoid

possible immediate losses of metastable configurations. Physical observables which are

related to topological proprierties will in fact be metastable along cooling. However,

if the cooling process is too fast these metastabilities will not be observed, since the

corresponding field configurations will be destroyed immediately. The original cooling

method [32] was motivated by the study of the topological susceptibility and therefore

performed having in mind the instantons 11.

In the follow we illustrate the method we use.

11For more details see [34]
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At the SU(2) level the algorithm is transparent. An element of SU(2) may be

parameterized as, U = a0I + i~a · ~σ, where a is real and a2 = 1. Let Ũµ be one of the six

staples associated with creating the plaquette associated with a link Uµ.

Ũµ = Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (1.103)

We define

6∑

α=1

Ũα = kU where U ∈ SU(2) and k2 ≡ det

(
6∑

α=1

Ũα

)
. (1.104)

The feature of the sum of SU(2) elements being proportional to an SU(2) element is

central to the algorithm. The local SU(2) action is proportional to

ReTr(1 − UU ) , (1.105)

and is locally minimized when ReTr(UU ) is maximized, i.e. when

ReTr(UU) = ReTr(I) . (1.106)

which requires the link to be updated as

U−→U ′ = U
−1

= U
†
=

(∑6
α=1 Ũα

)†

k
. (1.107)

At the SU(3) level, one successively applies this algorithm to various SU(2) subgroups

of SU(3), with SU(2) subgroups selected to cover the SU(3) gauge group.

1.4.6 Smearing

APE smearing [37] is a gauge covariant [38] prescription for averaging a link Uµ(x) with

its nearest neighbors Uµ(x+ ν̂), ν 6= µ. The linear combination takes the form:

Uµ(x) −→ U ′
µ(x) = (1 − α)Uµ(x) +

α

6
Σ̃†(x;µ) , (1.108)

where Σ̃(x;µ) =
(∑6

ν=1 Ũν(x)
)
µ
, is the sum of the six staples defined in Eq. (1.103). The

parameter α represents the smearing fraction. The algorithm is constructed as follows:
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(i) calculate the staples, Σ̃(x;µ); (ii) calculate the new link variable U ′
µ(x) given by

Eq. (1.108) and then reunitarize U ′
µ(x); (iii) once we have performed these steps for

every link, the smeared U ′
µ(x) are mapped into the original Uµ(x). This defines a single

APE smearing sweep which can then be repeated.

Since this algorithm is applied simultaneously to all link variables, without any

annealing in the process of a lattice update, the application of the algorithm may be

viewed as an introduction of higher dimension irrelevant operators designed to improve

the operator based on unsmeared links. This approach also leads to the desirable effect of

renormalization constants approaching one. The net effect may be viewed as introducing

a form factor to gluon vertices [39] that suppresses large q2 interactions and, as a result,

suppresses lattice artifacts at the scale of the cutoff.

The celebrated feature of APE smearing is that it can be realized as higher-dimension

operators that might appear in a fermion action for example. Indeed, “fat link” actions

based on the APE algorithm are excellent candidates for an efficient action with im-

proved chiral properties [40]. The parameter space of fat link actions is described by

the number of smearing sweeps nape and the smearing coefficient α.

Blocking scheme

In lattice gauge theory physical quantities of interest like masses, potential values, and

matrix elements are related to asymptotic properties of exponentially decreasing corre-

lation functions in Euclidean time, and therefore prone to be drowned in noise. So one

is forced to improve operators in order to reach the desired asymptotic behavior for the

small T region. We will shortly describe our particular improvement technique [41].

We start from the relation between Wilson loops, W (R, T ), and the (ground state)

potential V (R)

W (R, T ) = C(R) exp {−TV (R)} + excited state contributions. (1.109)

Our aim is to enhance — for each value of R — the corresponding ground state overlap

C(R). Since the ground state wave function is expected to be smooth on an ultraviolet
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scale we concentrate on reducing noise by applying a local smoothing procedure on the

spatial links: consider a spatial link variable Ui(n), and the sum of the four spatial

staples Πi(n) connected to it:

Πi(n) =
∑

j=±1,...,3
j 6=i

Uj(n)Ui(n+ ĵ)U †
j (n + î) . (1.110)

We apply a gauge covariant, iterative smoothing algorithm which replaces (in the same

even/odd ordering as the Metropolis update) Ui(n) by U ′
i(n) minimizing the local spatial

action Si(n) = −ReTr{Ui(n)Π†
i (n)}, which is qualitatively a measure for the roughness

of the gauge field. This is very similar to lattice cooling techniques already invented

by previous authors [42, 43] except that we are cooling only within time-slices and thus

not affecting the transfer matrix. Alternatively, this algorithm may be interpreted as

substituting Ui(n) by P (Πi(n)) where P denotes the projection operator onto the nearest

SU(3) matrix. In this sense it is a variant of the APE recursive blocking scheme [?] with

the coefficient of the straight link set to zero, but with even/odd updating. The latter

feature renders the algorithm less memory consuming and seems to improve convergence.

1.5 Data Analysis procedure

Following the description of [9], let us introduce in this section the procedures used in

our simulations for the analysis of the data.

In numerical simulations the updating process creates a configuration sample

([φn], n = 1, 2 · · · , N). Some introductional concepts: we define primary quantities

A[φ] the quantities that can be directly obtained as averages.

An estimation of their expectation values is given by the sample average

Ā ≡ 1

N

N∑

n=1

A[φn] .

Averaging over an infinite number of sample or over an infinitely large sample gives the

ensemble average equal the expectation value

Ã = 〈A〉 .
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Such a quantities are in distinction to the secondary quantities, which are determined

by functions of the averages.

In the ideal case, when the configurations of a sample are all statistically independent,

the sample average Ā is normally distributed around the mean value Ã, with variance

σ2
Ā =

Ā2 − Ā2

N − 1
. (1.111)

The error so estimated in usually too optimistic, because during the updating process the

subsequent configurations are not really independent. This correlation in the sequence

of generated configurations is called autocorrelation.

Hence the true variance for a primary quantity is given by

σ2
Ā =

2τint,A
N

(Ā2 − Ā2) , (1.112)

where τint,A is the integrated autocorrelation time, defined [44]

τint,A =
1

2

Tcut∑

t=1

CA(t)

CA(0)
, (1.113)

where CA(t) is the correlation function:

CA(t) =
1

N − |t|
N−|t|∑

i=1

(Ai − Ā)(Ai+t − Ā) . (1.114)

The continuum limit of the lattice quantum field theory is always defined in proximity

of critical points as we have said in the previous sections. This causes a difficulty in

autocorrelations, because the correlation length ξ diverges near the critical points. This

leads to a divergence of the autocorrelation time according to the dynamical scaling law

τint,A ∝ ξz(A) , (1.115)

where z(A) is the dynamical critical exponent, which is characteristic of the updating

process and may depend on the observed quantity A. (See the next section for the

description of critical indices).

Another practical way of obtaining correct error estimates from an updating sequence

with autocorrelations is binning. Assuming that the sequence is long enough, one can
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build blocks of subsequences (called “bins”) and average the primary quantities first in

the bins. The obtained bin averages themselves can be considered as results of single

measurements, and so can be used to estimate the variance according the (1.111).

Jack-knife analysis

The estimate of the value and the errors for the secondary quantities can be obtained

using the jack-knife analysis. Consider a sample of independent measures of a primary

quantity A that can be indicated with A1, A2, · · · , ANs
. The sample average is

Ā ≡ 1

Ns

Ns∑

s=1

As . (1.116)

Hence the best estimate of a secondary quantity is ȳ = y(Ā). The error estimate for ȳ

can be derived from the jack-knife averages obtained by omitting a single measurement

from the sample in all possible ways:

A(J)s
≡ 1

Ns − 1

∑

r 6=s
Ar . (1.117)

The corresponding values of the secondary quantity are the jack-knife estimators

y(J)s
≡ y(A(J)s

) ,

with an average

ȳ(J) ≡ 1

Ns

Ns∑

s=1

y(J)s
. (1.118)

Finally, the variance of the estimators can be obtained as

σy(J)s
≡ Ns − 1

Ns

Ns∑

s=1

(y(J)s
− ȳ(J))2 . (1.119)

1.6 Critical Phenomena and Phase Transitions

We define phase of the matter [45] the states of the matter which can exists simulta-

neously in mutual equilibrium and can be in contact. We can also say that a phase is

43



a set of states of a macroscopic physical system that have relatively uniform chemical

properties.

In the follow, we report a briefly list of main elements about critical phenomena and

phase transition. For a more specific description on these arguments see [46, 47, 48].

According the Paul Ehrenfest classification [46] of the phase transitions, the transi-

tions can be classified according the degrees of non-analyticity of the free energy f . In

particular, the transitions are divided in groups of larger order depending on the lower

derivative of the free energy which is discontinuous at the transition point. According

to this classification, we call a first order phase transition, a transition which presents a

discontinuity in the first derivative of f , calculated respect to a thermodynamic variable.

We say that a transition is of second order, when there is a discontinuity in the

second derivative of f , and so on for transition of order larger than two.

In the modern classification scheme, phase transitions are divided into two broad

categories, named similarly to the Ehrenfest classes: first-order phase transitions are

those that involve a latent heat. During such a transition, a system either absorbs

or releases a fixed (and typically large) amount of energy; the second class of phase

transitions are continuous phase transitions, also called second order phase transitions.

These transitions have not an associated latent heat. Examples of second order phase

transitions are the ferromagnetic transition, the superfluid one and the Bose-Einstein

condensation. Phenomena associated with the continuous phase transitions are called

critical phenomena. 12

As said in the previous section, a phase transition is accompanied with a symmetry

breaking. The presence of symmetry breaking (or non-breaking) is very important. As

pointed by Landau [45], given any state of a system, one may unequivocally say whether

or not it possesses a given symmetry. Therefore, it cannot be possible to analytically

deform a state in one phase into a phase possessing a different symmetry.

To describe quantitatively the change in the structure of a body when it passes

12To describe critical phenomena, it has become customary to use the language of magnetic system,

although many systems to which the theory applies are non-magnetic [47].
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through the phase transition point, we can define a quantity, the order parameter. The

word order parameter is used [48] to denote a fluctuating variable the average value of

which provides a signature of the order or broken symmetry in the system. As said

in the previous section, an example of order parameter is the Polyakov loop for the

confinement-deconfinement transition in SU(3) pure gauge theory.

In such a way it takes non-zero (positive or negative) values in the unsymmetrical

phase and is zero in the symmetric one. A passage through a phase transition point of

the second kind has a continuous change of the order parameter to zero.

To extend the meaning of order parameter, it is useful to introduce another concept:

the range of correlations, that is the distance over which fluctuations in one region of

space are correlated or affected by those in another region. If two points are separated

by a distance larger than that range, then the different fluctuations at these two points

will be uncorrelated from each other.

It turns out that continuous phase transition can be characterized by parameters

known as critical exponents. Critical exponents are defined, examining the power law

behavior of a measurable physical quantity near the phase transition and they are related

by scaling relations.

It is a remarkable fact that phase transitions arising in different systems often possess

the same set of critical exponents. This phenomenon is known as universality. Such

systems are said to be in the universality class [20]. Universality is a prediction of the

renormalization group theory of the phase transitions, which states that thermodynamic

properties of a system near a phase transition depend only on a small number of features,

such as dimensionality and symmetry, and is insensitive to the underlying microscopic

properties of the system.

