

UNIVERSITA’ DELLA CALABRIA

 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

Dottorato di Ricerca in

Information and Communication Technologies

CICLO

 XXXIII

Mining and Learning Problems in Complex Graph Data

Settore Scientifico Disciplinare ING-INF/05

Coordinatore: Prof. Felice Crupi

Supervisore/Tutor: Prof. Sergio Greco

Supervisore/Tutor: Prof. Andrea Tagarelli

 Dottorando: Dott. Domenico Mandaglio

ii

Abstract (Italian)
I grafi sono modelli matematici che rappresentano oggetti, chiamati nodi o ver-

tici, coinvolti in relazioni a coppia, detti archi. Tali modelli vengono impiegati per
descrivere sistemi interconnessi tra cui reti tecnologiche (es. il World Wide Web),
reti sociali e biologiche. A partire dal modello originario dei grafi, diverse estensioni
del modello sono state proposte in letteratura: grafi pesati, multidimensionali, tem-
porali e probabilistici permettono di esprimere, rispettivamente, l’intensità associata
a ogni arco, rappresentare diverse tipologie di relazioni tra vertici, includere infor-
mazioni su quando le interazioni tra nodi avvengono, e assegnare a ogni possibile
peso sugli archi la probabilità di osservare quello specifico peso. Lo scopo di questa
tesi è definire modelli e metodi per problemi di mining e learning di relazioni forti
e nascoste tra nodi su grafi complessi. In particolare, il focus di questo progetto di
ricerca è la scoperta di relazioni a coppia come associazioni di gruppo e relazioni di
trust. Il primo obiettivo consiste nel partizionare l’insieme dei nodi di un grafo in
gruppi (detti cluster o community) tali che i nodi appartenenti allo stesso gruppo
siano collegati più fortemente tra di loro rispetto che con il resto della rete. Questo
obiettivo è anche noto in letteratura come graph clustering o community detection.
Le community (o cluster) sono gruppi di entità che probabilmente condividono delle
proprietà e/o hanno un ruolo simile all’interno del sistema a cui appartengono. Le
relazioni di trust vengono tipicamente modellate attraverso un grafo pesato, detto
rete di trust, che si riferisce a un grafo di individui collegati da relazioni di coppia
asimmetriche corrispondenti a espressioni soggettive di fiducia, dove il peso associato
a ogni arco viene interpretato come il grado di fiducia che un utente ha nei confronti
di un altro individuo. Ogni modello di rappresentazione a grafo, indipendentemente
dalla sua natura, permette di descrivere in diversi modi l’intrinseca natura multiforme
dei sistemi reali che deve essere tenuta in considerazione quando si intende identificare
relazioni tra i nodi come quelle di gruppo o di trust. Questo implica la necessità di un
processo di aggregazione di informazioni che permette di considerare simultaneamente
i diversi aspetti del sistema rappresentato. Tuttavia, l’aggregazione dei diversi aspetti
di un sistema pone alcune problematiche aggiuntive al task considerato poiché le di-
verse dimensioni dei dati potrebbero essere inconsistenti tra di loro o l’informazione
relativa a un qualche aspetto potrebbe rappresentare rumore per il raggiungimento
dell’obiettivo prefissato. L’abbondanza e diversità di dati rappresentabili attraverso
grafi che può essere estratta da sistemi online (es. il Web) o offline (es. interazioni
sociali) favorisce la necessità di nuovi modelli e metodi che siano capaci di tenere in
considerazione efficacemente l’eterogeneità nella tipologia di informazioni nella scop-
erta di pattern nel comportamento di entità appartenenti a un sistema complesso.
Più specificatamente, quattro sono i temi di ricerca che possono essere indentificati
in questa tesi. Primo, è stato studiato il problema di consensus community detection
su reti multidimensionali: dato un insieme di partizionamenti dei nodi di una rete,
ciascuno calcolato considerando separatamente una dimensione del grafo multidimen-
sionale, trovare un nuovo partizionamento dei nodi (detto consensus clustering) che sia
rappresentativo e, allo stesso tempo, filtri l’eventuale rumore dei vari partizionamenti
in input. Come seconda linea di ricerca, è stato trattato il problema di consensus
community detection dinamico su grafi temporali che consiste nel calcolare, per ogni
stato di evoluzione di una rete, un consensus clustering che sia rappresentativo degli
stati precedentemente osservati sulla rete e, quindi, rispecchi la sequenza delle strut-
ture a community nei vari istanti di tempo. Chiaramente, la natura temporale di
questo secondo problema pone alcune sfide aggiuntive nella sua risoluzione poiché i
vari partizionamenti sono disponibili e devono essere processati in modo incrementale;

iii

inoltre, vi è il requisito che bisogna opportunamente pesare le informazioni sugli stati
nella rete in modo da dare maggior rilievo agli stati più recenti piuttosto che quelli più
remoti. Inoltre, la dimensione temporale delle interazioni tra utenti di una rete sociale
può aiutare a inferire una rete di trust. Quest’ultimo obiettivo corrisponde alla terza
linea di ricerca di questa tesi che ha come obiettivo la risoluzione del seguente prob-
lema: data una sequenza di grafi pesati corrispondenti agli stati di una rete in diversi
istanti di tempo, derivare un grafo pesato e orientato, i cui nodi corrispondono alle
entità del grafo temporale e gli archi rappresentano le relazioni di trust con associato
grado di fiducia. Come quarta linea di ricerca è stato studiato un nuovo problema di
clustering su grafi probabilistici in cui le interazioni tra i nodi sono caratterizzate da
distribuzioni di probabilità e condizionate da fattori esterni ai nodi ma caratteristici
dell’ambiente in cui interagiscono. Questo contesto include ogni scenario in cui una
serie di azioni possono alterare le interazioni tra entità tra cui, ad esempio, i sistemi
di raccomandazione su piattaforme di social media e task di team formation. In par-
ticolare, è stato considerato il caso in cui i fattori condizionanti le interazioni possono
essere modellati attraverso un clustering dei nodi del grafo e l’obiettivo è trovare il
clustering che massimizza l’interazione totale nel grafo. Per ciascuna linea di ricerca
sono stati proposti degli algoritmi che sono stati confrontati, su dati reali e/o generati
artificialmente, con lo stato dell’arte dei rispettivi problemi al fine di valutarne sia
l’efficacia che l’efficienza.

iv

Acknowledgements
First, I want to acknowledge and thank Prof. Sergio Greco for the opportunity to
carry on the research of this thesis without constraining it. My sincere thanks also
go to Prof. Andrea Tagarelli for his support and guidance over the past three years.
None of the research I’ve done would have been possible without Andrea’s guidance
and mentoring.

I also acknowledge Alessia Amelio and Francesco Gullo as invaluable mentors and
contributors that, together with Andrea, have given shape to my research activities.
They helped me become a better researcher and better writer, and has always been
an absolute pleasure to collaborate with each of them.

I am grateful to my wonderful roommates Nicola, Antonio, Rocco, Francesco and
Ludovica for making my time in office so enjoyable. I also thank all the people working
in the 44Z cube for good conversations in front of a cup of coffee (thanks Eugenio for
making this possible) and all the other activities that have come along with working
in the same office.

A big thank you goes to Prof. Sergio Flesca and Prof. Ester Zumpano for providing
guidance over my teaching activities and making these experiences nice.

I would also like to thank my best friends and relatives, for their support and
presence during this journey.

Lastly, I would like to thank my parents Giuseppe and Concetta, my brother
Angelo and my sister Debora for their love and encouragement throughout the years.

v

Contents

1 Introduction 1
1.1 Contributions . 3

2 Background 6
2.1 Basic definitions . 6
2.2 Graph clustering . 7

2.2.1 Community detection . 8
2.2.2 Consensus clustering . 13
2.2.3 Uncertain graph clustering . 15

2.3 Learning problems for understanding graph dynamics 16
2.3.1 Reinforcement learning and combinatorial multi-armed bandit

(CMAB) . 17
2.3.2 Preference-based top-k selection 18
2.3.3 Applications to dynamic community detection and network in-

ference . 21

3 Consensus Community Detection in Multilayer Networks. 22
3.1 Introduction . 22
3.2 Generative models for graph pruning 23
3.3 Ensemble-based Multilayer Community Detection 26
3.4 EMCD and parameter-free graph pruning 28

Enhanced M-EMCD (M-EMCD∗). 30
3.5 Evaluation methodology . 32
3.6 Results . 33

3.6.1 Impact of model-filters on M-EMCD∗ 33
Size of consensus solutions. 34
Modularity analysis. 34
Silhouette and NMI analysis. 34
Time performance analysis. 36

3.6.2 Evaluation with competing methods 37
3.7 Chapter review . 38

4 Dynamic Consensus Community Detection in Temporal Networks. 39
4.1 Introduction . 39
4.2 Related work . 41
4.3 Problem Statement . 41

4.3.1 Translating the problem of dynamic consensus community struc-
ture into CMAB . 43

4.3.2 Relation between base arms and super arms 44
4.4 The CreDENCE method . 44

4.4.1 Finding communities . 45
4.4.2 Generating the dynamic consensus community structure 46
4.4.3 Updating the dynamic consensus 47

vi

4.5 Computational complexity aspects . 49
4.5.1 Speeding up CreDENCE . 49

4.6 Evaluation methodology . 50
4.7 Results . 52

4.7.1 Impact of learning rate . 52
4.7.2 Impact of temporal-window width 55
4.7.3 Efficiency evaluation . 55
4.7.4 Comparison with competing methods 57

4.8 Chapter review . 57

5 Trust Network Inference. 59
5.1 Introduction . 59
5.2 Related work on trust inference . 61
5.3 Problem statement . 61
5.4 Our proposed method for Trust Network Inference 62

5.4.1 The TNI algorithm . 62
5.4.2 Computational complexity aspects 66

5.5 Evaluation methodology . 67
5.5.1 Ground-truth for trust network inference 67
5.5.2 Assessment criteria . 67
5.5.3 Case studies and datasets . 68
5.5.4 Competing methods . 70

5.6 Results . 71
5.6.1 Trust-class ground-truth evaluation 72
5.6.2 Trust-network ground-truth evaluation 75
5.6.3 Efficiency evaluation . 76
5.6.4 Discussion . 76

5.7 Chapter review . 77

6 Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 78
6.1 Introduction . 78
6.2 Related Work . 80
6.3 Problem definition . 81

6.3.1 Maximizing interaction . 82
6.3.2 Minimizing interaction loss . 83

6.4 Algorithms . 85
6.4.1 Algorithms for Max-Interaction-Clustering. 85
6.4.2 Algorithms for Min-Interaction-loss-Clustering. 86

6.5 Experimental evaluation . 95
6.5.1 Results on real data . 96
6.5.2 Results on synthetic data . 97
6.5.3 Evaluation with competing methods 98

6.6 Chapter review . 99

7 Conclusion 101

Bibliography 103

vii

List of Figures

2.1 A dendrogram showing a possible cluster hierarchy built upon a graph
with 26 nodes, with a plot of resulting modularity values given the
clustering [21]. 9

2.2 Visualization of the steps of Louvain algorithm [7]. 11

3.1 Overview of the modularity-based EMCD framework [114]. 27
3.2 Community structures (denoted by dotted curves) on a 3-layer network,

and corresponding co-association graph. 29
3.3 Time performance by M-EMCD∗. Logarithmic scale is used for the y-axis. 36

4.1 Three stages of the evolution of a network and its community structure
(with t� t′ � t′′). 43

4.2 Overview of the CMAB-based Dynamic Consensus Community Detec-
tion method. 45

4.3 Size of the dynamic consensus community structures (singleton discon-
nected communities included) . 52

4.4 Multilayer modularity of the CreDENCE solutions (leftmost plots) and
NMI between the CreDENCE consensus community structure and the
snapshot’s community structure, at each t (rightmost plots): (a)-(b)
Epinions, (c)-(d) Facebook, (e)-(f) Wiki-Conflict, (g)-(h) YouTube. . 53

4.5 Average cumulative NMI between the dynamic consensus community
structures . 54

4.6 Average cumulative permanence of the dynamic consensus community
structures . 54

4.7 Performance by varying temporal-window width (ω): (a)-(b)-(c) Epin-
ions, (d)-(e)-(f) Facebook, (g)-(h)-(i) Wiki-Conflict, (j)-(k)-(l) Wiki-
Election. 56

4.8 Time performance on RDyn synthetic networks 56
4.9 Competing methods vs. CreDENCE on (a)-(b) RDyn network and (b)-

(c) Wiki-Election. 58

5.1 Overview of our proposed framework for trust network inference 62
5.2 Trust-class ground-truth evaluation: Boxplots of the distributions of

the average intra-class trust (ΩΓ(v)) and of the average extra-class trust
(Ω¬Γ(v)) values, with α = 0.5 . 71

5.3 Trust-class ground-truth evaluation: Boxplots of the distributions of
the average intra-class trust (ΩΓ(v)) and of the average extra-class trust
(Ω¬Γ(v)) values, with α = 0.15 . 72

5.4 Trust-class ground-truth evaluation: Boxplots of the distributions of
the average intra-class trust (ΩΓ(v)) and of the average extra-class trust
(Ω¬Γ(v)) values, with α = 0.85 . 73

5.5 Trust-class ground-truth evaluation: Global bpref , (a)-(d) varying k
(with fixed nmax) and (e)-(h) varying nmax (with fixed k) 74

viii

5.6 TNI runtime performance by varying nmax 77

6.1 MIL algorithm: Effect of sampling pivots uniformly at random in gen-
eral graphs. 90

6.2 Results on BA networks (left side) and on WS networks, with rewiring
probability 0.5 (right side). 99

6.3 Results on BA networks (left side) and on WS networks, with rewiring
probability 0.5 (right side). 100

ix

List of Tables

3.1 Main features of real-world multiplex network datasets used in our eval-
uation. Mean and standard deviation over the layers are computed for
degree, average path length, and clustering coefficient measures 32

3.2 Size and modularity (upper table) and silhouette (bottom table) of
lower-bound (CC-EMCD) and M-EMCD∗ consensus (in brackets, when
applicable, the increments over M-EMCD), with or without model-filters. 35

3.3 Increments of number of communities, modularity, silhouette and NMI
of M-EMCD∗ solutions, by varying model-filters, w.r.t. corresponding
solutions obtained by GL, PMM, M-Infomap, and ConClus. 38

4.1 Main characteristics (after preprocessing) of our evaluation data. Mean
± standard deviation values refer to all snapshots in a network. 51

4.2 Increment percentages of CreDENCE w.r.t. DynLouvain and M-EMCD∗.
Values correspond to the increment percentages averaged over all snap-
shots in a network, using the average best-performing α. 57

5.1 Main notations and their descriptions 63
5.2 Ground-truth based evaluation types 67
5.3 Main structural features of our evaluation network datasets 68
5.4 Trust-class ground-truth evaluation: Global bpref results. Bold text

refers to the best values per dataset . 72
5.5 Trust-network ground-truth evaluation: Precision, recall and F1-score

results. Bold text refers to the best values per dataset, for each criterion 73
5.6 TNI execution times (in seconds) . 76

6.1 Summary of real networks used in our evaluation: original data (cols.
2-5) and preprocessed data (cols. 6-7) 95

6.2 Average loss values. 97
6.3 Average clustering sizes. 97
6.4 Execution times (in seconds) . 98

x

To my family

1

Chapter 1

Introduction

A graph is a mathematical structure representing a set of objects, called nodes or
vertices, which share pairwise relationships, called edges. The term ‘network’ is nearly
synonymous, and is specifically used to refer to a complex system of interacting agents
that, at its core, can be modeled and studied using a graph. Complex systems studied
by network scientists include transportation networks (e.g., road networks, airline
networks), technological networks (e.g., the World Wide Web, the Internet, cell phone
networks), social networks (e.g., friendship networks), biological networks (e.g., neural
systems, protein interaction networks) and collaboration networks (e.g. Wikipedia).
Given the fact that complex networks are pervasive, they have long attracted attention
from researchers in computer science, social science, biology, and other disciplines.

Clearly, to be useful, a model has to represent the features of real world phenom-
ena in a simple way, but without loosing too many details in the process. Therefore,
upon the original simple graph model, many extensions have been proposed: weighted,
multilayer [26], time-evolving [23] and uncertain [71] relations are now fundamental
building bricks of any study aiming to unveil novel insights about the complex inter-
acting phenomena in the real world. Each of these complex graph models extends
the information associated to relations in a graph: weighted graphs allow to express
a strength associated to each relationship, the multilayer graph model enables to rep-
resent multiple modes of interaction or different types of relationships among entities
of the same type (e.g. people), temporal graphs include information on when inter-
actions between nodes happen, uncertain graphs assign to every possible weight on
edges a probability of observing the corresponding weight on the edge.

On these complex graph models, countless different problems have been tackled
and numerous algorithms have been proposed to solve them. Among these, some of the
existing fundamental problems aim to identify strong and hidden relationships among
nodes in a graph. These target relationships are hidden since they cannot trivially
be induced from the graph data (e.g. just by computing predefined quantities from
edges information) and they are also strong because they reflect different patterns of
association between nodes.

As an example, one of the most fundamental problems in network science and
graph theory is to identify group associations which, in the most widely accepted
setting, consists of finding sets of nodes that are more closely connected to each
other than to the rest of the graph [96]. This task is also known in the literature
as the graph clustering problem or community detection1. Real networks are not
random, rather nodes naturally cluster into groups and links are more likely to connect
nodes within the same group. This phenomenon tells us that the organization of
such complex networks is modular. Network scientists call this organization as the
community structure of networks. Communities (or clusters) are groups of entities that

1Unless otherwise specified, in this thesis the term graph clustering (resp. cluster) will be used as
synonymous with community detection (resp. community).

Chapter 1. Introduction 2

probably share common properties and/or play similar roles within the interacting
phenomenon that is being represented: they may correspond to groups of pages of the
World Wide Web dealing with related topics, to related genes in a biological network,
to groups of related individuals in social networks and so on.

Another example of strong and hidden relationships that involve pairs of nodes in
a graph are trust relationships. These are usually modeled as a directed and weighted
graph, called trust network, which commonly refers to a graph of entities (i.e., individ-
uals) that are linked through asymmetric relationships that correspond to subjective
trust statements where the trust score associated to each edge can be regarded as a
personalized opinion of one user (trustor) with respect to another user (trustee). Given
a trust network, trust inference is the task of predicting a new relation between two
nodes. Trust inference is an essential task in many data analysis and machine learning
applications, from social influence propagation and opinion spreading to recommender
systems and privacy preserving, whose impact extends also to peer-to-peer networks
and mobile ad-hoc networks. Unfortunately, conventional approaches to trust infer-
ence assume trust networks are available, while in practice, with few exceptions, they
must be derived from social network features.

Most of the existing problems on graph data, as well as the adopted approaches to
solve them, fall under the broad field of data mining and machine learning. Although
the two paradigms share some common traits, data mining is designed to extract the
rules from large quantities of gathered data while machine learning trains a system (by
learning some model parameters) to perform complex tasks and uses harvested data
and experience to become smarter in the accomplishment of the given tasks. Since
machine learning is conceived to learn from past experience/data to perform better
with future data, this paradigm is more suitable for problems on dynamic graphs.

Each complex graph model, regardless of its static/dynamic nature, allows to
describe, in different way, the intrinsic multifaceted nature of real world systems. The
fact that reality is multifaceted should also be taken into account while discovering
nodes relationships like group associations or trust links. This implies some form of
aggregation process which allows to consider each aspect of the modeled reality. As
an example, the community detection problem in multilayer networks aims to find a
good community structure for most layers, i.e. it should seek to identify communities
whose nodes are internally connected by many edges possibly of different types, and
are externally connected by few edges of different types. However, simultaneously
considering different aspects of a complex graph model poses additional challenges to
the task since different dimensions of the data may be inconsistent to each other: in
a multilayer network representing friendship and relative relationships among a set of
people, edges related to friendship may be very different from links denoting pair of
users which are relatives; also, in a temporal network whose edges describe interactions
among a set of users on an online social platform at different time, links may vary
dramatically from a timestep to the next one. Moreover, information coming from
some dimensions could represent noise for the particular task at hand, thus it would
be helpful to have a mechanism which can filter noise in the aggregation process. The
abundance and diversity of graph data which can be extracted nowadays from online
(e.g. the Web) or offline (e.g. social interactions) systems favors an increasing demand
for new models and methods that are capable of effectively taking into account the
heterogeneity in the type of information, discovering entities’ behaviour patterns in a
complex graph system.

Chapter 1. Introduction 3

1.1 Contributions

In this thesis we address research topics that are centered around the problem of min-
ing and learning strong and hidden relations in complex graph data. Specifically, four
main research topics can be distinguished:

Consensus community detection in multilayer networks. The consensus clus-
tering consists in the following problem: given a set of clusterings as different group-
ings of the input data, a consensus (or aggregation) criterion function is optimized
to induce a single, meaningful solution that is representative of the input clusterings.
This paradigm has emerged as an effective tool for community detection in multilayer
networks, which allows for producing consensus solutions that are designed to be more
robust to the algorithmic selection and configuration bias. However, one limitation
is related to the dependency on a co-association-based consensus clustering scheme,
i.e., the consensus clusters are derived from a co-association matrix built to store the
fraction of clusterings in which any two nodes are assigned to the same cluster. Low
values in this matrix would reflect unlikely consensus memberships, i.e., noise, and
hence should be removed; to this purpose, the matrix is subjected to a filtering step
based on a user-specified parameter of minimum co-association, θ. Unfortunately,
setting an appropriate θ for a given input network is a challenging task. The goal of
this research line is to overcome this limitation with a new framework of ensemble-
based multilayer community detection, which features parameter-free identification of
consensus communities based on generative models of graph pruning that are able to
filter out noisy co-associations. The two main findings of this research line, drawn
from experimental results, are: (i) some of the model-filters are effective in simplify-
ing an input multilayer network to support improved community detection, and (ii)
the proposed framework outperforms state-of-the-art multilayer community detection
methods according to some quality criteria. The research line on consensus commu-
nity detection in multilayer networks is the subject of Chapter 3.

Dynamic consensus community detection in temporal networks. Commu-
nity detection in temporal networks is a very active field of research, which can be
leveraged for several strategic decisions, including enhanced group-recommendation,
user behavior prediction, and evolution of user interaction patterns in relation to real-
world events. This research line introduces the novel problem of dynamic consensus
community detection, i.e., to compute a single community structure that is designed
to encompass the whole information available in the sequence of observed temporal
snapshots of a network in order to be representative of the knowledge available from
community structures at the different time steps. Unlike existing approaches, the dy-
namic consensus community structure should be able to embed long-term changes in
the community formation as well as to capture short-term effects and newly observed
community structures. Also, differently from the previous research line, computing
meaningful co-associations for the nodes in a temporal network and properly main-
taining and updating the consensus community structure over time should be done
by avoiding the recomputation of the consensus from scratch each time a new status
of the network is available. In order to accomplish this task, a hybrid reinforcement
learning/clustering framework is defined based on the combinatorial multi-armed ban-
dit paradigm. The introduced framework is also instantiated in an efficient method
which is conceived to cope with temporal networks having different evolution rates.
The research line on dynamic consensus community detection in temporal networks is
the subject of Chapter 4.

Chapter 1. Introduction 4

Trust network inference. The conventional approach to trust inference is to com-
pute the relation between any two non-adjacent nodes in a trust network by consid-
ering the different paths from one node to the other, as well as strategies for trust
propagation and for aggregating the propagated trust values through different paths.
Unfortunately, all existing trust-inference approaches rely on the assumption that a
trust network has been already formed, while in reality trust networks are not nat-
urally available. Rather, trust relations must first be determined by aggregating the
available information in a social environment, e.g., the history of users’ activities and
their interactions. Computing trust relations is however a particularly difficult task,
because of a number of challenges that already arise at data source level. In fact, the
amount of information representing the observed interactions and activities of users
in a social network, could be limited in size and quality. More specifically, a social
network may contain a significant amount of redundant or irrelevant relations as well
as noise in the information that express the strength of interaction between any two
users. In this research line, we face the above challenges by addressing a new problem
we named Trust Network Inference (TNI). Given a sequence of timestamped inter-
action networks as input, the goal of TNI is to infer from this sequence a directed
weighted network, whose nodes are the users in the temporal networks and links de-
note trust relationships with associated trust scores. We propose to solve the TNI
problem based on a generalized preference learning paradigm since it provides key ad-
vantages in addressing all the aforementioned issues, i.e., limitedness, redundancy and
noise of the information about the users’ interactions from which a trust network is to
be inferred. One further key feature of proposed approach is domain-independency,
as it does not rely on platform-specific types of user interactions. Nonetheless, our
approach is designed to exploit both topological information and, when available, con-
tent information relating to the user interaction dynamics. The research line on trust
network inference is the subject of Chapter 5.

Optimizing interactions in probabilistic graphs under clustering constraints.
Modeling and mining behavioral patterns of users of online as well as offline systems
is central to enhance the user engagement and experience in the systems. In this
regard, uncertain graph models are seen as a powerful tool to capture the inherent
uncertainty in user behaviors. A common way of modeling uncertainty in a graph is
to associate each pair of users with a probability value that expresses the likelihood
of observing and quantifying an interaction between the two users. In this regard,
one important aspect is that the modeling of user interactions should also account for
exogenous conditions or events that occur within the social environment where the
users belong to, which indeed can significantly affect the users’ interaction behaviors.
For example, delivering a post on a user’s page (e.g., Facebook wall) that contains
a message of friend recommendation will likely favor or not a meeting between two
users, and so their interactions. Intuitively, it is of high interest to identify proper
settings of a network system and relating conditions that can maximize the overall
user interactions within the system. In this research line, we extend the uncertain
graph modeling framework to capture the dependency of interactions on conditioning
factors, in a network system. In particular, we focus on the case when the interaction
behaviors depend on a clustering of the set of users in a graph, so that the proba-
bility of interaction between any two users varies depending on whether they belong
to the same cluster or not. Modeling such interaction conditioning factors in terms
of cluster memberships of users arises in several relevant application scenarios such
as recommendations on social-media platforms and team formation tasks. The goal

Chapter 1. Introduction 5

of this research line is to introduce the problem of optimizing the overall interaction
among a set of entities in a probabilistic graph, subject to the cluster memberships
of the entities, i.e. partition a set of entities such as to maximize the overall vertex
interactions or, equivalently, minimize the loss of interactions in the graph. After
theoretically characterizing the problem, approximations algorithms and heuristics
are introduced and their efficiency and effectiveness are evaluated. The research line
on optimizing interactions in probabilistic graphs under clustering constraints is the
subject of Chapter 6.

6

Chapter 2

Background

Summary. This chapter enstablishes preliminary concepts that will help the un-
derstanding of the techniques and models adopted in subsequent chapters. First, it
introduces some background on graph models. Then, it reports on the major details
about graph clustering problems on different graph data models: starting from com-
munity detection methods on simple graphs, the focus is then moved to more complex
settings such as (consensus) community detection on multilayer networks and cluster-
ing on uncertain graphs. Finally, after a brief overview of bandit and preference-based
learning problems, the chapter describes how these learning paradigms can be useful
to understand graph dynamics.

2.1 Basic definitions

A graph G is a pair of sets G = (V,E), where V is the set of vertices (or nodes) and
E is the set of edges (or links). In an undirected graph each edge is an unordered pair
(i, j) while in a directed graph the set of pairs is ordered. A graph is weighted if a
weighting function w : E → R assigns a weight w(u, v) to each edge (i, j) ∈ E which
denotes the strength od the interaction between the two linked nodes. If the weigh
function is not provided the graph is said unweighted. The links of a graph G can
be described by its |V | × |V | adjacency matrix, denoted with A, such that Aij = 1 if
(i, j) ∈ E, 0 otherwise. We always assume loopless graphs, i.e. Aii = 0 for each i ∈ V .

For an undirected graph G, the degree ki of a node i ∈ V is the number of edges
incident with the node, and it is defined in terms of the adjacency matrix A as ki =∑

j∈V Aij . If the graph is directed, the degree of the node has two components: the
number of outgoing links (or out-degree) kouti =

∑
j∈V Aij and the number of ingoing

edges (or in-degree) kini =
∑

j∈V Aji. The total degree is defined as ki = kouti + kini .
Given an undirected graph G, for any node i ∈ V its strength si =

∑
j∈V Aijw(i, j)

is the sum of of weights of links connected to the node. In directed graphs, similarly
to degree, each node is charachterized by the in-strength as the sum of inward link
weights and the out-strength as the sum of outward link weights.

A list of the node degrees of a graph is called the degree sequence. The most
basic topological characterization of a graph G can be obtained in terms of the degree
distribution P (k), defined as the probability that a node chosen uniformly at random
has degree k or, equivalently, as the fraction of nodes in the graph having degree k.
Directed networks can be characterized by two distributions, P (kout) and P (kin).

A graph G′ = (V ′, E′) is a subgraph of another graph G = (V,E) iff V ′ ⊆ V ,
E′ ⊆ E and for each (i, j) ∈ E′ it holds that i, j ∈ V ′. Given a graph G = (V,E), for
any subset of vertices V ′ ⊆ V the induced subgraph G[V ′] is the graph whose vertex
set is V ′ and whose edge set consists of all of the edges in E that have both endpoints
in V ′. The same definition works for both undirected and directed graphs. Also, the
induced subgraph G[V ′] may also be called the subgraph induced in G by V ′.

Chapter 2. Background 7

Uncertain (or probabilistic) graphs introduce uncertainty with respect to the ex-
istence of nodes and edges. Although existential probabilities can be assigned to the
vertices of the graph as well, in this thesis we focus on edge probabilities only. The ex-
istence of an edge depends on several factors depending on the particular application
under consideration. For example, in a social network where the edge corresponds to
a message exchange between two users, the message will be sent with some probability
(i.e., it is not sure that user u will send a message to user v).

Let G = (V,E, p) be an uncertain graph, where V is the set of nodes and p :
E → (0, 1] is a function that assigns probabilities to the edges of the graph and
puv represents the probability that edge (u, v) exists. A widely used approach to
analyze uncertain graphs is the one of possible worlds, which considers an uncertain
graph G as a generative model and each possible world constitutes a deterministic
realization of G. According to this view, an uncertain graph G is interpreted as a
set {G = (V,EG)}EG⊆E of possible deterministic graphs. Let G v G indicate that
G is a possible world of G. Given a possible world G = (V,EG), the probability
of observing it, assuming independence between edges as usual in the literature on
uncertain graphs [83, 75, 8, 69, 101, 17, 70, 71] , is given by the following:

Pr(G) =
∏

(u,v)∈E

puv
∏

(u,v)∈E\EG

(1− puv) (2.1)

A multilayer network graph GL = (VL, EL,V,L) is a tuple, where V is the set of
entities and L = {L1, . . . , L`} denotes the set of layers. Each layer corresponds to
a given type of entity relation, or edge-label. For each pair of entity in V and layer
in L, let VL ⊆ V × L be the set of entity-layer pairs representing that an entity is
located in a layer. The set EL ⊆ VL × VL contains the undirected links between such
entity-layer pairs. For every layer Li ∈ L, Vi and Ei denote the set of nodes and edges,
respectively. Also, the inter-layer edges connect nodes representing the same entity
across different layers (monoplex assumption). A multiplex network is a special case
of a multilayer network where EL is restricted to intra-layer edges, i.e. no inter-layer
edges connecting entities in different layers are allowed. The focus of this thesis is on
multiplex network but the term multilayer is sometimes used as synonymous.

Given a set of entities V, a temporal network G = (G1, G2, . . . , Gt, . . .) is a series
of graphs over discrete time steps, where Gt = 〈Vt, Et〉 is the graph at time t, with set
of nodes Vt and set of undirected edges Et. Each node in Vt corresponds to a specific
instance from the set V ⊆ V of entities that occur at time t.

2.2 Graph clustering

Definition 1 (Clustering solution) Given a graph G = (V,E), a clustering solu-
tion or simply a clustering C = {C1, · · · , Ck} is a partition of the set of nodes V into
k groups or clusters, i.e. Ci ∩ Cj = ∅ for every i 6= j and ∪ki=1Ci = V .

Although detecting overlapping clusters is also an important and well-studied task
(cf. [124] for a survey), in this thesis we focus on graph clustering problems based on
non-overlapping clusters.

In most cases, graph clustering is cast as the task of optimizing an objective
function f : C → R, where C denotes the set of valid clusterings. For every clustering
C ∈ C , the function f outputs a real-valued objective score f(C) ∈ R which quantifies
how much the clustering C is a good fit for a particular graph G. The choice of the
quality function f depends on the particular clustering problem and method which

Chapter 2. Background 8

typically provide a specific objective function to minimize/maximize in order to define
good and bad clusterings.

Some settings may require to deal with clusterings with a specified number of
clusters. As an example, consider parallel computing [96] where where nodes in a graph
represent computational tasks, and edges indicate some form of data dependence. In
this case, if there are k processors for accomplishing the work, it is beneficial to
split up the tasks into exactly k clusters in a way that minimizes communication
between processors. In order for the work to be balanced among the k processors, it
is important to separate nodes into blocks of roughly the same size. This task, which
is usually referred in the literature as graph partitioning, asks to find k balanced
clusters which minimize the number of edges between them. Given the emphasis on
minimizing inter-cluster connectivity, graph partitioning often places a higher priority
on external sparsity than on internal density.

The design goals of graph partitioning occasionally conflict with the motivation
behind certain applications of graph clustering. In many real-world networks (e.g.,
biological or social networks), it is unhelpful to assume there are a fixed number of
clusters. Furthermore, it may very well be the case that natural communities in the
graph vary significantly in size.

In this thesis we consider clustering problems where the number of clusters is
not given as an input parameter; instead, the clustering size is determined by the
specific objective function. Also, differently from graph partitioning, we focus on
clustering problems whose objective f drives the discovery of clusters with specific
requirements on both inter-cluster and intra-cluster connectivity. Next, we discuss
some clustering problems and methods which shares some similarities with the graph
clustering problems presented in this thesis.

2.2.1 Community detection

Community detection has been studied extensively across different disciplines and,
although several definitions of community has been provided in the literature, there is
significant general agreement about the fundamental characteristics of a graph com-
munity. A community is often thought of as a set of nodes that has more connections
between its members than to the remainder of the network [80, 96]. This definition
highlights two basic requirements for community detection: communities should have
a high internal density and sparse external connections.

Following the standards in the literature, hereinafter we will use the terms commu-
nity detection and graph clustering synonymously in this thesis. Similarly, the words
cluster and community will be typically used interchangeably to refer to densely con-
nected nodes that are only loosely connected to the rest of the graph.

Widespread agreement about the high-level definition of community detection
quickly turns into a plethora of different ways to formalize and study the problem
in theory and practice. The top-level distinction is between global or local methods,
respectively discovering all communities in the input network or generating a single
community around one or more seed nodes. Although the latter setting is of interest,
the focus of this thesis is on global methods. Existing approaches to (global) commu-
nity detection includes traditional methods based on data clustering like k-means [84],
divisive algorithms mainly based on hierarchical clustering [59], spectral algorithms
[102] and dynamic algorithms [104]. Arguably the most widely applied objective for
community detection is the modularity score [96]. In the following we revise some
modularity-based community detection methods, upon which the following chapters
are based.

Chapter 2. Background 9

Figure 2.1: A dendrogram showing a possible cluster hierarchy built
upon a graph with 26 nodes, with a plot of resulting modularity values

given the clustering [21].

Modularity is based on the idea that a random graph is not expected to have a
community structure. A clustering is said to have high modularity if clusters have
higher internal edge density than would be expected at random. Randomness in this
context is defined by a pre-specified null model defining the probability that an edge
exists between each pair of nodes. Given a graph G = (V,E), the modularity of a
clustering C is defines as follows:

Q(C) =
1

d(V)

∑
C∈C

(
dint(C)− d(C)2

d(V)

)

where d(V) =
∑

v∈V d(v) denotes the total degree of nodes over the entire graph, d(C)
is the sum of degrees of nodes within community C and dint(C) denotes the internal
degree of C, i.e., the portion of d(C) which corresponds to the number of edges that
link nodes in C to other nodes in C (i.e., twice the number of links internal to C).
The value of Q varies from -0.5 to 1.0. In particular, it reaches the minimum of -0.5
when all edges link nodes in different communities, and the maximum of 1.0 when all
edges link nodes in the same community.

Modularity has been applied extensively and variations of the objective have been
introduced for weighted graphs, bipartite graphs, multi-slice networks, and a number
of other cases. Despite its widespread use, however, it is known to exhibit several
limitations. First of all, even random graphs may exhibit high maximum modularity
scores, making it hard to discern when a high modularity score is indicative of mean-
ingful structure [50]. Modularity is also known to suffer from an inherent resolution
limit [36], meaning that it may fail to detect communities that are smaller than a
certain size, which depends on the size of the network. Finally, modularity is very
challenging to optimize. Not only is the objective NP-hard, [27] showed that it is NP-
hard to even approximate to within any constant factor. Thus, most of existing works
are heuristic methods and they do not come with provable approximation guarantees.
Next, we review some of these methods upon which the following chapters are based
on.

Chapter 2. Background 10

Newman algorithm

The first algorithm devised to maximize modularity was a greedy method proposed
by Newman [95]. It is an agglomerative hierarchical clustering method, where groups
of vertices are successively joined to form larger communities. More specifically, given
a graph with n nodes, the algorithm starts with n singleton communities. Next, the
merging of each pair of communities is evaluated and the pair of communities which
leads to the maximum gain of modularity or the minimum loss of modularity is se-
lected for merging. This joining step is iteratively applied until a single community
containing every node is formed. The different phases of the algorithm can be repre-
sented as a dendrogram which shows the sequence of merges, as in Fig. 2.1. Cutting
the resulting dendrogram at different levels results into different community structures
thus the clustering with the highest modularity can be selected from the dendrogram.

Louvain algorithm

Given a graph with n nodes and starting with a clustering with n singleton clusters,
the algorithm iteratively performs two steps:

1. Modularity maximization. For each node i, the algorithm considers the neighbors
j of i and it evaluates the gain of modularity that would take place by removing
i from its community and by placing it in the community of j. Among these
possible local modifications of the current clustering solution, the algorithm
applies the one which leads to the maximum gain in modularity. If no positive
gain is possible, node i stays in its original community. This process is applied
repeatedly and sequentially for all nodes until no further improvement can be
achieved thus a local maxima of the modularity is reached.

2. Community aggregation. Starting from the communities obtained at the end
of the modularity maximization phase, a new weighted graph is built: nodes
corresponds to the communities found during the first phase and the sum of
the weight of the links between nodes in the corresponding two communities are
the weights of the links in the new graph. Links between nodes of the same
community lead to self-loops for this community in the new network. Once this
second phase is completed, it is then possible to reapply the first phase of the
algorithm to the resulting weighted network and to iterate.

The two phases are iterated (c.f. Figure 2.2 for an example) until there are no
more changes and a maximum of modularity is attained. This process leads to a
hierarchy of communities whose height is determined by the number of passes of the
two steps.

Nerstrand algorithm

Nerstrand [78] is a modularity-based algorithm for community detection on undirected
and weighted graphs. This method adopts the multilevel paradigm and it is composed
of three phases: coarsening, initial clustering, and uncoarsening.

In the coarsening phase, starting from the input graph G, a series of increasingly
coarser graphsG1, · · · , Gs is generated. The coarser graph at the i-th step of this phase
is obtained by grouping, through a proper aggregation scheme, nodes of the graph
obtained at the (i−1)-th step. First Choice Grouping (FCG) is the default aggregation
scheme: for each node v in the coarser graph, FCC groups v with the neighbor node
which results in the highest modularity gain in the corresponding clustering solution.

Chapter 2. Background 11

Figure 2.2: Visualization of the steps of Louvain algorithm [7].

Next, the initial clustering phase consists of applying a direct clustering algorithm
(i.e., a non-multilevel clustering algorithm) on the coarser graph Gs, obtained in the
latest coarsening phase. Finally, in the uncoarsening phase, the initial solution is
used to derive solutions for the successive finer (larger) graphs. More specifically, the
clustering of the coarsest graph Gs is used as an estimate for a good clustering of
the finer graph Gs−1. This solution is then improved by finding a local maxima of
modularity on Gs−1. This is repeated until the clustering is applied to, and improved
for the initial graph G.

