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1

Introduction

1.1 Background and Motivations

Since World Wide Web Consortium (W3C) has released its specification on
February 1998, XML (eXtensible Markup Language) has kindled great inter-
est either in scientific community either in computer industry until to became
the de facto standard format for electronic data structuring, storage and ex-
change. It has been enthusiastically adopted in a number of application fields,
including information retrieval and multimedia systems, databases, e-business
applications, geographical information systems and many others. Many ex-
pectations are surrounding XML, thus yielding a substantial growth of data
available.

XML is a general-purpose markup language for creating special-purpose
markup languages, capable of describing many different kinds of data. In other
words, XML is a way of describing data. An XML file can contain the data too,
as in a database. XML provides a text-based means to describe and apply a
tree-based structure to information. At its base level, all information manifests
as text, interspersed with markups that indicate a structuring into a hierarchy
of character data, container-like elements, and attributes of those elements. It
is a simplified subset of Standard Generalized Markup Language (SGML). Its
primary purpose is to facilitate the sharing of data across different systems,
particularly systems connected via the Internet. Languages based on XML
(example are Geography Markup Language (GML), RDF/XML, RSS, Atom,
MathML, XHTML, SVG, XUL, EAD, Klip and MusicXML) are defined in
a formal way, allowing programs to modify and validate documents in these
languages without prior knowledge of their particular form.

The ubiquity of text file authoring software (word processors) facilitates
rapid XML document authoring and maintenance, whereas prior to the ad-
vent of XML, very few data description languages that were general-purpose,
Internet protocol-friendly, and very easy to learn and author. In fact, most
data interchange formats were proprietary, special-purpose, “binary” formats
(based foremost on bit sequences rather than characters) and they could not
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be easily shared by different software applications or across different comput-
ing platforms, much less authored and maintained in common text editors.

XML is well-suited for data transfer thanks to the following features:

• it is both human- and machine-readable format;
• it has support for Unicode, allowing almost any information in any written

human language to be communicated;
• the ability to represent the most general computer science data structures:

records, lists and trees;
• the self-documenting format that describes structure and field names as

well as specific values;
• the strict syntax and parsing requirements that allow the necessary parsing

algorithms to remain simple, efficient, and consistent.

XML is also heavily used as a format for document storage and processing,
both online and offline, and offers several benefits:

• its robust, logically-verifiable format is based on international standards;
• the hierarchical structure is suitable for most (but not all) types of docu-

ments;
• it manifests as plain text files, unencumbered by licenses or restrictions;
• it is platform-independent, thus relatively immune to changes in technol-

ogy;
• its predecessor, SGML, has been in use since 1986, so there is extensive

experience and software available.

Close to the numerous merits, the XML standard has some limits. Parsers
should be designed to recurse arbitrarily nested data structures and must per-
form additional checks to detect improperly formatted or differently ordered
syntax or data. This causes a significant overhead for most basic uses of XML,
particularly where resources may be scarce - for example in embedded sys-
tems. Furthermore, additional security considerations arise when XML input
is fed from untrustworthy sources and resource exhaustion or stack overflows
are possible. Some consider the syntax to contain a number of obscure, un-
necessary features born of its legacy of SGML compatibility.

The basic parsing requirements do not support a very wide array of data
types so interpretation sometimes involves additional work in order to process
the desired data from a document. There is no provision in XML, for exam-
ple, for mandating that “3.14159” is a floating-point number rather than a
seven-character string (although some XML schema languages add this func-
tionality). But the most problematic issue with XML is that it is text-based
and verbose by its design (the XML standard explicitly states that terseness
in XML markup is of minimal importance). Its syntax is wordy and redun-
dant. This can hurt human readability and application efficiency, and yields
higher storage costs. It can also make XML difficult to apply in cases where
bandwidth is limited. This is particularly true for multimedia applications
running on cell phones and PDAs which want to use XML to describe images
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and video. As a consequence, data represented in the XML format, generally
require more space than they would need if they were represented in a owner
format. This happens, mainly, because the scheme (represented by the tags)
must be repeated for every record unlike what happens, for example, in the
relational table in which the scheme is unique. Also being, therefore, XML
the standard format for the representation and exchange of data, its use be-
haves a waste of resources (space of memorization and band of transmission
to quote the most important). As a result, the amount of information that
has to be transmitted, processed and stored is often substantially larger in
comparison to other data formats. This can be a serious problem in many
occasions, since the data has to be transmitted quickly and stored compactly.
Therefore, it is natural to investigate the use of syntactic and semantic models
for the compression of such data.

In addition, with the continuous and heterogeneous growth in XML data
sources, the ability to manage collections of XML documents and discover
knowledge from them for decision support becomes increasingly important.
Mining of XML documents significantly differs from structured data min-
ing and text mining. XML allows the representation of semi-structured and
hierarchal data containing not only the values of individual items but also
the relationships between data items. Element tags and their nesting therein
dictate the structure of an XML document. Due to the inherent flexibility
of XML, in both structure and semantics, discovering knowledge from XML
data is faced with new challenges as well as benefits. Mining of structure
provides new insights and means into the process of knowledge discovery.
The results of mining XML data have several interesting applications related
to the management of Web data. For example, structural analysis of Web
sites can benefit from the identification of similar documents, conforming to
a particular schema, which can serve as the input for wrappers working on
structurally similar Web pages. Also, query processing in semistructured data
can take advantage from the re-organization of documents on the basis of their
structure. Grouping semistructured documents according to their structural
homogeneity can help in devising indexing techniques for such documents,
thus improving the construction of query plans.

1.2 Main Contributions of the Thesis

This thesis is focused on management and extraction of knowledge from XML
documents and proposes a number of novel contributions aiming at easing
query optimization in the fields of XML compression and clustering of XML
documents.

As pointed out above, XML documents have an inherent textual nature
due to repeated tags and to PCDATA content. Therefore, they lead themselves
naturally to compression. Once the compressed documents are produced, how-
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ever, one would like to still query them under a compressed form as much as
possible.

Compression of XML documents has been largely dealt with in literature.
Different techniques have been proposed in order to improve the efficacy and
the efficiency of the approaches. In this thesis, we propose an adequate com-
pression of the values found in an XML document, coupled with a compact
storage model for all parts of the document. We present the XQueC system
that increases the compression benefits by adapting its compression strategy
to the data and query workload, based on a suitable cost model. By doing
data fragmentation and compression, XQueC indirectly targets the problem
of main-memory XQuery evaluation, which has attracted the attention of the
community[22, 96].

XQueC addresses the problem of fitting into memory a narrowed version of
the tree of tags (which is however a small percentage of the overall document)
in a two-fold way. Former, in order to diminish its footprint, it applies powerful
compression to the XML documents. The compression algorithms that we use
allow to evaluate most predicates directly on the compressed values. Thus, de-
compression is often necessary only at the end of the query evaluation. Later,
the XQueC storage model includes lightweight access support structures for
the data itself, providing thus efficient primitives for query evaluation.

The advantages of processing queries in the compressed domain are several:
first, in a traditional query setting, access to small chunks of data may lead
to less disk I/Os and reduce the query processing time; second, the memory
and computation efforts in processing compressed data can be dramatically
lower than those for uncompressed ones, thus even low-battery mobile devices
can afford them; third, the possibility of obtaining compressed query results
allows to spare network bandwidth when sending these results to a remote
location, in the spirit of [32].

On the other hand, the problem of comparing semistructured documents
has been recently investigated from different perspectives [146, 30, 35, 17].
Recent studies have also proposed techniques for clustering XML documents.
XML document clustering is realized through algorithms that rely on the
similarity between two documents computed exploiting a distance metric. The
algorithms should guarantee that documents in the same cluster have an high
similarity degree (low distance), whereas documents in different clusters have
a low similarity degree (high distance).

In this thesis we propose a novel methodology for clustering XML docu-
ments by structure, which is based on the notion of XML cluster representa-
tive. A cluster representative is a prototype XML document subsuming the
most relevant structural features of the documents within a cluster. The no-
tion of cluster prototype is crucial in most significant application domains,
such as wrapper induction, similarity search, and query optimization. The
core of our approach is the observation that a suitable cluster prototype is
represented by the result of a proper overlapping among all the documents
contained within the cluster. Actually, the resulting tree has the main advan-
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tage of retaining the specifics of the enclosed documents, while guaranteeing a
compact representation for them. This eventually makes the proposed notion
of cluster representative extremely profitable in the envisaged applications:
in particular, as a summary for the cluster, a representative highlights com-
mon subparts in the enclosed documents, and can avoid expensive similar-
ity searches against individual documents within the cluster. The proposed
notion of cluster representative is computed by resorting to the notions of
matching and merging among XML trees. Given a set of XML documents,
we aim at finding the best overlap between them. To this purpose, we de-
tect an initial tree structure resulting from the optimal matching between the
trees, and enrich the matching tree by including the remaining uncommon
substructures. Finally, we propose a hierarchical clustering algorithm, which
exploits the devised notion of representative in order to group homogeneous
XML documents.

1.3 Thesis Organization

The reminder of the thesis is structured as follows.
Chapter 2 presents an overview of XML. In particular, we explain what

XML is and why XML has kindled this strong interest in the scientific and
industry world. The syntax by which XML documents are structured as hi-
erarchies of information is defined with the help of different examples. The
concepts of well-formed and valid document are discussed and, finally, a brief
presentation of DTD and XML Schema is given.

Chapter 3 is centred on compression of XML documents. We investigate
the main motivations that lead to compression of XML data and analyze the
different types of approaches presented in literature. Particular, attention is
focused on features that differentiate generic compressors from the so called
conscious XML compressors: they make use of semantic information in order
to obtain better compression factors. Also, we pay attention on the design
of specific systems that are intended to work in conjunction with a query
processor.

In chapter 4, the XQueC system is proposed. XQueC addresses the prob-
lem of compressing XML data in such a way as to allow efficient XQuery evalu-
ation in the compressed domain. It is a XQuery processor on compressed data
able to achieve a good trade-off among data compression factors, queryability
and XQuery expressibility. Moreover, fragmentation and storage model for
the compressed XML documents used by XQueC are detailed. Special atten-
tion is reserved to the presentation of the order preserving text compression
algorithm used by XQueC in order to query data in compressed domain. In
the last part of the chapter, a number of experimental tests are exhibited,
showing the efficacy of the system.

Chapter 5 deals with knowledge discovery in XML data. We present data
mining tasks as a step of more general knowledge discovery process and in-
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troduce some basic concepts about proximity measures that can be used to
compare objects. The final part of the chapter is dedicated to the cluster
analysis. We detail the principal clustering techniques used to group simi-
lar objects highlighting what are the main factors to be considered in their
selection.

Chapter 6 is an overview of the main XML document clustering approaches
available from literature. Great emphasis is placed on the research efforts
for developing similarity measures for clustering XML documents relying on
their content, structure, and links. Approaches are presented depending on the
adopted representation of documents (vector-based, tree-based,seldom graph
and alternative representations).

Chapter 7 presents our methodology for clustering XML documents by
structure, which is based on the notion of XML cluster representative. The
proposed notion of cluster representative relies on the notions of XML tree
matching and merging. The last part of the chapter presents experimental
evaluation performed on both synthetic and real data that states the effec-
tiveness of our approach.

Finally, chapter 8 draws some conclusions and highlights some still open
issues that are worth considering in further investigation.



2

An overview of XML

2.1 Introduction

XML, the Extensible Markup Language, is a W3C-endorsed standard for doc-
ument markup. It defines a generic syntax used to mark up data with simple,
human-readable tags. It provides a standard format for computer documents.
This format is flexible enough to be customized for domains as diverse as
web sites, electronic data interchange, vector graphics, genealogy, real-estate
listings, object serialization, remote procedure calls, voice-mail systems, and
more.

By leaving the names, allowable hierarchy, and meanings of the elements
and attributes open and definable by a customizable schema, XML provides
a syntactic foundation for the creation of custom, XML-based markup lan-
guages. The general syntax of such languages is rigid documents must adhere
to the general rules of XML, assuring that all XML-aware software can at
least read (parse) and understand the relative arrangement of information
within them. The schema merely supplements the syntax rules with a set of
constraints. Schemas typically restrict element and attribute names and their
allowable containment hierarchies, such as only allowing an element named
“birthday” to contain an element named “month” and an element named
“day”, each of which has to contain only character data. The constraints in a
schema may also include data type assignments that affect how information is
processed; for example, the “month” element’s character data may be defined
as being a month according to a particular schema language’s conventions,
perhaps meaning that it must not only be formatted a certain way, but also
must not be processed as if it were some other type of data.

In this way, XML contrasts with HTML, which has an inflexible, single-
purpose vocabulary of elements and attributes that, in general, cannot be
repurposed. With XML, it is much easier to write software that accesses the
document’s information, since the data structures are expressed in a formal,
relatively simple way.
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XML makes no prohibitions on how it is used. Although XML is funda-
mentally text-based, software quickly emerged to abstract it into other, richer
formats, largely through the use of datatype-oriented schemas and object-
oriented programming paradigms (in which the document is manipulated as
an object). Such software might treat XML as serialized text only when it
needs to transmit data over a network, and some software doesn’t even do
that much. Such uses have led to “binary XML”, the relaxed restrictions of
XML 1.1, and other proposals that run counter to XML’s original spirit and
thus garner an amount of criticism.

2.2 XML Documents and XML Files

An XML document contains text, never binary data. It can be opened with
any program that knows how to read a text file. The example 2.1 is close to
the simplest XML document imaginable. Nonetheless, t is a well-formed XML
document. XML parsers can read it and understand it (at least as far as a
computer program can be said to understand anything).

Example 2.1. A very simple yet complete XML document
<person>
Alan Turing

</person>

2.3 Elements, Tags, and Character Data

The document of example 2.1 is composed of a single element named per-
son. The element is delimited by the start-tag <person> and the end-tag
</person>. Everything between the start-tag and the end-tag of the element
(exclusive) is called the element’s content. The content of this element is the
text string:

Alan Turing
The whitespace is part of the content, though many applications will

choose to ignore it. <person> and </person> are markup. The string “Alan
Turing” and its surrounding whitespace are character data. The tag is the
most common form of markup in an XML document, but there are other
kinds.

2.3.1 Tag Syntax

XML tags look superficially like HTML tags. Start-tags begin with < and end-
tags begin with </. Both of these are followed by the name of the element
and are closed by >. However, unlike HTML tags, it is allowed to make up
new XML tags. To describe a person, use <person> and </person> tags. To
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describe a calendar, use <calendar> and </calendar> tags. The names of
the tags generally reflect the type of content inside the element, not how that
content will be formatted.

Empty elements

There’s also a special syntax for empty elements, i.e., elements that have no
content. Such an element can be represented by a single empty-element tag
that begins with < but ends with />. For instance, in XHTML, an XMLized
reformulation of standard HTML, the line-break and horizontal-rule elements
are written as <br/> and <hr/> instead of <br> and <hr>. These are
exactly equivalent to <br></br> and <hr></hr>, however. Which form to
use for empty elements is completely up to authors. However, in XML and
XHTML (unlike HTML) the use of only the start-tag (for instance <br> or
<hr>) without using the matching the end-tag is not permitted. That would
be a well-formedness error.

Case sensitivity

XML, unlike HTML, is case sensitive. <Person> is not the same as <PERSON>
is not the same as <person>. If an element is opened by a <person> tag, it
can’t be closed by a </PERSON> tag. Authors are free to use upper or low-
ercase or both as they choose. They just have to be consistent within any one
element.

2.3.2 XML Trees

Example 2.2 shows a more complicated XML document. The example is a
person element that contains more information suitably marked up to show
its meaning.

Example 2.2. A more complex XML document describing a person
<person>
<name>
<first_name>Alan</first_name>
<last_name>Turing</last_name>

</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>
<profession>cryptographer</profession>

</person>
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Parents and children

XML document of example 2.2 is still composed of one person element. How-
ever, now this element doesn’t merely contain undifferentiated character data.
It contains four child elements: a name element and three profession elements.
The name element contains two child elements of its own, first name and
last name.

The person element is called the parent of the name element and the three
profession elements. The name element is the parent of the first name and
last name elements. The name element and the three profession elements are
sometimes called each other’s siblings. The first name and last name elements
are also siblings.

As in human society, any one parent may have multiple children. However,
unlike human society, XML gives each child exactly one parent, not two or
more. Each element (with the exception of root element) has exactly one
parent element. That is, it is completely enclosed by another element. If an
element’s start-tag is inside some element, then its end-tag must also be inside
that element. Overlapping tags, as in

<strong>
<em>
this common example from HTML

</strong>
</em>

are prohibited in XML. Since the em element begins inside the strong element,
it must also finish inside the strong element.

The root element

Every XML document has one element that does not have a parent. This
is the first element in the document and the element that contains all other
elements. In example 2.1 and 2.2, the person element filled this role. It is called
the root element of the document. It is also sometimes called the document
element. Every well-formed XML document has exactly one root element.
Since elements may not overlap, and since all elements except the root have
exactly one parent, XML documents form a data structure programmers call
a tree. Figure 2.1 diagrams this relationship for example 2.2. Each gray box
represents an element. Each black box represents character data. Each arrow
represents a containment relationship.

2.3.3 Mixed Content

In example 2.2, the contents of the first name, last name, and profession el-
ements were character data, that is, text that does not contain any tags.
The contents of the person and name elements were child elements and some
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Fig. 2.1. A tree diagram for Example 2.2

whitespace that most applications will ignore. This dichotomy between ele-
ments that contain only character data and elements that contain only child
elements (and possibly a little whitespace) is common in documents that are
data oriented. However, XML can also be used for more free-form, narrative
documents such as business reports, magazine articles, student essays, short
stories, web pages, and so forth, as shown by example 2.3.

Example 2.3. A narrative-organized XML document
<biography>
<name><first_name>Alan</first_name> <last_name>Turing
</last_name> </name> was one of the first people to
truly deserve the name <emphasize>computer scientist
</emphasize>. Although his contributions to the field
are too numerous to list, his best-known are the eponymous
<emphasize> Turing Test</emphasize> and <emphasize>Turing
Machine</emphasize>.

<definition>The <term>Turing Test</term> is to this day the
standard test for determining whether a computer is truly
intelligent. This test has yet to be passed. </definition>

<definition>The <term>Turing Machine</term> is an abstract
finite state automaton with infinite memory that can be
proven equivalent to any any other finite state automaton
with arbitrarily large memory.
Thus what is true for a Turing machine is true for all
equivalent machines no matter how implemented.
</definition>
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<name><last_name>Turing</last_name></name> was also an
accomplished <profession>mathematician</profession> and
<profession>cryptographer</profession>. His assistance
was crucial in helping the Allies decode the German Enigma
machine. He committed suicide on <date><month>June</month>
<day>7</day>, <year>1954</year></date> after being
convicted of homosexuality and forced to take female
hormone injections.

</biography>

The root element of this document is biography. The biography contains
name, definition, profession, and emphasize child elements. It also contains
a lot of raw character data. Some of these elements such as last name and
profession only contain character data. Others such as name contain only
child elements. Still others such as definition contain both character data
and child elements. These elements are said to contain mixed content. Mixed
content is common in XML documents containing articles, essays, stories,
books, novels, reports, web pages, and anything else that’s organized as a
written narrative. Mixed content is less common and harder to work with in
computer-generated and processed XML documents used for purposes such
as database exchange, object serialization, persistent file formats, and so on.
One of the strengths of XML is the ease with which it can be adapted to
the very different requirements of human-authored and computer-generated
documents.

2.4 Attributes

XML elements can have attributes. An attribute is a name-value pair attached
to the element’s start-tag. Names are separated from values by an equals sign
and optional whitespace. Values are enclosed in single or double quotation
marks. For example, this person element has a born attribute with the value
1912-06-23 and a died attribute with the value 1954-06-07:

<person born="1912-06-23" died="1954-06-07">
Alan Turing

</person>

This next element is exactly the same as far an XML parser is concerned. It
simply uses single quotes instead of double quotes, puts some extra whitespace
around the equals signs, and reorders the attributes.

<person died = ’1954-06-07’ born = ’1912-06-23’>
Alan Turing

</person>
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The whitespace around the equals signs is purely a matter of personal
aesthetics. The single quotes may be useful in cases where the attribute value
itself contains a double quote. Attribute order is not significant.

Example 2.4 shows how attributes might be used to encode much of the
same information given in the data-oriented document of example 2.2.

Example 2.4. An XML document that describes a person using attributes
<person>
<name first="Alan" last="Turing"/>
<profession value="computer scientist"/>
<profession value="mathematician"/>
<profession value="cryptographer"/>

</person>

This raises the question of when and whether one should use child elements
or attributes to hold information. This is a subject of heated debate. Some
computer scientists maintain that attributes are for metadata about the ele-
ment while elements are for the information itself. Others point out that it’s
not always so obvious what’s data and what’s metadata. Indeed, the answer
may depend on where the information is put to use.

What’s undisputed is that each element may have no more than one at-
tribute with a given name. That’s unlikely to be a problem for a birth date or
a death date; it would be an issue for a profession, name, address, or anything
else of which an element might plausibly have more than one. Furthermore,
attributes are quite limited in structure. The value of the attribute is simply
a text string. The division of a date into a year, month, and day with hyphens
in the previous example is at the limits of the substructure that can reason-
ably be encoded in an attribute. Consequently, an element-based structure is
a lot more flexible and extensible. Nonetheless, attributes are certainly more
convenient in some applications.

2.5 XML Names

The XML specification can be quite legalistic and picky at times. Nonetheless,
it tries to be efficient where possible. One way it does that is by reusing the
same rules for different items where possible. For example, the rules for XML
element names are also the rules for XML attribute names, as well as for
the names of several less common constructs. Generally, these are referred to
simply as XML names.

Element and other XML names may contain essentially any alphanumeric
character. This includes the standard English letters A through Z and a
through z as well as the digits 0 through 9. XML names may also include
non-English letters, numbers, and ideograms. XML names may not contain
other punctuation characters such as quotation marks, apostrophes, dollar
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signs, carets, percent symbols, and semicolons. The colon is allowed, but its
use is reserved for namespaces. XML names may not contain whitespace of
any kind, whether a space, a carriage return, a line feed, a non-breaking
space, and so forth. Finally, all names beginning with the string XML (in any
combination of case) are reserved for standardization in W3C XML-related
specifications. XML names may only start with letters, ideograms, and the
underscore character. They may not start with a number, hyphen, or period.
There is no limit to the length of an element or other XML name

2.6 EntityReferences

The character data inside an element may not contain a raw unescaped open-
ing angle bracket (<). This character is always interpreted as beginning a tag.
If it need to use this character in text, it is possible to escape it using the &lt;
entity reference. When a parser reads the document, it will replace the &lt;
entity reference with the actual < character. However, it will not confuse &lt;
with the start of a tag. For example:

<SCRIPT LANGUAGE="JavaScript">
if (location.host.toLowerCase().indexOf("cafeconleche")<0)
{
location.href="http://www.cafeconleche.org/";

}
</SCRIPT>

The character data inside an element may not contain a raw unescaped amper-
sand (&) either. This is always interpreted as beginning an entity or character
reference. However, the ampersand may be escaped using the &amp; entity
reference like this:

Entity references such as &amp; and &lt; are considered to be markup.
When an application parses an XML document, it replaces this particular
markup with the actual characters to which the entity reference refers.

XML predefines exactly five entity references. These are:

• &lt; the less-than sign; a.k.a. the opening angle bracket (<)
• &amp; the ampersand (&)
• &gt; the greater-than sign; a.k.a. the closing angle bracket (>)
• &quot; the straight, double quotation marks (")
• &apos; the apostrophe; a.k.a. the straight single quote (’)

In addition to the five predefined entity references, it is possible to define
others in the document type definition.
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2.7 CDATA Sections

When an XML document includes samples of XML or HTML source code,
the < and & characters in those samples must be encoded as &lt; and &amp;.
The more sections of literal code a document includes and the longer they are,
the more tedious this encoding becomes. Instead it can enclose each sample of
literal code in a CDATA section. A CDATA section is set off by a <![CDATA[
and ]]>. Everything between the <![CDATA[ and the ]]> is treated as raw
character data. Less-than signs don’t begin. Ampersands don’t start entity
references. Everything is simply character data, not markup.

The only thing that can not appear in a CDATA section is the CDATA
section end delimiter ]]>.

CDATA sections exist for the convenience of human authors, not for pro-
grams. Parsers are not required to tell you whether a particular block of text
came from a CDATA section, from normal character data, or from character
data that contained entity references such as &lt; and &amp;. By the time
you get access to the data, these differences will have been washed away.

2.8 Comments

XML documents can be commented so that coauthors can leave notes for each
other and themselves, documenting why they’ve done what they’ve done or
items that remain to be done. XML comments are syntactically similar to
HTML comments. Just as in HTML, they begin with <!-- and end with the
first occurrence of -->. For example:

<!-- I need to verify and update these links. -->

The double hyphen -- should not appear anywhere inside the comment until
the closing -->. In particular, a three hyphen close like ---< is specifically
forbidden.

Comments may appear anywhere in the character data of a document.
They may also appear before or after the root element. (Comments are not
elements, so this does not violate the tree structure or the one-root element
rules for XML.) However, comments may not appear inside a tag or inside
another comment.

Applications that read and process XML documents may or may not pass
along information included in comments. They are certainly free to drop them
out if they choose. Comments are strictly for making the raw source code of
an XML document more legible to human readers.

2.9 Processing Instructions

In HTML, comments are sometimes abused to support nonstandard exten-
sions. For instance, the contents of the script element are sometimes enclosed
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in a comment to protect it from display by a nonscript-aware browser. The
Apache web server parses comments in .shtml files to recognize server side in-
cludes. Unfortunately, these documents may not survive being passed through
various HTML editors and processors with their comments and associated
semantics intact. Worse yet, it’s possible for an innocent comment to be mis-
construed as input to the application.

XML provides the processing instruction as an alternative means of pass-
ing information to particular applications that may read the document. A
processing instruction begins with <? and ends with ?>. Immediately fol-
lowing the <? is an XML name called the target, possibly the name of the
application for which this processing instruction is intended or possibly just
an identifier for this particular processing instruction. The rest of the process-
ing instruction contains text in a format appropriate for the applications for
which the instruction is intended.

For example, in HTML a robots META tag is used to tell search-engine
and other robots whether and how they should index a page. The following
processing instruction has been proposed as an equivalent for XML docu-
ments:

<?robots index="yes" follow="no"?>

The target of this processing instruction is robots. The syntax of this par-
ticular processing instruction is two pseudoattributes, one named index and
one named follow, whose values are either yes or no. The semantics of this
particular processing instruction are that if the index attribute has the value
yes, then search-engine robots should index this page. If index has the value
no, then it won’t be. Similarly, if follow has the value yes, then links from this
document will be followed.

Other processing instructions may have totally different syntaxes and se-
mantics. For instance, processing instructions can contain an effectively unlim-
ited amount of text. PHP includes large programs in processing instructions.
For example:

<?php
mysql_connect("database.unc.edu", "clerk", "password");
$result = mysql("HR", "SELECT LastName, FirstName FROM
Employees ORDER BY LastName, FirstName");

$i = 0;
while ($i < mysql_numrows ($result)) {

$fields = mysql_fetch_row($result);
echo "<person>$fields[1] $fields[0] </person>\r\n";
$i++;

}
mysql_close( );

?>
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Processing instructions are markup, but they’re not elements. Consequently,
like comments, processing instructions may appear anywhere in an XML doc-
ument outside of a tag, including before or after the root element. The most
common processing instruction, xml-stylesheet, is used to attach stylesheets
to documents. It always appears before the root element, as the following
example demonstrates.

<?xml-stylesheet href="person.css" type="text/css"?>
<person>
Alan Turing

</person>

In this example, the xml-stylesheet processing instruction tells browsers to
apply the CSS stylesheet person.css to this document before showing it to the
reader. The processing instruction names xml, XML, XmL, etc., in any com-
bination of case, are forbidden to avoid confusion with the XML declaration.

2.10 The XML Declaration

XML documents should (but do not have to) begin with an XML declaration.
The XML declaration looks like a processing instruction with the name xml
and version, standalone, and encoding attributes. Technically, it’s not a pro-
cessing instruction though, just the XML declaration; nothing more, nothing
less. The following example demonstrates.

