

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XIX ciclo

Tesi di Dottorato

Querying Inconsistent Data:
Repairs and Consistent Answers

Francesco Parisi

to Ale

Preface

A shared opinion in the computer science community is that inconsistency is
undesirable. It is a common belief that databases and knowledge bases should
be completely free of inconsistency. Integrity constraints are the mechanism
employed in databases to guarantee that available data correctly model the
outside world. An integrity constraint can be considered as a boolean query
which must always be true. The traditional approach, implemented by com-
mercial database management systems, is to avoid inconsistency by aborting
updates or transactions yielding to an integrity constraint violation.

In some contexts integrity constraints satisfaction cannot be guaranteed
employing the traditional approach. For instance, when knowledge from mul-
tiple sources is integrated, as in the contexts of data warehousing, database
integration and automated reasoning systems, it is not possible to guaran-
tee the consistency on the integrated information applying the traditional
approach. More in detail, when different source databases are integrated to-
gether, although every source database is consistent with respect to a given
set of integrity constraints, in the resulting integrated database many differ-
ent kinds of discrepancies may arise. In particular, possible discrepancies are
due to (i) different sets of integrity constraints that are satisfied by different
sources, and (ii) constraints that may be globally violated, even if every source
database locally satisfies the same integrity constraints. In this case there is
no update that can be rejected in order to guarantee the consistency of the
integrated database as this database instance is not resulting from an update
performed on a source database, but from merging multiple independent data
sources. For instance, if we know that a person should have a single address
but multiple data sources contain different addresses for the same person, it
is not clear how to resolve this violation through aborting some update.

The approach for dealing with inconsistency in contexts such as database
integration is that of “accepting” it and providing appropriate mechanisms
to handle inconsistent data. In literature the process achieving a consistent
state in a database with respect to a given set of constraints is considered as
a separate process that can be executed after that inconsistency is detected.

iv Preface

In other words, as opposed to traditional approaches, the key idea to incon-
sistency handling is to live with an inconsistent database, modifying query
semantics in order to obtain only consistent information as answers to queries
posed on inconsistent databases. Indeed, when a query is posed on an in-
consistent database (according to the traditional semantics) it is possible to
yield information which are not consistent with respect to the integrity con-
straints. Consistent information is the one that is invariant or persists under
all possible “minimal” ways of restoring consistency of the database. Indeed,
the restoration of consistency should be accomplished with a minimal impact
on the original inconsistent database, trying to preserve as much information
as possible. Every database instance corresponding to a “minimal” way of
restoring the consistency is called repair. There may be several alternative
minimal repairs for a database. Thus, what results true w.r.t. an inconsistent
database instance is what results true w.r.t. all “repaired” instances.

The following example describes a typical inconsistency-prone data inte-
gration scenario: data from two consistent source databases are integrated,
and the resulting database turns out to be in an inconsistent state.

Example 1 Consider the following database scheme consisting of the single
binary relation Teaches(Course, Professor), where the attribute Course is
a key for Teaches. Assume there are two different instances of Teaches as
reported in the following figure.

Course Professor

CS Mary

Math John

Course Professor

CS Frank

Math John

Each of the two instances satisfy the key constraint but, from their union
we derive the inconsistent relation shown in the following figure. This relation
does not satisfy the constraint since there are two distinct tuples with the
same value for the attribute Course.

Course Professor

CS Mary

Math John

CS Frank

We can consider as minimal ways for restoring consistency of the database,
i.e. repairs for this database, the following two relations obtained by deleting
one of the two tuples that violate the key constraint.

Preface v

Course Professor

Math John

CS Frank

Course Professor

CS Mary

Math John

On the basis of these alternative repairs, what is consistently true is that
‘John’ is the teacher the course ‘Math’ and that there is a course named
‘CS’.

2

The approach for handling inconsistency described in the example above
shares many similarities with the problem of updating a database seen as
a logical theory by means of a set of sentences (the integrity constraints).
Specifically, given a knowledge base K and a revision α, belief revision theory
is concerned with the properties that should hold for a rational notion of
updating K with α. If K∪α is inconsistent, then belief revision theory assumes
the requirement that the knowledge should be revised so that the result is
consistent. In the database case, the data are flexible, subject to repair, but
the integrity constraints are hard, not to be given up.

The “revision” of a database instance by the integrity constraints produces
new database instances, i.e. repairs for the original database. Therefore, what
is consistently true is what is true with respect to every repaired database.
The notion of a fact which is consistently true corresponds to the notion of
inference, called counterfactual inference, used in the belief revision commu-
nity. In the database community, the concept of fact which is consistently true
has been formalized with the notion of consistent query answer, i.e. an answer
to a query which results true in every repaired database. Consistent query
answer provides a conservative “lower bound” on the information contained
in a database.

Example 1 (continued) Consider the query Q(x, y) = Teaches(x, y) which
intends to retrieve the names of courses with their relative teachers. Obviously,
if Q is directly posed on the inconsistent database it returns answers which
are consistent with the key constraints and others which are not.

On the other hand, the consistent query answers for Q are those which
would be returned posing the query in every repaired database, i.e. the tuple
〈Math, John〉.

2

A repair for an inconsistent database (with respect to a set of integrity
constraints) is a consistent database which is “as much close as possible” to
the original instance. Different notions of closeness can be defined, each of
them corresponding to a different repair notion. For instance, in the example
above repairs are obtained by performing minimal sets of insertion and dele-
tion of (whole) tuples on the original database, so that the resulting database

vi Preface

satisfies the integrity constraints. Another possible notion of repair is that al-
lowing updates of values within some tuples. Considering the example above,
this means that the value of the attribute Professor in one of the two conflict-
ing tuples must be changed in such a way that a consistent status is obtained.
Specifically, we may update either the value ‘Mary’ to ‘Frank’ in the tu-
ple 〈CS,Mary〉 or the value ‘Frank’ to ‘Mary’ in the tuple 〈CS, Frank〉,
obtaining again the two repairs shown in Example 1.

In general, different set of repairs can be obtained under different repair
notions. Further, since the set of consistent answers to a query posed on an
inconsistent database depends on the set of repairs for the database, the repair
semantics also alters the set of consistent query answers.

As shown in the following example, when tuples contain both correct and
erroneous components the two repair semantics discussed above do not coin-
cide.

Example 2 Consider the following database scheme consisting of the relation
Employee(Code, Name, Salary), where the attribute Code is a key for the
relation. Assume that the constraint ∀x, y, z ¬[Employee(x, y, z)∧z < 10000]
is defined, stating that each employee must have salary greater than 10000.

Consider the following (inconsistent) instance for the relation Employee.

Code Name Salary

111 John 1000

Under the repair semantics of deletion/insertion of tuples, there is a unique
repair for the relation Employee: the empty database instance. On the other
hand, if the repaired database is obtained by changing attribute values, there
are infinitely many repairs, each of them containing a tuple of the form
〈111, John, c〉, where c a constant greater than or equal to 10000.

Thus, under the latter repair notion the consistent answer to the query
asking for the existence of the employee with code ‘111’ is yes, whereas under
the former repair notion the consistent answer is no. This happens because
when we delete a tuple because it contains an error, we also lose the correct
components as an undesirable side effect.

2

Several theoretical issues regarding the consistent query answers problem
have been widely investigated in literature and some techniques for evaluat-
ing consistent answers have been proposed too. The problem of computing
consistent answers has been studied among several dimensions, such as the
repair semantics, the classes of queries and constraints. Many approaches in
literature assume that tuple insertions and deletions are the basic primitives

Preface vii

for repairing inconsistent data. More recently, repairs consisting also of value-
update operations have been considered. The complexity of computing con-
sistent answers for different classes of first-order queries and aggregate queries
has been investigated in presence of several classes of integrity constraints. All
previous works in this area deal with “classical” forms of constraint (such as
keys, foreign keys, functional dependencies), and propose different strategies
for updating inconsistent data reasonably, in order to make it consistent by
means of minimal changes. Indeed these kinds of constraint often do not suf-
fice to manage data consistency, as they cannot be used to define algebraic
relations between stored values. In fact, this issue frequently occurs in several
scenarios, such as scientific databases, statistical databases, and data ware-
houses, where numerical values of tuples are derivable by aggregating values
stored in other tuples.

In this thesis, we first provide a comprehensive survey of the techniques for
repairing and querying inconsistent databases. Then, we focus on databases
storing data that may violate a set of aggregate constraints, i.e. integrity con-
straints defined on aggregate values extracted from the database. These con-
straints are defined on numerical attributes (such as sale prices, costs, etc.)
which represent measure values and are not intrinsically involved in other
forms of constraints.

Example 3 Table 1 represents a cash budget for a firm, that is a summary of
cash flows (receipts, disbursements, and cash balances) over a specific period
(typically, a year). Values ‘det ’, ‘aggr ’ and ‘drv ’ in column Type stand for
detail, aggregate and derived, respectively. In particular, an item of the table
is aggregate if it is obtained by aggregating items of type detail of the same
section, whereas a derived item is an item whose value can be computed using
the values of aggregate items belonging to any section.

Section Subsection Type Value

Receipts cash sales det 100

Receipts receivables det 120

Receipts total cash receipts aggr 250

Disbursements payment of accounts det 120

Disbursements capital expenditure det 0

Disbursements long-term financing det 40

Disbursements total disbursements aggr 160

Balance net cash inflow drv 60

Table 1. A cash budget

A cash budget must satisfy the following integrity constraints:

1. for each section, the sum of the values of all detail items must be equal
to the value of the aggregate item of the same section;

viii Preface

2. the net cash inflow must be equal to the difference between total cash
receipts and total disbursements.

Table 1 was acquired by means of an Optical Character Recognition (OCR)
tool from a paper document, reporting the cash budget for a specific period.
The original paper document was consistent, but some symbol recognition
errors occurred during the digitizing phase, as constraints 1) and 2) are not
satisfied on the acquired data, that is:

i) in section Receipts, the aggregate value of total cash receipts is not equal
to the sum of detail values of the same section.

ii) the value of net cash inflow is not to equal the difference between total
cash receipts and total disbursements.

In order to exploit the digital version of the cash budget, a fundamental
issue is to define a reasonable strategy for locating OCR errors, and then
repairing the acquired data to extract reliable information.

2

Most of well-known techniques for repairing data violating constraints ac-
complish this task by performing deletions and insertions of tuples, as shown
in Example 1. More recently, value-update operations have been exploited in
some techniques for restoring consistency, as shown in Example 2. Indeed,
the former repairing strategy is not suitable for contexts analogous to that of
Example 3, that is of data acquired by OCR tools from paper documents. For
instance, repairing Table 1 by either adding or removing rows means hypothe-
sizing that the OCR tool either jumped a row or “invented” it when acquiring
the source paper document, which is rather unrealistic. The same issue arises
in other scenarios dealing with numerical data representing pieces of infor-
mation acquired automatically, such as sensor networks. In a sensor network
with error-free communication channels, no reading generated by sensors can
be lost, thus repairing the database by adding new readings (as well as remov-
ing collected ones) is of no sense. In this kind of scenario, the most natural
approach to data repairing is updating directly the numerical data: this means
working at attribute-level, rather than at tuple-level. For instance, in the case
of Example 3, we can reasonably assume that inconsistencies of digitized data
are due to symbol recognition errors, and thus trying to re-construct actual
data values is well founded.

Main Contributions

The main contributions of the thesis are the following.

1) Recently, some works provide an overview of some issues related to the
computation of consistent query answers in inconsistent databases [15, 31,
30]. In this dissertation we provide an extensive survey of the techniques for

Preface ix

repairing and querying inconsistent relational databases. We distinguish
four parameters for classifying and comparing of the existing techniques.
First, we discern two repairing paradigms, namely the tuple-based and the
attribute-based repairing paradigm. According to the former paradigm a re-
pair for a database is obtained by inserting and/or deleting tuples, whereas
according to the latter a repair is obtained by (also) modifying attribute
values within tuples. Second, we distinguish several repair semantics which
entail different orders among the set of consistent database instances that
can be obtained for an inconsistent database with respect to a given set of
integrity constraints. Third, we classify the techniques on the basis of the
classes of queries considered for computing consistent answers. Finally,
we compare the different approaches in literature on basis of the classes
of integrity constraints which are assumed to be defined on the database.

2) We investigate the problem of repairing and extracting reliable information
from data violating a given set of aggregate constraints. These constraints
consist of linear inequalities on aggregate-sum queries issued on measure
values stored in the database. This syntactic form enables meaningful con-
straints to be expressed. Indeed, aggregate constraints frequently occur in
many real-life scenarios where guaranteeing the consistency of numerical
data is mandatory.
We consider database repairs consisting of sets of value-update opera-
tions aiming at re-constructing the correct measure values of inconsistent
data. We adopt two different criteria for determining whether a set of
update operations repairing data can be considered “reasonable” or not:
set-minimal semantics and card -minimal semantics. Both these semantics
aim at preserving the information represented in the source data as much
as possible. They correspond to different repairing strategies which turn
out to be well-suited for different application scenarios.
We provide the complexity characterization of three fundamental prob-
lems: (i) repairability : is there at least one (possible not minimal) repair
for the given database with respect to the specified constraints? (ii) repair
checking : given a set of update operations, is it a minimal repair? (iii)
consistent query answer : is a given query true in every minimal repair?

3) We provide a method for computing card -minimal repairs for a database
in presence of steady aggregate constraints, a restricted but expressive class
of aggregate constraints. Under steady aggregate constraints, an instance
of the problem of computing a card -minimal repair can be transformed
into an instance of a Mixed-Integer Linear Programming (MILP) problem.
Thus, standard techniques and optimizations addressing MILP problems
can be re-used for computing a repairs.
On the basis of this data-repairing framework, we propose an architecture
providing robust data acquisition facilities from input documents contain-
ing tabular data. We exploit integrity constraints defined on the input
data to support the detection and the repair of inconsistencies in the data

x Preface

arising from errors occurring in the acquisition phase performed on input
data.

Organization

The thesis is organized as follows. Chapter 1 presents some preliminaries on
first-order languages, relational databases, integrity constraints and queries.
The definitions of repair and consistent query answer with some related com-
putational problems are also introduced. Chapter 2 presents some proposal
that were defined in the literature for the semantics of querying inconsistent
integrated databases. In particular, we discuss the notion consistent query
answer which has been used and extended in many subsequent works in lit-
erature. In Chapter 3, Chapter 4 and Chapter 5 we provide a comprehensive
survey of the techniques for repairing and querying inconsistent databases.
Specifically, Chapter 3 provides complexity results and techniques for the
problem of computing consistent answers for several classes of queries and
constraints. In Chapter 4 we discuss how repairs can be specified using logic
programs with disjunction and classical negation, and consistent query an-
swers can be obtained by skeptical reasoning. Both Chapter 3 and Chapter 4
refer to techniques where repairs are obtained by working at tuple-level, i.e.
inserting and/or deleting whole tuples. In Chapter 5 we discuss the repair-
ing techniques where repairs are obtained by working at attribute-level, i.e.
updating attribute values.

In Chapter 6 we introduce aggregate constraints and characterize the prob-
lem of repairing and computing consistent answers in presence of such con-
straints under two different repair semantics (both defined for repairs working
at attribute-level). Chapter 7 presents a specific but expressive form of aggre-
gate constraints, namely steady aggregate constraints. An architecture based
on a novel method for computing repairs is introduced. This architecture
provides robust data acquisition facilities from input documents containing
tabular data.

Finally, we summarize the work of the thesis and present some interesting
research directions for future work.

Acknowledgements

It is a pleasure to express gratitude to all people which supported me, in any
way, during the last three years I spent at D.E.I.S department of the University
of Calabria. In particular, there are some people who deserve special thanks.
I would like to thank my supervisor, Prof. Sergio Flesca, for guiding me with
great enthusiasm during these years, and for his frank friendship. He has
provided an excellent direction to my research activities and he has often
inspired and incited me to investigate interesting issues. I express my gratitude

Preface xi

to Prof. Sergio Greco for valuable discussions and careful suggestions which
have actually determined my course of doctoral study. I am also indebt with
Filippo Furfaro who contributed with insightful proposals and comments to
my education.

I say thank you to Prof. Ester Zumpano for discussions on some arguments
of this thesis, and to Prof. Domenico Talia for his care in coordinating the PhD
course I attended. Many thanks also to Giovanni Costabile and Francesco De
Marte for cooperation and technical support. I thank my colleagues for their
partnership in post-graduate studies and for their friendship. In particular, I
thank Massimo Mazzeo, who have shared the office with me, for the recreation
moments we spent together and for “personal communications”.

I am deeply grateful to my parents, Gaspare and Maria, and to my broth-
ers, Antonio and Daniele, for their warm support and encouragement. Last
but not least, I thanks my fiancée Alessandra who was carefully interested in
my work, and who brought happiness to my life every time I was troubled.

Rende, November 2006 Francesco Parisi

Contents

Preface . iii
Main Contributions . viii
Organization . x
Acknowledgements . x

1 Preliminaries . 1
1.1 First-Order Languages . 1
1.2 Relational Databases . 3
1.3 Integrity Constraints . 3

1.3.1 Universal Integrity Constraints . 4
1.3.2 Denial Constraints . 6
1.3.3 Functional Dependencies . 6
1.3.4 Inclusion Dependencies . 7

1.4 Inconsistent Databases . 7
1.5 Repairs . 8
1.6 Queries . 10
1.7 Consistent Query Answers . 11
1.8 Computational Problems . 12
1.9 Notations . 13

2 Inconsistency in Databases: from Preliminary Approaches
to Consistent Answers . 15
2.1 Flexible Relational Model . 16

2.1.1 Flexible Relational Algebra . 18
2.2 Integrated Relational Calculus . 22

2.2.1 Maximal Consistent Subset of a Relation 24
2.2.2 The Integrated Relational Model . 25
2.2.3 Querying Integrated Relations . 27

2.3 Merging Databases under Constraints . 28
2.3.1 Semantics of Theory Merging . 29
2.3.2 Result of Merging Databases under Constraints 30

xiv Contents

2.4 Inconsistency in Databases as a Local Notion 33
2.4.1 Distinguishing between Consistent and Inconsistent

Answers . 34
2.5 Consistent Query Answers . 35

2.5.1 Repairing by Inserting and Deleting a Minimal Set of
Tuples . 36

2.5.2 The Query Rewriting Approach . 37
2.6 Discussion . 42

3 The Tuple-Based Repairing Paradigm . 45
3.1 Range-Consistent Query Answers . 46

3.1.1 Conflict Graph . 48
3.1.2 Complexity of Scalar Aggregation Queries 49
3.1.3 Other Tractable Cases . 51

3.2 Repairing by Deleting a Minimal Set of Tuples 52
3.2.1 Denial Constraints . 53
3.2.2 Inclusion Dependencies . 57

3.3 Rewriting for a Class of Conjunctive Queries 59
3.3.1 The Class of Tree Queries . 60
3.3.2 The Query Rewriting Algorithm. 62
3.3.3 A Dichotomy Result . 63

3.4 Rewriting SQL Queries . 64
3.4.1 Join Queries . 65
3.4.2 Aggregation Queries . 67

3.5 A Class of Tractable but not Rewritable Queries 71
3.5.1 On the Class of Tractable Queries 73

3.6 A Large Perspective on Repair Semantics 74
3.6.1 Query Answering under Strict Repair Semantics 75
3.6.2 Query Answering under Loose Repair Semantics 77

3.7 Discussion . 81

4 Logic Programs and Database Repairs . 85
4.1 Logic Programs . 85

4.1.1 General Logic Programs . 85
4.1.2 Extended Logic Programs . 86
4.1.3 Extended Disjunctive Logic Programs 87
4.1.4 Logic Programs with Exceptions . 88
4.1.5 Prioritized Logic Programs . 89

4.2 Querying Databases using Logic Programs with Exceptions . . . 89
4.2.1 Extending Logic Programs with Exceptions 90
4.2.2 Specifying Repairs . 90
4.2.3 Computing Consistent Query Answers 94
4.2.4 Referential Integrity Constraints . 94

4.3 Querying Database using Extended Disjunctive Logic Programs 95
4.3.1 Computing Database Repairs . 95

Contents xv

4.3.2 Computing Consistent Answers . 98
4.3.3 Repair Constraints . 100
4.3.4 Prioritized Repairs . 102

4.4 Discussion . 104

5 The Attribute-Based Repairing Paradigm 107
5.1 Repairing Census Data . 108

5.1.1 Repairs for Census Data . 109
5.1.2 Computing Repairs . 112

5.2 Complexity and Approximation of Repairing Numerical Data . 113
5.2.1 Least Square Repairs . 113
5.2.2 Complexity Results and Approximations 115

5.3 An Heuristic for Repairing Inconsistent Databases 118
5.3.1 Minimum-Cost Repairs . 118
5.3.2 A Greedy Algorithm Based on Equivalence Classes 121

5.4 Querying Inconsistent Databases by Means of Nuclei 124
5.4.1 Tableaux Formalism . 126
5.4.2 Fixes and Repairs . 128
5.4.3 Nuclei and Consistent Query Answers 131

5.5 Discussion . 133

6 Repairing and Querying Numerical Databases under
Aggregate Constraints . 135
6.1 Introduction . 135
6.2 Notations . 138
6.3 Aggregate Constraints . 138
6.4 Repairs . 141

6.4.1 Reparability . 143
6.4.2 Minimal Repairs . 156
6.4.3 Set-Minimality versus Card -Minimality 159

6.5 Consistent Query Answers . 161
6.6 Discussion . 166

7 Computing Repairs for Inconsistent Numerical Data 169
7.1 Introduction . 169
7.2 DART a Data Acquisition and Repairing Tool 172
7.3 Steady Aggregate Constraints . 175

7.3.1 Complexity Results under Steady Aggregate Constraints177
7.4 Computing a Card -Minimal Repair . 178
7.5 DART Architecture . 182

7.5.1 Acquisition Module . 183
7.5.2 Data Extraction Module . 184
7.5.3 Repairing Module . 187

7.6 Discussion . 188

xvi Contents

Conclusions . 191

References . 195

1

Preliminaries

In this chapter we first present some preliminaries on first-order languages
and relational databases. We assume that readers are familiar with first-order
languages and relational databases and only recall here some definitions which
will be used in this dissertation. Then, we introduce formal definitions of in-
tegrity constraints and queries providing a syntactic characterization of them.

After this, we provide the formal definition of repair for a (possible incon-
sistent) database with respect to a set of integrity constraints assuming that
a repair semantics is given. Several forms of repair semantics have been pro-
posed in the literature in the last few seven years. The characterization of the
application context for which a given semantics is suitable will be discussed
in the next chapters.

Finally, the notion of consistent query answers with some related compu-
tational problems will be introduced. These problems will be studied under
different forms of repair semantics in the next chapters.

1.1 First-Order Languages

A first-order language L is defined over an alphabet Σ which consists of
countable sets of variable, predicate and function symbols. A predicate (resp.
a function) symbol is said to be a k-ary predicate (resp. function) symbol
if the number of arguments that it takes is equal to k. Predicate symbols
are never 0-ary. We assume that the binary predicate symbol = (equality
relation) is defined. A 0-ary function symbol is a called constant. A language
L is function-free if it only contains functions with arity equal to zero.

The family of terms over the alphabet Σ is recursively defined as follows:
a constant or a variable is a term; f(e1, . . . , en) is a term if f is an n-ary
function symbol and e1, . . . , en are terms.

The first order language L over the alphabet Σ is defined as the set of
all (well-formed predicate calculus) formulas that can be built using logical
connectives (¬, ∧, ∨), quantifiers (∃,∀), terms and predicate symbols in the

2 1 Preliminaries

standard way: P (e1, . . . , en) is an atomic formula (or atom) if P is an n-
ary predicate symbol and e1, . . . , en are terms; atomic formulas also include
expressions of the form e1 = e2 with e1, e2 terms; ¬ϕ, ϕ ∧ φ, ϕ ∨ φ, ∃xϕ and
∀xϕ are formulas if ϕ, φ are formulas and x is a variable.

Free and bound occurrence of variables in formulas are recursively defined:
each variable occurrence in an atom is free; if φ is ϕ1∨ϕ2, then an occurrence
of variable x in φ is free if it is free as an occurrence of ϕ1 or ϕ2; and this is
extended to the other connectives. If φ is ∃xϕ, then an occurrence of variable
y 6= x is free in φ if the corresponding occurrence is free in ϕ, whereas each
occurrence of x is bound in φ. In addition, each occurrence of x in φ which is
free in ϕ is said to be in the scope of ∃x at the beginning of φ.

A sentence is a well-formed formula that has no free variables occur-
rences. Sentences will also be called closed (first-order) formulas. A formula
is quantifier-free if no quantifier occurs in it.

A term or a formula is ground if it involves no variables. A literal is an
atom α or a negated atom ¬α; in the former case, it is positive, and in the
latter negative. Two literals are complementary, if they are of the form α and
¬α, for some atom α.

An interpretation gives meaning to the language L. An interpretation of
a first-order language L is a 4-tuple I = 〈U , C,P,F〉, where U is a nonempty
set of abstract elements called the universe of discourse and C,P and F give
meaning to the set of constant symbol, predicate symbol, and function symbol:
C is a function from the constant symbols into U ; P maps each n-ary predicate
symbol P into an n-ary relation over U , i.e. a subset of Un; F assigns to each
k-ary function symbol f an actual function Uk → U . An interpretation is
finite if its universe of discourse is finite.

The Herbrand Universe of a first-order language L is the set of all ground
terms that can be constructed using constant and function symbol of L (if
the language has no constants, then it is extended by adding an arbitrary new
constant). The Herbrand Base of L is the set of all ground atoms constructed
from the predicates appearing in L and the ground terms from Herbrand
Universe as arguments. The Herbrand Universe and the Herbrand Base are
both enumerable, and infinite if there is a predicate symbol of arity greater
than zero. A Herbrand interpretation (or a possible world) is a subset of the
Herbrand Base. It is an interpretation where the universe of discourse is the
the Herbrand Universe, all terms are interpreted as themselves, and each
predicate symbols is mapped into a subset of the Herbrand Base.

The notion of satisfaction of a formula by an interpretation is defined in the
standard way. An interpretation I is a model of a set Φ of sentence, denoted
as I |= Φ, if I satisfies each formula in Φ. For a sentence Φ, an Herbrand model
is a subset of the Herbrand Base satisfying Φ. The set of the models of Φ will
be denoted as Mod(Φ). If Mod(Φ) is empty, then Φ is said to be inconsistent
or unsatisfiable; otherwise it is said to be consistent or satisfiable.

1.3 Integrity Constraints 3

We say that a sentence ϕ (logically) implies (or supports) φ, denoted as
ϕ |= φ, if Mod(ϕ) ⊆ Mod(φ), and ϕ is (logically) equivalent to φ, denoted as
ϕ ≡ φ, if Mod(ϕ) = Mod(φ).

A (first-order) theory is a set of sentence of the (first-order) language L.

1.2 Relational Databases

We assume that there are finite (disjoint) sets of relation names rel and at-
tribute names att. We also have a fixed, infinite database domain dom, con-
sisting of uninterpreted constants, an infinite numeric domain Q, consisting
of all rational numbers, and an infinite numeric domain I, consisting of all
integer numbers. These domains are disjoint. We assume that elements of the
domains with different names are different.

A relation scheme of a relation P ∈ rel is a sorted list (A1, . . . , An) where
A1, . . . , An ∈ att. A (relational) database scheme is a nonempty set of relation
schemes. Each attribute A is typed and it has associated a domain denoted by
DOM(A). The null value ⊥ is not contained in DOM(A) and DOM⊥(A) =
DOM(A) ∪ ⊥.

A tuple for a relation P is a mapping assigning to each attribute A of P
an element in DOM(A), i.e. it is a list of values 〈a1, . . . , an〉 where ai is the
value of the attribute Ai, for each i ∈ [1..n]. The value ai of the attribute
Ai of a tuple t will be denoted as t[Ai]. For a set of attribute {Ai, . . . , Aj},
t[Aj , . . . , Aj] = 〈t[Ai], . . . , t[Aj]〉. A relation instance (or simply relation) is a
set of tuples. In the following, a tuple t = 〈a1, . . . , an〉 of a relation P , will
also be denoted by P (a1, . . . , an) (or P (t)) since under a logic-programming
perspective it is a fact (ground atom) over P .

Let L be a function-free, first-order language with constant symbols in the
domains dom, Q and I, and predicate symbols in rel. A database instance
D can be seen as a finite Herbrand interpretation for L. Since each instance
is finite, it has finite active domain which is a subset of {dom ∪ Q ∪ I}. We
allow the standard built-in predicates =, 6=, <,>,≤,≥ over Q and I that have
infinite, fixed extensions.

Given a database instance D, we will denote as Facts(D) the set of ground
atomic formulas {P (t) | D |= P (t)}, where P is a relation symbol and t a
ground tuple.

1.3 Integrity Constraints

Integrity constraints express semantics information over data, i.e. properties,
relationships that are supposed to be satisfied among data and they are mainly
used to validate database transactions. They are usually defined by first-order
formulas or by means of special notations for particular classes such as func-
tional and inclusion dependencies.

4 1 Preliminaries

Definition 1.1 An integrity constraint is a the first-order sentence of the
form:

(∀X) [Φ(X) ⇒ (∃Z)Ψ(Y)] (1.1)

where X, Y and Z are sets of variables, Φ and Ψ are two conjunctions of
literals such that X and Y are the distinct set of variables appearing in Φ and
Ψ , respectively, and Z = Y −X is the set of variables existentially quantified.

2

In the definition above, the conjunction Φ is called the body and the con-
junction Ψ the head of the integrity constraints. In both Φ and Ψ , one can
find relation literals (i.e. either P (w1, . . . , wn) or ¬P (w1, . . . , wn) with P a
relation symbol) and built-in atoms (comparison operators, e.g. w = w′ or
w ≤ w′).

The semantics of the above constraints is that for every value of X which
makes the formula Φ(X) true there must be an instance of Z which makes
Ψ(Y) true.

Six common restrictions on the formula (1.1) give us six classes of integrity
constraints:

1. The full (or universal) are those not containing existential quantified vari-
ables.

2. The unirelational (or single-atom) are those with one relation symbol only;
dependencies with more than one relation symbols are called multirela-
tional.

3. The single-head are those with a single atom in the head; dependencies
with more than one atom in the head are called multi-head.

4. The tuple-generating are those in which no equality atoms occur.
5. The equality-generating are full, single-head, with an equality atom as

head.
6. The typed are those whose variables are assigned to fixed positions of re-

lation atoms and every equality atom involves a pair of variables assigned
to the same position of the same relation atom; dependencies which are
not typed will be called untyped.

Most of the dependencies developed in database theory are restricted cases of
some of the above classes. For instance, functional dependencies are positive,
unirelational, equality-generating constraints.

In this dissertation we deal with the following classes of integrity con-
straints.

1.3.1 Universal Integrity Constraints

Universal (single-head) integrity constraints are sentence of the form

∀X [β1 ∧ · · · ∧ βn ∧ ¬α1 ∧ · · · ∧ ¬αm ∧ ϕ ⇒ α0]

1.3 Integrity Constraints 5

where α1, . . . , αm, β1, . . . , βn are positive literals, ϕ is a conjunction of built-
in atoms, α0 is a positive atom or a built-in atom, X denotes the list of all
variables appearing in β1, . . . , βn; variables appearing in α0, . . . , αm, and ϕ
also appear in β1, . . . , βn.

Often we will write constraints in a different format by moving literals
from the head to the body and vice versa. For instance, the above constraint
could be rewritten as

∀X [β1 ∧ · · · ∧ βn ∧ ϕ ⇒ α0 ∨ α1 ∨ · · · ∨ αm]

An universal integrity constraint is in standard format if it has the form

∀X [α0 ∨ α1 ∨ · · · ∨ αm ∨ ¬β1 ∨ · · · ∨ ¬βn ∨ φ]

where the formula φ is equivalent to the negation of ϕ.
The positive literals αi, or βi, will be written explicitly as Pi(Xi), where

Pi is a relation symbol and Xi is a set of variables. Therefore we also write
the universal constraints in standard format as

∀X0, . . . , Xn

[
m∨

i=0

Pi(Xi) ∨
n∨

i=m+1

¬Pi(Xi) ∨ φ(X0, . . . , Xn)

]
(1.2)

where P0, . . . , Pn are relation symbols and X0, . . . , Xn are tuples of variables
and φ is a (quantifier-free) formula referring only to built-in predicates. Notice
that there are no constants in the Pi; if they are needed they can be pushed
into φ.

Universal constraints that can be represented in standard format with
n ≤ 2 (they consists of two literals) will be called binary constrains.

In the following we will denote sets of universal (single-head) integrity
constraints by UC and sets of binary constraints by BC.

Definition 1.2 Let UC be a set of universal integrity constraints in standard
format over a database scheme D. The set UC is said to be acyclic if there
exists a function f from predicate names plus negations of predicate names
in D to the natural numbers, that is, f : {P1 . . . , Pk,¬P1 . . .¬Pk} → N, such
that for every integrity constraint

∀X0, . . . , Xn

[
n∨

i=0

Li(Xi) ∨ φ(X0, . . . , Xn)

]
(1.3)

where Li is a literal, and for every i and j (0 ≤ i, j ≤ n), if i 6= j, then
f(¬Li) > f(Lj).

2

Here, ¬Li is the literal complementary to Li, whereas f is a level mapping,
similar to the mappings associated with stratified logic programs, except that
complementary literals get values independently of each other.

6 1 Preliminaries

Example 1.1 The set of universal integrity constraints

UC = {∀X [¬P (X) ∨ ¬Q(X) ∨ S(X)], ∀XY [¬Q(X) ∨ ¬S(Y) ∨ T (X,Y)]}
is acyclic. The first constraint in UC implies f(P) > f(S) and f(Q) > f(S),
whereas the second entails f(Q) > f(T) and f(S) > f(T). Therefore exists
the function f defined by

f(P) = 2 f(Q) = 2 f(S) = 1 f(T) = 0
f(¬P) = 0 f(¬Q) = 0 f(¬S) = 1 f(¬T) = −2

which satisfies the condition of the definition above.
2

1.3.2 Denial Constraints

Denial constraints are sentence of the form

∀X1, . . . , Xk

[
k∨

i=1

¬Pi(Xi) ∨ φ(X1, . . . , Xk)

]
(1.4)

where only negative literals appear in the standard format of the universal
constraint. Often they will be written as

∀X1, . . . , Xk ¬[P (X1) ∧ · · · ∧ P (Xk) ∧ ϕ(X1, . . . , Xk)]

where ϕ is equivalent to the negation of φ. We will denote as DC sets of denial
constraints.

In the following, the denial constraints with k ≤ 2 will be called binary de-
nials. Observe that binary denials are a subset of binary constraints. Moreover,
any set of denial constraints is an acyclic (according to the Definition 1.2).

1.3.3 Functional Dependencies

Functional dependencies are a special case of binary denial constraints. They
are typed, unirelational, equality-generating constraints of the form

∀X1, X2, X3, X4, X5 [P (X1, X2, X4) ∧ P (X1, X3, X5) ⇒ X2 = X3]

In the formula above, the expression X2 = X3 is the equality between the
tuples of variables X2 = 〈y1 . . . yn〉 and X3 = 〈z1 . . . zn〉, that is y1 = z1∧· · ·∧
yn = zn.

Often a functional dependency will be written as

∀X1, X2, X3, X4, X5 [¬P (X1, X2, X4) ∨ ¬P (X1, X3, X5) ∨X2 = X3]

A more familiar formulation of the above functional dependencies is P [V] →
P [W] over a relation scheme P (or simply V → W if the relation scheme is

1.4 Inconsistent Databases 7

understood from the context), where V is the set of attributes of P corre-
sponding to X1 and W is the attribute of P corresponding to X2 (and X3).

Given a relation P with set of attributes U and set of functional depen-
dencies FD over P , a key of P is a minimal (under ⊆) set of attributes K ⊆ U
such that FD entails K → U . In this case, we say that each K → W ∈ FD
is a key dependency. If, additionally, K is the primary (one designed) key of
P , then K → W is called primary key dependency.

The set of keys of a relation P will be denoted by keys(P) and the primary
key is denoted by pkey(P). In the following we will denote by FD sets of
functional dependencies, and by KD sets of key dependencies.

1.3.4 Inclusion Dependencies

An inclusion dependency, also known as referential integrity constraint is a
sentence of the form

∀X ∃Z [P (X) ⇒ Q(Y, Z)]

where X and Z are distinct sets of variables and Y ⊆ X; and P and Q relation
symbols. They are often written as

∀X ∃Z [¬P (X) ∨Q(Y, Z)]

A more familiar formulation is P [V] ⊆ Q[W], where V (resp. W) is the
set of attributes of P (resp. Q) corresponding to Y .

Full (or universal) inclusion dependencies are those expressible without
the existential quantifier. They are a special case of binary constraints. For
instance, ∀(X, Y)[P (X,Y) ⇒ Q(X)] is full.

Given two relations P and Q, and a key dependency Q[K] → Q[W], each
inclusion dependency P [V] ⊆ Q[K] is a foreign key constraint. If, additionally,
K is the primary key of Q, then P [V] ⊆ Q[K] is called primary foreign key
constraint.

In the following we will denote by ID the sets of inclusion dependencies,
and by FK sets of foreign key constraints.

Definition 1.3 Let ID be a set of inclusion dependencies over a database
scheme D. Consider a directed graph whose vertices are relations from D
and such that there is an edge e(P, Q) in the graph iff there is an inclusion
dependencies P [V] ⊆ Q[W] in ID. A set of inclusion dependencies is acyclic
if the above graph does not have a cycle.

2

1.4 Inconsistent Databases

A database scheme contains knowledge on the structure of data, providing con-
straints on the form the data must have. The integrity constraints are usually

8 1 Preliminaries

used for restricting the set of all possible instances that can be associated to
a database scheme. They express relationships among data and prevent the
insertion or deletion of data which could produce incorrect instances.

In the following, if not differently stated, we will assume that we are dealing
with a satisfiable (or consistent) set of constraints, in the sense that there is
a database instance that makes it true.

Definition 1.4 Given a database scheme D and a set of integrity constraints
IC on D, a instance D of D is said to be consistent w.r.t. IC if D |= IC in
the standard model-theoretic sense, inconsistent otherwise (D 6|= IC).

2

Example 1.2 Consider the database scheme D consisting of only the relation
Student(Code,Name, Faculty), whose instance is shown in Fig. 1.1.

Code Name Faculty

s1 Mary Engeneering

s2 John Science

s2 Frank Engeneering

Fig. 1.1. Database instance D

Assume that the functional dependencies Code → Name and Code →
Faculty are defined for the database. The two functional dependencies can
be expressed as follows

FD = { ∀x1, x2, x3, x4, x5 [Student(x1, x2, x4) ∧ Student(x1, x3, x5) ⇒ x2 = x3]
∀x1, x2, x3, x4, x5 [Student(x1, x2, x4) ∧ Student(x1, x3, x5) ⇒ x4 = x5]}

It is easy to see that D 6|= IC, since both the constraints in IC are violated:
the second and the third tuple have the same value for Code, but different
values for Name and Faculty.

2

1.5 Repairs

A database instance D may be inconsistent w.r.t. a given set of integrity con-
straints IC. The restoration of the consistency in an inconsistent database can
be achieved in a (possible infinite) number of ways, each of them yielding a
consistent database. We have interest in minimal restorations of consistency,
i.e. in performing actions that give us a new database instance R that shares
the scheme with the original database D, but minimally differ from D ac-
cording to some sort of distance between the original instance D and the

1.5 Repairs 9

alternative consistent instance R. In literature the notion of minimal restora-
tion of consistency for a database D has been captured in terms of repair for
D. Different forms of semantics for repairs has been proposed. In this disser-
tation we will discuss these type of semantics relating them to the contexts
where they are applicable.

Definition 1.5 Let D be a database instance of a database scheme D and
IC be a set of integrity constraints on D. Let S be a repair semantics. Given
a partial order ¹S over databases instances (over D) which depends on the
repair semantics S, a repair for D w.r.t. IC under S is a new database instance
R such that:

1. R is over the same scheme and domain as D,
2. R satisfies IC (R |= IC),
3. there is no database instance R′ such that R′ ¹S R ¹S D, among the

instances satisfying the first two conditions.

2

We will denote as R(D, IC,S) the set of all repairs for a database D
w.r.t. the set of constraints IC under the semantics S. When the semantics
is understood we simply write R(D, IC).

The semantics S determines the partial order ¹S , which is defined over
the set of consistent database instances for a given database D. Different type
of actions can be performed on D for obtaining the restoration of consistency.
We distinguish two repairing paradigms: tuple-based repairing paradigm and
attribute-based repairing paradigm. In the former, only actions on whole tuples
are allowed for restoring the consistency in a database. Whereas, in the latter
also value modifications are allowed, that is a finer repair primitive consisting
in correcting faulty values within the tuples is used.

Several repairing techniques that work according to tuple-based repairing
paradigm are present in literature [4, 5, 7, 8, 9, 12, 23, 24, 27, 29, 44, 45,
46, 51, 52, 65, 66]. More recently, also techniques working at attribute level
has been proposed [17, 42, 16, 41, 39, 76, 77, 78]. Several issues regarding the
repair semantics and the two paradigms will be discussed in next chapters.
Here, we only provide an example under the semantics that determines the
order among consistent database instances on the basis of minimal-set (under
⊆) of inserted and deleted tuples, which is the first semantics proposed in
literature [4] (the technique in [4] will be discussed in Section 2.5).

The distance ∆(D,D′) between database instances D and D′ is the sym-
metric difference

∆(D,D′) = {Facts(D)− Facts(D′)} ∪ {Facts(D′)− Facts(D)}
The partial order ¹S among repairs of a database instance D according

to the semantics S equal to minimal-set of inserted/deleted tuples is defined
by

R′ ¹S R′′ ⇔ ∆(D,R′) ⊆ ∆(D,R′′)

10 1 Preliminaries

Example 1.3 Consider the (inconsistent) database D and the set FD of
constraints of Example 1.2. There are two different repairs R1, R2 for D
w.r.t. FD, which are shown in Fig. 1.2. Both R1 and R2 are obtained deleting
a (conflicting) tuple from the original instance D.

Code Name Faculty

s1 Mary Engeneering

s2 John Science

R1

Code Name Faculty

s1 Mary Engeneering

s2 Frank Engeneering

R2

Fig. 1.2. Repairs R1 and R2 for D

2

Observe that, according to this semantics, repairs may contain tuples that
do not belong to the original database. For instance, removing violations of
inclusion dependencies constraints can be done not only by deleting but also
by inserting tuples.

Example 1.4 Consider the database scheme consisting of two unary relations
P and Q. Assume that for an instance D, Facts(D) = {P (a), P (b), Q(a)}
and IC = {∀x[P (x) ⇒ Q(x)]}. In this case we have two possible repairs for
D w.r.t. IC. First, we can falsify P (b), i.e. we delete a tuple and obtain the
repair R1 with Facts(R1) = {P (a), Q(a)}. As second alternative, we can make
Q(b) true, i.e. we insert a tuple and obtain the repair R2 with Facts(R2) =
{P (a), P (b), Q(a), Q(b)}.

2

The other dimensions of repairs, i.e. the granularity of the action per-
formed (tuple-level or attribute-level), the type of the action (insertion, dele-
tion, update) and other issue relative to the semantics (set-minimality, card-
minimality), will be deeply discussed in the next chapters.

1.6 Queries

Queries are (well-formed) formulas over the same language associated with
the database scheme. A query is said to be boolean or a sentence (or closed)
if it has no free variables. A sentence without (existential) quantifiers is called
quantifier-free (or universal) sentence. A quantifier-free sentence without vari-
ables is called ground query.

A sentence is in conjunctive normal form (CNF) if it has the form Φ1 ∧
· · · ∧ Φm (m ≥ 1), where each conjunct Φi has the form L1 ∨ · · · ∨ Lk (k ≥ 1)

1.7 Consistent Query Answers 11

and where each Lj is a literal. Similarly, a sentence is in disjunctive normal
form (DNF) if it has the form Φ1 ∨ · · · ∨ Φm, where each disjunct Φi has the
form L1 ∧ · · · ∧ Lk and where each Lj is a literal.

A query is in prenex normal form (PNF) if it has the form q1x1 . . . qnxnΦ,
where each qi is either ∀ or ∃, and Φ is quantifier-free formula.

Conjunctive queries [26, 1] are formulas of the form

Q(w1, . . . , wm) = ∃z1, . . . , zk [P1(u1) ∧ · · · ∧ Pn(un) ∧ ϕ(u1, . . . , un)]

where w1, . . . , wm, z1, . . . , zk are all the variables that appear in the relation
atoms P1(u1) . . . Pn(un) of Q. We will say that w1, . . . , wm are the free vari-
ables of Q, whereas z1, . . . , zk are the existentially quantified variables of Q.
Moreover, ui are tuples of both variables and constants, and ϕ(u1, . . . , un) is
a conjunction of built-in atomic formulas.

We will say that there is a join on a variable x if either (i) x appears in two
literals Pi(ui) and Pj(uj) such that i 6= j, or (ii) there is a built-in equality
atom x = y and x appears in Pi(ui) and y appears in Pj(uj) such that i 6= j.

A conjunctive query is simple if (i) it has no repeated relation symbols,
(ii) the variables in ui are disjoint from that in uj if i 6= j, and (iii) ϕ is of
the form γ1(u1) ∧ · · · ∧ γm(un) where γi is a built-in atomic formula.

Definition 1.6 A ground tuple t = 〈a1, . . . am〉 is an answer to a query
Q(w1, . . . , wm) in a database instance D if D |= Q(t), i.e., the formula Q with
〈w1, . . . , wm〉 replaced by 〈a1, . . . am〉 is evaluated true in D.

2

1.7 Consistent Query Answers

Given a (possible inconsistent) database D and a set of integrity constrains
IC, the consistent answers to a query Q posed on D are those answers
that are invariant under minimal form of restoration of the consistency of
D w.r.t. IC [4], i.e. answers that can be obtained posing Q on every repair
R ∈ R(D, IC,S), for a given semantics S. From this perspective, the problem
of computing consistent query answers is a form of caution reasoning from a
database under integrity constraints.

Definition 1.7 (Consistent query answer) Let D be a database instance
over the scheme D, IC be a set of integrity constraints over D and Q(W) be
a query over D. Given a semantics S, a ground tuple t is a consistent answer
to Q w.r.t. IC under the semantics S if for every repair R ∈ R(D, IC,S), it
holds R |= Q(t).

2

In the following we will denote as CQA(Q, D, IC,S) the set of consistent
answer to Q in D w.r.t. IC under the semantics S. If Q is a boolean query (a

12 1 Preliminaries

sentence), then CQA(Q,D, IC,S) is a singleton containing true if R |= Q for
every repair R ∈ R(D, IC,S), containing false otherwise. Additionally, Q is
said to be consistently true in D if CQA(Q,D, IC,S) = {true}, consistently
false otherwise.

Example 1.5 Given the database D and the set of integrity constraints IC of
Example 1.2, and the quantifier-free query Q(x, y, z) = Student(x, y, z). The
set of consistent answers to the query Q is CQA(Q,D, IC,S) = {(‘s′1, ‘Mary′,
‘Engineering′)}, where S the set-minimal semantics.

2

In the following, when S is understood we simply write CQA(Q,D, IC).

1.8 Computational Problems

In the following, if it is not differently stated, we will study the complexity
of (decisional) problems adopting the data complexity assumption [1], which
measures the complexity of a problem as a function of the size of a given
database instance. The database scheme, the given query and integrity con-
straints are assumed to be fixed.

In this dissertation we will consider the following complexity classes [55,
68]:

• PTIME : the class of decision problems solvable in polynomial time by
deterministic Turing Machines; this class is also denoted as P ;

• NP : the class of decision problems solvable in polynomial time by nonde-
terministic Turing Machines;

• coNP : the class of decision problems whose complements are solvable in
NP ;

• Σp
2 : the class of decision problems solvable in polynomial time by nonde-

terministic Turing machines with an NP oracle; this class is also denoted
as NPNP ;

• Πp
2 : the class of decision problems whose complements are solvable in Σp

2 ;
this class is also denoted as coNPNP ;

• ∆p
2: the class of decision problems solvable in polynomial time by deter-

ministic Turing machines with an NP oracle; this class is also denoted as
PNP ;

• ∆p
2[log(n)]: the class of decision problems solvable in polynomial time

by deterministic Turing machines with an NP oracle which is invoked
O(log(n)) times; this class is also denoted as PNP [log(n)];

• AC0: the class of decision problems solvable by constant-depth, polynomial-
size, unbounded fan-in circuits (AC0 ⊂ P).

Let DC be a class of databases instance over the same scheme D, QC be
a class of queries QC over D, IC be a class of integrity constraints over D

1.9 Notations 13

and S be a repair semantics. We study the (data) complexity of the following
problems:

• repair checking, i.e. the complexity of determining the membership of the
sets

RC(IC,S) = {(D, R) | D, R ∈ DC ∧R ∈ R(D, IC,S)}
• consistent query answers, i.e. the complexity of determining the member-

ship of the sets

CQA(Q, IC,S) = {(D, t) | D ∈ DC ∧ t ∈ CQA(Q,D, IC,S)}

where IC is a fixed finite set of integrity constraints belonging to IC, Q is a
fixed query belonging to QC. If QC is the class of Boolean Queries, t stands
for true; otherwise t is a ground atom.

Given a class of complexity C, the problem RC(IC,S) is C-hard under
the semantics S if there is a finite set of integrity constraint IC such that
RC(IC,S) is C-hard. The problem CQA(Q, IC,S) is C-hard (under the se-
mantics S) if there is a query Q ∈ QC and a finite set of integrity constraints
IC such that CQA(Q, IC,S) is C-hard.

In the following, when S is understood we simply write RC(IC) and
CQA(Q,D, IC).

1.9 Notations

In the following we generally use the following symbols (possibly with sub-
scripts):

Constants: a, b, c
Variables: x, y, z
Set of variables: X, Y, Z
Terms: e, w
Tuples (of constants): t, s, 〈a1, . . . an〉
Tuples of both variables and constants: u,v, 〈w1, . . . wn〉
Facts: P (t), P (a1, . . . , an)
Atoms: α, β, P (u), P (w1, . . . , wn)

Attributes: A,B, C
Set of attributes: K, U, V, W
Relation names (schemes): P , Q, P (A,B, C), P (A1, . . . An)
Database schemes: D
Relation instances: I,J
Database instances: D

2

Inconsistency in Databases: from Preliminary
Approaches to Consistent Answers

Often different databases are integrated together to provide a single unified
view for the users. Generally, every source database is consistent with respect
to a given set of integrity constraints, which is defined for entailing specific
relationships among data of the (single) source. As result of database integra-
tion, many different kinds of discrepancies arise. In particular, possible dis-
crepancies are due to (i) different sets of integrity constraints that are satisfied
by different sources, and (ii) constraints that may be globally violated, even if
every source database locally satisfies the same integrity constraints. Locating
and resolving these conflicts may be difficult due to autonomy of the different
databases. Moreover, when a query is posed on an inconsistent database, we
can obtain some answers which are consistent with the constraints and others
which are not.

Several proposals have been made in literature for the semantics of query-
ing inconsistent integrated databases. In this chapter we will survey some
selected approaches which addressed this issue.

In [2, 3] the flexible relational model and the flexible algebra have been pro-
posed. They are, respectively, an augmentation of the relational model and
an extension of the relational algebra. The integrated relational model [35]
generalizes the flexible relational model, whereas the integrated relational cal-
culus is a rather weak query language for integrated data. In [35] it is argued
that the semantics of integrating (possible) inconsistent data is captured by
the maximal consistent subset of the integrated data (although extended with
null values). A different semantics, merging by majority rule, based on the
cardinality of the source databases containing the same tuples, has been in-
troduced in [62].

The notion of consistent query answer will be examined. It has been ex-
pressed in [20] as answers that are not involved in an integrity violation. The
logical characterization of consistent answers, which has been used and ex-
tended in many subsequent works in literature, has been provided in [4]. An
answer to query is consistent if it is the same answer which is obtained if the
query would posed to any minimally repaired version of the original database.

16 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

2.1 Flexible Relational Model

The flexible relational model extends classical relational model by supporting
the representation of inconsistent data and also providing semantics for data
manipulation operators in presence of potentially inconsistent data [3].

The problem of dealing with inconsistent data with respect to primary
key constraints is addressed through the introduction of flexible relations, i.e.
non 1NF relations that contain sets of non-key attributes. Moreover, flexible
algebra which extends classical relational algebra is defined in order to provide
semantics for database operation over flexible relations. The intent of these
semantics is to perform meaningful operations in the presence of inconsistent
data and also to provide as much information as possible to enable the user
to resolve this inconsistency.

It is assumed that the set of constraints consists of only one primary key
dependencies. Let P (K, W) be a relation scheme, where K denotes the set of
attributes in the primary key and W is the set of remaining attributes. P is
said to be consistent if there is no pair of tuples t1 and t2 such that ∀A ∈ K,
t1[A] = t2[A] and ∃B ∈ W with t1[B] 6= t2[B].

In the flexible relational model data are described by means of flex-
ible relations, which are derived from a (classical) relations by applying
an operator flexify denoted by ∼. The flexible relation FR obtained by
applying ∼ to P (K, W), denoted as FR =∼ (P), has relation scheme
FR(K, W,Cons, Sel, Src), where Cons is the consistent status attribute, Sel
is the selection status attribute and Src is the source attribute.

Thus, a flexible relation is derived from a classical relation by extending its
scheme with the ancillary attributes and assigning values for these attributes
for each of the tuples. Specifically, for each tuple t on the relation scheme
P (K, W), a tuple t′ on the relation scheme FR(K, W,Cons, Sel, Src) is de-
rived as follows: ∀A ∈ (K, W), t′[A] = t[A] and t′[Cons] = true, t′[Sel] = true,
and t′[Src] = P .

Example 2.1 Given the relation P on the left-hand side of the Fig. 2.1, the
corresponding flexible relation FR is on the right-hand side of the figure.

K A B C

10 X ⊥ Z

20 Y ⊥ V

P

K A B C Cons Sel Src

10 X ⊥ Z true true P

20 Y ⊥ V true true P

FR =∼ (P)

Fig. 2.1. Derivation of a flexible relation from a (classical) relation

2

2.1 Flexible Relational Model 17

A classical relation is consistent by definition and hence a flexible relation
derived from a single classical relation is also consistent. Inconsistencies may
arise if the integration of a set of consistent and autonomous databases is
performed, i.e., when data from individually consistent flexible relations are
merged. In order to represent inconsistent data in a flexible relation the notion
of Ctuple is introduced.

A Ctuple on the scheme FR(K, W,Cons, Sel, Src) is defined as a cluster
of tuples having the same values for the key attributes, i.e., for any two tuples
t1 and t2 from the Ctuple and for any attribute A ∈ K, t1[A] = t2[A]. A
flexible relation is a set of Ctuples. Since the tuples of a Ctuple match on all
the values of the attributes in K, in the context of a Ctuple the primary key
for the tuples is the concatenation of the set of attributes K and the ancillary
attribute Src. Each tuple in a given Ctuple has a unique value for the attribute
Src and this value refers to the original source relation from which that tuple
was derived. Depending on the tuples associated with a Ctuple, the Ctuple
may be either consistent or inconsistent.

Let t1 and t2 be two tuples in the same Ctuple on the flexible relation
scheme FR(K, W,Cons, Sel, Src). Then, t1 and t2 are conflicting if there
is some attribute A ∈ W such that t1[A] 6= ⊥, t2[A] 6= ⊥ and t1[A] 6= t2[A],
where the interpretation given to the null value consists in no information [81]
(a null value can be a place holder for either a nonexistent or an unknown
value). A Ctuple is consistent if it contains non conflicting pairs of tuples, i.e.
if for each attribute, all of the non-null values agree.

Observe that a Ctuple containing exactly a tuple is consistent by definition.
Moreover, the ancilliary attributes are not considered while determining the
consistency between tuples. In fact, the value for the ancilliary attribute Cons
is determined by evaluating the consistency of the tuples associated with a
given Ctuple.

Example 2.2 Consider the three relations P1, P2 and P3 in Fig. 2.2 coming
from the sources S1, S2 and S3, respectively.

K A B C

10 X ⊥ Z

20 Y ⊥ Z

P1

K A B C

10 X Y Z

20 Y ⊥ Z

P2

K A B C

10 X W Z

P3

Fig. 2.2. Relations involved in the integration process

The flexible relation derived from the sources S1, S2 and S3 is as follows:
It consists of two Ctuples: c1(containing the three tuples with key value 10)
and c2 (containing the last two tuples having key value 20). Note that the
Ctuple c2 is consistent whereas the Ctuple c1 is not consistent.

18 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

K A B C Cons Sel Src

10 X ⊥ Z false true S1

10 X Y Z false true S2

10 X W Z false true S3

20 Y ⊥ Z true true S1

20 Y ⊥ Z true true S2

Fig. 2.3. The flexible relation obtained from integration of S1, S2 and S3

2

These ancillary attributes Cons, Sel and Src are instantiated by the appli-
cation of the flexify operator. Each tuple of a flexible relation has a value for
each ancillary attribute. The interpretation of these attributes is as follows.

• The Cons attribute defines the consistency status of the Ctuple; its domain
is {true, false} and all tuples in the same Ctuple have the same value.

• The Sel attribute denotes the selection status of the Ctuples in the result
of a selection operation performed on a flexible relation. It contains in-
formation about possible restrictions on the selection of tuples in Ctuples
and its domain is {true, false,maybe}; all tuples in the same Ctuple have
the same value. The value of this attribute is determined by applying the
selection predicate (of flexible algebra) to data stored in each Ctuples. For
flexible relations derived from source relations through the application of
the flexify operator, its value is true, whereas for relations derived from
other flexible relations its value can also be false or maybe.