Extension to multilayer networks

Existing methods for community detection in multilayer networks differ in the way
in which they handle the presence of multiple layers [85]: reducing them to a single
layer (flattening methods), processing each layer independently to then aggregate the
results of single-layer community detection (aggregation methods), or considering all
the layers at the same time (multilayer methods).

The first approach consists in simplifying the multiplex network into a graph by
merging its layers, using a so-called flattening algorithm, then applying a traditional
community detection algorithm. The algorithms belonging to this class are defined
by the flattening method and by the single-layer community detection algorithm ap-
plied to the flattened network. The simplest flattening method consists in creating
an unweighted graph where two nodes are adjacent if their corresponding actors are
adjacent on any of the input layers [5]. The advantage of this approach is that the
resulting graph is easier to handle, because there are more clustering algorithms for
simple graphs than for weighted graphs and weights often imply an additional level of
complexity, e.g., deciding a threshold above which weighted edges should be consid-
ered. A potential disadvantage is that an unweighted flattening is more susceptible to
noise. Weighted flattenings reflect some structural properties of the original multiplex
network in the form of weights assigned to the output edges [5, 62]. In theory these
methods are less susceptible to noise, but the resulting communities may be biased

Chapter 2. Background 12

towards edges appearing on several layers, and the results can be more difficult to
interpret because of the weights.

Aggregation methods first apply traditional community detection algorithms to
each layer, then merge their results. As a consequence, these methods include actors
in the same community only when they are part of the same community in at least one
layer. There are three types of layer-by-layer approaches in the literature [85]. The
pattern mining approach exploits association rule mining methods, which are among
the main data-mining tasks used to find objects that frequently co-occur together
in different transactions. ABACUS [6] considers each single-layer community as a
transaction, so that the final communities contain actors that are part of the same
community in at least a minimum number of layers. The second way to merge the re-
sult of single-layer community detection methods is based on a notion of consensus (c.f.
Sect. 2.2.2): given a set (or ensemble) of community structure solutions from the indi-
vidual layers, the goal is to find a single, meaningful solution that is representative of
the input ensemble, by optimizing an objective function that is designed to aggregate
information from the individual solutions in the ensemble. While early approaches
such as the one in [73] are limited to use a clustering ensemble method as a black-
box tool for combining multiple clustering solutions from a single-layer network, the
first wellprincipled formulation of the ensemble-based multilayer community detection
(EMCD) problem, provided in [114], does not limit aggregation at node membership
level, but rather it accounts for intra-community and inter-community connectivity.
The consensus solution discovered by EMCD is the one with maximum multilayer
modularity from a search space of candidates delimited by topological upper-bound
and lower-bound solutions, respectively, of the input multilayer network. Finally, some
methods in the literature process the layer-specific adjacency matrices, or derived ma-
trices, and extend spectral-clustering for simple graphs by exploiting the relationship
between the eigenvectors and eigenvalues in the constructed matrices and the pres-
ence of clusters in the corresponding graphs. As an example, the principal modularity
maximization (PMM) method [119] extracts structural features from the various lay-
ers, then concatenates the features and performs PCA to select the top eigenvectors.
Using these eigenvectors, a low-dimensional embedding is computed to capture the
principal patterns across the layers, finally a simple k-means is applied to assign nodes
to communities. Further details on this class of approaches can be found in [117].

The third class of algorithms operates directly on the multiplex network model.
As an example, a method belonging to this class based on a random walker would
allow the walker to switch from one layer to the other, which would not be possible
if the layers have been flattened or if we want to separately identify communities on
individual layers. Various approaches originally developed for simple graphs have been
extended to the multilayer case. Density-based methods first identify dense regions of
the network, then include adjacent regions in the same community. A popular method
for simple graphs is clique percolation, where dense regions correspond to cliques and
adjacency consists in having common nodes. The multilayer clique percolation method
extends this process by looking for cliques spanning multiple layers, and redefining
adjacency so that both common nodes and common layers are required [120]. Methods
based on random walks consider that an entity randomly following the edges in a
network would tend to get trapped inside communities, because of the higher edge
density between nodes inside the same community, less frequently moving from one
community to the other. LART [76] and Multiplex-Infomap [28] are both based on
this consideration. LART first runs a different random walk for each layer, then a
dissimilarity measure between nodes is obtained leveraging the per-layer transition
probabilities. Finally, a hierarchical clustering method is used to produce a hierarchy

Chapter 2. Background 13

of communities which is eventually cut at the level corresponding to the best value of
multislice modularity [93]. Multiplex-Infomap is an extension to multiplex networks
of the classic Infomap algorithm [107]. Infomap is a search algorithm that minimizes
the flow-based map equation model, which relies on the principle that communities
are detected as groups of nodes among which the flow, based on a random walk model,
persists for a long time once entered. In the multidimensional case [28], the proposed
flow dynamics allows the random walker to transition both within each layer and across
layers. Several of the reviewed algorithms in the multilayer class use an objective
function that, given an assignment of the nodes to communities, returns a higher value
when there are more edges inside communities and less edges across communities.
Once the objective function has been defined, then different optimization methods
can be used to identify a community assignment corresponding to a high value of
the function. Generalized Louvain [93], the best-known method in this class, uses an
extended version of modularity. This class also includes a method returning a different
type of communities with respect to the ones generated by the other algorithms,
where edges are grouped instead of actors and nodes [91]. Finally, the multilayer class
includes an algorithm based on label propagation [10]. A traditional label propagation
method would start assigning a different label to each node, then having each node
replace its label with one that is frequent among its neighbors, until some stopping
condition is satisfied. The multilayer version of this approach follows the same idea,
weighting the contribution of each neighbor based on their similarity with the node on
the different layers. For example, two nodes being adjacent on all layers and having
the same neighbors on all layers would have a higher probability of getting the same
label.

2.2.2 Consensus clustering

Consensus clustering [97], also known as clustering ensembles [110, 31], or aggregation
clustering [45], deals with the following problem: given a set of clustering solutions
(called ensemble), derive a consensus clustering as a (new) clustering by the optimiza-
tion of a certain objective function (the consensus function) which expresses how well
any candidate consensus clustering complies with the solutions in the ensemble.

Clustering ensemble methods are based on the idea that, due to algorithmic pe-
culiarities of any specific clustering method, a single clustering solution may not be
able to capture all facets of a given clustering problem. In this case, it is useful to
generate an ensemble by varying one or more aspects of the clustering process, such
as the clustering algorithm, the parameter setting, or the number of clusters, and
eventually obtain a consensus clustering by properly “aggregating” the information in
the ensemble. In Section 2.2.2, we discuss background on consensus clustering, while
in Section 2.2.2 we review consensus clustering methods for community detection.

Basic consensus data clustering

Consensus clustering methods are here presented under three main categories [52]:
instance-based methods, cluster-based, and hybrid approaches.

Instance-based methods are developed to carry out a direct comparison between
data objects. Most instance-based methods operate on the co-occurrence or co-
association matrix M. For each pair of objects (i, j), this matrix stores the number
of solutions of the ensemble in which i and j are placed in the same cluster, divided
by the size of the ensemble. In the Majority Voting (MV) algorithm [37], M is “cut”
at a given threshold, i.e., all objects whose pairwise entry in M is greater than the

Chapter 2. Background 14

threshold are joined in the same cluster. This approach has been proved to be equiv-
alent to an agglomerative hierachical clustering algorithm with single link metric on
M, cutting the resulting dendrogram according to the given threshold [38]. Other al-
gorithms are based on using M either as a new data matrix or as a pair-wise distance
matrix involved in a specific clustering algorithm. The authors in [111] map the con-
sensus clustering problem to a graph/hypergraph partitioning problem. They present
two instance-based methods, namely the Cluster-based Similarity Partitioning Algo-
rithm (CSPA) and the HyperGraph Partitioning Algorithm (HGPA). CSPA induces
a weighted graph from M and partitions it using the well-known graph partitioning
algorithm METIS [67]. HGPA builds a hypergraph whose vertices are the data ob-
jects and the hyperedges are given by the clusters of all the clustering solutions in the
ensemble; the consensus clustering is then obtained by partitioning the hypergraph
using HMETIS [66].

Cluster-based consensus clustering approaches are based on the principle “to clus-
ter clusters”. The key idea is to run a clustering algorithm on the set of clusters
contained in all clustering solutions of the ensemble, in order to compute a set of
meta-clusters. The consensus clustering is finally computed to assign each data object
to the meta-cluster that maximizes some assignment criterion (e.g., majority voting)
[52]. As an example, the authors in [11] proposes a two-stage clustering procedure.
In the first stage, clustering solutions are obtained by multiple runs of the K-Means
algorithm. Then, the output centroids from these clustering solutions are clustered
by an additional run of K-Means, and the resulting meta-centroids are used as initial
points for a complete run of Expectation Maximization or K-Means.

Hybrid consensus clustering methods attempt to combine ideas coming from both
instance-based and cluster-based approaches. The objective is to build a hybrid bi-
partite graph whose vertices belong to the sets of objects and clusters [52]. The
Hybrid Bipartite Graph Formulation (HBGF) algorithm [34] builds a bipartite graph
where each edge (i, C) has weight equal to 1, if the object i belongs to the cluster
C, 0 otherwise. The clustering ensemble result is obtained by partitioning the graph
according to standard methods such as METIS, or spectral graph partitioning al-
gorithms. The Weighted Bipartite Partitioning Algorithm (WBPA) [30] follows the
same overall scheme of HBGF, although it extends the range of weight values from
{0, 1} to [0, 1].

Extension to graph data

One of the first approach adopting a consensus clustering paradigm to graph clustering
is the one proposed in [77]. This method is a simple approach for consensus clustering
in weighted networks, whose general scheme is as follows: given a weighted graph G,
a selected community detection algorithm A, a desired number of clusterings np,
and a real-valued threshold θ, it performs the steps: (i) apply A on G np times to
obtain np clusterings, (ii) build the co-association matrix M (without any constraint
on node linkage) and threshold it using θ, (iii) apply A on M np times; (iv) if the
obtained clusterings are all equal then stop, otherwise go back to step (ii). To avoid
the generation of disconnected components, an additional step at the end of each
iteration is to restore the entries in the co-association matrix with the highest weight
among the pruned ones.

As discussed in Sect. 2.2.1, some existing aggregation methods for community de-
tection in multilayer networks adopt the consensus clustering approach [114]. Given
a multilayer network GL, an ensemble of community structures for GL is a set E =
{C1, . . . , C`}, such that each Ch (with h = 1..`) is a community structure of the layer

Chapter 2. Background 15

graph Gh. This ensemble could be obtained by applying any non-overlapping com-
munity detection algorithm to each layer graph (c.f. Sect 2.2.1).

The authors in [114] address the problem of ensemble-based multilayer commu-
nity detection (EMCD): given an ensemble of community structures for a multilayer
network, the problem is to compute a consensus community structure, as a set of
communities that are representative of how nodes were grouped and topologically-
linked together over the layer community structures in the ensemble. In order to
determine the community membership of nodes in the consensus structure, a co-
association-based scheme is defined over the layers, to detect a clustering solution
(i.e., the consensus) that conforms most to the input clusterings. Given GL, and E
for GL, the co-association matrix M is a matrix with size |V| × |V|, whose (i, j)-th
entry is defined as |mij |/`, where mij is the set of communities shared by vi, vj ∈ V,
under the constraint that the two nodes are linked to each other [114].

Differently from other consensus methods, in [114] aggregation is not limited at
node membership level, but it also accounts for intra-community and inter-community
connectivity. EMCD is modeled in [114] as an optimization problem in which the
consensus community structure solution is optimal in terms of multilayer modularity,
and is to be discovered within a hypothetical space of consensus community structures
that is delimited by a “topological-lower-bound” solution and by a “topological-upper-
bound” solution, for a given co-association threshold θ. Intuitively, the topological-
lower-bound solution may be poorly descriptive in terms of multilayer edges that
characterize the internal connectivity of the communities, whereas the topological-
upper-bound solution may contain superfluous multilayer edges connecting different
communities. The modularity-optimization-driven consensus community structure
produced by the method in [114], dubbed M-EMCD, hence produces a solution that
is ensured to have higher modularity than both the topologically-bounded solutions.

2.2.3 Uncertain graph clustering

The problem of clustering probabilistic graphs has been recently studied by [75]. Clas-
sical techniques and methods that are used for partitioning graphs into clusters could,
in principle, be applied to probabilistic graphs by either considering the edge prob-
abilities as weights or by leaving out probabilities smaller than a specific threshold.
However, for the first approach the main problem is that it cannot solve the clustering
problem for weighted probabilistic graphs, because once the probability is considered
as weight, the actual weights cannot be encoded meaningfully onto the edges. Instead,
for the second approach, the problem is that the threshold value cannot be computed
in a principled and reliable way. This second problem is also discussed in the context
of consensus community detection in multllayer graphs in Chapter 3.

The objective of existing methods for clustering uncertain graphs is similar to
community detection in deterministic graphs: they aim to maximize the intra-cluster
connectivity and minimize the inter-cluster connectivity according to the possible
world semantics. This translates into seeking for a clustering such that nodes in the
same cluster are densely connected and nodes in different clusters are poorly linked
on average in different possible worlds. A novel clustering problem on probabilis-
tic graphs, where both intra-cluster and inter-cluster connectivity is maximized, is
introduced in Chapter 6.

pKwikCluster algorithm

In [75] the problem of clustering in probabilistic graphs is formulated as an optimiza-
tion problem by resorting to the notion of (expected) edit distance between graphs.

Chapter 2. Background 16

Given two deterministic graphs G = (V,EG) and Q = (V,EQ), the edit distance be-
tween G and Q, denoted as D(G,Q), is the number of edges that need to be deleted
or added from G in order to be transformed into Q. In other words,

D(G,Q) = |EG \ EQ|+ |EQ \ EG|

Let AG (resp. AQ) denote the 0-1 adjacency matrix of G (resp. of Q), the edit
distance between G and Q can also be defined as:

D(G,Q) =
∑

u,v;u<v

|AGuv −AQuv|

This definition can be extended to the case where one of the two graphs is a probabilist
graph. In this case, the edit distance between a probabilistic graph G = (V, P) and a
deterministic graph Q = (V,EQ) is the expected edit distance between every G v G
and Q. That is,

D(G, Q) = E
GvG

[D(G,Q)] =
∑
GvG

Pr[G]D(G,Q) (2.2)

We could naively compute Eq. 2.2 by generating all possible worlds of G and for each
G v G computing Pr[G] through Eq. 2.1. However, this computation is exponential
in the the size of the probabilistic graph. However, the expected edit distance in Eq.
2.2 can also be computed in polinomial time with the following [75]:

D(G, Q) =
∑

(u,v)∈EQ

(1− puv) +
∑

(u,v)/∈EQ

puv (2.3)

Another central notion in [75] is the cluster graph, which is a particular deterministic
graph that consists of vertex-disjoint disconnected cliques. More formally, a cluster
graph C = (V,EC) is a deterministic graph with the following properties: (i) C defines
a partition of the nodes V = {V1, . . . , Vk}; (ii) ∀i ∈ {1, . . . , k} and for each pair of
nodes u, v ∈ Vi, (u, v) ∈ EC ; (iii) ∀i, j ∈ {1, . . . , k}, i 6= j and for each pair of nodes
u ∈ Vi, v ∈ Vj (u, v) /∈ EC .

The authors in [75] formulate the problem of clustering in probabilistic graph as
the following optimization problem: given a probabilistic graph G = (V, P), find the
cluster graph C = (V,EC) such that D(G, C) is minimized.

The algorithm presented in [75], dubbed pKwikCluster, is a randomized expected
5 − approximation algorithm. It starts with a random node u and creates a cluster
with all neighbors of u that are connected with u with probability higher that 0.5. If
no such node exists, u defines a singleton cluster. Having u and its cluster neighbors
removed, the algorithms proceeds with the rest of the graph until all nodes are assigned
to its proper cluster. The cost of the algorithm is linear in the size of the input graph,
thus scalable to large probabilistic graphs. Note that the number of clusters in output
is not part of the input. In fact, the objective function itself dictates the number of
clusters that are appropriate for every input.

2.3 Learning problems for understanding graph dynamics

The following two subsections provide a brief overview of bandit and preference-based
learning paradigms while the last subsection introduces their application for under-
stand graph dynamics.

Chapter 2. Background 17

2.3.1 Reinforcement learning and combinatorial multi-armed bandit
(CMAB)

Reinforcement learning (RL) aims to learn optimal actions from a finite set of available
actions through continuously interacting with an unknown environment. In contrast
to supervised learning techniques, reinforcement learning does not need an experienced
agent to show the correct way, but adjusts its future actions based on the obtained
feedback signal from the environment. There are three key elements in a RL agent,
i.e., states, actions and rewards. At each instant a RL agent observes the current
state, and takes an action from the set of its available actions for the current state.
Once an action is performed, the RL agent changes to a new state, based on transition
probabilities. Correspondingly, a feedback signal is returned to the RL agent to inform
it about the quality of its performed action. RL is defined as how an agent should
take actions in an environment so to maximize some notion of cumulative reward. RL
acts optimally through trial-and-error interactions with an unknown environment.
Actions may affect not only the immediate reward but also the next situation and all
subsequent rewards. Since the main goal is maximizing the cumulative reward, the
intuition underlying RL is that actions that lead to large rewards should be made more
likely to recur. However, a further key aspect is to achieve a trade-off between making
decisions that yield high current rewards, or exploitation, and making decisions that
discard immediate gains in favor of better future rewards, or exploration.

Multi-armed bandits (MAB) are a simplified setting of RL where the agent is
not involved into learning to act in more than one situation, i.e. there is only one
possible state. In the traditional MAB framework, there exists a set A of m arms (or
actions), associated with a set of random variables {Xt

i |1 ≤ i ≤ m, t ≥ 1}, whose
values range in [0, 1]. Xt

i indicates the random outcome of triggering, or playing,
the i-th arm in the t-th round. The random variables {Xt

i | t ≥ 1} associated to the
i-th arm are independent and identically distributed; note however this holds in a
stationary context, but more in general, in a non-stationary context, those variables
may change [54]. Also, variables of different arms may not be independent. At each
step t the agent selects/plays an arm at ∈ A and the reward Xt

at is revealed. Let T
denotes the number of steps, the goal of a bandit algorithm is selecting the proper
actions in order to maximize the expected cumulative reward R(T):

R(T) = E

[
T∑
t=1

Xt
at

]

Combinatorial multi-armed bandit (CMAB) is an extension of MAB that introduces
the concept of superarm as a set of (base) arms that can be triggered together [20,
41]. At each round t, a superarm At ⊆ A is chosen and the outcomes of the random
variables Xt

at , for all at ∈ At, are revealed. Moreover, the base arms belonging to At
may probabilistically trigger other base arms not in At, thus revealing their associ-
ated outcomes. Selecting a super arm at each step corresponds to solve a particular
combinatorial problem [20]. Let R(At) be a random variable denoting the reward
obtained at round t by playing superarm At. This reward depends, linearly or non-
linearly, on the base arms that constitute the superarm and other possibly triggered
base arms. The objective of a CMAB method is to select at each round t the superarm
At that maximizes the expected reward E[R(At)], in order to eventually maximize the
expected cumulative reward over all rounds, i.e. R(T) = E[

∑T
t=1R(At)] According to

the exploration-exploitation trade-off, at each trial the bandit may decide to choose
the superarm with the highest expected reward (given the current mean estimates

Chapter 2. Background 18

for the base arms) or to select a superarm discarding information from earlier rounds
with the aim of discovering the benefit from adopting some previously unexplored
arm(s) [41, 20].

2.3.2 Preference-based top-k selection

Consider a finite set of decision alternatives, or options, O = {o1, . . . , oN}, for which
the following assumptions hold: (i) the options in this set are pairwise comparable,
(ii) there exists a finite number of samples, from an unknown pairwise-preference dis-
tribution, that provide information about whether or not an option might be preferred
to another one, and (iii) the samples could be “noisy” (i.e., they could significantly
vary w.r.t. the unknown distribution model).

The preference-based top-k selection problem [15] is to choose the set of k op-
tions (k < N) that maximize the preference over all alternatives, which is formally
equivalent to the following optimization problem:

argmax
S⊂O,|S|=k

∑
oi∈S

∑
oj∈O∧j 6=i

I{oj ≺R oi}, (2.4)

where ≺R is a strict preference order relation according to a predefined ranking model
R, such that oj ≺R oi means the option oi is preferred to oj , and I{·} is the indicator
function which is equal to 1 if the argument is true, 0 otherwise. Note also that,
given that the outcomes of the pairwise comparisons could be noisy and the available
number of samplings are limited, the optimality of the solution to Eq. 2.4 should be
guaranteed with probability at least 1− δ, for any predefined probability δ; typically,
δ = 0.1.

To quantify the pairwise preferences, the outcome of a comparison between oi and
oj is modeled as a random variable Yi,j , which assumes value 0 (resp. 1) if oi ≺ oj
(resp. oi � oj), and a “neutral” 1/2 otherwise. Given a pair oi, oj and a set of ni,j
realizations of their comparison {y(1)

i,j , ..., y
(ni,j)
i,j } of Yi,j , assumed to be independent,

the expected value yi,j := E[Yi,j] can be estimated as:

ȳi,j =
1

ni,j

ni,j∑
l=1

y
(l)
i,j . (2.5)

Ranking models

A ranking model R produces a complete order of the options in O upon the preference
relation matrix Y = [yi,j]N×N ∈ [0, 1]N×N . Example of ranking models are: (i)
Copeland’s ranking (CO) [92], (ii) weighted voting, or sum of expectations (SE), and
(iii) random walk (RW) ranking.

Copeland’s ranking determines that option oi is preferred to option oj (oj ≺CO oi)
if and only if bj < bi, where bi = |{oh ∈ O | yi,h > 1

2}|, i.e., whenever oi beats more
options that oj does. According to sum of expectations ranking, oj ≺SE oi holds if and
only if

∑
h6=j yj,h <

∑
h6=i yi,h. Random walk ranking first requires a left-stochastic

version S = [sij]N×N of the matrix Y, such that si,j =
yi,j∑N
l=1 yl,j

. Then, the ranking

of options is determined as the stationary probability distribution π = (π1, . . . , πN)
of the Markov chain underlying S. Finally, the options are ranked according to the
computed probabilities, i.e., oj ≺RW oi iff πj < πi.

Chapter 2. Background 19

Algorithm 1 PBR(Y,O, k, nmax, δ,R)

1: S = D ← ∅ {Set of selected (S) and discarded (D) options}
2: Initialize with zeros: B = [ci,j]N×N , Bu = [ui,j]N×N , B` = [li,j]N×N {Confidence

bound matrices}
3: ni,j ← 0, ∀oi, oj ∈ O {Sample counts}
4: A← {(oi, oj)|i 6= j, 1 ≤ i, j ≤ |O|} {Set of active option pairs}
5: while (ni,j ≤ nmax, ∀i∀j) ∧ |A| > 0 do
6: for all (oi, oj) ∈ A do
7: ni,j ← ni,j + 1

8: y
(ni,j)
i,j ∼ Yi,j { Sample from the pairwise preference probability distribution}

9: end for
10: Update Ȳ = [ȳi,j]N×N with the new samples {Using Eq. (2.5)}
11: for i, j = 1 to N do
12: ci,j ←

√
1

2ni,j
log 2N2nmax

δ {Update Hoeffding confidence bounds Bu,B`,B}
13: li,j ← ȳi,j − ci,j , ui,j ← ȳi,j + ci,j
14: end for
15: (A,S,D)← SamplingStrategy(R, A, Ȳ, N, k,Bu,B`,B, D) {Algorithm 2}
16: end while
17: return S, Ȳ

Algorithm 2 SamplingStrategy(R, A, Ȳ, N, k,Bu,B`,B, D)

1: S ← optionsToSelect(A,B`,Bu, N, k,R)
2: D ← D ∪ optionsToDiscard(A,B`,Bu, N, k,R)
3: for (oi, oj) ∈ A do
4: if !isStillToUpdate((oi, oj), S,D,B`,Bu,B, Ȳ,R) then
5: A = A \ {(oi, oj)}
6: S ← top-k options according to R
7: return (A,S,D)

Preference-based Racing

The authors in [15] proposed a preference-based racing (PBR) procedure, shown in
Algorithm 1, which is responsible for identifying, among the set of options O, the top-
k ones according to a predefined ranking model R. Besides k,R, and the probability
guarantee (δ, cf. Sect. 2.3.2), the algorithm requires an additional parameter, nmax, to
control the number of samplings for each pairwise preference probability distribution
(i.e., Yi,j , with oi, oj ∈ O).

The algorithm also maintains a set of active pairs of options (A), i.e., options
whose pairwise preference distributions need to be sampled more in order to decide
which one is better, with enough high degree of confidence. Racing methods employ
confidence intervals, typically computed through the Hoeffding bound, derived from
the concentration property of the mean estimate [15]. To this purpose, Algorithm 1
maintains the estimates yi,j with their confidence intervals [`i,j , ui,j] and iteratively
samples from the pairwise preference distribution until there is enough confidence
about the top-k nodes or the maximum number of samplings is reached (Line 5).
According to the updates values of confidence bounds, the set of current selected
options S (i.e., top-k ones) and discarded options D (not top-k) are updated. This is
handled by procedure SamplingStrategy (Line 15), which is sketched in Algorithm 2.

According to [15], Algorithm 2 initially checks if some options can be included

Chapter 2. Background 20

among the top-k or discarded ones with high enough probability (Lines 1 and 2).
This step is performed differently according to the ranking model R (cf. Sect. 2.3.2),
whereby the confidence intervals are used to decide with high probability that an
option is better or worse than another. Next we provide details about the different
sampling strategies.

• CO-based strategy: the aforementioned step is performed by counting, for each
option oi, the set of better options wi = |{oj | li,j > 1/2, i 6= j}| and worse
options zi = |{oj | ui,j < 1/2, i 6= j}|. Then, an option oi is among the top-k
options with high probability if |{oj | |O| − zi < wj}| > |O| − k while it is to be
discarded if |{oj | |O| − wi < zj}| > k.

• SE-based strategy: in this case, first the ranking score definition is applied to
lower/upper bounds, i.e., for each option oi, the averages li = 1

|O|−1

∑
j 6=i li,j and

ui = 1
|O|−1

∑
j 6=i ui,j are computed. Then, similarly to the CO case, an option

oi is included among the top-k options with high probability if |{oj | uj < li}| >
|O| − k and discarded if |{oj | ui < lj}| > k.

• RW-based strategy: when RW is used as ranking model, selecting and discarding
of option is based on the exploitation of properties of the stationary distribu-
tion of transition matrices. Random walk ranking first requires a left-stochastic
version S̄ = [sij]N×N of the matrix Ȳ, such that si,j =

¯yi,j∑N
l=1 ¯yl,j

. Given confi-

dence intervals for the entries of matrix Ȳ, denoted with matrix B = [ci,j]N×N ,
confidence intervals for elements in S̄, denoted with matrix B̃ = [c̃i,j]N×N , are
computed (by applying a result in [3]) as:

c̃ij =
N

3
max
k

ck,j
∑
l

ȳl,j (2.6)

Note that the elements of a particular column of B̃ are equal to each other, thus
‖B̃‖1 = maxj

∑
i |c̃i,j | =

N2

3 maxk,j ck,j
∑

l ȳl,j .

Let π = (π1, . . . , πN) and π̄ = (π̄1, . . . , π̄N) be the stationary distributions of S
and S̄ respectively. Then, by applying the result of [39], it follows that an upper
bound on the difference between the estimated stationary distribution and the
unknown true one can be computes as:

‖π − π̄‖max ≤ ‖B̃‖1‖Ā∗‖max (2.7)

where Ā∗ = [ā∗ij]N×N = (I − S̄ + 1πT)−1 − 1πT . Notice that, in order to
obtain better estimates of the preferences, the bound in Eq. 2.7 suggests
the minimization of ‖B̃‖1 which can be performed by sampling pairs (i, j) =
argmaxi,j ci,j

∑
l ȳl,j . At each time, the pairs of options that satisfy this condi-

tion are maintained as set of active options to be sampled next.

For each active pair of options (oi, oj), a condition is checked (Line 4) to decide
whether it is not necessary anymore to sample from the pairwise preference distribu-
tion of (oi, oj) — this holds either because with high probability oi is better (resp.
worse) than oj or because one of the two options need to be selected (resp. discarded).

Chapter 2. Background 21

2.3.3 Applications to dynamic community detection and network
inference

The discussed learning paradigms (in Sect. 2.3.1 and 2.3.2) are conceived as learning
tools in contexts where data are characterized by uncertainty, noise and limitedness.
This also holds in time-evolving networks and in this thesis we show how CMAB and
preference-based methods can help understanding graph dynamics.

In particular, the CMAB paradigm can be profitably adopted to temporal com-
munity detection problems since the inherent uncertainty and dynamicity in such
network systems. Existing approaches share the nature of graph-based unsupervised
learning paradigm to address the community detection problem in temporal networks.
However, this may not be in principle the best way to do, primarily because of the
inherent uncertainty about the environment i.e., the temporal network system, and
the interactions within it, i.e., structural changes and consequent decisions to take
about the node memberships and structure of the communities. Unlike traditional
(un)supervised learning, RL is instead conceived to learn from interrelated actions
with unknown “rewards” ahead of time, and choose which actions to take in order to
maximize the reward; in the community detection problem in time-evolving graphs,
this corresponds to evaluate the benefit of making a set of node assignments to com-
munities at a particular time. Chapter 4 shows how the community detection problem
in temporal networks can be mapped to a CMAB instance where a super arm corre-
sponds to a set of base actions, i.e., a set of community assignments that constitute
a whole community-structure. Moreover, the exploration-exploitation trade-off trans-
lates into the balancing over time between the need for embedding long-term changes
observed in the community formation and the need for capturing short-term effects
and newly observed community structures.

A trust network is a graph of entities (i.e., individuals) that are linked through
asymmetric relationships that correspond to subjective trust statements. Trust re-
lations forms from users’ interactions thus must be determined from the available
information in a social environment, e.g., the history of users’ activities and their
interactions. Chapter 5 shows how the preference-based learning paradigm can be
exploited for the trust network inference problem: given a sequence of timestamped
interaction networks as input, the goal of TNI is to infer from this sequence a directed
weighted network, whose nodes are the users in the temporal networks and links de-
note trust relationships with associated trust scores. Computing trust relations is
however a particularly difficult task, because of a number of challenges that already
arise at data source level (i.e., not considering the inevitable bias of the particular
algorithmic solution to the problem). In fact, the amount of information representing
the observed interactions and activities of users in a social network, could be limited in
size as well as in quality. More specifically, a social network may contain a significant
amount of redundant or irrelevant relations as well as noise in the information that ex-
press the strength of interaction between any two users. Preference learning paradigm
provides key advantages in addressing all the aforementioned issues, i.e., limitedness,
redundancy and noisy of the information about the users’ interactions from which
a trust network is to be inferred. More specifically, under a preference-based top-k
selection problem, the goal is to find a ranking of the preferential pairings that each
target entity would choose to form its trust relationships. To this purpose, an adap-
tive sampling strategy can be adopted and instantiated according to three canonical
ranking models that correspond to different levels of ranking pairwise preferences.

22

Chapter 3

Consensus Community Detection
in Multilayer Networks.

Summary. The clustering ensemble paradigm has emerged as an effective tool for
community detection in multilayer networks, which allows for producing consensus
solutions that are designed to be more robust to the algorithmic selection and config-
uration bias. However, one limitation is related to the dependency on a co-association
threshold that controls the degree of consensus in the community structure solution.
The goal of this work is to overcome this limitation with a new framework of ensemble-
based multilayer community detection, which features parameter-free identification of
consensus communities based on generative models of graph pruning that are able to
filter out noisy co-associations. We also present an enhanced version of the modularity-
driven ensemble-based multilayer community detection method, in which community
memberships of nodes are reconsidered to optimize the multilayer modularity of the
consensus solution. Experimental evidence on real-world networks confirms the ben-
eficial effect of using model-based filtering methods and also shows the superiority of
the proposed method on state-of-the-art multilayer community detection.

3.1 Introduction

Multilayer networks are pervasive in many fields related to network analysis and min-
ing [74, 26]. Particularly, community detection in multilayer networks (ML-CD) has
attracted lot of attention in the past few years, as witnessed by a relatively large
corpus of studies (see, e.g., [72] for a survey).

An effective approach to ML-CD corresponds to aggregation methods, whose goal is
to infer a community structure by combining information from community structures
separately obtained on each of the layers [119, 118, 114]. A special class of such
methods resembles theory on clustering ensemble [110, 51]: given a set of clusterings
as different groupings of the input data, a consensus criterion function is optimized
to induce a single, meaningful solution that is representative of the input clusterings.
A key advantage of using a consensus clustering approach is that the inconvenience
of guessing the “best” algorithm selection and parametrization is avoided, and hence
consensus results will be more robust and show higher quality when compared to
single-algorithm clustering.

Despite the well-recognized benefits of using the consensus/ensemble clustering
paradigm, its exploitation to ML-CD is, surprisingly, relatively new in the litera-
ture [118, 77, 114]; actually, to the best of our knowledge, only the most recent of
these works goes beyond the use of a clustering ensemble approach as a black-box tool
for ML-CD, by proposing the first well-principled formulation of the ensemble-based
community detection (EMCD) problem. Indeed, in [114], aggregation is not limited at
node membership level, but it also accounts for intra-community and inter-community

Chapter 3. Consensus Community Detection in Multilayer Networks. 23

connectivity; moreover, the consensus function is optimized via multilayer modularity
analysis, instead of being simply based on the sharing of a certain minimum percentage
of clusters in the ensemble.

The EMCD method proposed in [114] relies on a co-association-based consensus
clustering scheme, i.e., the consensus clusters are derived from a co-association matrix
built to store the fraction of clusterings in which any two nodes are assigned to the
same cluster. Low values in this matrix would reflect unlikely consensus memberships,
i.e., noise, and hence should be removed; to this purpose, the matrix is subjected to
a filtering step based on a user-specified parameter of minimum co-association, θ.
Unfortunately, setting an appropriate θ for a given input network is a challenging
task, since too low values will lead to few, large communities, while too high values
will lead to many, small communities. Moreover, this approach generally fails to
consider properties related to node distributions and linkage in the network.

In this work, we aim to overcome the above issue, by proposing a new EMCD
framework featuring a parameter-free identification of consensus clusters from which
the consensus community structure will be induced. Our idea is to exploit a recently
developed class of graph-pruning methods based on generative models, which are de-
signed to filter out “noisy” edges from weighted graphs. A key advantage of these
pruning models is that they do not require any user-specified parameter, since they
enable edge-removal decisions by computing a statistical p-value for each edge based
on a null model defined on the node degree and strength distributions. We originally
introduce these models to multilayer community detection and propose an adaptation
to multilayer networks.

Another limitation of EMCD is that the community membership of nodes remains
the same through the process of detecting the modularity-driven consensus community
structure. In this work, we also address this point, by defining a three-stage process in
the EMCD scheme, which iteratively seeks to improve the multilayer modularity of the
consensus community structure based on intra-community connectivity refinement,
community partitioning, and relocation of nodes from a community to a neighboring
one.

Two main findings are drawn from experimental results obtained on real-world
multiplex networks: (i) some of the model-filters are effective in simplifying an input
multilayer network to support improved community detection, and (ii) our proposed
framework outperforms state-of-the-art multilayer community detection methods ac-
cording to modularity and silhouette quality criteria.

In the rest of the chapter, we provide background on generative-model-based filters
(Section 3.2) and on the existing EMCD method (Section 3.3). Next, we present our
proposed framework (Section 3.4). Experimental evaluation and results are discussed
in Sections 3.5 and 3.6. Section 3.7 provides a summary of the chapter contents.

3.2 Generative models for graph pruning

Pruning is a graph simplification task aimed at detecting and removing irrelevant
or spurious edges in order to unveil some hidden property/structure of the network,
such as its organization into communities. A simple technique adopted in weighted
graphs consists in removing all edges having weight below a pre-determined, global
threshold. Besides the difficulty of choosing a proper threshold for the input data,
this approach tends to remove all ties that are weak at network level, thus discarding
local properties at node level.

Chapter 3. Consensus Community Detection in Multilayer Networks. 24

A relatively recent corpus of study addresses the task of filtering out “noisy” edges
from complex networks based on generative null models. The general idea is to define a
null model based on node distribution properties, use it to compute a p-value for every
edge (i.e., to determine the statistical significance of properties assigned to edges from
a given distribution), and finally filter out all edges having p-value above a chosen
significance level, i.e., keep all edges that are least likely to have occurred due to
random chance.

Methods following the above general approach have been mainly conceived to deal
with weighted networks, so that the node degree and/or the node strength (i.e., the
sum of the weights of all incident edges) are used to generate a model that defines a
random set of graphs resembling the observed network. One of the earliest methods
is the disparity filter [108], which evaluates the strength and degree of each node
locally. This filter however introduces some bias in that the strength of neighbors
of a node are discarded. By contrast, a global null model is defined with the GloSS
filter [103], as it preserves the whole distribution of edge weights. The null model is,
in fact, a graph with the same topological structure of the original network and with
edge weights randomly drawn from the empirical weight distribution. Unlike disparity
and GloSS, the null model proposed by Dianati [25] is maximum-entropy based and
hence unbiased. Upon it, two filters are defined: the marginal likelihood filter (MLF),
which is a linear-cost method that assigns a significance score to each edge based
on the marginal distribution of edge weights, and the global likelihood filter, which
accounts for the correlations among edges. While performing similarly, the latter
filter is more costly than MLF; moreover, both consider the strength of nodes, but
not their degrees. Recently, Gemmetto et al. [43] proposed a maximum-entropy filter,
ECM, for keeping only irreducible edges, i.e., the filtered network will retain only the
edges that cannot be inferred from local information. ECM employs a null model
based on the canonical maximum-entropy ensemble of weighted networks having the
same degree and strength distribution as the real network [89]. Next, we report details
of the MLF, GloSS and ECM filters whose impact on a community detection task is
assessed in Sect. 3.4.

The MLF filter [25].

Given an undirected weighted graph G = (V,E,w), with T unit edges,1 the null
model assigns each edge to a pair of nodes, which are selected independently and
randomly with probabilities proportional to their strengths. Given two nodes vi and
vj , the probability that an edge is associated to them is given by pij =

sisj
2T 2 , where

si is the strength of node vi and T = 1
2

∑
vi
si. The probability that w out of T unit

edges will choose nodes vi and vj as their endpoints is given by a binomial probability
with probability of success w and number of trials T . Therefore, the null model
defines for every couple of nodes a probability for their edge weight, σij , depending
on their strengths. For each edge (vi, vj) with weight wij , its p-value, denoted as γij ,
is computed as:

γij =
∑
w≥wij

Pr[σij = w|si, sj , T] =
∑
w≥wij

(
T

w

)
pwij(1− pij)T−w (3.1)

According to this null model, the higher the strengths of two nodes, the higher the
weight of an edge connecting them is to be in order to be considered statistically

1Each weighted edge can be seen as multiple edges of unit weight.

Chapter 3. Consensus Community Detection in Multilayer Networks. 25

significant. Conversely, the lower the strengths of the two nodes, the lower the weight
of a linking edge must be in order to be retained by the filter.

The GloSS filter [103].

The null model in GloSS is a graph with the same topology of the original network but
with edge weights randomly extracted from the empirical weight distribution. The
probability to observe in the null model a weight wij on an edge (vi, vj), given the
strengths and degrees of the two end point nodes, is computed as:

Pr[σij = wij |ki, kj , si, sj] = P (wij)
P (si, sj |wij , ki, kj)
P (si, sj |ki, kj)

(3.2)

where ki denotes the degree of node vi, P (wij) is estimated as the fraction of edges
of the input network having weight wij , while P (si, sj |ki, kj) is a normalizing factor.
In order to compute the term on the numerator, it should be considered that, given
wij , ki, kj , the null model must set the weights on the remaining ki − 1 and kj − 1
edges such that

∑
vh 6=vj wih = si−wij and

∑
vh 6=vi wjh = sj −wij . According to this:

P (si, sj |wij , ki, kj) = F (si − wij , ki − 1)× F (sj − wij , kj − 1) (3.3)

where F (s, k) is the probability of randomly extracting, from the distribution P (w),
k weights that sum to s. Finally, the p-value for an edge of weight wij is computed
as:

γij =
∑
w≥wij

Pr[σij = w | ki, kj , si, sj] =

∑
w≥wij

P (w)P (si, sj |w, ki, kj)∑
w≥0 P (w)P (si, sj |w, ki, kj)

(3.4)

The ECM filter [43].