<?xml version="1.0" encoding="ASCII" standalone="yes"?>
<person>
Alan Turing

</person>

XML documents do not have to have an XML declaration. However, if an
XML document does have an XML declaration, then that declaration must
be the first thing in the document. It must not be preceded by any comments,
whitespace, processing instructions, and so forth. The reason is that an XML
parser uses the first five characters (<?xml) to make some reasonable guesses
about the encoding, such as whether the document uses a single byte or multi-
byte character set. The only thing that may precede the XML declaration is
an invisible Unicode byte-order mark.

2.10.1 encoding

By default XML documents are assumed to be encoded in the UTF-8 variable-
length encoding of the Unicode character set. This is a strict superset of
ASCII, so pure ASCII text files are also UTF-8 documents. However, most
XML processors, especially those written in Java, can handle a much broader
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range of character sets. To use a specific character set it is necessary to tell the
parser which character encoding the document uses. Preferably this is done
through meta information, stored in the file system or provided by the server.
However, not all systems provide character-set metadata so XML also allows
documents to specify their own character set with an encoding declaration
inside the XML declaration. The following example shows how to indicate
that a document was written in the ISO-8859-1 (Latin-1) character set that
includes letters like and needed for many non-English Western European
languages.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<person>
Erwin Schrdinger

</person>

The encoding attribute is optional in an XML declaration. If it is omitted
and no metadata is available, then the Unicode character set is assumed. The
parser may use the first several bytes of the file to try to guess which encoding
of Unicode is in use. If metadata is available and it conflicts with the encoding
declaration, then the encoding specified by the metadata wins. For example,
if an HTTP header says a document is encoded in ASCII but the encoding
declaration says it’s encoded in UTF-8, then the parser will pick ASCII.

2.10.2 standalone

If the standalone attribute has the value no, then an application may be
required to read an external DTD (that is a DTD in a file other than the one
it’s reading now) to determine the proper values for parts of the document.
For instance, a DTD may provide default values for attributes that a parser is
required to report even though they are not actually present in the document.

Documents that do not have DTDs, can have the value yes for the stan-
dalone attribute. Documents that do have DTDs can also have the value yes
for the standalone attribute if the DTD does not in any way change the con-
tent of the document or if the DTD is purely internal.

The standalone attribute is optional in an XML declaration. If it is omit-
ted, then the value no is assumed.

2.11 Checking Documents for Well-Formedness

Every XML document, without exception, must be well-formed. This means
it must adhere to a number of rules, including the following:

• Every start-tag must have a matching end-tag.
• Elements may nest, but may not overlap.
• There must be exactly one root element.
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• Attribute values must be quoted.
• An element may not have two attributes with the same name.
• Comments and processing instructions may not appear inside tags.
• No unescaped < or & signs may occur in the character data of an element

or attribute.

This is not an exhaustive list. There are many, many ways a document
can be malformed. Whether the error is small or large, likely or unlikely, an
XML parser reading a document is required to report it. It may or may not
report multiple well-formedness errors it detects in the document. However,
the parser is not allowed to try to fix the document and make a best-faith
effort of providing what it thinks the author really meant. It can’t fill in
missing quotes around attribute values, insert an omitted end-tag, or ignore
the comment that’s inside a start-tag. The parser is required to return an
error. The objective here is to avoid the bug-for-bug compatibility wars that
plagued early web browsers and continue to this day. Consequently, before
you publish an XML document, whether that document is a web page, input
to a database, or something else, you’ll want to check it for well-formedness.

2.12 DTD

While XML is extremely flexible, not all the programs that read particular
XML documents are so flexible. Many programs can work with only some
XML applications but not others. And within a particular XML application,
it’s often important to ensure that a given document indeed adheres to the
rules of that XML application. For instance, in XHTML, li elements should
only be children of ul or ol elements. Browsers may not know what to do
with them, or may act inconsistently, if li elements appear in the middle of a
blockquote or p element.

The solution to this dilemma is a document type definition (DTD). DTDs
are written in a formal syntax that explains precisely which elements and
entities may appear where in the document and what the elements’ con-
tents and attributes are. A DTD can make statements such as “A ul ele-
ment only contains li elements” or “Every employee element must have a
social security number attribute”. Different XML applications can use differ-
ent DTDs to specify what they do and do not allow.

A validating parser compares a document to its DTD and lists any places
where the document differs from the constraints specified in the DTD. The
program can then decide what it wants to do about any violations. Some
programs may reject the document. Others may try to fix the document or
reject just the invalid element. Validation is an optional step in processing
XML. A validity error is not necessarily a fatal error like a well-formedness
error, though some applications may choose to treat it as one.
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2.12.1 Validation

A valid document includes a document type declaration that identifies the
DTD the document satisfies. The DTD lists all the elements, attributes, and
entities the document uses and the contexts in which it uses them. The DTD
may list items the document does not use as well. Validity operates on the
principle that everything not permitted is forbidden. Everything in the doc-
ument must match a declaration in the DTD. If a document has a document
type declaration and the document satisfies the DTD that the document type
declaration indicates, then the document is said to be valid. If it does not, it
is said to be invalid.

There are many things the DTD does not say. In particular, it does not
say the following:

• What the root element of the document is
• How many of instances of each kind of element appear in the document
• What the character data inside the elements looks like
• The semantic meaning of an element; for instance, whether it contains a

date or a person’s name

DTDs allow you to place some constraints on the form an XML document
takes, but there can be quite a bit of flexibility within those limits. A DTD
never says anything about the length, structure, meaning, allowed values, or
other aspects of the text content of an element.

Validity is optional. A parser reading an XML document may or may
not check for validity. If it does check for validity, the program receiving
data from the parser may or may not care about validity errors. In some
cases, such as feeding records into a database, a validity error may be quite
serious, indicating that a required field is missing, for example. In other cases,
rendering a web page perhaps, a validity error may not be so important, and
it can work around it. Well-formedness is required of all XML documents;
validity is not.

A Simple DTD Example

The following is a DTD for the example 2.2.

<!ELEMENT person (name, profession*)>
<!ELEMENT name (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT profession (#PCDATA)>

This DTD described a person. The person have a name and three profes-
sions. The name have a first name and a last name. The particular person
described in that example is Alan Turing. However, that’s not relevant for
DTDs. A DTD only describes the general type, not the specific instance. A
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DTD for person documents say that a person element contains one name child
element and zero or more profession child elements. It further say that each
name element contains a first name child element and a last name child ele-
ment. Finally it state that the first name, last name, and profession elements
all contain text.

This DTD would probably be stored in a separate file from the docu-
ments it describes. This allows it to be easily referenced from multiple XML
documents. However, it can be included inside the XML document if that’s
convenient, using the document type declaration.

Each line of this DTD is an element declaration. The first line declares
the person element; the second line declares the name element; the third
line declares the first name element; and so on. However, the line breaks are
not relevant except for legibility. Although it’s customary to put only one
declaration on each line, it’s not required. Long declarations can even span
multiple lines.

2.13 XML Schema

Although Document Type Definitions can enforce basic structural rules on
documents, many applications need a more powerful and expressive valida-
tion method. The W3C developed the XML Schema Recommendation, re-
leased on May 2, 2001 after a long incubation period, to address these needs.
Schemas can describe complex restrictions on elements and attributes. Mul-
tiple schemas can be combined to validate documents that use multiple XML
vocabularies.

2.13.1 Overview

A schema is a formal description of what comprises a valid document. An
XML schema is an XML document containing a formal description of what
comprises a valid XML document. A W3C XML Schema Language schema is
an XML schema written in the particular syntax recommended by the W3C.

An XML document described by a schema is called an instance document.
If a document satisfies all the constraints specified by the schema, it is consid-
ered to be schema-valid. The schema document is associated with an instance
document through one of the following methods:

An xsi:schemaLocation attribute on an element contains a list of names-
paces used within that element and the URLs of the schemas with which to
validate elements in those namespaces.

An xsi:noNamespaceSchemaLocation attribute contains a URL for the
schema used to validate elements that are not in any namespace.

The validating parser may attempt to locate the schema using the names-
pace of the element itself in one of these ways: directly by looking for a
schema at that namespace, indirectly by looking for a RDDL document at
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that namespace, or implicitly by knowing in advance which schema is right
for that namespace.

A validating parser may be instructed to validate a given document against
an explicitly provided schema, ignoring any hints that might be provided
within the document itself.

Schemas Versus DTDs

DTDs provide the capability to do basic validation of the following items in
XML documents:

• Element nesting
• Element occurrence constraints
• Permitted attributes
• Attribute types and default values

However, DTDs do not provide fine control over the format and data
types of element and attribute values. Other than the various special attribute
types (ID, IDREF, ENTITY, NMTOKEN, and so forth), once an element or
attribute has been declared to contain character data, no limits may be placed
on the length, type, or format of that content. For narrative documents (such
as web pages, book chapters, newsletters, etc.), this level of control is probably
good enough.

But as XML makes inroads into more data-intensive applications (such
as web services using SOAP), more precise control over the text content of
elements and attributes becomes important. The W3C XML Schema standard
includes the following features:

• Simple and complex data types
• Type derivation and inheritance
• Element occurrence constraints
• Namespace-aware element and attribute declarations

The most important of these features is the addition of simple data types
for parsed character data and attribute values. Unlike DTDs, schemas can
enforce specific rules about the contents of elements and attributes. In addition
to a wide range of built-in simple types (such as string, integer, decimal,
and dateTime), the schema language provides a framework for declaring new
data types, deriving new types from old types, and reusing types from other
schemas.

Besides simple data types, schemas add the ability to place more explicit
restrictions on the number and sequence of child elements that can appear in
a given location. This is even true when elements are mixed with character
data, unlike the mixed content model (#PCDATA) supported by DTDs.
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XML compression techniques

3.1 Introduction

In general, compressing data means to reduce the necessary space to represent
the information that they contains. A reduction of the dimensions of the
documents introduces different advantages:

• in data exchange, it increases the transferable amount of information in
the unit of time across a channel of communication

• in data storage, it reduce the amount of occupied space;
• in data elaboration, it improves the performance thanks to the minor

amount of data that must be treated

The main issue exposed by XML format is its intrinsic verbosity. The problem
can be addressed if data compression is used to reduce the space requirements
of XML. Because XML is text-based, the simplest and most common approach
is to use the existing text compressors and to compress XML documents as
ordinary text files. However, although it is possible to reduce the amount of
data significantly in this way, the compressed XML documents often remain
larger than equivalent text or binary formats. It is obvious that this solution
is only suboptimal, since two documents carrying the same message should
have the same entropy and therefore it should be possible to compress them
to about the same size. The main reason is that general-purpose compressors
often fail to discover and utilize the redundancy contained in the structure of
XML. Another problem with these compressors is that they introduce another
pass into XML processing, since decompression is necessary before the data
can be processed. Recently, a number of XML-conscious compressors have
emerged that improve on the traditional text compressors. Because they are
designed to take advantage of the structure of XML during the compression,
they often achieve considerably better results. Very often, these tools rely on
the functionality of the existing text compressors, and only adapt them to
XML.
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3.2 XML-conscious compressors

The category of XML-conscious compressors contains those compressors that
exploit structure information in order to obtain better compression factors.
But they don’t permit the execution of a query in compressed domain. Indeed,
with this type of systems, it is necessary to decompress partially or, more
frequently totally, the document in order to evaluate a query.

3.2.1 XMill

XMill [91] is an XML compressor based on Gzip, which can compress about
twice as good, and at about the same speed. It allows to combine existing
compressors in order to compress heterogeneous XML data. Further, it is
extensible with user-defined compressors for complex data types, such as DNA
sequences, etc.

Example 3.1. A sample XML document
<book>

<title lang="en">Views</title>
<author>Miller</author>
<author>Tai</author>

</book>

XMill parses XML data with a SAX parser, and transforms it by splitting
the data into three types of containers: one container for the element and
attribute symbols, one for the document tree structure, and several contain-
ers for storing the character data. By default, each element or attribute is
assigned one data container. XMill employs a path processor that is driven
by so called container expressions. The container expressions are based on the
XPath language [154], and allow experienced users to group the data within
a certain set of elements into one container to improve compression efficiency.
In the output file, the individual containers are compressed using Gzip.

XMill applies three principles to compress XML data:

Separate structure from data. The structure, represented by XML tags
and attributes, and the data are compressed separately. XMill uses numeric
tokens to represent the XML structure. Start-tags are dictionary encoded, i.e.
assigned an integer value, while all end-tags are replaced by the token /. Data
values are replaced with their container number. When complete document is
processed, the token table, the structure container and the data containers are
compressed using Gzip. The tokens are represented as integers with 1, 2, or 4
bytes; tags and attributes are positive integers, / is 0, and container numbers
are negative integers. To illustrate the tokenization of the structure, consider
the sample XML document in example 3.1. After the document is processed,
the structure will be tokenized as:
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T1 T2 T3 C3 / C4 / T4 C5 / T4 C5 / /

and the following dictionary is created: book = T1, title = T2, @lang =
T3, author = T4. Data values are assigned containers C3, C4, and C5 de-
pending on their parent tag.

Group data items with related meaning. The data items are grouped
into containers, which are compressed separately. XMill groups the data items
based on the element type, but this can be overridden through the container
expressions. By grouping similar data items, the compression can improve
substantially.

The container expression describe the mappings from paths to containers.
Consider the following regular expressions derived from XPath:

e ::= label | * | # | e1/e2 | e1//e2 | (e1|e2) | (e)+

Except for (e)+ and #, all are XPath constructs: label is either tag or
an @attribute, * denotes any tag or attribute, e1/e2 is concatenation, e1//e2
is concatenation with any path in between, and (e1|e2) is alternation. To
these constructs, (e)+ has been added, which is the strict Kleene-Closure. The
construct # stands for any tag or attribute (much like *), but each match of
# will determine a new container.

The container expression has the form c ::= /e|//e, where /e matches e
starting from the root of the XML tree while //e matches e at arbitrary depth
of the tree. //* is abbreviated by //.

Apply semantic compressors to containers. Because the data items
can be of different types (text, numbers, dates, etc.), XMill allows the users
to apply different specialized semantic compressors to different containers. At
first, the items in the container are processed by the semantic compressor,
and then they are passed to Gzip.

There are 8 different semantic compressors in XMill. These can be used to
encode integers, enumerations and texts, or the sequences or the repetitions
of them more efficiently. For example, positive integers are binary encoded as
follows: numbers less than 128 use one byte; those less than 16384 use two
bytes, otherwise they use four bytes. The most significant one or two bits
describe the length of the sequence.

Semantic compressors are specified on the command line using the syntax
c => s where c is a container expression and s is a semantic compressor.

It is possible to write his own semantic compressor (for example, for encod-
ing the DNA sequences) and link it into XMill. The list of semantic compres-
sors can be extended by the users. Under the default setting, XMill compresses
40%-60% better than Gzip. With the user assistance (grouping related data,
applying semantic compressors), it is possible to further improve the compres-
sion by about 10%.

The main disadvantage of XMill is that it scatters parts of the documents,
making incremental processing impossible.
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3.2.2 XMLZip

Java-based XMLZip is a creation of XML Solutions [153]. It operates in a
rather interesting way. The compression is driven by the level parameter l.
Based on this parameter, XMLZip processes the document using the DOM
interface, and breaks the structural tree into multiple components: a root com-
ponent containing the elements up to the level l, and one component for each
of the remaining subtrees starting at level l. The root component is modified
by adding references to the subtrees, and the individual components are then
compressed using the Java Zip/DeDeflate library (which uses a variant of the
LZSS method).

Example 3.2. A sample XML document
<root>
<child id="1">
...

</child>
<child id="2">
...

</child>
</root>

Consider the XML document in example 3.2. Suppose that l = 2. XMLZip
splits the original document into three components, as displayed in exam-
ple 3.3. In the root component, <xmlzip> tags are inserted to reference the
detached subtrees. After that, the individual components are compressed.

Example 3.3. Decomposition of the XML document with l = 2
<root> <child id="1"> <child id="2">
<xmlzip id="1"/> ... ...
<xmlzip id="2"/> </child> </child>

</root>

The compression efficiency depends on the value of l. In most occasions,
increasing l causes the performance to deteriorate, since the redundancies
across the separated subtrees cannot be used in the compression.

In a comparison to other XML compressors, XMLZip yields considerably
worse results. It is often outperformed even by the ordinary text compressors,
such as Gzip. However, the main benefit of XMLZip is that it allows limited
random access to the compressed XML documents without storing the whole
document uncompressed or in the memory. Only the portion of the XML
tree that needs to be accessed is uncompressed. It is possible to implement a
DOM-like API to control the amount of memory required, or to speed up the
access for queries, for example.

XMLZip can only be run on entire XML documents, and therefore the
compression is off-line.
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3.2.3 XMLPPM

In [33], the PPM compression has been adapted to compress XML. The com-
pressor—called XMLPPM—uses so called multiplexed hierarchical modeling
(MHM) for modeling the structure of XML. In MHM, several PPM models
are multiplexed together, and switches among them are performed based on
the syntactic context supplied by the parser.

XMLPPM uses four PPM models: one for element and attribute names,
one for element structure, one for attributes, and one for character data. Each
model maintains its own state but all share the access to one underlying arith-
metic coder. Element start tags, end tags, and attribute names are dictionary
encoded using numeric tokens. Whenever a new symbol is encountered, the
encoder sends the symbol name and the decoder enters it to the corresponding
dictionary. Some tokens are reserved, and are used to encode the events such
as the start of the character data, the element end tag, etc.

To demonstrate the operation of XMLPPM, we encode the following XML
fragment:

<elt att="abcd">XYZ</elt>

Suppose that the tag elt has been seen before, and is represented by
the token 10, but the attribute att has not, and the next available token
for attribute names is 0D. The state of the individual MHM models after
processing the XML fragment is shown in Table 3.1.

<elt att= “abcd” > XYZ < /elt>

Elt: 10 FE FF

Att: 10 0D asdf00 10 FF

Char: 10 XYZ00

Sym: att00

Table 3.1. MHM models after processing the example XML fragment

Notice the token 10 that has been “injected” into the attribute and char-
acter data models. This token is not encoded; instead, it is used to indicate
the cross-class sequential dependencies within the XML document. A com-
mon case for these dependencies is a strong correlation between the enclosing
element tag and the enclosed data. Using the “injection” mechanism, these
correlation can be exploited by MHM.

The authors of XMLPPM have also implemented a variant of MHM that
uses PPM* instead of PPM, which they call MHM*. Compared to MHM,
MHM* performs slightly better on average, but is considerably slower. On
structured documents, MHM performs much worse (about 20%-40%) than
MHM*; on the other hand, MHM* is worse on textual documents.
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XMLPPM (using either MHM or MHM*) compresses extremely well, out-
performing most of the concurrent compressors. The compression is on-line,
and therefore the XML data can be processed incrementally.

3.2.4 Millau

Millau [56] is an on-line XML compression method that is suitable for com-
pression and streaming of small XML documents (smaller than 5 kilobytes).
Millau can make use of the associated schema (if available) in the compression
of the structure.

The encoding is based on the Wireless Binary XML format (WBXML) pro-
posed by the Wireless Application Protocol Forum which performs a lossless
reduction of the size of XML documents. This method uses a table of tokens
to encode the XML tags and the attribute names. Some tokens are reserved,
and are used to indicate events such as the character data, the end of element,
etc. The meaning of a particular token is dependent on the context in which
it is used. There are two basic types of tokens: global tokens and application
tokens. Global tokens are assigned to fixed set of codes in all contexts and
are unambiguous in all situations. Global codes are used to encode inline data
(such as strings, entities, etc.) and to encode a variety of miscellaneous control
functions. Application tokens have a context-dependent meaning and are split
into two overlapping code spaces: the tag code space and the attribute code
space. The tag code space represents specific tag names and the attribute code
space comprises of attribute-start token and attribute-value token. Since the
set of tags and attributes is known in advance in the WAP protocol, the table
is fixed and does not have to be contained in the encoded data. The output
data is a stream of tokens and uncompressed character data. In this stream,
the structure of the original XML document is preserved.

Millau improves on the WBXML scheme, making it possible to compress
the character data: the structure and the character data are separated into two
streams, and the character data stream is compressed using conventional text
compressors. In the structure stream, special tokens are inserted to indicate
the occurrences of compressed data.

Since the set of elements and attributes is not known in advance in the case
of ordinary XML documents, Millau sets out a strategy for building the token
table. If the DTD exists, Millau constructs the table based upon it; otherwise,
the document is pre-parsed and the tokens are assigned to the encountered
elements and attributes. The table of tokens is contained in the encoded data.

An XML parser for processing the Millau streams is implemented using
both DOM and SAX. Because binary tokens are processed –instead of strings
in the case of uncompressed XML documents–, the parser usually operates
very fast.

Although Millau is outperformed by the traditional text compression algo-
rithms on large XML files, it achieves better compression for file sizes between
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0-5 kilobytes, which is the typical file size for e-Business transactions, such as
orders, bill payments, etc.

3.2.5 XML-Xpress

Commercially available XML-Xpress [78] is a schema-aware compressor that
can work either with the DTD or XML Schema [152]. When the schema is
known to XML-Xpress, XML tags can be encoded very efficiently. For ex-
ample, if an element is defined in the schema as having only one of two
sub-elements (A|B), only a binary decision needs to be included in the en-
coded file to determine which of A or B is present. The compression can be
further improved by using XML Schema instead of DTD, because the informa-
tion about the data types of the element data is utilized in the compression.
In [78], compression ratios exceeding 30 : 1 are reported.

The main disadvantage of XML-Xpress is that it is primarily a schema-
specific compressor, and thus the above average compression ratios are de-
pendent on the presence of a known schema. In the absence of such a schema,
XML-Express uses a general-purpose compressors, and the outstanding com-
pression performance is lost.

3.3 Query-aware XML compressors

Those systems designed in order to work in conjunction with a query proces-
sor belong to the category of query-aware XML compressors. This approach
permits to execute some type of queries directly on the compressed domain.
However, for type of queries not supported, it is necessary the decompression
of XML documents.

3.3.1 XGRIND

The XGrind project [140] pioneered the field of query processing on com-
pressed XML documents. XGrind directly supports queries in the compressed
domain. It compresses at the granularity of individual element/attribute values
using a simple context-free compression scheme based on Huffman coding [76].
This means that exact-match and prefix-match user queries can be entirely
executed directly on the compressed document, with decompression restricted
to only the final results provided to the user.

A novel and especially useful feature of XGrind is that it retains the struc-
ture of the original XML document in the compressed format also. In fact,
the compressed XML document can be viewed as the original XML document
with its tags and element/attribute values replaced by their corresponding en-
codings. The advantage of doing so is that the variety of efficient techniques
available for parsing/querying XML documents can also be used to process
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the compressed document. Second, indexes, such as those proposed in [100],
can now be built on the compressed document in similar manner to those
built on regular XML documents. Third, updates to the XML document can
be directly executed on the compressed version. Finally, a compressed docu-
ment can be checked for validity against the compressed version of its DTD,
without having to resort to any decompression.

Another feature of XGrind is that, for XML documents adhering to a
DTD, it attempts to utilize the information in the DTD to enhance the com-
pression ratio. For example, attribute values that are of enumerated-type are
recognized from the DTD and are encoded differently from other attribute
values.

XGrind uses different techniques for compressing metadata, enumerated-
type attribute values, and (general) element/attribute values, respectively.

Fig. 3.1. Architecture of XGrind Compressor

The architecture of the XGrind compressor, along with the information
flows, is shown in Figure 3.1. The XGrind Kernel is the heart of the com-
pressor. It starts off by invoking the DTD Parser, which parses the DTD
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of the XML document, initializes frequency tables for each element or non-
enumerated attribute, and populates a symbol table for attributes having
enumerated-type values. The kernel then invokes the XML Parser, which
scans the XML document and populates the set of frequency tables contain-
ing statistics (in the form of frequencies of character occurrences) for each
element and non-enumerated attribute. The XML Parser is invoked a sec-
ond time by the kernel to construct a tokenized form (tag, attribute, or data
value) of the XML document. These tokens are supplied in streaming fashion
to the kernel which calls for each token, based on its type, one of the following
encoders:

• Enum-Encoder: is used for metadata and enumerated type data items.
Each start-tag of an element is encoded by a ‘T’ followed by a unique
element-ID. All end-tags are encoded by ‘/’s. Attribute names are encoded
by the character ‘A’ followed by a unique attribute-ID. Enumerated-type
attribute values, on the other hand, are encoded using the symbol table
information.

• Huffman-Compressor is used for non-enumerated data items. This mod-
ule implements the non-adaptive Huffman coding compression scheme. It
encodes each element/ attribute value with the help of its associated Huff-
man tree, which is constructed from its corresponding frequency table. The
last byte of the encoded sequence is padded to be byte-aligned, and this en-
coded sequence is then “escaped” so that the compressed XML document
can be parsed without ambiguity.

The compressed output of the above encoders, along with the various
frequency and symbol tables, is called the Compressed Internal Representation
(CIR) of the compressor and is fed to XML-Gen, which converts the CIR
into a semi-structured compressed XML document. This conversion is done
on the fly during the second pass while the document is being compressed.

3.3.2 XPRESS

In contrast to the other XML compressors, XPRESS gets rid of this over-
head by using an encoding method, called reverse arithmetic encoding, and
minimizes the overhead of partial decompression by utilizing diverse encoding
methods.

XPRESS has the following combination of characteristics to compress and
retrieve XML data efficiently:

• Reverse Arithmetic Encoding: XPRESS adopts the reverse arithmetic
encoding method that encodes a label path as a distinct interval in [0.0,
1.0). Using the containment relationships among the intervals, path ex-
pressions are evaluated on compressed XML data.

• Automatic Type Inference: XPRESS devises an efficient type inference
engine that does not require the human interference in order to apply ef-
fective encoding methods to various kinds of data values of XML elements.
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• Apply Diverse Encoding Methods to Different Types: According
to the inferred type information, proper encoding methods is applied to
data values.

• Semi-adaptive Approach: The compression scheme used by XPress is
categorized as semi-adaptive approach which uses a preliminary scan of
the input file to gather statistics. Since the semi-adaptive approach does
not change the statistics during the compression phase, the encoding rules
for data are independent to the locations of data. This property allow the
system to query compressed XML data directly.

• Homomorphic Compression: Like XGrind, XPRESS is a homomorphic
compressor which preserves the structure of the original XML data in
compressed XML data.

Fig. 3.2. The architecture of XPRESS
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XQueC: XQuery processor and Compressor

4.1 Introduction

XML documents have an inherent textual nature due to redundant tags and
to the PCDATA content. Therefore, they lead themselves naturally to com-
pression. Once the compressed documents are produced, however, one would
like to be able to still query them under a compressed form as much as possi-
ble (“lazy decompression”). The advantages of processing queries in the com-
pressed domain are several: first, in a traditional query setting, access to small
chunks of data may lead to less disk I/Os and reduce the query processing
time; second, the memory and computation efforts in processing compressed
data can be dramatically lower than those for uncompressed ones, thus even
low-battery mobile devices can afford them; third, the possibility of obtaining
compressed query results allows to spare network bandwidth when sending
these results to a remote location.

As pointed out in chapter 3, previous systems have been proposed, such
as e.g. XGrind [140] and XPRESS [106], which allow the evaluation of sim-
ple path expressions in the compressed domain. However, these systems are
based on a naive top-down query evaluation mechanism, which is not enough
to execute queries efficiently. Most of all, they are not able to execute a large
set of common XML queries (such as joins, inequality predicates, aggregates,
nested queries etc.), without spending prohibitive times in decompressing in-
termediate results.

We address the problem of compressing XML data in such a way as to al-
low efficient XQuery evaluation in the compressed domain. It achieves a good
trade-off among data compression factors, queryability and XQuery express-
ibility. To that purpose, we have carefully chosen a fragmentation and storage
model for the compressed XML documents, providing selective access paths
to the XML data, and thus further reducing the memory needed in order to
process a query.

The basis of our fragmentation strategy is borrowed from the XMill [91]
project. XMill is a very efficient compressor for XML data, however, it
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was not designed to allow querying the documents under their compressed
form. XMill made the important observation that data nodes (leaves of the
XML tree) found on the same path in an XML document (for example
/site/people/person/address/city in the XMark [128] documents) often exhibit
similar content. Therefore, it makes sense to group all such values into a sin-
gle container and choose the compression strategy once per container. Sub-
sequently, XMill treated a container like a single “chunk of data” and com-
pressed it as such, which disables access to any individual data node, unless
the whole container is decompressed. Separately, XMill compressed and stored
the structure tree of the XML document.

