
UNIVERSITÀ DELLA CALABRIA

DOCTORAL THESIS

Approximate Query Answering
over Incomplete and

Inconsistent Databases

Author:
Nicola FIORENTINO

Supervisors:
Cristian MOLINARO

Irina TRUBITSYNA

Dottorato di Ricerca in
Information and Communication Technologies

XXXIII ciclo

https://www.unical.it
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com

iii

Acknowledgements
I would like to express my gratitude to my supervisors, Prof. Cristian
Molinaro and Prof. Irina Trubitsyna, and to the team I have worked
with. Special thanks to Antonio Caliò and Domenico Mandaglio,
who have been precious companions on this journey.

v

Contents

Acknowledgements iii

Preface 1

1 Preliminaries 3
1.1 Relational Databases . 3

1.1.1 Relational Model 3
Integrity Constraints 4

1.1.2 Query Languages 6
Relational Algebra 7
Relational Calculus 8
Domain Independent and Safe RC Queries . . . 10
Conjunctive Queries 12

1.2 Incomplete Databases . 12
1.2.1 Syntax and Semantics 13
1.2.2 Query answering 14
1.2.3 Representation Systems 16

Codd tables . 17
Naive tables . 18
Conditional tables 19
Horn tables . 23

1.2.4 Nulls in SQL . 24

2 Approximate query answering over incomplete databases:
state of the art 27
2.1 Introduction . 28
2.2 L-approach . 32
2.3 GL-approach . 34
2.4 GML-approaches . 37

2.4.1 Eager evaluation 39
2.4.2 Semi-eager evaluation 43
2.4.3 Lazy evaluation 48
2.4.4 Aware evaluation 53

vi

3 A System Prototype for Approximate Query
Answering over Incomplete Data 61
3.1 Introduction . 61
3.2 System Overview . 62
3.3 Demonstration . 63
3.4 Discussion . 66

4 Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases 69
4.1 Introduction . 69
4.2 Experimental Evaluation of Approximation Algorithms 71
4.3 Novel Approach . 77
4.4 Experimental Evaluation of Lazy+ 79
4.5 Discussion . 80

5 Approximate Consistent Query
Answering over Inconsistent Knowledge Bases 81
5.1 Introduction . 81
5.2 Related work . 85
5.3 Approximation Algorithm 86
5.4 System Overview . 88
5.5 Discussion . 89

6 Probabilistic Answers over Inconsistent
Knowledge Bases 91
6.1 Introduction . 91
6.2 Preliminaries . 94
6.3 Probabilistic Repairs . 96
6.4 Discussion . 99

Conclusions 101

Bibliography 103

vii

To my family

1

Preface

There are two central issues when we talk about data management:
data incompleteness and data inconsistency. When we deal with in-
complete databases, relations may contain only part of relevant data,
whereas in inconsistent databases, data in the tables may not sat-
isfy some of the integrity constraints defined over the schema. These
are scenarios where the information in the data is not uniquely un-
derstood due to the ambiguity. As a consequence, standard query
answering may not be effective and ad hoc techniques are required.
This thesis focuses on the problem of querying both incomplete and
inconsistent databases, with the aim to provide relevant answers in
the presence of either incomplete or inconsistent information. In the
years, a number of semantics for query answering in the presence
of incomplete or inconsistent data have been proposed, and we em-
brace the most consolidated and significant of them, that is, certain
and consistent query answers. These are answers we can be confi-
dent about even if ambiguity in the data has been encountered. Un-
fortunately, computing certain and consistent query answers are in-
tractable problems, thus recent research has focused on developing
polynomial time evaluation algorithms with correctness guarantees.

In the first part of this thesis we deal with incomplete informa-
tion and we illustrate a number of these efficient techniques, capable
to compute a sound but possibly incomplete set of certain answers.
Then, we propose a new approach which provides better approxima-
tions than the most of the current techniques, while retaining polyno-
mial time data complexity. The central tools of these techniques are
conditional tables and the conditional evaluation of queries. Also,
we propose a system prototype offering a suite of state-of-the-art ap-
proximation algorithms enabling users to choose the technique that
best meets their needs in terms of balance between efficiency and
quality of the results.

In the second part of this thesis, we deal with consistent query
answering of (possibly inconsistent) knowledge bases. This prob-
lem relies on two central notions: a repair, that is, a maximal con-
sistent subset of the facts in the knowledge base, and a consistent

2 Contents

query answer, that is, a query answer entailed by every repair of the
knowledge base. We present a system, which allows users to query
inconsistent knowledge bases. Specifically, equality generating de-
pendencies are considered. Different from the standard notion of
repair, where entire facts are deleted to restore consistency (which
might lead to loss of useful information), the repair strategy adopted
by our system performs value updates within facts, thereby preserv-
ing more information in the knowledge base. An inconsistent knowl-
edge base can admit multiple repairs; our system computes a com-
pact representation of all of them, called universal repair, which is
also leveraged for query answering. Since consistent query answer-
ing is intractable in the considered setting, we implemented a poly-
nomial time algorithm to compute a sound (but not necessarily com-
plete) set of consistent query answers. The classification of query an-
swers into consistent and non-consistent ones is a somewhat coarse-
grained classification, as it does not provide much information about
non-consistent query answers (e.g., a query answer entailed by 99
out of 100 repairs might be considered “almost consistent”). To over-
come this limitation, in the last part of this thesis we propose a prob-
abilistic approach to querying inconsistent knowledge bases, which
provides more informative query answers by associating a degree of
consistency with each query answer by associating a probability to
each repair, depending on the changes needed to obtain it.

This thesis is organized as follows. In Chapter 1 we introduce ba-
sic concepts and notations about relational databases, representation
systems to deal with incomplete information (with focus on conda-
tional tables), integrity constraints and repairs. In Chapter 2 we illus-
trate state-of-the-art evaluation algorithms to compute a sound but
possibly incomplete set of certain query answers, whereas in Chap-
ter 3 we present a system offering the implementation of a suite of
approximation algorithms, which are those presented in Chapter 2
under the name of GMT-approaches. In Chapter 4 we propose a novel
technique that allows us to improve the approximation algorithms
presented in Chapter 2. Chapter 5 presents a system to compute the
universal repair of inconsistent knowledge bases, whereas in Chap-
ter 6 we propose a probabilistic approach to querying inconsistent
databases. Finally, conclusions are drawn.

3

Chapter 1

Preliminaries

1.1 Relational Databases

A database is a collection of data organized to model relevant aspects
of reality and to support processes requiring this information.

A database model is a theory or specification describing how a
database is structured and used. It provides the means for specifying
particular data structures, for constraining the data sets associated
with these structures, and for manipulating the data. A number of
database models have been proposed (hierarchical model, network
model, object model. etc.). In 1970 E. F. Codd introduced the rela-
tional model as a way to make DBMs (Databse Management System)
independent of any particular application, defining it as a mathemat-
ical model based on predicate logic and set theory [24]. Nowadays
the relational model is the most popular and used and in this chap-
ter we recall the basic notions of it, together with relational query
languages and the basic types of data dependencies.

1.1.1 Relational Model

We assume the existence of the following pairwise disjoint sets:

• a countably infinite set Const of constants, called database do-
main;

• a countably set A of attributes, where each attribute Ai ∈ A is
associated with a set of constants called attribute domain and
denoted as dom(Ai);

• a countably infinite setR of relation names, where each relation
name R ∈ R is associated with a finite sequence of attribute
A1, . . . , An, where n is the arity of R.

4 Chapter 1. Preliminaries

We say that R(A1, . . . , An) is a relation schema and it may be referred
to as R(U), where U = {A1, . . . , An}.

A relation r over R(A1, . . . , An) is a finite subset of dom(A1) ×
· · · × dom(An). We also say that r is a relation of R. Each element
t of r is called a tuple. The notation t[Ai] is used to denote the Ai-
component of t. Similarly, for a set of attributes X ⊆ {A1, . . . , An},
t[X] is used to denote the restriction of tuple t to X. A database schema
is a a non-empty finite set R = {R1(U1), . . . , Rm(Um)} of relation
schemas. A database instance (or simply database) D over R is a finite
set of relations {r1,rm}, where each ri is a relation over Ri(Ui). We
use the notation Ri(t) to indicate that a tuple t belongs to a relation
ri over schema Ri(Ui), and call it a fact. A database can be viewed as
a finite set of facts. Now we give the definition of atom: an atom A is
on object of the form p(t1, . . . , tn), where p is an n-ary predicate and
the ti’s are terms, and a term is a constant or a variable. From this
perspective, a f act can be viewed as an atom without variables.

Integrity Constraints

Integrity Constraints (or Data Dependencies) express semantic informa-
tion about data, i.e. relationship that should hold among data. More
formally, an integrity constraint can be viewed as a first-order logic
sentence of the form:

∀x∀y φ(x, y)→ ∃z ψ(x, z)

where x, y and z are tuples of variables, φ(x, y) and ψ(x, z) are con-
junctions of (relation and equality) atoms. φ(x, y) (resp. ψ(x, z)) is
called the body (resp. the head) of the constraint. Without loss of gen-
erality we can assume that equality atoms may appear only in the
head of the dependency and that there is no existentially quantified
variable involved in an equality atom.

Below we present some of the most common kinds of data depen-
dencies.

Equality Generating Dependencies (EGDs). An equality generating
dependency (EDG) is a data dependency whose head is a single equal-
ity atom. It is a first-order logic sentence of the form:

∀x φ(x)→ xi = xj

1.1. Relational Databases 5

where x is a tuple of variables, xi, xj ∈ x and φ(x) is a conjunctions of
relation atoms.

Tuple Generating Dependencies (TGDs). A tuple generating depen-
dency (TGD) is a first-order logic sentence of the form:

∀x∀y φ(x, y)→ ∃z ψ(x, z)

where x, y and z are tuples of variables, φ(x, y) and ψ(x, z) are con-
junctions of relation atoms (no equality atoms occurring in it).

Functional Dependencies. Given a relation schema R(U), a func-
tional dependency f over R(U) is an expression of the form X → Y,
where X, Y ⊆ U. If Y is a just one attribute, then f is said to be in
standard form, whereas if Y ⊆ X, then the functional dependency
is trivial. A relation r over R(U) satis f ies f , denoted r |= f , iff
∀t1, t2 ∈ r, t1[X] = t2[X] implies t1[Y] = t2[Y] (and this means that r
is consistent w.r.t. f). Furthermore, r satisfies (or is consistent w.r.t.)
a set F of function dependencies over R(U), denoted as r |= F, iff r
satisfies each functional dependency in F. We say that F logically im-
plies a functional dependency f , denoted F |= f , iff for each relation
r over R(U), if r satisfies F, then r satisfies f .

A functional dependency can be viewed as a special case of equal-
ity generating dependency.

Key Dependencies. A key dependency is a special case of a functional
dependency (and of an EGD), characterized by the form X → U.
Given a set F of functional dependencies, a key of R is a minimal (un-
der set inclusion) set K of attributes of R such that F logically implies
K → U. We say that every attribute in K a key attribute, and a primary
key of R is a designated key of R.

Foreign Key Constraints. Given two relation schemas R(U) and
S(V), a foreign key constraint fk is an expression of the form R(W) ⊆
S(Z), where W ⊆ U, Z ⊆ V, |W| = |Z| and Z is a key of S (if Z is
a primary key of S we call f k a primary foreign key constraint). Two
relations r and s over R(U) and S(V), respectively, satisfy fk iff for
each tuple t1 ∈ r there is a tuple t2 ∈ s such that t1[W] = t2[Z] (r and
s are said to be consistent w.r.t. f k).

A foreign key constraint can be viewed as a special case of tuple
generating dependency.

6 Chapter 1. Preliminaries

Example 1.1. Assume you have a database schema consisting of the
following two relation schemas: Student(stud id, stud name, dept) and
Department(dept id, dept name). We want to force the condition that
every relation over the first relation schema cannot contain two dif-
ferent tuples with the same id (i.e. the same value on stud id). Simi-
larly, we want to force that every relation over the second relation
schema cannot contain two different tuples with the same id (i.e.
the same value on dept id). Moreover, it would be reasonable to
impose that if a department code appears in the student relation,
it must appear in the department relation too. The first two con-
straints mentioned above are examples of key dependencies - attribute
stud id is said to be a key of Student and dept id is said to be a key of
Department. The third dependency mentioned above is an example
of f oreign key constraint - particularly, attribute dept of Student is a
foreign key, referring to attribute dept id of Department. �

Example 1.2. Consider the following database:

stud id stud name dept
s1 Tom d1

s2 Bill d2

s3 Eustace d3

dept id dept name
d1 Maths

d2 Biology

Attribute stud id is a key of the first relation, whereas attribute dept id
is a key of the second one (this is illustrated by underlining stud id
and dept id). We may denote the foreign key constraint imposing
that each department appearing in the employee relation must ap-
pear in the department relation with the expression Student[dept] ⊆
Department[dept id]. While the database above satisfies the key con-
straints, you may notice that the foreign key constraint is not satisfied
because there doesn’t exist a tuple in the department relation having
d3 as dept id-value. �

1.1.2 Query Languages

Query languages are tools whose aim is to derive information from
databases. A query Q is a function that takes a database D as input
and returns a relation as output. We indicate the result of applying
Q to D as Q(D). There are a number of query languages, such as re-
lational algebra [24], relational calculus [27] and SQL (Structured Query
Language) [80]. Each language has an expressive power defined as
the set of queries that can be expressed by means of that language.

1.1. Relational Databases 7

Relational Algebra

Relational algebra is an extension of the algebra of sets and con-
sists of five basic operators. Assume you have two relation schemas,
R(A1, . . . , An) and S(B1, . . . , Bm), and let r and s be two relations over
the first and second schemas, respectively. The basic relational alge-
bra operators have the following definitions:

• Cartesian product: r× s = {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈
r ∧ (s1, . . . , sm) ∈ s};

• Union: r ∪ s = {t | t ∈ r ∨ t ∈ s};

• Difference: r− s = {t | t ∈ r ∧ t 6∈ s};

• Projection: πA(r) = {t[A] | t ∈ r}, where A ⊆ {A1, . . . , An};

• Selection: σF(r) = {t | t ∈ r ∧ F(t)}, where F is a logical for-
mula built using propositional logical connectives and atomic
formulas of the form E1 op E2, where op is a comparison oper-
ator, whereas E1 and E2 are constants or attributes names. F(t)
denotes the logical value given as result of the logical evalua-
tion of F over tuple t.

The relational algebra defined so far is also called named, since
attribute names are used in the relational algebra operators. There
exists an unnamed relational algebra where attributes are referred to
by their positions in the relation schema. In the named relational
algebra we also have a unary operator called renaming and defined
as follows: ρA1/B1,...,Ak/Bk

(r), where the Ai’s and Bj’s are attribute
names such that Ai 6= Bi, returns the input relation r with a schema
derived from the schema of r by renaming each attribute Ai as Bi, for
i = 1, . . . , k.

A number of derived operators have been defined too. Derived
operators do not increase the expressive power of the language (i.e.
they do not allow us to express further queries), but are introduced
to make expressions more comprehensible and their evaluation more
efficient. As an example, the derived operators intersection and (theta)
join are defined as follows:

• Intersection: r∩ s = {t | t ∈ r∧ t ∈ s} = r− (r− s) = s− (s− r);

• Join: r ./F s = {(r1, . . . , rn, s1, . . . , sm) | (r1, . . . , rn) ∈ r ∧ (s1, . . . ,
sm) ∈ s ∧ F(r1, . . . , rn, s1, . . . , sm)} = σF(r × s), where F is a
selection expression.

8 Chapter 1. Preliminaries

Natural join, different types of outer joins and semi-join, division
are examples of other derived operators.

Example 1.3. Assume you have two relations student and department
over schema Student(stud id, stud name, dept) and
Department(dept id, dept name), respectively. The query asking for
names of the students who study in the department Maths may be
expressed as:

πstud name(student ./dept=dept id σdept name=“Maths′′(department)).

�

We use the notation RA to denote the set of queries expressible
in relational algebra.

Relational Calculus

Another formalism to express queries in the relational model is rela-
tional calculus, which is described below. Particularly, the language
we present here is also called domain calculus, because variables vary
over the underlying database domain; in tuple calculus, which is not
considered here, variables vary over tuples.

We assume the existence of a set V of variables. Recall that Const
is used to denote the database domain. A term is a constant in Const

or a variavle in V. Formulas are inductively defined as follows:

• a (basic) formula, also called atom, is (i) an expression of the
form R(w1, . . . , wn), where R is a relation name with arity n
and wi’s are terms - this is called a standard atom, or (ii) an ex-
pression of the form w1 op w2, where w1, w2 are terms and op
is a comparison operator (i.e. op ∈ {>,<,≥,≤,=, 6=}) - this is
called a built-in atom;

• if G and H are formulas, then (G ∧ H), (G ∨ H), ¬G are formu-
las;

• if x is a variable in V and G is a formula, then ∃xG and ∀xG are
formulas.

We now define f ree variable occurrences. We say that an occurrence
of a variable x in a formula is f ree if one of the following holds:

• F is a basic formula;

1.1. Relational Databases 9

• F = ¬G and the occurrence of x is free in G;

• F = G ∧ H (resp. F = G ∨ H) and the occurrence of x is free in
G or H;

• F = ∃yG (resp. F = ∀yG), x and y are distinct variable, and
the occurrence of x is free in G.

We use f ree(F) to denote the set of free variables of F, that is the
variables appearing in F having at least one free occurrence in F.

A relational calculus query is an expression of the form:

{(u1, . . . , un) | F}

where the ui’s are terms (the same term can be repeated), F is a for-
mula, and the variables in {u1, . . . , un} are exactly the free variables
of F.

Example 1.4. Consider again the database schema consisting of the
two relation schemas Student(stud id, stud name, dept) and
Department(dept id, dept name). The query asking for the names of
the employees working in the Maths department is expressed by the
following relational calculus query:

{(y) | ∃x ∃z Student(x, y, z) ∧ Department(z, Maths)}

�

The semantics of a relational calculus query over a database is
defined w.r.t. a particular domain Const′, called evaluation domain,
which is intended to specify the constants over which variables can
range. Before defining the semantics of relational calculus queries,
we introduce some notations and terminology used in the follow-
ing. A valuation for a set of variables V′ ⊆ V is a mapping ν :
V′ ∪ Const → Const such that ν(c) = c, ∀c ∈ Const. We use ν|V′′
to denote the restriction of ν to V′′ ⊆ V′. The active domain of a
database D, denoted adom(D), is the set of constants appearing in D.
Likewise, we use adom(Q) and adom(F) to denote the set of constants
appearing in relational calculus query Q and formula F, respectively.

Let D be a database, Const′ be the evaluation domain such that
adom(D) ⊆ Const′ ⊆ Const, F a formula such that adom(F) ⊆
Const′, and ν a valuation for the free variables of F with range con-
tained in Const′. Then, we say that D satis f ies F for ν relative to
Const′, denoted D |= F[ν] (Const′ is understood), if one of the fol-
lowing holds:

10 Chapter 1. Preliminaries

• F = R(w1, . . . , wm) and R(ν(w1), . . . , ν(wm)) is a fact of D.

• F = w1 op w2, with op ∈ {>,<,≥,≤,=, 6=}, and ν(w1) op ν(w2)
is true.

