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Prof. Aljoša Volčič Prof. Nicola Leone

A.A. 2009 – 2010





To my love, Marco



Abstract

In this thesis we investigate a problem which is part of Geometric Tomography.
Geometric Tomography is a branch of Mathematics which deals with the determi-

nation of a convex body (or other geometric objects) in n from the measure of its

sections, projections, or both. In particular, it is focused on finding conditions suffi-

cient to establish the minimum number of point X-rays needed to determine uniquely

a convex body in n.

The interest for this particular mathematical subject has its roots in the studies re-

lated to Tomography.
Nowadays it is rare that someone has never heard of CAT scan (Computed Assisted

Tomography). This medical diagnostic technique, born in the late 70s, allows us to

reconstruct the image of a three-dimensional object by a large number of projections

at different directions. It is useful to emphasize that CAT is a direct application of

a pure mathematical instrument known as ‘the Radon transform”.
From the mathematical point of view, the question of when a convex body, a compact

convex set with nonempty interior, can be reconstructed by means of its X-ray, arose

from problems (published in 1963) posed by Hammer in 1961 during a Symposium

on convexity:

« Suppose there is a convex hole in an otherwise homogeneous solid and

that X-ray pictures taken are so sharp that the “darkness” at each point

determines the length of a chord along an X-ray line. (No diffusion

please). How many pictures must be taken to permit exact reconstruction

of the body if:

(a) The X-rays issue from a finite point source?

(b) The X-rays are assumed parallel? »

A convex body is a convex compact set with nonempty interior.

We distinguish between two problems, according to the X-rays are at a finite point
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source or at infinity.

We are searching which properties a set of directions U must fulfill, in order to deter-

mine uniquely a convex body K by means of its (either parallel or point) X-rays, in

the directions of U . When U is an infinite set then this reconstruction is possible and

this follows from general theorems regarding the inversion of the Radon transform.

This thesis consists of two parts. The first (Chapter 3) is concerned with the deter-

mination of a planar convex body from its i-chord functions, while the second part

(Chapter 4) generalizes the planar results to the three-dimensional case. The main

results provide a partial answer to the problem posed by R. J. Gardner:

“How many point X-rays are needed to determine a convex body in n?”

We use two analytic tools both considered in geometric tomography for the first time

by K. J. Falconer. One is the i-chord function, which is related through the Funk

theorem to the measures of the i-dimensional sections, when i is a positive integer.

The other tool, inspired by a paper by D. C. Solmon, suggested the introduction of

a kind of “Cavalieri Principle” for point X-rays, and has been later on extended to

other dimensions and real values of i.

The i-chord functions allow to translate in analytical form the information given by

the ith section functions. Therefore, from an analytical point of view we have the

following problem:

“Suppose that K ⊂ n is a convex body and let ph be some noncollinear

points (some of them are possibly at infinity). Suppose, moreover, that

we are given the i-chord functions at the points ph, with i ∈ . Is K then

uniquely determined among all convex bodies?”

The i-chord functions ρi,K can be seen as a generalization of the radial function of

the convex body K. The latter is the function that gives the signed distance from

the origin to the boundary of K. For integer values of the parameter i, the i-chord

function is closely linked to the ith section function of a convex body, that is the

function assigning to each subspace of dimension i the i-dimensional measure. When

i = 1, the 1st section function coincides with the 1-chord function, that is the point

X-ray of the convex body at the origin.

In Chapter 3 we consider two planar problems. One problem consists of the deter-

mination of a planar convex body K from the i-chord functions, for i > 0, at two

points when the line l passing through p1 and p2 meets the interior of K and the two

points p1 and p2 are both exterior or interior to K. If the line l supports K, then

the results hold for i ≥ 1. The second result concerns the determination of a planar
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convex body K from its i-chord functions at three noncollinear points for 0 < i < 2.

Chapter 4 deals with the problem of determining a three-dimensional convex body

K from the i-chord functions at three noncollinear points non belonging to K. Also

in this case we search a sort of “Cavalieri Principle”, for a suitable measure involving

i-chord functions for 1 < i < 3.

We are not able to extend this result to generic convex bodies when i = 1. In this

case we have to assume that the convex body is of class C1+α with α ∈]0, 1[.



Sommario

Il lavoro di tesi si inserisce prevalentemente nell’ambito della ricostruzione delle

immagini, in particolare nel settore della Tomografia Geometrica, la quale si occupa

di trovare il minor numero di radiografie necessarie per ricostruire univocamente un

corpo. La teoria generale, basata sul concetto di Trasformata di Radon trova una sua

significativa applicazione in medicina nella Tomografia Computerizzata, che consente

la ricostruzione dell’immagine di una sezione del corpo umano mediante l’uso dei raggi

X presi in diverse direzioni. Dal punto di vista matematico, il problema di quando

un corpo convesso (o un altro oggetto geometrico), può essere ricostruito per mezzo

delle sue radiografie, si è sviluppato grazie ai problemi posti nel 1961 da P.C. Hammer

all’American Mathematical Society Symposium sulla Convessità:

“Suppose there is a convex hole in an otherwise homogeneous solid and

that X-ray pictures taken are so sharp that the “darkness” at each point

determines the length of a chord along an X-ray line. (No diffusion

please). How many pictures must be taken to permit exact reconstruction

of the body if:

(a) The X-rays issue from a finite point source?

(b) The X-rays are assumed parallel?”

Un corpo convesso è un insieme convesso compatto dotato di punti interni. Ci si

trova dunque di fronte due problemi, a seconda che le radiografie siano prese da

sorgenti finite, o all’infinito. Ci chiediamo allora quali proprietà deve soddisfare un

insieme di direzioni U , affinché un corpo convesso K sia univocamente determinato

dalle sue radiografie (parallele o puntuali) nelle direzioni in U . Nel caso in cui U è un

insieme infinito questo è vero e sussistono dei teoremi di unicità basati sull’inversione

della Trasformata di Radon. Il lavoro di tesi è suddiviso fondamentalmente in due

parti. Una prima parte (Capitolo 3) si occupa dello studio della determinazione

di un corpo convesso planare per mezzo delle funzioni i-cordali, mentre la seconda
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parte (Capitolo 4) generalizza quanto visto nel caso planare, al caso tridimensionale. I

risultati ottenuti forniscono una parziale risposta al problema posto da R. J. Gardner:

“How many point X-rays are needed to determine a convex body in n?”

Vengono utilizzati due strumenti analitici, entrambi introdotti per la prima volta

da K. J. Falconer nell’ambito della tomografia geometrica. Il primo è la funzione

i-cordale, la quale è legata per mezzo del Teorema di Funk alle misura della sezione

i-dimensionale, quando i è un numero intero positivo. Il secondo strumento, ispirato

da un articolo di D. C. Solmon, è stato la ricerca di una opportuna misura che fornisse

una specie di “Principio di Cavalieri” per le funzioni i-cordali.

Le funzioni i-cordali costituiscono uno strumento essenziale che permette di tradurre

in forma analitica le informazioni date dalle funzioni di i-sezione. Pertanto, dal punto

di vista analitico si ha il seguente problema:

“Supponiamo che K ⊂ n sia un corpo convesso e siano ph dei punti non

allineati (alcuni dei quali eventualmente all’infinito). Supponiamo inoltre

di conoscere le funzioni i-cordali in ph per i ∈ . K è univocamente

determinato tra tutti i corpi convessi?”

Le funzioni i-cordali ρi,K possono essere viste come una generalizzazione della fun-

zione radiale del corpo convesso K. Quest’ultima è la funzione che fornisce la distanza

con segno dall’origine al bordo di K. Per valori interi del parametro i, le funzioni i-

cordali sono strettamente collegate alle funzioni i-sezione di un corpo convesso, ovvero

la funzione che fornisce la misura i-dimensionale dell’intersezione con un sottospazio

avente dimensione i. Quando i = 1, la funzione 1-sezione coincide con la funzione

1-cordale, ovvero con la radiografia puntuale nell’origine.

Nel Capitolo 3 affrontiamo due problemi planari. Uno consiste nella determinazione

di un corpo convesso K prendendo le funzioni i-cordali, per i > 0, in due punti nel

caso in cui la retta l passante per p1 e p2 interseca la parte interna di K e i punti

sono entrambi esterni o interni a K. Se la retta l supporta K, i risultati ottenuti

valgono solo per i ≥ 1. Il secondo risultato riguarda la determinazione di un corpo

convesso planare K dalle funzioni i-cordali in tre punti non allineati per 0 < i < 2.

Nel Capitolo 4 affrontiamo il problema di determinare un corpo convesso tridimen-

sionale K prendendo le funzioni i-cordali per tre punti non allineati ed esterni a K.

Anche in questo caso si cerca una specie di “Principio di Cavalieri” per un’opportuna

misura che coinvolga le funzioni i-cordali in tre punti non allineati per 1 < i < 3.

Non è stato possibile estendere questo risultato a corpi convessi generici per i = 1.

In questo caso si deve richiede che il corpo convesso sia di classe C1+α con α ∈]0, 1[.
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Introduction

“Stay hungry, stay foolish.”

Steve Jobs, 5th June 2005

In this thesis we will investigate a problem which belongs to Geometric Tomog-
raphy. Geometric Tomography is a branch of Mathematics which deals with the

determination of a convex body in n from the measure of its sections, projections,

or both. In particular, it is focused on finding conditions sufficient to establish the

minimum number of point X-rays needed to determine uniquely a convex body in
n.

The interest for this particular mathematical subject has its roots in the studies

related to Tomography. The word “tomography” is derived from the Greek τ óµoς

(tómos –slice) and γράϕειν (gráphein – to write).

Nowadays it is rare that someone has never heard of CAT scan (Computed Assisted

Tomography). This medical diagnostic technique, born in the late 70s, allows us to

reconstruct the image of a three-dimensional object by a large number of projections

in different directions. The first CT-scanner, was conceived for EMI in 1967 by Sir

Godfrey Newbold Hounsfield, an English electrical engineer at Atkinson Morley Hos-

pital in Wimbledon, London. This device, called “EMI-scanner” was the first able to

display cross-sections of the human body, particularly of the skull (1 October 1971).

Though extremely innovative, this tomograph took many hours to get data, and sev-

eral days for producing the images. This marks the beginning of a new frontier of

medicine just called Computed Tomography, in fact, the term “computed tomogra-

phy” refers to the computation of tomography from X-ray pictures.

A few years later, in 1979 Hounsfield along with Allan McLeod Cormack, a South

African-born American physicist, were awarded the Nobel Prize in Medicine.

Later improvements have been possible thanks to the increased power of computers,

a better technology in data collection and better reconstruction algorithms.

After this brief introduction, it is useful to emphasize that CAT is a direct application
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INTRODUCTION 2

of a pure mathematical instrument known as “the Radon transform”, named after the

Austrian mathematician who in 1917 introduced this kind of transform during his

research in measure theory.

In 1917 Johann Radon published his paper, Über die Bestimmung von Funktionen
durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, (to which little attention

was paid for a long time) with which Radon can be recognized as the father of to-
mography. Radon did not mean his transform to be used for a medical application.

We will give next a brief description of the process implemented in the CAT, as well

as its existing relationship with the Radon transform.

To perform a radiography, the patient is placed between a X-ray generator and a film

sensitive to X-rays or a digital detector. According to the density and composition

of the different areas of the object a proportion of X-rays are absorbed by the object.

The X-rays that pass through are then captured behind the object by the detector,

which gives a two-dimensional representation of all the structures superimposed on

each other.

From the mathematical point of view, the question of when a convex body, a compact

convex set with nonempty interior, can be reconstructed by means of its X-ray, arose

from problems posed by Hammer in 1961 during a Symposium on convexity, [24].

« Suppose there is a convex hole in an otherwise homogeneous solid and

that X-ray pictures taken are so sharp that the “darkness” at each point

determines the length of a chord along an X-ray line. (No diffusion

please). How many pictures must be taken to permit exact reconstruction

of the body if:

(a) The X-rays issue from a finite point source?

(b) The X-rays are assumed parallel? »

It is rather surprising how clear was Hammer’s idea on the reconstruction of objects

from X-rays so many years before anybody figured out to use the Radon transform

for CT-scanners.

We distinguish between two problems, according to the X-rays are at a finite point

source or at infinity.

We are now searching which properties a set of directions U must fulfill, in order to

determine a convex body K in a unique way by means of its (either parallel or point)

X-rays, at the directions of U . When U is an infinite set then this reconstruction

is possible and there are a lot of uniqueness theorems based on the inversion of the

Radon transform, [23] and [42]. In particular Zalcman, [50, Section 2], states that
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K is uniquely determined if the lengths of the chords are given from infinitely many

directions.

State of art

The problems considered in our thesis are of a different nature and are probably

of less practical application.

There are several paper in the literature which study the reconstruction of a convex

body in n, for n ≥ 2, from the measures of their intersections with affine subspaces

of dimension k, with 1 ≤ k ≤ n − 1. There is a first group of papers that gives

conditions on the position and number of points p1, p2, . . . , pm (some possibly at

infinity) which guarantee the uniquely determination of a convex body K in n by the

measures of the intersections of K with all the affine subspaces, of a given dimension

k, passing through ph, for 1 ≤ h ≤ m. For example, [17], [11], [9], [10], [44], [14],

[13], [18], [39], [44], [46] and [20].

A second group of papers, on the other hand, fixes a point p and ensure that K

is uniquely determined by the measures of the intersections of K with the affine

subspaces through p of (at least) two different dimensions, [18] and [49]. The earliest

papers concern Hammer’s question (b). The (parallel) X-ray of a convex body K

in the direction u is the function giving the lengths of all the chords of K parallel

to u. The uniqueness aspect of question (b) is equivalent to asking which finite sets

of directions are such that the corresponding X-rays distinguish between different

convex bodies. Simple examples showed that there are arbitrarily large finite sets of

directions that do not have this desirable property and that no set of three directions

does it. In fact, three directions never suffices, since each triangle is affinely equivalent

to an equilateral triangle, and, by a rotation of π
3 about the barycentre we can build a

different equilateral triangle with equal X-rays along the three directions connecting

the corresponding vertices.

The first studies were made, independently, by Falconer [11] and Gardner [13]. A

complete solution was found by Gardner and McMullen, [17], (see also [16, Chapter

1]). A corollary of their result is that there are sets of four directions in S1, the

unit disk in 2 such that the X-rays of any planar convex body in these directions

determine it uniquely among all planar convex bodies. It also was shown in [17]

that a suitable set of four directions is one such that the corresponding set of slopes

has a transcendental cross-ratio. Clearly this is an impractical choice of directions.
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However, Gardner and Gritzmann, [19] showed that further suitable sets of four

directions are those whose set of slopes, in increasing order, have a rational cross-

ratio not equal to 3
2 , 4

3 , 2, 3, or 4.

The corresponding uniqueness problem in higher dimensions can be solved by taking

four directions, as specified above, all lying in the same two-dimensional plane. Since

the corresponding X-rays determine each two-dimensional section of a convex body

parallel to this plane, they determine the whole body.

The point X-ray of a convex body K at a point p is the function giving the lengths

of all the chords of K lying on lines through p.

The position of the sources with respect to the convex body is important.

Parallel X-rays can be viewed as a limit case of point X-rays, where the sources lay

on the line at infinity, namely the set of points at infinity of each line in the plane.

It is easy to see that a single source p does not suffice. The only known result

in the opposite direction is provided by a paper of Lam and Solmon [28] which

proves that, with some exceptions, convex polygons are uniquely determined among
convex polygons by one point X-ray. In fact, they in [28] show an algorithm for the

reconstruction of a convex polygon from one directed X-ray at the origin.

One of the problems is that Cavalieri’s principle does not hold for point X-rays,

since the area increases for increasing distance from the sources. Consequently, new

measures has been introduced,for which a kind of Cavalieri principle holds.

The uniqueness aspect of Hammer’s question (a) is not completely solved, but it is

known that a planar convex body K is determined uniquely among all planar convex

bodies by its X-rays taken at

(i) two points such that the line through them intersects K and it is known whether

or not K lies between the two points. (see Falconer, [9] and [11] and Gardner,

[16, Theorem 5.3.3]);

(ii) three points such that K lies in the triangle having these three points as vertices.

(see Gardner [16, Theorem 5.3.6]);

(iii) any set of four collinear points whose cross ratio is restricted as in the parallel

X-ray case above. (see Gardner, [14]);

(iv) any set of four points in general position. (see Volčič, [44]).

Except in the case of (i), little is known about the uniqueness problem for point

X-rays in higher dimensions. Many of these results have been extended to spaces of

constant curvature. For example, Dulio and Peri in [2] and in [3] establish a version
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of [16, Theorem 5.3.3]) that holds in spaces of constant curvature. In particular, in

[4], they show that convex bodies in a plane of constant curvature are determined (up

to reflection in the origin, in the case of the sphere) by point X-rays at four points

in general position. The main result in [17] (see also [16, Theorem 1.2.11]) is that

a planar convex body is determined, among all planar convex bodies, by its parallel

X-rays in a finite set U of directions if and only if U is not a subset of the directions

of edges of an affinely regular polygon. This gives many choices for sets U with the

uniqueness property. For example, Gardner and Gritzmann, [19] showed that U can

be any set of at least seven directions with rational slopes, but as mentioned above,

the minimum number of directions in U is four.

Most of the existing literature provide uniqueness theorems and does not address

the problem of actual reconstruction. Only recently a paper of Gardner and Kiderlen,

in [20], proposed algorithms for reconstructing a planar convex body K from either

its parallel X-rays taken in a fixed finite set of directions or its point X-rays taken

at a fixed finite set of points. The two algorithms construct a convex polygon Pk

whose X-rays approximate (in the least squares sense) k equally spaced noisy X-ray

measurements in each of the directions or at each of the points. Pk, almost surely,

tends to K in the Hausdorff metric as k tends to infinity. This result provides a

solution, in the strongest sense, of the Hammer’s X-ray problems.

Hammer actually asked his questions in 1961, a year before (independently) the re-

sults obtained by Giering. In [21], he studied one of these problems proving that

given a planar convex body K chord lengths in three appropriate directions (de-

pending on K) are enough to distinguish from any other planar convex body the

Steiner Symmetrals of K about lines in those directions. Volčič in [46] provides a

new proof of this result, and permits a wider choice of triplets of directions, possi-

bly also on a finite line, and also Gardner in [13] gives a shorty version of Giering’s

result. Furthermore, Giering has shown that two directions are in general not enough.

Zuccheri in [51] describes a method for computing jth derivatives of the polar

representations of the boundary of a convex body K, from generalized i-chord func-

tions at two points not lying on the boundary of K, ∂K, but such that the line l

passing through these two points meets ∂K at two distinct points. On the other

hand, Falconer in [11] and in [9] provides methods for computing these intersection

points for i-chord functions for i ∈ . L. Zuccheri extends these methods to the val-

ues of i < 1, and observes that these intersection points can be obtained by solving
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a system of algebraic equations.