While in XMill a container may in fact contain leaf nodes found under
several paths, leaving to the user or the application the task of defining these
containers, in XQueC the fragmentation is always dictated by the paths, i.e.,
we use one container per root-to-leaf path expression. But most importantly,
unlike XMill, we compress each individual value in a container using a com-
pressor that is aware of the commonality between all values in the container.
Thus, each compressed value is individually accessible, enabling expressive
and efficient query processing.

We base our work on the principle that XML compression (for saving disk
space) and sophisticated query processing techniques (like complex physical
operators, indexes, query optimization etc.) can be used together when prop-
erly combined. This principle has been stated and forcefully validated in the
domain of relational query processing [147], [32]. Thus, it is not less important
in the realm of XML.

We focus on the right compression of the values found in an XML docu-
ment, coupled with a compact storage model for all parts of the document.
Compressing the structure of an XML documents has two facets. First, XML
tags and attribute names are extremely repetitive, and practically all systems
(indeed, even those not claiming to do “compression”) encode such tags by
means of much more compact tag numbers. Second, an existing work [22] has
addressed the summarization of the tree structure itself, connecting among
them parent and child nodes. While structure compression is interesting, its
advantages are not very visible when considering the XML document as a
whole. Indeed, for a rich corpus of XML datasets, both real and synthetic,
our measures have shown that values make up 70% to 80% of the document
structure. Projects like XGrind [140] and XPRESS [106] have already pro-
posed schemes for value compression that would enable querying, but they
suffer from limited query evaluation techniques (see also Section 4.1.2). More-
over, these systems use one kind of compression algorithm at a time. However,
it is desirable to tailor the algorithm to the data and to the queries. This has
been done in our system by means of a suitable cost model.

By doing data fragmentation and compression, XQueC indirectly targets
the problem of main-memory XQuery evaluation, which has recently attracted
the attention of the community [96], [22]. In [96], the authors show that some
current XQuery prototypes do not work for more than 33MB documents. Fur-
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thermore, some such in-memory prototypes are shown to exhibit prohibitive
query execution times even for simple lookup queries.

XQueC addresses this problem in a two-fold way. First, in order to di-
minish its footprint, it applies powerful compression to the XML documents.
The compression algorithms that we use allow to evaluate most predicates di-
rectly on the compressed values. Thus, decompression is often necessary only
at the end of the query evaluation (see Section 4.4). Second, the XQueC stor-
age model includes lightweight access support structures for the data itself,
providing thus efficient primitives for query evaluation.

4.1.1 The XQueC system

The system we propose compresses XML data and queries it as much as
possible under its compressed form, covering all real-life, complex classes of
queries. The XQueC system adheres to the following principles:

1. As in XMill, data is collected into containers, and the document structure
stored separately. In XQueC, there is a container for each different <type,
pe>, where pe is a distinguished root-to-leaf path expression and type is
a distinguished elementary type. The set of containers is then partitioned
again to allow for better sharing of compression structures, as explained
in Section 4.2.2.

2. In contrast with previous compression-aware XML querying systems,
whose storage was plainly based on files, XQueC is the first to use a com-
plete and robust storage model for compressed XML data, including a set
of access support structures. Such storage is fundamental to guarantee a
fast query evaluation mechanism.

3. XQueC seamlessly extends a simple algebra for evaluating XML queries
to include compression and decompression. This algebra is exploited by a
cost-based optimizer, which may choose query evaluation strategies, that
freely mix regular operator and compression-aware ones.

4. XQueC is the first system to exploit the query workload to (i) partition
the containers into sets according to the source model1 and to (ii) prop-
erly assign the most suitable compression algorithm to each set. We have
devised an appropriate cost model, which helps making the right choices.

5. XQueC is the first compressed XML querying system to use the order-
preserving2 textual compression. Among several alternatives, we have
chosen to use the ALM [7] compression algorithm, which provides good
compression ratios and still allows fast decompression, which is crucial

1 The source model is the model used for the encoding, for instance the Huffman
encoding tree for Huffman compression [76] and the dictionary for ALM compres-
sion [7], outlined later.

2 Note that a compression algorithm comp preserves order if for any x1, x2,
comp(x1) < comp(x2) iff x1 < x2.
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for an algorithm to be used in a database setting [58]. This feature en-
ables XQueC to evaluate, in the compressed domain, the class of queries
involving inequality comparisons, which are not featured by the other
compression-aware systems.

In the following sections, we will use XMark [128] documents for describing
XQueC. A simplified structural outline of these documents is depicted in Fig-
ure 4.1 (at right). Each document describes an auction site, with people and
open auctions (dashed lines represent IDREFs pointing to IDs and plain lines
connect the other XML items). We describe XQueC following its architecture,
depicted in Figure 4.1 (at left). It contains the following modules:

1. The loader and compressor converts XML documents in a compressed,
yet queryable format. A cost analysis leverages the variety of compression
algorithms and the query workload predicates to decide the partition of
the containers.

2. The compressed repository stores the compressed documents and provides:
(i) compressed data access methods, and (ii) a set of compression-specific
utilities that enable, e.g., the comparison of two compressed values.

3. The query processor evaluates XQuery queries over compressed docu-
ments. Its complete set of physical operators (regular ones and compression-
aware ones) allows for efficient evaluation over the compressed repository.

4.1.2 A comparative overview of the main XML compression
systems

XML data compression was first addressed by XMill [91], following the prin-
ciples outlined in the previous chapter. After coalescing all values of a given
container into a single data chunk, XMill compresses separately each con-
tainer with its most suited algorithm, and then again with gzip to shrink it
as much as possible. However, an XMill-compressed document is opaque to a
query processor: thus, one must fully decompress a whole chunk of data before
being able to query it.

The XGrind system [140] aims at query-enabling XML compression.
XGrind does not separate data from structure: an XGrind-compressed XML
document is still an XML document, whose tags have been dictionary-
encoded, and whose data nodes have been compressed using the Huffman [76]
algorithm and left at their place in the document. XGrind’s query processor
can be considered an extended SAX parser, which can handle exact-match
and prefix-match queries on compressed values and partial-match and range
queries on decompressed values. However, several operations are not sup-
ported by XGrind, for example, non-equality selections in the compressed do-
main. Therefore, XGrind cannot perform any join, aggregation, nested queries,
or construct operations. Such operations occur in many XML query scenarios,
as illustrated by XML benchmarks (e.g., all but the first two of the 20 queries
in XMark [128]).
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Fig. 4.1. Architecture of the XQueC prototype (left); simplified summary of the
XMark XML documents (right).

Also, XGrind uses a fixed naive top-down navigation strategy, which is
clearly insufficient to provide for interesting alternative evaluation strate-
gies, as it was done in existing works on querying compressed relational data
(e.g., [31], [147]). These works considered evaluating arbitrary SQL queries on
compressed data, by comparing (in the traditional framework of cost-based
optimization) many query evaluation alternatives, including compression /
decompression at several possible points.

XPRESS [106] uses the novel reverse arithmetic encoding method, map-
ping entire path expressions to intervals. Also, XPRESS uses a simple mech-
anism to infer the type (and therefore the compression method suited) of
each elementary data item. XPRESS’s compression method, like XGrind’s, is
homomorphic, meaning it preserves the document structure.

To summarize, these compression and querying systems do not come any-
where near to efficiently executing complex XQuery queries. Indeed, even the
evaluation of XPath queries is slowed down by the use of the fixed top-down
query evaluation strategy.

4.2 Compressing XML documents in a queryable format

In this section, we present the principles behind our approach for storing
compressed XML documents, and the resulting storage model.

4.2.1 Compression principles

In general, we make the observation that within XML text, strings represent a
large percentage of the document, while instead numbers are not crucial. Thus,
compression of strings, when effective, can truly reduce the occupancy of XML
documents. Nevertheless, not all the compression algorithms can seamlessly
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afford string comparisons in the compressed domain. In our system, we include
both order-preserving and order-agnostic compression algorithms, and the
final choice is entrusted to a suitable cost model.

Our approach for compressing XML was guided by the following principles:

Order-agnostic compression.

As an order-agnostic algorithm, we chose Huffman, which is universally known
as a simple algorithm which achieves the best possible redundancy among the
resulting codes. The process of encoding and decoding is also faster than
universal compression techniques. Finally, it has a set of fixed codewords,
thus strings compressed with Huffman can be compared in the compressed
domain within equality predicates. However, inequality predicates need to
be decompressed. That is why in XQueC we may exploit order-preserving
compression as well as not order-preserving one.

Order-preserving compression.

Whereas everybody knows the potentiality of Huffman, the choice of an order-
preserving algorithm is not immediate. We had initially three choices for
encoding strings in an order-preserving manner: the Arithmetic [149], Hu-
Tucker [74] and ALM [7] algorithms. We knew that dictionary-based encoding
has demonstrated its effectiveness w.r.t. other non-dictionary approaches [109]
while ALM has outperformed Hu-Tucker (as described in [6]). The former be-
ing both dictionary-based and efficient, happened to be a good choice in our
system. ALM has been used in relational databases for blank-padding (i.e.
in Oracle) and for indexes compression. Due to its very nature (dictionary-
based), ALM decompresses faster than Huffman, since it outputs bigger por-
tions of a string at a time, when decompressing. Moreover, ALM solved the
problem of order-preserving dictionary compression, raised by encodings such
as Zilch encoding, string prefix compression and composite key compression
by improving each of these. Indeed, ALM eliminates the prefix property ex-
hibited by those former encodings by allowing in the dictionary more than one
symbol for the same prefix. The fundamental mechanics behind the algorithm
tells to consider the original set of source substrings, to split it into disjunct
partitioning intervals set and to associate an interval prefix to each partition-
ing interval. For example, in Figure 4.2, it is shown the mapping from the
original source (made of the strings there, their, these) into some parti-
tioning intervals and associated prefixes, which clearly do not scramble the
original order among the source strings. We have implemented our own ver-
sion of the algorithm, and we have obtained encouraging results w.r.t. previous
compression-aware XML processors (see Section 4.5).

Workload-based choices of compression.

Among the possible predicates writable in an XQuery query, we distinguish
among the inequality, equality and wildcard. The ALM algorithm [7] is able
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Fig. 4.2. An example of encoding in ALM.

to afford inequality and equality predicates in the compressed domain, but
not wildcards, whereas Huffman [76] supports prefix-wildcards and equality
but not inequality. Thus, the choice of the algorithm can be aided by a proper
query workload, whenever this turns to be available. In case, instead, the work-
load has not been provided, XQueC uses ALM for strings and decompresses
the compared values in case of wildcard operations.

Structures for algebraic evaluation.

Containers in XQueC act as free-of-charge indexes and resemble B+trees on
values. Moreover, a light-weight structure summary allows for accessing the
structure tree and the data containers in the query evaluation process. Data
fragmentation allows for better exploiting all the possible evaluation plans,
i.e. bottom-up, top-down, hybrid or index-based. As shown below, several
queries of the XMark benchmark take advantage of the XQueC appropriate
structures and of the consequent flexibility in parsing and querying these
compressed structures.

4.2.2 Compressed storage structures

The XQuec loader/compressor parses and splits an XML document into the
data structures depicted in Figure 4.1.

Node name dictionary. We use a dictionary to encode the element and
attribute names present in an XML document. Thus, if there are Nt dis-
tinct names, we assign to each of them a bit string of length log2(Nt). For
example, the XMark documents use 92 distinct names, which we encode
on 7 bits
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Structure tree. We assign to each non-value XML node (element or at-
tribute) an unique integer ID. The structure tree is stored as a sequence
of node records, where each record contains: its own ID, the corresponding
tag code; the IDs of its children; and (redundantly) the ID of its parent.
For better query performance, as an access support structure, we con-
struct and store a B+ search tree on top of the sequence of node records.
Finally, each node record points to all its attribute and text children in
their respective containers.

Value containers. All data values found under the same root-to-leaf path
expression in the document are stored together into homogeneous contain-
ers. A container is a sequence of container records, each one consisting of
a compressed value and a pointer to parent of this value in the structure
tree. Records are not placed in the document order, but more reasonably
in a lexicographic order, to enable fast binary search. Note that container
generation as done in XQueC is reminiscent of vertical partitioning of re-
lational databases [117]. This kind of partitioning seamlessly guarantees
random access to the document content at different points, i.e. the contain-
ers access points. In order to better search the space of query evaluation
strategies, this choice has been demonstrated to be effective in practice
(see Section 4.5). Moreover, containers, even if separated, may share the
same source model or, they can be compressed with different algorithms
if not involved in the same queries. This is decided by a cost analysis
which exploits the query workload and the similarities among containers,
as described in Section 4.3.

Structure summary. The loader also constructs, as a redundant access
support structure, a structural summary representing all possible paths
in the document. For tree-structured XML documents, it will always have
less nodes than the document (typically by several orders of magnitude).
A structural summary of the auction documents can be derived from Fig-
ure 4.1, by (i) omitting the dashed edges, which brings it to a tree form,
and (ii) storing in each non-leaf node in Figure 4.3, accessible in this tree
by a path p, the list of nodes reachable in the document instance by the
same path. Finally, the leaf nodes of our structure summary point to the
corresponding value containers. Note that the structure summary is small
enough not to worsen the compression ratios of our documents, when
compressed. Indeed, in our experiments on the corpus of XML documents
described in Section 4.5, the structure summary amounts to about 19%
of the original document size.

Other indexes and statistics. When loading a document, other indexes
and/or statistics can be created, either on the value containers, or on the
structure tree. Our loader prototype currently gathers simple fan-out and
cardinality statistics (e.g. number of person elements).

To measure the occupancy of our structures, we have used a set of docu-
ments produced by means of the xmlgen generator of the XMark project and
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Fig. 4.3. Storage structures in the XQueC repository

ranged from 115KB to 46MB. They have been reduced by an average factor of
60% after compression (these figures include all the above access structures).

Our proposed storage structure is the simplest and most compact one that
fulfills the principles listed at the beginning of Section 4.2; there are many ways
to store XML in general [3]. If we omit our access support structures (backward
edges, B+ index, and the structure summary), we shrink the database by a
factor of 3 to 4, albeit at the price of deteriorated query performance.

There are many ways to store XML in general [3]. Any storage mechanism
for XML can be seamlessly adopted in XQueC, as long as it allows the presence
of containers and the facilities to access container items.

4.2.3 Memory issues

Data fragmentation in XQueC guarantees a wide variety of query evalua-
tion strategies, and not solely top-down evaluation as in homomorphic com-
pressors [140], [106]. Instead of identifying at compile-time the parts of the
documents necessary for query evaluation, as given by an XQuery projec-
tion operator [96], in XQueC the path expressions are hard-coded into the
containers and projection is already prepared in advance when compressing
the document and without any additional effort for the loader. Consider as
examples the following query Q14 of XMark:

FOR $i IN document(”auction.xml”)/site//item
WHERE CONTAINS($i/description,”gold”)
RETURN $i/name/text()

This query would require prohibitive parsing times in XGrind and XPRESS,
which basically have to load into main-memory all the document and parse
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it entirely in order to find the sought items. For this query, as shown in Fig-
ure 4.4, all the XML stream has to be parsed to find the elements <item>.

In XQueC, the compressor has already shredded the data and accessibil-
ity to these data from the structure summary allows to save the parsing and
loading times. Thus, in XQueC the structure summary is parsed (not all the
structure tree), then the involved containers are directly accessed (or alterna-
tively their selected single items) and loaded into main-memory. Precisely, as
shown in Figure 4.4, once the structure summary leads to the containers C1,
C2 and C3, only these (or part of them) need to be fetched in memory. Finally,
note that in Galax, extended with the projection operator [96], the execution
times for queries involving the descendant-or-self axis (such as XMark Q14)
are significantly increased, since additional complex computation is demanded
to the loader for those queries.

4.3 Compression choices

XQueC exploits the query workload to choose the way containers are com-
pressed. As already highlighted, the containers are filled up with textual data,
which represents a big share of the whole documents. Thus, achieving a good
trade-off between compression ratio and query execution times, must neces-
sarily imply the capability to make a good choice for textual container com-
pression.

First, a container may be compressed with any compression algorithm,
but obviously one would like to apply a compression algorithm with nice
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properties. For instance, the decompression time for a given algorithm strongly
influences the times of queries over data compressed with that algorithm. Also,
the compression ratio achieved by a given algorithm on a given container
depends both on the algorithm and on the nature of container data.

Second, a container can be compressed separately or can share the same
source model with other containers. The latter choice would be very convenient
whenever for example two containers exhibit hidden similarities, which can be
exploited during compression. Moreover, the occupancy of the source model
matters as well as the occupancy of containers and this makes the choice
challenging.

In order to illustrate the impact of compression choices, we give a possible
intuition.

Intuition.

Consider two binary-encoded containers, ct1 and ct2. ct1 contains only strings
composed of letters a and b, whereas ct2 contains only strings composed of
letters c and d. Suppose, as one extreme case, that two separate source models
are built for the two containers; in this case, containers are encoded with 1
bit per letter. As the other extreme case, a common source model is used for
both containers, thus requiring 2 bits per letter for the encoding, and raising
the containers occupancy. This scenario may get even more complicated when
one thinks that different kinds of encodings are possible for each container.
This very simple example shows that compressing many containers with the
same source model leads to losses in the compression ratio.

In the sequel, we show how our system addresses these problems, by
proposing a suitable cost model, a greedy algorithm that let the user make
the right choice, and some experimental results. The cost model of XQueC
is based on the set of non-numerical (textual) containers, the set of available
compression algorithms A, and the query workload W . As it is typical for
optimization problems, we will characterize the search space, define the cost
function, and finally propose a simple search strategy.

4.3.1 Search space: possible compression configurations

Let C be the set of containers built from a set of documents D. A compression
configuration s for D is denoted by a tuple <P, alg> where P is a partition of
C’s elements, and the function alg : P → A associates a compression algorithm
with each set p in the partition P . The configuration s dictates thus that all
values of the containers in p will be compressed using alg(p), and a single
common source model. Moreover, let P be the set of possible partitions of
C. The cardinality of P is the Bell number B|C|, which is exponential with
|C|. For each possible partition Pi ∈ P , there are |A||Pi| ways of assigning
a compression algorithm to each set in Pi. Therefore, the size of the search
space is:

∑B|C|
i=1 |A||Pi|, which is exponential in |A|.
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4.3.2 Cost function: appreciating the quality of a compression
configuration

Intuitively, the cost function for a configuration s reflects the time needed to
apply the necessary data decompressions in order to evaluate the predicates
involved in the queries of W . Reasonably, it also accounts for the compression
ratios of the employed compression algorithms, and it includes the cost of
storing the source model structures. The cost of a configuration s is an integer
value computed as a weighted sum of storage and decompression costs.

Characterization of compression algorithms.

Each algorithm a ∈ A is denoted by a tuple < dc, cs(F ), ca(F ), eq, ineq, wild >.
The decompression cost dc is an estimate of the cost of decompressing a con-
tainer record by using a, the storage cost cs(F ) is a function estimating the
cost of storing a container record compressed with a, and the storage cost of
the source model structures ca(F ) is a function estimating the cost of storing
the source model structures for a container record. F is a symmetric simi-
larity matrix whose generic element F [i, j] is a real number ranging between
0 and 1, capturing the normalized similarity between a container cti and a
container ctj . F is built on the basis of data statistics, such as the number of
overlapping values, the character distribution within the container entries, and
possibly other type information, whenever available (e.g. the XSchema types,
using results presented in [19]). Finally, the algorithmic properties eq, ineq
and wild are boolean values indicating whether the algorithm supports in the
compressed domain: (i) equality predicates without prefix-matching (eq), (ii)
inequality predicates without prefix-matching (ineq) and (iii) equality predi-
cates with prefix-matching (wild). For instance, Huffman will have eq = true,
ineq = false and wild = true, while ALM will have eq = true, ineq = true
and wild = false. We denote each parameter of algorithm a with an array
notation, e.g., a[eq].

Storage costs.

The containers and source model storage costs are simply computed as∑
p∈P

(
alg(p)[ĉ(Fp)] ∗

∑
c∈p |c|

)
where ĉ = cs for the case of container storage

and ĉ = ca for source model storage3. Obviously, cs and ca need not to be
evaluated on the overall F but solely on Fp, that is the projection of F over
the containers of the partition p.

Decompression cost.

In order to evaluate the decompression cost associated with a given compres-
sion configuration s, we define three square matrices, E, I and D, having
3 We are not considering here the containers that are not involved in any query in

W . Those do not incur a cost so they can be disregarded in the cost model.
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size (|C|+ 1)× (|C|+ 1). These matrices reflect the comparisons (equality, in-
equality and prefix-matching equality comparisons, respectively) made in W
among container values or between container values and constants. More for-
mally, the generic element Ei,j , with i �= |C|+1 and j �= |C|+1, is the number
of equality predicates in W between cti and ctj not involving prefix-matching,
whereas with i = |C|+ 1 or j = |C|+ 1, it is the number of equality predicates
in W between cti and a constant (if j = |C| + 1), or between ctj and a con-
stant (if i = |C| + 1), not involving prefix-matching. Matrices I and D have
the same structure but refer to inequality and prefix-matching comparisons,
respectively. Obviously, E, I and D are symmetric.

Considering the generic element of the three matrices, say M [i, j], the
associated decompression cost is obviously zero if cti and ctj share the same
source model and the algorithm they are compressed with supports the corre-
sponding predicate in the compressed domain. A decompression cost occurs in
three cases: (i) cti and ctj are compressed using different algorithms; (ii) cti
and ctj are compressed using the same algorithm but different source models;
(iii) cti and ctj share the same source model but the algorithm does not sup-
port the needed comparison (equality in the case of E, inequality for I and
prefix-matching for D) in the compressed domain. For instance, for a generic
element I[i, j], in the case of i �= j, i �= |C|+ 1 and j �= |C|+ 1, the cost would
be:

• zero, if cti ∈ p, ctj ∈ p, alg(p)[ineq] = true;
• |cti| ∗ alg(p′)[dc] + |ctj | ∗ alg(p′′)[dc], if cti ∈ p′, ctj ∈ p′′, p′ �= p′′ (cases (i)

and (ii));
• (|cti| + |ctj |) ∗ alg(p)[dc], if cti ∈ p, ctj ∈ p, alg(p)[ineq] = false (case

(iii)).

The decompression cost is calculated by summing up the costs associated
with each element of the matrices E, I, and D. However, note that (i) for
the cases of E and D, we consider alg(p)[eq] and alg(p)[wild], respectively,
and that (ii) the term referring to the cardinality of the containers to be
decompressed is adjusted in the cases of self-comparisons (i.e. i = j) and
comparisons with constants (i = |C| + 1 or j = |C| + 1).

4.3.3 Devising a suitable search strategy

XQueC currently uses a greedy strategy for moving into the search space.
The search starts with an initial configuration s0 =< P0, alg0 >, where P0 is
a partition of C having sets of exactly one container, and alg0 blindly assigns
to each set a generic compression algorithm (e.g. bzip) and a separate source
model. Next, s0 is gradually improved by a sequence of configuration moves.

Let Pred be the set of value comparison predicates appearing in W . A
move from sk =< Pk, algk > to sk+1 =< Pk+1, algk+1 > is done by first
randomly extracting a predicate pred from Pred. Let cti and ctj be the con-
tainers involved in pred (for instance pred makes an equality comparison,
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such as cti = ctj , or an inequality one, such as cti > ctj). Let p′ and p′′ the
sets in Pk to which cti and ctj belong, respectively. If p′ = p′′, we build a
new configuration s′ where algk+1(p′) is such that the evaluation of pred is
enabled on compressed values, and algk+1 has the greatest number of algo-
rithmic properties holding true. Then, we evaluate the costs of sk and s′, and
let sk+1 be the one with the minimum cost. In the case of p′ �= p′′, we build
two new configurations s′ and s′′. s′ is obtained by dropping cti and ctj from
p′ and p′′, respectively, and adding the set {cti, ctj} to Pk+1. s′′ is obtained
by replacing p′ and p′′ with their union. For both s′ and s′′, algk+1 associates
to the new sets in Pk+1 an algorithm enabling the evaluation of pred in the
compressed domain and having the greatest number of algorithmic properties
holding true. Finally, we evaluate the costs of sk, s′ and s′′, and let sk+1 be
the one with the minimum cost.

Example 4.1. To give a flavor of the savings gained with partitioning the set
of containers, consider an initial configuration, which has five containers on an
XMark document, all of them sized about 6MB, which we initially (naively)
choose to compress with ALM only; let us call this configuration NaiveConf.
The workload is made of XQuery queries with inequality predicates over the
path expressions leading to the above containers. The first three containers are
filled with Shakespeare’s sentences, the fourth is filled with person names and
the fifth with dates. Using the workload we considered, we obtain the best
partitioning, which has three partitions, one with the first three containers
and a distinct partition for the fourth and fifth, let us call it GoodConf. The
compression factor shifts from 56,14% for the NaiveConf to 67,14%, 71,75%
and 65,15% respectively for the three partitions of GoodConf. While in such
a case the source models sizes do not vary significantly, the decompression
cost in Good Conf is clearly advantageous w.r.t. NaiveConf, leading to gain
21,42% for shakespearian text, 28,57% for person names and to loose only 6%
for dates.

Note that, for each predicate in Pred, the strategy explores a fixed subset
of possible configuration moves, so its complexity is linear in |Pred|. Of course,
due to this partial exploration, the search yields a locally optimal solution.
Moreover, containers not involved in W are not considered by the cost model,
and a reasonable choice could be to compress them using order-unaware al-
gorithms offering good compression ratios, e.g. bzip2 [23]. Finally, note also
that the choice of a suitable compression configuration is orthogonal with re-
spect to the choosing of an optimal XML storage model [19]; we can combine
both for an automatic storage-and-compression design.

4.4 Evaluating XML queries over compressed data

The XQueC query processor consists of a parser, an optimizer, and a query
evaluation engine. The set of physical operators used by the query evaluation
engine can be divided in three classes:
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ContainerScan("/site/closed_auctions/
/closed_auction/buyer/@person")

LeftOuterJoin(@id=@person)
Implem: merge

Child(person −> name)

TextContent(name)

TextContent(item)

Child(item −> name)

decompress(person name, item name)

XMLSerialize

Parent(item_ref −> closed_auction)

Child(closed_auction −> buyer)

MergeJoin(@id=@person)

ContainerScan("/site/closed_auctions/closed_auction/item_ref/@item)

ContainerScan("/site/regions/europe/item/@id")

ContainerScan("/site/people/person/@id")

MergeJoin(buyer/@=item/@id)

Fig. 4.5. Query execution plan for XMark’s Q9.

• data access operators, retrieving information from the compressed storage
structures;

• regular data combination operators (joins, outer joins, selections etc.);
• compression and decompression operators.

Among our data access operators, there are ContScan and ContAccess,
which allow, respectively, to scan all (elementID, compressed value) pairs from
a container, and to access only some of them, according to an interval search
criteria. StructureSummaryAccess provide direct access to the identifiers of
all elements reachable through a given path. Parent and Child allow to fetch
the parent, respectively, the children (all children, or just those with a specific
tag) for a given set of elements. Finally, TextContent pairs element IDs with
all their immediate text children, retrieved from their respective containers.
TextContent is implemented as a hash join pairing the element IDs with the
content obtained from a ContScan.

Due to our choice of a storage model (Section 4.2.2), the StructureSum-
maryAccess operator provides the identifiers of the required elements in the
correct document order. Furthermore, the Parent and Child operator preserve
the order of the elements with respect to which they are applied. Also, if
the Child operator returns more than one child for a given node, these chil-
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dren are returned in correct order. This order-preserving behavior allow us
to perform many path computations through comparatively inexpensive 1-
pass merge joins; furthermore, many simple queries can be answered without
requiring a sort to re-constitute document order.

While these operators respect document order, ContScan and ContAccess
respect data order, provides fast access to elements (and values) according to a
given value search criteria. Also, as soon as predicates on container values are
given in the query, it is often profitable to start query evaluation by scanning
(and perhaps merge-joining) a few containers.

