
Babak Rahmani

Distributed Model Predictive
Control Strategies for Constrained
Multi-Agent Systems Moving in
Uncertain Environments
This dissertation is submitted for the degree of Doctor of Philosophy

Department of Computer Science, Modeling,
Electronics and Systems Engineering (DIMES)
University of Calabria

Supervisor: Prof. Giuseppe Franzè

May 30, 2021

I am dedicating this thesis to some beloved people
who have meant and continue to mean so much to me.
A special feeling of gratitude to my loving parents, for

their love....

Preface

In the last years, coordination and control of multi-agent systems have as-
sumed an increasing relevance in virtue of their capability because they are
expected to be capable of performing to perform civilian and dangerous mis-
sions by navigating in formation within obstacle-populated environments. In
particular, the state-of-the-art for unmanned vehicles concerns with three
guidelines: Leader-Follower (LF) techniques, virtual structure schemes and
behavioural methods. More recently, the research has pointed out its atten-
tion to stabilization and path following issues, whose integration can be ob-
tained by considering two separate problems: 1) determine an admissible state
trajectory for the (virtual) leader; 2) develop control architectures capable to
keep within acceptable ranges the follower relative positions with respect to
the current leader condition.

On the other hand, one of the major limitations relies on the difficulty
to achieve a stable formation when the vehicle team moves in dynamically
changing, unknown environments filled with obstacles. Under such circum-
stances, as the number of involved agents increases, the above mentioned
control methods could fail: as a consequence, adequate implementations ex-
ploiting communication facilities amongst the vehicles have to be developed
in order to be aware about the vehicle state condition and the actions pertain-
ing to its teammates. Beyond this, another important challenge concerns with
the active obstacle avoidance on the follower vehicles. In fact, it is important
to combine formation planning and obstacle avoidance requirements on the
follower path, because these vehicles must be also capable to comply with the
prescribed team topology.

A novel distributed MPC scheme is here developed for autonomous multi-
agents systems subject to input/state constraints, obstacle avoidance and for-
mation requirements. Specifically, the group of agents is organized as a finite
set of swarms and a leader-follower topology is imposed to these configura-
tions with the aim to define a sort of priority among them. The key idea is
as follows: the leader swarm (for the sake of simplicity consisting of a single
agent) is in charge to compute the tube of trajectories towards the target

VIII Preface

position and to detect possible obstacle occurrences within the unknown en-
vironment. Then, the follower swarm receives the hyper-ball where its father
swarm lies and uses this information at each time instant as a local target.
This reasoning repeats for the other swarms. Such a strategy is made viable
in virtue of the following property concerning with the swarm kinematics: in
a finite time each agent converges to a pre-assigned hyper-ball. Then, it is
always possible to compute a reference kinematic state trajectory towards the
hyper-ball of the father swarm along the platoon chain.

This thesis contents are organized in 5 chapters and 2 appendices. In Chap.
1, following a brief introduction, the robot modelling, notation and preliminar-
ies are presented. Mobile robot kinematics and dynamics are also introduced.
In Chap. 2, Modelling of multi-agent systems is presented in terms of graph
theoretic methods. Model Based Predictive Control is presented in Chap. 3.
Basic model predictive control schemes and Distributed model predictive con-
trol approaches are also discussed and illustrated. In Chap. 4, a Novel swarm-
based distributed MPC architecture is developed for autonomous multi-agent
systems subject to input/state constraints, obstacle avoidance and formation
requirements. In Chap. 5, a laboratory experiment is used to evaluate the
performance of the proposed DMPC-Swarm Algorithm. It is also included the
conclusions and future research directions. Appendix A is devoted to funda-
mental definitions and descriptions and presents the notations and examples.
Special care has been devoted to the selection of bibliographical references
(more than 195) which are cited at the end of this dissertation in relation to
the historical development of the field.

Finally, the author wish to acknowledge all those who have been helpful in the
preparation of this thesis. A special note of thanks goes to Prof. Giuseppe
Franzè for his punctual and critical advisor and supervising, as well as to Prof.
Giuseppe Fedele and Antonio Bono for their contributions and comments on
some sections.

Rende (CS), Babak Rahmani
May 2021

Contents

1 Introduction . 1
1.1 Robot modelling, notation and preliminaries 1

1.1.1 Wheeled Mobile Robots . 5
1.2 Robot dynamics . 6

1.2.1 Mobile Robot Kinematics . 9
1.2.2 Kinematic Models and Constraints 11
1.2.3 Representing robot position . 16

1.3 State-Space Model . 18

2 Modelling of Multi-agent Systems (in Terms of Graph
Theoretic Methods) . 23
2.1 Multi-agent Systems . 23

2.1.1 Boids Model . 24
2.1.2 Graph-Based Interaction Models . 24

2.2 Graphs . 25
2.3 Organization of Multi-Agent Systems . 30

2.3.1 Motivations to MAS Organization 31
2.3.2 MAS Formation . 32

2.4 MAS Leader-Follower Configuration . 33
2.5 Multiple Interacting Leaders . 37
2.6 Other Possible MAS Formations . 38

3 Model Based Predictive Control . 47
3.1 Basic Model Predictive Control Philosophy 47
3.2 Background . 48

3.2.1 Models for uncertain systems . 48
3.3 Basic Model Predictive Control Schemes . 51

3.3.1 Control Architectures within MPC 52
3.3.2 Decentralized Model Predictive Control 56

3.4 Distributed Model Predictive Control . 58
3.4.1 Categorizing Distributed MPC Schemes 60

X Contents

3.4.2 Comparing Distributed MPC Approaches 62
3.4.3 Cooperative and Noncooperative DMPC algorithm 66
3.4.4 Sequential and Iterative DMPC . 68

3.5 Decompositions for DMPC . 71
3.6 Future Research Directions of Distributed MPC 73

4 A Novel swarm-based distributed MPC architecture 77
4.1 Problem formulation . 77
4.2 The continuous-time swarm kinematics solution 80
4.3 The time-varying swarm platoon modelling 83
4.4 The swarm-based distributed MPC architecture 87

4.4.1 Distributed MPC controllers . 88
4.4.2 Path Planner . 94

4.5 A developed distributed MPC algorithm . 95

5 Laboratory Experiment and Results . 101
5.1 Multi-Parametric Toolbox 3.0 . 101
5.2 Elisa-3 robot introduction . 106
5.3 Operating arena and experimental knobs 113
5.4 Results . 115
5.5 Conclusions . 119
5.6 Future research directions . 121

Appendices

A Definitions and Descriptions . 127
A.1 Convex and non-convex Hull . 127
A.2 Convex Polyhedral sets . 128
A.3 Obstacle Scenario . 129

A.3.1 Differential Inclusions . 130
A.4 Linear Differential Inclusions . 131
A.5 Polytopic LDIs . 132
A.6 Obstacle-free Region . 134
A.7 Positive invariance . 135
A.8 Robustly Positively Invariant Sets . 136
A.9 The Sum of Squares Decomposition . 137

References . 145

1

Introduction

An autonomous robot is a robot that performs behaviors or tasks with a
high degree of autonomy (without external influence). Autonomous robotics
is usually considered to be a subfield of artificial intelligence, robotics, and
information engineering. Early versions were proposed and demonstrated by
David L. Heiserman [151]. Autonomous robots are particularly desirable in
fields such as spaceflight, household maintenance (such as cleaning), waste
water treatment, and delivering goods and services. Some modern factory
robots are ”autonomous” within the strict confines of their direct environment.

It may not be that every degree of freedom exists in their surrounding
environment, but the factory robot’s workplace is challenging and can often
contain chaotic, unpredicted variables. The exact orientation and position of
the next object of work and (in the more advanced factories) even the type of
object and the required task must be determined. This can vary unpredictably
(at least from the robot’s point of view).

1.1 Robot modelling, notation and preliminaries

One important area of robotics research is to enable the robot to cope with
its environment whether this be on land, underwater, in the air, underground,
or in space. Autonomous mobile robots have various applications in the field
of industry, military and security environment. The problem of autonomous
motion planning and control of wheeled mobile robots have attracted lot of
research interest in the field of robotics. Consequently engineers working on
design of mobile robots have proposed various drive mechanisms to drive such
robots. However the most common way to build a mobile robot is to use
two-wheel drive with differential steering and a free balancing wheel (castor).
Controlling the two motors independently make such robots to have good
manoeuvring and work well in indoor environment [123]. Mobile robots with
such drive systems are a typical example of non-holonomic mechanisms due
to the perfect rolling constraints on a wheel motion (no longitudinal or lateral

2 1 Introduction

Fig. 1.1. A differential-drive mobile robot

slipping).

A differential wheeled robot is a mobile robot whose movement is based
on two separately driven wheels placed on either side of the robot body [119].
It can thus change its direction by varying the relative rate of rotation of its
wheels and hence does not require an additional steering motion.
In a differential-drive vehicle there are two fixed wheels with a common axis
of rotation, and one or more caster wheels, typically smaller, whose function
is to keep the robot statically balanced (Fig. 1.1) [118]. The two fixed wheels
are separately controlled, in that different values of angular velocity may be
arbitrarily imposed, while the caster wheel is passive. Such a robot can rotate
on the spot (i.e., without moving the midpoint between the wheels), provided
that the angular velocities of the two wheels are equal and opposite.

A vehicle with similar mobility is obtained using a synchro-drive kinematic

1.1 Robot modelling, notation and preliminaries 3

arrangement (Fig 1.1). This robot has three aligned steerable wheels which
are synchronously driven by only two motors through a mechanical coupling,
e.g., a chain or a transmission belt. The first motor controls the rotation of the
wheels around the horizontal axis, thus providing the driving force (traction)
to the vehicle. The second motor controls the rotation of the wheels around
the vertical axis, hence affecting their orientation. Note that the heading of
the chassis does not change during the motion. Often, a third motor is used
in this type of robot to rotate independently the upper part of the chassis (a
turret) with respect to the lower part. This may be useful to orient arbitrarily
a directional sensor (e.g., a camera) or in any case to recover an orientation
error.

In a tricycle vehicle (Fig 1.2) [121] there are two fixed wheels mounted on
a rear axle and a steerable wheel in front. The fixed wheels are driven by a
single motor which controls their traction,1 while the steerable wheel is driven
by another motor which changes its orientation, acting then as a steering de-
vice. Alternatively, the two rear wheels may be passive and the front wheel
may provide traction as well as steering.

To balance the robot, additional wheels or casters may be added. If both
the wheels are driven in the same direction and speed, the robot will go in a
straight line. If both wheels are turned with equal speed in opposite directions,
as is clear from the diagram shown, the robot will rotate about the central
point of the axis [124]. Otherwise, depending on the speed of rotation and
its direction, the center of rotation may fall anywhere on the line defined by
the two contact points of the tires. While the robot is traveling in a straight
line, the center of rotation is an infinite distance from the robot. Since the
direction of the robot is dependent on the rate and direction of rotation of the
two driven wheels, these quantities should be sensed and controlled precisely.

A differentially steered robot is similar to the differential gears used in
automobiles in that both the wheels can have different rates of rotations, but
unlike the differential gearing system, a differentially steered system will have
both the wheels powered. Differential wheeled robots are used extensively in
robotics, since their motion is easy to program and can be well controlled.
Virtually all consumer robots on the market today use differential steering
primarily for its low cost and simplicity.

1 The distribution of the traction torque on the two wheels must take into account
the fact that in general they move with different speeds. The mechanism which
equally distributes traction is the differential.

4 1 Introduction

Fig. 1.2. A tricycle mobile robot and A car-like mobile robot

A mobile robot needs locomotion mechanisms that enable it to move un-
bounded throughout its environment. But there are a large variety of possible
ways to move, and so the selection of a robot’s approach to locomotion is an
important aspect of mobile robot design. In the laboratory, there are research
robots that can walk, jump, run, slide, skate, swim, fly, and, of course, roll.
Most of these locomotion mechanisms have been inspired by their biological
counterparts [124]. There is, however, one exception: the actively powered
wheel is a human invention that achieves extremely high efficiency on flat
ground. This mechanism is not completely foreign to biological systems. Our
bipedal walking system can be approximated by a rolling polygon, with sides
equal in length to the span of the step. As the step size decreases, the poly-
gon approaches a circle or wheel. But nature did not develop a fully rotating,
actively powered joint, which is the technology necessary for wheeled locomo-
tion. Biological systems succeed in moving through a wide variety of harsh

1.1 Robot modelling, notation and preliminaries 5

environments [133].

Therefore it can be desirable to copy their selection of locomotion mech-
anisms. However, replicating nature in this regard is extremely difficult for
several reasons. To begin with, mechanical complexity is easily achieved in
biological systems through structural replication. Cell division, in combina-
tion with specialization, can readily produce a millipede with several hundred
legs and several tens of thousands of individually sensed cilia [97]. In man-
made structures, each part must be fabricated individually, and so no such
economies of scale exist. Additionally, the cell is a microscopic building block
that enables extreme miniaturization. With very small size and weight, insects
achieve a level of robustness that we have not been able to match with human
fabrication techniques. Finally, the biological energy storage system and the
muscular and hydraulic activation systems used by large animals and insects
achieve torque, response time, and conversion efficiencies that far exceed sim-
ilarly scaled man-made systems.

Owing to these limitations, mobile robots generally locomote either using
wheeled mechanisms, a well-known human technology for vehicles, or using
a small number of articulated legs, the simplest of the biological approaches
to locomotion. In general, legged locomotion requires higher degrees of free-
dom and therefore greater mechanical complexity than wheeled locomotion.
Wheels, in addition to being simple, are extremely well suited to flat ground.
As a biped walking robot, on flat surfaces wheeled locomotion is one to two
orders of magnitude more efficient than legged locomotion. The railway is ide-
ally engineered for wheeled locomotion because rolling friction is minimized
on a hard and flat steel surface. But as the surface becomes soft, wheeled
locomotion accumulates inefficiencies due to rolling friction whereas legged
locomotion suffers much less because it consists only of point contacts with
the ground [94].

1.1.1 Wheeled Mobile Robots

The wheel has been by far the most popular locomotion mechanism in mobile
robotics and in man-made vehicles in general [108]. It can achieve very good
efficiencies, and does so with a relatively simple mechanical implementation.
In addition, balance is not usually a research problem in wheeled robot de-
signs, because wheeled robots are almost always designed so that all wheels
are in ground contact at all times. Thus, three wheels are sufficient to guar-
antee stable balance, although, as we shall see below, two-wheeled robots can

6 1 Introduction

also be stable.

When more than three wheels are used, a suspension system is required
to allow all wheels to maintain ground contact when the robot encounters
uneven terrain. Instead of worrying about balance, wheeled robot research
tends to focus on the problems of traction and stability, maneuverability,
and control: can the robot wheels provide sufficient traction and stability for
the robot to cover all of the desired terrain, and does the robot’s wheeled
configuration enable sufficient control over the velocity of the robot? As we
shall see, there is a very large space of possible wheel configurations when one
considers possible techniques for mobile robot locomotion [125]. We begin by
discussing the wheel in detail, as there are a number of different wheel types
with specific strengths and weaknesses. Then, we examine complete wheel
configurations that deliver particular forms of locomotion for a mobile robot.

1.2 Robot dynamics

The main feature of mobile robots is the presence of a mobile base which al-
lows the robot to move freely in the environment. Unlike manipulators, such
robots are mostly used in service applications, where extensive, autonomous
motion capabilities are required [120]. From a mechanical viewpoint, a mobile
robot consists of one or more rigid bodies equipped with a locomotion system.
This description includes the following two main classes of mobile robots:2

• Wheeled mobile robots typically consist of a rigid body (base or chassis)
and a system of wheels which provide motion with respect to the ground.
Other rigid bodies (trailers), also equipped with wheels, may be connected
to the base by means of revolute joints.

• Legged mobile robots are made of multiple rigid bodies, interconnected by
prismatic joints or, more often, by revolute joints. Some of these bodies
form lower limbs, whose extremities (feet) periodically come in contact
with the ground to realize locomotion. There is a large variety of mechan-
ical structures in this class, whose design is often inspired by the study of
living organisms (biomimetic robotics): they range from biped humanoids
to hexapod robots aimed at replicating the biomechanical efficiency of
insects.

There are four major wheel classes. They differ widely in their kinematics,
and therefore the choice of wheel type has a large effect on the overall kine-
matics of the mobile robot. The standard wheel and the castor wheel have a

2 Other types of mechanical locomotion systems are not considered here. Among
these, it is worth mentioning tracked locomotion, very effective on uneven ter-
rain, and undulatory locomotion, inspired by snake gaits, which can be achieved
without specific devices.

1.2 Robot dynamics 7

primary axis of rotation and are thus highly directional. To move in a different
direction, the wheel must be steered first along a vertical axis. The key differ-
ence between these two wheels is that the standard wheel can accomplish this
steering motion with no side effects, as the center of rotation passes through
the contact patch with the ground, whereas the castor wheel rotates around
an offset axis, causing a force to be imparted to the robot chassis during steer-
ing. The spherical wheel is a truly omnidirectional wheel, often designed so
that it may be actively powered to spin along any direction.

One mechanism for implementing this spherical design imitates the com-
puter mouse, providing actively powered rollers that rest against the top sur-
face of the sphere and impart rotational force. Regardless of what wheel is
used, in robots designed for all-terrain environments and in robots with more
than three wheels, a suspension system is normally required to maintain wheel
contact with the ground.

One of the simplest approaches to suspension is to design flexibility into the
wheel itself. For instance, in the case of some four-wheeled indoor robots that
use castor wheels, manufacturers have applied a deformable tire of soft rubber
to the wheel to create a primitive suspension. Of course, this limited solution
cannot compete with a sophisticated suspension system in applications where
the robot needs a more dynamic suspension for significantly non flat terrain.
The choice of wheel types for a mobile robot is strongly linked to the choice
of wheel arrangement, or wheel geometry.

y

x

v

X

Y

O

Fig. 1.3. Robot model

The mobile robot designer must consider these two issues simultaneously
when designing the locomoting mechanism of a wheeled robot. Why do wheel

8 1 Introduction

type and wheel geometry matter? Three fundamental characteristics of a robot
are governed by these choices: maneuverability, controllability, and stability
[101]. Unlike automobiles, which are largely designed for a highly standardized
environment (the road network), mobile robots are designed for applications
in a wide variety of situations. Automobiles all share similar wheel configura-
tions because there is one region in the design space that maximizes maneuver-
ability, controllability, and stability for their standard environment: the paved
roadway. However, there is no single wheel configuration that maximizes these
qualities for the variety of environments faced by different mobile robots.So
you will see great variety in the wheel configurations of mobile robots.

In fact, few robots use the Ackerman wheel configuration of the automo-
bile because of its poor maneuverability, with the exception of mobile robots
designed for the road system. Surprisingly, the minimum number of wheels
required for static stability is two. As shown above, a two-wheel differential-
drive robot can achieve static stability if the center of mass is below the wheel
axle. Cye is a commercial mobile robot that uses this wheel configuration
[112]. However, under ordinary circumstances such a solution requires wheel
diameters that are impractically large. Dynamics can also cause a two-wheeled
robot to strike the floor with a third point of contact, for instance, with suf-
ficiently high motor torques from standstill.

Conventionally, static stability requires a minimum of three wheels, with the
additional caveat that the center of gravity must be contained within the tri-
angle formed by the ground contact points of the wheels. Stability can be
further improved by adding more wheels, although once the number of con-
tact points exceeds three, the hyperstatic nature of the geometry will require
some form of flexible suspension on uneven terrain. In the research community,
other classes of mobile robots are popular which achieve high maneuverability,
only slightly inferior to that of the omnidirectional configurations.

In such robots, motion in a particular direction may initially require a ro-
tational motion. With a circular chassis and an axis of rotation at the center
of the robot, such a robot can spin without changing its ground footprint.
The most popular such robot is the two-wheel differential-drive robot where
the two wheels rotate around the center point of the robot [117]. One or two
additional ground contact points may be used for stability, based on the ap-
plication specifics. In contrast to the above configurations, consider the Ack-
erman steering configuration common in automobiles. Such a vehicle typically
has a turning diameter that is larger than the car. Furthermore, for such a
vehicle to move sideways requires a parking maneuver consisting of repeated
changes in direction forward and backward. Nevertheless, Ackerman steering
geometries have been especially popular in the hobby robotics market, where
a robot can be built by starting with a remote control racecar kit and adding

1.2 Robot dynamics 9

sensing and autonomy to the existing mechanism. In addition, the limited
maneuverability of Ackerman steering has an important advantage: its direc-
tionality and steering geometry provide it with very good lateral stability in
high-speed turns.

There is generally an inverse correlation between controllability and ma-
neuverability. For example, the omnidirectional designs such as the four-castor
wheel configuration require significant processing to convert desired rotational
and translational velocities to individual wheel commands [118]. Furthermore,
such omnidirectional designs often have greater degrees of freedom at the
wheel. For instance, the Swedish wheel has a set of free rollers along the
wheel perimeter. These degrees of freedom cause an accumulation of slippage,
tend to reduce dead-reckoning accuracy and increase the design complexity.

Controlling an omnidirectional robot for a specific direction of travel is
also more difficult and often less accurate when compared to less maneu-
verable designs. For example, an Ackerman steering vehicle can go straight
simply by locking the steerable wheels and driving the drive wheels [103]. In a
differential-drive vehicle, the two motors attached to the two wheels must be
driven along exactly the same velocity profile, which can be challenging consid-
ering variations between wheels, motors, and environmental differences. With
fourwheel omnidrive, such as the Uranus robot, which has four Swedish wheels,
the problem is even harder because all four wheels must be driven at exactly
the same speed for the robot to travel in a perfectly straight line. In summary,
there is no “ideal” drive configuration that simultaneously maximizes stabil-
ity, maneuverability, and controllability. Each mobile robot application places
unique constraints on the robot design problem, and the designer’s task is
to choose the most appropriate drive configuration possible from among this
space of compromises.

1.2.1 Mobile Robot Kinematics

Kinematics is the most basic study of how mechanical systems behave. In
mobile robotics, we need to understand the mechanical behavior of the robot
both in order to design appropriate mobile robots for tasks and to understand
how to create control software for an instance of mobile robot hardware. Of
course, mobile robots are not the first complex mechanical systems to require
such analysis. Robot manipulators have been the subject of intensive study
for more than thirty years[140]. In some ways, manipulator robots are much
more complex than early mobile robots: a standard welding robot may have
five or more joints, whereas early mobile robots were simple differential-drive
machines. In recent years, the robotics community has achieved a fairly com-
plete understanding of the kinematics and even the dynamics (i.e., relating to

10 1 Introduction

force and mass) of robot manipulators.

The mobile robotics community poses many of the same kinematic ques-
tions as the robot manipulator community. A manipulator robot’s workspace
is crucial because it defines the range of possible positions that can be achieved
by its end effector relative to its fixture to the environment. A mobile robot’s
workspace is equally important because it defines the range of possible poses
that the mobile robot can achieve in its environment [128]. The robot arm’s
controllability defines the manner in which active engagement of motors can
be used to move from pose to pose in the workspace. Similarly, a mobile robot’s
controllability defines possible paths and trajectories in its workspace. Robot
dynamics places additional constraints on workspace and trajectory due to
mass and force considerations. The mobile robot is also limited by dynamics;
for instance, a high center of gravity limits the practical turning radius of a
fast, car-like robot because of the danger of rolling. But the chief difference
between a mobile robot and a manipulator arm also introduces a significant
challenge for position estimation.

A manipulator has one end fixed to the environment. Measuring the posi-
tion of an arm’s end effector is simply a matter of understanding the kinemat-
ics of the robot and measuring the position of all intermediate joints [147]. The
manipulator’s position is thus always computable by looking at current sensor
data. But a mobile robot is a self-contained automaton that can wholly move
with respect to its environment. There is no direct way to measure a mobile
robot’s position instantaneously. Instead, one must integrate the motion of
the robot over time. Add to this the inaccuracies of motion estimation due to
slippage and it is clear that measuring a mobile robot’s position precisely is
an extremely challenging task.

The process of understanding the motions of a robot begins with the process
of describing the contribution each wheel provides for motion. Each wheel
has a role in enabling the whole robot to move. By the same token, each
wheel also imposes constraints on the robot’s motion; for example, refusing
to skid laterally. In the following section, we introduce notation that allows
expression of robot motion in a global reference frame as well as the robot’s
local reference frame [88]. Then, using this notation, we demonstrate the con-
struction of simple forward kinematic models of motion, describing how the
robot as a whole moves as a function of its geometry and individual wheel
behavior. Next, we formally describe the kinematic constraints of individual
wheels, and then combine these kinematic constraints to express the whole
robot’s kinematic constraints. With these tools, one can evaluate the paths
and trajectories that define the robot’s maneuverability.

1.2 Robot dynamics 11

1.2.2 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each
individual wheel contributes to the robot’s motion and, at the same time, im-
poses constraints on robot motion. Wheels are tied together based on robot
chassis geometry, and therefore their constraints combine to form constraints
on the overall motion of the robot chassis. But the forces and constraints of
each wheel must be expressed with respect to a clear and consistent reference
frame. This is particularly important in mobile robotics because of its self-
contained and mobile nature; a clear mapping between global and local frames
of reference is required. We begin by defining these reference frames formally,
then using the resulting formalism to annotate the kinematics of individual
wheels and whole robots. Throughout this process we draw extensively on the
notation and terminology presented in Structural Properties and Classifica-
tion of Kinematic and Dynamic Models of Wheeled Mobile Robots.

In the following, the kinematic models of two wheeled vehicles of particu-
lar interest will be analyzed in detail. A large part of the existing mobile
robots have a kinematic model that is equivalent to one of these two.

Unicycle

Fig. 1.4. Generalized coordinates for a unicycle

12 1 Introduction

A unicycle is a vehicle with a single orientable wheel [143]. Its configura-

tion is completely described by q =
[
x y θ

]T
, where (x, y) are the Cartesian

coordinates of the contact point of the wheel with the ground (or equivalently,
of the wheel centre) and θ is the orientation of the wheel with respect to the
x axis (see Fig. 1.4).

As already seen in, the pure rolling constraint for the wheel is expressed as

ẋ sin θ − ẏ cos θ =
[

sin θ − cos θ 0
]
q̇ = 0, (1.1)

entailing that the velocity of the contact point is zero in the direction orthog-
onal to the sagittal axis of the vehicle. The line passing through the contact
point and having such direction is therefore called zero motion line. Consider
the matrix

G(q) =
[
g1(q) g2(q)

]
=

 cos θ 0
sin θ 0

0 1

 , (1.2)

whose columns g1(q) and g2(q) are, for each , a basis of the null space of the
matrix associated with the Pfaffian constraint. All the admissible generalized
velocities at are therefore obtained as a linear combination of g1(q) and g2(q).
The kinematic model of the unicycle is then ẋẏ

θ̇

 =

 cos θ
sin θ

0

 v +

0
0
1

ω, (1.3)

where the inputs v and ω have a clear physical interpretation. In particular,
v is the driving velocity , i.e., the modulus3 (with sign) of the contact point
velocity vector, whereas the steering velocity ω is the wheel angular speed
around the vertical axis. The Lie bracket of the two input vector fields is

[g1, g2] (q) =

 sin θ
− cos θ

0

 , (1.4)

that is always linearly independent from g1(q), g2(q). Therefore, the iterative
procedure for building the accessibility distribution ∆A ends with

dim∆A = dim∆2 = dim span {g1, g2, [g1, g2]} = 3.

This indicates that the unicycle is controllable with degree of nonholonomy
κ = 2, and that constraint (1.1) is nonholonomic — the same conclusion
reached by applying the integrability condition. A unicycle in the strict sense

3 Note that v is given by the angular speed of the wheel around its horizontal axis
multiplied by the wheel radius.

1.2 Robot dynamics 13

(i.e., a vehicle equipped with a single wheel) is a robot with a serious problem
of balance in static conditions. However, there exist vehicles that are kinemat-
ically equivalent to a unicycle but more stable from a mechanical viewpoint.
Among these, the most important are the differential drive and the synchro
drive vehicles, had been already introduced.

For the differential drive mobile robot of Fig 1.3, denote by (x, y) the
Cartesian coordinates of the midpoint of the segment joining the two wheel
centres, and by θ the common orientation of the fixed wheels (hence, of the
vehicle body). Then, the kinematic model(1.3) of the unicycle also applies to
the differential drive vehicle, provided that the driving and steering velocities
v and ω are expressed as a function of the actual velocity inputs, i.e., the
angular speeds ωR and ωL of the right and left wheel, respectively. Simple
arguments can be used to show that there is a one-to-one correspondence
between the two sets of inputs:

v =
r (ωR + ωL)

2
ω =

r (ωR − ωL)

d
, (1.5)

where r is the radius of the wheels and d is the distance between their centres.

The equivalence with the kinematic model(3) is even more straightforward
for the synchro drive mobile robot of Fig.2, whose control inputs are indeed
the driving velocity v and the steering velocity ω, that are common to the three
orientable wheels. The Cartesian coordinates (x, y) may represent in this case
any point of the robot (for example, its centroid), while θ is the common
orientation of the wheels. Note that, unlike a differential drive vehicle, the
orientation of the body of a synchro drive vehicle never changes, unless a
third actuator is added for this specific purpose.

Bicycle

Consider now a bicycle, i.e., a vehicle having an orientable wheel and a fixed
wheel arranged as in Fig. 1.5. A possible choice for the generalized coordinates

is q =
[
x y θ φ

]T
, where (x, y) are the Cartesian coordinates of the contact

point between the rear wheel and the ground (i.e., of the rear wheel centre),
θ is the orientation of the vehicle with respect to the x axis, and φ is the
steering angle of the front wheel with respect to the vehicle.

The motion of the vehicle is subject to two pure rolling constraints, one
for each wheel:

ẋf sin(θ + φ)− ẏf cos(θ + φ) = 0 (1.6)

ẋ sin θ − ẏ cos θ = 0, (1.7)

14 1 Introduction

Fig. 1.5. Generalized coordinates and instantaneous centre of rotation for a bicycle

where (xf , yf) is the Cartesian position of the centre of the front wheel. The
geometric meaning of these constraints is obvious: the velocity of the centre
of the front wheel is zero in the direction orthogonal to the wheel itself, while
the velocity of the centre of the rear wheel is zero in the direction orthogonal
to the sagittal axis of the vehicle. The zero motion lines of the two wheels
meet at a point C called instantaneous centre of rotation (Fig. 1.5), whose
position depends only on (and changes with) the configuration of the bicycle.
Each point of the vehicle body then moves instantaneously along an arc of
circle with centre in C (see also Problem in [116]).

Using the rigid body constraint

xf = x+ ` cos θ

yf = y + ` sin θ,

where ` is the distance between the wheels, constraint (1.6) can be rewritten
as

ẋ sin(θ + φ)− ẏ cos(θ + φ)− ` θ̇ cosφ = 0. (1.8)

The matrix associated with the Pfaffian constraints (1.7), (1.8) is then

AT (q) =

[
sin θ − cos θ 0 0

sin(θ + φ) − cos(θ + φ) −` cosφ 0

]
(1.9)

1.2 Robot dynamics 15

with constant rank k = 2. The dimension of its null space is n − k = 2, and
all the admissible velocities at may be written as a linear combination of a
basis of N (AT (q)), for example

ẋ
ẏ

θ̇

φ̇

 =

cos θ cosφ
sin θ cosφ

sinφ/`
0

u1 +

0
0
0
1

u2 (1.10)

Since the front wheel is orientable, it is immediate to set u2 = ω, where ω is
the steering velocity. The expression of u1 depends instead on how the vehicle
is driven.

If the bicycle has front-wheel drive, one has directly u1 = v, where v is the
driving velocity of the front wheel. The corresponding kinematic model is

ẋ
ẏ

θ̇

φ̇

 =

cos θ cosφ
sin θ cosφ

sinφ/`
0

 v +

0
0
0
1

 (1.11)

Denoting by g1(q) and g2(q) the two input vector fields, simple computations
give

g3(q) = [g1, g2] (q) =

cos θ sinφ
sin θ sinφ
− cosφ/`

0

 g4(q) = [g1, g3] (q) =

− sin θ/`
cos θ/`

0
0

 ,
both linearly independent from g1(q) and g2(q). Hence, the iterative proce-
dure for building the accessibility distribution ∆A ends with

dim ∆A = dim ∆3 = dim span{g1, g2, g3, g4} = 4.

This means that the front-wheel drive bicycle is controllable with degree of
nonholonomy κ = 3, and constraints (1.6), (1.7) are (completely) nonholo-
nomic.

The kinematic model of a bicycle with rear-wheel drive can be derived by
noting that in this case the first two equations must coincide with those of
the unicycle model (1.3). It is then sufficient to set u1 = v/ cosφ to obtain

ẋ
ẏ

θ̇

φ̇

 =

cos θ
sin θ

tanφ/`
0

 v +

0
0
0
1

ω (1.12)

16 1 Introduction

where v is the driving velocity of the rear wheel.4 In this case, one has

g3(q) = [g1, g2] (q) =

0
0
1

` cos2 φ

0

 g4(q) = [g1, g3] (q) =

− sin θ
` cos2 φ
cos θ
` cos2 φ

0
0

 ,
again linearly independent from g1(q) and g2(q). Hence, the rear-wheel drive
bicycle is also controllable with degree of nonholonomy κ = 3.

Like the unicycle, the bicycle is also unstable in static conditions. Kinemati-
cally equivalent vehicles that are mechanically balanced are the tricycle and
the car-like robot, the kinematic model is given by (1.11) or by(13) depending
on the wheel drive being on the front or the rear wheels. In particular, (x, y)
are the Cartesian coordinates of the midpoint of the rear wheel axle, θ is the
orientation of the vehicle, and φ is the steering angle.