• The Src attribute refers to the source relation from which a particular
tuple has been derived. In case of inconsistent data, the source informa-
tion is useful for determining the cause of a particular inconsistency and
subsequently its resolution.

2.1.1 Flexible Relational Algebra

The flexible algebra defines a set of operation on the flexible relations, so that
meaningful operation can be performed in the presence of conflicting data.
The full algebra for flexible relation is defined in [2]; in this section, we briefly
describe some of its operations. The set of Ctuple operation includes merging,
equivalence, selection, union, cartesian product and projection.

Merging

The merge operator merges the tuples in a Ctuple in order to obtain a single
nested tuple referred to as merged Ctuple.

2.1 Flexible Relational Model 19

Given a Ctuple c on the flexible relation scheme FR(K, W,Cons, Sel, Src)
containing the set of tuples {t1, t2, . . . tn}, the merged operator Ω applied to
c returns a merged Ctuple Ω(c) such that

i. for each i ∈ [1..n] and A ∈ {K ∪ {Cons, Sel}}, Ω(c)[A] = ti[A];
ii. for each A ∈ {W ∪ {Src}}, Ω(c)[A] = {⋃i∈[1..n] ti[A] − {⊥}} if exists ti

such that ti[A] 6= ⊥, otherwise Ω(c)[A] = ⊥.

Thus, an attribute A of the merged Ctuple will be null (⊥) if and only if
null is the unique value that A takes in the Ctuple.

Example 2.3 The merged relation derived from the relation shown in Fig. 2.3
is the following:

K A B C Cons Sel Src

10 X {Y, W} Z false true {S1, S2, S3}
20 Y ⊥ Z true true {S1, S2}

Fig. 2.4. The merged relation

2

Equivalence

Two merged Ctuples Ω(c1) and Ω(c2) both on the scheme FR(K, W, Cons,
Sel, Src) are equivalent (Ω(c1) ∼= Ω(c2)) if they do not conflict in any at-
tribute, except for the Src attribute. More formally, Ω(c1) ∼= Ω(c2) if for each
attribute A ∈ {K ∪ {Cons, Sel}}, Ω(c1)[A] = Ω(c2)[A], and for A ∈ W , the
sets {Ω(c1)[A]} and {Ω(c2)[A]} coincide.

Observe that, the attribute Src is not considered while comparing merged
Ctuples. Thus, two merged Ctuples are considered equivalent if they match
exactly in each of their attributes other than the ancillary attribute Src.

Two Ctuples c1 and c2 are considered equivalent (c1 ≡ c2) if the corre-
sponding merged Ctuples Ω(c1) and Ω(c2) are equivalent.

Given a flexible relation FR, a Ctuple c is member of FR, denoted c ∈ FR,
if there is a Ctuple c′ such that c′ ≡ c and c′ is in FR.

Selection

The Sel attribute is modified after the application of selection operations.
Specifically, for a given Ctuple c and a given selection predicate φ, the at-
tribute Sel will be i) true, if φ is true for all tuples in c, ii) false, if φ is false
for all tuples in c, and iii) maybe otherwise.

20 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

In classical relational algebra the selection operator determines the selec-
tion status of a tuple, i.e., true or false, for a given selection condition, which
is specified by means of a selection predicate. In order to apply a selection
predicate φ to a Ctuple c, φ is applied to the merged Ctuple Ω(c). Therefore,
the semantics of the selection operator (in the flexible relational algebra) has
to be extended to operate over non 1NF tuples, since a merged Ctuple is a
nested tuple, i.e. its attributes may be associated with more than one value.

Given a flexible relation scheme FR(K, W,Cons, Sel, Src) a simple partial
predicate is of the form (A op λ) or (A op B) where A, B ∈ K ∪ W ,
op ∈ {=, 6=, >,≥, <,≤} and λ is a single value, i.e. λ ∈ DOM(A) ∪ ⊥.
Given a Ctuple c on the scheme FR(K, W,Cons, Sel, Src), the predicate
(A op B) evaluates to true, false or maybe as follows:

• true, if ∀ ai ∈ Ω(c)[A], ∀ bj ∈ Ω(c)[B], (ai op bj) is true.
• false, if ∀ ai ∈ Ω(c)[A], ∀ bj ∈ Ω(c)[B], (ai op bj) is false.
• maybe, otherwise.

The predicate (A op λ) is equivalent to (A op {λ}). Moreover, since the se-
mantics given to null is that of no information, any comparisons with null
values evaluates to false.

A partial selection predicate is a conjunction of simple partial predicates.
The status of a partial selection predicate is determined by the status of all
its predicates according to the three-valued logic defined by the truth tables
in Fig. 2.5. In these tables, T stands for true, F for false and M for maybe,
whereas φ1 and φ2 refers to predicates.

φ1 ¬φ1

T F

M M

F T

¬φ1

φ2

T M F

T T T T
φ1 M T M M

F T M F

φ1 ∨ φ2

φ2

T M F

T T M F
φ1 M M M F

F F F F

φ1 ∧ φ2

Fig. 2.5. Truth tables for three-valued logic

When a partial predicate evaluates maybe represents the fact that different
values are believed to be true by their respective sources for a particular
attribute of a tuple. It is semantically quite different with respect to meaning
that a finite set of values is available but it is not known which of the values
is the real value.

Given a Ctuple c on the flexible relation scheme FR(K, W,Cons, Sel, Src)
and a partial selection predicate φ, the application of the selection operation
σφ(c) return a Ctuple c′ such that i) ∀A ∈ {K∪W∪{Cons, Src}}, c′[A] = c[A],
and ii) c′[Sel] = γφ(c) ∧ c[Sel], where γφ(c) is the result of applying φ to c.

2.1 Flexible Relational Model 21

Given a flexible relation FR, the result of the selection σφ(FR) is the
set of Ctuples c ∈ FR such that either i) σφ(c′) = true or σφ(c′) = maybe.
Obviously, the Ctuples having selection status false are not present in the
result.

Example 2.4 Considering the flexible relation FR(K, A,B, C, Cons, Sel, Src)
whose instance is shown in Fig. 2.3, the result of σ(B=Y)(FR) is the following

K A B C Cons Sel Src

10 X ⊥ Z false maybe S1

10 X Y Z false maybe S2

10 X W Z false maybe S3

Fig. 2.6. The flexible relation obtained by σ(B=Y)(FR)

The selected Ctuple have selection status maybe since the predicate is
false for the tuples having key values (10, S1) and (10, S3), whereas it is true
for the tuple having key values (10, S2), i.e. the attribute B is associated with
conflicting data.

2

Union

The union operator combines the tuples of two source Ctuples in order to
obtain a new Ctuple. This operation is meaningful if and only if the two
Ctuples represent data of the same concept, and so their scheme coincide
and the value of the selection attribute is true. In the flexible algebra, the
union operation has to be applied before any selection operation, because the
selection operation can led to a loss of information.

Let c1 and c2 be two Ctuples both on the flexible scheme FR(K,W, Cons,
Sel, Src) and such that c1[K] = c2[K]. The union of c1 and c2, denoted as
c1 ∪ c2, is a Ctuple c such that for each tuple t ∈ c, either t ∈ c1 or t ∈ c2.

The consistency of the resulting Ctuple c, specified by the value of the
attribute Cons, is evaluated after the union operation. Even if each of the
source Ctuples is independently consistent, it is still possible for the union of
these Ctuples to be inconsistent.

Given two flexible relation FR1 and FR2, both on the scheme FR(K, W,
Cons, Sel, Src), the result of the union FR1 ∪ FR2 is the set of Ctuples c
such that i) c ∈ FR1 (resp. FR2) and ¬∃c′ ∈ FR2 (resp. FR1) such that
c′[K] = c[K]; ii) c = c1 ∪ c2, where c1 ∈ FR1, c2 ∈ FR2 and c1[K] = c2[K].

22 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

Example 2.5 The flexible relation FR shown in Fig. 2.3 is the union of re-
lations (∼ (P1)), (∼ (P2)), and (∼ (P3)), i.e. the flexible relations correspond-
ing, respectively, to the (classical) relations P1, P2 and P3, whose instances
are shown in Fig. 2.2. 2

It is important to note that for flexible algebra σφ(FR1 ∪ FR2) is not
equivalent to σφ(FR1)∪σφ(FR2), i.e., in general, pushing selection over union
of flexible relations entails an incorrect and incomplete result.

Example 2.6 As shown in Example 2.4, the selection σ(B=Y)(FR) results in
the Ctuple in Fig. 2.6. Whereas σ(B=Y)(∼ (P1))∪σ(B=Y)(∼ (P2))∪σ(B=Y)(∼
(P3)) results in the Ctuple 〈10, X, Y , Z, true, true, S2〉.

2

In [2] the issue related to optimization of flexible relation queries has been
discussed and a strategies for pushing selection over unions has been proposed.

2.2 Integrated Relational Calculus

An extension of (classical) domain relational calculus, called integrated rela-
tional calculus, has been proposed in [35] to provide a logical semantics and a
query language for manipulating data from autonomous multiple databases.

The integrated relational calculus is based on the definition of maximal
consistent subsets for a possible inconsistent database. A possible integration
of a set of relations is defined as the maximal consistent subset for the (pos-
sible) inconsistent relation obtained by union of these. This is achieved by
means of extensions of relations by considering null values. Similarly to [3],
null values denotes the absence of information [81]. It is assumed that tu-
ples cannot have null values for the key attributes and that the values of
the attributes in the primary key are correct, i.e. the consistency can not be
obtained changing values of the primary key attributes.

The integrated relational calculus overcomes some drawbacks of the flexi-
ble relational algebra [3]. Specifically:

i) the flexible relational algebra is not able to integrate possibly inconsistent
relations if the associated relation scheme has more than one key;

ii) the flexible relational model provides a rather weak query language.

The following two examples show two cases in which the flexible algebra fails
as it is not able to detect the correct answer.

Example 2.7 Consider the database scheme containing the single binary re-
lation P1(Employee,Wife) with two keys Employee and Wife with the for-
mer being the primary key. Assume there are the following two instances I1

and I2 for P1.

2.2 Integrated Relational Calculus 23

Employee Wife

Terry Lisa

I1

Employee Wife

Peter Lisa

I2

Fig. 2.7. Relation instance I1 and I2

Employee Wife Cons Sel Src

Terry Lisa true true I1

Peter Lisa true true I2

Fig. 2.8. The flexible relation obtained from I1 and I2

Integrating I1 and I2 using the flexible model we obtain the flexible relation
FR1 = (∼ (I1)) ∪ (∼ (I2)) containing two non conflicting Ctuples, whose
instance is the following.

Now asking “Whose wife is Lisa?” the flexible algebra will return the
incorrect answer {Terry, Peter}, since σwife=‘Lisa′(FR1) returns FR1. In this
example it is evident that flexible algebra fails in detecting the inconsistency
in the data in I1 and I2, due to the fact that Wife is a key. A correct answer
would have been that it is undetermined who is the husband of Lisa.

2

Example 2.8 Consider the relation P2(Employee, Department) with the
attribute Employee as primary key. Assume there are the following two in-
stances I3 and I4 for P2.

Employee Department

Terry CS

I3

Employee Department

Terry Math

I4

Fig. 2.9. Relation instance I3 and I4

By integrating I3 and I4 using the flexible model, the flexible relation FR2

shown in Fig. 2.10 is obtained.
Now asking the question “Who is employed in CS or Math?”, repre-

sented by the selection formula σdepartment=‘CS′∨department=‘Math′(FR2), the
expected answer is {Terry}, but flexible model will give ∅ that is, it does not
know who is working in CS or Math. Moreover in the flexible algebra there
is no way to express a query like “Who is possibly employed in Math ?”

2

24 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

Employee Department Cons Sel Src

Terry CS false true R1

Terry Math false true R2

FR2

Fig. 2.10. The flexible relation obtained from I3 and I4

2.2.1 Maximal Consistent Subset of a Relation

The model proposed by Dung in [35] generalizes the one of flexible relational
algebra. It is argued that the semantics of integrating possibly inconsistent
data is naturally captured by the maximal consistent subsets of the set of all
information contained in the collection data.

Let P (K, W) be a relation scheme where K is the set of attributes in the
primary key and W the set of remaining attributes. Given two tuples t1 and
t2 over P , they are said to be conflicting if there exists a key K ′ ∈ keys(P)
such that (i) for each A ∈ K ′, t1[A] = t2[A] 6= ⊥; and (ii) there is an attribute
B ∈ K ∪ W such that ⊥ 6= t1[B] 6= t2[B] 6= ⊥. Observe that, unlike [3], all
keys of the relation are considered instead of only the primary key. A relation
is consistent if there is no pair of conflicting tuples in it.

Interpreting null as no information leads to the following partial order
on tuples. This order will be extended to relations to achieve the definition
of maximal consistent subset of a (possible inconsistent) relation. Given two
tuples t1 and t2 over P (K, W), t1 is said to be less informative than t2, denoted
as t1 ¿ t2 if and only if ∀A ∈ K ∪W , either t1[A] = ⊥ or t1[A] = t2[A].

Two tuples t1 and t2 over the relation scheme P (K, W) are said to be
joinable if there is a tuple t′ over P (K,W), denoted as join(t1, t2), such that
t1 ¿ t′ ∧ t2 ¿ t′. Since it is assumed that the value of each key attribute is
not null, if t1 and t2 are joinable then ∀A ∈ K, t1[A] = t2[A].

Given two joinable tuples t1 and t2 over the scheme P (K, W), (t1 + t2)
denotes the tuple such that (i) ∀A ∈ K, (t1 + t2)[A] = t1[A] = t2[A], and (ii)
∀A ∈ W , (t1 + t2)[A] = join(t1, t2)[A]. The tuple (t1 + t2) represent the sum
of the information in t1 and t2.

Let I be a relation instance. The informative closure of I, denoted as Î, is
a relation obtained by adding to I the tuples t′ such that either there is t ∈ I
and t′ ¿ t or there are t1, t2 ∈ I and t′ = (t1 + t2).

Example 2.9 Consider the relation scheme P3(Employee, Tel, Salary) with
key(P3) = {Employee} and the two instances I5 and I6 which are shown in
Fig. 2.11.

The informative closures of I5 and I6, i.e. Î5 and Î6, are shown in Fig. 2.12.
In this case, only tuples which are less informative with respect to that al-

ready contained in the starting relations are added to the informative closure.

2.2 Integrated Relational Calculus 25

Employee Tel Salary

Terry 5709 35

I5

employee tel salary

Terry ⊥ 20

I6

Fig. 2.11. Relation instances I5 and I6

Employee Tel Salary

Terry 5709 35

Terry 5709 ⊥
Terry ⊥ 35

Terry ⊥ ⊥

Î5

Employee Tel Salary

Terry ⊥ 20

Terry ⊥ ⊥

Î6

Fig. 2.12. Informative closures of I5 and I6

But, as it will be clear in the following (see Example 2.10), when informative
closures of union of relations is considered also tuples of type (t1 + t2) will be
added.

2

The notion of tuples less informative than others can be extended to rela-
tions, and it is exploited for defining the maximal consistent subset of a rela-
tion. Given two relation instances I1 and I2 over the relation scheme P (K, W),
I1 is said to be less informative than I2 (I1 ¿ I2) if for each tuple t1 ∈ I1

there exists a tuple t2 ∈ I2 such that both t1[K] = t2[K] and t1 ¿ t2 hold.
Let I1 be a relation instance. A maximal consistent subset of I1 is a con-

sistent relation instance I2 over the same scheme of I1 such that I2 ¿ I1 and
there is no consistent relation instance I3 6= I2 such that I2 ¿ I3 ¿ I1.

2.2.2 The Integrated Relational Model

The integration of data from autonomous databases is obtained by union of
relation instances. If inconsistency arise from this step, the intent is that of
obtaining more information with respect to considering only one database.

Let I1, I2 be two relation instances over the same relation scheme. If the
information collected from I1 and I2, represented by J = I1 ∪ I2, is consistent
then J represents the integration of information in I1 and I2. Whereas, if
J = I1 ∪ I2 is inconsistent, a maximal consistent subset of the information
contained in J would be one possible admissible collection of information that
a user could extract from the integration.

Let I1, ..., In be relation instances over the same relation scheme P (K, W).

26 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

• A possible integration of I1, . . . , In is defined as a maximal consistent subset
of Ĵ , where J = Î1 ∪ · · · ∪ În,

• The collection of all possible integrations of the instances I1, . . . , In,
denoted as Integ(I1, . . . , In), is defined as the semantics of integrating
I1, . . . , In.

Example 2.10 Consider the relations I5 and I6, which are shown in Fig. 2.11,
and their information closures Î5 and Î6, which are shown in Fig. 2.12. Let J
be the Î5 ∪ Î6. The information closures Î of J is shown in Fig. 2.13. Observe
that the tuple 〈Terry, 5709, 20〉 is added w.r.t. the tuples contained in Î5∪ Î6.

Employee Tel Salary

Terry 5709 35

Terry 5709 ⊥
Terry ⊥ 35

Terry ⊥ ⊥
Terry ⊥ 20

Terry ⊥ ⊥
Terry 5709 20

Ĵ with J = Î5 ∪ Î6

Fig. 2.13. Informative closures of Î5 ∪ Î6

There are two maximal consistent subsets S1 and S2 of Î which are shown
in Fig. 2.14. Therefore Integ(I5, I6) = {S1, S2}.

Employee Tel Salary

Terry 5709 35

S1

Employee Tel Salary

Terry 5709 20

S2

Fig. 2.14. Maximal consistent subsets of Ĵ

2

Example 2.11 Considering the relations I1,I2 in Fig. 2.7, it is not difficult
to see that Integ(I1, I2) consists of the relations S3 and S4 which are shown in
Fig. 2.15. Whereas integration of I3, I4, which are shown in Fig. 2.9, consists
of the relations in Fig. 2.16.

2

2.2 Integrated Relational Calculus 27

Employee Wife

Terry Lisa

Peter ⊥

S3

Employee Wife

Terry ⊥
Peter Lisa

S4

Fig. 2.15. Integration of I1 and I2

Employee Department

Terry CS

Terry ⊥

S5

Employee Department

Terry Math

Terry ⊥

S6

Fig. 2.16. Integration of I3 and I4

2.2.3 Querying Integrated Relations

Queries over integrated data are formulated by means of a language derived
by (classical) domain relational calculus, called integrated relational calculus.
The extension consists in introducing a modal operator K which allow us to
“quantify” over the set of possible worlds, i.e. the collection of all possible
integration of a set of relations.

Example 2.12 Consider the relation instances I1 and I2, over the scheme
P1(Employee, Wife) of Example 2.7, and Integ(I1, I2) which is shown in
Fig. 2.15. The query “Whose wife is Lisa?” can be formulated in the inte-
grated relational calculus as:

i) Q1(w) = ∃z [P1(w, z) ∧ z = ‘Lisa′] which can be stated as “Whose wife
is Lisa in a possible scenario?”

ii) Q2(w) = ∃z [K(P1(w, z) ∧ z = ‘Lisa′)] which can be stated as “Whose
wife is Lisa in every scenario?” Here the modal quantifier K refers to all
possible integrations, i.e. the set Integ(I1, I2) consisting of the relations
S3 and S4, which are shown in Fig. 2.15.

The answer to the query Q1 is given by taking the union of the tuples
matching the goal in all possible scenarios (brave reasoning), thus it consists
of the set {Terry, Peter}. Whereas, the answer to the query Q2 is obtained by
considering the intersection of the tuples matching the goal in each possible
scenario (cautious reasoning), thus in this case it is the empty set.

2

Example 2.13 Consider the relation instances I3 and I4, over the scheme
P2(Employee, Department) of Example 2.8, and Integ(I3, I4) which is shown

28 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

in Fig. 2.16. The query “Who is possibly employed in Math?” can be formu-
lated in the integrated relational calculus as Q3(w) = ∃z [P2(w, z) ∧ z =
‘Math′].

The question “Who is employed in CS or Math (in every scenario)?”,
formulated as Q4(w) = ∃z [K(P2(w, z) ∧ (z = ‘CS′ ∨ z = ‘Math′))] gives
the expected answer is {Terry}.

2

In [35] the relationship between flexible relational algebra and integrated
relational calculus was studied. It has been shown that flexible algebra is
sound for the class of databases having exactly one key. Specifically, in the
flexible relational model, the integration of relations I1, . . . , In is defined as
the union I1∪· · ·∪In. If these relations are defined over a scheme with exactly
a key, the set of relations obtained choosing exactly one tuple in every Ctuple
of I1 ∪ · · · ∪ In corresponds to Integ(I1, . . . , I2). For relations with exactly a
key, expressions in flexible algebra can be transformed into equivalent formula
of integrated relational calculus.

2.3 Merging Databases under Constraints

An approach for integrating conflicting information from different relational
databases under constraints expressed as first-order sentences was proposed
in [62]. The merge operator proposed extends the one in [63] to the first-order
case and to deal with integrity constraints.

First, a formal semantics for merging multiple first-order theories under a
set of constraints was proposed. The main properties of the approach is that it
obtains maximal amount of information from each theory while observing the
majority rule in case of conflict. Then, this semantics was applied to merge
the information in databases under constraints, where a database is viewed
as a first-order theory in which facts (but no rules) are involved.

Example 2.14 Suppose that three doctors, DocA, DocB and DocC , forming
a committee are in consultation regarding two patients, Jeff and Ed. There
are three symptoms S1, S2 and S3, and three possible diagnoses D1, D2 and
D3. Assume that Si(x) means that “ the patient x presents symptom Si” and
Di(x) means “the patient x has disease Di”. Suppose that the doctors DocA,
DocB and DocC examine the patients independently and the their knowledge
concerning the two patients is as follows:

DocA = {S1(Jeff), S2(Ed), ∀x S1(x) ⇒ D1(x)}
DocB = {S1(Jeff), ∀x S1(x) ⇒ D2(x), ∀x S2(x) ⇒ D3(x)}
DocC = {S3(Jeff), ∀x S3(x) ⇒ D1(x)}

It is known that “no patient x has disease D1 and D2 at the same time”,
i.e. the integrity constraint IC : ∀x D1(x) ⇒ ¬D2(x) holds.

2.3 Merging Databases under Constraints 29

When knowledge of doctors are merged, a conflict arise on the disease of
Jeff , i.e. two doctors (DocA and DocC) diagnose D1(Jeff) and one (DocB)
diagnoses D2(Jeff). Only a disease D1 or D2 can be diagnosed (since IC
holds) and the committee will conclude D1(Jeff) following the majority rule.

Further, D3(Ed) will be concluded since the inconsistency about the dis-
ease of Jeff has no influence on the diagnosis of Ed.

2

2.3.1 Semantics of Theory Merging

Let T1, . . . , Tn be the (function free) first-order theories to be merged. Given
the set of integrity constraints IC that must be satisfied by the merged theory,
the result of merging is denoted as Merge({T1, . . . , Tn}, IC).

The models of the resulting theory are those possible worlds (Herbrand
interpretations) that are “closest” to the original theories, that is worlds which
have the minimum distance from the theories {T1, . . . , Tn}. In the following we
first define the distance between a world w and a set of theories {T1, . . . , Tn}
and then define the models which have minimal distance from {T1, . . . , Tn}.

The distance between two possible world w and w′, denoted as dist(w,w′),
is the cardinality of the symmetric difference of w and w′, that is

dist(w,w′) = |(w − w′) ∪ (w′ − w)|

The distance between a possible world w and a theory T is defined as

dist(w, T) = min{dist(w,w′) | w′ ∈ Mod(T)}

where Mod(T) denotes the set of all models of T . If Mod(T) = ∅, i.e. T is
unsatisfiable, dist(w, T) = 0.

There may be possible worlds that are close to a particular theory but
distant from others. The worlds that are closest overall to the set of theo-
ries {T1, . . . , Tn} are selected considering the overall distance between w and
{T1, . . . , Tn}, that is

dist(w, {T1, . . . , Tn}) =
n∑

i=1

dist(w, Ti)

The models of the theory resulting of merging T1, . . . , Tn with constraints IC
are defined as follows:

Mod(Merge({T1, . . . , Tn}, IC)) = {w ∈ Mod(IC) | dist(w, {T1, . . . , Tn})
is minimum}

Thus, a possible world is a model of the theory Merge({T1, . . . , Tn}, IC) if
and only if it is a model of IC and its overall distance to the set of theories
is minimum.

30 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

Example 2.15 Considering the Example 2.14, Merge({DocA, DocB , DocC}, IC)
results in the following theory, from which D1(Jeff) and D3(Ed) are con-
cluded:

S1(Jeff), S3(Jeff), S2(Ed)
∀x D1(x) ⇒ ¬D2(x)
∀x S1(x) ⇒ D1(x) ∨D2(x)
∀x S2(x) ⇒ D3(x)
∀x S3(x) ⇒ D1(x)

It is clear that replacing {S1(Jeff), S3(Jeff)} with {S2(Jeff)} (and
concluding D1(Jeff)) a “less closed” theory than that would be obtained.

2

Consider the special case when n = 1, i.e. there is a single theory T1 to be
merged with constraints IC. Then if IC is viewed as new knowledge and T1

as an old theory that must be revised, Merge({T1}, IC) can be interpreted as
a belief revision operation which incorporates a new sentence into an existing
knowledge base. In the propositional case, this operator is equivalent to the
revision operator of Dalal proposed in [34]. Dalal first used the Hamming
distance as one kind of measurement of minimal change in belief revision.

2.3.2 Result of Merging Databases under Constraints

A database D is a first-order theory consisting of only a set ground atoms
of the form P (a1, . . . , an), where P is a relation name and (a1, . . . , an). are
constants. Integrity constraints, expressed as first-order sentence, are require-
ments that the merged database must satisfy.

In the following we will show that for a set of databases {D1, . . . , Dn}
and a set of integrity constraints IC, Merge({D1, . . . , Dn}, IC) results in a
disjunction of databases in conjunction with IC.

Let D1 t · · · t Dn be the multiset containing all the elements of the
databases D1, . . . , Dn. Let f be a function that removes duplicates from a
multiset, i.e., for a given multiset M , f(M) return a set containing all dis-
tinct elements in M . Then

Merge({D1, . . . , Dn}, IC) ≡ IC ∧ (D′
1 ∨ · · · ∨D′

m),

where D′
i = f(Mi) and Mi is a maximum (w.r.t. cardinality) sub-multiset of

D1 t · · · tDn such that f(Mi) ∧ IC is consistent.
To compute the result of merging a set of databases {D1, . . . , Dn} under

constraints IC, we first compute the sub-multisets M1, . . . Mm of D1t· · ·tDn,
with each Mi having the maximal cardinality and such that they are consistent
w.r.t. IC. If there is only one maximum sub-multiset, then the result is a single
database obtained from the sub-multiset by applying f ; otherwise, the result

2.3 Merging Databases under Constraints 31

is a disjunction of databases, each transformed from one of the maximum sub-
multisets. A disjunction of databases is obtained when there is no majority for
a unique selection of a maximum sub-multiset, i.e. each of selections supported
by a database is equally plausible.

Example 2.16 Consider the three database D1, D2 and D3 which are shown
in Fig. 2.17, each containing a single relation Bib(Author, T itle, Y ear) col-
lecting information regarding author, title and year of publication of papers.
Assume that IC consists of the functional dependency

∀x, y, z1, z2 [Bib(x, y, z1) ∧Bib(x, y, z2) ⇒ z1 = z2]

Author T itle Y ear

John T1 1980

Mary T2 1990

D1

Author T itle Y ear

John T1 1981

Mary T2 1990

D2

Author T itle Y ear

John T1 1980

Frank T3 1990

D3

Fig. 2.17. Databases to be merged

Thus, D1 tD2 tD3 is the multiset consisting of all the six tuples coming
from D1, D2 and D3. There is only one sub-multiset M of D1tD2tD3 having
the maximal cardinality 5 and such that it is consistent with IC. In a multiset
the number of same elements make a difference in calculating cardinality. This
is the key to achieving the majority principle in the merging process.

In Fig. 2.18 it is shown the multiset M and the resulting database obtained
performing f(M). The tuple t1=〈John, T1, 1981〉 does not belong to the
result of merging. It is conflicting with the tuple t2=〈John, T1, 1980〉 and two
database (D1 and D3) support t2 whereas only one (D2) supports t1. Thus
the information that is maintained is t2 since it is present in the majority of
databases.

Author T itle Y ear

John T1 1980

John T1 1980

Mary T2 1990

Mary T2 1990

Frank T3 1990

M

Author T itle Y ear

John T1 1980

Mary T2 1990

Frank T3 1990

f(M)

Fig. 2.18. Maximal consistent sub-multiset and corresponding database

32 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

2

The number of resulting databases in the disjunction D′
1∨· · ·∨D′

m can be
(much) larger than n, the number of input databases. For a simple example,
suppose n = 1 and D1 = {P (a1), P (a2), . . . , P (am)} and IC = ¬P (a1) ∨
¬P (a2)∨ . . .¬P (am). Then the result is the disjunction of m databases, each
of them containing m− 1 elements of D1.

Example 2.17 Assume that IC, D1 and D2 are as in Example 2.16, whereas
D3 is as shown in Fig. 2.19. In this case there are three consistent sub-multiset
M1,M2,M3 of D1tD2tD3 which have the maximal cardinality 4. Therefore,
three alternative databases can be obtained as result of merging, since there
are no majority to resolve the conflict. They are succinctly represented in
Fig. 2.20 by a single table where a nested tuple contains the set of alternative
years {1980, 1981, 1982} is used. Here the first tuple states that the year of
publication of the book written by John with title T1 can be one of the values
belonging to the set {1980, 1981, 1982}. For each of these values a different
merged database is obtained.

Author T itle Y ear

John T1 1982

Frank T3 1990

Fig. 2.19. Database D3

Author T itle Y ear

John T1 {1980, 1981, 1982}
Mary T2 1990

Frank T3 1990

Fig. 2.20. Representation of the three databases resulting of merging

2

In the absence of integrity constraints the merge operation reduces to the
union of the databases, i.e. Merge({D1, . . . , Dn}, ∅) ≡ D1∪· · ·∪Dn. Whereas
if IC is a set of tuple generating dependencies then Merge({D1, . . . , Dn}, IC) ≡
D1 ∪ · · · ∪Dn ∪ IC.

The discussed approach for integrating conflicting information from dif-
ferent databases with uniform scheme is also extended in [62] to merging
databases with conflicting schemes under constraints. The basic idea is that

2.4 Inconsistency in Databases as a Local Notion 33

of adding scheme transformation rules to constraints that the merged database
must satisfy.

2.4 Inconsistency in Databases as a Local Notion

The notion of consistent query answer in inconsistent databases has been
considered for the first time in [20]. The proposed approach consists in distin-
guishing two kind of answers, consistent answers that do not depend on data
involved in an integrity constraint violations, and inconsistent answers that
are derived from data violating some integrity constraints.

It was argued that classical logic is inappropriate for the formalization of
information systems because of its global notion of inconsistency. Then it has
been shown that minimal logic provides a formalism where inconsistency can
be seen as a local notion. Consistent query answers has been defined on the
basis of provability in minimal logic.

If some integrity constraints are violated in a databases then its logical
specification results inconsistent. Clearly, there are no models for an inconsis-
tent specification and every possible expression (in the language) is an answer
for a query Q.

Example 2.18 Consider a relational database consisting of a single relation
P (Employee,Age, Salary) whose instance is shown in Fig. 2.21. Assume that
the integrity constraint stating that there is no employee with age less than
18 is defined, i.e. ∀x, y, z [¬P (x, y, z) ∨ y ≤ 18].

employee age salary

Jack 25 1000

Mary 15 1100

Frank 20 1000

Fig. 2.21. Relation P

Consider the boolean query Q = ∃x P (Jack, x, 500000), asking if the salary
of employee Jack is 500000. Since in classical logic every formula can be
derived from inconsistent specification, then the answer to the query is true.

2

The idea expressed in [20] is that it is acceptable that data violating a
given set of integrity constraints corrupt some answers, but not that they
affect all answers.

Example 2.19 Considering the Example 2.18, since the salary of Jack is not
related to the (inconsistent) age of Mary one expects that the answer to the
query Q = ∃xP (Jack, x, 500000) is false.

34 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

2

Minimal logic, a weakening of classical logic, was proposed as basis for
information system formalization and for query answering. When minimal
logic is considered instead of classical logic we lost:

1. proofs based on an elimination of double negations, i.e. proofs of an atom
α from a theory T resulting from a derivation of ¬¬α, and

2. refutations proofs, i.e. proofs of an atom α from a theory T resulting from
a derivation of false from T ∪ {α}.
The ex falso quodlibet principle does not hold in minimal logic, i.e. it is

no possible to derive every formula in an inconsistent theory. Inconsistency in
minimal logic appear as local in the sense that they do not give arise to the
derivation of every possible formula.

In [20] it has been shown that minimal logic is incomplete for full first-
order logic, whereas completeness for positive (definite or disjunctive) deduc-
tive databases without integrity constraints was shown in [19]. Basically, this
means that for positive deductive databases without integrity constraints, ev-
ery answer which can be computed within classical logic can also be computed
within minimal logic.

2.4.1 Distinguishing between Consistent and Inconsistent Answers

The approach to query answering that has been proposed exploits the local no-
tion of inconsistency in minimal logic. It makes possible to recognize whether
the answer to a query has been derived from possibly corrupted data.

Let denote by `m the derivability in minimal logic. Given a database D
and a set of integrity constraints IC, an inconsistency kernel of D w.r.t. IC,
denoted as Kernel(D, IC), is defined as a minimal (under ⊆) subset of D
such that (Kernel(D, IC) ∪ IC) `m false, that is Kernel(D, IC) contains
at least a violation of an integrity constraint in IC.

Given a database D and a set of integrity constraints IC, a closed formula
Φ is said to be an inconsistent answer of D w.r.t. IC if

1. Φ is derivable in minimal logic from D (D `m Φ), and
2. for every subset S ⊆ D such that S `m Φ, there is an inconsistent kernel

Kernel(D, IC) such that (S ∩Kernel(D, IC)) 6= ∅.
Informally, an inconsistent answer is an answer which can not be estab-

lished without making use of some data involved in a derivation of an integrity
constraint violation.

Given a database D and a set of integrity constraints IC, a closed formula
Φ is said to be an consistent answer of D w.r.t. IC if

1. there is a subset S ⊆ D such that S `m Φ, and
2. for every inconsistent Kernel(D, IC), (S ∩Kernel(D, IC)) = ∅.

2.5 Consistent Query Answers 35

Example 2.20 Consider a relational database D of Example 2.18 and the
integrity constraint ∀x, y, z [¬P (x, y, z) ∨ y ≤ 18]. The inconsistent kernel
Kernel(D, IC) is {P (Mary, 15, 1100)}, therefore the answer false to the
query Q = ∃xP (Jack, x, 500000) is a consistent answer, whereas the answer
true to the query Q = ∃xP (Mary, x, 1100) is an inconsistent answer.

2

Incidentally, we note that the definition of consistent answers above also
holds for positive disjunctive deductive databases, because of the minimal logic
is complete for positive definite or disjunctive deductive databases without
integrity constraints [19].

In [20] the consistent query answers based on provability in minimal logic
was defined, but no computational mechanism for obtaining such answers was
given.

2.5 Consistent Query Answers

The technique proposed in [4] introduces a logical characterization of con-
sistent query answers in relational databases that may be inconsistent with
the given integrity constraints. An answer to query posed to a database that
violates the integrity constraints is consistent if it is the same answer which
is obtained if the query would posed to any minimally repaired version of the
original database.

A method for computing such answers was provided. Basically it consist
of a query rewriting which preserve the original database instance. That is, on
the basis of a query Q, the method computes (using an iterative procedure) a
new query Tω(Q) whose evaluation in a (consistent or inconsistent) database
returns the set of consistent answers to the original query Q. Intuitively, the
transformed query Tω(Q) is qualified with appropriate information derived
from the interaction between the query Q and the integrity constraints. This
forces the (local) satisfaction of the integrity constraints and makes it possible
to discriminate between the tuples in the answer set. The method is inspired by
semantic query optimization [25], where the notion of residue was developed
in the context of deductive databases for optimizing the process of answering
queries using the semantics knowledge about the domain that is contained in
the integrity constraints.

The constraints considered are universal integrity constraints expressed in
standard format (cfr. Section 1.3.1). Functional dependencies, full inclusion
dependencies, and transitivity constraints of the form ∀X,Y, Z [P (X,Y) ∧
P (Y, Z) ⇒ P (X, Z)] are examples of integrity constrains that can be trans-
formed to the standard format. Whereas, an inclusion dependency of the form
∀X [P (X) ⇒ ∃Y Q(X, Y)] cannot be transformed to the standard format.

36 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

2.5.1 Repairing by Inserting and Deleting a Minimal Set of Tuples

The notion of repair, anticipated in Section 1.5 under a generic semantics,
has been firstly introduced in [4] with the semantics of minimal-set of whole
tuples. Under this semantics the distance between database instances D and
D′ is defined as the symmetric difference of Facts(D) and Facts(D′), i.e.
∆(D, D′) = {Facts(D)− Facts(D′)} ∪ {Facts(D′)− Facts(D)}.

A database instance R is a repair of a database instance D w.r.t. a set of
integrity constraints IC if

1. R is over the same scheme and domain as D,
2. R satisfies IC,
3. the distance ∆(D, R) is minimal under set containment among the in-

stances satisfying the first two conditions.

Thus the atomic primitive used for providing a new consistent instance R
from a (possible inconsistent) database D is based on inserting/deleting whole
tuples.

Example 2.21 Consider the database D1 consisting of the instance of the
relation Student(Code, Name, Faculty), which is shown in Fig. 2.22.

Code Name Faculty

s1 Mary Engeneering

s2 John Science

s2 Frank Engeneering

Fig. 2.22. Database instance D1

Assume that the following set FD of the functional dependencies (expressed
in standard format) is defined for D1.

FD = { ∀x1, x2, x3, x4, x5 [¬Student(x1, x2, x4) ∨ ¬Student(x1, x3, x5) ∨ x2 = x3]
∀x1, x2, x3, x4, x5 [¬Student(x1, x2, x4) ∨ ¬Student(x1, x3, x5) ∨ x4 = x5]}

The database D1 is inconsistent w.r.t. FD, since there are two tuples with
the same key. There are two different repairs R1, R2 for D1 w.r.t. FD, which
are shown in Fig. 2.23. Both R1 and R2 are obtained deleting a (conflicting)
tuple from the original instance D1.

2

According to this semantics, repairs may contain tuples that do not belong
to the original database. For instance, removing violations of inclusion depen-
dencies constraints can be done not only by deleting but also by inserting
tuples.

2.5 Consistent Query Answers 37

Code Name Faculty

s1 Mary Engeneering

s2 John Science

R1

Code Name Faculty

s1 Mary Engeneering

s2 Frank Engeneering

R2

Fig. 2.23. Repairs R1 and R2 for D1

Example 2.22 Consider the database scheme consisting of two unary rela-
tions P and Q. Assume that for an instance D1, Facts(D1) = {P (a), P (b), Q(a)}
and ID = {∀x[P (x) ⇒ Q(x)]}, whose standard format is ID = {∀x[¬P (x) ∨
Q(x)]}. In this case we have two possible repairs for D1 w.r.t. ID. First, we can
falsify P (b), i.e. we delete a tuple and obtain the repair R1 with Facts(R1) =
{P (a), Q(a)}. As second alternative, we can make Q(b) true, i.e. we insert a
tuple and obtain the repair R2 with Facts(R2) = {P (a), P (b), Q(a), Q(b)}.

2

The notion of consistent query answer for a (possible inconsistent) database
D w.r.t. a set of integrity constrains IC (cfr. Section 1.7) has been introduced
in [4]. It has been formalized as the set of answers that are returned in all
repairs for D.

Example 2.23 Considering the database D1 and the constraints FD of Ex-
ample 2.21, the consistent answers to the query Q1(x, y, z) = Student(x, y, z)
is (‘s1’,‘Mary ’,‘Engineering ’).

Further, the query Q2 = ∃xP (x) is consistently true in the database D2

of Example 2.22, since the ground atom P (a) belongs to the repairs for D2

w.r.t. ID.
2

2.5.2 The Query Rewriting Approach

The technique is based on the computation of an equivalent query Tω(Q) de-
rived from the source query Q. It is expected that for every query Q, database
D and set of constraints IC, the set of consistent answers to Q in D w.r.t.
IC, CQA(Q,D, IC), is exactly the set of ground tuples t obtained posing
the rewritten query Tω(Q) on the original database D, i.e. the set of tuples
{t | D |= Tω(Q(t))}.

Now we present the technique and then we discuss the conditions (classes
of query and constraints) which ensure the soundness and completeness of the
technique.

The form of the queries Q for which the query-rewriting operator Tω(Q) is
defined are first order formulas. They are assumed to be in prefix disjunctive
normal form, that is, having the following syntactical form

38 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

Q

s∨

i=1

mi∧

j=1

Pi,j(ui,j) ∧
ni∧

j=mi+1

¬Pi,j(vi,j) ∧ Ψi

 (2.1)

where Q is a sequence of quantifiers and every Ψi contains only built-in pred-
icates.

The definition of Tω(Q) is based on the notion of residue developed in
the context of semantics query optimization. Specifically, given a query Q, a
new query Tω(Q) is computed by iterating the operator T which transforms
the query by conjoining the corresponding residues to each database literal
appearing in the query Q, until a fixed point is reached. The residues of
a database literal force the satisfaction of the integrity constraints for the
tuples satisfying the literal and are obtained by resolving the literal with the
integrity constraints.

Example 2.24 Consider the integrity constraint ∀x[P1(x)∨¬P2(x)∨¬P3(x)].
If the query is Q = P3(x) then ∀x(P1(x) ∨ ¬P2(x)) must be true, otherwise
the constraint would be violated. The universal quantified first order formula
∀x(P1(x)∨¬P2(x)) is the residue for P3(x). In order to obtain the consistent
query answers to Q, the query Tω(Q) = P3(x) ∧ ∀x[P1(x) ∨ ¬P2(x)] will be
posed on the database.

2

Residues are generated as follows. Given an integrity constraint ic in stan-
dard format

ic = ∀X0, . . . , Xn

[
m∨

i=0

Pi(Xi) ∨
n∨

i=m+1

¬Pi(Xi) ∨ φ(X0, . . . , Xn)

]

the residues for a negative literal Ln = ¬Pj(Xj) and a positive literal Lp =
Pj(Xj), both w.r.t. ic, are respectively:

Res(Ln, ic) = Q

j−1∨

i=1

Pi(Xi) ∨
m∨

i=j+1

Pi(Xi) ∨
n∨

i=m+1

¬Pi(Xi) ∨ φ(X1, . . . , Xn)

Res(Lp, ic) = Q

m∨

i=1

Pi(Xi) ∨
j−1∨

i=m+1

¬Pi(Xi) ∨
n∨

i=j+1

¬Pi(Xi) ∨ φ(X1, . . . , Xn)

where Q is a sequence of universal quantifiers over all the variables not ap-
pearing in Xj .

If {ρ1, . . . , ρr} is the (possible empty) set of residues for a literal L(Xj), i.e.⋃
ic∈IC Res(L, ic) = {ρ1, . . . , ρr}, then the rule L(Y) 7→ L(Y){ρ1(Y), . . . , ρr(Y)}

is generated, where Y is a set of new variables.

2.5 Consistent Query Answers 39

Example 2.25 Considering the query Q(x, y, z) = Student(x, y, z) of Ex-
ample 2.23 and the set constraints IC = {ic1, ic2} introduced in the Exam-
ple 2.21, where:

ic1 = ∀x1, x2, x3, x4, x5 [¬Student(x1, x2, x4) ∨ ¬Student(x1, x3, x5) ∨ x2 = x3]
ic2 = ∀x1, x2, x3, x4, x5 [¬Student(x1, x2, x4) ∨ ¬Student(x1, x3, x5) ∨ x4 = x5]

The residue obtained by resolving Q with the former constraint is

Res(Student(x1, x2, x4), ic1) = ∀x3, x5[¬Student(x1, x3, x5) ∨ x2 = x3])

whereas by resolving Q with the latter constraint the residue is the following

Res(Student(x1, x2, x4), ic2) = ∀x3, x5[¬Student(x1, x3, x5) ∨ x4 = x5]

Thus, the following rule is generated

Student(y1, y2, y3) 7→ Student(y1, y2, y3) {∀y4, y5[¬Student(y1, y4, y5) ∨ y2 = y4],
∀y4, y5[¬Student(y1, y4, y5) ∨ y3 = y5] }

In order to obtain the consistent query answer to Q, the query Q is rewrit-
ten as follows

Tω(Q) = Student(y1, y2, y3) ∧ ∀y4, y5[¬Student(y1, y4, y5) ∨ y2 = y4]∧
∀y4, y5[¬Student(y1, y4, y5) ∨ y3 = y5]

2

In general, depending on the integrity constraints and the original query,
we may need to consider the residues of residues and so on. Therefore a family
of operator Tn, with n ≥ 0, and Tω is considered.

The application of an operator Tn to a query Q is defined inductively by
means of the following rules

1. T0(Q) = Q;
2. for each (positive or negative) literal L(Y), if there is the rule L(Y) 7→

L(Y){ρ1(Y), . . . , ρr(Y)}, then Tn(L(Y)) = L(Y) ∧∧r
i=1 Tn−1(ρi(Y));

3. if Q is the formula in prenex disjunctive normal form as in (2.1), then, for
every n ≥ 0,

Tn(Q) = Q

s∨

i=1

mi∧

j=1

Tn(Pi,j(ui,j)) ∧
ni∧

j=mi+1

Tn(¬Pi,j(vi,j)) ∧ Ψi

The application of the operator Tω on a query Q is defined as

Tω(Q) =
⋃

n<ω

{Tn(Q)} = {Q1, . . . , Qm}

Given a database D, a (ground) tuple t is an answer to a set of queries
{Q1, . . . , Qm} if D |= Q1(t) ∧ · · · ∧Qm(t).

40 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

Supplier Department Item

s1 d1 i1
s2 d2 i2

Supply

Item Type

i1 t1
i2 t1

Class

Fig. 2.24. Relations Supply and Class

Example 2.26 Consider the database D consisting of the relations Supply
and Class, whose instances are shown in Fig. 2.24.

Assume that the following integrity constraint is defined, stating that s1

is the only supplier of items of class t1 :

∀x1, x2, x3 [Supply(x1, x2, x3) ∧ Class(x3, t1) ⇒ x1 = s1]

The database D is inconsistent (an item of type t1 is also supplied by
supplier s2).

The constraint can be rewritten in the standard format as follows (the
constant t1 is pushed into the built-in predicate formula):

ic = ∀x1, x2, x3, x4 [¬Supply(x1, x2, x3) ∨ ¬Class(x3, x4) ∨ x4 6= t1 ∨ x1 = s1]

The residue of the literals appearing in ic are:

Res(Supply(x1, x2, x3), ic) = ¬Class(x3, x4) ∨ x4 6= t1 ∨ x1 = s1

Res(Class(x3, x4), ic) = ¬Supply(x1, x2, x3) ∨ x4 6= t1 ∨ x1 = s1

Therefore, the following rules are generated:

Supply(y1, y2, y3) 7→ Supply(y1, y2, y3){∀y4[¬Class(y3, y4)∨y4 6= t1∨y1 = s1]}

Class(y1, y2) 7→ Class(y1, y2){∀y3, y4[¬Supply(y3, y4, y1)∨y2 6= t1∨y3 = s1]}
The application of the operator T on the query Q(z) = Class(z, t1) gives:

• T0(Class(z, t1)) = Class(z, t1);
• T1(Class(z, t1)) = Class(z, t1) ∧ ∀x, y[T1(¬Supply(x, y, z)) ∨ x = s1];
• T2(Class(z, t1)) = Class(z, t1) ∧ ∀x, y[¬Supply(x, y, z) ∨ x = s1].

At Step 2 the fixpoint is reached since the literal Class(z, t1) has been
“expanded” and the literal ¬Supply(x, y, z) does not have a residue associated
to it (T1(¬Supply(x, y, z)) = ¬Supply(x, y, z).

In order to answer the query Q(z), the set of queries

Tω(Q(z)) = {Class(z, t1), ∀x, y[¬Supply(x, y, z) ∨ x = s1]}

is evaluated. Thus the answer is given by the query

2.5 Consistent Query Answers 41

Q′(z) = Class(z, t1) ∧ ∀x, y[¬Supply(x, y, z) ∨ x = s1]}

which results in i1.
2

The operator Tω(Q) conservatively extends the standard query evaluation
on consistent databases. That is, given a set of integrity constraints IC and
database D such that D |= IC, then for every query Q(u) and tuple t, D |=
Q(t) if and only if D |= Tω(Q(t)).

Soundness and Completeness

In [4] the properties of soundness, completeness and termination of the oper-
ator Tω have been investigated. Soundness means that every answer to Tω(Q)
is a consistent answer to Q. Completeness means that every consistent answer
to Q is an answer to Tω(Q). Termination means that there is an n such that
for all m ≥ n ∀X[Tn(Q(X)) ≡ Tm(Q(X))] is valid.

Sufficient conditions for soundness are that the query (having the form
in (2.1)) is either (i) universal (i.e. it contains only universal quantifier) or
(ii) non-universal and domain independent [74]. Thus for non-universal and
domain dependent queries, like Q = ∃x ¬P (x), soundness is not ensured.

Sufficient conditions for completeness are:

i) queries that are conjunctions literals, i.e. quantifier-free sentence of the
form

P1(u1) ∧ · · · ∧ Pi(ui) ∧ ¬Pi+1(ui+1) ∧ · · · ∧ ¬Pn(un) ∧ ϕ(u1, . . . , un)

ii) generic binary integrity constrains, i.e., sentence of the form

∀X, Y [L1(X) ∨ L2(Y) ∨ φ(X, Y)]

where L1 and L2 are literals and φ a formula containing only built-in
predicates. Generic means that, it is required that the constraints does not
imply any ground database literal, that is the constraints are not enough
to answer a literal query by themselves. For instance, ∀x [x = a ⇒ P (x)]
is not generic since it forces P (a) to hold.

In general, with disjunctive or existential queries completeness is not en-
sured. The following example shows a case in which the technique proposed
is not complete.

Example 2.27 Consider the database D1 and the integrity constraints of
Example 2.21. The consistent answers to the (existential) boolean query Q =
∃x1, x2[Student(s2, x1, x2)] is true, since Q is consistently true in every repair
for D1.

But, it easy to see that Tω(Q) is logically equivalent to

42 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

∃x1, x2[Student(s2, x1, x2)] ∧ ∀x3, x4[¬Student(s2, x3, x4) ∨ x1 = x3]∧
∀x3, x4[¬Student(s2, x3, x4) ∨ x2 = x4]

whose answer (in the original database instance) is false. Thus, the consistent
answer true is not captured by the operator Tω.

Similarly, the consistent answer to the disjunctive (ground boolean) query
Q = Student(s2, John, Science) ∨ Student(s2, F rank, Engeneering) is not
captured by Tω.

2

Termination means that Tω returns a finite set of formulas. It is impor-
tant because then the set of consistent answers can be computed by evaluat-
ing a finite query. Termination can be guaranteed if there is an n such that
Tn(Q(X)) and Tn+1(Q(X)) are syntactically the same. For any kind of query,
it was shown that a necessary and sufficient condition ensuing this property is
that the set constraints are acyclic universal constrains (cfr. Definition 1.2).

Therefore, the approach is sound, complete and finite for (quantifier-free)
conjunction of literals queries and (general) binary acyclic universal con-
straints. In this case, the query transformation approach provide a direct way
to establish PTIME-computability of consistent query answers. If the original
query is first-order, so is the transformed version. In this way, we obtain a
PTIME (or, more precisely AC0) procedure for computing consistent query
answers: transform the query and evaluate it in the original database. Note
that the transformation of the query is done independently of the database
instance and therefore, does not affect the data complexity.

2.6 Discussion

In this chapter we have presented some selected approaches which first inves-
tigated semantics of querying inconsistent databases obtained by integrating
autonomous data.

The flexible relational model [2, 3] (cfr. Section 2.1) represents a way for
augmenting the relational model by means of ancillary attributes for managing
inconsistent (integrated) data w.r.t. primary key constraints. An extension of
(classical) relations, namely flexible relations, has been introduced, but they
are not in First Normal Form (1NF) (since contain sets of values for non-key
attributes).

The limitation of dealing with only primary key dependencies and non-
1NF relations has been subsequently overcome by the integrated relational
model (cfr. Section 2.2) introduced in [35]. The notion of possible integration
of relations [35] represents a first step towards the definition of repair of an
inconsistent database, even if only consistency w.r.t. a set of key functional
dependencies is considered and the extension of relations with null values is
adopted (cfr. Section 2.2.2). Moreover, the modal operator K in the integrated

2.6 Discussion 43

relational calculus considers the intersection of answers posed on every pos-
sible consistent database belonging to the set of all possible integration. It
represents a form of cautioning reasoning which is strictly correlated with the
notion of consistent query answer [4] (cfr. Section 2.5).

Unlike the approaches above, the semantics of merging in [62] (cfr. Sec-
tion 2.3) is defined for the general class of first-order integrity constraints.
The semantics is based on the majority rule, i.e. an inconsistent tuple in the
integrated database D will be in a repair for D if it is present in the major-
ity of the sources to be integrated. When majority does not suffice to solve
conflicts, the resulting database contains disjunctive information to be stored.
Tables of OR-objects have been proposed for managing the resulting data,
but no issues related to queries have been investigated.

In the approaches above, it is assumed that sources to be integrated are
available. Specifically, in [2, 3] (cfr. Section 2.1) an ancillary attribute is used
for identifying sources; in [35] (cfr. Section 2.2) the extension of relations by
null values is performed starting from the original sources; in [62] (cfr. Sec-
tion 2.3) the majority rule is based on the presence of the same tuple (of values)
in a number of different sources. On the other hand, both the works [20] (cfr.
Section 2.4) and [4] (cfr. Section 2.5) focus on an inconsistent database, possi-
ble obtained by integrating several sources which are not necessarily available.
Indeed, the main issue addressed in these works is that of providing a method
for distinguishing consistent and inconsistent answers.

In [20] (cfr. Section 2.4) a first notion of consistent answer has been
proposed. The definition of consistent query answer is based on provabil-
ity in minimal logic. The main intuition expressed is that the part of the
database instance involved in an integrity violation should not be involved in
the derivation of consistent query answers. But, in general, the data involved
in an integrity violation is not entirely useless and reliable indefinite infor-
mation can often be extracted from it. For instance, consider the database
D such that Facts(D) = {P (a, b), P (a, c)}, and the functional dependency
FD : ∀x, y, z[P (x, y) ∧ P (x, z) ⇒ y = z]. According to the definition of [20],
for each query, there is no consistent answer in D, since Kernel(D, FD) = D.
On the other hand, the answer to the boolean query Q = ∃xP (a, x) should be
true. This is captured by the definition of consistent query answer proposed
in [4] (cfr. Section 2.5).

The model-theoretic notion of consistent query answer proposed in [4]
parallels the standard notion of query answer in relational databases. It has
been used and extended in [5, 7, 8, 9, 12, 16, 17, 23, 24, 27, 29, 41, 42, 44, 45, 46,
51, 52, 65, 66, 76, 77, 78]. An answer to query posed to a database that violates
the integrity constraints is consistent if it is the same answer which is obtained
if the query would posed to any minimally repaired version of the original
database. The semantics given for restoring consistency is that of minimal
set of (whole) tuples which can be inserted or deleted in order to restore
the consistency. Several alternative repair semantics have been proposed in
literature: some of them are based on only deletion of whole tuples [27, 29,

44 2 Inconsistency in Databases: from Preliminary Approaches to Consistent Answers

44, 45, 46]; others focusing on changing in attribute values [16, 17, 39, 41, 42,
76, 77, 78].

In order to obtain consistent answers the query rewriting method has been
proposed in [4], providing tractability of the consistent query answer problem
for quantifier-free conjunction of literals queries and (generic) binary acyclic
universal constraints. Given a query Q, the method computes a new query
Tω(Q) whose evaluation in a database returns the set of consistent answers to
the original query Q. An implementation of the operator Tω(Q) is presented
in [24]. The technique of query rewritten was further extended in [45, 46] to a
subset Ctree of conjunctive queries with existential quantification, under key
constraints (cfr. Section 3.3 and 3.4).

3

The Tuple-Based Repairing Paradigm

The restoration of the consistency in a database should have a minimal im-
pact on the original (inconsistent) database by trying to preserve as much
information as possible. This can be accomplished in different ways, depend-
ing on whether the information in the database is assumed to be correct and
complete. If the information is complete but not necessarily correct, i.e. it may
violate a given set of integrity constraints, the only way to restore the database
consistency is by deleting some part of it. If the information is both incorrect
and incomplete, then both insertion and deletion should be considered.

As it will be clear in this chapter, for the class of denial constraints (which
includes functional dependencies), the restriction to perform only deletions
has no impact, since only deletions can remove integrity constraint violations.
Indeed, in this case repairs are maximal consistent subsets of the original
database instance, independently on the assumptions on the data. On the
other hand, for inclusion dependencies repairs also consist of insertions of
tuples, as we have observed in Section 2.5.1. Thus, in this case assumptions
on data make the difference.

In this chapter we survey several works which present tractable and in-
tractable cases for the problem of computing consistent answers in relational
databases. These cases are characterized by the class of constraints, the class of
queries and the repair-semantics employed. In [29] several classes of first-order
queries and denial constraints for which both repair checking and consistent
query answer problems are in PTIME have been provided. A rewriting algo-
rithm for subclass of conjunctive queries (without repeated relation symbols)
and key dependencies has been proposed in [45], and extended in [46] to work
on Select-Projection-Join SQL queries. The complexity of the consistent query
answer problem in presence of both functional and inclusion dependencies has
been investigated under different repair-semantics in [29] and in [23].