As an example of QEP, consider query Q9 from XMark:

FOR $p IN document(”auction.xml”)/site/people/person
LET $a :=

FOR $t IN document(”auction.xml”)/site/
closed auctions/closed auction

LET $n :=
FOR $t2 IN document(”auction.xml”)/site/

regions/europe/item
WHERE $t/itemref/@item = $t2/@id
RETURN $t2

WHERE $p/@id = $t/buyer/@person
RETURN <item> $n/name/text() </item>

RETURN <person name=$p/name/text()> $a </person>

Figure 4.5 shows a possible XQueC execution plan for Q9 (actually, this is
the plan that we used for the measures in the experimental section). Based on
this example, we make several remarks. First, notice that we only decompress
the necessary pieces of information (person name and item name), only at
the very end of the query execution (the decompress operators shown in bold
fonts). All the way down in the QEP, we were able to compute the three-
ways join between persons, buyers, and items, using directly the compressed
attributes person/@id, buyer/@person, and item ref/@item. Second, due to the
order of data obtained from ContainerScans, we are able to make extensive
use of MergeJoins, without the need for sorting. Third, this plan mixes Parent
and Child operators, alternating judiciously between top-down and bottom-
up strategy, in order to minimize the number of tuples manipulated at any
particular moment. This feature is made possible by the usage of a full set of
algebraic evaluation choices, which XQueC does, but is not available to the
XGrind or XPress query processors.

Finally, note that for instance in query Q9 also an XMLSerialize operator
is employed in order to correctly construct the new XML which the query
outputs. To this purpose, we recall that XML construction plays a minor
role within the XML algebraic evaluation, and, being not crucial, it can be
disregarded in the whole query execution time [131]. This has been confirmed
by our experiments.
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XQueC’s query optimizer follows a top-down, transformation based ap-
proach, in the spirit of Volcano [51]. The search for a query plan attempts first
to “transform” path expressions, performing navigation in the document, into
combinations of operators like ContainerScan, Parent, Child, StructureSum-
maryAccess etc. Many combinations are possible, but our optimizer system-
atically favors query sub-plans whose lowest operators are the most selective
and efficient ones (ContainerAccess if a selection is specified on the container
values, or StructureSummaryAccess for direct access to a set of elements on
a given path). In doing so, the optimizer analyzes the relationships between
the path expressions present in the query and may re-formulate them, i.e.,
is not bound by the particular syntax used by the query; several equivalent
reformulation rules [77] are applied to abstract away from the user-specified
syntax, and make the query easier to optimize.

The second step attempts to combine the products of the previous steps
through appropriate joins or left outer joins (modelling the existential seman-
tics of some expressions in XQuery). Note that due to the presence of our
structural summary, we are able to decide when a relationship between two
elements found on the paths t1 and t2 is guaranteed to have some t2’s for every
t1, or when this is not the case. This enables the transformation of some left
outer joins (as required by the semantics of XQuery) into direct joins.

4.5 Implementation and experimental evaluation

XQueC is being implemented entirely in Java, using as back-end an embedded
database, Berkeley DB [15]. We have performed some interesting regression
tests, that show that XQueC is a competitor of both query-aware compressors,
and of early XQuery prototypes.

In the following, we want to illustrate both XQueC good compression
ratios and query execution times. To this purpose, we have done two kinds of
experiments:

Compression Factors. We have considered experiments on both synthetic
data (XMark documents) and on real-life data sets (in particular, we con-
sidered the ones chosen in [106] for the purpose of cross-comparison with
it).

Query Execution Times. We show how our system performs on some
XML benchmark queries [128] and cross-compare them with the query
execution times of optimized Galax [96], an open-source XQuery proto-
type.

4.5.1 Compression Factors

We have compared the obtained compression factors (defined as 1− (cs/os)),
where cs and os are the sizes of the compressed and original documents, re-
spectively) with the corresponding factors of XMill, XGrind and XPRESS.
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Document Size(MB) Containers Distinct tags Tree nodes

Shakespeare 15.0 39 22 65621

Baseball 16.8 41 46 27181

Washington-course 12.1 12 18 99729

xmark11 11.3 432 77 76726

Table 4.1. Data Sets used in the experiments (XMark11 is used in QETs measures.)
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Fig. 4.6. Average compression factor for Shakespeare, WashingtonCourse and Base-
ball data sets.

Figure 4.6 shows the average compression factor obtained for a corpus of
documents composed of Shakespeare.xml, Washington-Course.xml and Base-
ball.xml, whose main characteristics are shown in Table 4.1. Note that, on
average, XQueC closely tracks XPRESS. It is interesting to notice that some
limitations affect some of the XML compressors that we tested - for example,
the documents decompressed by XPRESS have lost all their white spaces.
Thus, the XQueC compression factor could be smoothed if blanks were not
considered.

Moreover, we have also tested the compression factors on different-sized
XMark synthetic data sets (we considered documents ranging from 1MB to
25MB), generated by means of xmlgen [128]. As Figure 4.7 shows, we have
obtained again good compression factors w.r.t XPRESS and XMill.

Note also that XGrind does not appear in these experiments. Indeed, due
to repetitive crashes, we were not able to upload in the XGrind system (the
version available through the site http://sourceforge.net) any XMark docu-
ment except for one sized 100KB, whose compression factor however is very
low and not representative of the system (precisely equal to 17,36%).
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Fig. 4.7. Average compression factor (%) for XMark synthetic data sets.

4.5.2 Query Execution Times

We have tested our system against the optimized version of Galax by running
XMark queries and other queries. Due to space limits, we select here a set
of significant XMark queries. Indeed, XMark queries left out stress language
features, on which compression will likely have no significant impact whatso-
ever, e.g., support for functions, deep nesting etc. The reasons why we chose
Galax is that it is open-source and has an optimizer. Note that XQueC does
not have an optimizer by the time being, thus the results we gathered are only
due to the compression ratios and to our proper data structures.

Figure 4.8 shows the executions of XQueC queries on the document
XMark11, sized 11.3MB. For the sake of better readability, in Figure 4.8,
we have omitted Q9, and Q8. These queries measured in our system 2,133
sec. and 2,142 sec. respectively, whereas in Galax Q9 could not be measured
on our machine and Q8 took 126,33 sec. Note also that on Q2, Q3, Q16, the
QET is a little worse than the Galax one, because in the current implemen-
tation we use simple unique IDs, given that our data model imposes a large
number of parent-child joins. However, even with this limitation, we are still
reasonably close to Galax. Most importantly, note that the previous XQueC
QETs are to be intended as the times taken to both execute the queries in the
compressed and decompress the obtained results. Thus, those measures show
that there is no performance penalty in XQueC w.r.t. Galax due to compres-
sion. Thus, with comparable times w.r.t. an XQuery engine over uncompressed
data, XQueC exhibits the advantage of compression.
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Data Mining: Proximity measures and cluster
analysis

5.1 Data Mining

Progress in digital data acquisition and storage technology has resulted in the
growth of huge databases. This has occurred in all areas of human endeavor,
from the mundane (such as supermarket transaction data, credit card usage
records, telephone call details, and government statistics) to the more exotic
(such as images of astronomical bodies, molecular databases, and medical
records). Little wonder, then, that interest has grown in the possibility of
tapping these data, of extracting from them information that might be of
value to the owner of the database. The discipline concerned with this task
has become known as data mining.

5.1.1 Introduction

Defining a scientific discipline is always a controversial task; researchers often
disagree about the precise range and limits of their field of study. Bearing
this in mind, and without trying to cover all possible approaches and all
different views about data mining as a discipline, let us start with one possible,
sufficiently broad definition of data mining:

Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are

both understandable and useful to the data owner.

The relationships and summaries derived through a data mining exercise
are often referred to as models or patterns. Examples include linear equations,
rules, clusters, graphs, tree structures, and recurrent patterns in time series.

The definition above refers to “observational data”, as opposed to “exper-
imental data”. Data mining typically deals with data that have already been
collected for some purpose other than the data mining analysis (for example,
they may have been collected in order to maintain an up-to-date record of all
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the transactions in a bank). This means that the objectives of the data mining
exercise play no role in the data collection strategy. This is one way in which
data mining differs from much of statistics, in which data are often collected
by using efficient strategies to answer specific questions. For this reason, data
mining is often referred to as “secondary” data analysis.

Fig. 5.1. Data mining - searching for knowledge (interesting patterns) in data

The definition also mentions that the data sets examined in data mining
are often large. If only small data sets were involved, we would merely be dis-
cussing classical exploratory data analysis as practiced by statisticians. When
we are faced with large bodies of data, new problems arise. Some of these
relate to housekeeping issues of how to store or access the data, but others
relate to more fundamental issues, such as how to determine the representa-
tiveness of the data, how to analyze the data in a reasonable period of time,
and how to decide whether an apparent relationship is merely a chance occur-
rence not reflecting any underlying reality. Often the available data comprise
only a sample from the complete population (or, perhaps, from a hypothetical
super-population); the aim may be to generalize from the sample to the popu-
lation. For example, we might wish to predict how future customers are likely
to behave or to determine the properties of protein structures that we have not
yet seen. Such generalizations may not be achievable through standard statis-
tical approaches because often the data are not (classical statistical) “random
samples”, but rather “convenience” or “opportunity” samples. Sometimes we
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may want to summarize or compress a very large data set in such a way that
the result is more comprehensible, without any notion of generalization. This
issue would arise, for example, if we had complete census data for a particular
country or a database recording millions of individual retail transactions.

The relationships and structures found within a set of data must, of course,
be novel. There is little point in regurgitating well-established relationships
(unless, the exercise is aimed at “hypothesis“ confirmation, in which one was
seeking to determine whether established pattern also exists in a new data set)
or necessary relationships (that, for example, all pregnant patients are female).
Clearly, novelty must be measured relative to the user’s prior knowledge.
Unfortunately few data mining algorithms take into account a user’s prior
knowledge. For this reason we will not say very much about novelty in this
text. It remains an open research problem.

While novelty is an important property of the relationships we seek, it is
not sufficient to qualify a relationship as being worth finding. In particular, the
relationships must also be understandable. For instance simple relationships
are more readily understood than complicated ones, and may well be preferred,
all else being equal.

5.1.2 Data mining as a process of knowledge discovery

It is important to realize that the problem of discovering or estimating de-
pendencies from data or discovering totally new data is only one part of the
general experimental procedure used by scientists, engineers, and others who
apply standard steps to draw conclusions from the data.

Data mining is often set in the broader context of knowledge discovery
in databases, or KDD. This term originated in the artificial intelligence (AI)
research field. Knowledge discovery as a process is depicted in Figure 5.2, and
consists of an iterative sequence of the following steps:

• data cleaning (to remove noise or irrelevant data)
• data integration (where multiple data sources may be combined)
• data selection (where data relevant to the analysis task are retrieved

from the database)
• data transformation (where data are transformed or consolidated into

forms appropriate for mining by performing summary or aggregation op-
erations, for instance)

• data mining (an essential process where intelligent methods are applied
in order to extract data patterns)

• pattern evaluation (to identify the truly interesting patterns represent-
ing knowledge based on some interestingness measures

• knowledge presentation (where visualization and knowledge represen-
tation techniques are used to present the mined knowledge to the user)

The data mining step may interact with the user or a knowledge base.
The interesting patterns are presented to the user, and may be stored as
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Fig. 5.2. Data mining as a process of knowledge discovery

new knowledge in the knowledge base. Note that according to this view, data
mining is only one step in the entire process, albeit an essential one since it
uncovers hidden patterns for evaluation. We agree that data mining is a knowl-
edge discovery process. However, in industry, in media, and in the database
research milieu, the term “data mining” is becoming more popular than the
longer term of “knowledge discovery in databases”.

Based on this view, the architecture of a typical data mining system may
have the following major components (Figure 5.2):

1. Database, data warehouse, or other information repository. This
is one or a set of databases, data warehouses, spread sheets, or other kinds
of information repositories. Data cleaning and data integration techniques
may be performed on the data.

2. Database or data warehouse server. The database or data warehouse
server is responsible for fetching the relevant data, based on the user’s data
mining request.

3. Knowledge base. This is the domain knowledge that is used to guide the
search, or evaluate the interestingness of resulting patterns. Such knowl-
edge can include concept hierarchies, used to organize attributes or at-
tribute values into different levels of abstraction. Knowledge such as user
beliefs, which can be used to assess a pattern’s interestingness based on its
unexpectedness, may also be included. Other examples of domain knowl-
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edge are additional interestingness constraints or thresholds, and meta-
data (e.g., describing data from multiple heterogeneous sources).

4. Data mining engine. This is essential to the data mining system and
ideally consists of a set of functional modules for tasks such as char-
acterization, association analysis, classification, evolution and deviation
analysis.

5. Pattern evaluation module. This component typically employs inter-
estingness measures and interacts with the data mining modules so as to
focus the search towards interesting patterns. It may access interesting-
ness thresholds stored in the knowledge base. Alternatively, the pattern
evaluation module may be integrated with the mining module, depending
on the implementation of the data mining method used. For efficient data
mining, it is highly recommended to push the evaluation of pattern inter-
estingness as deep as possible into the mining process so as to confine the
search to only the interesting patterns.

6. Graphical user interface. This module communicates between users
and the data mining system, allowing the user to interact with the system
by specifying a data mining query or task, providing information to help
focus the search, and performing exploratory data mining based on the
intermediate data mining results. In addition, this component allows the
user to browse database and data warehouse schemas or data structures,
evaluate mined patterns, and visualize the patterns in different forms.

Data mining involves an integration of techniques from multiple disciplines
such as database technology, statistics, machine learning, high performance
computing, pattern recognition, neural networks, data visualization, infor-
mation retrieval, image and signal processing, and spatial data analysis. By
performing data mining, interesting knowledge, regularities, or high-level in-
formation can be extracted and viewed or browsed from different angles. The
discovered knowledge can be applied to decision making, process control, in-
formation management, query processing, and so on.

5.2 Measures of similarity and dissimilarity

Similarity and dissimilarity are important because they are used by a number
of data mining techniques, such as clustering, nearest neighbor classification,
and anomaly detection. In many cases, the initial data set is not needed once
these similarities or dissimilarities have been computed. Such approaches can
be viewed as transforming the data to a similarity (dissimilarity) space and
then performing the analysis.

We begin with a discussion of the basics high-level definitions of similarity
and dissimilarity, and a discussion of how they are related. For convenience,
the term proximity is used to refer to either similarity or dissimilarity. Since
the proximity between two objects is a function of the proximity between the
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corresponding attributes of the two objects, we first describe how to measure
the proximity between objects having only one simple attribute, and then
consider proximity measures for objects with multiple attributes. This in-
cludes measures such as correlation and Euclidean distance, which are useful
for dense data such as time series or two-dimensional points, as well as the
Jaccard and cosine similarity measures, which are useful for sparse data like
documents.

5.2.1 Basics

Definitions

Informally, the similarity between two objects is a numerical measure of the
degree to which the two objects are alike. Consequently, similarities are higher
for pairs of objects that are more alike. Similarities are usually non-negative
and are often between 0 (no similarity) and 1 (complete similarity). The dis-
similarity between two objects is a numerical measure of the degree to which
the two objects are different. Dissimilarities are lower for more similar pairs of
objects. Frequently, the term distance is used as a synonym for dissimilarity,
although distance is often used to refer to a special class of dissimilarities.
Dissimilarities sometimes fall in the interval [0, 1], but it is also common for
them to range from 0 to ∞.

Transformations

Transformations are often applied to convert a similarity to a dissimilarity,
or vice versa, or to transform a proximity measure to fall within a particular
range, such as [0, 1]. For instance, we may have similarities that range from 1
to 10, but the particular algorithm or software package that we want to use
may be designed to only work with dissimilarities, or it may only work with
similarities in the interval [0, 1].

Frequently, proximity measures, especially similarities, are defined or
transformed to have values in the interval [0, 1]. Informally, the motivation
for this is to use a scale in which a proximity value indicates the fraction of
similarity (or dissimilarity) between two objects. Such a transformation is of-
ten relatively straightforward. For example, if the similarities between objects
range from 1 (not at all similar) to 10 (completely similar), we can make them
fall within the range [0, 1] by using the transformation s′ = (s − 1)/9, where
s and s′ are the original and new similarity values, respectively. In the more
general case, the transformation of similarities to the interval [0, 1] is given by
the expression s′ = (s−mins)/(maxs −mins), where maxs and mins are the
maximum and minimum similarity values, respectively. Likewise, dissimilarity
measures with a finite range can be mapped to the interval [0, 1] by using the
formula d′ = (d − mind)/(maxd − mind).
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There can be various complications in mapping proximity measures to
the interval [0, 1], however. If, for example, the proximity measure originally
takes values in the interval [0,∞], then a non-linear transformation is needed
and values will not have the same relationship to one another on the new
scale. Consider the transformation d′ = d/(1 + d) for a dissimilarity measure
that ranges from 0 to ∞. The dissimilarities 0, 0.5, 2, 10, 100, and 1000 will
be transformed into the new dissimilarities 0, 0.33, 0.67, 0.90, 0.99, and 0.999,
respectively. Larger values on the original dissimilarity scale are compressed
into the range of values near 1, but whether or not this is desirable depends
on the application. Another complication is that the meaning of the proximity
measure may be changed. For example, correlation, which is discussed later,
is a measure of similarity that takes values in the interval [−1, 1]. Mapping
these values to the interval [0, 1] by taking the absolute value loses information
about the sign, which can be important in some applications.

Transforming similarities to dissimilarities and vice versa is also relatively
straightforward, although we again face the issues of preserving meaning and
changing a linear scale into a non-linear scale. If the similarity (or dissim-
ilarity) falls in the interval [0, 1], then the dissimilarity can be defined as
d = 1 − s (s = 1 − d). Another simple approach is to define similarity as the
negative of the dissimilarity (or vice versa). To illustrate, the dissimilarities
0, 1, 10, and 100 can be transformed into the similarities 0,−1,−10, and −100,
respectively.

The similarities resulting from the negation transformation are not re-
stricted to the range [0, 1], but if that is desired, then transformations such as
s = 1

d+1 , s = e−d, or s = 1− d−mind

maxd−mind
can be used. For the transformation

s = 1
d+1 , the dissimilarities 0, 1, 10, 100 are transformed into 1, 0.5, 0.09, 0.01,

respectively. For s = e−d, they become 1.00, 0.37, 0.00, 0.00, respectively, while
for s = 1 − d−mind

maxd−mind
they become 1.00, 0.99, 0.00, 0.00, respectively.

In general, any monotonic decreasing function can be used to convert dis-
similarities to similarities, or vice versa. Of course, other factors also must
be considered when transforming similarities to dissimilarities, or vice versa,
or when transforming the values of a proximity measure to a new scale. We
have mentioned issues related to preserving meaning, distortion of scale, and
requirements of data analysis tools, but this list is certainly not exhaustive.

5.2.2 Similarity and Dissimilarity between Simple Attributes

The proximity of objects with a number of attributes is typically defined
by combining the proximities of individual attributes, and thus, we first dis-
cuss proximity between objects having a single attribute. Consider objects
described by one nominal attribute. What would it mean for two such objects
to be similar ? Since nominal attributes only convey information about dis-
tinctness of objects, all we can say is that two objects either have the same
value or they do not. Hence, in this case similarity is traditionally defined 1
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if attribute values match, and 0 otherwise. A dissimilarity would be defined
in the opposite way: 0 if the attribute values match, and 1 if they do not.

For objects with a single ordinal attribute, the situation is more compli-
cated because information about order should be taken into account. Consider
an attribute that measures the quality of a product, e.g., a candy bar, on scale
{poor, fair, OK, good, wonderful}. It would seem reasonable that a product,
P1, which is rated wonderful, would be closer to a product P2, which is rated
good, than it would be to a product P3, which is rated OK. To make this
observation quantitative, the values of the ordinal attribute are often mapped
to successive integers, beginning at 0 or 1, e.g., {poor= 0, fair= l, OK= 2,
good= 3, wonderful= 4}. Then, d(Pl, P2) = 3 − 2 = 1 or, if we want the
dissimilarity to fall between 0 and 1, d(Pl, P2) = 3−2

4 = 0.25. A similarity for
ordinal attributes can then be defined as s = 1 − d.

This definition of similarity (dissimilarity) for an ordinal attribute can
seem a bit strange since this assumes equal intervals, and this is not so. Oth-
erwise, we would have an interval or ratio attribute. Is the difference between
the values fair and good really the same as that between the values OK and
wonderful? Probably not, but in practice, our options are limited, and in
the absence of more information, this is the standard approach for defining
proximity between ordinal attributes.

For interval or ratio attributes, the natural measure of dissimilarity be-
tween two objects is the absolute difference of their values. For example, we
might compare our current weight and our weight a year ago by saying “I am
ten pounds heavier”. In cases such as these, the dissimilarities typically range
from 0 to ∞, rather than from 0 to 1. The similarity of interval or ratio at-
tributes is typically expressed by transforming a similarity into a dissimilarity,
as previously described.

5.2.3 Dissimilarities between Data Objects

We discuss various kinds of dissimilarities. We begin with a discussion of
distances, which are dissimilarities with certain properties, and then provide
examples of more general kinds of dissimilarities.

Distances

We first present some examples, and then offer a more formal description of
distances in terms of the properties common to all distances. The Euclidean
distance, d, between two points, x and y, in one-, two-, three-, or higher
dimensional space, is given by the following familiar formula:

d(x,y) =

√√√√ n∑
k=1

(xk − yk)2 (5.1)
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where n is the number of dimensions and xk and yk are, respectively, the
k − th attributes (components) of x and y.

The Euclidean distance measure given in Equation 5.1 is generalized by
the Minkowski distance metric shown in Equation 5.2,

d(x,y) =

(
n∑

k=1

|xk − yk|r
)1/r

(5.2)

where r is a parameter. The following are the three most common examples
of Minkowski distances:

• r = 1. City block (Manhattan, taxicab, Ll norm) distance. A common
example is the Hamming distance, which is the number of bits that are
different between two objects that have only binary attributes, i.e., be-
tween two binary vectors.

• r = 2. Euclidean distance (L2 norm).
• r = ∞. Supremum (Lmax or L∞ norm) distance. This is the maximum

difference between any attribute of the objects. More formally, the L∞
distance is defined by Equation 5.3

d(x,y) = lim
r→∞

(
n∑

k=1

|xk − yk|r
)1/r

(5.3)

The r parameter should not be confused with the number of dimensions (at-
tributes) n. The Euclidean, Manhattan, and supremum distances are defined
for all values of n : 1, 2, 3, . . ., and specify different ways of combining the
differences in each dimension (attribute) into an overall distance.

Distances, such as the Euclidean distance, have some well-known proper-
ties. If d(x,y) is the distance between two points, x and y, then the following
properties hold:

1. Positivity
• d(x,y) ≥ 0 for all x and y,
• d(x,y) = 0 only if x = y.

2. Symmetry
• d(x,y) = d(y,x) for all x and y.

3. Triangle Inequality
• d(x, z) ≤ d(x,y) + d(y, z) for all x,y and z.

Measures that satisfy all three properties are known as metrics. Some peo-
ple only use the term distance for dissimilarity measures that satisfy these
properties, but that practice is often violated. The three properties described
here are useful, as well as mathematically pleasing. Also, if the triangle in-
equality holds, then this property can be used to increase the efficiency of
techniques (including clustering) that depend on distances possessing this
property. Nonetheless, many dissimilarities do not satisfy one or more of the
metric properties. We give an example of such measures.
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Example 5.1. Non-metric Dissimilarities: Set Differences
This example is based on the notion of the difference of two sets, as defined
in set theory. Given two sets A and B, A − B is the set of elements of A
that are not in B. For example, if A = {1, 2, 3, 4} and B = {2, 3, 4}, then
A − B = {1} and B − A = ∅. We can define the distance d between two sets
A and B as d(A, B) = size(A − B), where size is a function returning the
number of elements in a set. This distance measure, which is an integer value
greater than or equal to 0, does not satisfy the second part of the positivity
property, the symmetry property, or the triangle inequality. However, these
properties can be made to hold if the dissimilarity measure is modified as
follows: d(A, B) = size(A − B) + size(B − A).

5.2.4 Similarities between Data Objects

For similarities, the triangle inequality (or the analogous property) typically
does not hold, but symmetry and positivity typically do. To be explicit, if
s(x,y) is the similarity between points x and y, then the typical properties
of similarities are the following:

1. s(x,y) = 1 only if x = y. (0 ≤ s ≤ 1)
2. s(x,y) = s(y,x) for all x and y. (Symmetry)

There is no general analog of the triangle inequality for similarity measures. It
is sometimes possible, however, to show that a similarity measure can easily
be converted to a metric distance. The cosine and Jaccard similarity measures,
which are discussed shortly, are two examples. Also, for specific similarity mea-
sures, it is possible to derive mathematical bounds on the similarity between
two objects that are similar in spirit to the triangle inequality.

Example 5.2. A Non-symmetric Similarity Measure
Consider an experiment in which people are asked to classify a small set of
characters as they flash on a screen. The confusion matrix for this experiment
records how often each character is classified as itself, and how often each is
classified as another character. For instance, suppose that 0 appeared 200
times and was classified as a 0 160 times, but as an o 40 times. Likewise,
suppose that o appeared 200 times and was classified as an o 170 times,
but as 0 only 30 times. If we take these counts as a measure of the similarity
between two characters, then we have a similarity measure, but one that is not
symmetric. In such situations, the similarity measure is often made symmetric
by setting s′(x,y) = s′(y,x) = (s(x,y) + s(y,x))/2, where s′ indicates the
new similarity measure.

5.2.5 Examples of Proximity Measures

We provide specific examples of some similarity and dissimilarity measures.
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Similarity Measures for Binary Data

Similarity measures between objects that contain only binary attributes are
called similarity coefficients, and typically have values between 0 and 1. A
value of 1 indicates that the two objects are completely similar, while a value
of 0 indicates that the objects are not at all similar. There are many rationales
for why one coefficient is better than another in specific instances.

Let x and y be two objects that consist of n binary attributes. The com-
parison of two such objects, i.e., two binary vectors, leads to the following
four quantities (frequencies):

f00 = the number of attributes where x is 0 and y is 0
f01 = the number of attributes where x is 0 and y is 1
f10 = the number of attributes where x is 1 and y is 0
f11 = the number of attributes where x is 1 and y is 1

Simple Matching Coefficient

One commonly used similarity coefficient is the simple matching coefficient
(SMC ), which is defined as:

SMC =
number of matching attribute values

number of attribute
=

f11 + f00

f01 + f10 + f11 + f00

This measure counts both presences and absences equally. Consequently, the
SMC could be used to find students who had answered questions similarly on
a test that consisted only of true/false questions

Jaccard Coefficient

Suppose that x and y are data objects that represent two rows (two trans-
actions) of a transaction matrix. If each asymmetric binary attribute corre-
sponds to an item in a store, then a 1 indicates that the item was purchased,
while a 0 indicates that the product was not purchased. Since the number
of products not purchased by any customer far outnumbers the number of
products that were purchased, a similarity measure such as SMC would say
that all transactions are very similar. As a result, the Jaccard coefficient is
frequently used to handle objects consisting of asymmetric binary attributes.
The Jaccard coefficient, which is often symbolized by J , is given by the fol-
lowing equation:

J =
number of matching presences

number of attribute not involved in 00 matches
=

f11

f01 + f10 + f11

Example 5.3. The SMC and Jaccard Similarity Coefficients
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To illustrate the difference between these two similarity measures, we calculate
SMC and J for the following two binary vectors.

x = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

f00 = 7 the number of attributes where x is 0 and y is 0
f01 = 2 the number of attributes where x is 0 and y is 1
f10 = 1 the number of attributes where x is 1 and y is 0
f11 = 0 the number of attributes where x is 1 and y is 1

SMC =
f11 + f00

f01 + f10 + f11 + f00
=

0 + 7
2 + 1 + 0 + 7

= 0.7

J =
f11

f01 + f10 + f11
=

0
2 + 1 + 0

= 0

Cosine Similarity

Documents are often represented as vectors, where each attribute represents
the frequency with which a particular term (word) occurs in the document. It
is more complicated than this, of course, since certain common words are ig-
nored and various processing techniques are used to account for different forms
of the same word, differing document lengths, and different word frequencies.