1.2.3 Representing robot position

Throughout this analysis we model the robot as a rigid body on wheels, op-
erating on a horizontal plane. The total dimensionality of this robot chassis
on the plane is three, two for position in the plane and one for orientation
along the vertical axis, which is orthogonal to the plane [113]. Of course, there
are additional degrees of freedom and flexibility due to the wheel axles, wheel
steering joints, and wheel castor joints. However by robot chassis we refer
only to the rigid body of the robot, ignoring the joints and degrees of freedom
internal to the robot and its wheels.

Consider autonomous vehicles whose dynamics is described by a differ-
ential drive model with two driving wheels and a single caster, as shown in
Fig. A.1. A differential drive robot is a typical nonholonomic wheeled vehi-
cle, which has two rear drive wheels and a front castor for body support. It
is assumed that the motion of mobile robot cannot slip laterally so that the
translational velocity is in the direction of heading, i.e. a pure rolling contact
between the wheels and the ground [87]. The velocity of the two rear wheels
(vl and vr) are used to impose the translation (v = (vl + vr)/2) and angular
(ω = (vr− vl)/B) speeds of the robot (B is the wheelbase). The robot pose is
described by its position (px, py), the midpoint of the rear axis of the robot,
and its orientation (θ). Then, the kinematics equation is

4 Note that the kinematic model is no longer valid for φ = ±π/2, where the first
vector field is not defined. This corresponds to the mechanical jam in which the
front wheel is orthogonal to the sagittal axis of the vehicle.

1.2 Robot dynamics 17 ṗx(t)
ṗy(t)

θ̇(t)

 =

 cos(θ(t))
sin(θ(t))

0

 v(t) +

0
0
1

ω(t) (1.13)

where maximum linear and angular velocities are prescribed:

ı̀|v(t)| ≤ VMAX , |ω(t)| ≤WMAX , ∀t.(1.14)

Notice that the kinematic model (1.24) is nonintegratable and, as a conse-
quence, kinematics constraints can not be converted into geometrical require-
ments. Moreover since the number of control variables is less than the number
of state variables, a nonholonomic constraint holds and a continuous time-
invariant feedback control law cannot be used. On the other hand, since the
accessibility rank condition is globally satisfied, the model plant (1.24) is con-
trollable by means of a nonlinear or time-varying controller.

Hereafter, we refer to (1.24) by means of its compact form:

ẋ(t) = Fp(x(t), u(t)) (1.15)

where x(t) = [px(t), py(t), θ(t)] is the plant state and u(t) = [v(t), ω(t)]T the
command input. A Polytopic Linear Differential Inclusion (PLDI) of (1.25)
can be derived by using the arguments outlined in. First, the plant is linearized
around a given nominal solution (x̂(t), û(t)) as follows

˙̃x(t) = A(θ̃, ṽ) x̃(t) +B(θ̃, ṽ) ũ(t) (1.16)

where x̃(t) := x(t)− x̂(t), ũ(t) := u(t)− û(t)

Then, by considering a maximum displacement on the nominal instantaneous
azimuth angle θ̂(t)

θ̃ ∈ [θ̂(t)− θ, θ̂(t) + θ], (1.17)

and under the following constraint on the nominal instantaneous linear veloc-
ity v̂(t)

ṽ ∈ [v̂(t)− v, v̂(t) + v], (1.18)

we have that all the solutions of (1.25) are also solutions of the following
parameter varying PLDI

˙̃x(t) ∈

(
4∑
k=1

λk(t)Ak

)
x̃(t) +

(
4∑
k=1

λk(t)Bk

)
ũ(t) (1.19)

where (Ak, Bk), k = 1, . . . , 4, are computed by evaluating the Jacobian matrix

18 1 Introduction

of (1.25) along the vertices of the constraints (1.29)-(1.30). A robust approx-
imation of (1.31) can derived by means of the following arguments. First, a

finite set of nominal pairs (θ̂w(t), v̂w(t)), w = 1, . . . , P, equally spaced within
a given time interval ∆T, is selected along the nominal robot path lying in
the plane (p̂x(t), p̂y(t)). Then, a PLDI (1.31) corresponding to each operating

point (θ̂w(t), v̂w(t)) is computed. Hence, by evaluating the convex hull of all
obtained matrix vertices [92]

Ω = Conv
{
{[Akw , Bkw]}4k=1, w = 1, . . . ,M

}
(1.20)

a robust PLDI of the following form comes out

˙̃x(t) ∈

(
Γ∑
k=1

µkV ert{Ω}k

)
[x̃T (t), ũT (t)]T (1.21)

1.3 State-Space Model

A state-space model of the mobile robot can be obtained by using the kinetic
and potential energy expressions T and U

p

θ

v

y
p

p

φ

p
x x

z

Fig. 1.6. State-Space Robot model

1.3 State-Space Model 19

Table 1.1. Model parameters

Symbol Meaning
M chassis mass
ML Left wheel mass
MR Right wheel mass
JL moment of inertia of the Left wheel
JR moment of inertia of the Right wheel
Jθ moment of inertia of the wheel w.r.t. the z-axis
R wheels radius
D distance between the wheels along the axle center
b friction coefficient
φ tilt angle of the incline plane

T :=
1

2
M v2 + JW

v2

R2
+

1

2
Jθ θ̇

2 +
1

2

JW
R2

D2 θ̇2 (1.22)

U := −(M + 2MW) g px sin(φ)−MW g D sin(φ) | sin(θ)| (1.23)

and by resorting to the classical Langrange approach:

ṗx(t) = v(t) cos(θ(t))

ṗy(t) = v(t) sin(θ(t))

v̇(t) =
TL(t)
R + TR(t)

R

M + JW
R2

− (M + 2MW) g sin(φ(t))− b v(t)

θ̇(t) = ω(t)

ω̇(t) =
D
2

(
TL(t)

R −TR(t)

R

)
+MW g D sin(φ(t)) cos(θ(t))

sin(θ(t))
| sin(θ(t))|

Jθ+
JW
R2 D2

(1.24)

where x(t) = [px(t), py(t), v(t), θ(t), ω(t)] is the plant state,

20 1 Introduction

u(t) = [TL(t), TR(t)]T the command input, MW = ML = MR and JW =
JL = JR. Hereafter, we refer to (1.24) by means of its compact form:

ẋ(t) = Fp(x(t)) +Bp(x(t))u(t) (1.25)

A Polytopic Linear Differential Inclusion (PLDI) of (1.25) can be derived
by using the arguments outlined in [188]. First, the plant is linearized around
a given nominal solution (x̂(t), û(t)) as follows

˙̃x(t) = A(θ̃, ṽ) x̃(t) +B(θ̃) ũ(t) (1.26)

where x̃(t) := x(t)− x̂(t), ũ(t) := u(t)− û(t) and

A(θ̃ , ṽ) =

0 0 cos(θ̃) −ṽ sin(θ̃) 0

0 0 sin(θ̃) ṽ cos(θ̃) 0
0 0 −b 0 0
0 0 0 0 1

0 0 0 D
2
MW gD sinφ[− sin6(θ̃)+sin2(θ̃)+sin(θ̃)−1](

Jθ̃+
D2

2

(
JW
R2 +MW

))
sin(θ̃) | sin(θ̃)|

0

 (1.27)

B(θ̃) =

0 0
0 0
1
R

M+
JW
R2

1
R

M+
JW
R2

0 0
D
2R

Jθ̃+
D2

2

(
JW
R2 +MW

) − D
2R

Jθ̃+
D2

2

(
JW
R2 +MW

)

(1.28)

Then, by considering a maximum displacement on the nominal instantaneous
azimuth angle θ̂(t)

θ̃ ∈ [θ̂(t)− θ, θ̂(t) + θ], (1.29)

and under the following constraint on the nominal instantaneous linear veloc-
ity v̂(t)

ṽ ∈ [v̂(t)− v, v̂(t) + v], (1.30)

we have that all the solutions of (1.25) are also solutions of the following
parameter varying PLDI

˙̃x(t) ∈

(
4∑
k=1

λk(t)Ak

)
x̃(t) +

(
4∑
k=1

λk(t)Bk

)
ũ(t) (1.31)

1.3 State-Space Model 21

where (Ak, Bk), k = 1, . . . , 4, are computed by evaluating the Jacobian matrix
(1.27) along the vertices of the constraints (1.29)-(1.30). A robust approxima-
tion of (1.31) can derived by means of the following arguments. First, a finite

set of nominal pairs (θ̂w(t), v̂w(t)), w = 1, . . . , P, equally spaced within a
given time interval ∆T, is selected along the nominal robot path lying in the
plane (p̂x(t), p̂y(t)). Then, a PLDI (1.31) corresponding to each operating

point (θ̂w(t), v̂w(t)) is computed. Hence, by evaluating the convex hull of all
the obtained matrix vertices

Ω = Conv
{
{[Akw , Bkw]}4k=1, w = 1, . . . ,M

}
(1.32)

a robust PLDI of the following form comes out

˙̃x(t) ∈

(
Γ∑
k=1

µkV ert{Ω}k

)
[x̃T (t), ũT (t)]T (1.33)

with the input torque subject to point-wise constraints:

|ũi| < ũi,max [Nm], i = 1, 2. (1.34)

Kinematics of a manipulator represents the basis of a systematic, general
derivation of its dynamics, i.e., the equations of motion of the manipulator
as a function of the forces and moments acting on it. The availability of the
dynamic model is very useful for mechanical design of the structure, choice
of actuators, determination of control strategies, and computer simulation of
manipulator motion. This Chapter is dedicated to the study of dynamics,
whereas on the following Appendix recalls some fundamentals on Definitions
and Descriptions .

Modelling of mobile robots requires a preliminary analysis of the kinematic
constraints imposed by the presence of wheels. Depending on the mechanical
structure, such constraints can be integrable or not; this has direct conse-
quence on a robot’s mobility. The kinematic model of a mobile robot is es-
sentially the description of the admissible instantaneous motions in respect
of the constraints. On the other hand, the dynamic model accounts for the
reaction forces and describes the relationship between the above motions and
the generalized forces acting on the robot. These models can be expressed
in a canonical form which is convenient for design of planning and control
techniques.

2

Modelling of Multi-agent Systems (in Terms of
Graph Theoretic Methods)

2.1 Multi-agent Systems

Network science has emerged as a powerful conceptual paradigm in science
and engineering. Constructs and phenomena such as interconnected networks,
random and small-world networks, and phase transition nowadays appear in
a wide variety of research literature, ranging across social networks, statistical
physics, sensor networks, economics, and of course multi-agent coordination
and control. The reason for this unprecedented attention to network science is
twofold. On the one hand, in a number of disciplines– particularly in biological
and material sciences–it has become vital to gain a deeper understanding of
the role that inter-elemental interactions play in the collective functionality
of multilayered systems. On the other hand, technological advances have fa-
cilitated an ability to synthesize networked engineering systems–such as those
found in multi-vehicle systems, sensor networks, and nanostructures that re-
semble, sometimes remotely, their natural counterparts in terms of their func-
tional and operational complexity.

A basic premise in network science is that the structure and attributes of
the network influence the dynamical properties exhibited at the system level.
The implications and utility of adopting such a perspective for engineering
networked systems, and specifically the system theoretic consequences of such
a point of view, formed the impetus for much of this section.1

Engineered, distributed multi-agent networks, such as distributed robots
and mobile sensor networks, have posed a number of challenges in terms of
their system theoretic analysis and synthesis. Agents in such networks are
required to operate in concert with each other in order to achieve system
level objectives, while having access to limited computational resources and
local communications and sensing capabilities. In this introductory chapter,

1 One needs to add, however, that–judging by the vast apparatus of social network-
ing, e.g.,

24 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

we first discuss a few examples of such distributed and networked systems,
such as multiple aerospace vehicles, sensor networks, and nanosystems. We
then proceed to outline some of the insights that a graph theoretic approach
to multi-agent networks is expected to provide, before offering a preview of
the chapter’s content.2

Graph-based abstractions of networked systems contain virtually no infor-
mation about what exactly is shared by the agents, through what protocol the
exchange takes place, or what is subsequently done with the received infor-
mation. Instead, the graph-based abstraction contains high-level descriptions
of the network topology in terms of objects referred to as vertices and edges.
In this chapter, we provide a brief overview of graph theory. Of particular
focus will be the area of algebraic graph theory, which will provide the tools
needed in later chapters for tying together inherently dynamic objects (such as
multi-agent robotic systems) with combinatorial characterization of networks
(graphs).

2.1.1 Boids Model

The Reynolds boids model, originally proposed in the context of computer
graphics and animation, illustrates the basic premise behind a number of multi
agent problems, in which a collection of mobile agents are to collectively solve
a global task using local interaction rules. This model attempts to capture the
way social animals and birds align themselves in swarms, schools, flocks, and
herds. In the boids flocking model, each “agent,” in this case a computer ani-
mated construct, is designed to react to its neighboring flockmates, following
an ad hoc protocol consisting of three rules operating at different spatial scales.

These rules are seperation (avoid colliding with neighbors), alignment (align
velocity with neighbors’ velocities), and cohesion (avoid becoming isolated
from neighbors). A special case of the boids model is one in which all agents
move at the same constant speed and update their headings according to a
nearest neighbor rule for group level alignment and cohesion. It turns out that
based on such local interaction rules alone, velocity alignment and other types
of flocking behaviors can be obtained. An example of the resulting behavior
is shown in Figure 2.1.

2.1.2 Graph-Based Interaction Models

The interaction geometry will indeed play an important role in the analysis
and synthesis of networked multiagent systems regardless of whether the infor-

2 email, facebook, twitter, and a multitude of networked, coordinated, and har-
monic behavior in nature and the arts–our fascination with multi-agent networks
is more intrinsic.

2.2 Graphs 25

Fig. 2.1. A Reynolds boids model in action. Ten agents, each with an arbitrary
initial heading (given by the orientation of the triangles) and spacing, are considered
(left); after a while they are aligned, moving in the same general direction at regular
interagent distances (right).

mation exchange takes place over a communication network or through active
sensing, or for that matter whether it assumes a wireless, chemical, physical,
or sociological character. It turns out, however, that making the interaction
protocol and its geometry explicit in the system-level analysis and control
synthesis is far from trivial. In this direction, it becomes judicious to treat
interactions as essentially combinatorial–at least initially–to codify whether
an interaction exists and to what degree.

An example of this abstraction is seen in Figure 2.2, in which the inter-
action geometry is defined by omnidirectional range sensors. As we will see
throughout this section, such an abstraction, which cuts through the par-
ticular realization of the interaction, allows us to highlight the role of the
interconnection topology, not only in the analysis of these systems but also in
their synthesis.

2.2 Graphs

A finite, undirected, simple graph–or a graph for short–is built upon a finite
set, that is, a set that has a finite number of elements. We refer to this set as
the vertex set and denote it by V ; each element of V is then a vertex of the
graph. When the vertex set V has n elements, it is represented as

V = {v1, v2, . . . , vn} .

26 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Fig. 2.2. A network of agents equipped with omnidirectional range sensors can
be viewed as a graph, with nodes corresponding to the agents and edges to the
interactions.

Now consider the set of 2-element subsets of V , denoted by
[
V 2] . This set

consists of elements of the form {vi, vj} such that i, j =1 ,2,...,n and i 6= j.
The finite graph G is formally defined as the pair G =(V,E), where V is a
finite set of vertices and E is a particular subset of

[
V 2] ; we refer to E as

the set of edges ofG. We occasionally refer to vertices and edges of G as V
(G) and E(G), respectively, and simplify our notation for an edge {vi, vj} by
sometimes denoting it as vivj or even ij.

A graph is inherently a set theoretic object; however, it can conveniently
be represented graphically, which justifies its name. The graphical represen-
tation of G consists of “dots” (the vertices vi), and “lines” between vi and
vj when vivj ∈ E. This graphical representation leads to many definitions,
insights, and observations about graphs. For example, when an edge exists
between vertices vi and vj , we call them adjacent , and denote this relation-
ship by vi ∼ vj . In this case, edge vivj is called incident with vertices vi and
vj . Figure 2.3 gives an example of an undirected graph, G =(V,E), where
V = {v1, v2, . . . , v5} and E = {v1v2, v2v3, v3v4, v3v5, v2v5, v4v5}.

Analogously, the neighborhood N(i) ⊆ V of the vertex vi will be under-
stood as the set {vj ∈ V | vivj ∈ E}, that is, the set of all vertices that are
adjacent to vi. If vj ∈ N(i), it follows that vi ∈ N(j), since the edge set in
a (undirected) graph consists of unordered vertex pairs. The notion of ad-
jacency in the graph can be used to “move” around along the edges of the

2.2 Graphs 27

Fig. 2.3. An undirected graph on 5 vertices

graph. Thus, a path of length m in G is given by a sequence of distinct vertices

vi0 , vi1 , . . . , vim , (2.1)

such that for k = 0, 1, . . . ,m − 1, the vertices vik and vik+1
are adjacent. In

this case, vi0 and vim are called the end vertices of the path; the vertices
vi1 , . . . , vim−1 are the inner vertices. When the vertices of the path are dis-
tinct except for its end vertices, the path is called a cycle. A graph without
cycles is called a forest.

We call the graph G connected if, for every pair of vertices in V(G), there
is a path that has them as its end vertices. If this is not the case, the graph
is called disconnected . For example, the graph in Figure 2.3 is connected. We
refer to a connected graph as having one connected component–a component
in short. A component is thus a subset of the graph, associated with a minimal
partitioning of the vertex set, such that each partition is connected. Hence, a
disconnected graph has more than one component. A forest with one compo-
nent is–naturally–called a tree.

The graphical representation of graphs allows us to consider graphs as
logical constructions without the explicit identification of a vertex with an
element of a vertex set V . This is achieved by deleting the “labels” on the
dots representing the vertices of the graph; in this case, the graph is called
unlabeled. An unlabeled graph thus encodes the qualitative features of the
incident relation between a finite set of an otherwise unidentified objects.
When the vertices in an unlabeled graph are given back their identities, the
graph is called labeled.

28 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Graphs can represent relations among social entities. For example, in a
party of six consisting of Anna, Becky, Carolyn, David, Eaton, and Frank,
the graph shown in Figure 2.4 depicts a scenario where all males in the group
are each others’ friends, all females in the group are each others’ friends, and
Anna and David are the only cross-gender friends in the group.

Fig. 2.4. Boys and girls

Now Consider a group of three robots coordinating their respective speeds
according to the following chain of command: the rate of change of the second
robot’s speed is dictated by its speed difference with respect to the first one;
the rate of change of the third robot’s speed is adjusted analogously with
respect to the second one. Finally, the first robot adjusts its speed by the
taking the average of its speed differences with respect to the second and
third robots.
Denoting the speed of robot i by si, the dynamics of the resulting system can
be written as

ṡ1(t) = 1
2 ((s3(t)− s1(t)) + (s2(t)− s1(t)) ,

ṡ2(t) = s1(t)− s2(t)
ṡ3(t) = s2(t)− s3(t)

(2.2)

which assumes the form

ṡ(t) =

−1 1
2

1
2

1 −1 0
0 1 −1

 s(t) (2.3)

where s(t) = [s1(t)s2(t)s3(t)]
T

. We note that the matrix (2.3) corresponds
to the negative of the in-degree Laplacian of the network shown in Figure 2.5;

2.2 Graphs 29

Fig. 2.5. A robotic chain of command represented by the directed graph D

thus

ṡ(t) = −L(D)s(t), (2.4)

where D is the underlying directed interconnection, that is, the weighted di-
graph of the network.

We note that in the above examples, the dynamics of each vertex in the net-
work is “pulled” toward the states of the neighboring vertices. It is tempting
then to conjecture that asymptotically, all vertices will reach some weighted
average of their initial states, which also corresponds to the fixed point of
their collective dynamics. As such a state of agreement is of great interest to
us, we are obliged to formally define it.

The agreement set A ⊆ Rn is the subspace span, that is,

A = {x ∈ Rn | xi = xj , for all i, j} . (2.5)

Our first goal in this chapter is to expand upon the mechanism by which the
dynamics (2.4) over an undirected graph guides the vertices of the network
to their agreement state, or the consensus value. We will then revisit the
agreement protocol over directed networks, for example, those that can be
represented as in (2.4).

30 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

2.3 Organization of Multi-Agent Systems

Complexity and highly distribution are the key characteristics of modern real
world systems. The complexity of the near future and even present applica-
tions can be characterized as a combination of aspects such as great number of
components taking part in the applications, knowledge and control have to be
distributed, the presence of non-linear processes in the system, the fact that
the system is more and more often open, its environment dynamic and the
interactions unpredictable. Further, the increasing complexity, heterogeneity,
and openness of modern software systems have reached a point that imposes
new demands on their engineering technologies. It is expected that conven-
tional engineering approaches will stand powerless in front of future systems
increase in scale and complexity either vertically (control and information lay-
ers) or horizontally (physical distribution).

It doesn’t mean that conventional engineering techniques will become ob-
solete and have to be thrown away. Absolutely, they only need to be integrated
with new engineering styles where concepts such as, decomposition, autonomy,
modularity, and adaptivity can be collectively combined in one system. MAS
are considered as a promising engineering (i.e., architectural) style for develop-
ing adaptive software systems able to handle the continuous increase in their
complexity as a result of their open, heterogeneous, and continuous evolution
nature. They model the system as distributed autonomous agents cooperate
together to achieve system goals. The ability of agents to dynamically reorga-
nize to adapt working environment dynamic changes is a key feature provided
by MAS.

It is obvious that the natural way to model a complex system is in terms
of multiple autonomous components that can act and interact in flexible ways
in order to achieve their objectives, and also that agents provide a suitable
abstraction for modeling systems consisting of many subsystems, components
and their relationships [93]. Ferber [79] described how agents, as a form of
distributed artificial intelligence, are suitable for use in application domains
which are widely distributed. MAS are currently considered as the most rep-
resentatives among artificial systems dealing with complexity and highly dis-
tribution.

MAS (Multi-Agent system) allow the design and implementation of soft-
ware systems using the same ideas and concepts that are the very founding
of human societies and habits. These systems often rely on the delegation of
goals and tasks among autonomous software agents, which can interact and
collaborate with others to achieve common goals. In other words, an agent
falls somewhere between a simple event-triggered program and one with hu-
man collaborative abilities. In contrast to initial MAS research, which con-
cerned individual agents’ aspects such as agents’ architectures, agents’ mental

2.3 Organization of Multi-Agent Systems 31

capabilities, behaviors, etc, the current research trend of MAS is actively in-
terested in the adaptivity, environment, openness and the dynamics of these
systems. Also, there is a great attention towards the MAS technique as a way
to design self-organized systems. In open environments, agents must be able
to adapt towards the most appropriate organizations according to the envi-
ronment conditions and their unpredictable changes.

Agent organizations are considered as an emergent area of MAS research
that relies on the notion of openness and heterogeneity of MAS and im-
poses new demands on traditional MAS models. MAS that have the ability
to dynamically reorganize (regardless of the type of reorganization, self or
enforced) will be adaptive enough to survive against their dynamic and con-
tinuously changing working environments. Dynamic reorganization can take
many forms, for instance, agents can dynamically change their roles, behav-
iors, locations, acquaintances, or the whole system organization structure can
be dynamically changed.

An agent organization can also be defined as a social entity composed of
a specific number of members (agents) that accomplish several distinct tasks
or functions and that are structured following some specific topology and
communication interrelationships in order to achieve the main aim of the or-
ganization. Thus, agent organizations assume the existence of global common
goals, outside the objectives of any individual agent, and they exist indepen-
dently of agents [76].

2.3.1 Motivations to MAS Organization

This section is dedicated to identify from MAS literature the suggested mo-
tivations to give increasing attention to MAS organization. Basically, a MAS
is formed by the collection of autonomous agents situated in a certain envi-
ronment, respond to their environment dynamic changes, interact with other
agents, and persist to achieve their own goals or the global system goals. There
are two viewpoints of MAS engineering, the first one is the agent-centered
MAS (ACMAS) in which the focus is given to individual agents. With this
viewpoint, the designer concerns the local behaviors of agents and also their
interactions without concerning the global structure of the system. The global
required function of the system is supposed to emerge as a result of the lower
level individual agents interactions in a bottom-up way.

Picard et al. [93] stated that the agent-centered approach takes the agents
as the “engine” for the system organization, and agent organizations implic-
itly exist as observable emergent phenomena, which states a unified bottom-
up and objective global view of the pattern of cooperation between agents.

32 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Further, Picard gives the ant colony as an example, where there is no orga-
nizational behavior and constraints are explicitly and directly defined inside
the ants. The main idea is that the organization is the result of the collective
emergent behavior due to how agents act their individual behaviors and in-
teract in a common shared and dynamic environment.

The key problems of the ACMAS viewpoint are unpredictability and uncer-
tainty. Because the whole is more than the sum of its parts, this approach can
lead to undesirable emergent behaviors that may impact system performance,
as a result, this approach might be not suitable to design and engineer com-
plex multi-agent systems. The MAS applications engineered by the ACMAS
approach are closed for agents that are not able to use the same type of co-
ordination and behavior, and that all global characteristics and requirements
are implemented in the individual agents and not outside them.

The second viewpoint of MAS engineering is what is called organization-
centered MAS (OCMAS) in which the structure of the system is given a
bigger attention through the explicit abstraction of agent organization. With
that approach, the designer designs the entire organization and coordination
patterns on the one hand, and the agents’ local behaviors on the other hand.
It is considered as a top-down approach because the organization abstraction
imposes some rules or norms used by agents to coordinate their local behav-
iors and interactions with other agents.

2.3.2 MAS Formation

In the recent years, the formation control of multi-agent system has been a
very active research area. The formation problem can be addressed, for exam-
ple, by implementing consensus protocol strategies. This techniques enable a
team of agents or vehicles to reach an agreement on certain sates or values
of interest, in such a way that the behavior of all the agents is the same.
Consensus protocols have been applied in diverse areas, for example, space-
craft formation flying, sensor networks, and cooperative surveillance, see for
example [75] and the references therein. Olfati et al. [82] presented a general
framework for the consensus problem of n integrator agents with fixed and
switching topologies. Ren et al. [83] extend the work in [84] to the case of
directed graphs, and explore the minimum requirements to reach consensus
under changing topologies. You et al. [89] present the consensus condition for
linear multi-agent systems over randomly switching topologies.

Robust H∞ distributed consensus is presented in the works [95] and
[91]. Lietal[94]presented two adaptive consensus protocols; one of them being
relative-state and the other relative-output, respectively. Su et al. [85] studied

2.4 MAS Leader-Follower Configuration 33

the problem of flocking of multi-agent systems with a virtual leader, while
different cases of leader-follower in multi-agent systems are studied in [102],
to name a few. The consensus problem for double-integrator dynamics is pre-
sented by in [116]. The case of systems with high-order integrators are studied
in [104]. Some important applications of consensus protocol are proposed by
Hung which studied the flocking control and the predator avoidance, respec-
tively. In the aforementioned work, the authors proposed consensus protocols
for different application cases such as switching topologies and leader-follower,
as well as different control techniques to reach consensus.

Fig. 2.6. Generic formation control graph.

(Formation graph). A formation graph G = {V, E} that describes the
communication among the agents consists of aset of vertices V = {1, . . . , N}
corresponding to each of the agents in the group and a set of edges E ⊂ V×V.
An edge is an ordered pair (i, j) ∈ E if agent j can be directly supplied with
information from agent i.

2.4 MAS Leader-Follower Configuration

For a networked leader-follower agent system, the multi-layer topology struc-
ture has been widely considered by hierar- chical control. In this kind of topol-
ogy structure, agents can be divided into several layers based on information
flow. It is easier for the topology to be illustrated and managed, and it is more

34 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Fig. 2.7. The Generic spanning tree graph of the leader-follower consensus algo-
rithm.

convenient to analyze stability of the whole topology layer by layer. Since the
structure can be formulated by a directed graph, a necessary and sufficient
condition for tracking is that the topology matrix is a spanning tree. Under
this condition, coupling strength is provided to improve tracking performance
of the system.

In some distributed consensus control designs, the coupling strength was usu-
ally exploited to deal with the perturbed factors such as Lipschitz-type non-
linearities, unknown but bounded in- put uncertainties, stochastic commu-
nication noises, and norm-bounded disturbances. Recently, state-dependent
perturbations satisfying Lipschitz conditions have been considered in multi-
agent system designs. Asymptotic consensus results have been achieved under
the perturbations and system uncertainties. The results can also be obtained
for the stochastic communication noises when the coupling strength is effec-
tive on them.

On the other hand, serious attention should be paid to the sensitivity of
controllers in systems to ensure the stability of systems with acceptable per-
formances. Over the past two decades, large numbers of results regarding gain
variations (uncertainties) of controllers or filters have been shown based on the
insensitive (non-fragile) designs. In these studies, additive and multiplicative
controller/filter gain variations have been widely investigated by using linear
matrix inequality (LMI) technique. Under the types of norm-bounded and
interval-bounded coefficient variations, many studies have been conducted for
the H∞ control and filtering of linear systems and nonlinear fuzzy system,

2.4 MAS Leader-Follower Configuration 35

guaranteed cost designs in Markovian jump systems, distributed sensor net-
works.

However, following these previous works, we can see that although the im-
pact of additive/multiplicative variations on performance can be determined
by optimizing the L2/H∞ performance, the compensation problem of gain
variations (uncertainties) of controllers was rarely to be investigated. In [96],
a compensation filter was designed for eliminating additive filter gain varia-
tions and the relationship between performance degradation of systems and
coefficient variation compensations is clearly demonstrated by LMIs. For the
case of multiplicative controller gain variations, it seems compensation design
methods should be further developed. Moreover, there is an important and
original issue that should be determined exactly in insensitive tracking de-
signs, that is, what is the rigorous relationship between bounds of tracking
errors and sizes of variations?

Fig 2.8 is given to illustrate the multi-layer network architecture of six
networked agents, including one leader agent and five follower agents. Here,
we consider the following standard state-space equation of a linearized agent
in this part:

ẋi(t) = (A+∆Ai(t))xi(t) + (B +∆Bi(t))ui(t), (2.6)

where i = 0, 1, 2, . . . , N, x0(t) ∈ Rn denotes the leader agent state and
xi(t) ∈ Rn, i ∈ {1, 2, . . . , N} is the i th follower agent state; ui(t) ∈ Rm

is the control input of the i th agent. A and B are system and control in-
put matrices respectively, and ∆Ai(t) and ∆Bi(t) stand for their time-varying
model uncertainties of agent i . Here, we suppose that the pair (A;B) is sta-
bilizable and there is sufficient redundancy in control surfaces to compensate
for the uncertainties ∆Ai(t).

The measured output of the i th agent connected with the jth agent is
formulated as follows:

yij(t) = σ(t)xi(t) + dij(t) (2.7)

where i ∈ {0, 1, . . . , N}, j ∈ {1, 2, . . . , N}, j 6= i, 1 < σ(t) ≤ σ̄ is a sequence
of adjustable function denoting the coupling strength of networks and σ̄ is
the largest strength; The signal dij(t) ∈ Rn stands for the bounded network
disturbance between the ith and the jth agents. It can be described by a
time-varying nonlinear function and satisfied by ‖dij(t)‖ ≤ d̄ij , where d̄ij is a
known positive constant.

36 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Fig. 2.8. Example of a multi-layer networked agent system with one leader agent
and five follower agents.

In a practical networked agent system, such as an Unmanned Aerial Vehi-
cle (UAV) team, signal transmission is based on high-frequency electronic
theory. According to the knowledge of high-frequency electronic circuits, a
signal transmission system is combined by power amplifiers, oscillators, mod-
ulators, demodulators, antennas and etc. The coupling strength σ(t) in (7) is
considered as the magnification of state xi(t). It can be realized by a power
amplifier when the state is transmitted to an electrical signal by sensors. Thus,
the value of σ(t) is always larger than 1, and the value setting can be accom-
plished by changing the parameters in amplifiers.

We define that α(t) ∈ Rn is a given bounded command of states for the
leader agent satisfying

α̇(t) = f(t), (2.8)

where f(t) is a continuous bounded signal. Then tracking controllers are con-
sidered as follows: i.e., for the leader agent

u0(t) = −K01 (x0(t)− α(t)) + (I +∆K02(t))K02(t), (2.9)

and for the ith follower agent (i = 1, 2, ..., N)

2.5 Multiple Interacting Leaders 37

ui(t) =−Ki1

 N∑
j=0,j 6=i

aijcij (yji(t)− σ(t)xi(t))

+ (I +∆Ki2(t))Ki2(t),

(2.10)

where aij ∈ {0, 1} represents the topological structure of networks; cij ∈ (0, 1]

is a weighting of connected networks, and it satisfies
∑N
j=0,j 6=i aijcij =

1;Ki1, i = 0, 1, . . . , N is a constant control matrix, and Ki2 is an adaptive
compensation function to be designed later; ∆Ki2(t) is a diagonal matrix and
represents multiplicative variations of Ki2.

2.5 Multiple Interacting Leaders

Let G = (V, E ,A) be a directed graph with the set of nodes V = {1, 2, . . . , N},
the set of directed links E ⊆ {(i, j), i, j ∈ V}, and a weighted adjacency matrix
A = [aij]N×N with elements aij ≥ 0. The edge (i, j) in graph G is starting
from node j and ending at node i. A path on G from node i1 to node is is a
sequence of ordered edges of the form (ik+1, ik) , k = 1, 2, . . . , s− 1.