Moreover, in this chapter the notion of range-consistent query answer [7, 8]
for handling aggregation queries will be introduced. In [7, 8] the complexity
of range-consistent query answers has been studied for aggregation queries
without grouping. Then, aggregation queries with grouping have been subse-

46 3 The Tuple-Based Repairing Paradigm

quently investigated in [46], where a rewriting algorithm for computing range-
consistent answers has been proposed.

In the approaches presented in this chapter, the task of repairing an incon-
sistent database is accomplished by working at tuple-level, i.e. inserting and/or
deleting whole tuples. We call this repairing strategy tuple-based repairing
paradigm and distinguish it from the attribute-based repairing paradigm (that
will be introduced in Chapter 5), where a repair is obtained by modifying
attribute values within tuples.

3.1 Range-Consistent Query Answers

In [7, 8] scalar aggregation queries in database that may violate a given set
of functional dependencies have been studied. In this context, the definition
of consistent query answers (which was first given for first-order queries) has
been extended to such queries.

In defining consistent answers to aggregation queries it is distinguished
between queries with scalar and aggregation functions. The former ones return
a single value for the entire relation, whereas the latter ones perform grouping
on a set of attributes and return a single value for each group. Both these kinds
of query use the same standard set of SQL-2 aggregate operators: MIN, MAX,
COUNT, SUM and AVG. In [7, 8] only aggregation queries with scalar functions
on databases consisting of a single relation have been addressed.

Example 3.1 Consider the database D consisting of the relation Salary,
whose instance is shown in Fig. 3.1, and the set of integrity constraints FD
consisting of Name → Amount.

Name Amount

Smith 5000

Smith 8000

Jones 3000

Stone 7000

Fig. 3.1. Relation Salary

The relation Salary is inconsistent since there is a violation of the func-
tional dependency, where participate the first two tuples. There are two re-
pairs: the former is obtained deleting the first tuple, whereas the latter is ob-
tained deleting the second tuple. If we pose the query SELECT MIN(Amount)
FROM Salary, the value 3000 is given, independently of how the violation is
fixed. That is, since the value 3000 come from a tuple that does not participate
in any violation of the functional dependency, the evaluation of the function

3.1 Range-Consistent Query Answers 47

MIN(Amount) is the same in every repair, and 3000 is the consistent answer
in the sense defined in [4].

Nevertheless, the query SELECT MAX(Amount) FROM Salary returns a dif-
ferent value in each repair: 8000 or 7000, respectively. Therefore, there is no
consistent answer in the sense defined in [4].

2

The example above suggests that for aggregation queries, the notion of
consistent answer should be revisited to allow answers that are not single
values, but intervals. In fact, under range-semantics for consistent query an-
swers, the smallest possible range (the optimal lower and upper bounds) such
that contains the answers given by all repairs has been defined as consistent
answer.

Here we consider (scalar) aggregation queries of the form

SELECT f FROM P

where f is one of: MIN(A), MAX(A), COUNT(A), SUM(A), AVG(A) or COUNT(*),
where A is an attribute of the relation scheme P .
These queries return a single numerical value by applying the corresponding
scalar function, i.e. for MIN(A), the minimum A-value in the given instance,
etc. We also will denote with f an aggregation query (or a scalar function
itself); thus, f(I) will denote the result of applying f to the given instance I
of P .

A range-consistent answer to an aggregation query f in a relation instance
I w.r.t. a set of integrity constraints IC is the minimal range R = [a, b] such
that for every repair R of P w.r.t. IC, the scalar value f(R) of query f in R
belongs to R. The left and right end-points of the range R are the greatest
lower bound (glb) and least upper bound (lub), respectively, answers to f in
R w.r.t. IC. They will be denoted as glbf

IC(R) and lubf
IC(R), respectively.

In the Example 3.1, the interval [7000, 8000] is the consistent answer to
the MAX query, whereas [3000, 3000] is that of the MIN query.

The consistent query answer interval represents in a succinct form a su-
perset of the values that the aggregation query can take in all possible repairs
of the database w.r.t. a set of integrity constraints.

Now we define the data complexity of computing consistent answers under
range-semantics which is useful for aggregation queries. Assume that a class
of databases DC, a class of aggregation queries AQ and a class of integrity
constraints IC are given. The complexity of computing the glb-answer (resp.
lub-answer) is defined to be the complexity of determining the membership
of the sets

CQA(IC, f) = {(D, k) | D ∈ DC ∧ glbf
IC(D) ≤ k}

and
CQA(IC, f) = {(D, k) | D ∈ DC ∧ lubf

IC(D) ≥ k}

48 3 The Tuple-Based Repairing Paradigm

respectively, where IC is a fixed finite set of integrity constraints belonging to
IC, f is a fixed aggregation query belonging to AQ and k a rational number.

For a complexity class C, the problem CQA(IC, f) is C-hard if there is
a query f0 ∈ AQ and a finite set of integrity constraints IC0 such that
CQA(IC0, f0) is C-hard.

In the following, results are relative to a class AQ containing only queries
that use scalar functions of the same kind, e.g. MIN(A) for some attribute A
of a relation P . Moreover, we will deal with only unirelational databases and
functional dependencies.

3.1.1 Conflict Graph

When only functional dependencies are considered, all repairs of an instance
are obtained by deleting tuples from it, that is a repair is simply a maximal
consistent subset of an instance. Clearly, there are only finitely many repairs
since the relations are finite. Also, in this case the union of all repairs of an
instance I is equal to I. These properties are not necessarily shared by classes
of non-denial integrity constraints.

Given a set of functional dependencies FD and a database instance D, all
repairs of D w.r.t. FD can be succinctly represented as a graph called conflict
graph, denoted as GFD,D. It is an undirect graph whose set of vertices is the
set of tuples in D and whose set of edges consists of all edges (t1, t2) such
that t1, t2 ∈ D and there is a functional dependency V → W ∈ FD for which
t1[V] = t2[V] and t1[W] 6= t2[W].

Example 3.2 Consider the relation Salary and the set of functional de-
pendencies FD = {Name → Amount} of Example 3.1. The conflict graph
GFD,Salary consists of four vertices (one for each tuple in Salary) and the
edge (〈Smith, 5000〉, 〈Smith, 8000〉).

2

An independent set S in an undirect graph G = (V, E) is a subset of the set
of vertices V of G, such that there is no edge in the set of edges E connecting
two vertices in S. A maximal independent set is an independent set which is
not a proper subset of any other independent set.

It is easy to verify that, given a set of functional dependencies FD and a
database instance D, each repair of D w.r.t. FD corresponds to a maximal
independent set in GFD,D, and vice versa.

In addition to consistent answer, glb-answer and lub-answer, we can also
consider core answers. A value v is a core answer to an aggregation query f
in a relation P w.r.t. a set of functional dependencies FD if

v = f(
⋂

D′∈R(D,FD)

D′)

where R(D, FD) is the set of repairs of D w.r.t. FD. The data complexity
of computing core answers for any scalar function is in PTIME since the core

3.1 Range-Consistent Query Answers 49

consists of all the isolated vertices in GFD,D. Observe that, the notion of
consistent answer in [20] (cfr. Section 2.4) corresponds to the notion of core
answer.

The conflict graph can be exploited also for studying consistent answers
and the glb-answer and lub-answer for aggregation queries.

3.1.2 Complexity of Scalar Aggregation Queries

In this section, first some results regarding the repair checking problem and
the consistent query answer problem (cfr. Section 1.8) are presented. Then,
complexity results for consistent answers for aggregation queries under range-
semantics will be discussed.

In [8] it was shown that for a given set of functional dependencies FD, the
complexity of checking whether a database instance D′ is a repair for D is in
PTIME. This means that the repair checking problem RC(FD) (cfr. Section
1.8) is tractable. It follows that for any set of FD and first-order query Q,
the data complexity of checking whether a tuple t is a consistent answer to
Q is in coNP. Actually, the consistent query answer problem CQA(Q,D,FD)
is coNP -complete, since there is a set of two functional dependencies and a
first-order query Q for which the problem of checking whether a tuple t is a
consistent answer to Q is coNP -hard.

The Table 3.1 contains the complexity results for the problem of comput-
ing consistent answers to aggregation queries, i.e., the problem of checking
whether the glb-answer to a query is ≤ k (respectively, the problem of check-
ing whether the lub-answer to a query is ≥ k).

glb-answer lub-answer
|FD| = 1 |FD| ≥ 2 |FD| = 1 |FD| ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A) PTIME NP-complete PTIME NP-complete

AVG(A) PTIME NP-complete PTIME NP-complete

Table 3.1. Complexity results for scalar aggregation queries

The lub-answer (resp. glb-answer) to a MAX(A) (resp. MIN(A)) query in
a relation P w.r.t. an arbitrary set of functional dependencies FD simply
consists of evaluating the query in P , thus it is clearly in PTIME.

For all aggregate operators except COUNT(A), the consistent query answer
problem is in PTIME if the set of integrity constraints consists of at most
one (nontrivial) functional dependency. For COUNT(A), the consistent query
answer problem is NP -complete, even for one functional dependency (it is

50 3 The Tuple-Based Repairing Paradigm

assumed that distinct values of some attribute A of a relation P are counted,
i.e. it is equivalent to COUNT(DISTINCT(A)).

For a set of functional dependencies FD consisting of more than one func-
tional dependency, the glb-problem (resp. the lub-problem) is NP -complete
for all the aggregation queries (except that for lub-answer (resp. glb-answer)
to MAX(A) (resp. MIN(A)) queries, as we have already said above).

Computing glb and lub-answers with One Functional Dependency

For the aggregation queries MIN(A), MAX(A), COUNT(*) and SUM(A) and a single
functional dependency the glb and the lub answers can be computed by SQL2
queries. This is in a sense analogue of the query transformation approach for
first order queries [4] (cfr. Section 2.5). In fact, the resulting syntax of rewriting
MIN(A) and MAX(A) queries as first-order queries does not allow the application
of the methodology developed in [4] to them.

Consider the problem of computing the glb-answer in a relation P with
a single functional dependency V → W . For MAX(A), the glb-answer can be
defined in SQL2 as the following sequence of views:

CREATE VIEW S(V, W,C) AS
SELECT V , W , MAX(A)
FROM R
GROUP BY V ,W ;

CREATE VIEW T (V, C) AS
SELECT V , MIN(C)
FROM S
GROUP BY V ;

SELECT MAX(C) FROM T

For SUM(A), we have to replace MAX in the above by SUM. For COUNT(*), we
replace MAX(A) by COUNT(*) and MAX(C) by SUM(C).

Symmetric results hold for the lub-answer to a MIN(A) query. Note that
lub

MIN(A)
FD (P) = −glb

MAX(A)
FD (P−), where P− is a relation containing iden-

tical tuples to P except that their A-values are inverted (every A-value v is
changed to −v).

The lub-answer to MAX(A), COUNT(*) and SUM(A) queries can be obtained
in a similar way.

Example 3.3 Considering the relation Salary and the functional depen-
dency Name → Amount of Example 3.1. The glb-answer to the query

SELECT MAX(Amount) FROM Salary

3.1 Range-Consistent Query Answers 51

is computed by the following SQL query

SELECT MAX(A) FROM
(SELECT MIN(Amount) AS A
FROM Salary
GROUP BY Name)

In this case we, can avoid to group for all attribute (Name,Amount) of
the relation since it has no effect, i.e. the view S(V, W,C) is just the relation
itself.

2

For the aggregation query AVG(A) the PTIME algorithm is iterative and
can not be formulated in SQL2.

3.1.3 Other Tractable Cases

In [7, 8], some special properties of conflict graph which entail more tractable
cases, for lub-answer to COUNT(*) queries, were identified.

It has been shown that, given a relation scheme P is in Boyce-Codd Nor-
mal Form (BCNF), if the set of functional dependencies FD is equivalent to
one with at most two dependencies, then computing lub-answer to COUNT(*)
queries in any instance of P can be done in PTIME.

Two approaches have been followed. The first is based on the observation
that for a set FD of functional dependencies such that |FD| = 2 and a relation
instance I whose scheme is in BCNF, the conflict graph GFD,I is claw-free
and perfect. A graph is claw-free if it does not contain an induced subgraph
(V0, E0) where V0 = {t1, t2, t3, t4} and E0 = {(t2, t1), (t3, t1), (t4, t1)}. A graph
is perfect if its chromatic number is equal to the size of its maximum clique. For
such graphs computing a maximum independent set (an independent set of
maximum cardinality) can be done in PTIME. Since repairs for I w.r.t. FD
correspond to maximal independent sets in GFD,I , the size of a maximum
independent set provides the lub-answer to a COUNT(*) aggregation query.

The second approach is based on computing maximum matching in a bi-
partite graph G′, such that matchings in G′ one-to-one correspond to inde-
pendent sets in the conflict graph GFD,I . A time complexity bound of O(n1.5)
has been provided, where n is the number of tuples in the relation.

If the set FD contains more than two dependencies the problem of com-
puting lub-answer to COUNT(*) queries become NP -hard, even if they are in
BCNF.

There are other, simpler cases where the conflict graph has a structure that
makes it possible to determine the cardinality of a maximum independent set
in PTIME. For instance, if the relation instance I is the union of two instances
that separately satisfy the set of functional dependencies FD, we obtain a bi-
partite conflict graph GFD,I , for which determining a maximum independent

52 3 The Tuple-Based Repairing Paradigm

set can be done in PTIME. Observe that, a relation is obtained merging to-
gether two consistent relations in the context of database integration. Thus,
also in this case the complexity of computing lub-answer to COUNT(*) queries
is in PTIME.

3.2 Repairing by Deleting a Minimal Set of Tuples

In [29] it is assumed that data are complete, but not necessarily correct. That
is, a database instance may violate a given set of integrity constraints and the
only way to restore the database consistency is by deleting (whole) tuples,
since under the completeness assumption no new tuple should be inserted.

A repair is a database instance that satisfies the integrity constraints and
minimally differs from the (possible inconsistent) original database. When
we consider only deletions of complete tuples as ways to restore database
consistency, the repairs are maximal consistent subsets of the original database
instance.

Given a database scheme D, a set of integrity constraints IC over D and
two database instance D and R over D, we say that R is a repair for D w.r.t.
IC under the repair-semantics of deletion of (whole) tuples if Facts(R) is the
maximal subset of Facts(D) such that Facts(R) |= IC.

In [29] the computational complexity of the repair checking and the con-
sistent query answers problem along several different dimensions has been
studied, under repair-semantics of deletion of (whole) tuples. Specifically, the
impact of the following parameters have been considered:

• the class of queries: quantifier-free queries, conjunctive queries, and simple
conjunctive queries (conjunctive queries without repeated relation symbols
and with limited variable sharing);

• the class of integrity constraints: denial constraints, functional dependen-
cies, inclusion dependencies, and functional dependencies and inclusion
dependencies together.

• the number of integrity constraints.

Several classes of queries and constraints for which both repair checking
and consistent query answers are in PTIME has been obtained:

i) quantifier-free queries and (arbitrary) denial constraints;
ii) boolean simple conjunctive queries and functional dependencies (at most

one per relation);
iii) queries that are quantifier-free or simple conjunctive, and key functional

dependencies and foreign key constraints, with at most one key per rela-
tion.

It was shown that repair checking, but not consistent query answers, are
in PTIME for arbitrary functional dependencies and acyclic inclusion depen-
dencies. Relaxing any of the above restrictions leads to coNP -hard problems.

3.2 Repairing by Deleting a Minimal Set of Tuples 53

(This, of course, does not preclude the possibility that introducing additional,
orthogonal restrictions could lead to more PTIME cases). Moreover, it was
shown that for arbitrary sets of functional dependencies and inclusion depen-
dencies, repair checking is coNP -complete and consistent query answers is
Πp

2 -complete.

3.2.1 Denial Constraints

The original notion of repair requires that the symmetric difference between
a database and its repair be minimized. This is based on the assumption that
the database may be not only inconsistent but also incomplete. The notion of
repair pursued here reflects the assumption that the database is complete. For
denial constraints integrity violations can only be removed by deleting tuples,
so the different notions of repair in fact coincide in this case. Therefore, all
the results presented in this Section are not affected by the restriction of the
repairs to be subsets of the original instance. Insertions can restore integrity
only for tuple-generating dependencies (e.g., inclusion dependencies).

Given a set of denial constraints DC and a database instance D, all the
repairs of D with respect to DC can be succinctly represented as the conflict
hypergraph. This is a generalization of the conflict graph defined in [7, 8] for
functional dependencies only (see Section 3.1.1).

The conflict hypergraph GDC,D is a hypergraph whose set of vertices is
the set Facts(D) of facts of a database instance D and whose set of edges
consists of all the sets {P1(t1), . . . , Pk(tk)} such that

i) P1(t1), . . . , Pk(tk) ∈ Facts(D)
ii) there is a constraint ic = ∀X1, . . . , Xk ¬[P1(X1)∧· · ·∧Pk(Xk)∧ϕ(X1, . . . , Xk)]

in DC such that {P1(t1), . . . , Pk(tk)} violate together ic, which means that
there is a substitution θ such that ∀i ∈ [1..k], θ(Xi) = ti and ϕ(t1, . . . , tk)
is true.

Note that there may be edges in GDC,D that contain only one vertex (it
is the case of violations of unary denial constraints, where there is only one
relation symbol). Moreover, the size of the conflict hypergraph is polynomial
in the number of tuples in the database instance D.

By an independent set S in a hypergraph G we mean a subset of its set of
vertices which does not contain any edge. An independent set S in a graph G is
a maximal independent set if it is not a proper subset of any other independent
set S′ in G.

Each repair of a database instance D w.r.t. a set of denial constraints DC
corresponds to a maximal independent set in GDC,D. This entails the follow-
ing two results, obtained as that in [7, 8] (cfr. Section 3.1.2) for functional
dependencies only: for a given set of denial constraints DC and a boolean
first-order query Q, (i) the data complexity of checking whether a database
instance D′ is a repair for D is in PTIME, (ii) the data complexity of deciding
whether a tuple t is a consistent answer to Q is in coNP.

54 3 The Tuple-Based Repairing Paradigm

Moreover, a strategy for computing (nondeterministically) a repair for D
w.r.t. DC is the following: pick a vertex of GDC,D which does not belong to
a single-vertex edge and add vertices that do not result in the addition of an
entire edge.

Tractable cases

By the query rewriting method, tractability of the consistent query answer
problem for quantifier-free conjunction of literals queries and (generic) binary
acyclic universal constraints has been provided in [4] (cfr. Section 2.5). Obvi-
ously, this result also holds when we restrict the class of constraints to binary
denial constraints. In [29] it has been shown that for every set DC of de-
nial constraints (not necessarily binary) and quantifier-free sentence Q (not
necessarily a conjunction), the complexity of deciding whether a tuple t is a
consistent answer to Q is still in PTIME.

The algorithm for ground quantifier-free sentence is shown in Fig. 3.2. It
takes as input a quantifier-free formula Φ in Conjunctive Normal Form (CNF)
and the conflict hypergraph GDC,D for a given database instance D and the
set of denial constraints DC. It returns the consistent answer to Φ in D w.r.t.
DC.

The first step of the algorithm reduces the task of determining whether
true is the consistent query answer to the query Φ to answering the same
question for every conjunct Φi. Then each formula Φi is negated and the rest
of the algorithm attempts to find a repair R in which ¬Φi is true for some i.
(we are checking if a ground clause Φi is not consistently true in D). Since
each Φi is a disjunction of ground literals, ¬Φi is of the form ¬Pi1(t1) ∧ · · · ∧
¬Pip(tp) ∧ Pip+1(tp+1) ∧ · · · ∧ Pim(tm).

The algorithm search for a repair such that:

i) for each j ∈ {p + 1, . . . , m}, tj belongs to the instance of relation Pij ;
ii) for each j ∈ {1, . . . , p} a tuple tj does not belong to the instance of relation

Pij .

If exists j ∈ {p + 1, . . . , m} such that tj does not belong to the relation in-
stance Pij , then ¬Φi is false in every repair for D w.r.t. DC (Φi is true);
thus the next conjunct Φi+1 is examined.
Otherwise, all Pip+1(tp+1), . . . , Pim(tm) are added to the set B of facts which
represents the repair R we are constructing. Then, the algorithm (non de-
terministically) selects for every j ∈ {1, . . . , p} such that tj belongs to the
instance of Pij , an hyperedge ej of GDC,D containing the fact Pij (tj). This
fact must be excluded from the repair R. If the set B ∪ (ej −{Pij (tj)} results
in an independent set for GDC,D, then B can be extended to a maximal one
corresponding to a repair in which ¬Φi is true (and then Φ is false). If the
algorithm does not succeed for any i (with i ∈ {1, . . . , k}), then true is the
consistent query answer to Φ.

3.2 Repairing by Deleting a Minimal Set of Tuples 55

INPUT:
Φ = Φ1 ∧ · · · ∧ Φk: quantifier-free sentence in CNF
GDC,D: conflict hypergraph of D w.r.t. DC

OUTPUT:
true if Φ is a consistently true in D, false otherwise

VAR:
B: Set of facts
I(P): Instance of the relation P in D
EDC,D: Set of hyperedges in GDC,D

begin
01) for i ∈ {1, . . . , k} do
02) let ¬Φi ≡ ¬Pi1(t1) ∧ · · · ∧ ¬Pip(tp) ∧ Pip+1(tp+1) ∧ · · · ∧ Pim(tm).
03) for j ∈ {p + 1, . . . , m} do
04) if tj 6∈ I(Pij) then
05) next i;
06) B ← {Pip+1(tp+1), . . . , Pim(tm)}
07) for j ∈ {1, . . . , p} do
08) if tj ∈ I(Pij) then
09) choose ej ∈ {e ∈ EDC,D | Pij (tj) ∈ e}
10) B ← B ∪ (ej − {Pij (tj)})
11) if B is independent in GDC,D then
12) return false
13) return true
end

Fig. 3.2. Algorithm for computing consistent answers to ground CNF queries

The algorithm in Fig. 3.2 need m − p nondeterministic steps, a number
which is independent of the size of the database (but dependent on Φ), and in
each of its nondeterministic steps selects one possibility from a set whose size is
polynomial in the size of the database. So there is an equivalent polynomial-
time deterministic algorithm. Moreover, the assumption that Φ is a CNF
formula does not affect the data complexity of the query evaluation, because
every ground query can be converted to CNF independently of the (size of
the) database. However, from a practical point of view, CNF conversion may
lead to unacceptably complex queries.

The above approach can be generalized to any quantifier-free query, not
necessarily ground. The idea is to design a generator of ground queries and
use the above algorithm as a checker. In [27] it is shown how to find an appro-
priate set of binding for the variables in the asked (quantifier-free) formula.
This is done by evaluating an envelope query over the database. An enve-
lope query satisfies the following properties: (i) it returns a superset of the
set of consistent query answers for every database instance, and (ii) it is eas-
ily constructible from the original query. Suppose that EQ(D) is the result

56 3 The Tuple-Based Repairing Paradigm

of evaluating an envelope query EQ for a query Q in a database D. Then a
tuple t is a consistent answers to Q in D (w.r.t. a set of constraints DC) if
q ∈ EQ(D) and for every repair R of D (w.r.t. DC), R |= Q(t).

In order to process a quantifier-free query Q, first, an envelope query EQ

is estimated, providing a superset of the consistent answers EQ(D). Then,
for every tuple t in EQ(D), the grounding of Q is performed, obtaining a
first-order ground query Qt. Finally, the algorithm in Fig. 3.2 takes as input
the query Qt and checks if true is the consistent answer for this query, and
depending of the result the tuple t is returned or not.

In [27, 28] a database middleware system, called Hippo, for computing
consistent query answers based on this approach is described.

Now we consider a special case of denial constraints, namely functional
dependencies. If the set of integrity constraints consists of only one functional
dependency per relation the conflict hypergraph has a very simple form. It is
a disjoint union of full multipartite graphs. If this single dependency is a key
dependency then the conflict graph is a union of disjoint cliques. Although the
conflict hypergraph has a very simple structure, the consistent query answers
can be computed in polynomial time only for restricted classes of conjunctive
queries.

In [29] it has been shown that for a set FD of k functional dependen-
cies such that each dependency is defined over a different relation among
P1, . . . , Pk, computing consistent answers to boolean simple conjunctive query
can be accomplished in PTIME (more precisely in AC0 data complexity).
Specifically, for each boolean simple conjunctive query Q, there exists a sen-
tence Q′ such that for every database instance D, a tuple t is a consistent
answers to Q in D w.r.t. FD iff t is an answer to Q′ in D. That is Q′ is a
rewriting of the query Q. Since Q′ is a first-order query, which size is linear
in the size of Q, it can be evaluated in polynomial time w.r.t. the size of D.

Also in the case of a simple conjunctive query Q, not necessarily boolean,
such that it does not contain multiple occurrences of the same variable, the
set of consistent answers to such a query can obtained by evaluating the
transformed query Q′ from which the appropriate quantifiers are dropped,
thus still in polynomial time. This is because a formula P (. . . , a . . .), where a
is a constant, is equivalent to ∃xP (. . . , x . . .)∧ x = a. The consistent answers
to a non-ground query can be obtained by considering all possible bindings for
the variables in the query and evaluating each ground query obtained in this
manner. Those bindings are restricted to values coming from the appropriate
columns in the database instance.

Intractable cases

In [29] it has been shown that for boolean conjunctive queries (i.e. relaxing
the restriction that the query is simple) and for functional dependencies, the
consistent query answer problem becomes coNP -complete. This result still

3.2 Repairing by Deleting a Minimal Set of Tuples 57

hold when key dependencies and conjunctive queries without repeated relation
symbols (but with joins) are considered.

Moreover, there is a set of functional dependencies consisting of two func-
tional dependencies and a boolean single-atom conjunctive query for which
the consistent query answer problem is coNP -complete (single-atom means
that there is one relation predicate symbol). This result was obtained first
in a slightly weaker form (for non-key functional dependencies) in [7, 8] (cfr.
Section 3.1.2). Finally, there exists a (single) denial constraint and a boolean
single-atom conjunctive query for which the consistent query answer problem
is coNP -complete.

The complexity results relative to the consistent query answer problem for
classes of denial constraints and queries are summarized in Table 3.2.

Quantifier-Free Boolean Boolean Simple Boolean
Queries Single-Atom Queries Queries

arbitrary DCs PTIME coNP -complete coNP-complete coNP-complete

1 FD per relation PTIME PTIME PTIME coNP-complete

2 key FDs PTIME coNP -complete coNP-complete coNP-complete

Table 3.2. Complexity of the consistent query answer problem for denial constraints

3.2.2 Inclusion Dependencies

In [29] it is assumed that the data in the database are complete (but possibly
incorrect) as often occurs in data warehousing applications. Therefore repairs
can be constructed using only tuple deletions. This restriction is also beneficial
from the computational point of view, as we will see in this section.

Example 3.4 Consider a database with two relations Employee(SSN, Name)
and Manager(SSN). Assume that the sets constraints defined are the follow-
ing:

FD = {SSN → Name, Name → SSN}
ID = {Manager[SSN] ⊆ Employee[SSN]}

The instances for the two relations are shown in Fig. 3.3.
The database instance does not violate the inclusion dependency but vi-

olate both the functional dependencies. If we consider only the functional
dependencies, there are two repairs: one obtained by removing the third tuple
from Employee, and the other by removing the first two tuples from the same
relation. However, the second repair violates the inclusion dependency. This
can be fixed by removing the first tuple from Manager. So if we consider
all the constraints, there are two deletion-only repairs R1 and R2 which are
shown in Fig. 3.4 and Fig. 3.5, respectively.

58 3 The Tuple-Based Repairing Paradigm

SSN Name

1234 Smith

5555 Jones

5555 Smith

Employee

SSN

1234

5555

Manager

Fig. 3.3. Relations Employee and Manager

SSN Name

1234 Smith

5555 Jones

Employee

SSN

1234

5555

Manager

Fig. 3.4. Repair R1

SSN Name

5555 Smith

Employee

SSN

5555

Manager

Fig. 3.5. Repair R2

If we consider repairs where both tuple insertion and deletions are permit-
ted, then insertions may lead to infinitely many repairs of the form in Fig. 3.6,
where c is an arbitrary string different from Smith (this is forced by one of
the functional dependencies).

SSN Name

1234 c

5555 Smith

Employee

SSN

1234

5555

Manager

Fig. 3.6. Repair considering also tuple insertions

2

For a database instance D and a set of inclusion dependencies ID there
is a single repair for D w.r.t ID, which is obtained by deleting all the tuples
violating ID (and only those). Then for every set ID and boolean query Q,

3.3 Rewriting for a Class of Conjunctive Queries 59

the computational complexity of both repair checking and consistent query
answer problem is in PTIME.

We consider now functional and inclusion dependencies together. We iden-
tify the cases where both repair checking and computing consistent query an-
swers can be done in PTIME. The intuition is to limit the interaction between
the two type of dependencies in the given set of integrity constraints in such
a way that the polynomial-time results presented for functional dependencies
only can be exploited.

Let IC = KD ∪ FK be a set of constraints consisting of a set of key
dependencies KD and a set of foreign key constraints FK, but with no more
than one key per relation. Let D be a database instance and D′ be the unique
repair of D w.r.t. FK. Then

1. R is a repair of D w.r.t. IC if and only if R is a repair of D′ w.r.t. KD;
2. the repair checking problem is in PTIME ;
3. for boolean quantifier-free queries or boolean simple conjunctive queries,

the consistent query answer problem is in PTIME.

Observe that, repairing D′ with respect to key constraints does not lead
to new inclusion violations. This is because the set of key values in each
relation remains unchanged after such a repair (which is not necessarily the
case if we have relations with more than one key). The repairs for D w.r.t. IC
are computed by repairing D w.r.t. FK and then repairing the result w.r.t.
KD (which can be done in PTIME for all denial constraints). Under the
assumption above, the polynomial-time results about consistent query answers
obtained for functional dependencies only (see Table 3.2) can be transferred
to the case examined.

For the cases that follows, the consistent query answers becomes a coNP -
hard problem. Let IC = FD ∪AID be a set of constraints consisting of a set
of functional dependencies FD and an acyclic set of inclusion dependencies
AID (cfr. Definition 1.3). In these cases, although the repair checking problem
is in PTIME, the consistent query answer problem is coNP -hard for ground
atomic queries (even if FD consists of only key functional dependencies and
AID consist of acyclic primary foreign key constraints).

Relaxing the acyclicity assumption, even though only one functional de-
pendency and one inclusion dependency are considered, the intractability of
the repair checking problem (thus also for consistent query answer) remains.
Moreover, considering key functional dependencies and foreign key constraints
together, the repair checking problem is yet coNP -hard.

3.3 Rewriting for a Class of Conjunctive Queries

In [45] the problem of retrieving consistent answers over databases that might
be inconsistent with respect to primary key constraints has been addressed.
An algorithm that produces a first-order query rewriting for the problem of

60 3 The Tuple-Based Repairing Paradigm

computing consistent answers has been proposed. The algorithm works for
a class of conjunctive queries, running in polynomial time in the size of the
query. Specifically, this class of query is defined in terms of the join graph of
the query. The join graph is a directed graph such that: its vertices are the
literals of the query; and it has an edge for each join in the query that involves
some variable at the position of a non-key attribute. The algorithm works for
conjunctive queries without repeated relation symbols (but with any number
of literals and variables) whose join graph is a forest.

Moreover, in [45] it has been shown a class of conjunctive queries such
that the problem of computing the consistent answers is coNP -complete for
every query of the class whose join graph is not a forest. This type of result
is much stronger than the usual approach taken in literature, which consists
of showing intractability of a class by exhibiting at least one query for which
the problem is intractable. A dichotomy for this class of queries has been
provided: given a query Q, either computing the consistent answers for Q is
in PTIME (it is first-order rewritable) or it is a coNP -complete problem.

3.3.1 The Class of Tree Queries

In [45] it has been assumed that the set of integrity constraints consists of
at most one key dependency per relation. Moreover, we focus on conjunctive
queries without repeated relation symbols having the form

Q(w1, . . . , wm) = ∃z1, . . . , zk [P1(u1) ∧ · · · ∧ Pn(un)] (3.1)

where P1, . . . , Pn are distinct relation symbols.
The problem of computing consistent answers for conjunctive queries over

databases that might violate a set of key constraints is coNP -complete for
conjunctive queries, even though queries have no repeated relation symbol [29]
(cfr. Section 3.2.1). However, this does not necessarily preclude the existence
of classes of queries for which the problem is easier to compute. In fact, in [45]
the class Ctree of conjunctive queries for which the problem of computing
consistent answers is tractable has been introduced. In order to define the
syntactic conditions that the queries in such class must satisfy, we introduce
the join graph of the query.

Let Q be a conjunctive query of the form (3.1). The join graph GQ of Q
is a directed graph such that:

i) the vertices of GQ are the literals of Q;
ii) there is an edge from Pi to Pj (i.e there is 〈Pi, Pj〉) if i 6= j and there is

some variable x such that x occurs at the position of a non-key attribute
in Pi(ui) and x occurs (anywhere) in Pj(uj);

iii) there is a self-loop at Pi (i.e., an edge from Pi to Pi) if there is some
variable x such that x occurs at the position of a non-key attribute of Pi,
and x occurs at least twice in Pi(ui).

3.3 Rewriting for a Class of Conjunctive Queries 61

Example 3.5 Consider the relation schemes Pi(Ai, Bi) where pkey(Pi) =
{Ai}, with 1 ≤ i ≤ 4 (the only constraints defined are primary key dependen-
cies Ai → Bi). Let Q1 be the query

Q1 = ∃x1, x2, x3, x4 [P1(x1, x2) ∧ P2(x2, x3) ∧ P3(x3, x4) ∧ P4(x2, a)]

The join graph of Q1 consists of a tree whose root is P1: there are the
edges (P1, P2) (y occurs at the position of a non-key attribute in P1 and y
occurs in P2), (P2, P3) and (P1, P4).

2

We will focus on queries whose join graph is a forest (a set of tree). More-
over, we will impose the additional condition that the joins from non-key to
key attributes involve the entire key of a relation. We will call such joins full.
Let Pi(Xi, Yi) and Pj(Xj , Yj) be a pair of literals of a conjunctive query Q.
Assume that Xi (resp. Xj) are all the variables at the positions of the key
attribute of Pi (resp. Pj). We say that there is a full non-key to key join from
Pi to Pj if every variable of Xj appears in Yi.

Example 3.6 All the non-key to key joins of the query Q1 in the Example 3.5
are full non-key to key joins. On the other hand, consider the relation scheme
P1(A,B) and P2(C, D, E) with pkey(P1) = {A} and pkey(P2) = {C, D}.
Given the query

Q2 = ∃x1, x2, x3, x4 [P1(x1, x2) ∧ P2(x2, x3, x4)]

the join on the variable x2 between P1 and P2 is not full since it does not
involve all the variables at the position of the key of P2.

2

The class Ctree of conjunctive queries for which the problem of computing
consistent answers is tractable is defined as follows. Let Q be conjunctive
query without repeated relation symbols. Let GQ be the join graph of Q. We
say that Q ∈ Ctree if GQ is a forest (i.e., every connected component of GQ is
a tree) and every non-key to key join of Q is full.

Example 3.7 The query Q1 of the Example 3.5 is in Ctree, whereas the query
Q2 in the Example 3.6 is not in Ctree, since it has a non-key to key join which
is not full.

Consider the relation schemes P1(A,B) and P2(C, D, E) with pkey(P1) =
{A} and pkey(P2) = {C, D}. The query

Q3 = ∃x1, x2, x3 [P1(x1, x2) ∧ P2(x2, x3, x1)]

is not in Ctree since its join graph contains a cycle: there is an edge (P1, P2)
(x2 occurs at the position of a non-key attribute in P1 and x2 occurs in P2)
and an edge (P2, P1) (x1 occurs at the position of a non-key attribute in P2

and x1 occurs in P1). Moreover, the join on the variable x2 is not full since it
does not involve the entire key of P2.

2

62 3 The Tuple-Based Repairing Paradigm

3.3.2 The Query Rewriting Algorithm

The following two examples highlight the intuition underlying the query
rewriting algorithm.

Example 3.8 Consider the relation scheme P (A, B) where pkey(P) = A. As-
sume that the relation instance I1 is {P (a1, b1), P (a1, b2)}. Given the query
Q = ∃x P (x, b1), the consistent answer to Q is false in I1. Now, consider the
instance I2={P (a1, b1), P (a1, b2), P (a2, b1)}. It is easy to see that the consis-
tent answer to Q is true in I2. This is because there is a key value in P (a2 in
this case) that appears with b1 as its non-key value, and does not appear with
any other constant b such that b 6= b1. The latter condition can be checked by
the formula Qconsist(x) = ∀y P (x, y) ⇒ y = b1. Therefore, the query rewriting
algorithm yields the following query:

Q′ = ∃x P (x, b1) ∧ ∀y P (x, y) ⇒ y = b1

2

Example 3.9 Consider the relation schemes P1(A1, B1) and P2(A2, B2) where
pkey(P1) = A1 and pkey(P2) = A2. Assume that the instance I1 is {P1(a1, b1),
P1(a1, b2), P2(b1, c1)}. It is easy to verify that the consistent answer to the
query Q = ∃x1, x2, x3 P1(x1, x2)∧P2(x2, x3) is false. On the other hand, if we
consider the instance I2 containing the facts {P1(a1, b1), P1(a1, b2), P2(b1, c1),
P2(b2, c2)}, the consistent answer to Q is true. This occurs because every non-
key value that appears together with a1 in some tuple (in this case, b1 and
b2) joins with a tuple of P2. The formula

Qconsist(x′1) = ∀x′2 [P1(x1, x
′
2) ⇒ ∃x′3 P2(x′2, x

′
3)]

checks the condition above. The query rewriting algorithm yields the query

Q′ = ∃x1, x2, x3 P1(x1, x2) ∧ P2(x2, x3) ∧ ∀x′2 [P1(x1, x
′
2) ⇒ ∃x′3 P2(x′2, x

′
3)]

2

Given a query Q such that Q ∈ Ctree, and a set of primary key func-
tional dependencies KD, the rewriting algorithm returns a first-order rewrit-
ten query Q′ for the problem of obtaining the consistent answers for Q w.r.t.
KD. The query Q′ is obtained as the conjunction of the input query Q, and
a new query called Qconsist, which is used to ensure that Q is satisfied in
every repair for the database instance w.r.t. KD (thus the consistent answer
is true). The query Qconsist is obtained by recursion on the tree structure of
each of the components of the join graph GQ of Q, which is a forest.

The algorithm is applied to queries with free variables, as Q(y) = ∃x P (x, y),
in a similar way to the case of queries with constants, as that in the Exam-
ple 3.8. It suffices to treat the free variable as if they were constants. For
instance, for Q(y) the algorithm yields the rewritten query

3.3 Rewriting for a Class of Conjunctive Queries 63

Q′(y) = ∃x P (x, y) ∧ ∀y′ P (x, y′) ⇒ y′ = y

where the only difference with the query in the Example 3.8 is that the con-
stant a is replaced by the free variable y.

3.3.3 A Dichotomy Result

The rewriting algorithm works for a set integrity constraints consisting of
exactly a key per relation and queries with full joins whose join graph is a
forest. This is a sufficient condition for a query to be first-order rewritable.
In [45] it has been shown a class C∗ of queries such that the problem of
computing the consistent answers is coNP -complete for every query of the
C∗ which does not satisfy the conditions of the rewriting algorithm (i.e. the
membership in Ctree).

We say that a conjunctive query Q without repeated relation symbols is
in the class C∗ if the following conditions hold:

i) for every literal P (X, Y) of Q where X is the set of variables at the posi-
tions of the key of P , there is x in X such that it does not belong to the
set X ′ of variables at the positions of the key of any literal P ′ of Q, with
P ′ 6= P ;

ii) the join graph GQ of Q has no self-loops;
iii) if the join graph GQ of Q is a forest, then every non-key to key join of Q

is full.

Observe that, the first condition excludes queries having different literals
with the same key, like ∃x1, x2, x3 P1(x, y) ∧ P2(x, y) where x is the variable
at the position of the key attribute of both P1 and P2. The second condition
excludes queries like ∃x P (x, x), where x is the variable at the position of the
key of P . Finally, the case of queries whose join graph is a forest but involving
not-full (i.e. partial) non-key to key joins has been left out of C∗. For the
conjunctive queries which does not belong to C∗ there has not been provided
the dichotomy result.

Let Chard the class of the query Q such that Q ∈ C∗ and Q 6∈ Ctree. It
has been shown that the problem of computing consistent query answer to
Q ∈ Chard w.r.t. a set of key dependencies is coNP -complete. Therefore, given
a query Q such that Q ∈ C∗, it can be decided in polynomial time whether
the problem of computing consistent answer to Q is either in PTIME or it is
coNP -complete.

Example 3.10 Consider the relations Pi(Ai, Bi) and primary key dependen-
cies Ai → Bi with 1 ≤ i ≤ 3. Then the query

Q4 = ∃x1, x2, x3, x4 [P1(x1, x2) ∧ P2(x3, x4) ∧ P3(x2, x4)]

is in C∗, but it is not in Ctree since its join graph is not a tree (the vertex P3

has two incoming edges: the first from P1 and the second from P2). Therefore,
Q4 ∈ Chard.

64 3 The Tuple-Based Repairing Paradigm

As second example, also the query Q3 of the Example 3.7 belongs to the
class Chard.

2

3.4 Rewriting SQL Queries

In [46] the rewriting algorithm presented in [45] has been improved and ex-
tended for working on Select-Projection-Join (SPJ) SQL queries (with set
semantics) and also SPJ queries with aggregation, grouping, and bag seman-
tics.

The algorithm introduced in [45] (cfr. Section 3.3.2) aim to produce a first-
order rewriting of conjunctive queries for the problem of computing consistent
answer in databases that may violate a set of key functional dependencies. In
principle, first-order queries can be translated into SQL queries. However, the
queries produced by means of the algorithm in [45] have a high level of nesting
(proportional to the number of relations in the query) and are therefore very
inefficient. The rewriting algorithm proposed in [46] produces SQL queries
with at most one level of nesting, which has reasonable running times.

Moreover, an algorithm working for aggregation queries with grouping has
been proposed. The first works on aggregation queries were that of [7, 8],
where it has been proposed the use of ranges as a semantics for consistent
answering for aggregate queries 3.1. In [7, 8] only queries with just one aggre-
gated attribute and no grouping were considered, namely scalar aggregation
queries. On the other hand, in [46] these results was extended to consider
aggregation queries with grouping, even if it is yet limited to consider only
one relation in the FROM clause as in [7, 8].

A system, called ConQuer (it stands for Consistent Querying) [46, 47],
for managing inconsistent data has been proposed. In ConQuer, a user may
postulate a set of key functional dependencies, possibly at query time, and
the system retrieves exactly the query answers that are consistent w.r.t. the
key constraints. In order to do this, ConQuer rewrites the query into another
SQL query that retrieves the consistent answers.

The class of SQL queries, called tree queries, that can be handled by Con-
Quer is an extension of the class Ctree of conjunctive queries introduced in
Section 3.3.2. The extensions consists in the presence of comparison operators
in the selection condition and aggregate expressions.

In order to define a tree query, we consider the join graph for an SQL
query, similar to that introduced in the Section 3.3.1 for conjunctive queries.

The join graph GQ of an SQL query Q is a directed graph such that:

• the vertices of GQ are the relations used in the FROM clause of Q;
• there is an edge from Pi to Pj if a non-key attribute of Pi is equated with a

key attribute of Pj (the key attribute of P are that belonging to pkey(P)).

3.4 Rewriting SQL Queries 65

Differently from the join graph of Section 3.3.1, here we do not consider
self-loops because of only joins which involve at least an entire key of one
relation are examined (these correspond to full non-key to key joins).

A select-project-join-group-by query Q is a tree query if

i) there are no repeated relation symbols in the FROM clause of Q;
ii) every join condition of Q is an equi-join (i.e. there are no inequality joins);
iii) every join involves the key of at least one relation, (i.e. non-key to non-key

joins are not permitted);
ii) the join graph GQ of Q is a tree.

Observe that the WHERE clause of Q may contain conjunction of comparison
predicated (e.g. <, ≤). However, a tree query does not contain neither nested
subqueries nor disjunctions.

3.4.1 Join Queries

We now illustrate the rewriting technique for tree queries without aggregation
or grouping by means of an example.

Example 3.11 Consider the database consisting of the two relation schemes
Customer(Cust, Account) and Order(Cod,Clerk, Cust), whose instances are
shown in Fig. 3.7. Assume that pkey(Customer) = {Cust} and pkey(Order) =
{Cod}.

Cust Account

c1 2000

c1 100

c2 2500

c3 2200

c3 2500

Customer

Cod Clerk Cust

o1 ali c1

o2 jo c2

o2 ali c3

o3 ali c4

o3 pat c2

o4 ali c2

o4 ali c3

o5 ali c2

Order

Fig. 3.7. Relation instances Customer and Order

Consider the following query Q, which retrieves the clerks who have pro-
cessed orders for customers with a balance over 1000.

SELECT O.Clerk
FROM Customer C, Order O

66 3 The Tuple-Based Repairing Paradigm

WHERE C.Account > 1000 AND O.Cust = C.Cust;

The consistent query answers for Q is ali which has (certainly) processed
the orders o4 and o5.

2

The query rewriting of Q is obtained using two subqueries, namely
Candidates and Filter, as follows:

SELECT Clerk
FROM Candidates Cand
WHERE NOT EXISTS (SELECT *

FROM Filter F
WHERE Cand.Cust = F.Cust)

The (sub)query Candidates returns all distinct pair 〈Cod, Clerk〉 that sat-
isfies the selection conditions of the original query Q, and thus possibly belongs
to the consistent answers. Therefore, it corresponds to the original query, ex-
cept that it selects distinct pairs 〈Cod, Clerk〉 (in general, the argument of the
SELECT clause of Candidates is augmented with the key attributes of the root
of the join graph GQ, i.e. the key of Order in this case). It is defined as follows:

Candidates AS (SELECT DISTINCT O.Cod, O.Clerk
FROM Customer C, Order O
WHERE C.Account > 1000 AND O.Cust = C.Cust)

In this case, the result of applying the subquery Candidates to the
databases is {〈o1, ali〉, 〈o2, jo〉, 〈o2, ali〉, 〈o3, pat〉, 〈o4, ali〉, 〈o5, ali〉}.

The (sub)query Filter returns the orders that should be “filtered out”
from the result of Candidates because they are not consistent answers. It is
defined as follows:

Filter AS (SELECT O.Cod
FROM Candidates Cand

JOIN Order O ON Cand.Cod = O.Cod
LEFT OUTER JOIN Customer C ON O.Cust = C.Cust

WHERE C.Cust IS NULL OR C.Account ≤ 1000)
UNION ALL
SELECT Cod
FROM Candidates Cand
GROUP BY Cod
HAVING COUNT(*)>1)

3.4 Rewriting SQL Queries 67

In this case, Filter returns the orders {o1, o2, o3}. The orders o1 and o3

are filtered out by the former subquery of Filter, whereas the order o2 by the
latter.

• The order o1 is returned by Filter because the first tuple of Order joins
with the second tuple of Customer, which corresponds to a customer
whose account balance is below 1000.

• The order o3 is returned by Filter because it appears in a tuple (the fourth
of Order) which does not join with any tuple of Customer. Observe that
Filter computes a left-outer join between Order and Customer. Therefore
o3 appears together with a null value for attribute Cust in the left-outer
join.

• The order o2 is returned by Filter because the clerk of o2 may be jo in
some repairs, and ali in others. Hence, o2 should not contribute with its
clerks to the consistent query answer of Q.

In [46], the rewriting above has been generalized for obtaining consistent
answers for tree queries without aggregate operators w.r.t. a set of integrity
constraints containing at most one key functional dependencies per relation.

Observe that, detecting of the cases in which non-key to key joins are not
satisfied (as for order o3) is obtained performing a left-outer join rather than
an inner join. This can be done because we are considering queries whose join
graph is a tree. Specifically, the left-outer join of the relations is obtained
starting at the relation at the root of the join graph (tree), and recursively
traversing it in the direction of its edges, that is, from a relation joined on a
non-key attribute to a relation joined on its key.

3.4.2 Aggregation Queries

The aggregation queries considered in [46] are SQL queries of the form:

SELECT G, aggr1(e1) AS E1, . . . , aggrn(en) AS En,
FROM P
WHERE W
GROUP BY G

where G is the set of attributes we are grouping on, and aggr1(e1), . . . , aggrn(en)
are aggregate expressions with functions aggr1, . . . , aggrn, respectively. Each
aggri (1 ≤ i ≤ n) is in { MIN, MAX, SUM }. Note that, all the attributes in the
GROUP BY clause appear in the SELECT clause. This is a restriction because, in
general, SQL queries may have some attributes in the GROUP BY clause which
do not appear in the SELECT clause (although not vice versa).

The semantics adopted for consistent query answers to queries with ag-
gregate expressions is the range-semantics (cfr. Section 3.1) that has been
proposed in [7]. In that work queries with just one aggregated attribute and
no grouping were considered (cfr. Section 3.1.2). Thus a single range has been

68 3 The Tuple-Based Repairing Paradigm

defined, which contains every values that the (scalar) aggregation query can
take in all possible repairs of the database. Here, queries with n aggregated
attribute and grouping are considered, therefore n ranges for each value of G
that is a consistent answer will be used.

Consider the query QG that consists of Q with all the aggregate expression
removed from the SELECT clause, i.e. QG is of the form:

SELECT G
FROM P
WHERE W
GROUP BY G

A range-consistent query answer for an aggregation query Q on a database
D w.r.t. a set of integrity constraints IC is a pair 〈t, r〉 such that

1. t is a consistent answer for QG in D;
2. r = 〈glbE1 , lubE1 , . . . , glbEn

, lubEn
〉, and for each i ∈ {1, . . . , n} the fol-

lowing conditions hold:
i) for every repair R of D w.r.t IC, glbEi ≤ πEi(σG=t(Q(R))) ≤ lubEi ,

where πEi(σG=t(Q(R))) is the evaluation of the aggregate expression
Ei on the group identified by t which is returned by the evaluating Q in
R; glbEi and lubEi are a lower bound and an upper bound, respectively;

ii) for some repair R, πEi(σG=t(Q(R))) = glbEi , i.e glbEi is the greater
lower bound;

iii) for some repair R, πEi(σG=t(Q(R))) = lubEi , i.e lubEi is the least
upper bound;

The definition of range-consistent query answer in [46] extends the defini-
tion of [7, 8] to queries with more than an aggregation expression, and with
the WHERE and the GROUP BY clause (both the works refer to FROM clauses with
one relation).

Example 3.12 Consider the database consisting of the relation Customer(Cust,
Nation, Segment, Account) whose instance is shown in Fig. 3.8. Assume that
key of Customer is the attribute Cust.

Cust Nation Segment Account

c1 n1 building 1000

c1 n1 building 2000

c2 n1 building 500

c2 n1 banking 600

c3 n2 banking 100

Fig. 3.8. Relation Customer

3.4 Rewriting SQL Queries 69

Consider the following query Q, which retrieves the total account balance
for customers in the building sector, grouped by nation.

SELECT Nation, SUM(Account)
FROM Customer
WHERE Segment = ‘building’
GROUP BY Nation

Then the query QG is as follows.

SELECT Nation
FROM Customer
WHERE Segment = ‘building’
GROUP BY Nation

There are four repairs for Customer w.r.t. the key constraint:

R1 = {〈c1, n1, building, 1000〉, 〈c2, n1, building, 500〉, 〈c3, n2, banking, 100〉}

R2 = {〈c1, n1, building, 1000〉, 〈c2, n1, banking, 600〉, 〈c3, n2, banking, 100〉}
R3 = {〈c1, n1, building, 2000〉, 〈c2, n1, building, 500〉, 〈c3, n2, banking, 100〉}
R4 = {〈c1, n1, building, 2000〉, 〈c2, n1, banking, 600〉, 〈c3, n2, banking, 100〉}

The consistent answer to the query QG is {n1}. The result of applying Q
to these repairs is the following: Q(R1) = {〈n1, 1500〉}, Q(R2) = {〈n1, 1000〉},
Q(R3) = {〈n1, 2500〉}, Q(R4) = {〈n1, 2000〉}. Therefore the range-consistent
query answers is the set {〈n1, 〈1000, 2500〉〉}.

2

We now illustrate the rewriting technique for queries with aggregation and
grouping. We illustrate the approach for computing range-consistent answer
be means of the database instance (Customer) and the aggregation query Q
of the example above.

The tuple of the relation Customer which produce the consistent answers
for QG are the first and the second tuple, which contribute with the nation
n1.

In order to obtain the range-consistent answer to Q, we separately consider
the set of tuples which contributes to the consistent answers for QG and the
set which does not contribute. This distinction is achieved by means of the
subquery Filter for the join query QG, which can be obtained as seen in
Section 3.4.1. Intuitively, the filter retrieves the customers which appear in
some tuple that does not satisfy QG. In this case, the filtered out customers
are c2 and c3. The customer c1 is not filtered because its two tuples (the first
and the second in Customer) satisfy query QG.

70 3 The Tuple-Based Repairing Paradigm

In the repairs R1 and R2, c1 contributes an account balance of 1000.
Whereas in R3 and R4, it contributes 2000. Therefore, it contributes a min-
imum of 1000 and a maximum of 2000. This is captured by means of the
following query:

UnFilteredCandidates AS (
SELECT Cust, Nation,

MIN(Account) AS MinAcc, MAX(Account) AS MaxAcc
FROM Customer C
WHERE Segment = ‘building’

AND NOT EXISTS (SELECT *
FROM Filter
WHERE C.Cust = Filter.Cust)

GROUP BY Cust, Nation)

The result of applying UnFilteredCandidates to the inconsistent database
is {〈c1, n1, 1000, 2000〉}.

In order to compute the contribute of the tuples that are filtered out (c2

and c3), we consider the following subquery:

FilteredCandidates AS (
SELECT Cust, Nation, 0 AS MinAcc, MAX(Account) AS MaxAcc
FROM Customer C
WHERE Segment = ‘building’

AND EXISTS (SELECT *
FROM Filter
WHERE C.Cust = Filter.Cust)

AND EXISTS (SELECT *
FROM QGCons
WHERE C.Nation = QGCons.Nation)

GROUP BY Cust, Nation)

The result of FilteredCandidates is {〈c2, n1, 0, 500〉}. The customer c3 is
not returned since its nation (i.e., the attribute in the group by of the original
query) does not appear in the result of the consistent answer to QG (denoted
as QGCons in the query). This is necessary because we do not want to retrieve
ranges for the nations that are not consistent answers.

The range-consistency answers are obtained summing the contributes
(lower and upper bounds) of each nation in the result of UnFilteredCandidates
and FilteredCandidates, as follows:

SELECT Nation, SUM(MinAcc) AS glb, SUM(MaxAcc) AS lub
FROM (SELECT *

FROM UnFilteredCandidates
UNION

3.5 A Class of Tractable but not Rewritable Queries 71

SELECT *
FROM FilteredCandidates)

GROUP BY Nation

In the previous example, all the numerical values were positive. The rewrit-
ing that deals with negative values is produced in a similar way: a contribute
equals to zero is assigned to MaxAcc (instead of MinAcc). For instance, if
the Account of the third tuple in Customer were been −500 (instead of 500),
the SELECT clause of UnFilteredCandidates would have been as follows:
SELECT Cust, Nation, MIN(Account) AS MinAcc, 0 AS MaxAcc.

The query UnFilteredCandidates obtains the bounds for the customers
that are not filtered, and therefore contribute to both bounds. The query
FilteredCandidates obtains the bounds for the customers that are filtered,
and therefore may contribute zero to some of the two bounds.

In [46] the rewriting approach above has been generalized for obtaining
range-consistent query answers for queries with aggregate expressions (MAX,
MIN, SUM) and grouping w.r.t. a set of primary key functional dependencies.

3.5 A Class of Tractable but not Rewritable Queries

By means of the query rewriting approach several tractable cases for the
problem of computing consistent answers have been proposed. Specifically,
the rewriting method in [4] presented in Section 2.5.2 works for quantifier-
free conjunction of literals queries and (generic) binary acyclic universal con-
straints. As seen in Section 3.2.1, in [29] it has been shown query rewriting
still works for simple conjunctive queries and one functional dependencies per
relation. Further, in [45] and [46] (cfr. Section 3.3 and Section 3.4) a query
rewriting for the class conjunctive tree queries and constraints consisting of
at most one key dependency per relation has been proposed.

But tractable cases of the consistent query answer problem are not re-
stricted to computing query rewriting, as seen in Section 3.2.1. More impor-
tantly, for some tractable conjunctive queries Q, query rewriting is not feasible,
since (as proved in [44]) there is no first-order query Q′ that can retrieve the
consistent answers for Q, even thought limiting the set of integrity constraints
to only key dependencies.

In [44] a polynomial-time algorithm for answering queries belonging to a
class of non-rewritable query has been proposed. It is assumed that the set of
integrity constraints consist of at most one key dependency per relation of the
database scheme. Whereas, the queries are conjunctive query with only binary
predicated and built-in predicates consisting of equality (=) and inequality
(6=) atoms.

We first provide an example of tractable but not rewritable query.

72 3 The Tuple-Based Repairing Paradigm

Example 3.13 Consider the relation scheme P (Employee, Salary) and the
key dependency Employee → Salary. Two relation instances of P , I1 and I2

are shown in Fig. 3.9. Note that I2 which differs from I1 in only the last tuple.

Employee Salary

John 1000

John 2000

Mary 1000

Mary 2000

Anna 1000

Anna 3000

I1

Employee Salary

John 1000

John 2000

Mary 1000

Mary 2000

Anna 1000

Anna 2000

I2

Fig. 3.9. Two relation instances of P (Employee, Salary)

Let Q1 be the following boolean query, which checks whether there are
two (distinct) employees that have the same salary

Q1 = ∃x1, x2, y P (x1, y) ∧ P (x2, y) ∧ x1 6= x2

The consistent answer to Q1 in the instance I1 is false, since for the repair

R1 = {〈John, 1000〉, 〈Mary, 1000〉, 〈Anna, 3000〉}

the query is false. Whereas, consistent answer to Q1 in the instance I2 is true
(it is easy to verify that for all repairs of I2, Q1 is true).