• F = G ∧ H, D |= G[ν| f ree(G)], and D |= H| f ree(H)].

• F = G ∨ H. In addition, D |= G[ν| f ree(G)] or D |= H| f ree(H)].

• F = ¬G and D |= G[ν| f ree(G)] does not hold.

• F = ∃xG and ∃c ∈ Const′, D |= G[ν′], where ν′ is a valuation
for x and the variables of ν such that ν′(x) = c and ν′(y) = ν(y)
for any other variable y.

• F = ∀xG and ∀c ∈ Const′, D |= G[ν′], where ν′ is a valuation
for x and the variables of ν such that ν′(x) = c and ν′(y) = ν(y)
for any other variable y.

We define the semantics of a relational calculus query
Q = {(u1, . . . , un) | F} over a database D w.r.t. the evaluation do-
main Const′, where ((adom(D) ∪ adom(Q)) ⊆ Const′ ⊆ Const. The
role of the Const′ is to specify the constants over which variables can
range. Notice that the supersets of adom(D) ∪ adom(Q) are the only
domains with respect to which it makes sense to evaluate Q over D.
We define the semantics of Q over D w.r.t. Const′ as follows:

QConst′(D) = {(ν(u1) . . . , ν(un)) |D |= F[ν] and ν is a valuation for

f ree(F) with range ⊆ Const′}

When Const′ = Const the semantics above corresponds to the
standard interpretation of predicate calculus. Note that if Const′ is
infinite, then QConst′(D) can be an infinite set of tuples.

We use the notationRC to denote the set of queries expressible in
relational calculus

Domain Independent and Safe RC Queries

A relational calculus query Q is domain independent if for each database
D, and for each couple Const′, Const′′ such that (adom(D)∪ adom(Q)) ⊆
Const′, Const′′ ⊆ Const, it happens that QConst′(D) = QConst′′(D).
Thus, for an arbitrary database, a domain independent relational
calculus query gives the same result regardless of the domain w.r.t.
which it is evaluated. This means that, if Q is domain independent,

1.1. Relational Databases 11

then QConst′(D) does not change when Const′ changes. Therefore
QConst′(D) can be computed for Const′ = adom(D) ∪ adom(Q).

Example 1.5. Assume you have the relation schema R(A, B) and the
following relational calculus queries:

• Q1 = {(x, y) | ∃u ∃v(R(u, v) ∧ R(x, y))};

• Q2 = {(x, y) |¬R(x, y)};

• Q3 = {(x) | ∀yR(x, y)}.
All the queries above are not domain independent. To see why,

consider a relation r = {(c1, c1), (c1, c2)} and let Const′ be a domain.
It is easy to check that Q1

Const′({r}) = {(x, y) | x ∈ Const′ ∧ y ∈
Const′} and Q2

Const′({r}) = {(x, y) | x ∈ Const′ ∧ y ∈ Const′ ∧
(x, y) 6∈ r}. As the results of Q1 and Q2 contain values of Const′,
then their results clearly depend on Const′. One can see that Q3

will always contain values taken from the input relation; however,
it is not domain dependent. Indeed, it is easy to see that if Const′

is infinite, then Q3
Const′({r}) is empty. The same holds if, for in-

stance, Const′ = {c1, c2, c3}. Nevertheless, if Const′ = {c1, c2}, then
Q3

Const′({r}) = {(c1)}. Hence Q3 may return different results over
the same relation when different domains are considered. �

Theorem 1.6. The problem of deciding whether a relational calculus query
is domain independent is undecidable (cf. [81]).

It is important to observe that the fact that we can express rela-
tional calculus queries which are not domain independent is not a
positive aspect because, in the presence of an infinite database do-
main, we could get query answer whose number of tuples is infinite.

In the theorem 1.6 we saw that there does not exist an algorithm
to determine whether a relational calculus query is domain indepen-
dent. We said that a relational calculus query that is not domain in-
dependent is not desirable too. Therefore, we now present some syn-
tactical restrictions that lead to a class of relational calculus queries,
called sa f e, that are guaranteed to be domain independent. Safe re-
lational calculus queries are a subset of the domain independent re-
lational calculus queries.

Safe relational calculus (SRC) is derived from relational calculus
by forcing the following restriction on formulas:

• the universal quantifier ∀ is not used. This does not invalidate
the expressiveness of the language as expressions of the form
∀xF may be written as ¬(∃x¬F);

12 Chapter 1. Preliminaries

• the disjunctions operator is applied only to logical expressions
having the same set of free variable;

• for any maximal sub-formulas F of the form F1∧ · · · ∧ Fn, all the
free variables of F must be limited as explained in the following:

– a variable is limited if it is free in some Fi and Fi is not an
arithmetic comparison and is not negated;

– if Fi is of the form x = c or c = x, where x is a variable and
c is a constant, then x is limited;

– if Fi is of the form x = y or y = x, where x, y are variables
and y is limited, then x is limited;

• negation is just applied to an Fi in a maximal sub-formula F of
the form F1 ∧ · · · ∧ Fn where all free variables are limited.

The set of queries that can be expressed with safe relational cal-
culus is denoted as SRC.

Theorem 1.7. RA = SRC (cf. [26, 84]).

Conjunctive Queries

Conjunctive queries are a natural class of queries frequently arising
that enjoy different desirable properties (e.g. checking for equiva-
lence and containment of conjunctive queries is decidable) [23]. They
may be expressed in the languages seen before in the following sense:

• RC: relational calculus expressions of the form {w | ∃xR1(u1)∧
· · · ∧ Rk(uk)}, where w is the tuple of variables (that must ap-
pear in the conjunction) and constants, x is the tuple of vari-
ables in the conjunction that are not in w, the Ri’s are relation
names, and the ui’s are tuples of terms (i.e. variables and con-
stants).

• RA: relational algebra expressions using only positive selec-
tion (i.e. selection conditions are restricted to be conjunctions
of equalities), projection and cartesian product.

1.2 Incomplete Databases

In this section we talk about the syntax and semantics of incomplete
databases and the principled semantics for querying them. Then

1.2. Incomplete Databases 13

we discuss about the most common representation systems used to
model incomplete information. Finally, we illustrate the behaviour
of SQL in the presence of null values.

1.2.1 Syntax and Semantics

We assume the existence of the following disjoint countably infinite
sets: a set Const of constants and a set Null of labelled nulls. Const

is the database domain, as introduced in Subsection 1.1.1. The set
Null is defined as follows: Null = {⊥i | i ∈ N} (thus, nulls are
denoted by the symbol ⊥ subscripted). A valuation is a mapping
ν : Null ∪ Const → Const, such that ν(c) = c for every c ∈ Const.
Hence, a valuation maps each constant to itself and every labelled
null to a constant.

A tuple t of arity k is an element of (Const ∪ Null)k, where k is a
non-negative integer. The i-th element of t is denoted as t[i], where
1 ≤ i ≤ k. Given a possibly empty ordered sequence Z of integers
i1, . . . , ih in the range [1..k], t[Z] denotes the tuple 〈t[i1], . . . , t[ih]〉. For
simplicity, a tuple 〈u〉 of arity 1 is simply written as u, where u is
a constant or a null. A relation of arity k is a finite set of tuples
of arity k. A relational schema is a set of relation names, each as-
sociated with a non-negative arity. A database D associates a rela-
tion RD of arity k with each relation name R of arity k. A relation
(resp. database) is complete if it does not contain nulls. Databases
as defined above have been called also naive tables, V-tables and e-
tables [61, 1, 43]. Valuations can be applied to tuples, relations, and
databases in the obvious way. For instance, the result of applying ν
to a database D, denoted ν(D), is the complete database obtained
from D by replacing every null ⊥i with ν(⊥i). The semantics of
an incomplete database D is given by the set of complete databases
poss(D) = {ν(D) | ν is a valuation}, which are also called possible
worlds. Indeed, this is the semantics under the missing value in-
terpretation of nulls (i.e., every null stands for a value that exists
but is unknown), and is referred to as the closed-world semantics
of incompleteness (CWA for short, which stands for Closed-World
Assumption). Under the open-world semantics of incompleteness
(OWA for short), which we do not consider, the semantics of D is
{ν(D) ∪ D′ | ν is a valuation and D′ is a complete database}. In the
following of the thesis we will consider just the CWA.

14 Chapter 1. Preliminaries

1.2.2 Query answering

We consider queries expressed in relational algebra, that is, by means
of the following operators: selection σ, projection π, Cartesian prod-
uct×, union∪, intersection∩, and difference−. We introduced these
operators in Section 1.1.2. Thus, a query is a relational algebra ex-
pression built from relation names and the operators above. A query
Q returning k-tuples is said to be of arity k, and ar(Q) denotes its
arity.

As an incomplete database provides different states of the real
world, a query can return a set of answers for each possible world.

Definition 1.8. Given a query Q and an incomplete database D, the
result of evaluating Q over D is Q(D) = {Q(D′) | D′ ∈ D}.

Therefore, Q(D) contains a set of query answers for every possi-
ble world of D. However, there may be some tuples that are answers
to Q regardless of the possible world which is the true state of the
world. On the other hands, there may be tuples which are answers
to Q w.r.t. some, but not necessarily each possible world.

A tuple is a possible answer to Q w.r.t. D if it is an answer to Q in
some possible world of D.

Definition 1.9. The set of possible answers to a query Q w.r.t. an in-
complete database D is defined as follows:

possible(Q, D) =
⋃

D′∈D

Q(D′)

The evaluation of a query Q on a database D, treating nulls as
standard constants (i.e., every labeled null or constant is equal to it-
self and different from every other element of Const∪ Null) is called
naive evaluation, and it has been studied in [61].

A widely accepted semantics of query answering relies on the
notion of certain answers. A tuple is a certain answer to a query Q
w.r.t. an incomplete database D if it is an answer to Q in each possible
world of D.

Definition 1.10. The set of certain answers to a query Q w.r.t. an in-
complete database D is defined as follows:

certain(Q, D) =
⋂

D′∈D

Q(D′).

1.2. Incomplete Databases 15

As an alternative to the definition given above, an equivalent def-
inition is: certain(Q, D) = ∩{Q(ν(D))|ν is a valuation}

Computing certain answers is coNP-hard (data complexity), even
in the case of Codd tables, that is, databases where the same null
cannot occur multiple times [3] (for more details about Codd tables,
see later).

For query answering, there exists a more general notion first pro-
posed in [75] and called certain answers with nulls in [72], which avoids
some anomalies of certain answers (we provide an example below).
The certain answers with nulls to a query Q on a database D, de-
noted by cert(Q, D), are all tuples t such that ν(t) ∈ Q(ν(D)) for
every valuation ν. Comparing the standard notion of certain answers
with the notion of certain answers with nulls, we have that the lat-
ter always include the former and may additionally include tuples
with nulls (certain answers never contain nulls). Indeed, the certain
answers are exactly the null-free tuples in the set of certain answers
with nulls [72]. Certain answers with nulls avoid some anomalies
of certain answers, such as returning a subset of a relation when the
query is the “identity query”. As an example, consider the following
database D:

P
john

mary

E
john

⊥1

S
mary

bob

and the queries Q = P − E and Q′ = E (identity query). We have
that: (i) the naive evaluation gives Q(D) = {mary} and Q′(D) =
{john,⊥1}, as ⊥1 is treated as a constant; (ii) the certain answers
with nulls are cert(Q, D) = ∅ and cert(Q′, D) = {john,⊥1}; and
(iii) the certain answers to Q and Q′ are ∅ and {john}, respectively.
Notice that Q(D) contains mary, which is neither a certain answer nor
a certain answer with nulls. So the naive evaluation may return false
positives. Moreover, notice that cert(Q′, D) = {john,⊥1} while the
certain answers to Q′ consist only of john, which is indeed the only
tuple in cert(Q′, D) without nulls. (We refer the interested reader to
[68, 70] for a discussion of other drawbacks of the standard notion of
certain answers.)

A query evaluation algorithm is said to have correctness guar-
antees for a query Q if for every database D it returns a subset of

16 Chapter 1. Preliminaries

cert(Q, D). When a query evaluation algorithm has correctness guar-
antees for every query, we say that it has correctness guarantees. No-
tice that dealing with cert(Q, D) allows us to deal with certain an-
swers too: as recalled before, certain answers can be obtained from
cert(Q, D) by deleting tuples containing nulls.

1.2.3 Representation Systems

A number of approaches, called representation systems, have been pro-
posed to represent incomplete databases compactly. In the following
we present representation systems based on unknown null values [7,
15, 25, 44, 60, 59, 67, 73, 74, 88, 57, 56, 55]. Some representation sys-
tems such as c-tables may specify some restrictions on how nulls can
be replaced.

We now recall the important notions of strong and weak repre-
sentations system. Then, we illustrate a number of representation
systems and show how the different ones behave w.r.t. such proper-
ties.

Given a representation T (in a particular representation system)
of an incomplete database, we use rep(T) to denote the set of com-
plete databases represented by T (or, in other words, by the incom-
plete database represented by T). Give a query Q, we would always
like to be able to find a representation of the answers to Q over the in-
complete database represented by T, using the same representation
system of T. More precisely, for every query Q and representation T
of an incomplete database, we would like to compute a representa-
tion T′ (from T and Q) such that rep(T′) = Q(rep(T)). If a represen-
tation system has this property for a query language L, then it is said
to be a strong representation system for L.

We now present the notion of a weak representation system by
relaxing the requirements of a strong representation system.

Given a query language L, we say that two incomplete databases
I and J are L-equivalent, denoted I ≡L J, if certain(Q, I) =
certain(Q, J) for each query Q of L. A representation system is weak
for a query language L if for each representation T of an incomplete
database and query Q of L there exists a representation T′ such that
rep(T′) ≡L Q(rep(T)). Unlike a strong representation system, a
weak representation system is not required to be able to represent
Q(rep(T)) for each query Q and representation T; nevertheless, a
weak representation system must be able to provide a representation
T′ s.t. rep(T′) is L-equivalent to Q(rep(T)) - this means that rep(T′)

1.2. Incomplete Databases 17

and Q(rep(T)) are indistinguishable as long as we are interested only
in the certain answers to queries in L.

Now we present four different representation systems. To sim-
plify the presentation, we restrict our discussion to unirelational data-

bases, and assume that each attribute domain coincides with the
database domain Const. Generalization is easy to derive.

Codd tables

A Codd table is a relation possibly containing labelled nulls from Null,
where each labelled null can occur at most once. The incomplete
database represented by a Codd table T is defined as follows:

rep(T) = {ν(T) | ν is a valuation}.

Therefore, the possible worlds represented by T are the complete
databases which can be derived from T by replacing every labelled
null in T with a constant. It is important to underline that the pre-
vious definition of rep(T) assumed the Closed World Assumption
(CWA) because every tuple in a possible world of rep(T) must be de-
rived from a tuple of T. Instead, in the presence of the Open World
Assumption (OWA), the possible worlds represented by T include
rep(T) and any other complete database that contains a database in
rep(T).

Example 1.11. Assume⊥1,⊥2,⊥3,⊥4 are labelled nulls in Null. The
following is a Codd table:

A1 A2 A3

2 2 ⊥1
⊥2 ⊥3 0
0 1 ⊥4

The following relations are some of the possible worlds repre-
sented by the previous Codd table:

A1 A2 A3

2 2 1
1 1 0
0 1 2

A1 A2 A3

2 2 2
1 2 0
0 1 1

A1 A2 A3

2 2 2
4 2 0
0 1 0

18 Chapter 1. Preliminaries

as an example, the first relation above is obtained from Codd ta-
ble by means of a valuation ν s.t. ν(⊥1) = 1, ν(⊥2) = 1, ν(⊥3) = 1,
ν(⊥4) = 2. Under the OWA, the following is also one of the possible
worlds (because it is a superset of the first possible world reported
above):

A1 A2 A3

2 2 1
1 1 0
0 1 2
0 0 1

As illustrated in the following example, Codd tables are not a
strong representation system even for restricted subsets of relational
algebra. �

Example 1.12. To give an idea of why Codd tables are not a strong
representation system for different subsets of relational algebra, con-
sider the Codd table of Example 1.11, call it T and the simple query Q
defined as σA1=5(T). Clearly, Q(rep(T)) contains an empty relation
(this is obtained, for instance, by evaluating Q over the first possible
world reported in Example 1.11) and at least one non-empty rela-
tion (e.g. the one obtained by evaluating Q over the third possible
world reported in Example 1.11). It may be easily verified that there
in no Codd table T′ whose possible worlds contain the two afore-
mentioned relations. �

Codd tables are a weak representation system for the subset of re-
lational algebra just consisting of selection (involving equalities and
inequalities) and projection. If we consider a language that allows
join or union too, the Codd tables are no longer a weak representa-
tion system for such a language.

Naive tables

One of the limitations of Codd tables is that a labelled null can appear
in the database at most once. Naive tables remove this constraint and
are defined as Codd tables except that labelled nulls are allowed to
occur more than once.

The set of possible worlds represented by a naive table T is de-
fined similarly as done for Codd tables, that is:

rep(T) = {ν(T) | ν is a valuation}.

1.2. Incomplete Databases 19

Notice that if a naive table contains multiple occurrences of the
same labelled null, the possible worlds are obtained by replacing the
different occurrences of the same labelled null with the same con-
stant.

Example 1.13. Assume ⊥1, ⊥2, ⊥3 are labelled nulls in Null. The
following is a naive table but not a Codd table, because of the two
occurrences of ⊥1:

A1 A2 A3

2 2 ⊥1
⊥2 ⊥3 0
0 1 ⊥1

Notice that the naive table above says that even if the A3-values
of the first and third tuples are unknown, we know that they are the
same.

The following relations are some of the possible worlds repre-
sented by the previous naive table:

A1 A2 A3

2 2 1
1 1 0
0 1 1

A1 A2 A3

2 2 3
1 2 0
0 1 3

A1 A2 A3

2 2 1
3 2 0
0 1 1

As an example, the first relation above is obtained from the naive
table by means of a valuation ν s.t. ν(⊥1) = 1, ν(⊥2) = 1, ν(⊥3) = 1.
We remark again that for each possible world of the previous naive
table the C-value of the first tuple is equal to the C-value of the third
tuple. �

Naive tables are a weak representation system for RA queries
using selection (where only equalities are allowed), projection, join
and union. For a query Q in this class, the certain answers to Q w.r.t.
the incomplete database represented by a naive table T may be com-
puted as follows: first, Q is evaluated over T in the standard way by
treating labelled nulls as new constants different from any constant
in the database domain; then, tuples in the result containing labelled
nulls are discarded and the remaining tuples are certain answers.

Conditional tables

Until now we have seen that neither Codd nor naive tables are strong
representation system for full RA. We now present a much more

20 Chapter 1. Preliminaries

powerful representation system, called conditional tables, that forms a
strong representation system for RA. Conditional tables have been
proposed in [61].

A condition is a conjunction of atoms of the form ⊥i=⊥j, ⊥i= c,
⊥i 6=⊥j or ⊥i 6= c, where ⊥i and ⊥j are labelled nulls and c is a con-
stant. A valuation ν satisfies a condition φ iff by replacing each occur-
rence of labelled null ⊥i in φ with ν(⊥i), the resulting logical expres-
sion is true. A conditional table (c-table for short) is a triple 〈T, Φ, Ψ〉
where T is a naive table, Φ is a condition (called global condition)
and Ψ is a function mapping each tuple of T to a condition (condi-
tions associated with tuples by means of function Φ are called local
conditions). Global and local conditions may contain labelled nulls
not occurring in T.