Let us conclude our brief summary about the phase transition, introducing the crit-

ical exponents ν and µ (which will be subject of next arguments). They describe the

properties of fluctuation of the order parameter, determining the dependence from the

temperature of the correlation length ξ. Without going into details (see [46]), we intro-
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duce the expression

ξ ∼ |ǫ|−ν , (1.120)

where

ǫ ≡ T − Tc
Tc

=
T

Tc
− 1 (1.121)

with Tc critical temperature.
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Chapter 2

The SU(3) pure gauge theory.

Screening masses and universality

A new state of the matter, the Quark Gluon Plasma (QGP) should appear at very high

temperature. In this phase one uses the plasma picture because it is characterized by an

interacting gas of essentially massive quasiparticle. While this description applies well

above the critical temperature Tc, it may not very useful near Tc. Recently an effective

theory [49], which is better situated near the critical temperature, was proposed; there,

in a mean field approximation, the free energy is expressed in terms of Polyakov loops

and the deconfined phase is described by a condensate of Z(N) spins. The role of a

global Z(N) symmetry, and its relationship with the confinement, was firstly introduced

by ’t Hooft [50].

2.1 The SU(3) pure gauge theory at finite tempera-

ture

The essential features of confinement, of the deconfinement phase transition at finite

temperature and of the deconfined phase in QCD can be studied without loss of relevant

dynamics in the regime of infinitely massive quarks or, equivalently, in the SU(3) pure

47



gauge theory.

The (3+1)d SU(3) pure gauge theory at finite temperature undergoes a confine-

ment/deconfinement phase transition associated with the breaking of the center of the

gauge group, Z(3) [51, 52]. This transition is weakly first order [53, 54, 55, 56, 57] and

the order parameter is the thermal Wilson line, also called Polyakov loop [51, 52], a

gauge invariant quantity defined as the trace of the product of the link variables along

topologically non-trivial loops winding around the time direction:

L(~n) = Tr
β̂∏

n4=1

U4(~n, n4) , (2.1)

where β̂ is the inverse temperature measured in units of the lattice spacing.

2.2 The Svetitsky-Yaffe conjecture. Universality

The deconfinement transition in the (d + 1)-dimensional SU(N) pure gauge theory at

finite temperature can be put in relation with the order/disorder [78] phase transition

of the d-dimensional Z(N) spin model through the Svetitsky-Yaffe conjecture [59]. Ac-

cording to this conjecture, when the transition is second order the gauge theory and

the spin model belong to the same universality class and therefore share critical indices,

amplitude ratios and correlation functions at criticality. There are so many numerical

evidences in favor of this conjecture – see, for instance, Refs. [60, 61, 62, 63, 64, 65, 66]

and, for a review, Ref. [67] – that there is no residual doubt about its validity.

In the case of first order phase transitions, as for the (3+1)d SU(3) pure gauge theory,

the Svetitsky-Yaffe conjecture is not applicable in strict sense, since the correlation

length keeps finite at the transition point and a universal behavior, independent of the

details of the microscopic interactions, cannot be established. Therefore there are no a

priori reasons why the critical dynamics of (3+1)d SU(3) and of its would-be counterpart

spin model, 3d Z(3) or 3-state Potts model [76, 77], should look similar. It turns out,

however, that for both these theories the phase transition is weakly first order, which

means that the correlation length at the transition point, although finite, becomes much
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larger than the lattice spacing. This leads to the expectation that the two theories may

have some long distance aspects in common and that some specific issues of SU(3) in

the transition region can be studied taking the 3d 3-state Potts model as an effective

model.

Since there are no critical indices to compare, a test of this possibility could be

based on the comparison of the spectrum of massive excitations of the 3d 3-state Potts

model in the broken phase near the transition at zero magnetic field with the spectrum

of the inverse decay lengths of Polyakov loop correlators in the (3+1)d SU(3) gauge

theory in the deconfined phase near the transition. If universality would apply in strict

sense, these spectra should exhibit the same pattern, as suggested by several numerical

determinations in the 3d Ising class [70, 71, 72, 73].

We determine the low-lying masses of the spectrum of the (3+1)d SU(3) pure gauge

theory at finite temperature in the deconfined phase near the transition [74] in two

different sectors of parity and orbital angular momentum, 0+ and 2+, and compare

their ratio with that of the corresponding massive excitations in the phase of broken

Z(3) symmetry of the 3d 3-state Potts model, determined in Ref. [75].

In fact, we extend our numerical analysis to temperatures far away from the tran-

sition temperature Tt in order to look for possible “scaling” of the fundamental masses

with temperature.

2.3 The 3d 3-state Potts model

The 3-d 3-states Potts model [76, 77] is a spin theory in which the fundamental degree

of freedom, si, defined in the site i of a 3-dimensional lattice, is an element of the Z(3)

group, i.e.

si = ei
2
3
πσi , σi = {0, 1, 2} . (2.2)

The Hamiltonian of the model is

H = −2

3
β
∑

〈ij〉
(s†isj + s†jsi) = −β

∑

〈ij〉
δσi,σj

, (2.3)
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up to an irrelevant constant. Here, β is the coupling in units of the temperature and

the sum is done over all the nearest-neighbor pairs of a cubic lattice with linear size L.

The Hamiltonian (2.3) is invariant under the Z(3) transformation

si −→ s′i = ei
2π
3
σsi , (2.4)

where σ is fixed at any of the values {0, 1, 2}. It is well known that this system undergoes

a weakly first order phase transition [78], associated with the spontaneous breaking of

the Z(3) symmetry. The order parameter of this transition is the magnetization,

〈S〉 = 〈 1

L3

∑

i

si〉 , (2.5)

which, in the thermodynamic limit, is zero above the transition temperature Tt (or below

the transition coupling βt) and takes a non-zero value below Tt (or above βt).

In presence of an external magnetic field it is convenient to work with an Hamiltonian

written in terms of the σi degrees of freedom, instead of the si ones. For a uniform

magnetic field along the direction σh with strength h in units of the temperature, the

Hamiltonian is

H = −β
∑

〈ij〉
δσi,σj

− h
∑

i

δσi,σh
≡ −βE − hM , (2.6)

where E is the internal energy and M is the magnetization. The magnetic field breaks

explicitly the Z(3) symmetry. However, first order transitions still occur for values of the

magnetic field strength h below a critical value hc, the transition temperature increasing

with increasing h. The line of first order phase transitions ends in a second order critical

point Pc = (Tc, hc) (see Fig. 2.1), belonging to the 3d Ising class [79]. The Hamiltonian

in the scaling region of the critical point Pc can be written as

H = −τẼ − ξM̃ , (2.7)

where Ẽ and M̃ are the Ising-like energy and magnetization operators and τ and ξ the

corresponding temperature-like and symmetry-breaking-like parameters. This means

that 〈M̃〉 is the new order parameter. Close enough to Pc, the following relations hold,

M̃ = M + sE , Ẽ = E + rM , (2.8)
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where the mixing parameters (r, s) have been determined numerically for several

lattice sizes L in Ref. [79]. The τ -direction identifies the first order line. In

Ref. [79] the location of the critical point Pc has been accurately determined: Pc =

(βc, hc)=(0.54938(2),0.000775(10)) or, equivalently, Pc = (τc, ξc)=(0.37182(2),0.25733(2)).

Figure 2.1: Qualitative phase diagram of the 3d 3-states Potts model in the (β, h)-

plane: ξ and τ are the symmetry-breaking and the temperature parameters of the Ising

theory (2.7).

2.4 The Polyakov loop Models

We consider also the screening masses resulting from correlators of the real parts and

of the imaginary parts of the Polyakov loop. These determinations can represent useful

benchmarks for effective models of the high-temperature phase of SU(3), such as those

based on mean-field theories of the Polyakov loop, suggested by R. Pisarski [49].

The finite temperature confinement transition may be viewed as a transition in

which the global center symmetry is spontaneously broken; the expectation value of

the Polyakov loop 〈l〉 is an order parameter for this symmetry, as introduced in the

previous chapter. Integrating out all degree of freedom of a theory, except this order

parameter, generates an effective scalar field theory S[l]eff for the order parameter,
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globally invariant under the center symmetry:

Z =
∫

[dU ]e−S[U ] =
∫

[dU ]e−S[U ]
∏∫

dl(~x)δ
(
l(~x) −

Nτ∏

τ=1

U4(~x, τ)
)

=
∫

[dl]e−S[l]eff ,

where we have used the following relations

∫
dl(~a)δ

(
l(~a) −

Nτ∏

τ=1

U4(~x, τ)
)

= 1
∫

[dl] =
∏

~x

∫
dl(~x) .

The effective theory, for an initial (d+1)-dimensional gauge theory, may be study work-

ing on the d-dimensional scalar field theory or a spin system. The finite temperature

transition in the gauge theory precisely corresponds to an order-disorder phase transi-

tion in the effective spin system [80]. The effective theory possesses only short-range

interactions [20].

For four or more colors, the importance of Polyakov loop was considered in [81].

Polyakov loops with higher Z(N) charge are easy to construct. We introduce the trace-

less part of L:

L̃ = L− l11 .

Then we define the charge-two Polyakov loop

l2 =
1

N
TrL̃2 ,

where

l2 → e2iφl2 .

There are two operators with charge-two l2 and l21. Continuing on,

l3 =
1

N
TrL̃3 ,

has charge three under the global Z(N) symmetry. Other charge-three operators are l31

and l1l2. The construction of operators with higher Z(N) charge proceeds similarly.

Effective theories for l(x) are dictated by symmetry gauge of the Polyakov loop. In

the following we discuss about effective theories for three colors [49].
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We construct a potential for the Polyakov loop, taking the simplest form consistent

with the global Z(3) symmetry:

V(ℓ) = −b2
2
|ℓ|2 − b3

3

(
ℓ3 + (ℓ∗)3

)
+

1

4
(|ℓ|)2 . (2.9)

The coefficient of the quartic term is chosen to simplify further results. At the minimum

of the potential, which we assume occurs for real ℓ, ∂V/∂ℓ = 0,

ℓ0 ≡ 〈ℓ〉 = b3 +
√
b2 + b23 . (2.10)

At high temperatures, b2 is adjusted so that ℓ0 ≈ 1; then b4 is adjusted to give the proper

value of the ideal gas term. Away from infinite temperature, in the spirit of mean field

we take the quantities b3 and b4 to be approximately constant with temperature. Given

the pressure, the dependence of b2 upon the temperature is then fixed.

While ℓ0 is the standard variable measured on the lattice, this is the bare value.

Single insertions of the Polyakov loop are regularized by introducing a renormalization

constant; the natural condition to fix the value of that constant is to require that the

renormalized Polyakov loop is unity at infinite temperature. If a lattice regulator is

used instead of dimensional regularization, though, one has to deal with divergences

∼ g2/(aT ), etc., which are most singular as the lattice spacing a→ 0.

For SU(3), the Polyakov loop is a complex number, with real, ℓr = Reℓ, and imag-

inary, ℓi = Imℓ, parts. By a global Z(3) rotation, we can assume that the vacuum

expectation value of ℓ, ℓ0, is real. Computing second derivatives, the mass squared for

the real part is:

m2
r =

∂2V
∂ℓ2r

= −b2 − 4b3ℓ0 + 3ℓ20 , (2.11)

while that for the imaginary part is:

m2
i =

∂2V
∂ℓ2i

= −b2 + 4b3ℓ0 + ℓ20 . (2.12)

When b3 6= 0, the transition is necessarily of first order. The transition occurs when

the nontrivial minimum is degenerate with the trivial minimum; i.e., when V(ℓ0) = 0.