As will be clear in the following, there is no first-order rewritten query Q′1
that can retrieve the consistent answers for Q1.

2

In order to find the consistent answers for Q1, we construct a graph GI

for the relation instance I of the (binary) scheme P (Employee, Salary). The
graph GI is a bipartite graph, with partitions Employee and Salary. These
partitions have one vertex for each value in the active domain of attributes
Employee and Salary, respectively. The set of edges of GI consists of all
tuples 〈a, b〉 of an instance of I.

It can be verified that, given a (possible inconsistent) relation instance I of
a scheme P (Employee, Salary) with the pkey(P) = Employee, the consistent
answer to the query Q1 in I is false if and only if the graph GI has a perfect
matching.

Example 3.14 Consider the relation instances I1 and I2 in Fig. 3.9. A perfect
matching for the graph GI1 consists of the edges {(John, 1000), (Mary, 1000),
(Anna, 3000)}, which corresponds to the repair R1 of the Example 3.13.

3.5 A Class of Tractable but not Rewritable Queries 73

Whereas, for the instance I2 there is no perfect matching since the cardi-
nality of the active domain of Employee is greater that the cardinality of the
active domain of Salary. Thus the consistent answer to Q1 in I2 w.r.t. the
key dependency defined is true.

2

There are a number of polynomial-time algorithms in the literature for de-
ciding the existence of a perfect bipartite matching. Therefore Q1 is a tractable
query.

However, we now show that no approach based on query-rewriting, such as
the one of [4], works for Q1. This follows from the fact that perfect matching
is not first order definable. Assume, toward a contradiction, that there is a
first-order query Q′1 such that evaluating Q′1 in an instance I returns exactly
the consistent answer to Q1 in I. Let Ai be the set of vertices of the partition
Salary that are neighbors of vertex vi of the partition Employee in the graph
GI , for an instance I of the scheme P (Employee, Salary). A system of distinct
representatives of A1, . . . , An is a sequence of n distinct elements a1, . . . , an

with ai ∈ Ai (1 ≤ i ≤ n). Clearly, GI has a perfect matching if and only
if A1, . . . , An has a system of distinct representatives. Since the consistent
answer to Q1 in I is false if and only if GI has a perfect matching, then
answer to the rewritten query Q′1 in I is false if and only if A1, . . . , An has a
system of distinct representatives. But this is a contradiction, since it has been
proved in [61] that relational algebra, with an appropriate encoding of sets,
cannot test whether a family of sets has a system of distinct representatives.

3.5.1 On the Class of Tractable Queries

Consider a database scheme D that contains binary relations P1, . . . , Pn. As-
sume that the set of integrity constraints consists of n primary key dependen-
cies, one per relation. The class of queries identified in [44] for which consistent
answers can be computed in polynomial time consists of the queries having
the form:

Q = Qfree ∧Q1
exists ∧ · · · ∧Qm

exists

where Qfree is a quantifier-free query, and each Ql
exists (1 ≤ l ≤ m) is a

boolean query on relation Pl of the form

Qk,j1,...,jk
= ∃y1, . . . , yk Qj1 ∧ · · · ∧Qjk

∧
∧

s 6=t

yt 6= yt

where
Qji = ∃xi,1, . . . , xi,ji

∧

1≤j≤ji

Pl(xi,j , yi) ∧
∧

v 6=w

xi,v 6= xi,w

Observe that the query Q1 = ∃x1, x2, y P (x1, y) ∧ P (x2, y) ∧ x1 6= x2 is
an instance of this class of query, where Qfree = ∅, l = 1, k = 1, j1 = 2.
Therefore, no approach based on first-order query-rewriting works for this
class of queries.

74 3 The Tuple-Based Repairing Paradigm

Example 3.15 Consider the query Q2 posed on the relation P (Employee, Salary)
(having as key the attribute Employee).

Q2 = ∃x1, x2, x3, x4, x5, y1, y2 [P (x1, y1) ∧ P (x2, y1) ∧ P (x3, y1)∧
x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3∧
P (x4, y2) ∧ P (x5, y2) ∧ x4 6= x5∧
y1 6= y2]

The query Q2 checks whether there are three (distinct) employees that
have the same salary y1 and there other two (distinct) employees that have
the same salary y2, such that y1 is not equal to y2. Q2 is also an instance of
the class of query defined above, with Qfree = ∅, l = 1, k = 2, j1 = 3 and
j2 = 2.

2

Since the existentially-quantified subqueries Ql
exists (with 1 ≤ l ≤ m) do

not share variables, they can be treated independently of each other. The
polynomial-time algorithm for the evaluation of a single Ql

exists solves in-
stances of the degree-constrained subgraph problem [43], which is a generaliza-
tion of perfect matching problem.

The results for the boolean queries can be extended to queries with free
variables as follows. Let Q be a query without free variables. Let Q′ be the
query Q, where one of the existential quantifications has been removed. There-
fore, Q′ has a free variable x. We can evaluate Q′ by instantiating it with each
value of free variable x. In this way, we have to evaluate n queries, where n is
the cardinality of the active domain of x. However, under the assumption of
a constant number of conflicts per key, each of the instantiated queries may
be much easier to compute than the original one.

The predicates Pl in a query belonging to the class above are binary predi-
cate. If we consider ternary predicates the consistent query answer problem be-
comes intractable. Consider the relation scheme P (Employee,Manager, Salary)
and the key dependency Employee → {Manager, Salary}. In [29] it has been
shown that obtaining the consistent answers for the query

Q = ∃x1, x2, y, z1, z2 P (x1, y, z1) ∧ P (x2, y, z2) ∧ z1 6= z2

is a coNP -hard problem. However, we note that all the negative results in the
literature apply only to specific queries; thus, they do not rule out the existence
of classes of queries that are easier to compute, as that in this Section.

3.6 A Large Perspective on Repair Semantics

So far we have investigated the problem of computing consistent query answer
considering two repair-semantics, namely minimal-set of inserted and deleted
tuples and minimal-set of (only) deleted tuples. Under the former semantics,

3.6 A Large Perspective on Repair Semantics 75

repairs for a database consist of the minimum set of inserted and deleted tuple.
Whereas the latter allows only tuple insertions for restoring the consistency
in a database. As already observed, these two semantics yields the same set
of repairs if the only violated integrity constraints are denial constraints.

In [23] the complexity of query answering has been studied considering six
different assumptions on the data, which give raise six corresponding repairs-
semantics. First, strictly-exact, strictly-sound, and strictly-complete semantics
have been considered. Under the strictly-exact semantics, the interpretation
of each relation P exactly corresponds to the extension of P in the database
instance. Whereas, under strictly-sound semantics (resp. strictly-complete se-
mantics) the interpretation of each relation P can be considered as a superset
(resp. subset) of the extension of P in the database instance. Note that, the
strictly-exact, strictly-sound, and strictly-complete semantics do not impose
any minimality conditions on repairs. The sound semantics requires that a
repair be a superset of the database; the exact semantics requires that it be
equal to the database; and the complete semantics that it be a subset of the
database.

Then, loosely-exact, loosely-sound, and loosely-complete semantics have
been considered. Under these semantics, among all possible databases sat-
isfying the integrity constraints, only the ones that are “as close as possible”
to the actual database instance is selected as interpretation of the database.
Under those semantics, repairs are constructed by adding tuples as well as
by deleting them. The notion of repair under the loosely-exact semantics is
identical to the notion proposed in [4] which is the first introduced in this
dissertation (cfr. Section 2.5). The loosely-complete semantics does not im-
pose the requirement that the set of deleted tuples be minimal in a repair,
and loosely-sound semantics requires only that the set of deleted tuples be
minimized.

In [23] it has been addressed the problem of query answering under the
above repair-semantics. It is assumed that at most one key dependencies per
relation and inclusion dependencies are specified for the database scheme.

3.6.1 Query Answering under Strict Repair Semantics

Let D be a database instance over the scheme D and IC be a set of integrity
constraints. The strictly-sound, strictly-complete and strictly-exact repair-
semantics for D w.r.t. IC are defined as the set of databases instance D′

which are consistent w.r.t. IC (D′ |= IC) and such that the assumptions on
D are satisfied, i.e.

• Facts(D′) ⊇ Facts(D) for the strictly-sound semantics;
• Facts(D′) ⊆ Facts(D) for the strictly-complete semantics;
• Facts(D′) = Facts(D) for the strictly-exact semantics.

76 3 The Tuple-Based Repairing Paradigm

These semantics give raise three notions of repairs: each D′ is a repair under
the considered semantics. Observe that, in this setting no minimality condi-
tions are imposed on repairs.

Example 3.16 Considering the database scheme consisting of the two rela-
tions Player(PName, Team) and Team(Name, City). Assume that the set of
integrity constraints consists of only the inclusion dependency Player[Team] ⊆
Team[Name], stating that every player is enrolled in a team of a city.
Consider the following (inconsistent) database instance D

D = {Player(a, b), P layer(a, d), P layer(e, f), T eam(b, c)}
The set of repairs under the strictly-exact semantics is empty, since D

is inconsistent (there are not two tuples in Team having d and f as first
component). This implies that query answering is meaningless, since every
possible fact is a logical consequence of the database and the set of constraints.

The set of repairs under the strictly-complete semantics consists of the
following three repairs:

R1 = {Player(a, b), T eam(b, c)}
R2 = {Team(b, c)}
R3 = ∅

Whereas under strictly-sound semantics, the set of repairs consists of all
the database instance that can be obtained by adding (among others) at least
one fact of the form Team(d, α) and one fact of the form Team(f, β), where
α and β are values of the database domain.

2

Let D be a database instance over the scheme D, KD a set of primary key
functional dependencies, and ID a set of inclusion dependencies defined on
D. As illustrated in the example above, if the data are considered complete,
then the empty database always belongs to set of repairs of D w.r.t KD∪ID,
independently of the constraints. Therefore, for any query Q and for any tuple
t, deciding whether t belongs to every repair of D is trivial: it is always false.

Whereas, under strictly-exact semantics, we have two cases:

i) D satisfies both KD and ID, therefore there is only the repair R such
that Facts(R) = Facts(D), and the set of consistent answers is obtained
simply evaluating the query on the original database;

ii) D violates either KD or ID, therefore there is no repair for D, and the set
of consistent answers to a query Q consists of all the tuples of the same
arity of Q.

The strictly-sound semantics is suitable if the set of constraints consists of
inclusion dependencies only: in the presence of functional dependencies, the
set of repairs may be empty (this is because the violations of functional de-
pendencies cannot be fixed by tuple insertions). Given a database D satisfying

3.6 A Large Perspective on Repair Semantics 77

KD, the set of repair for D w.r.t. KD ∪ ID is constituted in general by sev-
eral (possibly infinite) database instances, and each of them may have infinite
size since there are several ways of adding facts to D. Solving a violation of
an inclusion dependency by adding new tuples may lead to new violations of
other dependencies, and thus there is no clear upper bound on the size of a
repair, under the strictly-sound semantics. Indeed, in [23] it has been proved
that the problem of consistent query answers with inclusion dependencies is
undecidable under strictly-sound semantics, even if the database is consistent
w.r.t. the set of primary key dependencies.

However, decidable cases have been identified, when non-key conflicting
inclusion dependencies are considered. Let KD ∪ ID be a set of constraints
consisting of a set of primary key functional dependencies KD and a set of
inclusion dependencies ID. Then an inclusion dependencies P [A] ⊆ Q[B] is a
non-key conflicting inclusion dependencies w.r.t. KD if either: (i) no primary
key dependencies are defined on Q, or (ii) B is not a strict superset of the
(primary) key of Q, i.e. pKey(Q) 6⊂ B.
A database scheme D is non-key conflicting if all the inclusion dependencies
defined on D are non-key conflicting (w.r.t. the set of primary key dependen-
cies defined on D).

Observe that, the class of non-key conflicting inclusion dependencies com-
prises the class of primary foreign key constraints.

The most relevant property of non-key conflicting inclusion dependencies
is that they do not interfere with the key dependencies, so that it is possible
to operate with these inclusion dependencies just as if the key dependencies
were not defined in the scheme. This property entails that query answering
can be solved exploiting the technique in [54], where the problem of conjunc-
tive query containment in a database in presence of functional and inclusion
dependencies has been addressed.

In [23] it has been proved that given a database D over a non-key con-
flicting database scheme D, and a query Q consisting of union of conjunctive
queries, the problem of establishing whether a tuple t is a consistent answer
for Q is in PTIME in data complexity (under strictly-sound semantics).

3.6.2 Query Answering under Loose Repair Semantics

In the cases of strictly-exact and strictly-sound semantics, the violation of a
single functional dependency may leads to the non-interesting cases in which
the set of repairs is empty. Therefore, less strict assumptions on data are
adopted leading to the notions of loosely-complete, loosely-sound and loosely-
exact semantics.

The semantics of a database scheme D with integrity constraints IC is
characterized considering the set of database instances D such that: (i) D
satisfies the integrity constraints IC, and (ii) approximate “at best” the sat-
isfaction of the assumptions on D.

78 3 The Tuple-Based Repairing Paradigm

Given a (possibly inconsistent) database D and a set of integrity con-
straints IC, we define an ordering on the set of all databases instance which
are consistent w.r.t IC. If D1 and D2 are two such databases, we say that D1

is better than D2, denoted D1 À D2 if:

• {Facts(D1) ∩ Facts(D)} ⊃ {Facts(D2) ∩ Facts(D)} for the sound as-
sumption;

• {Facts(D1) − Facts(D)} ⊂ {Facts(D2) − Facts(D)} for the complete
assumption;

• at least one of the following conditions holds for the exact assumption:
i) {Facts(D1) ∩ Facts(D)} ⊃ {Facts(D2) ∩ Facts(D)} and

{Facts(D1)− Facts(D)} ⊆ {Facts(D2)− Facts(D)};
ii) {Facts(D1) ∩ Facts(D)} ⊇ {Facts(D2) ∩ Facts(D)} and

{Facts(D1)− Facts(D)} ⊂ {Facts(D2)− Facts(D)}
Given a (possibly inconsistent) database D and a set of integrity con-

straints IC, the set of repairs of D w.r.t. IC under the loosely-sound se-
mantics (similarly for loosely-complete and loosely-exact semantics) consists
of all database instances R that are maximal respect to À, i.e. for no other
consistent database D′ we have that D′ À R.

Under those semantics, repairs are constructed by adding tuples as well as
by deleting them. Specifically, under loosely-sound semantics the set of repairs
consists of databases satisfying the integrity constraints and such that are “as
sound as possible”, thus only consistent databases that minimize elimination
of facts from D must be considered, independently of the set of facts added
to D because completeness can be achieved without restriction on tuples to
be inserted into D.

Under loosely-complete semantics the set of repairs consists of consistent
databases that minimize the set of facts added to D (independently of the set
of deleted facts). Observe that, every repair R belonging to the set of repair
obtained under strictly-complete semantics is better than any other repair R′

obtained adding facts to R, i.e. R À R′ holds. Thus,the strictly-complete
semantics and the loosely-complete semantics always coincide.

The notion of repair under the loosely-exact semantics is identical to the
notion proposed in [4], i.e., the set of facts which are either added to or deleted
from the original instance are minimized (cfr. Section 2.5).

Example 3.17 Considering the database scheme consisting of the two rela-
tions Player(PName, Team) and Team(Name, City), as in Example 3.16.
Assume that the set of integrity constraints consists of the inclusion depen-
dency of Example 3.16 Player[Team] ⊆ Team[Name], plus the key depen-
dency Pname → Team. Consider the same instance of Example 3.16:

D = {Player(a, b), P layer(a, d), P layer(e, f), T eam(b, c)}

Observe that, under strictly-sound or strictly-exact semantics there are no
repair for D since there a violation of the functional dependency.

3.6 A Large Perspective on Repair Semantics 79

On the other hand, the set of repairs under the loosely-exact semantics
consists of the database instance R1 = {Player(a, b), T eam(b, c)} and all the
instances of the form:

R2 = {Player(a, d), T eam(b, c), T eam(d, α)}
R3 = {Player(a, b), P layer(e, f), T eam(b, c), T eam(f, α)}
R4 = {Player(a, d), P layer(e, f), T eam(b, c), T eam(d, α), T eam(f, β)}

where α and β are values of the database domain.
Under loosely-sound semantics, the set of repairs consists of all the

database instance of the form R3 and R4, and each consistent database that
can be obtained by adding facts to a database instance of the form R3 or R4.
The databases of the form R2 are not maximal w.r.t. the order À because
there is a database of the form R4 such that R4 À R2, i.e R4 is obtained
deleting a subset of the facts deleted by R2. Similarly, for each repair R′ ob-
tained by adding facts to R2, there is a repair R′′ obtained by adding facts to
R4 such that R′′ À R′.

As for the strictly-complete semantics, the set of repairs under the loosely-
complete semantics consists of the following three repairs:

R1 = {Player(a, b), T eam(b, c)}
R2 = {Team(b, c)}
R3 = ∅

2

In [23] the problem of computing consistent answers to queries under the
loose semantics has been studied. In particular, the authors focus on query
answering under the loosely-sound and the loosely-exact semantics, since the
loosely-complete and the strictly-complete semantics coincide.

It has been shown that for general key dependencies and inclusion de-
pendencies the problem of consistent query answers under loosely-sound and
loosely-exact semantics is undecidable. The decidable cases identified in [23]
involve again non-key-conflicting inclusion dependencies: given a database D
over non-key conflicting database scheme D, and a query Q consisting of union
of conjunctive queries, the problem of establishing whether a tuple t is a con-
sistent answer for Q is coNP -complete (under loosely-sound semantics) and
Πp

2 -complete (under loosely-exact semantics).
Let D be a database instance over the scheme D, KD be a set of primary

key functional dependencies, and ID be a set of inclusion dependencies defined
on D. If D satisfies KD (D |= KD), then the problem of consistent query
answers is undecidable under loosely-sound semantics, but is in PTIME under
loosely-exact semantics. The latter result has been established by means of the
algorithm shown in Fig. 3.10. The database D1 computed by the algorithm
is a repair for D w.r.t. KD ∪ ID. Moreover, for any other repair R for D
w.r.t. KD ∪ ID, D1 ⊆ R holds. Since the condition tested at the Step 09)

80 3 The Tuple-Based Repairing Paradigm

corresponds to standard query answering over a relational database (D1 in
this case) the algorithm works in polynomial time.

Observe that the strategy presented above can be still adopted for comput-
ing consistent answers in databases w.r.t. a set of only inclusion dependencies.
Indeed, the assumption that D satisfies KD can be replaced by that where
there are no key dependencies defined for D (thus there are no key-conflicting
values).

INPUT:
KD: set primary key functional dependencies defined on D
ID: set of inclusion dependencies defined on D
D: database instance of D such that D |= KD
Q: conjunctive query of arity n
t: n-tuple

OUTPUT:
true if t is a consistent answer to Q in D, false otherwise

VAR:
D0, D1: database instances of D

begin
01) D1 = D
02) repeat
03) D0 = D1

04) for each P (t′) ∈ D1

05) if there exists P [A1, . . . , Ak] ⊆ S[B1, . . . , Bk] ∈ ID such that
06) for each S(t′′) ∈ D1, t′[A1, . . . , Ak] 6= t′′[B1, . . . , Bk]
07) then D1 = D1 − {P (t′)}
08) until D1 = D0

09) if t ∈ D1 then return true
10) else return false
end

Fig. 3.10. Algorithm for computing consistent query answer on key-consistent
databases

Some of the complexity results obtained in [23] for the problem of comput-
ing consistent answers to conjunctive queries are reported in Fig. 3.11. There
are two tables that present, respectively, the complexity of query answering to
conjunctive queries for the class of general database instances and for database
instances which are consistent w.r.t. primary key functional dependencies.

We now compare the six repair semantics presented in this Section and
that of [29] introduced in Section 3.2.1.

Under the (maximal) complete semantics in [29], repairs are obtained by
deleting tuples so that a maximal consistent database is obtained from the
original one. Under the strictly-exact, strictly-sound, and strictly-complete

3.7 Discussion 81

Data complexity for general database instances:

Set of constraints Semantics

KD ID striclty-sound loosely-sound loosely-exact

no general PTIME PTIME PTIME

yes non-key conflicting PTIME coNP -complete Πp
2 -complete

yes general undecidable undecidable undecidable

Data complexity for key-consistent database instances:

Set of constraints Semantics

KD ID striclty-sound loosely-sound loosely-exact

no general PTIME PTIME PTIME

yes non-key conflicting PTIME PTIME PTIME

yes general undecidable undecidable PTIME

Fig. 3.11. Complexity of CQA for key functional dependencies and inclusion de-
pendencies

semantics repairs are obtained performing, respectively, no actions, only in-
sertions and only deletions of tuples in the original instance. But, no (partial)
order among these repairs is considered, i.e. they are all minimal ones. On the
other hand, under loosely-exact, loosely-sound, and loosely-complete seman-
tics order among repairs is defined. We have already observed that the set of
repairs under the loosely-exact semantics is exactly that obtained under the
notion of repair proposed in [4] (presented in Section 2.5), which differs from
that of [29]. Moreover, under loosely-sound semantics the partial order among
repairs is introduced only for selecting repairs such that the set of deleted
tuples is minimized, independently of the set of tuples added to the original
database. Similarly, under loosely-complete semantics the set of added tuples
is required to be minimal, independently of the deleted tuples.

Thus, it is clear the none of the repair semantics presented in this Section
coincide to that introduced in Section 3.2.1.

3.7 Discussion

In this chapter we have investigated the computational complexity of both
the repair checking and the consistent query answer problem among several
dimensions. We have distinguished the following parameters. As first param-
eter we have considered the repair-semantics. The semantics proposed in [4]
(and presented in Section 2.5) requires that the symmetric difference between
a database and its repair be minimized; we have also discussed the seman-
tics introduced in [29] (cfr. Section 3.2.1) and the relationship between this
semantics and that of [4]; moreover, we have examined the several forms of

82 3 The Tuple-Based Repairing Paradigm

semantics discussed in [23] (presented in Section 3.6), and we have compared
them with the two semantics above.

As second parameter, we have distinguished the class of queries to which
belongs the query posed on the (possible inconsistent) database. We have
considered different subclasses of fist-order queries, i.e. quantifier-free queries
(cfr. Section 3.2.1), conjunctive queries (cfr. Section 3.6.2) and their sub-
class such as simple conjunctive queries and tree queries (cfr. Section 3.3
and Section 3.4). Moreover, in Section 3.1 and Section 3.4.2 we have studied
the consistent query answer problem for aggregation queries. In this context,
the notion of consistent query answer has been revisited yielding the notion
of range-consistent query answer, which results appropriate for this type of
queries.

As third parameter, we have distinguished the class of integrity constraints
which are defined on the (possible inconsistent) database. We have considered
arbitrary denial constraints in Section 3.2.1, functional dependencies in Sec-
tion 3.1, key constraints (at most one per relation) in Section 3.3, Section 3.4
and Section 3.5. Moreover, we have discussed the consistent query answer
problem in databases in presence of inclusion dependencies in Section 3.2.2
and in Section 3.6. In both cases we have also studied the interactions of inclu-
sion dependencies with key dependencies, but under different repair-semantics.

In order to define semantics for aggregation queries, range-consistent query
answer has been introduced in [7, 8], and queries with scalar and aggre-
gation functions have been distinguished. The former ones return a single
value for the entire relation, whereas the latter ones perform grouping on a
set of attributes and return a single value for each group. In [7, 8] (cfr. Sec-
tion 3.1) the complexity of range-consistent query answers has been studied for
scalar aggregation queries (with respect to the functions MIN(A), MAX(A),
COUNT(A), SUM(A), AVG(A) or COUNT(*)). A compact representation of
repair, namely the conflict graph (cfr. Section 3.1.1), was exploited in order to
characterize the complexity of computing the greatest-lower-bound and the
least-upper-bound answers (cfr. Section 3.1.2).

Aggregation queries with grouping has been subsequently investigated
in [46] (cfr. Section 3.4.2). The notion of range-consistent answers has been
extended in such a way that for every consistent answer to the group query
(where all the aggregate expression are removed) and for each aggregation
expression, a range-consistent answer is provided. In order to compute such
answers a rewriting algorithm for SQL queries has been proposed.

In Section 3.1.2 and in Section 3.4.2 query answering with respect to func-
tional dependencies and key dependencies, respectively, has been studied.
These class of constraints are special subclass of denial constraints. In this
chapter we observed that for denial constraints, the set of consistent query
answers is not affected by the choice of the primitives adopted for restoring the
consistency, i.e. either insertions/deletions of tuples or only deletions of tu-
ples. Thus, the two repair semantics presented in Section 2.5 and Section 3.2.1
coincide for denial constraints.

3.7 Discussion 83

In Section 3.2.1 several classes of queries and constraints for which both
repair checking and consistent query answer problems are in PTIME have
been characterized. First, the tractability of the problem of computing consis-
tent answers for quantifier-free queries and (arbitrary) denial constraints has
been proved, by exploiting a generalization of the conflict graph, namely the
conflict hypergraph. This result is an extension of that implied by the rewriting
method in [4] (cfr. Section 2.5.2) for denial constraints. Second, tractability
has been also provided for boolean simple conjunctive queries and a set of
functional dependencies consisting of at most one dependency per relation.
Then, the positive results above has been used for identifying tractable case
of consistent answering for queries that are quantifier-free or simple conjunc-
tive, and constraints that are key functional dependencies and foreign key
constraints (with at most one key per relation) (cfr. Section 3.2.2). In fact the
interaction between the two type of dependencies in the set of integrity con-
straints is limited, in such a way that the polynomial-time results presented
for functional dependencies only can be exploited. Moreover, in presence of
inclusion dependencies the assumption of working with complete data is a van-
tage, since entails that facts in every repair are a subset of the facts present
in the original database instance.

Several classes of queries and constraints for which the problem of com-
puting consistent answer is coNP -complete have been shown in [29] (cfr. Sec-
tion 3.2.1). Specifically, intractability for boolean conjunctive queries and for
functional dependencies has been shown. This result still hold when key de-
pendencies and conjunctive queries without repeated relation symbols are
considered. In [45] for a subclass of conjunctive queries without repeated rela-
tion symbols and key dependencies, an algorithm that produces a first-order
query rewriting for the problem of computing consistent answers has been
proposed (cfr. Section 3.3). The algorithm works for a subclass of conjunctive
queries which is defined in terms of the join graph of the query. The join graph
is a directed graph such that: its vertices are the literals of the query; and
it has an edge for each join in the query that involves some variable at the
position of a non-key attribute. The algorithm works for conjunctive queries
without repeated relation symbols whose join graph is a forest.

In [46] the rewriting algorithm presented in [45] has been improved and ex-
tended for working on Select-Projection-Join SQL queries (cfr. Section 3.4.1).
In principle, first-order queries can be translated into SQL queries. However,
the queries produced by means of the algorithm in [45] have a high level of
nesting (proportional to the number of relations in the query) and are there-
fore very inefficient. In [46] a rewriting algorithm producing SQL queries with
at most one level of nesting has been proposed. The system ConQuer [46, 47]
implements this rewriting algorithm.

The rewriting technique is a suitable method for obtaining consistent an-
swers, but, as shown in [44] (cfr. Section 3.5), there are class of tractable
first-order queries for which no rewriting providing consistent answers exists
in presence of only key constraints. In order to obtain a polynomial-time algo-

84 3 The Tuple-Based Repairing Paradigm

rithm for computing consistent answers for this class of non-rewritable queries,
an approach based on graph theory has been proposed.

The complexity of the consistent query answer problem in presence of
both functional and inclusion dependencies has been studied in [23] (cfr. Sec-
tion 3.6) and in [29] (cfr. Section 3.2.2), but under different repair-semantics.
In the former, under loosely-exact semantics a repair is obtained performing
a minimal set of insertions and deletions of tuples, whereas in the latter only
deletions are possible. In [23] it has been shown that for key dependencies and
inclusion dependencies the consistent query answers problem is undecidable.
Decidable cases have been identified limiting the interaction between the two
type of dependencies. Specifically, either introducing non-key-conflicting in-
clusion dependencies for general databases, or considering general inclusion
dependencies for key consistent databases. On the other hand, by forcing the
repairs to be subsets of the original database, as in [29], makes the problem of
consistent query answers decidable for general database instances and general
inclusion dependencies.

4

Logic Programs and Database Repairs

Repairs can be specified using logic programs with disjunction and classical
negation. In some approaches in literature, repairs are represented by answer
sets of such logic programs [5, 9, 12, 51, 52]. In this case consistent query
answers can be obtained by skeptical answer set semantics for the achieved
logic program, i.e. computing facts true in every answer set. This is a very
general approach that can handle arbitrary first-order queries and universal
integrity constraints. On the other hand, for the class of logic program used
the computational complexity of skeptical reasoning is Πp

2 -complete (in data
complexity). Thus, in general, the application of these approaches is expensive.

In this chapter we present some techniques that exploit the expressive
power of (extended) disjunctive logic programs (with both classical negation
and negation as failure) for specifying repairs for a database.

4.1 Logic Programs

Before describing how logic programs are used for specifying repair, we briefly
recall some notions on logic programs. A comprehensive discussion can be
found in [10].

4.1.1 General Logic Programs

The language of a logic program, like a first-order language, is determined
by its constants, function and predicate symbols. Terms are built as in the
corresponding first-order language; atoms have the form P (e1, . . . , en), where
e1, . . . , en are terms and P is an n-ary predicate symbol.

A rule (or clause) is an expression of the form

α0 ← α1, . . . , αm, not αm+1, . . . not αn

where each αi is an atom and not is the logical connective called negation as
failure [32, 70]. The left-hand side of the rule is called the head (or conclusion)

86 4 Logic Programs and Database Repairs

of the rule; the right-hand side is called the body (or premise) of the rule. A
collection of rules is called a general logic program (also said a normal logic
program). General logic programs that do not have not are called definite
programs. The Herbrand Base of a program Π is the set of all ground atoms
in the language of Π.

A logic program can be viewed as a specification for building possible the-
ories of the world, and the rules can be viewed as constraints these theories
should satisfy. Semantics of logic programs differ in the way they define sat-
isfiability of the rules. Under stable model semantics [49] the corresponding
theories are sets of ground atoms, called the stable models of a program.

The stable model of a definite program Π is the smallest subset S of
the Herbrand Base such that for any rule α0 ← α1, . . . , αm from Π, if
α1, . . . , αm ∈ S then α0 ∈ S.

Let Π be an arbitrary general logic program. For any set S of atoms, let
ΠS the program obtained from Π by deleting

i) each rule that has a formula not α in its body with α ∈ S, and
ii) all formulas of the form not α in the body of the remaining rules.

Clearly, ΠS is a definitive program (it does not contain not), so that its stable
model is already defined. If this stable model coincides with S, then we say
that S is a stable model of Π.

A ground atom P (t) is true in S if P (t) ∈ S, otherwise P (t) is false (i.e.
¬P (t) is true) in S. The definition is extended to arbitrary first-order formulas
in the standard way. A program Π implies a formula ϕ (Π |= ϕ) if ϕ is true in
all stable models of Π. An answer to a ground query Q(t) is yes if Π |= Q(t),
no if Π |= ¬Q(t) and unknown otherwise.

Programs which have a unique stable model are called categorical.

4.1.2 Extended Logic Programs

In addition to negation-as-failure not, “extended” logic programs contains a
second form of negation ¬, called classical or strong negation. General logic
programs provide negative information implicitly, through closed-world rea-
soning. Whereas, an extended logic program can include explicit negative in-
formation. In the language of extended programs, we can distinguish between
a query which fails in the sense that it does not succeed and a query which
fails in the stronger sense that its negation succeeds.

An extended logic program (ELP) is a collection of rules of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . not Ln

where each Li is a literals, i.e. formulas of the form P (u) or ¬P (u), where
P (u) is an atom.

Let Lit be the set of ground literals in the language of the extended logic
program Π. The semantics of the extended logic program Π assigns to it a

4.1 Logic Programs 87

collection of its answer sets (set of literals corresponding to beliefs) [50]. A
literal ¬P (t) is true in an answer set S if ¬P (t) ∈ S (recall that not P (t) is
true in S if P (t) 6∈ S). An answer to a ground query Q(t) is yes if Q(t) is true
in all answer sets of Π, no if the complementary literal of Q(t) is true in all
answer sets of Π, and unknown otherwise.

Let Π be a program without negation-as-failure, i.e. a collection of rules
of the form L0 ← L1, . . . , Lm. The unique answer set of Π, denoted as as(Π),
is the smallest (in the sense of set-theoretic inclusion) subset S of Lit such
that:

i) for any rule L0 ← L1, . . . , Lm from Π, if L1, . . . , Lm ∈ S then L0 ∈ S;
ii) if S contains a pair of complementary literals, then S = Lit; in this case

Π is said to be contradictory.

Now, consider a ground extended logic program Π. By Lit we again denote
the set of ground literal in the language of Π. For any set S ⊆ Lit, let ΠS be
the program obtained from Π by deleting

i) each rule that has a formula notL in its body with L ∈ S, and
ii) all formulas of the form notL in the body of the remaining rules.

The resulting program ΠS is a ground extended logic program without
not, so its answer set as(ΠS) is already defined. If as(ΠS) coincides with S,
then we say that S is an answer set of Π.

As shown in [50] the extended logic program can be further transformed
into an equivalent general logic program with stable model semantics.

4.1.3 Extended Disjunctive Logic Programs

By an extended disjunctive logic program (EDLP) we mean as a collection of
rules of the form

L0 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . not Ln

where each Li is a literals. When each Li is an atom we refer to the program
as a normal disjunctive logic program. When n = m and each Li is an atom,
we refer to the program as a positive disjunctive logic program.

The definition of an answer set of a disjunctive logic program [50, 69] is
almost identical to that of extended logic programs. Let Π be an extended
disjunctive logic program without negation-as-failure. Let Lit be the set of
ground literals in the language of Π. An answer set of Π is a smallest (in the
sense of set-theoretic inclusion) subset S of Lit such that:

i) for any rule L0 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm from Π, if Lk+1, . . . , Lm ∈ S
then for some i, with 0 ≤ i ≤ k, Li ∈ S;

ii) if S contains a pair of complementary literals, then S = Lit.

88 4 Logic Programs and Database Repairs

Unlike extended logic programs without not, an extended disjunctive logic
program without not may have more than one answer set. We denote the an-
swer sets of an extended disjunctive logic program Π without not by ass(Π).

Now, consider an arbitrary ground extended disjunctive logic program Π.
By Lit we again denote the set of ground literal in the language of Π. For
any set S ⊆ Lit, let ΠS be the program obtained from Π by deleting

i) each rule that has a formula notL in its body with L ∈ S, and
ii) all formulas of the form notL in the body of the remaining rules.

The resulting program ΠS is a ground disjunctive extended logic program
without not, so its answer sets ass(ΠS) are already defined. If S ∈ ass(ΠS),
then we say that S is an answer set of Π. The answer sets of Π are the
intended stable models of Π.

4.1.4 Logic Programs with Exceptions

A logic program with exception (LPE) [57] is a program with the syntax of
an extended logic program (ELP), i.e. it consists of clauses of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln (4.1)

Rules (or defaults) are clause with positive head, whereas the clause with
negative head are said to be exceptions.

The semantics of an LPE is obtained from the semantics of ELPs, by
adding an extra condition that assigns higher priority to exceptions (w.r.t.
defaults). The answer set as(Π) of an LPE Π consisting of rules without not
is defined as for an ELP without not.

Now, consider a ground LPE Π with not. By Lit we again denote the set
of ground literal in the language of Π. For any set S ⊆ Lit, let ΠS be the
program obtained from Π according to the following steps:

1) delete every clause that has a formula not L in its body with L ∈ S, and
2) delete all formulas of the form not L (with L /∈ S) in the body of the

remaining clauses, and
3) delete every default clause having a positive conclusion L with ¬L ∈ S.

The resulting program ΠS is a ground ELP without not, so its answer set
as(ΠS) is already defined. We say that a set S of ground literals is an e-
answer set for the original LPE Π if S = as(ΠS). The e-answer sets are the
intended models of the original program.

Above, 1) and 2) are as in the answer set semantics for extended logic
programs, whereas 3) gives an account of exceptions. The e-answer sets are
in correspondence with answer set of extended logic programs [57]. This can
be established by transforming the original LPE into an ELP with the answer
set semantics, that can be further transformed into an equivalent general logic
program with stable model semantics [50].

4.2 Querying Databases using Logic Programs with Exceptions 89

4.1.5 Prioritized Logic Programs

A prioritization mechanism can be applied to a general extended disjunctive
program. A partial preference relation ¹ among literals is defined as follows.
Given two literals L1 and L2, L1 ¹ L2 means that L2 has higher priority
than L1, that is, for each e1 instance of L1 and for each e2 instance of L2,
it holds e1 ¹ e2 (clearly, the sets of ground instantiation of L1 and L2 must
have empty intersection). Moreover, if L1 ¹ L2 and L2 ¹ L3, then L1 ¹ L3.

A prioritized logic program (PLP) is a pair 〈Π,Φ〉, where Π is a standard
program and Φ is a set of priorities [75, 80].

Let Φ∗ be the set of priorities which can be reflexively or transitively
derived from Φ. Given a prioritized logic program 〈Π, Φ〉, the relation v is
defined over the stable models of Π as follows. For any stable model M1, M2

and M3 of Π,

1. M1 v M1;
2. M1 v M2 if

a) ∃L1 ∈ (M1 −M2), ∃L2 ∈ (M2 −M1) such that L1 ¹ L2 ∈ Φ∗ and
b) 6 ∃L3 ∈ (M1 −M2) such that L2 ¹ L3 ∈ Φ∗;

3. if M1 v M2 and M2 v M3 then M1 v M3.

If M1 v M2 we say that M2 is preferable to M1. An interpretation M is said
to be a preferred stable model of 〈Π,Φ〉 if there is no interpretation M ′ such
that M ′ 6= M and M v M ′.

4.2 Querying Databases using Logic Programs with
Exceptions

In [5, 9] a generalization of Logic Program with Exceptions (LPE) has been
exploited for specifying database repairs in order to retrieve consistent query
answers. Specifically, in a (classical) LPE, rules with a positive literal in the
head represent a sort of general default, whereas rules with a logically negated
head represent exceptions. In [5, 9] LPE has been extended in such a way that
the program will have also negative default and positive exceptions (to negative
default). Moreover, also disjunctions of literals in the head of some clauses is
present. This program will be a Disjunctive Logic Program with Exceptions
(DLPE).

It was shown that, for a set of (domain independent) binary integrity con-
straints BC and a given database instance D there is a one-to-one correspon-
dence between the e-answers set of the constructed DLPE repair program,
and the repairs of D w.r.t. BC. Therefore, the consistent query answer for
general first-order queries is obtained asking for the atoms which are true in
every e-answer set of the logic program.

90 4 Logic Programs and Database Repairs

4.2.1 Extending Logic Programs with Exceptions

In order to specify database repairs, the syntax and the semantics of logic pro-
gram with exceptions have been extended. In logic program with exceptions
the consequences of default rules can be overridden by the consequences of
exceptions rules. Logic program with exceptions are extended to contain also
negative defaults, i.e. defaults with negative conclusions which can be over-
ridden by positive exceptions (rules with a positive head, but representing
exceptions to negative default). Moreover, disjunctive exceptions are intro-
duced in the extension, i.e., rules of the form

L1 ∨ · · · ∨ Lk ← Lk+1, . . . , Lm, not Lm+1, . . . , not Ln (4.2)

where Li are literals. Note that, only disjunctive exception are introduced,
disjunctive defaults are not used in the framework of [5, 9].

The programs obtained with these extensions will be called Disjunctive
Logic Program with Exceptions (DLPE). The semantics of DLPEs is obtained
by extending the e-answer semantics of LPEs as follows.

Let Π be a ground DLPE and S a set of ground literals which is candi-
date to be a model of Π. A pruned program ΠS is obtained performing the
following steps:

1) delete every clause that has a formula not L in its body with L ∈ S, and
2) delete all formulas of the form not L (with L /∈ S) in the body of the

remaining clauses, and
3’) delete every (positive) default having a positive conclusion A with ¬A ∈ S;

and every (negative) default having a negative conclusion ¬A with A ∈ S.

Observe that, Steps 1), 2) are identical to that of Section 4.1.4 defining the
answer set semantics of a logic program with exceptions, whereas the Step 3’)
replaces the Step 3) of Section 4.1.4.

Applying 1), 2) and 3’) to the ground program Π, a ground disjunctive
extended logic program ΠS without not is obtained. If the candidate set S is
one of the minimal models of ΠS (i.e. S ∈ ass(ΠS)), then we say that S is
an e-answer set for Π.

4.2.2 Specifying Repairs

The approach considers a set of binary integrity constraints BC written in
the standard format (cfr. Section 1.3.1), i.e, universally quantified first order
formulas with at most two literals, having the form

∀X1X2[L1(X1) ∨ L2(X2) ∨ φ(X1, X2)]

where L1, L2 are literals associated to the database scheme and X1, X2 are
tuples of variables and φ is a formula containing only built-in predicates and
free variables appearing in L1 and L2.

There are three possibilities for binary constraints in terms of sign of lit-
erals in them, namely the universal closures of:

4.2 Querying Databases using Logic Programs with Exceptions 91

(a) P1(X1) ∨ P2(X2) ∨ φ(X1, X2)

(b) P1(X1) ∨ ¬P2(X2) ∨ φ(X1, X2)

(c) ¬P1(X1) ∨ ¬P2(X2) ∨ φ(X1, X2)

where P1 and P2 are relation atoms.
Given a database D a set of binary integrity constraints BC, the approach

consists in the specification of the repairs for D w.r.t. BC, by means of a
Disjunctive Logic Program with Exceptions ΠD. In ΠD for each predicate
P that participates in some integrity constraint in BC, a new predicate P ′

representing the repaired version on P is introduced. P ′ contains the tuples
corresponding to P in a repair of the original database.

Moreover, ΠD is obtained by introducing:

1. Persistence Defaults. For each base predicate P , the method introduces
the persistence defaults:

P ′(X) ← P (X) (4.3)

¬P ′(X) ← not P (X) (4.4)

The defaults say that all data persist from the original relation instances
to their repaired versions.
The positive defaults (rules of type (4.3)) will be subject to negative ex-
ceptions, whereas the negative defaults (rules of type (4.4)) will be subject
to positive exceptions.

Example 4.1 Consider the set of full inclusion dependencies

ID = {∀xy P (x, y) ⇒ Q(x, y),∀xy Q(x, y) ⇒ S(x, y)}

and the (inconsistent) database instance D = {P (a, b), Q(a, b)}. Translat-
ing ID in standard format we obtain

ID = {¬P (x, y) ∨Q(x, y),¬Q(x, y) ∨ S(x, y)}

where the universal closure of the formulas is omitted.
In order to specify the database repairs the new predicates P ′, Q′ and S′

are introduced. The following six default rules are generated:

P ′(x, y) ← P (x, y); ¬P ′(x, y) ← not P (x, y);
Q′(x, y) ← Q(x, y); ¬Q′(x, y) ← not Q(x, y);
S′(x, y) ← S(x, y); ¬S′(x, y) ← not S(x, y).

2

92 4 Logic Programs and Database Repairs

2. Stabilizing Exceptions. For each BC of the form (a), i.e. P1(X1) ∨
P2(X2) ∨ φ(X1, X2), the pair of positive exception clauses is introduced

P ′1(X1) ← ¬P ′2(X2), ϕ(X1, X2)
P ′2(X2) ← ¬P ′1(X1), ϕ(X1, X2)

where ϕ is a formula that is logically equivalent to the logical negation of
φ.
Similarly, for each BC of the form (b), i.e. P1(X1)∨¬P2(X2)∨φ(X1, X2),
the following clauses are introduced

P ′1(X1) ← P ′2(X2), ϕ(X1, X2)
¬P ′2(X2) ← ¬P ′1(X1), ϕ(X1, X2)

Finally, for each BC of the form (c), i.e. ¬P1(X1)∨¬P2(X2)∨φ(X1, X2),
the pair of negative exception clauses is introduced

¬P ′1(X1) ← P ′2(X2), ϕ(X1, X2)
¬P ′2(X2) ← P ′1(X1), ϕ(X1, X2)

These exceptions may override the persistence stated in the defaults above.
The meaning of the stabilizing exceptions is to make the integrity con-
straints be satisfied by the new predicates P ′i . These exceptions are nec-
essary, but not sufficient to ensure that the changes, that the original
predicate should be subject to in order to restore consistency, are propa-
gated to the new predicates.

Example 4.2 (Example 4.1 continued) The following four stabilizing ex-
ception rules are generated:

¬P ′(x, y) ← ¬Q′(x, y); Q′(x, y) ← P ′(x, y);
¬Q′(x, y) ← ¬S′(x, y); S′(x, y) ← Q′(x, y);

2

3. Triggering Exceptions. For each BC of the form (a),(b) or (c) the
following disjunctive exception clause is introduced, respectively:

(a) P ′1(X1) ∨ P ′2(X2) ← not P1(X1), not P2(X2), ϕ(X1, X2)

(b) P1(X1) ∨ ¬P2(X2) ← not P1(X1), P2(X2), ϕ(X1, X2)

(c) ¬P1(X1) ∨ ¬P2(X2) ← P1(X1), P2(X2), ϕ(X1, X2)

These rules are necessary as a first step toward the repair of D. They
trigger the first changes, from the Pis to the P ′i s; next the stabilizing
exceptions propagate all required changes.

4.2 Querying Databases using Logic Programs with Exceptions 93

Example 4.3 (Example 4.2 continued) The following two (disjunctive)
trigger exception rules are generated:

¬P ′(x, y) ∨Q′(x, y),← P (x, y), not Q(x, y);
¬Q′(x, y) ∨ S′(x, y) ← Q(x, y), not S(x, y);

Each of these rules represents the two possible ways to repair the corre-
sponding integrity constraint, separately. For instance, the first rule says
that in order to (locally) repair the first constraint, either eliminate (x, y)
from P or insert (x, y) into Q.

2

Finally, the facts corresponding to the original database and rules for the
built-in predicates are added. The program ΠD constructed as shown above
is the repair logic program with exceptions for the database instance D. In ΠD

positive defaults are blocked by negative conclusions, and negative defaults,
by positive conclusions. The semantics of ΠD is the e-answer semantics of
DLPEs.

Example 4.4 (Example 4.3 continued) It is possible to verify that the e-
answer sets of the program are

as1 = {P ′(a, b), Q′(a, b), S′(a, b), P (a, b), Q(a, b), . . . }
as2 = {¬P ′(a, b),¬Q′(a, b), P (a, b), Q(a, b), . . . }

where the literals not shown explicitly are negative literals, e.g. ¬P ′(a, a),
¬Q′(b, a) inherited from the original instance with the negative defaults.
The corresponding repairs are R1 = {P ′(a, b), Q′(a, b), S′(a, b)} and R2 =
{¬P ′(a, b),¬Q′(a, b)}, respectively. The presence of the literal S′(a, b) in R1

represents the insertion of the tuple (a, b) in the relation S. The repair R2

consists of the deletion of both P ′(a, b) and Q′(a, b).
2

As shown in [57] for LPEs, a DLPE having e-answer set semantics can be
transformed into a Disjunctive Extended Logic Program (without exceptions)
with answer set semantics, by transforming the persistence defaults (4.3) and
(4.4), respectively, into

P ′(x) ← P (x), not ¬P ′(x)

¬P ′(x) ← not P (x), not P ′(x)

As shown in [50] the resulting program can be further transformed into an
equivalent disjunctive normal logic program (i.e. without logical negation ¬)
with stable model semantics [49].

94 4 Logic Programs and Database Repairs

4.2.3 Computing Consistent Query Answers

Consider a set of domain independent binary integrity BC, for which checking
their satisfaction in an instance D can be done considering the elements of
the finite active domain only [74]. Then for a database instance D, there is
a one-to-one correspondence between the e-answer sets of the repair program
ΠD and the set of repairs for D w.r.t. BC.

The consistent answers to a query Q in a database D is evaluated as
follows. First, from Q a stratified logic program Π(Q) is obtained (this is
a standard construction [1]) in terms of new primed predicates. One of the
predicate symbols, AnsQ of Π(Q) is designated as the query predicate: its
extension is the answer to Q in D. Second, the e-answer set S1, . . . , Sk of the
program Π(Q)∪ΠD is determined (as stated above, a Disjunctive Extended
Logic Program with answer set semantics can be used here). Third, the con-
sistent answers to Q in D is the result of the intersection

⋂
1≤i≤k Si/AnsQ,

where Si/AnsQ is the extension of AnsQ in Si. The consistent answers to a
query are those that can be obtained from the repair program plus the query
program under the cautious or skeptical answer set semantics for the com-
bined logic program: what is true of the program is what is true in all answer
sets.

This approach is very general because it applies to arbitrary first-order
queries. However, the systems computing answer sets work typically by
grounding the logic program. In the database context, this may lead to huge
ground programs and be impractical. In the general case, computing the sta-
ble model semantics for disjunctive programs is ΠP

2 -complete in the size of
the ground program. The deductive database system DLV [37] can be used
for computing repairs and consistent query answers.

4.2.4 Referential Integrity Constraints

The approach can be extended to ternary integrity constraints in standard for-
mat, but in this case also disjunctive stabilizing rules are necessary. Moreover,
when the methodology is extended to a constraint in standard format having
k literals, the number of stabilizing exception rules grows according to the
number of subsets of the database literals in the constraint, i.e. exponentially
in k.

The methodology presented for binary integrity constraints in standard
format can be applied to referential integrity constraints (non-full inclusion
dependencies). This can be done via an appropriate representation of existen-
tial quantifiers as program rules.

Example 4.5 Consider the referential integrity constraint ∀x P (x) ⇒ ∃yQ(x, y)
and the inconsistent database instance D = {P (a), P (b), Q(b, a)}. We assume
that there is an underlying database domain dom = {a, b}. The repair pro-
gram has the persistence defaults clauses

4.3 Querying Database using Extended Disjunctive Logic Programs 95

P ′(x) ← P (x); ¬P ′(x) ← not P (x);
Q′(x, y) ← Q(x, y); ¬Q′(x, y) ← not Q(x, y).

In addition it has the stabilizing exceptions

¬P ′(x) ← ¬Q′(x, null), not aux′(x);
Q′(x, null) ← P ′(x), not aux′(x).

with aux′(x) ← Q′(x, y). The variables of this program range over dom,
that is, they do not take the value null. The literal aux′(x) in the clause
Q′(x, null) ← P ′(x), not aux′(x) is necessary to insert a null value only when
it is needed. Then the literal ¬Q′(x, null) is used in the first stabilizing ex-
ception. Finally the program has the following trigger exception

¬P ′(x) ∨Q′(x, null) ← P (x), not aux(x);

with aux(x) ← Q(x, y).
Instantiating variables on Dom only, the two answer sets are the expected

ones, namely delete P (a) or insert Q(a, null).
2

4.3 Querying Database using Extended Disjunctive
Logic Programs

In [51, 52] a general logic framework for computing repairs and consistent
answers over inconsistent databases has been proposed. The technique is based
on the generation of an Extended Disjunctive Logic Program (EDLP) derived
from the set of integrity constraints. The disjunctive program can be used for
two different purposes: to compute repairs for the database, and to produce
consistent answers. Moreover, repair constraints and prioritized update rules
have been introduced. The former ones are constraints which can be used
to specify which repairs are feasible. The latter ones are rules which allow
us to give preference to some repairs of the database with respect to others.
Integrity constraints with prioritized updates can be rewritten into prioritized
extended disjunctive rules.

4.3.1 Computing Database Repairs

The repairs for an inconsistent database D can be generated from the sta-
ble models of an Extended Disjunctive Logic Program which is derived by
rewriting the set of integrity constraints as follows.

Let ic be an universally quantified constraint of the form

∀X [β1 ∧ · · · ∧ βn ∧ ϕ ⇒ α1 ∨ · · · ∨ αm]

96 4 Logic Programs and Database Repairs

where α1, . . . , αm, β1 . . . , βn are atoms and ϕ is a conjunction of built-in
atoms. Then, dj(ic) denotes the extended disjunctive rule

¬β′1 ∨ · · · ∨ ¬β′n ∨ α′1 ∨ · · · ∨ α′m ← (β1 ∨ β′1), . . . , (βn ∨ β′n), ϕ,
(not α1 ∨ ¬α′1), . . . , (not αm ∨ ¬α′m)

where γ′i denotes the atom derived from γi by replacing the predicate symbol
P of γi with the new symbol P ′, that is if γi is P (u) then γ′i will be P ′(u).
The derivation of the atom P ′(u) (resp. ¬P ′(u)) states that the atom P (u)
must be inserted into (resp. deleted from) the database.

The above disjunctive rule states that if

i) every atom βi (1 ≤ i ≤ n) appearing in the body of the constraint is true
(i.e. it is in the source databases or is inserted by the repair: βi or β′i holds,
respectively), and

ii) every atom αj (1 ≤ j ≤ m) appearing in the head of the constraint is false
(i.e. it is not in the source databases or is deleted by the repair: not αj or
¬α′j holds, respectively), and

iii) the constraint ϕ is true,

then to satisfy the constraint either some βi is deleted (so ¬β′i holds) or some
αj is inserted (so α′j holds).

Example 4.6 Considering the integrity constraints ic1 = ∀x [Q(x) ⇒ T (x)],
then dj(ic1) is as follows

¬Q′(x) ∨ T ′(x) ← (Q(x) ∨Q′(x)), (not T (x) ∨ ¬T ′(x))

Whereas, for the constraint ic2 = ∀x [P (x) ⇒ S(x) ∨Q(x)], dj(ic2) is as
follows

¬P ′(x) ∨ S′(x) ∨Q′(x) ← (P (x) ∨ P ′(x)), (not S(x) ∨ ¬S′(x)),
(not Q(x) ∨ ¬Q′(x))

2

Given an extended disjunctive rule r containing also body disjunctions (as
the rule dj(ic) obtained for a constraint ic)

α1 ∨ · · · ∨ αk ← (β1,1 ∨ · · · ∨ β1,m1), . . . , (βn,1 ∨ · · · ∨ βn,mn)

we denote as st(r) the equivalent set of (standard) disjunctive rules

α1 ∨ · · · ∨ αk ← β1,i1 ∨ · · · ∨ βn,in ∀j, i : 1 ≤ j ≤ n and 1 ≤ ij ≤ mj

Given a disjunctive program Π containing also rules with body disjunc-
tions, st(Π) denotes the (standard) disjunctive program derived from Π by
rewriting body disjunctions.

Let IC be a set of universally quantified integrity constraints, then
DP (IC) = { dj(ic) | ic ∈ IC } and Π(IC) = st(DP (IC)). Thus, DP (IC)

4.3 Querying Database using Extended Disjunctive Logic Programs 97

denotes the set of (generalized) disjunctive rules derived from the rewriting
of IC, whereas Π(IC) denotes the set of (standard) disjunctive rules derived
from DP (IC).

Given a database D and a set of constraints IC, Π(IC)D will denote the
logic program derived from the union of the rules in Π(IC) with the facts in
D, i.e. Π(IC)D = Π(IC) ∪D.

Given a database D and a set of constraints IC, every stable model M
of Π(IC)D can be used to define a possible repair for D by interpreting new
derived atoms (with primed predicates) as insertions and deletions of tuples.
Thus, if a model M contains two atoms ¬P ′(t) and P (t), we deduce that
the atom P (t) violates some constraint and, therefore, it must be deleted.
Analogously, if M contains the derived atom P ′(t) and does not contain P (t)
(i.e. P (t) is not in the database) we deduce that the atom P (t) should be
inserted in the database. Therefore, the set of atoms which must be deleted
from the database are U−(M) = {P (t) | ¬P ′(t) ∈ M ∧ P (t) ∈ D}, whereas
the set of atoms which must be inserted into the database D are U+(M) =
{P (t) | P ′(t) ∈ M ∧ P (t) 6∈ D}. Given a stable model M of Π(IC)D,
the sets of update operation U−(M) and U+(M) define a repair R(M, D)
for D obtained from the application of U−(M) and U+(M) to D, that is
R(M, D) = D ∪ U+(M)− U−(M).

As shown in [51, 52], this technique is sound and complete:

1. (Soundness) for every stable model M of Π(IC)D, U−(M) and U+(M)
define a repair for D.

2. (Completeness) for every database repair R for D there exists a stable
model M of Π(IC)D such that R = D ∪ U+(M)− U−(M);

Example 4.7 Consider the set of integrity constraints IC consisting of the
constraints ic1 and ic2 defined in Example 4.6. Assume that the database
instance D contains the facts P (a), P (b), S(a) and Q(a). The derived ex-
tended disjunctive program contains the two rules which are shown in Exam-
ple 4.6, that is DP (IC) = {dj(ic1), dj(ic2)}. These rules can now be rewritten
in standard form by eliminating body disjunctions, obtaining the program
Π(IC) = st(DP (IC)).

The computation of the program Π(IC)D, derived from the union of
Π(IC) with the facts in D, gives six stable models. The table in Fig-
ure 4.1 shows each stable model M of Π(IC)D and the corresponding sets
of update operation U−(M) and U+(M) defining a repair for D. For in-
stance, the first row of the table states that a possible repair for D con-
sists of deleting the two atoms P (b) and Q(a) from the database instance
D = {P (a), P (b), S(a), Q(a)}, obtaining R(M, D) = {P (a), S(a)}.