A directed graph has or contains a directed spanning tree if there exists
a node called root such that there exists a directed path from this node to
every other node. The adjacency matrix A = [aij]N×N of a directed graph G
is defined by aii = 0 for i = 1, 2, . . . , N , and aij > 0 for (i, j) ∈ E but 0 oth-
erwise. The Laplacian matrix L = [lij]N×N is defined as lij = −aij , i 6= j,

and lii =
∑N
i=1 aij for i = 1, 2, . . . , N . For an arbitrarily given directed graph

G, its Laplacian matrix L has the following property.

It is assumed that there are multiple interacting leaders in the present
multi-agent system. To facilitate analysis, it is further assumed that the multi-
agent systems under consideration consist of two layers, i.e., the leaders’ layer
and the followers’ layer. Suppose that both the leaders’ and the followers’ lay-
ers contain N agents. Unlike most existing literature on distributed control of
multi-agent systems that there is no interaction among the multiple leaders,
in the present part, the evolution of each leader will be affected by its neigh-
bors located in the leaders layer.

The above statements indicate that the leaders do not receive any infor-
mation from the followers. However, the dynamics of each follower will be
influenced by those of its neighbors in both leaders’ and followers’ layers.
Specifically, the evolution of the i -th (1 ≤ i ≤ N) leader is described as

ẋi(t) = Axi(t) + cBK

N∑
j=1

aij (xj(t)− xi(t)) , (2.11)

38 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

where xi(t) ∈ Rm is the state of the i-th leader, A ∈ Rm×m is the state matrix,
B ∈ Rm×h is the control input matrix, K ∈ Rh×m is the inner linking matrix
to be determined later and c > 0 indicates the coupling strength. It is assumed
that matrix pair (A,B) is stabilizable. Furthermore, the evolution of the i -th
(1 ≤ i ≤ N) follower is given as

˙̂xi(t) = Ax̂i(t) + cBK

N∑
j=1

aij (x̂j(t)− x̂i(t)) + cpi(t)BK (xi(t)− x̂i(t)) ,

(2.12)

where x̂i(t) ∈ Rm is the state of the i-th follower, the pinning link pi(t) ∈
{0, 1} and pi(t) = 1 if and only if the i-th follower can directly sense the i-th
leader at time t, i.e., there exists a directed link from the i-th leader to the
i-th follower at time t. It is assumed that, for each i ∈ {1, 2, . . . , N}, there ex-
ists an infinite sequence of uniformly bounded non-overlapping time intervals[
t̂ik, t̂

i
k+1

)
, k ∈ N, with t̂i1 = 0, t̂ik+1 − t̂ik ≥ τ̃0, and τ̃0 > 0, over which pi(t) is

fixed. Here, τ̃0 is called the dwell time.

It can be verified that distributed node-to-node consensus for multi-agent
systems will be achieved if and only if the zero equilibrium point of error
dynamical system is globally attractive. Since N is a finite positive nat-
ural number and the topology among N followers is fixed, one may use

L =
{
L̂1, L̂2, . . . , L̂S

}
to indicate the set of all possible augmented Lapla-

cian matrices of the considered multi-agent systems, i.e., L̂(t) ∈ L for all t.
Obviously, s ≤ 2N . By taking all the leaders as a single node, labeling as node
N+1, one may then define a new graph G̃(t) associated with Laplacian matrix

L̃(t) =

(
L̂(t) p(t)
0TN 0

)
∈ R(N+1)×(N+1), (2.13)

where p(t) = (p1(t), p2(t), . . . , pN (t))
T

. This indicates that for each follower
i(1 ≤ i ≤ N) in (11), there exists at least one leader j(1 ≤ j ≤ N) such that
there exists a directed path from j to i (see Fig. 2.9 for illustration).

2.6 Other Possible MAS Formations

First Throughout this section, we consider a team of L vehicles described
previously organized as the LF configuration of Fig 2.10 with a unique path
connecting each follower to the leader. Moreover, for each follower the follow-
ing definitions are exploited

2.6 Other Possible MAS Formations 39

Fig. 2.9. Communication topology of multi-agent systems where for each follower,
there is a directed path from leader node 4 to that follower.

• tree level:
level(k) : {1, . . . , L} → Z+ (2.14)

which provides the position of the k− th agent along the LF configuration;
• set of neighbours:

N i := {q ∈ {1, . . . , i− 1, i+ 1, . . . , L} :
level(q) ≡ level(i)} (2.15)

Now Let consider the LF team with multi-model discrete-time linear descrip-
tions for the LF team, obtained by discretizing via the forward Euler difference
method:

xi(t+ 1) = Φi(α(t))xi(t) +Gi(α(t))ui(t), i = 1, . . . , L, (2.16)

where t ∈+:= {0, 1, ...}, xi(t) ∈n denotes the state plant and ui(t) ∈m the
control input. The time-varying vector α(t) ∈p belongs to the unit simplex

P :=

{
α ∈ RΓ :

Γ∑
k=1

αk = 1, αk ≥ 0

}
(2.17)

whereas the system matrices (Φi(α), Gi(α)) lie in

Ω(P) :=

{(
Φi(α), Gi(α)

)
=

Γ∑
k=1

αk

((
Φi
)k
,
(
Gi
)k)

, α ∈ P

}
(2.18)

40 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

.

.

.

.

.

.

.

.

.

Level 2

Follower 1

Level 2

Follower 2

Level 2

Follower h

Level r

Follower 1

Level r

Follower p
Level r

Follower q
. . .

Level r

Follower h

.

.

.

Level k

Follower 1

. . .

. . .

Level k

Follower h

Level k

Follower p

.

.

.

Level 1

Leader

.

.

.

.

.

.

.

. . .

Fig. 2.10. Tree Leader-Follower topology

with ((Φi)k, (Gi)k) the polytope vertices of Σ(P).

Moreover, state and input constraints are recast as follows:

xi(t) ∈ X i, ui(t) ∈ U i,∀t ≥ 0, i = 1, . . . , L, (2.19)

with X i and U i compact and convex subsets of Rn and Rm respectively.
In the sequence by resorting to MAS formation ideas, two ad-hoc distributed
receding horizon control schemes can be proposed and designed for properly
dealing with obstacle free and corridor occurrences. The first algorithm refers
to an grid configuration and it is oriented to deal with uncertain operating
conditions, while the second is formulated to comply with a standard platoon
configuration exploited for narrowed passages (corridors).

A Proposed grid configuration can be initially assumed, see Fig 2.11. For
each UAV the following definitions are used:

• grid level: level(i) : {1, . . . , L} → Z+, which provides the position of the
i− th vehicle along the grid configuration;

• set of neighbours:

N i := {j ∈ {1, . . . , i− 1, i+ 1, . . . , L} :
level(j) ≡ level(i)} (2.20)

2.6 Other Possible MAS Formations 41

Fig. 2.11. Proposed Grid and Platoon Configuration

• father: the operator pre(i) : {1, . . . , L} → {1, . . . , L} denotes the predeces-
sor (father) of the i− th UAV;

• set of lower level nodes: post(i), i = 1, . . . , L, refers to an index subset of
the UAVs belonging to the (i+ 1)− th level.

By resorting to the ideas proposed in above, let restrict the attention to the
corridor of Fig 2.11 and denote with xin and xfin (xfin an equilibrium) the
entrance point and the exit point along the corridor, respectively.

For simplicity and without loss of generality, if we consider a platoon of r
vehicles and introduce the following change of variables:

eII1 = zII1 − vd1 for the leading vehicle

{
eIi =zIi−1 − zIi − di−1

eIIi = zIIi − vdi

}
, i ∈ {2, . . . , r}, (2.21)

where di−1 ∈ R2 is a constant desired Euclidean distance between the (i−1)st
and ith vehicles, i ∈ {2, . . . , r}, and vdi, vdi ∈ R2, represents the desired speed

42 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

for the ith vehicle, i ∈ {1, 2, . . . , r}. In Fig 2.12, for example, platoon 1 would
include vehicles 1, 2, and 3, and platoon 2 would include vehicles 1, 4, and 5.
Notice that for controlling distances between vehicles, position of the leading
vehicle

(
i.e., zI1

)
is not needed. Since the desired Euclidean distances between

vehicles are assumed to be constant, the following assumption is necessary:

vdi = vd, i ∈ {1, 2, . . . , r}. (2.22)

In other words, in order to achieve constant desired spacing in the forma-
tion, the desired speed for each vehicle must be the same. Then, ėII1 = u1 for
the leading vehicle {

ėIi = eIIi−1 − eIIi
ėIIi = ui

}
, i ∈ {2, . . . , r}. (2.23)

Fig. 2.12. Leader-follower type formation with five vehicles and two platoons.

In the sequel, the Leader Follower team can be reorganized as a platoon
of r swarm aggregations {SWj}rj=1, each one collecting the agents having the

same tree level position, and the agents will be denoted as Σi
j , with j account-

ing for level(·), see Fig. 4.1. Moreover, the vehicle models defined in previous

2.6 Other Possible MAS Formations 43

chapter are discretized via the forward Euler difference method:

{
xij(t+ 1) = F ij (x

i
j(t)) +Bij(x

i
j(t))u(t),

i = 1, . . . , lj , j = 1, . . . , r,
(2.24)

{
xij(t+ 1) = Φij(α(t))xij(t) +Gij(α(t))uij(t),
i = 1, . . . , lj , j = 1, . . . , r,

(2.25)

where t ∈ Z+ := {0, 1, ...}, xij(t) ∈ Rn denotes the state plant and uij(t) ∈
Rm the control input. The time-varying vector α(t) ∈ Rp belongs to the unit
simplex

P :=

{
α ∈ RΓ :

Γ∑
k=1

αk = 1, αk ≥ 0

}
(2.26)

whereas the system matrices (Φij(α), Gij(α)) lie in

Ω(P) :=

{(
Φij(α), Gij(α)

)
=

Γ∑
k=1

αk

((
Φij
)k
,
(
Gij
)k)

, α ∈ P

}
(2.27)

with ((Φij)
k, (Gij)

k) the polytope vertices of Σ(P). Moreover, xij ∈ X ij ⊂ Rn

and uij ∈ U ij ⊂ Rm.

Finally and as the other possible formations, it could be considered a three-

robot formation as shown in Figure 2.14, where Gi = LF ((Rj , Rk)← Ri).
Under the leader–follower scheme regarding more than one single leader, Ri
is required to maintain desired separations ldi,j and ldi,k with respect to Rj and
Rk respectively, and meanwhile to maintain a desired orientation deviation
βdi,j with respect to Rj . The desired posture for the follower Ri can be deter-
mined by

pdi =

xdiydi
θdi

 =

(bi ± (b2i − 4aici
))
/ai(

Mi −∆xixdi
)
/∆yi

θj + βdi,j

 , (2.28)

whereMi = 1
2

[(
x2j − x2k

)
+
(
y2j − y2k

)
−
(
ldi,j
)2

+
(
ldi,k

)2]
,∆xi = xj−xk, ∆yi =

yj − yk, and

44 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

. . .

. . .

. . .

Σ

.

. . .

SWARM - 2

SWARM - k

SWARM - r

SWARM - 1
1

1

Σ
1

2 Σ
2

2 Σ
h

2

Σ
1

k Σ
h

k
Σ
p

k

Σ
1

r Σ
h

r Σ
p

r
Σ
q

r

. .
 .

. .
 .

Fig. 2.13. Proposed Swarm platoon

aibi
ci

 =

 2
(
∆x2i +∆y2i

)
2 (Mi∆xi −∆yi (∆xiyj −∆yixj))

(Mi −∆yiyj)2 − (∆yixj)
2 −

(
∆yil

d
i,j

)2
 . (2.29)

Fig. 2.14. Proposed Three-robot formation with more than one single Leader.

2.6 Other Possible MAS Formations 45

Then let Consider the formation depicted in Fig. 2.15. All robots are
thought to use the controllers, with only the difference that vehicle 3 uses
higher feedback gains compared with all the others. In view of the increased
performance capabilities of robot 3, one may consider assigning robots5, 6, and
7to follow 3. However, an LFS [81] analysis reveals that such a change will, in
fact,increase the magnitude of the formation errors:assume that ki1 = ki2 = k,
for i = {1, 2, 4, 5, 6, 7} and k31 = k32 = k′ > k.

To move on, if we consider to study the containment control of multi-agent
system with multiple leaders to extend the former results in this framework.
Consider the case of multi-agent system with multiple leaders. Suppose that
there are N followers and N1 leaders,where N1 > 1. The communication topol-
ogy among the N +N1 agents is denoted by g.

Fig. 2.15. Nearest neighbor following as a topology with multiple leaders.

An agent is called a leader if the agent has no neighbor. An agent is called
a follower if the agent has at least one neighbor. Without loss of generality, it
is assumed that the agents labeled by 1, ..., N , are followers,while the agents
labeled by N + 1, ..., N +N1,leaders whose control inputs are set to be zero.
The dynamics of the multiple leaders are given by

q̇di = pdi , ṗdi = 0, (2.30)

with an initial position qdi (0) = ri and an initial velocity pdi (0) = vi, for
i = N + 1, . . . , N +N1. Denote by L the Laplacian matrix of G. Then,L can
be partitioned as

L =

(
Lf LI
0 0

)
, (2.31)

46 2 Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)

Fig. 2.16. Communication topology with multiple leaders

where Lf ∈ RN×N and Ll ∈ RN×N1 .
LFS gains can be used to check and implement safety specifications that
are related to formation errors. for instance, in the examples of this section,
we could consider a formation of three robots connected in cascade via the
separation-bearing controllers equation. The group is supposed to maneuver
maintaining a triangular shape for which the faces must not exceed a certain
distance. This will ensure that the robots move in a tight formation,in the
same way as fighters, when flying in formation, have to maintain certain pat-
terns to avoid detection by enemy radar.

The leader of the formation is to follow a reference trajectory. The time pa-
rameterization of the reference trajectory defines a desired velocity for the
leader. This reference velocity can be regarded as an input to the formation,
and as such, it will affect the size of the formation errors.If the magnitude of
this velocity were a design parameter, then a question that arises is whether
one can select an appropriate value to ensure that the formation can track
the reference trajectory without violating its safety specification. One of the
major considerations when dealing with large-scale interconnected systems,
such as large vehicle formations, is the ability to compute the gain estimates
efficiently, regardless of the size of the system. For nonlinear systems, due to
their inherent complexity, LFS gain computation using is cumbersome and
does not scale well. The conclusions that can be drawn in the case of large-
scale vehicle formations are basically qualitative.

3

Model Based Predictive Control

3.1 Basic Model Predictive Control Philosophy

Model Predictive Control (MPC), also known as Moving Horizon Control
(MHC) or Receding Horizon Control (RHC), is a popular technique for the
control of slow dynamical systems, such as those encountered in chemical
process control in the petrochemical, pulp and paper industries, and in gas
pipeline control. At every time instant, MPC requires the on-line solution of
an optimization problem to compute optimal control inputs over a fixed num-
ber of future time instants, known as the “time horizon”. Although more than
one control move is generally calculated, only the first one is implemented. At
the next sampling time, the optimization problem is reformulated and solved
with new measurements obtained from the system. The on-line optimization
can be typically reduced to either a linear program or a quadratic program.

Using MPC, it is possible to handle inequality constraints on the manipu-
lated and controlled variables in a systematic manner during the design and
implementation of the controller. Moreover, several process models as well
as many performance criteria of significance to the process industries can be
handled using MPC. A fairly complete discussion of several design techniques
based on MPC and their relative merits and demerits can be found in the
review article by Garcia et al. (1989) [93].

Perhaps the principal shortcoming of existing MPC-based control tech-
niques is their inability to explicity incorporate plant model uncertainty. Thus,
nearly all known formulations of MPC minimize, on-line, a nominal objective
function, using a single linear time-invariant model to predict the future plant
behavior. Feedback, in the form of plant measurement at the next sampling
time, is expected to account for plant model uncertainty. Needless to say, such
control systems which provide “optimal” performance for a particular model
may perform very poorly when implemented on a physical system which is
not exactly described by the model (for example, see [94])

48 3 Model Based Predictive Control

Similarly, the extensive amount of literature on stability analysis of MPC
algorithms is by and large restricted to the nominal case, with no plant-
model mismatch; the issue of the behavior of MPC algorithms in the face of
uncertainty, i.e., “robustness”, has been addressed to a much lesser extent.
Broadly, the existing literature on robustness in MPC can be summarized as
follows:

• Analysis of robustness properties of MPC. Garcia and Morari [133] have
analyzed the robustness of unconstrained MPC in the framework of in-
ternal model control (IMC) and have developed tuning guidelines for the
IMC filter to guarantee robust stability.

• MPC with explicit uncertainty description. The basic philosophy of MPC-
based design algorithms which explicitly account for plant uncertainty
[137] is the following: Modify the on-line minimization problem (minimiz-
ing some objective function subject to input and output constraints) to a
min-max problem (minimizing the worst-case value of the objective func-
tion, where the worst-case is taken over the set of uncertain plants).

One of the problems with this linear programming approach is that to
simplify the on-line computational complexity, one must choose simplistic,
albeit unrealistic model uncertainty descriptions, for e.g., fewer FIR coeffi-
cients. Secondly, this approach cannot be extended to unstable systems. From
the preceding review, we see that there has been progress in the analysis of
robustness properties of MPC. But robust synthesis, i.e., the explicit incorpo-
ration of realistic plant uncertainty description in the problem formulation,
has been addressed only in a restrictive framework for FIR models. There is
a need for computationally inexpensive techniques for robust MPC synthesis
which are suitable for on-line implementation and which allow incorporation
of a broad class of model uncertainty descriptions.

3.2 Background

3.2.1 Models for uncertain systems

In this section we would present two paradigms for robust control which
arise from two different modeling and identification procedures. The first is a
“multi-model” paradigm, and the second is the more popular “linear system
with a feedback uncertainty” robust control model. Underlying both these
paradigms is a linear time-varying (LTV) system

x(k + 1) = A(k)x(k) +B(k)u(k),

y(k) = Cx(k)

[A(k) B(k)] ∈ Ω
(3.1)

where u(k) ∈ Rnu is the control input, x(k) ∈ Rnx is the state of the plant
and y(k) ∈ Rny is the plant output, and Ω is some prespecified set.

3.2 Background 49

Polytopic or multi-model paradigm

For polytopic systems, the set Ω is the polytope

Ω = Co {[A1B1] , [A2B2] , . . . , [ALBL]} (3.2)

where Co refers to the convex hull. In other words, if
[
A B

]
∈ Ω, then

for some nonnegative λ1, λ2, . . . , λL summing to one, we have

[AB] =

L∑
i=1

λi [AiBi] .

When L = 1, we have a linear time-invariant system, which corresponds
to the case when there is no plant-model mismatch.

Polytopic system models can be developed as follows. Suppose that for
the (possibly nonlinear) system under consideration, we have input/output
data sets at different operating points, or at different times. From each data
set, we develop a number of linear models (for simplicity, we assume that the
various linear models involve the same state vector). Then, it is reasonable to
assume that any analysis and design methods for the polytopic system (3.1),
(3.2) with vertices given by the linear models will apply to the real system.

Alternatively, suppose the Jacobian
[
∂f
∂x

∂f
∂u

]
of a nonlinear discrete time-

varying system x(k + 1) = f(x(k), u(k), k) is known to lie in the polytope ω.
Then it can be shown that every trajectory (x, u) of the original nonlinear sys-
tem is also a trajectory of (3.1) for some LTV system in ω. Thus, the original
nonlinear system can be approximated (possibly conservatively) by a poly-
topic uncertain linear time-varying system. Similarly, it can be shown that
bounds on impulse response coefficients of SISO FIR plants can be translated
to a polytopic uncertainty description on the state-space matrices. Thus, this
polytopic uncertainty description is suitable for several problems of engineer-
ing significance.

Structured feedback uncertainty

A second, more common paradigm for robust control consists of a linear time-
invariant system with uncertainties or perturbations appearing in the feedback
loop (see Figure 3.1):

x(k + 1) = Ax(k) +Bu(k) +Bpp(k),

y(k) = Cx(k),

q(k) = Cqx(k) +Dquu(k),

p(k) = (∆q)(k).

(3.3)

50 3 Model Based Predictive Control

Fig. 3.1. (A) Graphical representation of polytopic uncertainty; (B) Structured
uncertainty.

The operator ∆ is block diagonal:

∆ =

∆1

∆2

. . .

∆r

 (3.4)

with ∆i : Rni −→ Rni . ∆ can represent either a memoryless time-varying
matrix with ‖∆i(k)‖2 ≡ σ̄ (∆i(k)) ≤ 1, i = 1, 2, . . . , r, k ≥ 0; or a convolu-
tion operator (for e.g., a stable linear time invariant (LTI) dynamical system)
with the operator norm induced by the truncated `2 -norm less than 1, i.e.,

k∑
j=0

pi(j)
T pi(j) ≤

k∑
j=0

qi(j)
T qi(j), i = 1, . . . , r, ∀k ≥ 0 (3.5)

Each ∆i is assumed to be either a repeated scalar block or a full block and
models a number of factors, such as nonlinearities, dynamics or parameters,
that are unknown, unmodeled or neglected. A number of control systems with
uncertainties can be recast in this framework [85]. For ease of reference, we
will refer to such systems as systems with structured uncertainty. Note that
in this case, the uncertainty set Ω is defined by (3.3) and (3.4).

When ∆i is a stable LTI dynamical system, the quadratic sum constraint
(3.5) is equivalent to the following frequency domain specification on the z
-transform ∆̂i(z) ∥∥∥∆̂i

∥∥∥
H∞
≡ sup
θ∈[0,2π)

σ̄
(
∆̂i

(
ejθ
))
≤ 1

Thus, the structured uncertainty description is allowed to contain both
LTI and LTV blocks, with frequency domain and time-domain constraints
respectively. For the LTV case, it is easy to show through routine algebraic
manipulations that system (3.3) corresponds to system (3.1) with

3.3 Basic Model Predictive Control Schemes 51

Ω =
{[
A+Bp∆Cq B +Bp∆Dqu

]
: ∆ satisfies(1.4) with σ̄ (∆i) ≤ 1

}
(3.6)

The case where ∆ ≡ 0, p(k) ≡ 0, k ≥ 0, corresponds to the nominal sys-
tem, i.e., no plant-model mismatch.

The issue of whether to model a system as a polytopic system or a sys-
tem with structured uncertainty depends on a number of factors, such as
the underlying physical model of the system, available model identification
and validation techniques etc. For example, nonlinear systems can be mod-
eled either as polytopic systems or as systems with structured perturbations.
We will not concern ourselves with such issues here; instead we will assume
that one of the two models discussed thus far is available.

3.3 Basic Model Predictive Control Schemes

Model Predictive Control is an open-loop control design procedure where at
each sampling time k, plant measurements are obtained and a model of the
process is used to predict future outputs of the system. Using these predictions,
m control moves u(k + i | k), i = 0, 1, . . . ,m− 1 are computed by minimizing
a nominal cost Jp(k) over a prediction horizon p as follows:

min
u(k+i|k),i=0,1,...,m−1

Jp(k), (3.7)

subject to constraints on the control input u(k + i | k), i = 0, 1, . . . ,m− 1
and possibly also on the state x(k + i | k) and the output y(k + i | k), i =
0, 1, . . . , p. Here

• x(k + i | k), y(k + i | k) : state and output respectively, at time k + i,
predicted based on the measurements at time k; x(k | k) and y(k | k) refer
respectively to the state and output measured at time k.

• u(k + i | k) : control move at time k + i, computed by the optimization
problem (3.7) at time k; u(k | k) is the control move to be implemented
at time k.

• p : output or prediction horizon
• m : input or control horizon

It is assumed that there is no control action after time k + m − 1, i.e.,
u(k + i | k) = 0, i ≥ m. In the receding horizon framework, only the first
computed control move u(k | k) is implemented. At the next sampling time,
the optimization (3.7) is resolved with new measurements from the plant.
Thus, both the control horizon m and the prediction horizon p move or recede
ahead by one step as time moves ahead by one step. This is the reason why
MPC is also sometimes referred to as Receding Horizon Control (RHC) or
Moving Horizon Control (MHC). The purpose of taking new measurements
at each time step is to compensate for unmeasured disturbances and model

52 3 Model Based Predictive Control

inaccuracy both of which cause the system output to be different from the
one predicted by the model. We assume that exact measurement of the state
of the system is available at each sampling time k, i.e.,

x(k | k) = x(k). (3.8)

Several choices of the objective function Jp(k) in the optimization (3.7)
have been reported [116,119] and compared. In this section, we could consider
the following quadratic objective:

Jp(k) =

p∑
i=0

(
x(k + i | k)TQ1x(k + i | k) + u(k + i | k)TRu(k + i | k)

)
,

where Q1 > 0 and R > 0 are symmetric weighting matrices. In particular,
we will consider the case p = ∞ which is referred to as the infinite horizon
MPC (IH-MPC). Finite horizon control laws have been known to have poor
nominal stability properties [112]. Nominal stability of finite horizon MPC
requires imposition of a terminal state constraint (x(k + i | k) = 0, i = m)
and/or use of the contraction mapping principle [105] to tune Q1, R,m and
p for stability. But the terminal state constraint is somewhat artificial since
only the first control move is implemented. Thus, in the closed loop, the states
actually approach zero only asymptotically. Also, the computation of the con-
traction condition at all possible combinations of active constraints at the
optimum of the on-line optimization can be extremely time consuming, and
as such, this issue remains unaddressed. On the other hand, infinite horizon
control laws have been shown to guarantee nominal stability. We therefore be-
lieve that rather than using the above methods to “tune” the parameters for
stability, it is preferable to adopt the infinite horizon approach to guarantee
at least nominal stability.

3.3.1 Control Architectures within MPC

Model predictive control (MPC) is widely adopted in industry as an effective
approach to deal with large multivariable constrained control problems. The
main idea of MPC is to choose control actions by repeatedly solving an online
constrained optimization problem, which aims at minimizing a performance
index over a finite prediction horizon based on predictions obtained by a
system model. In general, an MPC design is composed of three components:

1) A model of the system. This model is used to predict the future evolution
of the system in open-loop and the efficiency of the calculated control
actions of an MPC depends highly on the accuracy of the model.

2) A performance index over a finite horizon. This index will be minimized
subject to constraints imposed by the system model, restrictions on control
inputs and system state and other considerations at each sampling time
to obtain a trajectory of future control inputs.

3.3 Basic Model Predictive Control Schemes 53

3) A receding horizon scheme. This scheme introduces feedback into the con-
trol law to compensate for disturbances and modeling errors.

Typically, MPC is studied from a centralized control point of view in which
all the manipulated inputs of a control system are optimized with respect
to an objective function in a single optimization problem. Figure 3.2 is a
schematic of a centralized MPC architecture for a system comprised of two
coupled subsystems. Consider the control of the system and assume that the
state measurements of the system are available at synchronous sampling time
instants {tk≥0}, a standard MPC is formulated as follows:

min
u1,...,um∈S(∆)

J (tk) (3.9)

s.t. ˙̃x(t) = f(x̃) +

m∑
i=1

gi(x̃)ui(t) (3.10)

ui(t) ∈ Ui, i = 1, . . . ,m (3.11)

x̃ (tk) = x (tk) (3.12)

Fig. 3.2. Centralized MPC architecture.

with

J (tk) =

m∑
i=1

∫ tk+N

tk

[
‖x̃i(τ)‖2Qci + ‖ui(τ)‖2Rci

]
dτ

54 3 Model Based Predictive Control

where S(∆) is the family of piece-wise constant functions with sampling
period ∆, N is the prediction horizon, Qci and Rci are strictly positive def-
inite symmetric weighting matrices, and x̃i, i = 1, . . . ,m, are the predicted
trajectories of the nominal subsystem i with initial state xi (tk) , i = 1, ...,m,
at time tk. The objective of the MPC of Eq.3.9 is to achieve stabilization of
the nominal system of Eq.3.9 at the origin, i.e., (x, u) = (0, 0).

The optimal solution to the MPC optimization problem defined by Eq. 3.9
is denoted as u∗i (t | tk) , i = 1, . . . ,m, and is defined for t ∈ [tk, tk+N). The first
step values of u∗i (t | tk) , i = 1, . . . ,m, are applied to the closed-loop system
for t ∈ [tk, tk+1). At the next sampling time tk+1, when new measurements of
the system states xi (tk+1) , i = 1, . . . ,m, are available, the control evaluation
and implementation procedure is repeated. The manipulated inputs of the
system under the control of the MPC of Eq. 3.9 are defined as follows:

ui(t) = u∗i (t | tk) ,∀t ∈ [tk, tk+1) , i = 1, . . . ,m (3.13)

which is the standard receding horizon scheme.

In the MPC formulation of Eq. 3.9, the constraint of Eq. 3.10 defines a perfor-
mance index or cost index that should be minimized. In addition to penalties
on the state and control actions, the index may also include penalties on other
considerations; for example, the rate of change of the inputs. The constraint
of Eq. 3.10 is the nominal model, that is, the uncertainties are supposed to
be zero in the model which is used in the MPC to predict the future evolu-
tion of the process. The constraint takes into account the constraints on the
control inputs, and the constraint of Eq. 3.10 provides the initial state for
the MPC which is a measurement of the actual system state. Note that in
the above MPC formulation, state constraints are not considered but can be
readily taken into account.

Entirely a control technique that, in particular, benefits from these latest
developments is model predictive control (MPC). MPC is an optimization-
based control technique that uses 1) a mathematical model of a system to
predict the system’s behavior over a given horizon, 2) an objective function
that represents what system behavior is desirable, 3) a mathematical formal-
ization of operational constraints that have to be satisfied, 4) measurements
of the state of the system at each time step, and 5) any information regarding
upcoming disturbances that may be available.

Figure 3.3 illustrates the various control architectures within which MPC can
be encountered. The classical architecture for MPC is a centralized control
architecture. Conventionally, MPC is considered in a centralized control set-
ting, in which the controller (sometimes also referred to as a control agent)
can use measurements of the complete system and has access to a model that

3.3 Basic Model Predictive Control Schemes 55

describes the dynamics of the complete system. At a particular time step,
MPC employs an optimization procedure to solve an optimization problem
based on these components to determine a sequence of actions that are ex-
pected to steer the system in the right direction. Only the first component of
this sequence is applied to the system. At the next time step, the optimization
problem is solved again in a receding horizon fashion, taking into account the
latest available measurement of the system’s state and up-to-date information
regarding disturbances.

MPC benefits greatly from advances in communication technology. As sensor
information becomes more easily available, the MPC controller can take more
information into account regarding a system’s state. Moreover, MPC benefits
greatly from advances in computational resources. Solving the MPC opti-
mization problem at each time step takes time. As computational resources
become more powerful, it takes less time to solve an MPC optimization prob-
lem. This makes it possible to improve the accuracy of the system models
used for prediction or consider models of larger-scale systems.

Fig. 3.3. Control architectures. (a) Centralized model-predictive control. (b) Hier-
archical distributed MPC (c) Distributed MPC (d) Decentralized MPC

MPC has been popular in practical applications since its very early days.
Its ability to handle complex phenomena, such as actuator constraints and
multiple control objectives, in an explicit manner, while being able to take into
account possible forecasts regarding disturbances and time delays in system
dynamics is particularly important in refining, solar plants, or aerospace, to
name a few of the many fields in which it is applied. Despite the strengths
of centralized MPC, there are several issues that can prohibit the successful
implementation of MPC in a centralized control setting:

1. Even though computational power has increased dramatically, the MPC
optimization problem for a particular system may still not be solved fast
enough, due to complexity of the relevant system dynamics. The control
actions need to be computed within the control system’s sampling pe-

56 3 Model Based Predictive Control

riod, the length of which is limited by the dynamics of the system to be
controlled. If the system is too complex, solving the MPC optimization
problem will take too much time.

2. The structure of the system could be flexible, and it could therefore be im-
possible to have a constant model structure. Moreover, the uncertainty in
the system structure also hinders the implementation of classical central-
ized or hierarchical control schemes. In this situation, it is hard to construct
the centralized model of the system required for centralized MPC in the
first place and maintain its validity over time in real time in the second
place. This issue is particularly a concern if the number of subsystems
is large and the events of connecting and disconnecting appear in a high
frequency.

3. The control system infrastructure may be implemented in a way in which
technical constraints regarding the transmission of information arise.

4. Besides the technical limitations, there may be constraints on the infor-
mation flows. For example, consider systems that spread over large ge-
ographical areas or are owned by several entities, with each responsible
for the proper functioning of a part of the system such as water systems,
which may be partitioned in regions controlled by different water boards
for political reasons.

It is well known that the MPC of Eq. 3.9 is not necessarily stabilizing.
To achieve closed-loop stability, different approaches have been proposed in
the literature. One class of approaches is to use infinite prediction horizons or
welldesigned terminal penalty terms; Another class of approaches is to impose
stability constraints in the MPC optimization problem. There are also efforts
focusing on getting explicit stabilizing MPC laws using offline computations.
However, the implicit nature of MPC control law makes it very difficult to
explicitly characterize, a priori, the admissible initial conditions starting from
where the MPC is guaranteed to be feasible and stabilizing. In practice, the
initial conditions are usually chosen in an ad hoc fashion and tested through
extensive closed-loop simulations.

3.3.2 Decentralized Model Predictive Control

While there are some important reviews on decentralized control (e.g., [132],
[139], [140]), in this section we focus on results pertaining to decentralized
MPC. The key feature of a decentralized control framework is that there is
no communication between the different local controllers. A schematic of a
decentralized MPC architecture with two subsystems is shown in Fig. 3.4. It
is well known that strong interactions between different subsystems may pre-
vent one from achieving stability and desired performance with decentralized
control.