Putting in the expression for ℓ0, we find

b2(T
+
c ) = −8

9
b23 , ℓ0(T

+
c ) =

4

3
b3 . (2.13)
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This is all trivial algebra, done in detail to avoid any possible confusion. The full

effective Lagrangian can then be computed. Besides the potential term, given above,

there is also the kinetic term, with a nonstandard normalization:

ZWT
2|~∂ℓ|2 , ZW =

3

g2

(
1 − .08

g2

4π
+ . . .

)
. (2.14)

The first term in ZW appears at the classical level, while the second arises from one

loop corrections, as computed by Wirstam [82].

Over large distances, x→ ∞, the two point functions of the Polyakov loop are

〈ℓr(x)ℓr(0)〉 − 〈ℓ〉2 ∼ exp(−m̃rx)

x
, (2.15)

〈ℓi(x)ℓi(0)〉 ∼ exp(−m̃ix)

x
. (2.16)

The two fields, ℓr and ℓi, do not mix to the order at which we work. The masses which

enter into the correlation functions are

m̃2
r,i =

b4
ZW

m2
r,iT

2 . (2.17)

For two colors, the Polyakov loop is real, and one can only measure one mass. Then,

without knowing both the coupling constant and the wave function renormalization

constant ZW , there is no firm prediction.

This is not true for three colors. Then one can form the ratio of the masses for the

real and imaginary parts of the Polyakov loop. The constants b4 and ZW drop out, and

one has a unique relation between this ratio of masses and the pressure. In particular,

at the point of transition, using the previous results we find that

m̃i

m̃r
= 3 , T = T+

c . (2.18)

It is dependent upon the assumed form of the potential for V(ℓ), and would change if

terms such as ∼ (|ℓ|2)3 were included.

These two point functions in the Polyakov Loop Model are very different from those of

ordinary perturbation theory. In perturbation theory, ℓ0 is near unity, and correlations
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are determined by multiple exchanges of A0 fields. The mass of the A0 field is the

Debye mass, m2
D ∼ g2T 2. Expanding the exponentials, the real part of the Polyakov

loop couples to ∼ TrA2
0, while that for the imaginary part couples to ∼ TrA3

0. Thus

over large distances, x→ ∞,

〈ℓr(x)ℓr(0)〉 − 〈ℓ〉2 ∼ exp(−2mDx)

x2
, (2.19)

〈ℓi(x)ℓi(0)〉 ∼ exp(−3mDx)

x3
. (2.20)

Notice that the prefactors in front differ markedly from those of the Polyakov Loop

Model; instead of 1/x, they are 1/x2 and 1/x3, respectively, with the power of 1/x

measuring the number of quanta exchanged.

If we ignore the difference in prefactors, even so the perturbative result for the mass

ratio of (2.18) is not 3, but 3/2.

Measurements of the two point function of the real part of the Polyakov Loop have

been carried out by Kaczmarek et al. [57]. From the two point function of Polyakov

loops, which is presumably dominated by that for the real part, the mass drops by about

a factor of ten, from m/T ∼ 2.5 at T = 2Tc, to perhaps m/T ∼ .25 at T+
c . We are not

aware of any measurements of the imaginary part close to Tc.

There are also measurements by Bialas et al. for a SU(3) gauge theory in 2 + 1

dimensions [83]. While the critical behavior in this model is that of a two dimensional

system, and so can have characteristics special to a low dimension, for the Polyakov

Loop Model in mean field theory, our predictions remain the same. These authors find

that the ratio m̃i/m̃r does increase from 3/2 as the temperature approaches Tc.

In fact, the Polyakov Loop Model must be inapplicable at some temperature not too

far above Tc. At high temperature, where ℓ0 ≈ 1, the above formula give b2 = 1 − 2b3,

and
m̃i

m̃r
=

√
3b3

1 − b3
, T → ∞ . (2.21)

The constant b3 is not well determined, but for b3 < 3/7, the above ratio is less than

the perturbative value of 3/2.
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They propose [84] that the two point function of Polyakov loops can be used as a

measure of the regime in which the Polyakov Loop Model applies, and the regime where

perturbation theory applies.

What if the ratio of masses, (2.18), is wrong even at Tc? Besides including terms

of higher order in the potential, it may also be necessary to include the charge-two

Polyakov loop, ℓ2. Since Z(3) is a cyclic symmetry, a field with charge-two is the same

as one with charge minus one. The couplings of this loop with itself are identical to

the couplings of the usual Polyakov loop, since the sign of the charge does not matter.

Unlike the charge-one Polyakov loop, however, the charge-two loop should always have a

positive mass squared, in order to avoid condensation which breaks SU(3) → SU(2) [85].

Thus one would assume that the charge-two field, as a massive field, can be ignored.

Nevertheless, the following coupling is Z(3) symmetric:

ℓ1ℓ2 + ℓ∗1ℓ
∗
2 . (2.22)

This term mixes the charge-one and charge-two Polyakov loops, ∼ TrLTrL2 + . . .. Its

coupling constant is directly measurable; if small, the charge-two Polyakov loop can be

ignored, and our prediction should hold.

Lastly, they note that the Polyakov loop may well couple weakly to other operators.

Thus while in principle it should dominate all correlation functions at large distances

(if it is the lightest state), this may be very difficult to see unless the operator couples

strongly.

2.5 Screening masses from Polyakov loop correla-

tors

We define the general procedure for extracting screening masses in (3+1)d SU(3) at

finite temperature from correlators of the Polyakov loop,

P (x, y, z) = Tr
Nt∏

nt=1

U4(x, y, z, nta) , (2.23)
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where Nt is the number of lattice sizes in the temporal direction and a is the lattice

spacing.

The point-point connected correlation function is defined as

Γi0(r) = 〈P †
i Pi0〉 − 〈P †

i 〉〈Pi0〉 , (2.24)

where i and i0 are the indices of sites and r is the distance between them. The large-r

behavior of the point-point connected correlation function is determined by the correla-

tion length of the theory, ξ0, or, equivalently, by its inverse, the fundamental mass. In

order to extract the fundamental mass it is convenient to define the wall-wall connected

correlation function, since numerical data in this case can be directly compared with

exponentials in r, without any power prefactor.

The 0+-channel connected wall-wall correlator in the z-direction is defined as

G(|z1 − z2|) = Re〈P̄ (z1)P̄ (z2)
†〉 − |〈P 〉|2 , (2.25)

where

P̄ (z) =
1

NxNy

Nx∑

nx=1

Ny∑

ny=1

P (nxa, nya, z) , (2.26)

represents the Polyakov loop averaged over the xy-plane at a given z. Here and in the

following, Ni (i = x, y, z) is the number of lattice sites in the i-direction. The wall

average implies the projection at zero momentum in the xy-plane.

The correlation function (2.25) takes contribution from all the screening masses in

the 0+ channel. In fact, the general large distance behavior for the function G(|z1−z2|),
in an infinite lattice, is:

G(|z1 − z2|) =
∑

n

ane
−mn|z1−z2| , (2.27)

where m0 is the fundamental mass, while m1, m2, ... are higher masses with the same

angular momentum and parity (0+) quantum numbers of the fundamental mass. On a

periodic lattice the above equation must be modified by the inclusion of the so called

“echo” term:

G(|z1 − z2|) =
∑

n

an

[
e−mn|z1−z2| + e−mn(Nz−|z1−z2|)

]
. (2.28)
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The fundamental mass in a definite channel can be extracted from wall-wall correlators

by looking for a plateau of the effective mass,

meff(z) = ln
G(z − 1)

G(z)
(2.29)

at large distances. For the 2+-channel, we used the variational method [86, 87], which

consists in defining several wall-averaged operators with 2+ quantum numbers and in

building the matrix of cross-correlations between them. The eigenvalues of this matrix

are single exponentials of the effective masses in the given channel. The variational

method is usually adopted to determine massive excitations above the fundamental one

in the given channel. In our case, however, it turned out that this method improved the

determination of the fundamental mass in the 2+-channel, but did not lead to determine

higher excitations. Our choice of wall-averaged operators in the 2+-channel is inspired

by Ref. [88] and reads

P̄n(z) =
1

NxNy

Nx∑

nx=1

Ny∑

ny=1

P (nxa, nya, z)
[
P (nxa+ na, nya, z) − P (nxa, nya + na, z)

]
.

(2.30)

In most cases we have taken 8 operators, corresponding to different values of n, with

the largest n almost reaching the spatial lattice size Nx. We have determined the 0+

and the 2+ fundamental masses in lattice units, m̂0+ and m̂2+ , over a wide interval of

temperatures above the transition temperature Tt of (3+1)d SU(3) and have studied

- the extent of the region above Tt over which the fundamental correlation length

ξ̂0 = 1/m̂0+ scales with the temperature with the appropriate critical exponent for a

first order phase transition, ν = 1/3 [89];

- if m̂2+ has the same scaling behavior as m̂0+ ;

- how the ratio m2+/m0+ compares with the ratio of the corresponding excitations

in the broken phase of 3d 3-state Potts model near the transition, m2+/m0+ = 2.43(10),

found in Ref. [75] on a 483 lattice.

We consider also correlators of the (wall-averaged) real and imaginary parts of the

Polyakov loop, defined as

GR(|z1 − z2|) = 〈ReP̄ (z1)ReP̄ (z2)〉 − 〈ReP̄ (z1)〉〈ReP̄ (z2)〉 , (2.31)
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GI(|z1 − z2|) = 〈ImP̄ (z1)ImP̄ (z2)〉 . (2.32)

The corresponding screening masses, m̂R and m̂I , can be extracted in the same way as

for the 0+ mass.

We have studied the ratio mI/mR over a wide interval of temperatures above the

transition temperature Tt of (3+1)d SU(3) and seen how it compares with the predic-

tion from high-temperature perturbation theory, according to which it should be equal

to 3/2 [90, 91], and with the prediction from the mean-field Polyakov loop model of

Ref. [84], according to which it should be equal to 3 in the transition region. The inter-

play between the two regimes should delimit the region where mean-field Polyakov loop

models should be effective.

2.6 Numerical results

We used the Wilson lattice action and generated Monte Carlo configurations by a com-

bination of the modified Metropolis algorithm [24] with over-relaxation on SU(2) sub-

groups [92]. The error analysis was performed by the jackknife method over bins at

different blocking levels. We performed our simulations on a 163×4 lattice, for which

βt = 5.6908(2) [93], over an interval of β values ranging from 5.69 to 9.0.

Screening masses are determined from the plateau of meff(z) as a function of the

wall separation z. In each case, the plateau mass is taken as the effective mass (with its

error) belonging to the plateau and having the minimal uncertainty. We define plateau

the largest set of consecutive data points, consistent with each other within 1σ. This

procedure is more conservative than identifying the plateau mass and its error as the

results of a fit with a constant on the effective masses meff(z), for large enough z.

Just above the critical value βt we find a large correlation length, which is not of

physical relevance. It is instead a genuine finite size effect [78] related to tunneling

between degenerate vacua. This effect disappears by going to larger lattice volumes or

moving away from βt in the deconfined phase. Indeed, by increasing β one can see that

the symmetric phase becomes less and less important in the Monte Carlo ensemble, up
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to disappearance; then, for large enough β, also the structure with three-degenerate Z(3)

sectors disappears, leaving only the real sector of Z(3). This is illustrated in Fig. 2.2

where the scatter plot of the Polyakov loop is shown for three representative β values.