2

98 4 Logic Programs and Database Repairs

Stable Model M U−(M) U+(M)

D ∪ {¬P ′(b),¬Q′(a)} P (b), Q(a) ∅
D ∪ {¬P ′(b), T ′(a)} P (b) T (a)

D ∪ {¬Q′(a), S′(b)} Q(a) S(b)

D ∪ {T ′(a), S′(b)} ∅ T (a), S(b)

D ∪ {¬Q′(a), Q′(b), T ′(b)} Q(a) Q(b), T (b)

D ∪ {Q′(b), T ′(a), T ′(b)} ∅ Q(b), T (a), T (b)

Fig. 4.1. Stable Models and corresponding Repairs

Referential Integrity Constraints

In the presence of existential quantified variables the rewriting of constraints is
modified. The following example informally presents how referential integrity
constraints are rewritten.

Example 4.8 Consider the referential constraint

∀x [employee(x) ⇒ ∃y ssn(x, y)]

stating that every employee must have a social security number. Then the
rewriting is as follows

¬employee′(x) ∨ ssn′(x,⊥) ← (employee(x) ∨ employee′(x)),
(not ssnπ(x) ∨ ¬ssn′π(x))

where ⊥ denotes an unknown value and ssnπ and ssn′π are new predicate sym-
bols storing, respectively, the projection of ssn, and of ssn′, on the universal
quantified variable x. They are defined by the rules

ssnπ(x) ← ssn(x, y)
ssn′π(x) ← ssn′(x, y)

2

4.3.2 Computing Consistent Answers

We consider now the problem of computing a consistent answer without mod-
ifying the (possibly inconsistent) database.

A (relational) query over a database defines a function from the database
to a relation. It can be expressed by means of alternative equivalent lan-
guages such as (i) relational algebra, (ii) safe, relational calculus or (iii) safe,
non-recursive Datalog [1, 74] (i.e. safe Datalog without disjunction, classical
negation and recursion). In this section we will use Datalog. Thus, a query
is a pair (g, π) where π is a safe, non-recursive Datalog program and g is a
predicate symbol specifying the output (derived) relation.

4.3 Querying Database using Extended Disjunctive Logic Programs 99

Let M be a stable model of Π(IC)D and R(M, D) the repair obtained by
means of the deletions and insertions “specified” by M . The answer to a query
(g, π) over a repair R(M,D) are the atoms g(t) which are true in the stable
models of the Datalog program π ∪ Π(IC) ∪ R(M, D). In fact the program
π∪Π(IC)∪R(M,D) admits a unique stable minimal model consisting of the
stable model of the program πR(M,D), i.e. of the program π ∪R(M, D).

The computation of the consistent answers of a query (g, π) over the
database D with integrity constraints IC can be derived by considering for
each stable model M of Π(IC)D (which defines the repair R(M,D)), the
answer to the program πR(M,D).

The consistent answer of the query Q = (g, π) over the database D un-
der constraints IC, denoted as CQA(Q,D, IC), gives three sets, denoted
CQA(Q,D, IC)+, CQA(Q,D, IC)− and CQA(Q,D, IC)u. These contain, re-
spectively, the sets of g-tuples which are true (i.e. belonging to Q(R) for all
repairs R), false (i.e. not belonging to Q(R) for all repairs R) and undefined
(i.e. set of tuples which are neither true nor false).

Let us denote with SM(Π) be the set of stable models of the logic program
Π. The consistent answers for the query Q = (g, π) are as follows

CQA(Q,D, IC)+ = { g(t) | ∀M ∈ SM(Π(IC)D), g(t) ∈ SM(πR(M,D))}
CQA(Q,D, IC)− = { g(t) | 6 ∃M ∈ SM(Π(IC)D) s.t. g(t) ∈ SM(πR(M,D))}
CQA(Q,D, IC)u = { g(t) | ∃M1,M2 ∈ SM(Π(IC)D) such that

g(t) ∈ SM(πR(M1,D)) ∧ g(t) 6∈ SM(πR(M2,D))}
Observe that if Q = (g, ∅) for each model M ∈ SM(Π(IC)D), we have

that πR(M,D) is the repair R(M, D).

Example 4.9 Consider the database D and the set of integrity constraints
IC of Example 4.7. The program Π(IC)D has the stable models in Fig-
ure 4.1. The consistent answers the query Q = (S, ∅) (with empty program)
are as follows: CQA(Q, D, IC)+ = {S(a)}, CQA(Q,D, IC)u = {S(b)} and
CQA(Q,D, IC)− consists of the atoms S(u) not belonging to CQA(Q,D, IC)+

and CQA(Q,D, IC)u.
2

This technique is general, but expensive. Given a database D, a query
Q = (g, π) and a set of full, single-head integrity constraints IC, checking if
some fact belongs to the consistent answer of Q is in Πp

2 .
In [51, 52] it has been shown that, if IC is either a set of functional de-

pendencies or a set of full inclusion dependencies and Q = (g, ∅) (with query
program empty), then the consistent answer to Q can be computed in polyno-
mial time. Observe that, these tractable cases have been implicitly identified
also in [4] (cfr.Section 2.5) and and subsequently in [29] (cfr. Section 3.2.1).

Moreover, given a set functional dependencies FD, a query Q = (g, π) and
a ground tuple t = g(a1, ..., an), checking whether

1. t ∈ CQA(Q,D, IC)+ is coNP -complete,

100 4 Logic Programs and Database Repairs

2. t ∈ CQA(Q,D, IC)− is coNP -complete,
3. t ∈ CQA(Q,D, IC)u is NP -complete.

Note that, the coNP -hardness for CQA(Q,D, IC)+ has also been proved
in [7, 8] (cfr. Section 3.1) and subsequently in [29] (cfr. Section 3.2.1).

4.3.3 Repair Constraints

In the integration of databases, the presence of inconsistent data may be re-
solved by repairing the integrated database. Repair constraints can be defined
during the integration phase to give preference to certain data with respect
to others and to define which repairs are feasible. Thus, the number of repairs
can be restricted.

A repair constraint is a denial rule of the form

← up1(α1), . . . , upm(αm), L1, . . . , Ln

where up1, . . . , upm ∈ {insert, delete}, α1, . . . , αm are (standard) atoms and
L1, . . . , Ln are (standard) literals.

The semantics of a repair constraint is as follows: if the conjunction
L1, . . . , Ln is true in the repaired database, then at least one of the update
operations upi(αi) must be false.

Let D be a database, IC a set of integrity constraints and RC a set of
repair constraints. A repair R for D satisfies RC if for each repair constraint

← insert(α1), . . . , insert(αk), delete(αk+1), . . . , delete(αm), L1, . . . , Ln

then

i) there is some αi with 1 ≤ i ≤ k which is not in {Facts(R) − Facts(D)},
or

ii) there is some αi with k+1 ≤ i ≤ m which is not in {Facts(D)−Facts(R)},
or

iii) there is some Li false in Facts(R).

The repair R is said to be feasible if it satisfies RC.

Example 4.10 Consider the database instance D containing information
about names and salaries of employees. The facts in D are the following

{employee(Peter, 30000), employee(John, 40000), employee(John, 50000)}

Given the integrity constraint

∀(x, y, z)[employee(x, y), employee(x, z) ⇒ x = z]

There are two repairs for D, namely R1 and R2 with

Facts(R1) = {employee(Peter, 30000), employee(John, 40000)}

4.3 Querying Database using Extended Disjunctive Logic Programs 101

Facts(R2) = {employee(Peter, 30000), employee(John, 50000)}
The following repair constraint states that if the same employee occurs

with more than one salary, then the tuple with the lowest salary cannot be
deleted.

← delete(employee(x, y)), employee(x, z), z > y

Thus, it makes R2 not feasible since employee(John, 40000) is deleted (i.e.
it is in {Facts(D)−Facts(R2)} and R2 contains employee(John, 50000) with
50000 > 40000.

2

The formal semantics of databases with both integrity and repair con-
straints is given by rewriting the repair constraints into extended rules with
empty heads (denials). Specifically, the sets of integrity constraints IC and
repair constraints RC are rewritten into an Extended Disjunctive Logic Pro-
gram Π. Each stable model of Π over a database D can be used to generate a
repair for the database, whereas each stable model of the program Π ∪π, over
the database D, can be used to compute a consistent answer of a query (g, π).
Each model defines a set of actions (update operations) over the inconsistent
database to achieve a consistent state.

Let r be a repair constraint of the form

← insert(α1), . . . , insert(αk), delete(αk+1), . . . , delete(αm),
β1, . . . , βl, not βl+1, . . . , not βn, ϕ

where α1, . . . , αm, β1, . . . , βn are base atoms and ϕ is a conjunction of built-in
atoms. Then dj(r) denotes the denial rule

← α′1, . . . , α
′
k,¬α′k+1, . . . ,¬α′m, ((β1, not¬β′1) ∨ β′1) . . . , ((βl, not¬β′l) ∨ β′l),

((not βl+1, not β′l+1) ∨ ¬β′l+1), . . . , ((not βn, not β′n) ∨ ¬β′n), ϕ

where γ′i denotes the atom derived from γ by replacing the predicate symbol
P of γ with the new symbol P ′, that is, if γ is P (u) then γ′i is P ′(u).

In order to satisfy the denial rule dj(r)

i) some atom α′i (1 ≤ i ≤ k) must be false, i.e. αi is not inserted in the
database, or

ii) some atom ¬α′j (k + 1 ≤ j ≤ m) must be false, i.e. αj is not deleted from
the database, or

iii) some formula ((βi, not¬β′i) ∨ β′i) (1 ≤ i ≤ l) must be false, i.e. the atom
βi is false in the repair, or

iv) some formula ((not βj , not β′j)∨¬β′j) (l+1 ≤ j ≤ n) must be false, i.e. the
atom βj is false in the repair, or

v) the conjunction of built-in literals ϕ must be false.

Observe that, the formula ((βi, not¬β′i) ∨ β′i) states that either βi is in
the source database D and it is not deleted from D or βi is inserted into D.

102 4 Logic Programs and Database Repairs

Analogously, the formula ((not βj , not β′j) ∨ ¬β′j) states that either the atom
βj is false in the source database and is not inserted by the repair or it is
deleted from the database by the repair.

Example 4.11 If we consider the following repair constraint

← insert(P (a)), delete(P (b)), S(c), not Q(b)

then the derived denial rule is

← P ′(a),¬P ′(b), ((S(c), not¬S′(c)) ∨ S′(c)), ((not Q(b), not Q′(b)) ∨ ¬Q′(b))

where ((S(c), not¬S′(c)) ∨ S′(c)) means that either S(c) is present in the
source database and it is not derived as false, or it is derived as true. Analo-
gously, ((not Q(b), not Q′(b)) ∨ ¬Q′(b)) means that either Q(b) is not present
in the database and it is not derived as true or it is derived as false.

2

Let RC be a set of integrity constraints, then DP (RC) = { dj(rc) | rc ∈
IC } and Π(RC) = st(DP (RC)). Thus, DP (RC) denotes the set of (general-
ized) disjunctive rules derived from the rewriting of RC, whereas Π(RC) de-
notes the set of (standard) disjunctive rules derived from DP (RC) by rewrit-
ing body disjunctions.

Given a database D, a set of integrity constraints IC and a set of repair
constraints RC, Π(IC, RC)D denotes the logic program derived from the
union of the rules in Π(IC) ∪Π(RC) with the facts in D.

It has been shown that the rewriting technique presented above is sound
and complete: each stable model M of Π(IC, RC)D defines a feasible re-
pair R(M, D) (obtained interpreting the primed predicates, as shown in Sec-
tion 4.3.1), and for each feasible repair R there is a stable model M of
Π(IC,RC)D such that R can be obtained by interpreting M .

4.3.4 Prioritized Repairs

A prioritized update is a rule which gives the possibility of expressing pref-
erence among update operations and, consequently, to give preference to
some repairs for the database with respect to others. Integrity constraints
with prioritized updates can be rewritten into prioritized extended disjunc-
tive rules [73].

A prioritized update rule is of the form

up1(α) ¹ up2(β)

where up1, up2 ∈ {insert, delete} and α and β are atoms.
Given a set of prioritized updates PC, we will denote as PC∗ the reflex-

ive, transitive closure of PC. A set of prioritized updated PC is said to be
consistent if there are not two prioritized updated rules in PC∗ of the form

4.3 Querying Database using Extended Disjunctive Logic Programs 103

up1(α′) ¹ up2(β′) and up1(β′′) ¹ up2(α′′) such that α′ unifies with α′′ and
β′ unifies with β′′.

Given a repair R for a database D, we denotes as update(R) the update
atoms derived from R, that is

update(R) = {insert(α) | α ∈ {Facts(R)− Facts(D)}} ∪
{delete(α) | α ∈ {Facts(D)− Facts(R)}}

Given a database D, a set of integrity constraints IC, a set of repair
constraints RC, the relation v is defined over the repairs for D w.r.t. IC and
RC. For any repair R1, R2 and R3 for D,

1. R1 v R1;
2. R1 v R2 if

a) ∃u1 ∈ {update(R1)− update(R2)}, ∃u2 ∈ {update(R2)− update(R1)}
such that u1 ¹ u2 ∈ PC∗ and

b) 6 ∃u3 ∈ {update(R1)− update(R2)} such that u2 ¹ u3 ∈ PC∗;
3. if R1 v R2 and R2 v R3 then R1 v R3.

If R1 v R2 we say that R2 is preferable to R1. A repair R for D is said to be
preferred if there is no repair R′ for D such that R′ 6= R and R v R′.

Given a database D, a set of integrity constraints IC, a set of repair
constraints RC and a set of prioritized constraints PC, a Prioritized Disjunc-
tive Logic Program (Π(IC,RC)D, Φ(PC)) is obtained adding the Disjunctive
Logic Program Π(IC, RC)D, obtained by rewriting of IC ∪RC into disjunc-
tive rules, and the prioritized rules Φ(PC), obtained from rewriting of PC.

Also in this case, the rewriting technique is sound and complete, that
is each preferred stable model of (Π(IC, RC)D, Φ(PC)) defines a preferred
repair for D and each preferred repair is derived from a preferred stable model.

Observe that, it is possible to consider more complex prioritized rules, as
that of the following example, since they can be reduced to the basic case [73].

Example 4.12 Consider the database and the integrity constraint of Exam-
ple 4.10. Assume that the following prioritized update is defined

delete(employee(x, y)) ¹ delete(employee(x, z)) ← y < z

stating that, between two distinct instances of the same employee, we pre-
fer to delete the one with higher salary. As shown in Example 4.10 there
are two repairs for the database: the former R1 consists of deleting the
fact employee(John, 50000) from D, whereas the latter consists of deleting
employee(John, 40000) from D. Thus, R1 is preferable to R2.

2

The introduction of prioritized update rules increases the complexity of
computing repairs and answers from the second to the third level of the poly-
nomial hierarchy, since the complexity of checking if a given atom belongs
to some or all preferred stable models is complete for the third level of the
polynomial hierarchy.

104 4 Logic Programs and Database Repairs

4.4 Discussion

In this chapter we have presented some techniques that exploits the expressive
power of (extended) disjunctive logic programs (with both classical negation
and negation as failure) for specifying repairs for a (possible inconsistent)
database. Specifically, in [5, 9] (cfr. Section 4.2) repairs have been specified
by means of a disjunctive logic program with exceptions with e-answer set
semantics. This logic program can be transformed into an extended disjunc-
tive logic program (without exceptions) with answer set semantics. As shown
in [50], the resulting program can be further transformed into an equivalent
disjunctive normal logic program with stable model semantics [49]. In [51, 52]
(cfr. Section 4.3) repairs have been specified by an extended disjunctive logic
program derived from the set of integrity constraints. Moreover, repair con-
straints and prioritized update rules have been introduced. The former ones
allow us to specify conditions under which repairs are feasible, and both (clas-
sical) constraints and repair constraints can be still rewritten into an extended
disjunctive logic program which specifies repairs for a database. Prioritized
updates are rules which allow us to give preference to some repairs for the
database with respect to others. With the introduction of prioritized updates
the rewriting yields a set of prioritized extended disjunctive rules [73].

The two approaches above are very similar. Although the former has been
formalized in presence universal binary constraints, it can be extended to work
with (general) universal constraints in standard format (cfr. Section 1.3.1).
But, when an universal constraint is rewritten, the number of disjunctive sta-
bilizing rules (cfr. Section 4.2.2) grows according to the number of subsets
of the database literals in the constraint, i.e. exponentially in the size of the
constraint. Similarly, in the latter approach, when body disjunction is elim-
inated from a rule (which is obtained by rewriting a constraint), the body-
disjunction rules generated are exponential in the number the body literals.
Moreover, both the techniques deal with referential integrity constraints in a
very similar manner (cfr. Section 4.2.4 and Section 4.3.1).

Different extensions of these techniques have been proposed. In [51, 52] re-
pair constraints and prioritized repairs have been introduced (cfr. Section 4.3.3
and Section 4.3.4, respectively). Whereas in [8] an alternative semantics for
repairs based on the minimum number of changes, instead of the minimal set
of changes, has been presented. In this case the repair program is obtained
replacing the persistence defaults by weak constraints [21], which are not im-
posed on the original database, but on the answer sets of the program. This
repair semantics was further studied in [65, 66].

The approaches discussed above are based on classical logic, and database
repairs correspond to certain minimal models of the program that specifies
repairs. In [6, 11] repairs are specified in a non-classical logic: the Annotated
Predicate Calculus [56]. In this case repairs correspond to some distinguished
minimal models of a theory written in annotated predicate logic. The ap-
proach of [6] is applicable to queries that are conjunctions or disjunctions

4.4 Discussion 105

of positive literals and to universal constraints. The specification methodol-
ogy was extended from universal integrity constraints to referential integrity
constraints in [11]. In [12] repairs have been specified by means of disjunc-
tive logic programs with stable model semantics. The database predicates in
these programs contain annotations as extra arguments (as apposed to an-
notated programs that contain annotated atoms). The approach works for
first-order queries in presence of universal constraints and referential integrity
constraints. Moreover, the use of annotations as extra argument in predicates
entails that the number of rules generated by rewriting an integrity constraint
is linear in the number of literals of the constraint.

5

The Attribute-Based Repairing Paradigm

The logical characterization of consistent query answers was provided on the
basis of the notion of repair for a database [4]. A repair is defined as a con-
sistent database instance that minimally differs from the original instance,
according to some sort of distance between the original instance and the re-
paired one. We point out that a property shared by the notions of repair
presented in Chapter 3 and Chapter 4 is that they are defined by inserting
and/or deleting whole tuples. Moreover, the concept of repair is exploited for
the characterization of consistent answers, but the problem of explicitly com-
puting a repair has not received much attention in the techniques surveyed in
Chapter 3 and Chapter 4. This has been often motivated by the consideration
that may be an exponential number of repairs for an inconsistent database.

On the other hand, in several scenarios it is interesting computing a re-
pair which is minimal according to a numerical distance from the original
database instance. In these scenarios repairs are obtained by performing value
updated, i.e. working at attribute-level, rather than at tuple-level. Thus, the
distance is a numerical function over the attribute-values which are updated
in order to restore the consistency. In this chapter we present several works
which investigate the problem of computing a repair for a database working
at attribute-level, i.e. adopting the attribute-based repairing paradigm.

Example 5.1 Suppose that we have the database consisting of the relation
Dioxin(Sample, SampleDate, Food,AnalysisDate, Lab, DioxinLevel), whose
instance is shown in Figure 5.1. The relation reports the dioxin levels in food
samples. Assume that it is defined the following constraints, which imposes
that the date of analyzing a given sample cannot precede the date the sample
was taken.

∀x1, x2, x3, x4, x5, x6 [Dioxin(x1, x2, x3, x4, x5, x6) ⇒ x2 ≤ x4]

The first tuple in the Dioxin Database says that the sample ‘110’ was
taken on ‘17 Jan 2002’ and analyzed the day after at the ‘ICI’ lab, and that

108 5 The Attribute-Based Repairing Paradigm

Sample SampleDate Food AnalysisDate Lab DioxinLevel

110 17 Jan 2002 poultry 18 Jan 2002 ICI normal

220 17 Jan 2002 poultry 16 Jan 2002 ICB alarming

330 18 Jan 2002 beef 18 Jan 2002 ICB normal

Fig. 5.1. Dioxin Database

the dioxin level of this sample was normal. While sample ‘110’ respects the
constraint, sample ‘220’ violates it.

2

Following the tuple-based repairing paradigm there is a unique repair for
the database above, which is obtained by simply deleting the faulty tuple
about sample ‘220’. The query “Get the alarming samples” will then yield the
empty consistent answer. Nevertheless, it seems more reasonable to conclude
that there was a sample, whose number is ‘220’, with an alarming dioxin level,
but either the sample or the analysis date contains an error. The problem with
tuple-based repairing paradigm is that an entire tuple may be deleted, even
if only a minor part of it is erroneous. In order to avoid deleting the entire
tuple, finer repair primitives that enable correcting faulty values within a
tuple are necessary. We will say that approaches capable of repairing at the
attribute-value level follow the attribute-based repairing paradigm.

In the Dioxin database the inconsistency can be “cleaned” in several ways,
for example, by antedating the sample date or by postdating the analysis date
of the sample ‘220’.

5.1 Repairing Census Data

In [42] a framework for repairing inconsistent databases considering the spe-
cific domain of census data has been proposed. A databases consisting of one
fixed relation scheme has been used for encode data contained in a census
questionnaire. Thus, the problem addressed in [42] is that of finding a repair
of a (possible inconsistent) relation instance with respect to the set of con-
straints (expressed as first order formulas) that every questionnaire have to
satisfy. Disjunctive logic programming extended with weak and strong con-
straints has been used for computing repairs for the database encoding the
census data.

The notion of minimality exploited for computing repairs is based on the
number of attribute-value changed followed by a preference criterion. First,
minimal repairs are selected according that they are the consistent databases
in which the least number of attribute values w.r.t. the original database
is changed. Then, a preferred repair is produced by choosing it among the
minimal ones. The preferred models of the logic program encoding the problem

5.1 Repairing Census Data 109

correspond to the preferred repairs of the relation associated with a census
questionnaire.

5.1.1 Repairs for Census Data

Census data is collected by means of questionnaires, each one including the
details of the persons living together in the same house. Each questionnaire
is focused around the notion of reference person. All persons living in private
households are identified from their relationship to the reference member of
the household. A basic questionnaire can be represented by instances of the
following relation scheme:

Qst(PersonId,Relationship, Sex, Age,MaritalStatus)

where PersonId is an integer number used to identify members of the house-
hold (it is the key of Qst), with the number “1” reserved to identify the
reference person. Each person living in a private household is classified with
respect to the reference person by means of the attribute Relationship. More-
over, the structural attributes Sex, Age and MaritalStatus are considered
for each member of the household. Observe that, each questionnaire refers to
only one household.

Each questionnaire must satisfy a set of edit rules used for validating the
collected data. The edit rules, encoded through first order formulas, play the
role of integrity constraints IC, over the relation Qst.

The Qst relation may contains null values, which encode missing answer
in the questionnaire. We say that an instance I of Qst is consistent if no null
value occur in its tuple and I |= IC, inconsistent otherwise.

Example 5.2 The following relation instance encodes the data of an house-
hold with two person which are married (the reference person is the woman).

PersonId Relationship Sex Age MaritalStatus

1 reference F 31 married

2 spouse M 49 married

Fig. 5.2. A instance of the Qst relation

Some edit rule that must be satisfied are the following:

a) a spouse of the reference person should be married (but not necessarily
vice versa):

∀x ∃y, z1, z2 Qst(x, spouse, z1, z2, y) ⇒ y = married

110 5 The Attribute-Based Repairing Paradigm

b) cohabitant partners of the reference person can not be married with some-
body else (i.e., they should be either single, or divorced, or widowed):

∀x ∃y, z1, z2 Qst(x, partner, z1, z2, y) ⇒ y 6= married

c) the reference person cannot be married with more than one person:

∀x, y ∃z1, z2, z3, z4, z5, z6 Qst(x, spouse, z1, z2, z3)∧
Qst(y, spouse, z4, z5, z6) ⇒ x = y

Clearly, the questionnaire in Figure 5.2 is consistent w.r.t. the set of con-
straints IC = {a), b), c)}.

2

We now introduce the notion of repair for inconsistent questionnaires.
For two tuples t = 〈v1, . . . , vm〉 and t′ = 〈v1, . . . , vm〉, let dist(t, t′) be the

number of values vj occurring in t that differ from the corresponding values
in t′, i.e., such that vj 6= v′j . Further, let ρ be a mapping from tuples over Qst
to tuples over Qst.

Given a instance I of Qst that is inconsistent w.r.t. the set of integrity
constraints IC, a (minimal) repair R for I w.r.t. IC is a relation R = {ρ(t) | t ∈
I} such that

i) R is consistent w.r.t. IC (R |= IC), and
ii)

∑
t∈I dist(t, ρ(t)) is minimum over the set of relations which are consistent

w.r.t. IC, i.e, the number of attribute-values changed between the tuple
in I and that in R is the the minimum number of changes over all possible
consistent relations.

Example 5.3 Consider the following inconsistent relation w.r.t. the set of
constraints IC = {a), b), c)} of the Example 5.2.

PersonId Relationship Sex Age MaritalStatus

1 reference F 31 married

2 spouse M 49 null

Fig. 5.3. A inconsistent instance of the Qst relation

A (minimal) repair for the relation in Figure 5.3 is the relation in Fig-
ure 5.2. The distance between the two relations is one, i.e. the cardinality of the
set of values changed. Observe that the (consistent) relation consisting of the
first tuple unaltered and the second tuple changed in 〈2, partner,M, single〉
is not a (minimal) repair because of the distance between this relation and
the original one is not minimal.

2

5.1 Repairing Census Data 111

In general, there are many possible minimal repairs for an inconsistent
questionnaire. The objective is that of choosing one of the minimal repairs
without altering the statistical properties of the census. This can be obtained
by exploiting some extra information about the census domain, possibly old
statistics concerning the same population. Such information can be encoded
through a set of first order formulas called preference rules, used for express-
ing some preferences over the repairs R for Qst. Intuitively, a preference rule
specifies a preferred way to repair the data of a person under some circum-
stances. The preference rules should be satisfied by as many persons in the
household as possible.

Example 5.4 The following preference rule expresses that it is likely for a
married person living in the household, whose relationship with the reference
person is unknown, to be his/her spouse.

∀x1, y1, x2, y2 Qst(1, reference, x1, y1,married)∧
Qst(x, null, x2, y2,married) ⇒ R(x, spouse, x2, y2, married)

Observe that the predicate symbol R refers to the repair of Qst.
2

A preferred repair RP for a questionnaire Qst is a minimal repair such
that the number of satisfied preference rules is the greatest over all minimal
repairs for Qst.

Thus, given a questionnaire Qst, a set of integrity constraints IC and a
set of preference rules Φ, the problem addressed is that of finding a preferred
(minimal) repair for Qst.

Example 5.5 Consider the relation in Figure 5.4, which is inconsistent w.r.t.
the set of constraints IC = {a), b), c)} of the Example 5.2. Assume that the
preference rule of Example 5.4 is specified.

PersonId Relationship Sex Age MaritalStatus

1 reference F 31 married

2 null M 49 married

Fig. 5.4. A inconsistent instance of the Qst relation

Note that there is no unique way to provide the missing ‘relationship’
value for the second tuple. For instance, the person identified by ‘2’ may be
the father or the spouse of the reference person (but not a partner, otherwise
the constraint b) would be violated). These alternative belong to the set of
the minimal repairs for the relation.

112 5 The Attribute-Based Repairing Paradigm

However, as specified by the preference rule stated above, most married
couples live together, and hence we should probably prefer the repair in which
the second tuple is 〈2, spouse, M, married〉. In fact, the preferred repair is the
relation shown in Figure 5.2.

2

5.1.2 Computing Repairs

The problem of finding a preferred repair for a questionnaire has been solved
using a disjunctive logic program with weak constraints [21] whose preferred
models (namely, best models) correspond to the preferred (minimal) repairs
of a given questionnaire.

A disjunctive logic programming language with constraints (DLPw) in-
cludes rules, weak and strong constraints. The presence of strong constraints
modifies the semantics of the program by discarding all models which do not
satisfy some of them. Whereas, the semantics of weak constraints minimizes
the number of violated instances of constraints. Weak constraints are very
powerful for capturing the concept of ‘preference’ in commonsense reasoning.
Preferences may have different priorities, therefore weak constraints in DLPw

can be assigned different priorities as well, according to their ‘importance’. A
weak constraint is defined stronger than another weak constraint if it has a
higher priority than the other. Informally, the semantics of a DLPw program
Π is given by the stable models of the set of the rules of Π satisfying all
strong constraints and minimizing the number of violated weak constraints
according to the prioritization.

A preferred (minimal) repair R for a questionnaire encoded in an instance
of Qst w.r.t. a set of integrity constraints IC and a set of preference rules Φ
is a relation such that (i) it is consistent w.r.t. IC; (ii) the number of values
changed is minimized; and (iii) the number of satisfied preference rules in Φ
is maximizes.

Observe that the constraints in IC are strong in the sense that in order to
obtain a consistent relation (not necessarily a minimal repair) they must be
satisfied. Therefore, they are translated into strong constraints of the disjunc-
tive logic program used for computing preferred repairs. On the other hand,
in order to obtain a minimal repair the number of values changed must be
minimized. Thus, weak constraints can be used assigning a penalty to each
value change made to the input questionnaire. Finally, to maximize the num-
ber of satisfied preference rules again weak constraints are used. Specifically,
a weak constraint for each preference rule in Φ is created. This constraint as-
signs a penalty for each violation of the corresponding preference rule. These
weak constraints have a lower priority than the weak constraints enforcing
minimizations of changes because of the preferred repairs are chosen among
the minimal repairs for the questionnaire.

5.2 Complexity and Approximation of Repairing Numerical Data 113

The system DLV [37], which supports the disjunctive logic programming
language DLPw, has been used for obtaining an implementation of the
method presented for repairing census data.

5.2 Complexity and Approximation of Repairing
Numerical Data

In [16] the problem of repairing databases by changing integer numerical values
at the attribute level, with respect to denial constraints, has been studied.
In this context, the authors introduce a quantitative definition of database
repair, based on the square of the Euclidean distance between the originals and
modified values in the database instance. In this case, the ‘minimal’ repairs are
that minimizing the quantitative global distance, changing only some fixable
attribute values and keeping the values for the attributes in the key of the
relations.

The database fix problem, namely the problem of determining the existence
of a repair at a distance not bigger than a given bound, has been addressed.
In particular, the problems of construction and verification of such a repair
have been studied. Moreover, the problem of deciding the consistency of query
answers has been studied.

First, undecidability for the problem of checking the existence of mini-
mal repairs has been proved in the presence of (non-linear multi-attribute)
aggregate constraints. Then, the authors concentrate on denial constraints,
proving NP -completeness for the database fix problem under a subclass of de-
nial constraints, namely the linear denial constraints. Moreover, it has been
proved that the problem of finding the minimum distance from a database
to a minimal repair is MAXSNP -hard in general. Thus, for a subclass of
denial constraints (called local denial constraints) an approximation within a
constant factor has been provided.

5.2.1 Least Square Repairs

For each relation, it is assumed that there is a set of all the fixable attributes,
that takes values in Z and are allowed to be fixed. We will denote as F the set
of all fixable attribute. Attributes outside F are called rigid (clearly, we may
also have rigid numerical attributes). Moreover, for each relation, the primary
key is defined on rigid attributes. In the following we assume that the key
constraints are satisfied both by the initial database instance and its repairs
(also called fixes in this context).

A linear denial constraint has the form ∀X¬(P1 ∧ · · · ∧ Pn), where the Pi

are database atoms, or built-in atoms of the form xθc, where x is a variable,
c is a constant and θ ∈ {=, 6=, <, >,≤,≥}, or x = y. If x 6= y is allowed, we
call them extended linear denials. Observe that, with either extended or linear
denial constraints we can not use built-in atoms of the form x ≤ y.

114 5 The Attribute-Based Repairing Paradigm

An aggregation constraint is given by the aggregate operators sum, count
distinct and average. Filtering aggregation constraints impose conditions on
the tuples over which aggregation is applied, e.g. sum(A1 : A2 = 3) > 5
is a sum over A1 of tuples such that A2 = 3. Multi-attribute aggregation
constraints allow arithmetical combinations of attributes as arguments for
sum, e.g. sum(A1 +A2) > 5 and sum(A1×A2) > 100. It is assumed that the
aggregation constraints have attributes from only one relation.

We now introduce the square distance between two database, which is used
for determining partial order among repairs for a given databases.

Since the original database instance and a repair share the same key values,
we can use them to compute variations in the numerical values. We will denote
as t(k, P, D) the unique tuple t in the relation P in the instance D whose key
value is k. To each fixable attribute A ∈ F a fixed numerical weight αA is
assigned. Let D and D′ be two database instance over the same scheme with
the set P of relation names. Let val(KP) be the set of key values for a relation
P ∈ P, which is shared by D and D′.

The square distance between D and D′ is

∆α(D, D′) =
∑

P∈P,A∈F,k∈val(KP)

αA [πA(t(k, P,D))− πA(t(k, P, D′))]2

where πA is the projection on attribute A and α = (αA)A∈F .
Let D be a database instance D, F a set of fixable attributes and IC a

set of integrity constraints. Given a set of primary key dependencies KD such
that D |= KD, a repair (or fix) for D w.r.t. IC is a database instance R such
that:

(a) R has the same scheme and domain as D;
(b) R has the same values as D for each attribute A 6∈ F ;
(c) R |= KD;
(d) R |= IC.

A least squares repair (LS-repair) for D is a repair R that minimizes the
square distance ∆α(D, R) over all the instances that satisfy (a)-(d).

Example 5.6 Consider the database instance D having the relations
Client(IDclient,Age, Amount) and Buy(IDclient, Item, Price) with primary
keys {IDclient} and {IDclient, Item}, respectively. The set of constrains de-
fined consists of the following linear denials
∀ x1, x2, x3, x4, x5 ¬[Buy(x1, x2, x3)∧Client(x1, x4, x5)∧ x4 < 18∧ x3 > 25]
∀ x1, x2, x3 ¬[Client(x1, x2, x3) ∧ x2 < 18 ∧ x3 > 50]
They require that people younger than 18 cannot spend more than 25 on one
item, nor spend more than 50 in the store.

Assume that the database instance is that in Figure 5.5. The former denial
constraint is violated by the tuples {t1, t4} and {t1, t5}, whereas the latter by
{t1} and {t2}.

5.2 Complexity and Approximation of Repairing Numerical Data 115

IDclient Age Amount

t1 1 15 52

t2 2 16 51

t3 3 60 900

IDclient Item Price

t4 1 CD 27

t5 1 DV D 26

t6 3 DV D 40

Fig. 5.5. Relations Client and Buy

The set of fixable attributes is F = {Age, Amount, Price} and αA = 1 for
each A ∈ F , there are two least square repairs, which are shown in Figure 5.6
and 5.7, respectively (t′i is the modified version of the tuple ti).

IDclient Age Amount

t′1 1 15 50

t′2 2 16 50

t3 3 60 900

IDclient Item Price

t′4 1 CD 25

t′5 1 DV D 25

t6 3 DV D 40

Fig. 5.6. Repair R1 for the relations Client and Buy

IDclient Age Amount

t′1 1 18 52

t′2 2 16 50

t3 3 60 900

IDclient Item Price

t4 1 CD 27

t5 1 DV D 26

t6 3 DV D 40

Fig. 5.7. Repair R2 for the relations Client and Buy

The distance of the LS-repair R1 is ∆(D, R1) = (52− 50)2 + (51− 50)2 +
(27 − 25)2 + (26 − 25)2 = 10 (since it is assumed αA = 1 for each A ∈
F , we omits α for simplicity). Similarly, the distance of the LS-repair R2 is
∆(D, R2) = (18− 15)2 + (51− 50)2 = 10.

2

5.2.2 Complexity Results and Approximations

In [16] it has been shown that under extended linear denials and filter-
ing, multi-attribute aggregation constraints, the problems of existence of LS-
repairs, and the consistent query answer problem are undecidable. This result
is owing to the presence of filtering, multi-attribute aggregation constraints.

Indeed, considering only a (fixed) set of linear denial constraints, for a
database instance D, checking the existence of an LS-repair R for D such

116 5 The Attribute-Based Repairing Paradigm

that ∆α(D, R) ≤ k, with k a positive integer, is NP -complete. Moreover, for
a fixed set of extended linear denial constraints: (i) The problem of checking
if an instance R is an LS-repair for a database D is coNP -complete, and (ii)
the consistent query answer problem is in Πp

2 , and, for ground atomic queries
it is ∆p

2-hard.
It has been shown that the optimization problem of finding the minimum

distance from an LS-repair R, w.r.t. a set of linear denial constrains, to a
given input database instance D is a MAXSNP -hard problem. Thus, unless
P = NP, there is no polynomial time approximation scheme for this optimiza-
tion problem [68]. After this negative result, the authors focus on finding an
efficient algorithm for approximation within a constant factor. This has been
done for a restricted class of linear denial constraints, namely the local linear
denial constraints.

Indeed, for a fixed set of local denial constraints, the problem of finding the
minimum distance from an LS-repair R to a database instance D can be solved
by transforming this problem into an instance of the Minimum Weighted Set
Cover Optimization Problem (MWSCP). This problem is MAXSNP -hard,
and its general approximation algorithms are within a logarithmic factor. By
concentrating on local denials, a version of the MWSCP that can be approx-
imated within a constant factor has been provided.

A set DC of linear denial constraints is said to be local if:

i) attributes participating in equality atoms between attributes or in joins
are all rigid ;

ii) there is a built-in atom with a fixable attribute in each element of DC;
iii) no attribute A appears in DC in both comparisons of the form A < c1

and A > c2 (in order to check this condition, the built atoms x ≤ c, x ≥ c,
x 6= y have to be expressed using only < and >, e.g. x ≤ c is written as
x < c + 1).

Local (linear denial) constraints have the property that by doing local
fixes, no new inconsistencies are generated, and there is always an LS-repair
with respect to them (a property that is not valid for (general) linear denial
constraints).

As for (general) linear denial constraints, the problem of checking the
existence of an LS-repair for a database within a constant distance, under
local constraints, remains NP -complete. Further, the optimization problem of
finding an LS-repair with the minimum distance from the original database
is MAXSNP -hard.

On the other hand, under local constraints, for a database instance D,
the approximation algorithm based on MWSCP returns a repair R̃ such that
∆α(D, R̃) ≤ c×∆α(D, R), where R is any LS-repair for D and c is a constant
that depends on the number of atom in the set of local constraints.

5.2 Complexity and Approximation of Repairing Numerical Data 117

One Database Atom Denials

Now we consider one database atom denial constraints, that is denial con-
straints which are restricted to have the form ∀X¬[P, B], where P is a pred-
icate corresponding to a relation symbol, and B is a conjunction of built-in
atoms. For this class of constraints, tractable cases for computing consistent
answers under LS-repairs has been identified. This has been accomplished by
reduction to computing consistent answers for (tuple-based and set-theoretic)
repairs of the form introduced in [45] in presence of one key constraint.

The results and the algorithm introduced in [45] for computing consistent
answers w.r.t. key constraints has been obtained for the class of conjunctive
queries in Ctree (cfr. Section 3.3.1). In [16] the authors exploits this results in
order to show that, for one database atom denial constraints and queries in
Ctree, the consistent query answer under LS-repair is in PTIME.

Aggregate Conjunctive Queries

An aggregate conjunctive query has the form

Q(x1, . . . , xn; agg(z)) ← B(x1, . . . , xm, z, y1, . . . , yn)

where agg is an aggregation function (sum, count distinct, and average) and
its non-aggregate matrix given by Q′(x1, . . . , xn) ← B(x1, . . . , xm, z, y1, . . . , yn)
is a first-order conjunctive query with built-in atoms, such that the aggrega-
tion attribute z does not appear among the xi. An aggregate conjunctive query
is cyclic (resp. acyclic) if its non-aggregate matrix is cyclic (resp. acyclic).

Example 5.7 The query Q(x, y, sum(z)) ← P (x, y)∧Q(y, z, w)∧w 6= 3 is an
aggregate conjunctive query with aggregation attribute z. The corresponding
non-aggregate matrix is Q′(x, y) ← P (x, y)∧Q(y, z, w)∧w 6= 3. Each answer
〈x, y〉 to Q′ is expanded to 〈x, y, sum(z)〉 as answer to Q, where sum(z) is the
sum of all the values for z such that the body of the query is satisfied.

2

The semantics adopted for consistent query answers to aggregate queries
is that firstly proposed in [7], namely the range semantics, which is based
on the minimal range containing every values that the aggregation query
can take in all possible repairs of the database. The consistent query answer
decision problems under range semantics consist in determining if a query has
its answer contained a range in every repair (cfr. Section 3.1).

In [16] it has been shown that, there is a fixed set of one database atom
denial constraints and a fixed aggregate acyclic conjunctive query, such that
the consistent query answer problem under the range semantics is NP -hard.
Moreover, for any set of one database atom denials and conjunctive query with
sum over a nonnegative attribute, a polynomial time approximation algorithm
with a constant factor has been provided for deciding consistent answers under

118 5 The Attribute-Based Repairing Paradigm

range semantics. This approximation is obtained by reduction from Bounded
Degree Independent Set which has efficient approximations within a constant
factor that depends on the (bounded) degree.

5.3 An Heuristic for Repairing Inconsistent Databases

In [17] a cost model for computing database repairs as set of value modifica-
tions has been introduced. The authors observed a strong connection between
the database repairing area and the record linkage field, also known as “du-
plicate removal” or “merge-purge”, which refers to the task of linking pairs
of records that refer to the same entity in different data sets. There is a par-
allelism between searching for a repair for an inconsistent database instance
and the record linkage task. Thus, it may be more helpful to automatically
propose a repair in this situation.

The proposed cost model for repairs is based on two factors, accuracy and
similarity. The accuracy of data is reflected in a weight w(t) for each tuple
t and represents the confidence placed by the user in the values therein. For
example, tuples from a source S1 may have weight greater than tuples from
a source S2, reflecting a different degree of confidence in their accuracy. A
variety of measure of similarity of data is available at the attribute or tuple
level, for example, the string-edit distance.

The intractability of the problem of computing a minimum-cost repair has
been shown. In light of this result the authors proposed an approach for repair
construction based on on equivalence classes of pairs 〈tuple, attribute〉 that
are assigned identical values in minimum-cost repairs.

5.3.1 Minimum-Cost Repairs

Given a set of integrity constraints IC and a database instance D, a repair for
D w.r.t. IC is a database instance R such that (i) R is consistent w.r.t. IC,
and (ii) R contains the tuples in D possibly with modified attribute values,
plus zero or more inserted tuples. Observe that, when attribute values are
modified it may be the case that two from two distinct (conflicting) tuples we
obtain one (consistent) tuple. For instance, given a relation scheme P (A,B)
where the primary key is A, if the instance consist of tuples t1 = 〈a1, b1〉 and
t2 = 〈a1, b2〉, then a repair for P is the instance 〈a1, b1〉.

A repair R for a database D has associated a cost, which is the sum of the
costs of the actions (value modifications and tuple insertions) performed on
D to obtain R.

Given a database instance D, we associate a weight w(t) ≥ 0 to each tuple
t in D. The cost of an attribute-level modification of a tuple t in a repair R
is the weight w(t) ≥ 0 times the distance between the original value of the
attribute and its value in the repair. We assume that for two values v1 and
v2 from the same domain, a distance function dist(v1, v2) is available, with

5.3 An Heuristic for Repairing Inconsistent Databases 119

lower values indicating greater similarity, according to a similarity metric.
Moreover, it is assumed that a cost insCost(P) > 0 is associated with each
relation P . It is the cost of inserting a tuple into P in a repair R.

In the following we will denote as D(t, A) the value of a given attribute A
of a tuple t ∈ D, and as R(t, A) the value of the same tuple t in the repair R
(it is assumed that during the repair process we can keep track of the tuple
t). Further, for a set V of attribute, we use D(t, V) (or R(t, V)) to represent
the projection of t on attributes in V .

Thus, the cost relative to a tuple t in the repair R is the following:

cost(t) =

insCost(P), if t ∈ new(P)

w(t) ·∑A∈attr(P) dist(D(t, A), R(t, A)), otherwise

where new(P) denotes the set of tuples inserted into P by R, and attr(P)
denotes the attribute of the relation P .

Example 5.8 Consider the database consisting of the relations
Customer(PhoneNumber,Name, Street, City, State, Zip), and
Equipment(SerialNumber, PhoneNumber,Manufacturer,Model).
The Customer relation contains address information on customers, while the
relation Equipment catalogs equipments installed at the customer location
and includes manufacturer, model number and the serial number.

Assume that the set of constraints consists of the inclusion dependency
Equipment[PhoneNumber] ⊆ Customer[PhoneNumber], stating that each
peace of equipment is associated with a valid customer, and the functional
dependencies
(i) PhoneNumber → Name, Street, City, State, Zip;
(ii) Name, Street, Zip → PhoneNumber;
(iii) Zip → City, State; defined on Customer and
(iv) SerialNumber → PhoneNumber,Manufacturer,Model; defined on
Equipment.

Consider the relation instances in Figure 5.8, where identifiers of tuples and
the weight column w(t) is added for simplify the presentation. The weight w(t)
reflects accuracy of the tuple t; it is assumed that data in tuples {t1, t2, t5, t6}
are more accurate than in {t3, t3, t7}.

We assume that the distance function dist(v1, v2) is the string edit dis-
tance, which is defined as the minimum number of single-character insertions,
deletions and substitutions required to transform v1 to v2. Thus, the cost of
modifying the values “555-8195” and “NJ” of the tuple t3 to “555-8145” and
“NY” of tuple t2, respectively, is cost(t3) = 1 · (1 + 1) = 2. Conversely, the
cost of modifying the values “555-8145” and “NY” of tuple t2 to “555-8195”
and “NJ” of the tuple t3, respectively, is cost(t2) = 2 · (1 + 1) = 4.

2

The cost of a repair R for a database D is defined as

120 5 The Attribute-Based Repairing Paradigm

PhoneNumber Name Street City State Zip w(t)

t1 949− 1212 Smith Bridge Midville AZ 05211 2

t2 555− 8145 Jones V alley Centre NY 10012 2

t3 555− 8195 Jones V alley Centre NJ 10012 1

t4 212− 6040 Blake Mountain Davis CA 07912 1

Customer

SerialNumber PhoneNumber Manufacturer Model w(t)

t5 AC13006 949− 1212 AC XE5000 2

t6 L55001 555− 8145 LU ZE400 2

t7 L55001 555− 8195 LU ZE400 1

Equipment

Fig. 5.8. Relations Customer and Equipment

cost(R) =
∑

t∈R

cost(t)

.
Formally, the problem addressed in [17] is: given a database instance D

and a set IC of both functional dependencies and inclusion dependencies, find
the repair R for D w.r.t IC such that cost(R) is minimum.

In order to obtain a repair, different actions can be performed depending
on the constraint violations. Let t1 and t2 be two tuples of the relation P
in the database D, and F = A → B a functional dependency over P . If t1
and t2 violates F , i.e. D(t1, A) = D(t2, A) and D(t1, B) 6= D(t2, B), then this
constraint violation is resolved by setting the B-attribute value of t1 to be
equal to that of t2 (or vice versa).

Similarly, also violations of inclusion dependencies can be repaired by mod-
ifying attribute values. Let t1 be a tuple in the relation P that does not satisfy
the inclusion dependency P [A] ⊆ Q[B]. Then we can modify the A-attribute
value of t1 so that it is equal to the B-attribute value for some tuple t2 in the
relation Q. Alternately, the B-attribute value for some tuple t2 in Q can be
modified so that it is equal to the A-attribute value of t1.

Moreover, if no similar Q[B] value exists for some unmatched tuple t1 from
P , then inserting a new tuple t′ in Q may be preferable to modifying t (this
choose depends on which action produces a minimal-cost repair) In this case,
the B-attribute values of t′ are set to match the attribute values of t, and all
other attribute values are set to the special value null.

Example 5.9 Consider the Example 5.8. The violations of the functional
dependency (ii) can be resolved modifying the value of PhoneNumber from
“555-8195” of the tuple t3 to “555-8145” of t2. Similarly, the violations of the

5.3 An Heuristic for Repairing Inconsistent Databases 121

functional dependency (iii) can be resolved modifying the value of State form
“NY” of t3 to “NJ” of t2. Finally, the violation of the key dependency (iv)
and the inclusion dependency can be resolved changing the value “555-8145”
of t7 into “555-8195”.

The set of value updates described above give raise to a repair for the
database in Figure 5.8 w.r.t. the constraints of Example 5.8.

2

In [17] it has been shown that, given a database D and a set of constraints
IC consisting of either only functional dependencies or inclusion dependencies,
then for a constant W , the problem of determining if there exists a repair R
of D w.r.t. IC whose cost is at most W is NP -complete.

5.3.2 A Greedy Algorithm Based on Equivalence Classes

In [17] heuristic approaches has been considered for finding repairs. An heuris-
tic algorithm takes as input a database D and a set of constraints IC, and
finds a repair R for D w.r.t. IC. It finds efficiently a solution but with the
tradeoff that it is not necessarily minimum (the key difficulty is that repairing
one constraint can break another constraint).

The approach works in presence of both functional dependencies and in-
clusion dependencies. It is built around the notion of equivalence classes of
attribute value coordinates 〈t, A〉, where t identifies a tuple in a relation P in
which A is an attribute. The semantics of an equivalence class of pairs 〈t, A〉
is that the attributes of the tuple contained in the class are assigned the same
value in the repair R.

Both functional dependencies and full inclusion dependencies can be seen
as specifying equivalence between certain sets of attribute coordinates. Specif-
ically, the functional dependencies V → W over the relation P specifies that
if a pair of tuples t1 and t2 in P matches on the attribute set V , then 〈t1, A〉
and 〈t2, A〉 must be in the same equivalence class for all A in W . Similarly,
the inclusion dependency P [V] ⊆ Q[W] requires that each tuple t1 in P is
covered by some tuple t2 in Q, that is 〈t1, V 〉 and 〈t2,W 〉 must be in the same
equivalence class for each attribute A in V and the corresponding attribute
B in W .

An equivalence class eq is a set of pairs 〈t, A〉. The repair algorithm main-
tains a global set of equivalence classes that covers the repair R (that is, the
tuples in the original database D, plus insertions). Associated with each class
eq is a target value v = targ(eq). In a repair R, all attributes in a class eq are
assigned the value of targ(eq), that is R(t, A) = targ(eq) for each 〈t, A〉 ∈ eq.

The cost of the equivalence class for a particular target value v is defined as
the contribution of elements in the equivalence class to the cost of the repair
R (ignoring the cost of inserts). That is,

cost(eq, v) =
∑

〈t,A〉∈eq

w(t) · dist(D(t, A), v)

122 5 The Attribute-Based Repairing Paradigm

Consistent with the goal of finding a low-cost repair, v = targ(eq) is chosen
to minimize the cost of eq. The cost of an equivalence class eq, denotes as
cost(eq), is the minimum cost(eq, v) over the values v taken by the elements
of eq in the original database D.

Example 5.10 Consider the database and the constraints of the Exam-
ple 5.8. The functional dependency Name, Street, Zip → PhoneNumber en-
tails that the PhoneNumber of the tuples t2 and t3 belongs to the same equiv-
alence class, i.e. there is eq = {〈t2, PhoneNumber〉, 〈t3, PhoneNumber〉}. It
holds that cost(eq, “555−8145′′) = 1 ·1, whereas cost(eq, “555−8195′′) = 2 ·1.
Thus the value targ(eq) is “555-8145” since cost(eq, “555−8145′′) is the mini-
mum cost (among the cost of the possible target values). Finally, cost(eq) = 1.

2

Whenever two equivalence classes are merged, this may result in additional
attribute modifications in the repair R increasing its cost. For a subset E of
equivalence classes, the increase in cost is the difference between the cost of
the merged class and the sum of the costs of the individual classes, that is

mgcost(E) = cost(
⋃

eq∈E

eq)−
∑

eq∈E

cost(eq)

Example 5.11 Consider the equivalence class eq1 = {〈t2, PhoneNumber〉,
〈t3, PhoneNumber〉} of the Example 5.10. Let eq2 be the equivalence class
{〈t7, PhoneNumber〉}. The increase in cost of merging eq1 and eq2 in order to
form eq3 = {〈t2, PhoneNumber〉, 〈t3, PhoneNumber〉, 〈t7, PhoneNumber〉}
is given by mgcost({eq1, eq2}) = cost(eq3)− (cost(eq1)+ cost(eq2)) = 2− (1+
0) = 1. Observe that, cost(eq2) = 0 because eq2 contains only an item with
value v and the cost cost(eq, v) = 0 because of distance between v and itself
is zero.

2

The repair R is constructed by resolving violations of functional and inclu-
sion dependencies, which corresponds to merging the appropriate equivalence
classes.

In the following, we will denote as eq(t, A) the current equivalence class
containing 〈t, A〉. Let F = V → W be a functional dependencies over the
relation P . Given a repair R, a tuple t1 of P is resolved w.r.t. F if, for all
other tuples t2 of P , either R(t1, A) 6= R(t2, A) for some A ∈ V , or for every
B ∈ W , eq(t1, B) = eq(t2, B). Observe that, a tuple can become unresolved
w.r.t. F due to a change in the target value of an attribute in V for some
other tuple in the repair R (this may happen due to a change in the target
value when equivalence classes merge).

Let I = P [V] ⊆ Q[W] be an inclusion dependency. A tuple t1 of P is
resolved w.r.t. I if there is some tuple t2 of Q such that eq(t1, A) = eq(t2, B)
for every pair of corresponding attributes A ∈ V and B ∈ W . Observe that,

5.3 An Heuristic for Repairing Inconsistent Databases 123

a tuple resolved w.r.t. I will not become unresolved with respect to other
inclusion dependencies (but it can become unresolved w.r.t. some functional
dependencies).

Basically, resolving tuples w.r.t. and integrity constraint means merging
equivalence classes, and the cost of this operation is that of merging the equiv-
alence classes. When tuples are resolved w.r.t. an inclusion dependencies and
the cost insCost of inserting a new tuple is less than that of merging equiva-
lence classes, then a new tuple is inserted with cost insCost.

Example 5.12 Consider the database and the constraints of the Exam-
ple 5.8. The functional dependency Name, Street, Zip → PhoneNumber en-
tails that the PhoneNumber of the tuples t2 and t3 belongs to the same
equivalence class. Thus the classes eq1 = {〈t2, PhoneNumber〉} and eq2 =
{〈t3, PhoneNumber〉} must be merged obtaining eq3 = {〈t2, PhoneNumber〉,
〈t3, PhoneNumber〉}. As seen in Example 5.11, the cost of this operation is
mgcost({eq1, eq2}) = 1.

Similarly, in order to resolve the tuple t7 w.r.t. the inclusion dependency
Equipment[PhoneNumber] ⊆ Customer[PhoneNumber] the classes eq3 and
eq4 = {〈t6, PhoneNumber〉, 〈t7, PhoneNumber〉} must be merged.

2

The algorithm which heuristically constructs a repair begins by putting
each pair 〈t, A〉 in its own equivalence class, that is a class {〈t, A〉} is created
for each pair of tuple and attribute in the database. Then it greedily merges
the equivalence classes until all constraints are satisfied.

The approach consists in resolving (unresolved) tuples one at time, un-
til no unresolved tuples remains. We denote as unResolved(ic) the set of
tuple that may violates the integrity constraint ic, that is unResolved(ic)
contains potentially unresolved tuples w.r.t. ic. The repair algorithm ensures
that unResolved(ic) satisfies the following two invariants:

i) if t is unresolved w.r.t. I = P [V] ⊆ Q[W], then t ∈ unResolved(I);
ii) if t is unresolved w.r.t. F = V → W defined over the relation P , then

t′ ∈ unResolved(F), where t′ is some tuple in P such that t′ matches t on
attributes in V ; the tuple t′ serves as proxy for t, and when t′ is resolved
then also t will be resolved.

At each iteration of the algorithm a tuple to be resolved w.r.t. a constraint
ic is selected from unResolved(ic). The resolution of a tuple is achieved by
either (i) merging appropriate equivalence classes so that the (locally) mini-
mum increasing cost is obtained, or (ii) inserting new tuple if it is (locally)
less onerous than merging.

Tuples are added to unResolved(ic), for some ic, only when new tuple are
inserted into the repair or equivalence classes are merged. Observe that, the
number of inserted tuples is bounded by the number of equivalence classes,
which is bounded by the number of possible distinct values in the database, i.e.

124 5 The Attribute-Based Repairing Paradigm

|D| ·α, where α is the maximum number of attributes in a relation. Moreover,
the number of merge events is bounded by the number of equivalence classes.

The the algorithm terminates when there are no tuples to be resolved, and
the proposed repair R is produced by inserting the new tuples and replacing
〈t, A〉 values in the original databases D, with targ(eq(t, A)).

At each iteration a tuple and a constraint are chosen for the resolving
task. The arbitrary selection of what tuple and constraint to address repre-
sents a degree of freedom for designing the equivalence-class-based technique.
Two greedy approaches has been present for picking the unresolved tuples to
be processed. The former picks an unresolved tuple to repair with minimum
resolution cost. The latter give precedence to fixing tuples that are unre-
solved w.r.t. functional dependencies. An experimental study of the heuristics
proposed has been conducted on synthetic and real-wold data showing the
effectiveness of the approach.

5.4 Querying Inconsistent Databases by Means of Nuclei

In [76, 77, 78] a value-based repairing technique consisting in a database trans-
formation has been proposed. The intuition is that an inconsistent database
is transformed in such a way that the subsequent queries on the transformed
database retrieve exactly the consistent answer. That is, given a satisfiable
set of constraints IC and a relation I, apply a database transformation hIC

such that for every query Q, Q(hIC(I)) yields exactly the consistent answer
to Q on input I and IC. Observe that hIC(I) is not necessarily a repair for
I w.r.t. IC, and can be thought as a condensed representation of all possible
repairs for I w.r.t. IC that is sufficient for consistent query answering.