The set of possible worlds represented by a conditional table
〈T, Φ, Ψ〉 is defined as follows:

rep(〈T, Φ,Ψ〉) = {r | there exists a valuation ν such that
ν satisfies Ψ and r = {ν(t) | t ∈ T and ν satisfies Ψ(t)}}.

Notice that the previous definition of rep adopts the CWA.

Example 1.14. Suppose we know that Bill is taking chemistry or phy-
sics, but not both, and another course that is not known. Tom takes
biology if Bill takes chemistry, and chemistry or computer science
(CS), but not both, if Bill takes CS. This can be represented by the
following c-table:

⊥1 6= chemistry ∧ ⊥1 6= physics

Student Course
Bill chemistry ⊥2= 0
Bill physics ⊥2 6= 0
Bill ⊥1
Tom biology ⊥2= 0
Tom chemistry ⊥1= CS ∧ ⊥3= 0
Tom CS ⊥1= CS ∧ ⊥3 6= 0

In the previous c-table⊥1,⊥2 and⊥3 are labeled nulls. The global
conditions Φ is ⊥1 6= chemistry ∧ ⊥1 6= physics. For each tuple the
condition associated by Ψ is reported in the last column (a missing
condition for a tuple t means that Ψ(t) = true).

The following relations are some of the possible worlds repre-
sented by the previous c-table:

1.2. Incomplete Databases 21

Student Course
Bill chemistry

Bill CS

Tom biology

Tom chemistry

Student Course
Bill chemistry

Bill biology

Tom biology

Student Course
Bill physics

Bill biology

As an example, the first relation above is obtained from the c-table
by means of a valuation ν s.t. ν(⊥1) = CS, ν(⊥2) = 0, ν(⊥3) = 0.

A valuation ν such that ν(⊥1) = chemistry, ν(⊥2) = 1 would
lead to the following relation:

Student Course
Bill physics

Bill chemistry

Furthermore this relation is not a possible world because ν does
not satisfy the global condition. �

C-tables are a strong representation forRA [2].
Both local and global conditions may be true. From here on we

will consider conditional tables with no global condition (that is with
a global condition equal to true: for convenience, if the global con-
dition is truewe can omit it). We denote such a conditional table
simply with T, in place of the triple 〈T, Φ, Ψ〉.

Thus, essentially a c-table is a relation extended by one addi-
tional special column (which cannot be used inside queries) contain-
ing logical formulae, specifying under which conditions tuples are
true. Formally, let E be the set of all expressions (or conditions) that
can be built using the standard logical connectives ∧, ∨, and ¬ with
expressions of the form true, false, (α = β), and (α 6= β), where
α, β ∈ Const∪ Null. We say that a valuation ν satisfies a condition φ,
denoted ν |= φ, if its assignment of constants to nulls makes φ true.

We can define a conditional tuple (c-tuple for short) t of arity k (k ≥
0) as a pair 〈t, φ〉 , where t is a tuple of arity k and φ ∈ E . Notice
that φ may involve nulls and constants not necessarily appearing in
t, e.g., t is the tuple 〈a,⊥1〉 and φ is the condition (⊥2= c)∧(⊥1 6=⊥3).
So a conditional table of arity k is a finite set of c-tuples of arity k.
A conditional database C associates a c-table RC of arity k with each
relation name R of arity k.

So the result of applying a valuation ν to a c-table T is ν(T) =
{ν(T) | 〈t, φ〉 ∈ t and ν |= φ}. Thus, ν(T) is the complete relation
obtained from T by keeping only the c-tuples in T whose condition

22 Chapter 1. Preliminaries

is satisfied by ν, and applying ν to such c-tuples. As an example,
consider the conditional table T = {〈⊥1,⊥1= mary〉} and two valu-
ations ν1 and ν2 such that ν1(⊥1) = mary and ν2(⊥1) = john. Then,
ν1(t) = {mary}, as by replacing ⊥1 with mary the condition mary =
mary is true, whereas ν2(t) = ∅, as by replacing⊥1 with john the con-
dition john = mary is false. The set of complete relations represented
by T is rep(t) = { ν(T) | ν is a valuation}. Likewise, a conditional
database C = {T1, . . . , Tm} represents the following set of complete
databases: rep(C) = { {ν(T1), . . . , ν(Tm)} | ν is a valuation}.

Conditional evaluation We now illustrate the conditional evalua-
tion of a query over a conditional database ([61, 43]). Basically, it
consists in evaluating relational algebra operators so that they can
take c-tables as input and return a c-table as output. The conditional
evaluation of a query over a conditional database is then obtained by
applying the conditional evaluation of each operator. Following [61,
43], we provide definitions of base operators only (i.e., projection, se-
lection, union, difference, and Cartesian product). Other operators
can be expressed in terms of the base ones. Let T1 and T2 be c-tables
of arity n and m, respectively. In the definitions below, for the union
and difference operators it is assumed that n = m. For projection, Z
is a possibly empty ordered sequence of integers in the range [1..n].
For selection, θ is a Boolean combination of expressions of the form
($i = $j), ($i = c), ($i 6= $j), ($i 6= c), where 1 ≤ i, j ≤ n, and
c ∈ Const. In the following, given two tuples t1 and t2 of arity n, we
use (t1 = t2) as a shorthand for the condition

∧
i∈[1..n]

(t1[i] = t2[i]). The

conditional evaluation of a relational algebra operator op is denoted
as ˙op and is defined as follows.

• Projection: π̇Z(T1) = {〈t[Z], φ〉 | 〈t, φ〉 ∈ T1}.

• Selection: σ̇θ(T1) = {〈t, φ′〉 | 〈t, φ〉 ∈ T1 and φ′ = φ ∧ θ(t)},
where θ(t) is the condition obtained from θ by replacing every
$i with t[i].

• Union: T1∪̇T2 = {〈t, φ〉 | 〈t, φ〉 ∈ T1 or 〈t, φ〉 ∈ T2}.

• Difference: T1−̇T2 = {〈t1, φ′〉 | 〈t1, φ1〉 ∈ T1 and φ′ = φ1 ∧
φt1,T2}, where φt1,T2 =

∧ 〈t2, φ2〉 ∈ T2¬(φ2 ∧ (t1 = t2)).

• Cartesian product: T1×̇T2 = {〈t1 ◦ t2, φ1 ∧ φ2〉 | 〈t1, φ1〉 ∈
T1, 〈t2, φ2〉 ∈ T2}, where t1 ◦ t2 is the tuple obtained as the con-
catenation of t1 and t2.

1.2. Incomplete Databases 23

The result of the conditional evaluation of a query Q over a con-
ditional database C is denoted as Q̇(C). Notice that Q̇(C) is a c-table.
For a fixed query Q and a conditional database C, Q̇(C) can be eval-
uated in polynomial time in the size of C (see [43]). The size of a con-
ditional table T is ‖T‖ = |T|+ ∑

〈t,φ〉∈T
‖φ‖, where |T| is the number of

c-tuples in T and ‖φ‖ is the length in symbols of condition φ. The size
of a conditional database C is ‖C‖ = ∑

T∈C
‖Ti‖. Recall that c-tables are

a strong representation system for relational algebra [2], that is, for
every relational algebra query Q and conditional database C, it is
possible to compute a c-table T s.t. rep(T) = {Q(D) | D ∈ rep(C)}.
Indeed, such a c-table is computed precisely by conditional evalua-
tion, that is, T = Q(C). From here on we assume that every selec-
tion condition is a conjunction of expressions of the form ($i = $j),
($i = c), ($i 6= $j), and ($i 6= c). There is no loss of generality, as
an arbitrary selection σθ(R) can be rewritten as follows to comply
with our assumption. First, θ is rewritten in disjunctive normal form
(DNF), that is, into a formula θ1 ∨ · · · ∨ θm, where each θi is a con-
junction of expressions of the form ($i = $j), ($i = c), ($i 6= $j),
and ($i 6= c). Then, σθ(R) is replaced by σθ1(R) ∪ · · · ∪ σθm(R). Even
though the conversion to DNF can lead to an exponential blow-up in
size, this does not affect data complexity (as the query is fixed).

Horn tables

A Horn table is a c-table where conditions are constrained to assume
a restricted form. Particularly, Horn conditions have one of the follow-
ing forms:

• ⊥i= c and ⊥i=⊥j are (atomic) Horn conditions. Here ⊥i and
⊥j are labelled nulls whereas c is a constant;

• ¬F1 ∨ · · · ∨ ¬Fn is a Horn condition - here the Fi’s are atomic
Horn conditions;

• F1 ∧ · · · ∧ Fn → Fn+1 is a Horn condition. Here the Fi’s are
atomic Horn conditions.

A c-table is a Horn table if the global condition is a Horn condi-
tion and local conditions are of the form F1 ∧ · · · ∧ Fn.

Example 1.15. The c-table of Example 1.14 is not a Horn table. One
reason is that the global condition is not Horn. Moreover, the local
conditions of the second and last tuples are not Horn too. �

24 Chapter 1. Preliminaries

1.2.4 Nulls in SQL

The SQL standard provides one single constant NULL to represent a
missing value. Generally, the precise behaviour of the NULL value in
SQL is not described in detail, as the SQL rules surrounding NULL

may be ambiguous, often not intuitive and in some case astonishing.
The way NULLs should be handled in SQL, in each scenarios, is not
fully explained in the standard documentation.

In SQL, a NULL denotes that the value is unknown. Notice that
a NULL occurrence is different from the value zero, the empty string
and even from other NULL occurrences, namely two occurrences of
NULL are not necessarily “hiding” the same value. In fact, any com-
parison between a NULL and any other value - a constant or another
NULL - produces the unknown truth value because the value of a NULL is
unknown. Therefore, in the presence of NULLs, SQL considers a three-
valued logic where the truth values are false, unknown and true. As
an example, given two relations r1 = {(c1, NULL), (c2, 1), (c3, 2)} and
r2 = {(c1, NULL)} with schemas R1(A1, A2) and R2(A3, A4), the join
of r1 and r2 with join condition A2 = A4 gives in output an empty re-
lation, while the union of r1 and r2 is equal to {(c1, NULL), (c2, 1), (c3, 2)}.
Furthermore, the selection of the tuples of r1 satisfying the condition
A2 = 1 gives the relation {(c2, 1)}, whereas if the condition is A2 6= 1
we get the relation {(c3, 2)}, as NULL cannot be considered to be equal
to 1, but cannot even be considered to be different from 1, hence both
comparisons yield the truth value unknown and the first tuple of r1 is
not incorporated in the result. Indeed, only tuples whose compari-
son yields true are incorporated in the result.

Under the linear ordering false < unknown < true defined over
the truth values, the semantics of the logical operators ∧ and ∨ does
not change as A1 ∧ A2 = min{A1, A2} and A1 ∨ A2 = max{A1, A2};
the meaning of the negation operators must be extended assuming
that ¬unknown = unknown is true. Furthermore, arithmetic operators
involving Nulls return as result a NULL. Although it is reasonable that
NULL+ 100 = NULL, surprisingly NULL× 0 = NULL. Even more aston-
ishing is the following scenarios: if we count the tuples in the above
relation r1, the result is 3 (SELECT COUNT(*) FROM R1), but if we count
the tuples in the relation obtained by projecting r1 over attribute A2,
the result is 2 (SELECT COUNT(A2) FROM R1) and if we sum the values
in the second column of r1 the result is 3 (SELECT SUM(A2) FROM R1).

Moreover, [72] has evidenced that SQL’s evaluation may produce
unexpected results w.r.t. the semantics of certain answers. Firstly,
SQL can miss some certain answers, thus producing false negatives

1.2. Incomplete Databases 25

(a false negative answer is a certain answer that should be returned
by SQL evaluation but it does not); secondly, SQL may return some
tuples that are not certain answers, thus producing false positives (a
false positive answer is a tuple that is returned by SQL evaluation
and yet is not certain). This behaviour has been reported in Exam-
ple 2.2.

A formal semantics for SQL null values that exactly captures the
behaviors of SQL queries in the presence of nulls has been proposed
in [38, 39].

A knowledge base (KB) is a pair (D, Σ), where D is a database
and Σ is an acyclic set of EGDs.

27

Chapter 2

Approximate query answering
over incomplete databases:
state of the art

Incomplete databases have been investigated for several decades.
The seminal paper of Imielinski and Lipski [61] introduced the for-
mal foundations for databases with nulls representing missing val-
ues and the notion of representation system. This work laid the
foundation for the development of an exciting new research field,
where several problems have been investigated over the years, such
as query answering, dependency satisfaction, and handling updates
[61, 1, 85].

Certain answers are a principled manner to define the semantics
of query answering [3, 2]. However, their computational complexity
is high (coNP-hard in data complexity [3]).

Relational DBMSs rely on the three-valued semantics of SQL, but
unfortunately this can yield incorrect answers, as both false positives
and false negatives to certain answers can be produced (see [54]).

A renewed interest in the field has recently arisen [70] due to the
relevance of incomplete and uncertain data in applications such as
data integration [66], data exchange [6, 32, 33], inconsistent databases
[9, 48, 53, 62, 63, 78, 86], data cleaning and ontology-based query
answering [12, 21, 22, 8, 14, 31, 79].

Recently, a number of approximation algorithms for query an-
swering have been proposed: [72, 71] proposed the L-approach, [54]
proposed the GL-approach, [49] proposed the GMT-approaches. We
will discuss all these approaches later in this chapter.

The L-approach consists in rewriting a query Q into queries Qt

and Q f computing approximate sets of certainly true and certainly
false answers, respectively. Even if this technique has good theo-
retical complexity (AC0), it suffers from a number of problems that

28 Chapter 2. Approximate query answering over incomplete
databases: state of the art

severely hinder its practical implementation [54]. In particular, it
requires the computation of active domains and, even worse, their
Cartesian products. While expressible in relational algebra, the ex-
ecution of the Q f translations for selection, Cartesian product, pro-
jection, and even base relations becomes prohibitively expensive, as
they require computing Cartesian products of the active domain.To
overcome these problems, the GL-approach, which has correctness
guarantees too, produces queries that can be computed more effi-
ciently. As we will see next, for a query Q, GL-approach computes
approximations of certainly true answers and possibly true answers,
rather than computing certainly true and certainly false answers. As
shown in the following, the simplest of GMT-approaches is equiva-
lent to the GL-approach, while the other ones provide better approx-
imations (i.e., they return strictly more certain answers) and retain
polynomial time data complexity.

The central tools of GMT-approaches are conditional tables and
the conditional evaluation of queries. Thus, different strategies to
evaluate conditions are presented, leading to different approxima-
tion algorithms [49]. More accurate evaluation strategies have higher
running times, but they pay off with more certain answers being re-
turned.

2.1 Introduction

Incomplete information arises naturally in many database applica-
tions, such as data integration [50, 30], data exchange [66, 6], incon-
sistency management [32, 5, 9, 47], data cleaning [42, 58], ontological
reasoning [64, 42, 58], and many others. A principled way of answer-
ing queries over incomplete databases is to compute certain answers
[68, 61], which are query answers that can be obtained from all the
complete databases represented by an incomplete database. This no-
tion is illustrated below.

Example 2.1. Consider the database D consisting of the following
three unary relations, whose names are P (Person), S (Student) and
E (Employee), where ⊥1 is a null value.

P
john

mary

E
john

⊥1

S
mary

bob

Under the missing value interpretation of nulls (i.e., a value for ⊥1
exists but is unknown), D represents all the databases obtained by

2.1. Introduction 29

replacing ⊥1 with an actual value (in replacing nulls, we assume the
CWA). A certain answer to a query is a tuple that is an answer to
the query for every database represented by D. For instance, con-
sider the query asking for the people who are not employed students,
which can be expressed in relational algebra as P− (E ∩ S). The cer-
tain answers to the query are {〈john〉}, because no matter how ⊥1 is
replaced, 〈john〉 is always a query answer. �

Notice that mary is not a certain answer because when ⊥1 takes
the value mary, she is not a query answer. Notice that a certain an-
swer never contains a labeled null. For databases containing (la-
beled) nulls, certain answers to positive queries can be easily com-
puted in polynomial time by using the so-called naive evaluation [61],
which works as follows: first, the query is evaluated in the usual
way treating nulls as standard constants, and then tuples containing
nulls are discarded from the result of the query evaluation. How-
ever, for more general queries with negation the problem becomes
coNP-hard in data complexity [3]. In fact, the naive evaluation does
not work with queries involving negation. As an example, consider
the query and the database of Example 2.1 above. Clearly, the evalu-
ation of (E ∩ S) gives the empty set and thus P− (E ∩ S) gives both
john and mary, but the latter is not a certain answer to the query. To
make query answering feasible in practice, one might resort to SQL’s
evaluation, but unfortunately, the way SQL behaves in the presence
of nulls may result in wrong answers. Notice that for SQL evalu-
ation every labeled null in the database should be replaced by the
usual NULL of SQL. Specifically, as evidenced in [72], there are two
ways in which certain answers and SQL’s evaluation can differ: (i)
SQL can miss some certain answers, thus producing false negatives;
or (ii) SQL can return some tuples that are not certain answers, that
is, false positives. An example of the second case is illustrated below.

Example 2.2. Consider again the database D of Example 2.1. There
are no certain answers to the query P− E, as the query answers are
the empty set when ⊥1 is replaced with mary. Assuming that P and
E’s attribute is called name, the same query can be expressed in SQL
as follows:

SELECT P.name

FROM P

WHERE NOT EXISTS (

SELECT *

FROM E

30 Chapter 2. Approximate query answering over incomplete
databases: state of the art

WHERE P.name = E.name)

Unfortunately, the evaluation of the SQL query above returns
〈mary〉, which is not a certain answer. The problem with the SQL
semantics is that every comparison involving at least one null evalu-
ates to the truth value unknown, then 3-valued logic is used to evalu-
ate the classical logical connectives (AND, OR, NOT), and eventually
only those tuples whose condition evaluates to true are kept. Going
back to the query above, for the first tuple of P, namely john, the
nested subquery finds the same tuple in E, and thus john is not re-
turned. For the second tuple of P, namely mary, the nested subquery
first compares mary with john and the comparison evaluates to false,
it then compares mary with ⊥1 and the comparison evaluates to un-
known (because a null is involved), and thus the result of the nested
subquery is empty. As a consequence, 〈mary〉 is returned in the final
result of the query. �

While missing some certain answers can be seen as an under-
approximation of certain answers (a sound but possibly incomplete
set of certain answers is returned), false positives must be avoided,
as the result might contain plain incorrect answers, that is, tuples that
are not certain. The experimental analysis in [54] showed that false
positive are a real problem for queries involving negation; they were
always present and sometimes they constitute almost 100% of the an-
swers. Thus, SQL’s evaluation is efficient but flawed. On the other
hand, certain answers provide a principled semantics, but with high
complexity. One way of dealing with this issue is to develop poly-
nomial time approximation algorithms for computing (approximate)
certain answers. In this regard, there has been recent works on evalu-
ation algorithms with correctness guarantees, that is, techniques pro-
viding a sound but possibly incomplete set of certain answers [72, 54,
71].