Tunneling can occur between the symmetric and the broken phase, and between the

three degenerate vacua of the deconfined phase. The former survives only in a short

range of temperatures around βt, and at β ≃ 5.71 has almost completely disappeared,

as we can see from Fig. 2.2(b). When tunneling is active, the correlation function has

the following expression [78]:

G(|z1 − z2|) ∼ a0e
−m0|z1−z2| + b0e

−mt|z1−z2| , (2.33)

where mt is the inverse of the tunneling correlation length and is generally much smaller

than the fundamental mass m0 and therefore behaves as a constant additive term in the

correlation function. In (2.33) we have taken into account only the lowest masses in

the spectrum and omitted the “echo” terms. The dependence on mt in the correlation

function can be removed by extracting the effective mass by use of the combination

meff(z) = ln
G(z) −G(z + 1)

G(z + 1) −G(z + 2)
. (2.34)

For β ≥ 5.71 the only active tunneling is among the three broken minima. However,

the separation among them is so clear (see, for instance, Fig. 2.3(a)), that it is possible

to “rotate” unambiguously all the configurations to the real sector (see Fig. 2.3(b)) and

to treat them on the same ground.

We have performed simulations for several values of β in the deconfined phase, up to

β = 9.0, with a statistics of a few hundred thousand “measurements” at each β value.

Simulations have been performed on the PC cluster “Majorana” of the INFN Group of

Cosenza.

As discussed in the Introduction and in Section 2.5, our typical observable is a screen-

ing mass in a given channel of angular momentum and parity, identified as the plateau

value in the plot of the effective mass as a function of the separation z between two-

dimensional walls. The procedure to determine the plateau value has been illustrated
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(a)

(b)

(c)

Figure 2.2: Scatter plots of the real and imaginary part of the Polyakov loop at (a)

β = 5.69 ≃ βt, (b) β = 5.71 and (c) β = 5.74.

61



(a)

(b)

Figure 2.3: (a) Typical scatter plot of the complex order parameter P for β larger than

5.705 on a 163 × 4 lattice. There are no states in the symmetric phase, but tunneling

survives between the three broken minima.

(b) Same as (a) with the tunneling between broken minima removed by the “rotation”

to the real phase.
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in Section 2.5. A typical example of the behavior of the effective mass with z is shown

in Fig. 2.4 for the 0+ and the 2+ channels and in Fig. 2.5 for the masses m̂I and m̂R

extracted from Eqs. (2.31) and (2.32).
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Figure 2.4: Effective mass in the 0+ (a) and the 2+ (b) channel as a function of the

separation between walls on the (x, y) plane at β = 5.74.
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Figure 2.5: Effective mass m̂I (a) and m̂R (b) as a function of the separation between

walls on the (x, y) plane at β = 5.74.

The deviation from the plateau value at small z can be attributed to lattice artifacts

and to the possible effect of other states with excited masses in the same channel. Our

determinations refer only to the fundamental masses in a given channel. The behavior

with β of the fundamental masses in the 0+ and the 2+ channels is given in Fig. 2.6.
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Figure 2.6: Screening mass in the 0+ (a) and in the 2+ (b) channel as a function of β.

In Fig. 2.7 we show instead the masses m̂R and m̂I for varying β.
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Figure 2.7: Screening mass m̂I (a) and m̂R (b) as a function of β.

A summary of all our results is presented in Table 2.1. We observe from Table 2.1 that

m̂0+ and m̂R are consistent within statistical errors, this indicating that the Polyakov

loop correlation is dominated by the correlation between the real parts. Our results for

m̂0+ at β = 5.70 and β = 5.90 (T ≃ 3Tt/2) can be compared with the corresponding

determinations on a 4 × 82 × 16 lattice of Ref. [94], which give 0.27+0.01
−0.02 and 0.64(1),

respectively. The ∼15% disagreement can be taken as a measure of the systematic effects

involved in the whole procedure for the determination of masses. We cannot make a

direct comparison with the determination for m̂0+ at β = 5.93 on a 163 × 4 lattice of
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Ref. [95], since we did not perform simulations at this value of β. We observe, however,

that the determination of Ref. [95], which gives 0.73(5) according to our definition of

plateau mass value, agrees with the results for the two adjacent β values in our Table,

β = 5.90 and β = 9.0.

We can see that the fundamental mass in the 0+ channel, as well as m̂R, becomes

much smaller than 1 at βt, as expected for a weakly first order phase transition. In the

cases of m̂0+ and of m̂R,I we have made some determinations even below βt (see Figs. 2.6

and 2.7), where the concept of “screening” does not apply. It turns out, as it must be,

that masses in lattice units take their minimum value just at βt, where there is a “cusp”

in the β-dependence. Such a behavior was observed also by the authors of Ref. [94],

whose results, when the comparison is possible, agree with ours.

2.6.1 Scaling behavior and comparison with the Potts model

In order to estimate the extension of the scaling region, we have compared our data

with the scaling law for first order phase transitions,
(
β1 − βt
β2 − βt

)ν
∼ m̂0+(β1)

m̂0+(β2)
, (2.35)

where ν = 1/3 [89] and m̂0+(β1) and m̂0+(β2) are the fundamental masses in the 0+

channel at β1 and β2, respectively. One can use the scaling law (2.35) instead of the

correct one (
T1 − Tt
T2 − Tt

)ν
∼ m̂0+(T1)

m̂0+(T2)
, (2.36)

in an interval around Tt short enough that the linear approximation T1 − Tt ∝ β1 − βt

holds. We have chosen β1 = 5.72 and varied β2 from βt to β = 9.0.

Fig. 2.8 shows that the scaling region extends at least up to β ≃ 5.78. We would

like to stress that we have found here a scaling with exponent ν = 1/3 using connected

correlation functions, although in Ref. [89] it is noted that this exponent should apply

to the standard correlation function.

Then, we have considered the β-dependence of the ratio m2+/m0+ , shown in Fig. 2.9.

We can see that this ratio is roughly constant in the scaling region, thus suggesting that
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Figure 2.8: Comparison between the scaling function [(β1−βt)/(β−βt)]1/3 and the mass

ratio m0+(β1)/m0+(β) for varying β, with β1=5.72.

m̂2+ scales similarly to m̂0+ . Moreover, this ratio is in rough agreement with the ratio

between the lowest massive excitations in the same channels in the broken phase of

the 3d 3-state Potts model. This suggests that, at least as far as screening effects

are concerned, the 3d 3-state Potts model in the broken phase near the transition can

be taken as an approximate description of (3+1)d SU(3) pure gauge theory at finite

temperature in the deconfined phase near transition.

2.6.2 Comparison with Polyakov loop models

We have calculated the ratio mI/mR for β ranging from 5.695 up to 9.0, which means

that we have considered this ratio also across the transition temperature. We observe

from Fig. 2.10 that this ratio is compatible with 3/2 at the largest β values considered, in

agreement with the high-temperature perturbation theory. Then, when the temperature

is lowered towards the transition, this ratio goes up to a value compatible with 3, in

agreement with the Polyakov loop model of Ref. [84], which contains only quadratic,

cubic and quartic powers of the Polyakov loop, i.e. the minimum number of terms

required in order to be compatible with a first order phase transition.
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2.7 Conclusions

We have studied some screening masses of the (3+1)d SU(3) pure gauge theory from

Polyakov loop correlators in a large interval of temperatures above the deconfinement

transition.

In particular, we have considered the lowest masses in the 0+ and the 2+ channels of

angular momentum and parity and the screening masses resulting from the correlation

between the real parts and between the imaginary parts of the Polyakov loop.

The behavior of the ratio between the masses in the 0+ and the 2+ channels with the

temperature suggests that they have a common scaling behavior, in agreement with a

(weakly) first order phase transition, above the transition temperature. Moreover, this

ratio is in fair agreement with the ratio of the lowest massive excitations in the same

channels of the 3d 3-state Potts model in the broken phase. This suggests that the

Svetitsky-Yaffe conjecture, valid in strict sense only for continuous phase transitions,

can play some role also for (3+1)d SU(3) at finite temperature.

The dependence on the temperature of the ratio between the screening masses from

the correlation between the real parts and between the imaginary parts of the Polyakov

loop shows a nice interplay between the high-temperature regime, where perturbation

theory applies, and the transition regime, where mean-field effective Polyakov loop mod-

els could apply, except for a sudden drop very close to the transition for which we could

not find any explanation.
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Table 2.1: Summary of the results for the fundamental masses in the 0+ and 2+ channels,

for m̂I and m̂R and for some mass ratios.

β m̂0+ m̂2+ m2+/m0+ m̂I m̂R mI/mR stat.

5.67 0.2870(46) - - - 0.2793(65) - 750k

5.68 0.2293(67) - - - 0.2226(97) - 250k

5.69 0.175(10) 0.81(10) 4.61(86) - 0.176(14) - 770k

5.695 0.251(12) 1.161(38) 4.63(38) 0.65(10) 0.205(37) 3.07(87) 320k

5.70 0.3088(80) 0.94(11) 3.04(45) 0.883(47) 0.307(13) 2.87(27) 770k

5.705 0.342(17) 1.09(12) 3.20(50) 1.056(23) 0.352(23) 2.86(15) 750k

5.71 0.3615(30) 1.31(18) 3.63(53) 1.092(54) 0.386(23) 2.98(19) 770k

5.715 0.4054(51) 1.25(30) 3.08(77) 1.105(40) 0.4129(61) 2.68(14) 250k

5.717 0.4301(46) 1.452(49) 3.38(15) 1.252(15) 0.4237(43) 2.955(65) 320k

5.72 0.4319(69) 1.500(80) 3.47(24) 1.164(58) 0.4296(76) 2.71(18) 770k

5.73 0.4811(92) 1.29(17) 2.69(40) 1.173(39) 0.4762(92) 2.46(13) 170k

5.74 0.5267(52) 1.44(15) 2.73(31) 1.035(98) 0.5241(44) 1.98(20) 770k

5.75 0.5592(50) 1.695(77) 3.03(17) 1.06(11) 0.5562(49) 1.91(22) 770k

5.76 0.5857(65) 1.849(39) 3.16(10) 1.227(28) 0.5880(36) 2.087(61) 770k

5.77 0.620(14) 1.83(13) 2.95(28) 1.421(26) 0.6173(73) 2.303(70) 60k

5.78 0.650(10) 1.79(12) 2.76(23) 1.27(12) 0.635(10) 2.00(23) 60k

5.81 0.6742(99) 1.812(77) 2.69(15) 1.39(10) 0.671(10) 2.07(18) 190k

5.85 0.718(10) 1.83(12) 2.55(21) 1.34(13) 0.7042(87) 1.90(21) 110k

5.89 0.697(29) 2.21(13) 3.17(32) 1.299(90) 0.686(29) 1.89(21) 190k

5.90 0.734(17) 2.09(18) 2.85(31) 1.284(98) 0.7415(87) 1.73(15) 215k

9.0 0.671(19) 1.30(57) 1.93(91) 1.10(11) 0.670(19) 1.64(23) 200k
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Chapter 3

The SU(3) pure gauge theory. Flux

tubes in confined and deconfined

phases

Quark confinement in QCD is a central phenomenon in the particle physics, which has

continued to intrigue people for many years. Much insight has already been obtained

from different approaches to the problem. A satisfying solution would be to set up an

approximate vacuum state which confines color charges. In this way one could derive an

effective action which describes the long-distance properties of QCD [96]. We have at

our disposal a framework in which we can do non-perturbative calculations, namely the

lattice discretization of gauge theories. Since a typical Monte Carlo simulation generates

vacuum configurations, one expects to gain information on the non-perturbative vacuum

structure.

At the end of 1975 G. ’t Hooft [97] and S. Mandelstam [98] proposed that the con-

fining vacuum of QCD behaves as a coherent state of color magnetic monopoles. This

is equivalent to say that the vacuum of QCD is a magnetic (dual) superconductor.

This fascinating proposal offers a picture of confinement whose physics can be clearly

extracted. As a matter of fact, the dual Meissner effect causes the formation of chromo-
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electric flux tubes between chromoelectric charges leading to a linear rising potential.