In [78] it has been shown that for full dependencies and conjunctive queries,
all repairs can be “summarized” into a single tableau, called nucleus, such that
the consistent answer to any conjunctive query can be obtained by executing
the query on the nucleus. A nucleus G is homomorphic to all repairs and it
is maximal in the sense that any other tableau that is homomorphic to all
repairs, is also homomorphic to G.

Repairs are defined according to change values attribute instead of entire
tuples. The definition of (value-based) repairs is given in two steps consid-
ering homomorphisms between tableaux (relations containing constants and
variables). Informally, given an inconsistent relation I, first, fixes are obtained
replacing erroneous values by variables. Each fix is homomorphic to the orig-
inal relation I. Secondly, each fix is homomorphic to a consistent relation
obtained substituting constants to the variables (which represent erroneous
values). This consistent relation is a repair for I.

In the following we first provide an example, then formally present fixes,
repairs and nuclei.

5.4 Querying Inconsistent Databases by Means of Nuclei 125

Example 5.13 Consider the database in Figure 5.9 storing the price range of
different car variants; possible price ranges are: bottom, lower, medium, upper.
Assume that the four full dependencies in Figure 5.10 are defined.

Model V ersion PriceRange

sedan luxury upper

sedan standard lower

Fig. 5.9. Cars Database

τ1 Model V ersion PriceRange

x y upper

x standard medium

ε1 Model V ersion PriceRange

x y upper

y = luxury

ε2 Model V ersion PriceRange

x y z
x y z′

z = z′

ε3 Model V ersion PriceRange

x luxury z
x y bottom

0 = 1

Fig. 5.10. Full Dependencies τ1, ε1, ε2, ε3

The first full dependency τ1 is a full tuple-generating dependency saying
that every model in the upper price range also exists in a medium priced stan-
dard version. The full dependencies ε1, ε2 and ε3 are full equality-generating
dependencies. ε1 says that the upper price range only contains luxury cars.
ε2 is a key dependency: the price range of a car is determined by its model
and version. ε3 is a contradiction-generating dependency stating that models
which exist in a luxury version are never available at bottom prices.

The relation shown in Figure 5.9 falsifies τ1, because it does not contain
the tuple 〈sedan, standard, medium〉. Adding that tuple results in a violation
of the key dependency (ε2).

Five fixes F1 − F5 of the relation of Figure 5.9 are shown in Figure 5.11.
The fix F1 assumes that the value “sedan” in the first tuple is mistaken. F1

is homomorphic to the original relation (one can substitute the variable x
with the constant “sedan”). The fix F2 assumes that the value “upper” in
the first tuple is mistaken. Similarly, the fixes F3, F4 and F5 assume that
the values “sedan”, “standard” and “lower” in the second tuple are mistaken,
respectively.

Each fix is homomorphic to a consistent relation. In fact, each fix Fi (1 ≤
i ≤ 5) in Figure 5.11 is homomorphic to Ti, and to every relation obtained
from Ti by substituting a constant for the variable (x, y or z) present in it. If

126 5 The Attribute-Based Repairing Paradigm

we choose a constant distinct from “sedan” for the variable x in T1, then the
relation obtained will be a repair. Similarly, if we choose a constant distinct
from “upper” for the variable z in T2, we obtain a repair. Analogously for T3,
T4 and T5.

F1 Model V ersion PriceRange

x luxury upper

sedan standard lower

T1 Model V ersion PriceRange

x luxury upper

x standard medium

sedan standard lower

F2 Model V ersion PriceRange

sedan luxury z

sedan standard lower

T2 Model V ersion PriceRange

sedan luxury z

sedan standard lower

F3 Model V ersion PriceRange

sedan luxury upper

x standard lower

T3 Model V ersion PriceRange

sedan luxury upper

sedan standard medium

x standard lower

F4 Model V ersion PriceRange

sedan luxury upper

sedan y lower

T4 Model V ersion PriceRange

sedan luxury upper

sedan standard medium

sedan y lower

F5 Model V ersion PriceRange

sedan luxury upper

sedan standard z

T5 Model V ersion PriceRange

sedan luxury upper

sedan standard medium

Fig. 5.11. Fixes F1 − F5, and Tableaux T1 − T5

A nucleus, which is homomorphic to all repairs, for the database in Fig-
ure 5.9 and the full functional dependencies in Figure 5.10, is shown in Fig-
ure 5.12. Answers obtained querying the nucleus are the consistent answers
which are obtained querying all the repairs (which are in general large in
number or infinite).

2

5.4.1 Tableaux Formalism

We introduce the tableau formalism which will be exploited for formally defin-
ing the repair framework. To simplify the notation, we will assume a unirela-
tional database containing a single relation of arity n.

5.4 Querying Inconsistent Databases by Means of Nuclei 127

Model V ersion PriceRange

x1 luxury x2

x1 standard x3

sedan standard x4

Fig. 5.12. Nucleus for the Cars Database

A tableau is a relation that can contain variables, that is for each tuple
u = 〈w1, . . . , wn〉 in a tableau, wi is a constant or a variable.

A substitution is a mapping θ from variables to symbols, extended to be
the identity on constants. We write id for the identity function on symbol; and
write idp=q, where p and q are not two distinct constants, for a substitution
that identifies p and q and that is the identity otherwise. That is if p is a
variable and q a constant, then idp=q = {p/q} . If p and q are variables, then
idp=q can be either {p/q} or {q/p}.

Substitutions naturally extend to tuples and tableaux: firstly, θ(〈w1, . . . ,
wn〉) = 〈θ(w1), . . . , θ(wn)〉, and secondly if T is a tableau, then θ(T) =
{θ(u) | u ∈ T}.

We use the tableau formalism to express conjunctive queries. A tableau
query is a pair (B, h) where B is a tableau (called body) and h is a tuple
(called summary or head) such that every variable in h also occurs in B; B
and h need not have the same arity. Let Q = (B, h) be a tableau query, and
T a tableau of the same arity as B. A tuple t is an answer to Q on input T
iff there exists a substitution θ for the variables in B such that θ(B) ⊆ T and
θ(h) = t. The set of all answers to Q on input T is denoted Q(T).

Let F , G be two tableau of fixed arity n. A homomorphism from F to
G is a substitution θ for the variables in F such that θ(F) ⊆ G. If such
homomorphism from F to G exists, then F is said to be homomorphic to G,
denoted G º F . Two tableaux are said to be equivalent, denoted as F ∼ G iff
G º F and F º G. We write G Â F iff G º F and F 6∼ G. The relation ∼ is
an equivalence relation.

The relation ∼ on tableaux naturally extends to sets of tableaux: two sets
F and G of tableaux are said to be equivalent, denoted F ∼ G, iff for every
tableau in either set, there exists an equivalent tableau in the other set.

A full dependency is either a full tuple-generating dependency (ftgd) or a
full equality-generating dependency (fegd). Satisfaction of full dependencies
by relations is borrowed from first-order logic semantics. We also define what
it means for a tableau to satisfy a set of full dependencies.

A ftgd takes the form of a tableau query (B, h) where B and h have the
same arity. The ftgd τ = (B, h) is satisfied by a tableau T , denoted T |= τ ,
iff T ∪ τ(T) ∼ T . A fegd is of the form (B, p = q) where B is a tableau and
p and q are symbols such that every variable in {p, q} also occurs in B. The
fegd ε = (B, p = q) is satisfied by a tableau T , denoted T |= ε, iff for every

128 5 The Attribute-Based Repairing Paradigm

substitution θ, if θ(B) ⊆ T then θ(p), θ(q) are not two distinct constants and
T ∼ idθ(p)=θ(q)(T).

A contradiction-generating dependency (cgd) is an fegd of the form (B, a =
b), where a and b are distinct constants.

A tableau F is called consistent w.r.t. a set of full dependencies IC, denote
as F |= IC, iff for each ic ∈ IC, F |= ic.

It was shown that given two tableaux F and G and a set of full dependen-
cies IC, if F ∼ G and F |= IC, then G |= IC.

5.4.2 Fixes and Repairs

Consistency of relations is defined relative to a set IC of integrity constraints.
A tableau T will be called subconsistent w.r.t. IC iff T is homomorphic to a
consistent relation, i.e. J º T for some relation J such that J |= IC.

Intuitively, a fix of a relation instance I is a subconsistent tableau obtained
from I by replacing erroneous values by distinct variables.

Let F , G be two tableau of fixed arity n. A one-one homomorphism from
F to G is an homomorphism from F to G that do not identify distinct tuples.
That is, it is a substitution θ for the variables in F such that θ(F) ⊆ G and
for all u, u′ ∈ F , u 6= u′ implies θ(u) 6= θ(u′). If such one-one homomorphism
from F to G exists, then F is said to be one-one homomorphic to G, denoted
G w F . We write F ' G iff G w F and F w G. Further, we write G = F iff
G w F and G 6' F .

A tuple or tableau without multiple occurrences of the same variable is
called linear. Let IC be a satisfiable set of constraints and I a relation instance.
A fix of I w.r.t IC is a linear tableau F satisfying:

i) I w F and F is subconsistent ;
ii) Maximality : for every linear tableau G, if I w G = F , then G is not

subconsistent.

For each relation I and for each set IC which is satisfiable by a nonempty
relation, if F is a fix of I w.r.t IC, then |F | = |I| holds.

The set of fixes of I w.r.t IC will be denoted as F(I, IC).

Example 5.14 Each tableau Fi (1 ≤ i ≤ 5) shown in Figure 5.11 is sub-
consistent w.r.t. IC = {τ1, ε1, ε2, ε3}. For instance, F1 is homomorphic to the
consistent relations obtained from the tableau T1 by substituting a constant
distinct from “sedan” for the variable x in T1. Similar considerations hold for
the tableaux F2, F3, F4 and F5.

Moreover, it is easy to verify these tableaux are fixes of the relation shown
in Figure 5.9 w.r.t. IC.

2

In [76] the author allow multiple occurrence of the same variable in a fix
(obtaining not linear tableau), but, as shown in [77], considering fixes where no

5.4 Querying Inconsistent Databases by Means of Nuclei 129

variable occurs more than once accomplishes the quite natural “independence-
of-errors” assumption. Moreover, this restriction gives us tractability of the fix
checking problem for the class of constraints consisting of full dependencies.
That is, given a set of full dependencies IC, a relation I and a linear tableau
F of the same arity, deciding whether F ∈ F(I, IC) is in PTIME. On the
other hand, the fix checking problem becomes NP -hard if not-linear tableau
are considered.

Given a relation instance I and a set of integrity constraints IC, a repair
for I w.r.t. IC is a consistent relation R (R |= IC) such that there is a fix F
of I and IC satisfying

i) R º F , and
ii) for every relation J ′, if R Â J ′ º F , then J ′ 6|= IC.

Observe that, since for each pair of relations G and G′, G Â G′ iff G′ ⊂ G,
the second condition requires that R is minimal (under ⊆) among the relations
which F is homomorphic to.

Intuitively, in repairing a relation I, we first go down the homomorphism
lattice to find fixes, then go up to find repairs.

Example 5.15 Every relation obtained from the tableau T1 by substituting
a constant distinct from “sedan” for the variable x is a repair of the relation
shown in Figure 5.9 w.r.t. IC = {τ1, ε1, ε2, ε3}.

2

The set repairs for a relation I w.r.t. IC is denote as R(I, IC). Given
a relation I, a set of integrity constraints IC and a tableau query Q, the
consistent query answer to Q on input I and IC, denoted CQA(Q, I, IC), is
the intersection of the answers to Q on all (possibly infinitely many) repair
generated by I and IC.

Let I be a relation, Q be a tableau query and IC a satisfiable set of full
dependencies. It has been shown that the set of consistent query answers
CQA(Q, I, IC) can be obtained by chasing each fix in F(I, IC).

Chasing Fixes

The chase, originally introduced for deciding logical implication is used for
repairing databases. In particular, some results of [14] are generalized to
tableaux that can contain constants and need not be typed, replacing the
equality of tableaux by equivalence relation ∼.

An artificial top element, denoted 2 , is introduced to the quasi-order
〈T,º〉, where T is the set of all tableaux of fixed arity n. Let F 6= 2 and G
be tableaux and let IC be a set of full dependencies. We write F `IC G if G
can be obtained from F by a single application of one of the following chase
rules:

• If Q = (B, h) is a ftgd of IC, then F `IC F ∪Q(F).

130 5 The Attribute-Based Repairing Paradigm

• Let (B, p = q) be a fegd of IC, and θ a substitution such that θ(B) ⊆ F .
If θ(p) and θ(q) are two distinct constants, then F `IC 2; otherwise,
F `IC idθ(p)=θ(q)(F).

A chase of a tableau F by IC is a maximal (w.r.t. length) sequence F =
F0, F1, . . . , Fn of tableaux such that for every i ∈ {1, ..., n}, Fi−1 `IC Fi and
Fi 6= Fi−1.

Requiring that chases be maximal tacitly assumes that chases are finite.
Given a tableau F 6= 2 and a set of full dependencies, then the following

statements hold:

• If G is a tableau in a chase of F by IC, then G º F .
• Each chase of F by IC is finite.
• If G 6= 2 is the last element of a chase of F by IC, then G |= IC.
• If G 6= 2 is the last element of a chase of F by IC, and θ is a substi-

tution mapping distinct variables to new distinct constants not occurring
elsewhere, then the relation θ(G) |= IC.

Let F 6= 2 be a tableau and IC a set of full dependencies. It was shown
that if two chase of F end with G1 and G2 respectively, then G1 ∼ G2. We
write chase(F, IC) for the class [G]∼ if the last element of a chase of F by
IC is G. The singleton [2]∼ is also written 2.

Given a set of full dependencies IC, it is decidable whether a given tableau
F 6= 2 is subconsistent: F is subconsistent if an only if chase(F, IC) 6=
2. Thus, a set of full dependencies IC is satisfiable iff chase(∅, IC) 6= 2.
Moreover, let F , G be tableaux, both distinct from 2, and IC a set of full
dependencies. If F ∼ G, then chase(F, IC) = chase(G, IC).

An important result is the following. Let I be a relation, IC a satisfiable
set of full dependencies, τ a tableau query and F(I, IC) a finite set of fixes of
I and IC. Assume that G is a set of tableaux such that

G ∼
⋃

F∈F(I,IC)

chase(F, IC)

Then
CQA(Q, I, IC) =

⋂

G∈G

grd(Q(G))

where for a tableaux T , grd(T) = {t ∈ T | t is ground }.
Therefore, an effective algorithm to compute CQA(Q, I, IC) is i) chase

each tableau of F(I, IC), and ii) query the last tableau of each chase by Q
and return the ground tuples common to all query answers.

Example 5.16 Let F(I, IC) = {F1, F2, F3, F4, F5}, the set of fixes of relation
I shown in Figure 5.9 w.r.t. IC = {τ1, ε1, ε2, ε3}. A chase of Fi by IC ends
with Ti (1 ≤ i ≤ 5), which are shown in Figure 5.11. For any tableau query
Q, CQA(Q, I, IC) = grd(Q(T1)) ∩ · · · ∩ grd(Q(T5)).

2

5.4 Querying Inconsistent Databases by Means of Nuclei 131

5.4.3 Nuclei and Consistent Query Answers

A nucleus of a (possible infinite) set of relations I is defined relative to a
class of queries; intuitively, it is a single tableau that can replace I for the
purpose of query answering. Let Q be a subclass of Conjunctive Queries CQ.
The tableau F is called Q-nucleus of I if and only if for every query Q ∈ Q,

grd(Q(F)) =
⋂

I∈I

Q(I)

where the function grd(·) serves to eliminate from Q(F) tuples that contain
variables.

A nucleus is unique up to ∼, i.e if G1 and G2 are CQ-nuclei of a set I,
then G1 ∼ G2.

Given a finite set of tableau T, the greatest lower bound of T w.r.t. º is
a tableau G satisfying:

i) for each F ∈ T, F º G, and
ii) for every tableau G′, if for each F ∈ T, F º G′, then G º G′.

All greatest lower bounds of a set of tableaux T are be mutually equivalent.
A main result is the following. Let I be a relation, IC a satisfiable set of

full dependencies and F(I, IC) a finite set of fixes of I and IC. Assume that
G is a set of tableaux such that G ∼ ⋃

F∈F(I,IC) chase(F, IC). Then every
greatest lower bound of G is i) consistent, and ii) a CQ-nucleus of R(I, IC)
(the set of repairs for I w.r.t IC).

Therefore, an effective procedure for computing a CQ-nucleus of R(I, IC)
is chase each fix F in F(I, IC) and then compute the greatest lower bound of
the last tableaux of these chase.

Example 5.17 Let F(I, IC) = {F1, F2, F3, F4, F5}, the set of fixes of relation
I shown in Figure 5.9 w.r.t. IC = {Q1, ε1, ε2, ε3}. A chase of Fi by IC ends
with Ti (1 ≤ i ≤ 5), which are shown in Figure 5.11. The greatest lower bound
G of the set of tableaux {T1, T2, T3, T4, T5} is shown in Figure 5.12. For any
tableau query Q, Q(G) gives us exactly the consistent answers to Q on the
relation I w.r.t. IC.

2

Let IC be a set of full dependencies. On input of a relation I, we can effec-
tively compute a CQ-nucleus of R(I, IC). This nucleus allows us to compute
consistent answers to any tableau query. However, the nucleus may not be
practical because its construction takes exponential time, or even worse, its
size is exponential. Construction of nuclei (and hence consistent query answer-
ing) is tractable for restricted classes of conjunctive and full dependencies.

For a database D, if IC is a set of full dependencies and Q is a tableau
query, then consistent query answer problem CQA(Q, D, IC) is coNP -complete.
Thus unless P=NP, the construction of a CQ-nucleus takes exponential time.

132 5 The Attribute-Based Repairing Paradigm

Moreover, in [78] it has been shown that, for full dependencies and conjunctive
queries, the size of nuclei may be not polynomially bounded: there exists a
set of full dependencies such that for every n > 7, there exists a relation with
n− 1 tuples allowing no CQ-nucleus of size less than 2n.

We now introduce restricted query classes that allow nuclei of polynomial
size. The query classes are obtained from the class of Conjunctive Queries by
limiting the number of occurrences of quantified variables.

A tableau query Q = (B, h) is said to be linear if every variable that occurs
more than once in B also occurs in h. The class of linear tableau queries is
denoted linCQ.

Example 5.18 A linear tableau query Q = (B, h) is shown in Figure 5.13. It
ask for the models that exist in both upper and bottom priced versions. Note
that (B, h) linear does not imply that the tableau B is linear.

Q Model V ersion PriceRange

x y upper
x z bottom

x

Fig. 5.13. A linear tableau query

2

Quantifier-free tableau queries further restrict linear tableau queries. A
tableau query Q = (B, h) is said to be quantifier-free if every variable that
occurs in B also occurs in h. The class of quantifier-free tableau queries is
denoted qfCQ. Obviously, qfCQ ⊂ linCQ ⊂ CQ.

In [78] it has been shown that, for any relation I and satisfiable set IC of
full dependencies,

1. there exists a linCQ-nucleus of R(I, IC) which is a linear tableau whose
the size of is polynomially bounded in |I|.

2. there exists a qfCQ-nucleus of R(I, IC) which is a ground tableau and
whose size is polynomially bounded in |I|.
Given a relation I with one key dependency KD, constructing a linCQ-

nucleus of R(I,KD) takes O(m log m) time, where m = |I|. Thus, consis-
tent query answer problem is tractable for relations with at most one key
constraint. If we omit the linearity restriction on the query, consistent query
answer problem becomes coNP -complete.

Given a relation I and a set IC of contradiction-generating dependencies,
a qfCQ-nucleus of R(I, IC) can be computed in polynomial time in |I|. Con-
sistent query answering becomes coNP -complete for linear tableau queries.

5.5 Discussion 133

For different classes of constraints and queries, the complexity results for
the consistent query answer problem are summarized in Table 5.1. The PTIME
cases also have nucleus constructible in polynomial time.

Class of Queries
qfCQ linCQ CQ

1 key dependency PTIME PTIME coNP -complete
IC cgds PTIME coNP-complete coNP -complete

full dependencies coNP -complete coNP-complete coNP -complete

Table 5.1. Complexity results for the consistent query answer problem

5.5 Discussion

In this chapter we have discussed several attribute-based techniques for com-
puting repairs for a database. The main difference with the techniques exam-
ined in Chapter 3 and Chapter 4 is that, here, changes in attribute values
are considered as basic repair actions. The first repairing approach that does
not treat tuples as atomic unit of repairing is that of [42] (cfr. Section 5.1),
where a repair is defined as a mapping from a possibly inconsistent relation
to a new consistent relation. This notion of repair is very similar to that for-
malized in [16] (cfr. Section 5.2), where consistency of a database is achieved
by changing only some fixable attribute values and keeping the values for the
attributes in the key of the relations. In [42] the DLV system [37] has been
exploited for computing preferred repairs w.r.t. first-order constraints which
express edit rules of a questionnaire collecting census data. In [16] problem
of repairing databases by changing integer numerical values has been studied,
and LS-repairs have been defined. An LS-repair for a database D is a consis-
tent database instance minimizing the square of Euclidean distance between
the integer values in D and modified integer values in the repair for D. The
problem of repairing numerical database with respect to denial constraints
has been investigated. After some intractability results, it has been shown
that for local denial constraints, LS-repairs can be computed by transforming
this problem into an instance of the Minimum Weighted Set Cover Optimiza-
tion Problem. By concentrating on local denials, an approximation within a
constant factor has been provided.

In the two approaches above repairs are obtained by only changing an
appropriate subset of attribute values. Thus, a database is repaired by only
updating attribute values; neither new tuple are inserted into the original
database instance, nor tuple are deleted from the original instance. On the
other hand, according to the definition of repairs in [17] it is possible that
from two distinct (conflicting) tuples we obtain a single (consistent) tuple

134 5 The Attribute-Based Repairing Paradigm

by means of value modification (cfr. Section 5.3). This notion of repair has
been motivated by showing a parallelism between searching for a repair for an
inconsistent database and the record linkage task, where pairs of records that
refer to the same entity in different data sets have to be associated. Moreover,
in order to restore the consistency also insertions are allowed in presence of
inclusion dependencies.

In [76] repairs are obtained by defining an homomorphism lattice. In repair-
ing a database one, first, goes down the homomorphism lattice to find fixes,
then goes up to find repairs (cfr. Section 5.4). Fixes correspond to tableaux
obtained from inconsistent relations by replacing erroneous values by distinct
variables. Whereas, repairs can be obtained by chasing fixes. Although the
basic primitive used to find a fix is the changing of attribute values, the result
of chase may yield repairs such that they consist of inserting and deleting
tuples. In [76] it has been shown that for full dependencies and conjunctive
queries, repairs for a database can be summarized into a single tableau called
nucleus for the database. The consistent answers to a conjunctive query can
be obtained by executing the query on the nucleus for the given database. We
now compare the use of nuclei with the query rewriting approaches [4, 45, 46]
(cfr. Section 2.5, Section 3.3 and Section 3.4). We point out that the use of the
nucleus for a database eliminates the need of rewriting a given query, since
a nucleus can be computed once and then used for answering to any queries.
But, a nucleus has to be recomputed when the database is modified. Although
the database is often modified, the use of the nucleus for a database is meaning
for the class of constraints and queries such that nucleus construction need
no more time than the time required to answer a single query obtained from
rewriting.

6

Repairing and Querying Numerical Databases
under Aggregate Constraints

In this chapter we investigate the problem of repairing and extracting reliable
information from data violating a given set of aggregate constraints. These
constraints consist of linear inequalities on aggregate-sum queries issued on
measure values stored in the database. This syntactic form enables meaningful
constraints which often occur in practice to be expressed.

The notion of repair as consistent set of updates at attribute-value level
is exploited, and the characterization of several data-complexity issues re-
lated to repairing data and computing consistent query answers is provided.
We adopt two different criteria for determining whether a set of update op-
erations repairing data can be considered “reasonable” or not: set-minimal
semantics and card -minimal semantics. Both these semantics aim at preserv-
ing the information represented in the source data as much as possible. They
correspond to different repairing strategies which turn out to be well-suited
for different application scenarios.

We provide the complexity characterization of three fundamental prob-
lems: (i) the repair-existence problem, (ii) the repair checking problem (under
both the set-minimal and card -minimal semantics), and (iii) the consistent
query answer problem.

6.1 Introduction

Research has deeply investigated several issues related to the use of integrity
constraints on relational databases. In this context, a great deal of atten-
tion has been devoted to the problem of extracting reliable information from
databases containing pieces of information inconsistent w.r.t. some integrity
constraints. As seen in Chapter 3, Chapter 4 and Chapter 5, all previous works
in this area deal with “classical” forms of constraint (such as keys, foreign
keys, functional dependencies), and propose different strategies for updating
inconsistent data reasonably, in order to make it consistent by means of min-
imal changes. Indeed these kinds of constraint often do not suffice to manage

136 6 Repairing and Querying Numerical Databases under Aggregate Constraints

data consistency, as they cannot be used to define algebraic relations between
stored values. In fact, this issue frequently occurs in several scenarios, such
as scientific databases, statistical databases, and data warehouses, where nu-
merical values of tuples are derivable by aggregating values stored in other
tuples.

In this chapter we focus our attention on databases where stored data
violates a set of aggregate constraints, i.e. integrity constraints defined on
aggregate values extracted from the database. These constraints are defined on
numerical attributes (such as sales prices, costs, etc.) which represent measure
values and are not intrinsically involved in other forms of constraints.

Example 6.1 Table 6.1 represents a two-years cash budget for a firm, that
is a summary of cash flows (receipts, disbursements, and cash balances) over
the specified periods. Values ‘det ’, ‘aggr ’ and ‘drv ’ in column Type stand for
detail, aggregate and derived, respectively. In particular, an item of the table
is aggregate if it is obtained by aggregating items of type detail of the same
section, whereas a derived item is an item whose value can be computed using
the values of other items of any type and belonging to any section.

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20

2003 Receipts cash sales det 100

2003 Receipts receivables det 120

2003 Receipts total cash receipts aggr 250

2003 Disbursements payment of accounts det 120

2003 Disbursements capital expenditure det 0

2003 Disbursements long-term financing det 40

2003 Disbursements total disbursements aggr 160

2003 Balance net cash inflow drv 60

2003 Balance ending cash balance drv 80

2004 Receipts beginning cash drv 80

2004 Receipts cash sales det 100

2004 Receipts receivables det 100

2004 Receipts total cash receipts aggr 200

2004 Disbursements payment of accounts det 130

2004 Disbursements capital expenditure det 40

2004 Disbursements long-term financing det 20

2004 Disbursements total disbursements aggr 190

2004 Balance net cash inflow drv 10

2004 Balance ending cash balance drv 90

Table 6.1. A cash budget

6.1 Introduction 137

A cash budget must satisfy the following integrity constraints:

1. for each section and year, the sum of the values of all detail items must
be equal to the value of the aggregate item of the same section and year;

2. for each year, the net cash inflow must be equal to the difference between
total cash receipts and total disbursements;

3. for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash balance.

Table 6.1 was acquired by means of an OCR tool from two paper docu-
ments, reporting the cash budget for 2003 and 2004. The original paper doc-
ument was consistent, but some symbol recognition errors occurred during
the digitizing phase, as constraints 1) and 2) are not satisfied on the acquired
data for year 2003, that is:

i) in section Receipts, the aggregate value of total cash receipts is not equal
to the sum of detail values of the same section.

ii) the value of net cash inflow is not to equal the difference between total
cash receipts and total disbursements.

In order to exploit the digital version of the cash budget, a fundamental
issue is to define a reasonable strategy for locating OCR errors, and then
“repairing” the acquired data to extract reliable information.

2

Most of well-known techniques for repairing data violating either key con-
straints or functional dependencies accomplish this task by performing dele-
tions and insertions of tuples (cfr. Chapter 3 and Chapter 4). Indeed this
approach is not suitable for contexts analogous to that of Example 6.1, that
is of data acquired by OCR tools from paper documents. For instance, repair-
ing Table 6.1 by either adding or removing rows means hypothesizing that
the OCR tool either jumped a row or “invented” it when acquiring the source
paper document, which is rather unrealistic. The same issue arises in other
scenarios dealing with numerical data representing pieces of information ac-
quired automatically, such as sensor networks. In a sensor network with error-
free communication channels, no reading generated by sensors can be lost,
thus repairing the database by adding new readings (as well as removing col-
lected ones) is of no sense. In this kind of scenario, the most natural approach
to data repairing is updating directly the numerical data: this means work-
ing at attribute-level, rather than at tuple-level. For instance, in the case of
Example 6.1, we can reasonably assume that inconsistencies of digitized data
are due to symbol recognition errors, and thus trying to re-construct actual
data values is well founded. Likewise, in the case of sensor readings violating
aggregate constraints, we can hypothesize that inconsistency is due to some
trouble occurred at a sensor while generating some reading, thus repairing
data by modifying readings instead of deleting (or inserting) them is justified.

138 6 Repairing and Querying Numerical Databases under Aggregate Constraints

6.2 Notations

Given a relation scheme P (A1, . . . , An) we denote as DOM(Ai) the domain
of the attribute Ai with 1 ≤ i ≤ n. Each DOM(Ai) can be either Z (infinite
domain of integers), Q (rationals), or S (strings). The set of attribute names
{A1, . . . , An} of relation scheme P will be denoted as AP .

Domains Q and Z will be said to be numerical domains, and attributes
defined over Q or Z will be said to be numerical attributes.

Given a relation scheme P (A1, . . . , An), we will denote the set of numerical
attributes representing measure data as MP (namely, Measure attributes).
That is, MP specifies the set of attributes representing measure values, such
as weights, lengths, prices, etc. For instance, in Example 6.1, MP consists of
the only attribute Value. We denote as KP the subset of AP consisting of the
names of the attributes which are a key for P . For instance, in Example 6.1,
we have KP = {Year, Subsection }. Throughout this chapter, we assume that
KP ∩ AP = ∅, i.e., measure attributes of a relation scheme P are not used
to identify tuples of P . This assumption results in no loss of generality, since
in real-world scenarios (such as that considered in Example 6.1) attributes
identifying tuples do not contain measure values.

Given a database scheme D, we will denote as MD the union of the sets
of measure attributes associated with all the relation schemes in D.

Given a boolean formula α consisting of comparison atoms of the form
X¦Y , where X, Y are either attributes of P or constants and ¦ is a comparison
operator, we say that a tuple t of P (A1, . . . , An) satisfies α (and denote it as
t |= α) if replacing each occurrence of attribute Ai in α (for each i ∈ [1..n])
with value t[Ai] makes α true.

Given two sets M , M ′, M4M ′ denotes their symmetric difference (M ∪
M ′) \ (M ∩M ′).

6.3 Aggregate Constraints

Given a relation scheme P (A1, . . . , An), an attribute expression on P is defined
recursively as follows:

- a numerical constant is an attribute expression;
- each numerical attribute Ai (with i ∈ [1..n]) is an attribute expression;
- e1ψe2 is an attribute expression on P , if e1, e2 are attribute expressions

on P and ψ is an arithmetic operator in {+,−};
- c×e is an attribute expressions on P , if e is an attribute expression on P

and c a numerical constant in Q.
- (e) and −(e) are attribute expressions on P , if e is an attribute expression

on P .

Let P be a relation scheme and e an attribute expression on P . An aggre-
gation function on P is a function χ : (∆1× · · · ×∆k) → Q, where each ∆i is
either Z, or Q, or S, and it is defined as follows:

6.3 Aggregate Constraints 139

χ(x1, . . . , xk) = SELECT sum(e)
FROM P
WHERE α(x1, . . . , xk)

where α(x1, . . . , xk) is a boolean formula on x1, . . . , xk, constants and at-
tributes of P .

Example 6.2 The following aggregation functions are defined on the relation
scheme CashBudget(Year, Section, Subsection, Type, Value) of Example 6.1:

χ1(x, y, z) = SELECT sum(Value)
FROM CashBudget
WHERE Section=x

AND Year=y AND Type=z

χ2(x, y) = SELECT sum(Value)
FROM CashBudget
WHERE Year = x

AND Subsection=y

Function χ1 returns the sum of Value of all the tuples having Section x, Year
y and Type z. For instance, χ1(‘Receipts’, ‘2003’, ‘det’) returns 100+120 = 220,
whereas χ1(‘Disbursements’, ‘2003’, ‘aggr’) returns 160. Function χ2 returns the
sum of Value of all the tuples where Year=x and Subsection=y. In Exam-
ple 6.1, as the pair Year, Subsection is a key for the tuples of CashBudget,
the sum returned by χ2 is an attribute value of a single tuple. For instance,
χ2(‘2003’, ‘cash sales’) returns 100, whereas χ2(‘2004’, ‘net cash inflow’) re-
turns 10.

2

Definition 6.1 (Aggregate constraint) Given a database scheme D, an
aggregate constraint on D is an expression of the form:

∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑

i=1

ci · χi(Xi) ≤ K

)
(6.1)

where:

1. c1, . . . , cn,K are constants in Q;
2. φ(x1, . . . , xk) is a conjunction of relational atoms containing the variables

x1, . . . , xk and constants;
3. each χi(Xi) is an aggregation function, where Xi is a list of variables and

constants, and variables appearing in Xi are a subset of {x1, . . . , xk}.
2

140 6 Repairing and Querying Numerical Databases under Aggregate Constraints

A set of aggregate constraints is denoted as AC. Given a database D and
a set of aggregate constraints AC, we will use the notation D |= AC [resp.
D 6|= AC] to say that D is consistent [resp. inconsistent] w.r.t. AC.
Observe that aggregate constraints enable equalities to be expressed as well,
since an equality can be viewed as a pair of inequalities. For the sake of brevity,
in the following equalities will be written explicitly.

Example 6.3 Constraint 1 defined in Example 6.1 can be expressed as fol-
lows:
∀ x, y, s, t, v CashBudget(y, x, s, t, v) =⇒ χ1(x, y, ‘det’)− χ1(x, y, ‘aggr’) = 0

2

For the sake of simplicity, in the following we will use a shorter notation
for denoting aggregate constraints, where universal quantification is implied
and variables in φ which do not occur in any aggregation function are replaced
with the symbol ‘ ’. For instance, the constraint of Example 6.3 can be written
as:

CashBudget(y, x, , ,) =⇒ χ1(x, y, ‘det ’)− χ1(x, y, ‘aggr ’) = 0

Example 6.4 Constraints 2 and 3 of Example 6.1 can be expressed as follows:

Constraint 2:

CashBudget(x, , , ,) =⇒ χ2(x, ‘net cash inflow’)−
(χ2(x, ‘total cash receipts’)− χ2(x, ‘total disbursements’)) = 0

Constraint 3:

CashBudget(x, , , ,) =⇒ χ2(x, ‘ending cash balance’)−
(χ2(x, ‘beginning cash’) + χ2(x, ‘net cash inflow’)) = 0

Consider the database scheme consisting of relation CashBudget and relation
Sales(Product, Year, Income), containing pieces of information on annual
product sales. The following aggregate constraint says that, for each year, the
value of cash sales in CashBudget must be equal to the total incomes obtained
from relation Sales:

CashBudget(x, , , ,) ∧ Sales(, x,) =⇒ χ2(x, ‘cash sales’)− χ3(x) = 0

where χ3(x) is the aggregation function returning the total income due to
products sales in year x:

χ3(x) = SELECT sum(Income)
FROM Sales

WHERE Year = x
2

6.4 Repairs 141

6.4 Repairs

Updates at attribute-level will be used in the following as the basic primitives
for repairing data violating aggregate constraints. Given a relation scheme
P in the database scheme D, let MP = {A1, . . . , Ak} be the subset of MD
containing all the attributes in P belonging to MD.

Definition 6.2 (Atomic update) Let t = P (a1, . . . , an) be a tuple on the
relation scheme P (A1, . . . , An). An atomic update on t is a triplet < t, Ai, a

′
i >,

where Ai ∈MP and a′i is a value in DOM(Ai) and a′i 6= ai.
2

Update u =< t, Ai, a
′
i > replaces t[Ai] with a′i, thus yielding the tuple

u(t) = P (a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

Observe that atomic updates work on the set MP of measure attributes,
as our framework is based on the assumption that data inconsistency is due
to errors in the acquisition phase (as in the case of digitization of paper
documents) or in the measurement phase (as in the case of sensor readings).
Therefore our approach will only consider repairs aiming at re-constructing
the correct measures.

Example 6.5 Update u =< t,Value, 130 > issued on the following tuple:

t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100)

returns the tuple:

u(t) = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 130).

2

Given an update u, we denote the pair < tuple, attribute > updated by u
as λ(u). That is, if u = < t, Ai, a > then λ(u) =< t, Ai >.

Definition 6.3 (Consistent database update) Let D be a database and
U = {u1, . . . , un} be a set of atomic updates on tuples of D. The set U is said
to be a consistent database update iff ∀ j, k ∈ [1..n] if j 6=k then λ(uj) 6= λ(uk).

2

Informally, a set of atomic updates U is a consistent database update iff
for each pair of updates u1, u2 ∈ U , u1 and u2 do not work on the same tuples,
or they change different attributes of the same tuple.

The set of pairs < tuple, attribute > updated by a consistent database
update U will be denoted as

λ(U) =
⋃

ui∈U

{λ(ui)}

Given a database D, a tuple t in D, and a consistent database update
U , we denote the tuple obtained by applying the atomic updates in U of the
form < t, x, y > on t as U(t). Moreover, we denote the database resulting from
applying all the atomic updates in U on D as U(D).

142 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Definition 6.4 (Repair) Let D be a database scheme, AC a set of aggregate
constraints on D, and D an instance of D such that D 6|= AC. A repair ρ for
D is a consistent database update such that ρ(D) |= AC.

2

Example 6.6 A repair ρ for CashBudget w.r.t. constraints 1), 2) and 3)
consists in decreasing attribute Value in the tuple:

t = CashBudget(2003, ‘Receipts’, ‘total cash receipts’, ‘aggr’, 250)

down to 220; that is, ρ = { < t,Value, 220 > }.
2

Example 6.7 Let D be the database scheme consisting of relation schemes
P1(K1, A, B, C), P2(K2, D, E, F), where K1 and K2 are key attributes for P1

and P2, respectively, and MD = {A, B,C, D, E, F}. Let D be the database
instance of D consisting of the following relations (the term tx denotes the
tuple where the key attribute is equal to x):

K1 A B C

ta1 a1 1 2 3
ta2 a2 1 2 87

P1

K2 D E F

tb1 b1 1 4 3
tb2 b2 2 6 6

P2

Let AC be the singleton consisting of the following aggregate constraint:

∀x1, x2, x3, x4, x5 (P1(x1, x2, x3, 3) ∧ P2(x4, x2, 4, x5) =⇒ χ(x3) ≤ 2)

where:
χ(x3) = SELECT sum (F)

FROM P2
WHERE x3 < E

Consider the following set of atomic updates on D:

ρ = {< tb1 , D, 3 >,< tb1 , E, 1 >,< tb2 , D, 1 >,< tb2 , E, 4 >,< tb2 , F, 1 >}.
It is easy to see that D is not consistent w.r.t. to AC, and that ρ is a repair for
D w.r.t. AC, as relations P1, P2 in ρ(D) are as follows (circles circumscribe
attribute values updated by ρ):

K1 A B C

ρ(ta1) a1 1 2 3
ρ(ta2) a2 1 2 87

P1

K2 D E F

ρ(tb1) b1 3© 1© 3
ρ(tb2) b2 1© 4© 1©

P2

2

6.4 Repairs 143

6.4.1 Reparability

We now characterize the complexity of the repair-existence problem. All the
complexity results in the chapter refer to data-complexity, that is the size of
the constraints is assumed to be bounded by a constant.

The following lemma is a preliminary result which states that potential
repairs for an inconsistent database can be found among set of updates whose
size is polynomially bounded by the size of the original database.

Lemma 6.1 Let D be a database scheme, AC a set of aggregate constraints
on D, and D an instance of D such that D 6|= AC. If there is a repair ρ for
D w.r.t. AC, then there is a repair ρ′ for D w.r.t. AC such that λ(ρ′) ⊆ λ(ρ)
and ρ′ has polynomial size w.r.t. D.

Proof. Let ρ be a repair for D w.r.t. AC, and Xρ the set of variables con-
taining, for each pair < t, A > ∈ λ(ρ), a unique variable xt,A ranging
on the domain of A. For instance, in the case described in Example 6.7,
Xρ = {xtb1 ,D, xtb1 ,E , xtb2 ,D, xtb2 ,E , xtb2 ,F }.

The intuition underlying the proof is that the existence of ρ implies the
existence of a feasible set of linear inequalities In(AC) defined on the variables
of Xρ such that every solution x̂ of In(AC) corresponds to a repair ρx̂ for D
w.r.t. AC. In more detail, we will show that, given a solution x̂ of In(AC),
and denoting the value of variable xt,A in x̂ as x̂t,A, the set of atomic updates:

ρx̂ = { < t, A, x̂t,A > | < t, A >∈ λ(ρ) ∧ x̂t,A 6= t[A] }

is a repair for D w.r.t. AC.
Specifically, In(AC) can be shown to have a solution x̂ of polynomial size

w.r.t. D, so that ρx̂ is a polynomial-size repair for D w.r.t. AC which updates
a subset of the values modified by ρ.

Throughout this proof, for the sake of clarity, we will provide several ex-
amples for explaining the different steps of the translation of AC into In(AC).
All these examples will be referred to the case described in Example 6.7.

The rest of this proof is organized as follows. We first introduce the defi-
nition of In(AC), by explaining how to translate each constraint in AC into
a set of (in)equalities. Then, we prove that In(AC) has at least a solution of
polynomial size w.r.t. D, and that every solution of In(AC) defines a repair
for D w.r.t. AC. Finally, we exploit these properties to prove the statement.

————— Beginning of Definition of In(AC) —————

The set of inequalities In(AC) is obtained by first translating each aggre-
gate constraint ac in AC into a set of inequalities In(ac), and then assembling
the sets of inequalities corresponding to the different constraints into a unique
set of inequalities. We focus our attention on defining the translation of a sin-
gle aggregate constraint of AC.

144 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Constraint ac is of the form (6.1), with

φ(x1, . . . , xk) = P1(y1
1 , · · · , y1

k1
) ∧ · · · ∧ Pm(ym

1 , · · · , ym
km

)

where P1, . . . , Pn are (not necessarily distinct) relation names in D and, for
each l ∈ [1..m], j ∈ [1..kl], the term yl

j is either a variable in {x1, . . . , xk} or a
constant. In the following, we denote the relation scheme of each Pl occurring
in φ as Pl(Al

1, . . . , A
l
kl

).
Formula φ(x1, . . . , xk) can be re-written into an equivalent formula

φ′(x1, . . . , xk) of the form:

∃z1
1 , . . . , z1

k1
, . . . , zn

1 , . . . , zn
kn

(
Ψ(z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
) ∧

Υ (z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

, x1, . . . , xk)
) (6.2)

where:

- z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

are new variable symbols not occurring in φ;
- Ψ(z1

1 , . . . , z1
k1

, . . . , zn
1 , . . . , zm

km
) = P1(z1

1 , · · · , z1
k1

) ∧ · · · ∧ Pm(zm
1 , · · · , zm

km
);

- Υ (z1
1 , . . . , z1

k1
, .. ., zm

1 , . . . , zm
km

, x1, . . . , xk) is a conjunction of equality atoms
of the form zl

j = T , where l ∈ [1..m], j ∈ [1..kl], T is either a constant or
a variable in {z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
, x1, . . . , xk}, and each variable

xi ∈ {x1, . . . , xk} appears in exactly one equality atom.

For instance, the formula φ(x1, x2, x3, x4, x5) = P1(x1, x2, x3, 3)∧P2(x4, x2, 4, x5)
occurring in the aggregate constraint of our running example is equivalent to
the formula:

φ′(x1, x2, x3, x4, x5) = ∃z1
1 , z1

2 , z1
3 , z1

4 , z2
1 , z2

2 , z2
3 , z2

4 (P1(z1
1 , z1

2 , z1
3 , z1

4)
∧ P2(z2

1 , z2
2 , z2

3 , z2
4) ∧ z1

2 = z2
2 ∧ z1

4 = 3 ∧ z2
3 = 4

∧ z1
1 = x1 ∧ z1

2 = x2 ∧ z1
3 = x3 ∧ z2

1 = x4

∧ z2
4 = x5)

For the sake of readability, formulas Υ (z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

, x1,
. . . , xk) and Ψ(z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

kn
) will be referred to as Υ and Ψ ,

respectively, thus omitting variables.
Let Θac be the set of ground substitutions of variables z1

1 , . . . , z1
k1

, . . . ,
zm
1 , . . . , zm

km
such that, for every θ ∈ Θac, θ(Ψ) evaluates to true on ρ(D). For

each θ ∈ Θac and l ∈ [1..m], we denote as tl the tuple in relation Pl in D
“singled out” by θ, i.e., tl is the tuple such that ρ(tl) = θ

(
Pl(zl

1, . . . , z
l
kl

)
)
.

For instance, in our running example, consider the substitution:

θ′ = {z1
1/a2, z1

2/1, z1
3/2, z1

4/87, z2
1/b1, z2

2/3, z2
3/1, z2

4/3}

such that θ′(Ψ) = P1(a2, 1, 2, 87) ∧ P2(b1, 3, 1, 3). Then, we have t1 =
P1(a2, 1, 2, 87) and t2 = P2(b1, 1, 4, 3).

6.4 Repairs 145

For each θ ∈ Θac, let θ̃ be the substitution of variables z1
1 , . . . , z1

k1
, . . . ,

zm
1 , . . . , zm

km
with either variables in Xρ or constants defined as follows:

θ̃(zl
j) =

xtl,Al
j

if < tl, Al
j >∈ λ(ρ);

θ(zl
j) otherwise.

Basically, θ̃ substitutes the variable zl
j with the variable xtl,Al

j
in the

case that the value of the attribute Al
j in the tuple tl in D has been up-

dated by ρ. Otherwise, θ̃ substitutes zl
j with θ(zl

j), which is the value of
attribute Al

j in both the tuples tl in D and ρ(tl) in ρ(D). For instance, in
our running example, consider the above-introduced substitution θ′ such that
θ′(Ψ) = P1(a2, 1, 2, 87) ∧ P2(b1, 3, 1, 3). Then, we have that θ̃′(z2

4) = θ′(z2
4) = 3

and θ̃′(z2
3) = xtb1 ,E .

The set of inequalities In(ac) corresponding to a single aggregate con-
straint ac is obtained by assembling different sets of inequalities, which are
generated considering the substitutions in Θac separately. Specifically, for each
θ ∈ Θac, we define a set of inequalities In(ac, θ) according to the following
cases:

Case 1:
There is no substitution θ of variables x1, . . . , xk with variables z1

1 , . . . , z1
k1

, . . . ,

zm
1 , . . . , zm

km
such that θ(θ(φ′)) (i.e. θ(Ψ) ∧ θ(θ(Υ))) evaluates to true on

ρ(D):
In our running example, this happens, for instance, if we consider the
substitution θ′ defined above.
Initially, In(ac, θ) is set to ∅. Then, for each equality atom in Υ of the
form zl

j = T , if the following three conditions are true:
- T is either a variable among z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
or a constant

(i.e., T is not a variable in {x1, . . . , xk});
- θ(zl

j) 6= θ(T);
- at least one among θ̃(zl

j) and θ̃(T) is not a constant,
then we add to In(ac, θ) either the inequality θ̃(zl

j) > θ̃(T) (in the case
that θ(zl

j) > θ(T)) or the inequality θ̃(zl
j) < θ̃(T) (in the case that θ(zl

j) <
θ(T)).
For instance, consider the conjunct z2

3 = 4 occurring in Υ in our running
example, and the above-defined substitution θ′. As θ̃′(z2

3) = xtb1 ,E and
θ′(z2

3) = 1 < 4, we add the inequality xtb1 ,E < 4 to In(ac, θ′). Analo-
gously, consider the conjunct z1

2 = z2
2 . Since θ′(z1

2) = 1 < θ′(z2
2) = 3

and θ̃′(z1
2) = 1 and θ̃′(z2

2) = xtb1 ,D, we add the inequality 1 < xtb1 ,D to
In(ac, θ′).

146 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Intuitively, in this case, the inequalities of In(ac, θ) ensure that, if the
left-hand side of constraint ac is false w.r.t. ρ(D), then, for every solu-
tion x̂ of In(AC), it is false w.r.t. ρx̂(D) too (in a sense that will be
made clearer below). Specifically, let t1, . . . , tm be the tuples in D sin-
gled out by θ, and, for every solution x̂ of In(AC), let θρx̂

be the substi-
tution of variables z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
with constants such that

θρx̂
(Ψ) = ρx̂(t1) ∧ · · · ∧ ρx̂(tm). Then, the inequalities of In(ac, θ) ensure

that there is no substitution θρx̂
of variables x1, . . . , xk with variables

z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

such that θρx̂
(θρx̂

(φ′)) evaluates to true.

Observe that the number of (in)equalities added to In(ac, θ) in this case
is bounded by |Υ |, that is the number of equality atoms occurring in Υ .

Case 2 :
There is a substitution θ of variables x1, . . . , xk with variables z1

1 , . . . , z1
k1

,

. . . , zm
1 , . . . , zm

km
such that θ(θ(φ′)) evaluates to true on ρ(D): 1

In our running example, this happens, for instance, if we consider the
substitution:

θ′′ = {z1
1/a1, z1

2/1, z1
3/2, z1

4/3, z2
1/b2, z2

2/1, z2
3/4, z2

4/1}

such that θ′′(Ψ) = P1(a1, 1, 2, 3) ∧ P2(b2, 1, 4, 1). In this scenario, we have
that: θ′′ = {x1/z1

1 , x2/z1
2 , x3/z1

3 , x4/z2
1 , x5/z2

4}.
Basically, in this case, In(ac, θ) consists of inequalities translating the fact
that the right-hand side of ac holds on every database ρx̂(D) (where x̂
corresponds to a solution of In(AC)) whenever the variables occurring as
argument of every χi have been substituted with the values which they
are assigned by θ.
The right-hand side of ac is an inequality of the form

n∑

i=1

ci · χi(Xi) ≤ K. (6.3)

For each i ∈ [1..n], let Pχi and αi be the relation name and the boolean
formula occurring in the FROM and WHERE clauses of aggregate function
χi, respectively. We denote as ei the attribute expression occurring as
argument of the SUM operator in the SELECT clause of χi. Without loss
of generality, we assume that every αi is in disjunctive normal form and
ei is either an attribute or a constant.
For every i ∈ [1..n], we denote as Ti (resp., Fi) the set of tuples belonging
to relation Pχi in D such that, for each t ∈ Ti, the corresponding tuple
ρ(t) in ρ(D) satisfies (resp., does not satisfy) θ(θ(αi)) (see Section 6.2 for
the notion of tuple satisfying a boolean formula). For instance, consider

1 Observe that, as each variable xi appears in exactly one equality atom in Υ ,
substitution θ is unique.

6.4 Repairs 147

our running example (where n = 1) and the substitution θ′′. Then, it
holds that T1 = {P2(b2, 2, 6, 6)} and F1 = {P2(b1, 1, 4, 3)}.
In(ac, θ) is initially set to ∅. Then, we augment In(ac, θ) with the following
sets of (in)equalities:
a. first, we add to In(ac, θ) the inequality:

n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > ∈ λ(ρ)

xt,ei
≤ K ′, (6.4)

where K ′ is K minus the sum of the addends on the left-hand side of
(6.3) which are attribute expressions consisting of either constants or
attribute values not changed by ρ, i.e., 2

K ′ = K −
n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > 6∈ λ(ρ)

t[ei] (6.5)

For instance, if we consider our running example and substitution θ′′,
it is easy to see that the inequality added to In(ac, θ′′) is xtb2 ,F ≤ 2.

b. for each i ∈ [1..n] and each tuple t ∈ Ti we proceed as follows. From
definition of Ti, we have that there is at least one disjunct β in αi

such that ρ(t) satisfies θ(θ(β)). For each β such that ρ(t) satisfies
θ(θ(β)) we proceed as follows. Every conjunct γ in β is of the form
w1 ¦ w2, where ¦ is a comparison operator, and w1, w2 are either
variables in x1, . . . , xk, constants, or attribute names. Before defining
the inequalities that must be added to In(ac, θ) for the pair i, t under
consideration, we introduce the following functions defined on the set
of variables, constants and attribute names occurring in β:

µ(w) =

ρ(t)[w] if w is an attribute name;

θ(θ(w)) if w is a variable in {x1, . . . , xk};

w if w is a constant ;

µ̃(w) =

xt,w if w is an attribute name and < t, w >∈ λ(ρ);

ρ(t)[w] if w is an attribute name and < t, w > 6∈ λ(ρ);

θ̃(θ(w)) if w is a variable in {x1, . . . , xk};

w if w is a constant .

2 With a little abuse of notation, we assume that, if ei is a constant, then t[ei] = ei.
Moreover, observe that if ei is a constant, then < t, ei >6∈ λ(ρ).

148 6 Repairing and Querying Numerical Databases under Aggregate Constraints

For instance, if we consider the tuple tb2 = P2(b2, 2, 6, 6) such that
ρ(tb2) = P2(b2, 1, 4, 1) in our running example, and substitution θ′′,
we have that µ(E) = ρ(tb2)[E] = 4, and µ̃(E) = xtb2 ,E , and µ(x3) =
θ′′(θ′′(x3)) = 2 and µ̃(x3) = θ̃′′(θ′′(x3)) = 2.
For each conjunct w1 ¦ w2 in β such that either µ(w1) or µ(w2) is a
variable, we consider the following cases:
- if ¦ is equal to ‘6=’, then either the inequality µ̃(w1) < µ̃(w2) (in

the case that µ(w1) < µ(w2)) or the inequality µ̃(w1) > µ̃(w2) (in
the case that µ(w1) > µ(w2)) is added to In(ac, θ);

- if ¦ is different from ‘6=’, then the (in)equality µ̃(w1) ¦ µ̃(w2) is
added to In(ac, θ).

In our running example, β consists of the only conjunct x3 < E. Hence,
if we consider the tuple tb2 ∈ T such that ρ(tb2) = P2(b2, 1, 4, 1) and
substitution θ′′, since µ(x3) = 2 < µ(E) = 4, the inequality 2 < xtb2 ,E

(corresponding to µ̃(x3) < µ̃(E)) is added to In(ac, θ′′).
Observe that the overall number of (in)equalities added to In(ac, θ) in
this case is bounded by

∑n
i=1 |Ti| · |αi|, where |αi| denotes the number

of comparison atoms occurring in αi.
c. for each i ∈ [1..n] and each tuple t ∈ Fi, we proceed as follows. Let

µ and µ̃ be functions on the set of variables, constants and attribute
names occurring in β defined as in the above case. From definition of
Fi it follows that every disjunct βj in αi contains at least a conjunct
γj such that ρ(t) does not satisfy θ(θ(γj)). Specifically, conjunct γj is
of the form w1 ¦ w2, where ¦ is a comparison operator, and w1, w2 are
either variables in x1, . . . , xk, constants, or attribute names. For each
disjunct βj in αi, we add to In(ac, θ) an inequality defined as follows:
– if ¦ is ‘=’, then either the inequality µ̃(w1) < µ̃(w2) or µ̃(w1) >

µ̃(w2) is added to In(ac, θ), in the case that either µ(w1) < µ(w2)
or µ(w1) > µ(w2), respectively;

– otherwise, the inequality µ̃(w1) 6 ¦µ̃(w2) is added to In(ac, θ), where
6 ¦ is the comparison operator “opposite” to ¦ (for instance, if ¦ is
‘≤’, then 6 ¦ is ‘>’).

For instance, if we consider, in our running example, the tuple tb1 ∈ F
such that ρ(tb1) = P1(b1, 3, 1, 3), and the conjunct x3 < E occurring
in the WHERE clause of χ, since µ(x3) = 2 > µ(E) = 1, the inequality
2 ≥ xtb2 ,E (corresponding to µ̃(x3) ≥ µ̃(E)) is added to In(ac, θ′′).
Observe that the overall number of (in)equalities added to In(ac, θ) in
this case is bounded by

∑n
i=1 |Fi| · |αi|, where |αi| denotes the number

of comparison atoms occurring in αi.

The above-defined rules for translating a pair ac, θ into a set of linear in-
equalities In(ac, θ) can be used to formally define the set In(AC). Specifically,
the set of inequalities In(AC) translating the set of aggregate constraints AC
is defined as follows:

6.4 Repairs 149

In(AC) =
⋃

ac ∈ AC

(
⋃

θ ∈ Θac

In(ac, θ)

)
.

——————— End of Definition of In(AC) ———————

For the set of inequalities In(AC) introduced above, the properties stated
in the following two claims hold.

Claim 6.1 In(AC) has at least one solution of polynomial size w.r.t. D.

Claim 6.2 For each solution x̂ of In(AC), the set of updates ρx̂ is a repair
for D w.r.t. AC.

The proofs of these claims are postponed for the sake of readability. We
first exploit them to complete the proof of this lemma. Claim 6.1 implies that
there is a solution x̂ of In(AC) having polynomial size w.r.t. D, and Claim 6.2
implies that the corresponding set of updates ρx̂ is a repair for D w.r.t. AC.
It is easy to see that ρx̂ is of polynomial size w.r.t. D too (as every updated
value in ρx̂ is equal to a value in x̂), and that ρx̂ updates a subset of the values
updated by ρ (this trivially follows from definition of ρx̂).

Proof of Claim 6.1.

Obviously, In(AC) has at least one solution, where each variable xt,A ∈ Xρ

is assigned the value v such that < t,A, v >∈ ρ (it is easy to see that, for
each above-described translation rule, every (in)equality added to In(AC) is
satisfied by replacing each variable xt,A with ρ(t)[A], i.e. the value assigned
by ρ to attribute A in tuple t).