In general, in order to achieve closed-loop stability as well as performance
in the development of decentralized MPC algorithms, the interconnections

3.3 Basic Model Predictive Control Schemes 57

between different subsystems are assumed to be weak and are considered as
disturbances which can be compensated through feedback so they are not
involved in the controller formulation explicitly. Consider the control of the
system of Eq. 3.10 and assume that the state measurements of the system of
Eq. 3.10 are available at synchronous sampling time instants {tk≥0}, a typical
decentralized MPC is formulated as follows:

min
ui∈S(∆)

Ji (tk) (3.14)

s.t. ˙̃xi(t) = fi (x̃i−(t)) + gsi (x̃i−)ui(t) (3.15)

ui(t) ∈ Ui (3.16)

x̃i (tk) = xi (tk) (3.17)

with

Ji (tk) =

∫ tk+N

tk

[
‖x̃i(τ)‖2Qci + ‖ui(τ)‖2Rci

]
dτ

where xi− = [0 · · ·xi · · · 0]
T
, Ji is the cost function used in each individual

local controller based on its local subsystem states and control inputs.

In [189], a decentralized MPC algorithm for nonlinear discrete time sys-
tems subject to decaying disturbances was presented. No information is ex-
changed between the local controllers and the stability of the closed-loop sys-
tem relies on the inclusion of a contractive constraint in the formulation of
each of the decentralized MPCs. In the design of the decentralized MPC, the
effects of interconnections between different subsystems are considered as per-
turbation terms whose magnitude depend on the norm of the system states. In
[124], the stability of a decentralized MPC is analyzed from an input-to-state
stability (ISS) point of view. In [133], a decentralized MPC algorithm was
developed for large-scale linear processes subject to input constraints. In this
work, the global model of the process is approximated by several (possibly
overlapping) smaller subsystem models which are used for local predictions
and the degree of decoupling among the subsystem models is a tunable param-
eter in the design.In [114], possible date packet dropouts in the communication
between the distributed controllers were considered in the context of linear
systems and their influence on the closed-loop system stability was analyzed.

To develop coordinated decentralized control systems, the dynamic interac-
tion between different units should be considered in the design of the control
systems. This problem of identifying dynamic interactions between units was
studied in [155].

58 3 Model Based Predictive Control

Fig. 3.4. Decentralized MPC architecture.

Within process control, another important work on the subject of de-
centralized control includes the development of a quasi-decentralized control
framework for multi-unit plants that achieves the desired closed-loop objec-
tives with minimal cross communication between the plant units under state
feedback control [146]. In this work, the idea is to incorporate in the local
control system of each unit a set of dynamic models that provide an approxi-
mation of the interactions between the different subsystems when local subsys-
tem states are not exchanged between different subsystems and to update the
state of each model using states information exchanged when communication
is reestablished.

In general,the overall closed-loop performance under a decentralized con-
trol system is limited because of the limitation on the available information
and the lack of communication between different controllers [116]. This leads
us to the design of model predictive control architectures in which different
MPCs coordinate their actions through communication to exchange subsys-
tem state and control action information.

3.4 Distributed Model Predictive Control

In distributed MPC, there is not a single MPC controller but instead there are
multiple MPC controllers, each for a particular system; see Figure 3.3. Typ-
ically, there is dynamical interaction among the systems that the individual
controllers consider. Each of the controllers adopts the MPC strategy as out-
lined above for controlling its system but now not only considering dynamics,
constraints, objectives, and disturbances of the subsystem under consideration
but also considers the interactions among the systems. Each local controller

3.4 Distributed Model Predictive Control 59

Fig. 3.5. Decentralized MPC configuration for the example chemical process

solves an MPC problem based on local information and may hereby share
information with the other controllers to improve the overall performance.

When moving from a centralized MPC to a distributed MPC setting, sev-
eral key concepts become relevant. In a distributed MPC setting, a system or
subsystem refers to the entity being controlled by the controller. The overall
system is the combination of all systems or subsystems under control merged
into one large-scale system. The notions of global versus local distinguish be-
tween the overall system and the system or subsystem under control by a par-
ticular controller. Hence, frequently appearing concepts are local objectives,
local dynamics, local constraints, and local disturbances. The terms intercon-
necting and shared are often used in combination with the terms variables
and constraints to denote explicitly those components that represent the con-
nections or couplings between different systems.

In a distributed setting, a particular controller has neighbors, or neighbor-
ing controllers. The neighbors are those controllers that control systems that
are coupled or influence the system under control by this particular controller.

60 3 Model Based Predictive Control

Communication takes places among the controllers, which can exchange in-
formation, for example, regarding local states, local objectives, and/or local
constraints. Information can then be taken into account by the controllers
to implement a coordination or negotiation process. The controllers can be
structured in control layers or levels, leading to a hierarchical control struc-
ture. Here, typically at higher levels, controllers consider slower time scales
and larger systems in a more abstract way, whereas at lower levels, controllers
consider faster time scales and smaller systems in a more detailed way.

The potential of distributed MPC lies in the unique combination of the
strengths of MPC (namely, feedback with feed-forward control in a reced-
ing horizon fashion, multiobjective optimization, and explicitly handling of
constraints) with the negotiation and coordination possibilities provided by
communication. The role played by communication in this context is essen-
tial. For example, the distinction between decentralized and distributed MPC
lies in whether or not the controllers actively communicate with one another
to determine actions (see Figure 3.3). In a decentralized control architecture,
there is no direct communication between controllers; controllers take into
account the influence of neighboring systems only by responding to the dy-
namics of the systems they are controlling. This constraint typically limits the
performance that the decentralized MPC control scheme can achieve. In fact,
in a decentralized MPC scheme, controllers may be opposing one another’s
actions, even though they may not have the intention to do so. In a distributed
MPC setting, such a situation can be prevented because the controllers can
communicate about what actions they are going to take when and obtain
agreement on an optimal timing.

3.4.1 Categorizing Distributed MPC Schemes

Although many approaches for distributed MPC have been developed, there
is no coherent and easily accessible overview of the components of these ap-
proaches. Such an overview would facilitate making the approaches known
to a wider community and help students, researchers, and practitioners in
choosing the approach most suitable for their particular application. To ob-
tain a coherent picture of the available distributed MPC techniques, a survey
of major techniques currently available has been carried out. The goal was to
obtain for each approach a description, including:

1) the rationale and background of the approach considered
2) the assumptions made on the system dynamics, control objectives, and

constraints
3) a step-by-step description of the computations and equations involved
4) the possible availability of theoretical results
5) the possible availability of real or simulated applications.

To achieve this goal, experts were asked to answer five sets of questions
about their particular distributed MPC approach. The five sets of questions,

3.4 Distributed Model Predictive Control 61

given in Table 3.6, covered background, boundary conditions, a step-by-step
description of the approach, theoretical results, and application results. This
survey resulted in detailed descriptions of 35 approaches to distributed MPC.
Below, the main characteristics of these techniques are presented as well as a
summarizing overview of the distribution of the techniques over the various
categories. The details of the investigation can be found in [104].

Fig. 3.6. TABLE 1 An overview of the questions part of the inquiry on distributed
model-predictive control approaches.

To achieve better closed-loop control performance, some level of commu-
nication may be established between the different controllers, which leads to
distributed model predictive control (DMPC). With respect to available re-
sults in this direction, several DMPC methods have been proposed as well as
some important review articles [129],[134] have been written which primarily
focus the review of the various DMPC schemes at a conceptual level. With
respect to the DMPC algorithms available in the literature, a classification
can be made according to the topology of the communication network, the

62 3 Model Based Predictive Control

different communication protocols used by local controllers, and the cost func-
tion considered in the local controller optimization problem. In the following,
we will classify the different algorithms based on the cost function used in
the local controller optimization problem as used in [129]. Specifically, we will
refer to the distributed algorithms in which each local controller optimizes
a local cost function as non-cooperative DMPC algorithms, and refer to the
distributed algorithms in which each local controller optimizes a global cost
function as cooperative DMPC algorithms.

Fig. 3.7. Sequential DMPC architecture.

In a DMPC algorithm was proposed for a class of decoupled systems with
coupled constraints. This class of systems captures an important class of prac-
tical problems, including, for example, maneuvering a group of vehicles from
one point to another while maintaining relative formation and/or avoiding col-
lisions. In the distributed controllers are evaluated in sequence which means
that controller i+ 1 is evaluated after controller i has been evaluated or vice
versa. A sequential DMPC architecture with two local controllers is shown
in Fig. 3.7 An extension of this work proposes the use of the robust design
method described in [98] for DMPC.

3.4.2 Comparing Distributed MPC Approaches

Many categorizations could be made and many different features examined.
The goal of the categorization in this article is to attain a trade-off between the
complexity of highlighting all the particularities that characterize a particular

3.4 Distributed Model Predictive Control 63

distributed MPC scheme and the simplicity of an overview of the distributed
MPC field, which is necessary for the newcomers to the field. The particular
categorization chosen here considers the perspective of a potential distributed
MPC user: Starting from a system, which distributed MPC schemes could
be appropriate? With this approach, the overview will be most beneficial. As
a result, and based on the analysis of the distributed MPC schemes, three
groups of features for categorizing distributed MPC approaches are proposed:
1) process features, 2) control architecture features, and 3) theoretical prop-
erty features, as illustrated in Figure 3.8 The proposed categorization is by no
means exhaustive but still considers six possible subcategories related with the
process and its associated control problem, which is likely the starting point
for those looking for a distributed MPC solution for a particular problem; the
main architectural differences regarding the schemes are captured in seven
subcategories. Finally, results regarding four common theoretical properties
are also analyzed so that readers know if the demonstration of these proper-
ties has been formally addressed. In all, there are following possible features
presented in the proposed categorization.

1) Process features: features related to the specifications of the physical
system to be controlled

• System type: the way in which the system considered has been constructed:
either starting from a group of autonomous systems and then introducing
communication to obtain coordination or from a monolithic system decom-
posed into subsystems that are coordinated taking into account limitations
in communication/processing power.

• Process type: the way in which the dynamics of the behavior of the system
are considered to be best captured: linear, nonlinear, or hybrid.

• Type of model: the way in which the system model is described mathe-
matically: transfer function or state space.

• Type of control: the control goal: regulation (that is, to keep the system
stable at or bring the system to a particular given state), tracking (that
is, to have the system follow a given reference), or economic (where the
optimization is focused on an economic cost function).

• Coupling source: what makes the overall system nonseparable: inputs, out-
puts, states, objectives, or constraints.

2) Control architecture features: features related to the essence of the con-
trol scheme

• Architecture: the way in which the coordination between local controllers
is structured: decentralized, distributed, or hierarchical (see Figure 3.3).
In general, the controllers can be categorized depending on how many of
them participate in the solution of the control problem and the relative
importance between them. The control system is considered decentralized
when there are local controllers controlling local subsystems of the plant

64 3 Model Based Predictive Control

Fig. 3.8. An overview of groups of features considered.

with no required communication among controllers. When the local con-
trollers communicate to find a cooperative solution for the overall control
problem, the control system is considered distributed. If there are multiple
control layers being coordinated to control the process, the control system
is considered hierarchical. In this case, higher layers manage the global
objectives of the process and provide reference signals for the lower layers,
which control the plant directly.

• Controller knowledge: the type of information that a controller has: strictly
local or partially global.

• Computation type: the way in which joint actions are calculated, in an
iterative or noniterative fashion.

• Controller’s attitude: the way in which an agent takes into account other
agents’ objectives: noncooperative or cooperative. In general, attitude is
related to collaboration between subsystems. A controller is considered
to have a noncooperative attitude if it behaves selfishly, that is, it only
seeks the maximization of its own objective function. On the other hand,
the controller’s attitude is considered cooperative when it minimizes not
only its cost but the system-wide cost. Hence, the controller may make
sacrifices in terms of its own welfare to help the overall system attain a
better global situation.

• Communication: the way in which the agents transmit and receive infor-
mation: serial or parallel. In particular, under the serial communication
paradigm, only one controller is considered to communicate at the same
time, in contrast to parallel communication, in which case several con-
trollers are considered to communicate at the same time.

• Timing: whether or not there is a strict schedule in the communication
process that determines when controllers can communicate: synchronous
or asynchronous.

• Optimization variables: the nature of the variables in the optimization
problem: real or integer valued.

3.4 Distributed Model Predictive Control 65

Fig. 3.9. Parallel DMPC architecture.

3) Theoretical features: features related to the availability of results that
provide a certain formal guarantee regarding the approach’s performance:

• Optimality: whether or not the scheme provides the same result as the
corresponding centralized optimization problem.

• Suboptimality bounds: whether or not the scheme provides a measure-
ment of the distance with respect to the optimum of the corresponding
centralized optimization problem.

• Stability: whether or not the scheme guarantees a nondivergent evolution
of the state and the output of the system.

• Robustness: whether or not the scheme is able to reject external unknown
disturbances.

In the majority of the algorithms in the category of noncooperative DMPC,
the distributed controllers are evaluated in parallel i.e., at the same time. The
controllers may be only evaluated once (non-iterative) or iterate (iterative)
to achieve a solution at a sampling time. A parallel DMPC architecture with
two local controllers is shown in Fig. 3.9. Many parallel DMPC algorithms
in the literature belong to the non-iterative category. In a DMPC algorithm
proposed for a class of discrete-time linear systems. In this concept, a stabil-
ity constraint is included in the problem formulation and the stability can be
verified a posteriori with an analysis of the resulting closed-loop system. In
DMPC for systems with dynamically decoupled subsystems (a class of systems
of relevance in the context of multiagents systems) where the cost function
and constraints couple the dynamical behavior of the system. The coupling
in the system is described using a graph in which each subsystem is a node.
It is assumed that each subsystem can exchange information with its neigh-

66 3 Model Based Predictive Control

bors (a subset of other subsystems). Based on the results of [114], a DMPC
framework was constructed for control and coordination of autonomous vehi-
cle teams[115].

3.4.3 Cooperative and Noncooperative DMPC algorithm

The key feature of cooperative DMPC is that in each of the local controllers,
the same global cost function is optimized. In recent years, many efforts have
been made to develop cooperative DMPC for linear and nonlinear systems. In
cooperative DMPC each controller takes into account the effects of its inputs
on the entire plant through the use of a centralized cost function. At each iter-
ation, each controller optimizes its own set of inputs assuming that the rest of
the inputs of its neighbors are fixed to the last agreed value.Subsequently,the
controllers share the resulting optimal trajectories and a final optimal tra-
jectory is computed at each sampling time as a weighted sum of the most
recent optimal trajectories with the optimal trajectories computed at the last
sampling time.

The cooperative DMPCs use the following implementation strategy:

1. At k, all the controllers receive the full state measurement x(k) from the
sensors.

2. At iteration c(c ≥ 1):

2.1.Each controller evaluates its own future input trajectory based on x(k)
and the latest received input trajectories of all the other controllers
(when c = 1, initial input guesses obtained from the shifted latest
optimal input trajectories are used).

2.2.The controllers exchange their future input trajectories. Based on all
the input trajectories, each controller calculates the current decided set
of inputs trajectories uc.

3. If a termination condition is satisfied, each controller sends its entire fu-
ture input trajectory to its actuators; if the termination condition is not
satisfied, go to Step 2(c← c+ 1).

4. When a new measurement is received, go to Step 1 (k ← k + 1).

At each iteration, each controller solves the following optimization prob-
lem:

min
ui(k),...,ui(k+N−1)

J(k) (3.18)

subject to
x(k + 1) = Ax(k) +Bu(k) + w(k)

with w = 0 and, for j = 0, . . . , N − 1,

ui(k + j) ∈ Ui, j ≥ 0 (3.19)

3.4 Distributed Model Predictive Control 67

ul(k + j) = ul(k + j)c−1,∀l 6= i (3.20)

x(k + j) ∈ X, j > 0 (3.21)

x(k +N) ∈ Xf (3.22)

with

J(k) =
∑
i

Ji(k) (3.23)

and

Ji(k) =
N−1∑
j=0

[
‖xi(k + j)‖2Qi + ‖ui(k + j)‖2Ri

]
+ ‖x(k +N)‖2Pi (3.24)

Note that each controller must have knowledge of the full system dynamics
and of the overall objective function. After the controllers share the optimal
solutions ui(k+j)∗, the optimal trajectory at iteration c, ui(k+j)c, is obtained
from a convex combination between the last optimal solution and the current
optimal solution of the MPC problem of each controller, that is,

ui(k + j)c = αiui(k + j)c−1 + (1− αi)ui(k + j)∗ (3.25)

where αi are the weighting factors for each agent. This distributed opti-
mization is of the Gauss-Jacobi type.

In an iterative cooperative DMPC algorithm which was designed for
linear systems. It was proven that through multiple communications be-
tween distributed controllers and using system-wide control objective func-
tions,stability of the closed-loop system can be guaranteed for linear systems,
and the closed-loop performance converges to the corresponding centralized
control system as the iteration number increases. A design method to choose
the stability constraints and the cost function is given that guarantees feasi-
bility (given an initial feasible guess), convergence and optimality (if the con-
straints of the inputs are not coupled) of the resulting distributed optimization
algorithm. In addition, the stability properties of the resulting closed-loop
system, output feedback implementations and coupled constraints are also
studied.

As an example of a noncooperative DMPC algorithm for discrete-time
systems described by

xi(k + 1) = Aiixi(k) +
∑
i 6=j

Aijxj(k) +Biui(k) + wi(k) (3.26)

68 3 Model Based Predictive Control

we now synthetically describe the method recently proposed in relying
on the “tube-based” approach developed in [128] for the design of robust
MPC. The rationale is that each subsystem i transmits to its neighbors its
planned state reference trajectory x̃i(k+ j), j = 1, . . . , N , over the prediction
horizon and “guarantees” that, for all j ≥ 0, its actual trajectory lies in a
neighborhood of x̃i, i.e. xi(k + j) ∈ x̃i(k + j)⊕ Ei, where Ei is a compact set
including the origin. In this way, the above equation can be written as

xi(k + 1) = Aiixi(k) +Biui(k) +
∑
j

Aij x̃j(k) + wi(k) (3.27)

where wi(k) =
∑
j Aij (xj(k)− x̃j(k)) ∈ Wi is a bounded disturbance,

Wi = ⊕jAijEi and the term
∑
j Aij x̃j(k) can be interpreted as an input,

known in advance over the prediction horizon. Note that in this case, we as-
sume that the only disturbance of each model is due to the mismatch between
the planned and real state trajectories.

3.4.4 Sequential and Iterative DMPC

In a sequential DMPC architecture shown in Figure 3.10 for fully coupled
nonlinear systems was developed based on the assumption that the full system
state feedback is available to all the distributed controllers at each sampling
time. In the proposed sequential DMPC, for each set of the control inputs ui, a
Lyapunov-based MPC (LMPC), denoted LMPC i, is designed. The distributed
LMPCs use the following implementation strategy:

Fig. 3.10. Sequential DMPC architecture using LMPC.

1) At tk, all the LMPCs receive the state measurement x (tk) from the sensors.

3.4 Distributed Model Predictive Control 69

2) For j = m to 1

2.1.LMPC j receives the entire future input trajectories of ui, i = m, . . . , j+
1, from LMPC j + 1 and evaluates the future input trajectory of uj
based on x (tk) and the received future input trajectories.

2.2.LMPC j sends the first step input value of uj to its actuators and the
entire future input trajectories of ui, i = m, ..., j, to LMPC j1.

3) When a new measurement is received (k ← k + 1), go to Step 1.

In this architecture, each LMPC only sends its future input trajectory and
the future input trajectories it received to the next LMPC (i.e., LMPC j sends
input trajectories to LMPC j1). This implies that LMPC j, j = m, ..., 2, does
not have any information about the values that ui, i = j1, ..., 1 will take when
the optimization problems of the LMPCs are designed. In order to make a
decision, LMPC j, j = m, ..., 2 must assume trajectories for ui, i = j1, ..., 1,
along the prediction horizon. To this end, an explicit nonlinear control law
h(x) which can stabilize the closed-loop system asymptotically is used. In
order to inherit the stability properties of the controller h(x), a Lyapunov
function based constraint is incorporated in each LMPC to guarantee a given
minimum contribution to the decrease rate of the Lyapunov function V (x).
Specifically, the design of LMPC j, j = 1, ...,m, is based on the following
optimization problem:

min
uj∈S(∆)

J (tk) (3.28)

s.t. ˙̃x(t) = f(x̃(t)) +

m∑
i=1

gi(x̃(t))ui (3.29)

ui(t) = hi (x̃ (tk+l)) , i = 1, . . . , j − 1∀t ∈ [tk+l, tk+l+1) , l = 0, . . . , N − 1
(3.30)

ui(t) = u∗s,i (t | tk) , i = j + 1, . . . ,m (3.31)

uj(t) ∈ Uj (3.32)

x̃ (tk) = x (tk) (3.33)

Ina Lyapunov-based iterative DMPC algorithm which is shown in Figure
3.11 was proposed for coupled nonlinear systems. The implementation strat-
egy of this iterative DMPC is as follows:

1. At tk, all the LMPCs receive the state measurement x(tk) from the sensors
and then evaluate their future input trajectories in an iterative fashion with
initial input guesses generated by h(·).

70 3 Model Based Predictive Control

2. At iteration c(c ≥ 1) :

2.1.Each LMPC evaluates its own future input trajectory based on x(tk)
and the latest received input trajectories of all the other LMPCs (when
c = 1, initial input guesses generated by h(·) are used).

2.2.The controllers exchange their future input trajectories. Based on all
the input trajectories, each controller calculates and stores the value
of the cost function.

3. If a termination condition is satisfied, each controller sends its entire future
input trajectory corresponding to the smallest value of the cost function
to its actuators; if the termination condition is not satisfied, go to Step
2(c← c+ 1).

4. When a new measurement is received, go to Step 1(k ← k + 1).

Note that at the initial iteration, all the LMPCs use h(x) to estimate the
input trajectories of all the other controllers. Note also that the number of
iterations c can be variable and it does not affect the closed-loop stability of
the DMPC architecture presented in this subsection. For the iterations in this
DMPC architecture, there are different choices of the termination condition.
For example, the number of iterations c may be restricted to be smaller than a
maximum iteration number cmax (i.e., c ≤ cmax) and/or the iterations may be
terminated when the difference of the performance or the solution between two
consecutive iterations is smaller than a threshold value and/or the iterations
maybe terminated when a maximum computational time is reached.

Fig. 3.11. Iterative DMPC architecture using LMPC.

In general, there is no guaranteed convergence of the optimal cost or so-
lution of an iterated DMPC to the optimal cost or solution of a centralized
MPC for general nonlinear constrained systems because of the non-convexity
of the MPC optimization problems. However, with the above implementation

3.5 Decompositions for DMPC 71

strategy of the iterative DMPC presented in this section, it is guaranteed that
the optimal cost of the distributed optimization is upper bounded by the cost
of the Lyapunov-based controller h() at each sampling time.

We review next a line of work on DMPC algorithms which adopt an it-
erative approach for constrained linear systems coupled through the inputs.
Figure 3.12 shows a scheme of this class of controllers. Note that there is one
agent for each subsystem and that the number of controlled inputs may differ
from the number of subsystems. In this class of controllers, the controllers
(agents, in general) do not have any knowledge of the dynamics of any of
its neighbors, but can communicate freely among them in order to reach an
agreement. The proposed strategy is based on negotiation between the agents.
At each sampling time, following a given protocol, agents make proposals to
improve an initial feasible solution on behalf of their local cost function, state
and model. These proposals are accepted if the global cost improves the cost
corresponding to the current solution.

Fig. 3.12. DMPC based on agent negotiation.

3.5 Decompositions for DMPC

An important and unresolved in its generality issue in DMPC is how to de-
compose the total number of control actuators into small subsets, each one of
them being controlled by a different MPC controller. There have been several
ideas for how to do this decomposition based on plant layout considerations
as well as via time-scale considerations. Below, we review some of these de-

72 3 Model Based Predictive Control

compositions.

Partitioning and decomposition of a process into several subsystems is
an important topic. The recent works describes the design of a network-based
DMPC system using multirate sampling for large-scale nonlinear systems com-
posed of several coupled subsystems. A schematic of the plant decomposition
and of the control system is shown in Fig. 3.13. Furthermore, the assumption
is made that there is a distributed controller associated with each subsystem
and the distributed controllers are connected through a shared communica-
tion network. At a sampling time in which slowly and fast sampled states
are available, the distributed controllers coordinate their actions and predict
future input trajectories which, if applied until the next instant that both
slowly and fast sampled states are available, guarantee closed-loop stability.
At a sampling time in which only fast sampled states are available, each dis-
tributed controller tries to further optimize the input trajectories calculated at
the last instant in which the controllers communicated, within a constrained
set of values to improve the closed-loop performance with the help of the
available fast sampled states of its subsystem.

In the process industry, the control structure is usually organized in a
number of different layers. At the bottom level, standard PI-PID regulators
are used for control of the actuators, while at a higher layer MPC is usually
applied for set-point tracking of the main control variables. Finally, at the top
of the hierarchy, optimization is used for plant wide control with the scope of
providing efficient, cost-effective, reliable, and smooth operation of the entire
plant. Recent results on the design of two-level control systems designed with
MPC and allowing for reconfiguration of the control structure have also been
reported in[142]. As an additional remark, it is worth mentioning that a recent
stream of research is devoted to the so-called economic MPC, with the aim
to directly use feedback control for optimizing economic performance, rather
than simply stabilizing the plant and maintaining steady operation.

In addition to the development of the composite control system of Fig. 3.13,
the singular perturbation framework can be also used to develop composite
control systems where an MPC controller is used tin the fast time scale. In this
case, a convenient way from a control problem formulation point of view is to
design a fast MPC that uses feedback of the deviation variable y in which case
uf is only active in the boundary layer (fast motion of the fast dynamics) and
becomes nearly zero in the slow timescale. The resulting control architecture
in this case is shown in Figure 3.14 where there is no need for communication
between the fast MPC and the slow MPC; in this sense, this control structure
can be classified as decentralized.

3.6 Future Research Directions of Distributed MPC 73

Fig. 3.13. Multirate DMPC architecture.

Fig. 3.14. A schematic of a composite control system using MPC in both the fast
and slow time-scales.

3.6 Future Research Directions of Distributed MPC

Despite the fact that the field has seen strong research activity over the last
decade, new schemes still appear in the literature now and then. In addition,
enhancements of previous schemes are also common, such as guarantees of
new theoretical properties. Likely directions for future research are outlined
below. A topic that deserves more attention is the development of flexible
distributed MPC architectures able to modify the control network topology
and the communication burden depending on the circumstances. The ratio-
nale behind these control schemes is to foster cooperation whenever the sys-
tem performance is poor and to reduce cooperation when it is not necessary.
That is, communication is only allowed whenever it significantly improves the

74 3 Model Based Predictive Control

system performance. The controllers are then grouped into time-varying coali-
tions that work cooperatively. Likewise, another related field where research
is needed is that of plug-and-play systems, that is, control schemes capable of
seamlessly handling controllers that enter or leave the system, perhaps due to
maintenance or because the system size dynamically changes.

Most of the available DMPC schemes rely on the assumption of availabil-
ity of measurements of the complete state vector. However, it is possible that
a distributed controller in a large-scale control system may not have access
to all the measurements or that measurements of all the process states are
not available. In this case, in the design of the distributed controllers, we
need to take into account that different distributed controllers may have ac-
cess to measurements of different parts of the process states, so that methods
for DMPC with partial state measurements are required. Future research in
this direction should take advantage of the available distributed state esti-
mation schemes reviewed and should look at how best the combination of
a DMPC algorithm with centralized/distributed state estimators can be ad-
dressed. One approach is to design a different state observer for each controller
(i.e., distributed state estimation), while an alternative approach is to design
a centralized observer that sends the estimated state to all the distributed
controllers. In this context, the integration of the state estimation schemes
with the DMPC algorithms so that desired levels of stability, performance
and robustness are attained in the closed-loop system should be rigorously
studied.

Most industrial process control applications are based on hierarchical con-
trol schemes in which first the operation point of the plant is determined
based on economic, safety and environmental considerations (usually using
steady state models), and then process control systems are used to drive the
plant to this steady state (usually using dynamic models). It is clear that, for
large scale systems, DMPC may be an appropriate path to tackle the result-
ing economic optimization problem. Furthermore, DMPC stands to benefit
from distributed optimization schemes that are tailored to handle DMPC
optimization problems in an optimal fashion accounting for control-loop de-
composition, plant variable interaction patterns and controller communica-
tion strategies. Research in this direction may start from the extension to the
distributed case of well-known techniques for centralized MPC, such as the
multiple shooting method.

Hybrid systems constitute an important class of mathematical models that ex-
plicitly account for the intricate coupling between continuous dynamics and
discrete events. While there has been extensive work over the last fifteen
years on analysis and control of hybrid systems and the references therein),
distributed MPC of hybrid systems is a research topic that has received no
attention. In the context of chemical process control and operations, due to

3.6 Future Research Directions of Distributed MPC 75

changes in raw materials, energy sources, product specifications and market
demands, and abrupt actuator and sensor faults, it is possible to describe
process behavior with classes of switched nonlinear systems that involve dif-
ferential equation models whose right-hand-side is indexed with respect to
different modes of operation. From a controller design standpoint, in order
to achieve closed-loop stability, discrete mode transition situations should be
carefully accounted for in the control problem formulation and solution. In
order to achieve mode transitions in an optimal setting and accommodate in-
put/state constraints, distributed model predictive control (MPC) framework
can be employed, particularly in cases where the computational complexity
of a centralized MPC may significantly increase as the number of operational
modes, control inputs and states increases.

Monitoring and reconfiguration of DMPC is an important research topic.
DMPC systems offer a vast set of possibilities for reconfiguration in the
event of sensor and actuator faults to maintain the desired closed-loop per-
formance. In addition to a monitoring method, appropriate DMPC reconfigu-
ration (fault-tolerant control) strategies were designed to handle the actuator
faults and maintain the closed-loop system state within a desired operating
region. There is certainly a lot more to be done in the context of DMPC mon-
itoring and fault-tolerance. Furthermore, in addition to its importance in the
context of DMPC fault-tolerance, reconfigurability of DMPC could provide
flexibility to the control system and could be explored in the context of other
areas as follows. During steady-state operation, it is not necessary to contin-
uously transmit among the distributed estimation/control agents. In fact, in
the case where one system does not receive any new information (and can be
sure that no transmission faults have occurred), it can be assumed that the
other agents basically maintain their previous state. This reduction of the in-
formation transmitted can be particularly significant in sensor networks with
local power supply in order to have significant energy savings, which could
guarantee a longer “life” of the sensors and/or of the actuators.

In addition, moving from industrial plants to very large-scale systems, such
as transportation or distribution net works, or to the so-called “System-
of-Systems” (i.e., very large-scale infrastructures of interacting subsystems,
which are by themselves composed of large-scale and complex systems; with
operational and managerial independence, it is clear that the problem of re-
configuration of the control system is fundamental to cope with changing
requirements. For these systems, also the problem of partitioning and cluster-
ing is a very important one (recent work can be found in [118]). In general,
there is a substantial lack of methodologies for appropriate temporal and spa-
tial partitions and for the development of consistent multi-level, multi-scale
models for DMPC design.

4

A Novel swarm-based distributed MPC
architecture

Starting from the premilinary ideas outlined in previous chapters, a novel dis-
tributed MPC scheme will be developed for autonomous multi-agents systems
subject to input/state constraints, obstacle avoidance and formation require-
ments. Specifically, the group of agents is organized as a finite set of swarms
and a leader-follower topology is imposed to these configurations with the
aim to define a sort of priority among them. The key idea is as follows: the
leader swarm (for the sake of simplicity consisting of a single agent) is in
charge to compute the tube of trajectories towards the target position and to
detect possible obstacle occurrences within the unknown environment. Then,
the follower swarm receives the hyper-ball where its father swarm lies and
uses this information at each time instant as a local target. This reasoning
repeats for the other swarms. Such a strategy is made viable in virtue of the
following property concerning with the swarm kinematics: in a finite time
each agent converges to a pre-assigned hyper-ball. Then, it is always possible
to compute a reference kinematic state trajectory towards the hyper-ball of
the father swarm along the platoon chain. As a matter of fact, this modus
operandi has the main merit to avoid the use of perception modules on the
follower agents because the computations are executed by the leader agent.
Moreover, feasibility and asymptotic closed-loop stability are formally proved.
In the following Section the constrained path planning problem under collision
avoidance requirements will be stated.

4.1 Problem formulation

We consider a team of L vehicles described by

˙̃x(t) ∈

(
Γ∑
k=1

µk Vert{Ω}k

)[
x̃T (t), ũT (t)

]T
(4.1)

with the input torque subject to point-wise constraints:

78 4 A Novel swarm-based distributed MPC architecture

|ũi| < ũi,max[Nm], i = 1, 2

organized as the Leader-Follower configuration of Fig. 2.10 with a unique
path connecting each follower to the leader. Moreover, for each follower the
following definitions are exploited

• tree level:
level(k) : {1, . . . , L} → Z+ (4.2)

which provides the position of the k− th agent along the LF configuration;
• set of neighbours:

N i := {q ∈ {1, . . . , i− 1, i+ 1, . . . , L} : level(q) ≡ level(i)} (4.3)

Let us consider the described Leader-Follower team with multi-model
discrete-time linear descriptions for the LF team, obtained by discretizing
(4.1)) via the forward Euler difference method:

xi(t+ 1) = Φi(α(t))xi(t) +Gi(α(t))ui(t), i = 1, . . . , L, (4.4)

where t ∈ Z+ := {0, 1, ...}, xi(t) ∈ Rn denotes the state plant and ui(t) ∈
Rm the control input. The time-varying vector α(t) ∈ Rp belongs to the unit
simplex

P :=

{
α ∈ RΓ :

Γ∑
k=1

αk = 1, αk ≥ 0

}
(4.5)

whereas the system matrices (Φi(α), Gi(α)) lie in

Ω(P) :=

{(
Φi(α), Gi(α)

)
=

Γ∑
k=1

αk

((
Φi
)k
,
(
Gi
)k)

, α ∈ P

}
(4.6)

with ((Φi)k, (Gi)k) the polytope vertices of Σ(P).
Moreover, state and input constraints are recast as follows:

xi(t) ∈ X i, ui(t) ∈ U i,∀t ≥ 0, i = 1, . . . , L, (4.7)

with X i and U i compact and convex subsets of Rn and Rm, respectively.
By assuming that the Leader-Follower team moves within unknown envi-

ronments where obstacles may obstruct the nominal path, at each time instant
t ∈ Z+ time-varying obstacle scenariosOt and nonconvex obstacle-free regions

Otfree := {ζ ∈ R2 : ζ ∈ f(ζ, t)}, (4.8)

with f(ζ, t) having the same structure of f(ζ), come out. Moreover, state
and input constraints are recast as follows:

4.1 Problem formulation 79

xi(t) ∈ Xi, ui(t) ∈ Ui, ∀t ≥ 0, i = 1, . . . , L, (4.9)

with X i and U i compact and convex subsets of Rn and Rm, respectively.