It is worthwhile to discuss briefly the ’t Hooft’s proposal 1.

3.1 A magnetic (dual) superconductivity scenario

In the usual electric superconductor the corresponding solution of Ginzburg-Landau

equations was first found by Abrikosov [99], which was later revived in field theory [100]

and became known as Abrikosov-Nielsen-Olesen vertex. In the “dual superconductor”

picture of the QCD vacuum properties of the QCD confining string and the result-

ing heavy quark potentials have been discussed extensively: see e.g. reviews by M.

Baker [101], and more recently by G. Ripka [102] (with exhaustive list for further refer-

ences).

Lattice studies (e.g. [103]) provided substantial support to these works. Flux tube

behavior at finite T was also extensively discussed: in particular Polyakov [80] has

shown how exponential growth of flux tube entropy leads to vanishing of the effective

tension in free energy F (r, T ) and Hagedorn-like phase transition. This scenario would

predict gradual deconfinement with the string tension vanishing at Tc: in fact for Nc > 2

it jumps to zero. Deconfinement transition for various number of colors Nc was studies

in detail: see e.g. [104] where Nc up to 12 was studied. Working with metastable

“overheated” confined phase it was found that the Hagedorn-like transition (at which

the string tension of the free energy vanishes σ(T ) → 0) can be approximately located

at a universal (Nc independent) TH/Tc = 1.116(9).

Heating usual superconductors above the critical temperature destroys not only the

condensate but also Cooper pairs themselves. Although normal (metallic) phase is a

plasma of electric objects (electrons), but their characteristic momenta p ∼ pF are orders

of magnitude larger than momenta of Cooper pairs, thus there is no analog of Abrikosov

vortexes in the normal phase. This does not happen because presence of a quantum

condensate is that necessary for flux tube’s existence: a counterexample can be provided

1This point is thoroughly discussed in the second paper [50].

71



e.g. by quite spectacular magnetic flux tubes in solar plasma 2. Whether charges are

Bose-condensed or not, their scattering on a flux tube may provide a pressure which

may lead to its stabilization. It is just a matter of certain quantitative condition for

tube stabilization being met.

The investigation of the dual superconductivity hypothesis in pure SU(2) lattice

gauge theory was done by [105]. They focus on the dual Meissner effect by analyzing

the distribution of the color fields due to a static quark-antiquark pair finding evidence of

the dual Meissner effect both in the maximally Abelian gauge and without gauge fixing.

Their results suggest that the London penetration length is a physical gauge-invariant

quantity.

We continue their work, using the same technique for the more interesting case of

SU(3) pure gauge theory, studying the chromoelectric distribution at zero and at a finite

temperature.

3.2 Strongly coupled plasma with electric magnetic

charges

In 2006 J.Liao and E. Shuryak [106] proposed a different approach, which does not put

confinement phenomenon at the center of the discussion. In the traditional one, the

temperature regimes are divided into two basic phases: (i) confined or hadronic phase

at T < Tc, and (ii) deconfined or quark-gluon plasma (QGP) phase at T > Tc.

They, on the other hand, focus on the competition of electrically and magnetically

quasiparticles (EQPs and MQPs, respectively) and divide the phase diagram differently,

into (i) the “magnetically dominated” region at T < TE=M and (ii) “electrically domi-

nated” one at T > TE=M . In their opinion, the key aspect of the physics involved is the

coupling strength of both interactions. So, a divider is some E-M equilibrium region at

2They have very large fluxes and sizes, and thus a macroscopic theory – magnetohydrodynamics –

can be used for their description, which unfortunately it is not applicable in our case, for microscopically

small tubes.
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intermediate T -µ. Since it does not correspond to a singular line, one can define it in

various ways: the most direct one is to use a condition that electric (e) and magnetic

(g) couplings are equal

e2/h̄c = g2/h̄c = 1/2 . (3.1)

The last equality follows from the celebrated Dirac quantization condition [107]

eg

h̄c
=
n

2
, (3.2)

with n being an integer, put to 1 from now on.

Besides equal couplings, the equilibrium region is also presumably characterized by

comparable densities as well as masses of both electric and magnetic quasiparticles 3.

The “magnetic-dominated” low-T (and low-µ) region (i) can in turn be subdivided

into the confining part (i-a) in which electric field is confined into quantized flux tubes

surrounded by the condensate of MQPs, forming t’Hooft-Mandelstamm “dual supercon-

ductor” [108], and a new “postconfinement” region (i-b) at Tc < T < TE=M in which

EQPs are still strongly coupled (correlated) and still connected by the electric flux

tubes. They believe this picture better corresponds to a situation in which string-related

physics is by no means terminated at T = Tc: rather it is at its maximum there. Then

if leaving this “magnetic-dominated” region and passing through the equilibrium region

by increase of T and/or µ, we enter either the high-T “electric-dominated” QGP or a

color-electric superconductor at high-µ replacing the dual superconductor (with diquark

condensate taking place of monopole condensate). A phase diagram explaining this view-

point pictorially is shown in Fig. 3.1. In this scenario, when heated slightly above Tc,

the monopole condensate changes into a non-condensed ensemble of monopoles, which

is roughly twice less dense. Yet it is still capable of supporting flux tubes survived from

vacuum, and only around T = 1.3Tc the density of monopoles drops so low that there

will not be flux tube any more. At very high temperature the electric sector becomes

3Let us however remind the reader that the E-M duality is of course not exact, in particular EQPs

are gluons and quarks with spin 1 and 1/2 while MQPs are spherically symmetric “hedgehogs” without

any spin.
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Figure 3.1: A schematic phase diagram on a (“compactified”) plane of temperature

and baryonic chemical potential T − µ. The (blue) shaded region shows “magnet-

ically dominated” region g < e, which includes the e-confined hadronic phase as

well as “postconfined” part of the QGP domain. Light region includes “electrically

dominated” part of QGP and also color superconductivity (CS) region, which has

e-charged diquark condensates and therefore obviously m-confined. The dashed line

called “e=g line” is the line of electric-magnetic equilibrium. The solid lines indi-

cate true phase transitions, while the dash-dotted line is a deconfinement cross-over line.
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more and more dominant until eventually small number of heavy monopoles become

embedded in the perturbative electric plasma.

This picture, among many other new viewpoints, opens a completely new perspective

on the role of electric flux tubes: they should not disappear at T = Tc but are rather at

their maximum.

However, in a previous work [109] the field distributions around a static qq̄ pair

at finite temperature have been studied using Polyakov loop plaquette correlations at

physical quark separations up to 1.4fm. From the profiles at various T they found that

the physical width of the flux tube decreases when T increases. Their conclusion is

that the fall of the width and height with the temperature at the same time shows the

gradual disappearance of the flux tube when the temperature approaches Tc.

3.3 Lattice determination of the Flux Tube

At T = 0 static potential between heavy quarks is the sum of the Coulomb and the

confining ∼ σ(T = 0)r potentials. At nonzero T expectations of the Polyakov loops with

a static quark pair define the free energy potential F (T, r), which at the deconfinement

point T = Tc has vanishing string tension σ(Tc) = 0.

However [80] the energy or entropy separately 4 continue to have linear part in the

“postconfinement” domain Tc < T < TE=M , as follows from lattice data [110]. These

lattice studies reveal that energy and entropy associated with a static quark pair are

strongly peaked exactly at the transition temperature (see Fig. 3.2). Quite shockingly,

the tension term in E(T = Tc, r) is not smaller but actually twice larger than the zero

temperature tension σ(T = 0)! The total energy added to a pair till it finally breaks into

two objects is surprisingly large: E(T = Tc, r → ∞) ∼ 4 GeV, while the corresponding

entropy as large as S(T = Tc, r → ∞) ∼ 20.

Where all these huge energy and entropy come from, at Tc and in the “postconfine-

ment” domain? Linear dependence on r hints that it must still be a string-like object

4Related as usual by F = E − TS, S = −∂F/∂T .
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Figure 3.2: (left) The contribution TS∞(T ) appearing in the free energy, F∞(T ) =

U∞(T ) − TS∞(T ), calculated in 2-flavour QCD as function of T/Tc. They also show

results from 3-flavour QCD for T ≥ 1.1Tc [111] and quenched QCD [112]. (right) The

internal energy U∞(T ) versus T/Tc calculated in 2-flavour QCD. The corresponding free

energy, F∞(T ), calculated in 2-flavour QCD is also shown as solid line. They again

indicate in this figure the energy at which string breaking is expected to take place at

T = 0, V (rbreaking) ≃ 1000 − 1200 MeV (dashed lines), using rbreaking = 1.2 − 1.4

fm [113].
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connecting two static charges. Can it be that magnetically dominant plasma admits

(metastable) electric flux tubes solutions? The answer to this question was given in a

recent paper [114]. Indeed, whether monopoles are condensed or not is not so crucial:

what is important is the relation between their energy and the repulsive potential of

the flux tube. At high enough T flux tube solution disappears, and the critical condi-

tion they found roughly does correspond to the upper limit of the “postconfinement”

domain.

3.3.1 Zero temperature

According to Ref. [34, 115], one can explore the field configurations produced by the

quark-antiquark pair by measuring a suitable connected correlation function (Fig. 3.3).

For the SU(3) case it holds:

ρW =

〈
Tr
(
WLUPL

†
)〉

〈Tr(W )〉 − 1

3

〈Tr(UP )Tr(W )〉
〈Tr(W )〉 , (3.3)

where UP = Uµν(x) is the plaquette in the (µ, ν) plane and W is the Wilson loop. The

plaquette is connected to the Wilson loop by a Schwinger line L (see Fig. 3.3). Note

that the correlation function (3.8) is sensitive to the field strength rather than to the

square of the field strength [116]:

ρW
a→0→ a2g

[
〈Fµν〉qq̄ − 〈Fµν〉0

]
. (3.4)

According to Eq. (3.4) we define the color field strength tensor as:

Fµν(x) =

√
β

2
ρW (x) . (3.5)

By varying the distance and the orientation of the plaquette UP with respect to the

Wilson loop W , one can scan the color field distribution of the flux tube.

The main advantage of using the connected correlator (3.8) resides in the fact that

the connected correlators are sensitive to the field strength rather than to the square of

the field strength. As a consequence we are able to detect a sizeable signal even with
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Figure 3.3: The connected correlator 3.8 between the plaquette Up and the Wilson loop.

The subtraction appearing in the definition of correlator is not explicitly drawn.

relatively low statistics. It turns out that the flux tube color fields is composed by the

chromoelectric component parallel to the line joining the static charges. Moreover the

longitudinal chromoelectric field is almost constant far from the color sources, and it

decreases rapidly in the directions transverse to the line connecting the charges. As a

matter of fact we found that the transverse distribution of the longitudinal chromoelec-

tric field behaves in accord with the dual Meissner effect. This allows us to determine

the London penetration length.

We performed numerical simulations with Wilson action and periodic boundary con-

ditions using an overrelaxed Metropolis algorithm. Our data refer to 124 and 164 lat-

tices. To evaluate the correlator Eq. (3.8) we used square Wilson loop LW × LW , with

LW = L/2 (L being the lattice size).

In order to reduce the quantum fluctuations we adopted the controlled cooling al-

gorithm [33], described in the chapter 1. It is known [117] that by cooling in a smooth

way equilibrium configurations, quantum fluctuations are reduced by a few orders of

magnitude, while the string tension survives and shows a plateau.