Main results

The aim of this thesis is to extend to the case of i-chord functions the main results

obtained for i = 1 by Volčič in [44] and by Gardner in [16].

The notion of i-chord functions has been introduced by Falconer in [11] for integer

values 0 < i < n, where n is the dimension of the Euclidean space n in which the

problem is handled.

The i-chord functions ρi,K are generalizations of the radial function of the convex

body K. The latter is the function that gives the signed distance from the origin to

the boundary of K. The i-chord functions are particularly useful when i is an integer

strictly between 0 and n, but other values are also relevant, as in the various forms

of the notorious equichordal problem. The i-chord functions has been extended to

all integer values by Gardner in [14] and to all real numbers in [16].

For integer values of i, the i-chord function is closely related (via Funk theorem)

to the ith section function of a convex body, the function giving the i-dimensional

volumes of its intersections with i-dimensional subspaces.

When i = 1, the ith section function coincides with the 1-chord function, also known

as the point X-ray at the origin (or, in the computer tomography, the fan-beam X-ray

at the origin). The (n − 1)th section function is simply called the section function.

The i-chord function is a technical tool which allows to translate in analytical form

the information given by the ith section function. Therefore, from an analytical point

of view we have the following problem:

« Suppose that K ⊂ n is a convex body and let ph be some noncollinear

points (some of them are possibly at infinity). Suppose, moreover, that

we are given the i-chord functions at the points ph, with i ∈ . Is K then

uniquely determined among all convex bodies? »

A second tool used throughout this thesis is a kind of “Cavalieri Principle” for a

measure νi having an appropriate invariance property involving the i-chord func-

tions. The Cavalieri principle, introduced for i = 1 in [44] and for all integers in [14],

can be in fact extended to all real values as shown in [16].

The main contribution of the work reported in this thesis are summarized in the

following.
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First of all, we will show the determination of a planar convex body K from the

i-chord functions, for i > 0, at two points when the line l passing through p1 and p2

meets the interior of K and the two points p1 and p2 are both exterior or interior

to K, and it is known where K meets the line l. If the line l supports K, then the

results will hold for i ≥ 1.

A second relevant result will concern the determination of a planar convex body K

from its i-chord functions at three noncollinear points for 0 ≤ i < 2. In particular,

when the convex body is contained in the interior of the triangle formed by the three

points the result will hold for i > 0.

Finally we will tackle the problem of determining a three-dimensional convex body

K from the i-chord functions at three noncollinear points non belonging to K using

a sort of “Cavalieri Principle”, for a suitable measure involving i-chord functions for

1 < i < 3.

Moreover we will give an uniqueness result for convex bodies of class C1+α with

α ∈]0, 1].

Outline of this thesis

The thesis is organised as follows.

First, basic notations and definitions on convexity are introduced in Chapter 1, more-

over, integral transforms and X-ray transform are also discussed and basic notions

on differentiability are provided.

Then, a wider presentation of the notion of i-chord function is introduced in

Chapter 2, where its relationship with the concepts of ith section function and of X-

ray of order i is also discussed. In particular, the important tool of the corresponding

components is provided.

After that, the determination of a planar convex body from its i-chord functions

is discussed in Chapter 3.

Afterwards, uniqueness results regarding the three-dimensional case are presented

in Chapter 4.

Finally, conclusions and open problems are reported in Chapter 5.



Chapter 1

Preliminary Topics

This chapter aims at introducing the main topics this thesis is about, giving

concepts necessary to better understand the following chapters.

In particular, we will give concepts regarding convexity, integral transforms and their

equivalent X-ray transforms, and finally we will recall some basics on differentiability.

References for this material are [16], [32], [5, 6, 7], [33, 25], [23, 37, 26] and [36].

1.1 Notations and definitions

Let us now introduce some basic definitions and notations.

We denote the n-dimensional Euclidean space by n with the origin o.

Definition 1.1.1 (Convex set).

A set C in n is called convex if the line segment joining any pair of points of C lies
entirely in C.

Definition 1.1.2 (Convex body).

A convex body in n is a compact convex set with nonempty interior.

We denote by Kn the class of nonempty compact convex subsets of n, and by

Kn
0 the class of convex bodies.

We write intK and ∂K, respectively, for the interior and the boundary of K. We

use the symbol K − p to denote the translated convex body:

K − p = {x − p : x ∈ K} .

We denote by G (n, k) the set of all k-dimensional linear subspaces of n, while by

G (n, k, u) we denote the set of all k-dimensional affine subspaces of n parallel to the

8
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vector u belonging to the unit sphere Sn−1. With λk we denote the k-dimensional

Lebesgue measure. We employ the symbol lu for the line passing through o and

parallel to u ∈ Sn−1. For any A ⊂ n, we use the symbols lin A and aff A to

denote, respectively, the smallest linear subspace containing A and the smallest affine

subspace containing A. Moreover, for every x ∈ n ! {o}, and for every A ⊂ n, we

define

pos x := {λx : λ ≥ 0}

and

pos A := conv
⋃

x∈A

{posx : A ∩ pos x '= ∅} .

We write

posp A := p + pos (A − p)

for the convex positive half-cone with vertex p generated by A. Let E1, E2 ⊂ n

such that posp E1 = posp E2. Let l be any half-line issuing from p and intersecting

E1 (and so also E2). We say that E1 is between p and E2 if for any point x1 ∈ E1 ∩ l

and any x2 ∈ E2 ∩ l, x1 is between p and x2.

A simplex with vertices a1, a2, · · · , ak will be denoted by )(a1, a2, · · · , ak). Hence,

a simplex )(a1, a2) is the segment [a1; a2] with endpoints a1 and a2, while a simplex

)(a1, a2, a3) is the triangle with vertices a1, a2 and a3.

Definition 1.1.3 (Support function, supporting hyperplane).

Let K ∈ Kn, the support function hK of K is defined by

hK(x) = max {x · y : y ∈ K} ,

for x ∈ n.
If u ∈ Sn−1, the supporting hyperplane to K with outer normal vector is defined by

Hu = {x : x · u = hK(u)} .

The support function hK(u) at a unit vector u gives the signed distance from the
origin o to the supporting hyperplane Hu, (see Figure 1.1).

Since if K and K ′ are two nonempty compact convex sets, K ⊂ K ′ if and only if

hK ≤ hK ′ , it follows that a compact convex set is uniquely determined by its support

function.
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Figure 1.1: The support function

Definition 1.1.4 (Star-shaped set).

Let L ⊂ n and p ∈ n. The set L is star-shaped at a point p if its intersection with
every line through p is either empty or connected.

1.2 Integral transforms

Although the integral transforms can be defined more generally, it is assumed

throughout this section that f ∈ L1
0(Ω), i.e., that f is integrable and vanishes outside

Ω, where Ω is a bounded open subset of n.

Definition 1.2.1 (Directed X-ray of f at a point p).

Let p ∈ n. The divergent beam transform, or directed X-ray, of f at the point p is
defined for each u ∈ Sn−1 by

Dpf(u) =

∫ +∞

0
f(p + tu)dt.

Physically the function f is the X-ray attenuation coefficient, i.e., the density of

the object X-rayed, the point p is the X-ray source and the unit vector u is an X-ray

detector. Therefore Dpf(u) represents the attenuation in the X-ray beam, i.e., the
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total mass of the object along the half-line issuing from p and having direction u.

The role of computed tomography is to reconstruct this function f from a number of

X-rays. The word tomography refers to the two-dimensional problem of the recon-

struction of the cross sections of f . Historically, computed tomography began with

parallel beam X-rays in which the photons travel along lines with a fixed direction

rather than along rays emanating from a fixed point source.

Definition 1.2.2 (Parallel X-ray of f in the direction u).

Let u ∈ Sn−1. The X-ray transform, or parallel X-ray, of f in direction u is defined
for each x ∈ u⊥ and t ∈ by

Xuf(x) =

∫ +∞

−∞
f(x + tu)dt

where dt denotes integration with respect to λ1.

Definition 1.2.3 (Radon transform).

The Radon transform of f is defined for t ∈ and u ∈ Sn−1 by

f̃(t, u) =

∫

u⊥+tu
f(x)dx.

For each u ∈ Sn−1, Fubini’s theorem guarantees that f̃(t, u) exists for almost all t.

Moreover, by the orthogonal decomposition theorem, the set H = u⊥ + tu represents

a hyperplane in n, therefore the Radon transform can be rewritten in the following

way

f̃(H) =

∫

H

f(x)dx

so it is a function defined on the space of hyperplanes. The invertibility of the Radon

transform makes possible bodies to be reconstructed completely, if all their X-ray

pictures are given.

Definition 1.2.4 (X-ray of f at a point p).

Let p ∈ n. The line transform, or X-ray, of f at the point p is given by

Xpf(u) =

∫ +∞

−∞
f(p + tu)dt.

Observe that, the X-ray of f at the point p is linked to the directed X-ray of f

in the directions u and −u by the following relation

Xpf(u) = Dpf(u) + Dpf(−u)
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for each u ∈ Sn−1, [36].

Definition 1.2.5 (k-dimensional X-ray).

Let 1 ≤ k ≤ n− 1 and S ∈ G (n, k). The k-dimensional X-ray, or k-plane transform,
of f parallel to the subspace S is defined for each y ∈ S⊥ by

XSf(y) =

∫

S

f(x + y)dx.

Definition 1.2.6 (X-ray of order i).

Let p ∈ n and i ∈ . The X-ray of order i of f at p is defined for each u ∈ Sn−1 by

Xi,pf(u) =

∫ +∞

−∞
f(p + tu)|t|i−1dt.

The most interesting aspects of computed tomography are the questions of unique-

ness and stability. Regarding uniqueness we have the following theorems proved in

[16, 26, 37], and [23].

Theorem 1.2.7.

Let Ω be a bounded open subset of n and let f ∈ L1
0(Ω). Suppose that D ⊂ Sn−1 is

an infinite set. If Xuf = 0 for all u ∈ D, then f = 0, λn-almost everywhere.

Theorem 1.2.8.

Let Ω be a bounded open subset of the unit ball B in n and let f ∈ L1
0(Ω). Suppose

that P ⊂ n ! B is an infinite set. If Dpf = 0 for all p ∈ P , then f = 0, λn-almost
everywhere.

These two uniqueness theorems for the divergent beams and line transforms, 1.2.7

and 1.2.8, state that any object, even with varying density, is uniquely determined by

an infinite set of point X-rays. On the other hand, no finite set of point X-rays suffice.

1.3 X-ray transforms

For characteristic functions of bounded measurable sets the integral transforms,

defined in the previous section, boil down to the following functions.

Definition 1.3.1 (Directed X-ray).

Let p be a point and let E be a bounded measurable set in n. The directed X-ray of
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E at p is defined for λn−1−almost all u ∈ Sn−1 by

DpE(u) = Dp E(u) = λ1(E ∩ (ru + p)),

where ru is the ray emanating through o parallel to u.

Figure 1.2: The directed X-ray of E at p

This function gives us information about the “lengths” of all the intersections of

the set E with all the half-lines issuing from p, (see Figure 1.2).

Definition 1.3.2 (X-ray).

Let p be a point and let E be a bounded measurable set in n. The X-ray of E at p

is defined for λn−1−almost all u ∈ Sn−1 by

XpE(u) = Xp E(u) = λ1(E ∩ (lu + p)).

This function provides us the lengths of all the intersections of the set E with all

the lines through p, (see Figure 1.3).

When E is a Borel set, Dp(E) and Xp(E) are defined everywhere on Sn−1. With

X-ray, we consider the rays issuing from p in both the directions u and −u as a single

beam. For this reason, X-rays do not exist in nature but are merely a mathematical

idealization.

The X-ray gives us less information than directed X-ray. For example, Figure 1.4

shows that two congruent disks have the same X-rays at the middle point of the
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Figure 1.3: The X-ray of E at p

Figure 1.4: Directed X-ray and X-ray
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segment joining their centers, but they have different directed X-rays.

In general

XpE(u) = XpE(−u)

for each u ∈ Sn−1, i.e., Xp(E) is even, while Dp(E) is not necessarily an even

function.

If E is a body star-shaped at p, each ray issuing from p meets E in a (possibly

degenerate) segment, so the directed X-rays give the length of each line segment,

while the X-rays give the length of the “two” line segments.

Definition 1.3.3 (X-ray of order i).

Let i ∈ . Let p be a point and E a bounded measurable set in n. The X-ray of
order i of E at p is defined by

Xi,pE(u) =

∫ ∞

−∞
E(p + tu)|t|i−1dt,

for u ∈ Sn−1 for which the integral exists.

Note that when i = 1 we retrieve the definition of the X-ray of K at p.

Definition 1.3.4 (k-plane transform).

Let ≤ k ≤ n− 1 and S ∈ G (n, k). The k-plane transform, or the X-ray, of f parallel
to the subspace S is defined for each y ∈ S⊥ by

XSf(y) =

∫

S
f(x + y)dx.

Definition 1.3.5 (k-dimensional X-ray).

Let p be a point and let E be a bounded λn−measurable set in n. If 1 ≤ k ≤ n − 1,
we define the k-dimensional X-ray of E at p as a function on G (n, k) such that to
each G ∈ G (n, k) assigns the measure λk(E ∩ (G + p)).

The X-ray of a convex body is related to the notion of Steiner symmetral, intro-

duces by Jacob Steiner [41].

Definition 1.3.6 (Steiner symmetral).

Let K be a convex body in n. Let u ∈ Sn−1 and let lu be the line through the origin
and parallel to u. For each x ∈ u⊥, let c(x) be defined as follows. If K ∩ (lu + x) is
empty, let c(x) = ∅. Otherwise, let c(x) be the segment on lu + x centered at x whose
length is equal to λ1(K ∩ (lu + x)). The union of all the line segments c(x) is called
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Steiner symmetral of K and it is denoted by SuK. The mapping Su from Kn into
itself is called Steiner Symmetrization.

Notice that SuK has the same X-rays as K in the direction u, for this reason the

Steiner Symmetral SuK is immediately determined by the X-rays of K in direction

u, (see Figure 1.5). Consequently, we shall identify the X-rays with the Steiner Sym-

metral, [17] and [21].

Figure 1.5: The Steiner symmetral of K

1.4 Basic notions on differentiability

Recall now briefly some preliminary properties about differentiability. A real-

valued function on an open subset U on n is said to be of class C k if it is k-times

continuously differentiable, that is, all partial derivatives of order k exist and are

continuous. The class of such functions is signified by C k(U).

The class C∞(U) consists of those real-valued functions belonging to C k(U) for all
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k ∈ .

We say that a convex body K is of class C k or of class C∞ if the boundary of K,

∂K is of class C k or of class C∞, respectively.

Definition 1.4.1 (Function Hölder continuous).

A function f is called Hölder continuous at a if there is α ∈ (0, 1), a constant H > 0,
and an interval I containing a, such that

|f(x) − f(a)| ≤ H |x − a|α

for all x ∈ I. We write f ∈ C n+α at a if f ∈ C n at a and f (n) is Hölder continuous
at a with α as above.

Definition 1.4.2 (Taylor polynomial of degree n for f at x0).

Let f be n-times differentiable on an open interval containing the point x0. Then the
Taylor polynomial of degree n for f at x0 is the polynomial

Tn(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + · · · +
f (n)(x0)

n!
(x − x0)

n.

Theorem 1.4.3 (Taylor’s theorem).

Let f be (n+1)-times differentiable on an open interval containing the points x0 and
x. Then

f(x) = f(x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)

2 + · · · +
f (n)(x0)

n!
(x − x0)

n + Rn(x)

where

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)

n+1

and ξ is some point between x0 and x.

Corollary 1.4.4 (Remainder Estimate).

Let f be (n+1)-times differentiable on an open interval containing the points x0 and
x. If

|f (n−1)(ξ)| ≤ M

for all ξ between x0 and x, then

f(x) = Tn(x) + Rn(x),
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where
|Rn(x)| ≤

M

(n + 1)!
|x − x0|

n+1.

Lemma 1.4.5.

Let f and g be two convex functions on [a, b], and let {xn} be a sequence in [a, b]

converging to c such that xn < c for all n ∈ . If f(xn) = g(xn) for all n ∈ and
f(c) = g(c) then f ′(c) = g′(b).

Proof.
Since g is a convex function on [a, b], g is continuous in (a, b) and moreover g is

differentiable in all but at most countably many points of (a, b).

f ′(c) = = lim
h→0

f(c + h) − f(c)

h

= lim
xn→c

f(xn) − f(c)

xn − c

= lim
xn→c

g(xn) − g(c)

xn − c

= lim
h→0

g(c + h) − g(c)

h
= g′(c).



Chapter 2

The i-chord functions

In this chapter we will address an important tool used throughout this thesis.

The i-chord functions have been defined so far in the literature for u ∈ Sn−1. We

find it appropriate to extend the definition to all of n, since the i-chord functions

are defined in terms of the radial function.

2.1 Radial function and i-chord function

We begin this chapter with the key definition of radial function.

Definition 2.1.1 (Radial function).

If L is nonempty, compact, and star-shaped at the origin o in n. Its radial function
ρL is defined by

ρL(x) = max {c : cx ∈ L} ,

for x ∈ n ! {o} such that the line through x and o intersects L.

This definition, introduced by Gardner and Volčič, [18], differs from the usual

definition of radial function in which the maximum is taken only over nonnegative

c and shows the duality with the definition 1.1.3 of the support function defined in

Chapter 1.

The radial function is positively homogeneous of degree −1, i.e.,

ρL(cx) =
1

c
ρL(x) for c > 0

and this allows us to work with the restriction of the radial function ρL to the unit

sphere, in fact we mostly use this restriction to the unit sphere. The radial function

19
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ρL(u) at a unit vector u ∈ Sn−1 gives the signed distance from o to the boundary of

L along the line lu, (see Figure 2.1).

Figure 2.1: The radial function

Denote by DL and SL the domain and the support of the restriction of the radial

function ρL to the unit sphere Sn−1, respectively.

A star body is a body such that ρL, restricted to SL, is continuous.

A star set is a set that is a star body in its linear hull.

The class of star bodies contains the class of convex bodies.

The definition of the X-ray of a body E star-shaped at a point p can be reformulated

in terms of its radial function ρE . For each u ∈ Sn−1, we have,

XpE(u) =

{

ρE−p(u) + ρE−p(−u) if p ∈ E,
∣

∣|ρE−p(u)| − |ρE−p(−u)|
∣

∣ if p /∈ E.
.

The notion of i-chord functions for i '= 1 arise naturally from a certain general-

ization of Hammer’s problems to higher dimensions.