In particular, two techniques consisting in rewriting a query Q
into a pair of queries have been proposed. The first technique, namely
the L-approach, was introduced in [72, 71] and rewrites Q into two
queries Qt and Q f of computing approximations of certainly true
and certainly false answers, respectively. The second technique, called
GL-approach, was introduced in [54] and rewrites Q into two queries
Q+ and Q? computing approximations of certainly true and possi-
bly true answers, respectively. [49] introduced the GMT-approaches
which are new approximation algorithms able to return (strictly) more
certain answers than L-approach and GL-approach. Here conditional

2.1. Introduction 31

tables and the conditional evaluation of queries [61] are the central
tools. This approach allows to keep track of useful information that
can be profitably used to determine if a tuple is a certain answer. The
very basic idea is illustrated in the following example.

Example 2.3. Consider again the database and the query of Exam-
ple 2.1. The conditional evaluation of the query is carried out by ap-
plying the “conditional” counterpart of each relational algebra oper-
ator. Rather than returning a set of tuples, the conditional evaluation
of a relational algebra operator returns “conditional tuples”, that is,
pairs of the form 〈t, φ〉, where t is a standard tuple and φ is an ex-
pression stating under which conditions t can be derived. Regarding
the query of Example 2.1, namely P − (E ∩ S), first the conditional
evaluation of E ∩ S is performed, which gives the conditional tuples
〈⊥1, φ1〉 and 〈⊥1, φ2〉, where φ1 is the condition (⊥1= mary) and φ2 is
the condition (⊥1= bob). This intuitively means that the tuple 〈⊥1〉
is derived when ⊥1 is mary or bob. Then, the conditional evaluation
of the difference operator is carried out, yielding the conditional tu-
ples 〈john, φ′〉 and 〈mary, φ′′〉, where φ′ is the condition

¬((john =⊥1) ∧ (⊥1= mary)) ∧ ¬((john =⊥1) ∧ (⊥1= bob)),

and φ′′ is the condition

¬((mary =⊥1) ∧ (⊥1= mary)) ∧ ¬((mary =⊥1) ∧ (⊥1= bob)).

Intuitively, φ′ expresses that john is derived when it is not in the
result of E ∩ S. In order for john to be in the result of E ∩ S, ⊥1 must
be equal to john and equal to either mary or bob (indeed, this can
never happen, and in fact john is a certain answer). Likewise, φ′′ ex-
presses that mary is derived when it is not in the result of E ∩ S. In
order for mary to be in the result of E ∩ S, ⊥1 must be equal to mary,
which might be the case (and indeed, mary is not a certain answer).
The conditional tuples 〈john, φ′〉 and 〈mary, φ′′〉 are the result of the
conditional evaluation of the whole query. Conditions are valuable
information that can be exploited to determine which tuples are cer-
tain answers. �

As already mentioned, for a conditional tuple 〈t, φ〉, the expres-
sion φ says under which condition t can be derived. By “condition
evaluation”, a way of associating φ with a truth value (true, false,
or unknown) is meant. The aim is to ensure that if φ evaluates to

32 Chapter 2. Approximate query answering over incomplete
databases: state of the art

true, then t is a certain answer. A condition φ is always a proposi-
tional formula whose atomic formulas are comparisons involving ac-
tual values and labeled nulls, and the evaluation does not access the
database. For instance, from an analysis of φ′ in Example 2.3 above,
one can realize that the condition is always true (i.e., it holds for ev-
ery possible value⊥1 stands for), and thus 〈john〉 is a certain answer.
There might be different ways of evaluating conditions and at differ-
ent stages of the query evaluation process. It’ll be shown that a sim-
ple “eager” way consisting in evaluating conditions right after each
operator leads to the approximation algorithm of [54]. Then, more
refined evaluation strategies will be illustrated. Intuitively, postpon-
ing condition evaluation allows to keep more information and have
a more global view, and thus perform more accurate analyses. These
novel evaluation algorithms have correctness guarantees. As said,
conditional tables and the conditional evaluation of relational alge-
bra are leveraged, in order to keep track of information that can be
profitably used to determine certainly true (or false or possible) an-
swers. Tuples’ conditions can be evaluated in different ways, with
the aim of providing a sound (but possibly incomplete) set of certain
answers. Different such strategies lead to different approximation
algorithms, which provide better approximations than [54], in that
strictly more certain answers can be found. Furthermore, all these
algorithms are polynomial time in data complexity.

2.2 L-approach

We say that two tuples t1 and t2 uni f y, denoted t1 ⇑ t2, if there exists
a valuation v such that v(t1) = v(t2).

The query computing the active domain (i.e. the set of all con-
stants and nulls occurring in the database) is denoted as adom. More-
over, for a relation R of arity k, the complement is

R	 = {t ∈ adomk | @t′ ∈ R s.t. t ⇑ t′}.

2.2. L-approach 33

The query evaluation algorithm proposed in [72, 71] works as fol-
lows:

Rt = R

(Q1 ∪Q2)
t = Qt

1 ∪Qt
2

(Q1 ∩Q2)
t = Qt

1 ∩Qt
2

(Q1 −Q2)
t = Qt

1 ∩Qf
2

(Q1 ×Q2)
t = Qt

1 ×Qt
2

(σθ(Q))t = σθ+(Q
t)

(πZ(Q))t = πZ(Qt)

Rf = R	

(Q1 ∪Q2)
f = Qf

1 ∩Qf
2

(Q1 ∩Q2)
f = Qf

1 ∪Qf
2

(Q1 −Q2)
f = Qf

1 ∪Qf
2

(Q1 ×Q2)
f = Qf

1 × adomar(Q2) ∪ adomar(Q1) ×Qf
2

(σθ(Q))f = Qf ∪ σ(¬θ)+(adom
ar(Q))

(πZ(Q))f = πZ(Qf)− πZ(adom
ar(Q) −Qf)

where a selection condition θ is translated into θ+ as follows:

($i = $j)+ = ($i = $j)

($i = c)+ = ($i = c)

($i 6= $j)+ = ($i 6= $j) ∧ const($i) ∧ const($j)

($i 6= c)+ = ($i 6= c) ∧ const($i)

(θ1 ∨ θ2)
+ = θ+1 ∨ θ+2

(θ1 ∧ θ2)
+ = θ+1 ∧ θ+2

where const($i) is a condition saying whether t[i] is a constant for a
tuple t.

The approach consists in translating a query Q into two queries
Qt and Qf computing certainly true and certainly false answers,
respectively. The ultimate goal is to compute Qt, which provides a
sound but possibly incomplete set of certain answers. Its definition
requires the computation of Qf, as one can see taking a look at the
translation of the difference operator.

34 Chapter 2. Approximate query answering over incomplete
databases: state of the art

2.3 GL-approach

Given two relations R and S of the same arity, the following operators
are defined:

• the left unification semijoin:

R n⇑ S = {t ∈ R | ∃t′ ∈ S s.t. t ⇑ t′};

• the left unification anti-semijoin:

Rn⇑S = {t ∈ R | @t′ ∈ S s.t. t ⇑ t′}.

The evaluation algorithm of [54] consist in translating a query
Q into two queries Q+ and Q?, where the evaluation of Q+ over
a database gives a subset of certain answers. The translation is re-
ported here:

R+ = R

(Q1 ∪Q2)
+ = Q+

1 ∪Q+
2

(Q1 ∩Q2)
+ = Q+

1 ∩Q+
2

(Q1 −Q2)
+ = Q+

1 n⇑Q+
2

(Q1 ×Q2)
+ = Q+

1 ×Q+
2

(σθ(Q))+ = σθ+(Q
+)

(πZ(Q))+ = πZ(Q+)

R? = R

(Q1 ∪Q2)
? = Q?

1 ∪Q?

(Q1 ∩Q2)
? = Q?

1 n⇑ Q?
2

(Q1 −Q2)
? = Q?

1 −Q+
2

(Q1 ×Q2)
? = Q?

1 ×Q?
2

(σθ(Q))? = σθ?(Q?)

(πZ(Q))? = πZ(Q?)

2.3. GL-approach 35

where a selection condition θ is translated into θ+ as defined before
for the first approach and is translated into θ? as follows:

($i 6= $j)? = ($i 6= $j)

($i 6= c)? = ($i 6= c)

($i = $j)? = ($i = $j) ∨ null($i) ∨ null($j)

($i = c)? = ($i = c) ∨ null($i)

(θ1 ∨ θ2)
? = θ?

1 ∨ θ?
2

(θ1 ∧ θ2)
? = θ?

1 ∧ θ?
2

where null($i) is a condition indicating whether t[i] is a null for a
tuple t.

Thus, given a query Q and a database D, the evaluation of Q+

over D gives a subset of certain(Q, D), whereas the evaluation of
Q? over D gives “possible” answers. Notice that the definition of
(Q1 − Q2)

+ uses Q?
2, while the definition of (Q1 − Q2)

? uses Q+
2 ;

however, when recursively applying the Q+ and Q? translations,
both of them eventually yield standard relational algebra queries.
The query evaluation of the second approach improves on the one of
the first approach in terms of efficiency.

The major drawback of the latter is that it needs to compute ex-
pensive Cartesian products of the active domain (i.e. the set of all
constants and nulls occurring in the database), which may be a large
set.

The two evaluation algorithms are incomparable in terms of the
approximations they provide, as shown in the following example
(none of the two approaches uses conditional tables).

Example 2.4. Let D be the database consisting of the two unary rela-
tions R = {a} and S = {⊥1}.

Consider the query Q1 = R − (S − R). It is easy to see that
certain(Q1, D) = {a}. Since

Qt
1 = (R− (S− R))t = (Rt ∩ (S− R)f)

= (Rt ∩ (Sf ∪ Rt)) = (R ∩ (S	 ∪ R))

then Qt
1(D) = {a} ∩ (∅ ∪ {a}) = {a}.

36 Chapter 2. Approximate query answering over incomplete
databases: state of the art

Moreover, as

Q+
1 = (R− (S− R))+ = (R+n⇑(S− R)?)

= (R+n⇑(S? − R+)) = (Rn⇑(S− R))

then Q+
1 (D) = {a}n⇑({⊥1} − {a}) = {a}n⇑{⊥1} = ∅. Hence,

Q+
1 (D) ⊂ Qt

1(D).
Consider now the query Q2 = R− (S− S). It is easy to see that

certain(Q2, D) = {a}. Since

Qt
2 = (R− (S− S))t = Rt ∩ (S− S)f = Rt ∩ (Sf ∪ St) = R∩ (S	 ∪ S),

then Qt
2(D) = {a} ∩ (∅ ∪ {⊥1}) = ∅. Moreover, as

Q+
2 = (R− (S− S))+ = R+n⇑(S− S)?

= R+n⇑(S? − S+) = Rn⇑(S− S),

then Q+
2 (D) = {a}n⇑({⊥1} − {⊥1}) = {a}n⇑∅ = {a}. Hence,

Qt
2(D) ⊂ Q+

2 (D).
Thus, [72, 71] provides a better approximation for Q1, while [54]

provides a better approximation for Q2. �

The intersection operator is not commutative (cf. [54]), because
(Q1 ∩ Q2)

? is translated into Q?
1n⇑Q?

2 and the left unification semi-
join takes tuples from Q?

1. Furthermore, correctess guarantee hold
if we replace the left unification semijoin with the right one, which
keeps unifiable tuples from the second argument. However, as shown
in the following example, non-commutativity can be an issue, as one
order of the arguments can yield better results than the other (with
either the left unification semijoin or the right one), and this depends
on the contents of the database.

Example 2.5. Consider the database D consisting if the relations R =
{a}, S = {⊥1} and P = {b}. Consider now the query Q1 = R− (S ∩
P). It is easy to see that certain(Q1, D) = {a}. Since

Q+
1 = (R− (S ∩ P))+ = (R+n⇑(S ∩ P)?)

= (R+n⇑(S?n⇑P?)) = (Rn⇑(Sn⇑P)),

then Q+
1 (D) = ∅. However, if we consider the equivalent query

Q2 = R− (P ∩ S), since Q+
2 = (Rn⇑(Pn⇑S)), then Q+

2 (D) = {a}.

2.4. GML-approaches 37

Clearly, the right unification semijoin yields a symmetric scenario,
and thus the same problem occurs. �

The previous example shows that the order of the arguments of
intersections matters, but cannot know which one is better a priori
(notice that scenarios symmetric to the ones shown in the example
above can be obtained by swapping the content of S and P).

2.4 GML-approaches

In this section, we illustrate novel evaluation algorithms with cor-
rectness guarantees. All of them rely on the conditional evaluation
of relational algebra operators, and apply a specific strategy to evalu-
ate conditions, so that each tuple is eventually associated with a truth
value (i.e., true, false or unknown). Tuples that are associated with
the condition true are guaranteed to be certain answers with nulls.
Each approach improves on the previous one by refining its evalua-
tion of conditions. The simplest of our techniques, which evaluates
conditions simply right after the application of each relational alge-
bra operator, is equivalent to the approach of [54]. Even though all
of the novel evaluation algorithms have polynomial time data com-
plexity, we will show that as we move to more powerful techniques,
the conditions that have to be managed become more complex. We
will experimentally assess this aspect. Firstly, an explicit conditional
evaluation for intersection is introduced. In Section 1.2.3, we illus-
trated the conditional evaluation of base relational algebra opera-
tors. Clearly, even though intersection was not reported, it can be
expressed in terms of the other operators. Nevertheless, to ease pre-
sentation and the comparison with the evaluation algorithm in [54],
a direct conditional evaluation for intersection is reported ([61, 43]
do not provide an explicit definition of it). Let T1 and T2 be c-tables
of arity n. Then, T1∩̇T2 = {〈t1, φ′〉 | 〈t1, φ1〉 ∈ T1, 〈t2, φ2〉 ∈ T2, φ′ =
φ1 ∧ φ2 ∧ (t1 = t2)}. The other relational algebra operators enjoy the
following property: the conditional evaluation of a query over a con-
ditional database C yields a c-table representing the answers that we
would obtain by querying each database represented by C. The fol-
lowing simple proposition states that this property continues to hold
in the presence of the above conditional evaluation of intersection.

Proposition 2.6. For every conditional database C and query Q possibly
using selection, projection, Cartesian product, union, intersection, and dif-
ference, it holds that rep(Q̇(C)) = {Q(D) | D ∈ rep(C)}.

38 Chapter 2. Approximate query answering over incomplete
databases: state of the art

A generalization of c-tables is considered in order to allow also
unknown as a condition. Thus, from now on, E is the set of all ex-
pressions that can be built using the standard logical connectives
with expressions (called atomic conditions) of the form true, false,
unknown, (α = β) and (α 6= β), where α, β ∈ Const ∪ Null. We will
illustrate different strategies to “evaluate” conditions, that is, to re-
duce them to either true or false or unknown - as shown in the fol-
lowing, tuples having condition true are certain answers with nulls.
We assume the following strict ordering false < unknown < true

and recall that ¬unknown = unknown. The three-valued evaluation
of a condition φ ∈ E , denoted eval(φ), is defined inductively as fol-
lows:

• eval(α = β) =

true if α = β,
false if α 6= β and α, β ∈ Const,
unknown otherwise.

• eval(α 6= β) =

true if α 6= β and α, β ∈ Const,
false if α = β,
unknown otherwise.

• eval(φ1 ∧ φ2) = min{eval(φ1), eval(φ2)}.

• eval(φ1 ∧ φ2) = max{eval(φ1), eval(φ2)}.

• eval(¬φ) =

true if eval = false,
false if eval = true,
unknown otherwise.

• eval(v) = v for v ∈ {true, false, unknown}.

For convenience, in the following examples we use T, F and U in
place of true, false and unknown, respectively, and simplify condi-
tions of the form T ∧ φ or F ∨ φ into φ. Moreover, for ease of pre-
sentation, in our examples, “useless” conditional tuples will be dis-
carded, that is, conditional tuples of the form 〈t, false〉 will always
be discarded, whereas conditional tuples of the form 〈t, unknown〉
will be discarded only if there is a conditional tuple 〈t, true〉 belong-
ing to the same c-table.

2.4. GML-approaches 39

2.4.1 Eager evaluation

The basic idea of the first evaluation algorithm, which is called eager
evaluation, is to perform the three-valued evaluation of conditions
after each relational algebra operator is applied, that is, after its con-
ditional evaluation. To define eager evaluation, some auxiliary def-
initions are needed. Given a c-tuple t = 〈t, φ〉, with a slight abuse
of notation, we use eval(t) to denote 〈t, eva(φ)〉. Likewise, given a
conditional table T , eval(T) denotes {eval(t) | t ∈ T}. Given a re-
lation r, we define the c-table r = {〈t, true〉 | t ∈ r}. Analogously,
given a database D, we define D as the conditional database obtained
from D by replacing every relation r with r. The basic idea is to con-
vert a database D into a simple conditional database D where all
conditions are true, so that D can be used as the starting point for
the conditional evaluation of queries. To define eager evaluation, we
first provide the definitions below, where R is a relation name, D is a
database, and Q, Q1, and Q2 are queries:

• Evale(R, D) = RD

• Evale(Q1 ∩Q2, D) = eval(Evale(Q1, D) ∩̇ Evale(Q2, D))

• Evale(Q1 −Q2, D) = eval(Evale(Q1, D) −̇ Evale(Q2, D))

• Evale(Q1 ×Q2, D) = eval(Evale(Q1, D) ×̇ Evale(Q2, D))

• Evale(σθ(Q), D) = eval(σθ(Eval
e(Q2, D)))

• Evale(πZ(Q), D) = eval(πZ(Eval
e(Q2, D)))

Finally, we define:

• Evale
t(Q, D) = {t | 〈t, true〉 ∈ Evale(Q, D)}

• Evale
p(Q, D) = {t | 〈t, φ〉 ∈ Evale(Q, D) and φ 6= false}

Thus, Evale
t(Q, D) are the tuples in Evale(Q, D) associated with

true, while Evale
p(Q, D) are the tuples in Evale(Q, D) associated with

unknown or true. As stated more precisely in Theorem 2.8, Evale
t(Q, D)

and Evale
p(Q, D) coincide with Q+ and Q?, respectively, where Q+

and Q? are the translations of [54]. However, only Evale
t(Q, D) is an

under-approximation of certain answers with nulls.

40 Chapter 2. Approximate query answering over incomplete
databases: state of the art

Example 2.7. Consider the database D of Example 2.1 and the query
Q = P− E asking for the people who are not employees. The condi-
tional database D includes the two c-tables PD = {〈john, T〉, 〈mary, T〉}
and ED = {〈john, T〉, 〈⊥1, T〉}. Then,

Evale(Q, D)

= eval(Evale(P, D) −̇ Evale(E, D))

= eval(PD −̇ ED)

= eval({〈john, T〉, 〈mary, T〉}−̇{〈john, T〉, 〈⊥1, T〉})
= eval({〈john, T∧ ¬(T∧ john = john) ∧ ¬(T∧ john =⊥1)〉,
〈mary, T∧ ¬(T∧ mary = john) ∧ ¬(T∧ mary =⊥1)〉})

= {〈john, eval(T∧ ¬(T∧ john = john) ∧ ¬(T∧ john =⊥1))〉,
〈mary, eval(T∧ ¬(T∧ mary = john) ∧ ¬(T∧ mary =⊥1))〉}

= {〈john, eval(T∧ ¬(T∧ T) ∧ ¬(T∧ u))〉,
〈mary, eval(T∧ ¬(T∧ F) ∧ ¬(T∧ U))〉}

= {〈john, F〉, 〈mary, U〉}}

�

Notice that the three-valued evaluation of john = john (resp.
mary = john) is T (resp. F) as the equality is always true (resp.
false), while the three-valued evaluation of john =⊥1 and mary =⊥1
is U as the equality might hold or not depending on the value ⊥1
takes. Then, Evale

t(Q, D) = ∅ and Evale
p(Q, D) = {mary}.