The cooling technique allows us to disentangle the signal from the noise with a

relatively small statistics. After discarding about 2000 sweeps to insure thermalization
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we collect measurements on configurations for different values of β. Firstly we checked

how many cooling sweeps assure a good signal. In Fig. 3.4 we report our results for

the field strength tensor Fµν(xl, xt), where the coordinates xl, xt measure respectively

the distance from the middle point between quark and antiquark (which corresponds to

the center of the spatial side of the Wilson loop W in Eq. (3.8)) and the distance out

of the plane defined by the Wilson loop. The entries in Fig. 3.4 refer to measurements

-1 0 1 2 3 4 5
x t
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Figure 3.4: The field strength tensor Fµν(xl, xt) evaluated at xl = 0 on a 124 lattice at

β = 6.0, using Wilson loops of size 4 × 4 in Eq. (3.8).

of the field strength tensor (actually of the components of the electric and magnetic

fields) taken in the middle of the flux tube (xl = 0) with 10 cooling steps at β = 6.0

on the 124 lattice, using a square Wilson loop W of size 4 × 4. Our results show that

ρW is sizeable when Up and W are in parallel planes. This corresponds to measure the

component El of the chromoelectric field directed along the line joining the qq̄ pair (Ex

in Fig. 3.4). Moreover we see that El(xl, xt) decreases rapidly in the transverse direction

xt. In Fig. 3.5 we display the transverse distribution of the longitudinal chromoelectric

field along the flux tube for a lattice of 164 and a beta value of 6.0. The static color
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Figure 3.5: The xl-dependence of the transverse profile of the longitudinal chromoelectric

field Ex(xl, xt) ≡ El(xl, xt), (6 × 6 Wilson loop, lattice 164).

sources are at xl = +2 and xl = −2 (in lattice units). Fig. 3.5 shows that the effects of

the color sources on the chromoelectric fields extends over about two lattice spacings.

Remarkably, far from the sources the longitudinal chromoelectric field is almost constant

along the q−q line. Thus, the color field structure of the q− q̄ tube which emerges from

our results is quite simple: the flux tube is almost completely formed by the longitudinal

chromoelectric field which is constant along the flux tube (if xl is not too close to the

static color sources) and decreases rapidly in the transverse direction.

We find a clear evidence of the chromoelectric flux tube configurations between a

static qq̄. 5

If the dual superconductor scenario holds, the transverse shape of the longitudinal

chromoelectric field El should resemble the dual version of the Abrikosov vortex field

5Previous analysis was also made by [118] calculating the squared energy density in the chromoelec-

tric and chromomagnetic flux distribution generated by a static pair for separations of the source up

to R = 4.
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Figure 3.6: The London fit (3.6) to the data for the longitudinal chromoelectric field

(12 cooling sweeps).

distribution. Hence we expect that El(xt) can be fitted according to

El(xt) =
Φ

2π
µ2K0(µxt) , xt > 0 (3.6)

where K0 is the modified Bessel function of order zero, Φ is the external flux, and

λ = 1/µ is the London penetration length. Equation (3.6) is valid if λ ≫ ξ, ξ being

the coherence length (type-II superconductor). The length ξ measures the coherence of

the magnetic monopole condensate (the dual version of the Cooper condensate). We

fit Eq. (3.6) to our data for xt ≥ 2 (in lattice units) obtaining χ2/f ≤ 1 (we used

the Minuit code from the CERNLIB). In Fig. 3.6 we show El(xt) measured in the

middle of the flux tube together with the result of our fit. The fit results into the two

parameters Φ and µ. Data obtained from the gauge-invariant correlator with cooled

gauge configurations lead to a parameter µ which does not show a clear plateau versus

the number of cooling steps (see Fig. 3.7). About this new simulations are running.

Our expectation is that the long range physics is unaffected by the cooling procedure.

On the other hand, Fig. 3.8 indicates that the overall normalization of the transverse

distribution of the longitudinal chromoelectric field is affected by the cooling. In fact the

parameter Φ does not stay constant with the cooling. We feel that this is an indication
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Figure 3.7: The inverse of the penetration length µ versus the number of the cooling

steps obtained by fitting the transverse profile of the longitudinal chromoelectric field

at xl = 0 (4 × 4 Wilson loop, lattice 124).

that the flux Φ is strongly affected by lattice artefacts [119].

Bresenham algorithm

To study the geometry of the colour flux tube between Q and Q̄ sources, one needs an

increase both in resolution of the underlying lattice and in the linear extent, r, of the

string [120]. This is achieved by squeezing maximal information out of each vacuum

configuration through rotational invariance and comprehensive utilization of all possible

R-values on the lattice [121].

Our aim is to increase statistics in the regime of colour screening, i.e. for large quark

antiquark separations, R. Obviously, on such a length scale, a given QCD vacuum

configuration contains plenty of information that can be exploited for self averaging and

thus for error reduction: firstly, one can realize, on a hypercubic lattice, a fairly dense

set of R values; secondly, for a given large value of R = |R|, there are many different

three-vector realizations R on the lattice.

We wish to make use of this fact by a systematic construction of off-axis Wilson

loops, W (R, T ), in the range Rmin ≤ R ≤ Rmax. The construction proceeds by choosing
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Figure 3.8: The parameter Φ in Eq. (3.6) obtained by fitting the transverse profile of

the longitudinal chromoelectric field at xl = 0 versus the number of cooling steps (4× 4

Wilson loop, lattice 124).

all possible vectors, R, with integer components Cmin, Cmid, and Cmax (in any order of

appearance) that obey the inequalities,

R2
min ≤ R2 = C2

min + C2
mid + C2

max ≤ R2
max , (3.7)

where |Cmin| ≤ |Cmid| ≤ |Cmax|.
Subsequently, the set of solutions to the constraint eq. (3.7) is sorted according to the

corresponding values of R. These technique is used in [122, 123, 124, 125] and moreover

they find that ARA reduces the statistical errors on potential values by factors around

two.

We shall briefly discuss the construction of the gauge transporters connecting the

quark and antiquark locations, RQ and RQ̄ = RQ + R, that appear within the ARA

non-planar Wilson loops. In order to achieve a large overlap with the physical ground

state we would like to construct lattice paths that follow as close as possible the straight

line connecting RQ̄ with RQ. This task can be accomplished by a procedure which is

known as the Bresenham algorithm [126] in computer graphics. There one wishes to map

a straight continuous line between two points, say 0 and C = (Cmax, Cmin), onto discrete
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pixels on a 2-d screen. Then one has to find the explicit sequence of pixel hoppings in

max- and min-directions such that the resulting pixel set mimics best the continuum

geodesic between points 0 and C. The Bresenham prescription is simply to move in

max-direction unless a step in min-direction brings you closer to the geodesic from 0 to

C, where we assume |Cmax| ≥ |Cmin|. It can easily be embodied into a fast algorithm

based on local decision making only (see Fig. 3.9), by means of a characteristic lattice

function χ that incorporates the aspect ratio Cmax/Cmin.

Figure 3.9: Illustration of a path construction by the Bresenham algorithm, for C =

(5, 3).

3.3.2 At finite temperature

At finite temperature the correlator is suggested by [34], and it is:

ρP =

〈
Tr
(
P (x, t)LUPL

†
)

TrP (y)
〉

〈TrP (x)TrP (y)〉 − 1

N

〈Tr(UP )TrP (x)TrP (y)〉
〈TrP (x)TrP (y)〉 , (3.8)

where P (x, t) is the Polyakov loop starting from the same site, (x, t), from which the

Schwinger line L starts, and using the periodicity of the lattice.

We show examples of the correlator for a plaquette in the plane of the Polyakov loops

for the SU(2) gauge theory for a lattice 163×4 (βc = 2.3), below the critical temperature

in Fig. 3.10 (β = 2.1, 2.2, 2.25), and above (β = 2.35, 2.37, 2.4, 2.5) in Fig. 3.11, Fig. 3.12.
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Figure 3.10: The transverse profile of the longitudinal chromoelectric field Ex(xl, xt)

evaluated at xl = 0 on a 163 × 4 lattice at β = 2.1 (a), β = 2.2 (b), β = 2.25 (c) for

SU(2) gauge theory.
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Figure 3.11: The transverse profile of the longitudinal chromoelectric field Ex(xl, xt)

evaluated at xl = 0 on a 163 × 4 lattice in the deconfined phase, at β = 2.35 (a) and

β = 2.37 (b) for SU(2) gauge theory.
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Figure 3.12: The transverse profile of the longitudinal chromoelectric field Ex(xl, xt)

evaluated at xl = 0 on a 163 × 4 lattice in the deconfined phase, at β = 2.4 (a) and

β = 2.5 (b) for SU(2) gauge theory.
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We guess that the bad signal in Fig. 3.10 is caused by the fact that the Polyakov

loop at T < Tc is not a good operator (since its expectation value is zero in the confined

phase).

3.4 Work in progress

What we have presented since here is still in a preliminary stage. The final aim will

be to improve the knowledge both in the SU(2) and, in the more physically interesting

case, of the SU(3) pure gauge theory, investigating the flux tube in the confined and in

the deconfined phase with a probe which has never been used since up to now.

However there is already something to underline.

Studying the case of SU(2) pure gauge theory at zero (lattice 164, β = 2.5) and

at finite temperature (lattice 163 × 4, β = 2.35, 2.37, 2.4, 2.5), it seems that we can

have a preliminary estimate of the width of the flux tube in the deconfined phase (see

Figs. 3.11, 3.12 and Fig. 3.13).
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Figure 3.13: The field strength tensor Fµν(xl, xt) evaluated at xl = 0 on a 164 lattice at

β = 2.5 for SU(2) gauge theory.
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Chapter 4

SU(N ) pure gauge theories

It is 30 years since it was proposed that it might be useful to think of QCD as a

perturbation in 1/N around the N = ∞ theory [127]. In particular, from an analysis of

Fenyman diagrams to all orders one finds that the N → ∞ limit of SU(N) theories is

smooth if we vary the coupling as g2 ∝ 1/N . This suggests that it should be possible to

describe SU(N) gauge theories as perturbations in powers of 1/N around SU(∞) [127]

at least for large enough N . Moreover if one assumes confinement for all N , then one

can easily show [127, 128] that the phenomenology of the SU(∞) quark-gluon theory is

strikingly similar to that of (the non-baryonic sector of) QCD. This makes it conceivable

that the physically interesting SU(3) theory could be largely understood by solving the

much simpler SU(∞) theory. If all the SU(N) theories down to SU(3) can be treated

in this way, then this represents an elegant and enormous theoretical simplification.

However we still do not have a quantitative control of the SU(N = ∞) theory and the

phenomenology needs to assume, for example, that it is confining and, of course, ‘close

to’ SU(3). Lattice simulations can attempt to answer such questions directly (albeit

never exactly) and there has been substantial progress in doing so this last decade, first

in D = 2+1 dimensions [129], and then in the physically interesting case of D = 3+1.

(For a review of work in the earlier 80’s, when lattice calculations were not yet precise

enough to be so useful, see e.g. [130]).
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4.1 SU(N) pure gauge theories and the t’Hooft ex-

pansion

Following the guidelines of [131], we will enunciate some motivations for these calcu-

lations. A gluon loop on a gluon propagator comes with a factor of g2N . One easily

sees that g2 is in fact the smallest power of the coupling that comes with a factor of

N . So if one wants an N → ∞ limit that is not given by either a free field theory or

by infinite order diagrams on all length scales (in neither case would we get something

like QCD), then one needs to take the limit keeping g2N fixed [127]. Using ’t Hooft’s

double-line notation for gluons, diagrams can be categorized as lying on surfaces of dif-

ferent topology, with more handles corresponding to higher powers of 1/N , so that in

the N = ∞ limit only planar diagrams survive [127]. As the coupling g2N becomes

strong, the vertices of the diagram fill the surface more densely, defining a world-sheet

of the kind one might expect in a string theory. This suggests that perhaps as N → ∞
the gauge theory can be described as a weakly interacting string theory [127]. If the

theory is, as one expects, linearly confining then the confining flux tube will behave like

a string at long distances, described by some effective string theory. At large N this

will presumably coincide with the string theory that describes the SU(N) gauge theory.