In fact, this has been introduced by Falconer in [11] for integer values 0 < i < n,

where n is the dimension of the Euclidean space n in which the problem is handled.

The i-chord functions ρi,K can be seen as a generalization of the radial function of
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a convex body K. The i-chord functions are particularly useful when i is an inte-

ger strictly between 0 and n, but they have been extended to all integer values by

Gardner in [14] and to all real numbers in [16].

Definition 2.1.2 (i-chord function).

Let i ∈ , and suppose that L is a star set in n. If i ≤ 0, we assume that o ∈ relint L

or o /∈ L. The i-chord function ρi,L of L at o is defined for u ∈ Sn−1 as follows. If
the line through o parallel to u does not intersect L we define ρi,L = 0. Otherwise, if
i '= 0, we let

ρi,L(u) =

{

ρL(u)i + ρL(−u)i if o ∈ L,
∣

∣|ρL(u)|i − |ρL(−u)|i
∣

∣ if o /∈ L
.

For i = 0, we define the 0-chord function of L at o for u ∈ Sn−1 by

ρ0,L(u) =

{

ρL(u)ρL(−u) if o ∈ L,

exp
∣

∣ log | ρL(u)
ρL(−u) |

∣

∣ if o /∈ L
.

If p is a point in n such that L− p is a star set, then the i-chord function of L at p

is simply the i-chord function at the origin o of L − p, in symbol

ρi,p,L(u) = ρi,L−p(u).

In order to better understand this definition, consider the distances from a point

p ∈ n to the boundary of L along a line through p and parallel to a direction

u ∈ Sn−1. If p belongs to L, then the i-chord function of L at p gives the sum of the

ith powers of these distances or the product of these distances, according as i '= 0 or

i = 0, respectively. While, if p does not belong to L, then it renders the difference

(the greater less the smaller) of the ith powers of these distances or the quotient (the

greater over the smaller) of these distances, according as i '= 0 or i = 0, respectively.

The assumption that for i ≤ 0 the point p has to belong to the relative boundary of

L or p /∈ L is necessary in order to avoid singularities.

Note that for i = 1 we retrieve the X-ray of L at p.

The analogous notion of a directed i-chord function at a point p, not in the interior

of a body, can be obtained from the i-chord function by setting it equal to zero at

u ∈ Sn−1 if the ray issuing from p in the direction u does not meet the body in a

point other that p itself.

The definition of 0-chord function is motivated by the following proposition.
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Proposition 2.1.3.

Let i ∈ , and suppose that L is a star set in n. Then

ρ0,L(u) = lim
i→0

(

1

2
ρi,L(u)

)
2
i

(2.1)

if o ∈ K and

ρ0,L(u) = lim
i→0

exp

(

ρi,L(u)

|i|

)

(2.2)

if o /∈ K.

Proof.

ρ0,L(u) = lim
i→0

(

1

2
ρi,L(u)

)
2
i

= lim
i→0

[

1

2

(

ρL(u)i + ρL(−u)i
)

]
2
i

= lim
i→0

exp

{

log

[

1

2

(

ρL(u)i + ρL(−u)i
)

]
2
i

}

= exp







lim
i→0

2 log
[

1
2

(

ρL(u)i + ρL(−u)i
)]

i







by De l’Hopital

= exp







lim
i→0

2 ·

1
2

(

ρL(u)i log ρL(u) + ρL(−u)i log ρL(−u)
)

1
2

(

ρL(u)i + ρL(−u)i
)







= exp {log ρL(u) + log ρL(−u)}

= exp {log ρL(u)ρL(−u)}

= ρL(u)ρL(−u).

The equation (2.2) can be written in the following way.

ρ0,L(u) = lim
i→0

exp





∣

∣

∣
|ρL(u)|i − |ρL(−u)|i

∣

∣

∣

|i|



,

so, we have to distinguish two cases.
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If both numerator and denominator are positive (or negative) we get

ρ0,L(u) = lim
i→0

exp





∣

∣

∣
|ρL(u)|i − |ρL(−u)|i

∣

∣

∣

|i|





= exp

{

lim
i→0

|ρL(u)|i − |ρL(−u)|i

i

}

by De l’Hopital

= exp

{

lim
i→0

(

|ρL(u)|i log |ρL(u)|− |ρL(−u)|i log |ρL(−u)|
)

}

= exp {log |ρL(u)|− log |ρL(−u)|}

= exp

{

log
|ρL(u)|

|ρL(−u)|

}

.

Otherwise, if numerator is positive and denominator negative (or viceversa), we

have

ρ0,L(u) = lim
i→0

exp





∣

∣

∣
|ρL(−u)|i − |ρL(u)|i

∣

∣

∣

|i|





= exp

{

lim
i→0

|ρL(−u)|i − |ρL(u)|i

i

}

by De l’Hopital

= exp

{

lim
i→0

(

|ρL(−u)|i log |ρL(−u)|− |ρL(u)|i log |ρL(u)|
)

}

= exp {log |ρL(−u)|− log |ρL(u)|}

= exp

{

log
|ρL(−u)|

|ρL(u)|

}

= exp

{

log

(

|ρL(u)|

|ρL(−u)|

)−1
}

= exp

{

− log
|ρL(u)|

|ρL(−u)|

}

.

Therefore

ρ0,L(u) = exp

∣

∣

∣

∣

log

∣

∣

∣

∣

ρL(u)

ρL(−u)

∣

∣

∣

∣

∣

∣

∣

∣

.
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Note that in the equation (2.1),

lim
i→0

(

1

2
ρi,L(u)

)
1
i

=
√

ρ0,L(u)

the quantity in the limit on the left is the ith mean of ρL(u) and ρL(−u), while that

on the right is the geometric mean of ρL(u) and ρL(−u).

Falconer in [9] was the first to define i-chord functions, also called generalized

chord functions, for integer values of i, and gave some uniqueness results, for i ≥ 1,

by use of a version of the stable manifold theorem of differentiable dynamics. Gardner

in [16] generalizes the notion of i-chord function to real values of the parameter i,

while Soranzo in [39] extends the definition of i-chord function to i = ±∞, when K

is a convex body, by

ρ+∞,K(u) = max {|ρK(u)| , |ρK(−u)|}

and

ρ−∞,K(u) = min {|ρK(u)| , |ρK(−u)|}

and found some results about the determination of convex bodies by these functions.

2.2 The ith section function

For integer values of i, the i-chord function is closely related (via Funk theorem)

to the ith section function of a convex body, the function giving the i-dimensional

volumes of its intersections with i-dimensional subspaces.

Definition 2.2.1 (ith section function).

Let p ∈ n and let K be a convex body in n and let i be an integer, 1 ≤ i ≤ n − 1.
The i-section function of K at p is defined on G (n, i) by

G +→ λi(K ∩ G).

The i-section function of K in a direction u ∈ Sn−1 is defined on G (n, i, u) by

G +→ λi(K ∩ G).

where G (n, i) denote the Grassmannian manifold of i-dimensional linear sub-
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spaces of n and λi the i-dimensional Lebesgue measure, while G (n, i, u) is the man-

ifold of all the i-dimensional affine subspaces of n parallel to the vector u.

We are in front of the following geometric problem:

« Suppose that K ⊂ n is a convex body and let ph be some non-

collinear points (some of them are possibly at infinity). Suppose, more-

over, that we are given at the points ph the ith section functions for

i ∈ {1, 2, · · · , n − 1}. Is K then uniquely determined among all convex

bodies? »

The ith section functions are a particular case of the notion of dual mixed volumes

introduced by Lutwak in [31] and generalized in [18]. Let L be a star set in n, and

let i ∈ be non-zero. If 1 ≤ k ≤ n − 1, the dual volume Ṽi,k(L ∩ S) is given for

S ∈ G (n, k) by

Ṽi,k(L ∩ S) =
1

2k

∫

Sn−1∩S
ρi,L(u)du. (2.3)

The function Ṽi,k(L ∩ ·) is called a section function. When i = k, the function

Ṽi,i(L ∩ ·) is called ith section function.

Observe that

Ṽi,i(L ∩ S) = λi(L ∩ S), (2.4)

for each S ∈ G (n, i).

This means that the ith section function is nothing other than the i-dimensional

X-ray of L at the origin.

Note that the relation (2.4) expresses the equivalence between the ith section

function and the X-ray of order i at the origin of the body K, moreover for k = i = 1

the 1-chord function of K at a point p and the 1st section function are nothing other

than the ordinary X-ray of K.

2.3 i-chord function and ith section function

In this section we state a lemma and two propositions that show the relationship

between i-chord function and ith section function. For further details we refer to

Gardner’s book [16]. First of all, the notion of the i-chord function is, in general,

closely linked to the notion of the X-ray of order i, and this relationship is established

by the following lemma.
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Lemma 2.3.1.

Let E be a body in n star-shaped at o. Suppose either that o /∈ E or that i ∈ +. If
i '= 0, then for each u ∈ Sn−1,

Xi,oE(u) =











1
i

(

ρE
i(u) + ρE

i(−u)
)

if o ∈ E,

1
i

∣

∣

∣

∣ρE
i(u)

∣

∣−
∣

∣ρE
i(−u)

∣

∣

∣

∣ if o /∈ E.

If i = 0 and o /∈ E, then for each u ∈ Sn−1,

X0,oE(u) =

∣

∣

∣

∣

log

∣

∣

∣

∣

ρE(u)

ρE(−u)

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore, the X-ray of order i is the i-chord function divided by i or the natural

logarithm of the i-chord function, according as i '= 0 or i = 0, respectively.

We now state the following useful proposition that gives a link between i-chord

functions and ith section functions for 1 ≤ i ≤ n−1, even if the latter is defined only

for integer values of i. This result relies on Funk’s theorem [12] and is discussed in

detail in [16].

Proposition 2.3.2.

Let K, K ′ be two convex bodies in n, and let i ∈ be such that 1 ≤ i ≤ n−1. Then

λi(K ∩ S) = λi(K
′ ∩ S)

for all S ∈ G (n, i), if and only if

ρi,K(u) = ρi,K ′(u)

for all u ∈ Sn−1.

This observation allows us to treat the geometric problem of studying the re-

construction of a convex body from X-rays or ith section functions within the more

general problem of retrieving a convex body from its i-chord functions. In fact, the

concept of chord function is not so appealing from the geometric point of view as

much as that of section function.

The next proposition (proved in [40], Proposition 2.2) establishes an important

relationship between the kth section function in direction u and the ordinary X-ray

in the same direction.
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Proposition 2.3.3.

Let u ∈ Sn−1 be a fixed direction, and suppose that K and K ′ are two convex bodies
in n. Let k ∈ be such that 1 ≤ k ≤ n − 1. Then

λk(K ∩ S) = λk(K
′ ∩ S)

for all S ∈ G (n, k, u) if and only if

λ1(K ∩ l) = λ1(K
′ ∩ l)

for every line l parallel to u.

Proof.
Let lu + x ∈ G (n, k, u) be the line passing through x ∈ u⊥ and parallel to u ∈ Sn−1.

By Fubini’s theorem we have

λk(Kj ∩ G) =

∫

G∩u⊥

λ1(Kj ∩ (lu + x))dλk−1(x)

for j = 1, 2, and this proves the theorem in one direction.

Now, consider the mapping on G (n, k, u) such that to each G ∈ G (n, k, u) assigns

the measure λk(Kj ∩ G). This is the (k − 1)-dimensional Radon transform of the

function fj(x) = λ1(Kj ∩ (lu + x)) for j = 1, 2, defined on the (n − 1)-dimensional

subspace u⊥. Since the Radon transform is injective it follows that f1 = f2, that is

λ1(K1 ∩ (lu + x)) = λ1(K2 ∩ (lu + x)),

and this completes the proof.

Proposition 2.3.3 shows that, when the point source is at the infinity, the kth

section function in direction u has as its counterpart the ordinary X-ray. By using

Propositions 2.3.2 and 2.3.3 we can reformulate the problem in analytic form:

« Suppose that K ⊂ n is a convex body and let ph be some noncollinear

points (some of them are possibly at infinity). Suppose, moreover, that

we are given at the points ph the i-chord functions, with i ∈ . Is K then

uniquely determined among all convex bodies? »
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2.4 The corresponding components

We can establish a correspondence between components of int (K)K ′), whenever

K and K ′ have the same i-chord function, for i > 0, at a point p. Consider two convex

bodies K and K ′ with the same i-chord function at a point p ∈ ∂K ∪ ∂K ′. Let l be

a line through p. Then two things may happen

1. l ∩ int (K)K ′) has two components;

2. l ∩ int (K)K ′) is empty.

Moreover, since i > 0, l ∩ K and l ∩ K ′ are two closed segments which may have a

nonempty intersection and in addition no one includes the other.

Definition 2.4.1 (Corresponding components).

Let K and K ′ be two convex bodies having the same i-chord functions at p /∈ ∂K∪∂K ′.
If A is a component of int (K)K ′) then we define

A′ =
⋃

z∈A

{pz ∩ int (K)K ′)} ! A

and we shall say that A and A′ correspond to each other through p.

Observe that if A ⊂ (K !K ′) then A′ ⊂ (K ′!K). In addition, the corresponding

components are star-shaped at p but not necessarily convex.

Lemma 2.4.2.

Let K and K ′ be two convex bodies having the same i-chord functions at p /∈ ∂K∪∂K ′.
If A and A′ are two corresponding components of int (K)K ′) and correspond to each
other through p then A and A′ have the same i-chord functions at p.

Proof.
To simplify the notation assume that p = o. Let z be a point in A. Denote by u

the direction identified by the point z, i.e. u = z
||z|| , and call l the line issuing from

the origin with direction u. Since z ∈ A, A ∩ l is a segment. To see this, suppose

by contrary that A = {z}, then A ∩ l = {z} and −uρK(−u) = −uρK ′(−u) = {z},

but this means that z ∈ ∂K ∩ ∂K ′ and this contradicts the assumptions that A ⊂

int (K ! K ′) Since K and K ′ have the same i-chord functions at o, we have

(a)
∣

∣|ρK(u)|i − |ρK(−u)|i
∣

∣ =
∣

∣|ρK ′(u)|i − |ρK ′(−u)|i
∣

∣ (2.5)
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if o /∈ K ∪ K ′, while

(b)

ρK(u)i + ρK(−u)i = ρK ′(u)i + ρK ′(−u)i (2.6)

if o ∈ K ∩ K ′.

(a) Without loss of generality we may assume that o, −uρK(−u) and uρK(u) are

in that order on l as well as o, −uρK ′(−u) and uρK ′(u), and moreover that

0 < ρK(u) < ρK ′(u) (2.7)

for every z ∈ A.

The relation (2.5) can be rewritten in the following way

ρK(u)i − (−ρK(−u))i = ρK ′(u)i − (−ρK ′(−u))i

and from this follows that

(−ρK ′(−u))i − (−ρK(−u))i = ρK ′(u)i − ρK(u)i.

The last identity tells us that A and A′ have the same i-chord functions.

Figure 2.2
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(b) Without loss of generality we may suppose that −uρK(−u), o and uρK(u) are

in the same order on l as well as −uρK ′(−u), o, uρK ′(u).

Assume also that

0 < ρK ′(u) < ρK(u) (2.8)

holds for every z ∈ A.

The relation (2.6) can be rewritten in the following way

ρK ′(u)i − ρK(u)i = ρK(−u)i − ρK ′(−u)i

and this means that A and A′ have the same i-chord functions at o.

Figure 2.3

Moreover observe that, from (2.8) follows that

ρK ′(u)i < ρK(u)i

that is

ρK(u)i − ρK ′(u)i > 0

and this means that A′ ∩ l is a non-degenerate segment, too.
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Now recall some useful topological preliminaries.

Definition 2.4.3 (Space path-connected).

A topological space X is said to be path-connected (or pathwise connected) if there is
a path joining any two points in X.

Theorem 2.4.4.

Let X and Y be topological spaces and let f : X +→ Y be a continuous function. If X

is path-connected then the image f(X) is path-connected.

Proof.
Let A ⊂ X be path-connected. We want to prove that f(A) is path-connected.

In fact, let y1, y2 ∈ f(A), then there exist x1, x2 ∈ A such that f(x1) = y1 and

f(x2) = y2. Since A is path-connected there exists a path γ : [0, 1] +→ X such that

γ(0) = x1, γ(1) = x2 and γ([0, 1]) ⊂ A. Now, the composition of two continuous

functions is continuous, so the function f ◦φ : [0, 1] +→ Y is continuous and moreover

(f ◦ γ)(0) = f(γ(0)) = f(x1) = y1, (f ◦ γ)(1) = f(γ(1)) = f(x2) = y2

and

(f ◦ γ)([0, 1]) = f(γ([0, 1])) ⊂ f(A)

then f(A) is path-connected.

Theorem 2.4.5.

If A is a nonempty connected open subset of n then A is path-connected.

Proof.
Let x, y be two points of A and suppose that y is not reachable from x. Divide A in

two subsets X and Y , where X is the set of all the points that are reachable from

x, while Y contains all the points that are not reachable from x. Therefore {X,Y }

is a partition of A, A = X
.
∪ Y with X and Y nonempty because at least x ∈ X

and y ∈ Y . Let us show that X and Y are open. Let x∗ ∈ X ⊂ A. Since A is

open there exist an open ball B(x∗) centered at x∗ such that x∗ ∈ B(x∗) ⊂ A. Since

B(x∗) is path-connected, every z ∈ B(x∗) is reachable from x∗ and so also from x.
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Consequently x∗ ∈ B(x∗) ⊂ X. Analogously, let y∗ ∈ Y ⊂ A, then there exists an

open ball B(y∗) centered at y∗ such that y∗ ∈ B(y∗) ⊂ A. Since B(y∗) is path-

connected, every w ∈ B(y∗) is not reachable from x hence y∗ ∈ B(y∗) ⊂ Y and so

Y is open. But this contradicts our assumption because A would not be connected.

Therefore Y = ∅ and A = X is path-connected.

Proposition 2.4.6.

If K and K ′ have the same i-chord functions at p /∈ ∂K ∪ ∂K ′, and suppose that A

is a component of int (K)K ′), then the set

A′ =
⋃

z∈A

{pz ∩ int (K)K ′)} ! A

is another component of int (K)K ′).

Proof.
To simplify the notation assume that p = o. It follows immediately from Lemma

2.4.2 that if z ∈ A, then A ∩ pz and A′ ∩ pz are non-degenerate segment. On the

other hand, if z ∈ ∂K ∩ ∂K ′, then also the other endpoint of the segment pz ∩ K

belongs to ∂K ∩ ∂K ′.

We have to distinguish two cases:

(a) A is between the origin o and A′;

(b) o is between A and A′.

(a) In this case pos(A) = pos(A′).

