Introduction	1
The aim of experimental work	1

Chapter 1

1.1 Environmental situation	7
1.1.1 Greenhouse Effect	7
1.2 Potential Supplies for Future Energy	10
1.2.1 Renewable energy growth	10
1.2.2 Research in energy field:	
General aspects and potentialities of the Fuel Cells	11
1.3 Conventional Hydrogen production costs and technologies	14
1.4 Additional applications of the Hydrogen	17
1.5 Hydrogen Delivery	18

Chapter 2

2.1 Thermal Processes for H ₂ production	19
2.1.1 Conventional Methane Steam Reforming process	19
2.1.1.1 Catalysts for Methane steam reforming reaction	24
2.1.1.2 Main deactivation mechanisms of catalyst	25
2.1.1.2.a Catalyst Sintering	26
2.1.1.2.b Coke formation	27

Chapter 3

3.1 A novel technology for Hydrogen Production: Membrane systems	29
3.1.1 Inorganic Membranes	30
3.1.1.1 Transport in palladium-based membranes.	
Theoretical aspects	30
3.1.1.2 Membranes preparation methods. Outlines	33

3.1.2 Basic configurations of Membrane Reactors	34
3.1.2.1 Technological problems in MRs	34
3.1.2.2 Pd-based Membrane Reactors. State-of-the-art	35
3.1.2.3 Coke formation effect on MR performance	41

Chapter 4

4.1 Experimental details	44
4.1.1 Laboratory bench-scale experimental plant	44
4.1.2 Braze-welding process	49
4.1.3 Activation procedure of Ni-based catalyst used in MSR	50
4.1.4 Theoretical model for WGSR-based MR	52

Chapter 5

5.1 Results and Discussion	56
5.1.1 Membrane reactors for hydrogen production	56
5.1.1.1 Characterization and permeation experimental tests	56
5.1.1.2 Membrane Reactor <i>MR1</i>	59
5.1.1.3 Membrane Reactor MR2	66
5.1.1.4 Effect of L _s /A _m ratio on MR performance	68
5.1.1.5 Membrane Reactor MR3	70
5.1.1.6 Membrane Reactor MR4. Effect of the catalyst distribution	72
5.1.1.6a Coke deposition effect	78
5.1.1.7 Sensitivity analysis in a Pd-based MR with WGSR	89
5.1.1.7a Influence of total feed pressure	89
5.1.1.7b Effect of sweep gas	94
5.1.1.7b.1 Inlet temperature	94
5.1.1.7b.2 Inlet flow rate	97

5.1.1.7c Effect of the catalyst mass distribution	99
Conclusions	106
References	109
Research Activities	114
List of the Simbols	115

iv