Clearly, eager evaluation does not leverage much the power of c-
tables, as conditions are little exploited. We will illustrate more pow-
erful techniques, which better exploit conditions, in the following
subsections. However, one interesting fact about eager evaluation is
that it is equivalent to the evaluation algorithm of [54]. We refer to
Section 2.3 for the formal definition of Q+ and Q?, whose aim is to
compute certain and possible query answers, respectively, which is
also the intended goal of Evale

t() and Evale
p().

Theorem 2.8. Q+(D) = Evale
t(Q, D) and Q?(D) = Evale

p(Q, D), for
every query Q and database D.

Union. By definition, (Q1 ∪ Q2)
+(D) = Q+

1 (D) ∪ Q+2(D). By
the induction hypothesis, Q+

1 (D) = Evale
t(Q1, D) and Q+

2 (D) =
Evale

t(Q2, D). It can be easily verified that Evale
t(Q1 ∪ Q2, D) =

Evale
t(Q1, D) ∪ Evale

t(Q2, D), and thus the claim follows.

2.4. GML-approaches 41

Intersection. By definition, (Q1∩Q2)
+(D) = Q+

1 (D)∩Q+
2 (D). By

the induction hypothesis, it holds that Q+
1 (D) = Evale

t(Q1, D) and
Q+

2 (D) = Evale
t(Q2, D). By definition, tuples in Evale

t(Q1 ∩ Q2, D)
are those tuples in Evale(Q1, D) whose condition is true and for
which there is the same tuple in Evale(Q2, D) with condition true.
Thus, Evale

t(Q1 ∩Q2, D) = Evale
t(Q1, D) ∩ Evale

t(Q2, D).
Difference. (Q1Q2)

+(D) = Q+
1 (D)n⇑Q?

2(D) by definition. By the
induction hypothesis, Q+

1 (D) = Evale
t(Q1, D) and Q?

2(D) = Evale
p(Q2, D).

It is easy to see that the definition of ˙ implies that Evale
t(Q1Q2, D)

contains the tuples in Evale(Q1, D) whose condition is true and s.t.
there is no tuple in Evale(Q2, D) that unifies and with condition true

or unknown. Thus, Evale
t(Q1Q2, D) = Evale

t(Q1, D)n⇑ Evale
p(Q2, D).

Selection. By definition, (σθ(Q))+(D) = σθ + (Q+(D)). By the in-
duction hypothesis, σθ+(Q+(D)) = σθ+(Eval

e
t(Q, D)). It can be eas-

ily verified by induction on the structure of + that a tuple t satisfies θ+

iff eval(θ(t)) = true. Thus, σθ+(Eval
e
t(Q, D)) = Evale

t(σ̇θ(Eval
e(Q, D))),

which is equal to Evale
t(σθ(Q), D).

Cartesian product. (Q1 × Q2)
+(D) = Q+

1 (D)× Q+
2 (D) by defini-

tion. By the induction hypothesis, it holds that Q+
1 (D) = Evale

t(Q1, D)
and Q+

2 (D) = Evale
t(Q2, D). It is easy to see that Evale

t(Q1×Q2, D) =
Evale

t(Q1, D)× Evale
t(Q2, D).

Projection. By definition, (πZ(Q))+(D) = πZ(Q+(D)). By the in-
duction hypothesis, πZ(Q+(D)) = πZ(Eval

e
t(Q, D)). It can be easily

verified that Evale
t(πZ(Q), D) = πZ(Eval

e
t(Q, D)).

We now show Q?(D) = Evale
p(Q, D).

Identity. By definition, R? = R. It is straightforward to check that
Evale

p(R, D) = R.
Union. By definition, (Q1∪Q2)

?(D) = Q?
1(D)∪Q?

2(D). By the in-
duction hypothesis, Q?

1(D) = Evale
p(Q1, D)andQ?

2(D) = Evale
p(Q2, D).

It can be easily verified that Evale
p(Q1 ∪ Q2, D) = Evale

p(Q1, D) ∪
Evale

p(Q2, D), and thus the claim follows.
Intersection. (Q1 ∩ Q2)

?(D) = Q?
1(D) n⇑ Q?

2(D) by definition.
By the induction hypothesis, Q?

1(D) = Evale
p(Q1, D)andQ?

2(D) =

Evale
p(Q2, D). It can be easily verified that the tuples in Evale

p(Q1 ∩
Q2, D) are the tuples in Evale(Q1, D) whose condition is true or
unknown and for which there is a unifying tuple in Evale(Q2, D) with
condition true or unknown. As a consequence, Evale

p(Q1 ∩ Q2, D) =

Evale
p(Q1, D)n⇑ Evale

p(Q2, D).
Difference. (Q1Q2)

?(D) = Q?
1(D)Q+

2 (D) by definition. By the in-
duction hypothesis, Q?

1(D) = Evale
p(Q1, D)andQ+

2 (D) = Evale
t(Q2, D).

42 Chapter 2. Approximate query answering over incomplete
databases: state of the art

The definition of˙implies that Evale p(Q1Q2, D) contains the tuples in
Evale(Q1, D) whose condition is true or unknown and the tuple does
not appear in Evale(Q2, D) with condition true. Thus, Evale

t(Q1Q2, D) =
Evale

p(Q1, D)Evale
t(Q2, D).

Selection. By definition, (σθ(Q))?(D) = σθ?(Q?(D)). By the in-
duction hypothesis, σθ?(Q?(D)) = σθ?(Evale

p(Q, D)). It can be easily
verified by induction on the structure of θ? that a tuple t satisfies θ? iff
eval(θ(t)) = true∨ eval(θ(t)) = unknown. Thus, σθ?(Eval

e
p(Q, D)) =

Evale
p(σ̇θ(Eval

e(Q, D))), which equals Evale
p(σθ(Q), D).

Cartesian product. (Q1 × Q2)
?(D) = Q?

1(D) × Q?
2(D) by defi-

nition. By the induction hypothesis, Q?
1(D) = Evale

p(Q1, D) and
Q?

2(D) = Evale
p(Q2, D). It is easy to see that Evale

p(Q1 × Q2, D) =

Evale
p(Q1, D)× Evale

p(Q2, D).
Projection. By definition, (πZ(Q))?(D) = πZ(Q?(D)). By the in-

duction hypothesis, πZ(Q?(D)) = πZ(Eval
e
p(Q, D)). It can be easily

verified that Evale
p(πZ(Q), D) = πZ(Eval

e
p(Q, D)). �

We point out that, in the previous claim, D is a database (thus,
possibly containing nulls), but without conditions. However, the ea-
ger evaluation first converts D into a conditional database D with
all conditions being true, and then performs the evaluation Evale()
over D, so that eventually tuples associated with true are certain an-
swers with nulls. It immediately follows from the equivalence with
[54] that eager evaluation has correctness guarantees.

Corollary 2.9. Evale
t() has correctness guarantees.

In the following theorem, hardness easily follows from the fact
that the eager evaluation over complete databases coincides with the
classical evaluation of relational algebra queries.

Theorem 2.10. For any database D and query Q, the evaluation of
Evale

t(Q, D) is complete for AC0.

We point out that the eager evaluation makes the intersection op-
erator non-commutative. For instance, considering the database D
of Example 2.1, we have that Evale(E ∩ S, D) = {〈⊥1, U〉}, whereas
Evale(S ∩ E, D) = {〈mary, U〉, 〈bob, U〉}. Obviously, the technique
proposed in [54], being equivalent to the eager evaluation, has the
same problem (see Section 2.3 for a more comprehensive discussion
and an example of this issue for [54]). The problem with non-commuta-
tivity is that one order of the arguments can yield better results than

2.4. GML-approaches 43

the other, and this depends on the contents of the database. Thus, the
order of the arguments of intersection matters, but we cannot know
which one is better a priori. As shown in the following, the evalua-
tion algorithms we illustrate next do not suffer from this problem.

2.4.2 Semi-eager evaluation

The eager evaluation presented in the previous subsection is some-
how limited, as shown in the following example.

Example 2.11. Consider the query Q = P− (E∪ S) and the database
D of Example 2.1. It is easy to see that cert(Q, D) = {john}. How-
ever, the eager evaluation behaves as follows:

Evale(Q, D)

= eval(PD −̇ eval(ED ∩̇ SD))

= eval({〈john, T〉, 〈mary, T〉}−̇
eval({〈john, T〉, 〈⊥1, T〉}∩̇{〈mary, T〉, 〈bob, T〉}))

= eval({〈john, T〉, 〈mary, T〉}−̇
eval({〈john, john = mary〉, 〈john, john = bob〉,

〈⊥1,⊥1= mary〉, 〈⊥1,⊥1= bob〉}))
= eval({〈john, T〉, 〈mary, T〉}−̇{〈john, F〉, 〈⊥1, U〉})
= eval({〈john, T〉, 〈mary, T〉}−̇{〈⊥1, U〉})
= eval({〈john,¬(john =⊥1 ∧U)〉, 〈mary,¬(mary =⊥1 ∧U)〉})
= {〈john, U〉, 〈mary, U〉}

Thus, Evale
t(Q, D) = ∅. �

The problem of the eager evaluation in the previous example is
that the three-valued evaluation of the c-tuples 〈⊥1,⊥1= mary〉 and
〈⊥1,⊥1= bob〉 yields (for both c-tuples) the c-tuple 〈⊥1, U〉, which
loses some information of the original ones. Specifically, for the first
(resp. second) c-tuple we forget that when ⊥1 is equal to mary (resp.
bob) the tuple mary (resp. bob) is obtained, whereas when ⊥1 takes
any other value c 6= mary (resp. c 6= bob) no tuple is derived. Obvi-
ously, preserving more information allows us to perform more accu-
rate analyses; so, the previous example suggests we might try to keep
the information coming from equalities in conditions, and exploit
equalities to refine the evaluation of conditions. For instance, in the
scenario above, the evaluation of the c-tuple 〈⊥1,⊥1= mary〉 might

44 Chapter 2. Approximate query answering over incomplete
databases: state of the art

evaluate the condition ⊥1= mary into U and replace ⊥1 with mary

in the c-tuple, thereby yielding 〈mary, U〉 (instead of 〈⊥1, U〉, which is
less informative). The same approach can be applied to the c-tuple
〈⊥1,⊥1= bob〉. This is the basic idea of our second algorithm, called
semi-eager evaluation, which behaves like the eager evaluation in that
conditions are evaluated right after each relational algebra operator,
but it propagates equalities into tuples and conditions. To introduce
the semi-eager evaluation, we first need some auxiliary notions.

Given a condition φ of the form (α = β), where α, β ∈ Null ∪
Const, we define νφ to be the identity on Null ∪ Const except that if
at least one of α and β is a null, say α, then νφ(α) = β. When both
α and β are nulls, the choice of whether νφ(α) = β or νφ(β) = α is
irrelevant for our purposes.

With a slight abuse of notation, we apply νφ also to any condition
(resp. tuple) ψ; the result of the application, denoted νφ(ψ), is the
condition (resp. tuple) derived from ψ by replacing every null ⊥i in
ψ with νφ(⊥i).

To exploit equalities we need to manipulate conditions in c-tuples,
and we do so by applying the commutativity and associativity prop-
erties of logical formulae to conditions. Given conditions φ1, φ2 and
φ3, we state the following syntactical rules to transform a condition
into another equivalent one:

• Commutativity: φ1 ? φ2 ≡ φ2 ? φ1, for ? ∈ {∧,∨}.

• Associativity: (φ1 ? φ2) ? φ3 ≡ φ1 ? (φ2 ? φ3), for ? ∈ {∧,∨}.

Each of the rules above says that the condition on the left-hand
side of ≡ can be replaced with the one on the right-hand side, and
vice versa. For instance, (φ1 ? φ2) ? φ3 can be rewritten into φ1 ? (φ2 ?
φ3), and φ1 ? (φ2 ? φ3) can be rewritten into (φ1 ? φ2) ? φ3.

Given two conditions φ and φ′ , we write φ ≡AC φ′ , iff φ′ can be
obtained from φ by iteratively applying the commutativity and as-
sociativity rules zero or more times. Essentially, the two rules above
say that the conjuncts (resp. disjuncts) in a conjunction (resp. dis-
junction) can be rearranged in an arbitrary order. For every condition
φ, we define [φ] = {φ′ | φ′ ≡AC φ}.

We now introduce a new function evals(·), which will be used in
our next algorithm, called semi-eager evaluation, to evaluate condi-
tions (here the symbol s is used to recall semi-eager). As we will see
in the definition of the semi-eager evaluation reported in the follow-
ing, evals(·) will replace function evale(·) used in the eager evalua-
tion. This is essentially how the definition of semi-eager differs from

2.4. GML-approaches 45

the one of eager evaluation. Given a c-tuple t = 〈t, φ〉, we define
evals(t) as follows:

• if φ is of the form (α = β), then evals(t) = 〈ν(α=β)(t), eval((α =

β))〉;

• if φ ≡AC (α = β) ∧ φ′ for some (α = β), then evals(t) =
〈t′′, eval(α = β) ∧ φ′′〉, where
〈t′′, φ′′〉 = evals(〈ν(α=β)(t), ν(α=β)(φ

′)〉);

• otherwise evals(t) = eval(t).

The first item above says that when φ is of the form (α = β), then
(α = β) is propagated into t and the condition (α = β) is evalu-
ated using eval(). So, for instance, if φ is (⊥1= a), then every oc-
currence of ⊥1 in t is replaced with a and (⊥1= a) is evaluated using
eval(), which yields unknown. The second item above says that when
φ is equivalent (using the commutativity and associativity rules) to a
condition of the form (α = β) ∧ φ′ , then (i) (α = β) is propagated
into both t and φ′; (ii) evals() is recursively applied to the resulting
c-tuple, yielding a c-tuple 〈t′′, φ′′〉; (iii) the final result is the c-tuple
consisting of t′′ and the evaluation of (α = β)∧ φ′′ using eval(). The
last item above addresses the case where no equality can be propa-
gated. In such a case, eval() is applied.

There might be different equalities for which the equivalence in
the second item above holds (in such a case, one choice is made non-
deterministically), and there could be equalities where both terms
are nulls (in such a case we can choose nondeterministically to re-
place one null with the other). All alternative results are equivalent
in that one can be derived from the other by simply renaming nulls.
For instance, consider the conditional tuple 〈⊥1,⊥1=⊥2 ∧ ⊥1=⊥3〉.
By applying the evals() function to this c-tuple, we can choose to ex-
ploit the first or the second equality. By exploiting the first equality
⊥1=⊥2 and replacing ⊥1 with ⊥2, we get 〈⊥2, U ∧ ⊥2=⊥3〉. Then,
by replacing ⊥2 with ⊥3 we obtain 〈⊥3, U〉. Alternatively, equiva-
lent results that can be obtained by performing different choices are
〈⊥1, U〉 and 〈⊥2, U〉. Notice that all results differ only in terms of the
index given to the null value.

For every c-table T , evals(T) = {evals(t) | t ∈ T}.
Semi-eager evaluation is defined as follows:

• Evals(Q, D) = RD

46 Chapter 2. Approximate query answering over incomplete
databases: state of the art

• Evals(Q1 ∪Q2, D) = evals(Evals(Q1, D) ∪̇ Evals(Q2, D))

• Evals(Q1 ∩Q2, D) = evals(Evals(Q1, D) ∩̇ Evals(Q2, D))

• Evals(Q1 −Q2, D) = evals(Evals(Q1, D) −̇ Evals(Q2, D))

• Evals(Q1 ×Q2, D) = evals(Evals(Q1, D) ×̇ Evals(Q2, D))

• Evals(σθ(Q), D) = evals(σ̇θ(Q, D)))

• Evals(πZ(Q), D) = evals(π̇Z(Eval
s(Q, D)))

Notice that the difference between the semi-eager evaluation (per-
formed by the function Evals()) and the eager one (performed by
function Evale()), is that evals() is used in place of eval().

Finally, we define:

Evals
t(Q, D) = {t | 〈t, true〉 ∈ Evals(Q, D)}.

We have called this technique semi-eager as it behaves similar to
the eager technique (conditions are evaluated as soon as possible),
but before performing evaluations, equalities occurring in conditions
are exploited. Below is an example.

Example 2.12. Consider again the database D of Example 2.1 and
the query Q of Example 2.11. The semi-eager evaluation behaves as
follows:

Evals(Q, D)

= evals(PD −̇ eval(ED ∩̇ SD))

= evals({〈john, T〉, 〈mary, T〉}−̇
evals({〈john, T〉, 〈⊥1, T〉}∩̇{〈mary, T〉, 〈bob, T〉}))

= evals({〈john, T〉, 〈mary, T〉}−̇
evals({〈john, john = mary〉, 〈john, john = bob〉,

〈⊥1,⊥1= mary〉, 〈⊥1,⊥1= bob〉}))
= evals({〈john, T〉, 〈mary, T〉}−̇{〈john, F〉, 〈mary, U〉, 〈bob, U〉})
= evals({〈john, T〉, 〈mary, T〉}−̇{〈mary, U〉, 〈bob, U〉})
= evals({〈john,¬(john = mary∧ U) ∧ ¬(john = bob∧ U)〉,

〈mary,¬(mary = mary∧ U) ∧ ¬(mary = bob∧ U〉)})
= {〈john, T〉, 〈mary, U〉}.

2.4. GML-approaches 47

Thus, Evals
t(Q, D) = {〈john〉}. Recall that cert(Q, D) = {〈john〉}

and Evale
t(Q, D) = ∅. Thus, in this case, the semi-eager evaluation

returns more certain tuples than the eager one.
Comparing the evaluations performed in Example 2.11 and Ex-

ample 2.12 by Evale() and Evals, respectively, they start to differ at
the fourth step, where functions eval() and evals(), respectively, are
applied to the same set of c-tuples S = {〈john, john = mary〉, 〈john, john =
bob〉, 〈⊥1,⊥1= mary〉, 〈⊥1,⊥1= bob〉}, giving different results. Specif-
ically,

eval(S) = {〈john, F〉, 〈⊥1, U〉}
while

evals(S) = {〈john, F〉, 〈mary, U〉, 〈bob, U〉}
because the equalities ⊥1= mary and ⊥1= bob are propagated by
evals() into the c-tuples, and this makes Evals(S) more informa-
tive than eval(S), as equalities have been better exploited. The sub-
sequent steps of Evals() are executed in the same way as Evale(),
but starting from more informative c-tuples, which allow the semi-
eager evaluation to determine that john is a certain answer. In fact,
evals(S) says that the only tuples that might be derived after the in-
tersection are mary and bob, which allows the semi-eager evaluation
to determine that john is certainly not in the result of the intersection,
and thus john is a certain answer. In contrast, eval(S) says that any
value ⊥1 might be derived after the intersection (including john),
which does not allow the eager evaluation to determine that john is
a certain answer with nulls. �

As stated in the following simple proposition, the eager and semi-
eager evaluations behave in the same way as long as only union,
difference, Cartesian product, and projection are used. They might
differ when selection and intersection are used, because the con-
ditional evaluation of such operators introduce equalities in condi-
tions, which can be better exploited by the semi-eager evaluation.