Starting from these premises, Then, the problem to solve can be stated as
follows.

Leader-Follower Obstacle Avoidance Regulation (LF-OA-R) Prob-
lem:

Given a LF configuration of the discussed agents , determine a distributed
state-feedback control policy

u1(t) = g(x1(t)),
ui(t) = g(xi(t), {xk(t)}), k ∈ N i, i = 2, . . . , L,

(4.10)

compatible with (4.9) such that, starting from admissible initial conditions
xi(0), i = 1, . . . , L, and despite any admissible obstacle scenario Ot, ∀t ≥ 0,
the LF team is driven towards prescribed target positions xif , i = 1, . . . , L,
such that

max
i=1,...,L

‖xi(∞)− xif‖2

is minimized and
xf = [x1

T

f , x2
T

f , . . . , xL
T

f]T

regardless of any admissible obstacle scenario Ot, ∀t ≥ 0.
The problem will be addressed by developing a control framework based

on two key ingredients:

1) a swarm characterization of the basic LF topology;
2) the formalization of an ad-hoc distributed MPC scheme.

The idea we would develop consists in exploiting relevant properties of the
kinematic swarm evolution in order to infer information usable in a receding
horizon fashion by underlying MPC controllers. Specifically, the leader is in
charge to inspect the surrounding environment and to compute a minimum-
time trajectory, while the reaming elements of the team are hypothesized to
be blind, i.e. no sensors are mounted or exploited during the on-line operations.

To this end, an important aspect to be formally taken into account con-
cerns with the time-varying nature of the robot multi-model description (4.1).
In fact, as underlined in previous Section its validity is confined to the state
trajectory tube computed under the hypotheses that the time interval ∆t is
exactly known and no obstacles occur. As a result of the latter, such a plant
description should be on-line updated in order to comply with possibly time-
varying obstacle scenarios. According to this reasoning, the next two sections
will be devoted to formalize the vehicle team modelling.

80 4 A Novel swarm-based distributed MPC architecture

4.2 The continuous-time swarm kinematics solution

Let us consider a swarm composed of n robots with a fixed network topology
described by an undirected graph G = {V,E} modeling the local interaction
among robots. G is encoded by the Laplacian matrix L(G) = ∆(G) − A(G),
where ∆(G) is the diagonal degree matrix and A(G) is the adjacency matrix.
To simplify the notation we will refer to it as L dropping its dependence
on G unless strictly required. Furthermore, the second smallest eigenvalue
λ2, namely the algebraic connectivity, provides an information regarding the
connectedness of the graph. The pose of the i-th robot in a m-dimensional
Euclidean space is denoted by xi ∈ Rm. The following interaction dynamics
is considered for each robot i:

ẋi =
∑
j∈Ni

g (xi − xj) , i = 1, . . . , n (4.11)

where g(·) is the interaction function representing the function of attrac-
tion and repulsion between neighboring robots and Ni = {j ∈ V : (i, j) ∈ E}
is the neighborhood of the agent i.

In the sequel, the LF team is reorganized as a platoon of r swarm aggre-
gations {SWj}rj=1, each one collecting the agents having the same tree level

position, and the agents will be denoted as Σi
j , with j accounting for level(·).

For the sake of clarity, the state space description is without loss of generality
accordingly modified:

Σi
j :

{
xij(t+ 1) = Aijx

i
j(t) +Biju

i
j(t)

i = 1, . . . , lj , j = 1, . . . , r
(4.12)

with xij ∈ X ij ⊂ Rn and uij ∈ U ij ⊂ Rm.

Let SWj := {Σi
j}
lj
i=1 be a swarm aggregation of lj agents, then the continuous-

time kinematic evolution of each agent Σi
j be governed by

żij(t) = −
(
zij(t)− Gj

)
+

mj
lj

∑lj
k=1

zij(t)−z
k
j (t)

||zij(t)−zkj (t)||+ε
, i = 1, . . . , lj , (4.13)

with ε > 0, mj > 0 and Gj a constant reference to denoting the goal of the

swarm centroid cj(t) := 1
lj

lj∑
k=1

zkj (t).

Lemma 4.1. Let zij(t0), i = 1, . . . , lj , be any given set of initial conditions.
Then, the swarm centroid cj(t) asymptotically converges to Gj . whatever is

the swarm initial conditions
{
z
(s)
i (t0)

}
, i = 1, ..., ns.

4.2 The continuous-time swarm kinematics solution 81

Notice that the dynamical behaviour of the swarm centroid is governed by
the following differential equation and the swarm centroid is defined as

cj(t) =
1

lj

lj∑
i=1

zij(t).

Therefore, its evolution is governed by

ċj(t)=− 1

lj

lj∑
i=1

(zij(t)−Gj)+
mj

l2j

lj∑
i=1

lj∑
k=1

(zij(t)− zkj (t))

||zij(t)− zkj (t)||+ ε

whose last component on the r.h.s. straightforwardly vanishes. Then, one
has that because of the symmetry null, due to the symmetry in the summa-
tions, then

ċj(t) = −cj(t) + Gj
and, as a consequence, the centroid cj(t) exponentially settles down to Gj .

Theorem 4.2. Let {Σi
j}
lj
i=1 be a generic agent aggregation and then let

zij(t0), i = 1, . . . , lj , be any given set of initial conditions. Then, each agent

Σi
j converges in finite time t̄ij. All the agents in the swarm converge into the

following hyper-ball

Bj(Gj ,mj) =
{
z ∈ R2 : ||z −Gj || ≤ mj

}
, (4.14)

viceversa zij(t) ∈ Bj(Gj ,mj),∀t ≥ t̄ij , with in finite time. In particular

each agent i-th is in B(s) for t ≥ timin where

t̄ij(t0) := − lj
2

log

(
m2
j

||zij(t0)−Gj ||

)
(4.15)

First, it is shown that the swarm agents will enter into the following hyper-
ball

B̃ =
{
z ∈ R2 : ||z − Gj || ≤ mj(lj − 1)lj

}
Let gij(t) := zij(t)−Gj and V ij (t) :=

1

2
gij(t)

T gij(t) be a candidate Lyapunov

function associated to the i-th agent dynamics belonging to the j− th swarm.
Note that V (t) takes into account the square distance of the agent form the
goal G. Since

82 4 A Novel swarm-based distributed MPC architecture

V̇ ij (t) =gij(t)
T ġij(t)

=gij(t)
T

−gij(t) +
mj

lj

lj∑
k=1

gij(t)− gkj (t)

||gij(t)− gkj (t)||+ ε

=−gij(t)T gij(t)−
mj

n

lj∑
k=1

gij(t)
T (gkj (t)−gij(t))

||gij(t)− gkj (t)||+ε

≤−||gij(t)||2 +
mj

lj
||gij(t)||

lj∑
k=1

||gkj (t)− gij(t)||
||gij(t)− gkj (t)||+ ε

and

||gkj (t)− gij(t)||
||gij(t)− gkj (t)||+ ε

≤ 1

it follows that

V̇ ij (t) ≤ −||gij(t)||2 +
mj(lj − 1)

lj
||gij(t)||

Therefore, if ||gij(t)|| > mj the V̇ ij (t) is negative definite and this ensures

that the agent dynamics belongs to the hyper-ball B̃. Moreover, in virtue of

the fact that mj >
mj(lj−1)

lj
, the whole swarm will lie in B.

Notice also that Again, considering the previous defined Lyapunov func-
tion. Its derivative can be also bounded as

V̇ ij (t) ≤ −||gij(t)||2 +mj ||gij(t)||
lj − 1

lj

= −||gij(t)||2 +mj

||gij(t)||2

||gij(t)||
lj − 1

lj

and if the i-th swarm agent is outside B, one has that ||gij(t)|| ≥ mj and
1

||gij(t)||
≤ 1

mj
. As a consequence

V̇ ij (t) ≤ −||gij(t)||2 +
||gij(t)||2

mj
mj

lj − 1

lj

≤ −||gij(t)||2 +
lj − 1

lj
||gij(t)||2 = −

||gij(t)||2

lj

Finally, since V̇ ij (t) ≤ − 2

n
V ij (t) one obtains

V ij (t) ≤ V ij (0)e−
2
n t

which shows that the i-th agent will lie to B when

4.3 The time-varying swarm platoon modelling 83

m2
j ≥ 2V (0)e

− 2
lj
t → t ≥ − lj

2
log

(
m2
j

||zij(t)− Gj ||

)
Proposition 4.3. The j−th swarm asymptotically converges to the following
static configuration

lim
t→∞

żij(t) = 02,∀i = 1, . . . , lj (4.16)

Let us define

Qj(t) :=

lj∑
i=1

Qij(t) +
1

2mj

lj∑
i=1

gij(t)
T gij(t)

with

Qij(t) := 1
2mj

gij(t)
T gij(t)− 1

lj

lj∑
k=1

(
||gij(t)− gkj (t)||

−ε log
(
ε+ ||gij(t)− gkj (t)||

))
By exploiting the dynamical evolution (4.13), it follows that

Q̇j(t) = − 2

mj

lj∑
i=1

ġij(t)
T ġij(t)

asymptotically converges to the following invariant set in virtue of the
LaSalle’s theorem and using the LaSalle’s theorem, the swarm is ensured to
converge to the invariant set defined as

E =
{
gij(t) | Q̇j(t) = 0

}
=
{
gij(t) | ġij = 0

}
stating that the swarm agents converge to their equilibrium points.

4.3 The time-varying swarm platoon modelling

In the sequel, the LF team is reorganized as a platoon of r swarm aggregations
{SWj}rj=1, each one collecting the agents having the same tree level position,

and the agents will be denoted as Σi
j , with j accounting for level(·), see Fig.

4.1. Moreover, the vehicle models and 4.1 are discretized via the forward Euler
difference method:{

xij(t+ 1) = F ij (x
i
j(t)) +Bij(x

i
j(t))u(t),

i = 1, . . . , lj , j = 1, . . . , r,
(4.17)

84 4 A Novel swarm-based distributed MPC architecture

For the sake of clarity, the state space description (4.4) is without loss of
generality accordingly modified:{

xij(t+ 1) = Φij(α(t))xij(t) +Gij(α(t))uij(t),
i = 1, . . . , lj , j = 1, . . . , r,

(4.18)

where t ∈ Z+ := {0, 1, ...}, xij(t) ∈ Rn denotes the state plant and uij(t) ∈m
the control input. The time-varying vector α(t) ∈p belongs to the unit simplex

P :=

{
α ∈ RΓ :

Γ∑
k=1

αk = 1, αk ≥ 0

}
(4.19)

whereas the system matrices (Φij(α), Gij(α)) lie in

Ω(P):=

{
(Φij(α), Gij(α))=

Γ∑
k=1

αk((Φij)
k,(Gij)

k),α∈P

}
(4.20)

with ((Φij)
k, (Gij)

k) the polytope vertices ofΣ(P).Moreover, xij ∈ X ij ⊂ Rn

and uij ∈ U ij ⊂ Rm.

. . .

. . .

. . .

Σ

.

. . .

SWARM - 2

SWARM - k

SWARM - r

SWARM - 1
1

1

Σ
1

2 Σ
2

2 Σ
h

2

Σ
1

k Σ
h

k
Σ
p

k

Σ
1

r Σ
h

r Σ
p

r
Σ
q

r

. .
 .

. .
 .

Fig. 4.1. Swarm platoon model

4.3 The time-varying swarm platoon modelling 85

Communication issues

It is important to underline that platoon configuration of Fig. 4.1 can be char-
acterized by considering that two any elements along the chain, namely SWk

and SWk+1 are connected each other in virtue of the fact that at each time
instant the SWk sends to SWk+1 a data packet containing its hyper-ball at
t− 1, i.e. the centroid position ck(t− 1) and the radius mk.

As pointed out in the problem formulation section, it is well known that by
construction the model plants (4.18) remain valid only within pre-computed
compact and convex state regions. In view of this, a model description updat-
ing policy is here proposed by exploiting the following arguments:

• the leader Σ1
1 moves within the vision radius Rv of its sensor module: at

each time instant starting and final state conditions are directly available;
• the follower swarm SWk receives the pair (ck−1(t− 1),mk−1) : each agent

Σi
k knows the time interval t̄ik required to converge to the hyper-ball
Bj(ck−1(t− 1),mk−1) starting from its current position (see Theorem 1).

To better describe the modus operandi of the updating phase, we shall
refer to a single vehicle along the swarm platoon chain as depicted in Fig.
4.2. There, we refer to the projection of the vehicle dynamics on the 2 − D
environment (x, y), while the time axis is shown in order to characterize the
time trend of the sequence of events. With the symbols +, ∗ and ◦ we denote
the current state measurement, the corresponding position within the next
hyper-ball along the vehicle path and the centroid, respectively. Moreover,
the following operator is defined.

Definition 4.4. Let Bin(cin,min) ⊂n and Bfin(cfin,mfin) ⊂n be two hyper-
balls. Given any point xin ∈ Bin(cin,min), the mapping operator I : Bin(cin,min)
→ Bfin(cfin,mfin) returns the mirror point of xin, i.e. xfin ∈ Bfin(cfin,mfin).

At the initial time instant t, the nominal solution (x̂(t), û(t)) is computed
by considering the state measurement xik(t) as the initial condition and the
mirror point ξik ∈ Bj(ck−1(t − 1),mk−1) as the target, see the dashed line in
Fig. 4.2. Moreover, the results of Theorem 1 are exploited: starting from the
current condition zik(t) ≡ xik(t), it is ensured that the kinematics of Σi

k will
be driven within the hyper-ball Bj(ck−1(t− 1),mk−1) in at most t̄ik(t).

Then, the robust PLDI (green line) is computed by using t̄ik(t) in place of
∆t and implementing the numerical procedure of Section 1.1. At t + t̄ik(t),
the vehicle will enter into Bj(ck−1(t − 1),mk−1) not necessarily in a point
coincident with the local target, i.e. xik(t+ t̄ik(t)) 6= ξik, and from now on the
green embedding is no longer usable to approach the LF-OA-R objective
xif . Therefore, a new robust PLDI (red line) is determined by using the ini-

tial condition, xik(t + t̄ik(t)), the local target I(xik(t + t̄ik(t))), the hyper-ball

86 4 A Novel swarm-based distributed MPC architecture

Bj(ck−1(t+ t̄ik(t)−1),mk−1) and interval time t̄ik(t+ t̄ik(t)). The same reason-
ing exactly applies for all future events, e.g. the sketched blue embedding in
Fig. 4.2. is iterated, see the red and blue embeddings in Fig. 4.2.

x
k

Time [s]

t t+t (t)i

k

i

c
k-1
(t-1)

o

x
k

i

(p(t),p(t))

> >

(p(t+t (t)),p(t+t(t)))

> >

k

i

k

i

t+t (t)+t (t+t (t))i

k

o

x
k

i

c
k-1

(t+t(t)-1)
k

i

*

ξ
k

i
ξ
k

i

*

i

k

i

k

+
+

+
xx y y

Fig. 4.2. Time varying robust PLDI: agent Σi
k

As the whole swarm is concerned, the above arguments remain still valid ex-
cept that the switching between two PLDIs occurs when all the swarm vehicles
enter into the prescribed hyper-ball, e.g. Bj(ck−1(t − 1),mk−1). As a conse-
quence, in order to be guaranteed on the latter, the time interval ∆t must be
chosen as follows:

t̄k(t) := max
i=1,...,lk

t̄ik(t) (4.21)

Finally, a different analysis can be done for the leader vehicle. By tak-
ing into account that this vehicle always operates within the hyper-ball
D(x11(t), Rv), the current statex11(t) and the local target ξ11(t) jointly belongs
to D(x11(t), Rv), the model

Σ1
1 : x11(t+ 1) = F 1

1 (x11(t)) +B1
1(x11(t))u11(t) (4.22)

must be exploited according to the following reasoning. Let Ξ(t) ⊆
D(x11(t), Rv) be the positively invariant (PI) region associated to (4.22) com-
patible with the prescribed constraints (4.9).

In this case,the model switching will result from simple set-containment
arguments, see Fig. 4.3. During the on-line operations, the admissible state
trajectory tube is defined via overlapped sets which are designed such that
the selected point (target) ξ11(t) ∈ D(x11(t), Rv) is the ellipsoid center while

4.4 The swarm-based distributed MPC architecture 87

x11(t) ∈ Ξ(t− 1) ∪Ξ(t), see Fig. 4.3.

Notice that the PI regions Ξ(t),∀t ≥ 0, are computed by resorting to well
established semi-algebraic technicalities: first the nonlinear description (4.22)
is recast in a polynomial form by means the so-called recasting procedure pro-
vided in [190], then Sum-of-Squares (SOS) based optimizations are performed
see e.g. [191] and references therein.

x
1

Time [s]

t

1

+

R

*

ξ
1

1

x
1

1

*

ξ
1

1

+

t+1

*+

t+2

x
1

1

ξ
1

1

Ξ(t)

Ξ(t+1) Ξ(t+2)

. . .

Fig. 4.3. State trajectory tube: leader Σ1
1

4.4 The swarm-based distributed MPC architecture

In the sequel, a distributed model predictive control strategy will be developed
for a the swarm-platoon configuration of Fig. 4.1.

First, the following premises are made:

• there exists at least an admissible path complying with the LF-OA-R
problem prescriptions;

• communication facilities of Remark 1 are allowed.

The control architecture depicted in Fig. 4.4 for a generic j − th swarm
is here proposed. Essentially, it consists of three units: a Path Planner,
a MPC controllers bank each one tuned w.r.t. the set of swarm agents
Σi
j , i = 1, . . . , lj , and an Update Logic.

The basic idea can be summarized as follows:

88 4 A Novel swarm-based distributed MPC architecture

1. at each time instant t, the j− th swarm receives from its father along the
LF chain the hyper-ball at t − 1 of the (j − 1) − th swarm and the state
measurements of its neighbour, namely xij(t− 1), i = 1, . . . , lj ;

2. the Path Planner unit generates the kinematic state trajectories zij(·) of

the agents Σi
j , i = 1, . . . , lj ;

3. the MPC controllers bank computes the admissible control actions
uij , i = 1, . . . , lj , in a distributed receding horizon fashion;

4. the Update Logic unit in charge to adequately modify the swarm plant
models Σi

j , i = 1, . . . , lj according to the prescriptions of the previous
Section.

To develop such an abstract procedure, it is mandatory to formally char-
acterize structure and properties of these two elements. The next subsections
will be devoted to this aim.

PA
T

H
 - P

L
A

N
N

E
R

.

.

.

B (c (t-1), m)

x (t-1)
1

j

x (t-1)
l

j

.

.

.

MPC
1

j

MPC
j

u (t)
1

j

u (t)j

.

.

.

 Σ
1

j

 Σ
j

j-1

.

.

.

x (t)
1

j

x (t)j
j

l j l j

*

*

{z (t+k)}1

k=0

N -1j

j

{z (t+k)}
k=0

N -1j

j

lj

j-1 j-1

ljlj

Update

 Logic

Fig. 4.4. Distributed control architecture for the j − th swarm

4.4.1 Distributed MPC controllers

For any agent i = 1, . . . , lj , let the k−th predicted state and predicted control
within the horizon at time t be denoted by xij(k|t) and uij(k|t), respectively. Let

xij(t) := {xij(k|t)}
Nj
k=0, i = 1, . . . , lj , j = 1, . . . , r and uij(t) := {uij(k|t}

Nj
k=0, i =

1, . . . , lj , j = 1, . . . , r, be the predicted states and predicted controls within
the control horizon, respectively. Moreover, over any prediction interval [t +
k, t+ k +Nj] and for any i− th agent we further define:

4.4 The swarm-based distributed MPC architecture 89

• the optimal state trajectory: xi
∗

j (t) := {xi∗j (k|t}Njk=0, i = 1, . . . , lj , j =
1, . . . , r;

• the assumed state trajectory: x̂ij(t) := {x̂ij(k|t}
Nj
k=0, i = 1, . . . , lj , j =

1, . . . , r.

Notice that the sequence x̂ij is transmitted to all the neighbors k ∈ N i which
in turn hypothesizes that the i − th agent will implement during the update
prediction time interval [t+ k + 1, t+ k +Nj + 1].
In the proposed distributed scheme, local MPC units have to be obtained
by also taking care of the main LF-OA-R goal, i.e converging to the target
xf . Then, it is necessary to deal with the fact that the LF formation moves
towards xf : the latter prescribes that the terminal condition is time-varying
and the related constraint must be accordingly modified. In particular, the
aim is of developing a control strategy capable to jointly reduce as much as
possible data communications amongst agents belonging to different swarms
and to improve energy savings on the use of on-board sensors. To this end,
the actions pertaining to the leader and follower swarms will be addressed by
resorting to different arguments.

Leader swarm

As the leader swarm SW1 is concerned, in order to formally define the optimal
control problem underlying the MPC strategy, the following ingredients are
required:

• Control strategy:

u11(·|t) = K1(x11(k + t|t)), k ≥ 0 (4.23)

with K1(x11(·)) ∈ R[x] a polynomial stabilizing and admissible state feed-
back law. With R[x] we denote the ring of multivariate scalar polynomials
ϕ ∈ R[x] in the unknown x ∈n;

• the LQ quadratic performance index:

J∞(t) :=

∞∑
k=0

[
‖x11(t+ k|t)−x1f‖2R

x11

+‖u11(t+ k|t)‖2R
u11

]
(4.24)

where Rx1
1
> 0 and Ru1

1
≥ 0 are symmetric state and input weighting

matrices.
• Terminal constraint:

x11(t|t) ∈ Ξ1 ⊂ Rn (4.25)

with the pair (Ξ1,K1(x11) computed such that Ξ1 is a positively invariant
(PI) region for the state evolutions of the closed-loop system, see e.g. [192].

90 4 A Novel swarm-based distributed MPC architecture

An important technical issue concerns with the updating of the terminal PI
region Ξ1 : in fact, the goal consists to move towards the target x1f and, as
a consequence, the terminal condition becomes time-varying and the related
constraint must be accordingly modified. By noticing that the plant model
(4.4) is linear and the unknown environment is planar, At each time instant
t the new set Ξ1(t) is obtained according to the following set-membership
requirements:

x11(t|t) ∈ Ξ1(t− 1) ∪Ξ1(t) (4.26)

where Ξ1(t) is computed such that and

ξ11(t− 1) ∈ Ξ1(t− 1) ∩Ξ1(t) (4.27)

Ξ1(t) ⊂1 ∩
(
Ot \Ξ1(t− 2)

)
(4.28)

Ξ1(t) ⊆ B(x11(t), Rv) (4.29)

with ξ11(t− 1) denoting the equilibrium point selected at the time instant
t− 1.

Notice that (4.28) is imposed for ensuring that the sequence of the PI
regions is pairwise overlapped. The resulting non-convex constraint can be
convexified by means of the arguments presented in [193]. Then, the opti-
mization problem for the leader agent, hereafter denoted as PL(t), is:
DMPC-PL(t) :

min
K1(x1

1),Ξ1

J∞(t) (4.30)

subject to

x11(t+ k + 1|t) = F 1
1 (x11(t+ k|t)) +B1

1(x11(t+ k|t))u11(t+ k|t) (4.31)

F 1
1 (Ξ1) +B1

1(Ξ1)K1(Ξ1) ⊂ Ξ1 (4.32)

K1(x11(t+ k|t)) ∈11, k ≥ 0 (4.33)

x11(t+ k|t) ∈11, k ≥ 0 (4.34)

ξ11(t− 1) ∈ Ξ1(t− 1) ∩Ξ1 (4.35)

Ξ1(t) ⊂1 ∩
(
Ot \Ξ1(t− 2)

)
(4.36)

4.4 The swarm-based distributed MPC architecture 91

We have also Notice that the non-convex constraints (4.26) and (4.35)
could lead to computational intractability. This difficult can be straightfor-
wardly overcome by using inner convex approximations computed as shown
e.g. in [188].

Follower swarms

In this case, the idea is to exploit the properties of the kinematics model (4.13)
which ensure that any swarm agent converges in finite time to the hyper-ball
(4.14) in the finite time (4.15) by avoiding collisions with the other agents
belonging to the same swarm configuration. Then, the key ingredients of the
MPC controller design are below summarized:

• Input sequence parametrizations:

uij(·|t) =

{
uij(k + t|t), k = 0, . . . , Nj − 1
Kj(x

i
j(k + t|t)), k ≥ Nj

(4.37)

with Kj(x) ∈ [x] polynomial stabilizing and admissible state feedback
laws;

• Cost-to-go functions:

J ij(x
i
j(t|t), xif ,uij(t)) := max

α(·)∈P
t+Nj−1∑
k=t

[
‖xij(t+k|t)−zij(t+k)‖2R

xi
j

+‖uij(t+k|t)‖2R
ui
j

]
+

‖xij(t+Nj |t)− xif‖2Pj

(4.38)

where Nj is the prediction horizon, Rxij > 0 and Ruij ≥ 0 symmetric state

and input weighting matrices and Pj ≥ 0;
• Terminal constraint:

xij(t+Nj |t) ∈ Ξj ⊂ Rn (4.39)

a set-membership constraint is imposed in terms of a PI region Ξi ⊂n,
computed such that by assuming that starting from the initial condition
xi(t + Ni|t) ∈ Ξi one has that (Ai + BiKi)

kxi(t + Ni|t) ∈ Ξi,∀k; where
Ξj is a PI region such that (F ij (x

i
j(t+Nj |t)) +Bij(x

i
j(t+Nj |t))Kj(x

i
j(t+

Nj |t)))t+Nj+k ∈ Ξj , ∀k ≥ 0.

In order to properly formalize the MPC design within the swarm frame-
work of Section 3, the following set-containments have to be preliminarily
satisfied:

92 4 A Novel swarm-based distributed MPC architecture

Requirement 1 - compute the hyper-balls Bj(cj(t),mj) ⊆ Ξj , j =
2, . . . , r, such that

Br(cr(t),mr) ⊆ Br−1(cr−1(t),mr−1) ⊆ · · · ⊆
B2(c2(t),m2) ⊆ Ξ1(·) (4.40)

Requirement 2 - Let cj((t− 1) + k), k = 1, . . . , Nj−, be the sequence of
centroids of SWj exploited at t − 1. Then, it is required that k−th step
ahead state prediction of the followers Σi

j , i = 1, . . . , lj , j = 2, . . . , r, are
jailed as follows:

xij(t+ k|t) ⊆ Bj(cj((t− 1) + k),mj),
k = 1, . . . , Nj − 1, i = 1, . . . , lj , j = 2, . . . , r.

(4.41)

Notice that the set-containment conditions (4.40)-(4.41) are instrumental
to guarantee that all the swarm followers are capable to avoid collisions with-
out resorting to on-board sensors. Since only the leader is in charge to detect
the obstacles by using the available sensors, the PI region Ξ1 is computed by
encapsulating it inside the ball of radius Rv (the vision radius).

In fact, the leader detects the obstacles by means of its sensors (vision ra-
dius), so that the PI region Ξ1 is computed by encapsulating it within the
ball of radius R. Then, imposing (4.40) means that the first follower swarm
will be driven after N2 steps into Ξ1 with the equilibrium x̄11 acting as the
centroid of SW2, while as the successive swarms along the platoon chain are
concerned the same property holds true with cj−1(t) in place of x̄11. Conversely,
(4.41) characterizes a sort of transient phase, i.e. the follower swarm config-
urations SWj , j = 2, . . . , r, are preserved inside the corresponding translated
balls Bj(·,mj), j = 2, . . . , r, along the k−th step ahead state predictions.
Finally for feasibility reasons that will be clarified in the next section, the ter-
minal condition for each vehicle of the swarm SWj complies with the following
set-containment

xij(t+Nj |t) ∈ Bj(cj−1(tcurrj),mj) ∩ Bj(cj−1(tprecj),mj),

∀i = 1, . . . , lj ,
(4.42)

where tcurrj and tprecj must be understood as the time instants related to the
most recent data transmitted by the father SWj−1.

In view of these developments, on the followers side two actions are pre-
scribed. Whenever new data (hyper-balls sent by father swarms) are available,
the first vehicle Σ1

j updates the PI region Ξj of the swarm SWj as follows:

min
Kj ,Ξj

∞∑
k=0

[
‖x1j (t+ k|t)‖2R

x1
j

+‖u1j (t+ k|t)‖2R
u1
j

]
(4.43)

subject to

4.4 The swarm-based distributed MPC architecture 93

F ij (Ξj) +Bij(Ξj)Kj(Ξj)⊂Ξj ⊂ij ∩
(
Ot \Ξj(tprecj)

)
,

i = 1, . . . , lj
(4.44)

Kj(Ξj) ⊆
lj⋂
i=1

i
j , (4.45)

ξj(t
curr
j) ∈ Ξj(tcurrj) ∩Ξj (4.46)

Bj(cj−1(tcurrj),mj) ⊆ Ξj (4.47)

Then, the above developments allow to formalize the optimization prob-
lem for the i− th follower, hereafter denoted as Pi,jF (t) :

DMPC-Pi,jF (t) :
min
ui(t)

J ij(x(t|t), xif ,ui(t)) (4.48)

xij(t+ k + 1|t) = Φij(α)xij(t+ k|t) +Gij(α)uij(t+ k|t),
∀α ∈ P (4.49)

uij(t+ k|t) ∈ij , k = 0, 1, . . . , Nj − 1, (4.50)

xij(t+ k|t) ∈ij ∩Bj(cj((t− 1) + k),mj),
k = 0, 1, . . . , Nj − 1,∀α ∈ P (4.51)

xij(t+Nj |t)∈Bj(cj−1(tcurrj),mj)∩Bj(cj−1(tprecj),mj),

∀α ∈ P (4.52)

βmin ≤ ‖xij(t+ k|t)− x̂qj(t+ k|t)‖ ≤ βmax,
k = 0, 1, . . . , Nj , ∀q ∈ N i,∀α ∈ P, (4.53)

where

• the assumed sequence x̂qj(·) has the following structure:

x̂qj(t):=

xq
∗

j (t− 1 + k|t− 1), k = 1, . . . , Nj − 1,

F qj (xq
∗

j (t−1+Nj |t−1))+

GqjKj(x
q∗

j (t−1+Nj |t−1))t−1+k, k=Nj ;

(4.54)

• constraints (4.53) are in charge to jointly comply with (4.41) and to
avoid collisions with neighbour agents. Specifically, the two positive scalars
βmax βmin ∈ R+ are guaranteed bounds on the agents’ dynamics and the
l.h.s. of (4.53) can be convexified as outlined in Remark 2 by again ex-
ploiting the results reported in [193].

94 4 A Novel swarm-based distributed MPC architecture

Notice that the non-convex constraints on the l.h.s. of (4.53) could lead to
computational intractability. Nonetheless, this difficulty can be overcome by
means of the convexification results proposed in [193].

4.4.2 Path Planner

In the present context, this unit has the key role to provide an adequate
reference state trajectory to each follower agent capable to ensure that in a
finite number of time steps the i-th agent of the j-th swarm is steered to the
safe hyper-ball corresponding to the higher (j−1)-th swarm along the LF
chain. By resorting to the architecture of Fig. 4.4, the path planner exploits
the available information at the previous times instant t−1: the hyper-ball
B(cj−1(t1prec),mj−1) and the state measurements of the lj agents of the j-th
swarm. Then, by resorting to the developments of Section 4.3, the following
procedure results.

Path planning

Input: xij(t− 1), i = 1, . . . , lj ; B(cj−1(tcurrj),mj−1);

Output: zij(t+ k), k = 0, . . . , Nj − 1;

Initialization: Pk ≡ P [1] Set Gj ← cj−1(tcurrj) and mj ← mj−1 in (4.13);

Extract the initial conditions zij(t), i = 1, . . . , lj , from xij(t−1), i = 1, . . . , lj ;

Set Gj ← cj−1(t− 1 and mj ← mj−1 in (kine1);

Split t̄ij (see 4.15) in Nj equally distributed time steps;

Compute the state kinematic predictions zij(t + k), k = 0, . . . , Nj − 1 via
(4.13).

Updating Logic procedure

The module operates by following the prescriptions of Section 4.3 Specifically,
the following procedure comes out:

Embedding

Input: tact; t̄j(t); h; xij(t− 1), i = 1, . . . , lj ; B(cj−1(t− 1),mj−1);

4.5 A developed distributed MPC algorithm 95

Output: (Φij , G
i
j), i = 1, . . . , lj ;

Initialization: Pk ≡ P

[1] Compute nominal solutions of (1.25) connecting the current state mea-
surements xij(t) and the mirror targets ξij(t) = I (B(cj−1(t− 1),mj−1)), i.e.