The set

U = Sn−1 ∩ pos(A)

is open and connected. Therefore we can represent the component A as

A =

{

z : −ρK

(

−
z

||z||

)

< ||z|| < −ρK ′

(

−
z

||z||

)

,
z

||z||
∈ U

}

with ρK(−v) = ρK ′(−v) when v belongs to U .

Similarly,

A′ =

{

w : ρK

(

w

||w||

)

< ||w|| < ρK ′

(

w

||w||

)

,
w

||w||
∈ U

}

.
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If v belongs to U then ρK(v) = ρK ′(v) and moreover,

−ρK(−u) < −ρK ′(−u)

if and only if

ρK(u) < ρK ′(u).

Let z1, z2 ∈ pos(A) and suppose that y1, y2 ∈ A′. Then

yj =
zj

||zj ||

[

tjρK

(

zj

||zj ||

)

+ (1 − tj)ρK ′

(

zj

||zj ||

)]

for j = 1, 2. If z1
||z1||

= z2
||z2||

, then y1 and y2 are aligned and so they are the

endpoints of a segment contained in A′. Otherwise, let

xj =
zj

||zj ||

[

tjρK

(

−
zj

||zj||

)

+ (1 − tj)ρK ′

(

−
zj

||zj ||

)]

for j = 1, 2. Since A is a component, A is a nonempty connected open subset

of n, then A is path-connected, therefore there exists a path x(s) joining x1

and x2 interior to A. We may represent it with two mapping f and g given by

f : [0, 1] +→ [0, 1] and g : [0, 1] +→ U

such that

f(0) = t1, f(1) = t2

and

g(0) =
z1

||z1||
, g(1) =

z2

||z2||
.

According to these assumptions,

x(s) = g(s) [f(s)ρK (−g(s)) + (1 − f(s))ρK ′ (−g(s))] .

Then

y(s) = g(s) [f(s)ρK (g(s)) + (1 − f(s))ρK ′ (g(s))]

is a path contained in A′ which connect y1 to y2, therefore A′ is path-connected

and so connected, and this implies that A′ is a component.

(b) Since the origin is between A and A′, pos(A) = −pos(A′). We can follow the

same argument in order to obtain the same conclusion. The only difference is
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that this time the set U is given by

U = Sn−1 ∩ pos(A′).

With this assumption the expression of A and A′ remain unchanged. Moreover,

choosing z1 and z2 in posA′, we can consider yj and xj, for j = 1, 2, in the

same way of the previous case and this completes the proof.

Consider two corresponding components A and A′ through a point p. If A is nearer

to p than A′ or, in other words, A is between p and A′, we shall say that A is “visible”

from p and write p(A) = A′, whereas if A′ is nearer to p, we write p−1(A) = A′; in

this way, either p(A) or p−1(A) is defined.



Chapter 3

Determination of planar convex

bodies by i-chord functions

In this chapter our goal is to investigate the tomography of convex bodies in the

plane.

3.1 i-chord functions of planar convex bodies

Lemma 3.1.1 (Cavalieri principle).

Let u ∈ Sn−1 be a direction and let E and E′ be two measurable sets such that
for each line l parallel to u, l ∩ E and l ∩ E′ are segments of equal length. Then
λn(E) = λn(E′).

The Cavalieri principle is substituted, in modern measure theory, by the Fubini’s

theorem.

From now on we will restrict our attention to the planar case. The three-dimensional

case will be treated in Chapter 4. We are not interested, in this exposition, in higher

dimensions.

The two-dimensional Cavalieri principle states that if two measurable sets have the

same parallel X-rays, then they have the same area.

For X-rays issuing from a point there is a substitute for the Cavalieri principle. This

fact was for the first time observed and exploited by Volčič in [44], where the author

introduced an appropriate measure which is preserved if two measurable sets have

the same point X-rays. The idea of replacing Lebesgue measure by the measure νi

of Definition 3.1.2, which has seeds in work of Finch, Smith and Solmon [23] and

of Falconer (see [11, Lemma2]), is due to Volčič. This idea has been extended by

35
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Gardner ([14]) to i-chord functions for i ∈ and later on the same author in his

book [16] to all real values of i.

Definition 3.1.2 (The measure νk).

Let L2 be the class of bounded Lebesgue measurable subset of 2. Let l be a line
chosen as the x-axis of a Cartesian coordinate system in 2. If E ∈ L2, define for
each k ∈ ,

νk(E) =

∫∫

E
|y|k−2dxdy.

νk is a measure on L2 and the line l will be called the base line for νk.

Observe that

ν2(E) = λ2(E).

If k > 1, then νk is a finite measure, but if k ≤ 1, then νk is a σ-finite measure in 2,

which is finite on sets having positive distance from l.

Lemma 3.1.3.

The set F = {(x, y) : a|x − x0| ≤ y ≤ b}, with a > 0 has finite νk-measure for every
positive value of k.

Proof.
Since the integrand f(x, y) = |y|k−2 is an unbounded function for y = 0, this is an

improper integral of second kind. Moreover f is an even function therefore

νk(F ) =

∫∫

F

|y|k−2dxdy = 2 lim
ε→0

∫∫

Tε

yk−2dxdy

where Tε is the trapezium in the first quadrant (see Figure 3.1)

Tε =
{

(x, y) : −
y

a
+ x0 ≤ x ≤

y

a
+ x0, ε ≤ y ≤ b

}

.

Since Tε is a normal domain with respect to the y-axis, the computation of this
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Figure 3.1

double integral reduces to:

νk(F ) = 2 lim
ε→0

∫∫

Tε

yk−2dxdy = 2 lim
ε→0

∫ b

ε

(
∫

y
a
+x0

− y
a
+x0

yk−2dx

)

dy

= 2 lim
ε→0

∫ b

ε
yk−2

(∫ y
a
+x0

− y
a
+x0

dx

)

dy = 2 lim
ε→0

∫ b

ε
yk−2

(

2y

a

)

dy

=
4

a
lim
ε→0

∫ b

ε
yk−1dy =

4

a
lim
ε→0

[

yk

k

]b

ε

=
4

a
lim
ε→0

[

bk − εk

k

]

=
4bk

ak
< ∞.

Let E1, E2 ∈ L2 with λ2(Ej) > 0, j = 1, 2. Let p = (x0, y0) ∈ 2, and suppose

that E1 and E2 are bodies star-shaped at p, with the same i-chord functions at p, for

some i. Moreover, suppose that E1∪E2 is contained in the half-plane {(x, y) : y > 0}
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and that E1 is between p and E2. Let (r, θ) be polar coordinates centered at p

{

x = x0 + r cos θ r ∈ [0,+∞)

y = y0 + r sin θ θ ∈ [0,π]
. (3.1)

Let 0 ≤ α < β ≤ π, and let

Ej = {(r, θ) : rj(θ) ≤ r ≤ sj(θ), α ≤ θ ≤ β} ,

for j = 1, 2.

Since E1 and E2 have, by assumptions, the same i-chord functions at p, and

p /∈ E1 ∪ E2 we have that

s1(θ)i − r1(θ)i = s2(θ)i − r2(θ)i (3.2)

or
s1(θ)

r1(θ)
=

s2(θ)

r2(θ)
(3.3)

hold for α ≤ θ ≤ β when i '= 0 or i = 0, respectively.

For j = 1, 2, the expression of νk in polar coordinates is

νk(Ej) =

∫ β

α

∫ sj(θ)

rj(θ)
|y0 + r sin θ|k−2rdrdθ.

If i '= 0 we put t = ri and we get

νk(Ej) =

∫ β

α

∫ sj(θ)i

rj(θ)i

1

i
· t

2−i
i (y0 + t

1
i sin θ)

k−2
dtdθ, (3.4)

while if i = 0 making the substitution t = log r we obtain

νk(Ej) =

∫ β

α

∫ log sj(θ)

log rj(θ)
e2t(y0 + et sin θ)

k−2
dtdθ. (3.5)

For the next three lemmas we have the same assumptions just described.

Lemma 3.1.4.

Let i ∈ . Suppose that E1 and E2 are defined as above, with finite νi-measure and
the same i-chord functions at p = (x0, 0). Then νi(E1) = νi(E2).
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Proof.
If i '= 0, substituting k = i and y0 = 0 in (3.4) for j = 1, 2 we get

νi(Ej) =

∫ β

α

∫ sj(θ)i

rj(θ)i

1

i
· t

2−i
i (t

1
i sin θ)

i−2
dtdθ

=

∫ β

α
(sin θ)i−2

(
∫ sj(θ)i

rj(θ)i

1

i
dt

)

dθ

=

∫ β

α

(sin θ)i−2
(

sj(θ)i − rj(θ)i

i

)

dθ.

While if i = 0, substituting k = i and y0 = 0 in (3.5) for j = 1, 2 we get

ν0(Ej) =

∫ β

α

∫ log sj(θ)

log rj(θ)
e2t(et sin θ)

−2
dtdθ

=

∫ β

α
(sin θ)−2

∫ log sj(θ)

log rj(θ)
dtdθ

=

∫ β

α
(sin θ)−2

(

log
sj(θ)

rj(θ)

)

dθ

and relations (3.2) and (3.3) complete the proof.

For i-chord functions at a point p we have to distinguish between equality and

equality almost everywhere. This difference does not exist for convex bodies not

containing p in their boundaries.

For example, let K be the upper half of the unit disk and let K ′ be the centered

disk of radius 1
2 , (see Figure 3.2). These two convex bodies, K and K ′, have 1-chord

functions at the origin equal almost everywhere, but not everywhere, since o ∈ ∂K.

If the i-chord functions of two star bodies at a point p agree almost everywhere, and

p is either contained in the interior of the bodies or exterior to them, then the i-chord

functions at p agree everywhere. Moreover, if the point p is exterior to both bodies,

then the equality of the i-chord functions at p implies that the bodies have common

supporting lines through p.

Lemma 3.1.5.

Let i ∈ . Suppose that E1 and E2 are defined as above, with finite νi−1-measure
and the same i-chord functions at p = (x0, 0). Then the centroids of E1 and E2, with
respect to the measure νi−1, lie on the same line through p.
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Figure 3.2

Proof.
Denote by cj = (xj , yj) the coordinates of the centroid of Ej , j = 1, 2, with respect

to the measure νi−1. Then for j = 1, 2 we have

xj =
1

νi−1(Ej)

∫∫

Ej

xyi−3dxdy

and

yj =
1

νi−1(Ej)

∫∫

Ej

yi−2dxdy =
νi(Ej)

νi−1(Ej)
.

Since, by assumption, νi−1(Ej) is finite for j = 1, 2 then also νi(Ej) is finite for

j = 1, 2. Now, compute the slope mj of the line through p and (xj , yj), for j = 1, 2.

mj =
yj

xj − x0
=

νi(Ej)
νi−1(Ej)

1
νi−1(Ej)

∫∫

Ejxyi−3dxdy−x0

=

νi(Ej)
νi−1(Ej)

RR

Ej
xyi−3dxdy−x0

RR

Ejyi−3dxdy

νi−1(Ej)

=
νi(Ej)

∫∫

Ej
(x − x0)yi−3dxdy

.
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Using polar coordinates centered at p we get

mj =
νi(Ej)

∫ β
α

∫ sj(θ)
rj(θ) r cos θ(r sin θ)i−3rdrdθ

=
νi(Ej)

∫ β
α

∫ sj(θ)
rj(θ) ri−1 cos θsin θi−3drdθ

=
νi(Ej)

∫ β
α cos θsin θi−3

(

∫ sj(θ)
rj(θ) ri−1dr

)

dθ

=























νi(Ej)
R β
α cos θsin θi−3 log

sj (θ)

rj (θ)dθ
if i = 0

νi(Ej)
R β
α

cos θsin θi−3 sj (θ)i−rj (θ)i

i
dθ

if i '= 0

.

By Lemma 3.1.4 and by relations (3.2) and (3.3), the equality of the i-chord functions

at p implies that the expression of the slopes m1 and m2 are equal and this means that

the line through p containing the centroid of E1 and the line through p containing

the centroid of E2, are the same.

Lemma 3.1.6.

Let i ∈ . Suppose that E1 and E2 are defined as above, with finite νi-measure and
the same i-chord functions at p = (x0, y0). Then

(a) If y0 = 0 and k > max{i, 1}, then νk(E1) < νk(E2), if i ≥ 0, and νk(E1) >

νk(E2), if i < 0.

(b) If y0 < 0, and E1 has finite νi-measure, then νi(E1) < νi(E2), if i > 2, and
νi(E1) > νi(E2), if i < 2; if y0 > 0, these inequalities are reversed.
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Figure 3.3

Proof.

(a) Assume y0 = 0. If i '= 0, the expression (3.4) of νk becomes

νk(Ej) =

∫ β

α

∫ sj(θ)i

rj(θ)i

1

i
· t

k−i
i (sin θ)k−2dtdθ. (3.6)

By assumption k > max{1, i}, so in particular k > i, therefore the integrand

increases with t.

Similarly, if i = 0, the expression (3.5) of νk becomes

νk(Ej) =

∫ β

α

∫ log sj(θ)

log rj(θ)
ekt(sin θ)k−2dtdθ. (3.7)

Again, since k > 0 the integrand increases with t. In both cases, the range of the

inner integral is of the same length for j = 1, 2, so if i ≥ 0, νk(E1) < νk(E2).

If i < 0, the integrands decrease and moreover we have that sj(θ)i < rj(θ)i

for j = 1, 2, so by interchanging the limits of the inner integral we obtain
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νk(E1) > νk(E2).

(b) If i '= 0, substituting k = i the derivative with respect to t of the integrand in

(3.4) is

−
i − 2

i2

(

t
1
i sin θ + y0

)i−3
t

2−2i
i y0.

Suppose that y0 < 0. If i > 2, the integrand increases with t, and the equality

of i-chord functions at p implies νi(E1) < νi(E2). If 0 < i < 2, the integrand

decreases with t, so νi(E1) > νi(E2). If i < 0, the integrand decreases but

sj(θ)i < rj(θ)i for j = 1, 2, so by interchanging the limits of the inner integral

we obtain νi(E1) > νi(E2). In the same way we treat the case i = 0. Sub-

stituting k = i = 0, the derivative with respect to t of the integrand in (3.5)

is

2
(

et sin θ + y0
)−3

e2ty0

and this decreases with t.

The case when y0 > 0 is dealt with similarly.

Note that the Lemma 3.1.4 and the Lemma 3.1.6 (a) hold for all values of i, while the

Lemma 3.1.6 (b) holds for all i '= 2, for this reason Lemma 3.1.6 (b) is unavailable

for i = 2.

Lemma 3.1.7.

Let i > 0, and let a, b, c, d ∈ + such that 0 ≤ a < b ≤ c < d. If

bi − ai = di − ci

then

(a) bk − ak > dk − ck if k < i;

(b) bk − ak < dk − ck if k > i.

Proof.
Letting

γ = bi − ai = di − ci > 0

we can write

b = (γ + ai)
1
i
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hence

bk − ak = (γ + ai)
k
i − ak.

Consider now the function f defined by

f(t) = (γ + ti)
k
i − tk.

Since

f ′(t) = kti−1(γ + ti)
k−i

i − ktk−1

= kti−1
[

(γ + ti)
k−i

i − tk−i
]

,

it follows that f is constant if k = i, while it is decreasing for k < i and is increasing

for k > i. This implies that for a < c we have

{

f(a) > f(c) if k < i

f(a) < f(c) if k > i

and this completes the proof.

Lemma 3.1.8.

Let a, b, c, d ∈ + such that 0 ≤ a < b ≤ c < d. If

b − a = d − c

then
b

a
>

d

c
.

Proof.
Letting

γ = b − a = d − c > 0

we can write b = γ + a hence

b

a
=

γ + a

a
=

γ

a
+ 1.
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Consider now the function f defined by f(t) = γ
t + 1. Since

f ′(t) = −
γ

t2
< 0

it follows that f is decreasing. Then for a < c we have f(a) > f(c), that is

b

a
>

d

c
.

Lemma 3.1.9.

Let i > 0. Suppose that E1 and E2 are defined as above, with finite area and the same
i-chord functions at p = (x0, y0). Then

(a) λ2(E1) = λ2(E2) if i = 2;

(b) λ2(E1) > λ2(E2) if i < 2.

Proof.
Compute λ2(Ej) using polar coordinates centered at p.

λ2(Ej) =

∫∫

Ej

dxdy =

∫ β

α

∫ sj(θ)

rj(θ)
rdrdθ

=

∫ β

α

[

r2

2

]sj(θ)

r1(θ)

dθ

=

∫ β

α

sj(θ)2 − rj(θ)2

2
dθ.

Equality (3.2) of i-chord functions at p implies that λ2(E1) = λ2(E2) for i = 2. If

i < 2, by putting a = r1(θ), b = s1(θ), c = r2(θ) and d = s2(θ) and using the Lemma

3.1.7 (a) we obtain the conclusion.

Observe that the previous lemma holds independently on the position of p in the

Euclidean plane, since y0 does not appear in the expression for the integral.
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Lemma 3.1.10.

Let i > 0. Assume that E1 and E2 are bounded measurable subset with the same
1-chord function at a direction parallel to the base line. Then νi(E1) > νi(E2) for
i < 2.

Proof.
By assumption, the equality of 1-chord function implies that E1 and E2 can be

parametrized in this way: Ej = {(x, y) : a ≤ x ≤ b, rj(x) ≤ y ≤ sj(x)}, for j = 1, 2

with

s1(x) − r1(x) = s2(x) − r2(x).

Compute now

νi(E1) =

∫∫

E1

yi−2dxdy =

∫ b

a

(

∫ s1(x)

r1(x)
yi−2dy

)

dx

=















∫ b
a

(

s1(x)i−1−r1(x)i−1

i−1

)

dx i '= 1

∫ b
a ln s1(x)

r1(x)dx i = 1

.

By Lemma 3.1.7 we have that

s1(x)i−1 − r1(x)i−1 > s2(x)i−1 − r2(x)i−1 for i < 2

while

s1(x)i−1 − r1(x)i−1 < s2(x)i−1 − r2(x)i−1 for i > 2

and this implies that

νi(E1) > νi(E2) for i < 2

while

νi(E1) < νi(E2) for i > 2.

If i = 1 we apply Lemma 3.1.8 and we get

s1(x)

r1(x)
>

s2(x)

r2(x)

therefore

ν1(E1) > ν1(E2)

and this complete the proof.
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3.2 A two-point solution

Recall the definition of corresponding components.

Definition 3.2.1 (Corresponding components).

Let K and K ′ be two convex bodies having the same i-chord functions at p /∈ ∂K∪∂K ′.
If A is a component of int (K)K ′) then we define

A′ =
⋃

z∈A

{pz ∩ int (K)K ′)} ! A

and we shall say that A and A′ correspond to each other through p.