Even though documents have thousands or tens of thousands of attributes
(terms), each document is sparse since it has relatively few non-zero attributes.
(The normalizations used for documents do not create a non-zero entry where
there was a zero entry; i.e., they preserve sparsity.) Thus, as with transaction
data, similarity should not depend on the number of shared 0 values since
any two documents are likely to “not contain” many of the same words, and
therefore, if 0-0 matches are counted, most documents will be highly similar to
most other documents. Therefore, a similarity measure for documents needs
to ignores 0-0 matches like the Jaccard measure, but also must be able to
handle non-binary vectors. The cosine similarity, defined next, is one of the
most common measure of document similarity. If x and y are two document
vectors, then

cos (x,y) =
x · y

‖x‖ ‖y‖ (5.4)

where · indicates the vector dot product, x · y =
∑n

k=1 xkyk, and ‖x‖ is the
length of vector x, ‖x‖ =

√∑n
k=1 x2

k =
√

x · x
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Example 5.4. Cosine Similarity of Two Document Vectors
This example calculates the cosine similarity for the following two data ob-
jects, which might represent document vectors:

x = (3, 2, 0, 5, 0, 0, 0, 2, 0, 0)
y = (1, 0, 0, 0, 0, 0, 0, 1, 0, 2)

x · y = 3 ∗ 1 + 2 ∗ 0 + 0 ∗ 0 + 5 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 2 ∗ 1 + 0 ∗ 0 + 0 ∗ 2 = 5

‖x‖ =
√

3 ∗ 3 + 2 ∗ 2 + 0 ∗ 0 + 5 ∗ 5 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 2 ∗ 2 + 0 ∗ 0 + 0 ∗ 0 = 6.48

‖y‖ =
√

1 ∗ 1 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 0 ∗ 0 + 1 ∗ 1 + 0 ∗ 0 + 2 ∗ 2 = 2.24

cos (x, y) = 0.31

As indicated by Figure 5.3, cosine similarity really is a measure of the
(cosine of the) angle between x and y. Thus, if the cosine similarity is 1, the
angle between x and y is 0◦, and x and y are the same except for magnitude
(length). If the cosine similarity is 0, then the angle between x and y is 90◦,
and they do not share any terms (words).

Fig. 5.3. Geometric illustration of the cosine measure

Equation 5.4 can be written as:

cos (x,y) =
x

‖x‖ · y
‖y‖ = x’ · y’ (5.5)

where x’ = x
‖x‖ and y’ = y

‖y‖ . Dividing x and y by their lengths normalizes
them to have a length of 1. This means that cosine similarity does not take the
magnitude of the two data objects into account when computing similarity.
(Euclidean distance might be a better choice when magnitude is important).
For vectors with a length of 1, the cosine measure can be calculated by taking
a simple dot product. Consequently, when many cosine similarities between
objects are being computed, normalizing the objects to have unit length can
reduce the time required.
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Extended Jaccard Coefficient (Tanimoto Coefficient)

The extended Jaccard coefficient can be used for document data and that re-
duces to the Jaccard coefficient in the case of binary attributes. The extended
Jaccard coefficient is also known as the Tanimoto coefficient. (However, there
is another coefficient that is also known as the Tanimoto coefficient.) This co-
efficient, which we shall represent as EJ , is defined by the following equation:

EJ(x,y) =
x · y

(‖x‖)2 + (‖y‖)2 − x · y (5.6)

Correlation

The correlation between two data objects that have binary or continuous
variables is a measure of the linear relationship between the attributes of
the objects. (The calculation of correlation between attributes, which is more
common, can be defined similarly.) More precisely, Pearson’s correlation coef-
ficient between two data objects, x and y, is defined by the following equation:

corr(x,y) =
covariance(x,y)

standard deviation(x) ∗ standard deviation(y)
=

sxy

sxsy
(5.7)

where we are using the following standard statistical notation and definitions:

covariance(x,y) = sxy =
1

n − 1

n∑
k=1

(xk − x̄)(yk − ȳ) (5.8)

standard deviation(x) = sx =

√√√√ 1
n − 1

n∑
k=1

(xk − x̄)2

standard deviation(y) = sy =

√√√√ 1
n − 1

n∑
k=1

(yk − ȳ)2

x̄ =
1
n

n∑
k=1

(xk) is the mean of x

ȳ =
1
n

n∑
k=1

(yk) is the mean of y

Example 5.5. Perfect Correlation
Correlation is always in the range −1 to 1. A correlation of 1 (−1) means
that x and y have a perfect positive (negative) linear relationship; that is,
xk = ayk + b, where a and b are constants. The following two sets of values
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for x and y indicate cases where the correlation is −1 and +1, respectively.
In the first case, the means of x and y were chosen to be 0, for simplicity.

x = (−3, 6, 0, 3,−6)
y = (1,−2, 0,−1, 2)

x = (3, 6, 0, 3, 6)
y = (1, 2, 0, 1, 2)

5.2.6 Selecting the right proximity Measure

The following are a few general observations that may be helpful. First, the
type of proximity measure should fit the type of data. For many types of dense,
continuous data, metric distance measures such as Euclidean distance are
often used. Proximity between continuous attributes is most often expressed
in terms of differences, and distance measures provide a well-defined way
of combining these differences into an overall proximity measure. Although
attributes can have different scales and be of differing importance, these issues
can often be dealt with as described earlier.

For sparse data, which often consists of asymmetric attributes, we typically
employ similarity measures that ignore 0-0 matches. Conceptually, this reflects
the fact that, for a pair of complex objects, similarity depends on the number
of characteristics they both share, rather than the number of characteristics
they both lack. More specifically, for sparse, asymmetric data, most objects
have only a few of the characteristics described by the attributes, and thus,
are highly similar in terms of the characteristics they do not have. The cosine,
Jaccard, and extended Jaccard measures are appropriate for such data.

There are other characteristics of data vectors that may need to be consid-
ered. Suppose, for example, that we are interested in comparing time series.
If the magnitude of the time series is important (for example, each time series
represent total sales of the same organization for a different year), then we
could use Euclidean distance. If the time series represent different quantities
(for example, blood pressure and oxygen consumption), then we usually want
to determine if the time series have the same shape, not the same magnitude.
Correlation, which uses a built-in normalization that accounts for differences
in magnitude and level, would be more appropriate.

In some cases, transformation or normalization of the data is important
for obtaining a proper similarity measure since such transformations are not
always present in proximity measures. For instance, time series may have
trends or periodic patterns that significantly impact similarity. Also, a proper
computation of similarity may require that time lags be taken into account.
Finally, two time series may only be similar over specific periods of time. For
example, there is a strong relationship between temperature and the use of
natural gas, but only during the heating season.
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Practical consideration can also be important. Sometimes, a one or more
proximity measures are already in use in a particular field, and thus, others
will have answered the question of which proximity measures should be used.
Other times, the software package or clustering algorithm being used may
drastically limit the choices. If efficiency is a concern, then we may want to
choose a proximity measure that has a property, such as the triangle inequality,
that can be used to reduce the number of proximity calculations.

However, if common practice or practical restrictions do not dictate a
choice, then the proper choice of a proximity measure can be a time-consuming
task that requires careful consideration of both domain knowledge and the
purpose for which the measure is being used. A number of different similarity
measures may need to be evaluated to see which ones produce results that
make the most sense.

5.3 Cluster analysis

Cluster analysis groups data objects based only on information found in the
data that describes the objects and their relationships. The goal is that the
objects within a group be similar (or related) to one another and different from
(or unrelated to) the objects in other groups. The greater the similarity (or
homogeneity) within a group and the greater the difference between groups,
the better or more distinct the clustering.

5.3.1 Introduction

Clustering refers to the grouping of records, observations, or cases into classes
of similar objects. A cluster is a collection of records that are similar to one
another and dissimilar to records in other clusters. Clustering algorithms seek
to segment the entire data set into relatively homogeneous subgroups or clus-
ters, where the similarity of the records within the cluster is maximized, and
the similarity to records outside this cluster is minimized.

In clustering, some details are disregarded in exchange for data simplifica-
tion. Clustering can be viewed as a data modeling technique that provides for
concise summaries of the data. From a machine learning perspective, clusters
correspond to hidden patterns, the search for clusters is unsupervised learning,
and the resulting system represents a data concept. Therefore, clustering is
unsupervised learning of a hidden data concept. Clustering is related to many
disciplines and plays an important role in a broad range of applications. The
applications of clustering usually deal with large datasets and data with many
attributes.

Clustering is often performed as a preliminary step in a data mining pro-
cess, with the resulting clusters being used as further inputs into a different
technique downstream, such as neural networks. Due to the enormous size of
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many present-day databases, it is often helpful to apply clustering analysis
first, to reduce the search space for the downstream algorithms.

Clustering is a very difficult problem because data can reveal clusters with
different shapes and sizes in an n-dimensional data space. To compound the
problem further, the number of clusters in the data often depends on the
resolution (fine vs. coarse) with which we view the data. The next exam-
ple illustrates these problems through the process of clustering points in the
Euclidean 2D space. Figure 5.4a shows a set of points (samples in a two-
dimensional space) scattered on a 2D plane. Let us analyze the problem of
dividing the points into a number of groups. The number of groups N is not
given beforehand. Figure 5.4b shows the natural clusters G1, G2, and G3 bor-
dered by broken curves. Since the number of clusters is not given, we have
another partition of four clusters in Figure 5.4c that is as natural as the groups
in Figure 5.4b. This kind of arbitrariness for the number of clusters is a major
problem in clustering.

Fig. 5.4. Cluster analysis of points in a 2D-space

Note that the above clusters can be recognized by sight. For a set of points
in a higher-dimensional Euclidean space, we cannot recognize clusters visually.

5.3.2 Different Types of Clusterings

An entire collection of clusters is commonly referred to as a clustering, and
we can distinguish various types of clusterings: hierarchical (nested) versus
partitional (unnested), exclusive versus overlapping versus fuzzy, and complete
versus partial.
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Hierarchical versus Partitional

The most commonly discussed distinction among different types of clusterings
is whether the set of clusters is nested or unnested, or in more traditional
terminology, hierarchical or partitional. A partitional clustering is simply a
division of the set of data objects into non-overlapping subsets (clusters) such
that each data object is in exactly one subset.

If we permit clusters to have subclusters, then we obtain a hierarchical
clustering, which is a set of nested clusters that are organized as a tree. Each
node (cluster) in the tree (except for the leaf nodes) is the union of its children
(subclusters), and the root of the tree is the cluster containing all the objects.
Often, but not always, the leaves of the tree are singleton clusters of individual
data objects. Finally, note that a hierarchical clustering can be viewed as a
sequence of partitional clusterings and a partitional clustering can be obtained
by taking any member of that sequence; i.e., by cutting the hierarchical tree
at a particular level.

Exclusive versus Overlapping versus Fuzzy

Clusterings that assign each object to a single cluster are exclusive. There are
many situations in which a point could reasonably be placed in more than one
cluster, and these situations are better addressed by non-exclusive clustering.
In the most general sense, an overlapping or non-exclusive clustering is used
to reflect the fact that an object can simultaneously belong to more than one
group (class). For instance, a person at a university can be both an enrolled
student and an employee of the university. A non-exclusive clustering is also
often used when, for example, an object is “between” two or more clusters
and could reasonably be assigned to any of these clusters.

In a fuzzy clustering, every object belongs to every cluster with a member-
ship weight that is between 0 (absolutely does not belong) and 1 (absolutely
belongs). In other words, clusters are treated as fuzzy sets. (Mathematically,
a fuzzy set is one in which an object belongs to any set with a weight that
is between 0 and 1). In fuzzy clustering, we often impose the additional con-
straint that the sum of the weights for each object must equal 1. Similarly,
probabilistic clustering techniques compute the probability with which each
point belongs to each cluster, and these probabilities must also sum to 1. Be-
cause the membership weights or probabilities for any object sum to 1, a fuzzy
or probabilistic clustering does not address true multiclass situations, such as
the case of a student employee, where an object belongs to multiple classes.
Instead, these approaches are most appropriate for avoiding the arbitrariness
of assigning an object to only one cluster when it may be close to several. In
practice, a fuzzy or probabilistic clustering is often converted to an exclusive
clustering by assigning each object to the cluster in which its membership
weight or probability is highest.
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Complete versus Partial

A complete clustering assigns every object to a cluster, whereas a partial
clustering does not. The motivation for a partial clustering is that some objects
in a data set may not belong to well-defined groups. Many times objects in
the data set may represent noise, outliers, or “uninteresting background”.
For example, some newspaper stories may share a common theme, such as
global warming, while other stories are more generic or one-of-a-kind. Thus,
to find the important topics in last month’s stories, we may want to search
only for clusters of documents that are tightly related by a common theme.
In other cases, a complete clustering of the objects is desired. For example,
an application that uses clustering to organize documents for browsing needs
to guarantee that all documents can be browsed.

5.3.3 Different Types of Clusters

Clustering aims to find useful groups of objects (clusters), where usefulness is
defined by the goals of the data analysis. Not surprisingly, there are several
different notions of a cluster that prove useful in practice.

Well-Separated

A cluster is a set of objects in which each object is closer (or more similar)
to every other object in the cluster than to any object not in the cluster.
Sometimes a threshold is used to specify that all the objects in a cluster must
be sufficiently close (or similar) to one another. This idealistic definition of a
cluster is satisfied only when the data contains natural clusters that are quite
far from each other. Well-separated clusters do not need to be globular, but
can have any shape.

Prototype-Based

A cluster is a set of objects in which each object is closer (more similar)
to the prototype that defines the cluster than to the prototype of any other
cluster. For data with continuous attributes, the prototype of a cluster is often
a centroid, i.e., the average (mean) of all the points in the cluster. When a
centroid is not meaningful, such as when the data has categorical attributes,
the prototype is often a medoid, i.e., the most representative point of a cluster.
For many types of data, the prototype can be regarded as the most central
point, and in such instances, we commonly refer to prototype based clusters
as center-based clusters. Not surprisingly, such clusters tend to be globular.
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Graph-Based

If the data is represented as a graph, where the nodes are objects and the links
represent connections among objects, then a cluster can be defined as a con-
nected component ; i.e., a group of objects that are connected to one another,
but that have no connection to objects outside the group. An important ex-
ample of graph-based clusters are contiguity-based clusters, where two objects
are connected only if they are within a specified distance of each other. This
implies that each object in a contiguity-based cluster is closer to some other
object in the cluster than to any point in a different cluster. This definition
of a cluster is useful when clusters are irregular or intertwined, but can have
trouble when noise is present since a small bridge of points can merge two
distinct clusters. Other types of graph-based clusters are also possible. One
such approach defines a cluster as a clique; i.e., a set of nodes in a graph that
are completely connected to each other. Specifically, if we add connections
between objects in the order of their distance from one another, a cluster is
formed when a set of objects forms a clique. Like prototype-based clusters,
such clusters tend to be globular.

Density-Based

A cluster is a dense region of objects that is surrounded by a region of low
density. A density based definition of a cluster is often employed when the
clusters are irregular or intertwined, and when noise and outliers are present.
By contrast, a contiguity based definition of a cluster would not work well for
the data when the noise would tend to form bridges between clusters.

5.3.4 Clustering Techniques

A large number of clustering algorithms exists in literature. The selection of
clustering algorithm depends both on the type of data available and on the
particular purpose and application. In general, the most important cluster-
ing methods can be classified into the following categories [72]: Partitional,
Hierarchical, Density-Based, Model-Based and Grid-Based. In the next sub-
sections such categories and the most important algorithms belonging to them
are described.

Partitional Clustering

Given a database of n objects, a partitional clustering algorithm constructs
k partitions of the data, where each partition represents a cluster and k ≤ n.
In other words, it classifies the data in k groups, which together satisfy two
requirements: each group must contain at least one object and each object
must belong to exactly one group. Given the number k of partition to con-
struct, a partitioning method creates an initial partitioning. It then use an
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iterative relocation technique which attempts to improve the partitioning by
moving objects from one group to another. The general criterion of a good
partitioning is that objects in the same cluster are “close” or related to each
other, whereas objects of different clusters are “far apart” or very different.
There are various types of criteria for evaluating the quality of partitions.
The family of partitional clustering algorithms includes the first ones that
appeared in the Data Mining Community. The most commonly used are K-
means, PAM, CLARA and CLARANS.

The K-means [81, 85] algorithm, taking the number of clusters k as input
parameter, partitions a set of n objects into k clusters, so that the resulting
intra-cluster similarity is high whereas the inter-cluster similarity is low. The
K-means algorithm proceeds as follows. First, it randomly selects k of the
objects in the dataset, each one representing a cluster mean or center (called
also representative). The representative of a cluster C is an object containing,
for each attribute, the mean value of the data objects in C. Each of the
remaining objects is assigned to the cluster to which it is the most similar,
based on the distance between the object and the cluster representative. Then,
it computes the new representative for each cluster. This process iterates until
the criterion function converges, that is cluster assignments are stable. The
goal of the algorithm is to minimize the cost function

E =
k∑

j=1

∑
xi∈Cj

d(xi, μCj )

where μCj is the representative of the cluster Cj . The complexity of the algo-
rithm is O(Ikn), where I is the number of iterations.

The PAM (Partitioning Around Medoids) [85] algorithm is an extension
to k-means, intended to handle outliers efficiently. Instead of cluster centers,
it represents each cluster by its medoid. A medoid is the most centrally lo-
cated object inside a cluster. As a consequence, medoids are less influenced
by extreme values; the mean of a number of objects would have to follow
these values while a medoid would not. After an initial random selection of k
medoids, the algorithm repeatedly tries to make a better choice of medoids.
All the possible pairs of objects are analyzed, where one object in each pair
is considered a medoid and the other is not. The quality of the resulting
clustering is computed for each such combination. An object x is replaced
with the object causing the greatest reduction in square-error. The set of the
best objects for each cluster in the current iteration form the medoids for the
next iteration. The algorithm iterates as long as the quality of the result is
improved. Quality is also measured using the squared-error between the ob-
jects in a cluster and its medoid. The computational complexity of PAM is
O(Ik(n−k)2), where I is the number of iterations, and it is very high for large
n and k values. For such a reason, a typical k-medoids partition algorithm like
PAM works effectively for small data sets, but it does not scale well for large
data sets.
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CLARA (Clustering LARge Applications) algorithm [85] is a sampling-
based method and it was born as an extension of PAM. This approach works
on several samples of size s , of the n tuples in the database, applying PAM
on each one of them. The output depends on the s samples and is the “best”
result given by the application of PAM on these samples. The complexity
of each iteration now becomes O(ks2 + k(n − k)), where s is the size of the
sample, k is the number of clusters and n is the total number of objects. It
is clear that a good clustering based on samples will not necessarily represent
a good clustering of the whole data set. In [85] is shown that CLARA works
well with 5 samples of 40 + k size.

CLARANS (Clustering LARge ApplicatioNS ) [112] combines the sampling
technique with PAM. However, unlike CLARA, CLARANS does not confine
itself to any sample at any given time. While CLARA has a fixed sample at
each stage of the search, CLARANS draws a sample with some randomness in
each step of the search. The clustering process can be presented as searching
a graph where every node is a potential solution, i.e. a set of k medoids.
The clustering obtained after replacing a single medoid is called the neighbor
of the current clustering. The number of neighbors to be randomly tried is
restricted by an user specified parameter. If a better neighbor is found (i.e.
having a lower square-error), CLARANS moves to the neighbor’s node and
the process starts again; otherwise, the current clustering produces a local
optimum. CLARANS has been experimentally shown to be more effective
than both PAM and CLARA. However, its computation complexity is O(n2).

Hierarchical Clustering

Hierarchical clustering builds a cluster hierarchy or, in other words, a tree
of clusters, also known as a dendrogram. Every cluster node contains child
clusters; sibling clusters partition the points covered by their common parent.
Such an approach allows exploring data on different levels of granularity

Hierarchical clustering methods are categorized into agglomerative and
divisive, depending on whether the hierarchical decomposition is formed in
a bottom-up or top-down fashion. A brief description of such two types of
hierarchical clustering algorithms follows:

- Agglomerative algorithms start with each object being a separate cluster
itself, and successively merge groups according to a distance measure. The
clustering may stop when all objects are in a single group or until a certain
termination condition is satisfied (i.e., a desired number of clusters is ob-
tained). These methods generally follow a greedy-like bottom-up merging.

- Divisive algorithms follow the opposite strategy. They start with all objects
in one cluster and successively split the cluster into smaller and smaller
pieces, until each object forms a cluster or until a certain termination
condition is satisfied. This is similar to the approach followed by divide-
and-conquer algorithms.
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Most agglomerative hierarchical clustering algorithms are variants of the
single-link or complete-link algorithms. These two basic algorithms differ only
in the way they characterize the similarity between a pair of clusters. In the
single-link method, the distance between two clusters is the minimum of the
distances between all pairs of samples drawn from the two clusters (one ele-
ment from the first cluster, the other from the second). In the complete-link
algorithm, the distance between two clusters is the maximum of all distances
between all pairs drawn from the two clusters. A graphical illustration of these
two distance measures is given in Figure 5.5.

Fig. 5.5. Distances for a single-link and a complete-link clustering algorithm

Sometimes, partitional and hierarchical methods can be integrated. This
would mean that a result given by a hierarchical method can be improved via
a partitional step, which refines the result via iterative relocation of points.
A brief description of the most important hierarchical algorithm proposed in
literature follows.

AGNES(AGglomerative NESting) and DIANA (DIvisive ANAlysis) are
two pioneering hierarchical clustering algorithm, agglomerative and divisive
respectively. AGNES initially places each object into a cluster of its own; the
clusters are then merged step-by-step according to some criterion. For exam-
ple, clusters C1 and C2 may be merged if an object in C1 and an object in C2

form the minimum euclidean distance between any two objects from different
clusters. The cluster merging process repeats until all of the objects are even-
tually merged to form one cluster or if a desired number of clusters (input
parameter) is obtained. DIANA follows an opposite strategy. Initially, all the
objects are used to form one initial cluster. The cluster is split according to
some principle, such as the maximum euclidean distance between the closest
neighboring objects in the cluster. The cluster splitting process repeats until,
eventually, each new cluster contains only a single object or a certain ter-
mination condition is satisfied (i.e., a desired number of clusters is obtained
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or the distance between the two closest clusters is above a certain threshold
distance). Such standard hierarchical approaches suffer from high computa-
tional complexity, namely O(n2), and some approaches have been proposed
to improve this performance.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)
[164] is an integrated hierarchical clustering method. It is based on the idea
that we do not need to keep whole tuples or whole clusters in main memory,
but instead, their sufficient statistics. For each cluster, BIRCH stores only
the triple (n, LS, SS), where n is the number of data objects in the cluster,
LS is the linear sum of the attribute values of the objects in the cluster and
LL is the sum of squares of the attribute values of the objects in the cluster.
These triples are called Cluster Features (CF ) and they are kept in a tree,
called CF-tree. In [164] it is proved how standard statistical quantities, such
as distance measures, can be derived from the CF s. The algorithm works
as follows. First, it scans input dataset to build an initial in-memory CF-
tree, which can be viewed as a multilevel compression of the data, that tries
to preserve the inherent clustering structure of the data. Then, it applies a
clustering algorithm to cluster the leaf nodes of the CF-tree. Experiments have
shown the linear scalability of the algorithm with respect to the number of
objects, and good quality of clustering results.

CURE (Clustering Using REpresentative)[67] is a hierarchical clustering
algorithm which overcomes the problem of favoring clusters with spherical
shape and similar size. Moreover, it is more robust with respect to outliers.
CURE employs a novel hierarchical clustering algorithm that adopts a middle
ground between centroid-based and representative object-based approaches.
Instead of using a single centroid or object to represent a cluster, a fixed
number of representative points in space are chosen. The representative points
of a cluster are generated by first selecting well-scattered objects for the cluster
and then “shrinking” or moving them toward the cluster center by a specified
fraction, or shrinking factor. At each step of the algorithm, the two clusters
with the closest pair of representative points (where each point in the pair
is from a different cluster) are merged. CURE produces high quality clusters
in the existence of outliers, allowing clusters of complex shapes and different
sizes. Given n objects, the complexity of CURE is O(n).

CURE does not handle categorical attributes. ROCK [68] is an alternative
agglomerative hierarchical clustering algorithm that is suited for categorical
data. It computes distances between records using the Jaccard coefficients
and, using a threshold, for each record it determines who are its neighbors.

CHAMELEON [83] is a clustering algorithm which explores dynamic mod-
els in hierarchical clustering. In its clustering process, two clusters are merged
if the inter-connectivity and proximity between two clusters are highly related
to the internal inter-connectivity and proximity of objects within the clusters.
The merge process, based on the dynamic model, facilitates the discovery of
natural and homogeneous clusters, and applies to all types of data as long
as a similarity function is specified. The algorithm first uses a graph parti-
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tioning algorithm to cluster the data objects into a large number of relatively
small subclusters. Then, it uses an agglomerative hierarchical clustering al-
gorithm to find the best clusters by repeatedly combining these clusters. To
determine the pairs of most similar subclusters, it takes into account both
the inter-connectivity as well as the closeness of the clusters, especially the
internal-characteristics of the clusters themselves.

Density-Based Clustering

Density-based methods have been developed to discover clusters with arbi-
trary shapes. To achieve such a goal, clusters can be thought as regions of
high density, separated by regions of no or low density. Density here is con-
sidered as the number of data objects in the neighborhood. Density-based
algorithms typically regard clusters as dense regions of objects in the data
space which are separated by regions of low density, representing noise or
outliers. A brief description of the most important density-based algorithms
proposed in literature follows.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)[43]
is of the most popular density-based clustering algorithm. It finds, for each ob-
ject, the neighborhood that contains a minimum number of objects. Finding
all points whose neighborhood falls into the above class, a cluster is defined as
the set of all points transitively connected by their neighborhoods. DBSCAN
finds arbitrary-shaped clusters and it is not sensitive to the input order. On
the other hand, it requires the user to specify the radius of the neighborhood
and the minimum number of objects it should have; this is a drawback, be-
cause an optimal setting of its parameters is difficult to determine. Algorithm
complexity is O(n2), but it can be improved to O(n log n) if an index structure
to help finding neighbors of a data point is employed. Finally, if Euclidean
distance is used to measure proximity of objects, its performance degrades for
high dimensional data.

OPTICS (Ordering Points To Identify the Clustering Structure) [5] is an
extension to DBSCAN that relaxes the strict requirements of input parame-
ters. OPTICS computes an increasing cluster ordering to automatically and
interactively cluster the data. The ordering represents the density based clus-
tering structure of the data and contains information that is equivalent to
density-based clustering obtained by a range of parameter settings [72]. OP-
TICS considers a minimum radius that makes a neighborhood legitimate for
the algorithm, i.e., having the minimum number of objects, and extends it to
a maximum value. DBSCAN and OPTICS are similar in structure and have
the same computational complexity. Moreover, in [87] an incremental version
of OPTICS has been proposed.

DENCLUE (DENsity-based CLUstEring) [73] is a clustering method based
on a set of density distribution functions. The method is built on the following
ideas. First, the influence of each data point can be formally modelled using
a mathematical function, called an influence function, which describes the
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impact of a data point within its neighborhood. Second, the overall density
of the data space can be modelled analytically as the sum of the influence
function of all data points. Third, clusters can be determined mathematically
by identifying density attractors, where density attractors are local maxima
of the overall density function.

Model-Based Clustering

Model-Based clustering algorithms attempt to optimize the fit between the
given data and some mathematical model. Such method are often based on
the assumption that the data are generated by a mixture of underlying proba-
bility distributions. In this section we cite the Expectation-Maximization (EM)
algorithm [21], which is generally considered as a model-based algorithm or
just an extension to the K-means algorithm. Indeed, EM assigns each object
to a dedicated cluster according to the probability of membership for that
object. The probability distribution function is the multivariate Gaussian and
its main goal is the iterative discovery of good values for its parameters; to
achieve such a goal, the algorithm tries to maximize the logarithm of the
likelihood of the data, given how well the probabilistic model fits it. The algo-
rithm can handle various shapes of clusters, while at the same time it can be
very expensive since hundreds of iterations may be required for the iterative
refinement of parameters. In [20] is proposed a scalable solution to EM, based
on the observation that data can be compressed, maintained in main memory
or discarded.

Grid-Based Clustering

The Grid-Based Clustering approach uses a multiresolution grid data struc-
ture. It quantizes the space into a finite number of cells forming a grid struc-
ture on which all of the operations for clustering are performed. The main
advantage of the approach is its fast processing time which is typically inde-
pendent of the number of data objects, yet dependent on only the number of
cells in each dimension in the quantized space. A brief description of the most
important Grid-Based algorithms follows.