Proposition 2.13. For every database D and query Q using only union,
difference, Cartesian product, and projection, Evale

t(Q, D) = Evals
t(Q, D).

For arbitrary queries, exploiting equalities enables the semi-eager
evaluation to provide strictly better approximations, that is, to return
more tuples, while retaining correctness guarantees and polynomial
time complexity.

48 Chapter 2. Approximate query answering over incomplete
databases: state of the art

Theorem 2.14. For every query Q and database D, Evale
t(Q, D) ⊆

Evals
t(Q, D). There exist a query Q and a database D such that Evale

t(Q, D)
⊂ Evals

t(Q, D).

Theorem 2.15. Evals
t() has correctness guarantees.

Theorem 2.16. Evals
t(Q, D) can be computed in polynomial time in the

size of D, for every query Q and database D.

Observe that, as opposed to the eager evaluation, for the database
D of Example 1, Es(E∩S, D) = Evals((S∩E, D) = {〈mary, U〉, 〈bob, U〉}.
The next proposition states that the semi-eager evaluation makes the
intersection operator commutative, which is not the case for the ea-
ger evaluation and the approach of [54].

Proposition 2.17. For every database D, and for all queries Q1 and Q2 of
the same arity, Evals

t(Q1 ∩Q2, D) and Evals
t(Q2 ∩Q1, D) are isomorphic

(i.e., equal up to renaming of nulls).

Notice that in the previous proposition Evals
t(Q1 ∩ Q2, D) and

Evals
t(Q2 ∩ Q1, D) are equal modulo renaming of labeled nulls, that

is, one argument can be derived from the other by simply renaming
nulls. In fact, as previously discussed, when applying evals() there
might be nondeterministic choices about which equality is exploited
and which null should replace another null. Different choices might
lead to different results, which are nonetheless all equivalent in that
one can be obtained from another by renaming nulls.

2.4.3 Lazy evaluation

The semi-eager evaluation improves on the eager one by better ex-
ploiting equalities. However, like the eager evaluation, conditions
are evaluated right after each relational algebra operator is applied.
This can be a limitation, because when collapsing conditions into
true, false or unknown, some information might be lost, as shown
in the example below. On the contrary, postponing conditions’ eval-
uation yields longer conditions, which provide a more “global” view
of how tuples are derived during query evaluation, and thus allow
better analyses. We illustrate this aspect in the following example.

Example 2.18. Consider the database D of Example 2.1 and the query
Q = P− (P∩ (σ$1 6=john(E))). It can be easily verified that cert(Q, D)
= {john}. Intuitively, one can see that john is a certain answer with
nulls by doing a global analysis of the query: regardless of which

2.4. GML-approaches 49

value⊥1 takes, john is never in the result of σ$1 6=john(E), and thus he
is never in the result of P∩ (σ$1 6=john(E)), and as a consequence he is
always in result of P− (P ∩ (σ$1 6=john(E))).

However, Evals
t(Q, D) = ∅, as

Evals(Q, D)

= evals(PD −̇ evals(PD∩̇evals(σ̇$1 6=john(ED))))

= evals({〈john, T〉, 〈mary, T〉}−̇
evals({〈john, T〉, 〈mary, T〉}∩̇

evals(σ̇$1 6=john{〈john, T〉, 〈⊥1, T〉})))
= evals({〈john, T〉, 〈mary, T〉}−̇

evals({{〈john, T〉, 〈mary, T〉}∩̇evals({john, john 6= john〉,
〈⊥1,⊥1 6= john〉})))

= evals({〈john, T〉, 〈mary, T〉}−̇
evals{〈john, john 6= john〉, 〈⊥1,⊥1 6= john〉}))

= evals({〈john, T〉, 〈mary, T〉}−̇evals({〈john, john =⊥1 ∧U〉,
〈mary, mary = mary∧ U〉}))

= evals({〈john, T〉, 〈mary, T〉}−̇{〈john, U〉, 〈mary, U〉})
= {〈john, U〉, 〈mary, U〉}.

Here, some information is lost at the fourth step (before apply-
ing the ∩ operator): the condition john 6= john is false, and the
tuple 〈john, F〉 is discarded from the result, whereas the condition
⊥1 6= john is U and, therefore, the result of the application of the
evals() function gives the c-tuple 〈⊥1, U〉. This means that the infor-
mation that ⊥1 is never equal to john (i.e., the condition ⊥1 6= john),
which would be useful in the next steps to understand that john can-
not belong to the result of the subquery P ∩ (σ$1 6=john(E)), is lost al-
together. We are left with the c-tuple 〈⊥1, U〉, which does not carry
anymore that useful piece of information.

By postponing the evaluation of conditions, it is possible to have a
more complete view of how tuples are derived, and combine the dif-
ferent pieces of information to perform better analyses: in our case,
we could understand that john is not in the result of the selection,
and thus he is not in the result of the intersection, and thus he is in
the result of the difference. �

The previous example suggests that delaying the evaluation of
conditions can yield benefits in that more accurate analyses can be

50 Chapter 2. Approximate query answering over incomplete
databases: state of the art

performed. However, there is a trade-off here: while postponing
conditions’ evaluation enables for better analyses, this implies that
longer conditions are kept and manipulated during the evaluation
of a query, which incurs in higher processing costs (indeed, we will
show this aspect both theoretically in Theorem 2.31 and experimen-
tally in Section 4.2). In this regards, among all operators, the differ-
ence operator is the most critical one, as it yields much longer condi-
tions. The idea of the lazy evaluation is the following compromise: in
order to do better analyses, we postpone the evaluation of conditions
as long as all operators but difference are encountered (because they
produce conditions of “reasonable” size), and when the difference
operator is encountered conditions are evaluated (and thus collapsed
into true, false, unknown) because otherwise they would become too
large. The formal definitions are reported below:

• Eval`(R, D) = RD

• Eval`(Q1 ∪Q2, D) = Eval`(Q1, D) ∪̇ Eval`(Q2, D)

• Eval`(Q1 ∩Q2, D) = Eval`(Q1, D) ∩̇ Eval`(Q2, D)

• Eval`(Q1−Q2, D) = eval`(Eval`(Q1, D) −̇ evals(Eval`(Q2, D)))

• Eval`(Q1 ×Q2, D) = Eval`(Q1, D) ×̇ Eval`(Q2, D)

• Eval`(σθ(Q), D) = σ̇θ(Eval
`(Q, D))

• Eval`(πZ(Q), D) = π̇Z(Eval
`(Q, D))

where for a c-tuple t = 〈t, φ〉 s.t. φ is of the form:

φ = φ′ ∧
∧
〈tj,vj〉

¬
(
vj ∧ t = tj

)
with vj ∈ {true, false, unknown}, eval`(t) is defined as follows:

eval`(t) = 〈t, φ′ ∧ eval(
∧
〈tj,vj〉

¬
(
vj ∧ t = tj

)
)〉

and for a c-table T , el(T) = {eval`(t) | t ∈ T}.
Observe that function el() is applied after the difference operator

is encountered and thus the conditions to which it is applied have

2.4. GML-approaches 51

exactly the form φ reported above. Given a query Q and a database
D, we define

Eval`t (Q, D) = {t | 〈t, true〉 ∈ evals(Eval`(Q, D))}

that is, the true answers are computed by (i) first, evaluating El(Q, D),
yielding a c-table T , and (ii) then, evaluating evals)T).

Example 2.19. Consider again the query Q of Example 2.18 and the
database D of Example 2.1. The lazy evaluation is performed as fol-
lows:

Eval`(Q, D)

= eval`(PD −̇ evals(PD∩̇evals(σ̇$1 6=john(ED))))

= eval`({〈john, T〉, 〈mary, T〉}−̇
evals({〈john, T〉, 〈mary, T〉}∩̇evals(σ̇$1 6=john{〈john, T〉, 〈⊥1, T〉})))

= eval`({〈john, T〉, 〈mary, T〉}−̇
evals({{〈john, T〉, 〈mary, T〉}∩̇evals({john, john 6= john〉,
〈⊥1,⊥1 6= john〉})))

= eval`({〈john, T〉, 〈mary, T〉}−̇
evals{〈john, john = john∧ john 6= john〉,
〈john, john =⊥1 ∧ ⊥1 6= john〉}))
〈mary, mary = john∧ john 6= john〉, 〈mary, mary =⊥1 ∧ ⊥1 6= john〉}))

= eval`({〈john, T〉, 〈mary, T〉}−̇evals({〈mary, U〉})
= {〈john, T〉, 〈mary, U〉}.

Observe that, at the fourth step, by applying the ∩̇ operator we
get four c-tuples, whose conditions take into account both the se-
lection and the intersection operators. After that, by applying the
evals() function, we have that

1. the first c-tuple, namely 〈john, john = john ∧ john 6= john〉,
becomes 〈john, F〉, as condition john = john ∧ john 6= john

evaluates to false, and thus the c-tuple is discarded from the
result.

2. The second c-tuple, namely 〈john, john =⊥1 ∧ ⊥1 6= john〉,
becomes 〈john, F〉 and is also discarded from the result. The

52 Chapter 2. Approximate query answering over incomplete
databases: state of the art

reason is that john =⊥1 evaluates to unknown, then john is sub-
stituted for ⊥1 in the second conjunct, which becomes john 6=
john, which evaluates to f a, and finally unknown∧false is false.

3. The third c-tuple, namely 〈mary, mary = john ∧ john 6= john〉,
becomes 〈mary, F〉, because mary = john ∧ john 6= john evalu-
ates to false, and the c-tuple is discarded as well.

4. The fourth c-tuple, namely 〈mary, mary =⊥1 ∧ ⊥1 6= john〉 ,
becomes 〈mary, U〉, because mary =⊥1 is unknown, ⊥1 is substi-
tuted by mary in the second conjunct, which becomes mary 6=
john and evaluates to true, and unknown∧true results in unknown.

Therefore, the result of the intersection operator contains only the
c-tuple 〈mary, U〉. It is worth noting that, while the semi-eager evalu-
ation gives john as unknown in the result of the intersection, the lazy
evaluation gives john as certainly false, which in turn allows the
lazy evaluation to realize that john is certainly true (i.e., a certain
answer) in the result of the query. In fact, Eval`t (Q, D) = {〈john〉},
whereas Evals

t(Q, D) = ∅. �

The following theorems state that the lazy evaluation provides
strictly better approximations than the semi-eager one, has correct-
ness guarantees, and can be computed in polynomial time.

Theorem 2.20. For every query Q and database D, Evals
t(Q, D) ⊆

Eval`t (Q, D). There exist a query Q and a database D such that Evals
t ⊂

Eval`t (Q, D).

Theorem 2.21. Eval`t () has correctness guarantees.

Theorem 2.22. Eval`t (Q, D) can be computed in polynomial time in the
size of D, for every query Q and database D.

The following proposition says that also for the lazy evaluation
the intersection operator is commutative.

Proposition 2.23. For every database D, and for all queries Q1 and Q2 of
the same arity, Eval`t (Q1 ∩Q2, D) and Eval`t (Q2 ∩Q1, D) are isomorphic
(i.e., equal up to renaming of nulls).

2.4. GML-approaches 53

2.4.4 Aware evaluation

The main reason why the lazy evaluation improves on previous eval-
uation algorithms is that it delays the evaluation of conditions. In-
deed, the evaluation is delayed until the difference operator is en-
countered, and when this happens, conditions are evaluated. A nat-
ural question now is if we can do better and postpone conditions’
evaluation even further, that is, after the application of the difference
operator. This is the basic question that leads to our last evaluation
algorithm, which is called aware evaluation. The basic idea is to post-
pone conditions’ evaluation until the very end: after the conditional
evaluation of the whole query has been performed, conditions are
rewritten into a “better” form through a set of rewriting rules (which
keep the length of the conditions polynomial), and finally evals()
is applied. Before introducing the aware evaluation, we show some
limitations of the lazy evaluation in the following example.

Example 2.24. Consider the database D of Example 2.1 and the query
Q = P− (E− S). It is easy to see that cert(Q, D) = {〈mary〉}. In-
tuitively, the reason is that, regardless of the value ⊥1 takes, mary
is never in the result of E− S because she is in S, and therefore she
is always in the result of P − (E − S). Such kind of reasoning re-
quires keeping track of the fact that mary cannot be in the result of
E − S, and using this piece of information when the outer differ-
ence in P − (E − S) is performed. However, as the query involves
two difference operators and the lazy evaluation evaluates condi-
tions when the difference operator is encountered, this information

54 Chapter 2. Approximate query answering over incomplete
databases: state of the art

is lost. Specifically, the lazy evaluation is performed as follows:

Eval`(Q, D)

= eval`(PD −̇ evals(eval`(ED−̇evals(SD)))))

= evals(eval`({〈john, T〉, 〈mary, T〉}−̇
evals(eval`({〈john, T〉, 〈⊥1, T〉}−̇evals({〈mary, T〉, 〈bob, T〉})))))

= evals(eval`({〈john, T〉, 〈mary, 〉}−̇
evals(eval`({〈john, T〉, 〈⊥1, T〉}−̇{〈mary, T〉, 〈bob, T〉}))))

= evals(eval`({〈john, T〉, 〈mary, T〉}−̇{〈john, T〉, 〈⊥1, U〉}))
= evals(eval`({〈john,¬(john = john∧ T) ∧ ¬(john =⊥1 ∧U)〉,
〈mary,¬(mary = john∧ T) ∧ ¬(mary =⊥1 ∧U)〉}))

= evals({〈john, F〉, 〈mary, U〉})
= {〈mary, U〉}.

Thus, Eval`t(Q, D) = ∅.
It is worth noting that at the third step, after the inner −̇ operator

is applied, we get the set of c-tuples {〈john, T ∧ ¬(john = mary ∧
T) ∧ ¬(john = bob ∧ T)〉, 〈⊥1, T ∧ ¬(⊥1= mary ∧ T) ∧ ¬(⊥1= bob ∧
T)〉}. By evaluating condition, since both equalities john = mary

and john = bob are false, whereas both equalities ⊥1= mary and
⊥1= bob are unknown, we get the set of tuples {〈john, T〉, 〈⊥1, U〉}.
Thus, the fact that mary is certainly false in the result of E− S is lost,
which in turn prevents us from concluding that she is certainly true
in P− (E− S). �

As mentioned before, besides delaying conditions’ evaluation,
the aware evaluation relies on a set of rules to syntactically manipu-
late conditions. The aim is to rewrite conditions into simpler equiva-
lent ones (equivalence under 3-valued logic) so that a better analysis
can be performed. Simplified conditions are eventually evaluated.
The set of rewriting rules is reported next:

1. De Morgan: ¬(φ1 ∧ φ2) ` (¬φ1 ∨¬φ2) and ¬(φ1 ∨ φ2) ` (¬φ1 ∧
¬φ2)

2. Negation: ¬(¬φ) ` φ,¬(φ1 = φ2) ` (φ1 6= φ2), ¬(φ1 6= φ2) `
(φ1 = φ2), ¬unknown ` unknown,¬true ` false, and ¬false `
true.

3. Middle excluded: (α = β) ∨ (α 6= β) ` true; (α 6= β) ∨ (α 6=
β′) ` true, where β, β′ ∈ Const and β 6= β′;

2.4. GML-approaches 55

4. Contradiction: (α = β) ∧ (α 6= β) ` false; (α = β) ∧ (α =
β′) ` false, where β, β′ ∈ Const and β 6= β′.

5. Or-simplification: φ ∨ φ ` φ, φ ∨ false ` φ, and φ ∨ true `
true.

6. And-simplification: φ ∧ φ ` φ, φ ∧ true ` φ, and φ ∧ false `
false.

7. Equality: (α = α) ` true, for α ∈ Const ∪ Null and (α 6= α) `
false, for α ∈ Const∪ Null.

8. Inequality: (α = β) ` false if α, β ∈ Const and α 6= β, and
(α 6= β) ` true if α, β ∈ Const and α 6= β.

Notice that the distributivity rule is not included in our set of
rules, because this allows us to keep the length of conditions poly-
nomial. The result of applying a rule φ′ ` φ′′ to a condition φ is the
condition obtained from φ by replacing every occurrence of φ′ with

φ′′. We write φ
*
` φ′, where φ and φ′ are conditions, if (i) φ′ can be

derived from φ by iteratively applying rules 18 along with the com-
mutativity and associativity rules, and (ii) none of the rules 1-8 is
applicable to any of the conditions in [φ′] (recall that [φ′] is the set
of all conditions that can be obtained from φ′ by iteratively apply-
ing the commutativity and associativity rules zero or more times).

If φ
*
` φ′, we say that φ′ is a minimal condition for φ. Intuitively,

a minimal condition φ′ is obtained by iteratively applying rules 1-8
and the commutativity and associativity rules until none of the rules
1-8 can be applied to φ′ or any other condition derivable from φ′ by
means of the commutativity and associativity rules.

There can be multiple minimal conditions of a condition φ, but
they are all equivalent w.r.t. the commutativity and associativity
rules (roughly speaking, they differ only w.r.t. the order of their

terms), that is, if φ
*
` φ′ and φ

*
` φ′′ then φ′ ∈ [φ′′] and φ′′ ∈ [φ′].

Thus, we can talk about the minimal condition of φ, which we de-
note as minimal(φ).

Proposition 2.25. Given a condition φ, computing a condition φ′ such

that φ
*
` φ′ can be done in polynomial time.

56 Chapter 2. Approximate query answering over incomplete
databases: state of the art

For a c-tuple t = 〈t, φ〉, we define evala(t) as follows:
evala(t) = evals(〈t, minimal(φ)〉)
and for a c-table T, evala(T) = {evala(t)|t ∈ T}.

As minimal conditions differ only w.r.t. the order of their terms,
two different minimal conditions (derived from the same original
condition) cannot give different results in the evaluation above.

As said before, all minimal conditions (derived from the same
original one) are equivalent and, therefore, the result of the evalua-
tion above is independent from the chosen minimal condition, that is,
for any two c-tuples 〈t, φ′〉 and 〈t, φ′′〉 derived from the same c-tuple
〈t, φ〉, where φ′, φ′′ are minimal conditions for φ, then evala(〈t, φ′〉)
and evala(〈t, φ′′〉) may differ only in indexes of nulls (i.e., one can be
obtained from the other by simply renaming nulls).

Given a query Q and a database D, we define Evala(Q, D) =
evala(Q̇(D)). Moreover, we define:
Evala

t(Q, D) = {t | 〈t, true〉 ∈ Evala(Q, D)}.

Example 2.26. Consider again the database D and the query Q of
Example 2.24. The aware evaluation is performed as follows:

Evala(Q, D)

= evala(PD −̇ (ED−̇SD))

= evala({〈john, T〉, 〈mary, T〉}−̇evala({〈john, T〉, 〈⊥1, T〉}−̇
{〈mary, T〉, 〈bob, T〉}))

= evala({〈john, T〉, 〈mary, T〉}−̇{〈john, φ1〉, 〈⊥1, φ2〉})

where φ1 = ¬(john = mary) ∧ ¬(john = bob) and
φ2 = ¬(⊥1= mary) ∧ ¬(⊥1= bob)

= evala({〈john,¬(φ1 ∧ john = john) ∧ ¬(φ2 ∧ john =⊥1)〉,
〈mary,¬(φ1 ∧ mary = john) ∧ ¬(φ2 ∧ mary =⊥1)〉})

= evals({〈john, F〉, 〈mary, T〉})
= {〈mary, T〉}.