Consider two corresponding components A and A′ through a point p. If A is

nearer to p than A′ or, in other words, A is between p and A′, we shall say that A

is “visible” from p and write p(A) = A′, whereas if A′ is between p and A, we write

p−1(A) = A′; in this way, either p(A) or p−1(A) is defined.

From now on, we shall suppose that i-chord functions, at two distinct points, of

a convex body K are given.

In the following proofs we use the measure introduced in Definition 3.1.2 and some

of the lemmas from the previous section.

Here, and for the remainder of this chapter, we only need these for i > 0, however.

Theorem 3.2.2.

Let i > 0 and suppose that K, K ′ are planar convex bodies and that p1, p2 are
distinct points in 2 such that K and K ′ have the same i-chord functions at p1 and
p2. Moreover, suppose that the line l through p1 and p2 meets intK, p1 and p2 do
not belong to intK, and K and K ′ either both meet the segment [p1, p2] or are both
disjoint from [p1, p2]. Then K = K ′.

Proof.
Assume that K ′ '= K. Consider the measure νk with the line l as base line.

First let us prove that no component C of int (K)K ′) has its closure C̄ meeting the

line l.
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• K intersects the line l between p1 and p2.

Suppose on contrary that there exists such a component C visible from p1 so

that C ′ = p1(C) is defined. Moreover, C ′ is visible from p2 and C ′′ = p2(C ′) is

defined and intersects C, but by definition of connected component necessarily

C = C ′′, therefore p2(C ′) = C, (see Figure 3.4). By construction C and C ′

have the same i-chord functions at p1 and p2. In particular, the equality of

i-chord function at p1, by Lemma 3.1.6 (a), gives νi+1(C) < νi+1(C ′), while

the equality of i-chord functions at p2 gives the opposite inequality νi+1(C ′) <

νi+1(C ′′) = νi+1(C), a contradiction.

Figure 3.4

• p1, p2 and K ∩ l are in that order on l.

Let C be a component visible from both p1 and p2. Then C ′ = p2(C) and

C ′′ = p1(C) intersect, so again by definition of connected component C ′ and

C ′′ have to coincide, C ′ = C ′′. Consider any line t through p2 separating p1

from K ∪ K ′ and let νi be the measure having the line t as base line, so p1

and p2 correspond, respectively, to negative y-coordinate and zero y-coordinate,

(see Figure 3.5). By Lemma 3.1.4 C ′ = p2(C) implies νi(C) = νi(C ′), but by

Lemma 3.1.6 (b) C ′ = p1(C) implies νi(C) < νi(C ′) if i > 2 or νi(C) > νi(C ′)

if 1 ≤ i < 2, a contradiction.
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Figure 3.5

Denote by u the direction of the line l. When i = 2 assume that l ∩ C '= ∅,

and also that ∂K and ∂K ′ meet l at points at distances r1 = −ρK−p1(−u),

s1 = ρK−p1(u) and s1 = ρK−p1(u), r2 = −ρK ′−p1(−u) and s2 = ρK ′−p1(u),

respectively, from p1 with rj < sj, forj = 1, 2. The equality of 2-chord functions

of K and K ′ at p1 implies that

s1
2 − r1

2 = s2
2 − r2

2.

If the distance between p1 and p2 is b, then the equality of 2-chord functions

at p2 implies

(s1 + b)2 − (r1 + b)2 = (s2 + b)2 − (r2 + b)2.

Observe that for j = 1, 2

(sj + b)2 − (rj + b)2 =

∫ sj
2

rj
2

(1 + bt−
1
2 )dt.

For j = 1, 2, the interval of integration is of the same length, and the integrand

decreases as t increases. Therefore r1 = r2 and s1 = s2, contradicting the
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assumption on C. These arguments prove that there is no component which

meets l. There is a component C ′ of int (K)K ′), disjoint from C, such that C

and C ′ have the same 2-chord functions at p1 and p2. By Lemma 3.1.3, C and

C ′ have finite ν1-measure , so by Lemma 3.1.5 C and C ′ have their centroids

c and c′, respectively, with respect to the measure ν1, lying on the same line

lj '= l through pj, for j = 1, 2. But this implies that c = c′ = l1 ∩ l2, which is

impossible since C and C ′ are disjoint.

As seen before, there is a nonempty component C1 of int (K)K ′) such that its closure

C1 does not meet l, then C1 must be away enough from l.

• p1, p2, K ∩ l are in that order on l;

Moreover suppose that C1 is visible from neither from p1 nor from p2. Then

C2 = p2
−1(C1) is defined and consequently C2 is visible from p1 thus C3 =

p1(C2) and C4 = p2
−1(C3) are also defined. We generate so a sequence of

Figure 3.6

disjoint components of int (K)K ′)

C2n+1 = p1(C2n) and C2n+2 = p2
−1(C2n+1)

for n ∈ .

Observe that the Lebesgue measure of these components is decreasing, but they

have equal νi-measure, therefore by Lemma 3.1.4

νi(C1) = νi(C2) = · · · = νi(Cn) = · · · = δ > 0
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for n ∈ . From the convexity of K, there exists a subsequence {C2n}n∈

contained in a triangle T with a vertex on l and having basis parallel to l, (see

Figure 3.6). By Lemma 3.1.3, the triangle T has finite νi-measure

C2n ⊂ T ∀n ∈ =⇒
⋃

n∈

C2n ⊂ T.

By countable additivity and monotonicity of the measure νi we get

∑

n∈

νi(C2n) = νi

(

⋃

n∈

C2n

)

< νi(T ) < ∞,

but, on the other hand

∑

n∈

νi(C2n) =
∑

n∈

δ = ∞,

a contradiction.

Similarly, if C1 is visible from p2 and so also from p1, then we can consider the

sequence of disjoint components of int (K)K ′) given by

C2n+1 = p2
−1(C2n) and C2n+2 = p1(C2n+1)

for n ∈ and reach the same conclusion.

• p1, K ∩ l, p2 are in that order on l;

In this case, when C1 is not visible from p1, we consider the sequence is

C2n+1 = p2
−1(C2n) and C2n+2 = p1

−1(C2n+1)

for n ∈ .

While, if C1 is visible from p1, then C1 is not visible from p2 and we consider

the following sequence

C2n+1 = p1
−1(C2n) and C2n+2 = p2

−1(C2n+1)

for n ∈ .

In all these situations, we can find a triangle having finite νi-measure which contains

a subsequence of Cn reaching the same contradiction as in the first case.
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Theorem 3.2.3.

Let i ≥ 1 and suppose that K and K ′ are planar convex bodies and that p1, p2 are
distinct points (possibly one at infinity) such that K and K ′ have the same i-chord
functions at p1 and p2. Moreover, suppose that the line l through p1 and p2 supports
K and that p1 and p2 do not belong to K. Then K = K ′.

Proof.
We can use the same argument followed in the previous theorem in order to show that

no component C of int (K)K ′) has its closure C meeting the line l. This means that

the components of int (K)K ′) have positive distance from the line l and therefore

K∩ l = K ′∩ l if these sets are line segments. Suppose that K∩ l and K ′∩ l are single

points. Without loss of generality we may assume that l is the x-axis, p1 the origin

and p2 = (x2, 0), with x2 > 0, and suppose that K ⊂ {(x, y) : y ≥ 0}. Consider the

functions g1(u) and g2(v) defined as follows:

g1(u) = νi(K1(u)), u ∈
]

0,
π

2

[

,

g2(v) = νi(K2(v)), v ∈
]π

2
,π
[

,

where

K1(u) = {(x, y) : y ≥ x tan u} ∩ K

and

K2(v) = {(x, y) : y ≥ (x − x2) tan v} ∩ K.

Both functions are continuous on their supports and strictly monotone. In particular

g1 is decreasing, while g2 is increasing. Moreover, they are such that

lim
u→0

g1(u) = νi(K)

and

lim
v→π

g2(v) = νi(K).

For u small enough, there exists a unique angle v(u) such g1(u) = g2(v(u)) and such

that the corresponding lines y = x tan u and y = (x−x2) tan v(u) intersect at a point



3.2 A two-point solution 53

q(u) interior to K. Therefore

lim
u→0

q(u) = q ∈ ∂K ∩ l,

that is, q is uniquely determined by i-chord functions of K, and this means that

K ∩ l = K ′ ∩ l.

Since l supports K, we have to distinguish two cases:

(a) there exist a line t distinct from l, supporting K at some point q ∈ ∂K ∈ l;

(b) l is the only line supporting K at every point in ∂K ∩ l.

In both cases, if l (or t) is a supporting line for K, then l (or t) is a supporting line

for K ′, too. In fact, if l is the only line supporting K at every point in ∂K ∩ l and

suppose by contrary that there exists a line t through q, distinct from l, supporting

K ′, then t ∩ int K ′ '= ∅. This implies that there is a component C of int (K ! K ′)

such that C̄ ∩ l '= ∅, a contradiction.

Case (a)

Let t '= l be a line supporting K at q ∈ ∂K∩l. Take the sequence of components

of int (K)K ′) defined as follows.

C2n+1 = p2(C2n) and C2n+2 = p1
−1(C2n+1)

for all n ∈ . Again if we consider the subsequence {C2n}n∈ contained in

a triangle with an edge on the line t separating p1 from K ∪ K ′ we get a

contradiction.

If [p1, p2]∩K '= ∅, then we can obtain the same contradiction using the sequence

C2n+1 = p2
−1(C2n) and C2n+2 = p1

−1(C2n+1)

for all n ∈ or the sequence

C2n+1 = p1
−1(C2n) and C2n+2 = p2

−1(C2n+1)

for all n ∈ .

Case (b)

If l is the only line supporting K at every point of K ∩ l, it may happen that

νi(K)K ′) = ∞, so the prevision method does not work. For this reason we use
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a different technique called “chord chasing”. Suppose that ∂K ∩ l = ∂K ′ ∩ l =

[q1, q2] (where possibly q1 = q2). If K '= K ′, there exists a line l′, such that

K∩l′ '= K ′∩l′ and such that every supporting line or chord of K or K ′ between

l and l′ makes an angle smaller than π
4 with the line l. We may also assume

that for any x ∈ ∂K∪∂K ′ between l and l′, the lines through x and pj, j = 1, 2,

make an angle with l smaller than π
4 . We now consider the various positions

of the points p1 and p2 with respect to the segment [q1, q2]. Suppose initially

that p2, p1, q1 and q2 are in that order on l. Take y1 ∈ ∂K ′ ∩ l′ such that

[p1, y1]∩K '= ∅ and y1 /∈ K. Let p1, x2, x1, and y1 be in that order on the line

through p1 and y1, with xj ∈ ∂K, j = 1, 2, and let y2 be the other endpoint of

the chord of K ′ on that line. By assumption K and K ′ have the same i-chord

function at p1, i. e. ρi,K,p1 = ρi,K ′,p1 then

||y1 − p1||
i − ||y2 − p1||

i = ||x1 − p1||
i − ||x2 − p1||

i. (3.8)

Now let the line through p2 and y2 meet ∂K (respectively ∂K ′) in points z2,

z3 (respectively y2, y3), with p2, z2, y2, z3, y3 in that order. Consider a line

m supporting K at z2. Let T be the triangle determined by m, l, and the line

through p1 and x2. From the assumptions it follows that the angle at the vertex

v of T not belonging to l is larger than π
2 . The same angle is opposite to [z2, y2]

in the triangle with vertices z2, y2, and v, and therefore ||y2 − z2|| > ||v − y2||.

Then by convexity of K we have ||v − y2|| > ||x2 − y2|| and hence

||y2 − z2|| > ||x2 − y2|| (3.9)

and the equality of i-chord function at p2, i. e. ρi,K,p2 = ρi,K ′,p2 implies

||y3 − p2||
i − ||y2 − p2||

i = ||z3 − p2||
i − ||z2 − p2||

i. (3.10)

Next, let the line through p1 and y3 meet ∂K (respectively ∂K ′) in points x3,

x4 (respectively y3, y4), with p1, x4, y4, x3, y3 in that order. From the convexity

of K we have

||y3 − z3|| < ||x3 − y3||. (3.11)

The equations (3.8) and (3.10) can be rewritten in the following way:

||y2 − p1||
i − ||x2 − p1||

i = ||y1 − p1||
i − ||x1 − p1||

i (3.8’)
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||y3 − p2||
i − ||z3 − p2||

i = ||y2 − p2||
i − ||z2 − p2||

i. (3.10’)

Consider the function f(t) = ti. Its derivative is f ′(t) = iti−1.

By the Lagrange theorem there exist (and are unique, since f is strictly convex)

s ∈ ]x2, y2[ and w ∈ ]x1, y1[ such that

||y2 − p1||
i − ||x2 − p1||

i =
(

||y2 − p1||− ||x2 − p1||
)

i ||s − p1||
i−1

and

||y1 − p1||
i − ||x1 − p1||

i =
(

||y1 − p1||− ||x1 − p1||
)

i ||w − p1||
i−1.

By (3.8’) we get

||y2 − x2|| i ||s − p1||
i−1 = ||y1 − x1|| i ||w − p1||

i−1

||y2 − x2|| = ||y1 − x1||

(

||w − p1||

||s − p1||

)i−1

. (3.12)

Analogously, there exist (and are unique) t ∈ ]z3, y3[ and r ∈ ]z2, y2[ such that

||y3 − p2||
i − ||z3 − p2||

i =
(

||y3 − p2||− ||z3 − p2||
)

i ||t − p2||
i−1

and

||y2 − p2||
i − ||z2 − p2||

i =
(

||y2 − p2||− ||z2 − p2||
)

i ||r − p2||
i−1.

As before, by (3.10’) we get

||y3 − z3|| i ||t − p2||
i−1 = ||y2 − z2|| i ||r − p2||

i−1

||y3 − z3|| = ||y2 − z2||

(

||r − p2||

||t − p2||

)i−1

. (3.13)

Now we have

||y3 − x3||
(3.11)

> ||y3 − z3||
(3.13)

= ||y2 − z2||

(

||r − p2||

||t − p2||

)i−1

(3.9)
> ||y2 − x2||

(

||r − p2||

||t − p2||

)i−1

(3.12)
> ||y1 − x1||

(

||w − p1||

||s − p1||

)i−1( ||r − p2||

||t − p2||

)i−1

.



3.2 A two-point solution 56

Putting

c′ =

(

||p1 − w|| ||p2 − r||

||p1 − s|| ||p2 − t||

)i−1

we get

||y3 − x3|| > c′||y1 − x1||.

If we consider the points a and b in which the two segments [r, s] and [t, w], ex-

tended, meet l then we obtain four triangles )(s, p1, a), )(w, p1, b), )(r, p2, a)

and )(t, p2, b). We denote by α = !(s, p1, a) = !(w, p1, b), β = !(r, p2, a) =

!(t, p2, b), γ = !(w, b, p1) = !(t, b, p2), δ = !(s, a, p1) = !(r, a, p2), therefore

by the Law of Sines, applied to the four triangles mentioned above, we have

that

||p1 − w|| = ||b − w||
sin γ

sinα
, ||p1 − s|| = ||a − s||

sin δ

sin α

||p2 − r|| = ||a − r||
sin δ

sinβ
, ||p2 − t|| = ||b − t||

sin γ

sinβ
.

So c′ can be rewritten in the following way

c′ =

(

||b − w|| sin γ
sin α · ||a − r|| sin δ

sinβ

||a − s|| sin δ
sinα · ||b − t|| sin γ

sin β

)i−1

=

(

||b − w|| ||a − r||

||a − s|| ||b − t||

)i−1

=

(

||b − w||

||b − t||

)i−1( ||a − r||

||a − s||

)i−1

≥ 1.

This holds because by assumption i ≥ 1. This implies that

||y3 − x3|| > ||y1 − x1||.

Iterating inductively this construction, we obtain two sequences {x2n+1} and

{y2n+1} such that

||y2n+1 − x2n+1|| > ||y2n−1 − x2n−1||
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for every n, and on the other hand

lim
n→∞

x2n+1 = lim
n→∞

y2n+1 = q2

which is impossible.

Now suppose that p1, [q1, q2] and p2 are in that order on l. Take y1 ∈ (∂K ′ ∩

l′) ! K such that the line through p1 and y1 intersects intK. Let p1, x2, y2,

x1, and y1 be in that order, with xj ∈ ∂K and yj ∈ ∂K ′ for j = 1, 2. By

assumption K and K ′ have the same i-chord function at p1 then

||y1 − p1||
i − ||y2 − p1||

i = ||x1 − p1||
i − ||x2 − p1||

i

or equivalently

||y1 − p1||
i − ||x1 − p1||

i = ||y2 − p1||
i − ||x2 − p1||

i. (3.14)

Now let the line through p2 and y2 meet ∂K (respectively ∂K ′) in points z2, z3

(respectively y2, y3), with z2, y2, z3, y3 and p2 in that order. Then by convexity

||y2 − z2|| > ||y2 − x2|| (3.15)

and the equality of i-chord function at p2 implies

||z2 − p2||
i − ||z3 − p2||

i = ||y2 − p2||
i − ||y3 − p2||

i.

or equivalently

||z3 − p2||
i − ||y3 − p2||

i = ||z2 − p2||
i − ||y2 − p2||

i. (3.16)

Next, let the line through p1 and y3 meet ∂K (respectively ∂K ′) in points x3,

x4 (respectively y3, y4), with p1, x4, y4, x3, y3 in that order. Then by convexity

||y3 − x3|| > ||y3 − z3||. (3.17)

By the Lagrange theorem, applied to the function f(t) = ti, there exist (and

are unique) r ∈ ]x1, y1[ and s ∈ ]x2, y2[ such that

||y1 − p1||
i − ||x1 − p1||

i =
(

||y1 − p1||− ||x1 − p1||
)

i ||r − p1||
i−1
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and

||y2 − p1||
i − ||x2 − p1||

i =
(

||y2 − p1||− ||x2 − p1||
)

i ||s − p1||
i−1.

By (3.14) we get

||y1 − x1|| i ||r − p1||
i−1 = ||y2 − x2|| i ||s − p1||

i−1

||y2 − x2|| = ||y1 − x1||

(

||r − p1||

||s − p1||

)i−1

||y2 − x2|| > ||y1 − x1||. (3.18)

Analogously, there exist (and are unique) t ∈ ]y2, z2[ and w ∈ ]y3, z3[ such that

||z2 − p2||
i − ||y2 − p2||

i =
(

||z2 − p2||− ||y2 − p2||
)

i ||t − p2||
i−1

and

||z3 − p2||
i − ||y3 − p2||

i =
(

||z3 − p2||− ||y3 − p2||
)

i ||w − p2||
i−1.

By (3.16) we get

||z3 − y3|| i ||u − p2||
i−1 = ||z2 − y2|| i ||t − p2||

i−1

||z3 − y3|| = ||z2 − y2||

(

||t − p2||

||w − p2||

)i−1

||z3 − y3|| > ||z2 − y2||. (3.19)

Now we have

||y3 − x3||
(3.17)

> ||y3 − z3||
(3.19)

> ||y2 − z2||

(3.15)
> ||y2 − x2||

(3.18)
> ||y1 − x1||.