It is based on a null model that constrains both the degree and strength sequence
on average and, at the same time, requires that the probability distribution, P (G),
describing a canonical ensemble of graphs maximizes the Shannon’s entropy. The
solution to this maximization problem is found to be the probability distribution
P (G|x,y) =

∏
i<j qij(wij |x,y), where x,y are two |V |-dimensional vectors of La-

grange multipliers, with components xi ≥ 1 and 0 ≤ yi < 1,∀vi ∈ V , which are used
to impose the expected degrees and strengths of the nodes, and the term qij represents
the probability that a link of weight w exists between nodes vi and vj :

qij(w|x,y) =
(xixj)

ϑ(w)(yiyj)
w(1− yiyj)

1− yiyj + xixjyiyj
(3.5)

where ϑ(w) = 1 if w > 0, otherwise ϑ(w) = 0. According to the above equation, the
formation of a link of unit weight between two nodes has a different cost (i.e., higher
if xixj > 1) than the reinforcement of an existing one. The p-value associated to an
edge (vi, vj) of weight wij is hence computed as:

γij =
∑
w≥wij

Pr[σij = w] =
∑
w≥wij

qij(w|x,y) (3.6)

Chapter 3. Consensus Community Detection in Multilayer Networks. 26

3.3 Ensemble-based Multilayer Community Detection

This section provides a summary of the main definitions and algorithms proposed in
[114], upon which the rest of the chapter is based.

Definition 2 (Ensemble of community structures) Given a multilayer network
GL = (VL, EL,V,L), with ` = |L| layers, an ensemble of layer-specific community
structures for GL is a set E = {C1, . . . , C`}, such that each Ch (with h = 1..`) is a a
community structure of the layer graph Gh.

The information provided by an ensemble of community structures can be sum-
marized through a co-association matrix.

Definition 3 (Co-association matrix) Given a multilayer network GL = (VL, EL,V,L),
and an ensemble of community structures E for GL, the co-association matrix M is a
matrix with size |V|×|V| and such that the (i, j)-th entry stores the number of commu-
nities shared by vi, vj ∈ V, subject to the condition that the two nodes are linked to each
other, divided by the number of layers (i.e., the size of the ensemble): M(i, j) =

|mij |
` ,

where mij = {h | Lh ∈ L ∧ ∃C ∈ Ch, Ch ∈ E , s.t. vi, vj in C ∧ (vi, vj) ∈ Eh}.

Definition 4 (Consensus community structure) Given a multilayer network GL =
(VL, EL,V,L) and an ensemble of community structures E = {C1, . . . , C`} (with ` =
|L|) defined over GL, a consensus community structure for E is a partitioning of a
graph with nodes in V and edges in EL, which is representative of the community
structures in E.

Problem 1 (Ensemble-based Multilayer Community Detection (EMCD))
Given a multilayer network and an ensemble of layer-specific community structures for
it, determine a consensus community structure from the ensemble.

The above definitions correspond to meta-definitions since they capture only the
intuition that the consensus should agree with the community structures in the en-
semble, but no hint is provided about the quality the consensus should have. However,
according to the general desiderata in community detection, each community in the
consensus should have high internal connectivity and low external connectivity. Also,
since the input is a multilayer graph, these two requirements should hold accross all
layers. In order to solve Problem 1, the authors in [114] propose two baseline meth-
ods, namely C-EMCD and CC-EMCD, as well as a greedy algorithm, dubbed M-EMCD,
whose main details are reported next.

C-EMCD

This first baseline method in [114] requires the co-association matrix M (c.f. Defini-
tion 3) to infer a clustering of V, denoted as S. In order to retain only meaningful
co-association values, M is subjected to a filtering step based on a user-specified pa-
rameter of minimum co-association θ ∈ [0, 1]. This pruning step is also beneficial in
terms of efficiency because otherwise M would be a very dense matrix, which would
make any clustering process computationally expensive. The row (or column) projec-
tions corresponding to the entries greater than or equal to θ, identify a clustering of
V, where each cluster contains nodes that are ensured to be (directly or indirectly)
linked together in GL. Finally, a consensus community structure is obtained where
each community corresponds to the multilayer subgraph of GL induced from each of
the clusters in S. Note that any consensus community will correspond to a connected
subgraph, but not necessarily to a maximal complete subgraph of the multilayer net-
work.

Chapter 3. Consensus Community Detection in Multilayer Networks. 27

Figure 3.1: Overview of the modularity-based EMCD frame-
work [114].

CC-EMCD

The topological lower-bound consensus solution in the EMCD problem in [114] pro-
duces a consensus community structure from information derived from the co-association
matrix M and such that the structure of each consensus community only considers
those specific layers that allow any two nodes to be connected in the shared commu-
nity. More specifically, for each cluster S derived from M, a community is obtained
as the subgraph C = 〈V,E〉 of the multilayer network GL with a set of nodes V = S
and a set of edges E = {(vi, vj , h) ∈ EL | vi, vj ∈ V ∧ h ∈ mij}.

Analogously, any two consensus communities are connected by using only the
fraction of the multilayer graph that actually involves the connection of nodes from one
community to another. Specifically, only edges are selected that correspond to those
layers in which any two nodes are not present in the co-association matrix, i.e., given
two communities C(1), C(2) ∈ C∗, with node sets V (1), V (2), the set of edges linking
them is computed as E(C(1), C(2)) = {(vi, vj , h) ∈ EL | vi ∈ V (1), vj ∈ V (2)∧h /∈ mij}.

M-EMCD

Intuitively, the topological-lower-bound solution may be poorly descriptive in terms
of multilayer edges that characterize the internal connectivity of the communities,
whereas the topological-upper-bound solution may contain superfluous multilayer
edges connecting different communities. EMCD is thus modeled in [114] as an opti-
mization problem in which the consensus community structure solution is optimal in
terms of multilayer modularity, and is to be discovered within a hypothetical space of
consensus community structures that is delimited by a “topological-lower-bound” solu-
tion and by a “topological-upper-bound” solution, for a given co-association threshold
θ. The modularity-optimization-driven consensus community structure produced by
the greedy algorithm in [114], dubbed M-EMCD, hence produces a solution that is
ensured to have higher modularity than both the topologically-bounded solutions.
Figure 3.1 sketches an overview of M-EMCD. Given an input multilayer graph GL and
an ensemble E for it, and a co-association threshold θ, the CC-EMCD method is first
employed to produce the “lower-bound” consensus community structure. Then, this
consensus is iteratively refined through two main steps, respectively within-community
and across-community, until modularity is optimized to return the final consensus
community structure. Note that the refinement is performed to preserve the topology
of GL, according to the “upper-bound” consensus. Details on the adopted multilayer
modularity in [114], as well as in this chapter, are reported next.

Chapter 3. Consensus Community Detection in Multilayer Networks. 28

Definition 5 (Multilayer modularity [114]) Given a community structure C =
{C1, . . . , Ck} for GL, the multilayer modularity of C is defined as follows:

Q(C) =
∑
C∈C

Q(C) =
1

d(VL)

∑
C∈C

∑
L∈L

dintL (C)− γL
(dL(C))2

d(VL)
+ β

∑
L′∈P(L)

dextL,L′(C)

(3.7)

where, for any community C ∈ C, dL(C) and dintL (C) are respectively the degree of
C and the internal degree of C according to the only edges of layer L, d(VL) is the
total degree of the entire graph, i.e., d(VL) =

∑
L∈L

∑
v∈VL d(v), γL is a resolution

parameter for edges of layer L (set to 1, by default), dextL,L′(C) is the external degree
of C, i.e., twice the sum of inter-layer edges involving nodes inside C, β ∈ {0, 1} (set
to 0, by default), and P(L) is the set of valid pairings with L defined as:

P(L) =

{
{L′ ∈ L | L ≺L L′}, if ≺L is defined
L \ {L}, otherwise

where ≺L is a partial order relation over the set of layers L.

3.4 EMCD and parameter-free graph pruning

As previously discussed, the EMCD framework has one model parameter, i.e., the
co-association threshold θ, which allows the user to control the degree of consensus
required to every pair of nodes in order to appear in the same consensus community.
Given a selected value for θ and any two nodes vi, vj , we say that their community
linkage, expressed by M(vi, vj), is considered as meaningful to put the nodes in the
same consensus community iff M(vi, vj) ≥ θ.

However, choosing a fixed value of θ equally valid for all pairs of nodes raises a
number of issues. First, there is an intrinsic difficulty of guessing the “best” threshold
— since too low values will lead to few, large communities, while too high values
will lead to many, small communities. Second, the approach ignores any property of
the input network, and consequently a single-shot choice of θ may fail to capture the
natural structure of communities. Of course, to overcome the two issues in practical
cases, one could always try different choices of the parameter and finally select the
best-performing one (e.g., in terms of modularity, as done in [114]), but it is clear that
the approach does not scale for large networks.

It would instead be desirable to evaluate the significance of the co-associations by
taking into account the topology of the multilayer network, so that a relatively low
value of co-association might be retained as meaningful provided that it refers to node
relations that make sense only for certain layers, while on the contrary, a relatively
high value of co-association could be discarded if it corresponds to the linkage of
nodes that have high degree and co-occur in the same community in many layers
— in which case, the co-association could be considered as superfluous in terms of
community structure.

In order to fulfill the above requirement, we define a parameter-free approach to
EMCD that exploits the previously discussed pruning models. Since such models are
only designed to work with (monoplex) weighted graphs, our key idea is to first infer a
weighted graph representation of the co-association matrix associated to a multilayer
network and its ensemble of community structures, and then apply a pruning model
on it to retain only meaningful co-associations.

Chapter 3. Consensus Community Detection in Multilayer Networks. 29

11	 10	

9	

4	

3	

1	

2	

5	

6	
8	

7	

(a) Layer L1

4	

3	

1	

2	

5	

6	
8	

7	

(b) Layer L2

11	 10	

4	

3	

1	

2	

5	

6	
8	

7	

(c) Layer L3

2	

1	

3	

4	 6	

7	

5	

8	

10	

9	

11	
1	

1	 1	

1	 2	

2	 2	

2	
3	

3	 2	

1	 2	

2	
3	

1	

1	

(d) Co-association graph

Figure 3.2: Community structures (denoted by dotted curves) on a
3-layer network, and corresponding co-association graph.

Definition 6 (Co-association graph) Given a multilayer graph GL, an ensemble
E of community structures defined over it, and associated co-association matrix M,
we define the co-association graph GM = 〈VM , EM , w〉as an undirected weighted graph
such that VM = V, EM = {(vi, vj) | mij 6= ∅, wij = |mij |}.

Below is an example of how the pruning of the co-association graph based on a
user-specified threshold could lead to poorly meaningful consensus communities.

Example 1 Consider the 3-layer network and associated co-association graph in Fig-
ure 3.2. Focusing on the community membership of nodes, consider the following

Chapter 3. Consensus Community Detection in Multilayer Networks. 30

Algorithm 3 Co-association matrix filtering
Input: Multilayer graph GL = (VL, EL,V,L), ensemble of community structures
E = {C1, . . . , C`} (with ` = |L|), generative model for graph pruning WGP.

Output: Filtered co-association matrix M for GL and E .
1: Let α be a statistical significance level (i.e., α = 0.05) {Co-association matrix

initialization}
2: M← matrix(|V|, |V|)
3: for (i, j) ∈M do
4: mij ← {h | Lh ∈ L ∧ ∃C ∈ Ch, Ch ∈ E , s.t. vi, vj in C ∧ (vi, vj) ∈ Eh}
5: M(i, j)← |mij |/`
6: end for
7: GM = 〈VM , EM , w〉 ← build_coassociation_graph(GL,M) {Using Def. 6}
8: (e, γij)e=(vi,vj)∈EM

← compute_pValues(GM ,WGP) {Using Def. 7}
9: for (vi, vj) ∈ EM do

10: if γij ≥ α then M(i, j)← 0 {Null hypothesis cannot be rejected}
11: return M

settings of a cutting threshold θ. For any θ ≤ 1/3, all edges will be kept (as the mini-
mum valid weight is 1) and hence the co-association graph will be partitioned into the
two communities corresponding to its two connected components, i.e., {1, .., 8} and
{9, 10, 11}; setting 1/3 < θ ≤ 2/3 will lead to {1, .., 4}, {5, .., 8}, and {9}, {10}, {11};
finally, for 2/3 < θ ≤ 1, the communities will be {1, 2, 3}, {5, 7} and all the other nodes
as singletons. It should be noted that no setting of θ can enable the identification of
the three “natural” consensus communities, i.e., {1, .., 4}, {5, .., 8}, and {9, 10, 11}.

Definition 7 (Co-association hypothesis testing) Given a co-association graph
GM = 〈VM , EM , w〉, let WGP denote a statistical inference method whose generative
null model is parametric w.r.t. node degree and strength distributions in GM . We
define the co-association hypothesis testing as a parametric testing based on WGP,
whose null hypothesis for every observed edge is that its weight has been generated by
mere chance, given the empirical strength and degree distributions, and the associated
p-value is the probability that the null model produces a weight equal to or greater than
the observed edge weight. If the p-value is lower than a desired significance level, then
the null hypothesis can be rejected, which implies that the co-association of the two
observed nodes is considered as statistically meaningful.

Algorithm 3 shows the general scheme of creation of the co-association matrix, for
a given multilayer network and associated ensemble of community structures, and its
filtering based on the co-association hypothesis testing.

Enhanced M-EMCD (M-EMCD∗).

We propose an enhanced version of M-EMCD that has two main advantages w.r.t.
the early M-EMCD method in [114]: (1) it incorporates parameter-free pruning of
the co-association matrix described in Algorithm 3, and (2) it fixes the inability of
the early M-EMCD in reconsidering the community memberships of nodes during the
consensus optimization.

Algorithm 4 shows the pseudo-code of our proposed enhanced M-EMCD, dubbed
M-EMCD∗. Initially, the filtered co-association matrix computed by a selected model-
filter WGP is provided as input to CC-EMCD, which computes the initial (i.e., lower-
bound) consensus community structure (Line 2) [114]. This is iteratively improved in a

Chapter 3. Consensus Community Detection in Multilayer Networks. 31

Algorithm 4 Enhanced Modularity-driven Ensemble-based Multilayer Community
Detection (M-EMCD∗)
Input: Multilayer graph GL = (VL, EL,V,L), ensemble of community structures E =
{C1, . . . , C`} (with ` = |L|), generative model for graph pruning WGP.

Output: Consensus community structure C∗ for GL.
1: M← co-associationMatrixFiltering(GL, E , WGP) {Algorithm 3}
2: Clb ← CC-EMCD(GL,M) {Compute topological-lower-bound consensus community

structure}
3: C∗ ← Clb
4: repeat
5: for Li ∈ L do
6: Q← Q(C∗)

{Refine intra-community connectivity of Cj}
7: for Cj ∈ C∗ do
8: 〈C ′j , Q′j〉 ← update_community(C∗, Cj , Li)
9: j∗ ← argmaxQ′j

10: if Q′j∗ > Q then Q← Q′j∗ , C∗ ← C∗ \ Cj ∪ C ′j∗
{Refine inter-community connectivity between Cj∗ and each of its neighbors}

11: for Ch ∈ N(Cj∗) do
12: 〈CICh , QIC

h 〉 ← update_community_structure(C∗, Cj∗ , Ch, Li)
13: 〈CRh , QR

h 〉 ← relocate_nodes(C∗, Cj∗ , Ch)
14: 〈Ch, Qh〉 ← argmax{QIC

h , QR
h }

15: h∗ ← argmaxQh

16: if Qh∗ > Q then
17: Q← Qh∗ , C∗ ← Ch∗

18: if Qh∗ = QR
h∗ then 〈Ch, Qh〉 ← update_community_structure(C∗, Cj∗ , Ch∗ , Li)

19: else 〈Ch, Qh〉 ← relocate_nodes(C∗, Cj∗ , Ch∗)
20: if Qh > Q then Q← Qh, C∗ ← Ch

{Evaluate partitioning of Cj∗ into smaller communities}
21: 〈C ′s, Q′s〉 ← partition_community(C∗, Cj∗)
22: if Q′s > Q then Q← Q′s, C∗ ← C∗ \ Cj∗ ∪ C ′s
23: end for
24: until Q(C∗) cannot be further maximized
25: return C∗

three-stage modularity-optimization process: (i) refinement of connectivity internal to
a selected community, (ii) refinement of connectivity between the community and its
neighbors also involving relocation of nodes, and (iii) partitioning of the community.

The within-community connectivity refinement step (Lines 7-10) consists in seek-
ing in the current solution C∗ the community Cj∗ whose internal connectivity modifi-
cation leads to the best modularity gain. The internal refinement of a community Cj ,
applied to the layer Li, is performed by function update_community (Line 8) which
tries to add as many edges of type Li as possible between nodes belonging to Cj ,
i.e., the set of edges in Ei whose end-nodes are both in Cj and are not present in
the current solution C∗. The function then returns the modified Cj and the updated
modularity.

Once identified the community Cj∗ at the previous step, the algorithm tries to
relocate nodes from Cj∗ to its neighbor communities N(Cj∗) and/or to refine its
external connectivity with them (Lines 11-20). The inter-community connectivity
refinement is carried out by function update_community_structure (Line 12) which,
for any layer Li and neighbor communities Cj ,Ch, evaluates the resulting modularity
of adding and/or removing edges of type Li in the current consensus C∗ between Cj ,Ch,
compatibly with the set of edges of Li in the original graph. The relocation of one
node at a time from Cj∗ to a neighbor community Ch is evaluated by relocate_nodes

Chapter 3. Consensus Community Detection in Multilayer Networks. 32

Table 3.1: Main features of real-world multiplex network datasets
used in our evaluation. Mean and standard deviation over the layers
are computed for degree, average path length, and clustering coefficient

measures

#entities #edges #layers node set edge set degree avg. path clust.
(|V|) (`) coverage coverage length coef.

AUCS 61 620 5 0.73 0.20 10.43 ± 4.91 2.43 ± 0.73 0.43 ± 0.097
EU-Air 417 3 588 37 0.13 0.03 6.26 ± 2.90 2.25 ± 0.34 0.07 ± 0.08
FAO-Trade 214 318346 364 0.53 0.003 6.40 ± 4.69 2.53 ± 0.51 0.31 ± 0.11
FF-TW-YT 6 407 74 836 3 0.58 0.33 9.97 ± 7.27 4.18 ± 1.27 0.13 ± 0.09
London 369 441 3 0.36 0.33 2.12 ± 0.16 11.89 ± 3.18 0.036 ± 0.032
VC-Graders 29 518 3 1.00 0.33 17.01 ± 6.85 1.66 ± 0.22 0.61 ± 0.89

(Line 13) until there is no further improvement in modularity. The ordering of node
examination is determined by a priority queue that gives more importance to nodes
having more edges (of any type) towards Ch than edges linking them to nodes in their
current community in C∗.

The step of partitioning of Cj∗ into smaller communities is carried out by function
partition_community (Line 21). While this can in principle refer to the use of any (mul-
tilayer) modularity-optimization-based community detection method, we choose here
to focus on the membership of nodes, and hence to devise this step in the simplified
scenario of flattened representation of the consensus community Cj∗ , i.e., a weighted
monoplex graph with all and only the nodes belonging to Cj∗ and weights expressing
the number of layers on which two nodes are linked in C∗. Upon this representation,
we apply a graph clustering method based on modularity optimization (cf. Sect. 3.5)
and finally maintain the resulting partitioning only if it led to an improvement in
modularity.

3.5 Evaluation methodology

Datasets. We used six real-world multiplex networks for our evaluation, which are
among the most frequently used in recent, relevant studies in multiplex/multilayer
community detection.

AUCS [72] captures the interaction among university employees. They are: (i)
work together, (ii) lunch together, (iii) off-line friendship, (iv) friendship on Facebook,
and (v) co-authorship. EU-Air transport network [72] describes the connections be-
tween European airports from different airlines. FriendFeed, Twitter, and YouTube
network (FF-TW-YT) [26] was designed by using the social media aggregator Friend-
Feed for modeling the interactions of users who were also members of Twitter and
YouTube. London transport network [128] includes three types of connections be-
tween train stations in London: (i) underground lines, (ii) overground, and (iii) DLR.
7thGraders (VC-Graders) [128] models the interaction among students in terms of
friendship, work together, and affinity relations in the class. FAO Trade network
(FAO-Trade) [29] represents different types of trade relationships among countries,
obtained from FAO (Food and Agriculture Organization of the United Nations).

Table 3.1 summarizes main characteristics of the evaluation networks. For each
network we report the number of entities |V|, the number of total edges, the aver-
age coverage of the node set is computed as 1/|L|

∑
L∈L(|VL|/|V|), and the average

coverage of edge set is 1/|L|
∑

L∈L(|EL|/
∑

L′ |EL′ |).
We used six networks for our evaluation (Table 3.1), which are among the most

frequently used in relevant studies in multilayer community detection.

Chapter 3. Consensus Community Detection in Multilayer Networks. 33

Competing methods. We selected four of the most representative methods for
multilayer community detection: Generalized Louvain (GL) [93], Multiplex Infomap
(M-Infomap) [28], Principal Modularity Maximization (PMM) [119], and the consensus
clustering approach in [77] (hereinafter denoted as ConClus). Note that the latter
two are aggregation-based methods; in particular, ConClus is a simple approach for
consensus clustering in weighted networks.

GL is an extension of the classic Louvain method using multislice modularity, which
assigns each node-layer tuple separately to a community.

PMM detects a concise representation of features from the various layers (dimen-
sions) by performing two main steps: (i) structural feature extraction, and (ii) cross-
dimension integration. Firstly, modularity maximization is used for extracting struc-
tural features from each dimension. Then, the features are concatenated and subjected
to PCA to extract the top eigenvectors, corresponding to possible community parti-
tions. Starting from these eigenvectors, a low-dimensional embedding is computed in
order to detect the principal patterns across all the dimensions of the network. Fi-
nally a simple k-means on this embedding is performed to find the discrete community
assignment.

M-Infomap extends the classic Infomap algorithm for multiplex networks. In the
Infomap search algorithm, the flow-based map equation model is minimized, based on
the concept that communities are identified as groups of nodes among which the flow,
based on a random walk model, persists for a long time once entered.

ConClus is a simple approach for consensus clustering in weighted networks, whose
general scheme is as follows: given a weighted graphG, a selected community detection
algorithm A, a desired number of clusterings np, and a real-valued threshold θ, it
performs the steps: (i) apply A on G np times to obtain np clusterings, (ii) build the
co-association matrix M (without any constraint on node linkage) and threshold it
using θ, (iii) apply A on M np times; (iv) if the obtained clusterings are all equal
then stop, otherwise go back to step (ii). To avoid the generation of disconnected
components, an additional step at the end of each iteration is to restore the entries in
the co-association matrix with the highest weight among the pruned ones.

Assessment criteria and setting. We employed the multilayer modularity
defined in [114], the multilayer silhouette defined in [114], and NMI [110].

To generate the ensemble for each evaluation network, following the lead of the
study in [114], we used the serial version of the Nerstrand algorithm [78], a very
effective and efficient method for discovering non-overlapping communities in (single-
layer) weighted graphs via modularity optimization. We also used Nerstrand for the
community-partitioning step in our M-EMCD∗.

As concerns the competing methods, we used the default setting for GL and M-
Infomap. We varied the number of communities in PMM from 5 to 100 with increments
of 5, and finally selected the value corresponding to the highest modularity. Also, we
equipped ConClus with Nerstrand (for the generation of the clusterings), set np to the
number of layers, and varied θ in the full range (with step 0.01) to finally select the
value that determined the consensus clusters with the highest average NMI w.r.t. the
initial ensemble solutions.

3.6 Results

3.6.1 Impact of model-filters on M-EMCD∗

For every network, we analyzed size, modularity and silhouette of the consensus so-
lution obtained before (i.e., at lower-bound CC-EMCD) and at convergence of the

Chapter 3. Consensus Community Detection in Multilayer Networks. 34

optimization performed by M-EMCD∗, when using either global threshold θ pruning
or one among MLF, ECM, and GloSS; in the former case, the value of modularity
refers to the consensus solution corresponding to the best-performing θ value. Results
are reported in Table 3.2 and discussed next. At the end of this section, we also
mention aspects related to time performance evaluation.

Size of consensus solutions.

MLF and ECM tend to produce similar number of communities. By contrast, GloSS
is in general much more aggressive than the other models, which causes proliferation
of communities in the co-association graph. Also, the final solution by M-EMCD∗

can differ in size from the initial consensus by CC-EMCD, due to the optimization of
modularity.

Modularity analysis.

Looking at the modularity results, besides the expected improvement by M-EMCD∗

over CC-EMCD in all cases, the following remarks stand out. First, MLF and ECM
again behave similarly in most cases, while GloSS reveals to be much weaker; this is
clearly also dependent on the tendency by GloSS of heavily pruning the co-association
graph, as discussed in the previous analysis on the size of consensus solutions. Sec-
ond, using MLF or ECM leads to higher modularity w.r.t. the best-performing global
threshold, in all networks but VC-Graders. This would support the beneficial ef-
fect deriving from the use of a model-filter for the co-association graph matrix; note
however that such results should be taken with a grain of salt, since modularity is
computed on differently prunings of the same network. Also, FAO-Trade deserves a
special mention, since its much higher multigraph density (13.97) and dimensionality
(i.e., number of layers) (cf. Table 3.1) also caused a densely connected co-association
graph, with average degree of 74, average path length of 1.67, clustering coefficient
of 0.64, and 1 connected component. This makes FAO-Trade a difficult testbed for a
community detection task, which explains the outcome reported in Table 3.2: 11 con-
sensus communities are produced when using ECM, 41 and 40 with θ-based approach
and GloSS, respectively, with most of them singletons and disconnected, and even 1
community for MLF.

It is worth noting that most of the performance gains by M-EMCD∗ over M-EMCD
are obtained for θ-based pruning, but not for model-filter pruning. This would suggest
the ability of M-EMCD∗ of achieving high quality consensus even when a refined model-
filter would not be used.

Silhouette and NMI analysis.

In terms of silhouette, the use of model-filter pruning is beneficial to both CC-EMCD
and M-EMCD∗ consensus solutions, where the latter achieve significantly higher sil-
houette in most cases. Among the filters, again MLF and ECM tend to perform closely
— with a slight prevalence of ECM — and better than GloSS (except for VC-Graders,
where the number of communities is close to the number of nodes in the co-association
graph).

Chapter 3. Consensus Community Detection in Multilayer Networks. 35

T
a
bl

e
3.

2:
Si
ze

an
d
m
od

ul
ar
it
y
(u
pp

er
ta
bl
e)

an
d
si
lh
ou

et
te

(b
ot
to
m

ta
bl
e)

of
lo
w
er
-b
ou

nd
(C

C
-E

M
C
D
)
an

d
M

-E
M

C
D
∗
co
ns
en
su
s
(i
n

br
ac
ke
ts
,w

he
n
ap

pl
ic
ab

le
,t
he

in
cr
em

en
ts

ov
er

M
-E

M
C
D
),
w
it
h
or

w
it
ho

ut
m
od

el
-fi
lt
er
s.

C
C
-E

M
C
D

m
od

ul
ar
it
y

M
-E

M
C
D
∗
m
od

ul
ar
it
y

M
-E

M
C
D
∗
#
co
m
m
un

it
ie
s

θ-
ba

se
d

M
LF

E
C
M

G
lo
SS

θ-
ba

se
d

M
LF

E
C
M

G
lo
SS

θ-
ba

se
d

M
LF

E
C
M

G
lo
SS

A
U
C
S

0.
60

0.
68

0.
66

0.
21

0.
86

(+
0.
03
)

0.
91

0.
91

0.
25

14
13

18
52

E
U
-A

ir
0.
73

0.
60

0.
60

0.
07

0.
91

0.
91

0.
90

0.
09

27
4

39
45

39
7
(-
2)

FA
O
-T
ra
de

0.
74

0.
59

0.
30

0.
20

1.
00

1.
00

0.
99

(+
0.
29
)

0.
99

(+
0.
56
)

41
(+

1)
1
(-
2)

11
(+

3)
40

(-
17
)

F
F
-T

W
-Y

T
0.
48

0.
44

0.
44

0.
05

0.
73

(+
0.
12
)

0.
94

0.
94

0.
05

11
9
(+

33
)

11
5

13
3

51
34

Lo
nd

on
0.
89

0.
85

0.
85

0.
41

0.
90

0.
97

0.
97

0.
49

(+
0.
06
)

45
46

46
34

0
(-
3)

V
C
-G

ra
de

rs
0.
22

0.
33

0.
27

-0
.0
1

0.
88

(+
0.
54
)

0.
44

0.
43

0.
03

(-
0.
01
)

3
(-
8)

16
17

26
(-
1)

C
C
-E

M
C
D

si
lh
ou

et
te

M
-E

M
C
D
∗
si
lh
ou

et
te

θ-
ba

se
d

M
LF

E
C
M

G
lo
SS

θ-
ba

se
d

M
LF

E
C
M

G
lo
SS

A
U
C
S

0.
07

0.
23

0.
28

0.
14

0.
37

(+
0.
01
)

0.
38

0.
40

0.
15

E
U
-A

ir
0.
01

0.
16

0.
18

-0
.0
5

0.
09

0.
27

0.
30

0.
04

(-
0.
02
)

FA
O
-T
ra
de

-0
.0
6

0.
01

0.
02

0.
01

0.
08

1.
00

(+
0.
91
)

0.
06

(-
0.
05
)

0.
06

(-
0.
05
)

F
F
-T

W
-Y

T
0.
00

0.
06

0.
06

0.
03

0.
00

(-
0.
04
)

0.
15

0.
12

0.
03

Lo
nd

on
0.
14

0.
06

0.
06

0.
03

0.
18

0.
20

0.
20

0.
12

(+
0.
04
)

V
C
-G

ra
de

rs
0.
24

0.
20

0.
21

0.
05

0.
52

(+
0.
23
)

0.
24

0.
28

0.
83

(+
0.
77
)

Chapter 3. Consensus Community Detection in Multilayer Networks. 36

(a) AUCS (b) EU-Air

(c) FAO-Trade (d) FF-TW-YT

(e) London (f) VC-Graders

Figure 3.3: Time performance by M-EMCD∗. Logarithmic scale is
used for the y-axis.

We also measured the NMI of M-EMCD and M-EMCD∗ model-filter consensus
solutions vs. the corresponding solutions obtained by θ-based pruning (results not
shown). NMI was found very high (above 0.8, up to 1.0) in EU-Air, AUCS, and VC-
Graders, around 0.60-0.70 in FF-TW-YT and London, and around 0.40-0.50 in FAO-
Trade. Overall, this indicates that the model-filter pruning has similar capabilities
as the best θ-based pruning in terms of community membership, though with the
advantage of not requiring parameter selection.

Time performance analysis.

We analyzed the M-EMCD∗ time performance broken down into pruning and CC-
EMCD time, modularity optimization time, and total execution time;2 the former
refers either to the execution of one of the model-filters or to the time required for
thresholding the co-association matrix based on the best-performing θ, which is in
both cases cumulated with the overall time required for generating the consensus
solution by CC-EMCD. Figure 3.3 shows results for all networks.

2Experiments were carried out on a Linux (Mint 18) machine with 2.6 GHz Intel Core i7-4720HQ
processor and 16GB ram

Chapter 3. Consensus Community Detection in Multilayer Networks. 37

We observe that the various methods lead to substantial differences in the M-
EMCD∗ performance behavior, which is only partly dependent on the number of con-
sensus communities in the respective solutions. When using the θ-based filtering, as
expected the pruning time is lower than in all the other cases, while the modular-
ity optimization performed by M-EMCD∗ is generally slower w.r.t. the optimization
time corresponding to the use of any model-filter (all networks) or at least MLF in the
largest networks (i.e., FF-TW-YT, FAO-Trade). This may happen even when the con-
sensus communities via θ-based filtering are more numerous than in the model-filter
cases, which suggests a beneficial effect of model-based pruning of the co-association
graph matrix in the modularity optimization of the multilayer community structure.

Among the model-filters, ECM appears in general to be more costly than GloSS,
and this in turn more costly than MLF. The computational gap — at least one order
of magnitude — that ECM has w.r.t. the other two filters can be explained since
its higher requirements due to its capability of preserving both degree and strength
distributions. One exception however corresponds to FAO-Trade: indeed, as previ-
ously discussed, this network has a very high density, which implies higher likelihood
of co-association of nodes to communities; this causes an increase in the number of
unit-weight edges in the MLF co-association graph, thus determining a bottleneck in
the computation of the p-value that depends on binomial distributions (see Section
1).

3.6.2 Evaluation with competing methods

Table 3.3 summarizes the increments in terms of size, modularity, silhouette (Ta-
ble 3.2), and NMI of M-EMCD∗ solutions w.r.t. the corresponding solutions obtained
by each of the competitors, by varying model-filters. For the NMI evaluation, we
distinguished two cases: the one, valid for GL, PMM, or M-Infomap, whereby the ref-
erence community structure is the solution obtained by the method in case of θ-based
pruning, with θ selected according to the best-modularity performance; the other
one, valid for ConClus, whereby we computed the average NMI over the layer-specific
community structures.

This comparative analysis was focused on the impact of using the various model-
filters on the methods’ performance. To this end, for every network and model-filter,
we first generated an ensemble of layer-specific community structures via Nerstrand,
then we built the co-association graph and applied the filter, finally we removed from
the original multilayer network the edges pruned by the model-filter, before providing
it as input to each of the competing methods.

One general remark is that M-EMCD∗ equipped with MLF or ECM outperforms all
competing methods in terms of both modularity and silhouette, and tends to produce
more communities, with very few exceptions. Concerning NMI results for the first
three methods, again the increments by M-EMCD∗ are mostly positive, thus implying
that model-filter pruning appears to be more beneficial, w.r.t. a global threshold based
pruning approach, for M-EMCD∗ than GL, followed by PMM and M-Infomap. Also, it
is interesting to observe that, with the exception of FAO-Trade for MLF and ECM,
M-EMCD∗ has average NMI of ensemble comparable to or even better than ConClus,
whose performance values are optimal in terms of NMI (i.e., the parameter threshold
corresponded to the best NMI over each network).

Chapter 3. Consensus Community Detection in Multilayer Networks. 38

Table 3.3: Increments of number of communities, modularity, silhou-
ette and NMI of M-EMCD∗ solutions, by varying model-filters, w.r.t.
corresponding solutions obtained by GL, PMM, M-Infomap, and Con-

Clus.

Gains by M-EMCD∗ vs. GL
#communities Modularity Silhouette NMI w.r.t.

θ-based pruning
MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS

AUCS +6 +8 +48 +0.09 +0.08 -0.39 +0.11 +0.10 -0.01 +0.06 +0.21 +0.47
EU-Air -23 -27 +364 +0.12 +0.11 -0.23 +0.26 +0.29 +0.08 +0.51 +0.48 +0.3

FAO-Trade -5 +4 +30 +0.53 +0.60 +0.70 +0.97 +0.07 +0.07 -0.55 -0.28 +0.21
FF-TW-YT +111 +130 +5131 +0.29 +0.27 -0.29 -0.07 -0.10 -0.05 +0.02 +0.05 +0.4
London +23 +23 +318 +0.05 +0.05 -0.42 +0.08 +0.08 -0.30 -0.14 -0.13 -0.06

VC-Graders 0 +2 +18 -0.23 -0.26 -0.40 +0.15 +0.21 +0.71 +0.3 +0.31 +0.08
Gains by M-EMCD∗ vs. PMM

#communities Modularity Silhouette NMI w.r.t.
θ-based pruning

MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS
AUCS -1 +4 +38 +0.43 +0.29 0.00 +0.12 +0.13 -0.04 +0.24 +0.26 +0.18
EU-Air -47 -41 +311 +0.66 +0.65 +0.04 +0.30 +0.33 +0.12 +0.61 +0.61 +0.47

FAO-Trade -39 -29 0 +0.91 +0.90 +0.90 +1.02 +0.06 +0.07 -0.61 -0.4 +0.06
FF-TW-YT +104 +122 +5123 +0.66 +0.60 -0.03 -0.14 -0.15 -0.12 -0.1 -0.11 -0.13
London +1 +1 +295 +0.26 +0.28 0.00 +0.03 +0.03 -0.02 +0.06 +0.07 +0.16

VC-Graders +1 +2 +11 -0.05 -0.01 -0.13 +0.25 +0.27 +0.95 +0.24 +0.2 -0.29
Gains by M-EMCD∗ vs. M-Infomap

#communities Modularity Silhouette NMI w.r.t.
θ-based pruning

MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS
AUCS +4 +4 +45 +0.18 +0.23 -0.12 +0.17 +0.11 +0.11 +0.48 +0.46 +0.38
EU-Air -255 -251 +167 +0.38 +0.37 -0.20 +0.35 +0.37 +0.18 +0.74 +0.74 +0.56

FAO-Trade 0 +10 +39 +1.00 0.00 +0.99 +2.00 +1.06 +1.06 0 +0.22 +0.66
FF-TW-YT +113 +130 +5132 +0.20 +0.24 -0.53 -0.15 -0.15 -0.23 +0.4 +0.3 +0.23
London +37 +38 +338 +0.52 +0.52 +0.05 +0.21 +0.20 +0.12 +0.39 +0.4 +0.84

VC-Graders +15 +16 +25 -0.49 -0.50 -0.58 +1.24 +1.28 +1.83 +0.66 +0.64 +0.47
Gains by M-EMCD∗ vs. ConClus

#communities Modularity Silhouette avg NMI of
ensemble

MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS MLF ECM GloSS
AUCS +5 +9 +42 +0.33 +0.38 -0.26 +0.13 +0.17 -0.11 -0.03 +0.00 +0.03
EU-Air -25 -18 +323 +0.71 +0.71 -0.07 +0.23 +0.27 +0.06 -0.05 -0.04 +0.20

FAO-Trade -16 -11 +21 +0.59 +0.77 +0.74 +0.92 -0.02 -0.01 -0.55 -0.27 +0.01
FF-TW-YT +17 +74 +4885 +0.48 +0.47 -0.33 +0.15 +0.12 +0.02 -0.06 -0.04 +0.18
London +16 +21 +298 +0.15 +0.14 -0.30 +0.09 +0.10 -0.01 +0.01 +0.02 +0.12

VC-Graders +10 +10 +20 +0.21 +0.24 -0.20 +0.09 +0.11 +0.68 +0.02 -0.04 -0.14

3.7 Chapter review

We proposed a new framework for consensus community detection in multilayer net-
works. This is designed to enhance the modularity-optimization process w.r.t. existing
EMCD method. Moreover, by exploiting parameter-free generative models for graph
pruning, our framework overcomes the dependency on a user-specified threshold for
the global denoising of the co-association graph.

39

Chapter 4

Dynamic Consensus Community
Detection in Temporal Networks.

Summary. Community detection and evolution has been largely studied in the last
few years, especially for network systems that are inherently dynamic and undergo
different types of changes in their structure and organization in communities. Be-
cause of the ineherent uncertainty and dynamicity in such network systems, we ar-
gue that temporal community detection problems can profitably be solved under a
particular class of multi-armed bandit problems, namely combinatorial multi-armed
bandit (CMAB). More specifically, we propose a CMAB-based approach to the novel
problem of dynamic consensus community detection, i.e., to compute a single com-
munity structure that is designed to encompass the whole information available in
the sequence of observed temporal snapshots of a network in order to be represen-
tative of the knowledge available from community structures at the different time
steps. Unlike existing approaches, the dynamic consensus solution has unique capa-
bility of embedding both long-term changes in the community formation and newly
observed community structures. Experimental evaluation based on publicly available
real-world and ground-truth-oriented synthetic networks, also involving competitors
based on evolutionary or consensus approaches, has confirmed the meaningfulness and
key benefits of the proposed method.

4.1 Introduction

Community detection in temporal networks is a very active field of research, which can
be leveraged for several strategic decisions, including enhanced group-recommendation,
user behavior prediction, and evolution of user interaction patterns in relation to real-
world events.