2.4. GML-approaches 57

Thus, Evala
t(Q, D) = {〈mary〉}, whereas Eval`t(Q, D) = ∅. Ob-

serve that when computing

evala({〈john,¬(φ1 ∧ john = john) ∧ ¬(φ2 ∧ john =⊥1)〉,
〈mary,¬(φ1 ∧ mary = john) ∧ ¬(φ2 ∧ mary =⊥1)〉})

which is equal to

evala({〈john,¬(¬(john = mary) ∧ ¬(john = bob) ∧ john = john)∧
¬(¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ john =⊥1)〉,
〈mary,¬(¬(john = mary) ∧ ¬(john = bob) ∧ mary = john)∧
¬(¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ mary =⊥1)〉})

rewriting rules are applied. Specifically, for the first c-tuple rewriting
rules are applied as follows:

¬
(
¬(john = mary) ∧ ¬(john = bob) ∧ john = john

)
∧

¬
(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ john =⊥1

)
` ¬

(
¬(false) ∧ ¬(false) ∧ john = john

)
∧

¬
(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ john =⊥1

)
rule 8

` ¬
(
¬(false) ∧ ¬(false) ∧ true

)
∧ ¬

(
¬(⊥1= mary)

∧¬(⊥1= bob) ∧ john =⊥1
)

rule 7
` false∧ ¬

(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ john =⊥1

)
rule 2, 6

` false rule 6

For the second c-tuple, rewriting rules are applied as follows:

58 Chapter 2. Approximate query answering over incomplete
databases: state of the art

¬
(
¬(john = mary) ∧ ¬(john = bob) ∧ mary = john

)
∧

¬
(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ mary =⊥1

)
` ¬

(
¬(false) ∧ ¬(false) ∧ false

)
∧¬
(
¬(⊥1= mary) ∧ ¬(⊥1= bob∧ mary =⊥1

)
rule 8

` ¬
(
false

)
∧ ¬

(
¬(⊥1= mary)∧

¬(⊥1= bob) ∧ mary =⊥1
)

rule 6
` true∧ ¬

(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ mary =⊥1

)
rule 2

` ¬
(
¬(⊥1= mary) ∧ ¬(⊥1= bob) ∧ mary =⊥1

)
rule 6

`
(
(⊥1= mary) ∨ (⊥1= bob) ∨ (mary 6=⊥1)

)
rule 1, 2

`
(
true∨ (⊥1= bob)

)
rule 3

` true rule 5

The reason why the aware evaluation is able to give john as a certain
answer, while the lazy does not, is that the former does not evaluate
conditions in intermediate steps and thus it eventually ends up with
conditions describing the entire query evaluation process, which in
turn enable the global analysis discussed at the beginning of Exam-
ple 2.24. �

The following theorems state that the aware evaluation provides
strictly better approximations than the lazy one, has correctness guar-
antees, and can be computed in polynomial time.

Theorem 2.27. For every query Q and database D, Eval`t(Q, D) ⊆
Evala

t(Q, D). There exists a query Q and a database D such that
Eval`t(Q, D) ⊂ Evala

t(Q, D).

Theorem 2.28. Evala
t() has correctness guarantees.

Theorem 2.29. Evala
t(Q, D) can be computed in polynomial time in the

size of D, for every query Q and database D.

Proposition 2.30. For every database D, and for all queries Q1 and Q2 of
the same arity, Evala

t(Q1∩Q2, D) and Evala
t(Q2∩Q1, D) are isomoprhic

(i.e., equal up to renaming of nulls).

We now present a theorem that characterizes the size of the condi-
tions handled by Eval?(), for ? ∈ {e, s, `, a}. The theorem highlights
that, in general, algorithms providing better approximations have to
handle more complex conditions. Specifically, consider a query Q
and a database D. We use the following notations: n is the maxi-
mum number of tuples of relations in D, a is the maximum arity of

2.4. GML-approaches 59

relations in D, k is the number of relational algebra operators in Q,
and s is the maximum number of conjuncts of the selection condi-
tions in Q - recall that we assume that every selection condition is
a conjunction of equalities/inequalities (see Subsection 1.2.3). It is
worth noting that when data complexity is considered, a, k, and s are
all fixed.

In the following theorem, we use ||φ|| to denote the maximum
length of a condition produced during the evaluation of Eval?(Q, D).

Theorem 2.31.

1. For the eager evaluation, ||φ|| = O(1).

2. For the semi-eager evaluation, ||φ|| = O(max{s, k · a}).

3. For the lazy evaluation, ||φ|| = O(k ·max{s, a}).

4. For the aware evaluation, ||φ|| = O(nk ·max{s, k · a}).

Thus, the previous theorem shows that as we move from the ea-
ger evaluation (the simplest one) to the aware evaluation (the most
complex one) the size of the conditions to be handled increases -
however, this can be paid back by more certain answers with nulls
being returned. We point out that the maximum length of a condi-
tion is polynomial for all evaluation strategies when data complexity
is considered, as a, k, and s are all fixed.

We experimentally study this aspect in Chapter 4. The experi-
mental results confirm what suggested by Theorem 2.31, that is, run-
ning times increase as we move from the eager evaluation to the
aware one (but more certain answers with nulls are returned).

Example 2.32. Consider again the database D and the query Q of
Example 2.24, namely P− (E− S).

For the eager evaluation, conditions are always either true or false
or unknown, and thus their size is O(1). The reason is that eval()
can be evaluated “on the fly” by keeping conditions of constant size,
that is, equalities/inequalities and logical connectives can be evalu-
ated according to the three-valued evaluation as they are generated
without materializing entire conditions.

Notice that, in this case, there are no equalities to be propagated
by the semi-eager evaluation (in fact, there is no selection and no in-
tersection), and thus the semi-eager evaluation behaves like the eager
one.

60 Chapter 2. Approximate query answering over incomplete
databases: state of the art

The lazy evaluation was shown in Example 2.24 and produces
conditions that are no more of constant size. The aware evaluation
was shown in Example 2.26 and produces even longer conditions, as
the conditional evaluation of the entire query has to be carried out.

�

61

Chapter 3

A System Prototype for
Approximate Query
Answering over Incomplete
Data

In this chapter we showcase ACID, a system to compute sound sets
of certain answers [35]. The central tools of its underlying algorithms
are conditional tables and the conditional evaluation of relation alge-
bra. Different evaluation strategies can be applied, with more accu-
rate ones having higher complexity, but returning more certain an-
swers. These techniques have been presented in Chapter 2. We show
how to query incomplete databases using the ACID system, which
offers a suite of approximation algorithms enabling users to choose
the technique that best meets their needs in terms of balance between
efficiency and quality of the result’s approximation.

3.1 Introduction

A principled way of answering queries over incomplete databases is
to compute certain answers, which are query answers that can be ob-
tained from all the complete databases represented by an incomplete
database [28, 69, 68].

For basic notions and notations about certain query answers, the
way SQL behaves in the presence of nulls, see Section 1.2.2.

In the previous chapter we have illustrated state-of-the-art evalu-
ation algorithms with correctness guarantees leveraging conditional
tables and the conditional evaluation of relational algebra (see Sec-
tion 2.4). Conditional tables are standard tables where each tuple is

62 Chapter 3. A System Prototype for Approximate Query
Answering over Incomplete Data

FIGURE 3.1: System Architecture.

associated with a condition and the conditional evaluation is a gen-
eralization of relational algebra that manipulate conditional tables.
Conditions keep track of how tuples are derived and how nulls are
used in comparison operators (see Subsection 1.2.3).

These algorithms are called eager, semi-eager, lazy and aware eval-
uations and we referred to them as the GMT-approaches. They have
been implemented in the ACID system, which enables users to query
incomplete databases and get under-approximations of the certain
answers, choosing the evaluation strategy that is most suitable for
the application at hand.

3.2 System Overview

The ACID system has been implemented in Java. The system archi-
tecture is depicted in Figure 3.1.

There are three main components: a graphical user interface (GUI),
the evaluation algorithms’ engine, and the database.

The GUI allows user to specify the query to be evaluated, the
database, and the type of evaluation to be performed, that is, the ap-
proximation algorithm to be applied. The GUI displays the result of
evaluating the specified query over the provided database according
to the chosen evaluation algorithm. Different filters can be applied
to the result (more details are discussed in the next section).

3.3. Demonstration 63

The system’s engine supports the four evaluation algorithms men-
tioned in the previous section, with the eager algorithm being the
most efficient but the least accurate one, and the aware algorithm be-
ing the most accurate but the least efficient one. The basic ideas of
the approximation algorithms are as follows:

• The eager evaluation evaluates tuples’ conditions right after each
relational algebra operator has been applied, using three-valued
logic.

• The semi-eager evaluation behaves like the naive one, but it bet-
ter exploits equalities in conditions (by propagating values into
tuples and conditions) to provide more accurate results.

• The lazy evaluation improves upon the semi-naive one by post-
poning conditions’ evaluation until the set difference operator
is encountered in the query.

• The aware evaluation provides even more accurate results and
behaves as follows: it performs the conditional evaluation of
the entire query, then it uses a set of axioms to “simplify” con-
ditions, and eventually it evaluates (simplified) tuples’ condi-
tions.

The ACID system manages relational databases possibly contain-
ing labeled nulls (in the literature, they have been called naive tables,
V-tables, and e-tables [1, 43, 59]). Thus, the same (labeled) null can
occur multiple times - e.g., this can be used to express that there are
two employees with the same unknown salary.

The GUI provides information on the query, the database, and
the evaluation strategy to the engine, which computes the approx-
imate certain answers accessing the database. After the evaluation
has been carried out, the engine returns the result to the GUI.

The ACID system provides also an API which allow third party
applications to interact with the system.

We go into the details of how to interact with the ACID system in
the following section.

3.3 Demonstration

The ACID system will be demonstrated through interaction with a
graphical user interface (cf. Figure 3.2). We will provide sample

64 Chapter 3. A System Prototype for Approximate Query
Answering over Incomplete Data

queries over different incomplete datasets, even though users can
experience querying their own databases with custom queries.

Our goal is to demonstrate the efficiency and effectiveness achie-
ved by the different approximation algorithms when querying in-
complete databases, showing that algorithms of increasing complex-
ity have higher running times but provide better results. Users can
thus choose the right balance between efficiency and quality of the
results according to their needs.

A typical interaction with the system involves the following steps:

1. The user specifies the input databases. Specifically, for each
table in the database, its location in the file system is provided.
Tables are supposed to be in csv format.

2. The user specifies the query to be evaluated using standard
SQL syntax. Queries can be loaded from and saved to files.

3. The user specifies the evaluation strategy that has to be ap-
plied to evaluate the query (indeed, the system supports also
the “standard” evaluation mentioned in the introduction and
the conditional evaluation of a query).

4. After the evaluation has been launched and has finished, the
result and statistics are displayed. Specifically, the result is a
set of a tuples, where each tuple is associated with a condition
that is either true or unknown. Tuples associated with true are
guaranteed to be certain answers to the input query. The result
can be filtered with respect to the truth value of the tuples, thus
displaying only true or only unknown tuples. The total num-
ber of true (resp. unknown) tuples is displayed as well as the
execution time. Results can be saved to files.

With the same query and database, moving to more accurate strate-
gies, that is, from the eager (resp. semi-eager, lazy) evaluation to the
semi-eager (lazy, aware) one, users can see better results, that is, more
tuples with condition true (i.e., more certain answers), but running
times might get higher.

In general, using the system and analysing the query syntax, users
can figure out the strategy that is best suited for their purposes.

As an example, Tables 3.1, 3.2, 3.3 report the execution time, the
number of true and unknown answers for three sample queries over a
database with the same schema of the one in Example 2.1, with 1000
tuples per relation and 10% of nulls (randomly generated).

The queries are:

3.3. Demonstration 65

FIGURE 3.2: ACID system’s GUI.

• Qse = E− σ$1=c(S),

• Qlazy = P− (E ∩ (σ$1 6=c(S))), and

• Qaware = P− (E− S),

where c is a value randomly chosen from those in S.
The purpose of the first scenario is to exhibit a query (namely,

Qse) that shows the benefits of going from the naive to the semi-naive
evaluation - notice that, in this case, there is no benefit in applying
the lazy or aware evaluation, as the structure of the query does not
have features that can be exploited by them.

66 Chapter 3. A System Prototype for Approximate Query
Answering over Incomplete Data

Qse
Time #true #unknown

Eager 518 741 167
Semi-eager 615 763 145

Lazy 661 763 145
Aware 3580 763 145

TABLE 3.1: Runtime (msecs), number of true and pos-
sible answers for the query Qse = E− σ$1=c(S).

Qlazy
Time #true #unknown

Eager 788 710 189
Semi-eager 1090 710 189

Lazy 1579 737 162
Aware 4350 737 162

TABLE 3.2: Runtime (msecs), number of true and pos-
sible answers for the query

Qlazy = P− (E ∩ (σ$1 6=c(S))).

Qaware
Time #true #unknown

Eager 2163 100 731
Semi-eager 2347 100 731

Lazy 5542 100 731
Aware 10376 231 600

TABLE 3.3: Runtime (msecs), number of true and pos-
sible answers for the query Qaware = P− (E− S).

Likewise, the purpose of the second and third scenarios is to show
the advantage of using the lazy (resp. aware) evaluation rather than
the semi-eager (resp. lazy) one.

3.4 Discussion

Certain answers are a principled manner to answer queries on in-
complete databases. Since their computation is a coNP-hard prob-
lem, recent research has focused on developing polynomial time al-
gorithms providing under-approximations. [49] presented the GMT-
approaches and we implemented them in the ACID system, which
allows users to query incomplete information and get approximate

3.4. Discussion 67

answers with the flexibility of choosing the technique that best meets
their needs in terms of balance between efficiency and quality of the
result’s approximation.

69

Chapter 4

Optimizing the Computation of
Approximate
Certain Query Answers over
Incomplete Databases

In this chapter, we propose a novel technique that allows us to im-
prove the approximation algorithms presented in Chapter 2, obtain-
ing a good balance between running time and quality of the results
[34]. This new technique is placed between the lazy evaluation and
the aware one (in terms of quality of the results), thus it is can be seen
as an improvement over the lazy technique. First we present the be-
havior of this novel approach, then we report experimental results
confirming its effectiveness.

4.1 Introduction

We will focus on the semantics of certain answers as the semantics of
query answering over incomplete databases. In order to recall how
the this semantics works, the reader may refer to Example 2.1.

For databases containing (labeled) nulls, certain answers to pos-
itive queries can be easily computed in polynomial time as follows:
first a “standard” evaluation (that is, treating nulls as standard con-
stants) is applied; then tuples with nulls in the result of the first step
are discarded and the remaining tuples are the certain answers to the
query. However, for more general queries with negation the problem
of computing certain answers becomes coNP-hard. To make query
answering feasible in practice, one might resort to SQL’s evaluation,
but unfortunately, the way SQL behaves in the presence of nulls may
result in wrong answers. As evidenced in [68], there are two ways

70 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

in which certain answers and SQL’s evaluation may differ: (i) SQL
can miss some of the tuples that belong to certain answers, thus pro-
ducing false negatives, or (ii) SQL can return some tuples that do
not belong to certain answers, that is, false positives. While the first
case can be seen as an under-approximation of certain answers (a
sound but possibly incomplete set of certain answers is returned),
the second scenario must be avoided, as the result might contain
plain incorrect answers, that is, tuples that are not certain. The ex-
perimental analysis in [54] showed that false positive are a real prob-
lem for queries involving negation - they were always present and
sometimes they constitute almost 100% of the answers. Thus, on
the one hand, SQL’s evaluation is efficient but flawed, on the other
hand, certain answers are a principled semantics but with high com-
plexity. To deal with this issue, there has been work on develop-
ing algorithms that compute a sound but possibly incomplete set of
certain answers [35, 50, 49, 54, 69, 68]. Computing sound sets of
consistent query answers over inconsistent databases has been ad-
dressed in [41], but databases are assumed to be complete, while in
this paper we consider incomplete databases with no integrity con-
straints. In this chapter, we start with an experimental evaluation of
the GMT-approaches proposed in Chapter 2. Experimental results
confirm what suggested from the theoretical analysis carried out in
[49]: moving from the eager to the aware algorithm, running times
increase, but this paid back by more certain answers being found.
While we observe a mild increase of running times when moving
from eager to semi-eager, and from semi-eager to lazy, there is a
much higher difference between the running times of the lazy and
aware evaluations. This raised the question on whether we can de-
vise a novel technique between lazy and aware, which achieves a
good balance between running time and quality of the results.We an-
swer this question positively by proposing a novel evaluation strat-
egy, called lazy+, which improves upon the lazy evaluation by draw-
ing ideas of the aware evaluation, while keeping running times mod-
erate. We then experimentally evaluate lazy+ comparing it against
the lazy and aware evaluations. Experimental results show the ef-
fectiveness of lazy+: not only running times are much lower that
those of the aware evaluation, but they are even lower than those of
the lazy one, because of newly introduced optimizations. As for the
quality of results, lazy+ is placed between the lazy and aware algo-
rithms, thereby achieving a good balance between computation time
and quality of results.

4.2. Experimental Evaluation of Approximation Algorithms 71

4.2 Experimental Evaluation of Approxima-
tion Algorithms

In this section, we report on an experimental evaluation we con-
ducted to evaluate approximation algorithms in terms of efficiency
and quality of the results.

First, we recall the approximation algorithms we dealt with in
Chapter 2. These algorithms leverage conditional tables and the con-
ditional evaluation of relational algebra. The conditional evaluation
returns conditional tuples 〈t, φ〉, the expression φ says under which
condition t can be derived. Conditions are valuable information that
can be exploited to determine which tuples are certain answers. By
condition evaluation we mean a way of associating φ with a truth
value (true, false, or unknown). The aim is to ensure that if φ eval-
uates to true, then t is a certain answer. Tuples’ conditions can be
evaluated in different ways. The basic ideas of the strategies leading
to algorithms are as follows:

• The eager evaluation evaluates tuples’ conditions right after each
relational algebra operator has been applied, using three-valued
logic.

• The semi-eager evaluation behaves like the eager one, but it bet-
ter exploits equalities in conditions (by propagating values into
tuples and conditions) to provide more accurate results.

• The lazy evaluation improves upon the semi-eager one by post-
poning conditions’ evaluation until the set difference operator
is encountered in the query.

• The aware evaluation provides even more accurate results and
behaves as follows: it performs the conditional evaluation of
the entire query, then it uses a set of rewriting rules to “sim-
plify” conditions, and eventually it evaluates (simplified) tu-
ples conditions.

With the same query and database, moving to more accurate strate-
gies, that is, from the eager (resp. semi-eager, lazy) evaluation to the
semi-eager (lazy, aware) one, we can obtain more certain answers,
but running times might get higher.