Therefore ||y3 − x3|| > ||y1 − x1||.

Continuing in this fashion, we construct two sequences {x2n+1} and {y2n+1}

such that

||y2n+1 − x2n+1|| > ||y2n−1 − x2n−1||

for every n, and

lim
n→∞

x2n+1 = lim
n→∞

y2n+1 = q2
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which is impossible.

Finally, suppose that p2 is at infinity. Let p1, q1 and q2 be in that order on l,

and p2 is the point at infinity of l. Take y2 ∈ (∂K ′ ∩ l′) ! K such that the line

through p1 and y2 intersects intK . Let x1, y1, x2, and y2 be in that order on

l′, with xj ∈ ∂K ∩ l′ and yj ∈ ∂K ′ ∩ l′ for j = 1, 2. By assumption K and K ′

have the same X-ray in the direction of l therefore

||y1 − y2|| = ||x1 − x2||

and also

||y1 − x1|| = ||y2 − x2||. (3.20)

Now let the line through p1 and y2 meet ∂K (respectively ∂K ′) in points z2, z3

(respectively y2, y3), with p1, z3, y3, z2 and y2 in that order. Then by convexity

||y2 − z2|| > ||x2 − y2|| (3.21)

and the equality of i-chord function at p1 implies

||y2 − p1||
i − ||y3 − p1||

i = ||z2 − p1||
i − ||z3 − p1||

i

or equivalently

||y2 − p1||
i − ||z2 − p1||

i = ||y3 − p1||
i − ||z3 − p1||

i. (3.22)

Next, let the line through y3 parallel to l meet ∂K (respectively ∂K ′) in points

x3, x4 (respectively y3, y4), with x3, y3, x4, y4 in that order. Then by convexity

||y3 − x3|| > ||y3 − z3|| (3.23)

and the equality of X-ray in the direction of l implies

||y3 − y4|| = ||x3 − x4||

and also

||y3 − x3|| = ||y4 − x4||. (3.24)

Again, by the Lagrange theorem there exist (and are unique) r ∈ ]z2, y2[ and
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s ∈ ]z3, y3[ such that

||y2 − p1||
i − ||z2 − p1||

i =
(

||y2 − p1||− ||z2 − p1||
)

i ||r − p1||
i−1

and

||y3 − p1||
i − ||z3 − p1||

i =
(

||y3 − p1||− ||z3 − p1||
)

i ||s − p1||
i−1.

By (3.22) we get

||y2 − z2|| i ||r − p1||
i−1 = ||y3 − z3|| i ||s − p1||

i−1

||y3 − z3|| = ||y2 − z2||

(

||r − p1||

||s − p1||

)i−1

. (3.25)

Now we have

||y4 − x4||
(3.24)

= ||y3 − x3||
(3.23)

> ||y3 − z3||

(3.25)
= ||y2 − z2||

(

||r − p1||

||s − p1||

)i−1

> ||y2 − z2||.

Therefore ||y4 − x4|| > ||y2 − x2||, and continuing inductively to construct the

sequences {x2n} and {y2n} with x2n ∈ ∂K and y2n ∈ ∂K ′ such that

||y2n+2 − x2n+2|| > ||y2n − x2n||

for every n, while on the other hand

lim
n→∞

x2n+2 = lim
n→∞

y2n+2 = q2,

a contradiction.
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Remark 3.2.4.

Observe that this result holds for every i belonging to [1,+∞). In particular for i = 1

we retrieve ([16], Theorem 5.3.1) and for i = 2 ([14], Theorem 1).

The essential idea of the chord chasing seems to have first been employed by Süss

in [38], and also used by Rogers in [34].

Theorem 3.2.5.

Let i > 0. Suppose that K is a planar convex body and that p1, p2 are distinct points
belonging to intK. If K ′ is a planar convex body with the same i-chord functions as
K at p1 and p2, then K = K ′.

Proof.
By assumption p1 and p2 are interior to K.

First we show that (∂K ∩∂K ′)! l '= ∅, that is, the boundaries of K and K ′ intersect

in some other point not belonging to the line l. If we suppose the contrary, then

int (K)K ′) has exactly two components C and C ′. Consider the two lines t1 and t2

through p1 and p2 respectively, orthogonal to l. Denote by Ej and E′
j , j = 1, 2, the

open half-planes determined by the two lines t1 and t2, with p1 ∈ E2 and p2 ∈ E′
1,

(see Figure 3.7) Lemma 3.1.3 and convexity imply that C and C ′ both have finite

Figure 3.7
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νi−measure. Since Ej∩C and E′
j∩C ′ have the same i-chord functions at pj, j = 1, 2,

by Lemma 3.1.4 we have

νi(E1 ∩ C) = νi(E
′
1 ∩ C ′) (3.26)

and

νi(E2 ∩ C) = νi(E
′
2 ∩ C ′). (3.27)

But on the other hand E1 ∩ C ⊂ E2 ∩ C and E′
2 ∩ C ′ ⊂ E′

1 ∩ C ′, therefore by the

monotonicity of the measure νi we have

νi(E1 ∩ C) < νi(E2 ∩ C)
(3.26)

= νi(E
′
2 ∩ C ′) < νi(E

′
1 ∩ C ′)

(3.27)
= νi(E1 ∩ C),

a contradiction. Assume now that there exists a component C of int (K)K ′) with

one endpoint x ∈ ∂K ∩ C not belonging to l. We will show now that C ∩ l = ∅.

Suppose, by contradiction, that the other endpoint y belongs to l. We may suppose

that p1, p2 and y are in that order on l. Let x1 ∈ ∂K ∩ xp1 and x2 ∈ ∂K ∩ x1p2,

with x '= x1 '= x2 '= x.

p p 

K 

l 1 2 
x 

x 

y 

x 

1 

2 

Figure 3.8

Then x1, x2 belong to ∂K ∩ ∂K ′, but x2 must lie strictly between x and y in ∂K

and this means that the closures of their two correspondent components intersect each

other and this is impossible, (see Figure 3.8). Suppose now that C1 is a component

of int (K)K ′). Having excluded that C1 ∩ l '= ∅, we can construct a sequence of
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disjoint components

C2n = p1
−1(C2n−1) and C2n+1 = p2

−1(C2n)

for all n ∈ , (see Figure 3.9). They all have the same νi−measure and are contained

in int (K)K ′) which is of finite νi−measure, therefore K is uniquely determined.

p p 

K 

l 1 2 y 

C 

C 

C 

1 

2 

3 

Figure 3.9

Observe that the knowledge of the position with respect to the segment [p1, p2] of

the intersection of K with the line l is a fundamental hypothesis, because it guarantees

the uniqueness of the convex body K, in fact, as can be seen from Figure 3.10, we

cannot exclude the existence of a convex body K ′ '= K having the same i-chord

functions at p1 and p2 but not having the same component of l ! {p1, p2} as K.

Falconer in [11], referring to this situation depicted in Figure 3.10, stated that

if p1 and p2 are two different exterior points “it seems unlikely that two distinct sets
could have the same chord functions but it seems difficult to produce a general method
for eliminating one of the two possibilities.”
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Figure 3.10

If one of the points is at infinity, then an easy example of two convex bodies having

the same chord functions is the following, (see Figure 3.11).

Figure 3.11
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Let p1 be the origin of a cartesian system, and let p2 be the point at infinity of

the x-axis, then

K =
{

(x, y) : (x − 2)2 + y2 ≤ 1
}

and

K ′ =
{

(x, y) : (x + 2)2 + y2 ≤ 1
}

have the same X-rays at the origin and at the infinity.

However, some interesting computer studies carried at by Volčič with the help of

Michelacci show that it is possible the existence of examples similar to those depicted

in Figure 3.10.

3.3 A three-point solution

Adding a further point source, the ambiguity showed in Figure 3.10 disappears,

and we have the following uniqueness theorem depending on the position of K with

respect to the three noncollinear points.

Theorem 3.3.1.

Let i > 0. i-chord functions at three noncollinear points determine a convex body K

in the interior of the triangle T formed by the points.

Proof.
Let K ′ '= K be a convex body having the same i-chord functions as K at the

three points p1, p2 and p3. Then K ′ must be also contained in the interior of the

triangle T with vertices the three points pj, for j = 1, 2, 3. Let A be a component of

int (K)K ′) of maximal νi+1-measure. Denote by E the open half-plane containing

A and bounded by the line through the endpoints of A in ∂K ∩ ∂K ′. For some j,

pj ∈ E and this implies that A is visible from pj. Without loss of generality we may

assume that A is visible from p1. But then p1(A) is defined, and taking p1p2 as base

line, by Lemma 3.1.6 (a), νi+1(pj(A)) > νi+1(A), a contradiction.

Theorem 3.3.2.

Let 0 < i < 2 and let p1, p2 and p3 be three noncollinear point in 2. Denote by
T = ∆(p1, p2, p3) the triangle with vertices in these three points, and let T ′(pj) be
the image of T under reflection at pj . Then i-chord functions at pj for j = 1, 2, 3

determine a convex body K in each of the following situations.

(a) K ⊂ int(pospj
T ) ! T ;
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(b) K ⊂ int(pospj
T ′(pj)).

Proof.
For reasons of symmetry we may assume that K (and therefore also K ′) is contained

in the cone posp1
T determined by lines through p1 and pj , j = 2, 3, and containing

the triangle T . So let T ′(p1) = T ′ be the image of T under reflection at p1. Then the

two cases that we have to consider are:

(a) K ⊂ int(posp1
T ) ! T ;

(b) K ⊂ int(posp1
T ′).

We shall assume that K ′ '= K and conclude with a contradiction.

(a) In this case the segment [p2, p3] separates T from K (and so K ′). Take a coordi-

nate system in which the line p2p3 has equation y = 0 and consider p2p3 as the

base line for the measure νi. We can assume that K ⊂ {(x, y) : y > 0} so that

the point p1 has negative y-coordinate. Let B1 be a component of int (K)K ′)

having maximal νi-measure. Since 0 < i < 2 the maximality of νi(B1) and

Lemma 3.1.6 (b) imply that all components having maximal measure must be

visible from p1. Therefore B1 is visible from p1, so by convexity B1 is visi-

ble also from either p2 or p3. Without loss of generality, we may assume that

B2 = p2(B1) is defined, and by Lemma 3.1.4 νi(B2) = νi(B1). Again, from the

maximality of νi(B2) it follows that B2 is visible from p1 and by convexity also

from either p2 or p3, but by construction B1 is not visible from p2. We may

assume that B3 = p3(B2) is defined and νi(B3) = νi(B2). By construction B3 is

not visible from p3 and if it were not visible from p2 also, it would not be visible

from p1, obtaining again the same contradiction, since νi(p1
−1(B3)) > νi(B1).

So this procedure can be iterated obtaining a sequence of disjoint components

given by B2n = p2(B2n−1) and B2n+1 = p3(B2n) having the same νi-measure

and contained in the set K ∪ K ′. Since i > 0, and K ∪ K ′ ⊂ {(x, y) : y > 0},

νi(K ∪ K ′) < ∞, we have

νi

(

⋃

j∈

Bj

)

=
∑

j∈

νi(Bj) = ∞,

but, on the other hand,

∞ = νi

(

⋃

j∈

Bj

)

≤ νi(K ∪ K ′
)

< ∞,
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a contradiction.

(b) Also in this case, we consider a component C1 of int (K)K ′) having maximal

measure νi. Let us take now the line p1p2 separating p3 from K as base plane
for the measure νi. Assume that K ⊂ {(x, y) : y > 0} so that the point p3

has negative y-coordinate. The maximality of νi(C1) and Lemma 3.1.6 (b)

imply that C1 is visible from p3, so by convexity C1 is visible also from p1

consequently C2 = p1(C1) is defined and, by Lemma 3.1.4 νi(C1) = νi(C2).

Now C2 is not visible from p2, thus C3 = p2
−1(C2) is defined and by Lemma

3.1.4 νi(C3) = νi(C2). Obviously C3 is visible from p2 and by convexity C3 is

also visible from p1, so C4 = p1(C3) is defined, and by Lemma 3.1.4 νi(C4) =

νi(C3). Iterating this process, we construct the sequence C2n = p1(C2n−1) and

C2n+1 = p2
−1(C2n). As in the previous case, we get a contradiction because

this components are disjoint, have the same νi-measure, and are contained in

K ∪ K ′ of finite νi-measure.

Theorem 3.3.3.

Let i > 0. Suppose that K, K ′ are two planar convex bodies with the same i-chord
functions at three noncollinear points p1, p2, and p3 not belonging to K∪K ′. If intK
and intK ′ meet one or more lines pjph, for j '= h and j, h ∈ {1, 2, 3}, then K = K ′.

Proof.
If K intersects one or more lines pjph, then the supports of two i-chord functions

at pj and ph determine one bounded quadrangle and two unbounded regions which

may contain K but the support of the i-chord function at the remaining third point

determines the position of K with respect to the segment [pj , ph]. Thus, K and K ′

belong to the same component of pjph ! {pjph}, then either both meet the segment

[pj, ph] or are both disjoint from [pj , ph]. We can therefore apply Theorem 3.2.2 to

conclude that K = K ′.

In fact, without loss of generality we may assume that int K and intK ′ meet the line

p1p2.

• Assume that p1, K ∩ p1p2 and p2 are in that order on p1p2

Let A be a component of int (K)K ′) visible from p1 such that its closure meets

the segment [p1, p2], then A′ = p1(A) is visible from p2 and A′′ = p2(A′) is such

that A ⊂ A′ but this contradicts the definition of connected component, there-

fore it must be p2(A′) = A. So we have only two components of int (K)K ′),
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one totally visible from p1 and one totally visible from p2. The equality of the i-

chord functions at p3 also implies that the bodies have common supporting lines

through p3, so the i-chord functions distinguish the convex body, because the

line supporting K and K ′ are distinct. In fact, there is a direction u ∈ S1 such

that ρK ′,p3(u) '= ρK,p3(u). This implies that K ∩ [p1, p2] = K ′ ∩ [p1, p2] = {q}.

Take as base line for the measure νi a line through p1 or p2 such that it does

not meet K and so K ′. Without loss of generality we can choose p2. Take a

coordinate system in which this line has equation y = 0. We can assume that

K ⊂ {(x, y) : y > 0} so that the point p3 has negative y-coordinate. By Lemma

3.1.4, the equality of i-chord functions at p2 implies νi(A′) = νi(A), while by

Lemma 3.1.6, the equality of i-chord functions at p3 implies νi(A′) < νi(A) if

i > 2 or νi(A′) > νi(A) if i < 2, a contradiction.

• Assume that p1, p2 and K ∩ p1p2 are in that order on p1p2.

Suppose now that A is a component of int (K)K ′) such that its closure meets

p1p2 ! [p1, p2]. Let A be visible from p1 and consequently also from p2, then

A′ = p2(A) is not visible from p1 thus A′′ = p1
−1(A′) is such that A ⊂ A′′ but

this contradicts the definition of connected component, therefore it must be

p1
−1(A′) = A. Also in this case we have only two components of int (K)K ′).

Again the i-chord function at p3 distinguish uniquely the convex body, because

the line supporting K and K ′ are distinct. In fact, there is a direction u ∈ S1

such that ρK ′,p3(u) '= ρK,p3(u). This implies that the intersection of K with

the line p1p2 is a singleton {q}. Take as base line for the measure νi the line

p2p3. Take a coordinate system in which this line has equation y = 0. We

can assume that K ⊂ {(x, y) : y > 0} so that the point p1 has negative y-

coordinate. By Lemma 3.1.4, the equality of i-chord functions at p2 implies

νi(A′) = νi(A), while by Lemma 3.1.6, the equality of i-chord functions at p1

implies νi(A) < νi(A′) if i > 2 or νi(A) > νi(A′) if i < 2, a contradiction.

In both cases, when i = 2 we follow the same argument used in Theorem 3.2.2, show-

ing that the centroids with respect to the measure νi of the two disjoint components

must be the same, contradicting the existence of such components.

Theorem 3.3.4. Let i > 0. Suppose that K, K ′ are two planar convex bodies with
the same i-chord functions at three noncollinear points p1, p2, and p3 not belonging
to K ∪ K ′. If one or more lines pjph, for j '= h and j, h ∈ {1, 2, 3}, support K and
K ′, then K = K ′.
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Proof.
If one or more lines pjph support K, then, as in the previous theorem, the supports

of two i-chord functions at pj and ph determine one bounded quadrangle and two

unbounded regions containing K but the support of the i-chord function at the

remaining third point determines the position of K with respect to the segment

[pj, ph]. Thus, K and K ′ belong to the same component of pjph ! {pjph},then either

both meet the segment [pj , ph] or are both disjoint from [pj , ph]. We can therefore

apply Theorem 3.2.3 to conclude that K = K ′.

In fact, without loss of generality we may assume that the line p1p2 supports K and

K ′.

• p1, K ∩ p1p2 and p2 are in that order on the line p1p2. Let A be a component

of int (K)K ′) such that its closure meets the segment [p1, p2]. Without loss of

generality, we may assume that A is visible from p1, then A′ = p1(A) is visible

from p2, and A′′ = p2(A′) is such that A " A′′ but this contradicts the definition

of connected component, therefore it must be p2(A′) = A. Also in this case

we have only two components of int (K)K ′). Again the i-chord function at p3

distinguishes uniquely the convex body, because the line supporting K and K ′

are distinct. In fact, there is a direction u ∈ S1 such that ρK ′,p3(u) '= ρK,p3(u).

The remaining situation is when the intersection of K with the segment [p1p2]

is a singleton {q}, and so p3(A′) = A, too. Take as base line for the measure νi

a line through p1 separating p3 from K. Take a coordinate system in which this

line has equation y = 0. We can assume that K ⊂ {(x, y) : y > 0} so that the

point p3 has negative y-coordinate. By Lemma 3.1.4, the equality of i-chord

functions at p1 implies νi(A′) = νi(A), while by Lemma 3.1.6, the equality of

i-chord functions at p3 implies νi(A) < νi(A′) if i > 2 or νi(A) > νi(A′) if i < 2,

a contradiction.

• p1, p2 and K ∩ p1p2 are in that order on the line p1p2. Let A be a component

of int (K)K ′) such that its closure meets p2p3 ! [p2, p3] and such that A is

visible from p2 and also from p3 and p1, then A′ = p2(A) and A′′ = p1
−1(A′)

are such that A ⊂ A′′ but this contradicts the definition of connected com-

ponent, therefore it must be p1
−1(A′) = A. Also in this case we have only

two components of int (K)K ′). Again the i-chord function at p3 distinguishes

uniquely the convex body, because the line supporting K and K ′ are distinct.