The problem of identifying the community behavior at any given time is often
jointly considered with the need for modeling the change events in the communities
and tracking their evolution [23]. While there exist various models for time-varying
network data (i.e., series of snapshots, interval graphs, or interactions), detecting,
monitoring and correlating the events of community evolution is particularly challeng-
ing. In this regard, one issue is related to making an appropriate choice of timestep
width that can provide sufficient resolution to detect temporal events. An even bigger
issue is that the community evolution events are of different type (e.g., birth/death,
growth/decay, merge/split), and may occur at different rates (i.e., smoothly or dras-
tically, at varying degrees).

Despite the variety of methodologies developed for the community detection and
evolution problem, each of the existing approaches is designed to address a limited
subset of challenges by adopting a particular perspective on the problem [44]. Some

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 40

methods provide heuristics that try to discover a sequence of mappings for the com-
munity structures independently derived at each time step; by contrast other methods
aim to detect a community structure for the current topology as dependent on the
structure(s) from prior time step(s), according to some parameter models to control
the temporal smoothness. Further strategies include updating a community structure
in order to reflect newly observed changes, or aggregating the various snapshots of the
network in order to enable a static community detection method.

All the aforementioned approaches nonetheless share the nature of graph-based
unsupervised learning paradigm to address the community detection problem. How-
ever, this may not be in principle the best way to do, primarily because of the in-
herent uncertainty about the environment, i.e., the temporal network system, and
the interactions within it, i.e., structural changes and consequent decisions to take
about the node memberships and structure of the communities. Unlike traditional
(un)supervised learning, reinforcement learning (RL) is instead conceived to learn
from interrelated actions with unknown “rewards” ahead of time, and choose which
actions to take in order to maximize the reward; in the problem under consideration
in this work, this corresponds to evaluate the benefit of making a set of node assign-
ments to communities. A further key aspect is to achieve a trade-off between making
decisions that yield high current rewards, or exploitation, and making decisions that
sacrifice current gains with the prospect of better future rewards, or exploration.

Multi-armed bandit (MAB) problems are well-suited to model the aforementioned
trade-off [112, 68]. However, they cannot be directly applied to our problem since they
deal with individual actions to take at any time. In this work, we focus on a particular
extension of MAB problems, called combinatorial multi-armed bandit (CMAB) [20,
41], in order to deal with choosing a set of actions, i.e., a set of community assignments
that constitute a whole community-structure. Moreover, the exploration-exploitation
trade-off translates into the balancing over time between the need for embedding long-
term changes observed in the community formation and the need for capturing short-
term effects and newly observed community structures. Upon this remark, we devise
the solution of the problem of community detection in a temporal network by intro-
ducing the novel concept of dynamic consensus community structure, that is, loosely
speaking, a community structure that encompasses the knowledge about newly ob-
served as well as the previously detected communities in a temporal network.

Our contributions can be summarized as follows:

• We formulate the novel problem of dynamic consensus community detection in
temporal networks, and originally define a hybrid reinforcement learning/clustering
framework based on the combinatorial MAB paradigm.

• To solve the proposed problem, we develop CreDENCE– CMAB-based Dynamic
ConsENsus Community DEtection method. This is conceived to be versatile in
terms of the static community detection approach used to identify the communi-
ties at each snapshot, and robust in terms of a number of parameters that control
the CMAB-learning rate, temporal smoothness factors, and the node-relocation
bias.

• We provide insights into technical as well as computational complexity aspects
of CreDENCE. Upon this, we propose an enhancement of CreDENCE to ensure
its linear complexity in the size of the temporal network.

• Our experimental evaluation was conducted using 5 real-world networks and
ground-truth-oriented synthetically generated networks, including comparison

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 41

with 3 competing methods. Results have provided useful indications about the
quality of the consensus solutions obtained by CreDENCE, which is able to cope
with temporal networks having different evolution rates.

4.2 Related work

In a recently published survey [23], temporal community detection methods are classi-
fied into four categories. The first one is to connect the results of community detection
tasks independently executed over the different snapshots of the network (e.g., [49,
13, 115]). The second category includes methods that detect communities at each
time based on the current snapshot and on communities found in earlier time steps
(e.g., [60, 42, 123, 125]). The third category refers to the approach of using a clas-
sic community detection method on an aggregated (i.e., multiplex) representation of
the snapshots (e.g., [93]). The fourth category assumes that the temporal network
is modeled as a series of changes in a network, and hence communities at time t are
updated according to local changes occurring at time t+ 1 (e.g., [127, 106, 1]).

Little research has been conducted on the temporal counterpart of the consen-
sus community detection problem [77, 114]. One main issue is that the consensus
community structure is to be inferred from a knowledge base (i.e., set of community
structures) that is not fully available at a given initial time, but it evolves over time
along with the associated temporal network. In [35], La Fond et al. define a repre-
sentative clustering solution determined by aggregation of multiple runs of an MCMC
algorithm. The approach is restricted to dynamic stochastic block model graphs, and
focuses on some dynamics of community only (i.e., birth, death, split, merge). Jiao
et al. [64] study the common or coincident structure in the snapshots of a temporal
network, based on the optimization of a function incorporating Markov steady-state
matrices, similarity matrices and community membership matrices. However, the ap-
proach depends on the assumption that there are same nodes and fixed number of
communities for each snapshot (resp. slice) of the temporal (resp. multiplex) net-
work. Crawford and Milenkovic [22] propose to capture inter-snapshot relationships
by grouping nodes based on regular equivalence (i.e., topological similarity), instead
of structural equivalence.

Our proposed approach is related to the second of the aforementioned categories
of temporal community detection; however, unlike methods in this category, it is de-
signed to compute a dynamic consensus structure in a time-evolving network, therefore
it is also partly related to the third category. Moreover, the proposed approach has
the following key advantages: it does not require to match and/or track the evolution
of communities over time, it does not depend on specific community-change events or
restricted graph models, and it can handle variable size of node sets and community
structures over time. Also, the consensus solution produced by our method can be
updated incrementally with information about a newly observed snapshot of the net-
work. More importantly, to the best of our knowledge, our method is the first to bring
the CMAB learning paradigm into the context of (consensus) community detection in
temporal networks.

4.3 Problem Statement

We are given a set V of entities (i.e., users) in a social environment, and a temporal
network G as a series of graphs over discrete time steps (G1, G2, . . . , Gt, . . .), where
Gt = 〈Vt, Et〉 is the graph at time t, with set of nodes Vt and set of undirected edges

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 42

Et. We denote with G≤t a series of graphs observed until time t. Each node in Vt
corresponds to a specific instance from the set Vt ⊆ V of entities that occur at time
t. The snapshot graphs can share different subsets of entities.

Given any Gt, we denote with C(t) a community structure for Gt, which is a set
of non-overlapping communities, and is assumed to be unrelated to any other C(t′)

(t′ 6= t), both in terms of number of communities and set of entities involved. We will
use the term dynamic ensemble at time t, to refer to a set of community structures
incrementally provided along with the snapshot graphs observed until time t, and we
denote it as E≤t = {C(1), . . . , C(t)}. We consider the following problem:

Problem 2 (Dynamic Consensus Community Detection (DCCD)) Given a
temporal graph sequence G≤t and associated dynamic ensemble E≤t, for any time t ≥ 1
compute a community structure, called dynamic consensus community structure and
denoted as C∗≤t such as to maximize:

R(T) =
T∑
t=1

Qt(C∗≤t)

where T is the time horizon and Qt is a chosen quality criterion for a community
structure, over the history (before t) of the network (e.g. multilayer modularity [114]).

It is worth noticing that here the focus is only on cluster membership
Given G≤t and E≤t, the representation model underlying the dynamic consensus

being discovered over time is a matrix M we call dynamic co-association (or con-
sensus) matrix (DCM). The size of this matrix is initially Vt × Vt with t = 1, and
at a generic time t is |V| × |V|. The (i, j)-th entry of M, denoted as mij , stores the
probability of co-association for entities vi, vj ∈ V, i.e., the probability that vi and vj
are assigned to the same community, in the observed timespan.

Computing meaningful co-associations for the nodes in the temporal network and
properly maintaining and updating the consensus community structure over time is
challenging. On the one hand, we want to avoid (re)computation of the consensus
from scratch, e.g., from a predetermined, finite set of community structures as in
conventional consensus community detection [77, 114]; on the other hand, we also do
not want to depend on any mechanism of tracking of the evolution of communities [23].
More importantly, the dynamic consensus community structure should be able to embed
long-term changes in the community formation as well as to capture short-term effects
and newly observed community structures.

Example 2 To support the importance of the above requirement, consider the exam-
ple in Fig. 4.1. The color-filled node forms a community in its own for a long period
(i.e., interval [t, t′]), then at time t′+1 an event occurs to occasionally bind the node to
the right-most community, finally a new event (starting at t′+2) causes the binding of
the node to the left-most community for a new long period. Notably, existing methods
for dynamic community detection, which are conceived to exploit information at the
current and at the previous timestep only, will take community-assignment decisions
that are mainly conditioned by short-term effects; for example, at any time within
[t′+2, t′′], the node’s community will be either of the two. By contrast, a community
structure that aims to be of “consensus” by incorporating long-term effects as well,
will more easily recognize the occasionality of the event at time t′+1 and may even
decide to leave the node into its own singleton.

To address the above problem, we adopt a perspective that is different from the
typical unsupervised learning approach to community detection problems. We argue

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 43

…	 …	

[t,	t’]	 t’+1	 [t’+2,	t’’]	

Figure 4.1: Three stages of the evolution of a network and its com-
munity structure (with t� t′ � t′′).

that the dynamic consensus community detection problem is well-suited to be solved
under a reinforcement learning (RL) framework [112]. If we interpret the decisions
to learn about the assignments of nodes to communities as interrelated actions, with
unknown “rewards” ahead of time, then it emerges the need for learning which actions
to take in order to maximize a “reward”, which is related to how much benefit is gained
by node assignments to communities. By learning from interactions, RL becomes
particularly useful when there is uncertainty in the learning environment: this clearly
holds in our setting due to the dynamics of the network, the evolution of its structural
changes, and consequent effect on the community structure.

Moreover, actions taken affect not only the immediate reward, but also the next
step in taking actions, and so the subsequent rewards. Thus, a further key aspect in
our problem is the dilemma between “exploitation”, i.e., making decisions that yield
high current rewards, vs. “exploration”, i.e., making decisions that sacrifice current
gains with the prospect of better future rewards. Multi-armed bandit (MAB) refers
to a class of stochastic resource allocation problems in the presence of alternative
(competing) choices, that are paradigms of the exploration-exploitation trade-off. In
this work, we focus on a particular class of MAB problems, called combinatorial multi-
armed bandit (CMAB), whose distinguishing key is in the need for choosing a set of
actions at any time.

4.3.1 Translating the problem of dynamic consensus community struc-
ture into CMAB

In our context, each pair of entities 〈vi, vj〉 in G≤t is hypothetically associated with an
unknown distribution (with unknown mean µij) for the probabilities of co-association
over time, whose mean estimate is the entry mij in DCM. Each observation of a
community structure of a snapshot network, can be considered as a sample from such
distributions. Moreover, these may change their mean over time, thus our CMAB
setting is non-stationary (cf. Sect. 2.3.1): in fact, for groups of entities which tend
to maintain their membership to stable communities over time, we will observe a
similar degree of co-association between pairs of entities belonging to the same, stable
community; however, in general, the network structure along with the communities is
subjected to several changes.

Each pair of entities 〈vi, vj〉 corresponds to a base arm, whose semantics is “to
assign vi and vj to the same community at a given time”. We will use symbol c(t)

i to
denote the community of vi at round t. A superarm A at round t is a set of arms,
i.e., a set of pairs 〈vi, vj〉 such that c(t)

i = c
(t)
j .

Playing a superarm A at each round t corresponds to a two-stage process: (i) in-
ducing a community structure from the played superarm and (ii) performing stochastic
relocation of nodes to neighbor communities. The stochastic nature of the process de-
pends on both the random order with which we consider the node relocations and on
the fact that, according to the optimization of a quality criterion, an improvement

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 44

due to relocation is accepted with a certain probability. Intuitively, this allows us to
account for uncertainty in the long-term overall quality improvement of the consensus
due to local relocations at a given time; for instance, it is unknown if the relation
that explains two users share the same community at a given time could become
meaningless in subsequent times.

After playing a superarm A, the rewards associated to the entity pairs (base arms)
corresponding to the status of communities after the relocation phase, are revealed;
these pairs include both the nodes that did not move from their community and the
arms 〈vi, vj〉 triggered with the accepted relocations, i.e., such that node vi was moved
to the community of vj . Furthermore, for the base arms that were neither selected
nor triggered (i.e., pairs of nodes that were not in the same community before and
after the relocation phase), we assume an implicit reward of zero that corresponds to
the observation of the “no-coassociation” event. (This is in line with the possibility
in CMAB of enabling the probabilistic triggering of all base arms.) The reward of
a superarm corresponds to the quality of the community structure at the end of the
relocation phase, which is a non-linear function of the base arms’ rewards. More
specifically, we resort to modularity as quality criterion for a community structure.

4.3.2 Relation between base arms and super arms

Let Xt
ij be the reward associated to the base arm corresponding to node pair 〈vi, vj〉

at time step t. The value of Xt
ij should be proportional to the "strength" of co-

association between the node pair at the end of the relocation phase. The reward of
the played superarm A (leading to the clustering C∗≤t after the stochastic relocation
of nodes) can be defined in term of the base arms’ rewards as follows:

Rt(A) =
1

d(V [1..t])

∑
c∈C∗≤t

t∑
`=1

βt−`
(
dint
` (c)− (d`(c))

2

d(V [1..t])

)
=

=
1

d(V [1..t])

∑
i,j

t∑
`=1

βt−`
(
Alij −

k`ik
`
j

d(V [1..t])

)
δ(Xt

ij)

where k`i is the degree of vi in the `-th snapshot, Alij is the (i, j)-th entry of the
adjacency matrix of the `-th snapshot graph, d(V [1..t]) is the total degree of the
multiplex graph including snapshots from the first one to the t-th (i.e., d(V [1..t]) =∑t

`=1

∑
v∈V` d(v)), d`(c) and dint

` (c) are the total degree and the internal degree of
community c, respectively, measured w.r.t. edges of the `-th snapshot network only
and δ(Xt

ij) = 1 if Xt
ij > 0, 0 otherwise. The stochastic nature of the above defined

reward is determined by the random variables Xt
ij .

Moreover, as discussed in Sect. 4.4.2, we adopt a simplified version of the above
reward equation that focuses on the latest ω snapshots of the networks.

4.4 The CreDENCE method

To solve the dynamic consensus community detection problem, we develop a CMAB-
based method called CreDENCE – CMAB-based Dynamic ConsENsus Community
DEtection, which is sketched in Algorithm 5.

Initially, the dynamic consensus matrix M is set as an identity matrix (Line 1),
which reflects that no information has been processed yet, and hence each entity-
node has co-association with itself only. At each round t, the algorithm chooses to

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 45

Figure 4.2: Overview of the CMAB-based Dynamic Consensus Com-
munity Detection method.

perform either exploration or exploitation, according to a given bandit strategy (B).
Intuitively, in the exploitation phase, we seed an oracle (i.e., a conventional method for
community detection) with the mean estimates of co-association of the current DCM
to infer the communities in the new snapshot graph observed at time t; by contrast, in
the exploration phase, the new communities are identified using the t-th graph only.
In either phase, the community structure generated at time t is finally used to produce
a superarm that will correspond to the dynamic consensus community structure up
to t (C∗≤t).

Besides the involvement of a conventional community detection method A and
a bandit strategy B to control the exploration-exploitation trade-off, we introduce
a few parameters to ensure robustness in the algorithmic scheme of CreDENCE: (i)
the learning rate α for the update of the mean estimates (i.e., mij entries), (ii) the
relocation bias λ, and (iii) the temporal smoothness factor β and window size ω to
control the amount of past knowledge for the step of node-relocations. Nonetheless,
some of these parameters are interrelated, or reasonable values can be chosen as
default.

Another remark on CreDENCE concerns its incremental nature: whenever a new
step of evolution is observed, say at T + 1, the last-update status of the DCM matrix
along with G≤T+1 will become the input for a further CMAB round. Figure 4.2
sketches an overview of CreDENCE.

4.4.1 Finding communities

At each round t, CreDENCE invokes a community detection method A. This is just
required to deal with (static) simple graphs. While in the exploration phase it directly
applies to the snapshot graph Gt (Line 4), to handle the exploitation phase, the
method should also be able to deal with weighted graphs: in this case, A is executed
on the graph GM (Line 7), which is built from the current DCM matrix in such a
way that the edge weights in GMcorrespond to the entries of M (Line 6). Next, from
the obtained partitioning CM of GM (Line 7), the knowledge about the community
memberships of entity nodes in CM is used to infer a community structure C(t) on the
snapshot graph Gt (Line 8). Each community in C(t) will have node set corresponding
to exactly one community in CM, and edge set consistent with the topology of Gt.
Also, any entity v that newly appears in Gt (i.e., v ∈ Vt ∧ v /∈ Vt′ , ∀t′ < t) and is
disconnected will form a community in its own.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 46

Algorithm 5 CMAB-based Dynamic ConsENsus Community DEtection
(CreDENCE)

Input: Temporal graph sequence G≤T (T ≥ 1), (static) community detection method
A, bandit strategy B, learning rate α ∈ (0, 1), relocation bias λ ∈ [0, 1], temporal
smoothness β ∈ (0, 1), temporal window width ω ≥ 1.

Output: Dynamic consensus community structure C∗≤T .
1: M← I|V1|×|V1|
2: for t = 1 to T do
3: if B decides for Exploration then
4: C(t) ← findCommunities(Gt,A)
5: else {Exploitation}
6: GM ← buildDCMGraph(M)
7: CM ← partitionDCMGraph(GM ,A)
8: C(t) ← inferCommunities(Gt, CM)
9: end if
10: C∗≤t ← project(C(t),G≤t)
11: C∗≤t ← evalRelocations(G≤t, C∗≤t, λ, β, ω) {Using Eq. (4.2)}
12: M← updateDCM(M, C∗≤t, α) {Using Eq. (4.3)}
13: end for
14: return C∗≤T

It should be noted that, although any method can in principle be used as A, our
preferred choice is towards efficient, modularity-optimization-based methods, such
as [7]. This is motivated for consistency with our choice of using (multiplex) mod-
ularity as quality criterion in the (consensus) community structure refinement, as
discussed in Sect. 4.4.2.

4.4.2 Generating the dynamic consensus community structure

The dynamic consensus community structure C∗≤t, for each t, is generated in two
steps. The first step (Line 10) corresponds to a simple projection of the community
memberships from C(t) onto G≤t. The second step (Line 11) corresponds to stochastic
refinement of the candidate C∗≤t obtained at the previous step. This stochastic refine-
ment is performed through local search optimization, which is designed to relocate
some nodes from their assigned community in C∗≤t to a neighboring one by acting
greedily w.r.t. a quality criterion.

As previously anticipated, one appropriate choice refers to modularity. However,
to account for the multiplexity of G≤t as well as the dynamic aspects, we revise the
definition of modularity. In particular, we parameterize the temporal window by
which the modularity context is set. The reason behind this choice is twofold: (i) to
focus on a limited number of latest snapshots of the network, and (ii) to reduce the
computational burden in the local search optimization.

Given C∗≤t, temporal-window width ω and temporal smoothness factor β, we denote
with d(V [t−ω+1..t]) the total degree of the multiplex graph including snapshots from
the t− ω + 1-th to the t-th and, for any community c, d`(c) and dint

` (c) are the total
degree and the internal degree of c, respectively, measured w.r.t. edges of the `-th

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 47

snapshot network only. We define the (ω, β)-multiplex modularity of C∗≤t as follows:

Q(C∗≤t, ω, β) =
1

d(V [t−ω+1..t])

∑
c∈C∗≤t

t−ω+1∑
`=t

βt−`
(
dint
` (c)− (d`(c))

2

d(V [t−ω+1..t])

)
(4.1)

As previously mentioned, the meaning of β is to smooth the contribution of earlier
snapshots in the computation of the quality of the dynamic consensus, i.e., lower
values of β will penalize older snapshots. It is worth noting that β may take a role
that is opposite to that of the learning rate α in Algorithm 5. Therefore, by default,
we set β = 1− α.

The local search optimization, at any time t, evaluates the possible improvement
in terms of modularity due to the relocation of nodes vi that lay on the boundary
of their assigned communities towards one of the communities that at time t contain
nodes linked to vi. By denoting with ci the initial community of a boundary node vi,
and simplifying the modularity notation with function symbol Q, the best modularity
variation, denoted as ∆Qi, corresponding to moving vi to a neighbor community is
as follows:

∆Qi = Q(ci \ {vi})−Q(ci) + max
cj∈NC

(t)
i

(Q(cj ∪ {vi})−Q(cj)) (4.2)

whereNC(t)
i denotes the set of neighbor communities for node vi at time t. If ∆Qi > 0,

then there is a single chance to accept the relocation of vi to cj with probability
1 − λe−λ∆Qi , where λ ∈ [0, 1] is a smoothing coefficient to control the bias towards
relocations. Intuitively, this allows us to account for uncertainty in the long-term
overall quality improvement of the consensus due to local relocations at a given time;
for instance, it is unknown if the relation that explains two users share the same
community at a given time could become meaningless in subsequent times.

4.4.3 Updating the dynamic consensus

The DCM-update scheme in Algorithm 5 (Lines 12) follows a standard principle in
reinforcement learning, whereby as the agent explores further, it is capable of updat-
ing its current estimate according to a general scheme of the form newEstimate ←
oldEstimate+α(target−oldEstimate), which intuitively consists in moving the cur-
rent estimate in the direction of a “target” value, with slope α. In our setting, we want
to control the update of co-associations by subtracting a quantity α of resource from
the co-associations of each node, at time t, and redistributing this quantity among
the nodes in c(t)

i , for each vi. This redistribution corresponds to the reward of a single
co-association, i.e., given vi, the reward of assigning any vj to the same community
of vi. Upon this, given α ∈ [0, 1] and any (i, j)-th entry of M, we define the update
equation as:

m
(t+1)
ij = m

(t)
ij + α

(
1

|c(t)
i |

[vj ∈ c(t)
i]−m(t)

ij

)
=

α

|c(t)
i |

[vj ∈ c(t)
i] + (1− α)m

(t)
ij (4.3)

where [x ∈ X] denotes the Iverson-bracket notation for the indicator function.
Properties of the update equation. It should be noted that the reward 1/|c(t)

i |
produces the effect of making it stronger the co-association between nodes belonging
to smaller communities. This is consistent with a major finding in a recent study pro-
posed in [61] whereby co-memberships of nodes in larger communities are statistically

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 48

less significant (than in smaller ones), because members in such communities have lim-
ited influence upon each other in the network. A further reason to favor co-associations
in smaller communities is to compensate for a typical bias relating to a tendency of
producing large communities (e.g., resolution limit in modularity-optimization based
methods). Another important property of Eq. (4.3) is the exponential smoothing of
earlier actions, with constant α [112], i.e., the update scheme leads to weight re-
cently obtained rewards more heavily than earlier ones, and the reward of a past
co-association between two nodes decreases exponentially in time.

Proposition 1 (Exponential smoothing of earlier actions) The update rule in
Eq. 4.3 ensures that the rewards of past co-association between any two nodes vi, vj
decreases by a factor (1− α)t−s, with s ≤ t.

Proof. Let us assume that nodes vi, vj are assigned to the same community and
remain therein over time. In this scenario, by repeated substitutions we derive that:

m
(t+1)
ij =

α

|c(t)
i |

+ (1− α)m
(t)
ij =

=
α

|c(t)
i |

+
(

1− α
)[α

|c(t−1)
i |

+
(

1− α
)
m

(t−1)
ij

]
=

=
α

|c(t)
i |

+
(1− α)α

|c(t−1)
i |

+ (1− α)2m
(t−1)
ij =

=
α

|c(t)
i |

+
(1− α)α

|c(t−1)
i |

+ ...+
(1− α)t−1α

|c(1)
i |

+ (1− α)tm
(1)
ij =

= (1− α)tm
(1)
ij +

t∑
s=1

(1− α)t−s
α

|c(s)
i |

Above, the last term offers evidence that the weight associated to rewards of past
co-associations decreases exponentially over time by a factor (1− α)t−s.

Proposition 2 (Stochasticity of the dynamic co-association matrix) The up-
date rule in Eq. 4.3 ensures that M is a right stochastic matrix.

Proof. Let us consider the i-th row of M, updated by means Eq. (3) at time
step t. By summing all entries in the row, we observe that:

∑
vj∈c

(t)
i

(
α

|c(t)
i |

+ (1− α)m
(t)
ij

)
+
∑
vj /∈c

(t)
i

(1− α)m
(t)
ij =

∑
vj∈c

(t)
i

α

|c(t)
i |

+
∑
vj∈c

(t)
i

(1− α)m
(t)
ij +

∑
vj /∈c

(t)
i

(1− α)m
(t)
ij =

∑
vj∈c

(t)
i

α

|c(t)
i |

+
(

1− α
) ∑
vj∈V

m
(t)
ij︸ ︷︷ ︸

1

= �
��|c(t)
i |

α

�
��|c(t)
i |

+ 1− α = 1

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 49

4.5 Computational complexity aspects

The time complexity of the basic version of CreDENCE is determined by the update
operations on M given by Eq. (3) and by the community detection step. The latter,
i.e., identifying communities in the t-th snapshot network, or in the graph GM induced
by M, can actually be solved linearly in the number of entities, when an appropriate
community detection is used [117]. As concerns the update step, we first observe that
the relocation of nodes can be executed in O(|Vt|+ ω|Et|) = O(|V|+ ω|Et|), since for
each node we look at its neighbor communities, which are bounded by the degree of
the node. Evaluating the modularity improvement (Eq. (2)) is O(ω), provided that ω
indexes are maintained to store the degree of communities for each of the last ω time
steps, and to store the number of links of v with nodes in community c at time t, for
each node v, time t and community c. Therefore, since we constraint the number of
relocation trials to be of the order of the number of nodes, the overall time cost of
relocation of nodes is O(|V|+ω|Et|). However, the update of M involves a number of
entries that is at least equal to

∑
ci∈C(t) |ci|2. This could lead to a cost that becomes

quadratic in the number of entities as soon as some of the communities have size of the
order of V. Moreover, the spatial complexity of CreDENCE is determined by number
of non-zero entries of M, which again could be quadratic in the number of entities,
due to the denseness of the matrix.

4.5.1 Speeding up CreDENCE

Maintaining and updating the DCM matrix represents a computational bottleneck of
CreDENCE, which may lead to a quadratic cost in the number of entities in case some of
the communities had size of the order of V. By definition, M can easily become dense,
yet noisy, since many co-associations may be weak (e.g., outdated co-associations),
thus corresponding to poorly significant consensus memberships.

One way to alleviate this issue is to prune the matrix by zeroing those entries that
are below a predefined threshold; in practice, this will unlikely be enough to solve
the issue. Rather, we notice that it is more appropriate to introduce a constraint of
linkage between nodes when evaluating Eq. (4.3): this is not only consistent with the
requirement of having as high density as possible within a (consensus) community
(as studied in [114]), but it will also impact on making M sparser. However, one
drawback would be the loss of symmetry in M.

We hence propose a modification to the update equation that both integrates the
linkage constraint and preserves the stochasticity property of the matrix:

m
(t+1)
ij =

α

|c(t)
i ∩N

(t)
i |

[vj ∈ c(t)
i ∩N

(t)
i] + (1− α)m

(t)
ij , (4.4)

where N (t)
i denotes the set of neighbors of vi in Gt. The entry mij now is meant

to store the strength of co-association of vi conditionally to the topological link with
vj . Moreover, the graph representation of M becomes directed: to keep the scheme
presented in Algorithm 5, we simply modify the definition of the consensus graph
GM so that the weight of an edge (vi, vj) is set as max{mij ,mji}. This allows us to
preserve the importance of a co-association between any two entities when finding a
community structure in GM .

We incorporate the above modifications into Algorithm 5 to obtain an enhanced,
efficient version of CreDENCE. It can be noticed that the time complexity of CreDENCE
now becomes O(T × (|V|+ |E≤T |)), while the spatial cost is determined by the size of
M, i.e., O(|E≤T |), with E≤T =

⋃T
t=1Et.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 50

4.6 Evaluation methodology

Real-world networks. Epinions [87] is the trust and distrust network of Epinions,
an online product rating site. For this network we discarded the orientation of edges.

Facebook [122] contains friendship data of Facebook users, where each undirected
edge expresses the birth of a friendship between two users in the online platform. The
dataset refers to the period from September 2006 to January 2009, with some edges
having unknown timestamp. Because these edges are the majority in the dataset, we
decided to not discard them and associated them the smallest timestamp (i.e. August
2006). We firstly aggregated the edges by month but, because each edge appeared
only in one snapshot, we built a cumulative version of the network which consists in
projecting each edge from the month in which it appeared to all next ones.

Wiki-Conflict [12] refers to conflicts between users of the English Wikipedia, as
users involved in a edit-war of a page. Each edge represents a conflict between two
users, with the edge sign representing positive and negative interactions. An example
for a negative interaction would be when one user revert the edit of another user. In
our context, we removed the sign of edges and considered only the related timestamps
aggregated by month, joining the first 6 snapshots (from 8-2001 to 1-2002) and the 5
snapshots from 3-2002 to 7-2002 because they contained a few edges. We also removed
self-loops, which occasionally occurred in some snapshots.

Wiki-Elections [79] is the network of users from the English Wikipedia that voted
for and against each other in admin elections. We did not consider orientation and
sign of edges. We split the networks by month, aggregated the first 4 snapshots (from
3-2004 to 6-2004) that contains very few links, and finally removed the edges with
timestamp after 2050 which were included in the original version of the network [79].

YouTube [90] refers to the friendship data of the social network of YouTube. For
this dataset, as in Facebook, we built a cumulative network for our evaluation.

Table 4.1 reports statistics for each evaluation network. Note that with terms
‘static’, ‘hapax’, and ‘dynamic’ we mean nodes/edges that are present in all snapshots,
present in only one snapshot, and present in multiple, not necessarily contiguous
snapshots, respectively. Also, symbols e+

t and e−t refer to the fraction of new edges
and disappeared edges, respectively, when transitioning from the t-1-th to the t-th
snapshot; analogously for nodes corresponding to symbols v+

t , v
−
t . Note that, while

the friendship-based networks (i.e., Facebook and YouTube) evolve very smoothly, the
other selected networks undergo to drastic changes in terms of disappearing/appearing
edges and nodes.

Synthetic networks. We also used synthetic networks generated through
RDyn [105], which is designed to handle community dynamics and change events
(merge/split). Starting from an initial community structure, it simulates some edge
events to change the community structure over time. RDyn adopts the notion of
stable iteration to mimic ground-truth communities; in particular, when a commu-
nity structure reaches a minimum quality (i.e., conductance), then it is recognized
as ground-truth. We believe that the latter property of RDyn is important since it
fills a lack in the literature about the unavailablilty of ground-truth data for (large)
time-evolving multilayer networks.

When using RDyn, almost all parameters related to the dynamics of the net-
work were set with their default values. Moreover, because the generator outputs the
ground-truth communities only for the stable iterations (which are fewer than the
number of specified snapshots), we adopted the communities at the previous stable
iteration as ground-truth community structure.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 51

Table 4.1: Main characteristics (after preprocessing) of our evalua-
tion data. Mean ± standard deviation values refer to all snapshots in

a network.

#entities #edges #time node set edge % static % hapax % dynamic
(|V|) steps coverage semantics (nodes, edges) (nodes, edges) (nodes, edges)

Epinions 131 828 727 344 32 0.05 trust/distrust (0.1, 0) (80.8, 95.6) (19, 2.2)
Facebook 63 731 17 676 817 30 0.87 friendship birth (82.9, 2.7) (0.2, 0) (16.9, 1.9)
Wiki-Conflict 118 100 2 272 276 82 0.05 wikipage editing (0, 0) (60.1, 83.4) (38.9, 5.8)
Wiki-Election 7 118 102 906 44 0.08 vote assignment (0, 0) (49.7, 95.7) (50.3, 2.2)
YouTube 3 223 589 41 955 741 8 0.62 friendship birth (33.4, 6.7) (12.4, 4) (54.2, 11.6)

network evolution rate
e+
t = |Et\Et−1|

|Et| e−t = |Et−1\Et|
|Et−1| v+

t = |Vt\Vt−1|
|Vt| v−t = |Vt−1\Vt|

|Vt−1|

Epinions 0.97 ± 0.007 0.98 ± 0.008 0.65 ± 0.08 0.69 ± 0.06
Facebook 0.02 ± 0.01 0 0.006 ± 0.006 0
Wiki-Conflict 0.95 ± 0.02 0.95 ± 0.02 0.52 ± 0.1 0.51 ± 0.12
Wiki-Election 0.99 ± 0.004 0.99 ± 0.005 0.5 ± 0.07 0.49 ± 0.08
YouTube 0.16 ± 0.06 0 0.14 ± 0.06 0

Competing methods. We conducted a comparative evaluation of CreDENCE
with the following three methods.

• DynLouvain [60]: it applies Louvain method [7] to a condensed network based
on the topology of the snapshot at current time t and community structure at
time t-1.

• EvoAutoLeaders [42]: this is an evolutionary method based on a notion of com-
munity as a set of follower nodes congregating close to a potential leader (i.e.,
the most central node in the community).

• M-EMCD∗ [86]: this is a parameter-free enhanced version of the consensus-based
method in [114], which filters noisy co-associations via marginal likelihood filter
and optimize the multilayer modularity of the consensus w.r.t. a static ensemble
of community structures.

Our choice of competitors relies on the following: (i) the methods are represen-
tative of the second category (DynLouvain and EvoAutoLeaders) and third category
(M-EMCD∗) of dynamic community detection approaches (cf. Sect. 4.2), to which
CreDENCE is close too; also like CreDENCE, (ii) they are based on modularity opti-
mization and (iii) do not require an input number of communities.

Evaluation settings. We varied the learning rate α in {0.15, 0.5, 0.85} ∪ {α∗},
where α∗ is an adaptive learning rate set to the fraction of times a base arms is used,
and the temporal-window width ω from 2 to 10; however, unless otherwise specified,
we used the setting ω = 2, β = 1−α to emphasize the importance of few, more recent
snapshots. We set the relocation bias λ to 0, i.e., a relocation is accepted if it leads
to an improvement in modularity (Eq. (4.2)).

To detect communities from each snapshot (i.e., A in Algorithm 5), we used the
classic Louvain method [7]. This choice is not only consistent with our modularity-
optimization-based relocation phase, but also with the choice of static algorithm in
most approaches for dynamic community detection [23].

As for the bandit strategy B, we resorted to ε-greedy, i.e., with a small probability
ε we take an exploration step, otherwise (i.e., with probability 1− ε) an exploitation
step. We set ε = 0.1, which revealed to lead to a suitable trade-off for our networks,
which have different evolution rates.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 52

1 4 8 12 16 20 24 28 32
timestep

105

2 × 104

3 × 104
4 × 104

6 × 104

#c
om

m
un

iti
es =0.15

=0.5
=0.85
= *

1 4 8 12 16 20 24 28
timestep

103

104

#c
om

m
un

iti
es

=0.15
=0.5
=0.85
= *

1 10 20 30 40 50 60 70 80
timestep

105

3 × 104

4 × 104

6 × 104

#c
om

m
un

iti
es

=0.15
=0.5
=0.85
= *

(a) Epinions (b) Facebook (c) Wiki-Conflict

1 5 10 15 20 25 30 35 40
timestep

103

2 × 103

3 × 103
4 × 103

6 × 103

#c
om

m
un

iti
es

=0.15
=0.5
=0.85
= *

1 2 3 4 5 6 7 8
timestep

106

#c
om

m
un

iti
es

=0.15
=0.5
=0.85
= *

(d) Wiki-Election (e) Youtube

Figure 4.3: Size of the dynamic consensus community structures
(singleton disconnected communities included)

4.7 Results

We present our main results, whereby performance scores obtained by CreDENCE
correspond to the average over 100 runs, in order to avoid sensitivity issues due to
the randomness in the interleaving of exploration-exploitation phases.

4.7.1 Impact of learning rate

Consensus size. Figure 4.3 shows the consensus size over time, for different α. One
premise here is that the static community detection method applied on each snaphot
(cf. Sect. 4.6) produced a huge number of communities, which is clearly expected
considering the characteristics of our real-world networks; this clearly impacted on
the consensus size as well. Looking at the plots, we observe that the number of
detected consensus communities generally increases for higher values of α, because this
more quickly leads to lose memory of past co-associations, thus causing proliferation
of communities in the consensus solution. Moreover, on the networks having high
rate of structural change (in terms of both node and edge sets), the trends for the
various settings of α tend to deviate in correspondence of the time steps associated
with most change events; by contrast, in the friendship-based networks (i.e., Facebook
and YouTube), which are characterized by a much smoother evolution, the temporal
trends of consensus size are similar w.r.t. the various α.

Multilayer modularity. Figure 4.4 shows multilayer modularity [114] results
by varying α. Lower values of α generally lead to higher modularity except for Face-
book and YouTube networks. This is explained since, in the networks having high
rate of structural change, a lower learning rate helps remember past co-associations,
thus information about older snapshots. Moreover, in such networks we observe a
decreasing trend in modularity since the consensus must embed an increasing number
of snapshots, each very different from the others (cf. Table 4.1). By contrast, for

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 53

1 4 8 12 16 20 24 28 32
timestep

0.1

0.2

0.3

0.4
m

od
ul

ar
ity

=0.15
=0.5
=0.85
= *

1 4 8 12 16 20 24 28 32
timestep

0.80

0.85

0.90

0.95

1.00

NM
I

=0.15
=0.5
=0.85
= *

(a) (b)

1 4 8 12 16 20 24 28
timestep

0.60

0.65

0.70

0.75

0.80

m
od

ul
ar

ity =0.15
=0.5
=0.85
= *

1 4 8 12 16 20 24 28
timestep

0.6

0.7

0.8

NM
I =0.15

=0.5
=0.85
= *

(c) (d)

1 10 20 30 40 50 60 70 80
timestep

0.2

0.4

0.6

0.8

m
od

ul
ar

ity =0.15
=0.5
=0.85
= *

1 10 20 30 40 50 60 70 80
timestep

0.80

0.85

0.90

0.95

1.00

NM
I =0.15

=0.5
=0.85
= *

(e) (f)

1 2 3 4 5 6 7 8
timestep

0.60

0.65

0.70

0.75

m
od

ul
ar

ity =0.15
=0.5
=0.85
= *

1 2 3 4 5 6 7 8
timestep

0.4
0.5
0.6
0.7
0.8
0.9

NM
I =0.15

=0.5
=0.85
= *

(g) (h)

Figure 4.4: Multilayer modularity of the CreDENCE solutions (left-
most plots) and NMI between the CreDENCE consensus community
structure and the snapshot’s community structure, at each t (right-
most plots): (a)-(b) Epinions, (c)-(d) Facebook, (e)-(f) Wiki-Conflict,

(g)-(h) YouTube.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 54

1 4 8 12 16 20 24 28 32
timestep

0.80

0.85

0.90

0.95

av
g.

 N
M

I

=0.15
=0.5
=0.85
= *

1 4 8 12 16 20 24 28
timestep

0.6

0.7

0.8

av
g.

 N
M

I

=0.15
=0.5
=0.85
= *

1 10 20 30 40 50 60 70 80
timestep

0.80

0.85

0.90

0.95

1.00

av
g.

 N
M

I

=0.15
=0.5
=0.85
= *

(a) Epinions (b) Facebook (c) Wiki-Conflict

1 5 10 15 20 25 30 35 40
timestep

0.85

0.90

0.95

1.00

av
g.

 N
M

I

=0.15
=0.5
=0.85
= *

1 2 3 4 5 6 7 8
timestep

0.6

0.7

0.8

0.9

av
g.