These ‘old’ string theory ideas [132] have been recently complemented by the realization

that at g2N → ∞ and N → ∞ gauge theories have a dual string description that is

analytically tractable [133]. Determining the effective string theory numerically should

provide useful hints about what the dual theory might be in the physical weak-coupling

limit, g2N → 0.

In a confining theory there are no decays at N = ∞. This is in contrast to what

would happen in a non-confining theory where a coloured state could have a finite

decay width into other coloured states. But once we constrain states to be colour

singlet we reduce the density of final states by factors of N so that all decay widths

vanish. In addition there is no scattering between the colour singlet states. Think of

two propagating mesons. A meson propagator is like a closed quark loop. Exchange
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two gluons between these two closed loops and you clearly gain (up to) a factor of N ,

but at the cost of g4 ∝ 1/N2. So, no scattering at N = ∞. However it is also easy

to see that within a single closed loop, planar interactions give factors of g2N , are not

suppressed, and so there are non-trivial bound states. So we have what looks like a free

theory, but it has a complex bound state spectrum and so is non-trivial. If one is going

to find room in D = 3 + 1 for notions of e.g. integrability, it is here in the N = ∞ limit

that they might find a suitable home.

This theory with no decays and no scattering is similar to the observed world of the

strong interactions. In particular the SU(∞) theory is linearly confining [131, 129]. Now

we can ask: is this confining theory close to SU(3)? Always in [131], the lightest masses

in the spectrum have been calculated for several values of N , and found that the SU(3)

mass spectrum is indeed very close to the (extrapolated) spectrum at N = ∞. This

provides support for the phenomenological relevance of the SU(∞) theory. And this

provides motivation for trying to understand that theory much better. Moreover the

effective string theory describing long confining flux tubes appears to be in the bosonic

string universality class (see again [131]). More surprisingly, the energy of shorter strings

is close to the Nambu-Goto prediction and at smaller N , where this question can be

addressed, the string condensation temperature is very close to that of the Nambu-Goto

string action.

The large-N gauge theory deconfines as well, and the transition is robustly first

order [131] 1.

1In Ref. [26] the properties of SU(N) gauge theories have been calculated for several values of N

and determined explicitly how the physics varies as N increases, looking at the pure gauge theory, but

there are good reasons for believing that the inclusion of quarks will not alter any of our conclusions

(except in some obvious ways).
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4.2 The Nambu-Goto string theory

The action of the NG model [134] is the area of the worldsheet swept by the propagation

of the string. Due to the Weyl anomaly this model is quantum-mechanically consistent

only in the critical dimension D = 26 (see for example [135]), but since this anomaly

is suppressed for long strings [136] it can still be considered as an effective low energy

model.

The single string states can be characterized by the number of times w that the

string winds around the torus. The spectrum in each case corresponds to the trans-

verse oscillations of the worldsheet that correspond to movers that travel clockwise and

anti-clockwise along the string. Thus the string states are characterized by w, by the

occupation number nL(R)(k) of left(right) movers that carry energy k, and also by the

center of mass momentum ~pc.m.. By projecting to zero transverse momentum (~pc.m.)⊥

we are left only with the momentum along the string axis which is quantized in units of

2πq/l with q = 0,±1,±2, . . . for a string of length l. These quanta are not independent

of nL,R and obey the level matching constraint 2

NL −NR = qw , (4.1)

where NL(R) enumerates the momentum contribution of the left(right) movers in a cer-

tain state as follows

NL =
∑

k>0

∑

nL(k)>0

nL(k) k, NR =
∑

k′>0

∑

nR(k′)>0

nR(k′) k′ . (4.2)

It is customary to characterize the string states as irreducible representations of the

SO(D−2) symmetry that rotates the spatial directions transverse to the string axis. In

our D = 2+1 dimensional case, this group becomes the transverse parity P and acts by

assigning a minus sign for each mover on the worldsheet. As a result the string states

are eigenvectors of P with eigenvalues

P = (−1)
∑

i=1
nL(ki)+

∑
j=1

nR(k′
j
)
. (4.3)

2This condition constraints the physical states to be invariant under the gauged diff-invariance of

the action [135], and is effectively momentum conservation.
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Finally, the energy of a closed-string state with the above quanta is (here we write

it for a general number of spacetime dimensions D)

(ENL,NR,q,w)2 = (σ lw)2 + 8πσ
(
NL +NR

2
− D − 2

24

)
+
(

2πq

l

)2

. (4.4)

4.2.1 Effective string theories

Since in 2 + 1 dimensions the NG string is at best an [137] effective low-energy string

theory, it makes sense to generalize it and write the most general form of an effective

string action Seff consistent with the symmetries of the flux-tube system. This was done

some time ago for the w = 1 and q = 0 in [138] and the spectrum obtained for a general

number of space-time dimensions D was

En = σl +
4π

l

(
n− D − 2

24

)
+O(1/l2) , (4.5)

with n = 0, 1, 2, . . .. Here the second term on the right hand side of (4.5) is known as

the Lüscher term and is expected to be universal and independent of the particulars of

IR-irrelevant interactions of the low energy effective string theories. Indeed, it can be

easily verified that the NG model obeys this universality by expanding the square-root

of (4.4) to leading order in 1/l.

The work [138] was more recently extended in [139], where the authors established

and used a certain open-closed string duality of the effective string theory. Using this

duality they showed that for any number of spacetime dimensions the O(1/l2) is absent

from (4.5), and that in D = 2+1 the O(1/l3) has a universal coefficient. Consequently,

in 2 + 1 dimensions, (4.5) is extended to

En = σl +
4π

l

(
n− 1

24

)
− 8π2

σ l3

(
n− 1

24

)2

+O(1/l4) . (4.6)

In the context of the covariant string description, (4.6) implies that

En =

√

(σl)2 + 8πσ
(
n− 1

24

)
+O(1/l3) , (4.7)

which is a particularly convenient form since the two first terms under the square root

are the prediction of the NG model for the energy squared, that we find to be a very good
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approximation (see below). A different approach that also leads to similar conclusions is

the Polchinski-Strominger effective string theory [140]. While it originally yielded (4.5),

it was used recently in [141] to extend the analysis to higher powers of 1/l and leads to

the same conclusions as [139], but for all values of D.

Establishing what is the structure of the action is of fundamental interest, and so

we study the energy spectrum of the flux tube. In particular, we want to determine the

spectrum of the adjoint closed string spectrum.

The Nambu-Goto ansatz for the fundamental representation has been already verified

with a good accuracy. See Figures 4.1 and 4.2 for an example and references [137] for

more details 3.

4.3 D = 2 + 1 ∼ D = 3 + 1 ?

We do our calculations in (2+1) dimensions. In the following we report the motivations

of this choice, like they were given by [129].

The D = 2 + 1 theory shares with its D = 3 + 1 homologue four important proper-

ties [129].

• Both theories become free at short distances. In 3 dimensions the coupling, g2, has

dimensions of mass so that the effective dimensionless expansion parameter on a scale l

will be

g2
3(l) ≡ lg2 l→0−→ 0 (4.8)

In 4 dimensions the coupling is dimensionless and runs in a way we are all familiar with:

g2
4(l) ≃

c

ln(lΛ)
l→0−→ 0 (4.9)

In both cases the interactions vanish as l → 0, although they do so much faster in the

super-renormalizable D = 2 + 1 case than in the merely asymptotically free D = 3 + 1

case.

3The details of the simulations will be presented in the next section.
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(a)

(b)

Figure 4.1: The ground state energy per unit length, in lattice units, vs. the string

length for SU(2) and β = 10 (a) and for SU(3) and β = 21 (b). The blue lines are the

results of using the Nambu-Goto fitting ansatz (4.4) for the fundamental representation.
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(a)

(b)

Figure 4.2: The ground state energy per unit length, in lattice units, vs. the string

length for SU(4) and β = 40 (a) and for SU(5) and β = 64 (b). The blue lines are the

results of using the Nambu-Goto fitting ansatz (4.4) for the fundamental representation.
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• Both theories become strongly coupled at large distances. Thus in both cases the

interesting physics is nonperturbative.

• In both theories the coupling sets the mass scale. In 3 dimensions it does so

explicitly:

mi = cig
2 (4.10)

In 4 dimensions it does so through the phenomenon of dimensional transmutation: the

classical scale invariance is anomalous, the coupling runs and this introduces a mass

scale through the rate at which it runs:

mi = ciΛ (4.11)

• Both theories confine with a linear potential. Lattice simulations provide convinc-

ing evidence that this is indeed the case [131]. The D = 2 + 1 Coulomb potential is

already confining, this is a weak logarithmic confinement, VC(r) ∼ g2 ln(r), which has

nothing to do with the nonperturbative linear potential, V (r) ≃ σr, that one finds at

large r.

In addition to these theoretical similarities, the calculated spectra also show some

striking similarities [129].

• In both theories the lightest glueball is the scalar 0++ with a similar mass m0++ ∼
4
√
σ. In the C = + sector, the 2++ is the next lightest glueball (ignoring any excited

scalars) with m2++/m0++ ∼ 3/2 in both cases.

All this has motivated the physicists to believe that a unified treatment makes sense.

Of course there are significant differences as well. For example:

◦ There are no instantons in D = 2 + 1 non-Abelian gauge theories. This probably

implies quite different quark physics.

◦ The rotation group is Abelian.

◦ The details of the mass spectrum are very different in 3 and 4 dimensions.

The calculations in 3 dimensions are performed in the same way as in 4 dimensions

except that the computational problem is much more manageable (lattices grow as L3

rather than as L4).
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4.4 Numerical simulations

In a gauge-invariant lattice calculation, glueball and string operators are composed of

ordered products of link matrices around closed loops [142]. If a is small then we would

expect that a good wave-functional for any of the lightest states will be smooth on

scales of the order of an appropriate physical length scale and so certainly smooth on

the scale of a. One can achieve this by summing over paths between sites and using

these, rather than the original link matrices, as the basic components of the operator.

By iterating the procedure one can efficiently sum vast numbers of paths, producing

operators smooth on physical length scales.

Traditionally there have been two common variants of this procedure, often referred

to as ‘blocking’ [143] and ‘smearing’ [144] respectively. We only consider loops and links

that are space-like, so that the positivity of correlation functions is preserved. Thus all

indices will run from 1 to 3.

The smearing and the blocking techniques were described in the previous chapter.

For our simulations we used α = 0.75 in the smearing algorithm.

4.4.1 unitarisation

There is no fundamental reason why the smeared or blocked matrices should be unitary.

However in practice one finds [142] that projecting back to SU(N) produces eventual

overlaps that are as good as with any other normalization (and better than most).

Thus it is convenient to unitarise. We unitarise by finding the SU(N) matrix U b that

maximizes

ReTr{Ũ b†U b} (4.12)

and similarly for smearing. This can be done by using the β = ∞ limit of the Cabibbo-

Marinari heat bath, just as one does when ‘cooling’ lattice fields to calculate their

topological charge [25]. This is an iterative procedure which needs to start with some

initial value for U b, call it U b
s . Typically one will choose U b

s to be some very crude

unitarisation of Ũ b. After one or two iterations one obtains a good approximation to
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U b in (4.12). The fact that this is an approximation means that one does not maintain

exact gauge invariance. However all this will do is to increase slightly the statistical

noise in the calculation of correlators. A second potential problem arises in the choice

of the crude starting point, U b
s . Typically this will not be the same for U b and for U b†.