(x̂ij(·), ûij(·)), i = 1, . . . , lj ;

Along the nominal robot paths (x̂ij(·), ûij(·)), Extract sequences of operating

points {(θ̂iwj (t), v̂iwj (t))}hw=1, i = 1, . . . , lj , equally spaced within the time in-
terval [tact, tact + t̄j(t)];

For each pair (θ̂iwj (t), v̂iwj (t)), Determine a family of PLDIs (1.31) according
to (1.29)-(1.30)

Determine the linearised model (1.26) of (1.25) around the nominal solu-
tion (x̂ij(t), û

i
j(t)), i = 1, . . . , lj ;

Compute the convex hull (4.1);

Discretize the continuous-time model (4.1)-(4.2) via the forward Euler dif-
ference method.

4.5 A developed distributed MPC algorithm

In this section, the LF-OA-R problem will be addressed by developing a
distributed MPC (DMPC) algorithm which takes advantage of the above
developments. First, the following assumptions are exploited: The algorithm
is globally initialized by means of the following off-line computations:

• an admissible sequence of pairs (Kj(x), Ξj), j = 1, . . . , r, complying with
(4.39);

• a sequence of hyper-balls Bj(cj(0),mj), j = 1, . . . , r, satisfying the require-
ment (4.40);

• the switching time instants t̄j(0), j = 2, . . . , r, by means of (4.21),
• the swarm horizon lengths obtained by splitting t̄j(0) in Nj , j = 2, . . . , r,

equally distributed time steps.

Moreover, the convexification of the obstacle-free region Otfree is obtained
by means of the CP algorithm fully detailed in pg. 7 of [194]: notice that
it provides a polygon S by using a sequence of detected obstacle points
P := {p1, . . . , ps}.

96 4 A Novel swarm-based distributed MPC architecture

DMPC-Swarm-Algorithm - Agent i− th

Input: βmin, βmax, γ, Ξ
−, Ξ+, xij(0), xif , update:=false;

Output: ui
∗

j (t/t);

Initialization: Nj , N i, tcurrj , tprecj

If j = 1 then Swarm leader

If B(x11(t), R) ∩ (n/Ot) 6= ∅ then an obstacle is detected

Extract a set of points P = {p1, . . . , ps};

Activate the CP algorithm and Built the polygon S;

Solve the optimization (4.30)-(4.36) subject to the additional constraint (4.8)
with S in place of f(x, t);

else

Solve (4.30)-(4.36);

end if

If x11(t) ∈ Ξ1(t− 1) ∩Ξ1(t)

Transmit B1(c1(t− 1),m1) ⊆ Ξ1(t) to SW2;

end if

else Swarm followers

If t > t̄precj + t̄succj then

Update the model Σi
j via the Embedding procedure with tact ← t + t̄precj

and t̄j(t)← t̄succj ;

t̄precj ← t̄succj ;

Compute t̄ij(t) by (4.15) with t0 ← t̄precj + t̄succj and Gj ← cj−1(t− 1);

4.5 A developed distributed MPC algorithm 97

Send t̄ij(t) to all the neighbours k ∈ N i;

Compute t̄succj by (4.21);

end if

If i = 1 then

If Bj−1(cj−1(t− 1),mj−1) has been received

then Update tcurrj ← t− 1 and tprecj ← tjcurr;

Solve the optimization (4.43)-(4.47);

Transmit (Ξj ,Kj) to the neighbours N 1
j ; end if

end if

Generate the kinematic state trajectory zij(t + k|t), k = 1, . . . , Nj − 1, via
the Path Planning procedure;

Solve the optimization (4.48)-(4.53)

Compute x̂ij(t) according to (4.54);

Receive x̂kj (t) from all neighbours k ∈ N i;

If j < r then

if xij(t) ∈ Bj(cj(tcurrj),mj) ∩ Bj(cj(tprecj),mj)
then

Transmit Bj(cj(t),mj) to SWj+1;

end if
End if

end if
Apply ui

∗

j (t|t);

t← t+ 1 and goto Step 1.

98 4 A Novel swarm-based distributed MPC architecture

The main properties of the DMPC-Swarm Algorithm are summarized in
the next proposition and also recursive feasibility and asymptotic stability of
the DMPC Algorithm are formally stated in the following proposition.

Proposition 4.5. Let the initial xin = x(0) and the target xf conditions be
given. Then, the DMPC-Swarm Algorithm always satisfies the prescribed
constraints and ensures that the closed-loop state trajectories are asymptoti-
cally stable.

Under the hypothesis that feasible input sequences are off-line available
both for PL and Pi,jF optimization problems, the following arguments are ex-
ploited for feasibility purposes. By first considering the current leader of the
LF configuration, the feasibility arises from the fact that if an optimal solu-
tion there exists at the time instant t, namely u1

∗

1 (t|t) = K1(x11(t)), then at
the next time instant t+ 1 the positively invariance property of Ξ1(t) ensures
that the state trajectory at least will remain confined within Ξ1(t) and, in
virtue of (4.26)-(4.29), the transition to the new controller is asymptotically
guaranteed.

On the other hand, when follower agents belonging to the generic j−th swarm
are concerned, the admissibility of the strategy comes out in virtue of the fact
that the path planner provides a feasible state trajectory driving the swarm
to the hyper-ball Br(cj−1(t − 1),mj) ⊆ Ξj . There, constraints satisfaction
and obstacle avoidance requirements are guaranteed in virtue of conditions
(4.40)-(4.41), while in the worst case the state trajectory of each i−th fol-
lower belonging to SWj will jailed into Ξj ., and the feasibility arguments
exactly trace the lines exploited for the leader vehicle. In fact, during the
the leader disconnection phase the feasibility of each PiF is ensured thanks
to Proposition 1; The same arguments allow to straightforwardly show the
asymptotic stability property.

As the leader is concerned, the feasibility straightforwardly comes out in virtue
of two considerations: 1) the control horizon length is N1 = 0; 2) the PI se-
quence Ξ1(·) is overlapped by construction, see constraints (4.27), and the
equilibrium ξ11(t − 1) belongs to the set intersection of the overlapped posi-
tively invariant regions. As a consequence, the existence of a solution of the
underlying RHC optimization only depends on the invariance condition (4.32)
which in turn is always verified if a solution there exists at t = 0. On the other
hand, it is ensured that at least the state trajectory will remain confined within
Ξ1(t). Moreover, notice that the leader vehicle asymptotically moves towards
the target x1f thanks to the same arguments.

Conversely, the admissibility of the generic swarm SWj exploits the following
arguments: a) the PI sequence Ξ1(·) is pairwise overlapped (4.28); b) according
to the control architecture of Fig. 4.4, at each time instant the SWj receives
an admissible state trajectory path; c) the satisfaction of the transient phase

4.5 A developed distributed MPC algorithm 99

conditions (4.41).

First, the swarm SWj receives the delayed state trajectory tube defined by
the PI sequence Ξ1(·) starting from the time instant tjcurr, i.e Ξj(t

j
curr). Since

the path planner provides a feasible state trajectory driving the swarm to
the hyper-ball Br(cj(tjcurr),mj) ⊆ Ξ1(tjcurr), the arguments a) and c) ensure
that constraint and collision avoidance requirements with respect to the father
swarm SWj−1 are always satisfied (see the constraint (4.51) of the optimiza-

tion Pi,jF), while in the worst case the state trajectory of each i−th follower

belonging to SWj will be jailed into Ξj(t
j
curr), i.e the constraint (4.52) of Pi,jF .

In virtue of the same arguments, the asymptotic stability property straight-
forwardly follows.

5

Laboratory Experiment and Results

In this chapter, a laboratory experiment is used to evaluate the performance
of the proposed DMPC-Swarm Algorithm. All the computations have been
carried out by using a setup implemented within the MATLAB R2018b envi-
ronment and the Multi-Parametric toolbox 3.0 (MPT3) over a desktop com-
puter equipped with an Intel Core i7 processor. The Multi-Parametric Toolbox
(MPT) is a software tool for Matlab that aims at solving parametric optimiza-
tion problems that arise in constrained optimal control. In particular, as the
name of the toolbox suggests, its primal objective is to provide computation-
ally efficient means for design and application of explicit model predictive
control (MPC). Since the initial release in 2004 there has been a significant
progress in the development of the toolbox and the scope of the toolbox has
widened to deal also with problems arising in computational geometry.

5.1 Multi-Parametric Toolbox 3.0

The Multi-Parametric Toolbox is a collection of algorithms for modeling, con-
trol, analysis, and deployment of constrained optimal controllers developed
under Matlab. It features a powerful geometric library that extends the ap-
plication of the toolbox beyond optimal control to various problems arising in
computational geometry. The new version 3.0 is a complete rewrite of the orig-
inal toolbox with a more flexible structure that offers faster integration of new
algorithms. The numerical side of the toolbox has been improved by adding
interfaces to state of the art solvers and by incorporation of a new parametric
solver that relies on solving linear-complementarity problems. The toolbox
provides algorithms for design and implementation of real-time model predic-
tive controllers that have been extensively tested.

On the market there exist toolboxes that offer operations involved purely
in computational geometry, i.e. GEOMETRY toolbox , CGLAB, and Ellip-
soidal Toolbox. Other toolboxes beside geometrical tools offer also algorithms

102 5 Laboratory Experiment and Results

for computing and implementation of control routines e.g. the Hybrid tool-
box, MOBYDIC toolbox, RACT toolbox, PnPMPC toolbox, and RoMulOC.
MPT is also one of the tools that combines computational geometry with
control routines. Many of these toolboxes including MPT rely on YALMIP
which provides a high level language for modeling and formulating optimiza-
tion problems.

The content of MPT can be divided into four modules:

• modeling of dynamical systems,
• MPC-based control synthesis,
• closed-loop analysis,
• deployment of MPC controllers to hardware.

Each part represents one stage in design and implementation of explicit
MPC. The modeling module of MPT allows to describe discrete-time systems
with either linear or hybrid dynamics. The latter can be directly imported
from the HYSDEL environment. The control module allows to formulate and
solve constrained optimal control problems for both linear and hybrid systems.
For a detailed overview of employed mathematical formulations the reader is
referred to [107]. The analysis module provides methods for investigation of
closed-loop behavior and performance. Moreover, it also features methods to
reduce complexity of explicit MPC feedbacks. The deployment part allows to
export control routines to the ANSIC language, which can be subsequently
downloaded to a target hardware implementation platform.

Compared to the previous release, the 3.0 version of MPT significantly im-
proves capabilities of all four aforementioned modules. The main advances
can be summarized as follows:

• Completely new installation procedure using a software manager.
• New optimization engines based on linear-complementarity problem solvers.
• Extended support for computational geometry.
• New flexible user interface based on object-oriented programming.
• Modular structure for easier integration of new algorithms.
• Extended support for real-time control.
• Improved numerical reliability based on extensive testing.
• Detailed documentation including examples and demos.

The new version of MPT is distributed in a modular structure that is
operated by a Toolbox Manager available at www.tbxmanager.com. Toolbox
Manager provides means for automatic installation, uninstallation and up-
dates of Matlab toolboxes. The manager can be installed as per instructions
on its web page. MPT 3.0 is composed of several modules that are required
to achieve the full functionality. The base package is referred to as mpt and
the related documentation as mptdoc which can be installed by issuing at the
Matlab prompt. The other modules can be installed by pointing to the names

5.1 Multi-Parametric Toolbox 3.0 103

of the submodules.After installation of the submodules, the user can start
using the software directly. If any module has been updated, the new versions
can be obtained and installed with the help of the Toolbox Manager thus
provides a very simple approach to keep updated with any future releases of
MPT, including its submodules.

The MPT 3.0 comes with an extended structure that is based on submod-
ules and object-oriented programming. The main motivation for this change
was to achieve easier maintainability of the toolbox and to provide flexible
structure for possible future enhancements. For instance, in the previous ver-
sion of MPT there was a single object encompassing multiple algorithms. In
the version 3.0, several new objects have been introduced that follow a hierar-
chy derived from object-oriented programming approach. Using this hierarchy
it is possible to introduce new objects and methods to the existing framework
with a minimal effort. The new class can be added by creating a new folder
and by subclassing an existing object. The new object inherits properties and
methods of the superclass and can be used to associate specific methods for
tackling a particular problem.

Majority of the optimization problems involved in the computational geom-
etry can be expressed as linear (LP) or quadratic problems (QP). To solve
these problems effectively, MPT requires additional solvers that can be in-
stalled easily as submodules using the Toolbox Manager. Version 3.0 of MPT
comes with new solvers that tackle both of these problems effectively. The
new optimization engines are based on solvers for a linear complementarity
problem (LCP) that represents a superclass for LP and QP. The advantage of
representing and solving the optimization problems as LCPs is that a single
solver covers all three scenarios and there is no need for multiple solvers that
could potentially return different results. There are two new solvers imple-
mented in MPT 3.0: LCP solver and parametric LCP solver. Both of these
solvers will be reviewed next including their properties and implementation
details.

1) LCP Solver: The linear-complementarity problem represents the class of
optimization problems given as

find w, z

s.t.:

w −Mz = q

wT z = 0

(5.1)

w, z ≥ 0 (5.2)

where the problem data is given by a sufficient matrix M ∈ Rn×n and
vector q ∈ Rn. The unknown variables are z and w that are coupled by the

104 5 Laboratory Experiment and Results

linear complementarity constraints. LCP problems are well studied in the
literatures and several efficient methods for solving such problems have
been proposed. One of the most successful approaches to solve LCP is by
employing the lexicographic Lemke’s algorithm. This active set algorithm
features a symbolic perturbation technique that ensures unique pivot step
selection at each iteration, which prevents the method from internal cy-
cling.

MPT 3.0 provides a C-code implementation of the lexicographic Lemke’s
algorithm, enriched by various techniques and methods to improve speed
and numerical robustness of the method. In particular, the LU recursive
factorization based on rank-one updates [126] has been incorporated to
reduce computational time at each iteration. The LCP solver automati-
cally performs scaling of the input data in case the problem is not well-
conditioned. In addition, the LCP solver executes re-factorization of the
basis if the lexicographic perturbation did not properly identify the unique
pivot. The package is linked to BLAS and LAPACK numerical routines
that provide state-of-the art algorithms for implementation of linear alge-
bra. With all these features implemented, the LCP solver should provide
a numerically reliable engine for resolving also difficult degenerate cases
that may easily arise in formulations of MPC problems. The LCP solver
is seamlessly integrated in MPT, but can also be installed separately via
the Toolbox manager.

2) Parametric LCP Solver: The parametric LCP (PLCP) solver aims at
solving the following class of problems

find w, z

s.t.: w −Mz = q +Qθ
wT z = 0

(5.3)

w, z ≥ 0
θ ∈ Θ (5.4)

which differs from (5.1) by the addition of the parametric term Qθ in (5.3)
withQ ∈ Rn×d. Here, θ ∈ Rd represents a free parameter, which is assumed
to be bounded by (5.4), where Θ ⊂ Rd is a polytope. The problem data are
furthermore given by a sufficient matrix M ∈ Rn×n and the vector q ∈ Rn.

There are few advantages of solving PLP/PQP as PLCP. Firstly, a single
method is used to tackle all three classes of problems that prevents from
encoding inconsistencies that may be eventually caused by different algo-
rithms and different tolerance settings. This was one of the problems in the

5.1 Multi-Parametric Toolbox 3.0 105

previous version where there were multiple versions for multi-parametric
LP/QP solvers. Secondly, the PLCP approach is numerically robust and
superior in efficiency to other methods. Furthermore, the PLCP approach
can handle PLP/PQP problems where the parameters appear linearly in
the cost function and in the right hand side of constraints and therefore is
applicable to solve wider classes of practical problems.

3) Interfaces to External Solvers: Besides the new LCP solvers, MPT 3.0 pro-
vides interfaces to external state-of-the-art solvers. Supported solvers in-
clude, but are not limited to, CDD, GLPK, CLP, QPOASES, QPSPLINE,
SeDuMi, GUROBI, and CPLEX. With the exception of the latter two, all
other solvers are provided under an open-source license and can easily be
installed using the Toolbox manager.

It is worth noting that MPT 3.0 relies heavily on CDD solver for perform-
ing many tasks related to computational geometry. In particular, facet
and vertex enumeration for convex polyhedra and polytopes, as well as
elimination of redundant constraints, are delegated to CDD. For more in-
formation, the interested reader is referred to [118]. In addition, MPT 3.0
also requires a freely-available Fourier solver for computing projections of
polyhedra and polytopes.

MPT 3.0 allows to formulate and solve model predictive control problems for
discrete-time linear and hybrid prediction models. The control synthesis is
split into two parts. First, the user specifies the prediction model either as a
linear time invariant system, as a piecewise affine system, or as a Mixed Logical
Dynamical (MLD) system. Subsequently, the model, along with constraints
and specifications of the objective function, are passed to the control module
which converts them into a suitable mathematical description of the optimal
control problem.

1) Modeling of Dynamical Systems: MPC synthesis for linear systems in
MPT 3.0 assumes that the prediction model takes the form

x(t+∆) = Ax(t) +Bu(t) + f, (5.5)

y(t) = Cx(t) +Du(t) + g, (5.6)

where x(t) is the state vector at time instant t, x(t+) is the successor state
at time t+ with denoting the sampling time, u(t) is the vector of control
inputs, and y(t) denotes the vector of outputs. Such systems are repre-
sented in MPT 3.0 as instances of the LTI System class.

106 5 Laboratory Experiment and Results

2) Control Interface: The basic type of an optimal control problem assumed
in MPT 3.0 is formulated the following form:

min

N−1∑
k=0

(
‖Qxxk‖p + ‖Quuk‖p

)
(5.7)

s.t. xk+1 = f (xk, uk) , (5.8)

u ≤ uk ≤ ū, (5.9)

x ≤ xk ≤ x̄, (5.10)

where xk and uk denote, respectively, prediction of states and inputs at the
k-th step of the prediction horizon N , f(,) is the prediction equation, x, x̄
are lower/upper limits on the states, and u, ū represent limits of the control
authority. If p ∈ {1,∞} in (10a), then ‖·‖{1,∞‖ denotes the standard vector
1- or ∞-norm. If p = 2, then ‖Qxxk‖2 = xTkQxxk is assumed.

The numerical reliability of the toolbox has been tested on a large set of
problems including randomly generated cases, MPC problems designed from
a library of linear models [115], and numerous benchmark examples. At the
time of alpha release the test set contained 1439 problems from which 206 were
for interfaced solvers, 995 for the polyhedral library, and 238 for remaining
functions in the control interface. These number are not final because the
test problems are continuously added in the development process. During the
testing period it has been shown that MPT 3.0 provides superior performance
to the previous version and numerous problematic cases have been tackled by
introducing new algorithms.

5.2 Elisa-3 robot introduction

The Elisa-3 [197] is a small circular robot with the following dimensions: di-
ameter 50mm, height 30mm and weight 39 g. The two wheels are connected
to a DC motor with a 25 : 1 reduction gear. The diameter of the wheels
is 9mm, while the distance amongst them 40.8mm, and the other detailed
specifications are reported in the following table.

Moreover, it is equipped with a wireless communication RF 2.4GHz, based
on Nordic Semiconductor nRF24L01, in charge to perform send/receive data
tasks from the robot to the personal computer and viceversa. The latter is
achieved by means of the following devices: a radio base-station connected
to a personal computer via a USB and a radio chip mounted on the robot.

5.2 Elisa-3 robot introduction 107

They have one wheel on either side and a DC motor connected to each wheel
with a 25 : 1 reduction gear. The robots have a 40.8mm distance between
both wheels and the wheels themselves have a diameter of 9mm. Elisa-3 is an
evolution of the Elisa robot based on a different microcontroller and including
a comprehensive set of sensors:

• Atmel 2560 microcontroller (Arduino compatible)
• central RGB led
• 8 green leds around the robot
• IRs emitters
• 8 IR proximity sensors (Vishay Semiconductors Reflective Optical Sensor)
• 4 ground sensors (Fairchild Semiconductor Minature Reflective Object

Sensor)
• 3-axis accelerometer (Freescale MMA7455L)
• RF radio for communication (Nordic Semiconductor nRF24L01+)
• micro USB connector for programming, debugging and charging
• IR receiver

108 5 Laboratory Experiment and Results

Fig. 5.1. Elisa3 and the charger.

• 2 DC motors
• top light diffuser
• selector

The robot is able to self charge using the charger station, as shown in the
previous figure. The following figure illustrates the position of the various
sensors:

• the top light diffuser and robot are designed to lock together, but the
diffuser isn’t fixed and can thus be removed as desired; the top light dif-
fuser, as the name suggests, helps the light coming from the RGB led to
be smoothly spread out, moreover the strip attached around the diffuser
let the robot be better detected from others robots. Once the top light
diffuser is removed, pay attention not to look at the RGB led directly. In
order to remove the top light diffuser simply pull up it, then to place it
back on top of the robot remember to align the 3 holes in the diffuser with
the 3 IRs emitters and push down carefully until the diffuser is stable; pay
attention to not apply too much force on the IRs emitters otherwise they
can bend and stop working.

• when the top light diffuser is fit on top of the robot, then in order to change
the selector position you can use the tweezers; the selector is located near
the front-left IR emitter, as shown in Fig. 5.3.

5.2 Elisa-3 robot introduction 109

Fig. 5.2. Position of the various sensors.

Fig. 5.3. Location of the selector.

• if you encounter problems with the radio communication (e.g. lot of packet
loss) then you can try moving the antenna that is a wire near the robot
label. Place the antenna as high as possible, near the plastic top light dif-
fuser; try placing it in the borders in order to avoid seeing a black line on
the top light diffuser when the RGB led is turned on.

110 5 Laboratory Experiment and Results

Fig. 5.4. The robot charger station.

The Elisa-3 can be piloted in the charger station in order to be automatically
self charged; there is no need to unplug the battery for charging. The following
figure shows the robot approaching the charger station; a led indicates that
the robot is in charge.

The microcontroller is informed when the robot is in charge and this in-
formation is also transferred to the PC in the flags byte; this let the user be
able to pilote the robot to the charger station and be informed when it is
actually in charge. More information about the radio protocol can be found
in the section Communication. Moreover the robot is also charged when the
micro USB cable is connected to a computer; pay attention that if the USB
cable is connected to a hub, this one need to be power supplied. The following
video link shows the Elisa-3 piloted through the radio to the charging station
using the monitor application: https://youtu.be/kjliXlQcgzw

From February 2013 onwards the Elisa-3 is equipped with a new top light
diffuser designed to fit perfectly in the 3 IRs emitters of the robot. The dif-
fuser is made of plastic (3d printed), it is more robust and it simplifies the
removal and insertion. The following figures show the main components of-
fered by the Elisa-3 robot and where they are physically placed.

The robot is equipped with two batteries for a duration of about 3 hours
at normal usage (motors run continuously, IRs and RGB leds turned on). The
radio base-station is connected to the PC through USB and transfers data to
and from the robot wirelessly. In the same way the radio chip (nRF24L01+)

5.2 Elisa-3 robot introduction 111

Fig. 5.5. The hardware physically placements.

mounted on the robot communicates through SPI with the microcontroller
and transfers data to and from the PC wirelessly. The robot is identified by
an address that is stored in the last two bytes of the microcontroller internal
EEPROM; the robot firmware setup the radio module reading the address
from the EEPROM. This address corresponds to the robot id written on the
label placed under the robot and should not be changed.

The 13 bytes payload packet format is shown below (the number in the
parenthesis expresses the bytes):

• Command: 0x27 = change robot state; 0x28 = goto base-station boot-
loader (this byte is not sent to the robot)

• Red, Blue, Green leds: values from 0 (OFF) to 100 (ON max power)
• IR + flags: first two bits are dedicated to the IRs
• third bit is reserved for enabling/disabling IR remote control (0 =>disabled,

1 =>enabled)
• fourth bit is used for sleep (1 => go to sleep for 1 minute)

112 5 Laboratory Experiment and Results

Fig. 5.6. The Elisa-3 power autonomy test.

• fifth bit is used to calibrate all sensors (proximity, ground, accelerometer)
and reset odometry

• sixth bit is reserved (used by radio station)
• Right, Left motors: speed expressed in 1/5 of mm/s (i.e. a value of 10 means

50 mm/s); MSBit indicate direction: 1=forward, 0=backward; values from
0 to 127

• Small green leds: each bit define whether the corresponding led is turned
on (1) or off (0); e.g. if bit0=1 then led0=on

• Remaining bytes free to be used

The communication between the pc and the base-station is controlled by the
master (computer) that continuously polls the slave (base-station); the polling
is done once every millisecond and this is a restriction on the maximum com-
munication throughput. To overcome this limitation we implemented an op-
timized protocol in which the packet sent to the base-station contains com-
mands for four robots simultaneously; the base-station then separate the data
and send them to the correct robot address. The same is applied in reception,
that is the base-station is responsible of receiving the ack payloads of 4 robots
(64 bytes in total) and send them to the computer. This procedure let us have
a throughput 4 times faster.

5.3 Operating arena and experimental knobs 113

5.3 Operating arena and experimental knobs

Six autonomous robots of the Elisa-3 type are used for experiment purposes.
Robots move within an arena of 0.8m × 0.6m where their positions are de-
tected via a Trust spotlight PRO RGB Camera, connected via a USB to the
personal computer, and localized on the top of the arena, see Fig. 5.7.

Fig. 5.7. Operating arena.

An ad-hoc video processing module (VPM) is in charge to recognize the
robot position by detecting the center of the corresponding circular shape.
For the sake of accuracy, the robot orientation within the arena is obtained as
follows: by using a small circular black tag glued to the robot, the VPM first
identifies the overall circle brighter than its external environment, see Fig. 5.8,
then robot and black tag center positions are determined. Such information
are then used to estimate position and orientation of each involved vehicle.

The operating scenario is depicted in Fig. 5.8. Three polyhedral obstacles

114 5 Laboratory Experiment and Results

are considered O = {Ob1, Ob2, Ob3}. By choosing the left-down corner of the
arena as the origin of the reference frame and according to (A.12), one has

H1 = H2 = H3 =

[
1 −1 0 0
0 0 1 −1

]T
g1 =[0,−0.37, 0.31,−0.37]T , g2 =[0.23,−0.47, 0,−0.07]T and

g3 =[0.63,−0.80, 0.23,−0.45]T [m].

g1 =[0,−0.37, 0.31,−0.37]T [m],
g2 = [0.23,−0.47, 0,−0.07]T [m],
g3 = [0.63,−0.80, 0.23,−0.45]T [m].

The team of six vehicles is organized according to the LF structure of

Section 4. Models (1.25) and (4.1) are discretized with a sampling time

Ts = 0.4 [s]. Three swarms are defined: the vehicle belonging to SW1 acts

as the leader, while the followers SW2 and SW3 consist of three and two

agents, respectively.

In Table 5.1, initial robot positions and orientations are reported, while

the target for each vehicle is set to the same position, i.e. xif = xf =

[0.13, 0.13]T [m], i = 1, . . . , 6. Moreover, the input constraints |v| ≤ 0.02 [m/s]

and |ω| ≤ 0.5 [rad/s], are prescribed for all six vehicles.

Table 5.1. Robots initial positions and orientations.

Σ1
1 Σ1

2 Σ2
2 Σ3

2 Σ1
3 Σ2

3

px(0) [m] 0.302 0.223 0.220 0.148 0.074 0.072

py(0) [m] 0.518 0.579 0.458 0.519 0.571 0.472

θ(0) [rad] 0.245 0.139 -0.146 0.073 0.192 0.154

The leader vision radius is Rv = 0.45 [m] and its external perception
is obtained by reconstructing the environment via the VPM capabilities.
Finally, the following knobs are chosen: ε = 0.002 [m], βmin = 0.06 [m],
βmax = 0.15 [m]. The control horizon lengths N2 = 13 and N3 = 10 are

5.4 Results 115

Fig. 5.8. Robots initial positions.

achieved by uniformly splitting the convergence kinematics time intervals
t̄2(0) = 5.02 [s] and t̄3(0) = 3.68 [s].

5.4 Results

The experimental results are collected in Figs. 5.8-5.15. Starting from the

initial conditions shown in Fig. 5.8, the state trajectories pertaining to the

swarm agents are reported in Figs. 5.9-5.11, respectively. First it is impor-

tant to underline that all the prescribed constraints are satisfied, see Figs.

5.13-5.15. Moreover as testified in Figs. 5.9 and 5.13, the leader is capable to

exactly accomplish its own task: in fact the target xf is reached at t = 69.6 [s],

while the other robots asymptotically approach to the best admissible posi-

tions compatible with xf by minimizing the distance criterion (A.18), see Figs.

116 5 Laboratory Experiment and Results

Fig. 5.9. SW1 : state trajectories. Initial position ◦ and target ×.

5.10-5.11. According to Table 5.2 one derives that the maximum distance is

‖x23(∞)− xf‖2 = 0.476 [m].

Table 5.2. Robot final positions

[m] Σ1
1 Σ1

2 Σ2
2 Σ3

2 Σ1
3 Σ2

3

(px)(∞) 0.137 0.387 0.417 0.326 0.428 0.540

(py)(∞) 0.137 0.131 0.201 0.244 0.415 0.371

To appreciate the modus operandi of the proposed DMPC-Swarm-
Algorithm, a detailed analysis on the state trajectory evolutions is hereafter
summarized. Initially, the leader is the only robot moving within the arena:
from t = 0 until t = 24.4 [s], see Fig. 5.9. Since the leader is the only vehicle

5.4 Results 117

Fig. 5.10. SW2 : state trajectories. Initial positions ◦, current positions 4 and
targets ×.

equipped with a vision module, the main reason behind this phenomenon is
that the overlapped condition in Step 8 is satisfied at t = 24.0 [s]: then, the
swarm SW2 receives the first admissible PI region Ξ1(24.0) at t = 24.4 [s]
and, as a consequence, the command u2

∗

1 (24.4) is computed by solving the
DMPC-P2,1

F (24.4) optimization. The same reasoning applies to the swarm
SW3.

This behaviour can be better understood by taking a look to Fig. 5.12. There,
a sub-sequence of the overlapped PI regions computed by Σ1

1 is outlined.
In particular, notice that the swarm SW2 can transmit the green PI region
Ξ2(24.4) to SW3 (see Step 29) only when at t = 58.8 [s] the swarm SW2

completely lies within the red PI region Ξ2(48.8).
While Σ1

1 travels through the labyrinth defined by the obstacle scenario O,
see the continuous red line in Fig. 5.9, the followers SW2 and SW3 proceed in
a ”blind” fashion by exploiting the information received by the father along
the platoon. As expected, each vehicle moves in a safe state trajectory tube
thanks to the conditions imposed in (4.40)-(4.41), see the blue and green con-
tinuous lines in Figs. 5.10-5.11 respectively.
Finally, a complete video of the experiment is available at the following web
link:

118 5 Laboratory Experiment and Results

Fig. 5.11. SW3 : state trajectories. Initial positions ◦, current positions 4 and
targets ×.

Fig. 5.12. Positively invariant regions.

5.5 Conclusions 119

Fig. 5.13. SW1 : command inputs. The dashed lines represent the boundaries of
the prescribed constraint.

https://www.youtube.com/watch?v=iI2G_sFUli4.

5.5 Conclusions

Trough this thesis, a novel distributed model predictive control architecture is
proposed for the coordination and control of multi-vehicle formations moving
within uncertain environments. The key aim consists in mitigating the high
memory consumption, resulting from local computations and the exploitation
of a growing number of sensors as the involved agents increase, when path
planning and obstacle avoidance requirements are concerned.

To this end, multi-agent swarm modelling and leader-follower configura-
tions are jointly exploited within an ad hoc model predictive control frame-
work to ameliorate energy savings that are essential in long-range missions.
The distributed receding horizon control scheme is developed for teams of au-
tonomous agents customized as swarms within platoon configurations.

https://www.youtube.com/watch?v=iI2G_sFUli4

120 5 Laboratory Experiment and Results

Fig. 5.14. SW2 : command inputs. The dashed lines represent the boundaries of
the prescribed constraint.

The main motivation behind the proposed control framework can be sum-
marized as follows. Coordination and collision avoidance specs for multi-agent
systems prescribe the use of high memory requirements for local computations
and the exploitation of a growing number of sensors as the involved agents
increase. The natural consequence is that usually short-range missions are
allowed. In order to mitigate such a drawback, two key ingredients are here
exploited: 1) the swarm formation modelling that allows to consider in some
sense (it will be later clarified) several agents acting as a singleton; 2) an ad
hoc model predictive scheme capable to adequately exploit swarm kinemat-
ics properties to ameliorate energy consumption savings. Finally, laboratory
experiments on a group of six autonomous robots are instrumental to testify
the effectiveness and the peculiarities of the proposed control strategy.

Trough the previous and presented chapters, a novel distributed MPC
scheme has been developed for dealing with obstacle avoidance and path
planning control problems for multi-agent systems. Differently from similar
literature approaches, the proposed control architecture has been devoted to
reduce as much as possible the energy consumption on each single agent. This
objective has been pursued by exploiting an interesting property of the swarm
kinematics: each agent belonging to a given swarm converges in a finite time

5.6 Future research directions 121

Fig. 5.15. SW3 : command inputs. The dashed lines represent the boundaries of
the prescribed constraint.

to a pre-assigned and suitably defined hyper-ball. Along these lines, the re-
sulting control algorithm has been built up by jointly taking advantage from
the swarm modelling and the receding horizon control features. A laboratory
experiment on a team of Elisa-3 robots, moving within a planar environments
subject to obstacle occurrences, has been carried out with the aim to show
effectiveness and benefits of the proposed approach.