Necessarily K∩ [p1p2] must be a singleton {q}, and so p3(A′) = A, too. Take as

base line for the measure νi a line through p1 separating p2 from p3 (and so also
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p3 from K. Take a coordinate system in which this line has equation y = 0.

We can assume that K ⊂ {(x, y) : y > 0} so that the point p3 has negative

y-coordinate. By Lemma 3.1.4, the equality of i-chord functions at p1 implies

νi(A′) = νi(A), while by Lemma 3.1.6, the equality of i-chord functions at p3

implies νi(A) < νi(A′) if i > 2 or νi(A) > νi(A′) if i < 2, a contradiction.

In both cases, when i = 2 we follow the same argument used in Theorem 3.2.2, show-

ing that the centroids with respect to the measure νi of the two disjoint components

must be the same, contradicting the existence of such components.

Remark 3.3.5.

If K contains in its interior two or three points then, it is uniquely determined by
its i-chord functions at these three points, because two interior points are enough as
seen in Theorem 3.2.5. But, if K contains in its interior only a point then K might
be non uniquely determined. Figure 3.12 shows that in this case the knowledge of
i-chord functions at three points does not guarantee the uniqueness of K.

Figure 3.12



Chapter 4

Three-dimensional case

In this chapter we will propose to generalize what we have seen in the previous

chapter, in particular, we want to extend to the three-dimensional case the recon-

struction theorem of convex body from i-chord functions at three exterior points.

Assume that we have three noncollinear points p1, p2 and p3 in the three-dimensional

Euclidean space and a convex body K such that its interior does not contain any of

them, but intersects the plane G determined by these three points. The question is

which kind of information is sufficient to determine K uniquely.

The knowledge of the intersections of a convex body K with a one-dimensional sub-

space, i.e., a line l through the origin, is equivalent to the knowledge of the length of

this intersection, λ1(K ∩ l).

If we measure the lengths of the intersections with all the line through the origin,

then we have exactly the X-ray at the origin of the body K. This means that in

the Euclidean plane there is analogy between chord function (or section function)

and X-ray. This analogy is still valid in Euclidean space by the generalizations of

these two concepts to 2-chord function (or 2-section function) and two-dimensional

X-ray, respectively. The problem for i = 1 has been considered by D. C. Solmon and

by Volčič in the late 80s and at about the same time it has been also analyzed by

Gardner.

We assume that K ⊂ 3 is a convex body whose interior intersects a plane G

containing through three noncollinear points p1, p2 and p3. Furthermore we assume

that we know the lengths (areas) of the intersections of K with any line l (any

plane T ) belonging to the pencil of lines (planes) based in pj, j = 1, 2, 3. We

assume 0 < i < 3. This condition is justified by the fact that we are interested in

73
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particular in the geometric problems corresponding to the values i = 1 and i = 2.

The intersections with lines correspond to the case i = 1, while the intersections with

planes correspond to i = 2.

Since we consider a three-dimensional problem, i = 3 does not have any geometric

meaning. The method of chord functions provides a uniqueness result for any i > 1,

but is not strong enough to handle the case i = 1 which corresponds to ordinary

X-rays and is therefore of particular interest from the geometric point of view.

In this chapter, by ux, uy, uz we indicate the unit vectors parallel to the axes x, y and

z and, to be short, by lx, ly and lz we denote, respectively, the x-axis, the y-axis and

the z-axis.

4.1 The measure µk and its properties

Definition 4.1.1.

Let L3 be the class of bounded Lebesgue measurable subset of 3. Fix a Cartesian
coordinate system in 3, if E ∈ L3, define for each k ∈ ,

µk(E) =

∫∫∫

E
|z|k−3dxdydz.
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µk is a measure on L3 and the plane (lz)⊥ = {(x, y, z) : z = 0} will be called the
base plane for µk.

Observe that

µ3 = λ3.

Suppose now that E1, E2 ∈ L3 and λ3(Ej) > 0, j = 1, 2.

The next Lemma shows how it is possible to obtain information about the mea-

sure µk of two star bodies E1 and E2 with the same i-chord functions at a point

p = (x0, y0, z0) ∈ 3.

Lemma 4.1.2.

Let p = (x0, y0, z0) ∈ 3 and let E1, E2 be star bodies at p having the same i-chord
functions at p for some i ∈ (0, 3). Let C be the half-cone with vertex p generated by
E1 and E2, i.e.

C := posp E1 = posp E2.

Suppose that E1 ∪ E2 is contained in the half-space {(x, y, z) : z > 0} and

−ρE1−p(−u) ≤ ρE1−p(u) ≤ −ρE2−p(−u) ≤ ρE2−p(u) ∀u ∈ S2 ∩ (C − p)

(which implies that E1 is between p and E2).
Then

(a) If z0 = 0 and k > max{i, 1}, then µk(E1) < µk(E2), if i ≥ 0, and µk(E1) >

µk(E2), if i < 0.

(b) If z0 = 0, µi(E1) = µi(E2).

(c) If z0 < 0, and E1 has finite µi-measure, then µi(E1) < µi(E2), if i > 3, and
µi(E1) > µi(E2), if i < 3; and if z0 > 0, these inequalities are reversed.

Proof.
For explicit computation of µk(Ej) we have to use a spherical coordinate system

centered at the point p.











x = x0 + r sin θ cos ϕ r ∈ [0,+∞)

y = y0 + r sin θ sinϕ θ ∈ [0,π]

z = z0 + r cos θ ϕ ∈ [0, 2π)

. (4.1)
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We can write

Ej = {(r, θ,ϕ) : rj(θ,ϕ) ≤ r ≤ sj(θ,ϕ), (θ,ϕ) ∈ C}

for j = 1, 2. Since E1 and E2 have, by assumption, the same i-chord functions at p,

and p /∈ E1 ∪ E2 we have that

s1(θ,ϕ)i − r1(θ,ϕ)i = s2(θ,ϕ)i − r2(θ,ϕ)i (4.2)

s1(θ,ϕ)

r1(θ,ϕ)
=

s2(θ,ϕ)

r2(θ,ϕ)
(4.3)

hold for every (θ,ϕ) ∈ C according as i '= 0 or i = 0, respectively.

For j = 1, 2, the expression of µk with respect to spherical coordinates is

µk(Ej) =

∫∫

C

∫ sj(θ,ϕ)

rj(θ,ϕ)

r2 sin θ

(r cos θ + z0)3−k
drdθdϕ.

Note that we eliminated the absolute value in the denominator of the integrand,

having assumed that E1 and E2 are contained in the half-plane (lz)⊥.

If i '= 0 we put t = ri and we get

µk(Ej) =

∫∫

C

∫ sj(θ,ϕ)i

rj(θ,ϕ)i

t
2
i sin θ

(t
1
i cos θ + z0)3−k

· t
1−i

i dtdθdϕ

=

∫∫

C

∫ sj(θ,ϕ)i

rj(θ,ϕ)i

1

i
·

t
3−i

i sin θ

(t
1
i cos θ + z0)3−k

dtdθdϕ. (4.4)

While if i = 0 putting t = log r we obtain

µk(Ej) =

∫∫

C

∫ log sj(θ,ϕ)

log rj(θ,ϕ)

e2t sin θ

(et cos θ + z0)3−k
· etdtdθdϕ

=

∫∫

C

∫ log sj(θ,ϕ)

log rj(θ,ϕ)

e3t sin θ

(et cos θ + z0)3−k
dtdθdϕ. (4.5)

(4.6)
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(a) Assume z0 = 0. If i '= 0, the expression (4.4) of µk becomes

µk(Ej) =

∫∫

C

∫ sj(θ,ϕ)i

rj(θ,ϕ)i

1

i
·

t
3−i

i sin θ

(t
1
i cos θ)3−k

dtdθdϕ

=

∫∫

C

∫ sj(θ,ϕ)i

rj(θ,ϕ)i

1

i
·
t

k−i
i sin θ

cos θ)3−k
dtdθdϕ

=

∫∫

C

1

i

sin θ

cos θ3−k

(
∫ sj(θ,ϕ)i

rj(θ,ϕ)i
t

k−i
i dt

)

dθdϕ.

By assumption k > max{1, i}, so in particular k > i, therefore the integrand

increases with t.

Similarly, if i = 0, the expression (4.5) of µk becomes

µk(Ej) =

∫∫

C

∫ log sj(θ,ϕ)

log rj(θ,ϕ)

e3t sin θ

(et cos θ)3−k
dtdθdϕ

=

∫∫

C

sin θ

cos θ3−k

(
∫ log sj(θ,ϕ)

log rj(θ,ϕ)
ektdt

)

dθdϕ.

Again, since k > 0 the integrand increases with t. In both cases, the range of the

inner integral is of the same length for j = 1, 2, so if i ≥ 0, µk(E1) < µk(E2). If

i < 0, the integrand decreases and moreover we have that sj(θ,ϕ)i < rj(θ,ϕ)i

for j = 1, 2, so by interchanging the limits of the inner integral we obtain

µk(E1) > µk(E2).

(b) Assume again z0 = 0. If k = i '= 0, then the expression of µi is given by

µi(Ej) =

∫∫

C

1

i

sin θ

cos θ3−i

(
∫ sj(θ,ϕ)i

rj(θ,ϕ)i
dt

)

dθdϕ

=

∫∫

C

1

i

sin θ

cos θ3−k

(

sj(θ,ϕ)i − rj(θ,ϕ)i

)

dθdϕ

while if k = i = 0, the measure µ0 is given by

µ0(Ej) =

∫∫

C

sin θ

cos θ3

(
∫ log sj(θ,ϕ)

log rj(θ,ϕ)
dt

)

dθdϕ

=

∫∫

C

sin θ

cos θ3

(

log
sj(θ,ϕ)

rj(θ,ϕ)

)

dθdϕ,

and relations (4.2) and (4.3) complete the proof.



4.2 The Groove 78

(c) If i '= 0, substituting k = i the derivative with respect to t of the integrand in

(4.4) is

−
i − 3

i2
(

t
1
i cos θ + z0

)i−4
t

3−2i
i z0 cos θ.

Suppose that z0 < 0. If 0 < i < 3, the integrand decreases with t, and

the equality of i-chord functions at p implies µi(E1) > µi(E2). If i < 0, the

integrand decreases but sj(θ,ϕ)i < rj(θ,ϕ)i for j = 1, 2, so by interchanging

the limits of the inner integral we obtain µi(E1) > µi(E2). In the same way we

treat the case i = 0. Substituting k = i = 0, the derivative with respect to t of

the integrand in (4.5) is

3
(

et cos θ + z0
)−4

e3tz0 sin θ

and this decreases with t.

The case when z0 > 0 is dealt with similarly.

4.2 The Groove

Let K be a three-dimensional convex body which intersects the plane G = (lz)⊥

and let o belong to the interior of K. Denote by G+ one of the half spaces determined

by G. Without loss of generality, we may assume that G+ = {(x, y, z) : z > 0}.

Consider a set Sα,δ(K) ⊂ G+ such that for any half-plane V whose boundary is

lz, the set Sα(V ),δ(V )(K) ∩ V is an isosceles triangle )(a(V ), b(V ), c(V )) with one

vertex c(V ) on ∂K ∩ (lz)⊥ ∩ V , and basis )(a(V ), b(V )) perpendicular to lz. More-

over, assume that the length of the two equal sides is δ(V ) > 0 and that the angle

!(b(V ), c(V ), a(V )) = α(V ) is constant. Hence α(V ) is the infimum of angles in

(0,π) between a(V )− c(V ) and b(V )− c(V ) for b(V ) ∈ intK ∩V and a(V ) ∈ V \K.

We will call such a set a “groove”.
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In symbols,

Sα(V ),δ(V )(K) :=
⋃

∂V =lz

{

)(a(V ), b(V ), c(V ))|a(V ) ∈ V ! K, b(V ) ∈ V ∩ intK,

b(V ) − a(V ) ⊥ lz, c(V ) ∈ ∂K ∩ (lz)
⊥ ∩ V,

||a(V ) − c(V )|| = ||b(V ) − c(V )|| = δ(V ) > 0,

!(b(V ), c(V ), a(V )) = α(V )
}

.

Let now α0 = max
V

α(V ) and let δ0 = hK(u)
cos

α0
2

, where hK(u) is the value of the

support function of K in the direction u parallel to lz, that is, hK(u) is the distance

between the plane G and the parallel plane supporting K in G+.

If k > 2, then the measure µk is a finite measure, but if k ≤ 2, then µk is a

σ-finite measure in 3, which is finite on sets having positive distance from the base
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plane G = (lz)⊥.

In particular, we have the following lemma.

Lemma 4.2.1.

Let k, δ0 ∈ + with k > 1, and let α0 ∈ (0,π). Then the groove Sα0,δ0(K) has finite
measure µk.

Proof.
The groove S0 := Sα0,δ0(K) can be parametrized by using cylindrical coordinate in

the following way

Sα0,δ0(K) =
{

(r cos θ, r sin θ, z) : 0 ≤ r(θ) − fz(θ) ≤ r ≤ r(θ) + gz(θ),

0 ≤ θ ≤ 2π, 0 ≤ z ≤ δ0 cos
α0

2

}

with fz, gz positive functions such that fz(θ)+ gz(θ) < 2z tan α0
2 , for each θ ∈ [0, 2π].

It follows that r1(θ) := r(θ) − fz0(θ) and r2(θ) := r(θ) + gz0(θ), with r1(θ) < r2(θ),

are bounded star-shaped curves in the plane z = z0, this implies that there exists a

positive constant R such that r2(θ) < R for every (θ, z0) ∈ [0, 2π] × [0, δ0 cos α0
2 ].

Now compute µk(S0).

µk(S0) =

∫∫∫

S0

dxdydz

z3−k

=

∫ δ0 cos
α0
2

0

[

∫ 2π

0

(

∫ r(θ)+gz(θ)

r(θ)−fz(θ)

r

z3−k
dr

)

dθ

]

dz

=
1

2

∫ δ0 cos
α0
2

0

1

z3−k

{

∫ 2π

0

[

r2

]r(θ)+gz(θ)

r(θ)−fz(θ)

dθ

}

dz.
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∫ 2π

0

[

r2

]r(θ)+gz(θ)

r(θ)−fz(θ)

dθ =

∫ 2π

0

[

(r(θ) + gz(θ))2 − (r(θ) − fz(θ))2
]

dθ

=

∫ 2π

0
(gz(θ) + fz(θ)) (2r(θ) + gz(θ) − fz(θ)) dθ

=

∫ 2π

0
(gz(θ) + fz(θ)) (r(θ) + gz(θ) + r(θ) − fz(θ)) dθ

≤

∫ 2π

0
2z tan

α0

2
· (r2(θ) + r1(θ)) dθ

<

∫ 2π

0
2z tan

α0

2
· 2Rdθ

< 8πR tan
α0

2
z.

Thus

µk(S0) <
1

2

(

8πR tan
α0

2

)
∫ δ0 cos

α0
2

0

z

z3−k
dz

= 4πR tan
α0

2

∫ δ0 cos
α0
2

0

1

z2−k
dz.

Observe that:
∫ δ0 cos

α0
2

0

1

z2−k
dz =















+∞ if k = 1

(δ0 cos
α0
2 )

k−1

k−1 if k > 1

.

So we can conclude that

µk(S0) =















+∞ if k = 1

4πR tan
α0
2 (δ0 cos

α0
2 )k−1

k−1 < +∞ if k > 1

.

4.3 Uniqueness results

Now consider a three-dimensional convex body K and three noncollinear points

sources p1, p2 and p3 not belonging to K. Suppose that the plane G, which they
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identify, intersects the interior of K. The next lemma is a first result about the

uniqueness of the planar convex body obtained from the intersection of K with the

plane G.

Lemma 4.3.1.

Let K and K ′ be convex bodies in 3 whose interior intersect a given plane G, and let
0 < i < 3. If p1, p2, p3 are three noncollinear points of G not belonging to K∪K ′ and
the i-chord functions of K and K ′ at pj are equal for j = 1, 2, 3, then K∩G = K ′∩G.

Proof.
Let K0 = K ∩ G and K ′

0 = K ′ ∩ G.

If intK0 intersects one or more lines pjph, for j '= h and j, h ∈ {1, 2, 3}, then the sup-

ports of two i-chord functions at pj and ph determine one bounded quadrangle and

two unbounded regions which may contain K0. But the support of the i-chord func-

tion at the remaining third point determines the position of K0 with respect to the

segment [pj , ph]. Thus, K0 and K ′
0 belong to the same component of pjph ! {pjph},

then either both meet the segment [pj , ph] or are both disjoint from [pj , ph]. We can

therefore apply Theorem 3.2.2 to conclude that K0 = K ′
0.

If one or more lines pjph for j '= h and j, h ∈ {1, 2, 3} support K0, then the

support of the i-chord function at pj and the support of the i-chord function at ph

determine one bounded quadrangle and two unbounded regions that may contain K0.

But the support of the i-chord function at the remaining third point determines the

position of K0 with respect to the segment [pj, ph]. Thus, K0 and K ′
0 belong to the

same component of pjph ! {pjph}, then either both meet the segment [pj, ph] or are

both disjoint from [pj , ph]. We can therefore apply Theorem 3.2.3 to conclude that

K0 = K ′
0.

Let T = )(p1, p2, p3). For reasons of symmetry we may assume that K0 (and there-

fore also K ′
0) is contained in a half-cone posp1T determined by lines through p1 and

pj, j = 2, 3, and containing the triangle T . Let T ′ be the image of T under reflection

at p1. We have three cases to consider:

(a) K0 ⊂ int T ;

(b) K0 ⊂ int(posp1
T ! T );

(c) K0 ⊂ int(posp1
T ′).
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We shall assume that K ′
0 '= K0 and conclude with a contradiction.

Let G := aff(p1, p2, p3). Let us show that no component of int (K)K ′) is such that

its closure meets the plane G.

(a) Suppose that there are such components and take one, call it A, having maximal

µi+1-measure. By definition of component, A has to be visible from one point,

say p1. But then p1(A) is defined and, by Lemma 4.1.2 (a),

µi+1(p1(A)) > µi+1(A),

a contradiction.

(b) Let H be a plane through the line p2p3 separating p1 from K0 (and so K ′
0). Take

a coordinate system in which the plane H has equation z = 0 and consider H as

base plane for the measure µi. We can assume that K0 ⊂ {(x, y, z) : z > 0} so

that the point p1 has negative z-coordinate. Among the components such that

their closures meet the plane G take one, call it B, having maximal measure µi.

If B is visible from p1 then B is visible also from p2 and p3, so B′ = p2(B) is

defined and, by Lemma 4.1.2 (b), µi(B) = µi(B′). Now B′ is not visible from

p1, thus B′′ = p1
−1(B′) is defined and by Lemma 4.1.2 (c)

µi(B
′′) > µi(B

′) = µi(B),

a contradiction.