STING (STatistical INformation Grid) [145] breaks the spatial data space
into a finite number of cells using a rectangular hierarchical structure. It then
processes the data set and computes the mean, variance, minimum, maximum
and type of distribution of the objects within each cell. As we go higher in
the structure, statistics are being summarized from lower levels (similar to
the summarization done with CF s in a CF-tree in BIRCH ). New objects
are easily inserted in the grid and spatial queries can be answered visiting
appropriate cells at each level of the hierarchy. A spatial query is defined
as one that retrieves information of spatial data and their interrelationships.
STING is highly scalable, since it requires one pass over the data, but uses a
multi-resolution method that highly depends on the granularity of the lowest
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level. Multi-resolution is the ability to decompose the data set into different
levels of detail. Finally, when merging grid cells to form clusters, children are
not properly merged (because they only correspond to dedicated parents) and
the shapes of clusters have vertical and horizontal boundaries, conforming to
the boundaries of the cells.

WaveCluster [132] employs a multi-resolution approach as STING, but it
follows a different strategy. It uses Wavelets to find arbitrary shaped clusters
at different levels of resolution. A wavelet transform is a signal processing
method that decomposes a signal into different frequency bands. Hence, ap-
plying this transform into clustering helps in detecting clusters of data objects
at different levels of detail. The algorithm handles outliers well, and is highly
scalable, O(n) , but not suitable for high dimensional data sets. In [72] is
reported that WaveCluster performs better than BIRCH, CLARANS and
DBSCAN.

5.3.5 Which Clustering Algorithm

A variety of factors need to be considered when deciding which type of clus-
tering technique to use. Our goal is to succinctly summarize these factors in a
way that sheds some light on which clustering algorithm might be appropriate
for a particular clustering task.

Type of Clustering

One important factor in making sure that the type of clustering matches the
intended use is the type of clustering produced by the algorithm. For some
applications, such as creating a biological taxonomy, a hierarchy is preferred.
In the case of clustering for summarization, a partitional clustering is typical.
In yet other applications, both may prove useful.

Most clustering applications require a clustering of all (or almost all) of the
objects. For instance, if clustering is used to organize a set of documents for
browsing, then we would like most documents to belong to a group. However,
if we wanted to find the strongest themes in a set of documents, then we might
prefer to have a clustering scheme that produces only very cohesive clusters,
even if many documents were left unclustered.

Finally, most applications of clustering assume that each object is assigned
to one cluster (or one cluster on a level for hierarchical schemes). As we have
seen, however, probabilistic and fuzzy schemes provide weights that indicate
the degree or probability of membership in various clusters. Other techniques,
such as DBSCAN and density-based clustering, have the notion of core points,
which strongly belong to one cluster. Such concepts may be useful in certain
applications.
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Type of Cluster

Another key aspect is whether the type of cluster matches the intended appli-
cation. There are three commonly encountered types of clusters: prototype-
, graph-, and density-based. Prototype-based clustering schemes, as well as
some graph-based clustering schemes (complete link, centroid, and Ward’s)
tend to produce globular clusters in which each object is sufficiently close to
the cluster’s prototype or to the other objects in the cluster. If, for example,
we want to summarize the data to reduce its size and we want to do so with
the minimum amount of error, then one of these types of techniques would be
most appropriate. In contrast, density-based clustering techniques, as well as
some graph-based clustering techniques, such as single link, tend to produce
clusters that are not globular and thus contain many objects that are not very
similar to one another. If clustering is used to segment a geographical area
into contiguous regions based on the type of land cover, then one of these
techniques is more suitable than a prototype-based scheme such as K-means.

Characteristics of the Data Sets and Attributes

As previously discussed, the type of data set and attributes can dictate the
type of algorithm to use. For instance, the K-means algorithm can only be used
on data for which an appropriate proximity measure is available that allows
meaningful computation of a cluster centroid. For other clustering techniques,
such as many agglomerative hierarchical approaches, the underlying nature of
the data sets and attributes is less important as long as a proximity matrix
can be created.

Noise and Outliers

Noise and outliers are particularly important aspects of the data. We have
tried to indicate the effect of noise and outliers on the various clustering
algorithms that we have discussed. In practice, however, it may be difficult to
evaluate the amount of noise in the data set or the number of outliers. More
than that, what is noise or an outlier to one person may be interesting to
another person. For example, if we are using clustering to segment an area into
regions of different population density, we do not want to use a density-based
clustering technique, such as DBSCAN, that assumes that regions or points
with density lower than a global threshold are noise or outliers. As another
example, hierarchical clustering schemes, such as CURE, often discard clusters
of points that are growing slowly since such groups tend to represent outliers.
However, in some applications we may be most interested in relatively small
clusters; e.g., in market segmentation, such groups might represent the most
profitable customers.
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Number of Data Objects

We have considered how clustering is affected by the number of data objects in
considerable detail in previous sections. We reiterate, however, that this factor
often plays an important role in determining the type of clustering algorithm
to be used. Suppose that we want to create a hierarchical clustering of a set
of data, we are not interested in a complete hierarchy that extends all the
way to individual objects, but only to the point at which we have split the
data into a few hundred clusters. If the data is very large, we cannot directly
apply an agglomerative hierarchical clustering technique. We could, however,
use a divisive clustering technique, but this would only work if the data set is
not too large. In this situation, a technique such as BIRCH, which does not
require that all data be in main memory, becomes more useful.

Number of Attributes

We have also discussed the impact of dimensionality at some length. Again,
the key point is to realize that an algorithm that works well in low or moder-
ate dimensions may not work well in high dimensions. As in many other cases
in which a clustering algorithm is inappropriately applied, the clustering al-
gorithm may run and produce clusters, but the clusters may not represent the
true structure of the data.

Cluster Description

One aspect of clustering techniques that is often overlooked is how the re-
sulting clusters are described. Prototype clusters are succinctly described by
a small set of cluster prototypes. In the case of mixture models, the clusters
are described in terms of small sets of parameters, such as the mean vector
and the covariance matrix. This is also a very compact and understandable
representation. For graph- and density-based clustering approaches, however,
clusters are typically described as sets of cluster members. Nonetheless, in
CURE, clusters can be described by a (relatively) small set of representative
points.

Algorithmic Considerations

There are also important aspects of algorithms that need to be considered.
Is the algorithm non-deterministic or order-dependent? Does the algorithm
automatically determine the number of clusters? Is there a technique for de-
termining the values of various parameters? Many clustering algorithms try
to solve the clustering problem by trying to optimize an objective function. Is
the objective a good match for the application objective? If not, then even if
the algorithm does a good job of finding a clustering that is optimal or close
to optimal with respect to the objective function, the result is not meaningful.
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Also, most objective functions give preference to larger clusters at the expense
of smaller clusters.



6

Clustering XML documents: state of the art

6.1 Introduction

XML document clustering is realized through algorithms that rely on the sim-
ilarity between two documents computed exploiting a distance metric. The
algorithms should guarantee that documents in the same cluster have an high
similarity degree (low distance), whereas documents in different clusters have
a low similarity degree (high distance). As far as clustering of XML data is
concerned, the document content, the document structure as well as links
among documents can be exploited for identifying similarities among doc-
uments. Several measures have been proposed for computing the structural
and content similarity among XML documents whereas few XML specific ap-
proaches exist for computing link similarity (even if the approaches developed
for Wed data can be easily applied). Purpose of the chapter is to present and
compare the research efforts for developing similarity measures for clustering
XML documents relying on their content, structure, and links. Approaches are
presented relying on the adopted representation of documents. Vector-based
as well as tree-based representations are the most commonly adopted, though
more seldom graph and alternative representations have been adopted as well.

6.2 Similarity measures for XML documents

As mentioned in section 5.2, in the definition of a similarity measure we have to
point out the objects on which the measure is evaluated, and the relationships
existing among such objects. In the XML case, documents are hierarchical in
nature and can be viewed as compositions of simpler constituents, including
elements, attributes, links, and plain text. The hierarchy of composition is
quite rich: attributes and texts are contained in elements, and elements them-
selves are organized in higher-order structures such as paths and subtrees. We
will refer to each level in the compositional structure of an XML document
as a granularity level. The following levels occur in the literature:
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• the whole XML document
• subtrees (i.e., portions of documents)
• paths
• elements
• links
• attributes
• textual content (of attributes and data content elements)

Fig. 6.1. Structural granularities in an XML document

The relationships between the granularity levels are depicted in Figure 6.1
through arrows. An arrow from a granularity level A to a granularity level
B means that a similarity measure at level A can be formulated in terms of
objects at granularity B. Similarity measures for XML are usually defined
according to these natural relations of composition. For instance, a measure
for complete XML documents can be defined by evaluating the similarity of
paths, which in turn requires some criterion to compare the elements con-
tained in the path.

In addition to composition, other relationships among elements/documents
that can be exploited for measuring structural similarity include:

• father-children relationship, that is the relationship between each element
and its direct subelements/attributes;

• ancestor-descendant relationship, that is the relationship between each
element and its direct and indirect subelements/attributes;

• order relationship among siblings;
• link relationship among documents/elements

In measuring similarity at textual granularity, common IR approaches can be
applied on text. Words that are deemed irrelevant are eliminated (e.g. stop
list) as well as punctuation. Words that share a common stem are replaced
by the stem word. A list of terms is then substituted to the actual text.

The approaches developed in the literature takes some of these objects and
relationships into account for the specification of their measures. Approaches
can be classified relying on the representation of documents. Some approaches
represent documents through labeled trees (eventually extended as graphs to



6.3 Clustering approaches 85

consider links) and mainly define the similarity measure as an extension of the
tree edit distance. Others represent the features of XML documents through a
vector model and define the similarity measure as an extension of the distance
between two vectors. The tree representation of documents allows pointing out
the hierarchical relationships existing among elements/attributes.

6.3 Clustering approaches

Different algorithms have been proposed for clustering XML documents that
are extensions of the classical hierarchical and partitioning clustering ap-
proaches. We remind that agglomerative algorithms find the clusters by ini-
tially assigning each document to its own cluster and then repeatedly merging
pairs of clusters until a certain stopping criterion is met. The end result can be
graphically represented as a tree called a dendrogram. The dendrogram shows
the clusters that have been merged together, and the distance between these
merged clusters (the horizontal length of the branches is proportional to the
distance between the merged clusters). By contrast, partitioning algorithms
find clusters by partitioning the set of documents into either a predetermined
or an automatically derived number of clusters. The collection is initially par-
titioned into clusters whose quality is repeatedly optimized, until a stable
solution based on a criterion function is found. Hierarchical clustering in gen-
eral produces clusters of better quality but its main drawback is the quadratic
time complexity. For large documents, the linear time complexity of partition-
ing techniques has made them more popular especially in IR systems where
the clustering is employed for efficiency reasons.

Clusters quality is evaluated by internal and external quality measures.
The external quality measures use an (external) manual classification of the
documents, whereas the internal quality measures are evaluated by calculat-
ing average inter and intra-clustering similarity. Standard external quality
measures are the entropy (which measures how the manually tagged classes
are distributed within each cluster), the purity (which measures how much a
cluster is specialized in a class by dividing its largest class by its size), and the
F-measure which combines the precision and recall rates as an overall perfor-
mance measure. Figure 6.2 reports the formulas of external quality measures
(Zhao & Karypis (2004) [166]) relying on the recall and precision formulas.
Specifically, we report the measure for a single cluster and for the entire set of
clusters determined. A specific external quality measure specifically tailored
for XML documents has been proposed by Nierman & Jagadish in [114]. They
introduce the notion of misclustering for the evaluation of the obtained cluster
of XML documents. Given a dendrogram, the misclustering degree is equal to
the minimal number of documents in the dendrogram that would have to be
moved, so that the documents from the same schema are grouped together.

The Unweighted Pair-Group Method (or UPGMA) is an example of inter-
nal quality measure. The distance between clusters C and C′, given |C| the
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Fig. 6.2. External quality measures

number of objects in C, is computed as follows:

Sim(C, C′) =
∑

o∈C

∑
o′∈C′ Sim(o, o′)
|C||C′|

6.4 Tree-based approach

In this section we deal with approaches for measuring the similarity between
XML documents that rely on a tree representation of the documents. We
first discuss the document representation as trees, the basics of measures for
evaluating tree similarity, and then approaches specifically tailored to XML.

6.4.1 Document representation

XML documents can be represented as labelled trees. In trees representing
documents, internal nodes are labelled by element/attribute names and leaves
are labelled by textual content. In the tree representation, attributes are not
distinguished from elements, both are mapped to the tag name set; thus, at-
tributes are handled as elements. Attribute nodes appear as children of the
element they refer to and, for what concerns the order, they are sorted by at-
tribute name, and appear before all sub-elements “siblings”. XML document
elements may actually refers to, that is, contain links to, other elements. In-
cluding these links in the model gives rise to a graph rather than a tree. Even
if such links can contain important semantic information that can be exploited
in evaluating similarity, most approaches disregard them and simply model
documents as trees. The tree representation of the document in Figure 6.3b
is reported in Figure 6.4.



6.4 Tree-based approach 87

Fig. 6.3. XML documents containing recipes

Fig. 6.4. Tree representation of XML documents containing recipes

6.4.2 Tree similarity measures

The problem of computing the distance between two trees, also known as tree
editing problem, is the generalization of the problem of computing the dis-
tance between two strings (Wagner & Fischer, 1974 [143]) to labelled trees.
The editing operations available in the tree editing problem are changing (i.e.,
relabelling), deleting, and inserting a node. To each of these operations a cost
is assigned, that can depend on the labels of the involved nodes. The problem
is to find a sequence of such operations transforming a tree T1 into a tree T2

with minimum cost. The distance between T1 and T2 is then defined to be the
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cost of such a sequence.

The best known and reference approach to compute edit distance for or-
dered trees is Zhang and Shasha, 1989 [163]. They consider three kinds of
operations for ordered labelled trees. Relabelling a node n means changing
the label on n. Deleting a node n means making the children of n become the
children of the parent of n and then removing n. Inserting n as the child of m
will make n the parent of a consecutive subsequence of the current children
of m. Let Σ be the node label set and let λ be a unique symbol not in Σ,
denoting the null symbol. An edit operation is represented as a → b, where
a is either λ or the label of a node in T1 and b is either λ or the label of a
node in T2. An operation of the form λ → b is an insertion, an operation of
the form a → λ is a deletion. Finally, an operation of the form a → b, with
a, b �= λis a relabelling. Each edit operation a → b is assigned a cost, that
is, a nonnegative real number γ(a → b) by a cost function γ. Function γ is a
distance metric, that is:

γ (a → b) ≥ 0; γ(a → a) = 0, γ(a → b) = γ(b → a);
γ (a → c) ≤ γ(a → b) + γ(b → c);

Function γ is extended to a sequence of edit operation
S = s1, . . . , sk s.t. γ(S) =

∑k
i=1 γ(Si)

The edit distance between the two trees T1 and T2 is defined as the minimum
cost edit operation sequence that transforms T1 to T2, that is:

D(T1, T2) = minS {γ(S)|S is an edit operation sequence taking T1 to T2}
The edit operations give rise to a mapping which is a graphical specification
of which edit operations apply to each node in the two trees. Figure 6.5 is an
example of mapping showing a way to transform T1 to T2. It corresponds to
the edit sequence name → λ; calories → fat ; λ → preparation. The figure also
shows a left-to-right postorder of nodes, which is commonly used to identify
nodes in a tree.
For a tree T , let t[i] represent the ith node of T . A mapping (or matching)
from T1 to T2 is a triple (M, T1, T2) where M is a set of pairs of integers (i, j)
such that:

• 1 ≤ i ≤ |T1|, 1 ≤ j ≤ |T2|;
• for any pair (i1, j1) and (i2, j2) in M :

– i1 = i2 iff j1 = j2 (one-to-one)
– t1[i1] is to the left of t1[i2] iff t2[j1] is to the left of t2[j2] (sibling order

preserved)
– t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of t2[j2] (ancestor

order preserved)

The mapping graphically depicted in Figure 6.5 consist of the pairs:
{(7, 7), (4, 3), (1, 1), (2, 2), (6, 6), (5, 5)}. Let M be a mapping from T1 to T2,
the cost of M is defined as:
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Fig. 6.5. Mapping

γ(M) =
∑

(i,j)∈M

γ(t1[i] → t2[j]) +
∑

{i|¬∃ j s.t. (i,j)∈M}
γ(t1[j] → λ)

+
∑

{i|¬∃ j s.t. (i,j)∈M}
γ(λ → t2[j])

There is a straightforward relationship between a mapping and a sequence
of edit operations. Specifically, nodes in T1 not appearing in M correspond
to deletions; nodes in T2 not appearing in M correspond to insertions; nodes
that participate to M correspond to relabellings if the two labels are different,
to null edits otherwise.

Different approaches (Selkow, 1977 [130], Chawathe et al., 1996 [30],
Chawathe, 1999 [29]) to determine tree edit distance have been proposed
as well. They rely on similar tree edit operations with minor variations. Fig-
ure 6.6 (Dalamagas et al., 2005 [40]) summarizes the main differences among
the approaches. The corresponding algorithms are all based on similar dy-
namic programming techniques. The Chawathe [29] algorithm is based on the
same edit operations (i.e., insertion and deletion at leaf nodes and relabelling
at any nodes) considered by Selkow [130] but it significantly improves the
complexity by reducing the number of recurrences needed, through the use of
edit graphs.

6.4.3 XML specific approaches

The basic ideas discussed above for measuring the distance among two trees
have been specialized to the XML context by the following approaches.

Nierman et al.

They introduce an approach to measure the structural similarity specifically
tailored for XML documents with the aim of clustering together documents
presumably generated from the same DTD. Since the focus is strictly on struc-
tural similarity, the actual values of document elements and attributes are not
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Fig. 6.6. Tree edit distance algorithms (∗ marked operations are restricted to leaves)

represented in their tree representations (i.e., leaf nodes of the general repre-
sentation are omitted from the tree). They suggest to measure the distance
between two ordered labelled trees relying on a notion of tree edit distance.
However, two XML documents produced from the same DTD may have very
different sizes due to optional and repeatable elements. Any edit distance that
permits changes to only one node at a time will necessarily find a large dis-
tance between such a pair of documents, and consequently will not recognize
that these documents should be clustered together as being derived by the
same DTD.
Thus, they develop an edit distance metric that is more indicative of this no-
tion of structural similarity. Specifically, in addition to insert, delete, and re-
label operations of Zhang & Shasha, 1989 [163], they also introduce the insert
subtree and delete subtree editing operations, allowing the cutting and past-
ing of whole sections of a document. Specifically, operation insertT reeT (A, i)
adds A as a child of T at position i+1 and operation deleteT reeT (Ti) deletes
Ti as the i-th child of T . They impose however the restriction that the use of
the insertTree and deleteTree operations is limited to when the subtree that
is being inserted (or deleted) is shared between the source and the destina-
tion tree. Without this restriction, one could delete the entire source tree in
one step and insert the entire destination tree in a second step, thus mak-
ing completely useless insert and delete operations. The subtree A being in-
serted/deleted is thus required to be contained in the source/destination tree
T , that is, all its nodes must occur in T , with the same parent/child rela-
tionships and the same sibling order; additional siblings may occur in T (to
handle the presence of optional elements), as graphically shown in Figure 6.7.

A second restriction imposes that a tree that has been inserted via the
insertT ree operation cannot subsequently have additional nodes inserted,
and, analogously, a tree that have been deleted via the deleteT ree operation
cannot previously had had nodes deleted. This restriction provides an efficient
means for computing the costs of inserting and deleting the subtrees found
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Fig. 6.7. Contained in relationship

in the destination and source trees, respectively. The resulting algorithm is
a simple bottom up algorithm obtained as an extension of the Zhang and
Shashas basic algorithm, with the difference that any subtree Ti has a graft
cost which is the minimum among the cost of a single insertT ree (if allowable)
and of any sequence of insert and (allowable) insertT ree operations, and
similarly any subtree has a prune cost.

Fig. 6.8. (a) The structure of a document, (b) its s-graph, (c) its structural summary

Lian et al.

They propose a similarity measure for XML documents which, though based
on a tree representation of documents, is not based on the tree edit distance.
Given a document D they introduce the concept of structure graph (or s-
graph) of D, sg(D) = (N, E), as a direct graph such that N is the set of
all elements and attributes in document D and (a, b) ∈ E if and only if a is
in the parent-child relationship with b. The notion of structure graph is very
similar to that of dataguide introduced by Goldman et Widom [57] for semi-
structured data. Figure 6.8b shows the s-graph of the document in Figure 6.8a.
The similarity between two documents D1 and D2 is then defined as
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Sim(D1, D2) =
|sg(D1) ∩ sg(D2)|

max {|sg(D1)|, |sg(D2)|}
Where, |sg(Di)| is the cardinality of edges in sg(Di), i = 1, 2 and |sg(D1) ∩
sg(D2)| is the set of common edges between sg(D1) and sg(D2). Relying on
this metric, if the number of common parent-child relationships between D1

and D2 is large, the similarity between the s-graphs will be high, and vice-
versa. Since the definition of s-graph can be easily applied to sets of documents,
the comparison of a document with respect to a cluster can be easily accom-
plished by means of their corresponding s-graphs. However a main problem
with this approach relies on the loosegrained similarity which occurs. Indeed,
two documents can share the same s-graph, and still have significant structural
differences. Thus, the approach fails in dealing with application domains, such
as wrapper generation, requiring finer structural dissimilarities. Moreover, the
similarity between the two s-graphs in Figure 6.8 is zero according to their
definition. Thus, the measure fails to consider similar documents that do not
share common edges even if they have some elements with the same labels.

Fig. 6.9. Two simple s-graphs

Dalamagas et al.

They present an approach for measuring the similarity between XML docu-
ments modelled as rooted ordered labelled trees. The motivating idea is the
same of Nierman and Jagadish [114], that is, that XML documents tend to
have many repeated elements and thus they can be large and deeply nested
and, even if generated from the same DTD, can have quite different size
and structure. Starting from this idea, the approach of Dalamagas et al. [40]
is based on extracting structural summaries from documents by nesting and
repetition reductions. Nesting reduction consists in eliminating non-leaf nodes
whose labels are the same of the ones of their ancestors. By contrast, repetition
reduction consists in eliminating, in a pre-order tree traversal, nodes whose
paths (starting from the root down to the node itself) have already been tra-
versed. Figure 6.8c shows the structural summary of the document structure
in Figure 6.8a. The similarity between two XML documents is then the tree
edit distance computed through an extension of the basic Chawathe [29] algo-
rithm. They claim, indeed, that using insertions and deletions only at leaves
fits better in the XML context.
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6.5 Vector based approaches

In this section we deal with approaches for measuring the similarity that rely
on a vector representation of documents. We first discuss the possible docu-
ment representations as vectors, the different measures that can be exploited
for evaluating vector similarity, and then present some approaches specifically
tailored to XML.

6.5.1 Document Representation

Vector-based techniques represent objects as vectors in an abstract n-dimen-
sional feature space. Let O = (o1, . . . , om) be a collection of m objects; in our
context, these can be whole XML documents, but also paths, individual ele-
ments, text, or any other component of a document as reported in Figure 6.4.
Each object is described in terms of a set of features F = (F1, . . . , Fn), where
each feature Fi, i ∈ [1, n], has an associated domain Di which defines its al-
lowed values. For instance, the level of an element is a feature whose domain
is the positive integers (0 for the root, 1 for first-level elements, and so on).

Feature domains can be either quantitative (continuous or discrete) or
qualitative (nominal or ordinal). An object o ∈ O is described as a tuple
(F1(o), . . . , Fn(o)), where each Fi(o) ∈ Di.

Consider for instance the two documents in Figure 6.1; we can represent
them taking the elements as the objects to be compared. The simplest possible
feature is just the label of the document element, whose domain is a string
according to the standard XML rules; in this case the roots of both documents
are just described as the tuples (recipes) and (collections), respectively. Of
course, other features are usually considered, possibly of different structural
granularities. A typical example is the path to the root; for example, consider
the leftmost ingredient element in each document. Both can be represented
using the label and the path as features:

Fingredient1 = (′ingredient′,′ /recipes/preparation/ingredients′)
Fingredient2 = (′ingredient′,′ /collection/recipe′)
Some authors suggest restricting the length of the paths to avoid a com-

binatorial explosion. For example, Theobald et al. [139] use paths of length
2.

Another important feature of elements is the k-neighbourhood, that is, the
set of elements within distance k of the element. For example, consider the
1-neighbourhood (that is, parent and children) of the ingredient elements:

Fingredient1 = (′ingredient′, {′ingredients′, ′name′, ′amount, ′unit′})
Fingredient2 = (′ingredient′, {′recipe′, ′name′, ′qty′})
Many variations are possible; for example, one of the components of the

Cupid system by Madhavan et al. [95] uses as features the label, the vicinity
(parent and immediate siblings), and the textual contents of leaf elements.
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6.5.2 Vector-based similarity measures

Once the features have been selected, the next step is to define functions
to compare them. Given a domain Di a comparison criterion for values in
Di is defined as a function Ci : Di × Di → Gi, where Gi is a totally ordered
set, typically the real numbers. The following property must hold: Ci(fi, fi) =
maxy∈Gi y, that is, when comparing a value with itself the comparison function
yields the maximum possible result. The simplest example of a comparison
criterion is strict equality:

Ci(fi, fj) =
{

1 if fi = fj

0 otherwise

A similarity function S : (D1, . . . , Dn) × (D1, . . . , Dn) → L, where L is a
totally ordered set, can now be defined, that compares two objects represented
as feature vectors and returns a value that corresponds to their similarity. An
example of a similarity function is the weighted sum, which associates a weight
wi(wi ∈ [0, 1],

∑n
i=1 wi = 1) with each feature:

S(o, o′) =
1
n

n∑
i=1

wiCi(Fi(o), Fi(o′))

If feature vectors are real vectors, metric distances induced by norms
are typically used. The best-known examples are the L1(Manhattan) and
L2(Euclidean) distances. Other measures have been proposed based on the
geometric and probabilistic models. The most popular geometric approach to
distance is the vector space model used in Information Retrieval [127]. Origi-
nally it was intended to be used to compare the similarity among the textual
content of two documents, but for the XML case it has been adapted for
structural features as well.

The similarity in vector space models is determined by using associative
coefficients based on the inner product of the document vectors, where feature
overlap indicates similarity. The inner product is usually normalized, since, in
practice, not all features are equally relevant when assessing similarity. Intu-
itively, a feature is more relevant to a document if it appears more frequently
in it than in the rest of documents. This is captured by tfidf weighting. Let
tfi,j be the number of occurrences of feature i in document j, dfi the number
of documents containing i, and N the total number of documents. The tfidf
weight of feature i in document j is:

wi,j = tfi,j log
N

dfi

The most popular similarity measure is the cosine coefficient, which cor-
responds to the angle between the vectors. Other measures are the Dice and
Jaccard coefficients
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cos(u,v) =
uv

|u||v|
Dice(u,v) =

2uv
|u|2|v|2

Jac(u,v) =
uv

|u|2|v|2 − uv

Another vector-based approach considers the objects as probability mass
distributions. This requires some appropriate restrictions on the values of the
feature vectors (f1, . . . , fn); namely, all values must be nonnegative reals, and∑n

i=1 fi = 1. Intuitively, the value of fi is the probability that the feature
Fi is assigned to the object. In principle, correlation statistics can be used to
measure the similarity between distributions. The most popular are Pearsons
and Spearmans correlation coefficients and Kendalls τ [133]. In addition, some
information-theoretic distances have been widely applied in the probabilistic
framework, especially the relative entropy, also called the Kullback-Leibler
divergence.

KL(pk||qk) =
∑

k

pk log2

pk

qk

where pk and qk are the probability functions of two discrete distributions.
Another measure of similarity is the mutual information.

I(X, Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log2

P (x, y)
P (x)P (y)

where P (x, y) is the joint probability density function of x and y (i.e.,
P (x, y) = Pr[X = x, Y = y]), and P (x) and P (y) are the probability density
functions of x and y alone. An important use of information-theoretical mea-
sures is to restrict the features and objects to be included in similarity com-
putations, by considering only the most informative. For example, Theobald
et al. [139] use the Kullback-Leibler divergence to cut down the number of
elements to be compared in an XML classification system.