5.6 Future research directions

Despite the fact that the field has seen strong research activity over the last
decade, new schemes still appear in the literature now and then. In addition,
enhancements of previous schemes are also common, such as guarantees of
new theoretical properties. Likely directions for future research are outlined
below. From a theoretical perspective, Table 3 provide valuable information
about what features need more attention. There are unexplored research di-
rections for hybrid process systems. It is also interesting that only one of the
35 schemes is designed for transfer function models, given the number of pa-

122 5 Laboratory Experiment and Results

pers that describe predictive controllers in this context [63]–[65].

A topic that deserves more attention is the development of flexible distributed
MPC architectures able to modify the control network topology and the com-
munication burden depending on the circumstances [66]–[69]. The rationale
behind these control schemes is to foster cooperation whenever the system
performance is poor and to reduce cooperation when it is not necessary. That
is, communication is only allowed whenever it significantly improves the sys-
tem performance. The controllers are then grouped into time-varying coali-
tions that work cooperatively. Likewise, another related field where research is
needed is that of plug-and-play [12] systems, that is, control schemes capable
of seamlessly handling controllers that enter or leave the system, perhaps due
to maintenance or because the system size dynamically changes.

From a practical point of view, comparative assessments of the many dis-
tributed MPC schemes available are still lacking. It is not clear what schemes
are better with respect to basic features such as performance or communica-
tion and computational requirements. There are few direct comparisons be-
tween several different distributed MPC techniques on a common benchmark

5.6 Future research directions 123

[4], [70], and many schemes remain unassessed. For these comparisons to take
place, it is necessary to have publicly available benchmarks. Currently, there
are few benchmarks available. Having easy access to properly defined and
publicly available benchmark systems will facilitate researchers in comparing
the performance of their particular distributed MPC approaches with the per-
formance of other distributed MPC approaches. To this end, a compilation of
benchmarks has been made upon request at http://distributedmpc.net/. The
assessment in [70] is performed on some of these benchmarks so researchers can
compare the performance of their schemes with the results of other schemes
reported in [70]. Finally, the application of distributed MPC to other fields
must be explored. Distributed MPC has traditionally been linked strongly to
distributed optimization. However, the actual application of distributed MPC
schemes requires links to several other major research areas.

Besides the engineering systems to which distributed MPC and other more
conventional approaches have been applied in the past, environmental systems
are becoming of interest. Examples include water, ecological, and biosphere
and atmospheric systems. Increasingly, sensors are being installed to contin-
uously monitor environmental systems, leading to more information being
collected. What should be done with this information is an open question.
From a distributed MPC perspective, this information can be used to model
the behavior and dynamics of these systems. The next step is then to use
these models to predict what could happen with these systems in the near
future.

Appendices

A

Definitions and Descriptions

The main goal of this appendix is to provide a brush-up of Defenitions and
Descriptions.

A.1 Convex and non-convex Hull

There exists an incredible variety of point sets and polygons. Among them,
some have certain properties that make them “nicer” than others in some
respect. For instance, look at the two polygons shown below[149].

Fig. A.1. Examples of polygons

As it is hard to argue about aesthetics, let us take a more algorithmic
stance. When designing algorithms, the polygon shown on the left appears

128 A Definitions and Descriptions

much easier to deal with than the visually and geometrically more complex
polygon shown on the right. One particular property that makes the left poly-
gon nice is that one can walk between any two vertices along a straight line
without ever leaving the polygon [127]. In fact, this statement holds true not
only for vertices but for any two points within the polygon. A polygon or,
more generally, a set with this property is called convex.

A set P ⊆ Rd is convex if pq ⊆ P, for any p, q ∈ P . (A.1)

The polygon shown in Figure A.1.b is not convex because there are some
pairs of points for which the connecting line segment is not completely con-
tained within the polygon. An immediate consequence of the definition is the
following:

For any family (Pi)i∈I of convex sets, the intersection ∩i∈1 Pi is convex .

Indeed there are many problems that are comparatively easy to solve for con-
vex sets but very hard in general. We will encounter some particular instances
of this phenomenon later in the course. However, not all polygons are convex
and a discrete set of points is never convex, unless it consists of at most one
point only. In such a case it is useful to make a given set P convex, that is,
approximate P with or, rather, encompass P within a convex setH ⊇ P. Ide-
ally, H differs from P as little as possible, that is, we want H to be a smallest
convex set enclosing P.

A.2 Convex Polyhedral sets

A convex polyhedral cone K(G) in Rn is a set defined by the relation

K(G) =
{
x ∈ Rn :

(
∃z ∈ Rm+ : Gx = z

)}
(A.2)

where
G ∈ Rm×n (A.3)

If m = n and rank G = n, then the cone is said to be simplicial. One
distinguishing idea which dominates many issues in optimization theory is
convexity. An important reason is the fact that when a convex function is
minimized over a convex set every locally optimal solution is global. Also,
firstorder necessary conditions turn out to be sufficient. A variety of other
properties conducive to computation and interpretation of solutions ride on
convexity as well. In fact the great watershed in optimization isn’t between
linearity and nonlinearity, but convexity and nonconvexity.

Although we know by now what is the convex hull of point set, it is not

A Definitions and Descriptions 129

yet clear how to construct it algorithmically. As a first step, we have to find
a suitable representation for convex hulls. In this section we focus on the
problem in R2 , where the convex hull of a finite point set forms a convex
polygon. A convex polygon is easy to represent, for instance, as a sequence
of its vertices in counterclockwise orientation. In higher dimensions finding
a suitable representation for convex polytopes is a much more delicate task.
Input: P = {p1, . . . , pn} ⊂ R2, n ∈ N

Output: Sequence (q1, . . . , qh) , 1 6 h 6 n, of the vertices of conv (P) (ordered
counterclockwise).

Fig. A.2. Convex Hull of a set of points in R2 .

Another possible algorithmic formulation of the problem is to ignore the
structure of the convex hull and just consider it as a point set. A generalization
of the concept of positive or thant stability is that of invariance of polyhedral
sets. The problem of checking whether a given polyhedron is invariant as well
as the associated state-feedback synthesis problem have been considered by
many authors, see e.g.,[112] and references therein.

A.3 Obstacle Scenario

The idea for approximating the obstacle shape is similar to the convexconcave
procedure (also known as sequential convex programming) for solving opti-
mization problems [Yuille and Rangarajan, 2003], where the concave part of
the constraint is approximated using a linearization about the current solu-
tion.

130 A Definitions and Descriptions

Let Obj be an object with a polyhedral convex structure described as the
intersection of hj half-spaces:

Obj :
[
Hj

1 , . . . , H
j
hj

]T
ζ ≤

[
gj1, . . . , g

j
hj

]T
(A.4)

with ζ ∈2 accounting for the planar space. An obstacle scenario O is defined
as

O := {Ob1, . . . , Obno} (A.5)

where no denotes the number of involved objects. 2

A.3.1 Differential Inclusions

A differential inclusion (DI) is described by:

ẋ ∈ F (x(t), t), x(0) = x0 (A.6)

where F is a set-valued function on Rn×R+. Any x : R+ → Rn that satisfies
(33) is called a solution or trajectory of the DI. Of course, there can be many
solutions of the DI. Our goal is to establish that various properties are sat-
isfied by all solutions of a given DI. For example, we might show that every
trajectory of a given DI converges to zero as t→∞.

By a standard result called the Relaxation Theorem, we may as well assume
F(x,t) is a convex set for every x and t. The DI given by

ẋ ∈ CoF (x(t), t), x(0) = x0 (A.7)

is called the relaxed version of the DI. Since CoF (x(t), t) ⊇ F (x(t), t) every
trajectory of the DI (33) is also a trajectory of relaxed DI (34). Very roughly
speaking, the Relaxation Theorem states that for many purposes the converse
is true. (See the References for precise statements [142].) As a specific and sim-
ple example, it can be shown that for every DI we encounter in this book, the
reachable or attainable sets of the DI and its relaxed version coincide, i.e., for
every T ≥ 0 {x(T) | x satisfies (33)} = {x(T) | x satisfies (A.7)}

In fact we will not need the Relaxation Theorem, or rather, we will always
get it “for free”—every result we establish in the next two chapters extends
immediately to the relaxed version of the problem. The reason is that when
a quadratic Lyapunov function is used to establish some property for the DI,
then the same Lyapunov function establishes the property for the relaxed DI.

A Definitions and Descriptions 131

A.4 Linear Differential Inclusions

A linear differential inclusion (LDI) is given by

ẋ ∈ Ωx, x(0) = x0 (A.8)

where Ω is a subset of Rn×n. We can interpret the LDI as describing a family
of linear time-varying systems. Every trajectory of the LDI satisfies

ẋ = A(t)x, x(0) = x0 (A.9)

for some A : R+ → Ω Conversely, for any A : R+ → Ω the solution of (36)
is a trajectory of the LDI (A.8). In the language of control theory, the LDI
might be described as an “uncertain time-varying linear system,” with the set
Ω describing the “uncertainty” in the matrix A(t).

We will encounter a generalization of the LDI described above to linear sys-
tems with inputs and outputs. We will consider a system described by

ẋ = A(t)x+Bu(t)u+Bw(t)w, x(0) = x0
z = Cz(t)x+Dzu(t)u+Dzw(t)w

(A.10)

where x : R+ → Rn, u : R+ → Rnu , w : R+ → Rnw , z : R+ → Rnz x is
referred to as the state, u is the control input, w is the exogenous input and
z is the output. The matrices in (A.10) satisfy

[
A(t) Bu(t) Bw(t)
Cz(t) Dzu(t) Dzw(t)

]
∈ Ω (A.11)

for all t ≥ 0, where Ω ⊆ R(n+nz)×(n+nu+nw). We will be more specific about
the form of t ∈ Ω shortly.

The differential inclusion theory represents the nonlinear system by a lin-
ear differential inclusion (LDI) model and the original nonlinear system is the
son system of the linear differential inclusion system (LDIS). Though it intro-
duces some conservativeness in the system model, the linear property applies
a new method for the nonlinear filter design, which can be much easier than
designing the filter for the nonlinear system directly. In this paper, a new

132 A Definitions and Descriptions

nonlinear filter is proposed based on the LDI theory. The nonlinear system
is represented by the uncertain polytopic linear differential inclusion (PLDI)
model with the existent condition for describing the general nonlinear system
via a LDI model given in [152], on the basis of which the novel nonlinear filter
is designed.

In some applications we can have one or more of the integers nu, nw, and
nz equal to zero, which means that the corresponding variable is not used.
For example, the LDI ẋ ∈ Ωx results when nu = nw = nz = 0. In order not
to introduce another term to describe the set of all solutions of (A.10) and
(A.11), we will call them a system described by LDIs or simply, an LDI.

A.5 Polytopic LDIs

When Ω is a singleton, the LDI reduces to the linear time-invariant (LTI)
system

ẋ = Ax+Buu+Bww, x(0) = x0
z = Czx+Dzuu+Dzww

(A.12)

where

Ω =

{[
A Bu Bw
Cz Dzu Dzw

]}
(A.13)

Although most of the results are well-known for LTI systems, some are
new; we will discuss these in detail when we encounter them.

When Ω is a polytope, we will call the LDI a polytopic LDI or PLDI. Most of
our results require that Ω be described by a list of its vertices, i.e., in the form

Co

{[
A1 Bu,1 Bw,1
Cz,1 Dzu,1 Dzw,1

]
, . . . ,

[
AL Bu,L Bw,L
Cz,L Dzu,L Dzw,L

]}
(A.14)

where the matrices are given.

If instead Ω is described by a set of l linear inequalities, then the number

A Definitions and Descriptions 133

of vertices, i.e., L, will generally increase very rapidly (exponentially) with l.
Therefore results for PLDIs that require the description (41) are of limited
interest for problems in which Ω is described in terms of linear inequalities.

Example 1:

Here is a PLDI example:

ẋ = A(t)x, A(t) ∈ Co {A1, A2} ,

A1 =

[
−100 0

0 −1

]
, A2 =

[
8 −9

120 −18

]
.

From

Q0 ≥ 0, . . . , QL ≥ 0, Q0 =

L∑
i=1

(
QiA

T
i +AiQi

)
(A.15)

this PLDI is not quadratically stable if there exist Q0 ≥ 0, Q1 ≥ 0 and Q2 ≥ 0,
not all zero, such that

Q0 = A1Q1 +Q1A
T
1 +A2Q2 +Q2A

T
2

It can be verified that the matrices

Q0 =

[
5.2 2
2 24

]
, Q1 =

[
0.1 3
3 90

]
, Q2 =

[
2.7 1
1 1

]
satisfy these duality conditions.

However, the piecewise quadratic Lyapunov function

V (x) = max
{
xTP1x, x

TP2x
}
P1 =

[
14 −1
−1 1

]
, P2 =

[
0 0
0 1

]
(A.16)

proves that the PLDI is stable. To show this, we use the S-procedure. A
necessary and sufficient condition for the Lyapunov function V defined in (43)
to prove the stability of the PLDI is the existence of four nonnegative numbers
λ1, λ2, λ3, λ4 such that

AT1 P1 + P1A1 − λ1 (P2 − P1) < 0
AT2 P1 + P1A2 − λ2 (P2 − P1) < 0
AT1 P2 + P2A1 + λ3 (P2 − P1) < 0, AT2 P2 + P2A2 + λ4 (P2 − P1) < 0

(A.17)

134 A Definitions and Descriptions

It can be verified that λ1 = 50, λ2 = 0, λ3 = 1, λ4 = 100 are such numbers.
Finally, an LDI is stable if and only if there is a convex Lyapunov function
that proves it [139].

A.6 Obstacle-free Region

We can define B(c, r) be the hyper-ball of center c and radius r ∈ R+. With
0p ∈ Rp we denote the vector of zero entries.

Let Bin(cin,min) ⊂n and Bfin(cfin,mfin) ⊂n be two hyper-balls. Given
any point xin ∈ Bin(cin,min), the mapping operator I : Bin(cin,min) →
Bfin(cfin,mfin) returns the mirror point of xin, i.e. xfin ∈ Bfin(cfin,mfin).
of xin.

There are some cases in which the form of the obstacle is so complex that
the previous procedure would become computationally unfeasible. This is the
case of obstacle avoidance in robotics.

Assume that a manipulator has to operate in a constrained environment
as in Fig A.3 left. Assume that the angles q1 and q2 are the free coordi-
nates of the robot which has to move in a constrained environment. Generally
speaking, even though the allowable physical space is simple, the correspond-
ing allowable region in the coordinate space might be very hard to describe.
Typically it is non-convex as the white set in Fig.A.3 right.

Let O be an obstacle scenario. Then the non-convex obstacle-free region
pertaining to O is identified as follows

Ofree := {ζ ∈2: ζ ∈ f(ζ)}, (A.18)

where

f(ζ) :=

no⋂
j=1

f j(ζ)

and

f j(ζ) :=

ζ ∈2:

lj⋃
k=1

(Hj
k)T ζ > gjk

 2

f : Rn → Rnf

A Definitions and Descriptions 135

represents the support function characterizing the admissibility state space
region and nf the number of component-wise inequalities.

Fig. A.3. Robot in a constrained environment

One possible solution is to fill the admissible region with a family of simple
overlapping sets, typically convex and compact (see, e.g., Fig A.3 right). This
set-covering technique has been suggested in [143] and the idea is described in
[167]. It is based on constructing regions with crossing points between regions
and on equipping the system with a hierarchical control with

• a high-level global controller, which decides a path of connected sets in
which the first includes the starting point and the last the destination
point (D in the figure). The high level control makes use of a connection
graph.

• a low-level local controller, active in each convex set, which tracks the
reference (if the reference is inside the current set) or tracks a “crossing”
point to another set of the sequence which is closer to the final set.

A.7 Positive invariance

The idea of positive invariance can be easily understood by referring to a
simple autonomous system in state space form:

ẋ(t) = f(x(t)) (A.19)

136 A Definitions and Descriptions

It is assumed that the above system of equations is defined in a proper
open set

O ⊆ Rn (A.20)

and that there exists a globally defined solution (i.e., for all t ≥ 0) for every
initial condition x(0) ∈ O. Although the concept has been already considered,
positive invariance is formally defined as follows.

The set s ⊆ 0 is said to be positively invariant w.r.t. (A.19) if every so-
lution of (A.19) with initial condition x(0) ∈ S is globally defined and such
that x(t) ∈ S for t > 0.

The above definition is all that is needed when the problem is well-posed,
say there is a unique solution corresponding to each given initial condition
x(0) ∈ S. For the sake of generality, it is worth saying that if pathological
situations have to be taken into account (say if one wants to consider the case
in which the differential equation may have multiple solutions for the same
initial condition) then the following weak version of the concept comes into
play:

A.8 Robustly Positively Invariant Sets

The set S ⊆ X is said to be robustly positively invariant if, for all x(0) ∈ S
and any w(t) ∈ W, 1 the condition x(t) ∈ S holds for all t ≥ 0.

To deal with synthesis problems a further definition, that of robust con-
trolled invariance, has to be introduced. It is worth recalling that, for the
control Lyapunov functions discussed in [146], synthesis requires the specifi-
cation of the class of adopted controllers C(output-feedback, state feedback,
. . .). In a similar fashion, being the considered sets S defined in the plant
state space, only static controllers (possibly of a suitably augmented plant)
will be considered, since no additive dynamics can be admitted.

1 Formally w : R+ →W.

A Definitions and Descriptions 137

The set S ⊆ X is said to be robust controlled positively invariant if there
exists a control in the class C (assuring the existence and uniqueness of the
solution for the closed-loop system) such that, for all x(0) ∈ S and w(t) ∈ W,
the condition x(t) ∈ S holds for all t ≥ 0.

Note that this definition requires the existence of a control such that the
problem is well-posed. For instance, assume x˙ = u and S the positive real
axis. Then any continuous control function u = Φ(x) such that Φ(0) ≥ 0
would be in principle suitable since, for x(0) ≥ 0, x(t) remains positive for
t > 0. However u = 1 + x2 is not acceptable, because the resulting equation
has finite escape time.

The positive invariance notions just introduced are quite useful and sev-
eral applications will be shown later. In the next section, a fundamental result
which characterizes the invariance of a closed set will be presented.

Example 3:

Consider the system

ẋ = − sgn[x] + w, |w| ≤ 1/2

The solution of this system maybe defined byabsorbing the system in a differ-
ential inclusions (an exhaustive book on differential inclusion is [138], see [139]
for details). Intuitivelyit can be arguedthat, as long as x(t) 6= 0, the solution
of this system is

x(t) = x(0)− sgn(x(0))t+

∫ t

0

w(σ)dσ

which has the property |x(t)| ≤ max{0, |x(0)|−1/2t} , and therefore converges
in finite time to 0 for all the specified w(). Once 0 is reached the solution
remains null, thus the set 0is necessarily robustly positively invariant. This
claim can be easily proved in view of the fact that any interval of the form
[−ε, ε] is positively invariant(note that no discontinuity of f appears on the
extrema).

A.9 The Sum of Squares Decomposition

We will now give a brief introduction to sum of squares (SOS) polynomials
and show how the existence of an SOS decomposition can be verified using

138 A Definitions and Descriptions

semidefinite programming [139]. A more detailed description can be found in
[144] and the references therein. We also present briefly an extension of the
S-procedure [157] that is used in the main text.

Definition A.1. For x ∈ Rn, a multivariate polynomial p(x) is an SOS if

there exist some polynomials fi(x), i = 1 . . .M such that p(x) =
∑M
i=1 f

2
i (x).

An equivalent characterization of SOS polynomials is given in the follow-
ing proposition.

Proposition

A polynomial p(x) of degree 2d is an SOS if and only if there exists a
positive semidefinite matrix Q and a vector of monomials Z(x) containing all
monomials in x of degree ≤ d such that p = Z(x)TQZ(x).

The proof of this proposition is based on the eigenvalue decomposition and
can be found in [113]. In general, the monomials in Z(x) are not algebraically
independent. Expanding Z(x)TQZ(x) and equating the coefficients of the re-
sulting monomials to the ones in p(x), we obtain a set of affine relations in
the elements of Q. Since p(x) being SOS is equivalent to Q ≥ 0, the problem
of finding a Q which proves that p(x) is an SOS can be cast as a semidefinite
program (SDP). This was observed by Parrilo in [111].

Notation3 :

Note that p(x) being an SOS implies that p(x) ≥ 0 for all x ∈ Rn. How-
ever, the converse is not always true. Not all non-negative polynomials can
be written as SOS, apart from three special cases: (i) when n = 2, (ii) when
deg(p) = 2, and (iii) when n = 3 and deg(p) = 4. See [103] for more details.

Nevertheless, checking non-negativity of p(x) is an NP-hard problem when
the degree of p(x) is at least 4 [138], whereas as argued in the previous para-
graph, checking whether p(x) can be written as an SOS is computationally
tractable — it can be formulated as an SDP, which has worst-case polyno-
mial time complexity. We will not entail in a discussion on how conservative
the relaxation is, but there are several results suggesting that this is not too
conservative [114].

Notation4:

Note that as the degree of p(x) and/or its number of variables is increased,
the computational complexity for testing whether p(x) is an SOS increases.

A Definitions and Descriptions 139

Nonetheless, the complexity overload is still a polynomial function of these
parameters.

There is a close connection between sums of squares and robust control
theory through Positivstellensatz, a central theorem in Real algebraic geom-
etry [94]. This theorem allows us to formulate a hierarchy of polynomialtime
computable stronger conditions [110] for the S-procedure type of analysis [127,
113]. To see how we will be using this result say we want to use the S-procedure
to check that the set:

{p(x) ≥ 0 when pi(x) ≥ 0 for i = 1, . . . , n}

is non-empty. Instead of finding positive constant multipliers (the standard
S-procedure), we search for SOS multipliers hi(x) so that

p(x)−
∑
i

hi(x)pi(x) is a SOS. (A.21)

Since hi(x) ≥ 0 and condition (48) is satisfied, for any x such that pi(x) ≥ 0
we automatically have p(x) ≥ 0, so sufficiency follows. This condition is at
least as powerful as the standard S-procedure, and many times it is strictly
better; it is a special instance of positivstellensatz. By putting an upper bound
on the degree of hi we can get a nested hierarchy of polynomial-time checkable
conditions.

Besides this, what is more interesting is the case in which the monomials
in the polynomial p(x) have unknown coefficients, and we want to search for
some values of those coefficients such that p(x) is a sum of squares (and hence
nonnegative). Since the unknown coefficients of p(x) are related to the entries
of Q via affine constraints, it is evident that the search for the coefficients that
make p(x) an SOS can also be formulated as an SDP (these coefficients are
themselves decision variables). This observation is crucial in the construction
of Lyapunov functions and other S-procedure type multipliers.

Example 4:

Consider the whirling pendulum [92] shown in Figure A.4. It is a pendu-
lum of length lp whose suspension end is attached to a rigid arm of length
la, with a mass mb attached to its free end. The arm rotates with angular
velocity θ̇a. The pendulum can oscillate with angular velocity θ̇p in a plane
normal to the arm, making an angle θp with the vertical in the instantaneous
plane of motion. We will ignore frictional effects and assume that all links are

140 A Definitions and Descriptions

slender so that their moment of inertia can be neglected.

Using x1 = θp and x2 = θ̇p as state variables, we obtain the following state
equations for the system:

ẋ1 = x2

ẋ2 = θ̇2a sinx1 cosx1 −
g

lp
sinx1

(A.22)

Fig. A.4. The whirling pendulum

The number and stability properties of equilibria in this system depend on
the value of θ̇a. When the condition

θ̇2a < g/lp (A.23)

is satisfied, the only equilibria in the system are (x1, x2) satisfying sinx1 = 0,
x2 = 0.

One equilibrium corresponds to x1 = 0 , i.e., the pendulum is hanging ver-
tically downward (stable), and the other equilibrium corresponds to x1 = π,
i.e., the vertically upward position (unstable). As θ̇2a a is increased beyond
g/lp, a supercritical pitchfork bifurcation of equilibria occurs [116]. The
(x1, x2) = (0, 0) equilibrium becomes unstable, and two other equilibria ap-
pear. These equilibria correspond to cosx1 = g

lpθ̇2a
, x2 = 0.

A Definitions and Descriptions 141

We will now prove the stability of the equilibrium point at the origin for
θ̇a satisfying (50), by constructing a Lyapunov function. Obviously the en-
ergy of this mechanical system can be used as a Lyapunov function, but since
our purpose is to show that a Lyapunov function can be found using the SOS
decomposition, we will assume that our knowledge is limited to the state equa-
tions describing the system and that we know nothing about the underlying
energy.

Since the vector field (49) is not polynomial, a transformation to a polyno-
mial vector field must be performed before we are able to construct a Lyapunov
function using the SOS decomposition. For this purpose, introduce u1 = sinx1
and u2 = cosx1 to get:

ẋ1 = x2
ẋ2 = θ̇2au1u2 −

g
lp
u1

(A.24)

u̇1 = x2u2
u̇2 = −x2u1

(A.25)

In addition, we have the algebraic constraint

u21 + u22 − 1 = 0. (A.26)

The whirling pendulum system will now be described by Equations (A.24)–(A.25).
Notice that all the functions here are polynomial, so that Proposition 4 can
be used to prove stability.

We will perform the analysis with the parameters of the system set at some
fixed values. Assume that all the parameters except g are equal to 1, and g
itself is equal to 10, for which condition (50) is satisfied. For a mechanical
system like this, we expect that some trigonometric terms will be needed in
the Lyapunov function. Thus we will try to find a Lyapunov function of the
following form:

V = a1x
2
2 + a2u

2
1 + a3u

2
2 + a4u2 + a5

= a1x
2
2 + a2 sin2 x1 + a3 cos2 x1 + a4 cosx1 + a5

(A.27)

where the ai’s are the unknown coefficients. These coefficients must satisfy

a3 + a4 + a5 = 0 (A.28)

for V to be equal to zero at (x1, x2) = (0, 0). To guarantee that V is positive

142 A Definitions and Descriptions

definite, we search for Vs that satisfy

V − ε1 (1− u2)− ε2x22 ≥ 0 (A.29)

where ε1 and ε2 are positive constants (we set ε1 ≥ 0.1, ε2 ≥ 0.1). Positive
definiteness holds as

ε1 (1− u2) + ε2x
2
2 = ε1 (1− cosx1) + ε2x

2
2

is a positive definite function in the (x1, x2)–space (assuming all x1 that differ
by 2π are in the same equivalence class). An example of Lyapunov function
for this whirling pendulum system, found using the sum of squares procedure,
is given by

V = 0.33445x22 + 1.4615u21 + 1.7959u22 − 6.689u2 + 4.8931

Useful Results:

This Part contains the basic definitions and results concerning invariant
sets in control and it is the core of the Chapter. Indeed, the invariance con-
cept is at the basis of many control schemes that will be considered later.
Such a concept naturally arises when dealing with Lyapunov functions, as
we have seen, since any Lyapunov function has positively invariant sublevel
sets. However, the invariance concept does not require the introduction of the
notion of Lyapunov functions and indeed there exist invariant sets that are
not obviously related to any Lyapunov function.

The reason for the introduction of the (rarely used throughout the chap-
ter) weak invariance concept is basically that of establishing a link with the
abundant mathematical work in this area (see, among the recent literature
[135, 141]). Indeed, from an engineering point of view, the existence of at
least a solution in S is not that stunning, since nothing is said about all other
possible solutions to the given set of equations.

To avoid having the reader dropping the chapter we guarantee that in the
99.999% of the dynamic systems which will be considered well-posedness will
be assumed, namely the existence of a unique solution for any x(0) ∈ S, a case
in which the weak definition collapses to the standard one. The latter can be
simply restated as x (t1) ∈ S ⇒ x(t) ∈ S for t ≥ t1. It has to be pointed out

A Definitions and Descriptions 143

that the role of the word “positive” is referred to the fact that the property
regards the future. If x (t1) ∈ S implies x (t) ∈ S, for all t, this property
is known as invariance and S is said to be an invariant set. Invariance is a
too special concept to be considered. Therefore in the chapter we will always
refer to positive invariance (although we will sometimes write “invariance”for
brevity).

References

1. N. R. Sandell, P. Varaiya, M. Athans, and M. G. Safonov, “Survey of decentral-
ized control methods for large scale systems,” IEEE Trans. Autom. Control,
vol. 23, no. 2, pp. 108–128, 1978.

2. E. Camponogara and B. B. de Oliveira, “Distributed optimization for model pre-
dictive control of linear-dynamic networks,” IEEE Trans. Syst. Man, Cybern.
A, vol. 39, no. 6, pp. 1331–1338, 2009.

3. R. R. Negenborn, B. De Schutter, and J. Hellendoorn, “Multi-agent model
predictive control for transportation networks: Serial versus parallel schemes,”
Eng. Applicat. Artif. Intell., vol. 21, no. 3, pp. 353–366, 2008.

4. R. M. Hermans, A. Jokic, M. Lazar, A. Alessio, P. P. J. van den Bosch, I. A.
Hiskens, and A. Bemporad, “Assessment of non-centralised model predictive
control techniques for electrical power networks,” Int. J. Control, vol. 85, no.
8, pp. 1162–1177, 2012.

5. E. F. Camacho and C. Bordons, Model Predictive Control, vol. XXII, 2nd ed.
London, England: Springer-Verlag, 2004.

6. J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design.
Madison, WI: Nob Hill Publishing, 2009.

7. J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic
control: Applications to industrial processes,” Automatica, vol. 14, no. 5, pp.
413–428, 1978.

8. E. F. Camacho and M. Berenguel, “Robust adaptive model predictive control
of a solar plant with bounded uncertainties,” Int. J. Adapt. Control Signal
Process., vol. 11, no. 4, pp. 311–325, 1997.

9. Ø. Hegrenæs, J. T. Gravdahl, and P. Tøndel, “Spacecraft attitude control using
explicit model predictive control,” Automatica, vol. 41, no. 12, pp. 2107–2114,
2005.

10. S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control
technology,” Control Eng. Pract., vol. 11, no. 7, pp. 733–764, July 2003.

11. J. R. D. Frejo and E. F. Camacho, “Global versus local MPC algorithms in
freeway traffic control with ramp metering and variable speed limits,” IEEE
Trans. Intell. Transport. Syst., vol. 13, no. 4, pp. 1556–1565, 2012.

146 References

12. S. Riverso, M. Farina, and G. Ferrari-Trecate, “Plug-and-play decentralized
model predictive control for linear systems,” IEEE Trans. Autom. Control,
vol. 58, no. 10, pp. 2608–2614, Oct. 2013.

13. J. A. Momoh, “Smart grid design for efficient and flexible power networks op-
eration and control,” in Proc. IEEE Power Systems Conf. Expo., 2009, pp.
1–8.

14. F. Xia, Y. C. Tian, Y. Li, and Y. Sung, “Wireless sensor/actuator network
design for mobile control applications,” Sensors, vol. 7, no. 10, pp. 2157–2173,
2007.

15. R. R. Negenborn, P. J. Van Overloop, T. Keviczky, and B. De Schutter, “Dis-
tributed model predictive control of irrigation canals,” Netw. Heterogeneus Me-
dia, vol. 4, no. 2, pp. 359–380, 2009.

16. J. M. Maestre, D. M. de la Peña, and E. F. Camacho, “Distributed MPC: A
supply chain case study,” in Proc. Conf. Decision Control, 2009, pp. 7099–
7104.

17. J. L. Nabais, R. R. Negenborn, R. C. Benitez, and M. A. Botto, “Setting co-
operative relations among terminals at seaports using a multi-agent system,”
in Proc. 16th Int IEEE Conf. Intelligent Transportation Systems, The Hague,
The Netherlands, Oct. 2013., pp. 1731–1736.

18. H. E. Fawal, D. Georges, and G. Bornard, “Optimal control of complex irri-
gation systems via decomposition-coordination and the use of augmented la-
grangian,” in Proc. IEEE Int. Conf. Systems, Man, Cybernetics, 1998, vol. 4,
pp. 3874–3879.

19. E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Syst. Mag., vol. 22, no. 1, pp. 44–52, 2002.

20. R. Scattolini, “Architectures for distributed and hierarchical model predictive
control—A review,” J. Process Control, vol. 19, no. 5, pp. 723–731, 2009.

21. P. D. Christofides, R. Scattolini, D. M. de la Peña, and J. Liu, “Distributed
model predictive control: A tutorial review and future research directions,” Com-
put. Chem. Eng., vol. 51, pp. 21–41, Apr. 2013.

22. J. M. Maestre and R. R. Negenborn, Eds. Distributed Model Predictive Control
Made Easy (Series Intelligent Systems, Control and Automation: Science and
Engineering). vol. 69, New York: Springer, 2013.

23. R. R. Negenborn and H. Hellendoorn, “Intelligence in transportation infrastruc-
tures via model-based predictive control,” in Intelligent Infrastructures, R. R.
Negenborn, Z. Lukszo, and H. Hellendoorn, Eds. Dordrecht, The Netherlands:
Springer, 2010, pp. 3–24.

24. W. B. Dunbar and S. Desa, “Distributed MPC for dynamic supply chain
management,” in Proc. Int. Workshop Assessment Future Directions NMPC,
Freudenstadt-Lauterbad, Germany, 2005, pp. 26–30.

25. J. L. Nabais, R. R. Negenborn, R. C. Benitez, and M. A. Botto, “A multiagent
MPC scheme for vertically integrated manufacturing supply chains,” in Proc.
6th Int. Conf. Management Control Production Logistics, Fortaleza, Brazil,
Sept. 2013, pp. 59–64.