 N
M

I

=0.15
=0.5
=0.85
= *

(d) Wiki-Election (e) Youtube

Figure 4.5: Average cumulative NMI between the dynamic consensus
community structures

1 10 20 30
timestep

0.2

0.0

0.2

0.4

av
g.

 p
er

m
an

en
ce =0.15

=0.5
=0.85
= *

1 10 20 30
timestep

0.2

0.0

0.2

0.4

av
g.

 p
er

m
an

en
ce =0.15

=0.5
=0.85
= *

1 20 40 60 80
timestep

0.4

0.2

0.0

0.2

0.4

0.6

av
g.

 p
er

m
an

en
ce =0.15

=0.5
=0.85
= *

(a) Epinions (b) Facebook (c) Wiki-Conflict

1 10 20 30 40
timestep

0.50

0.25

0.00

0.25

0.50

0.75

av
g.

 p
er

m
an

en
ce =0.15

=0.5
=0.85
= *

1 2 3 4 5 6 7 8
timestep

0.45

0.50

0.55

0.60

0.65

av
g.

 p
er

m
an

en
ce

=0.15
=0.5
=0.85
= *

(d) Wiki-Election (e) Youtube

Figure 4.6: Average cumulative permanence of the dynamic consen-
sus community structures

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 55

Facebook and YouTube, a high learning rate reveals to be beneficial to discovering
consensus communities with higher modularity.

NMI. We measured the NMI [111] between the dynamic consensus and the
community structure of snapshot, for each time step (Fig. 4.4). As expected, the two
structures are more similar (i.e., higher NMI values) as α increases, which implies
weighting more the current snapshot in the consensus generation. Analogous remarks
were drawn for the average cumulative NMI, which is computed at each t by averaging
the NMI between the dynamic consensus at t and the community structures over all
snapshots at any time t′ ≤ t (Figure 4.5).

Permanence. Moreover, we include a further validation criterion, namely perma-
nence [18]. Like modularity, permanence is an internal validation criterion, however,
as opposed to modularity, it is based on local node-centric properties (i.e., node’s
connectedness, node’s cohesiveness, node’s external pull), such as the permanence of
a node quantifies its propensity to remain in its assigned community and the extent to
which it is pulled by the neighboring communities. Global permanence will be closer
to 1 as more vertices have high permanence, that is more vertices are in well-defined
communities. Like for NMI, we will present average cumulative permanence results,
i.e., we computed the global permanence of the solution produced at time t over the
network snapshots at times t′ ≤ t and averaged to get the final permanence values.

Figure 4.6 shows the impact of the learning rate on the average global perma-
nence of the computed dynamic consensus community structures. As for modularity
results, lower values of α (and remarkably with the adaptive setting α∗) generally
lead to higher average permanence except for Facebook and YouTube networks. This
is explained since, in the networks having high rate of structural change, a lower
constant learning rate helps remember past co-associations, thus information about
older snapshots. Moreover, in such networks we observe a decreasing trend in average
permanence since the consensus must embed an increasing number of snapshots, each
very different from the others (cf. Table 4.1). By contrast, for Facebook and YouTube,
a high learning rate reveals to be beneficial to discovering consensus communities with
higher average permanence.

4.7.2 Impact of temporal-window width

To understand the effect of varying ω on the CreDENCE behavior, we focused on
combining various settings of this parameter with the configuration α = 0.15, in order
to ensure keeping more information about past snapshots in the dynamic consensus
while looking backward for the refinement phase (results shown in Figure 4.7).

One general remark is that, regardless of the trend specific for each measure, higher
values of ω actually lead to better multilayer modularity (this is expected since higher
ω enables the relocation phase to optimize a quality criterion that is closer to the
measured multilayer-modularity); nonetheless, modularity improvements are found to
be negligible as ω > 4. Even better, no evident differences are instead observed in
terms of NMI and number of consensus communities. This indicates robustness of
CreDENCE with variation of the ω parameter.

4.7.3 Efficiency evaluation

To assess the scalability of CreDENCE, we used RDyn [105] to generate different
synthetic networks by varying the number of snapshots and community events.1

1Experiments were carried out on a Linux (Mint 18) machine with 2.6 GHz Intel Core i7-4720HQ
processor and 16GB ram

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 56

1 4 8 12 16 20 24 28 32
timestep

0.2

0.3

0.4
m

od
ul

ar
ity

=2
=4
=6
=8
=10

1 4 8 12 16 20 24 28 32
timestep

2 × 104

#c
om

m
un

iti
es

=2
=4
=6
=8
=10

1 4 8 12 16 20 24 28 32
timestep

0.82

0.84

0.86

0.88

0.90

NM
I

=2
=4
=6
=8
=10

(a) (b) (c)

1 4 8 12 16 20 24 28
timestep

0.60

0.65

0.70

0.75

0.80

m
od

ul
ar

ity =2
=4
=6
=8
=10

1 4 8 12 16 20 24 28
timestep

103

2 × 103

3 × 103

#c
om

m
un

iti
es

=2
=4
=6
=8
=10

1 4 8 12 16 20 24 28
timestep

0.55

0.60

0.65

0.70

0.75

NM
I

=2
=4
=6
=8
=10

(d) (e) (f)

1 10 20 30 40 50 60 70 80
timestep

0.4

0.6

0.8

m
od

ul
ar

ity =2
=4
=6
=8
=10

1 10 20 30 40 50 60 70 80
timestep

102

103

104

#c
om

m
un

iti
es =2

=4
=6
=8
=10

1 10 20 30 40 50 60 70 80
timestep

0.85

0.90

0.95

1.00

NM
I

=2
=4
=6
=8
=10

(g) (h) (i)

1 5 10 15 20 25 30 35 40
timestep

0.2

0.4

0.6

m
od

ul
ar

ity =2
=4
=6
=8
=10

1 5 10 15 20 25 30 35 40
timestep

101

102

#c
om

m
un

iti
es =2

=4
=6
=8
=10

1 5 10 15 20 25 30 35 40
timestep

0.90

0.95

1.00

NM
I

=2
=4
=6
=8
=10

(j) (k) (l)

Figure 4.7: Performance by varying temporal-window width (ω):
(a)-(b)-(c) Epinions, (d)-(e)-(f) Facebook, (g)-(h)-(i) Wiki-Conflict,

(j)-(k)-(l) Wiki-Election.

200 400 600 800 1000
#timesteps

20

40

60

tim
e

(s
)

=0.15
=0.5
=0.85
= *

200 400 600 800 1000
#timesteps

20

40

60

80

100

tim
e

(s
)

=0.15
=0.5
=0.85
= *

200 400 600 800 1000
#timesteps

20

40

60

tim
e

(s
)

#events=10
#events=30
#events=50

(a) 10 events (b) 50 events (c) α = 0.85

Figure 4.8: Time performance on RDyn synthetic networks

The plots in Fig. 4.8(a)–(b) report the execution times for different settings of
α, over a temporal network with 1K entities, 1K time steps, and change rate of 10,
resp. 50, community events. In all cases, CreDENCE scales linearly with the number of
considered timesteps, which is consistent with our complexity analysis (cf. Sect. 4.5.1).
We also observe that the execution time is generally higher for the adaptive learning

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 57

Table 4.2: Increment percentages of CreDENCE w.r.t. DynLouvain
and M-EMCD∗. Values correspond to the increment percentages aver-
aged over all snapshots in a network, using the average best-performing

α.

DynLouvain M-EMCD∗

Modularity NMI Modularity NMI
Epinions 1789.0% -2.2% 13.9% 37.6%

Facebook 3.5% 9.4% 60.0% 37.5%

Wiki-Conflict > 1.0E+05% -1.8% -6.8% 37.6%

Wiki-Election 660.5% -2.1% 32.0% 58.5%

YouTube -0.1% 8.4% 21.1% 11.6%

RDyn 2.0% 24.97% 103.22% 81.1%

rate α∗ as well as for lower values of α (i.e., as the past co-associations are preserved
longer), thus making the DCMmatrix denser and more costly to process. Figure 4.8(c)
shows the execution times of our method with α = 0.85, on three different synthetic
networks all of 1K entities, 1K snapshots, and with 10, 30, 50 community events,
respectively. As expected, the higher the evolution rate, the higher the execution time;
nonetheless, CreDENCE shows again to scale linearly with the size of the network.

4.7.4 Comparison with competing methods

Table 4.2 and Fig. 4.9 compare CreDENCE with the other methods.Concerning mod-
ularity results, our method outperforms both DynLouvain and M-EMCD∗, where per-
formance gains vs. the former (resp. latter) are outstanding for networks with high
(resp. low) rate of structural change. NMI by CreDENCE is always significantly higher
than the competitors’ ones, especially against M-EMCD∗; one exception is represented
by a gap of just 2% w.r.t. DynLouvain for three networks with high evolution rate.
The latter fact can be explained since DynLouvain only accounts for the most recent
two snaphots thus it is able to better capture the community structure of the current
snapshots (against which NMI is computed) also for networks with high evolution rate.
On the contrary, CreDENCE accounts in the consensus generation also for long-term
communities information which decreases, especially in networks with high evolution
rate, its possibility to generate solutions which are similar to the community structure
of the snapshots. Moreover, we emphasize that CreDENCE also outperforms the evo-
lutionary EvoAutoLeaders, as long as the competitor results were available—indeed, it
incurred in processing-time issues (tens hours) in all networks but the smallest ones,
i.e., Wiki-Election and RDyn.

4.8 Chapter review

In this chapter, we proposed CreDENCE, a CMAB-based method for the problem of
dynamic consensus community detection in temporal networks. Experimental evi-
dence on real and synthetic networks has shown the meaningfulness of the consensus
solutions produced by CreDENCE, also revealing its unique ability of dealing with
temporal networks that can have different evolution rate.

We plan to further investigate on the impact of different bandit strategies (e.g.,
UCB, Thompson sampling), and on learning our model parameters to best fit the
community structure and evolution in a given temporal network.

Chapter 4. Dynamic Consensus Community Detection in Temporal Networks. 58

1 200 400 600 800 1000
timestep

0.0

0.2

0.4

0.6

0.8

m
od

ul
ar

ity DynLouvain
EvoAutoLeaders
M-EMCD*

=0.15
=0.85

1 200 400 600 800 1000
timestep

0.3

0.4

0.5

0.6

0.7

0.8

NM
I

=0.15
=0.85

DynLouvain
M-EMCD*
EvoAutoLeaders

(a) (b)

1 10 20 30 40
timestep

0.0

0.2

0.4

0.6

0.8

m
od

ul
ar

ity

=0.15
=0.85

DynLouvain
M-EMCD*
EvoAutoLeaders

1 10 20 30 40
timestep

0.2

0.4

0.6

0.8

1.0

NM
I

=0.15
=0.85

DynLouvain
M-EMCD*
EvoAutoLeaders

(c) (d)

Figure 4.9: Competing methods vs. CreDENCE on (a)-(b) RDyn
network and (b)-(c) Wiki-Election.

59

Chapter 5

Trust Network Inference.

Summary. Trust inference is essential in a plethora of data mining and machine
learning applications. Unfortunately, conventional approaches to trust inference as-
sume trust networks are available, while in practice they must be derived from social
network features. This is however a difficult task which has to cope with challenges
relating to scarcity, redundancy and noise in the available user interactions and other
social network features. In this work, we introduce the new problem of Trust Network
Inference (TNI), that is, inferring a trust network from a sequence of timestamped
interaction networks. To solve the TNI problem, we propose a principled approach
based on a preference learning paradigm, under a preference-based racing formulation.
The proposed approach is suitable for addressing the above challenges, moreover it is
versatile (i.e., independent from the social network platform) and flexible w.r.t. the
use of topological and content-based information. Extensive experimental evaluation
focusing on two distinct ground-truth scenarios, has provided evidence of the mean-
ingfulness and uniqueness of our TNI approach, which can be regarded as key-enabling
for any application that requires to handle a trust network associated with a social
environment.

5.1 Introduction

The term trust-based social network, or simply trust network, commonly refers to a
graph of entities (i.e., individuals) that are linked through asymmetric relationships
that correspond to subjective trust statements. Given a trust network, trust infer-
ence is the task of predicting a new relation between two nodes, so that the locally
inferred trust score can be regarded as a personalized opinion of one user (trustor)
with respect to another user (trustee). Trust inference is an essential task in many
data analysis and machine learning applications, from social influence propagation
and opinion spreading to recommender systems and privacy preserving, whose impact
extends also to peer-to-peer networks and mobile ad-hoc networks [109].

Challenges in trust inference. The conventional approach to trust inference
is to compute the trust between any two non-adjacent nodes in a trust network by
considering the different paths from one node to the other, as well as strategies for
trust propagation and for aggregating the propagated trust values through different
paths [109, 126]. Unfortunately, all existing trust-inference approaches rely on the as-
sumption that a trust network has been already formed, while in reality trust networks
are not naturally available. Rather, trust relations must first be determined from the
available information in a social environment, e.g., the history of users’ activities and
their interactions. The latter can be modeled through a temporal graph where each
snapshot graph describes users’ interactions at a particulare time. However, comput-
ing trust relationships by considering interactions as a proxy for trust may represent
a risk in some practical cases, e.g. in disassortative graphs where nodes of different

Chapter 5. Trust Network Inference. 60

groups are connected, while within the groups the connections are sparse. For exam-
ple, fraudsters in transaction networks are more likely to be connected to accomplices
than to other fraudsters. In this case, fraudsters form heterophilic connections with
the nodes of accomplices.

Computing trust relations is however a particularly difficult task, because of a
number of challenges that already arise at data source level (i.e., not considering the
inevitable bias of the particular algorithmic solution to the problem). In fact, the
amount of information representing the observed interactions and activities of users
in a social network, could be limited in size as well as in quality. More specifically, a
social network may contain a significant amount of redundant or irrelevant relations
as well as noise in the information that express the strength of interaction between
any two users.

Contributions. In this work, we face the above challenges by addressing a new
problem we named Trust Network Inference (TNI). Given a sequence of timestamped
interaction networks as input, the goal of TNI is to infer from this sequence a directed
weighted network, whose nodes are the users in the temporal networks and links
denote trust relationships with associated trust scores.

It should be emphasized that in TNI there is no dependency on existing trust
relations to make predictions on trustworthiness scores or on new trust relations.
Therefore, TNI emerges as a divergence from the conventional trust inference and
trust link prediction problems (e.g., [46, 88, 82, 63]). Also, TNI differs from trust
ranking methods (e.g., [55, 94, 48]), since in TNI the building of trust relations is
extended to all nodes in a network, not only to the most trusted or reputable ones.
Furthermore, our TNI problem is different from the one treated in [33], which considers
trustworthiness and untrustworthiness inference through clustering all entities into two
groups (i.e., good and misbehaved), under various representative attack models.

We propose to solve the TNI problem based on a generalized preference learning
paradigm. We believe that preference learning provides key advantages in addressing
all the aforementioned issues, i.e., limitedness, redundancy and noisy of the informa-
tion about the users’ interactions from which a trust network is to be inferred. More
specifically, under a preference-based top-k selection problem, our proposed approach
aims to find a ranking of the preferential pairings that each target entity would choose
to form its trust relationships. To this purpose, we resort to an adaptive sampling
strategy, and instatiate it according to three canonical ranking models that corre-
spond to different levels of ranking pairwise preferences. One further key feature of
our approach is domain-independency, as it does not rely on platform-specific types of
user interactions. Nonetheless, our approach is designed to exploit both topological
information and, when available, content information relating to the user interaction
dynamics.

Evaluating inferred trust relations and associated scores is another critical aspect
in research contexts related to trust computing. In this work, we also cope with such a
challenge and devise two scenarios based on distinct notions of ground-truth: the one
referring to the availability of trust classes (i.e., cohesive groups of mutually trusted
users), and the other corresponding to the availability of a reference trust network. Our
extensive, ground-truth-driven experimental evaluation has shown the meaningfulness
of our proposed approach in both evaluation scenarios, on several dynamic interaction
networks and against competing methods.

Plan of the chapter. The remainder of this chapter is organized as follows.
Section 5.2 briefly discusses related work on trust inference — note that, given the
relative novelty of the TNI problem under consideration, we shall provide a deliber-
ately concise summary of major existing notions and approaches to trust inference,

Chapter 5. Trust Network Inference. 61

without any ambition to survey methods for trust computing. Section 5.3 introduces
the problem of Trust Network Inference, and Section 5.4 describes our proposed ap-
proach. Sections 5.5 and 5.6 present methodology, data and results of our experimental
evaluation. Finally, Section 5.7 concludes the chapter.

5.2 Related work on trust inference

Trust inference has attracted much attention in data mining and related fields, and
a variety of studies have been proposed in literature [109]. One way of interpreting
the problem of trust inference is to model it in terms of either edge feature or node
feature, a.k.a. “local” and “global” trust computing. In the first case, a trust relation
is to be created for any two non-adjacent nodes in a network, through a mechanism
of inference, resp. prediction, if the network is modeled on existing trust relations
(i.e., it is a trust network) (e.g., [46, 88, 82, 63]), resp. on social network features
(e.g., [9, 116]). Conversely, trust inference at node-level corresponds to computing a
trust score for each node in a network, and hence it is more appropriately regarded
as a trust-oriented global ranking of the users, which can be useful to build trust
communities [94], or in general to discriminate between objectively trust and distrust
entities in a network (e.g., [55, 99, 48]).

Our work refers to the local-trust computing perspective. However, as already
mentioned in the Introduction, we address the trust network inference problem, for
which the trust network is the output, rather than the input as in conventional trust
inference approaches. Note also that our work is substantially different from previous
attempts to TNI-related problems, such as [63]: in that work, a user-domain-based
trusted acquaintance chain discovery algorithm is developed to make the computa-
tion of short trusted paths more efficient; however, unlike our approach, the method
in [63] strongly depends on the definition of domains/categories for the content in the
input social network. Also, our inference problem is different from the one considered
in [33], which assumes that all entities are clustered into two groups (i.e., good and
misbehaved entities), and a belief propagation method is developed to estimate that
one entity belongs to different groups, simultaneously inferring its trustworthiness
and untrustworthiness values, according to different attack models in interactional
networks.

5.3 Problem statement

We are given a set V of entities in a social environment (i.e., users), and a temporal
network G as a series of graphs over discrete time steps (G1, G2, . . . , GT), with time
horizon T , where Gt = 〈Vt, Et, wt〉, with 1 ≤ t ≤ T , is the graph at time t, with set
of nodes Vt and set of directed edges Et. Each node in Vt corresponds to a specific
instance from the subset Vt of entities that occur at time t. Note that entities might
occasionally appear and disappear in different time steps. Each edge e = (vi, vj) ∈ Et
corresponds to an observed interaction between nodes vi, vj , which can be of different
type depending on the specific functionalities and information available from the online
social environment under consideration (e.g., mentions, answers/replies, re-posts, etc).
The snapshot graphs Gt are also associated with an edge weighting function wt(·) to
quantify the strength of each interaction; by default, the weight of an edge is set to 1.

We consider the Trust Network Inference (TNI) problem, that is, generating a new
network from interactional dynamics observed through G, whose nodes correspond to
the entities V in G and links are inferred to denote a trust/distrust relationship between

Chapter 5. Trust Network Inference. 62

TNI

PDPP PBR
Compute

trust
edge-weights

Figure 5.1: Overview of our proposed framework for trust network
inference

any two entities that satisfy certain relational constraints. Such constraints are meant
to be specified w.r.t. a predetermined scheme of selection of trust-context, denoted
as C.

The trust-context is a model for inducing a subgraph of G from each entity v,
denoted as Cv, whose structural expansion intuitively corresponds to the extent of
trust that v can exert towards other entities. Note that the induced trust-context
subgraphs of any two entities are not to be necessarily disjoint.

We will refer to the trust network inferred from G, w.r.t. a trust-context scheme
C, as a weighted directed graph T = 〈V, E , ω〉, with set of trust links E =

⋃
v∈V Ev,

where Ev is a set of edges between entities in the node-set of the induced subgraph
Cv for v in accord with C, and ω : E → [0, 1] is a weighting function that specifies the
trust level of each link, where 0 means total lack of trust (i.e., distrust) and 1 means
fully trust from a source to a target node. We intuitively formulate the TNI problem
as follows:

Problem 3 (Trust Network Inference (TNI)) Given a temporal network G built
over interactions observed in a time period T between entities in a set V, and given
a trust-context scheme C, infer a trust network T for all entities in V by exploiting
the topological information available from each snapshot of G (along with, optionally,
content-based information of the interactions) according to the trust-context scheme
C.

5.4 Our proposed method for Trust Network Inference

We propose to solve the TNI problem through a generalization of the preference-
based top-k selection problem over each entity in the input temporal network. Next,
we provide background on that, then we discuss details on our proposal. Table 5.1
summarizes main notations used throughout the rest of the chapter.

5.4.1 The TNI algorithm

Given a temporal network G, we solve the TNI problem as a generalized preference-
based top-k selection problem, for each entity in G, under constraints given by a
predefined trust-context scheme C. The model C is used to determine the options O
for pairing each target entity with its “trustworthy” entities.

Our idea is to generate the edges and associated scores of the trust network to
be inferred on the basis of the solution of a preference-based racing (PBR) algorithm
applied to each target entity. PBR is a particular approach to the top-k selection
problem based on an adaptive sampling strategy.

Chapter 5. Trust Network Inference. 63

Table 5.1: Main notations and their descriptions

symbol description
G; Gt = 〈Vt, Et, wt〉 series of graphs; graph at time t
V; Vt set of entities or actors in G; in Gt
T = 〈V, E , ω〉 trust network (to be inferred from G)
C; Cv trust-context model; trust-context (induced

subgraph) for entity v
o; O option; set of options (alternatives)
N ; k total (resp. selected) number of options
R ranking model
≺R strict preference order relation

over a pair of options, according to R
CO Copeland’s ranking model
SE sum-of-expectations ranking model
RW random-walk ranking model
1− δ predefined confidence (for the top-k

selection problem)
Yi,j random variable associated to

comparison of oi with oj
y

(t)
i,j t-th observed outcome of Yi,j

Y preference relation matrix
nmax number of samplings for each pairwise

preference probability distribution Yi,j
sim

(t)
S ; sim(t)

C structural (resp. content) affinity function
for node comparison in Gt

α smoothing parameter to weight sim(t)
C

w.r.t. sim(t)
S

Algorithm 6 Trust Network Inference(G=(G1, ., GT), C, R, k, nmax, δ)

1: Υ← ∅
2: for all v ∈ V do
3: Ov ← computeTrustContextOptions(G, v, C)
4: Y ← PDPP(G, v, Ov) {Probability distributions of pairwise preferences for v}
5: Ȳ ← PBR(Y, Ov, k, nmax, δ, R) {Preference-based racing to compute the

ranking scores (Algorithm 2)}
6: Υ← Υ ∪ {Ȳ}
7: end for
8: 〈E , ω〉 ← computeTrustEdges(Υ,R)
9: return T = 〈V, E , ω〉

A schematic depiction of the proposed framework for trust network inference is pre-
sented in Figure 5.1, whereas Algorithm 6 shows the pseudo-code of our TNI method.
The algorithm works as follows: for each entity v in the temporal network G, it starts
with the identification of the entity-options for v according to a predefined trust-
context model C (Line 3). Then, the probability distributions of pairwise preferences
(PDPP) Y are computed for v based on its interaction activities observed in G (Line
4). Using a preference-based racing algorithmic scheme, a ranking of trust relations is

Chapter 5. Trust Network Inference. 64

computed for v according to a selected ranking model R (Line 5). Finally, the solu-
tions provided by the racing procedure for all entities are used to determine both the
edges and the trust scores (Line 8) to output the trust network T . We now elaborate
on each of the main steps in Algorithm 6.

Computing the trust-context of entities

The trust-context model C corresponds to the search space for the entity-options to
identify as the trustworthy ones for any given target entity. One intuitive way of
defining C is to instantiate it as the ego-network of the target entity. This notion is
also supported by previous studies on trust inference which have provided evidence on
that shorter paths from the trustor are more accurate to predict trust [46], and that
the dilution of trust through the propagation process tends to weaken the predicted
trust [65].

In the following, we will refer to the above definition of trust-context model, re-
stricted to the out-neighborhood of any target entity v, i.e., all entities occurring as
out-neighbors of v in at least one snapshot graph in G. Clearly, the search space for
the TNI problem can also be defined according to other topological structures, such
as expanded ego-networks or community structures. This is left as a further direction
of research.

Building the preference distributions

As previously discussed in Sect. 2.3.2, the true pairwise preference distributions are
assumed to be unknown, however their realizations (i.e., outcomes of random variables
Yi,j) can be estimated as the observations of interaction at each snapshot Gt.

Given a target entity v in G, every pair of entities occurring within its trust-
context Cv are regarded as options for v, which can be compared at most T times.
For entities vi and vj , we denote the outcomes of these comparisons (w.r.t. v) as
Yi,j = y

(1)
i,j , . . . , y

(T)
i,j . To build each of the pairwise preference distributions for any

entity v, we consider, for each snapshot Gt = 〈Vt, Et, wt〉, the set of v’s outgoing
nodes, denoted as Nt(v), and evaluate the following outcomes for the variables Yi,j
associated to v:

Outcome 1: vi /∈ Nt(v) ∧ vj /∈ Nt(v). In this case, the two entities vi and vj are
not comparable at time t, although, being both in Cv, they will be in some other
snapshot. But at time t, vi and vj will not be considered to determine y(t)

i,j .
Outcome 2: vi ∈ Nt(v) ∨ vj ∈ Nt(v). Let us consider a node-similarity function

sim(t) : Vt × Vt 7→ [0, 1] and define it as a linear combination of two functions:

• a structural affinity function sim
(t)
S : this can efficiently be computed by

resorting to standard neighborhood-based overlap measures; for instance, Jac-
card similarity, i.e., sim(t)

S (v, vi) = |Nt(v)∩Nt(vi)|
|Nt(v)∪Nt(vi)|), or Adamic-Adar index, i.e.,

sim
(t)
S (v, vi) =

∑
u∈Nt(v)∩Nt(vi)

log(|Nt(u)|)−1. One alternative is to consider a
vector similarity function to apply to the multidimensional representations of
any two nodes, which would be obtained through node-embedding techniques in
graphs, such as, e.g., node2vec (see [16] for a comprehensive survey).

• a content affinity function sim
(t)
C : the edge-weighting function wt expresses

the strength of content-based interaction for any two nodes in Gt, therefore
sim

(t)
C (v, vi) := wt(v, vi). To this aim, we might consider the opportunity of

computing a sentiment score associated with the available text content (cf.

Chapter 5. Trust Network Inference. 65

Algorithm 7 PDPP(G = (G1, . . . , GT), v,O)
1: Initialize Y = [Yi,j]N×N with empty lists
2: for t = 1 to T do
3: for (vi, vj) ∈ O ×O, vi 6= vj 6= v, vi 6= v do
4: if vi ∈ Nt(v) ∨ vj ∈ Nt(v) then
5: Compute sim(t)(v, vi) and sim(t)(v, vj)

6: y
(t)
i,j ← Pr(vi � vj) {Using Eq. 5.2}

7: add(Yi,j , y
(t)
i,j)

8: return Y

Sect. 5.5). Note that, if no content-based information is associated with the
interaction between v and vi at time t, wt(v, vi) is assumed to be 1.

The two above functions are hence combined as follows:

sim(t)(v, vi) = α · sim(t)
C (v, vi) + (1− α) · sim(t)

S (v, vi), (5.1)

for any pair (v, vi), with α ∈ [0, 1] (by default set to 0.5).
Finally, we compute the v’s preference of choosing vi over node vj at time t as the

probability value given by the following logistic function:

y
(t)
i,j :=Pr(vi � vj)=

1

1 + e−f(i,j)·(sim(t)(v,vi)−sim(t)(v,vj))
, (5.2)

where f(i, j) corresponds to the steepness of the logistic, we define as f(i, j) = λ ·
(sim(t)(v, vi) + sim(t)(v, vj)), where λ is a scaling factor. Our motivation behind this
analytical choice is twofold. First, since the similarity values range in [0, 1], and hence
their differences range in [−1, 1], the full domain of values of the logistic function
would not be used if the steepness value was 1. Therefore, we introduce a scaling
factor to better distribute the y(t)

i,j values within (0, 1); for this purpose, we set λ to
10, which ensures the spanning through the interval (0, 1). Moreover, our definition of
the steepness function and λ setting is such that the sum of similarities is considered
to weight more pairwise comparisons between more similar entities than dissimilar
ones. Note also that Eq. 5.2 is symmetric, i.e., Pr(vi � vj) = 1− Pr(vj � vi).

Upon the above definitions, we build the pairwise preference distributions for a
target node v as shown in Algorithm 7. Sampling from these distributions will corre-
spond to randomly extracting an element from the lists Yi,j . It should be emphasized
that this sampling is important to ensure robustness of the whole approach w.r.t.
noisy comparisons; we shall discuss this point later in Sect. 5.4.1 The output of Algo-
rithm 7 then becomes the input for the preference-based racing algorithm (Algorithm
1). It should be noted that our approach to the computation of pairwise preference
distributions diverges from the one adopted in [15]: here, while we still do not eval-
uate single options quantitatively (as in value-based racing), we let any variable Yi,j
assume values within the range (0, 1), to express a degree of preference of oi over oj ,
rather than a 0/1 (or ternary) decision (cf. Sect. 2.3.2).

Preference-based Racing

Following [15], the preference-based racing (PBR) procedure, shown in Algorithm 1,
is responsible for identifying, among the entities in the context Ov of an input target
entity v, the top-k trustworthy ones (or equivalently the top-k trust edges) according

Chapter 5. Trust Network Inference. 66

to a predefined ranking model R. Besides k,R, and the probability guarantee (δ,
cf. Sect. 2.3.2), the algorithm requires an additional parameter, nmax, to control the
number of samplings for each pairwise preference probability distribution (i.e., Yi,j ,
with oi, oj ∈ O).

As mentioned before, the sampling step from each of the pairwise preference prob-
ability distributions lends the algorithm more robust to the presence of “noise”, i.e.,
irrelevant node-relations such as sporadical links and/or wrongly observed links that
may occur across the input temporal network.

The role of k in the PBR procedure. It is worth noting that Algorithm 1
outputs the top-k trustworthy nodes together with the whole preference estimates
Ȳ, which are fed into the computeTrustEdges function to finally compute the trust
edge-weights in the trust network. This is done since, besides identifying the top-k
trust edges (i.e., trust relationships), our goal is also to infer distrust links, which can
be extracted through Ȳ. In other terms, k takes the role of model parameter in the
PBR procedure and only within the scope of this procedure; by contrast, in order to
infer the trust network, all preference estimates may be taken into account so that
each node may have more than k trust/distrust outgoing links.

Computing the trust edge-weights

For any given target entity v, the edge-weights in the trust network being generated are
differently computed depending on the chosen ranking model and sampling strategy.
For each vi in the Ȳ matrix associated to v, using the Copeland’s ranking, we set
ω(v, vi) =

|ȳi,j :ȳi,j>
1
2
,i 6=j|

|Ov | . Note that the normalization is required since we want
trust scores ranging in [0, 1]. For the other two sampling strategies, no normalization
is required since the ranking scores are already in [0, 1]. In fact, for the SE-based
strategy, we set ω(v, vi) = ȳi,j , whereas for the RW-based strategy, we set the edge
weights to the values stored in the stationary distribution π, i.e., ω(v, vi) = πvi .

5.4.2 Computational complexity aspects

The time complexity of TNI is determined by the cost of its two main phases: com-
puting the preference probability distributions and preference-based racing.

Given a target entity v and its context Ov, the time complexity of building its
preference distributions (Algorithm 7) is O(T |Ov|2τsim), where τsim is the cost of
similarity computation. This is explained since we need to make |Ov|(|Ov| − 1)/2
pairwise preference comparisons (through Eq. 5.1) between entities vi, vj ∈ Ov for
each of the T timesteps, and each of these comparisons involves two structural simi-
larity computations (i.e., sim(v, vi) and sim(v, vj)).

The asymptotic cost of the second phase (Algorithm 1) is determined by the loop
which, in the worst case, is executed nmax times when a satisfactory (according to
δ) solution to the PBR problem cannot be found before.The cost of each iteration
is O(|Ov|2 + τSS), where τSS is the cost of the sampling strategy. Moreover, τSS =
O(|Ov|2) for each of the sampling strategies we considered, because we need to check
(in constant time) a condition for each pair of options (Line 4 in Algorithm 2). Thus,
the cost of the second phase is O(nmax|Ov|2).

The temporal cost of TNI for each entity v is O(T |Ov|2 τsim + nmax|Ov|2) =
O(|Ov|2(T · τsim + nmax)), and the total cost is O(

∑
v∈V |Ov|2 (Tτsim + nmax)).

The spatial cost to solve TNI for each target entity v is determined by the space
needed to store the pairwise preference distributions, thus its asymptotic growth is
O(T · |Ov|2), since we need to store for each timestep the O(|Ov|2) pairwise preference

Chapter 5. Trust Network Inference. 67

Table 5.2: Ground-truth based evaluation types

trust relation explicit network domain type case studies
information

Trust-Class within-group links no Inferring trust network from interactions in real-life parties Political parties
yes Inferring trust network from interactions in online collaborative system Wikipedia editing

Trust-Network individual pairs yes Inferring trust network from interactions in profit-based circles Product rating

realizations which made up the distributions. The overall space complexity is O(T ·
(maxv∈V |Ov|)2), since we can sequentially and independently solve the set of |V| PBR
problems. Nonetheless, the approach is easily parallelizable by partitioning the set of
entities, independently solving the PBR subproblems, then merging the results.

5.5 Evaluation methodology

We present our ground-truth-based methodology (Sect. 5.5.1), the evaluation criteria
(Sect. 5.5.2) and datasets (Sect. 5.5.3). Also, in Sect. 5.5.4, we discuss the methods
involved in a stage of comparative evaluation with TNI.

5.5.1 Ground-truth for trust network inference

To assess the meaningfulness of the results obtained by our TNI, we conducted different
stages of evaluation based on two general, all-inclusive notions of ground-truth. These
are hereinafter referred to as trust-class ground-truth and trust-network ground-
truth. As reported in the summary of Table 5.2, a ground-truth in our setting is either
based on the notion of trust class or on the availability of a reference trust network
for the input dynamic network.

The former corresponds to trust relations existing within a cohesive group of users
in the input dynamic network, i.e., a trust class is regarded as a group of individuals
whereby it is likely that they trust each other while they do not trust individuals
outside the group. As exemplary domains, we recognize inferring trust network from
interactions in real-life parties (i.e., contact networks) and from interactions occurring
in collaborative networks (Table 5.2). Notably, given the relation of trust classes with
the time-evolving interaction data, this ground-truth-based approach can help assess
the discovery of trust/distrust relationships that are latent in the interaction data.

Trust-network ground-truth instead relies on a finer-grain type of trust relation,
i.e., between pairs of users, which corresponds to the availability of a trust network
that is regarded as a reference for the input dynamic network. The challenge in this
case is that the ground-truth network may not be necessarily derived from interactions
observed in the input time-evolving network data (i.e., two users may trust each other
even though they never had a direct connection).

It should be emphasized that both the ground-truth classes and the reference trust
networks were used not to infer a trust network, but only for evaluation purposes.

5.5.2 Assessment criteria

Given a trust network T = 〈V, E , ω〉 inferred from a dynamic interaction network G,
we define a ground-truth trust classification as a partitioning Γ of the set of entities
V into disjoint trust classes. Also, we denote with Γ(v) the trust-class of entity v. We
considered the following trust-class ground-truth based assessment criteria, for each
entity v:

• Binary preference (Bpref) [14], which measures how many judged relevant can-
didates Rel are retrieved (i.e., occur in T) ahead of judged irrelevant candidates

Chapter 5. Trust Network Inference. 68

Table 5.3: Main structural features of our evaluation network
datasets

#entities #edges #time avg.
(|V|) steps (T) density

DKpol, 490 1 821 30 0.074DKpol-c
DKpol-exp, 490 288 680 32 0.047DKpol-exp-c
WikiEdit 1 115 33 304 49 0.06WikiEdit-exp
CiaoDVD 17 615 348 791 27 0.0174CiaoDVD-c

notRel:
bpref(v) =

1

|Rel|
∑

vr∈Rel
1− |rankedHigher(vr)|

|Rel|
,

where vr is a relevant retrieved candidate, vi is a member of the first |Rel| irrel-
evant retrieved candidates, and rankedHigher(vr) = {vi ∈ notRel | ω(v, vi) >
ω(v, vr)}. We define Rel (resp. notRel) as the set of out-neighbors of v in T
such that Γ(u) = Γ(v) (resp. Γ(u) 6= Γ(v)). The global bpref of a trust network
is computed as the average entity bpref, i.e., bpref(V) = 1

|V|
∑

v∈V bpref(v).

• Average intra-class trust, as the average trust amount settled by v towards
individuals within the same trust-class:

ΩΓ(v) =
1

|Rel|
∑

vr∈Rel
ω(v, vr).

• Average extra-class trust, as the average trust amount settled by v towards
individuals outside the v’s trust-class:

Ω¬Γ(v) =
1

|notRel|
∑

vi∈notRel
ω(v, vi).

For the second type of ground-truth-based evaluation, given the availability of a
reference trust network, we used it for a network similarity evaluation task, measuring
Precision, Recall and F1-score. For any given T produced by TNI and reference
network T ∗, both with set of nodes V, precision (resp. recall) corresponds to the
fraction of edges in T (resp. T ∗) shared with the other network, whereas F1-score is
the harmonic mean of precision and recall.

5.5.3 Case studies and datasets

We used 3 real-world, publicly available datasets: DKpol [58],WikiEdit,1 and CiaoDVD [53].
According to Table 5.2, the former two were used for the trust-class ground-truth eval-
uation, the latter for the trust-network ground-truth evaluation. Table 5.3 provides a
summary of structural characteristics of our evaluation networks. Also, we considered
content-based variants, for a total of 8 networks used in our evaluation.

1It will be made available at http://people.dimes.unical.it/andreatagarelli/data/.

Chapter 5. Trust Network Inference. 69

DKpol: Trust inference for political parties

DKpol contains Twitter following and activity data (i.e., tweets, retweets and replies)
originally collected from the profiles of Danish politicians during the month leading
to the parliamentary election in 2015. The profiled 494 politicians are distributed
across 10 parties, each of which was regarded as one trust-class, i.e., politicians who
are affiliated to the same party are supposed to trust each other, while distrusting
politicians of other parties. By aggregating the user interactions on a daily basis, we
extracted 30 directed networks such that, in the t-th snapshot, an edge from u to v
is drawn if, at time t, u mentioned v, retweeted a v’s tweet, or replied to a v’s tweet.
Starting from DKpol, we built a weighted network variant, dubbed DKpol-c, whereby
the tweet contents are subjected to tool for sentiment analysis in Danish texts [98].
Each edge (u, v) in DKpol-c is weighted with a float value in [0, 1] corresponding to
the highest mood-score computed by the tool for the text of the tweet(s) posted by v
and mentioned/replied/retweeted by u.

In order to stress our approach, we added noise to the data by simulating a multi-
cast propagation of tweets/retweets made by a user towards her/his followers. In this
scenario, which resulted in the DKpol-exp network, a tweet/retweet of user u triggers
a set of links from u’s followers to u. In addition, we built a content-based weighted
variant, DKpol-exp-c, whose follower links are weighted with the neutral score of 0.5.
Our rationale is that such links correspond to weak ties and, therefore, they would not
be considered for the direct linkage contribution in Eq. 5.1 (i.e., sim(t)

C set to zero),
however they are still considered in the structural similarity computations.

WikiEdit: Trust inference for a collaboration system

Our second case study concerns the context of Wikipedia page editing, which normally
gives rise to either controversy or agreement among the editors. Our goal was to infer
a trust network by observing the editing activities made by a set of users over a
selection of pages of VIPs (from politics, sport, and other categories). The possible
edit events are ‘add’, ‘delete’ or ‘restore’ content. The amount of text involved in
each edit is quantified by the number of used words. Based on this information, we
built the temporal network WikiEdit by considering the edits related to 10 among
the top-edited pages and aggregating the events on a monthly basis. The WikiEdit
network was obtained by modeling each edit event (of any type) made by a user u at
time t as a set of edges in the t-th snapshot directed from u to each other user involved
in the edit. In particular, the ‘add’ event involves only the active user (who performs
the edit) while each ‘delete’ or ‘restore’ event is also annotated with the target user
(the one who previously added/deleted the text). Each interaction e between two
users is also labeled with a sign: ‘positive’ if they agree with the edit corresponding to
the interaction, ‘negative’ otherwise. We exploit this additional information, together
with the number of words nwe involved in the edit, in order to compute the weight
we of the interaction by means the following logistic function:

we = (1 + e−sign(e)·log10(1+wce))−1,

where sign(e) = +1 if e is a positive interaction, -1 otherwise. Note that positive
(resp. negative) interactions will have weights higher (resp. lower) than 0.5.