6.5.3 XML specific approaches

Standard vector-based approaches previously presented can easily be applied
to XML documents whenever clustering is performed on a single granular-
ity (e.g. clustering based on contents, on elements, or on paths). Specifically
tailored approaches have been developed for XML documents that take more
than one granularity along with their relationships into account. In these cases,
given C the number of granularities, documents are represented through a C-
dimensional matrix M in an Euclidean space based on one of two models,
Boolean and weighted. With the Boolean model, M(g1, . . . , gC) = 1 if the fea-
ture corresponding to the matrix intersection among granularities g1, . . . , gC
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exists, M(g1, . . . , gC) = 0 otherwise. With the weighted model, M(g1, . . . , gC)
is the frequency of the feature corresponding to the matrix intersection among
granularities. Figure 6.10 reports a 3-dimensional Boolean matrix on granu-

Fig. 6.10. 3-dimensional Boolean matrix

larities (document, path, term) stating the presence (or absence) of a term
wj in the element reached by a path Pj in a document Dm. As suggested by
Liu et al. [92], once the documents are represented in the Euclidean space,
standard approaches can be applied for measuring their similarity and cre-
ate clusters. The big issue that should be faced is that the matrix can be
sparse. Therefore, approaches for reducing the matrix dimension should be
investigated along with the possibility to obtain approximate results.

Yoon et al.

According to our classification, they propose a Boolean model with gran-
ularities (document, path, term) in which the path is a root-to-leaf path. A
document is defined as a set of (p, v) pairs, where p denotes a root-to-leaf path
(named ePath) and v denotes a word or a content for an ePath. A collection
of XML documents is represented through a 3-dimentional matrix, named
BitCube, BC(d, p, v), where D denotes a document, p denotes an ePath, v
denotes word or content for p, and BC(D, p, v) = 1 or 0 depending on the
presence or absence of v in the ePath p in D. The distance between two
documents is defined through the Hamming Distance as

Sim(D1, D2) = |XOR(BC(D1), BC(D2))|
where XOR is a bit-wise exclusive OR operator applied on the representations
of the two documents in the BitCube.

Yang J. et al.

According to our classification, they exploit a weighted model with granu-
larities (document, element, term). They employ the Structured Link Vector
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Model (SLVM) to represent XML documents. In the model of SLVM, each doc-
ument, Dx in a document collection C, is represented as a matrix dx ∈ Rnxm,
such that, dx =< dx(1), . . . , dx(n) >T and dx(i) =< dx(i,1), . . . , dx(i,m) >, where
m is the number of elements, dx(i,1) ∈ Rm is a feature vector related to the
term wi for all subelements, dx(i,j) is a feature related to the term wi and
specific to the element ej , given as dx(i,j) = TF (wi, docx.ej) · IDF (wi) and
TF (wi, docx.ej) is the frequency of the term wi in the element ej of the docu-
ment Dx, IDF (wi) is the inverse document frequency of wi based on C (each
dx(i,j) is then normalized by

∑
i dx(i,j)). The similarity measure between two

documents Dx and Dy is then simply defined as

Sim(Dx, Dy) = cos (dx, dy) = dx · dy =
n∑

i=1

dx(i)dy(i)

Where, · indicates the vector dot product, and dx, dy are the normalized doc-
ument feature vectors of Dx and Dy. A more sophisticated similarity measure
is also presented by introducing a kernel matrix

Sim(Dx, Dy) =
n∑

i=1

dx(i)T · Me · dy(i)

where Me is a m × m kernel matrix which captures the similarity between
pairs of elements as well as the contribution of a pair to the overall similarity.
An entry in Me being small means that the two elements should be seman-
tically unrelated and some words appearing in the two elements should not
contribute to the overall similarity and vice versa. An interactive estimation
procedure has been proposed for learning a kernel matrix which captures both
the element similarity and the element relative importance.

Yang R. et al.

They propose an approach for determining a degree of similarity between
a pair of documents that it is easier to compute with respect to tree edit
distance and forms a lower bound for the tree edit distance. Their approach
thus allows filtering out very dissimilar documents and computes the tree
edit distance only with a restricted number of documents. Starting from a
tree representation of XML documents (as the one in Figure 6.11a), they
represent them as standard full binary trees (Figure 6.11b). A full binary tree
is a binary tree in which each node has exactly zero or two children (the
first child represents the parent-child relationship, whereas the second child
represents the sibling relationship).Whenever one of the children is missing, it
is substituted with ε. The binary branch of the full binary tree (i.e., all nodes
with their direct children) are then represented in a binary branch vector,
BRV (D) = (b1, . . . , bΓ ), in which bi represents the number of occurrences of
the ith binary branch in the tree, Γ is the size of the binary branch space
of the dataset. The binary branch vector for the document in Figure 6.11a is
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Fig. 6.11. (a)A tree document, (b)its full binary tree, and (c) the binary branch
vector

shown in Figure 6.11c. The binary branch distance between XML documents
D1 and D2, such that BRV (D1) = (b1, . . . , bΓ ), and BRV (D2) = (b′1, . . . , b

′
Γ ),

is computed though the Manhattan distance:

BDist(D1, D2) = ||BRV (D1) − BRV (D2)||1 =
Γ∑

i=1

|bi − b′i|

In this approach the authors consider three granularities (element, element,
element) that are bound by the parent-child and the sibling relationships.
Then, thanks to the transformation of the document tree structure in a full
binary tree structure, they are able to use a 1-dimensional vector for the
representation of a document.

6.6 Other approaches

We now present some approaches for evaluating similarity that do exploit
neither the vector-based nor the tree-based representation of documents.

6.6.1 Time series based approach

Flesca et al. [48] represent the structure of an XML document as a time series
in which each occurrence of a tag corresponds to a given impulse. Thus, they
take into account the order in which tags appear in the documents. They in-
terpret an XML document as a discrete-time signal in which numeric values
summarize some relevant features of the elements enclosed within the docu-
ment. If, for instance, one simply indent all tags in a given document according
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to their nesting level, the sequence of indentation marks, as they appear within
the document rotated by 90 degrees, can be looked at as a time series, whose
shape roughly describe the document structure. These time-series data are
then analysed through their Discrete Fourier Transform (DFT), leading to
abstract from structural details which should not affect the similarity estima-
tion (such as different number of occurrences of an element or small shift in its
position). More precisely, during a preorder visit of the XML document tree,
as soon as a node is visited an impulse is emitted containing the information
relevant to the tag. Thus: (1) each element is encoded as a real value; (2)
the substructures in the documents are encoded using different signal shapes;
(3) context information can be used to encode both basic elements and sub-
structures, so that the analysis can be tuned to handle in a different way
mismatches occurring at different hierarchical levels. Once having represented
each document as a signal, document shapes are analysed through DFT. Some
useful properties of this transform, namely, the concentration of the energy
into few frequency coefficients, its invariance of the amplitude under shifts, al-
low to reveal much about the distribution and relevance of signal frequencies
without the need of resorting to edit distance based algorithms, and, thus,
more efficiently. As the encoding guarantees that each relevant subsequence
is associated with a group of frequency components, the comparison of their
magnitudes allows the detection of similarities and differences between docu-
ments. With variable-length sequences, however, the computation of the DFT
should be forced on M fixed frequencies, where M is at least as large as the
document sizes, otherwise the frequency coefficients may not correspond. To
avoid increasing the complexity of the overall approach, the missing coeffi-
cients are interpolated starting from the available ones. The distance between
documents D1 and D2 is then defined as:

Dist(D1, D2) =

⎛⎝M/2∑
k=1

(|[D̂FT (enc(D1))](k) − [D̂FT (enc(D2))]|)2
⎞⎠1/2

where enc is the document encoding function, D̂FT denotes the interpolation
of DFT to the frequencies appearing in both D1 and D2, and M is the total
number of points appearing in the interpolation. Comparing two documents
using this technique costs O(nlogn), where n = max(|D1|, |D2|) is the maxi-
mum number of tags in the documents. The authors claim their approach is
practically effective as those based on tree edit distance.

6.6.2 Link-based similarity

Similarity among documents can be measured relying on links. Links can be
specified at element granularity through ID/IDREF(S) attributes, or at doc-
ument granularity through Xlink specifications. To the best of our knowledge
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no link-based similarity measures have been specified tailored for XML doc-
uments at element granularity. At this granularity a measure should consider
the structure and content of the linked elements in order to be effective.

The problem of computing link-based similarity at document granularity
has been investigated both for clustering together similar XML documents
(Catania & Maddalena, [27]) and for XML document visualization as a graph
partitioning problem (Guillaume et al. [69]). An XML document can be con-
nected to other documents by means of both internal or external Xlink link
specifications. A weight can be associated with the link depending on a variety
of factors (e.g. the type of link, the frequency it is used, its semantics). The
similarity between two documents can be expressed in terms of the weight of
the minimum path between two nodes. Given a connection graph G = (V, E)
where each vi in V represents an XML document Di, and each (vi, vj , w)
is a direct w-weighted edge in E, Catania & Maddalena (2002) specify the
similarity between documents Di and Dj as

Sim(D1, D2) =

����
���

1 − 1
2cost(minP ath(v1 ,v2))+cost(minP ath(v2,v1))

if existP ath(v1, vj) = true

i, j ∈ [1, 2]

0 otherwise

where: minPath(v1, v2) is the minimal path from v1 to v2, cost(minPath(v1, v2))

is the sum of the weights on the edge in the minimal path, existPath(v1, v2) =

true if a path exists from v1 to v2. A key feature of their approach is assigning
a different weight to edges depending on the possible type (and, therefore,
semantics) an Xlink link can have (simple/extended, on load/on demand).
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XREP : clustering XML documents by
structure

7.1 Introduction

The increasing relevance of the Web as a means for sharing information has
made traditional approaches to information handling ineffective. Indeed, they
are mainly devoted to the management of highly structured information, like
relational databases, whereas Web data are semistructured and encoded us-
ing different formats. In particular, XML is touted as the driving-force for
exchanging data on the Web, since it benefits from several advantages with
respect to other data models. Examples are the flexibility for designing ad
hoc markup languages for the representation and exchange of semistructured
data within any application context, and the support of suitable document
type definitions (DTDs) and XML Schema that permit to specify both the
structure and the content of the documents.

As the heterogeneity of XML sources increases, the need for organizing
XML documents according to their structural features has become challeng-
ing. In such a context, we address the problem of inferring structural simi-
larities among XML documents, with the adoption of clustering techniques.
This problem has several interesting applications related to the management
of Web data. For example, structural analysis of Web sites can benefit from
the identification of similar documents, conforming to a particular schema,
which can serve as the input for wrappers working on structurally similar Web
pages. Also, query processing in semistructured data can substantially benefit
from the re-organization of documents on the basis of their structure. Group-
ing semistructured documents according to their structural homogeneity can
help in devising indexing techniques for such documents, thus improving the
construction of query plans.

7.1.1 A comparative overview of clustering scheme

The problem of comparing semistructured documents has been recently inves-
tigated from different perspectives [35, 146, 30, 17, 48]. For example, in the
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context of change detection [35, 146, 30], or with the purpose of characterizing
a document with respect to a given DTD [17]. Apart from their effectiveness
in the application domains considered here, most of these methods are based
on the concept of edit distance [163] and use graph-matching algorithms to
calculate a minimum-cost edit script that contains the updates necessary to
transform a document into another. From a computational point of view, these
techniques are rather expensive, i.e. at least O(N2), where N is the number
of elements within any two XML documents.

A rather different approach has been recently proposed in [48]. Here, the
structure of an XML document is represented as a time series, in which each
occurrence of a tag corresponds to an impulse and the degree of similarity
among documents is computed by analyzing the frequencies of the corre-
sponding Fourier transform. The overall cost of this method is O(NlogN),
where N here denotes the maximum number of tags in the documents to be
compared.

Recent studies have also proposed techniques for clustering XML doc-
uments. [42] proposes a partitioning method that clusters documents, rep-
resented in a vector-space model, according to both textual contents and
structural relations among tags. The approach in [114] proposes to measure
structural similarity by means of an XML-aware edit distance, and applies
a standard hierarchical clustering algorithm to evaluate how closely cluster
documents correspond to their respective DTDs.

In our opinion, a main drawback of the above approaches is the lack of a
notion of cluster prototype, i.e. a summarization of the relevant features of the
documents belonging to a cluster. The notion of cluster prototype is crucial
in most significant application domains, such as wrapper induction, similarity
search, and query optimization. Indeed, in the context of wrapper induction,
the efficiency and effectiveness of the extraction techniques strongly rely on the
capability of rapidly detecting homogeneous subparts of the documents under
consideration. Similarity search can substantially benefit from narrowing the
search space. In particular, this can be achieved by discarding clusters whose
prototypes exhibit features which do not comply with the target properties
specified by a user-supplied query.

To the best of our knowledge, the only approach devising a notion of
cluster prototype is [90]. Indeed, the authors propose to compare documents
according to a structure graph, s-graph, summarizing the relations between
elements within documents. Since the notion of s-graph can be easily gener-
alized to sets of documents, the comparison of a document with respect to a
cluster can be easily accomplished by means of their corresponding s-graphs.
However, a main problem with the above approach relies on the loose-grained
similarity which occurs. Indeed, two documents can share the same prototype
s-graph, and still have significant structural differences, such as in the hier-
archical relationship between elements. It is clear that the approach fails in
dealing with application domains, such as wrapper generation, requiring finer
structural dissimilarities.
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In this thesis we propose a novel methodology for clustering XML docu-
ments by structure, which is based on the notion of XML cluster representa-
tive. A cluster representative is a prototype XML document subsuming the
most relevant structural features of the documents within a cluster. The in-
tuition at the core of our approach is that a suitable cluster prototype can
be obtained as the outcome of a proper overlapping among all the documents
within a given cluster. Actually, the resulting tree has the main advantage of
retaining the specifics of the enclosed documents, while guaranteeing a com-
pact representation. This eventually makes the proposed notion of cluster rep-
resentative extremely profitable in the envisaged applications: in particular,
as a summary for the cluster, a representative highlights common subparts in
the enclosed documents, and can avoid expensive comparisons with individual
documents in the cluster.

The proposed notion of cluster representative relies on the notions of XML
tree matching and merging. Specifically, given a set of XML documents, our
approach initially builds an optimal matching tree, i.e. an XML tree that is
built from the structural resemblances that characterize the original docu-
ments. Then, in order to capture all such peculiarities within a cluster, a
further tree, called a merge tree, is built to include those document substruc-
tures that are not recurring across the cluster documents. Both trees are
exploited for suitably computing a cluster representative as will be later de-
tailed. Finally, a hierarchical clustering algorithm exploits the devised notion
of representative to partition XML documents into structurally homogeneous
groups. Experimental evaluation performed on both synthetic and real data
states the effectiveness of our approach in identifying document partitions
characterized by a high degree of homogeneity.

7.2 Problem Statement

Clustering is the task of organizing a collection of objects (whose classification
is unknown) into meaningful or useful groups, namely clusters, based on the
interesting relationships discovered in the data. The goal is grouping highly-
similar objects into individual partitions, with the requirement that objects
within distinct clusters are dissimilar from one another.

Several clustering algorithms [81] can be suitably adapted for clustering
semistructured data. We concentrate on hierarchical approaches, which are
widely known as providing clusters with a better quality, and can be exploited
to generate cluster hierarchies. Fig.7.1 shows XRep, an adaptation of the
agglomerative hierarchical algorithm to our problem. Initially each XML tree
(derived by parsing the corresponding XML document) is placed in its own
cluster, and a matrix containing the pair-wise tree distance is computed. Next,
the algorithm walks into an iterative step in which the least dissimilar clusters
are merged. As a consequence, the distance matrix is updated to reflect this
merge operation. The overall process is stopped when an optimal partition
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Input: A set S = {t1, . . . , tn} of XML document trees;
Output: A cluster partition P = {C1, . . . , Ck} of S.
Method:

let P := {C1, . . . , Cn}, where initially Ci = {ti};
set ri := ti as the representative for Ci;
compute a tree-distance matrix Md, where Md(i, j) = d(ti, tj);
repeat

choose clusters Ci and Cj such that d(rep(Ci), rep(Cj)) is minimized;
compute the representative r = rep(ri, rj) for cluster C = Ci ∪ Cj ;
set P := P − {Ci, Cj} ∪ {C}, and update Md;

until P has maximal quality;

Fig. 7.1. The XRep algorithm for clustering XML documents.

(i.e. a partition whose intra-distance within clusters is minimized and inter-
distance between clusters is maximized) is reached. The technique proposed
in this chapter follows the approach devised in [64], and addresses the problem
of clustering XML documents in a parametric way. More precisely, the general
scheme of the XRep algorithm is parametric to the notions of distance measure
and cluster representative.

Distance measure

The identification of a proper notion of distance for measuring degrees of
similarity between pairs of XML documents affects the effectiveness of the
overall clustering approach. A number of proposals are available from the
current literature. Some of these are reviewed next.

The notion of edit distance between two trees relies on the identification
of a sequence of node modifications with minimum cost, required to convert
one given tree into another [163]. Given a pair of trees ti and tj , three edit
operations are possible to convert the former into the latter [80], namely the
insertion of a node w ∈ Vtj in ti, the deletion of leaf nodes from Vti and the
relabelling of some node of ti. Each edit operation has an associated cost γ.
Let S = 〈s1, . . . , sk〉 denote a sequence of node modifications. A S-derivation
of tj from ti is a sequence of intermediate trees 〈u0, . . . , uk〉, where u0 = ti,
uk = tj, and ui−1 is modified into ui via the corresponding edit operation
si ∈ S. The cost [70] of sequence S is γ(S) =

∑k
i=1 γ(si). If S indicates the

set of all possible S-derivations of tj from ti, the edit distance between such
trees can be formalized as follows

dE(ti, tj) = min
S∈S

{γ(S)}

A major criticism to the notion of edit distance is that its computational
complexity is O(m × n), where m and n are the respective sizes of the trees
under comparison. Some refinements have been proposed in the literature,
such as the one in [114], where specific edit operations, namely the insertion
and deletion of whole subtrees, are allowed to the purpose of overcoming the
original limitation of a node change per time. Notwithstanding, the overall
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Fig. 7.2. Tree XML document trees, t1 (a), t2 (b) and t3 (c), which make problem-
atic the choice between deleting node d or relabelling node f .
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Fig. 7.3. Tree XML document trees, t1 (a), t2 (b) and t3 (c), that, despite consid-
erable structural differences, are at a same tree edit distance.

complexity still exhibits a quadratic dependance on the combined size of the
two trees. This makes edit distance inadequate for practical applications, in-
volving huge collections of (large) XML documents. Moreover, this notion of
distance suffers from two further limitations [90]. First, relative differences in
operation costs may affect the resulting clustering performance.

Example 7.1. To better exemplify this latter point, consider the toy database
of three XML document trees in fig. 7.2. If node (risp. subtree) deletion costs
less than node (risp. subtree) relabelling, then dE(t1, t2) < dE(t1, t3) and t3 is
separated from t1 and t2. Otherwise, dE(t1, t2) > dE(t1, t3) and t2 originates
a singleton cluster, thus being isolated from t1 and t3. ��

Also, it may not be effective in distinguishing among XML documents with
actually different tree structures.

Example 7.2. Fig. 7.3 elucidates such a challenging issue. Trees t1, t2, t3 are
neatly distinct. However, a single node relabelling is required to transform
any such a tree into another. This vanishes the relevant structural differences
among the trees. Indeed, t1 and t2 more structurally homogeneous, since they
only differ in a leaf node, whereas t3 shares no path with t1 and t2 (having a
different root). ��

An alternative approach for capturing similarity between XML documents
consists in modelling them as transactions of binary attributes, where each
such an attribute indicates the presence of a specific element tag in a given
document. Viewed in this respect, the notions of cosine or Jaccard similarity
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Fig. 7.4. Two XML document trees, t1 (a) and t2 (b), with considerable structural
differences and, notwithstanding, characterized by low degrees of cosine and Jaccard
dissimilarity.

can be straightforwardly adapted to be exploited in the context of XML trees.
Let tag(t) denote the set of tag names in a generic XML tree t and assume
that ti and tj are two vector representations of the corresponding trees ti and
tj over the tag space tag(ti) ∪ tag(tj). Cosine distance dC(ti, tj) between ti
and tj is defined as

dC(ti, tj) = 1 − ti · tj
|ti||ti|

Jaccard distance d
(1)
J (ti, tj) directly follows from taking into account all those

tags common to both trees ti and tj

d
(1)
J (ti, tj) = 1 − |tag(ti) ∩ tag(tj)|

|tag(ti) ∪ tag(tj)|
However, a primary limitation of both cosine and Jaccard distances lies

in their difficulty at actually distinguishing between XML documents with
almost the same set of tags, even if structurally different.

Example 7.3. Consider the XML trees t1 and t2 in fig. 7.4. It holds that
dC(t1, t2) = 0.25 and d

(1)
J = 0.4. In practice, these dissimilarity values are

too low for two trees with no common path. ��
Basically, cosine and Jaccard dissimilarities fail at ignoring structural dif-

ferences between two XML trees under comparison. A more effective definition
of dissimilarity for any two XML document trees can be given by combining
the exploitation of node labels with information on their location within both
XML trees. To this purpose, tree paths can be taken as basic elements for
a structural comparison: the higher the number of common paths between
two XML trees, the lower the resulting degree of dissimilarity. The notion
of Jaccard dissimilarity naturally lends itself to being employed for such a
comparison, provided that it is adapted to take tree paths into account
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d
(2)
J (ti, tj) = 1 − |path(ti) ∩ path(tj)|

|path(ti) ∪ path(tj)|
where notation path(t) denotes the set of paths in a tree t. d

(2)
J can be effec-

tively used to partition a large collection of XML documents on the basis of
their structural characteristics, without incurring into any of the aforemen-
tioned issues.

Example 7.4. Let us come back to the example database of fig. 7.2. In such
a case, it holds that d

(2)
J (t1, t2) = 1

3 and d
(2)
J (t1, t3) = 1

2 . Such a result poses
no ambiguities to the partitioning process, since it is clear that t1 and t2
would be clustered together. Also, d

(2)
J yields an expected clustering from

the trees in fig. 7.3. Here, d
(2)
J (t3, ti) = 1 for i = 1, 2, whereas d

(2)
J (t1, t2) =

1
2 , which determines the assignment of t1 and t2 to a same cluster. Finally,
d
(2)
J (t1, t2) = 0 in the case of fig. 7.4, which prevents the two trees from being

clustered together. ��

Cluster representative

Intuitively, a representative of a cluster of XML documents is a document
which effectively synthesizes the most relevant structural features of the doc-
uments in the cluster. The notion of representative can be formalized as fol-
lows.

Definition 7.1 Given a set U , equipped with a distance function d : U ×U �→
IR, and a set S = {t1, . . . , tn} ⊆ U of XML document trees, the representative
of S (denoted by rep(S)) is the tree t∗ that minimizes the sum of the distances:

t∗ = rep(S) ∈ U ⇐⇒ t∗ = argmint∈Uf(t)

where f(t) =
∑n

i=1 d(ti, t). ��

The computation of the representative of a set turns out to be a hard problem
if the above distance measures are adopted. Therefore we exploit a suitable
heuristic for addressing the above minimization problem. Viewed in this re-
spect, our goal is to find a lower-bound-tree and an upper-bound-tree for the
optimal representative. The lower-bound-tree (resp. upper-bound-tree) is a
tree on which any node deletion (resp. node insertion) leads to a worsening in
function f . Thus, a representative can be heuristically computed by traversing
the search space delimited by the above trees. Two alternative greedy strate-
gies can be devised: either a growing approach, which iteratively adds nodes
to the lower-bound, or a pruning approach, which iteratively removes nodes
from the upper-bound. In the following, we will denote the lower-bound-tree
and the upper-bound-tree as optimal matching tree and merge tree, respec-
tively. Notice that the optimal matching tree represents a stopping condition
for the pruning approach, whereas the merge tree is always a sub-optimal
solution since it contains the optimal representative. Dually, the merge tree
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Fig. 7.5. (a) Strong and (b) multiple matching, and (c) their trees.

defines a stopping condition for the growing approach, whereas the optimal
matching tree is a sub-optimal solution since it is contained in the optimal
representative.

We develop a pruning approach in which the computation of an XML clus-
ter representative consists of the following three main stages: the construction
of an optimal matching tree, the computation of a merge tree and the prun-
ing of the merge tree. Fig.7.6 sketches an algorithm which has been developed
according to the above three stages.

7.3 Mining Representatives from XML Trees

We give some definitions which are at the basis of our approach. A tree t is
a tuple t = (rt, Vt, Et, λt) where Vt ⊆ IN is the set of nodes, Et ⊆ Vt × Vt is
the set of edges, rt is the root node of t, and λt : Vt �→ Σ is a node labelling
function where Σ is an alphabet of node labels. In particular, we say that
an XML tree is a tree where Σ is an alphabet of element tags. Moreover, let
deptht(v) denote the depth level of node v in t, with deptht(rt) = 0, and let
patht(v) = 〈vi1 = rt, vi2 , . . . , vip = v〉 denote the list of p nodes that lead up
to the node v from the root rt.

Definition 7.2 (strong matching) Given two trees t1 and t2, and two
nodes v ∈ Vt1 , w ∈ Vt2 , a strong matching match(v, w) between v and w
exists if λt1(vi) = λt2(wi) and deptht1(vi) = depth t2(wi), for each pair of
nodes (vi, wi) such that vi ∈ patht1(v) and wi ∈ patht2(w). ��
The above definition states that any two nodes, v and w, have a strong match-
ing if v and w together with their respective ancestors share both the same
label (i.e. tag name) and depth level. Fig.7.5(a) displays an example of strong
matching among the colored nodes.

The detection of matching nodes between two trees allows the construction
of a new tree, called a matching tree, which resembles the intersection of the
original trees.
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Input:

An XML tree r1 = 〈rr1 , Vr1 , Er1 , λr1〉 as representative of cluster C1, and

an XML tree r2 = 〈rr2 , Vr2 , Er2 , λr2〉 as representative of cluster C2.
Output:

An XML tree rep as representative of cluster C = C1 ∪ C2.

Method:
compute the matching matrix Mm, with size (|Vr1 | × |Vr2 |);
compute the marking vectors Vm1 , Vm2 , where Vm1 .size = |Vr1 | and Vm2 .size = |Vr2 |;
set m1 := |{vi ∈ Vr1 |Vm1 [i] �= −1}|, and m2 := |{vi ∈ Vr2 |Vm2 [i] �= −1}|;
if (m1 > m2)

match := buildMatch(r1, r2, Vm1 , Vm2 ); merge := buildMerge(r1, r2, Vm1 , Vm2 );

else

match := buildMatch(r2, r1, Vm2 , Vm1 ); merge := buildMerge(r2, r1, Vm2 , Vm1 );

rep := prune(C1 ∪ C2, merge, match);

return rep;

Function buildMatch(t1, t2, Vm1 , Vm2) : t;

t := t1;

for each vi ∈ Vt1 , Vm1 [i] = −1 do

remove(t, vi); /* removes the subtree rooted at vi from t */

let Ij = {vi1 , . . . , vih
∈ Vt1 | Vm1 [ip] = j, p ∈ [1..h]};

for each Ij do

removeDuplicates(t, Ij); /* removes duplicated paths from t */

return t;

Function buildMerge(t1, t2, Vm1 , Vm2) : t;

t := t1;

for each vi ∈ Vt1 do

let J = {wj1 , . . . , wjh
∈ Vt2 | Vm2 [jp] = i, p ∈ [1..h]};

let v ∈ Vt1 such that (v, vi) ∈ Et1 ;

insert(t, v, vi, |J| − 1); /* inserts node vi as a child of v into t, |J| − 1 times */

for each wi ∈ Vt2 , Vm2 [i] = −1 do

let wj ∈ Vt2 such that (wj , wi) ∈ Et2 , and vh ∈ Vt1 such that Vm2 [j] = h;

insert(t, vh, wi); /* inserts node wi as a child of vh into t */

return t;

Function prune(C, t, t′) : r;

set r := t;

do

let L ⊆ Vr be the set of leaf nodes in r;

compute d0 :=
∑

t∈C
d(t, r);

for each vl ∈ L do

compute r(l) := removeLeaf(r, vl);

l∗ = arg minvl
[
∑

t∈C
d(t, r(l))];

set d∗ :=
∑

t∈C
d(t, r(l∗));

if (d∗ < d0)

r := r(l∗);

while d∗ < d0 and Vr ⊆ Vt′ ;

return r;

Fig. 7.6. The algorithm for the computation of an XML cluster representative.