26. J. M. Maestre, D. M. de la Peña, E. F. Camacho, and T. Alamo, “Distributed
model predictive control based on agent negotiation,” J. Process Control, vol.
21, no. 5, pp. 685–697, 2011.

27. R. R. Negenborn and J. M. Maestre, “On 35 approaches for distributed MPC
made easy,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
and R. R. Negenborn, Eds. The Netherlands: Springer, 2014, pp. 1–37.

References 147

28. F. Valencia, J. D. López, J. A. Patiño, and J. J. Espinosa, “Bargaining game
based distributed MPC,” in Distributed Model Predictive Control Made Easy, J.
M. Maestre and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer,
2014, pp. 41–56.

29. P. A. Trodden and A. G. Richards, “Cooperative tube-based distributed MPC for
linear uncertain systems coupled via constraints,” in Distributed Model Predic-
tive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht,
The Netherlands: Springer, 2014, pp. 57–72.

30. R. Mart́ı, D. Sarabia, and C. de Prada, “Price-driven coordination for dis-
tributed NMPC using a feedback control law,” in Distributed Model Predictive
Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 73–88.

31. M. A. Müller and F. Allgöwer, “Distributed MPC for consensus and synchro-
nization,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp.
89–100.

32. R. Bourdais, J. Buisson, D. Dumur, H. Guéguen, and P.-D. Moros ¸an, “Dis-
tributed MPC under coupled constraints based on Dantzig-Wolfe decomposi-
tion,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp.
101–114.

33. F. Farokhi, I. Shames, and K. H. Johansson, “Distributed MPC via dual decom-
position and alternative direction method of multipliers,” in Distributed Model
Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dor-
drecht, The Netherlands: Springer, 2014, pp. 115–131.

34. F. Tedesco, D. M. Raimondo, and A. Casavola, “A distributed reference man-
agement scheme in presence of non-convex constraints: An MPC based ap-
proach,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp.
243–257.

35. A. Casavola, E. Garone, and F. Tedesco, “The distributed command governor
approach in a nutshell,” in Distributed Model Predictive Control Made Easy, J.
M. Maestre and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer,
2014, pp. 259–274.

36. I. Prodan, F. Stoican, S. Olaru, C. Stoica, and S.-I. Niculescu, “Mixedinteger
programming techniques in distributed MPC problems,” in Distributed Model
Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dor-
drecht, The Netherlands: Springer, 2014, pp. 275–291.

37. A. Grancharova and T. A. Johansen, “Distributed MPC of interconnected non-
linear systems by dynamic dual decomposition,” in Distributed Model Predictive
Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 293–308.

38. P. Giselsson and A. Rantzer, “Generalized accelerated gradient methods for dis-
tributed MPC based on dual decomposition,” in Distributed Model Predictive
Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 309–325.

39. A. Kozma, C. Savorgnan, and M. Diehl, “Distributed multiple shooting for
large scale nonlinear systems,” in Distributed Model Predictive Control Made
Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The Netherlands:
Springer, 2014, pp. 327–340.

148 References

40. G. Betti, M. Farina, and R. Scattolini, “Distributed MPC: A noncooperative
approach based on robustness concepts,” in Distributed Model Predictive Con-
trol Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 421–435.

41. R. R. Negenborn, “Decompositions of augmented lagrange formulations for se-
rial and parallel distributed MPC,” in Distributed Model Predictive Control
Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The Nether-
lands: Springer, 2014, pp. 437–450.

42. A. Zafra-Cabeza and J. M. Maestre, “A hierarchical distributed MPC approach:
A practical implementation,” in Distributed Model Predictive Control Made
Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The Netherlands:
Springer, 2014, pp. 451–464.

43. J. L. Nabais, R. R. Negenborn, R. B. Carmona-Benitez, L. F. Mendonca, and M.
A. Botto, “Hierarchical MPC for multiple commodity transportation networks,”
in Distributed Model Predictive Control Made Easy, J. M. Maestre and R. R.
Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp. 535–552.

44. J. Liu, D. M. de la Peña, and P. D. Christofides, “Lyapunov-based distributed
MPC schemes: Sequential and iterative approaches,” in Distributed Model Pre-
dictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht,
The Netherlands: Springer, 2014, pp. 479–494.

45. J. M. Lemos and J. M. Igreja, “D-SIORHC, distributed MPC with stability
constraints based on a game approach,” in Distributed Model Predictive Con-
trol Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 133–146.

46. M. Y. Lamoudi, M. Alamir, and P. Béguery, “A distributed-in-time NMPC-
based coordination mechanism for resource sharing problems,” in Distributed
Model Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds.
Dordrecht, The Netherlands: Springer, 2014, pp. 147–162.

47. I. Necoara, “Rate analysis of inexact dual fast gradient method for distributed
MPC,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp.
163–178.

48. B. Biegel, J. Stoustrup, and P. Andersen, “Distributed MPC via dual decom-
position,” in Distributed Model Predictive Control Made Easy J. M. Maestre
and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp.
179–192.

49. E. Camponogara, “Distributed optimization for MPC of linear dynamic net-
works,” in Distributed Model Predictive Control Made Easy, J. M. Maestre
August 2014 IEEE CONTROL SYSTEMS MAGAZINE 97 and R. R. Negen-
born, Eds. Dordrecht, The Netherlands: Springer, 2014, pp. 193–208.

50. Y. Hu and N. H. El-Farra, “Adaptive quasi-decentralized MPC of networked
process systems,” in Distributed Model Predictive Control Made Easy, J. M.
Maestre and R. R. Negenborn, Eds. Dordrecht, The Netherlands: Springer,
2014, pp. 209–224.

51. C. Ocampo-Martinez, V. Puig, J. M. Grosso, and S. Montes-de-Oca, “Multi-
layer decentralized MPC of large-scale networked systems,” in Distributed Model
Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds.
Dordrecht, The Netherlands: Springer, 2014, pp. 495–515.

52. B. Morcego, V. Javalera, V. Puig, and R. Vito, “Distributed MPC using re-
inforcement learning based negotiation: Application to large scale systems,” in

References 149

Distributed Model Predictive Control Made Easy, J. M. Maestre and R. R.
Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp. 517–533.

53. J. L. Nabais, R. R. Negenborn, R. B. Carmona-Benitez, L. F. Mendonca, and M.
A. Botto, “Hierarchical MPC for multiple commodity transportation networks,”
in Distributed Model Predictive Control Made Easy, J. M. Maestre and R. R.
Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp. 535–552.

54. G. Pannocchia, S. J. Wright, and J. B. Rawlings, “On the use of suboptimal
solvers for efficient cooperative distributed linear MPC,” in Distributed Model
Predictive Control Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dor-
drecht, The Netherlands: Springer, 2014, pp. 553–568.

55. A. Ferramosca, D. Limon, and A. H. González, “Cooperative distributed MPC
integrating a steady sate target optimizer,” in Distributed Model Predictive Con-
trol Made Easy, J. M. Maestre and R. R. Negenborn, Eds. Dordrecht, The
Netherlands: Springer, 2014, pp. 569–584.

56. A. Ferramosca, “Cooperative mpc with guaranteed exponential stability,” in
Distributed Model Predictive Control Made Easy, J. M. Maestre and R. R.
Negenborn, Eds. Dordrecht, The Netherlands: Springer, 2014, pp. 585–600.

57. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive con-
trol—Part I. The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148,
1987.

58. D. W. Clarke, “Application of generalized predictive control to industrial pro-
cesses,” IEEE Control Syst. Mag., vol. 8, no. 2, pp. 49–55, 1988.

59. R. Kennel, A. Linder, and M. Linke, “Generalized predictive control (GPC)-
ready for use in drive applications?” in Proc. IEEE 32nd Annu. Power Elec-
tronics Specialists Conf., 2001, vol. 4, pp. 1839–1844.

60. F. Fele, J. M. Maestre, S. M. Hashemy, D. M. de la Peña, and E. F. Cama-
cho, “Coalitional model predictive control of an irrigation canal,” J. Process
Control, vol. 24, no. 4, pp. 314–325, 2014.

61. J. M. Maestre, D. M. de la Peña, A. J. Losada, E. Algaba, and E. F. Camacho,
“A coalitional control scheme with applications to cooperative game theory,”
Optim. Contr. Applicat. Methods, doi: 10.1002/oca.2090.

62. M. Jilg and O. Stursberg, “Optimized distributed control and topology design for
hierarchically interconnected systems,” in Proc. 2013 European Control Conf.,
Zurich, Switzerland, July 2013, pp. 4340–4346.

63. P. Trodden and A. G. Richards, “Adaptive cooperation in robust distributed
model predictive control,” in Proc. 24th IEEE Int. Symp. Intelligent Control,
St. Petersburg, Russia, July 2009, pp. 896–901.

64. I. Alvarado, D. Limon, D. M. de la Peña, J. M. Maestre, F. Valencia, H. Scheu,
R. R. Negenborn, M. A. Ridao, B. De Schutter, J. Espinosa, and W. Marquardt,
“A comparative analysis of distributed MPC techniques applied to the HD-MPC
four-tank benchmark,” J. Process Control, vol. 21, no. 5, pp. 800–815, 2011.

65. D. Sarewitz, R. A. Pielke, and R. Byerly, Prediction: Science, Decision Making,
and the Future of Nature. Washington, DC: Island Press, 2000.

66. R. Harding, Environmental Decision-Making: The Roles of Scientists, Engi-
neers, and the Public. Sydney, Australia: Federation Press, 1998.

67. INFSO D.4, INFSO G.2, and EPOSS, “Internet of Things in 2020—A roadmap
for the future,” European Commission, Information Society and Media, Brus-
sels Tech. Rep., 2008.

68. R. Fuller, Introduction to Neuro-Fuzzy Systems. New York: Springer, 2000.

150 References

69. M. Broy, “Engineering cyber-physical systems: Challenges and foundations,” in
Complex Systems Design Management, M. Aiguier, Y. Caseau, D. Krob, and
A. Rauzy, Eds. Berlin, Heidelberg: Springer, 2013, pp. 1–13.

70. M. W. Maier, “Architecting principles for system of systems,” Syst. Eng., vol.
1, no. 4, pp. 267–284, 1998.

71. G. Weiss, Multiagent Systems. Cambridge, MA: MIT Press, 2013.
72. M. Guizani, Wireless Communications Systems and Networks. New York:

Springer, 2004.
73. De Vito, D., Picasso, B., Scattolini, R. (2010). On the design of reconfigurable

two-layer hierarchical control systems with MPC. In Proceedings of the Amer-
icanControl Conference Baltimore, Maryland, (pp. 4707–4712).

74. Davison, E. J., Chang, T. N. (1990). Decentralized stabilization and pole as-
signmentfor general proper systems. IEEE Transactions on Automatic Control,
35, 652–664.

75. Christofides, P. D., Liu, J., Mu noz de la Pe na, D. (2011). Networked and
distributedpredictive control: Methods and nonlinear process network applica-
tions. Advancesin industrial control series. London, England: Springer-Verlag.

76. Neˇsi c, D., Teel, A. R. (2004). Input-to-state stability of networked control
systems.Automatica, 40, 2121–2128.

77. Neˇsi c, D., Teel, A., Kokotovic, P. (1999). Sufficient conditions for stabilization
ofsampled-data nonlinear systems via discrete time approximations. Systems
andControl Letters, 38, 259–270.

78. Necoara, I., Nedelcu, V., Dumitrache, I. (2011). Parallel and distributed op-
timizationmethods for estimation and control in networks. Journal of Process
Control, 21,756–766.

79. Negenborn R.R. (2007). Multi-agent model predictive control with applications
topower networks (PhD thesis). Delft University of Technology.

80. Negenborn, R. R., De Schutter, B., Hellendoorn, J. (2008). Multi-agent
model pre-dictive control for transportation networks: Serial versus parallel
schemes.Engineering Applications of Artificial Intelligence, 21, 353–366.

81. Negenborn, R. R., Leirens, S., De Schutter, B., Hellendoorn, J. (2009). Su-
pervisorynonlinear MPC for emergency voltage control using pattern search.
Control Engi-neering Practice, 7, 841–848.

82. Negenborn, R. R., Van Overloop, P. J., Keviczky, T., De Schutter, B. (2009).
Distributedmodel predictive control of irrigation canals. Networks and Hetero-
geneous Media,4, 359–380.

83. Neumann, P. (2007). Communication in industrial automation: What is going
on?Control Engineering Practice, 15, 1332–1347.

84. Ocampo-Martinez, C., Bovo, S., Puig, V. (2011). Partitioning approach ori-
ented tothe decentralised predictive control of large-scale systems. Journal of
ProcessControl, 21, 775–786.

85. Ogunnaike, B. A., Ray, W. H. (1994). Process dynamics, modeling, and control.
NewYork: Oxford University Press.

86. Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks. Pro-
ceedingsof the 46th IEEE Conference on Decision and Control, 5492–5498.

87. Omell, B.P., Chmielewski, D.J. IGCC power plant dispatch using infinite-
horizoneconomic model predictive control. Industrial Engineering Chemistry
Research,submitted.

References 151

88. Perk, S., Teymour, F., Cinar, A. (2010). Statistical monitoring of complex
chem-ical processes using agent-based systems. Industrial Engineering Chem-
istryResearch, 49, 5080–5093.

89. B. W. Bequette. Process Dynamics. Modeling, Analysis and Simulation. Pren-
tice Hall, 1998.

90. J. Bochnak, M. Coste, and M.-F. Roy Real Algebraic Geometry. Springer-
Verlag, Berlin, 1998.

91. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequal-
ities in System and Control Theory. Society for Industrial and Applied Math-
ematics (SIAM), 1994.

92. K. Furuta, M. Yamakita, and S. Kobayashi. Swing-up control of inverted pendu-
lum using pseudo-state feedback. Journal of Systems and Control Engineering,
206:263–269, 1992.

93. W. Hahn. Stability of Motion. Springer-Verlag, New York, 1967.
94. J. Marsden and T. Ratiu. Introduction to Mechanics and Symme-

try.SpringerVerlag, NY, second edition, 1999.
95. J. D. Murray. Mathematical Biology. Springer-Verlag, second edition, 1993.
96. K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and

nonlinear programming. Mathematical Programming, 39:117–129, 1987.
97. A. Papachristodoulou and S. Prajna. On the construction of Lyapunov func-

tions using the sum of squares decomposition. In Proceedings of the 41st IEEE
Conf. on Decision and Control, 2002.

98. P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, Caltech, Pasadena, CA,
2000. Available at http://www.control.ethz.ch/ parrilo/pubs/index.html.

99. P. A. Parrilo and B. Sturmfels. Minimizing polynomial functions. In Work-
shop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in
Mathematics and Computer Science, March, 1998.

100. S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing SOS-
TOOLS: A general purpose sum of squares programming solver. In Pro-
ceedings of the 41st IEEE Conf. on Decision and Control,2002. Available
at http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/ par-
rilo/sostools.

101. B. Reznick. Some concrete aspects of Hilbert’s 17th problem. In Contempo-
rary Mathematics, volume 253, pages 251–272. American Mathematical Society,
2000.

102. M. A. Savageau and E. O. Voit. Recasting nonlinear differential equations as S-
systems: a canonical nonlinear form. Mathematical Biosciences, 87(1):83–115,
1987.

103. J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999.
Available at http://fewcal.kub.nl/sturm/software/sedumi.html.

104. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

105. V. A. Yakubovic. S-procedure in nonlinear control theory. Vestnik Leningrad
University, 4(1):73–93, 1977. English translation.

106. V. Zubov. Methods of A.M. Lyapunov and Their Application. P. Noordhoff
Ltd, Groningen, The Netherlands, 1964.

107. J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods,
and Algorithms, Springer-Verlag, New York, 1997.

152 References

108. H. Asada, J.-J.E. Slotine, Robot Analysis and Control , Wiley, New York, 1986.
109. C. Canudas de Wit, B. Siciliano, G. Bastin, (Eds.), Theory of Robot Control ,

Springer-Verlag, London, 1996.
110. J.J. Craig, Introduction to Robotics: Mechanics and Control , 3rd ed., Pearson

Prentice Hall, Upper Saddle River, NJ, 2004.
111. A.J. Critchlow, Introduction to Robotics, Macmillan, New York, 1985.
112. J.F. Engelberger, Robotics in Service, MIT Press, Cambridge, MA, 1989.
113. K.S. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics: Control, Sensing, Vision, and

Intelligence, McGraw-Hill, New York, 1987.
114. W. Khalil, E. Dombre, Modeling, Identification and Control of Robots, Hermes

Penton Ltd, London, 2002.
115. A.J. Koivo, Fundamentals for Control of Robotic Manipulators, Wiley, New

York, 1989.
116. F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of Robot Manipulators,

Macmillan, New York, 1993.
117. P.J. McKerrow, Introduction to Robotics, Addison-Wesley, Sydney, Australia,

1991.
118. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Ma-

nipulation, CRC Press, Boca Raton, FL, 1994.
119. S.B. Niku, Introduction to Robotics: Analysis, Systems, Applications, Prentice-

Hall, Upper Saddle River, NJ, 2001.
120. R.P. Paul, Robot Manipulators: Mathematics, Programming, and Control MIT

Press, Cambridge, MA, 1981.
121. L. Sciavicco, B. Siciliano, Modelling and Control of Robot Manipulators, 2nd

ed., Springer, London, UK, 2000.
122. M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Modeling and Control , Wi-

ley, New York, 2006.
123. M. Aicardi, G. Casalino, A. Bicchi, A. Balestrino, “Closed loop steering of

unicycle-like vehicles via Lyapunov techniques,” IEEE Robotics and Automa-
tion Magazine, vol. 2, no. 1, pp. 27–35, 1995.

124. G. Bastin, G. Campion, B. D’Andr´ea-Novel, “Structural properties and clas-
sification of kinematic and dynamic models of wheeled mobile robots, ” IEEE
Transactions on Robotics and Automation, vol. 12, pp. 47–62, 1996.

125. J. Borenstein, H.R. Everett, L. Feng, Navigating Mobile Robots: Systems and
Techniques, A K Peters, Wellesley, MA, 1996.

126. M. Vukobratović, Introduction to Robotics, Springer-Verlag, Berlin, Germany,
1989.

127. C. Canudas de Wit, H. Khennouf, C. Samson, O.J. Sørdalen, “Nonlinear con-
trol design for mobile robots,” Recent Trends in Mobile Robots, Y.F. Zheng,
(Ed.), pp. 121–156, World Scientific Publisher, Singapore, 1993.

128. A. De Luca, G. Oriolo, C. Samson, “Feedback control of a nonholonomic carlike
robot,” in Robot Motion Planning and Control, J.-P. Laumond, (Ed.), Springer-
Verlag, Berlin, Germany, 1998.

129. M. Fliess, J. L´evine, P. Martin, P. Rouchon, “Flatness and defect of nonlinear
systems: Introductory theory and examples,” International Journal of Control,
vol. 61, pp. 1327–1361, 1995.

130. J.L. Jones, A.M. Flynn, Mobile Robots: Inspiration to Implementation, AK
Peters, Wellesley, MA, 1993.

131. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Ma-
nipulation, CRC Press, Boca Raton, CA. 1994.

References 153

132. J.I. Neimark, F.A. Fufaev, Dynamics of Nonholonomic Systems, American
Mathematical Society, Providence, RI, 1972.

133. Rachid, A. (1991). Positively invariant polyhedral sets for uncertain discrete
time systems. Control Theory and Advanced Technology, 7(1), 191–200.

134. Rakovi´c, S., Kouramas, K. (2007). The minimal robust positively invariant
set for linear discrete-time systems: Approximation methods and control appli-
cations. In Proceedings of the CDC06, San Diego, California.

135. Rakovi´c, S., Kerrigan, E., Kouramas, K., Mayne, D. (2005). Invariant approx-
imations of the minimal robust positively invariant set. IEEE Transactions on
Automatic Control, 50(3), 406–410.

136. R. Siegwart, I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots,
MIT Press, Cambridge, MA, 2004.

137. David Avis, Comments on alower bound for convexhull determination. In-
form. Process. Lett., 11, 3, (1980), 126, URL http://dx.doi.org/10.1016/0020-
0190(80) 90125-8.

138. Michael Ben-Or, Lower bounds for algebraic computation trees. In Proc.
15th Annu. ACM Sympos. Theory Comput., pp. 80–86, 1983, URL
http://dx.doi.org/10. 1145/800061.808735.

139. Timothy M. Chan, Optimal output-sensitive convex hull algorithms in two
and three dimensions. Discrete Comput. Geom., 16, 4, (1996), 361–368, URL
http://dx.doi. org/10.1007/BF02712873.

140. Ronald L. Graham, An efficient algorithm for determining the convex hull
of a finite planar set. Inform. Process. Lett., 1, 4, (1972), 132–133, URL
http://dx.doi.org/ 10.1016/0020-0190(72)90045-2.

141. Ray A. Jarvis, On the identification of the convex hull of a finite set of points in
the plane. Inform. Process. Lett., 2, 1, (1973), 18–21, URL http://dx.doi.org/
10.1016/0020-0190(73)90020-3.

142. K.K. Oh, M.C. Park, and H.S. Ahn, A survey of multi-agent formation control,
Automatica, vol. 53, issue 3, pp. 424-440, March 2015.

143. R. Olfati-Saber, J. Fax and R. Murray, Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, 2007.

144. W. Ren, R. Beard and E. Atkins, Information consensus in multivehicle co-
operative control, IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71-82,
2007.

145. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and the-
ory, IEEE Transaction Automatic Control, vol. 51, no. 3, pp. 401-420, 2006.

146. R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with
switching topology and time-delays, IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520-1533, 2004.

147. W. Ren, and R. Beard, Consensus seeking in multiagent systems under dy-
namically changing interaction topologies, IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 655-661, 2005.

148. A. Jadbabaie, J. Lin, and A. Morse, Coordination of groups pf mobile au-
tonomous agents using nearest neighbor rules, IEEE Transaction Automatic
Control, vol. 48, no. 6, pp. 988-1001, 2003.

149. K. You, Z. Li, and L. Xie, Consensus condition for linear multi-agent systems
over randomly switching topologies, Automatica, vol. 49, no. 10, pp. 3125-3132,
2013.

154 References

150. Chen J, Sun D, Yang J, Chen H. Leader-Follower Formation Control of Mul-
tiple Non-holonomic Mobile Robots Incorporating a Receding-horizon Scheme.,
The International Journal of Robotics Research. 2010;29(6):727-747.

151. M. Mesbahi and M. Egerstedt, “Graph theoretic methods in multiagent net-
works”, Princeton University Press, 2010.

152. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation
control”, Automatica, Vol. 53, pp. 424-440, 2015.

153. J.P. Desai, J.P. Ostrowski and V. Kumar, “Modeling and control of formations
of nonholonomic mobile robots”, IEEE Trans. Robot. Autom., Vol. 17, No. 6,
pp. 905-908, 2001.

154. H. G. Tanner, G. J. Pappas and V. Kumar, “Leader-to-formation stability”,
IEEE Trans. Autom. Robot, Vol. 20, No. 3, pp. 443-455, 2004.

155. M.A. Lewis and K.-H. Tan, “High precision formation control of mobile robots
using virtual structures”, Auton. Robots, Vol. 4, No. 4, pp. 387-403, 1997.

156. R.W. Beard, J. Lawton, F.Y. Hadaegh, “A coordination architecture for space-
craft formation control”, IEEE Trans. Contr. Sys. Tech., Vol. 9, No. 6, pp.
777-790, 2001.

157. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and
theory”, IEEE Trans. Aut. Contr., Vol. 51, No. 3, pp.401-420, 2006.

158. K. Hengster-Movrić, S. Bogdan and I. Draganjac, “Multi-agent formation con-
trol based on bell-shaped potential functions”, J. Intell. Robot. Syst., Vol. 58,
No. 2, pp. 165-189, 2010.

159. W. Dong, “Robust formation control of multiple wheeled mobile robots”, J.
Intell. Robot. Syst., Vol. 62, No. 3, pp. 547-565, 2011.

160. F. Xiao, L. Wang, J. Chen, Y. Gao, “ Finite-time formation control for multi-
agent systems”, Automatica, Vol. 45, No. 11, pp. 2605-2611, 2009.

161. J. Ghommam, H. Mehrjerdi, M. Saad, F. Mnif, “Formation path following
control of unicycle-type mobile robots”, Robot. Auton. Syst., Vol. 58, No. 5, pp.
727-736, 2010.

162. S. Mastellone, D. M. Stipanović, C. R. Graunke, K. A. Intlekofer and M.
W. Spong, “Formation control and collision avoidance for multi-agent non-
holonomic systems: Theory and experiments”, The International Journal of
Robotics Research, Vol. 27, No. 1, pp. 107-126, 2008.

163. S. Liu and D. Sun, “Minimizing energy consumption of wheeled mobile robots
via optimal motion planning”, IEEE/ASME Transactions on Mechatronics,
Vol. 19, No. 2, pp. 401-411, 2014.

164. M. Dunbabin and L. Marques, “Robots for environmental monitoring: Signifi-
cant advancements and applications”, IEEE Rob. & Aut. Mag., Vol. 19, No. 1,
pp. 24-39, 2012.

165. A. Viguria, I. Maza and A. Ollero, “Distributed service-based cooperation in
aerial/ground robot teams applied to fire detection and extinguishing missions”,
Adv. Rob., Vol. 24, No. 1-2, pp. 1-23, 2010.

166. M. Lega, C. Ferrara, G. Persechino and P. Bishop, “Remote sensing in envi-
ronmental police investigations: aerial platforms and an innovative application
of thermography to detect several illegal activities”, Env. Monit. and Ass., Vol.
186, No. 12, pp. 8291-8301, 2014.

167. W. Re and R. W. Beard, “Distributed consensus in multi-vehicle cooperative
control”, London: Springer London, 2008.

168. V. V. Vantsevich and M. V. Blundell, “Advanced Autonomous Vehicle Design
for Severe Environments”, IOS Press, 2015.

References 155

169. P. D. Christofides, R. Scattolini, D. M. de la Peña and J. Liue, “Distributed
model predictive control: A tutorial review and future research directions”,
Computers and Chemical Engineering, Vol. 51, pp. 21–41, 2013.

170. R. R. Negenborn and J. M. Maestre , “Distributed model predictive control: An
overview and roadmap of future research opportunities”, IEEE Control Systems
Magazine, Vol. 34, No. 4, pp. 87-97, 2014.

171. W. B. Dunbar and D. S. Caveney, “Distributed receding horizon control of
vehicle platoons: Stability and string stability”, IEEE Trans. Aut. Contr., Vol.
57, No. 3, pp. 620-633, 2012.

172. P. Wang and B. Ding, “Distributed RHC for tracking and formation of non-
holonomic multi-vehicle systems”, IEEE Trans. Aut. Contr., Vol. 59, No. 6, pp.
1439-1453, 2014.

173. H. Li, Y. Shi and W. Yan, “Distributed receding horizon control of constrained
nonlinear vehicle formations with guaranteed γ-gain stability”, Automatica,
Vol. 68, pp. 148-154, 2016.

174. R. Van Parys and G. Pipeleers, “Distributed MPC for multi-vehicle systems
moving in formation”, Rob. and Aut. Sys., Vol. 97, pp. 144-152, 2017.

175. G. Franzè, W. Lucia and F. Tedesco, “A distributed model predictive control
scheme for leader-follower multi-agent systems”, Int. J. of Contr., Vol. 91, No.
2, pp. 369-382, 2018.

176. J. Maestre, M. Ridao, A. Kozma, C. Savorgnan, M. Diehl, M. Doan, A. Sad-
owska, T. Keviczky, B. De Schutter, H. Scheu, et al., “A comparison of dis-
tributed MPC schemes on a hydro-power plant benchmark”, Optim. Contr.
Appl. Methods, Vol. 36, No. 3, pp. 306-332, 2015.

177. H. Fukushima, K. Kon and F. Matsuno, “Model predictive formation control
using branch-and-bound compatible with collision avoidance problems”, IEEE
Trans. on Rob., Vol. 29, No. 5, pp. 1308-1317, 2013.

178. T. Nguyen, H. M. La, T. D. Le, and M. Jafari, “Formation control and obstacle
avoidance of multiple rectangular agents with limited communication ranges”,
IEEE Trans. on Contr. of Net. Sys., Vol. 4, No. 4, pp. 680-691, 2016.

179. M. Farina, A. Perizzato and R. Scattolini, “Application of distributed pre-
dictive control to motion and coordination problems for unicycle autonomous
robots”, Robot. Auton. Syst., Vol. 72, pp. 248-260, 2015.

180. G. Franzè and W. Lucia, “Multi-vehicle formation control in uncertain envi-
ronments”, 56th IEEE CDC, Melbourne, Australia, 2017.

181. G. Franzè, L. D’Alfonso and G. Fedele, “Distributed model predictive con-
trol for constrained multi-agent systems: a swarm aggregation approach”, ACC
2018, Milwaukee, WI, USA, 2018.

182. V. Gazi and K. M. Passino, “Swarm stability and optimizations”, Springer
Science & Business Media, 2011.

183. V. Gazi and K. M. Passino, “A class of attractions/repulsion functions for
stable swarm aggregations”, Int. J. of Contr., Vol. 77, No. 18 , pp. 1567-1579,
2004.

184. R. Fierro and F. L. Lewis, “Control of nonholonomic mobile robot: Back-
stepping kinematics into dynamics”, IEEE CDC, New Orleans, LA, 1995, pp.
3805-3810, 1995.

185. J. M. Eklund, J. Sprinkle, and S. S. Sastry, “Switched and symmetric pur-
suit/evasion games using online model predictive control with application to
autonomous aircraft”, IEEE Trans. on Contr. Sys. Tech., Vol. 20, pp. 604–620,
2011.

156 References

186. G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic
feedback linearization: Design, implementation, and experimental validation”,
IEEE Trans. on Contr. Sys. Tech., Vol. 10, No. 6, pp. 835-852, 2002.

187. Bruce Torby, “Energy Methods. Advanced Dynamics for Engineers”, HRW
Series in Mechanical Engineering. USA: CBS College Publishing, 1984.

188. S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, “Linear Matrix Inequal-
ities in System and Control Theory”, SIAM Studies in Applied Mathematics,
15, SIAM, London.

189. G. Fedele and L. D’Alfonso, “ A coordinates mixing matrix-based model for
swarm formation”, Int. J. of Contr., DOI: 10.1080/00207179.2019.1613561,
2019.

190. A. Papachristodoulou and S. Prajna, “Analysis of Non-polynomial Systems
Using the Sum of Squares Decomposition”, Positive Polynomials in Control,
LNCIS 312/2005, Springer, pp. 23–43, 2005.

191. G. Franzè, A. Casavola, D. Famularo and E. Garone, “An off-line MPC strategy
for nonlinear systems based on SOS programming”, Nonlinear Model Predictive
Control, pp. 491-499, 2009.

192. F. Blanchini and S. Miani,“Set-Theoretic Methods in Control”, Birkäuser,
Boston, 2008.

193. A. Casavola, D. Famularo and G. Franzè, “Robust fault detection of uncertain
linear systems via quasi-LMIs”, Automatica, Vol. 44, No. 1, pp. 289-295, 2008.

194. W. Lucia, G. Franzè and M. Sznaier, “A Hybrid Command Governor Scheme
for Rotary Wings Unmanned Aerial Vehicles”, IEEE Trans. on Contr. Sys.
Tech., DOI: 10.1109/TCST.2018.2880936, 2018.

195. M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari, “Multi-Parametric Tool-
box 3.0”, ECC, pp. 502–510, 2013.

196. Y. Kuwata, T. Schouwenaars, A. Richards and J. How, “Robust Constrained
Receding Horizon Control for Trajectory Planning”, AIAA Guid., Nav.and
Contr. Conf. and Exh., San Francisco, California, 2005.

197. Elisa-3, http://www.gctronic.com/doc/index.php/Elisa-3

	Introduction
	Robot modelling, notation and preliminaries
	Wheeled Mobile Robots

	Robot dynamics
	Mobile Robot Kinematics
	Kinematic Models and Constraints
	Representing robot position

	State-Space Model

	Modelling of Multi-agent Systems (in Terms of Graph Theoretic Methods)
	Multi-agent Systems
	Boids Model
	Graph-Based Interaction Models

	Graphs
	Organization of Multi-Agent Systems
	 Motivations to MAS Organization
	 MAS Formation

	 MAS Leader-Follower Configuration
	Multiple Interacting Leaders
	Other Possible MAS Formations

	Model Based Predictive Control
	Basic Model Predictive Control Philosophy
	Background
	Models for uncertain systems

	Basic Model Predictive Control Schemes
	Control Architectures within MPC
	Decentralized Model Predictive Control

	Distributed Model Predictive Control
	Categorizing Distributed MPC Schemes
	Comparing Distributed MPC Approaches
	Cooperative and Noncooperative DMPC algorithm
	Sequential and Iterative DMPC

	Decompositions for DMPC
	Future Research Directions of Distributed MPC

	A Novel swarm-based distributed MPC architecture
	Problem formulation
	The continuous-time swarm kinematics solution
	The time-varying swarm platoon modelling
	The swarm-based distributed MPC architecture
	Distributed MPC controllers
	Path Planner

	A developed distributed MPC algorithm

	Laboratory Experiment and Results
	Multi-Parametric Toolbox 3.0
	Elisa-3 robot introduction
	Operating arena and experimental knobs
	Results
	Conclusions
	Future research directions
	Appendices
	Definitions and Descriptions
	Convex and non-convex Hull
	Convex Polyhedral sets
	Obstacle Scenario
	Differential Inclusions

	Linear Differential Inclusions
	Polytopic LDIs
	Obstacle-free Region
	Positive invariance
	Robustly Positively Invariant Sets
	The Sum of Squares Decomposition

	References