For example if one obtains U b
s by orthonormalising the columns of Ũ b one by one, as we

do, one gets a different matrix than if one started by orthonormalising the rows.

4.4.2 variational calculation

We can calculate the string tension by calculating the energy of the lightest state com-

posed of a static q and q̄ a distance R apart. (Any fundamental charges will do; we

use q for quarks because they are so familiar.) If we have linear confinement then this

energy, Emin(R), provides our definition of the string tension, σ, as well as providing us

with a definition of the static quark “potential”, Vqq̄(R),

Emin(R) ≡ Vqq̄(R)
R→∞≃ σR . (4.13)

For large R one thinks of this state as being composed of the dressed static quarks with

a confining flux tube of length ≃ R joining them.

As Ref. [129] notes, the usual potential that enters phenomenological discussions

of the string tension [145] is essentially based on the Schrödinger equation and the

relationship with our definition is not a simple one; this is apparent if one considers, for

example, the case of QCD. Vacuum quark fluctuations break the string, so the potential

as defined in (4.13) will flatten off for larger R. The phenomenological potential, on

the other hand, continues to rise, although it may acquire a modest imaginary part to

incorporate the decay of the confining flux tube. Effectively it incorporates information

about the time-scales associated with the different dynamical processes that contribute.

The two definitions differ most dramatically in the large-N , narrow-width limit of QCD.

We follow for the operators the construction method of [129].

To project onto this qq̄ state we define the gauge-invariant operator

φ(t) = q̄(0)
∏
Ulq(R) , (4.14)
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where we can suppose that the quarks are separated along the x-direction and the

the product of link matrices is along the shortest path joining them. The correlation

function of this operator, taken from t = 0 to t = T , will, for large enough T , be

∝ exp{−Emin(R)T}. This correlation function involves two quark propagators; one

from (x = R, t = 0) to (x = R, t = T ) and the other from (x = 0, t = T ) to

(x = 0, t = 0). In the mq → ∞ limit (which is how one implements static quarks

dynamically) the quark hops along the shortest available route: that is to say its prop-

agator is equal to the product of links along the straight line joining its end-points.

Thus the correlation function is equal (up to some irrelevant factor) to the expectation

value of the Wilson loop, 〈W (R, T )〉. If we have linear confinement, as in (4.13), then

〈W (R, T )〉 ∝ exp{−Emin(R)T} ∝ exp{σRT}, the usual confining area decay of Wilson

loops. This calculation was improved [129].

We use Polyakov loops rather than Wilson loops. Construct a product of link ma-

trices that closes on itself through a spatial boundary; for example

φP (x, t) = Tr
L∏

n=1

Uy(x, y + nŷ, t) (4.15)

on a L×L spatial lattice. This non-contractible loop is what one gets if one stretches our

operator in (4.14) till the q and q̄ meet and annihilate. It couples to the corresponding

state: a flux tube of length L that encircles the torus. Such an operator has zero

overlap onto any contractible loop. One can readily prove this using the symmetry of

the action and measure under the transformation Uy(x, y0, t) → zNUy(x, y0, t), ∀t where

y0 is an arbitrarily chosen value of y and zN is a non-trivial element of the center. A

contractible loop is obviously invariant under this symmetry while the Polyakov loop

is not. This argument breaks down if the symmetry is spontaneously broken; which

occurs, for example, in the high temperature deconfining phase.

If we sum over x to make φ translation invariant (~p = 0) and form the correlation

function, we obtain at large t the mass, mP (L), of the lightest state containing a periodic

flux loop of length aL

〈φ†
P (t)φP (0)〉 t→∞∝ e−mP (L)t

100



= e−{σaL− π
6aL

+...}t (4.16)

Here we have explicitly included the first correction term which is the translation to

Polyakov loops [146] of the usual Lüscher correction [147] for Wilson loops. This

correction is ‘universal’, but obviously one needs to test whether the physical flux tube

does indeed fall into this particular universality class.

Using Wilson loops produces a heavy-quark potential. This contains a Coulomb term

which is long range ∝ g2 log r in D = 2 + 1. This term will of course be screened, but

having to disentangle it from the linear piece, at the intermediate values of r where the

calculations are accurate, can decrease the accuracy of the estimate of σ. InD = 3+1 the

Coulomb term is ∝ 1/r and its presence makes it difficult to identify the π/12r universal

string correction. By contrast, in using as we do correlators of ~p = 0 sums of spatial

Polyakov loops, we have completely dispensed with any charges and have transformed

the problem into a standard mass calculation. Because there are no charges, there is no

longer a Coulomb contribution. This benefit has of course been achieved at a price: we

no longer have a calculation of the heavy quark potential, but only of the string tension.

Two technical asides. When using link matrices at a blocking level NB, the sites

are spaced a distance 2NB−1a apart. A given product of blocked links, that starts

at say y = 1, is not quite invariant under translations in the y-direction because the

blocked links themselves are not completely invariant. One can remedy this by summing

products that start at y = 1, 2, .., 2NB−1 − 1 respectively; and this does in fact improve

the operator overlap slightly. A second point is that L need not be divisible by the length

of the blocked link. In that case we include links of a lower blocking level, averaged with

staples that include transverse links blocked to the level of interest. (In practice this

extra smearing with staples is of marginal utility in getting a good overlap.)

The procedure to extract the masses are entirely conventional [129]. The starting

point is the observation that

〈φ†(t)φ(0)〉 =
∑

n

|〈vac|φ|n〉|2 exp{−Ent}
t→∞−→ |〈vac|φ|0〉|2 exp{−E0t} (4.17)
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where |0〉 is the lightest state that couples to the operator φ and E0 is its energy. (We

use operators that are localized within a single time-slice.) So if we want the mass of

the lightest colour singlet state with quantum numbers J, P, C we simply construct a

~p = 0 operator with those quantum numbers, calculate its correlation function and then

obtain the mass (=E0) using (4.17). If the quantum numbers are trivial, the lightest

state might be the vacuum, in which case we use vacuum subtracted operators.

On the lattice 4 t = na and so what we obtain, not surprisingly, is aEn, the energy

in lattice units. Note that if we are on a lattice with a finite periodic temporal extent,

then the expression in (4.17) needs to have an additional term for the propagation

around the ‘back’ of the torus. Such a term will always be included in the numerical

calculations, although we shall, for simplicity, persist in writing all our expressions as

though the temporal extent were infinite. We also note that the temporal extent of our

lattice, T ≡ aLt, will always be chosen large enough for the partition function, Z, to be

accurately given by its vacuum contribution: Z ≃ exp{−EvacT}. Thus the energies we

calculate will always be with respect to the energy of the vacuum.

In principle we can obtain from (4.17) any number of excited states as well. In

practice, however, fitting sums of exponentials to a function is a badly conditioned

problem. So one needs to develop a more sophisticated strategy [129].

Again in principle, one can use in (4.17) any operator with the desired quantum

numbers. However, a numerical calculation has finite statistical errors and because the

function 〈φ†(t)φ(0)〉 is decreasing roughly exponentially in t it will, at large enough t,

disappear into the statistical noise. Thus in practice we need to be able to extract E0

from (4.17) at small values of t. This requires the coefficient |〈vac|φ|0〉|2 to be large.

That is to say, we need to use operators that are close to the wave-functional of the

state in question.

If we want to use good operators, we obviously need some simple way to decide

which operator is in fact better.

4We use the Wilson action. The Monte Carlo consists of a mixture of heat bath and over-relaxation

sweeps.
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Thus it would be useful to have a simple practical criterion to decide, early on in a

calculation, which operator is the best. Such a criterion is immediately suggested (see

again [129]) by considering the normalized correlation function:

C(t) ≡ 〈φ†(t)φ(0)〉
〈φ†(0)φ(0)〉 =

〈φ†e−Htφ〉
〈φ†φ〉 (4.18)

Clearly if we were using a complete basis of operators, then the best operator would

be the one that maximized C(t): it would be the wave-functional of the lightest state

and we would have C(t) = exp{−mGt}. If the basis is not complete, this suggests a

variational criterion: the ‘best’ operator, φ, is the one which maximizes C(t).

Our strategy for obtaining estimates of the ground state and excited state masses is

the standard procedure [148]. It can be summarized in the following steps:

• we contract a set of M lattice operators, φi : i = 1, ..,M , with desired quantum

numbers;

• we define the M ×M correlation matrix C(t) by

Cij(t) = 〈φi†(t)φj(0)〉 . (4.19)

• let the eigenvectors of the matrix C−1(0)C(a) be ~vi; i = 1, . . . ,M . Then

Φi = ci
M∑

k=1

vikφk ≡
M∑

k=1

aikφk (4.20)

where the constant ci is chosen so that Φi is normalized to unity.

• we extract the correlator for each state Γn(t) =
∑
ij v

∗(n)
i v

(n)
j Cij(t)

• for each correlation function we look for a ‘plateau’ in the effective masses. We so

extract the mass (energy) for each state

mn = −ln
Γn(t)

Γn(t− 1)
.

For the excited states we expect, with our incomplete basis, to have some admixture

of lighter eigenstates, and so the initial plateau should be finite and will eventually

drop to the masses of the lighter states. That is to say, for excited states the mass

estimate can be lower than the mass of the state whose mass is being estimated. This
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undoubtedly means that there is a larger systematic error on our estimate of the mass

of an excited state than on that of a ground state. We do not know how to estimate

this error (for either type of state).

There are of course many variations possible on the above procedure.

At this preliminary stage we have studied N = 2, 3, 4, 5. In particular we have

studied [129]: SU(2) with a
√
σ ∼ 0.1622(4) (β = 10), SU(3) with a

√
σ ∼ 0.17479(38)

(β = 21), SU(4) with a
√
σ ∼ 0.1680(30) (β = 40) and SU(5) with a

√
σ ∼ 0.1664(4)

(β = 64) 5.

We have used different operators (with 4 or 5 blocking levels, depending on the

length of the string). In particular, we have used the fundamental operator

φ(x, t) =
Ly∏

k=1

U(x, y + nŷ, t) , (4.21)

but also with transverse momentum different from zero

φ(p) = (Trφ)eipxxy p =
2π

Ly
n, n = ±1,±2,±3,±4 , (4.22)

and the adjoint operator 6:

φadj = (|Trφ|2 − 1) . (4.23)

In Figs. 4.3 and 4.4 we present our very preliminary results. In Fig. 4.5 it is an

example of Nambu-Goto fit for the adjoint ground state if the SU(3) (β = 21).

4.5 Work in progress

At this stage the work is not complete, since we want to increase the number of operators

for the variational technique. The determination of the excited masses of the spectrum

for the adjoint string is not an easy calculation, since they have quite big values, other

elements of the spectrum have to be considered.

5All values are referred to L = 24.
6To increase the overlap we have added also glueball states, for 0+ quantum numbers.
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(a)

(b)

Figure 4.3: The energy of the ground, 1st and the 2st excited states per unit length,

divided by
√
σl, for SU(2) (a) and SU(3) (b) (β = 10 and β = 21 respectively). The

dashed lines are the NG prediction for the adjoint string.
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(a)

(b)

Figure 4.4: The energy of the ground, 1st and the 2st excited states per unit length,

divided by
√
σl, for SU(4) (a) and SU(5) (b) (β = 40 and β = 64 respectively). The

dashed lines are the NG prediction for the adjoint string.
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Figure 4.5: Example of NG fit for the ground state of adjoint string for SU(3), β = 21.
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