On the other hand, if B is not visible from p1, then p1
−1(B) is defined and by

Lemma 4.1.2 (c)

µi(p1
−1(B)) > µi(B),

again a contradiction.

(c) Let us take now the plane H ′ through the line p1p3 separating p2 from K,

(and so from K ′
0), as base plane for the measure µi. Assume that K0 ⊂

{(x, y, z) : z > 0} so that the point p2 has negative z-coordinate. Consider

a component C such that its closure meets the plane G and having maximal

measure µi. If C is visible from p2 then C is visible also from p1 consequently

C ′ = p1(C) is defined and, by Lemma 4.1.2 (b), µi(C) = µi(C ′). Now C ′ is not

visible from p2, thus C ′′ = p2
−1(C ′) is defined and by Lemma 4.1.2 (c)

µi(C
′′) > µi(C

′) = µi(C),
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a contradiction.

Otherwise, if C is not visible from p2, then p2
−1(C) is defined and by Lemma

4.1.2 (c)

µi(p2
−1(C)) > µi(C),

again a contradiction.

Consequently, in each of these three cases no component of int (K)K ′) is such that

its closure intersects the plane G contrary to the assumptions. This means that the

intersection of a three-dimensional body with the plane G is uniquely determined,

therefore K0 = K ′
0.

Theorem 4.3.2.

Let i > 1. Let K be a convex body in 3 and let G := aff(p1, p2, p3), T := )(p1, p2, p3)

for some noncollinear points p1, p2, p3 in 3. If (G ∩ intK) ⊂ T , then K is uniquely
determined by i-chord functions at p1, p2, p3.

Proof.
Let K0 := K ∩ G. By Lemma 4.3.1, the set K0 is uniquely determined.

Suppose that K ′ is another convex body in 3 with the same i-chord functions as

K at pj for j = 1, 2, 3. Obviously, K ′ ∩ G = K0. We shall assume that K ′ '= K

and derive a contradiction. Let A1 be a component of int (K)K ′) having positive

distance from the plane G. The component A1 is not visible from at least one of the

three points. In fact, if this is not true, then we may suppose that A1 ⊂ int (K !K ′).

Denote by Aj the component of int (K)K ′) defined by Aj = pj(A). Then there

exist q ∈ A1 ∩ ∂K and qj ∈ Aj ∩ ∂K such that pj, q and qj are collinear and in

that order on the line pjqj. By convexity, the triangle T̃ with vertices q1, q2 and q3

is contained in K. When varying the point r in T̃ , the line rq intersects the plane

G in the triangle T determined by the pj’s. Therefore there exists a point r0 ∈ T̃

such that r0q intersects G in a point which is interior to K. But this contradicts, by

convexity, the fact that q ∈ ∂K. Without loss of generality we may assume that A1 is

not visible from p2 thus A2 = p2
−1(A1) is defined. Similarly, there is a point different

from p2 from which A2 is not visible, say p1, so A3 = p1
−1(A2) is defined, and so on.
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Denoting with cj the distance from G of the point Aj closest to G, we infer that the

sequence
{

cj

}

j∈
is strictly decreasing. This implies that the components Bj are all

disjoint, i.e. Al ∩ Am = ∅ for l '= m. In addition, if we consider the plane G as the

base plane for the measure µi, this components are all contained in the half-space

G+ = {(x, y, z) : z > 0} and have all the same measure µi, i.e.

µi(Ak) = β ∀ k ∈ .

In particular they are all contained in the groove Sα0,δ0(K) whose base is the convex

curve ∂K0 and height δ0 cos α0
2 , i.e.

⋃

k∈

Ak ⊂ Sα0,δ0(K).

By countable additivity and monotonicity of the measure µi, we have

µi

(

⋃

k∈

Ak

)

=
∑

k∈

µi(Ak) =
∑

k∈

β = ∞,

but, on the other hand,

∞ = µi

(

⋃

k∈

Ak

)

≤ µi

(

Sα0,δ0(K)
)

.

But by Lemma 4.2.1, the groove has finite measure for i > 1, a contradiction. There-

fore no such K ′ exists.

Theorem 4.3.3.

Let K be a convex body in 3 and let G := aff(p1, p2, p3), T := )(p1, p2, p3) for some
noncollinear points p1, p2, p3 in 3. Let T ′(pj) be the image of T under reflection at
pj. If G ∩ intK '= ∅, then K is uniquely determined by i-chord functions at p1, p2,
p3 for some i ∈ (0; 3) in each of the following cases:

(a) (∂K ∩ G) ⊂ int(pospj
T ) ! T ;

(b) (∂K ∩ G) ⊂ int(pospj
T ′(pj)).

Proof.
Let K0 := K ∩ G. By Lemma 4.3.1, the set K0 is uniquely determined.
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Suppose that K ′ is another convex body in 3 with the same i-chord functions as K

at pj for j = 1, 2, 3. Obviously, K ′ ∩ G = K0. We shall assume that K ′ '= K and

derive a contradiction. For reasons of symmetry we may assume that K0 is contained

in the cone posp1
T determined by lines through p1 and pj , j = 2, 3, and containing

the triangle T . So let T ′(p1) = T ′ be the image of T under reflection at p1. Then the

two cases that we have to consider are:

(a) K0 ⊂ int(posp1
T ) ! T ;

(b) K0 ⊂ int(posp1
T ′).

(a) In this case, there is a plane H through the line p2p3 separating p1 from K. Take

a coordinate system in which the plane H has equation z = 0, and consider H as

base plane for the measure µi. We can assume that K ⊂
{

(x, y, z) : z > 0
}

and

consequently the point p1 has negative z-coordinate. Let B1 be a component of

int (K)K ′) having maximal measure µi. B1 is visible from p1, since otherwise

by Lemma 4.1.2 (c),

µi(p1
−1(B1)) > µi(B1),

a contradiction. Then B1 is visible either from p2 or p3. Without loss of

generality we may assume that B1 is visible from p2, therefore C2 = p2C1 is

defined and by Lemma 4.1.2 (b) we have

µi(B2) = µi(B1).

Again if B2 is not visible from p1 then by Lemma 4.1.2 (c)

µi(p1
−1B2) > µi(B2) = µi(B1)

contrary to the maximality of µi(B1). Necessarily B2 has to be visible from p1.

So B2 is a component not visible from p2, but visible from p1, thus by convexity

of K, B2 is visible from p3 and hence p3(B2) = B3 is defined and

µi(B3) = µi(B2) = µi(B1).

Iterating this construction, we define

B2n = p2(B2n−1)

B2n+1 = p3(B2n).
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These components are disjoint, have the same measure µi by construction and

are contained in K ∪ K ′ that has finite measure µi, a contradiction.

(b) Let us take now the plane H ′ through the line p1p2 separating p3 from K as

base plane for the measure µi. Assume that K ⊂
{

(x, y, z) : z > 0
}

so the

point p3 has negative z-coordinate. Let C1 be a component of int (K)K ′) with

maximal measure µi. The maximality of µi(C1) and Lemma 4.1.2 (c) imply

that C1 has to be visible from p3, and by convexity C1 is visible also from p1,

consequently C2 = p1(C1) is defined. By Lemma 4.1.2 (b)

µi(C2) = µi(C1).

If C2 is not visible from p3 then, as before, by Lemma 4.1.2 (c)

µi(p3
−1(C2)) > µi(C2) = µi(C1)

contrary to the maximality of µi(C1). Then necessarily C2 is visible from p3,

but C2, by construction, is not visible from p1, then C2 is not visible from p2.

This means that C3 = p2
−1(C2) is defined and by Lemma 4.1.2 (b)

µi(C3) = µi(C2) = µi(C1).

Obviously C3 is visible from p2 and has to be visible from p3, then by convexity

C3 is visible from p1, therefore C4 = p1(C3) is defined and

µi(C4) = µi(C3).

We define iteratively

C2n = p1(C2n−1)

C2n+1 = p2
−1(C2n).

These components are pairwise disjoint, they have the same measure µi, and

are contained in K ∪ K ′ that has finite measure µi, a contradiction.

The method of i-chord functions fails for i = 1 when ∂K ∩ G is contained in
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the interior of the triangle determined by the three noncollinear points because the

sequence of components of the symmetric difference of the two three-dimensional con-

vex bodies is contained in the groove Sα0,δ0(K) having µ1-measure infinite. In order

to obviate to this problem we have to make further assumption on the convex body K.

Consider two different three-dimensional convex bodies K and K ′ and three non-

collinear points p1, p2 and p3 not belonging to K ∪ K ′. Suppose that the plane

G which they identify, intersects the interior of K and the interior of K ′. Assume

that K and K ′ have the same i-chord functions at pj , for j = 1, 2, 3. Consider a

plane F perpendicular to the plane G and intersecting both the interior of K and

K ′. Since, by assumption, K and K ′ are convex, the curves ∂K ∩ F and ∂K ′ ∩ F

are convex, too. Moreover, by Lemma 4.1.2, ∂K ∩ G = ∂K ′ ∩ G consequently

(∂K ∩G) ∩F = (∂K ′ ∩G)∩F are two distinct points uniquely determined. Denote

these two points by q1 and q2 and denote by G+ one of the half-spaces determined

by G.

From now on, we shall call “upper tangent ” to the boundary of K at a point q, the

restriction of the line tangent to ∂K ∩ G+ at q, which always exist by convexity.

The following lemma shows that the upper tangent in the plane F to the boundary

of K and to the boundary of K ′ are the same.

Lemma 4.3.4.

Suppose K and K ′ have the same i-chord functions at three noncollinear points p1,
p2 and p3 and K intersects the plane G determined by the three points in the interior
of the triangle )(p1, p2, p3). Let F be a plane orthogonal to G intersecting K ∩ G

in its relative interior. Then F ∩ K and F ∩ K ′ have the same upper tangent at the
points q1, q2 of F ∩ ∂K ∩ G.

Proof.
By Lemma 4.3.1 we know that ∂K ∩ G = ∂K ′ ∩ G.

We distinguish two cases. Either (∂K ∩ ∂K ′) ∩ F has positive distance from q1 and

q2, respectively, or its closure contains q1 and q2, respectively.

In the first case ∂K ∩ F and ∂K ′ ∩ F coincide close to q1 and q2 and therefore the

upper tangents at q1 and q2 are pairwise equal.

In the second case, since the upper tangent exists, and since ∂K and ∂K ′ intersects

infinitely often close to q1 and q2, by Lemma 1.4.5 the same conclusion holds.
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From now on, assume that K ∈ C1+α with α ∈ (0, 1). Let o be interior to the

planar convex body K0 = K ∩G. For any θ ∈ [0, 2π] let Fθ be the half-plane orthog-

onal to G, contained in G+ whose boundary is the line lθ ⊂ G through o and parallel

to θ. Denote by h0 the distance between G and the parallel plane G′ contained in

G+ supporting K.

Let t1(θ) and t2(θ) be the polar representation of the upper tangents of K at the two

points q1 and q2, respectively, of ∂K ∩ Fθ.

For any θ ∈ [0, 2π] let Q(θ) be the quadrangle in Fθ determined by t1(θ), t2(θ), G∩Fθ

and G′ ∩ Fθ, (see Figure 4.1).

Figure 4.1

Consider now the “Claw ”

C =
⋃

θ∈[0,2π]

(Q(θ) ! (K ∩ Fθ)) .

Looking at Q(θ) ! (K ∩ Fθ), we see that it has two components, so it is enough

if we consider one of them, call it C(θ). Given θ, let g(θ, z) be the function which

represents the boundary of K and by f(θ, z) its upper tangent at z = 0.

Denote by gz the partial derivative of g with respect to z, then by Taylor’s theorem

(see Theorem 1.4.3, Chapter 1) we have

f(θ, z) = g(θ, 0) + gz(θ, 0)z
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and

g(θ, z) = g(θ, 0) + gz(θ, ξ)z

with ξ ∈]0, z[.

Therefore

f(θ, z) − g(θ, z) = [gz(θ, 0) − gz(θ, ξ)] z

and

f(θ, z) + g(θ, z) = 2g(θ, 0) + [gz(θ, 0) + gz(θ, ξ)] z. (4.7)

Since g ∈ C1+α, with α ∈ (0, 1) then

|f(θ, z) − g(θ, z)| ≤ H|ξ|αz. (4.8)

Furthermore, since ξ ∈ (0, z) we have

|f(θ, z) − g(θ, z)| ≤ Hzα+1. (4.9)

Exploiting the concepts we have introduced we can demonstrate the following

lemma.

Lemma 4.3.5.

The claw C, defined above, has finite measure µ1.

Proof.
We use cylindrical coordinates in order to compute the measure µ1 of the set C.

µ1(C) =

∫∫∫

C

dxdydz

|z|2
=

∫ 2π

0

(

∫∫

C(θ)

rdrdz

z2

)

dθ

=

∫ 2π

0

(

lim
ε→0

∫∫

Cε(θ)

rdrdz

z2

)

dθ

where

Cε(θ) = C(θ) ∩ {z : z ≥ ε}.
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∫∫

Cε(θ)

rdrdz

z2
=

∫ h0

ε

1

z2

(

∫ g(θ,z)

f(θ,z)
rdr

)

dz

=

∫ h0

ε

1

z2

(

g(θ, z)2 − f(θ, z)2
)

dz

=

∫ h0

ε

1

z2
[(g(θ, z) − f(θ, z)) (g(θ, z) + f(θ, z))] dz

4.9 , 4.7
=

∫ h0

ε

1

z2

((

Hzα+1
)

(2|g(θ, 0)| + |gz(θ, 0) + gz(θ, ξ)| z)
)

dz

=

∫ h0

ε

1

z2

[

2|g(θ, 0)|Hzα+1 + |gz(θ, 0) + gz(θ, ξ)|Hzα+2
]

dz

≤ 2γ1H

∫ h0

ε

zα−1dz + γ2H

∫ h0

ε

zαdz

= 2γ1H
hα

0 − εα

α
+ γ2H

hα+1
0 − εα+1

α + 1
,

where we have denoted by γ1 and γ2 the quantities

γ1 = |g(θ, 0)|

and

γ2 = |gz(θ, 0) + gz(θ, ξ)|

that are both finite. Therefore

µ1(C) =

∫∫∫

C

dxdydz

|z|2
=

∫ 2π

0
lim
ε→0

(

2γ1H
hα

0 − εα

α
+ γ2H

hα+1
0 − εα+1

α + 1

)

dθ

=

∫ 2π

0
Hh0

α

(

2γ1

α
+

γ2

α + 1
h0

)

= 2πHh0
α

(

2γ1

α
+

γ2

α + 1
h0

)

< ∞.

If we consider the components of int (K)K ′) their union is contained in the Claw

C and therefore µ1(K ′)K) < ∞. As we have seen, the finiteness of the measure µ1

guaranteed if the boundary ok K is represent by a function which satisfies a Hölder

condition with exponent α ∈ (0, 1).

So, we have the following.
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Theorem 4.3.6.

Let α ∈ (0, 1) and let p1, p2 and p3 be three noncollinear points. Let G := aff(p1, p2, p3)

be a plane and T := )(p1, p2, p3) be a triangle. If K ∈ C1+α is a convex body such
that (G ∩ intK) ⊂ T , then K is uniquely determined by X-rays at p1, p2 and p3.

Proof.
Let K0 := K ∩ G. By Lemma 4.3.1, the set K0 is uniquely determined.

Suppose that K ′ is another convex body in 3 with the same X-rays as K at pj for

j = 1, 2, 3. Obviously, K ′ ∩ G = K0. We shall assume that K ′ '= K and derive a

contradiction. Let A1 be a component of int (K)K ′) having positive distance from

the plane G. Following the same argument used in the proof of Theorem 4.3.2 we

have that A1 is not visible from at least one of the three points. Without loss of

generality we may assume that A1 is not visible from p2 thus A2 = p2
−1(A1) is

defined. Similarly, there is a point different from p2 from which A2 is not visible, say

p1, so A3 = p1
−1(A2) is defined, and so on. Denoting with cj the distance from G of

the point Aj closest to G, we infer that the sequence
{

cj

}

j∈
is strictly decreasing.

This implies that the components Bj are all disjoint, i.e. Al ∩ Am = ∅ for l '= m.

In addition, if we consider the plane G as the base plane for the measure µi, this

components are all contained in the half-space G+ = {(x, y, z) : z > 0} and have all

the same measure µi, i.e.

µi(Ak) = β ∀ k ∈ .

The components contained in K ′ are all contained in the claw C having finite measure

µ1. Therefore K ′ ! K is empty and so is then K ! K ′.

In conclusion, K is uniquely determined.

So we can conclude with the following important uniqueness result for convex

body of class C1+α.

Corollary 4.3.7.

Let α ∈ (0, 1). If K ∈ C1+α, then X-rays at three noncollinear points determine
uniquely K among all convex bodies.



Chapter 5

Conclusions and open problems

The main results obtained provide a partial answer to the problem 5.7 posed by

Gardner in [16]:

« How many point X-rays are needed to determine a convex body in
n ? »

and are summarized in the following.

First of all, we have shown the determination of a planar convex body K by taking

the i-chord functions, for i > 0, at two points when the line l passing through p1 and

p2 meets the interior of K and the two points p1 and p2 are both exterior or interior

to K. If the line l supports K, then the results hold for i ≥ 1.

A second relevant result concerns the determination of a planar convex body K from

its i-chord functions at three noncollinear points for 0 < i < 2. In particular, when

the convex body is contained in the interior of the triangle formed by the three points

we have shown that the result holds for i > 0.

Finally we have tackled the problem of determining a three-dimensional convex body

K from the i-chord functions at three noncollinear points not belonging to K using

a sort of “Cavalieri Principle”, for a suitable measure involving i-chord functions for

1 < i < 3.

Since we have not been able to extend this result to generic convex bodies for i = 1

we had to assume that the convex body is of class C1+α with α ∈]0, 1[.

Nevertheless numerous problems remain still open.
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First of all, the case when the line l through the two point sources p1 and p2 does

not intersect K is the major open problem in this part of geometric tomography.

Suppose that the line l through the two point sources p1 and p2 meets the interior

of K.

Is K determined by i-chord functions at p1 and p2 if either

(i) p1 and p2 are not in intK, (see Figure 3.10 in Chapter 3)

or

(ii) p1 /∈ K and p2 ∈ int K?(see Figure 5.1).

These questions are unresolved at present. In fact, it is unknown whether these can

actually occur.

If we consider another point source, we then have the following open problem.

Is the planar convex body K determined by i-chord functions at three noncollinear

points p1, p2 and p3 if p3 ∈ int K and the line through p1 and p2 misses K? (see

Figure 3.12 in Chapter 3).

These problems are quite interesting and might be a possible topic for future

works.
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Figure 5.1
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