Definition 7.3 (matching tree) Given two trees t1 and t2, a tree t =
(rm, Vm, Em, λm) is a matching tree, denoted by t = match(t1, t2), if the
following conditions hold:
1. there exist two mappings f1 : t �→ t1 and f2 : t �→ t2 associating nodes and

edges in t with a subtree in t1 and t2;
2. for each u ∈ Vm, there exists a strong matching between v = f1(u) and

w = f2(u) (i.e. match(v, w) holds); moreover, λm(u) = λt1(v) = λt2(w);
3. f1(rm) = rt1 , and f2(rm) = rt2 ; moreover, for each e = (u, v) ∈ Em,

f1(e) = (f1(u), f1(v)) and f2(e) = (f2(u), f2(v)). ��
Notice that, in general, multiple matchings may occur when a node in a

tree has a matching with more than one node in a different tree. More for-
mally, given two trees t1 and t2, a node v ∈ Vt1 has a multiple matching if
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∃ w′, w′′ ∈ Vt2 such that both match(v, w′) and match(v, w′′) hold. An exam-
ple of multiple matching between nodes in two trees is shown in Fig.7.5(b).
Multiple matchings trigger ambiguities in defining matching trees: Fig.7.5(c)
represents two alternative matching trees for the documents in Fig.7.5(b).

7.3.1 XML Tree Matching

In order to capture as many structural affinities as possible, we are inter-
ested in finding matching trees with maximal size. Formally, a matching tree
tm = match(t1, t2) is an optimal matching tree for two XML trees t1, t2 if
there does not exist another matching tree t′m = match(t1, t2) �= tm such that
|Vtm | ≥ |Vt′m |. We describe a dynamic-programming technique for building an
optimal matching tree from two XML trees. The technique consists of three
steps: i) detection of matching nodes, ii) selection of best matchings, and iii)
optimal matching tree construction.

Matching detection. Given two trees t1 and t2, the detection of matching nodes
is performed building a (|Vt1 | × |Vt2 |) matching matrix Mm. In this matrix,
the generic (i, j)-th element corresponds to nodes vi ∈ Vt1 and wj ∈ Vt2 , and
contains a weight ωm(vi, wj) to be associated with the matching between vi

and wj . Initially, the weight is 1 if match(vi, wj) holds, and 0 otherwise. In
order to ease the construction of the matching matrix, nodes are enumerated
by level, thus guaranteeing a particular block structure for Mm. Indeed, for
each level k, a sub-matrix Mm(k) collects the matchings among the nodes in
t1 and t2 with depth equal to k.

Fig.7.7(a) displays two example XML trees with numbered nodes. The
corresponding matching matrix is shown in Fig.7.7(b).

Selection of best matchings. The problem of multiple matchings can be
addressed by discarding those matchings which are less relevant accord-
ing to the weighting function ωm. The weight ωm(v, w), associated to two
matching nodes v ∈ Vt1 and w ∈ Vt2 , is computed by taking into ac-
count the matches between the children nodes of both v and w. Formally,
ωm(v, w) = 1+

∑
i,j ωm(vi, wj), where nodes vi, wj are such that (v, vi) ∈ Et1

and (w, wj) ∈ Et2 .
Fig.7.7(c) shows the weights associated with each possible node pair.

Multiple matchings relative to any node of t1 (resp. t2) can be detected by
checking multiple entries with non-zero values within the corresponding row
(resp. column) of Mm. We now describe the process for detecting multiple
matchings. In the following we focus on the identification of nodes within t1
that have multiple matchings with those in t2: the dual situation (i.e. identifi-
cation of nodes in t2 having multiple matching with nodes in t1) has a similar
treatment.
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Fig. 7.7. Data structures for the construction of an optimal matching tree.

Let vi ∈ Vt1 denote the node corresponding to the i-th row in Mm,
and let Jvi = {j1, . . . , jh} be the set of column indexes, corresponding
to the nodes wj1 , . . . , wjh

of t2, such that Mm(i, jk) > 0 (i.e. such that
ωm(vi, wjk

) > 0), k = [1..h]. Thus, vi exhibits multiple matchings if |Jvi | > 1.
For each node vi ∈ Vt1 , the best matching node corresponds to the column
index j∗vi

= argmaxj1,...,jh
{Mm(i, j1), . . . , Mm(i, jh)}. If the maximum in

{Mm(i, j1), . . . , Mm(i, jh)} is not unique we choose j∗vi
to be the minimum in-

dex. The overall best matchings for nodes of t1 can be easily tracked by using
a marking vector Vm1 = {j∗v1

, . . . , j∗vn
}, whose generic i-th entry indicates the

node of t2 with which vi ∈ Vt1 has the best matching. We set Vm1 [i] = −1 if
the node vi ∈ Vt1 has no matching. Fig.7.7(c) shows the marking vectors Vm1

and Vm2 associated with t1 and t2, respectively.

Optimal matching tree construction. An optimal matching tree is effectively
built by exploiting the above marking vectors: it suffices that all nodes with no
matching are discarded. Fig.7.8(a) shows the optimal matching tree computed
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Fig. 7.8. Lower-bound (optimal matching tree) (a), upper-bound (merge tree) (b),
and optimal representative tree (c) relative to the trees of Fig.7.7(a).

for t1 and t2 of Fig.7.7(a). As we can see in the figure, the optimal matching
tree is obtained from t1 by removing nodes 2, 5, 8, 11.

7.3.2 Building a Merge Tree

The optimal matching tree of two documents represents an optimal intersec-
tion between the documents. The notion of merge tree resembles an optimized
union of the original trees. Notice that, firstly an optimal matching tree has to
be detected, in order to avoid redundant nodes to be added. Indeed, a trivial
merge tree could be simply built as the union of the trees under investiga-
tion. Function buildMerge in Fig.7.6 details the construction of a merge tree,
which takes into account nodes discarded while building the optimal matching
tree. To this purpose, given two trees t1 and t2, we first consider nodes in t1
having duplicate nodes, and insert such duplicates into the merge tree. Next,
nodes in t2 which do not match with any node in t1 are added.

Fig.7.8(b) shows the merge tree associated to the trees of Fig.7.7(a). Nodes
8, 11 from t1 and 9, 10, 11 from t2 have no matching, whereas nodes 2, 5 from
t1 and 8 from t2 exhibit multiple matchings.

7.3.3 Properties of Merging Process

Since the notion of cluster representative has to be generalized to a set of XML
documents, it is interesting to evaluate whether the proposed merge function is
both commutative and associative, i.e., whether merge(t1, t2) = merge(t2, t1)
and merge(t1,merge(t2, t3)) = merge(merge(t1, t2), t3). The former property
can be easily verified, whereas the latter does not hold. Notwithstanding, the
set of cluster representatives, that can be computed by taking different orders
of the data, represents an equivalence class on document similarity as stated
by the following:
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Theorem 7.1 Let t1, t2, and t3 be XML trees. Moreover, assume that r′, r′′

and r′′′ are defined as:

- r′ = merge(t1,merge(t2, t3))),
- r′′ = merge(t2,merge(t1, t3))),
- r′′′ = merge(t3,merge(t1, t2))).

Then, it holds that

dJ (ti, r′) = dJ (ti, r′′) = dJ(ti, r′′′) (7.1)
dE(ti, r′) = dE(ti, r′′) = dE(ti, r′′′) (7.2)

for each i ∈ {1, 2, 3}.
Proof. The following two lemmas prove the statement on dJ and dE ��

Lemma 7.1 dJ(ti, r′) = dJ (ti, r′′) = dJ(ti, r′′′) for each i ∈ {1, 2, 3}.
Proof. The statement is shown with respect to d

(2)
J , since the proof for d

(1)
J

is analogous. Let path(t) denote the set of paths within a generic tree t. The
definition of merge tree implies that:

path(merge(t2, t3)) = path(t2) ∪ path(t3),
path(merge(t1, t3)) = path(t1) ∪ path(t3),
path(merge(t1, t2)) = path(t1) ∪ path(t2)

Thus, it follows that:

path(r′) = path(t1) ∪ path(merge(t2, t3)) = path(t1) ∪ (path(t2)∪ path(t3))

Since the union operator is associative, it holds that:

path(r′) = path(t1) ∪ path(t2) ∪ path(t3) = path(r′′) = path(r′′′) ��

Lemma 7.2 dE(ti, r′) = dE(ti, r′′) = dE(ti, r′′′) for each i ∈ {1, 2, 3}.
Proof. Assuming a unit cost for the removal of a node, dE(ti, r′) = |r′| − |ti|
1, i = 1, 2, 3. It must be shown that |r′| = |r′′| = |r′′′| to prove that a merge
tree is associative with respect to the edit distance. Let match∗(t1, t2) be
an optimal matching tree between trees t1 and t2. Since |merge(t2, t3)| =
|t2| + |t3| − |match∗(t2, t3)|, it holds that:

|r′| = |merge(t1,merge(t2, t3))|
= |t1| + |merge(t2, t3)| − |match∗(t1,merge(t2, t3))|
= |t1| + |t2| + |t3| − |match∗(t2, t3)| − |match∗(t1, t2)| − |match∗(t1, t3)| +

|match∗(match∗(t1, t2),match∗(t1, t3))|
= |t1| + |t2| + |t3| − |match∗(t2, t3)| − |match∗(t1, t2)| − |match∗(t1, t3)| +

|match∗(t1, t2, t3)|
1 Here, notation |t| denotes the overall number of nodes within tree t.
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The same result can be obtained for both r′′ and r′′′. Hence, it holds that
|r′| = |r′′| = |r′′′|. ��

7.3.4 Turning a merge tree into a cluster representative

An effective cluster representative can be obtained by removing nodes from a
merge tree in such a way to minimize the distance between the refined merge
tree and the original XML trees in the cluster. Procedure prune, shown in
Fig.7.6, iteratively tries to remove leaf nodes until the distance between the
refined merge tree and the original trees in the cluster cannot be further
decreased. It is worth noticing that, on the basis of the definition of proce-
dure prune, the representative of a cluster is always bounded by the optimal
matching tree built from the documents in that cluster. The correctness of
the pruning procedure is established by the following result.

Theorem 7.2 Let t1, t2 be two XML trees. Moreover, let tM = merge(t1, t2),
tm = match(t1, t2) and t∗ = rep({t1, t2}). Then, tm ⊆ t∗ ⊆ tM .

Proof. The following lemmas prove this assertion. ��

Lemma 7.3 Given a set S = {t1, t2} of XML trees, rep(S) ⊆ merge(t1, t2)

Proof. Let tM = merge(t1, t2) and t∗ = rep(S). Assume that t∗ �⊆ tM .
Hence, t∗ can be partitioned into two trees, t∗1 = (rt∗ , V1, E1, λt∗) and
t∗2 = (rt∗ , V2, E2, λt∗), such that path(t∗) = path(t∗1)∪path(t∗2), and path(t∗1)∩
path(t∗2) = ∅. Moreover,

• path(t∗1) ⊆ path(tM )

• path(t∗2) ∩ path(tM ) = ∅

• |path(t∗2)| = w > 0

Assume that |path(t∗1)∪path(ti)| = ki and |path(t∗1)∩path(ti)| = hi (i = 1, 2).
Whenever hi > 0, it holds that

dJ(ti, t∗1) =
ki − hi

ki
<

ki + w − hi

ki + w
= dJ (ti, t∗)

Notice that |path(t∗1)| > 0, since otherwise
∑2

i=1 dJ (ti, t∗) = 2, whereas for
any tj ,

∑2
i=1 dJ (ti, t∗) < 2. Since t∗1 ⊆ tM , there is at least a tree tj (j = 1, 2)

such that hj > 0. As a consequence,

2∑
i=1

dJ(ti, t∗1) <

2∑
i=1

dJ(ti, t∗)

that is a contradiction, by the definition of t∗. ��
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The above lemma states that the only tree paths that are to be taken into
account to form a representative are those contained in the union of the paths
within the original trees t1 and t2. However, a cluster representative does not
necessarily contain all of the paths in the above union.

Lemma 7.4 Given a set S = {t1, t2} of XML trees, match(t1, t2) ⊆ rep(S)

Proof. Let tm = match(t1, t2) and t∗ = rep(S). Again, the assertion is shown
by contradiction. Assume that tm �⊆ t∗. Hence, t∗ can be decomposed into
two trees, t∗1 and t∗2, such that

• path(t∗) = path(t∗1) ∪ path(t∗2)

• path(t∗1) ⊂ path(tm)

• path(t∗2) ∩ path(tm) = ∅

A tree t′ can be built from tm and t∗2 as follows. Root rt′ is chosen so
that λt′(rt′ ) = λtm(rtm) = λt∗(rt∗2

) = r. Paths in path(tm) are rooted at
r. Then a path p ∈ path(t∗2) is added to t′ by checking if any subpath of
p already belongs to path(t′). Precisely, let p′ be a prefix of p and p′′ its
corresponding suffix. If p′ ∈ path(t∗2), p′′ is appended to the last node in p′.
Otherwise, p is rooted at r. This scheme, exemplified in fig. 7.9, guarantees
that path(t′) = path(tm) ∪ path(t∗2).
Now, for each tree ti ∈ S (i = 1, 2), it holds that dJ(ti, t′) < dJ(ti, t∗).
Formally,

dJ(ti, t′) =

=
|path(ti) ∪ path(tm) ∪ path(t∗2)| − |path(ti) ∩ (path(tm) ∪ path(t∗2))|

|path(ti) ∪ path(tm) ∪ path(t∗2)|
=

=
|path(ti) ∪ path(t∗2)| − |(path(ti) ∩ path(tm)) ∪ (path(ti) ∩ path(t∗2))|

|path(ti) ∪ path(t∗2)|
=

=
|path(ti) ∪ path(t∗2)| − (|path(tm)| + |path(ti) ∩ path(t∗2)|)

|path(ti) ∪ path(t∗2)|
<

<
|path(ti) ∪ path(t∗2)| − (|path(t∗1)| + |path(ti) ∩ path(t∗2)|)

|path(ti) ∪ path(t∗2)|
=

=
|path(ti) ∪ path(t∗2)| − |(path(ti) ∩ path(t∗1)) ∪ (path(ti) ∩ path(t∗2))|

|path(ti) ∪ path(t∗2)|
=

=
|path(ti) ∪ path(t∗1) ∪ path(t∗2)| − |path(ti) ∩ (path(t∗1) ∪ path(t∗2))|

|path(ti) ∪ path(t∗1) ∪ path(t∗2)|
=

= dJ (ti, t∗)

As a consequence,
∑2

i=1 dJ(ti, t′) <
∑2

i=1 dJ(ti, t∗), which leads to a contra-
diction. ��
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Fig. 7.9. The construction scheme employed in lemma 7.4. Trees tm and t∗2 corre-
spond to the ones respectively sited on the left and on the right sides of fig. 7.9(a).
In fig. 7.9(b), t′ is initially formed with paths in tm. In fig.7.9(c), t′ is augmented
with path 〈a, c, f〉 from t∗2. However, a prefix of this path, namely 〈a, c〉, already
figures in t′. Hence, suffix 〈f〉 is appended to node c in t′. Finally, in fig.7.9(d), t′ is
further augmented with path 〈a, g, h〉, that is entirely appended to root a.

This result states that a cluster representative always contains the intersection
of the paths within the original trees t1 and t2. Still, a representative has a
finer characterization. Indeed, it is never empty, though the optimal matching
tree can be empty.

Lemma 7.5 Given a set S = {t1, t2} of XML trees, rep(S) is not empty.

Proof. The assertion can be trivially shown by contradiction. Assume that
t∗ = rep(S) is empty. In such a case,

∑2
i=1 dJ (xi, t

∗) = 2, whereas for any
tj ∈ S (j = 1, 2) it holds that

∑2
i=1 dJ(xi, x, j) < 2. ��

Example 7.5. Let us consider again the trees t1 and t2 of Fig.7.7(a) and
their associated merge tree merge(t1, t2) in Fig.7.8(b). Suppose that t1 and
t2 belong to the same cluster C. In order to compute a representative
tree for C, the pruning procedure is initially applied to the set of leaves
L = {5, 8, ..., 12, 14, 15}. If we choose to adopt the d

(2)
J distance, the pro-

cedure computes an initial intra-cluster distance dC
0 = 5/8. This distance is is

reduced to 4/7 as leaf node 14 is removed. Yet, dC
0 can be further decreased
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by removing node 12. Since at this point no further node contributes to the
minimization of dC

0 , the pruning process ends. Fig.7.8(c) shows the cluster
representative resulting from pruning the merge tree in Fig.7.8(b), with the
adoption of the d

(2)
J distance. ��

7.4 Evaluation

We evaluated the effectiveness of XRep by performing experiments on both
synthetic and real data. In the former case, we mainly aimed at assessing
the effectiveness of our clustering scheme with respect to some prior knowl-
edge about the structural similarities among the XML documents taken into
account. Specifically, we exploited a synthetic data set that comprises seven
distinct classes of XML documents, where each such class is a structurally
homogeneous group of documents randomly generated from a previously cho-
sen DTD. Tests were performed in order to investigate the ability of XRep in
catching such groups.

To the purpose of assembling a valuable data set, we developed an auto-
matic generator of synthetic XML documents, that allows the control of the
degree of structural resemblance among the document classes under inves-
tigation. The generation process works as follows. Given a seed DTD DTD0,
a similarity threshold τ , and a number k of classes, the generator randomly
yields a set Sk

τ of k different DTDs, hereinafter called class DTDs, that in-
dividually retain at most τ percent of the element definitions within DTD0.
The k class DTDs are eventually leveraged to generate as many collections of
conforming XML documents, on the basis of suitable statistical models ruling
the occurrences of the document elements [48].

The seed DTD was manually developed and exhibits a quite complex struc-
ture. For the sake of brevity, we only focus on its major features. DTD0 contains
30 distinct element declarations that adopt neither attributes nor recursion.
Non empty elements contain at most 4 children. Yet, the occurrences of such
elements are suitably defined by exploiting all kinds of operators, namely
+,∗,?, and |. Finally, the tree-based representation of any XML document
conforming to DTD0 has a depth that is equal to 6.

Each test on synthetic data was performed on a distinct set of seven class
DTDs, sampled from DTD0, at increasing values of the similarity threshold τ :
we chose τ to be respectively equal to 0.3, 0.5, and 0.8.

Real XML documents were extracted from six different collections avail-
able on Internet:

• Astronomy, 217 documents extracted from an XML-based metadata repos-
itory, that describes an archive of publications owned by the Astronomical
Data Center at NASA/GSFC.

• Forum, 264 documents concerning messages sent by users of a Web forum.
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• News, 64 documents concerning press news from all over the world, daily
collected by PR Web, a company providing free online press release distri-
bution.

• Sigmod, 51 documents concerning issues of SIGMOD Record. Such docu-
ments were obtained from the XML version of the ACM SIGMOD Web
site produced within the Araneus project [39].

• Wrapper, 53 documents representing wrapper programs for Web sites, ob-
tained by means of the Lixto system [13].

• Xyleme Sample, a collection of 1000 documents chosen from the Xyleme’s
repository, which is populated by a Web crawler using an efficient native
XML storage system [103].

The distribution of tags within these documents is quite heterogeneous, due to
the complexity of the DTDs associated with the classes, and to the semantic
differences among the documents. In particular, wrapper programs may have
substantially different forms, as a natural consequence of the structural dif-
ferences existing among the various Web sites they have been built on: thus,
the skewed nature of the documents in Wrapper should be taken into account.
Also, documents sampled from Xyleme exhibit a more evident heterogeneity,
since they have been crawled from very different Web sources.

Clustering results were evaluated by exploiting the standard precision and
recall measures [11]. However, in the case of Xyleme Sample, we had no knowl-
edge of an a-priori classification. As a consequence, we resorted to an in-
ternal quality criterium that takes into account the compactness of the dis-
covered clusters. More precisely, given a cluster partition P = {C1, . . . , Cn},
where Ci = {xi

1, . . . , x
i
ni
}, we defined an intra-cluster distance measure as:

IC(P) = 1
n

∑
Ci∈P

1
ni

∑
x∈Ci

d(x, rep(Ci))).
Table 7.1 summarizes the quality values obtained testing XRep on both

synthetic and real data. All the experiments have been carried out by adopting
the Jaccard distance d

(2)
J introduced in Section 7.2. Tests on synthetic data

evaluated the performance of XRep on three collections of 1400 documents
(200 documents for each class DTD). Experimental evidence highlights the
overall accuracy of XRep in distinguishing among classes of XML documents
characterized by different average sizes due to different choices for the thresh-
old τ . As we can see, XRep exhibits an excellent behavior for τ = {0.3, 0.5},
while the acceptable performance reported on row 3 (i.e. τ = 0.8) is due to the
intrinsic difficulty in catching minimal differences in the structure of the in-
volved XML documents. Indeed, two clearly distinct class DTDs, namely DTDi

and DTDj, may share a number of element definitions inducing similar paths
within the conforming XML documents. If such definitions assign multiple
occurrences to the elements of the common paths, the initial class separation
between DTDi and DTDj may be potentially vanished by a strong degree of doc-
ument similarity due to a large number of common paths in the corresponding
XML trees.
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type docs avg size classes clusters τ precision recall F-measure IC

synth 1400 0.13KB 7 7 0.3 0.979 0.978 0.978 0.219

synth 1400 0.81KB 7 7 0.5 0.802 0.909 0.852 0.304

synth 1400 3.19KB 7 7 0.8 0.689 0.773 0.728 0.369

real 649 5.74KB 5 5 - 1 1 1 0.208

real 500 8.56KB - 7 - - - - 0.376

real 1000 9.42KB - 9 - - - - 0.43

Table 7.1. Quality results

Tests on real data considered separately the first five collections (649
XML documents with an average size that is equal to 5.74KB), and the
Xyleme Sample collection. In the first case, XRep showed amazingly optimal
accuracy in identifying even latent differences among the involved real docu-
ments. As far as Xyleme Sample is concerned, we conducted two experiments
(rows 5 and 6 in Table 7.1), where in the first one we considered only one and
a half of the dataset. However, as we expected, in both cases intra-cluster dis-
tance provides fairly good values: this is mainly due to the high heterogeneity
which characterizes documents in Xyleme Sample.
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Conclusions and further work

8.1 Summary

XML (Extensible Markup Language) is a standard meta language used to
describe a class of data objects, called XML documents and to specify how
they are to be processed by computer programs. In a very short space of
time, XML has become a hugely popular format for marking up all kinds of
data, from web content to data used by applications. However, a significant
disadvantage of XML technology is document size, which is a consequence
of verbosity arising from markup information. It is commonly observed that
non-standardized text formats for describing equivalent data are significantly
shorter. Theoretically, therefore, one should be able to compress XML docu-
ments down to the same size as the compressed versions of their non-standard
counterparts.

From an information-theoretic standpoint, portions of the document that
have to do with its layout should not add to its entropy. These considerations
lead naturally to investigate the use of suitable models for the compression
of such data. Present day XML documents are ubiquitous and the need for
compression is pressing.

A desirable feature of a compression scheme is the ability to be able to
query the compressed document without decompressing the whole document.
To this purpose, in this thesis, we have presented our approach XQueC, a
compression-aware XQuery processor. XQueC works on compressed XML doc-
uments, which can be a huge advantage when query results must be shipped
around a network. The architecture of the system has been designed in such
way to hold separated structure from content. Use of the Structure tree to
represent the structure of document and employment of containers for the
content, have allowed improvement on query evaluation. Indeed, thanks to
this approach, during the phase of evaluation of a query, the system will ex-
clusively access the necessary data to get the result without having to load in
memory container that has not involved in the query. Evaluation of queries
in compressed domain is possible thanks to exploitation of order-preserving
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compression algorithm ALM that has been chosen for its features that make it
comparable with general-purpose compression algorithms. The experimental
tests executed on the system have furnished very encouraging results: XQueC
exhibits a good trade-off between compression factors over different XML data
sets and query evaluation times on XMark queries..

The rapid growth of XML documents available has posed the scientific
community in face of new interesting challenges. In order to analyze huge
amount of information formatted with XML, decomposing the XML docu-
ments and storing them in relational tables is a popular practice. However,
query processing becomes expensive since, in many cases, an excessive num-
ber of joins is required to recover information from the fragmented data. If a
collection consists of documents with different structures, mining clusters in
the documents could alleviate the fragmentation problem. Furthermore, many
Web applications that process XML data, such as grouping similar XML docu-
ments and searching for XML documents that match a sample XML document
require techniques for clustering efficiently XML documents. It has well estab-
lished in such fields as database management and information retrieval that
the more semantic (e.g. metadata) about data are understood by a system,
the more precise the queries can become.

To this purpose, we have presented a novel methodology for clustering
XML documents, focusing on the notion of XML cluster representative which
is capable of capturing the significant structural specifics within a collection
of XML documents. By exploiting the tree nature of XML documents, we
provided suitable strategies for tree matching, merging, and pruning. Tree
matching allows the identification of structural similarities to build an initial
substructure that is common to all the XML document trees in a cluster,
whereas the phase of tree merging leads to an XML tree that even contains
uncommon document substructures. Moreover, we devised a suitable pruning
strategy for minimizing the distance between the documents in a cluster and
the document built as the cluster representative. The clustering framework
was validated both on synthetic and real data, revealing high effectiveness.

8.2 Further research

We conclude by mentioning some future developments worth further re-
search. The XQueC system proposed in chapter 4 can be improved in sev-
eral ways: by moving to three-valued IDs for XML elements, in the spirit of
[134, 135, 118] and by incorporating further storage techniques that lead to
additionally reduce the occupancy of structures. Moreover, the implementa-
tion of our XQuery optimizer for querying compressed XML data is ongoing.
Furthermore, we are testing the suitability of our system w.r.t. the full-text
queries [151], which are being defined for the XQuery language at W3C. An-
other important extension we have devised is needed for uploading in our
system very large documents. In order to do this, we plan to access the con-
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tainers during the parsing phase directly on secondary storage rather than
in memory, as the current implementation does. Conceivably, the OS-based
containers on disk are temporary and can be removed once the upload in
BerkeleyDB is completed. Other more general future research directions in-
clude, among the others, the capability of issuing updates over compressed
XML data and of windowing compressed XML data streams.

Also, forthcoming research on our clustering scheme proposed in chap-
ter 7 is possible. Further notions of cluster representative can be investigated,
e.g. by relaxing the requirement that a prototype corresponds to a single
XML document. Indeed, there are many cases in which a collection of XML
documents is better summarized by a forest of subtrees, where each subtree
represents a given peculiarity shared by some documents in the collection. A
typical case raises, for instance, when the collection has an empty matching
tree, and still exhibits significant homogeneities. Moreover, we believe that the
proposed clustering scheme can be profitably applied to query optimization.

To this purpose, the aim is to devise an effective mechanism for searching
and retrieving data from large databases of XML documents by XPath queries.
In such context, representatives play a key role: indeed, they can be exploited
to match queries against clusters, rather than against individual XML docu-
ments, to the purpose of progressively narrowing the search space during the
identification of results to an XPath query q. In practice, this can be accom-
plished by discarding those clusters, at any level in the hierarchy produced
by the hierarchical clustering algorithm, whose representatives are uncomply-
ing with q. Indeed, each XML document can be represented as a tree. Trees
are also suited for modelling queries in the Core XPath fragment [61, 63], i.e.
those queries that essentially allows to define navigational paths for traversing
an XML tree, to the purpose of extracting a set of nodes reachable (from one
or multiple starting nodes) through these paths. So, an answer to a XPath
query q on an XML document t can be found by “matching” q against t. If
the query q is on a collection of XML documents, the answers can be con-
ceptually, found by performing a sequential scan over all documents in the
collection. However, this is not computationally feasible, since not only it re-
quires accessing the whole database, whose size may be potentially huge, but,
also, it requires checking whether q is a subtree of each individual document
in dataset. The process of query handling would take considerable advantage
of an index structure, that organizes documents of the collection into subsets
of trees, capable of providing answers to the same XPath queries. Intuitively,
this would guarantee that the set of answers to a query q can be obtained
from inspecting a narrowed search space, corresponding to the documents of
the database within those subsets, that are actually relevant for q.

Lastly, it would be interesting to extend the XML clustering process to
first order logic which would give a much more expressive language for data
and patterns. In particular, using this powerful representation that can handle
relations and thus, structure, it is possible to represent general relationships
embedded in data, transforming XML documents into a set of logic rules and
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facts. Hence, the set can be partitioned using the XRep clustering technique,
exploiting an ad hoc distance measure calculated on first order predicates.
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