We also considered an expanded version of WikiEdit, dubbed WikiEdit-exp. In
this case, for each ‘add’ edit to page p made by user u at time t, we created weak ties
(with neutral weight 0.5) from u to each other user that added content to p before t

Chapter 5. Trust Network Inference. 70

in order to represent a weak form of agreement of u towards the past ‘add’ edits made
to p.

We created a graph where nodes are the page editors and links correspond to pos-
itive interactions between editors. On this graph, we applied the well-known Louvain
community detection method [7] to obtain a partitioning of nodes that we consider as
ground-truth communities for the evaluation.

Inferred trust network vs. reference trust network

For the trust-network ground-truth evaluation task, we considered the CiaoDVD
dataset where users provide movie ratings (from 0 to 5) and can define their own
local trust network by adding other users to their trust circle. The latter is considered
as the ground-truth trust network for our evaluation.

We derived two temporal networks, CiaoDVD and CiaoDVD-c, where we aggre-
gated the ratings on a monthly basis and extracted an edge from node u to v, in the
t-snapshot, if there is at least one movie rated by both users in that month and v rated
it before u. The rating similarity of the users is exploited to quantify the strength of
interaction in the weighted version of the network, dubbed CiaoDVD-c. More specif-
ically, given two users u and v and a set of M movies rated by both users at time t,
and let ru = [ru,1 . . . , ru,M] and rv = [rv,1, . . . , rv,M] be the associated ratings vectors,
we quantify the strength of the interaction as:

w(u, v) = 1− 1

M

M∑
i=1

∣∣∣ru,i
5
− rv,i

5

∣∣∣.
5.5.4 Competing methods

We finally considered a comparative evaluation stage with a twofold goal: comparing
the trust network inferred by our TNI w.r.t. a trust network built by (i) a data-driven
baseline and (ii) a local-trust inference method (cf. Sect. 5.2).

Our defined data-driven baseline (DDB) infers a trust network by aggregating the
interactions observed in an input temporal network over all timesteps. In particular,
for DKpol and CiaoDVD networks, the trust score of an edge (u, v) is computed
as Wu,v/Wu, where Wu,v here denotes the sum of weights of the interactions from
u to v over all timesteps and Wu is the total sum of weights of interactions of u
with any other node. For WikiEdit networks, the trust score of an edge (u, v) is
computed as W+

u,v/(W
+
u,v + W−u,v) where W+

u,v is the sum of weights of positive edits
between u and v, while W−u,v is the sum of the complement-one values of the weights
of negative edits. This is explained to balance the numerical contributions given by
positive interactions (i.e., edge weights above 0.5) vs. negative interactions (edge
weights below 0.5). For example, suppose node u has one positive interaction with
node v with weight 0.9 and five negative interactions all with weight 0.02: without
complementing the negative interaction weights, the trust score of u to v would be
0.9/(0.9 + 5 ∗ 0.02) = 0.9 (i.e., high trust, which is counterintuitive); otherwise, it
would be 0.9/(0.9 + 5 ∗ 0.98) = 0.155, which is more reasonable since it likely denotes
a distrust relation rather than a trust one.

We chose the classic TidalTrust [46] (TT in short) as a representative local-trust
inference method. This is designed to exploit the topological information in an input
trust network for predicting a trust score for each pair of nodes that do not have a
direct connection. The choice of selecting the shortest path derives from the hypothe-
sis that reliability of trust values progressively decays proportionally to their distance

Chapter 5. Trust Network Inference. 71

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00
sc

or
e

(v) ¬ (v)

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(a) DKpol (b) DKpol-c

CO

0.75

1.00

sc
or

e

SE
0.4975
0.5000
0.5025

(v) ¬ (v)

RW
0.00

0.05

DDB TT
0.0

0.1

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(c) DKpol-exp (d) WikiEdit

Figure 5.2: Trust-class ground-truth evaluation: Boxplots of the
distributions of the average intra-class trust (ΩΓ(v)) and of the average

extra-class trust (Ω¬Γ(v)) values, with α = 0.5

from the source node. The trust between non-adjacent nodes is inferred by considering
only shortest paths through trusted neighbors. The trust from a source to a destina-
tion node is calculated by calling a recursive trust function on the trusted neighbors,
which terminates when the destination is reached. When the trust is back propagated
to the source, it is averaged and rounded among the different trusted paths. Also,
a path-pruning threshold is set to the maximum of the lowest trust values in each
individual path from source to destination node. We used TT as follows: From the
trust network obtained through DDB, repeatedly remove one edge at a time from the
baseline network, then apply TT to compute its trust score, until all edges in the
network are examined.

5.6 Results

We present our main experimental results for each of the ground-truth-based evalua-
tion stages (Sects. 5.6.1–5.6.2). In this regard, note that a major goal of our experi-
mental analysis is the assessment of TNI by varying the setting of its main parameters;
nonetheless, unless otherwise specified, we will present results that correspond to de-
fault settings for parameters δ (0.1), α (0.5), k (|Ov|/2, for any v), nmax (100), and
Jaccard similarity as topological overlap function. In Sect. 5.6.3, we also discuss TNI
efficiency aspects. Finally, in Sect. 5.6.4, we summarize main experimental findings.

Chapter 5. Trust Network Inference. 72

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00
sc

or
e

(v) ¬ (v)

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(a) DKpol (b) DKpol-c

CO

0.75

1.00

sc
or

e

SE

0.5000

0.5025
(v) ¬ (v)

RW
0.00

0.05

DDB TT
0.0

0.1

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(c) DKpol-exp (d) WikiEdit

Figure 5.3: Trust-class ground-truth evaluation: Boxplots of the
distributions of the average intra-class trust (ΩΓ(v)) and of the average

extra-class trust (Ω¬Γ(v)) values, with α = 0.15

Table 5.4: Trust-class ground-truth evaluation: Global bpref results.
Bold text refers to the best values per dataset

TNI with ≺CO TNI with ≺SE TNI with ≺RW DDB TidalTrust
α=0.85 α=0.5 α=0.15 α=0.85 α=0.5 α=0.15 α=0.85 α=0.5 α=0.15

DKpol 0.531 0.532 0.493 0.484 0.484 0.499 0.418 0.423 0.401 0.248 0.406
DKpol-c 0.576 0.635 0.579 0.603 0.644 0.582 0.438 0.456 0.456 0.566 0.463
DKpol-exp 0.433 0.436 0.522 0.177 0.194 0.209 0.155 0.168 0.178 0.234 0.266
DKpol-exp-c 0.445 0.548 0.522 0.195 0.210 0.213 0.163 0.175 0.174 0.239 0.272
WikiEdit 0.524 0.402 0.391 0.554 0.46 0.441 0.443 0.386 0.386 0.392 0.293
WikiEdit-exp 0.378 0.354 0.352 0.1 0.1 0.1 0.142 0.138 0.14 0.02 0.286

5.6.1 Trust-class ground-truth evaluation

Trust score distributions. For each entity (i.e., user in the input temporal net-
work), we analyzed the distribution of its trust values among entities in the same
ground-truth class and in the other classes. More specifically, we analyzed the box-
plots of the distributions of ΩΓ(v) and Ω¬Γ(v) values, over all entities in a network,
for various sampling strategies and varying α. For the sake of presentation, we report
here results corresponding to the default, balanced setting of α (i.e., 0.5) in Fig. 5.2,
while results for α = 0.15 (resp. 0.85) can be found in Fig. 5.3 (resp Fig. 5.4).

One important remark that supports the effectiveness of TNI is that, on average, an
entity v tends to assign higher trust scores to entities in its ground-truth class (Γ(v))
than entities outside. This particularly holds, reagrdless of α in non-noisy networks
(i.e., DKpol, DKpol-c, DKpol-exp) and for strategies CO and SE, which allow much
clearer separation of the two distributions than the RW strategy. By contrast, it is
worth emphasizing that the competitors can have an opposite trend, as in DKpol-exp,

Chapter 5. Trust Network Inference. 73

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00
sc

or
e

(v) ¬ (v)

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(a) DKpol (b) DKpol-c

CO

0.75

1.00

sc
or

e

SE

0.5000

0.5025
(v) ¬ (v)

RW
0.00

0.05

DDB TT
0.0

0.1

CO SE RW DDB TT
ranking strategy

0.00

0.25

0.50

0.75

1.00

sc
or

e

(v) ¬ (v)

(c) DKpol-exp (d) WikiEdit

Figure 5.4: Trust-class ground-truth evaluation: Boxplots of the
distributions of the average intra-class trust (ΩΓ(v)) and of the average

extra-class trust (Ω¬Γ(v)) values, with α = 0.85

Table 5.5: Trust-network ground-truth evaluation: Precision, recall
and F1-score results. Bold text refers to the best values per dataset,

for each criterion

Precision Recall F1-score
≺CO ≺SE ≺RW DDB TT ≺CO ≺SE ≺RW DDB TT ≺CO ≺SE ≺RW DDB TT

CiaoDVD
α = 0.85 0.231 0.235 0.236

0.232 0.231
0.804 0.842 0.849

0.796 0.812
0.359 0.367 0.369

0.359 0.36α = 0.5 0.231 0.231 0.236 0.804 0.822 0.85 0.358 0.36 0.37
α = 0.15 0.22 0.231 0.234 0.743 0.82 0.844 0.34 0.36 0.367

CiaoDVD-c
α = 0.85 0.239 0.238 0.238

0.236 0.226
0.838 0.847 0.87

0.807 0.793
0.372 0.372 0.374

0.365 0.352α = 0.5 0.233 0.237 0.238 0.826 0.859 0.899 0.363 0.371 0.377
α = 0.15 0.228 0.237 0.234 0.828 0.871 0.899 0.358 0.372 0.372

or even an overly positive-bias, as in WikiEdit.
Moreover, considering the effect on the distributions by varying α (Figs. 5.4–5.3,

in Appendix), while negligible differences can be observed between the corresponding
cases, for each network and method, we also found no monotonic behavior in the
distribution overlap by progressively varying α; for instance, the default value of 0.5
(cf. Fig. 5.2b) ensures better separation between the distribution boxplots than the
other settings of α in DKpol-c, whereas for a network likeWikiEdit-exp which was built
on content-based collaborative editing, α = 0.85 (cf. Fig. 5.4d) might be preferred to
other settings.

Bpref analysis. Table 5.4 shows bpref results obtained by different variants of
TNI and by competing methods. Several remarks stand out. First, concerning the
sampling strategies, CO and SE models generally lead to better performance of TNI
than in the RW case, on every dataset and regardless of the α setting. In particular,
CO improves upon SE especially in the noisy (i.e., expanded) networks, while SE

Chapter 5. Trust Network Inference. 74

25 50 75 90
k (% of | |)

0.0

0.2

0.4

0.6
gl

ob
al

 b
pr

ef

CO

SE

RW

25 50 75 90
k (% of | |)

0.0

0.2

0.4

gl
ob

al
 b

pr
ef

CO

SE

RW

(a) DKpol-c (b) DKpol-exp-c

25 50 75 90
k (% of | |)

0.0

0.1

0.2

0.3

0.4

gl
ob

al
 b

pr
ef

CO

SE

RW

25 50 75 90
k (% of | |)

0.0

0.1

0.2

0.3

gl
ob

al
 b

pr
ef

CO

SE

RW

(c) WikiEdit (d) WikiEdit-exp

100 200 300 400 500
nmax

0.0

0.2

0.4

0.6

gl
ob

al
 b

pr
ef

CO

SE

RW

100 200 300 400 500
nmax

0.0

0.2

0.4

0.6

gl
ob

al
 b

pr
ef

CO

SE

RW

(e) DKpol-c (f) DKpol-exp-c

100 200 300 400 500
nmax

0.0

0.1

0.2

0.3

0.4

gl
ob

al
 b

pr
ef

CO

SE

RW

100 200 300 400 500
nmax

0.0

0.1

0.2

0.3

gl
ob

al
 b

pr
ef

CO

SE

RW

(g) WikiEdit (h) WikiEdit-exp

Figure 5.5: Trust-class ground-truth evaluation: Global bpref , (a)-
(d) varying k (with fixed nmax) and (e)-(h) varying nmax (with fixed

k)

Chapter 5. Trust Network Inference. 75

prevails over CO in content-based networks (DKpol-c and WikiEdit). Second, TNI
performance always increases when the network information is combined with content
information to determine the preference probabilities (i.e., DKpol-c vs. DKpol, and
DKpol-exp-c vs. DKpol-exp), regardless of the sampling strategy and α setting. Third,
concerning the impact of parameter α, the balanced setting (i.e., α = 0.5) leads to
performance results that are comparable or better than for α = 0.85 in the DKpol
networks, while an opposite tendency is observed for WikiEdit networks, which are
indeed more content-oriented than DKpol ones; analogously, α = 0.15 may behave
better than the balanced setting on noisy structure-oriented networks like DKpol-exp.
Fourth, TNI significantly outperforms the competitor methods, at least when equipped
with the CO strategy. DDB can behave better than TT (DKpol-c and WikiEdit), but
the opposite holds on the noisy networks: this happens since TT is able to exploit
the rich connectivity of expanded networks for inferring new trust links, while DDB
considers the local interactions only.

Effect of k and nmax. Besides investigating the roles of the sampling stategy
and of the α parameter, we also evaluated the impact of k and nmax on the TNI
performance. To this end, we devised two stages: i) we varied nmax from the default
100 up to 500, while keeping k fixed to the default of half of the trust-context size,
and ii) we varied k for different percentages of the trust-context size, with nmax fixed
to 100. α was set to the default 0.5.

Figure 5.5 shows bpref results obtained for various sampling strategies. At first
sight, it stands out that, in both evaluation stages and for each network dataset,
the relative differences between the sampling strategies follow the same trend when
varying k (Fig. 5.5a-d) and nmax (Fig. 5.5e-h), respectively. Also, our choice of default
settings of the two parameters turns out to correspond to bref results that are very
close to the performance peaks. Overall, this not only suggests relative robustness
of TNI to variations of k and nmax, but also that the computational burden due
to an increase of the values of the parameters can be avoided, since no particularly
significant performance gain is guaranteed above specific values (i.e., default values).

Moreover, as already shown in Table 5.4, CO turns out to be the winner strategy for
noisy networks (i.e., DKpol-exp-c,WikiEdit-exp), while SE prevails on other situations.

5.6.2 Trust-network ground-truth evaluation

For the second stage of evaluation, we filtered out the edges with trust scores below a
certain threshold, which was set for each entity v as the 25-th percentile of the trust
score of entities linked to v. Then, we derived an unweighted trust network to enable
comparison with the unweighted reference networks of the CiaoDVD dataset.

Table 5.5 shows precision, recall and F1-score values w.r.t. the ground-truth trust
network, for TNI (equipped with different sampling strategies and varying α) and
competitors. Looking at the table, we observe that the best scores are always ob-
tained by TNI, mostly with the RW strategy; this shows higher recall than the other
strategies, while all three lead to similar performance in terms of precision and F1-
score. Concerning precision in particular, the gap between TNI and the competitors
is relatively small, and all achieve quite low values in both CiaoDVD networks. This
is explained since the ground-truth network of CiaoDVD indeed was not derived from
interaction data (i.e., a user may trust another one without interacting with her/him),
thus the inferred trust network may not be in accord with the ground-truth knowl-
edge. Mid-high values of recall are instead obtained on both networks, with the RW
strategy outperforming SE and CO. In particular, TNI with RW or SE (along with

Chapter 5. Trust Network Inference. 76

Table 5.6: TNI execution times (in seconds)

TNI with ≺CO TNI with ≺SE TNI with ≺RW
PDPP PBR total PDPP PBR total PDPP PBR total

DKpol 0.93 0.24 1.17 0.92 0.35 1.27 0.89 0.05 0.94
DKpol-c 0.98 0.2 1.18 1.02 0.26 1.28 1.01 0.06 1.07
DKpol-exp 420.25 44.32 464.57 420.05 66.44 486.49 420.63 1.32 421.95
DKpol-exp-c 409.75 52.38 462.13 410.83 86.52 497.35 423.07 2.4 425.47
WikiEdit 4.02 2.32 6.34 4.74 2.4 7.138 4.77 0.32 5.09
WikiEdit-exp 4172.50 110.8 4283.30 4173.96 230.24 4404.20 4176.44 12.32 4188.76
CiaoDVD 38452.02 310.60 38762.62 38454.04 521.52 38975.56 38501.02 43.48 38544.50
CiaoDVD-c 38545.02 322.10 38867.12 38540.53 543.85 39084.38 38543.52 53.48 38597

CO in CiaoDVD-c) outperforms the two competitors, despite their bias in producing
high trust scores for most edges.

5.6.3 Efficiency evaluation

Table 5.6 shows the execution times of TNI, broken down into the procedures PDPP
and PBR, using the default settings. It can be noted that, regardless of the particular
network and strategy, most of the total running time is due to the PDPP procedure.
Moreover, the RW strategy tends to yield better time performance of TNI, though of
the same order of magnitude as for the other two strategies.

We also analyzed the time efficiency of TNI by varying the maximum number of
samplings nmax from 100 to 500. Figure 5.6 shows time performances on DKpol
and WikiEdit networks.2 In accord with the computational complexity analysis
(Sect. 5.4.2), the execution time for SE and CO strategies grows linearly with nmax.
By contrast, the RW execution time grows much slower or even negligibly: this is
explained since the value of nmax is checked by the RW strategy to decide if a pair of
options does not need to be sampled anymore (Line 4 in Algorithm 2), and this leads
the random walk to convergence faster than the other two strategies.

5.6.4 Discussion

We coped with the task of assessing our proposed TNI by designing ground-truth-
based stages of evaluation. We believe this design is remarkable as it allowed us
to define an all-inclusive approach to the exploitation of ground-truth knowledge for
evaluation purposes. Our stages of evaluation of TNI have indeed been defined upon
either a notion of trust-class (i.e., cohesive group of mutually-trusted users) or on
the availability of a reference trust-network for the input dynamic network. As a
consequence, we identified three representative application domains for TNI, with
corresponding case studies that refer to relevant scenarios in network analysis.

Upon these premises, experimental results have revealed important findings about
the meaningfulness and effectiveness of our proposed method. TNI is capable of infer-
ring a trust network where each entity (i.e., user) observed in the input time-evolving
network is associated with higher trust scores to entities in its ground-truth class than
to entities of other classes. By contrast, competing methods fail in having this behav-
ior, showing sometimes an opposite trend or even an overly positive-bias (i.e., much
more trust links than expected).

Despite having a number of parameters, TNI has shown to be surprisingly robust
to their variation; particularly, the sampling strategies (i.e., ranking models) follow
similar trends when varying the top-k trusted options for every target entity, and

2Platform Linux (Mint 18), with 2.6 GHz Intel Core i7-4720HQ, 16GB RAM

Chapter 5. Trust Network Inference. 77

100 200 300 400 500
nmax

0

5×103

10×103

15×103

20×103

25×103

tim
e

(m
s)

CO

SE

RW

100 200 300 400 500
nmax

0

1×106

2×106

3×106

4×106

5×106

6×106

tim
e

(m
s)

CO

SE

RW

(a) DKpol-c (b) DKpol-exp-c

100 200 300 400 500
nmax

0

50×103

100×103

150×103

tim
e

(m
s)

CO

SE

RW

100 200 300 400 500
nmax

0

20×106

40×106

60×106

tim
e

(m
s)

CO

SE

RW

(c) WikiEdit (d) WikiEdit-exp

Figure 5.6: TNI runtime performance by varying nmax

the number of samplings for each pairwise preference probability distribution (nmax).
Also, using a balanced setting for α (i.e., the smoothing parameter that controls
the contributions of structural and content information from the input network to
determine the preference probabilities) has shown to be an appropriate default choice.

From an efficiency viewpoint, TNI running time grows linearly with the number
of samplings. Overall, considering a trade-off between impact on the efficiency and
impact on effectiveness of TNI, the sampling strategy based on the Copeland’s ranking
model turned out to be the best choice.

5.7 Chapter review

We introduced the Trust Network Inference problem and proposed a preference-
learning-based approach to solve it. Our approach can be regarded as key-enabling
for any application that needs to build a trust network associated with a social en-
vironment from user interactions observed over time, in order to exploit the inferred
trust relatioships in a variety of mining tasks.

Several aspects in our approach are worthy to be further investigated. Different
definitions of trust-context and of structural/content affinity functions could easily be
integrated into our proposed TNI framework; for instance, as we mentioned earlier
in the chapter, the trust-context model could be defined according to various topo-
logical structures, such as expanded ego-networks or community structures. Another
aspect of interest is to extend our method to build a trust network incrementally in
online tasks, i.e., inferring and maintaining/updating a trust network over a stream
of interaction networks.

78

Chapter 6

Optimizing Interactions in
Probabilistic Graphs Under
Clustering Constraints.

Summary. We study two novel clustering problems in which the pairwise interac-
tions between entities are characterized by probability distributions and conditioned
by external factors within the environment where the entities interact. This covers any
scenario where a set of actions can alter the entities’ interaction behavior. In particu-
lar, we consider the case where the interaction conditioning factors can be modeled as
cluster memberships of entities in a graph and the goal is to partition a set of entities
such as to maximize the overall vertex interactions or, equivalently, minimize the loss
of interactions in the graph. We show that both problems are NP-hard and they are
equivalent in terms of optimality. However, we focus on the minimization formula-
tion as it enables the possibility of devising both practical and efficient approximation
algorithms and heuristics. Experimental evaluation of our algorithms, on both syn-
thetic and real network datasets, has shown evidence of their meaningfulness as well
as superiority with respect to competing methods, both in terms of effectiveness and
efficiency.

6.1 Introduction

Modeling and mining behavioral patterns of users of online as well as offline systems
is central to enhance the user engagement and experience in the systems. In this
regard, uncertain graph models are seen as a powerful tool to capture the inherent
uncertainty in user behaviors into a representation of user interaction patterns [71].
A common way of modeling uncertainty in a graph, which we refer to in this work,
is to associate each pair of (linked) users with a probability value that expresses the
likelihood of observing and quantifying an interaction between the two users. In this
regard, one important aspect is that the modeling of user interactions should also
account for exogenous conditions or events that occur within the social environment
where the users belong to, which indeed can significantly affect the users’ interaction
behaviors. For example, delivering a post on a user’s page (e.g., Facebook wall)
that contains a message of friend recommendation will likely favor or not a meeting
between two users, and so their interactions. Intuitively, it is of high interest to identify
proper settings of a network system and relating conditions that can maximize the
overall user interactions within the system. In this work, we extend the uncertain
graph modeling framework to capture the dependency of interactions on conditioning
factors, in a network system. In particular, we focus on the case when the interaction
behaviors depend on a clustering of the set of users in a graph, so that the probability

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 79

of interaction between any two users varies depending on whether they belong to the
same cluster or not. Modeling such interaction conditioning factors in terms of cluster
memberships of users arises in several relevant application scenarios. Let us discuss
on a couple of them.
Applications. Consider a social-media platform where users produce, exchange and
consume content items. Each user is typically associated with a personal profile page.
This acts also as an interface for the platform to deliver recommendations and adver-
tisements to a target user u, including those contents produced by other users which
u may interact with. The probability that an interaction between two users u and
v will occur, in relation to a content item c possibly produced or endorsed by any
of them, can depend on whether the two users have been informed or not about c
through their corresponding homepages. Clearly, if a grouping of users into commu-
nities was available, the platform administrators would likely drive the attention of
users towards contents that are produced by members of the same community, ac-
cording to a homophily effect. On the other hand, any user may also want to seek
for relevant contents and similar users outside the boundary of her community, which
would also have the effect of mitigating information-bubble issues that may arise in-
side each community. In this regard, it would be strategic for the administrators to
know which links to users and associated contents are worthy to be recommended
within other users’ pages, in order to incentivate the overall interactions across the
platform. Intuitively, this can be translated into the problem of finding a clustering
of the set of users such that for each user u in any cluster Ck, a link towards contents
produced by the other users in Ck will be posted in the u’s profile-page.

Another application scenario corresponds to a team formation task for a collabo-
rative system, like Wikipedia, where users should be grouped into teams to contribute
in the editing of different parts of a Wikipedia page. In this context, the likelihood
of collaboration between any pair of users will vary in relation to their assignment to
the same team. The goal becomes to partition the set of users into teams in order to
maximize the total collaboration. The greater the overall collaboration is, the higher
the contamination will be, and the probability of successfully accomplishing the task
will increase.
Contributions. To the best of our knowledge, we are the first to address the prob-
lem of optimizing the overall interaction among a set of entities in a probabilistic
graph, subject to the cluster memberships of the entities. In particular, our main
contributions are:

• We define the Max-Interaction-Clustering and Min-Inter- action-Loss-
Clustering problems for graph entities whose interaction patterns depend on
their cluster memberships (Section 6.3). We show that both problems are spe-
cial instances of the well-studied correlation-clustering framework [4], and we
delve into their theoretical properties and complexities.

• Although the two problems are equivalent in terms of optimality, we focus on
the minimization problem, as it enables the use of more practical yet efficient
algorithms inspired by correlation-clustering theory. To this purpose, we devise
both approximation algorithms and heuristics for the Min-Interaction-loss-
Clustering problem (Section 6.4).

• Experimental evaluation of our algorithms, on both synthetic and real network
datasets, has shown evidence of their meaningfulness as well as superiority with
respect to competing methods, both in terms of effectiveness and efficiency (Sec-
tion 6.5).

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 80

The remainder of the chapter is organized as follows. Section 6.2 briefly overviews
related work. Section 6.3 introduces our problem formulations, and Section 6.4 de-
scribes our developed approximation algorithms and heuristics. In Sections 6.5 we
report our experimental evaluation. Section 6.6 concludes the chapter.

6.2 Related Work

Clustering uncertain graphs. The problem we tackle in this work is close to that
of clustering uncertain graphs, which is to cluster vertices of a graph whose edges are
assigned a probability of existence, according to some (possible-world) semantics [83,
75, 40, 56, 17, 81, 57]. A major difference is that our problem is more general than
clustering uncertain graphs since the probabilities of interaction are affected by cluster
memberships, which poses additional challenges that we address in this work. Further
differences are that (i) the classic uncertain-graph model is a special case of interaction
graph we consider in this work (where the probability distributions of interaction are
binary), and (ii) existing methods for clustering uncertain graphs aim to maximize
the intra-cluster connectivity and minimize the inter-cluster connectivity, whereas we
seek clusterings such that both types of connectivity are maximized.
Community detection in signed graphs. In signed graphs, which have positive
and negative signs as a property on the edges (e.g., trust vs. distrust relations), the
problem of community detection is to produce a structure whereby many positive
(resp. negative) links are observed within (resp. between) communities. For example,
[121] considers a directed graph and solves the above problem by optimizing a new
notion of modularity that combines linearly the contribution of positive and negative
weights, and extending the Potts Model to incorporate negative links. The method
in [47] also introduces a generalization of modularity that is able to deal with both
positive and negative weights. That definition of modularity is a special case of the one
defined in [121], as it can be obtained from the general definition of [121] by properly
setting the parameters that control the balance between the importance of present
and absent (positive and negative) edges within a community. [32] reformulates the
Map Equation to measure the quality of partitions, known as Minimum Description
Length (MDL), and extends Constant Potts Model (CPM) to collect a spectrum of
partitions from highly simplified to detailed ones, by varying its parameter λ from
zero to one. Based on these extensions, the community detection is carried out by
minimizing MDL on λ-spectrum.

The aforementioned methods will be considered in our experiments (cf. Sec-
tion 6.5), given the similarity in the requirements of within- and across-cluster in-
teractions. Nonetheless, we remark that edges in a signed graph can have either
positive or negative weight, while in our setting each edge is assigned a probability
distribution of the interaction strength between two vertices.
Correlation clustering. Originally introduced by Bansal et al. [4], correlation clus-
tering is, given a complete signed graph G where every pair of vertices is labeled either
as positive or negative, partition the vertices of G so as to either minimize the number
of negative pairs within the same cluster plus the positive pairs across different clus-
ters, or maximize the positive pairs within the same cluster plus the negative pairs
across different clusters. In Sections 6.3.1–6.3.2, we shall discuss the profound relation
with our problem formulations.

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 81

6.3 Problem definition

We are given a set of users who interact with each other, where “interaction” is meant
here as referring to any, symmetric or reciprocated, relation between two users (e.g.,
commenting posts of each other, collaborating for a task, etc.). We assume that the
strength of interaction between any two users is represented by a nonnegative real
value, however the exact interaction strength is not known beforehand; rather, a set
of possible strengths are given, each one being assigned a probability of corresponding
to the actual strength. This scenario is here modeled by a probabilistic interaction
graph, or simply interaction graph, we define as a key notion in this work.

Definition 8 (Probabilistic interaction graph) A probabilistic interaction graph
is a triple G = (V,E, P), with V set of vertices, E ⊆ V × V set of undirected edges,
and P = {puv}(u,v)∈E set of probability distributions, each one defined on a domain
D(puv) ⊆ R+

0 . For all (u, v) ∈ E and all x ∈ D(puv), puv(x) is the probability that
the strength of the interaction between u and v is equal to x. For any (u, v) /∈ E,
puv(0) = 1 and puv(x) = 0 for any x 6= 0.

Given an interaction graph G=(V,E, P), a set {G=(V,E,wG)}GvG of determin-
istic graphs can be derived as instances of G — following the literature on uncertain
data/graphs [71], these are also called worlds. Every instance G that can be derived
from G, here denoted as G v G, is a weighted graph that is defined over the same sets
V , E of G, and whose weighting function wG : E → R+

0 assigns a weight to every edge
(u, v) ∈ E so that wG(u, v) is sampled from puv ∈ P , i.e., wG(u, v) ∈ D(puv). Note
that, as for any (u, v) ∈ E : D(puv) ⊆ R+

0 , a possible world G v G may contain edges
(u, v) from G that do not exist in G, i.e., wG(u, v) = 0.

Assuming independence between probability distributions — as usual in the lit-
erature on uncertain graphs [83, 75, 8, 69, 101, 17, 70, 71] — the probability of a
possible world G = (V,E,wG) v G is:

Pr(G) =
∏

(u,v)∈E

puv(wG(u, v)). (6.1)

A key aspect in our study is that an interaction graph G = (V,E, P) can be
provided in terms of two probabilistic graphs, say G+ and G−, both defined over V
and E, such that the one accounts for interactions within the same clusters of vertices,
and the other one for interactions between different clusters of vertices. To this end,
let C : V → N denote an injective function that expresses the cluster-membership for
the vertices in V . Conditionally to the cluster-memberships for the vertices in G+

and G−, the two graphs can be “merged” into a single interaction graph we define as
follows.

Definition 9 (Clustering-conditional interaction graph) Let G+ = (V,E, P+)
and G− = (V,E, P−) be two interaction graphs defined over the same vertex- and
edge-sets, and C : V → N be the cluster-membership function for the vertices. A
clustering-conditional interaction graph is defined as GC = (V,E, PC), such that each
edge (u, v) of GC is assigned the corresponding probability distribution puv ∈ P+ from
G+, if u and v belongs to the same cluster according to C, otherwise the distribution
puv ∈ P− from G−, i.e., PC = {puv ∈ P+ | C(u) = C(v)} ∪ {puv ∈ P− | C(u) 6= C(v)}.

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 82

Upon the above definition, we focus on two optimization problems with comple-
mentary yet conceptually equivalent goals, that is, to cluster V so as to either (i) max-
imize the expected overall interaction, or (ii) minimize the expected overall interaction
loss. These goals lead to two different formulations, which we state in detail next.

6.3.1 Maximizing interaction

Let the overall interaction f(G) of a deterministic graph G = (V,E,wG) be the sum
of the interactions on all edges, i.e.,

f(G) =
∑

(u,v)∈E

wG(u, v) (6.2)

As a consequence, the expected overall interaction f̄(G) of an interaction graph
G = (V,E, P) is defined as:

f̄(G) = E
GvG

[f(G)] =
∑
GvG

f(G) Pr(G), (6.3)

where Pr(G) is the probability of observing G (Equation (6.1)).
The first problem we tackle in this work is as follows:

Problem 4 (Max-Interaction-Clustering) Given two interaction graphs
G+ = (V,E, P+) and G− = (V,E, P−) sharing the same vertex set and edge set,
find a clustering C∗ : V → N that maximizes the expected overall interaction of the
clustering-conditional interaction graph, i.e.,

C∗ = argmax
C

f̄(GC). (6.4)

Connection with Correlation Clustering. Since its introduction, correlation clus-
tering has received a great deal of attention, with a focus on various aspects, such as
theoretical results, algorithms, and problem generalizations/variants [100]. To date,
the most general formulation of correlation clustering [2] takes as input a set Ω of
objects, and two nonnegative weights ω+

xy, ω
−
xy for every unordered pair x, y ∈ Ω of

objects. The weights assigned to an object pair (x, y) intuitively express the advan-
tage of putting x and y in the same cluster (ω+

xy) or in separate clusters (ω−xy). The
objective is to partition Ω so as to either minimize the sum of the negative weights
between objects within the same cluster plus the sum of the positive weights between
objects in separate clusters (Min-CC), or maximize the sum of the positive weights
between objects within the same cluster plus the sum of the negative weights between
objects in separate clusters (Max-CC):

Problem 5 (Min-CC [2]) Given a set Ω of objects, and nonnegative weights
ω+
xy, ω

−
xy ∈ R+

0 for all unordered pairs x, y ∈ Ω of objects, find a clustering C : Ω→ N+

that minimizes ∑
x,y∈Ω,
C(x)=C(y)

ω−xy +
∑
x,y∈Ω,
C(x)6=C(y)

ω+
xy. (6.5)

Problem 6 (Max-CC [2]) Given a set Ω of objects, and nonnegative weights
ω+
xy, ω

−
xy ∈ R+

0 for all unordered pairs x, y ∈ Ω of objects, find a clustering C : Ω→ N+

that maximizes ∑
x,y∈Ω,
C(x)=C(y)

ω+
xy +

∑
x,y∈Ω,
C(x)6=C(y)

ω−xy. (6.6)

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 83

Min-CC and Max-CC are equivalent in terms of optimality and complexity class
(both NP-hard), but have different approximation-guarantee properties, with the
latter being easier in this regard.

As a noteworthy result, our Max-Interaction-Clustering problem can be
shown to be an instance of Max-CC:

Theorem 1 Given two interaction graphs G+ = (V,E, P+) and G− = (V,E, P−),
solving Max-Interaction-Clustering on input 〈G+,G−〉 is equivalent to solving
Max-CC by setting Ω = V , ω+

uv = E[p+
uv], ω−uv = E[p−uv], for all (u, v) ∈ E, and

ω+
uv = ω−uv = 0, for all (u, v) ∈ E (where E = V × V \ E).

Proof. The objective function of Max-Interaction-Clustering (Equa-
tion (6.4)) can be rearranged as follows:

f̄(GC) = E
GvGC

[f(G)] =
∑
GvGC

f(G) Pr(G)=
∑
GvGC

(∑
(u,v)∈E

wG(u, v)

)
Pr(G) =

=
∑
GvGC

(∑
(u,v)∈E,
C(u)=C(v)

wG(u, v)

)
Pr(G) +

∑
GvGC

(∑
(u,v)∈E,
C(u) 6=C(v)

wG(u, v)

)
Pr(G) =

=
∑

(u,v)∈E,
C(u)=C(v)

∑
GvGC

wG(u, v) Pr(G)

︸ ︷︷ ︸

= E[p+
uv]

+
∑

(u,v)∈E,
C(u)6=C(v)

∑
GvGC

wG(u, v) Pr(G)

︸ ︷︷ ︸

= E[p−uv]

=

=
∑

(u,v)∈E,
C(u)=C(v)

E[p+
uv] +

∑
(u,v)∈E,
C(u)6=C(v)

E[p−uv] +
∑

(u,v)∈E,
C(u)=C(v)

E[p+
uv] +

∑
(u,v)∈E,
C(u)6=C(v)

E[p−uv]

︸ ︷︷ ︸
= 0

=

=
∑
x,y∈Ω,
C(x)=C(y)

ω+
xy +

∑
x,y∈Ω,
C(x) 6=C(y)

ω−xy,

which corresponds to the objective function of Max-CC. �
The connection with correlation clustering also unveils the NP-hardness of Max-
Interaction-Clustering:

Theorem 2 Max-Interaction-Clustering is NP-hard.

Proof. (Sketch) The fact of being a special case of Max-CC clearly does
not necessarily imply that Max-Interaction-Clustering is NP-hard too. How-
ever, NP-hardness can be shown by reducing from the basic Bansal et al.’s variant
of correlation clustering on general graphs [4], which corresponds to Max-CC when
(ω+
xy, ω

−
xy) ∈ {(1, 0), (0, 0), (0, 1)}. Even such a simpler variant is NP-hard, and can

easily be observed to correspond to Max-Interaction-Clustering when it holds
that ∀(u, v) ∈ E : p+

uv(ω
+
uv) = p−uv(ω

−
uv) = 1. �

6.3.2 Minimizing interaction loss

Given two interaction graphs G+ = (V,E, P+), G− = (V,E, P−), let M(G+,G−) ∈ R+

be a constant larger than the maximum interaction strength in G+ and G−, i.e.,

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 84

M(G+,G−) > max{x ∈ D(puv) | puv ∈ P+ ∪ P−, (u, v) ∈ E}. Based on M(G+,G−), let
the overall interaction loss `(G) of a deterministic graph G = (V,E,wG) be:

`(G) =
∑

(u,v)∈E

(M(G+,G−)− wG(u, v)) + |E|M(G+,G−) =

= M(G+,G−)

(
|V|
2

)
−
∑

(u,v)∈E

wG(u, v), (6.7)

and the expected overall interaction loss ¯̀(G) of an interaction graph G = (V,E, P)
be:

¯̀(G) = E
GvG

[`(G)] =
∑
GvG

`(G) Pr(G). (6.8)

The minimization version of the problem we tackle in this work is:

Problem 7 (Min-Interaction-loss-Clustering) Given two interaction graphs
G+ = (V,E, P+) and G− = (V,E, P−) sharing the same vertex set and edge set, find
a clustering C∗ : V → N+ so that

C∗ = arg min
C

¯̀(GC). (6.9)

Such a minimization formulation is equivalent to the maximization one in terms of
optimality (and complexity class), since:

¯̀(G) =
∑
GvG

(
M(G+,G−)

(
|V|
2

)
−
∑

(u,v)∈E

wG(u, v)

)
Pr(G) =

= −
∑
GvG

(∑
(u,v)∈E

wG(u, v)

)
Pr(G)

︸ ︷︷ ︸
= −f̄(G)

+M(G+,G−)

(
|V|
2

)
︸ ︷︷ ︸

constant > 0

. (6.10)

The result in Theorem 3 immediately follows:

Theorem 3 Min-Interaction-loss-Clustering is NP-hard.

Connection with Correlation Clustering. Similarly to the maximization version,
our Min-Interaction-loss-Clustering can be shown to be an instance of Min-
CC:

Theorem 4 Given two interaction graphs G+ = (V,E, P+) and G− = (V,E, P−),
solving Min-Interaction-loss-Clustering on input 〈G+,G−〉 is equivalent to solv-
ing Min-CC by setting Ω = V , ω+

uv = M(G+,G−) − E[p−uv], ω−uv = M(G+,G−) − E[p+
uv],

for all (u, v) ∈ E, and ω+
uv = ω−uv = M(G+,G−), for all (u, v) ∈ E (where E =

(
V
2

)
\E).