For each aggregate constraint ac ∈ AC and each θ ∈ Θac, every constant
occurring in the inequalities of In(ac, θ) is either a constant in ac or an at-
tribute value in D. Hence, since |Xρ| is bounded by the size of D, the size of
each inequality is linearly bounded by the size of D. Moreover, the number of
inequalities which In(ac, θ) consists of is bounded by |Υ |+1+

∑n
i=1 |Pi| · |αi|.

In fact, if Case 1 holds, In(ac, θ) is such that |In(ac, θ)| ≤ |Υ | (see description
of Case 1). Otherwise, In(ac, θ) consists of both inequality (6.4) (Case 2.a)
and the inequalities generated as described in Case 2.b and Case 2.c, thus
|In(ac, θ)| ≤ 1 +

∑n
i=1 |Ti| · |αi|+

∑n
i=1 |Fi| · |αi| = 1 +

∑n
i=1 |Pi| · |αi|.

Furthermore, for each ac ∈ AC, it holds that |Θac| = Πk
i=1|Pi|. Hence, the

number of (in)equalities in In(ac) is bounded by (|Υ |+ 1 +
∑n

i=1 |Pi| · |αi|) ·
Πk

i=1|Pi|.

150 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Since the size of each inequality in In(ac) is linearly bounded by the size
of D (as explained above), the latter implies that the size of In(ac) is polyno-
mially bounded by the size of D. Finally, since the number of constraints in
AC is independent from the size of D, from the latter it follows that the size
of In(AC) is polynomially bounded by the size of D too.

Since In(AC) has at least one solution, there is a solution of In(AC) of
polynomial size w.r.t. the size of In(AC) [18, 67]. Hence, as the size of In(AC)
is polynomially bounded by the size of D, it holds that In(AC) has at least
one solution of polynomial size w.r.t. D.

2

Proof of Claim 6.2.

Let x̂ be a solution of In(AC). We now prove that ρx̂ is a repair for D
w.r.t. AC. Assume by contradiction that there is a solution x̂ of In(AC) such
that ρx̂ is not a repair for D w.r.t. AC. This means that there is a constraint
ac in AC such that ρx̂(D) 6|= ac. Constraint ac can be re-written in the form:

∀x1, . . . , xk

(
φ′(x1, . . . , xk) =⇒

n∑

i=1

ci · χi(Xi) ≤ K

)

where φ′ is of the form (6.2). The fact that ρx̂(D) 6|= ac implies that there is a
ground substitution θρx̂

of variables z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

and a substi-
tution θρx̂

of variables x1, . . . , xk with variables z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

such that:

(a) θρx̂

(
θρx̂

(φ′)
)

is true on ρx̂(D), and
(b)

∑n
i=1 ci · χi

(
θρx̂

(
θρx̂

(Xi)
))

> K, where every aggregate function χi is
evaluated on ρx̂(D).

Let θ be the ground substitution of variables z1
1 , . . . , z1

k1
, . . . , zm

1 , . . . , zm
km

such that for each l ∈ [1..m], being t the tuple in D such that ρx̂(t) =
θρx̂

(
Pl(zl

1, . . . , z
l
kl

)
)
, it holds that ρ(t) = θ

(
Pl(zl

1, . . . , z
l
kl

)
)
. Basically, θρx̂

and
θ are ground substitutions of variables z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
such that,

for each l ∈ [1..m], the tuples t′ = θρx̂

(
Pl(zl

1, . . . , z
l
kl

)
)

in ρx̂(D) and the tuple
t′′ = θ

(
Pl(zl

1, . . . , z
l
kl

)
)

in ρ(D) result from updating the same tuple t in D,
i.e., t′ = ρx̂(t) and t′′ = ρ(t).

We now prove that there is a substitution θ of variables x1, . . . , xk with
variables z1

1 , . . . , z1
k1

, . . . , zm
1 , . . . , zm

km
such that θ

(
θ(φ′)

)
is true on ρ(D).

Let θ = {xi/zl
j | the conjunct xi = zl

j appears in Υ}. First, observe that θ

is a substitution of variables in {x1, . . . , xk} with variables z1
1 , . . . , z1

k1
, . . . ,

zm
1 , . . . , zm

km
since, for each i ∈ [1..k], variable xi appears in exactly one con-

junct in Υ (thus, θ contains no two distinct pairs xi/zl1
j1

, xi/zl2
j2

). We now
show that θ

(
θ(φ′)

)
is true on ρ(D). We accomplish this reasoning by contra-

diction, that is we assume that θ
(
θ(φ′)

)
is false on ρ(D). This implies that

6.4 Repairs 151

there is a conjunct zl
j = T in Υ (where T is a variable among z1

1 , . . . , z1
k1

, . . . ,

zm
1 , . . . , zm

km
or a constant) such that θ

(
zl
j

) 6= θ (T). If both θ̃
(
zl
j

)
and θ̃ (T)

are constants, then θρx̂

(
zl
j

) 6= θρx̂
(T) holds too (this trivially follows from the

above-explained fact that attribute values which are not updated by ρ are not
updated by ρx̂), which contradicts that θρx̂

(
θρx̂

(φ′)
)

is true on ρx̂(D). Other-
wise, if at least one among θ̃

(
zl
j

)
and θ̃ (T) is not a constant, either the inequal-

ity θ̃
(
zl
j

)
< θ̃ (T) or the inequality θ̃

(
zi
j

)
> θ̃ (T) is in In(AC) (see Case 1).

Since x̂ is a solution of In(AC), inequality θ̃
(
zl
j

)
< θ̃ (T) (resp., inequality

θ̃
(
zl
j

)
> θ̃ (T)) implies that θρx̂

(
zl
j

)
< θρx̂

(T) (resp., θρx̂

(
zl
j

)
> θρx̂

(T)),
thus contradicting that θρx̂

(
θρx̂

(φ′)
)

is true on ρx̂(D). This completes the
proof of the existence of θ.

The existence of θ implies that, when the pair ac, θ is considered to de-
fine the inequalities of In(ac, θ), Case 2 holds. Observe that this implies
that the inequality

∑n
i=1 ci ·

∑
t∈Ti ∧<t,ei> ∈λ(ρ) xt,ei ≤ K ′ is in In(ac, θ) (see

Case 2.a).
We first prove that, for each i ∈ [1..n] and for each tuple t belonging to Pχi

in D, if ρ(t) satisfies θ
(
θ(αi)

)
then ρx̂(t) satisfies θρx̂

(
θρx̂

(αi)
)
, and vice versa.

Left-to-right implication: Reasoning by contradiction, assume that ρx̂(t) does
not satisfy θρx̂

(
θρx̂

(αi)
)
. The fact that ρ(t) satisfies θ

(
θ(αi)

)
implies that

there is at least a disjunct β in αi such that ρ(t) satisfies θ
(
θ(β)

)
. Since ρx̂(t)

does not satisfy θρx̂

(
θρx̂

(αi)
)
, it must be the case that ρx̂(t) does not satisfy

θρx̂

(
θρx̂

(β)
)
. That is, there is a conjunct w1 ¦ w2 in β such that ρx̂(t) does

not satisfy θρx̂

(
θρx̂

(w1 ¦ w2)
)
. We consider two cases separately.

- If both µ̃(w1) and µ̃(w2) are constants, then we are in the case that neither
w1 nor w2 refer to database values updated by ρ. Thus, since ρx̂ updates
a subset of the values modified by ρ, it must hold that ρx̂(t) satisfies
θρx̂

(
θρx̂

(w1 ¦ w2)
)
, which is a contradiction.

- If at least one among µ̃(w1) and µ̃(w2) is a variable, if ¦ is equal to 6=, then
either the inequality µ̃(w1) < µ̃(w2) or the inequality µ̃(w1) > µ̃(w2) has
been added to In(ac, θ). Since x̂ satisfies inequalities of In(ac, θ), it must
be the case that ρx̂(t) satisfies θρx̂

(
θρx̂

(w1 < w2)
)

(resp., θρx̂

(
θρx̂

(w1 > w2)
)
)

and then it satisfies θρx̂

(
θρx̂

(w1 6= w2)
)

too, which is a contradiction. An
analogous reasoning can be exploited in the case that ¦ is different from
‘6=’.

Right-to-left implication: Reasoning by contradiction, assume that ρ(t) does
not satisfy θ

(
θ(αi)

)
. In this case, for every disjunct βj in αi, there is a conjunct

γj = w1 ¦w2 such that ρ(t) does not satisfy θ
(
θ(w1 ¦ w2)

)
. We first show that

this implies that also ρx̂(t) does not satisfy θρx̂

(
θρx̂

(w1 ¦ w2)
)
. We consider

separately the following two cases.

152 6 Repairing and Querying Numerical Databases under Aggregate Constraints

- If both µ̃(w1) and µ̃(w2) are constants, then neither w1 nor w2 refer to
database values updated by ρ. Thus, since ρx̂ updates a subset of the values
modified by ρ, it must hold that ρx̂(t) does not satisfy θρx̂

(
θρx̂

(w1 ¦ w2)
)
,

which implies that ρx̂(t) does not satisfy θρx̂

(
θρx̂

(βj)
)
.

- If at least one among µ̃(w1) and µ̃(w2) is a variable, if ¦ is ‘=’, then either
the inequality µ̃(w1) < µ̃(w2) or the inequality µ̃(w1) > µ̃(w2) has been
added to In(ac, θ). Since x̂ satisfies inequalities of In(ac, θ), it must be the
case that ρx̂(t) satisfies θρx̂

(
θρx̂

(w1 < w2)
)

(resp., θρx̂

(
θρx̂

(w1 > w2)
)
) and

then it does not satisfy θρx̂

(
θρx̂

(w1 = w2)
)
. An analogous reasoning can

be exploited in the case that ¦ is different from ‘=’.

This reasoning can be applied to every disjunct βj in αi, that is for ev-
ery disjunct βj in αi there is a conjunct γj such that ρx̂(t) does not satisfy
θρx̂

(
θρx̂

(γj)
)
. This implies that ρx̂(t) does not satisfy θρx̂

(
θρx̂

(αi)
)
, which

contradicts the hypothesis.

We now show that the above-proved equivalence

“∀i ∈ [1..n], ∀t ∈ Pχi
in D

(
ρ(t) satisfies θ

(
θ(αi)

) ⇔ ρx̂(t) satisfies θρx̂

(
θρx̂

(αi)
))

”

together with the fact that
∑n

i=1 ci ·
∑

t∈Ti ∧<t,ei> ∈λ(ρ) xt,ei ≤ K ′ is in
In(AC), imply that

∑n
i=1 ci · χi

(
θρx̂

(
θρx̂

(Xi)
)) ≤ K holds on ρx̂(D). We

accomplish this reasoning by contradiction, that is we assume that
∑n

i=1 ci ·
χi

(
θρx̂

(
θρx̂

(Xi)
))

> K holds on ρx̂(D).
For every i ∈ [1..n], we denote as T̂i (resp., F̂i) the set of tuples belonging

to relation Pχi in D such that, for each t ∈ T̂i, the corresponding tuple ρx̂(t)
in ρx̂(D) satisfies (resp., does not satisfy) θρx̂

(θρx̂
(αi)).

From definition of aggregate function, it holds that:

n∑

i=1

ci · χi

(
θρx̂

(
θρx̂

(Xi)
))

=
n∑

i=1

ci ·
∑

t ∈ T̂i

ρx̂(t)[ei]

Due to contradiction hypothesis, the latter implies that:

n∑

i=1

ci ·
∑

t ∈ T̂i

ρx̂(t)[ei] > K

Since for each i ∈ [1..n] and for each tuple t belonging to Pχi in D, if ρ(t)
satisfies θ

(
θ(αi)

)
then ρx̂(t) satisfies θρx̂

(
θρx̂

(αi)
)
, and vice versa, the latter

inequality can be re-written as follows, by making the inner summation range
on the tuples of Ti instead of T̂i:

n∑

i=1

ci ·
∑

t ∈ Ti

ρx̂(t)[ei] > K

6.4 Repairs 153

which is equivalent to:

n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > ∈ λ(ρ)

ρx̂(t)[ei] > K −
n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > 6∈ λ(ρ)

ρx̂(t)[ei]

Since ρ and ρx̂ coincide on the database values not updated by ρ, the right-
hand side of the above inequality coincides with the constant K ′ introduced
in equation (6.5) - Case 2.a. Hence, the above inequality implies that:

n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > ∈ λ(ρ)

ρx̂(t)[ei] > K ′

As from the definition of ρx̂, for each i ∈ [1..n] and for each tuple t ∈ Ti

such that < t, ei > ∈ λ(ρ), it holds that ρx̂(t)[ei] = x̂t,ei , the latter inequality
implies that:

n∑

i=1

ci ·
∑

t ∈ Ti ∧
< t, ei > ∈ λ(ρ)

x̂t,ei > K ′

which contradicts the hypothesis that x̂ is a solution of In(AC), since the
inequality

∑n
i=1 ci ·

∑
t∈Ti ∧<t,ei> ∈λ(ρ) xt,ei ≤ K ′ has been added to In(AC)

(see Case 2.a).
This completes the proof of the property that, for each solution x̂ of

In(AC), the corresponding set of updates ρx̂ is a repair for D w.r.t. AC.
2

Theorem 6.1 (Repair existence) Let D be a database scheme, AC a set
of aggregate constraints on D, and D an instance of D such that D 6|= AC. The
problem of deciding whether there is a repair for D is NP -complete (w.r.t.
the size of D).

Proof. Membership. A polynomial size witness for deciding the existence of a
repair is a database update U on D: testing whether U is a repair for D means
verifying U(D) |= AC, which can be accomplished in polynomial time w.r.t.
the size of D and U . If a repair exists for D, then Lemma 6.1 guarantees that
a polynomial size repair for D exists too.
Hardness. We show a reduction from circuit sat to our problem. Without
loss of generality, we consider a boolean circuit C using only NOR gates.
The inputs of C will be denoted as x1, . . . , xn. The boolean circuit C can be
represented by means of the database scheme:

154 6 Repairing and Querying Numerical Databases under Aggregate Constraints

gate(IDGate, norV al, orV al),
gateInput(IDGate, IDIngoing, V al),
input(IDInput, V al).

Therein:

1. each gate in C corresponds to a tuple in gate (attributes norVal and orVal
represent the output of the corresponding NOR gate and its negation,
respectively);

2. inputs of C correspond to tuples of input : attribute Val in a tuple of input
represents the truth assignment to the input xIDInput;

3. each tuple in gateInput represents an input of the gate identified by
IDGate. Specifically, IDIngoing refers to either a gate identifier or an
input identifier; attribute Val is a copy of the truth value of the specified
ingoing gate or input.

We consider the database instance D where the relations defined above are
populated as follows. For each input xi in C we insert the tuple input(id(xi),−1)
into D, and for each gate g in C we insert the tuple gate(id(g),−1,−1),
where function id(x) assigns a unique identifier to its argument (we as-
sume that gate identifiers are distinct from input identifiers, and that the
output gate of C is assigned the identifier 0). Moreover, for each edge in
C going from g′ to the gate g (where g′ is either a gate or an input of
C), the tuple gateInput(id(g), id(g′),−1) is inserted into D. Assume that
Mgate = {norV al, orV al}, MgateInput = {V al}, Minput = {V al}. In the fol-
lowing, we will define aggregate constraints to force measure attributes of all
tuples to be assigned either 1 or 0, representing the truth value true and false,
respectively. The initial assignment (where every measure attribute is set to
−1) means that the truth values of inputs and gate outputs is undefined.

Consider the following aggregation functions:

NORV al(X) = SELECT Sum(norVal)
FROM gate

WHERE (IDGate=X)

ORV al(X) = SELECT Sum(orVal)
FROM gate

WHERE (IDGate=X)

IngoingV al(X, Y) = SELECT Sum(Val)
FROM gateInput

WHERE (IDGate=X)
AND (IDIngoing=Y)

IngoingSum(X) = SELECT Sum(Val)
FROM gateInput

WHERE (IDGate=X)

6.4 Repairs 155

InputV al(X) = SELECT Sum(Val)
FROM Input

WHERE (IDInput=X)

V alidInput() = SELECT Sum(1)
FROM input

WHERE (Val 6= 0)
AND (Val 6= 1)

V alidGate() = SELECT Sum(1)
FROM gate

WHERE (orVal 6= 0 AND orVal 6= 1)
OR (norVal 6= 0 AND norVal 6= 1)

Therein: NORV al(X) and ORV al(X) return the truth value of the gate
X and its opposite, respectively; IngoingV al(X, Y) returns, for the gate with
identifier X, the truth value of the ingoing gate or input having identifier Y ;
IngoingSum(X) returns the sum of the truth values of the inputs of the gate
X; InputV al(X) returns the truth assignment of the input X; V alidInput()
returns 0 iff there is no tuple in relation input where attribute V al is neither
0 nor 1, otherwise it returns a number greater than 0; likewise, V alidGate()
returns 0 iff there is no tuple in relation gate where attributes norV al or
orV al are neither 0 nor 1 (otherwise it returns a number greater than 0).

Consider the following aggregate constraints on D:

1. V alidInput() + V alidGate() = 0, which entails that only 0 and 1 can
be assigned either to attributes orV al and norV al in relation gate, and
to attribute V al in relation input;

2. gate(X, ,) ⇒ ORV al(X) + NORV al(X) = 1, which says that for each
tuple representing a NOR gate, the value of orV al must be complementary
to norV al;

3. gate(X, ,) ⇒ ORV al(X) − IngoingSum(X) ≤ 0, which says that for
each tuple representing a NOR gate, the value of orV al cannot be greater
than the sum of truth assignments of its inputs (i.e. if all inputs are 0,
orV al must be 0 too);

4. gateInput(X, Y,) ⇒ IngoingV al(X, Y)−ORV al(X) ≤ 0, which implies
that, for each gate g, attribute orV al must be 1 if at least one input of g
has value 1;

5. gateInput(X, Y,) ⇒ IngoingV al(X, Y)−NORV al(Y)− InputV al(Y) =
0, which imposes that the attribute V al in each tuple of gateInput is the
same as the truth value of either the ingoing gate or the ingoing input.

Observe that D does not satisfy these constraints, but every repair of D
corresponds to a valid truth assignment of C.

Let AC be the set of aggregate constraints consisting of constraints 1-5
defined above plus constraint NORV al(0) = 1 (which imposes that the truth
value of the output gate must be true). Therefore, deciding whether there is
a truth assignment which evaluates C to true is equivalent to asking whether
there is a repair ρ for D w.r.t. AC.

2

156 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Theorem 6.1 states that the repair existence problem is decidable. This
result, together with the practical usefulness of the considered class of con-
straints, makes the complexity analysis of finding consistent answers on incon-
sistent data interesting. Basically decidability results from the linear nature of
the considered constraints. If products between two attributes were allowed as
attribute expressions, the repair-existence problem would be undecidable. This
can be proved straightforwardly, since this form of non-linear constraints is
more expressive than those introduced in [16], where the corresponding repair-
existence problem was shown to be undecidable (cfr. Section 5.2.2). However,
observe that occurrences of products of the form Ai×Aj in attribute expres-
sions can lead to undecidability only if both Ai and Aj are measure attribute.
Otherwise, this case is equivalent to products of the form c×A, which can be
expressed in our form of aggregate constraints.

6.4.2 Minimal Repairs

Theorem 6.1 deals with the problem of deciding whether a database D violat-
ing a set of aggregate constraints AC can be repaired. If this is the case, differ-
ent repairs can be performed on D yielding a new database consistent w.r.t.
AC, although not all of them can be considered “reasonable”. For instance, if
a repair exists for D changing only one value in one tuple of D, any repair up-
dating all values in all tuples of D can be reasonably disregarded. To evaluate
whether a repair should be considered “relevant” or not, we introduce two dif-
ferent ordering criteria on repairs, corresponding to the comparison operators
‘≤set ’ and ‘≤card ’. The former compares two repairs by evaluating whether
one of the two performs a subset of the updates of the other. That is, given
two repairs ρ1, ρ2, we say that ρ1 precedes ρ2 (ρ1 ≤set ρ2) iff λ(ρ1) ⊆ λ(ρ2).
The latter ordering criterion states that a repair ρ1 is preferred w.r.t. a repair
ρ2 (ρ1 ≤card ρ2) iff |λ(ρ1)| ≤ |λ(ρ2)|, that is if the number of changes issued
by ρ1 is less than ρ2.

Observe that ρ1 <set ρ2 implies ρ1 <card ρ2, but the vice versa does not
hold, as it can be the case that repair ρ1 changes a set of values λ(ρ1) which
is not a subset of λ(ρ2), but whose cardinality is less than that of λ(ρ2).

Example 6.8 Another repair for CashBudget is:

ρ′ = {〈t1, Value, 130〉, 〈t2, Value, 70〉, 〈t3, Value, 190〉},
where:

t1 = CashBudget(2003, ‘Receipts’, cash sales’, ‘det’, 100),
t2 = CashBudget(2003, ‘Disbursements’, ‘long-term financing’, ‘det’, 40),
t3 = CashBudget (2003, ‘Disbursements’, ‘total disbursements’, ‘aggr’, 160).

Observe that ρ <card ρ′, but not ρ <set ρ′ (where ρ is the repair defined in
Example 6.6).

2

6.4 Repairs 157

Definition 6.5 (Minimal repairs) Let D be a database scheme, AC a set
of aggregate constraints on D, and D an instance of D. A repair ρ for D w.r.t.
AC is a set-minimal repair [resp. card -minimal repair] iff there is no repair ρ′

for D w.r.t. AC such that ρ′ <set ρ [resp. ρ′ <card ρ].
2

Example 6.9 Repair ρ of Example 6.6 is minimal under both the set-minimal
and the card -minimal semantics, whereas ρ′ defined in Example 6.8 is minimal
only under the set-minimal semantics.
Consider the repair ρ′′ = {〈t1,Value, 110〉, 〈t2,Value, 110〉, 〈t3,Value, 220〉}
where:

t1 = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100),
t2 = CashBudget(2003, ‘Receipts’, ‘receivables’, ‘det’, 120),
t3 = CashBudget(2003, ‘Receipts’, ‘total cash receipts’, ‘aggr’, 250).

The strategy adopted by ρ′′ can be reasonably disregarded, since the only
atomic update on tuple t3 suffices to make D consistent. In fact, ρ′′ is not
minimal neither under the set-minimal semantics (as λ(ρ) ⊂ λ(ρ′′) and thus
ρ<set ρ

′′) nor under the card -minimal one.
2

Given a database D which is not consistent w.r.t. a set of aggregate con-
straints AC, different set-minimal repairs (resp. card -minimal repairs) can
exist on D. In our running example, repair ρ of Example 6.6 is the unique
card -minimal repair, and both ρ and ρ′ are set-minimal repairs (where ρ′ is
the repair defined in Example 6.8). The set of set-minimal repairs and card -
minimal repairs will be denoted, respectively, as ρset

M and ρcard
M .

Observe that, both ρset
M and ρcard

M contain subsets of consistent database
updated. For a database D and a set of aggregate constraints AC, the set of
repaired database instance according to the set-minimal semantics (resp. card -
minimal repairs) will be denoted as R(D,AC, set) (resp. R(D,AC, card)).
That is, R(D,AC, set) = {ρ(D) | ρ ∈ ρset

M } and R(D,AC, card) = {ρ(D) | ρ ∈
ρcard

M }.
Theorem 6.2 (Minimal-repair checking) Let D be a database scheme,
AC a set of aggregate constraints on D, and D an instance of D such that
D 6|= AC. Given a repair ρ for D w.r.t. AC, deciding whether ρ is minimal
(under either the card -minimality and set-minimality semantics) is coNP-
complete (w.r.t. the size of D and ρ).

Proof. Membership. A polynomial size witness for the complement of the prob-
lem of deciding whether ρ ∈ ρset

M [resp. ρ ∈ ρcard
M] is a repair ρ′ such that

ρ′ <set ρ [resp. ρ′ <card ρ]. From Lemma 6.1 we have that ρ′ can be found
among repairs having polynomial size w.r.t. D.
Hardness. We show a reduction of minimal model checking (mmc) [22] to
our problem. Consider an instance 〈f, M〉 of mmc, where f is a propositional

158 6 Repairing and Querying Numerical Databases under Aggregate Constraints

formula and M a model for f . Formula f can be translated into an equiva-
lent boolean circuit C using only NOR gates, and C can be represented as
shown in the hardness proof of Theorem 6.1. Therefore, we consider the same
database scheme D and the same set of aggregate constraints AC on D as
those in the proof of Theorem 6.1. Let D be the instance of D constructed
as follows. For each input xi in C we insert the tuple input(id(xi), 0) into D.
Then, as for the construction in the hardness proof of Theorem 6.1, for each
gate g in C we insert the tuple gate(id(g),−1,−1) into D, and for each edge
in C going from g′ to the gate g (where g′ is either a gate or an input of C),
the tuple gateInput(id(g), id(g′),−1) is inserted into D.

Observe that any repair for D must update all measure attributes in D
with value −1. Therefore, given two repairs ρ′, ρ′′, it holds that for each
< t, A >∈ (λ(ρ′)4λ(ρ′′)), t is a tuple of input and A = V al.

Obviously, a repair ρ for D exists, consisting of the following updates:
1) attribute V al is assigned 1 in every tuple of input corresponding to an
atom in f which is true in M ; 2) attributes norV al, orV al in gate and V al in
gateInput are updated accordingly to updates described above. Basically, such
a constructed repair ρ corresponds to M (we say that a repair corresponds to
a model if it assigns 1 to attribute V al in the tuples of input corresponding
to the atoms which are true in the model, 0 otherwise).

If M is not a minimal model for f , then there exists a model M ′ such that
M ′ ⊂ M (i.e. atoms which are true in M ′ are a proper subset of atoms which
are true in M). Then, the repair ρ′ corresponding to M ′ satisfies ρ′ <set ρ.
Vice versa, if there exists a repair ρ′ such that ρ′ <set ρ, then the model
M ′ corresponding to ρ′ is a proper subset of M , thus M is not minimal.
This proves that M is a minimal model for f iff ρ is a minimal repair (under
set-minimal semantics) for D w.r.t AC.

Proving hardness under card -minimal semantics can be accomplished as
follows. First, a formula fM is constructed from f by replacing, for each atom
α 6∈ M , each occurrence of α in f with the contradiction (α ∧ ¬α). Then, an
instance D of D is constructed corresponding to formula fM with the same
value assignments as before (attribute V al in all the tuples of input are set
to 0, and all the other measure attributes are set to −1).

M is a model for both f and fM , and it is minimal for f iff it is minimum
for fM . In fact, if M is minimal for f there is no subset M ′ of M which
is a model of f . Then, assume that a model M ′′ for fM exists, such that
|M ′′| < |M |. Then, also M ′′′ = M ′′ ∩ M is a model for fM , implying that
M ′′′ is a model for f , which is a contradiction (as M ′′′ ⊂ M). On the other
hand, if M is minimum for fM then M must be minimal for f . Otherwise,
there would exist a model M ′ for f s.t. M ′ ⊂ M . However M ′ is also a model
for fM , which is a contradiction, as |M ′| < |M |.

Let ρ be the repair of D w.r.t. AC corresponding to M . If M is not min-
imum, then there exists M ′ (with |M ′| < |M |) which is a model for fM .
Therefore the repair ρ′ corresponding to M ′ satisfies ρ′ <card ρ. Vice versa,
if a repair ρ′ for D w.r.t. AC exists such that ρ′ <card ρ, then the model M ′

6.4 Repairs 159

corresponding to ρ′ is such that |M ′| < |M |, thus M is not minimum for fM .
This proves that M is a minimal model for f iff there is no repair ρ′ for D
w.r.t. AC such that ρ′ <card ρ.

2

6.4.3 Set-Minimality versus Card-Minimality

Basically, both the set-minimal and the card -minimal semantics aim at consid-
ering “reasonable” repairs which preserve the content of the input database as
much as possible. The notion of repair minimality based on the number of per-
formed updates has been discussed in the context of relational data violating
“non-numerical” constraints in [42, 9, 65, 66]. Indeed, most of the proposed
approaches consider repairs consisting of deletions and insertions of tuples,
and preferred repairs are those consisting of minimal sets of insert/delete op-
erations (cfr. Chapter 3 and Chapter 4). In fact, the set-minimal semantics
is more natural than the card -minimal one when no hypothesis can be rea-
sonably formulated to “guess” how data inconsistency occurred, which is the
case of previous works on database-repairing. As it will be clear in the fol-
lowing, in the general case, the adoption of the card -minimal semantics could
make reasonable sets of delete/insert operations to be not considered as can-
didate repairs, even if they correspond to error configurations which cannot
be excluded.

For instance, consider the relation scheme:

Department(Name, Area, Employees, Category)

and the relation:

Name Area Employees Category

D1 100 24 A −→ t1
D2 100 30 B −→ t2
D3 100 30 B −→ t3

where the following functional dependencies are defined:

FD1 : Area → Employees (i.e. departments having the same area
must have the same number of employees)

FD2 : Employees → Category (i.e. departments with the same number of
employees must be of the same category)

The above-reported relation does not satisfy FD1, as the three departments
occupy the same area but do not have the same number of employees. Sup-
pose we are using a repairing strategy based on deletions and insertions of
tuples. Different repairs can be adopted. For instance, if we suppose that the
inconsistency arises as tuple t1 contains wrong information, Department can
be repaired by only deleting t1. Otherwise, if we assume that t1 is correct, a
possible repair consists of deleting t2 and t3. If the card -minimal semantics is

160 6 Repairing and Querying Numerical Databases under Aggregate Constraints

adopted, the latter strategy will be disregarded, as it performs two deletions,
whereas the former deletes only one tuple. On the contrary, if the set-minimal
semantics is adopted, both the two strategies define minimal repairs (as the
sets of tuples deleted by each of these strategies are not subsets of one an-
other). In fact, if we do not know how the error occurred, there is no reason
to assume that the error configuration corresponding to the second repairing
strategy is not possible. Indeed, inconsistency could be due to integrating data
coming from different sources, where some sources are not up-to-date. How-
ever, there is no good reason to assume that the source which contains the
smallest number of tuples is the one that is up to date. See [60] for a survey
on inconsistency due to data integration.

Likewise, the card -minimal semantics could disregard reasonable repairs
also in the case that a repairing strategy based on updating values instead of
deleting/inserting whole tuples is adopted 3. For instance, if we suppose that
the inconsistency arises as the value of attribute Area is wrong for either t1
or both t2 and t3, Department can be repaired by replacing the Area value
for either t1 or both t2 and t3 with a value different from 100. Otherwise, if
we assume that the Area values for all the tuples are correct, Department can
be repaired w.r.t. FD1 by making the Employees value of t1 equal to that
of t2 and t3. Indeed this update yields a relation which does not satisfy FD2

(as t1[Category] 6= t2[Category]) so that another value update is necessary
in order to make it consistent. Under the card -minimal semantics the latter
strategy is disregarded, as it performs more than one value update, whereas
the former changes only the Area value of one tuple. On the contrary, under
the set-minimal semantics both the two strategies define minimal repairs (as
the sets of updates issued by each of these strategies are not subsets of one
another). As for the case explained above, disregarding the second repairing
strategy is arbitrary, if we do not know how the error occurred.

Our framework addresses scenarios where also card -minimal semantics can
be reasonable. For instance, if we assume that integrity violations are gener-
ated while acquiring data by means of an automatic or semi-automatic system
(e.g. an OCR digitizing a paper document, a sensor monitoring atmospheric
conditions, etc.), focusing on error configurations which can be repaired with
the minimum number of updates is well founded. Indeed this corresponds
to the case that the acquiring system made the minimum number of errors
(e.g. bad symbol-recognition for an OCR, sensor troubles, etc.), which can be
considered the most probable event.

In this chapter we discuss the existence of repairs, and their computation
under both card -minimal and set-minimal semantics. The latter has to be
preferred when no warranty is given on the accuracy of acquiring tools, and,
more generally, when no hypothesis can be formulated on the cause of errors.

3 Value updates cannot be necessarily simulated as a sequence deletion/insertion,
as this might not be minimal under set inclusion.

6.5 Consistent Query Answers 161

6.5 Consistent Query Answers

In this section we address the problem of extracting reliable information from
data violating a given set of aggregate constraints. We consider boolean queries
checking whether a given tuple belongs to a database, i.e. queries of the form
Q = P (a1, . . . , an), where P (A1, . . . , An) is a relation scheme in D. We adopt
the widely-used notion of consistent query answer introduced in [4] (cfr. Sec-
tion 2.5).

We recall the notion of consistent query answer (cfr. Definition 1.7). Let
D be a database scheme, D be an instance of D, AC be a set of aggregate
constraints on D and Q be a boolean ground query over D. The consistent
query answer of Q on D under the set-minimal semantics (resp. card -minimal
semantics) is true iff q ∈ ρ(D) for each ρ ∈ ρset

M (resp. for each ρ ∈ ρcard
M).

The consistent query answers of a query Q issued on the database D under
the set-minimal and card -minimal semantics will be denoted as Qset(D) and
Qcard(D), respectively. The following theorems characterize data-complexity
of the consistent query answering problem under both the set-minimal and
card -minimal semantics. Before providing the theorems, we prove two lemmas.
The former (resp. the latter) lemma ensures that if there is a repair ρ for a
database D such that a boolean ground query Q is true (resp. false) in ρ(D),
then there is a polynomially bounded repair ρ′ for D such that Q is still true
(resp. false) in ρ′(D).

Lemma 6.2 Let D be a database scheme, AC a set of aggregate constraints
on D, D an instance of D such that D 6|= AC, and Q = P (a1, . . . , an) a
ground boolean query over D. If there is a repair ρ for D w.r.t. AC such that
Q ∈ ρ(D), then there is a repair ρ′ for D such that (i) λ(ρ′) ⊆ λ(ρ), (ii)
Q ∈ ρ′(D), and (iii) ρ′ has polynomial size w.r.t. D and Q.

Proof. Consider the system of inequalities In(AC) obtained from AC as ex-
plained in the proof of Lemma 6.1 (we recall that In(AC) results from trans-
lating each aggregate constraint in AC into a set of inequalities, where each
variable xt,A corresponds to a pair < t, A > ∈ λ(ρ)).

Let τ be the tuple in P which coincides with Q in all the key attributes of
P . Observe that the existence of τ is implied by the existence of ρ: since no
repair can change key attributes in a relation, the fact that Q ∈ ρ(D) implies
that there is one tuple τ in P such that, for each A ∈ KP , τ [A] = Q[A].

Consider the system of inequalities In(AC)+ obtained from In(AC) by
adding, for each A ∈ MP such that < τ,A > ∈ λ(ρ), the equation xτ,A =
Q[A].

Reasoning as in the prof of Claim 6.1 it easy to prove that In(AC+) has at
least one solution x̂ of polynomial size w.r.t. D and Q. Moreover, reasoning as
in the prof of Claim 6.2 it is easy to see that, let x̂t,A be the value of variable
xt,A in the solution x̂ of In(AC)+, then the set of updates

ρx̂ = { < t, A, x̂t,A > | < t, A >∈ λ(ρ) ∧ x̂t,A 6= t[A] }

162 6 Repairing and Querying Numerical Databases under Aggregate Constraints

is a repair for D w.r.t. AC such that Q ∈ ρx̂(D) (the fact that Q ∈ ρx̂(D) is
entailed by the set of equations added to In(AC) in order to obtain In(AC)+).
It is easy to see that ρx̂ is of polynomial size w.r.t. D and Q too, and that
ρx̂ updates a subset of the values updated by ρ (this trivially follows from
definition of ρx̂).

2

Lemma 6.3 Let D be a database scheme, AC a set of aggregate constraints
on D, D an instance of D such that D 6|= AC, and Q = P (a1, . . . , an) a
ground boolean query over D. If there is a repair ρ for D w.r.t. AC such that
Q /∈ ρ(D), then there is a repair ρ′ for D such that (i) λ(ρ′) ⊆ λ(ρ), (ii)
Q /∈ ρ′(D) and (iii) ρ′ has polynomial size w.r.t. D and Q.

Proof. If we assume that there is no tuple τ in P such that for each A ∈ KP ,
τ [A] = Q[A], then Q is false in every repair (recall that no repair can change
key attributes in a relation). Moreover, Lemma 6.1 ensure that there is a repair
ρ′ such that λ(ρ′) ⊆ λ(ρ) and ρ′ has polynomial size w.r.t. D. Therefore, since
the size of ρ′ does not depend of the size of Q, then it has also polynomial
size w.r.t. D and Q.

Now assume that there is a tuple τ in P which coincides with Q in all
the key attributes of P . Consider the system of inequalities In(AC) obtained
from AC as explained in the proof of Lemma 6.1, where each variable xt,A

corresponds to a pair < t, A > ∈ λ(ρ)). Since τ /∈ ρ(D), then there is at least
a pair < τ, A >∈ λ(ρ), where A ∈MP . We will denote as V + (resp. V −) the
set of variables xτ,Ai such that there is an atomic update < τ, Ai, vi >∈ ρ
where vi > ai (resp. vi < ai) holds. Let In(AC)+ be the system of inequalities
obtained adding to In(AC) the inequalities:

• xτ,Ai > ai, for each xτ,Ai ∈ V +;
• xτ,Ai < ai, for each xτ,Ai ∈ V −.

Reasoning as in the prof of Claim 6.1 we can prove that In(AC+) has at
least one solution x̂ of polynomial size w.r.t. D and Q. Moreover, reasoning as
in the prof of Claim 6.2 it is easy to see that, let x̂t,A be the value of variable
xt,A in the solution x̂ of In(AC)+, then the set of updates

ρx̂ = { < t, A, x̂t,A > | < t, A >∈ λ(ρ) ∧ x̂t,A 6= t[A] }
is a repair for D w.r.t. AC such that Q 6∈ ρx̂(D) (the fact that Q 6∈ ρx̂(D) is
guaranteed by the set of equations added to In(AC)). It is easy to see that
ρx̂ is of polynomial size w.r.t. D and Q too, and that ρx̂ updates a subset of
the values updated by ρ.

2

Theorem 6.3 (Consistent query answer under set-minimal semantics)
Let D be a database scheme, D be an instance of D, AC a set of aggregate con-
straints on D and Q a ground query over D. Deciding whether Qset(D) = true
is Πp

2 -complete (w.r.t. the size of D).

6.5 Consistent Query Answers 163

Proof. Membership. Membership in Πp
2 can be proved showing that the com-

plement of the consistent query answer problem under set-minimal semantics
is in Σp

2 . A polynomial size witness for the problem of deciding whether the
consistent query answer is false is a minimal repair ρ such that Q 6∈ ρ(D).
If such a repair ρ exists, then Lemma 6.3 guarantees that a polynomial size
repair ρ′ such that Q 6∈ ρ′(D) and λ(ρ′) ⊆ λ(ρ) exists too. Moreover, as shown
in Theorem 6.2, testing whether a repair is minimal under set-minimal seman-
tics can be accomplished by means of an NP oracle. Thus, the problem of
deciding whether there is a minimal repair such the consistent query answer
is false solved in polynomial time by nondeterministic Turing machines with
an NP oracle.
Hardness. Hardness can be proved by showing a reduction from the following
implication problem in the context of propositional logic over a finite domain
V , which was shown to be Πp

2 -complete in [36]: “given an atomic knowledge
base T = {a1, . . . , an}, where a1, . . . , an are atoms of V , an atom q ∈ T and
a formula p on V , decide whether q is derivable from every model in T ◦S p”,
where T ◦S p is the updated (or revised) knowledge base according to the
Satoh’s revision operator.

Informally, Satoh’s revision operator ◦S selects the models of p that are
“closest” to models of T : closest models are those whose symmetric difference
with models of T is minimal under set-inclusion semantics. In order to formally
define the semantics of ◦S we first introduce some preliminaries. Let Mod(p)
be the set of models of a formula p. Let 4min(T, p) = min⊆({M4M ′ : M ∈
Mod(p), M ′ ∈ Mod(T)}), that is the family of ⊆-minimal sets obtained as
symmetric difference between models of p and T . The semantics of Satoh’s
operator (i.e. the set of models of the knowledge base T revised according to
the formula p) is defined as follows:
Mod(T ◦S p) = { M ∈ Mod(p) : ∃M ′ ∈ Mod(T) s.t. M4M ′ ∈ 4min(T, p)}.

In the following the set of atoms occurring in p will be denoted as
V (p). Πp

2 -completeness of the implication problem was shown to hold also
if V (p) ⊆ T [36]: we consider this case in our proof. Observe that the defini-
tion of ◦S entails that for each M ∈ 4min(T, p) it holds that M ⊆ T ∩ V (p),
thus M is a subset of T .

We now consider an instance < T, p, q > of implication problem, where T
is the atomic knowledge base {a1, . . . , an}, p is a propositional formula (with
V (p) ⊆ T), and q is an atom in T .

Let Cp be a boolean circuit equivalent to p. We consider the database
scheme D introduced in the hardness proof of Theorem 6.1. Moreover, we
consider an instance D which is the translation of Cp obtained in the same
way as Theorem 6.1, except that:

• relation input must contain not only the tuples corresponding to the inputs
of Cp (i.e. the atoms in V (p)), but also the tuples corresponding to the
atoms of T \ V (p);

164 6 Repairing and Querying Numerical Databases under Aggregate Constraints

• for each tuple inserted in relation input, attribute V al is set to 1, which
means assigning true to all the atoms of T .

Recall that measure attributes in the tuples of relations gate and gateInput
are set to −1 (corresponding to an undefined truth value).

Let AC be the same set of constraints used in the proof of Theorem 6.1. As
explained in the hardness proof of Theorem 6.1, AC defines the semantics of
Cp and requires that Cp is true. Note that every repair ρ for D w.r.t. AC must
update all measure attributes that initially are set to−1 in D. Therefore, given
two repairs ρ and ρ′, they differ only on the set of atomic updates performed
on relation input.

Obviously, every set-minimal repair of ρ for D w.r.t. AC corresponds to a
model M in Mod(T ◦S p), and vice versa. In fact, given a set-minimal repair
ρ for D w.r.t. AC, a model M for T ◦S p can be obtained from the repaired
database considering only the tuples in relation input where attribute V al is
equal to 1 after applying ρ. Observe that the set of atoms M corresponding
to ρ is a model T ◦S p, otherwise there would exist M ′ ⊂ M with M ′ ∈
Mod(T ◦S p), and the repair ρ′ corresponding to M ′ would satisfy ρ′ <set ρ,
thus contradicting the minimality of ρ. Likewise, it is easy to see that any
model in Mod(T ◦S p) corresponds to a minimal repair for D w.r.t. AC.

Finally consider the query Q = input(id(q), 1). The above considerations
suffice to prove that q is derivable from every model in Mod(T ◦S p) iff
input(id(q), 1) is true in ρ(D) for every set-minimal repair ρ for D w.r.t.
AC, that is the consistent answer of input(id(q), 1) on D w.r.t. AC is true.

2

Theorem 6.4 (Consistent query answer under card-minimal semantics)
Let D be a database scheme, D an instance of D, AC a set of aggregate con-
straints on D and Q be a query over D. Deciding whether Qcard(D) = true
is ∆p

2[log n]-complete (w.r.t. the size of D).

Proof. Membership. Membership in ∆p
2[log n] derives from the fact that re-

pairs on D can be partitioned into the two sets T and F consisting of all
repairs ρi s.t. Q ∈ ρi(D) and, respectively, Q 6∈ ρi(D). Let MinSize(T) =
minρ∈T (|λ(ρ)|), and MinSize(F) = minρ∈F (|λ(ρ)|). It can be shown that
Qcard(D) = true iff MinSize(T) < MinSize(F). Lemma 6.2 (resp. Lemma 6.3)
ensures that an NP -oracle can be used for deciding whether there exists a re-
pair ρ for D such that Q ∈ ρi(D) (resp. Q 6∈ ρi(D)) and |λ(ρ)| is equal to a
given value between one and n. Thus, both MinSize(T) and MinSize(F) can
be evaluated by a logarithmic number of NP -oracle invocations.
Hardness. Hardness can be proved by showing a reduction from the following
implication problem in the context of propositional logic over a finite domain
V : “given an atomic knowledge base T on V , a formula q on T and a formula
p on V , decide whether q is derivable from every model in T ◦D p”, where
T ◦D p is the updated (or revised) knowledge base according to the Dalal’s
revision operator. ∆p

2[log n]-completeness of this problem was shown in [36].

6.5 Consistent Query Answers 165

The semantics of Dalal’s revision operator is as follows. The models of
T ◦D p are the models of p whose symmetric difference with models of T
has minimum cardinality w.r.t. all other models of p. More formally, let
|4min(T, p)| = min{ |M4M ′| : M ∈ Mod(p), M ′ ∈ Mod(T)}, that is
the minimum number of atoms in which models of T and p diverge. Then
models of T ◦D p are given by:
Mod(T ◦Dp) = {M ∈ Mod(p) : ∃M ′ ∈ Mod(T) s.t. |M4M ′| ∈ |4|min(T, p)}.

Consider an instance < V, T, p, q > of the implication problem, where V
is the finite domain of atoms, T an atomic knowledge base on V , p a formula
on V , and q a formula on T . Let V (p) and V (q) denote the set of atoms of V
occurring in p and q, respectively. Sets T , V (p) and V (q) can be partitioned
into A, B, C, D, E, as shown in Fig. 6.1(a).

(a) (b)

Fig. 6.1. (a) The partitioning of T , V (p), V (q); (b) Circuits

Let Cp and Cq be two boolean circuits equivalent to p and q, respectively.
Cp and Cq are reported in Fig. 6.1(b), with their inputs. In this figure, atoms
belonging to T , V (p) and V (q) are represented as circles, and the two circuits
are represented by means of triangles. In particular, inputs of Cq are the atoms
b1, . . . , bn of B and the atoms c1, . . . , cr of C, whereas inputs of Cp are the
atoms c1, . . . , cr of C, the atoms d1, . . . , ds of D, and the atoms e1, . . . , et of
D. That is, the atoms of C are inputs of both Cp and Cq.

These circuits can be represented as an instance of the database scheme D
introduced in the hardness proof of Theorem 6.1. In particular, we consider
an instance D of D which is the translation of Cp and Cq obtained in the
same way as Theorem 6.1, except that:

• relation input contains a tuple for each atom in A ∪B ∪ C ∪D ∪ E;
• for each tuple inserted in relation input, attribute V al is set to 1 if it refers

to an atom in T , −1 otherwise. This means assigning true to all the atoms
of T , and an undefined truth value to atoms in E.

166 6 Repairing and Querying Numerical Databases under Aggregate Constraints

Recall that measure attributes in the tuples of relations gate and gateInput
are set to −1.

We consider the set of aggregate constraints AC consisting of constraints
1-5 introduced in the hardness proof of Theorem 6.1, plus the aggregate con-
straint NORV al(id(op)) = 1, where id(op) is the identifier of the output gate
of Cp. As explained in the hardness proof of Theorem 6.1, AC defines the
semantics of Cp and Cq and requires that Cp is true.

Note that every repair ρ for D w.r.t. AC must update all value attributes
that initially are assigned -1 in D. Therefore, given two repairs ρ and ρ′ for
D w.r.t. AC, they differ only on the number of atomic updates performed on
the tuples of input where V al was set to 1 in D.

Obviously, every card -minimal repair of ρ for D w.r.t. AC corresponds to a
model M in Mod(T ◦Dp), and vice versa (this can be proven straightforwardly,
analogously to the proof of Theorem 6.3, where the correspondence between
set-minimal repairs for D and models of T ◦S p has been shown).

Finally consider the query Q = input(id(oq), 1), where oq denotes the the
output gate of Cq. The above-mentioned considerations suffice to prove that
q is derivable from every model in Mod(T ◦D p) iff input(id(oq), 1) is true in
ρ(D) for every card -minimal repair ρ for D w.r.t. AC, that is the consistent
answer of input(id(oq), 1) on D w.r.t. AC is true.

2

6.6 Discussion

In this chapter we have addressed the problem of repairing and extracting
reliable information from numerical databases violating aggregate constraints.
We fill a gap in previous works dealing with inconsistent data, where only
traditional forms of constraints were considered (as shown in the previous
chapters). In fact, aggregate constraints frequently occur in many real-life
scenarios where guaranteeing the consistency of numerical data is manda-
tory. In particular, we have considered aggregate constraints defined as sets
of linear inequalities on aggregate-sum queries on input data. For this class of
constraints we have characterized the complexity of several issues related to
the computation of consistent query answers.

All the approaches discussed in Chapter 3 and Chapter 4 assume that
tuple insertions and deletions are the basic primitives for repairing inconsistent
data. On the other hand, approaches examined in Chapter 5 provide repairs
consisting also of value-update operations. Specifically, the repairing strategy
presented in this chapter is similar to those introduced in [42] and [16] (cfr.
Section 5.1 and Section 5.2, respectively). These approaches define repairs
working at the attribute-value level and such that the values for the attributes
in the key of the relations hold steady. But, these techniques are not well-suited
in the contexts like those of Example 6.1, as they do not provide solutions for

6.6 Discussion 167

repairing and querying data which are inconsistent with respect to a set of
aggregate constraints.

The first work investigating aggregate constraints on numerical data is
[71], where the consistency problem of very general forms of aggregation is
considered, but no issue related to data-repairing is investigated. In [16] the
problem of repairing databases by fixing numerical data at attribute level is
investigated. The authors shown that deciding the existence of a repair under
both denial constraints (where built-in comparison predicates are allowed) and
a non-linear form of multi-attribute aggregate constraints is undecidable (cfr.
Section 5.2.2). Then they disregarded aggregate constraints and focused on
the problem of repairing data violating denial constraints, where no form of ag-
gregation is allowed in the adopted constraints. In this chapter we shown that
the repair existence problem is decidable in presence of aggregate constraints
(cfr. Theorem 6.1). Basically, decidability results from the linear nature of
the considered constraints, where products between two measure attributes in
attribute expressions of the aggregation functions were not allowed.

7

Computing Repairs for Inconsistent Numerical
Data

In the previous chapter, the problem of extracting consistent information from
relational databases violating integrity constraints on numerical data has been
addressed. Specifically, aggregate constraints defined as linear inequalities on
aggregate-sum queries on input data have been considered. In this chapter we
provide an architecture providing robust data acquisition facilities from input
documents containing tabular data. This architecture is based on the data-
repairing framework presented in Chapter 6. We exploit integrity constraints
defined on the input data to support the detection and the repair of incon-
sistencies in the data arising from errors occurring in the acquisition phase.
Specifically, we will introduce a specific but expressive form of aggregate con-
straints, namely steady aggregate constraints, which enables the computation
of a repair to be expressed as a Mixed-Integer Linear Programming problem.

7.1 Introduction

The need to acquire data from different sources of information often arises
in many application scenarios, such as e-procurement, competitor analysis,
business intelligence. In several cases these sources are heterogenous docu-
ments, possibly represented according to different formats, ranging from pa-
per documents to electronic ones (PDF, MSWord, HTML files). In order to
be exploited to provide valuable knowledge, information must be extracted
from the original documents and re-organized into a machine-readable format.
The problem of defining efficient and effective approaches accomplishing this
task is a challenging issue in the context of Information Extraction (IE) [59].
Most of traditional IE techniques focus on efficiency, providing unsupervised
extraction algorithms which automatically extract records from documents.
However, it frequently happens that some of the extracted records are not
correctly recognized, i.e. the value of one (or more) field has been misspelled.
In several contexts (such as balance analysis) extracted information must be

170 7 Computing Repairs for Inconsistent Numerical Data

100% error free in order to be profitably exploited, thus unsupervised ap-
proaches are not well-suited. In these cases, data transcription from input
documents into a machine-readable format requires massive human interven-
tion, thus compromising efficiency and making valuable resources be wasted.
Human intervention is mainly devoted to verifying the correctness of acquired
data by comparing them with the content of source documents.

Indeed, if integrity constraints are defined on the input data, this kind
of human intervention can be reduced by automatically verifying whether ac-
quired data satisfy these constraints, thus limiting manual corrections to those
pieces of acquired data which do not satisfy them. In fact current approaches
exploiting integrity constraints on source documents require inconsistent ac-
quired data to be manually edited by a human operator. This editing task
is likely to be onerous, since a large amount of data in the input documents
need to be accessed and compared with the acquired ones.

We observe that human intervention can be reduced by exploiting some re-
pairing technique to suggest the “most likely” way of fixing inconsistent data.
We introduce the architecture of a system (namely, DART - Data Acquisition
and Repairing Tool) based on this observation. The contribution provided by
this system can be better understood after reading the following example, de-
scribing a specific application scenario (that is, data acquisition from balance
sheets).

Example 7.1 The balance sheet is a financial statement of a company pro-
viding information on what the company owns (its assets), what it owes (its
liabilities), and the value of the business to its stockholders. A thorough anal-
ysis of a company balance sheet is extremely important for both stock and
bond investors, since it allows potential liquidity problems to be detected, thus
determining the company financial reliability as well as its ability to satisfy
financial obligations.

Fig. 7.1 is a portion of a document containing two cash budgets for a firm,
each of them related to a year. Each cash budget is a summary of cash flows
(receipts, disbursements, and cash balances) over the specified periods.

This cash budget satisfies the following integrity constraints:

a) for each year, the sum of cash sales and receivables in section Receipts
must be equal to total cash receipts;

b) for each year, the sum of payment of accounts, capital expenditure and
long-term financing must be equal to total disbursements (in section Dis-
bursements);

c) for each year, the net cash inflow must be equal to the difference between
total cash receipts and total disbursements;

d) for each year, the ending cash balance must be equal to the sum of the
beginning cash and the net cash inflow ;

Generally balance sheets like the ones depicted in Fig. 7.1 are available
as paper documents, thus they cannot be automatically processed by balance

7.1 Introduction 171

Receipts beginning cash 20

cash sales 100

receivables 120

total cash receipts 220

Disbursements payment of accounts 120

2003 capital expenditure 0

long-term financing 40

total disbursements 160

Balance net cash inflow 60

ending cash balance 80

Receipts beginning cash 80

cash sales 100

receivables 100

total cash receipts 200

Disbursements payment of accounts 130

2004 capital expenditure 40

long-term financing 20

total disbursements 190

Balance net cash inflow 10

ending cash balance 90

Fig. 7.1. An input document

analysis tools, since these work only on electronic data. In fact, some com-
panies do business acquiring electronic balance data and reselling them in a
format suitable for being processed by commercial analysis tools. Currently
electronic versions are obtained by means of either human transcriptions or
OCR acquisition tools. Both these approaches are likely to result in erroneous
acquisition, thus compromising the reliability of the analysis task.

An example of numerical value recognition error occurring during the ac-
quisition phase is the recognition of the value 250 instead of 220 for “total cash
receipts” in the year 2003. Consequently, some constraints are not satisfied on
the acquired data for year 2003:

i) in section Receipts, the value of total cash receipts is not equal to the sum
of values of cash sales and receivables;

ii) the value of net cash inflow is not to equal the difference between total
cash receipts and total disbursements.

Furthermore, some symbol recognition errors in non-numerical strings may
occur in the acquisition phase. For instance, the item “bgnning cesh” could
be recognized instead of “beginning cash”.

2

DART is a system supporting the acquisition of heterogeneous documents
and the supervised repairing of the acquired data. With respect to Exam-
ple 7.1, DART will suggest to change the “total cash receipts” value for year

172 7 Computing Repairs for Inconsistent Numerical Data

2003 from 250 (i.e. the acquired value) to 220, thus reducing the human in-
tervention, as the human operator is no longer required to access the whole
input document to fix acquisition errors making integrity constraints violated.
In particular, DART is based on the notion of card -minimal repair introduced
in Section 6.4.2 for repairing numerical data which are inconsistent w.r.t. ag-
gregate constraints. Aggregate constraints can express constraints like those
defined in the context of balance-sheet data. The notion of card -minimal re-
pair is well-suited for these contexts, where data inconsistency is due to bad
symbol recognition during the acquisition phase. Indeed, applying the card -
minimal semantics means searching for repairs changing the minimum number
of acquired values, which corresponds to the assumption that the minimum
number of errors occurred in the acquisition phase.

In the scenario of balance-sheet acquisition, the relevant information is
formatted according to a tabular layout. Therefore, we introduce a system
architecture aiming at supervised acquiring of information encoded into tab-
ular data. However, observe that this feature does not limit DART to the
acquisition of balance sheets, as tabular data often occur in many different
application contexts, such as web sites publishing product catalogs.

The system described in this chapter embeds a wrapping module for ex-
tracting information from tabular data. This module can manage tables hav-
ing “variable” structures, i.e. tables whose cells can span multiple rows and
columns, according to no pre-determined scheme. Moreover, a framework for
computing card -minimal repairs on wrongly acquired data is introduced to
drive the data validation process. This framework exploits a specific form
of aggregate constraints, namely, steady aggregate constraints, defined on the
source documents to check the consistency of the acquired data and computing
a repair.

Describing the wrapping technique in detail is out of the scope of this
chapter. Here we will focus on presenting the architecture of the system and
the technique adopted for computing repairs.

7.2 DART a Data Acquisition and Repairing Tool

DART (Data Acquisition and Repairing Tool) is a system providing robust
data acquisition facilities. It takes as input documents containing tabular data,
and it exploits integrity constraints defined on the input data to support the
detecting and the repairing of inconsistencies due to errors occurring in the
acquisition phase. If acquisition errors are detected, the system proposes a
way to correct these errors. Proposed corrections are validated by means of
human intervention. In order to detect and repair inconsistencies, integrity
constraints are considered expressing algebraic relations among the numerical
data reported in the cells of the input tables. These constraints are exploited
only to fix the acquired numerical values. Moreover, a dictionary of the terms

7.2 DART a Data Acquisition and Repairing Tool 173

used in the specific scenario which the input documents refer to is exploited
to provide spelling error corrections on non-numerical strings.

Two kinds of user interact with DART, namely the acquisition designer
and the operator. The former is an expert on the application context and
specifies the metadata which are used to support both the extraction of tabular
data and the repairing process. The latter interacts with the system during
the acquisition of each document: if the acquired data need to be corrected,
he is prompted to validate proposed corrections.