Proof. Let us define the discounted interaction loss GC which discards the loss
contribution due to non-linked pairs, as follows:

L(GC) =
∑

(u,v)∈E,
C(u)=C(v)

(∑
GvGC

(M(G+,G−)−wG(u, v))

)
Pr(G)︸ ︷︷ ︸

= M(G+,G−) − E[p+
uv]

+

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 85

+
∑

(u,v)∈E,
C(u)6=C(v)

(∑
GvGC

(M(G+,G−)−wG(u, v))

)
Pr(G)︸ ︷︷ ︸

= M(G+,G−) − E[p−uv]

. (6.11)

With similar arguments as Theorem 1, it can be shown that:

¯̀(GC) = L(GC) + |E|M(G+,G−) =
∑
x,y∈Ω,
C(x)=C(y)

ω−xy +
∑
x,y∈Ω,
C(x) 6=C(y)

ω+
xy,

which corresponds to the objective function of Min-CC. �

6.4 Algorithms

The connection with correlation clustering forms the basis of algorithm design for our
problems. Specifically, our main idea here is to investigate whether the considerable
amount of work on correlation-clustering algorithms with proved quality guarantees
can be fruitfully exploited in our setting too.

6.4.1 Algorithms for Max-Interaction-Clustering.

In the following we show that the state-of-the-art (constant-factor) approximation al-
gorithms designed for Max-CC keep their guarantees on Max-Interaction-Clustering
too. Theorem 1 states that Max-Interaction-Clustering is an instance of Max-
CC. Specifically, as the various p+

uv, p−uv are general, Max-Interaction-Clustering
is an instance of Max-CC with weights (ω+

uv, ω
+
uv) ∈ R+

0 ×R
+
0 , for all u, v ∈ V . Such

a variant of Max-CC is not studied in the literature. The closest variant for which
theoretical results have been derived is the one where, for every pair (u, v) of vertices,
at most one between ω+

uv and ω−uv is non-zero, i.e., the variant where (ω+
uv, ω

−
uv) ∈

{(ω′, 0), (0, ω′′)}ω′,ω′′∈R+
0
, ∀u, v ∈ V [24, 113]. For this variant, Swamy [113] devises a

0.7666-approximation algorithm based on a semidefinite-programming, and a further,
more practical 0.75-approximation algorithm. Next we show that Swamy’s approxima-
tion result carries over to the Max-CC variant underlying our Max-Interaction-
Clustering problem.

Given two interaction graphs G+ = (V,E, P+) and G− = (V,E, P−), for all
(u, v) ∈ E, let p̄uv, τ̂+

uv and τ̂−uv be defined as:

p̄uv=min
{
E[p+

uv],E[p−uv]
}
, τ̂+
uv=E[p+

uv]− p̄uv, τ̂−uv=E[p−uv]− p̄uv.

Thus, by definition, (τ̂+
uv, τ̂

−
uv) ∈ {(ω′, 0), (0, ω′′)}ω′,ω′′∈R+

0
, ∀u, v ∈ V , like in Swamy’s

setting. Moreover, the objective function f̄(·) of Max-Interaction-Clustering

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 86

can be rewritten as:

f̄(GC) =
∑

(u,v)∈E,
C(u)=C(v)

E[p+
uv] +

∑
(u,v)∈E,
C(u) 6=C(v)

E[p−uv] {Theorem 1}

=
∑

(u,v)∈E,
C(u)=C(v)

(
τ̂+
uv + p̄uv

)
+

∑
(u,v)∈E,
C(u)6=C(v)

(
τ̂−uv + p̄uv

)
=

∑
(u,v)∈E,
C(u)=C(v)

τ̂+
uv +

∑
(u,v)∈E,
C(u) 6=C(v)

τ̂−uv +
∑

(u,v)∈E

p̄uv︸ ︷︷ ︸
H(G+,G−)

=
∑

(u,v)∈E,
C(u)=C(v)

τ̂+
uv +

∑
(u,v)∈E,
C(u) 6=C(v)

τ̂−uv

︸ ︷︷ ︸
:= h(GC)

+ H(G+,G−)︸ ︷︷ ︸
constant ≥ 0

. (6.12)

As a result, Max-Interaction-Clustering’s objective function f̄(·) corresponds
to the sum of the objective function of Max-CC (where the weights assigned to every
pair (u, v) of vertices are τ̂+

uv and τ̂−uv) plus a nonnegative constant. Hence, Max-
Interaction-Clustering and Max-CC are equivalent in terms of optimal value.
Specifically, let I1 = 〈G+,G−〉 be an instance of Max-Interaction-Clustering,
and I2 = 〈V, {τ̂+

uv}u,v∈V , {τ̂−uv}u,v∈V 〉 be an instance of Max-CC derived from I1 by
employing the weights defined above. Let also C∗

f̄
and C∗h be the optimal clusterings

for the I1 instance according to the f̄(·) and h(·) functions, respectively. Finally, let C̃
denote the clustering yielded by the given α-approximation algorithm for Max-CC on
input I2 (e.g., aforementioned factor-0.7666 Swamy’s algorithm [113]). By definition
of approximation algorithm, we know that, for every input: h(GC̃) ≥ α × h(GC∗h),
where α ≤ 1. Therefore, it holds that:

h(GC̃) ≥ α× h(GC∗h)⇔ h(GC̃) +H(G+,G−) ≥ α× h(GC∗h) +H(G+,G−)

⇒ h(GC̃) +H(G+,G−) ≥ α×
(
h(GC∗h) +H(G+,G−)

)
⇔ f̄(GC̃) ≥ α× f̄(GC∗g)⇔ f̄(GC̃) ≥ α× f̄(GC∗

f̄
).

However, the state-of-the-art approximation algorithms for Max-CC (on general,
weighted graphs) correspond to the semidefinite-programming-based ones devised by
Swamy [113]. Those algorithms are inefficient and, more importantly, rather imprac-
tical, since they are not able to output more than a fixed number of clusters (i.e.,
six). This is a showstopper in our context, as we are interested in algorithms that
are effective and theoretically solid, yet capable of handling large-scale inputs and
providing outputs whose quality is recognizable in practice too, not only theoretically.

6.4.2 Algorithms for Min-Interaction-loss-Clustering.

More interesting results instead hold for the minimization version of our problem.
Specifically, we derive a rearrangement of Min-Interaction-loss-Clustering’s
objective function, which unveils that, under mild conditions, the algorithms designed
for Min-CC preserve their approximation properties when applied (with minor mod-
ifications) to our problem. This is particularly appealing, as Min-CC admits ap-
proximation algorithms that do not suffer from the limitations of the maximization

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 87

counterpart, i.e., they are efficient and capable of finding general clusterings [2]. For
this reason, our algorithm-design process focuses on the minimization version of our
problem, and the remainder of this section provides the details of this process.

An approximation algorithm

Ailon et al.’s KwikCluster [2] is a well-established algorithm for Min-CC. It itera-
tively picks an object x (uniformly at random among the unclustered objects), and
builds a cluster comprised of x and all unclustered objects y such that ω+

xy > ω−xy.
KwikCluster is particularly appealing, due to its (i) constant-factor (expected) approx-
imation guarantees (i.e., factor-5 or factor-2, depending on the conditions satisfied by
the input weights, cf. later in this section), (ii) efficiency (i.e., it takes linear time in
the number of edges of the input graph), and (iii) easiness of implementation. All
these aspects make it generally preferable to other algorithms (such as the one by
Charikar et al. [19]) that have slightly better approximation guarantees, but are less
efficient and more difficult to implement.
Theoretical basis. With the above motivations, we investigate possible exploitation
of KwikCluster for our Min-Interaction-loss-Clustering, and the theoretical ba-
sis for which its appealing features are still valid. In this regard, a major remark is that
the constant-factor approximation guarantees of KwikCluster hold for input graphs
whose weights on every edge satisfy the probability constraint, i.e., ω+

xy +ω−xy = 1, for
all x, y ∈ Ω. Although this is a requirement that does not generally hold for the input
to Min-Interaction-loss-Clustering, in the following we show that the objec-
tive function of our problem can be manipulated in such a way that the probability
constraint is satisfied under mild conditions.

Given two interaction graphs G+ = (V,E, P+), G− = (V,E, P−), for every un-
ordered pair u, v ∈ V , let σuv, τ+

uv, τ−uv be:

σuv = M(G+,G−)−
(
E[p+

uv] + E[p−uv]
)
, (6.13)

τ+
uv=

1

M(G+,G−)

(
E[p+

uv]+
σuv
2

)
, τ−uv=

1

M(G+,G−)

(
E[p−uv]+

σuv
2

)
. (6.14)

It is easy to see that σuv ∈ [−M(G+,G−),M(G+,G−)], and τ+
uv, τ−uv satisfy the above

probability constraint, as stated in Lemma 1.

Lemma 1 It holds that τ+
uv, τ

−
uv≥0 and τ+

uv+τ
−
uv=1, ∀u, v∈V .

Function ¯̀(·) of Min-Interaction-loss-Clustering can be rewritten in terms
of τ+

uv, τ−uv, as follows

Lemma 2 Given two interaction graphs G+ = (V,E, P+) and G− = (V,E, P−), and
a clustering C : V → N+, let

g(GC) =
∑
u,v∈V,
C(u)=C(v)

τ−uv +
∑
u,v∈V,
C(u)6=C(v)

τ+
uv, K(G+,G−) =

∑
u,v∈V

σuv
2
. (6.15)

It holds that ¯̀(GC) = M(G+,G−)× g(GC) +K(G+,G−).

Proof. Assuming w.l.o.g. E[p+
uv] = E[p−uv] = 0, for all (u, v) /∈ E, it holds that:

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 88

¯̀(GC) =
∑
u,v∈V,
C(u)=C(v)

(
M(G+,G−)− E[p+

uv]
)

+
∑
u,v∈V,
C(u)6=C(v)

(
M(G+,G−)− E[p−uv]

)
{Theorem 4}

=
∑
u,v∈V,
C(u)=C(v)

(
M(G+,G−)−M(G+,G−)τ+

uv+
σuv
2

)
+
∑
u,v∈V,
C(u)6=C(v)

(
M(G+,G−)−M(G+,G−)τ−uv+

σuv
2

)

= M(G+,G−)
∑
u,v∈V,
C(u)=C(v)

1

M(G+,G−)

(
M(G+,G−)−M(G+,G−)τ+

uv +
σuv
2

)
+

+M(G+,G−)
∑
u,v∈V,
C(u) 6=C(v)

1

M(G+,G−)

(
M(G+,G−)−M(G+,G−)τ−uv +

σuv
2

)

= M(G+,G−)
∑
u,v∈V,
C(u)=C(v)

(
1−τ+

uv+
σuv

2M(G+,G−)

)
+M(G+,G−)

∑
u,v∈V,
C(u) 6=C(v)

(
1−τ−uv+

σuv
2M(G+,G−)

)

= M(G+,G−)
∑
u,v∈V,
C(u)=C(v)

(
1− τ+

uv

)︸ ︷︷ ︸
= τ−uv

+ M(G+,G−)
∑
u,v∈V,
C(u)6=C(v)

(
1− τ−uv

)︸ ︷︷ ︸
= τ+

uv

+
∑
u,v∈V

σuv
2︸ ︷︷ ︸

= K(G+,G−)

= M(G+,G−)
(∑

u,v∈V,
C(u)=C(v)

τ−uv +
∑
u,v∈V,
C(u)6=C(v)

τ+
uv

)
︸ ︷︷ ︸

= g(GC)

+ K(G+,G−). �

Moreover, in Lemma 3, we state that constant-factor approximation guarantees
for Min-CC carry over to our problem.

Lemma 3 If K(G+,G−) ≥ 0 (Equation (6.15)), then any α-approximation algorithm for
Min-CC is an α-approximation algorithm for Min-Interaction-loss-Clustering,
for every constant α > 1.

Proof. Let I1 = 〈G+,G−〉 be an instance of Min-Interaction-loss-Clustering,
and I2 = 〈V, {τ+

uv}u,v∈V , {τ−uv}u,v∈V 〉 be an instance of Min-CC derived from I1 by
employing the weights defined in Equation (6.14). Let also C∗¯̀ and C∗g be the optimal
clusterings for the I1 instance according to the ¯̀(·) and g(·) functions, respectively.
Finally, let C̃ denote the clustering yielded by the given α-approximation algorithm
for Min-CC on input I2.

The goal is to demonstrate that, for every I1, I2, ¯̀(GC̃) ≤ α× ¯̀(GC∗¯̀). First, it
is straightforward to note that g(·) corresponds to Min-CC’s objective function. By

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 89

Algorithm 8 MIL

Input: Interaction graphs G+ = (V,E, P+), G− = (V,E, P−)
Output: A clustering C of V
1: compute τ+

uv, τ−uv for all (u, v) ∈ E {Equation (6.14)}
2: C ← ∅, V ′ ← V
3: while V ′ 6= ∅ do
4: pick a pivot vertex u ∈ V ′ uniformly at random
5: Cu ← {u} ∪ {v ∈ V ′ | (u, v) ∈ E, τ+

uv > τ−uv}
6: add cluster Cu to C and remove all vertices in Cu from V ′

7: end while

definition of approximation algorithm, g(GC̃) ≤ α× g(GC∗g), therefore it holds that:

g(GC̃) ≤ α×g(GC∗g)

⇔M(G+,G−)×g(GC̃) ≤ α×M(G+,G−)×g(GC∗g)

⇔M(G+,G−)×g(GC̃)+K(G+,G−) ≤ α×M(G+,G−)×g(GC∗g)+K(G+,G−)

⇒M(G+,G−)×g(GC̃)+K(G+,G−) ≤ α×M(G+,G−)×g(GC∗g)+α×K(G+,G−)

⇔M(G+,G−)×g(GC̃)+K(G+,G−)︸ ︷︷ ︸
= ¯̀(GC̃) {Lemma 2}

≤ α×
(
M(G+,G−)×g(GC∗g)+K(G+,G−)

)
︸ ︷︷ ︸

= ¯̀(GC∗g) {Lemma 2}

⇔¯̀(GC̃) ≤ α× ¯̀(GC∗g) ⇔ ¯̀(GC̃) ≤ α× ¯̀(GC∗¯̀),

where the first equivalence step holds since M(G+,G−) > 0, the second one holds be-
cause of the assumption K(G+,G−) ≥ 0, the third step holds as α > 1, and the last step
holds since, based on Lemma 2, the optimum of g(·) corresponds to the optimum of
¯̀(·). �

The MIL algorithm. Lemmas 1–3 provide the theoretical support and motivation for
the first algorithm we propose for our Min-Interaction-loss-Clustering prob-
lem, named MIL, whose pseudocode is shown in Algorithm 8. Given two interaction
graphs G+, G−, MIL simply builds an instance of Min-CC as per Equation (6.14),
and applies the KwikCluster algorithm on it.

Proposition 3 MIL takes O(|V |+|E|) time.

Proof. The vertex-sampling step (Line 4 of Algorithm 8) can be implemented
so as to take O(|V |) time overall, by preliminarily generating a random permutation
of V (e.g., via O(|V |)-time Fisher-Yates shuffle algorithm), and picking vertices u ac-
cording to the ordering of that permutation. Also, the computation of τ+

uv, τ−uv (Line 1
of Algorithm 8) can be restricted to the linked (u, v) pairs; in fact, for (u, v) /∈ E, it
holds that τ+

uv = τ−uv, thus, in the next cluster-building step (Line 5 of Algorithm 8) the
vertices v such that (u, v) /∈ E can be discarded. This makes the weight-computation
and cluster-building take O(|E|) time overall. �

Approximation guarantees. Thanks to Lemmas 1–3, the MIL algorithm can be
shown to achieve expected factor-5 approximation guarantees for Min-Interaction-
loss-Clustering if K(G+,G−) ≥ 0:

Theorem 5 If K(G+,G−) ≥ 0, Algorithm 8 is a randomized expected 5-approximation
algorithm for Problem 7.

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 90

+

+ + +

+
+ +

-

-

+

-
-

+ + +

-

8 9

5 4

7 6

1

1110 12
2

3

Figure 6.1: MIL algorithm: Effect of sampling pivots uniformly at
random in general graphs.

Proof. The weights τ+
uv, τ−uv satisfy the probability constraint (Lemma 1). Thus,

running the KwikCluster algorithm (i.e., Lines 3–7 of Algorithm 8) on a Min-CC in-
stance with τ+

uv, τ−uv weights is proved to achieve expected 5-approximation guarantees
for Min-CC [2]. According to Lemma 3, If K(G+,G−) ≥ 0, such a factor-5 approxima-
tion carries over to Problem 7. �

Condition for approximation guarantees. The condition for MIL to be a 5-
approximation algorithm for Min-Interaction-loss-Clustering is that the con-
stant K(G+,G−) (Equation (6.15)) is nonnegative. Here we show that this is a rather
mild assumption, which is expected to hold for real-world interaction graphs. In fact:

K(G+,G−) =
∑
u,v∈V

σuv
2

=
∑

(u,v)∈E

σuv
2

+
∑

(u,v)/∈E

σuv
2

=
∑

(u,v)∈E

(
M(G+,G−)−E[p+

uv]−E[p−uv]

2

)
+
M(G+,G−)

2

((
|V |
2

)
−|E|

)
≥ 0

⇔
∑

(u,v)∈E

(
E[p+

uv]+E[p−uv]

2

)
≤ M(G+,G−)

2
|E|+M(G+,G−)

2

((
|V |
2

)
−|E|

)

⇔
∑

(u,v)∈E

(
E[p+

uv] + E[p−uv]
)
≤M(G+,G−)

(
|V |
2

)
. (6.16)

Thus, as E[p+
uv],E[p−uv] ≤M(G+,G−), the worst case to have the condition in the above

Equation (6.16) satisfied is when E[p+
uv] = E[p−uv] = M(G+,G−), for all (u, v) ∈ E. This

means that, in the worst case, K(G+,G−) is guaranteed to be nonnegative if |E| ≤(|V |
2

)
/2, i.e., if the number of edges in the input interaction graphs is no more than

half of the number of all unordered pairs of vertices. Note this relates to sparseness,
which is typical in real-world graphs.
Stronger approximation guarantees. If the input weights, apart from satisfying
the probability constraint, also obey the triangle inequality, then the KwikCluster
algorithm for Min-CC is shown to achieve better approximation guarantees, i.e., 2
instead of 5 [2]. In our setting this means that, if the weights defined in Equation (6.14)
are such that τ−uv ≤ τ−uz + τ−zv, for all u, v, z ∈ V , then the proposed MIL algorithm
becomes a 2-approximation algorithm for Min-Interaction-loss-Clustering.

To this purpose, let us denote with ∆+
uv the difference E[p+

uv] − E[p−uv], for any
u, v ∈ V ; also, let ∆−uv := −∆+

uv. It can first be noted that, for any u, v, z ∈ V ,
whenever the triangle inequality τ−uv ≤ τ−uz + τ−zv holds, then there exists an equivalent
inequality in terms of the expectation differences, up to the constant M(G+,G−).

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 91

Lemma 4 Given two interaction graphs G+ = (V,E, P+) and G− = (V,E, P−), it
holds that τ−uv ≤ τ−uz + τ−zv ⇔ ∆−uv ≤ ∆−uz + ∆−zv +M(G+,G−), with u, v, z ∈ V .

Proof. By definition (Equation (6.14)), τ−uv = 1
M(G+,G−)

(E[p−uv] + σuv
2), where

σuv = M(G+,G−)− (E[p+
uv] + E[p−uv]), thus it holds:

τ−uv ≤ τ−uz + τ−zv ⇔ E[p−uv] +
σuv
2
≤ E[p−uz] +

σuz
2

+ E[p−zv] +
σzv
2

⇔ E[p−uv] +M(G+,G−)− E[p+
uv] ≤ E[p−uz] +M(G+,G−)− E[p+

uz]+

+ E[p−zv] +M(G+,G−)− E[p+
zv]

⇔ ∆−uv ≤ ∆−uz + ∆−zv +M(G+,G−),with u, v, z ∈ V.l �

The following Lemma 5 states the condition for stronger approximation guarantees,
which requires that the difference E[p+

uv]− E[p−uv] lies in the range [0,M(G+,G−)/2].

Lemma 5 Given interaction graphs G+ = (V,E, P+), G− = (V,E, P−), if ∆+
uv ∈

[0,M(G+,G−)/2], then τ−uv ≤ τ−uz + τ−zv, for any u, v, z ∈ V .

Proof. By Lemma 4, it follows that:

τ−uv ≤ τ−uz + τ−zv ⇔ ∆−uv + ∆+
uz + ∆+

zv ≤M(G+,G−)

⇔ ∆−uv + ∆+
uz + ∆+

zv ≤ 0 +
M(G+,G−)

2
+
M(G+,G−)

2

⇐ ∆−uv ≤ 0, ∆+
uv ≤

M(G+,G−)

2
, ∀u, v ∈ V,

which corresponds to ∆+
uv ∈ [0,M(G+,G−)/2], as ∆+

uv = −∆−uv. �

Theorem 6 If K(G+,G−) ≥ 0 and ∆+
uv ∈ [0,M(G+,G−)/2], ∀u, v ∈ V , Algorithm 8 is a

randomized expected 2-approximation algorithm for Problem 7.

Thus, the stronger approximation guarantees of MIL hold if the expected interac-
tion between any two users u and v when they are put in the same cluster is higher
than the expected interaction when they are part of different clusters, and the for-
mer does not exceed the latter by more than half of the maximum interaction. This
is actually not a strict condition, since it can be observed in application scenarios
(especially ∆+

uv ≥ 0).
Relation with correlation-clustering theory. Correlation-clustering (in)approxi-
mability result states that Min-CC on general (i.e., not necessarily complete) graphs
is APX-hard, with best known approximation factor O(log |V |) [19]. By constrast, in
Theorems 5–6, we have shown that our Min-Interaction-loss-Clustering prob-
lem has constant-factor approximation guarantees for general instances of our prob-
lem, and such results are obtained by adapting correlation-clustering algorithms.

The above would apparently contradict the theory on correlation clustering. How-
ever, this is not the case, for the following reasons. First, although the original input
interaction graphs we deal with are general (i.e., they may have missing edges), the way
how we formulate our Min-Interaction-loss-Clustering problem, through the
M(G+,G−) constant (Equation (6.7)), guarantees that the actual graphs processed by
the Min-Interaction-loss-Clustering algorithms are complete, i.e., they have

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 92

Algorithm 9 D-MIL

Input: Interaction graphs G+ = (V,E, P+), G− = (V,E, P−)
Output: A clustering C of V
1: compute τ+

uv, τ−uv for all (u, v) ∈ E {Equation (6.14)}
2: C ← ∅, V ′ ← V
3: while V ′ 6= ∅ do
4: compute dV ′(u) = |{v ∈ V ′ | (u, v) ∈ E}|, for all u ∈ V ′
5: sample a pivot vertex u∈V ′with probability proportional to dV ′(u)
6: Cu ← {u} ∪ {v ∈ V ′ | (u, v) ∈ E, τ+

uv > τ−uv}
7: add cluster Cu to C and remove all vertices in Cu from V ′

8: end while

an edge with a positive weight between every pair of vertices. Second, the ac-
tual edge weights handled by the Min-Interaction-loss-Clustering algorithms
(Equation (6.14)) are not arbitrary. Indeed, they are derived from the original weights
with an ad-hoc rearrangement that guarantees the appealing properties we show above
(i.e., fulfilment of the probability constraint and the fact that constant-factor guar-
antees for correlation clustering carry over to our problem). Such a rearrangement is
a nice peculiarity of our problem, which is not possible in general: that is the main
reason why this result is not in contrast with the inapproximability of Min-CC on
general graphs.

Enhanced pivot-sampling strategy

The proposed MIL basically resembles the correlation-clustering KwikCluster algo-
rithm [2] on a graph with ad-hoc-defined edge weights. However, KwikCluster is explic-
itly designed for complete graphs, whereas the input graphs for our Min-Interaction-
loss-Clustering problem are general at first. Clearly, KwikCluster could be modified
to handle general graphs, but this may lead to ineffectiveness. More specifically, we
recall that the edge reweighting adopted in our MIL algorithm (Equation (6.14)) makes
the input graph complete by assigning an equal positive and negative weight (equal
to 1/2) to those vertex pairs that do not share an edge in the original graph. This
way, putting those non-linked pairs in the same cluster or in different clusters does not
make any difference in terms of objective-function value of the resulting solution. This
fact is overlooked by KwikCluster, which, being designed for complete graphs, samples
pivots uniformly at random, without taking into account how many neighbors a can-
didate pivot has in the original graph. This may raise inaccuracies, as shown in the
next example.

Example 3 Figure 6.1 shows an interaction graph where (u, v) edges are labeled ac-
cording to what distribution prevails on the other in terms of expected value, i.e., “+”
if E[p+

uv] > E[p−uv], “–” otherwise, while vertices are colored according to their degrees,
i.e., the darker the shade, the more the number of edges adjacent to it. The optimal
solution of Min-Interaction-loss-Clustering on this example consists of clus-
ters {3, 7, 10, 11}, {2, 4, 6, 12}, {1, 5, 8, 9}. It is apparent that this optimal clustering
may be found by the MIL algorithm if darker-colored vertices (i.e., vertices 1, 2, 3)
are selected as pivots. Nevertheless, as MIL samples pivots uniformly at random, it
is likely that one of the lighter-colored vertices (that are more than the darker-colored
ones) becomes instead a pivot in the first place. This may lead to ineffective cluster-
ings. For instance, assume vertex 10 is selected as a very first pivot. Even assuming

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 93

that the next pivots are the darker-colored vertices 1 and 2, the ultimate clustering will
be {3, 10}, {1, 5, 8, 9}, {2, 4, 6, 12}, {11}, {7}, which is far from the optimal one.

The above example shows that, on general graphs, sampling pivots according to their
degrees may be more appropriate than uniform sampling. This is the main intuition
behind the second algorithm we propose in this work, which is termed D-MIL and
whose outline is reported as Algorithm 9.

Proposition 4 D-MIL takes O(|E| log |V |) time.

Proof. Sampling a vertex u with probability proportional to its (current) dV ′(u)
degree (cf. line 4 in Algorithm 2) can be implemented with a priority queue Q with
priorities dV ′(u)× rnd, where rnd is a random number. At the beginning, all vertices
V are added to Q. Pivots are sampled following the order upon which vertices are
extracted from Q, discarding vertices that have been assigned to clusters beforehand.
Initializing Q and extracting all vertices from it takes O(|E|+ |V | log |V |) time. Build-
ing all the clusters takes O(|E|) time overall, as each cluster requires accessing the
neighbors of the pivot O(1) times. Updating the degrees and the priorities of vertices
in Q after a cluster has been built (and removed) takes O(|E| log |V |) time. As a
result, the overall time complexity of D-MIL is O(|E| log |V |). �

Hill climbing

The proposed MIL and D-MIL algorithms can be further improved by performing an a-
posteriori hill-climbing step on the clusterings yielded by them. In particular, the idea
is to consider relocating vertices in other clusters, as long as the resulting clustering has
a better objective-function value. Such relocation steps may be efficiently implemented
by incrementally computing marginal objective-function losses/gains. Specifically,
given a clustering C, let C′ be the clustering obtained from C by moving a vertex u
from cluster Cu ∈ C to a cluster C ′u 6= Cu. Taking into account the rearrangement
of the ¯̀(·) objective function stated in Theorem 4, removing u from Cu leads to a
decrease in the ¯̀(·) function equal to:∑

v∈Cu\{u}

(
M(G+,G−)− E[p+

uv]
)

+
∑

v∈V \Cu

(
M(G+,G−)− E[p−uv]

)
.

At the same time, adding u to C ′u leads to an increase of ¯̀(·) equal to:∑
v∈C′u

(
M(G+,G−)− E[p+

uv]
)

+
∑

v∈V \C′u

(
M(G+,G−)− E[p−uv]

)
.

Combining the expressions above, and denoting ∆+
uv = E[p+

uv]−E[p−uv], ∆−uv = −∆+
uv,

we obtain:

¯̀(GC′)= ¯̀(GC) +
∑

v∈Cu\{u}

((
M(G+,G−)−E[p−uv]

)
−
(
M(G+,G−)−E[p+

uv]
))︸ ︷︷ ︸

= E[p+
uv]−E[p−uv] = ∆+

uv

+

+
∑
v∈C′u

((
M(G+,G−)−E[p+

uv]
)
−
(
M(G+,G−)−E[p−uv]

))︸ ︷︷ ︸
= E[p−uv]−E[p+

uv] = ∆−uv

+

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 94

+
∑

v∈V \{Cu ∪ C′u}

((
M(G+,G−)−E[p−uv]

)
−
(
M(G+,G−)−E[p−uv]

))︸ ︷︷ ︸
= 0

= ¯̀(GC) +
∑

v∈Cu\{u}

∆+
uv +

∑
v∈C′u

∆−uv = ¯̀(GC) +
∑

v∈Cu\{u},
(u,v)∈E

∆+
uv+

∑
v∈C′u,

(u,v)∈E

∆−uv, (6.17)

where the last equivalence holds as, for vertices v : (u, v) /∈ E, E[p+
uv] = E[p−uv], and,

then, ∆+
uv = ∆−uv = 0. The hill-climbing step consists in iteratively picking a vertex

u and a cluster C ′u 6= Cu that minimize Eq. (6.17), and moving u from Cu to C ′u.
This local-search process goes on until either no movement leading to a decrease in
the ¯̀(·) function exists, or a certain number of iterations I has been hit. The process
is outlined as Algorithm 10.

Algorithm 10 HillClimbing

Input: Interaction graphs G+ = (V,E, P+), G− = (V,E, P−); A clustering C of V ;
An integer I > 0

Output: A clustering C′ of V
1: C′ ← C
2: for all i = 1, . . . , I do
3: for every u ∈ V let Cu ∈ C′ the cluster of C′ where u belongs to
4: pick u ∈ V and cluster C ′u ∈ C′ (C ′u 6= Cu) that minimize Eq. (6.17)
5: C′′ ← clustering obtained from C′ by moving u from Cu to C ′u
6: if ¯̀(GC′′) < ¯̀(GC′) then
7: C′ ← C′′
8: end if
9: end for

Proposition 5 Hill-climbing for MIL and D-MIL takes O(I(|V | + |E|)) time, with I
number of iterations.

Proof. Computing Equation (6.17) for all vertices takes O(|V |+ |E|) time, as,
for every vertex u, it requires processing u’s neighbors only. Hence, denoting by I the
number of iterations of the process, the overall time complexity of Algorithm 10 is
O(I(|V |+ |E|)). �

Final remark on approximation guarantees.

Here we summarize the approximation guarantees of all the proposed algorithms.
Algorithm 8 achieves constant-factor approximation guarantees under mild conditions
(either factor-5 or factor-2, see Theorems 5–6). Algorithm 9 does not come instead
with any guarantees as of now: the study of its approximation properties is indeed
an interesting open problem that we defer to future work. However, we remark that
one can still have both the guarantees of Algorithm 8 without sacrificing the practical
benefits of Algorithm 9: simply run both the algorithms and take the best one (in
terms of objective-function value) among the two yielded solutions. This way, the
approximation guarantees of Algorithm 8 would be preserved. As far as hill climbing
procedure, instead, being a post-processing strategy that can only improve the outputs
of Algorithm 8 or Algorithm 9, it does not alter the approximation properties of those

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 95

Table 6.1: Summary of real networks used in our evaluation: original
data (cols. 2-5) and preprocessed data (cols. 6-7)

|V |
∑T

t=1 |Et| T edge semantics |E| %{∆+
uv > 0}

Amazon 2 146 057 22 728 036 115 co-rating 22 507 680 50
DBLP 1 824 701 11 865 584 80 co-authorship 8 344 615 52
Epinions 120 492 33 412 111 25 co-rating 24 994 363 50
HighSchool 327 47 589 1212 face-to-face 5 818 69
Last.fm 992 4 342 951 77 co-listening 369 973 50
PrimarySchool 242 55 043 390 face-to-face 8 317 66
ProsperLoans 89 269 3 343 271 307 economic 3 330 022 50
StackOverflow 2 433 067 16 200 209 51 Q/A 15 786 816 49
Wikipedia 343 860 18 086 734 101 co-editing 10 519 921 50
WikiTalk 2 863 439 10 335 318 192 communication 8 146 544 54

algorithms (i.e., it achieves guarantees if applied to Algorithm 8’s solutions, while no
guarantees hold for the combo Algorithm 9 + hill climbing).

We hereinafter denote with suffix _R the combo algorithms obtained by executing
Algorithm 10 in cascade of Algorithm 8 (MIL_R) or Algorithm 9 (D-MIL_R).

6.5 Experimental evaluation

Data. We considered real-world networks as well as data produced by selected random
network generation models. More specifically, we used 10 real-world, undirected,
unweighted and timestamped networks, available from the KONECT project, except
PrimarySchool and HighSchool from SocioPatterns, and StackOverflow from SNAP.1

Table 6.1 summarizes main structural characteristics of the real-world networks used
in our evaluation.

Each of the input temporal networks is treated as a sequence of undirected snap-
shot graphs 〈G1, . . . , GT 〉, where each Gt = (V,Et) (t = 1..T) models the vertex
interactions at time t. The topology of the two graphs was derived by “flattening”
the temporal network, i.e., (u, v) ∈ E if u and v are linked in at least one graph from
〈G1, . . . , GT 〉. For each pair u, v ∈ V , if (u, v) /∈ E we assume that the two vertices
will have no interaction with probability one, otherwise (i.e., (u, v) ∈ E) we define the
distributions p+

uv, p−uv as:

p+
uv(w) =

Pr[wG(u, v) = w ∧ C(u) = C(v)]

Pr[C(u) = C(v)]
(6.18)

p−uv(w) =
Pr[wG(u, v) = w ∧ C(u) 6= C(v)]

Pr[C(u) 6= C(v)]
(6.19)

for w∈D(puv), with G v GC possible world induced by C from G.
To estimate the above probabilities, we first derived a clustering solution on each

graph from 〈G1, . . . , GT 〉, by initially assigning each vertex to a singleton cluster
(i.e., starting from a solution totally biased towards the distributions in P−), then
iteratively performing agglomerative hierarchical clustering based on the minimization
of a criterion function defined as the absolute value of the difference between the sum
of the number of edges internal to each cluster and the sum of the number of edges
external to each cluster. Although simple, this criterion function is better suited to

1http://konect.cc/, http://www.sociopatterns.org/datasets/, http://snap.stanford.edu/

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 96

our setting than classic community-detection approaches, such as modularity-based
optimization criteria, which compares the actual within-community connectivity with
the expected one based on a null model.

Once obtained the clustering solution on each Gt, we finally estimated p+
uv(w),

resp. p−uv(w), as the fraction of the timestamped graphs where u and v shared the
same cluster, resp. were not in the same cluster, that corresponds to the interaction
strength equal to w. The intuition for the definition of p+

uv(w) is that the more
frequently u and v were grouped into the same cluster and their observed strength of
interaction was w, the higher the probability that they will interact with strength w
if they would be assigned to the same group; analogously for the functions p−uv. In
our evaluation, we considered binary distribution functions; in this regard, note that
the last column in Table 6.1 denotes the percentage of edges (u, v), in each network,
such that E[p+

uv] > E[p−uv].
Concerning the synthetic data, we focused on two well-known random-graph mod-

els, namely Barabasi-Albert (hereinafter BA) and Watts-Strogatz (hereinafter WS)
models. For the BA model, we varied the number of edges to attach with a new
vertex, denoted as m, and for the WS model, we varied the distance (i.e., number of
steps) within which two vertices will be connected, denoted as neigh. For both BA
and WS models, we generated networks with 1000 vertices. For the BA model, we
varied m from 0 to 1000, with steps of 5, for a total of 200 BA networks generated;
analogously, for the WS model, we varied neigh from 0 to 1000/2=500, for a total
of 100 WS networks generated. The expected values of interaction were randomly
generated (uniformly) between 0 and 1.
Evaluation goals and competitors. We evaluated the interaction loss, the size of
the clustering produced, and the runtime performance of the proposed methods, i.e.,
MIL, D-MIL, MIL_R, and D-MIL_R. All criteria measurements reported correspond to
averages over 100 runs. We set the number of iterations I to 8, which experimentally
revealed to be a good trade-off for balancing the three criteria. Moreover, we compared
our proposed methods against three selected methods for community detection in
signed graphs, namely CPM [121], GJA [47], and CPMap [32] (cf. Sect. 6.2). Since
all such methods require only one weight, either positive or negative, for each edge,
we set any weight to be the highest expected value between the positive and negative
distribution (i.e., max{E[p+

uv],E[p−uv]}), changing the sign of the weight in case the
maximum corresponds to the negative distribution. Since [121] deals with directed
networks, our evaluation networks were modified by replacing each edge with two
reciprocal directed edges. Also, the objective function of the methods in [121] and
[47] corresponds to that used in the Louvain modularity-optimization-based method.
For all methods, we used the default parameter setting.

6.5.1 Results on real data

Interaction loss. Table 6.2 reports the values of the discounted interaction loss
(cf. Eq. (6.11)). As expected, the clustering solutions of the enhanced methods
(i.e., MIL_R and D-MIL_R) show consistently lower loss than the solutions produced
by MIL and D-MIL. Also, we observe that, on all datasets, D-MIL outperforms MIL
and, in turn, D-MIL_R outperforms MIL_R, which confirms our initial hypothesis
that the degree-based heuristic should be preferred on real-world networks. Notably,
considering the total average of loss values over all networks (last row in the table),
the percentage loss-decrease values obtained by MIL_R are 37% and 28% against MIL
and D-MIL, respectively, while the values obtained by D-MIL_R are 39%, 30% and
3% against MIL, D-MIL, and MIL_R, respectively.

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 97

Table 6.2: Average loss values.

MIL MIL_R D-MIL D-MIL_R CPM [121] GJA [47] CPMap [32]
Amazon 4.80× 106 3.82× 106 4.49× 106 3.69× 106 4.38× 106 4.33× 106 3.66× 106

DBLP 3.94× 106 3.17× 106 3.70× 106 3.01× 106 2.55× 106 2.89× 106 2.81× 106

Epinions 12.92× 106 4.71× 106 9.06× 106 4.70× 106 9.80× 106 8.82× 106 5.06× 106

High School 4.59× 103 3.50× 103 4.44× 103 3.35× 103 4.29× 103 3.43× 103 3.29× 103

Last.fm 164.67× 103 150.25× 103 163.35× 103 150.25× 103 161.53× 103 160.66× 103 151.60× 103

Primary School 6.95× 103 5.01× 103 6.80× 103 4.92× 103 6.48× 103 6.27× 103 5.46× 103

Prosper Loans 1.82× 106 1.30× 106 1.81× 106 1.28× 106 1.28× 106 1.30× 106 1.39× 106

Stack-Overflow 12.39× 106 8.83× 106 11.91× 106 8.65× 106 9.90× 106 9.26× 106 10.81× 106

Wikipedia 6.74× 106 5.31× 106 6.44× 106 5.26× 106 5.84× 106 5.84× 106 5.83× 106

WikiTalk 6.29× 106 3.72× 106 5.41× 106 3.38× 106 3.68× 106 5.13× 106 NA
tot. average 4.91× 106 3.10× 106 4.30× 106 3.01× 106 3.76× 106 3.77× 106 3.30× 106

Table 6.3: Average clustering sizes.

MIL MIL_R D-MIL D-MIL_R CPM [121] GJA [47] CPMap [32]
Amazon 1.51× 106 1.36× 106 1.47× 106 1.34× 106 1.17× 106 1.03× 106 1.34× 106

DBLP 986.02× 103 614.86× 103 858.93× 103 557.90× 103 354.03× 103 506.72× 103 393.38× 103

Epinions 76.81× 103 47.54× 103 65.59× 103 47.51× 103 16.73× 103 16.68× 103 65.31× 103

High School 45.26 8.16 37.66 6.38 9.00 7.00 8.00

Last.fm 57.04 37.64 42.10 36.94 3.00 4.00 37.00

Primary School 16.44 1.20 15.12 1.04 5.00 5.00 2.00

Prosper Loans 39.60× 103 3.75× 103 26.06× 103 3.70× 103 1.54× 103 1.13× 103 7.49× 103

Stack-Overflow 1.74× 106 308.66× 103 1.27× 106 237.36× 103 106.58× 103 13.78× 103 188.44× 103

Wikipedia 276.14× 103 157.77× 103 246.29× 103 168.80× 103 113.64× 103 108.82× 103 209.68× 103

WikiTalk 2.77× 106 381.88× 103 1.99× 106 485.66× 103 351.73× 103 1.69× 106 NA
tot. average 7.40× 105 2.87× 105 5.93× 105 2.84× 105 2.11× 105 3.37× 105 2.45× 105

Number of clusters. Table 6.3 also shows the size of the clusterings produced by
the various methods. D-MIL always yields a smaller number of clusters than MIL.
This happens since, by pivoting over vertices with higher degree, it is more likely to
sample vertices having a larger number of incident edges such that p+

uv > p−uv. Also,
note that MIL and D-MIL tend to produce more clusters than MIL_R and D-MIL_R,
up to 157% and 160%, respectively, of percentage size-increase. This is not surprising
since the reduction of loss is related to a decrease in the clustering size.
Time performance. Table 6.4 reports the average time performance of the various
methods. For MIL_R and D-MIL_R, we show details about the optimization phase
time (i.e., Algorithm 10).2 Consistently with the computational complexity analysis
(Sect. 6.4), D-MIL tends to perform worse than MIL, and so D-MIL_R against MIL_R.
Nevertheless, in PrimarySchool, D-MIL_R runtime is found to be slightly better than
MIL_R: this happens since, despite the two methods converge to almost the same
local optimum, D-MIL_R starts from a solution which is closer to the final solution
as compared to the one produced by MIL_R (cf. Table 6.2), thus requiring a fewer
number of optimization steps (10% decrease), and hence execution time.

6.5.2 Results on synthetic data

We analyzed loss, clustering size and time performance of the proposed methods,
averaged over 100 network-generation runs. Each of the assessment criteria was mea-
sured by varying the m parameter for BA networks and the neigh parameter for WS
networks.
Interaction loss. Figures 6.2(a)-(b) show the percentage loss-decrease of D-MIL over
MIL, and of D-MIL_R over MIL_R. In agreement with the results obtained on real-
world networks, the pairwise loss variation is relatively low, for either pair of methods,

2Experiments were carried out on a Ubuntu 18.04.2 LTS machine with Intel Xeon(R) Gold 5118
CPU @ 2.30GHz × 48 processor and 256GB ram

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 98

Table 6.4: Execution times (in seconds)

MIL MIL_R opt. time D-MIL D-MIL_R opt. time CPM [121] GJA [47] CPMap [32]
Amazon 8.63 347.77 339.14 97.40 427.28 329.88 2 248.9 1 020 122.23 669.114

DBLP 6.11 189.63 183.52 71.15 251.24 180.09 1 570.41 147 159.68 601.044

Epinions 5.90 327.27 321.38 18.90 348.11 329.21 797.71 34 998.9 592.901

High School 0.00 0.04 0.04 0.01 0.04 0.03 0.2 0.19 2.716

Last.fm 0.03 3.48 3.45 0.14 3.72 3.58 7.73 21.54 10.467

PrimarySchool 0.00 0.06 0.05 0.01 0.05 0.04 0.125 0.1 3.698

ProsperLoans 0.70 48.74 48.04 4.31 52.06 47.75 179.78 30 152.47 116.59

StackOverflow 7.88 319.67 311.79 105.68 397.39 291.72 2 465.76 1 140 054.23 1519.943

Wikipedia 2.41 150.03 147.62 19.05 160.69 141.64 826.93 189 345.74 316.438

WikiTalk 13.92 203.49 189.56 129.10 300.68 171.58 1 165.01 650 282.4 NA

as long as the network is sparse (i.e., lower m or neigh values); more specifically, the
percentage loss-decrease of D-MIL w.r.t. MIL is just 0.4% and 0.15% for BA and
WS networks, respectively, while corresponding values for D-MIL_R w.r.t. MIL_R
are further lower (i.e., below 0.1% for BA and 0.05% for WS). In all cases, the loss
variation becomes negligible already for mid regimes of the x-axis. Also, for WS
networks having rewiring probability lower than 0.5 (results not shown), the pairwise
loss variation would be negligible even for low values of neigh (i.e., higher sparsity).
Number of clusters. The clustering size (Figs. 6.2(c)-(d)) decreases as the number
of edges increases with the value of m or neigh. MIL always yields a larger number of
clusters than the other methods, especially on BA networks still with highest values
of m, followed by D-MIL and the enhanced methods, which produce almost the same
number of clusters. In general, the difference among the methods is emphasized for
sparser networks and decreases as the networks tend to become almost complete.
Time performance. Figures 6.2(e)-(f) show the running times of the methods. Like
for real networks (cf. Table 6.4), MIL is the fastest method, immediately followed
by D-MIL, showing to be very robust as the number of edges (and hence, density)
of the network increases, i.e., as m and neigh parameter values increase for BA and
WS networks, respectively. On the contrary, the enhanced methods achieve higher
runtime, with D-MIL_R being slightly slower than MIL_R; nonetheless, they scale
linearly on WS networks, and sublinearly on BA networks, with the density of the
network.

6.5.3 Evaluation with competing methods

On real networks, considering the interaction-loss values reported in the last three
groups of columns in Table 6.2, it is worth noticing that our D-MIL_R and MIL_R out-
perform all competing methods in most cases, with average percentage loss-decreases
of 20% for D-MIL_R, resp. 18% for MIL_R, against both CPM and GJA, and 10%
for D-MIL_R, resp. 8% for MIL_R, against CPMap. In terms of clustering size, GJA
generally produces the lowest number of clusters (6 cases out of 10), though it holds
the opposite on average due to the performance on WikiTalk, while CPMap generates
solutions with higher size than the others (7 cases out of 10).

Concerning execution times, GJA and CPMap are the slowest and the fastest
method, respectively, among the competitors. Remarkably, CPMap is always out-
performed by all of our MLI methods, with a minimum gap (w.r.t. D-MIL_R) of
119% time-increase.

Figures 6.3(a)-(b) show the percentage loss decrease of D-MIL_R against each
competitor, which is always positive. Both CPM and GJA produce fewer clusters

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 99

(a) percent. loss-decrease (b) percent. loss-decrease

(c) no. of clusters and edges (d) no. of clusters and edges

(e) running time (f) running time

Figure 6.2: Results on BA networks (left side) and on WS networks,
with rewiring probability 0.5 (right side).

than the other methods, whereas CPMap, except for low m and neigh, yields the
highest number of clusters (c.f. Figs. 6.3(c)-(d)). CPMap is the fastest method
among competitors, followed by CPM and GJA (c.f. Figs. 6.3(e)-(f)). All competitors
are anyway outperformed by MIL_R and D-MIL_R.

6.6 Chapter review

We introduced the problem of optimizing the overall interaction in probabilistic graphs
under clustering constraints. We theoretically characterized the problem and devised
both approximation algorithms and heuristics, whose effectiveness, efficiency and su-
periority w.r.t. competing methods was assessed in the experiments.

As future work, we plan to extend the problem formulation in order to capture
overlapping clusters as well as consider the case when the probability distributions

Chapter 6. Optimizing Interactions in Probabilistic Graphs Under Clustering
Constraints. 100

(a) percent. loss-decrease (b) percent. loss-decrease

(c) no. of clusters and edges (d) no. of clusters and edges

(e) running time (f) running time

Figure 6.3: Results on BA networks (left side) and on WS networks,
with rewiring probability 0.5 (right side).

of interaction are not given but only samples coming from that distributions can be
observed.

101

Chapter 7

Conclusion

This thesis has focused on mining and learning entities’ behaviour patterns in complex
graph data. We dealt with different graph data model (e.g. multilayer, temporal and
uncertain graphs), each describing in different way the intrinsic multifaced nature
of the represented real world systems. The main objective of this research project
has been developing models and methods to discover, on complex graph data, hid-
den and strong relationships between entities, such as group associations and trust
relationships, which clearly exist in real world scenarios.

Concerning the discovery of groups (or clustering) in complex graph data, this
thesis explored it from two different perspectives, depending on what kind of clus-
terings we look for. Following the widely accepted definition of community [96], the
first perspective, adopted in the research line presented in Chapter 3 and Chapter
4 in the context of multilayer and temporal graphs respectevely, aims to find com-
munities which are densely linked internally and sparsely connected externally. The
second perspective, introduced in Chapter 6 in the context of maximizing interactions
(conditioned by cluster memberships) in probabilistic graphs, looks for clusters that
induce high connectivity both internally and externally.

In Chapter 3 we introduced a new framework for consensus community detection
in multilayer networks. This was designed to identify communities whose nodes are
internally connected by many edges possibly of different types, and are externally
connected by few edges of different types. Moreover, by exploiting parameter-free
generative models for graph pruning, this framework overcomes the dependency on
a user-specified threshold for the global denoising of the co-association graph. The
experimental evaluation of the proposed M-EMCD∗ algorithm, designed to enhance the
modularity-optimization process w.r.t. existing EMCD [114] method, confirmed the
beneficial effect of using model-based filtering methods and also showed its superiority
on state-of-the-art multilayer community detection.

Another contribution of this thesis is represented by CreDENCE (cf. Chapter 4), a
CMAB-based method for the novel sequential problem of identifying, for each snapshot
in a temporal network, a dynamic consensus community structure. This is designed
to encompass the whole information available in the sequence of observed temporal
snapshots of a network in order to be representative of the knowledge available from
community structures at the different time steps. The novel concept of dynamic
consensus community structure embraces the widely accepted notion of community
- in temporal networks this translates into a group of nodes which are internally
connected by many edges, and are externally connected by few edges in the most
recent snapshots. Unlike existing approaches, it has been designed to be able to embed
long-term changes in the community formation as well as to capture short-term effects
and newly observed community structures.

In Chapter 6 we introduced a new uncertain graph model where entities’ interac-
tion patterns depend on their cluster memberships. This covers any scenario, such as

Chapter 7. Conclusion 102

recommendation in social-media platforms and team formation tasks, where a set of
actions over entities, modeled as cluster assignments, can alter the entities’ interac-
tion behaviour. Upon this model, the novel problems of finding a clustering such as to
maximize (resp. minimize) the overall interactions (resp. interaction loss) have been
introduced. In other words, the goal is to find the clusters which induce, according
to the novel uncertain graph model, high connectivity both internally and externally.
The theoretical characterization of the two problems have shown their connection
with the correlation clustering problem which inspired the introduced approximation
algorithms and heuristics, namely MIL, D-MIL, MIL_R and D-MIL_R.

Concerning trust relationships, in Chapter 5 we introduced the Trust Network In-
ference problem and proposed a preference-learning-based approach to solve it. The
proposed solution contributes to research in this area since the actual lack of meth-
ods for inferring a trust network from social interactions. For the practitioners, the
introduced approach can be regarded as key-enabling for any application that needs
to build a trust network associated with a social environment from user interactions
observed over time, in order to exploit the inferred trust relatioships in a variety of
mining tasks.

Future Research

The research described in this thesis can be further extended in several directions.
Research on dynamic consensus community detection in temporal networks, pre-

sented in Chapter 4, adopted the CMAB paradigm to manage the exploration-exploita-
tion trade-off which, in that context, translated into the balancing over time between
the need for embedding long-term changes observed in the community formation and
the need for capturing short-term effects and newly observed community structures.
(C)MAB algorithms usually come with some theoretical guarantees on their perfor-
mances if some properties on the input instance (e.g. the existance of approximation
algorithms for optimizing the adopted reward function) are satisfied. However, in
this thesis the application of CMAB paradigm to the dynamic consensus community
detection problem was not focused on theoretical analysis. This research line may
be extended to provide insights on the theoretical properties of the problem and al-
gorithms when some assumptions on the input (e.g. evolution rate of the network)
are made. A further goal is to learn our model parameters to best fit the community
structure and evolution in a given temporal network.

The contribution of this thesis to the novel problem of optimizing interactions in
probabilistic graphs is actually at an early stage; thus, the improvements in this regard
are manifold. A first goal to be accomplished is to extend the problem formulation
in order to capture overlapping clusters as well as clusters with specific size bounds
since some application scenarios, as the one mentioned in Chapter 6, requires specific
properties on the desired clusters. A further goal is to consider the more realistic
case when the probability distributions of interaction are not given but only samples
coming from that distributions can be observed over time.

Research on trust network inference may be extended as follows. Different def-
initions of trust-context and of structural/content affinity functions could easily be
integrated into our proposed TNI framework; for instance, as we mentioned earlier
in Chapter 5, the trust-context model could be defined according to various topo-
logical structures, such as expanded ego-networks or community structures. Another
aspect of interest is to extend our method to build a trust network incrementally in
online tasks, i.e., inferring and maintaining/updating a trust network over a stream
of interaction networks.

103

Bibliography

[1] P. Agarwal, R. Verma, A. Agarwal, and T. Chakraborty. “DyPerm: Maximiz-
ing Permanence for Dynamic Community Detection”. In: Proc. Pacific-Asia
Conf. on Advances in Knowledge Discovery and Data Mining (PAKDD). 2018,
pp. 437–449.

[2] N. Ailon, M. Charikar, and A. Newman. “Aggregating inconsistent information:
Ranking and clustering”. In: Journal of the ACM (JACM) 55.5 (2008), 23:1–
23:27.

[3] Javed A Aslam and Scott E Decatur. “General bounds on statistical query
learning and PAC learning with noise via hypothesis boosting”. In: Information
and Computation 141.2 (1998), pp. 85–118.

[4] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: Machine
Learning 56.1 (2004), pp. 89–113.

[5] M. Berlingerio, M. Coscia, and F. Giannotti. “Finding and Characterizing Com-
munities in Multidimensional Networks”. In: Proc. IEEE/ACM Int. Conf. on
Advances in Social Networks Analysis and Mining (ASONAM). 2011, pp. 490–
494.

[6] M. Berlingerio, F. Pinelli, and F. Calabrese. “ABACUS: frequent pattern mining-
based community discovery in multidimensional networks”. In:Data Min. Knowl.
Discov. 27.3 (2013), pp. 294–320.

[7] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. “Fast unfolding
of communities in large networks”. In: J. Stat. Mech. 10 (2008), P10008.

[8] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich. “Core decomposition
of uncertain graphs”. In: Proc. ACM KDD Conf. 2014, pp. 1316–1325.

[9] Z. Borbora, M. A. Ahmad, K. Z. Haigh, J. Srivastava, and Z. Wen. “Exploration
of Robust Features of Trust Across Multiple Social Networks”. In: Proc. IEEE
Conf. on Self-Adaptive and Self-Organizing Systems (SASOW). 2011, pp. 27–
32.

[10] Oualid Boutemine and Mohamed Bouguessa. “Mining community structures
in multidimensional networks”. In: ACM Transactions on Knowledge Discovery
from Data (TKDD) 11.4 (2017), pp. 1–36.

[11] Paul S Bradley and Usama M Fayyad. “Refining initial points for k-means
clustering.” In: Proc. of Int. Conf. on Machine Learning (ICML). Vol. 98.
Citeseer. 1998, pp. 91–99.

[12] U. Brandes, P. Kenis, J. Lerner, and D. van Raaij. “Network analysis of collab-
oration structure in Wikipedia”. In: Proc. of World Wide Web Conf. (WWW).
2009, pp. 731–740.

[13] P. Brodka, S. Saganowski, and P. Kazienko. “GED: the method for group evolu-
tion discovery in social networks”. In: Social Netw. Analys. Mining 3.1 (2013),
pp. 1–14.

Bibliography 104

[14] C. Buckley and E. M. Voorhees. “Retrieval evaluation with incomplete infor-
mation”. In: Proc. ACM SIGIR Conf. on Research and Development in Infor-
mation Retrieval (SIGIR). 2004, pp. 25–32.

[15] R. Busa-Fekete, B. Szörényi, W. Cheng, P. Weng, and E. Hüllermeier. “Top-k
Selection based on Adaptive Sampling of Noisy Preferences”. In: Proc. of Int.
Conf. on Machine Learning (ICML). 2013, pp. 1094–1102.

[16] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. “A com-
prehensive survey of graph embedding: Problems, techniques, and applica-
tions”. In: IEEE Transactions on Knowledge and Data Engineering 30.9 (2018),
pp. 1616–1637.

[17] M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci, and F. Vandin. “Clus-
tering Uncertain Graphs”. In: PVLDB 11.4 (2017), pp. 472–484.

[18] T. Chakraborty, S. Srinivasan, N. Ganguly, A. Mukherjee, and S. Bhowmick.
“Permanence and community structure in complex networks”. In: ACM Trans.
Knowl. Discov. Data 11.2 (2016), p. 14.

[19] M. Charikar, V. Guruswami, and A. Wirth. “Clustering with qualitative infor-
mation”. In: JCSS 71.3 (2005), pp. 360–383.

[20] W. Chen, Y. Wang, and Y. Yuan. “Combinatorial Multi-Armed Bandit: Gen-
eral Framework and Applications”. In: Proc. of Int. Conf. on Machine Learning
(ICML). 2013, pp. 151–159.

[21] Michele Coscia. “Multidimensional network analysis”. PhD thesis. Ph. D. thesis,
Universitá Degli Studi Di Pisa, Dipartimento di Informatica, 2012.

[22] J. Crawford and T. Milenkovic. “ClueNet: Clustering a temporal network based
on topological similarity rather than denseness”. In: PLOS ONE 13.5 (2018),
pp. 1–25.

[23] N. Dakiche, F. B.-S. Tayeb, Y. Slimani, and K. Benatchba. “Tracking com-
munity evolution in social networks: A survey”. In: Inf. Process. Manag. 56.3
(2019), pp. 1084–1102.

[24] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. “Correlation clustering
in general weighted graphs”. In: TCS 361.2-3 (2006), pp. 172–187.

[25] Navid Dianati. “Unwinding the hairball graph: Pruning algorithms for weighted
complex networks”. In: Physical Review E 93 (2016), p. 012304.

[26] M. E. Dickison, M. Magnani, and L. Rossi. Multilayer Social Networks. UK:
Cambridge University Press, 2016.

[27] Thang N Dinh, Xiang Li, and My T Thai. “Network clustering via maximizing
modularity: Approximation algorithms and theoretical limits”. In: 2015 IEEE
International Conference on Data Mining. IEEE. 2015, pp. 101–110.

[28] Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall.
“Identifying modular flows on multilayer networks reveals highly overlapping
organization in interconnected systems”. In: Phys. Rev. X 5 (2015), p. 011027.

[29] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora.
“Structural reducibility of multilayer networks.” In: Nature communications 6
(2015), p. 6864.

[30] Carlotta Domeniconi and Muna Al-Razgan. “Weighted cluster ensembles: Meth-
ods and analysis”. In: ACM Transactions on Knowledge Discovery from Data
(TKDD) 2.4 (2009), pp. 1–40.

Bibliography 105

[31] Carlotta Domeniconi, Dimitrios Gunopulos, Sheng Ma, Bojun Yan, Muna Al-
Razgan, and Dimitris Papadopoulos. “Locally adaptive metrics for clustering
high dimensional data”. In: Data Mining and Knowledge Discovery 14.1 (2007),
pp. 63–97.

[32] P. Esmailian and M. Jalili. “Community detection in signed networks: the role
of negative ties in different scales”. In: Scientific reports 5 (2015), p. 14339.

[33] X. Fan, D. He, and J. Bi. “Trustworthiness and Untrustworthiness Inference
with Group Assignment”. In: Proc. Int. Conf. on Web Services (ICWS). 2018,
pp. 389–404.

[34] X. Z. Fern and C. E. Brodley. “Solving Cluster Ensemble Problems by Bipartite
Graph Partitioning”. In: Proc. of Int. Conf. on Machine Learning (ICML).
2004, p. 36.

[35] T. La Fond, G. Sanders, C. Klymko, and H. Van Emden. “An ensemble frame-
work for detecting community changes in dynamic networks”. In: Proc. IEEE
Conf. on High Performance Extreme Computing (HPEC). 2017, pp. 1–6.

[36] Santo Fortunato and Marc Barthelemy. “Resolution limit in community detec-
tion”. In: Proceedings of the national academy of sciences 104.1 (2007), pp. 36–
41.

[37] A. Fred. “Finding Consistent Clusters in Data Partitions”. In: Proc. Work. on
Multiple Classifier Systems. 2001, pp. 309–318. isbn: 978-3-540-48219-2.

[38] A. L. N. Fred and A. K. Jain. “Data clustering using evidence accumulation”.
In: Object recognition supported by user interaction for service robots. Vol. 4.
2002, 276–280 vol.4.

[39] R.E. Funderlic and C.D. Meyer. “Sensitivity of the stationary distribution vec-
tor for an ergodic Markov chain”. In: Linear Algebra and its Applications 76
(1986), pp. 1 –17. issn: 0024-3795.

[40] Yu G., Chunpeng G., Gao C., and Ge Y. “Effective and Efficient Clustering
Methods for Correlated Probabilistic Graphs”. In: IEEE TKDE 26.5 (2014),
pp. 1117–1130.

[41] Y. Gai, B. Krishnamachari, and R. Jain. “Combinatorial Network Optimization
With Unknown Variables: Multi-Armed Bandits With Linear Rewards and
Individual Observations”. In: IEEE/ACM Trans. Netw. 20.5 (2012), pp. 1466–
1478.

[42] W. Gao, W. Luo, and C. Bu. “Adapting the TopLeaders algorithm for dynamic
social networks”. In: The Journal of Supercomputing (2017).

[43] V. Gemmetto, A. Cardillo, and D. Garlaschelli. “Irreducible network back-
bones: unbiased graph filtering via maximum entropy”. In: arXiv (2017).

[44] M. Giatsoglou and A. Vakali. “Capturing Social Data Evolution Using Graph
Clustering”. In: IEEE Internet Computing 17.1 (2013), pp. 74–79.

[45] A. Gionis, H. Mannila, and P. Tsaparas. “Clustering Aggregation”. In: Proc. of
IEEE Int. Conf. on Data Engineering (ICDE). 2005, pp. 341–352.

[46] J.A. Golbeck. “Computing and Applying Trust in Web-based Social Networks”.
PhD thesis. College Park, MD, USA, 2005.

[47] S. Gómez, P. Jensen, and A. Arenas. “Analysis of community structure in
networks of correlated data”. In: Physical Review E 80.1 (2009), p. 016114.

Bibliography 106

[48] F. C. Graham, A. Tsiatas, and W. Xu. “Dirichlet PageRank and Ranking
Algorithms Based on Trust and Distrust”. In: Internet Mathematics 9.1 (2013),
pp. 113–134.

[49] D. Greene, D. Doyle, and P. Cunningham. “Tracking the evolution of communi-
ties in dynamic social networks”. In: Proc. IEEE/ACM Int. Conf. on Advances
in Social Networks Analysis and Mining (ASONAM). 2010, pp. 176–183.

[50] Roger Guimera, Marta Sales-Pardo, and Luís A Nunes Amaral. “Modularity
from fluctuations in random graphs and complex networks”. In: Physical Review
E 70.2 (2004), p. 025101.

[51] F. Gullo, A. Tagarelli, and S. Greco. “Diversity-Based Weighting Schemes for
Clustering Ensembles”. In: Proc. SDM. 2009, pp. 437–448.

[52] Francesco Gullo, Carlotta Domeniconi, and Andrea Tagarelli. “Projective clus-
tering ensembles”. In: Data Mining and Knowledge Discovery 26.3 (2013),
pp. 452–511.

[53] G. Guo, J. Zhang, D. Thalmann, and N. Yorke-Smith. “ETAF: An Extended
Trust Antecedents Framework for Trust Prediction”. In: Proc. IEEE/ACM Int.
Conf. on Advances in Social Networks Analysis and Mining (ASONAM). 2014,
pp. 540–547.

[54] Y. Gur, A. J. Zeevi, and O. Besbes. “Stochastic Multi-Armed-Bandit Problem
with Non-stationary Rewards”. In: Proc. Conf. on Neural Information Process-
ing Systems (NIPS). 2014, pp. 199–207.

[55] Z. Gyöngyi, H. Garcia-Molina, and J. O. Pedersen. “Combating Web Spam
with TrustRank”. In: Proc. of Int. Conf. on Very Large Data Bases (VLDB).
2004, pp. 576–587.

[56] Z. Halim, M. Waqas, and S. F. Hussain. “Clustering large probabilistic graphs
using multi-population evolutionary algorithm”. In: Inf. Sci. 317 (2015), pp. 78–
95.

[57] K. Han, F. Gui, X. Xiao, J. Tang, Y. He, Z. Cao, and H. Huang. “Efficient
and Effective Algorithms for Clustering Uncertain Graphs”. In: PVLDB 12.6
(2019), pp. 667–680.

[58] O. Hanteer, L. Rossi, D. Vega D’Aurelio, and M. Magnani. “From Interaction to
Participation: The Role of the Imagined Audience in Social Media Community
Detection and an Application to Political Communication on Twitter”. In: Proc.
IEEE/ACM Int. Conf. on Advances in Social Networks Analysis and Mining
(ASONAM). 2018, pp. 531–534.

[59] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of sta-
tistical learning: data mining, inference, and prediction. Springer Science &
Business Media, 2009.

[60] J. He and D. Chen. “A fast algorithm for community detection in temporal
network”. In: Physica A: Statistical Mechanics and its Applications 429 (2015),
pp. 87–94.

[61] Pa. Wagenseller III, F. Wang, and W. Wu. “Size Matters: A Comparative
Analysis of Community Detection Algorithms”. In: IEEE Trans. Comput. So-
cial Systems 5.4 (2018), pp. 951–960.

[62] Lucas GS Jeub, Michael W Mahoney, Peter J Mucha, and Mason A Porter.
“A local perspective on community structure in multilayer networks”. In: arXiv
preprint arXiv:1510.05185 (2015).

Bibliography 107

[63] W. Jiang, G. Wang, and J. Wu. “Generating trusted graphs for trust evaluation
in online social networks”. In: Future Generation Comp. Syst. 31 (2014), pp. 48–
58.

[64] P. Jiao, W. Wang, and D. Jin. “Constrained common cluster based model for
community detection in temporal and multiplex networks”. In: Neurocomputing
275 (2018), pp. 768–780.

[65] A. Jøsang, E. Gray, and M. Kinateder. “Simplification and analysis of transitive
trust networks”. In: Web Intelligence and Agent Systems 4.2 (2006), pp. 139–
161.

[66] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. “Multi-
level hypergraph partitioning: Applications in VLSI domain”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 7.1 (1999), pp. 69–
79.

[67] George Karypis and Vipin Kumar. “A fast and high quality multilevel scheme
for partitioning irregular graphs”. In: SIAM Journal on scientific Computing
20.1 (1998), pp. 359–392.

[68] M. N. Katehakis and A. F. Veinott Jr. “Multi-Armed Bandit Problem: De-
composition and Computation”. In: Mathematics of Operations Research 12.2
(1987), pp. 262–268.

[69] A. Khan, F. Bonchi, A. Gionis, and F. Gullo. “Fast Reliability Search in Un-
certain Graphs”. In: Proc. EDBT Conf. 2014, pp. 535–546.

[70] A. Khan, F. Bonchi, F. Gullo, and A. Nufer. “Conditional Reliability in Un-
certain Graphs”. In: IEEE TKDE 30.11 (2018), pp. 2078–2092.

[71] A. Khan, Y. Ye, and L. Chen. On Uncertain Graphs. Synthesis Lectures on
Data Management. Morgan & Claypool, 2018.

[72] J. Kim and J.-G. Lee. “Community Detection in Multi-Layer Graphs: A Sur-
vey”. In: SIGMOD Record 44.3 (2015), pp. 37–48.

[73] Jungeun Kim, Jae-Gil Lee, and Sungsu Lim. “Differential flattening: A novel
framework for community detection in multi-layer graphs”. In: ACM Transac-
tions on Intelligent Systems and Technology (TIST) 8.2 (2016), pp. 1–23.

[74] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter. “Multilayer networks”. In: Journal of Complex Networks 2.3 (2014),
pp. 203–271.

[75] G. Kollios, M. Potamias, and E. Terzi. “Clustering Large Probabilistic Graphs”.
In: IEEE TKDE 25.2 (2013), pp. 325–336.

[76] Z. Kuncheva and G. Montana. “Community Detection in Multiplex Networks
using Locally Adaptive Random Walks”. In: Proc. ASONAM. 2015, pp. 1308–
1315.

[77] A. Lancichinetti and S. Fortunato. “Consensus clustering in complex networks”.
In: Sci. Rep. 2 (2012), p. 336.

[78] D. LaSalle and G. Karypis. “Multi-threaded modularity based graph clustering
using the multilevel paradigm”. In: J. Parallel Distrib. Comput. 76 (2015),
pp. 66–80.

[79] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. “Governance in Social
Media: A Case Study of the Wikipedia Promotion Process”. In: Proceedings of
the International AAAI Conference on Web and Social Media. 2010.

Bibliography 108

[80] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.
“Statistical properties of community structure in large social and information
networks”. In: Proceedings of the 17th international conference on World Wide
Web. 2008, pp. 695–704.

[81] Y. Li, X. Kong, C. Jia, and J. Li. “Clustering Uncertain Graphs with Node
Attributes”. In: Proc. ACML Conf. 2018, pp. 232–247.

[82] H. Liu, E. Lim, H. W. Lauw, M. Le, A. Sun, J. Srivastava, and Y. A. Kim.
“Predicting trusts among users of online communities: an epinions case study”.
In: 2008, pp. 310–319.

[83] L. Liu, R. Jin, C. C. Aggarwal, and Y. Shen. “Reliable Clustering on Uncertain
Graphs”. In: Proc. IEEE ICDM Conf. 2012, pp. 459–468.

[84] James MacQueen et al. “Some methods for classification and analysis of multi-
variate observations”. In: Proceedings of the fifth Berkeley symposium on mathe-
matical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–
297.

[85] Matteo Magnani, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and An-
drea Tagarelli. “Community Detection in Multiplex Networks”. In: arXiv preprint
arXiv:1910.07646 (2019).

[86] D. Mandaglio, A. Amelio, and A. Tagarelli. “Consensus Community Detec-
tion in Multilayer Networks Using Parameter-Free Graph Pruning”. In: Proc.
Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining
(PAKDD). 2018, pp. 193–205.

[87] P. Massa and P. Avesani. “Controversial Users Demand Local Trust Metrics:
An Experimental Study on Epinions.com Community”. In: Proc. Nat.l Conf.
on Artificial Intelligence (AAAI). 2005, pp. 121–126.

[88] P. Massa and P. Avesani. “Controversial Users Demand Local Trust Metrics: An
Experimental Study on Epinions.com Community”. In: Proc. of AAAI Conf.
on Artificial Intelligence (AAAI). 2005, pp. 121–126.

[89] Rossana Mastrandrea, Tiziano Squartini, Giorgio Fagiolo, and Diego Gar-
laschelli. “Enhanced reconstruction of weighted networks from strengths and
degrees”. In: New Journal of Physics 16 (2014).

[90] A. E. Mislove. “Online social networks: measurement, analysis, and applications
to distributed information systems”. PhD thesis. Rice University, 2009.

[91] Raul J Mondragon, Jacopo Iacovacci, and Ginestra Bianconi. “Multilink com-
munities of multiplex networks”. In: PloS one 13.3 (2018), e0193821.

[92] Hervi Moulin. Axioms of cooperative decision making. 15. Cambridge university
press, 1991.

[93] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela. “Com-
munity structure in time-dependent, multiscale, and multiplex networks”. In:
Science 328.5980 (2010), pp. 876–878.

[94] S. Nepal, W. Sherchan, and C. Paris. “STrust: A Trust Model for Social Net-
works”. In: 2011, pp. 841–846.

[95] M. E. J. Newman. “Fast Algorithm for Detecting Community Structure in
Networks”. In: Phys. Rev. E 69 (2004).

[96] M. E. J. Newman and M. Girvan. “Finding and evaluating community structure
in networks”. In: Phys. Rev. E 69.2 (2004), p. 026113.

Bibliography 109

[97] Nam Nguyen and Rich Caruana. “Consensus clusterings”. In: Seventh IEEE
international conference on data mining (ICDM 2007). IEEE. 2007, pp. 607–
612.

[98] F. Å. Nielsen. “A New ANEW: Evaluation of a Word List for Sentiment Anal-
ysis in Microblogs”. In: Proc. of the ESWC2011 Workshop on ’Making Sense
of Microposts’. 2011, pp. 93–98.

[99] F. J. Ortega, J. A. Troyano, F. L. Cruz, C. G. Vallejo, and F. Enríquez. “Prop-
agation of trust and distrust for the detection of trolls in a social network”. In:
Computer Networks 56.12 (2012), pp. 2884–2895.

[100] D. Pandove, S. Goel, and R. Rani. “Correlation clustering methodologies and
their fundamental results”. In: Expert Systems 35.1 (2018).

[101] P. Parchas, F. Gullo, D. Papadias, and F. Bonchi. “Uncertain Graph Processing
through Representative Instances”. In: ACM TODS 40.3 (2015), 20:1–20:39.

[102] Alex Pothen, Horst D Simon, and Kang-Pu Liou. “Partitioning sparse ma-
trices with eigenvectors of graphs”. In: SIAM journal on matrix analysis and
applications 11.3 (1990), pp. 430–452.

[103] Filippo Radicchi, Jose J. Ramasco, and Santo Fortunato. “Information filtering
in complex weighted networks”. In: Physical Review E 83 (2011), p. 046101.

[104] Jörg Reichardt and Stefan Bornholdt. “Detecting fuzzy community structures
in complex networks with a Potts model”. In: Physical Review Letters 93.21
(2004), p. 218701.

[105] G. Rossetti. “RDyn: graph benchmark handling community dynamics”. In:
Journal of Complex Networks (2017).

[106] G. Rossetti, L. Pappalardo, D. Pedreschi, and F. Giannotti. “Tiles: an online
algorithm for community discovery in dynamic social networks”. In: Machine
Learning 106.8 (2017), pp. 1213–1241.

[107] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex
networks reveal community structure”. In: Proceedings of the National Academy
of Sciences 105.4 (2008), pp. 1118–1123.

[108] M Ángeles Serrano, Marián Boguná, and Alessandro Vespignani. “Extracting
the multiscale backbone of complex weighted networks”. In: Proceedings of the
National Academy of Sciences 106.16 (2009), pp. 6483–6488.

[109] W. Sherchan, S. Nepal, and C. Paris. “A survey of trust in social networks”.
In: ACM Comput. Surv. 45.4 (2013), 47:1–47:33.

[110] A. Strehl and J. Ghosh. “Cluster Ensembles — a Knowledge Reuse Framework
for Combining Multiple Partitions”. In: J. Mach. Learn. Res. 3 (2003), pp. 583–
617.

[111] A. Strehl and J. Ghosh. “Cluster ensembles—a knowledge reuse framework for
combining multiple partitions”. In: J. Mach. Learn. Res. 3.Dec (2002), pp. 583–
617.

[112] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning. Vol. 135.
Cambridge: MIT press, 1998.

[113] C. Swamy. “Correlation Clustering: maximizing agreements via semidefinite
programming”. In: Proc. ACM-SIAM SODA Conf. 2004, pp. 526–527.

Bibliography 110

[114] Andrea Tagarelli, Alessia Amelio, and Francesco Gullo. “Ensemble-based com-
munity detection in multilayer networks”. In: Data Min. Knowl. Discov. 31.5
(2017), pp. 1506–1543.

[115] M. Takaffoli, R. Rabbany, and O. R. Zaïane. “Community evolution prediction
in dynamic social networks”. In: Proc. IEEE/ACM Int. Conf. on Advances in
Social Networks Analysis and Mining (ASONAM). 2014, pp. 9–16.

[116] J. Tang, H. Gao, H. Liu, and A. Das Sarma. “eTrust: understanding trust
evolution in an online world”. In: Proc. ACM KDD Conf. 2012, pp. 253–261.

[117] L. Tang and H. Liu. Community Detection and Mining in Social Media. Syn-
thesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool
Publishers, 2010.

[118] L. Tang, X. Wang, and H. Liu. “Community detection via heterogeneous in-
teraction analysis”. In: Data Min. Knowl. Discov. 25 (2012), pp. 1–33.

[119] L. Tang, X. Wang, and H. Liu. “Uncovering Groups via Heterogeneous Inter-
action Analysis”. In: Proc. ICDM. 2009, pp. 503–512.

[120] Nazanin Afsarmanesh Tehrani and Matteo Magnani. “Partial and Overlapping
Community Detection in Multiplex Social Networks”. In: Social Informatics -
10th International Conference, SocInfo 2018, St. Petersburg, Russia, September
25-28, 2018, Proceedings, Part II. Ed. by Steffen Staab, Olessia Koltsova, and
Dmitry I. Ignatov. Vol. 11186. Lecture Notes in Computer Science. Springer,
2018, pp. 15–28.

[121] V. A. Traag and J. Bruggeman. “Community detection in networks with posi-
tive and negative links”. In: Physical Review E 80.3 (2009), p. 036115.

[122] B. Viswanath, A. Mislove, M. Cha, and P. Krishna Gummadi. “On the evo-
lution of user interaction in Facebook”. In: Proc. ACM Workshop on Online
Social Networks (WOSN). 2009, pp. 37–42.

[123] Z. Wang, Z. Li, G. Yuan, Y. Sun, X. Rui, and X. Xiang. “Tracking the evolution
of overlapping communities in dynamic social networks”. In: Knowledge-Based
Systems 157 (2018), pp. 81–97.

[124] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. “Overlapping commu-
nity detection in networks: The state-of-the-art and comparative study”. In:
Acm computing surveys (csur) 45.4 (2013), pp. 1–35.

[125] K. Yang, Q. Guo, and J.-G. Liu. “Community detection via measuring the
strength between nodes for dynamic networks”. In: Physica A: Statistical Me-
chanics and its Applications 509 (2018), pp. 256–264.

[126] Y. Yao, H. Tong, F. Xu, and J. Lu. “Subgraph Extraction for Trust Inference
in Social Networks”. In: Encyclopedia of Social Network Analysis and Mining,
2nd Edition. 2018.

[127] A. Zakrzewska and D. A. Bader. “Tracking local communities in streaming
graphs with a dynamic algorithm”. In: Social Netw. Analys. Mining 6.1 (2016),
65:1–65:16.

[128] H. Zhang, C.-D. Wang, J.-H. Lai, and P. S. Yu. “Modularity in Complex
Multilayer Networks with Multiple Aspects: A Static Perspective”. In: CoRR
abs/1605.06190 (2016).

	Introduction
	Contributions

	Background
	Basic definitions
	Graph clustering
	Community detection
	Consensus clustering
	Uncertain graph clustering

	Learning problems for understanding graph dynamics
	Reinforcement learning and combinatorial multi-armed bandit (CMAB)
	Preference-based top-k selection
	Applications to dynamic community detection and network inference

	Consensus Community Detection in Multilayer Networks.
	Introduction
	Generative models for graph pruning
	Ensemble-based Multilayer Community Detection
	EMCD and parameter-free graph pruning
	Enhanced M-EMCD (M-EMCD*).

	Evaluation methodology
	Results
	Impact of model-filters on M-EMCD*
	Size of consensus solutions.
	Modularity analysis.
	Silhouette and NMI analysis.
	Time performance analysis.

	Evaluation with competing methods

	Chapter review

	Dynamic Consensus Community Detection in Temporal Networks.
	Introduction
	Related work
	Problem Statement
	Translating the problem of dynamic consensus community structure into CMAB
	Relation between base arms and super arms

	The CreDENCE method
	Finding communities
	Generating the dynamic consensus community structure
	Updating the dynamic consensus

	Computational complexity aspects
	Speeding up CreDENCE

	Evaluation methodology
	Results
	Impact of learning rate
	Impact of temporal-window width
	Efficiency evaluation
	Comparison with competing methods

	Chapter review

	Trust Network Inference.
	Introduction
	Related work on trust inference
	Problem statement
	Our proposed method for Trust Network Inference
	The TNI algorithm
	Computational complexity aspects

	Evaluation methodology
	Ground-truth for trust network inference
	Assessment criteria
	Case studies and datasets
	Competing methods

	Results
	Trust-class ground-truth evaluation
	Trust-network ground-truth evaluation
	Efficiency evaluation
	Discussion

	Chapter review

	Optimizing Interactions in Probabilistic Graphs Under Clustering Constraints.
	Introduction
	Related Work
	Problem definition
	Maximizing interaction
	Minimizing interaction loss

	Algorithms
	Algorithms for Max-Interaction-Clustering.
	Algorithms for Min-Interaction-loss-Clustering.

	Experimental evaluation
	Results on real data
	Results on synthetic data
	Evaluation with competing methods

	Chapter review

	Conclusion
	Bibliography