As shown in Fig. 7.2, DART consists of two macro-modules. The first
module takes as input documents containing tabular data and returns a re-
lational database where the extracted tabular data are stored. It performs
three steps: it loads the input document and convert it in HTML format, it
extracts the tabular data from the HTML document and it transforms them
into a database instance. This module exploits metadata specified by the ac-
quisition designer, which describe the structure and the semantics of the input
documents1.

Fig. 7.2. Data flow in DART

The second module takes as input the database instance D generated by
the acquisition and extraction module. It locates possible inconsistencies in D
and returns a repair for D. Both the inconsistency detection and the repair
computation are accomplished according to a set of aggregate constraints AC
defined by acquisition designer and represented in the metadata. In more de-
tail, the repairing module transforms the problem of finding a card -minimal
repair for D w.r.t. AC into an MILP instance (Mixed-Integer Linear Program-
ming problem) and solves it providing a repair for D. The proposed repair is
then validated by the operator, who either accepts it or requires to compute
a different repair. In fact, it can be the case that the proposed repair is unsat-
isfactory since the operator realizes that it consists of value updates which do
not correspond to the actual content of the source document. In this case the
operator inserts further constraints on the acquired data. Basically, he drives

1 As it will be clear in the following, designing an extraction module taking as
input HTML documents will make it possible to exploit its features also in Web
applications, where the problem of automatically extracting information from
HTML pages often arises in many scenarios.

174 7 Computing Repairs for Inconsistent Numerical Data

the repairing process by specifying the exact values that some pieces of the
repaired data must take.

Example 7.2 Consider the database scheme D consisting of the single rela-
tion scheme CashBudget(Year, Section, Subsection,Type, Value), and its in-
stance reported in Fig. 7.3. This instance represents a possible output of the
acquisition and extraction module when DART takes as input the document
in Fig. 7.1 (it results from the case that a symbol recognition error occurred
in the acquisition phase, so that the acquired value of total cash receipts is
250 instead of 220). Values ‘det ’, ‘aggr ’ and ‘drv ’ in column Type stand for
detail, aggregate and derived, respectively. In particular, an item of the table
is aggregate if it is obtained by aggregating items of type detail of the same
section, whereas a derived item is an item whose value can be computed using
the values of other items of any type and belonging to any section.

Year Section Subsection Type Value

2003 Receipts beginning cash drv 20

2003 Receipts cash sales det 100

2003 Receipts receivables det 120

2003 Receipts total cash receipts aggr 250

2003 Disbursements payment of accounts det 120

2003 Disbursements capital expenditure det 0

2003 Disbursements long-term financing det 40

2003 Disbursements total disbursements aggr 160

2003 Balance net cash inflow drv 60

2003 Balance ending cash balance drv 80

2004 Receipts beginning cash drv 80

2004 Receipts cash sales det 100

2004 Receipts receivables det 100

2004 Receipts total cash receipts aggr 200

2004 Disbursements payment of accounts det 130

2004 Disbursements capital expenditure det 40

2004 Disbursements long-term financing det 20

2004 Disbursements total disbursements aggr 190

2004 Balance net cash inflow drv 10

2004 Balance ending cash balance drv 90

Fig. 7.3. A cash budget

Constraints a) and b) defined in Example 7.1 can be expressed as: for each
section and year, the sum of the values of all detail items must be equal to
the value of the aggregate item of the same section and year. Therefore, they
can be expressed by the following aggregate constraint (cfr. Definition 6.1):

Constraint 1:

7.3 Steady Aggregate Constraints 175

CashBudget(y, x, , ,) =⇒ χ1(x, y, ‘det ’)− χ1(x, y, ‘aggr ’) = 0

where χ1 and χ2 are the following aggregation functions are defined on the
relation scheme CashBudget :

χ1(x, y, z) = SELECT sum(Value)
FROM CashBudget

WHERE Section=x

AND Year=y AND Type=z

χ2(x, y) = SELECT sum(Value)
FROM CashBudget

WHERE Year = x

AND Subsection=y

Function χ1 returns the sum of Value of all the tuples having Section x, Year
y and Type z. Function χ2 returns the sum of Value of all the tuples where
Year=x and Subsection=y. In our example, as the pair Year, Subsection is a
key for the tuples of CashBudget, the sum returned by χ2 is an attribute value
of a single tuple.

Constraints c) and d) of Example 7.1 can be expressed as follows:

Constraint 2:

CashBudget(x, , , ,) =⇒ χ2(x, ‘net cash inflow’)−
(χ2(x, ‘total cash receipts’)− χ2(x, ‘total disbursements’)) = 0

Constraint 3:

CashBudget(x, , , ,) =⇒ χ2(x, ‘ending cash balance’)−
(χ2(x, ‘beginning cash’) + χ2(x, ‘net cash inflow’)) = 0

As seen in Section 6.4.2, the unique card -minimal repair ρ for CashBudget
w.r.t. constraints 1), 2) and 3) consists in decreasing attribute Value in the
tuple: t = CashBudget(2003, ‘Receipts’, ‘total cashreceipts’, ‘aggr’, 250) down
to 220; that is, ρ = { < t,Value, 220 > }.

2

7.3 Steady Aggregate Constraints

In this section we introduce a restricted form of aggregate constraints, namely
steady aggregate constraints. On the one hand, steady aggregate constraints
are less expressive than (general) aggregate constraints, but, on the other
hand, computing a card -minimal repair w.r.t. a set of steady aggregate con-
straints can be accomplished by solving an instance of an MILP (Mixed Integer
Linear Programming) problem. This allows us to adopt standard techniques
addressing MILP problems to accomplish the computation of a card -minimal
repair (as it will be clear in the following, this would not be possible for gen-
eral aggregate constraints). However, observe that the loss in expressiveness
is not dramatic, as steady aggregate constraints suffice to express relevant in-
tegrity constraints in many real-life scenarios. For instance, all the aggregate

176 7 Computing Repairs for Inconsistent Numerical Data

constraints introduced in Example 7.2 can be expressed by means of steady
aggregate constraints.

Before providing the formal definition of steady aggregate constraint, we
introduce some preliminary notations.

Given a relation scheme P (A1, . . . , An) and a conjunction of atoms φ con-
taining the atom P (x1, . . . , xn), we say that the attribute Aj corresponds to
the variable xj , for each j ∈ [1..n]. Given an aggregation function χi, we
will denote as W(χi) the union of the set of the attributes appearing in the
WHERE clause of χi and the set of attributes corresponding to variables ap-
pearing in the WHERE clause of χi. Given an aggregate constraint κ where
the aggregation functions χ1, . . . , χn occur, we will denote as A(κ) the set
of attributes

⋃n
i=1W(χi). Given an aggregate constraint κ, we will denote

as J (κ) the set of attributes such that for each A ∈ J (κ) there are two
atoms Pi(xi1 , . . . , xin

) and Pj(xj1 , . . . , xjm
) in φ(x1, . . . , xk) satisfying both

the following conditions:

1. there are il ∈ [i1..in] and jh ∈ [j1..jm] such that xil
= xjh

;
2. A corresponds to either xil

or xjh
.

Basically, J (κ) contains attributes A corresponding to variables shared by
two atoms in φ.

The reason why sets A(κ) and J (κ) have been introduced is that they
allow us to detect a useful property. In fact, in the case that A(κ)∪J (κ) does
not contain any measure attribute (i.e. attributes representing measure values,
cfr. Section 6.2) , the tuples in the database instance D which are “involved”
in κ (i.e. the tuples where φ and the WHERE clauses of the aggregation
functions in κ evaluate to true) can be detected without looking at the values
of their measure attributes. As it will be clear in the following, if this syntactic
property holds we can translate κ into a set of linear inequalities and then
express the computation of a card -minimal repair w.r.t. κ as an instance of
MILP.

Definition 7.1 (Steady aggregate constraint) LetD be a database scheme,
MD the set of measure attributes of D and κ an aggregate constraint on D.
The aggregate constraint κ is said to be a steady aggregate constraint if:

(A(κ) ∪ J (κ)) ∩MD = ∅
2

Example 7.3 Consider a database scheme D containing the relation schemes
P1(A1, A2, A3) and P2(A4, A5, A6), where MD = {A2, A4}. Let κ be the fol-
lowing aggregate constraint on D:

∀ x1, x2, x3, x4, x5 [P1(x1, x2, x3), P2(x3, x4, x5) =⇒ χ(x2) ≤ K]

where:

7.3 Steady Aggregate Constraints 177

χ(x) = SELECT sum (A6)
FROM P2
WHERE A5 = x

We have that A(κ) = {A5, A2} and J (κ) = {A3, A4}, therefore κ is not a
steady aggregate constraint.

Consider Constraint 1 of Example 7.2. We have that A(Constraint 1) =
{Y ear, Section, Type} and J (Constraint 1) = ∅. Since MD = {V alue}, Con-
straint 1 is a steady aggregate constraint. Similarly, it is straightforward to
show that also constraints 2) and 3) are steady aggregate constraints.

2

7.3.1 Complexity Results under Steady Aggregate Constraints

All complexity results characterizing either the repair existence problem and
the consistent query answer problem given in Chapter 6 (where general ag-
gregate constraints were considered) are still valid for the class of steady
aggregate constraints.

Theorem 7.1 (Repair existence) Let D be a database scheme, AC a set of
steady aggregate constraints on D, and D an instance of D such that D 6|= AC.
The problem of deciding whether there is a repair for D is NP -complete (w.r.t.
the size of D).

Proof. Membership. It is straightforward that membership proof of Theorem
6.1 still holds for steady aggregate constraints.
Hardness. As in hardness proof of Theorem 6.1, we show a reduction from
circuit sat to our problem. But in this case we have to use only steady
aggregate constraints. Thus, the hardness proof of Theorem 6.1 need to be
revisited since also non-steady aggregate constraints was used for defining the
semantics of the boolean circuit.

We consider the database scheme D introduced in the hardness proof of
Theorem 6.1. Moreover, we consider an instance D which is the translation
of a boolean circuit C (consisting of only NOR gates) obtained in the same
way as Theorem 6.1.

Let AC∗ be the set of aggregate constraints used in the proof of Theo-
rem 6.1. All the constraints in AC∗ are steady aggregate constraints except
that the constraint: V alidInput() + V alidGate() = 0. It entails that only 0
and 1 can be assigned either to attributes orV al and norV al in relation gate,
and to attribute V al in relation input.

This constraint can be expressed by a fixed set of steady aggregate con-
straints as follows. Assume that the domain of the attributes norVal, orVal
and Val in relation input is the infinite domain of integers Z. The follow-
ing set of steady aggregate constraints on D are equivalent to the aggregate
V alidInput() + V alidGate() = 0.

178 7 Computing Repairs for Inconsistent Numerical Data

1) input(X,) =⇒ InputV al(X) ≤ 1
2) input(X,) =⇒ InputV al(X) ≥ 0
3) gate(X, ,) =⇒ NORV al(X) ≤ 1
4) gate(X, ,) =⇒ NORV al(X) ≥ 0
5) gate(X, ,) =⇒ ORV al(X) ≤ 1
6) gate(X, ,) =⇒ ORV al(X) ≥ 0

Specifically, as the domain of attribute V al is Z, constraint a) and b)
entail that, for each tuple in relation input, the value of V al must be in
{0, 1}. Similarly, constraint c) and d) (resp. e) and f)) imply that, for each
tuple in the relation gate, the value of norV al (resp. orV al) must be in {0, 1}.

Let AC be the set of steady aggregate constraints consisting of the con-
straints in AC∗ except that the constraint V alidInput() + V alidGate() = 0
is replaced with the constraints 1)− 6) above.

As explained in the hardness proof of Theorem 6.1, AC defines the seman-
tics of the boolean circuit C and requires that C is true. Therefore, deciding
whether there is a truth assignment which evaluates C to true is equivalent
to asking whether there is a repair ρ for D w.r.t. AC.

2

In Section 6.5 the complexity characterization of the consistent query an-
swer problem under card -minimal semantics has been provided. As stated in
the following corollary, the result obtained for (general) aggregate constraints
still holds for steady aggregate constraints.

Corollary 7.1 Let D be a database scheme, D an instance of D, AC a set of
steady aggregate constraints on D and Q be a boolean ground query over D.
Deciding whether Q evaluates to true in D is ∆p

2[log n]-complete (w.r.t. the
size of D).

Proof. It is easy to see that the membership proof of Theorem 6.4 still holds
for steady aggregate constraints.

The hardness proof of Theorem 6.4 is based on the construction of a
database scheme D representing a boolean circuit. A set of aggregate con-
straints expressing the semantics of the circuit is defined. As shown in The-
orem 7.1, this construction can be accomplished using only steady aggre-
gate constraints. Thus, we can use the same reduction of Theorem 6.4 ex-
cept that, as in Theorem 7.1, we replace the (general) aggregate constraint
V alidInput()+V alidGate() = 0 with the set of steady aggregate constraints
1)− 6) shown in the hardness proof of Theorem 7.1.

2

7.4 Computing a Card-Minimal Repair

In several application scenarios, such as that described in Example 7.1, we
are more interested in computing a repair (fixing all the acquired values) than

7.4 Computing a Card -Minimal Repair 179

evaluating whether a single acquired value is “reliable”. In this section we
define a technique for computing a card -minimal repair for a database w.r.t
a set of steady aggregate constraints, which is based on the translation of the
repair-evaluation problem into an instance of a mixed-integer linear program-
ming (MILP) problem [48]. Our technique exploits the restrictions imposed
on steady aggregate constraints w.r.t. general aggregate constraints to accom-
plish the computation of a repair. As it will be clear later, this approach does
not work for (general) aggregate constraints.

Consider a database scheme D and a set of steady aggregate constraints
AC on D. In this case, we can model the problem of finding a card -minimal
repair as MILP problem (if the domain of numerical attributes is restricted
to Z then it can be formulated as an ILP problem).

We first show how a steady aggregate constraint can be expressed by a set
of linear inequalities.

Consider the steady aggregate constraint κ:

∀x1, . . . , xk

(
φ(x1, . . . , xk) =⇒

n∑

i=1

ci · χi(yi1 , . . . , yimi
) ≤ K

)

where
⋃n

i=1{yi1 , . . . , yimi
} is a subset of {x1, . . . , xk} and for each i ∈

{1, . . . , n}:

χi(yi1 , . . . yimi
) = SELECT sum (ei)

FROM Pχi

WHERE αi(yi1 , . . . , yimi
)

Without loss of generality, we assume that each attribute expression ei

occurring in the aggregation function χi is either an attribute or a constant.
We associate a variable zt,Aj to each database value t[Aj], where t is a

tuple in the database instance D and Aj is an attribute in MD, i.e. the set of
measure attributes of D. The variable zt,Aj is defined on the same domain as
Aj . For every ground substitution θ of x1, . . . , xk such that φ(θx1, . . . , θxk) is
true, we will denote as Tχi the set of the tuples involved in the aggregation
function χi, that is Tχi = {t : t |= αi(θyi1 , . . . , θyimi

)}.
The translation of χi, denoted as P(χi), is defined as follows:

P(χi) =

∑
t∈Tχi

zt,Aj if ei = Aj ;

ei · |Tχi | if ei is a constant.

Starting from P(χi), the whole constraint κ can be expressed as a set S
of linear inequalities as follows. For every ground substitution θ of x1, . . . , xk

such that φ(θx1, . . . , θxk) is true, S contains the following inequality:

n∑

i=1

ci · P(χi) ≤ K

180 7 Computing Repairs for Inconsistent Numerical Data

Observe that this construction is not possible for a non-steady aggregate
constraint since, given a database instance D and an aggregation function χi

in the constraint, we cannot determine Tχi : changing a measure value might
result in changing the set of the tuples involved the aggregation function.

For the sake of simplicity, in the following we associate to each pair 〈t, Aj〉
an integer index i, therefore we write zi instead of zt,Aj

. If we assume that the
number of values involved in constraints in AC concerning the given database
instance D is N then the index i will take values in [1..N].

As shown above, we can translate each steady aggregate constraint into
a system linear inequalities. The translation of all aggregate constraints in
AC produces the system of linear inequalities A · Z ≤ B, where Z =
[z1, z2, . . . , zN]T . This system will be denoted as S(AC).
Example 7.4 Consider the database scheme D consisting of the single rela-
tion scheme CashBudget(Year, Section, Subsection,Type, Value), and its in-
stance reported in Fig. 7.3. Assume that the set of aggregate constraints AC
consist of constraints 1), 2) and 3) of Example 7.1. The values involved in
constraints in AC w.r.t. the given database instance in Fig. 7.3 are as many
as the number of tuples, that is N = 20. Therefore, zi, (1 ≤ i ≤ 20) is the
variable associated to the database value t[V alue], where t is the i-th tuple in
Fig. 7.3. For instance, z2 is the variable associated with the value of attribute
Value in the tuple t = CashBudget(2003, ‘Receipts’, ‘cash sales’, ‘det’, 100).

The translation of constraints 1), 2) and 3) is the following, where we
explicitly write equalities instead of inequalities:

1)

z2 + z3 = z4

z5 + z6 + z7 = z8

z12 + z13 = z14

z15 + z16 + z17 = z18

2)
{

z4 − z8 = z9

z14 − z18 = z19
3)

{
z1 − z9 = z10

z11 − z19 = z20

S(AC) consists of the system obtained by assembling all the equalities
reported above (basically, it is the intersection of the three systems above).

2

In the following we will denote the current database value corresponding to
the variable zi as vi. That is, if zi is associated with t[Aj], then vi = t[Aj].
Every solution s of S(AC) corresponds to a (possibly non-minimal) repair
ρ(s) of D w.r.t. AC. Specifically, for each variable zi which is assigned a value
different from vi, repair ρ(s) contains an atomic update assigning the value zi

to the database item corresponding to zi.
In order to decide whether a solution s of S(AC) corresponds to a card -

minimal repair, we must count the number of variables of s which are assigned
a value different from the corresponding source value in D. This is accom-
plished as follows. For each i ∈ {1, . . . , N}, we define a variable yi = zi−vi on
the same domain as zi. Consider the following system of linear inequalities,
which will be denoted as S ′(AC):

7.4 Computing a Card -Minimal Repair 181

{
AZ ≤ B
yi = zi − vi ∀ i ∈ {1, . . . , N}

As shown in [67], if a system of equalities has a solution, it has also a
solution where each variable takes a value in [−M, M], where M is a constant
equal to n · (ma)2m+1, where m is the number of equalities, n is the number
of variables and a is the maximum value among the modules of the system
coefficients. It is straightforward to see that S ′(AC) can be translated into a
system of linear equalities in augmented form with m = N+r and n = 2·N+r,
where r is the number of rows of A2.

In order to detect if a variable zi is assigned (for each solution of S ′(AC)
bounded by M) a value different from the original value vi (that is, if |yi| > 0),
a new binary variable δi will be defined. The variable δi will have value 1 if
the value of zi differs from vi, 0 otherwise. To express this condition, we add
the following constraints to S ′(AC):

yi ≤ Mδi ∀ i ∈ {1, . . . , N}
−Mδi ≤ yi ∀ i ∈ {1, . . . , N}
δi ∈ {0, 1} ∀ i ∈ {1, . . . , N}

(7.1)

The system obtained by assembling S ′(AC) with inequalities (7.1) will be
denoted as S ′′(AC). For each solution s′′ of S ′′(AC), the following hold:

i) for each zi which is assigned in s′′ a value greater than vi, the variable δi

is assigned 1 (this is entailed by constraint yi ≤ Mδi);
ii) for each zi which is assigned in s′′ a value less than vi, the variable δi is

assigned 1 (this is entailed by constraint −Mδi ≤ yi).

Moreover, for each zi which is assigned in s′′ the same value as vi (that is,
yi = 0), variable δi is assigned either 0 or 1.

Obviously each solution of S ′′(AC) corresponds to exactly one solution for
S(AC) (or, analogously, for S ′(AC)) with the same values for variables zi,
and, vice versa, for each solution of S(AC) whose variables are bounded by M
there is at least one solution of S ′′(AC) with the same values for variables zi.
As solutions of S(AC) correspond to repairs for D, each solution of S ′′(AC)
corresponds to a repair ρ for D w.r.t. AC such that, for each update u =
〈t, A, v〉 in ρ it holds that |v| ≤ M . Repairs satisfying this property will be
said to be M-bounded repairs.

In order to consider only the solutions of S ′′(AC) where each δi is 0 if
yi = 0, we consider the following optimization problem S∗(AC), whose goal is
minimizing the sum of the values assigned to the variables δ1, . . . , δN :

2 Observe that the size of M is polynomial in the size of the database, as it is
bounded by log n + (2 ·m + 1) · log(ma).

182 7 Computing Repairs for Inconsistent Numerical Data

min
∑N

i=1 δi

AZ ≤ B
yi = zi − vi ∀ i ∈ {1, . . . , N}
yi −Mδi ≤ 0 ∀ i ∈ {1, . . . , N}
−yi −Mδi ≤ 0 ∀ i ∈ {1, . . . , N}
zi, yi ∈ R ∀ i ∈ IR
zi, yi ∈ Z ∀ i ∈ IZ
δi ∈ {0, 1} ∀ i ∈ {1, . . . , N}

where IR ⊆ {1, . . . , N} and IZ ⊆ {1, . . . , N} are the sets of the indexes of the
variables z1, . . . , zN (and, equivalently, y1, . . . , yN) defined on the domains R
and Z, respectively.
It is straightforward to see that any solution of S∗(AC) corresponds to an
M-bounded repair ρ for D w.r.t. AC having minimum cardinality w.r.t. all
M-bounded repairs for D w.r.t. AC. If there is a repair for D w.r.t. AC, then
there is an M-bounded card -minimal repair ρ∗ for D (this follows from Lemma
6.1). This implies that any solution of S∗(AC) corresponds to a card -minimal
repair for D w.r.t. AC.

Basically, the minimum value of the objective function of S∗(AC) repre-
sents the number of atomic updates performed by any card -minimal repair,
whereas the values of variables z1, . . . , zN , y1, . . . , yN , δ1, . . . , δN correspond-
ing to an optimum solution s∗ of S∗(AC) define the atomic updates performed
by the card -minimal repair ρ(s∗).

Example 7.1. The optimization problem obtained starting from the database
in the Fig. 7.3 and from the set of steady aggregate constraints consisting of
1), 2) and 3) of Example 7.1 is shown in Fig. 7.4. Since it is assumed that the
domain of attribute V alue of relation CashBudget is Z, then IZ = {1, . . . , 20}
and IR = ∅. The value of the constant M is 20 · (28 · 250)2·28+1.

The minimum value of the objective function of this optimization problem
is 1 (only δ4 = 1). This problem admits only one optimum solution where
the value of each variable y1, . . . , y20 is 0 except for y4 that takes value −30.
Clearly, the values of variables z1, . . . , z20 are obtained according to the values
of variables y1, . . . , y20, and the values of binary variables δ1, . . . , δ20 are 0
except for δ4. The card -minimal repair corresponding to this solution is that
of Example 7.2.

2

7.5 DART Architecture

The DART architecture is shown in Fig. 7.5, where the organization of both
the Acquisition and extraction module and the Repairing module of Fig. 7.2 are
described in more detail. In the following we discuss the tasks accomplished
by these modules.

7.5 DART Architecture 183

min
∑20

i=1 δi

z2 + z3 = z4

z5 + z6 + z7 = z8

z12 + z13 = z14

z15 + z16 + z17 = z18

z4 − z8 = z9

z14 − z18 = z19

z1 − z9 = z10

z11 − z19 = z20

y1 = z1 − 20
y2 = z2 − 100
y3 = z3 − 120
y4 = z4 − 250
y5 = z5 − 120
y6 = z6 − 0
y7 = z7 − 40
y8 = z8 − 160

y9 = z9 − 60
y10 = z10 − 80
y11 = z11 − 80
y12 = z12 − 100
y13 = z13 − 100
y14 = z14 − 200
y15 = z15 − 130
y16 = z16 − 40
y17 = z17 − 20
y18 = z18 − 190
y19 = z19 − 10
y20 = z20 − 90
yi −Mδi ≤ 0 ∀ i ∈ {1, . . . , 20}
−yi −Mδi ≤ 0 ∀ i ∈ {1, . . . , 20}
zi, yi ∈ Z ∀ i ∈ {1, . . . , 20}
δi ∈ {0, 1} ∀ i ∈ {1, . . . , 20}

Fig. 7.4. MILP-problem instance for the running example

Fig. 7.5. The DART Architecture

7.5.1 Acquisition Module

This module performs the task of acquiring the information contained in the
(either electronic or paper) input documents, and represents it into an elec-
tronic document whose format is suitable for the extraction phase accom-
plished by the Data Extraction Module. As the current implementation of

184 7 Computing Repairs for Inconsistent Numerical Data

DART embeds a wrapper working on HTML documents, input documents
which are not already in this format are converted into an HTML document
by means of a format-conversion tool (this tool supports the conversion of
PDF, MSWord, RTF documents). In particular, paper documents are first
digitized and processed by means of an OCR tool (yielding PDF documents)
whose output is then processed by the converter.

7.5.2 Data Extraction Module

The Data extraction module carries out both the information extraction and
the database generation tasks. The former task is accomplished by a wrap-
ping sub-module which takes as input the HTML document generated by the
Acquisition module as well as a set of extraction metadata providing infor-
mation on the semantics and the structure of data contained into the input
document.

Wrapper

Data to be extracted from the input HTML document are contained into
tables whose position inside the document is specified inside the extraction
metadata. The information encoded into each table is extracted by evalu-
ating whether its rows match some patterns (namely row patterns) defining
structure and content of the data to be extracted.

Before explaining how the wrapping sub-module works, we give some de-
tails about the set of extraction metadata.

This set contains domain descriptions, row patterns and hierarchical rela-
tionships. Domain descriptions specify a set of domains and the sets of lexical
items that belongs to each domain. For instance, considering the balance sheet
analysis context, Section and Subsection are domains. Some lexical items be-
longing to the former are “Receipts”, “Disbursements”, “Balance”, whereas
some lexical items belonging to the latter are “beginning cash”, “receivables”,
“payment of accounts” and “capital expenditure”. In the following we will
denote the set of these domains as Dom. Hierarchical relationships are rela-
tions among lexical items belonging to different domains. For instance, the
items “beginning cash”, “cash sales”, “receivables” and “total cash receipts”
are specializations of “Receipts”. Fig. 7.6 depicts some domains, some lexical
items belonging to them and some hierarchical relationships represented by
means of arrows.

A row pattern specifies the structure and the content of a table row. The
structure is given specifying an ordered set of cells. The content of a cell is
either a domain belonging to Dom or a standard domain such as Integer,
String, etc. A row pattern r matches a row rt of a table in an input document
if r and rt have the same number of cells and if the content of the i-th cell of
rt matches the domain specified into the i-th cell of r. A row pattern contains
an headline indicating the semantics of the domains specified in the cells.

7.5 DART Architecture 185

Fig. 7.6. Domains and hierarchical relationships

The headline will be exploited in the database generation task to construct a
relation scheme. In a row pattern, hierarchical relationships can be specified
among lexical items expected in some cells. For instance, it is possible to
require that a lexical item expected in a cell must be a generalization of
another lexical item required in another cell.

Example 7.5 Consider the row pattern shown in Fig. 7.7(a). The headline
consists of the cells with the dashed border. The row pattern indicates that
the rows which must be extracted from the input table consist of 4 cells. In
particular, both the first and the last cells specify that a value of type Integer
is required, and the headline specifies that the first value is interpreted as
Year and the last as Value. The second cell indicates that a lexical item
s1 belonging to the Section domain is expected. The third cell imposes a
hierarchical relationship, indicated by an arrow. It specifies that a lexical
item s2 belonging to the Subsection domain is required, and that s2 must be
specialization of s1.

(a) (b)

Fig. 7.7. (a) A row pattern (b) A row pattern instance

2

The wrapper takes as input a set of row patterns and the HTML document
returned by the acquisition module, and returns a set of row pattern instances.
A row pattern instance is the result of the matching between a table row and
the set of row patterns. First, for each row rt of the input table, the wrapper
identifies the row pattern r that matches rt at best, i.e. it chooses the row
pattern having the most similar structure and the most compatible content

186 7 Computing Repairs for Inconsistent Numerical Data

with respect to rt. After this choice the wrapper constructs the row pattern
instance p relative to r.

In more detail, the evaluation of the matching between a table row and a
row pattern yields a score representing the matching degree. The matching is
performed comparing the table cells and the corresponding row pattern cells.
The comparison between a row pattern cell and an input table cell yields a
cell matching score. The whole row pattern instance is associated with a score
obtained by applying a suitable t-norm to all the matching scores of its cells.

Each cell matching score results from “validating” the string s in the table
cell w.r.t the domain d specified in the cell of the row pattern. The validation
of s w.r.t. d is accomplished by identifying the item s′ in d which is the most
similar 3 to s, and returning the similarity degree between s′ and s. Given a
string s and a domain d we denote the item in d which is the most similar
to s as msi(d, s). The string [resp. the domain] contained in the i-th cell of a
document row rt [resp. row pattern r] will be denoted as rt(i) [resp. r(i)].

For each document row rt, the row pattern r for which the matching degree
is maximum is chosen. Then a row pattern instance p is constructed, where
the i-th cell of p contains the item msi(r(i), rt(i)).

Observe that the construction of the row pattern instance is a form of
repair on the input data. Indeed, incorrect items in the input tables (i.e.
items which do not belong to the corresponding domain in the specified row
pattern) are transformed into the most similar valid lexical items.

Finally, we obtain a set of row pattern instances such that each document
row is mapped on a row pattern instance.

Example 7.6 Consider the document in Fig. 7.1 and the row pattern in
Fig. 7.7(a). Assume that a symbol recognition error in non-numerical string
occurs, like the recognizing of the item “bgnning cesh” instead of “beginning
cash”.

The matching between the first document row and this row pattern returns
the row pattern instance in Fig. 7.7(b), where Integer in the first cell is bound
to “2003”, Section to “Receipts”, Subsection to “beginning cash” and Integer
in the last cell is bound to “20”. In Fig. 7.7(b) the matching scores for the
cells are also depicted. The third cell score (90%) is lower than the others
(100%), since it comes from a non-exact match.

Note that the value “2003” is coded into a multi-row cell of the input table,
and it is bound in this row pattern instance since the wrapper considers this
value associated to all the document rows which are adjacent to the multi-row
cell.

2

3 s′ must also satisfy the hierarchical relationships specified in the row pattern.

7.5 DART Architecture 187

Database Generator

The Database generator sub-module takes as input the set of row pattern
instances returned by the wrapper module and returns a database instance D
conforming to the database scheme defined in the extraction metadata.

Extraction metadata specify also classification information providing clas-
sification of lexical items depending on the role they play in aggregation con-
straints. For instance, in Example 7.1 lexical items in the domain Subsection
are classified as detail, aggregate and derived items. As explained in Exam-
ple 7.2, an item is aggregate if it is obtained by aggregating items of type
detail of the same section, whereas a derived item is an item whose value can
be computed using the values of other items of any type and belonging to any
section.

The definition of the database scheme contained in the extraction meta-
data contains both the definition of the relation scheme (that is, the name of
the relations and, for each relation, the names of its attributes) and the corre-
spondence between each relation scheme and the row pattern instances taken
as input. For instance in our example the relation scheme specified in the
extraction metadata consists of CashBudget(Year, Section, Subsection, Type,
Value). Moreover, the extraction metadata contain the specification that at-
tributes Year, Section, Subsection, Value correspond to the cells of the row
pattern instances described by the same names in the headline, whereas the
attribute Type is determined by classification information.

Each row pattern instance taken as input is exploited to insert a new tuple
in the corresponding relation. For instance, each tuple t in Fig. 7.3 is obtained
from a row pattern instance r returned by the wrapper. In particular, the
values of the attributes Year, Section, Subsection, Value in t are taken from
the corresponding cells of the row pattern instance r. Moreover the value of the
attribute Type is implied by the value of the attribute Subsection according
to classification information.

7.5.3 Repairing Module

The input of the repairing module is the database D obtained by the data
extraction module and a set AC of steady aggregate constraints implied by
the constraint metadata. The repairing module returns a card -minimal repair
for D w.r.t. AC. This is accomplished by means two phases: first, the prob-
lem of finding a card -minimal repair for D w.r.t. AC is translated into an
instance of an MILP problem (as we have shown in Section 7.4), and then
such an obtained MILP instance is solved by means of an MILP solver, which
is implemented using LINDO API 4.0 (available at www.lindo.com).

Validation Interface

The Validation Interface is the component allowing the operator to interact
with DART. When a document is processed, the Validation Interface displays

188 7 Computing Repairs for Inconsistent Numerical Data

the repair computed by the Repairing module by showing the suggested set of
value updates. Then, the operator examines the proposed repair by comparing
every updated value with the corresponding source value in the input docu-
ment. If the operator verifies that the suggested updated values are equal to
the corresponding source values, then the repair is accepted and the repaired
data is considered as consistent. Otherwise, a new repair is computed by the
Repairing module according to operator “instructions”. That is, for each sug-
gested update u which has not been accepted by the operator, the operator
can specify the actual source value v corresponding to the database item d
changed by u. Then an aggregate constraint is added to the set of constraints
inputted into the MILP transformer, forcing the value of d to be equal to v.
Similarly, accepting an update u on the database item d is translated into
an aggregate constraint forcing the value of d to be equal to the value sug-
gested by the repair. After this, a new repair is computed, corresponding to
the solution of the new MILP instance obtained by assembling the aggregate
constraints resulting from Constraint Metadata with those resulting from op-
erator validation. This process goes on until the generated repair is accepted
by the operator.

At each iteration, the operator is not requested to validate values which
had been already validated in a previous iteration. Moreover, the computa-
tion of a repair can be re-started after validating only some of the suggested
updates. Every repair is proposed to the operator by displaying its updates
in a specific order. That is, an update u1 is displayed before another update
u2 if the database item d1 changed by u1 is involved in a larger number of
ground aggregate constraints than the database item d2 changed by u2 (i.e.
if the variable corresponding to d1 occurs in the MILP instance in a larger
number of inequalities than the variable corresponding to d2). This ordered
displaying is an heuristics which is useful in the case that the operator chooses
to re-start the repair computation after a small number of validations, and it
aims at finding an acceptable repair in a small number of iterations.

7.6 Discussion

In this chapter we have defined a restricted class of aggregate constraints,
namely steady aggregate constraints, and we have provided a method for com-
puting a card -minimal repair. According to the card -minimal semantics, a
repaired database D′ minimally differs from the original database D if and
only if the number of value updates yielding D′ is minimum with respect to
all other possible repairs (cfr. Section 6.4.2). We have introduced a system
architecture, namely DART (Data Acquisition and Repairing Tool), aiming
at supervised acquiring of information encoded into tabular data inside docu-
ments with possibly heterogeneous formats. We have shown how the method
introduced for computing card -minimal repairs can be exploited in the DART

7.6 Discussion 189

system where data are acquired by means of acquisition tool and information
is extracted and transformed by a wrapping system.

There has been a lot of research work related to web information extrac-
tion. Specialized information extraction procedures, called wrappers, represent
an effective solution to capture text contents of interest from a source-native
format and encode such contents into a structured format suitable for further
application-oriented processing. Web wrappers typically exploit markup-tag
and lexical token information to infer the template structuring the contents
in a web page [59]. Traditional issues concerning wrapper systems are the de-
velopment of powerful languages for expressing extraction patterns and the
ability of generating these patterns with the lowest human effort [13, 33].
Several systems for generating web wrappers have been recently proposed.
We mention here Lixto [13], RoadRunner [33], SCRAP [40, 38], DEByE [58],
XWRAP [64], W4F [72]. We point out that the wrapping technique embed-
ded into DART system differs from the state of the art as our approach is
mainly focused on data represented into tables with complex structure. The
wrapping module embedded in DART can manage tables having “variable”
structures, i.e. tables whose cells can span multiple rows and columns, ac-
cording to no pre-determined scheme (cfr. Section 7.5.2). This is a valuable
feature, as all existing wrapping techniques do not work at all or are far from
being satisfactory on tabular data without a “rigid” structure.

A framework for computing card -minimal repairs on wrongly acquired
data has been introduced to drive the data validation process. This frame-
work exploits steady aggregate constraints, defined on the source documents,
to check the consistency of the acquired data and to compute a repair. In
order to compute a card -minimal repair for a database w.r.t a set of steady
aggregate constraints, we translate the repair-evaluation problem into an in-
stance of a Mixed-Integer Linear Programming (MILP) problem [48], exploit-
ing the restrictions imposed on steady aggregate constraints w.r.t. general ag-
gregate constraints (cfr. Section 7.4). Although, steady aggregate constraints
are a restricted class of (general) aggregate constraints introduced in Chap-
ter 6, we have shown that the complexity results characterizing either the
repair existence problem and the consistent query answer problem (provided
in Chapter 6) are still valid for the class of steady aggregate constraints (cfr.
Section 7.3). Observe that, as the repair-existence problem is NP -complete
also in presence of steady aggregate constraints, there is no ε-approximation
algorithm A [68] for the computation of a card -minimal repair for D, unless
P = NP . Otherwise, running A would result in obtaining a possible repair
for D (not necessarily a card -minimal one) in polynomial time.

Our approach consists in translating the problem of computing a repair
into an instance of an MILP problem (cfr. Section 7.4). Thus, standard tech-
niques and optimizations addressing MILP problems can be re-used for com-
puting a repair.

DART is currently being developed. The Repairing module has been im-
plemented and preliminary tests show that DART effectively supports the

190 7 Computing Repairs for Inconsistent Numerical Data

acquisition of balance data, providing the correct repair of wrongly acquired
data in a few iterations in most cases.

8

Conclusions

Several issues related to the problem of extracting reliable information from
inconsistent data have been investigated in literature. The early theoretical
approaches to the problem of dealing with incomplete and inconsistent infor-
mation date back to 80s, but these works mainly focus on issues related to
the semantics of incompleteness [53]. The problem of managing inconsistent
data in databases was first addressed in [2, 3, 35, 62, 20]. Then, based on the
notions of repair and consistent query answer introduced in [4], several works
investigated different aspects of the problem of extracting reliable information
from inconsistent data. The technique of query-rewritten introduced in [4] was
further extended in [45, 46], and in [7, 8, 29] graph theory has been exploited
for providing complexity characterization and algorithms for computing con-
sistent answers. Logic programs have been used in [5, 9, 11, 12, 51, 52] for
specifying repairs as answer sets of such programs. All the above-cited ap-
proaches assume that tuple insertions and deletions are the basic primitives
for repairing inconsistent data. In [42, 17, 76, 77, 78, 16] repairs consisting
also of value-update operations were considered. Different classes of queries
and constraints have been studied in the cited works. But, all works focus on
“traditional” forms of constraints such as functional dependencies, inclusion
dependencies and denial constraints.

In this work of thesis we have investigated the problem of repairing and
extracting reliable information from databases violating aggregate constraints,
which consist of linear inequalities on aggregate-sum queries issued on values
stored in the database. We fill a gap in previous works dealing with inconsis-
tent data, where only traditional forms of constraints were considered. The
first work investigating aggregate constraints on numerical data is [71], where
the consistency problem of very general forms of aggregation is considered,
but no issue related to data-repairing is investigated. In [16] the problem of
deciding the existence of a repair in presence of a non-linear form of aggregate
constraints has been investigated and the authors shown that it is undecidable.
Then, they disregard aggregate constraints and focus on the problem of re-
pairing data violating constraints where no form of aggregation is allowed. On

192 8 Conclusions

the other hand, in this work of thesis we have shown that the repair-existence
problem for linear form of aggregate constraints is NP -complete. This form
of aggregate constraints frequently occur in many real-life scenarios where
guaranteeing the consistency of numerical data is mandatory.

As in [42, 17], we consider database repairs consisting of sets of value-
update operations aiming at re-constructing the correct values of inconsistent
data, and such that the values of the key attributes do not change. We inves-
tigate two repair-semantics aiming at preserving the information represented
in the source data as much as possible, namely the set-minimal semantics
and card -minimal semantics. They correspond to different repairing strate-
gies which turn out to be well-suited for different application scenarios. We
have characterized the data-complexity of the minimal-repair checking prob-
lem and the consistent query answer problem under both these semantics in
presence of aggregate constraints.

We have provided a method for computing card -minimal repairs for
databases which are inconsistent with respect to steady aggregate constraints,
a restricted but expressive class of aggregate constraints. Using steady aggre-
gate constraints the loss in expressiveness is not dramatic, as they suffice to
express relevant integrity constraints in many real-life scenarios. Moreover, we
have shown that all the complexity results valid for aggregate constraints still
hold for steady aggregate constraints.

Our approach for computing repairs consists in translating an instance of
the problem of computing a card -minimal repair into an instance of a Mixed-
Integer Linear Programming (MILP) problem. This method allows us re-using
of standard techniques addressing MILP problems for efficiently computing a
repair for numerical data.

We have introduced a system architecture, namely DART (Data Acqui-
sition and Repairing Tool), aiming at supervised acquiring of information
encoded into tabular data inside documents with possibly heterogeneous for-
mats. We have shown how the method introduced for computing card -minimal
repairs can be exploited in the DART system where data are acquired by
means of acquisition tool and information is extracted and transformed by a
wrapping system.

Regarding our repairing framework, some related issues remain still open.
For instance, it would be interesting the identification of other decidable
cases of aggregate constraints, when more expressive forms of constraint are
adopted. Basically, for our form of aggregate constraints, decidability results
from the linear nature of the considered constraints, where products between
measure attributes in attribute expressions of the aggregation functions were
not allowed. Another interesting issue is the characterization of the repair-
existence and the consistent query answer problem when both aggregate con-
straints and traditional forms of integrity constraints are violated (as it has
been done in [23, 29] for data violating different forms of classical integrity
constraints). Moreover, since we deal with numerical data it would be in-
teresting the characterization of the consistent query answer problem under

8 Conclusions 193

range-semantics and aggregate queries [7, 46]. Further, it would be interest-
ing the extension of our repairing framework with the introduction of weak
constraints [42] in order to prefer specific repairs among the minimal ones.
Specifically, among minimal repairs, we could prefer repairs that satisfies the
maximum number of weak constraints, each of them specifying additional con-
ditions such as degrees of agreement on historical data. Moreover, it would
be interesting the design of efficient algorithms for computing consistent an-
swers by exploiting a method similar to that used for computing card -minimal
repairs.

Recently, incremental repair semantics [66] has been investigated. In this
context it is assumed that the database is already consistent before updates
are executed and incremental version of consistent query answer has been
provided. Moreover, a study of the problem of computing consistent answers
under normalization conditions has been reported in [79] in presence of func-
tional dependencies. It would be interesting a study of these aspects of the
problem of computing consistent answers in presence of the several forms of
traditional integrity constraints, and also in presence of aggregate constraints.

References

1. Abiteboul, S., Hull, R., Vianu, V., Foundations of Databases, Addison-Wesley,
1995.

2. Agarwal, S., Flexible Relation: A Model for Data in Distributed, Autonomous
and Heterogeneous Databases, Ph.D. Thesis, Department of Electrical Engineering,
Stanford University, 1992.

3. Agarwal, S., Keller, A. M., Wiederhold, G., Saraswat, K., Flexible Relation: An
Approach for Integrating Data from Multiple, Possibly Inconsistent Databases,
Proc. International Conference on Data Engineering (ICDE), pages 495–504, 1995.

4. Arenas, M., Bertossi, L. E., Chomicki, J., Consistent Query Answers in In-
consistent Databases, Proc. ACM Symposium on Principles of Database Systems
(PODS), pages 68–79, 1999.

5. Arenas, M., Bertossi, L. E., Chomicki, J., Specifying and Querying Database
Repairs using Logic Programs with Exceptions, Proc. International Conference
on Flexible Query Answering Systems (FQAS), pages 27–41, 2000.

6. Arenas, M., Bertossi, L. E., Kifer, M., Applications of Annotated Predicate Calcu-
lus to Querying Inconsistent Databases, Proc. International Conference on Com-
putational Logic (CL), pages 926-941, 2000.

7. Arenas, M., Bertossi, L. E., Chomicki, J., Scalar Aggregation in FD-Inconsistent
Databases, Proc. International Conference on Database Theory (ICDT), pages
39–53, 2001.

8. Arenas, M., Bertossi, L. E., Chomicki, J., He, X., Raghavan, V., Spinrad, J.,
Scalar aggregation in inconsistent databases, Theoretical Computer Science, Vol.
3(296), pages 405-434, 2003.

9. Arenas, M., Bertossi, L. E., Chomicki, J., Answer Sets for Consistent Query
Answering in Inconsistent Databases, Theory and practice of logic programming,
Vol. 3(4-5), pages 393–424, 2003.

10. Baral, C., Gelfond, G., Logic Programming and Knowledge Representation,
Journal of Logic Programming, Vol. 19/20, pages 73–148, 1994.

11. Barceló, P., Bertossi, L. E., Repairing Databases with Annotated Predicate
Logic, Proc. International Workshop on Non-Monotonic Reasoning (NMR), pages
160-170, 2002.

196 References

12. Barceló, P., Bertossi, L. E., Logic Programs for Querying Inconsistent
Databases, Proc. Practical Aspects of Declarative Languages (PADL), pages 208–
222, 2003.

13. Baumgartner, R., Flesca, S., Gottlob, G., Visual Web Information Extraction
with Lixto, Proc. International Conference on Very Large Data Bases (VLDB),
pages 119–128, 2001.

14. Beeri, C. and Vardi, M. Y., A Proof Procedure for Data Dependencies, Journal
of the ACM, Vol. 31(4), pages 718-741, 1984.

15. Bertossi, L. E., Chomicki J., Query Answering in Inconsistent Databases, In
Logics for Emerging Applications of Databases, pages 43–83, 2003.

16. Bertossi, L. E., Bravo, L., Franconi, E., Lopatenko, A., Complexity and Approx-
imation of Fixing Numerical Attributes in Databases Under Integrity Constraints,
Proc. International Symposium on Database Programming Languages (DBPL)
pages 262–278 2005.

17. Bohannon, P., Flaster, M., Fan, W., Rastogi, R., A Cost-Based Model and
Effective Heuristic for Repairing Constraints by Value Modification, Proc. ACM
SIGMOD International Conference on Management of Data, pages 143–154, 2005.

18. Borosh, I., Treybig, L. B., Bounds on Positive Integral Solutions of Linear Dio-
phantine Equations, American Mathematical Society, Vol. 55(2), pages 299-304,
1976.

19. Bry, F., A Compositional Semantics for Logic Programs and Deductive
Databases, Proc. Joint International Conference and Syposium on Logic Program-
ming (JICSLP), pages 453–467, 1996.

20. Bry, F., Query Answering in Information Systems with Integrity Constraints,
Proc. Working Conference on Integrity and Control in Information Systems
(IICIS), pages 113–130, 1997.

21. Buccafurri, F., Leone N., Rullo P., Enhancing Disjunctive Datalog by Con-
straints, IEEE Transactions on Knowledge and Data Engineering, Vol. 12(5), pages
845–860, 2000.

22. Cadoli, M., Donini, F. M., Liberatore, P., Schaerf, M., Feasibility and Unfea-
sibility of Off-Line Processing, Proc. Israel Symposium on Theory of Computing
Systems (ISTCS), pages 100–109, 1996.

23. Caĺı, A., Lembo, D., Rosati, R., On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases, Proc. ACM Symposium
on Principles of Database Systems (PODS), pages 260-271, 2003.

24. Celle, A., Bertossi, L., Querying Inconsistent Databases: Algorithms and Imple-
mentation, Proc. International Conference on Computational Logic (CL), pages
942–956, 2000.

25. Chakravarthy, U. S., Grant, J., Minker, J., Logic-Based Approach to Semantic
Query Optimization, ACM Transactions on Database Systems, Vol. 15(2), pages
162-207, 1990.

26. Chandra, A. K., Merlin, P. M., Optimal Implementation of Conjunctive Queries
in Relational Data Bases, Symposium on the Theory of Computing (STOC), pages
77–90, 1977.

References 197

27. Chomicki, J., Marcinkowski, J., Staworko, S., Computing Consistent Query An-
swers Using Conflict Hypergraphs, Proc. International Conference on Information
and Knowledge Management (CIKM), pages 417–426, 2004.

28. Chomicki, J., Marcinkowski, J., Staworko, S., Hippo: A System for Computing
Consistent Answers to a Class of SQL Queries. Proc. International Conference on
Extending Database Technology (EDBT), System demo, pages 841–844 2004.

29. Chomicki, J., Marcinkowski, J., Minimal-Change Integrity Maintenance Using
Tuple Deletions, Information and Computation, Vol. 197(1-2), pages 90–121, 2005.

30. Chomicki, J., Marcinkowski, J., On the Computational Complexity of Minimal-
Change Integrity Maintenance in Relational Databases, In Inconsistency Toler-
ance, pages 119–150, 2005.

31. Chomicki, J., Consistent Query Answering: Opportunities and Limitations,
Proc. DEXA Workshop on Logical Aspects and Applications of Integrity Con-
straints (LAAIC), pages 527–531, 2006.

32. Clark K. L., Negation as Failure, Symposium on Logic and Data Bases, pages
293–322, 1977.

33. Crescenzi, V., Mecca, G., Merialdo, P., RoadRunner: Towards Automatic Data
Extraction from Large Web Sites, Proc. International Conference on Very Large
Data Bases (VLDB), pages 109–118, 2001.

34. Dalal, M., Investigations Into a Theory of Knowledge Base Revision, Proc. Na-
tional Conference of the American Association for Artificial Intelligence (AAAI),
pages 475–479, 1988.

35. Dung, P. M., Integrating Data from Possibly Inconsistent Databases, Proc. In-
ternational Conference on Cooperative Information Systems (CoopIS), pages 58–
65, 1996.

36. Eiter, T., Gottlob, G., On the Complexity of Propositional Knowledge Base
Revision, Updates, and Counterfactual, Artificial Intelligence, Vol. 57(2-3), pages
227–270, 1992.

37. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello F., The Knoledge Rep-
resentation System DLV: Progress Report, Comparisons and Benchmarks, Proc.
International Conference on Principles of Knowledge Representation and Reason-
ing (KR), pages 406-417, 1998.

38. Fazzinga, B., Flesca, S., Tagarelli, A., Learning Robust Web Wrappers, Proc.
International Conference on Database and Expert Systems Applications (DEXA)
pages 736–745, 2005.

39. Fazzinga, B., Flesca, S., Furfaro, F., Parisi, F., DART: A Data Acquisition and
Repairing Tool, Proc. EDBT Workshop on Inconsistency and Incompleteness in
Databases (IIDB), pages 297–317, 2006.

40. Flesca, S., Tagarelli, A., Schema-Based Web Wrapping, Proc. International Con-
ference on Conceptual Modeling (ER), pages 286–299, 2004.

41. Flesca, S., Furfaro, F., Parisi, F., Consistent Query Answer on Numeri-
cal Databases under Aggregate Constraint, Proc. International Symposium on
Database Programming Languages (DBPL), pages 279–294, 2005.

42. Franconi, E., Palma, A. L., Leone, N., Perri, S., Scarcello, F., Census Data Re-
pair: a Challenging Application of Disjunctive Logic Programming, Proc. Interna-

198 References

tional Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 561-578. 2001.

43. Fremuth-Paeger, C., Jungnickel, D., Balanced Network Flows. I. A Unifying
Framework for Design and Analysis of Matching Algorithms, Networks, Vol. 33(1),
pages 1-28, 1999.

44. Fuxman, A., Miller, R. J., Towards Inconsistency Management in Data Inte-
gration Systems. Proc. IJCAI Workshop on Information Integration on the Web
(IIWeb), pages 143–148, 2003.

45. Fuxman, A., Miller, R. J., First-Order Query Rewriting for Inconsistent
Databases, Proc. International Conference on Database Theory (ICDT), pages
337-351, 2005.

46. Fuxman, A., Miller, R. J., ConQuer: Efficient Management of Inconsistent
Databases, Proc. ACM SIGMOD International Conference on Management of
Data, pages 155-166, 2005.

47. Fuxman, A., Miller, R. J., ConQuer: A System for Efficient Querying Over
Inconsistent Databases, Proc. International Conference on Very Large Data Bases
(VLDB), System demo, pages 1354–1357, 2005.

48. Gass, S. I., Linear Programming Methods and Applications, McGrawHill, 1985.

49. Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic Program-
ming, Proc. International Conference and Symposium on Logic Programming
(ICLP/SLP), Vol. 2, pages 1070–1080, 1988.

50. Gelfond, M., Lifschitz, V., Classical Negation in Logic Programs and Disjunctive
Databases New Generation Computing, Vol. 9(3-4), pages 365–386, 1991.

51. Greco, S., Zumpano, E., Querying Inconsistent Databases, Proc. International
Conference on Logic for Programming and Autonated Reasoning (LPAR), pages
308–325, 2000.

52. Greco, G., Greco, S., Zumpano, E., A Logical Framework for Querying and
Repairing Inconsistent Databases, IEEE Transactions on Knowledge and Data
Engineering, Vol. 15(6), pages 1389–1408, 2003.

53. Imielinski, T., Lipski, W., Incomplete Information in Relational Databases,
Journal of the ACM, Vol. 31(4), pages 761–791, 1984.

54. Johnson, D. S., Klug, A. C., Testing Containment of Conjunctive Queries under
Functional and Inclusion Dependencies, Journal of Computer and System Sciences,
Vol. 28(1), pages 167–189, 1984.

55. Johnson, D. S., A Catalog of Complexity Classes, In Handbook of Theoretical
Computer Science, Vol. A, pages 67–161, 1990.

56. Kifer, M., Lozinskii, E. L., A Logic for Reasoning with Inconsistency, Journal
of Automated Reasoning, Vol. 9(2), pages 179-215, 1992.

57. Kowalski, R. A., Sadri, F., Logic Programs with Exceptions, New Generation
Computing, Vol. 9(3-4), pages 387–400, 1991.

58. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., DEByE - Data Extraction
By Example, Data and Knowledge Engineering, Vol. 40(2), pages 121–154, 2002.

59. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., Teixeira, J. S., A brief
Survey of Web Data Extraction Tools, SIGMOD Record, Vol. 31(2), pages 84–93,
2002.

References 199

60. Lenzerini, M., Data Integration: A Theoretical Perspective, Proc. Symposium
on Principles of Database Systems (PODS), pages 233–246, 2002.

61. Libkin, L., Wong, L., On Representation and Querying Incomplete Information
in Databases with Bags, Information Processing Letters, Vol 56(4), pages 209-214,
1995.

62. Lin, J., Mendelzon, A. O., Merging Databases Under Constraints, International
Journal of Cooperative Information Systems, Vol. 7(1), pages 55–76, 1998.

63. Lin, J., Mendelzon, A. O., Knowledge Base Merging by Majority, In Dynamic
Worlds: From the Frame Problem to Knowledge Management, 1999.

64. Liu, L., Pu, C., Han, W., XWRAP: An XML-Enabled Wrapper Construction
System for Web Information Sources, Proc. International Conference on Data
Engineering (ICDE), pages 611–621, 2000.

65. Lopatenko, A., Bertossi, L. E., Consistent Query Answering By Minimal-Size
Repairs, Proc. DEXA Workshop on Logical Aspects and Applications of Integrity
Constraints (LAAIC), pages 558–562, 2006.

66. Lopatenko, A., Bertossi, L. E., Complexity of Consistent Query Answering in
Databases under Cardinality-Based and Incremental Repair Semantics, Technical
Report arXiv:cs.DB/0604002 v1. Posted April 2, 2006.

67. Papadimitriou, C. H., On the complexity of integer programming, Journal of
the ACM, Vol. 28(4), pages 765–768, 1981.

68. Papadimitriou, C. H., Computational Complexity, Addison-Wesley, 1994.

69. Przymusinski T., Stable Semantics for Disjunctive Programs, New generation
computing Vol. 9(3-4), pages 401–424, 1991.

70. Reiter R., On Closed World Data Bases Symposium on Logic and Data Bases,
pages 55–76, 1977.

71. Ross, K. A., Srivastava, D., Stuckey, P. J., Sudarshan, S., Foundations of Aggre-
gation Constraints, Theoretical Computer Science, Vol. 193(1-2), pages 149–179,
1998.

72. Sahuguet, A., Azavant, F., Building Intelligent Web Applications Using
Lightweight Wrappers, Data and Knowledge Engineering, Vol. 36(3), pages 283-
316, 2001.

73. Sakama, C., Inoue, K., Prioritized Logic Programming and Its Application to
Commonsense Reasoning, Artificial Intelligence, Vol. 123(1-2), pages 185–222,
2000.

74. Ullman., J., Principles of Database and Knowledge-Base Systems, Computer
Science Press, Vol. I, 1988.

75. Wang, X., You, J. H., Yuan L. Y., Nonmonotonic Reasoning by Monotonic Infer-
ence with Priority Constraints, Proc. International Workshop on Nonmonotonic
Extensions of Logic Programming (NMELP), pages 91–109, 1996.

76. Wijsen, J., Condensed Representation of Database Repairs for Consistent Query
Answering, Proc. International Conference on Database Theory (ICDT), pages
378–393, 2003.

77. Wijsen, J., Making More Out of an Inconsistent Database, Proc. International
Conference on Advances in Databases and Information Systems (ADBIS), pages
291–305, 2004.

200 References

78. Wijsen, J., Database Repairing Using Updates, ACM Transactions on Database
Systems, Vol. 30(3), pages 722–768, 2005.

79. Wijsen, J., Project-Join-Repair: An Approach to Consistent Query Answering
Under Functional Dependencies, Proc. International Conference on Flexible Query
Answering Systems (FQAS), pages 1–12, 2006.

80. Zang, Y., Foo, N., Answer Sets for Prioritized Logic Programs, Proc. Interna-
tional Logic Programming Symposium (ILPS), pages 69–83, 1997.

81. Zaniolo, C., Database Relations with Null Values, Journal of Computer and
System Sciences, Vol. 28(1), pages 142-166, 1984.