Thus, there is a trade-off in choosing one of the algorithms: mov-
ing from the eager to the aware evaluation the complexity increases
but more certain answers can be returned (still, all algorithms have

72 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

200 400 600 800 1000
Time #T Time #T Time #T Time #T Time #T

Eager 27 136 101 291 230 437 380 587 623 741
Semi-eager 28 143 104 303 232 456 391 610 632 763

Lazy 29 143 106 303 237 456 395 610 636 763
Aware 220 143 837 303 2,522 456 4,166 610 6,743 763

TABLE 4.1: Runtime (msecs), number of certain an-
swers to Qse (10% of nulls).

100 1000 10000
Time #T Time #T Time #T

Eager 7 82 623 741 68,597 7,324
Semi-eager 7 86 632 763 68,963 7,610

Lazy 7 86 636 763 68,255 7,610
Aware 53 86 6,743 763 783,522 7,610

TABLE 4.2: Runtime (msecs), number of certain an-
swers to Qse (10% of nulls).

polynomial time complexity). The four evaluation strategies have
been implemented in Java. All experiments were run on an Intel i7
3770K 3.5 GHz, 64GB of memory, running Linux Mint 17.1. Datasets
were generated using the DBGen tool of the TPC-H benchmark [29].
As the generated databases are complete, nulls were randomly in-
serted.

Semi-eager. In order to assess the benefits of the semi-eager evalu-
ation, we measured the running time and the number of certain an-
swers to the query Qse = R− σ$2=c(S), where c is a value randomly
chosen from those in the second column of S. We considered datasets
having 200-1000 tuples per relation in steps of 200. Notice that Qse
is a query where the propagation of the equality in the selection con-
dition can yield benefits, and thus it might be worth applying the
semi-eager evaluation rather than the eager one (which is indeed the
case, as shown by the experimental results below). Also, 10% of the
values in the database are (randomly introduced) nulls. Experimen-
tal results are reported in Table 4.1.

As expected, running times increase as more powerful evaluation
strategies are applied. We can see that the percentage of additional
certain answers that the semi-eager evaluation yields w.r.t. to the
eager one ranges from 3% to 5%. There is no benefit in applying
evaluation strategies more accurate than the semi-eager one, as the

4.2. Experimental Evaluation of Approximation Algorithms 73

2% of nulls 4% of nulls 6% of nulls 8% of nulls 10% of nulls
Time #T Time #T Time #T Time #T Time #T

Eager 503 758 539 755 593 743 606 740 623 741
Semi-eager 513 763 550 763 606 763 613 763 632 763

Lazy 535 763 562 763 612 763 625 763 636 763
Aware 6,135 763 6,467 763 6,585 763 6,708 763 6,743 763

TABLE 4.3: Runtime (msecs), number of certain an-
swers to Qse (DB size: 1000).

structure of the query does not have features that can be exploited
by them.

Table 4.2 reports results for databases having 100, 1000, and 10, 000
tuples per relation. We can see a trend similar to the one previously
discussed for Table 1 - again, the percentage of additional certain an-
swers that the semi-eager evaluation yields w.r.t. to the eager one
ranges from 3% to 5%.

We also ran experiments with databases having 1000 tuples per
relation, varying the null rate from 2% to 10% in steps of 2, see Table
4.3. The advantage of the semi-eager evaluation w.r.t. the eager one
(in terms of additional certain answers) ranges in 0.5-3%.

Lazy. In order to assess the benefits of the lazy evaluation, we mea-
sured the running time and the number of certain answers of the
query Qlazy = P− (R∩ (σ$2 6=c(S))), where c is a value randomly cho-
sen from the second column of S. Once again, we considered datasets
having 200-1000 tuples per relation in steps of 200 and 10% of nulls.
Experimental results are reported in Table 4.4. Running times in-
crease as more accurate evaluation strategies are applied. The ben-
efits of the lazy evaluation w.r.t. to the semi-eager one (in terms
of additional certain answers) ranges from 2.5% to 6.45%. There is
no benefit in applying the aware evaluation, as the structure of the
query does not have features that can be exploited by it.

Results for databases having 100, 1000, and 10, 000 tuples per re-
lation are shown in Table 4.5, exhibiting a similar behavior - here the
lazy yields 1.5% to 3.8% more certain answers than the semi-eager
(Table 4.6). We also ran experiments with relations having 1000 tu-
ples, varying the null rate from 2% to 10% in steps of 2. The ad-
vantage of the lazy evaluation w.r.t. the semi-eager one (in terms of
additional certain answers) ranges in 0.4-4%.

74 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

200 400 600 800 1000
Time #T Time #T Time #T Time #T Time #T

Eager 71 153 249 279 552 421 958 565 1,655 710
Semi-eager 76 153 293 279 640 421 1,095 565 1,736 710

Lazy 355 157 1,392 297 3,210 444 5,559 590 8,660 737
Aware 638 157 2,460 297 5,643 444 9,884 590 15,920 737

TABLE 4.4: Runtime (msecs), number of certain an-
swers to Qlazy (10% of nulls).

100 1000 10000
Time #T Time #T Time #T

Eager 18 63 1,655 710 150,881 7,149
Semi-eager 19 63 1,736 710 170,491 7,149

Lazy 97 64 8,660 737 858,233 7,390
Aware 176 64 15,920 737 1,605,264 7,390

TABLE 4.5: Runtime (msecs), number of certain an-
swers to Qlazy (10% of nulls).

2% of nulls 4% of nulls 6% of nulls 8% of nulls 10% of nulls
Time #T Time #T Time #T Time #T Time #T

Eager 1,310 734 1,421 721 1,481 723 1,550 714 1,655 710
Semi-eager 1,368 734 1,429 721 1,532 723 1,702 714 1,736 710

Lazy 7,221 737 7,569 737 7,741 737 8,238 737 8,660 737
Aware 12,395 737 13,166 737 13,657 737 14,292 737 15,920 737

TABLE 4.6: Runtime (msecs), number of certain an-
swers to Qlazy (DB size: 1000).

Aware. Finally, to assess the benefits of the aware evaluation, we
measured the running time and the number of certain answers to the
query Qaware = P− (R− S) over datasets having 200-1000 tuples per
relation. Also, 10% of the values in the database were (randomly in-
troduced) nulls. Experimental results are reported in Table 4.7. The
aware evaluation has the highest running times but it returns signifi-
cantly more certain answers than the other algorithms, as the number
of certain answer is always (at least) doubled.

Results for databases with 100, 1000, and 10, 000 tuples per re-
lations are shown in Table 4.8. While for the first two databases
the trend is similar to the one previously discussed, for the largest
database the aware evaluation ran out of memory. We also ran ex-
periments with a database having 1000 tuples per relation, varying
the null rate from 2% to 10% in steps of 2. Results are reported in

4.2. Experimental Evaluation of Approximation Algorithms 75

200 400 600 800 1000
Time #T Time #T Time #T Time #T Time #T

Eager 100 13 374 41 826 66 1,472 84 2,632 100
Semi-eager 103 13 378 41 835 66 1,479 84 2,797 100

Lazy 401 13 1,489 41 3,334 66 5,803 84 12,645 100
Aware 39,306 36 334,604 93 1,053,816 143 2,311,524 192 5,589,977 231

TABLE 4.7: Runtime (msecs), number of certain an-
swers to Qaware (10% of nulls).

100 1000 10000
Time #T Time #T Time #T

Eager 26 15 2,632 100 238,100 1,269
Semi-eager 28 15 2,797 100 241,600 1,269

Lazy 107 15 12,645 100 1,187,733 1,269
Aware 3,263 25 5,589,977 231 Out of memory Out of memory

TABLE 4.8: Runtime (msecs), number of certain an-
swers to Qaware (10% of nulls).

2% of nulls 4% of nulls 6% of nulls 8% of nulls 10% of nulls
Time #T Time #T Time #T Time #T Time #T

Eager 1,761 252 1,956 217 2,148 180 2,285 153 2,632 100
Semi-eager 1,824 252 2,068 217 2,220 180 2,382 153 2,797 100

Lazy 8,646 252 9,705 217 10,412 180 11,110 153 12,645 100
Aware 4,018,252 307 4,629,472 288 5,285,823 280 5,794,665 267 6,663,986 231

TABLE 4.9: Runtime (msecs), number of certain an-
swers to Qaware (DB size: 1000).

Qse
Time #true #unknown

Eager 623 741 167
Semi-eager 632 763 145

Lazy 636 763 145
Aware 6,743 763 145

TABLE 4.10: Runtime (msecs), number of answers
with condition true, and number of answers with con-

dition unknown for the query Qse.

Table 4.9. We can see that the aware evaluation is again the one re-
turning the highest number of certain answers, but with much higher
running time.

Tables 4.10, 4.11 and 4.12 show the number of unknown answers
in addition to true answers. Table 4.10 (resp. 4.11 and 4.12) extends
the informative content of Table 4.1 (resp. 4.4 and 4.7), in the part
referring to databases having 1000 tuples per relation.

76 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

Qlazy
Time #true #unknown

Eager 1,655 710 189
Semi-eager 1,736 710 189

Lazy 8,660 737 162
Aware 15,920 737 162

TABLE 4.11: Runtime (msecs), number of answers
with condition true, and number of answers with con-

dition unknown for the query
Qlazy.

Qaware
Time #true #unknown

Eager 2,632 100 731
Semi-eager 2,797 100 731

Lazy 12,654 100 731
Aware 5,589,977 231 600

TABLE 4.12: Runtime (msecs), number of answers
with condition true, and number of answers with con-

dition unknown for the query Qaware.

Discussion. The experimental evaluation has confirmed what we
were expecting from the theory, that is, moving to more powerful
techniques we can get more certain query answers, but running times
become higher. However, while the gaps in running time between
eager and semi-eager and between semi-eager and lazy are some-
what mild, the gap between lazy and aware is significant. The rea-
son is that the aware evaluation performs the conditional evaluation
of the entire query and collapses conditions only after that. This
means that long conditions need to be kept and manipulated, which
makes the technique requiring more time and space than simpler
ones. However, this has advantages in terms of quality of the re-
sults: longer conditions allows the aware algorithm to perform more
refined analyses and thus return more certain query answers. A nat-
ural question then arises: can we devise a technique with a behaviour
in the middle of the lazy and aware evaluations? Can we improve the
lazy evaluation so as to return more certain query answers, drawing
from the ideas that characterize aware, but without incurring in the
high running times of the latter? We address these questions in the
next section, where we propose a novel evaluation algorithm, called
lazy+, which indeed achieves a good trade-off between runtime and

4.3. Novel Approach 77

quality of the results.

4.3 Novel Approach

The two key features of the aware evaluation are postponing condi-
tion evaluation until the very end (i.e., after the conditional evalu-
ation of the entire query), and applying a set of simplification rules
to conditions. In this section, we augment the lazy evaluation with
a set of simplification rules (to better analyze conditions), which are
applied when the difference operator is encountered. The atomic
conditions involving only constants can be evaluated immediately,
and substituted by the obtained result, which can be true or false.
The set of simplification rules for conjunctions of simple conditions
involving labelled nulls is reported next:

1. Negation: ¬(¬φ) ` φ,¬(φ1 = φ2) ` (φ1 6= φ2), ¬(φ1 6= φ2) `
(φ1 = φ2), ¬(β < α) ` α ≤ β, ¬(β ≤ α ` α < β, ¬unknown `
unknown,¬true ` false, and ¬false ` true.

2. Middle excluded: (α ≤ β) ∧ (β ≤ α) ` (α = β);

3. Contradiction:

(i) (α < β) ∧ (β ? α) ` false, where ? ∈ {<,≤,=};
(ii) (α = β) ∧ (β 6= α) ` false;

(iii) (α ?1 β) ∧ (β′ ?2 α) ` false, where β, β′ ∈ Const, β <
β′, ?1, ?2 ∈ {<,≤,=};

(iv) (α ? β) ∧ (α = β′) ` false, where β, β′ ∈ Const, β <
β′, ? ∈ {<,≤,=}.

4. And-simplification: φ ∧ φ ` φ, φ ∧ true ` φ, and φ ∧ false `
false.

5. Equality: (α = α) ` true and (α 6= α) ` false.

The result of applying a rule φ′ ` φ′′ to a condition φ is the condi-
tion obtained by replacing every occurrence of φ′ with φ′′. We write

φ
*
` φ′, where φ and φ′ are conditions, if (i) φ′ can be derived from

φ by iteratively applying rules 1-5 along with the commutativity and
associativity rules, and (ii) none of the rules 1-5 is applicable to any
of the conditions in [φ′], where [φ′] is the set of all conditions that

78 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

can be obtained from φ′ by iteratively applying the commutativity

and associativity rules zero or more times. if φ
*
` φ′, we say that

φ′ is a minimal condition for φ. Intuitively, a minimal condition φ′

is obtained by iteratively applying rules 1-5 and commutativity and
associativity rules until none of the rules 1-5 can be applied to φ′ or
any other condition derivable from φ′ by means of the commutativity
and associativity rules.

There can be multiple minimal conditions of a condition φ, but
they are all equivalent w.r.t. the commutativity and associativity
rules (roughly speaking, they differ only w.r.t. the order of their

terms), that is, if φ
*
` φ′ and φ

*
` φ′′ then φ′ ∈ [φ′′] and φ′′ ∈ [φ′].

Thus, we can talk about the minimal condition of φ, which we de-
note as minimal(φ).

The lazy+ evaluation is defined as follows:

• Eval`
+
(R, D) = RD

• Eval`
+
(Q1 ∪Q2, D) = Eval`

+
(Q1, D) ∪̇ Eval`

+
(Q2, D)

• Eval`
+
(Q1 ∩Q2, D) = Eval`

+
(Q1, D) ∩̇ Eval`

+
(Q2, D)

• Eval`
+
(Q1 −Q2, D) = eval`(Eval`

+
(Q1, D) −̇

evals(minimal(Eval`
+
(Q2, D))))

• Eval`
+
(Q1 ×Q2, D) = Eval`

+
(Q1, D) ×̇ Eval`

+
(Q2, D)

• Eval`
+
(σθ(Q), D) = σ̇θ(Eval

`+(Q, D))

• Eval`
+
(πZ(Q), D) = π̇Z(Eval

`+(Q, D))

where evals() and eval`() are defined as in Sections 2.4.3 and 2.4.2
respectively.

Given a query Q and a database D, we define:

Eval`
+

t (Q, D) = {t | 〈t, true〉 ∈ evals(Eval`
+
(Q, D))},

that is, the true answers are computed by (i) first, evaluating eval`(Q, D),
yielding a c-table T, and (ii) then, evaluating evals(T).

4.4. Experimental Evaluation of Lazy+ 79

1000 2000 3000 4000 5000
Time #T Time #T Time #T Time #T Time #T

Lazy 92 554 330 1,118 663 1,678 1,256 2,225 2,015 2,766
Lazy+ 69 568 299 1,136 592 1,706 1,123 2,269 1,786 2,836
Aware 111 581 403 1,161 721 1,726 1,432 2,314 2,260 2,880

TABLE 4.13: Runtime (msecs), number of certain an-
swers to Qlazy+ (10% of nulls).

10000 20000 30000 40000 50000
Time #T Time #T Time #T Time #T Time #T

Lazy 8,202 5,586 44,606 11,114 104,412 16,766 180,375 22,343 382,442 27,896
Lazy+ 7,871 5,710 32,369 11,334 81,819 17,077 158,252 22,742 247,352 28,385
Aware 8,758 5,795 41,996 11,542 121,299 17,370 254,284 23,112 391,270 28,908

TABLE 4.14: Runtime (msecs), number of certain an-
swers to Qlazy+ (10% of nulls).

4.4 Experimental Evaluation of Lazy+

In this section, we report an experimental evaluation of the Lazy+

algorithm.
We used a database consisting of the following three relations:

Person(person id), Manager(manager id, salary), and
Employee(emp id, salary, manager), where Person and Manager are
complete relations and Employee is an incomplete relation with null
values occurring in the salary attribute.

We used the following query:

Qlazy+ = Person \ π$1(σ$1=$2∧$2>$5(σ$2<2000(Employee) × Manager).

The results of the experiments are shown in Tables 4.13, 4.14 and
4.15. As expected, given a certain database, the performances of
the lazy+ evaluation, in terms of the number of certain answers, are
placed, in each test, in the middle compared to those of the lazy and
the aware approaches. What is surprising (positively) is that the exe-
cution times of the lazy+ approach not only outperforms those of the
aware evaluation (as expected), but they are even better than those of
the lazy evaluation. This highlights that the computational overhead
introduced by the reduction of the logical expressions through the
application of the aforementioned axioms, facilitates the calculation
of evaluating the same expressions, leading, overall, to a reduction
in execution times.

80 Chapter 4. Optimizing the Computation of Approximate
Certain Query Answers over Incomplete Databases

2% of nulls 4% of nulls 6% of nulls 8% of nulls 10% of nulls
Time #T Time #T Time #T Time #T Time #T

Lazy 266,452 28,595 299,288 28,385 306,495 28,227 364,515 28,097 382,442 27,896
Lazy+ 220,864 28,701 275,353 28,618 280,050 28,534 255,678 28,498 247,352 28,385
Aware 284,279 28,789 319,760 28,827 331,558 28,834 358,013 28,875 391,270 28,908

TABLE 4.15: Runtime (msecs), number of certain an-
swers to Qlazy+ (DB size: 50, 000).

4.5 Discussion

Certain answers are a principled manner to answer queries on in-
complete databases. Since their computation is a coNP-hard prob-
lem, recent research has focused on developing polynomial time al-
gorithms providing under-approximations.

We have provided an experimental evaluation of recently pro-
posed approximation algorithms. Results have shown some limits
of more powerful techniques in terms of efficiency. To cope with this
issue, we have introduced a novel optimized evaluation strategy and
experimentally evaluated it, showing that it achieves a good balance
between running time and quality of the results.

81

Chapter 5

Approximate Consistent Query
Answering over Inconsistent
Knowledge Bases

Consistent query answering is a principled approach for querying in-
consistent knowledge bases. It relies on two central notions: a repair,
that is, a maximal consistent subset of the facts in the knowledge
base, and a consistent query answer, that is, a query answer entailed
by every repair of the knowledge base. This chapter presents the AC-
QUA system, which allows users to query inconsistent knowledge
bases [36]. Specifically, equality generating dependencies are consid-
ered. Different from the standard notion of repair, where entire facts
are deleted to restore consistency (which might lead to loss of use-
ful information), the repair strategy adopted by ACQUA performs
value updates within facts, thereby preserving more information in
the knowledge base. An inconsistent knowledge base can admit
multiple repairs; the ACQUA system computes a compact represen-
tation of all of them, called universal repair, which is also leveraged
for query answering. Since consistent query answering is intractable
in the considered setting, ACQUA implements a polynomial time
algorithm to compute a sound (but not necessarily complete) set of
consistent query answers.

5.1 Introduction

In this chapter we will use the notion of knowledge base. Basically a
knowledge base is a pair (D, Σ), where D is a database and the Σ is
a set of integrity constraints. For our purposes, Σ is a set of equality-
generating dependencies (EGDs), which are one of the two major

82 Chapter 5. Approximate Consistent Query
Answering over Inconsistent Knowledge Bases

types of data dependencies - the other major type consists of tuple-
generating dependencies (TGDs) - and can model several kinds of
constraints commonly arising in practice, such as functional depen-
dencies and thus also key dependencies.

Example 5.1. Consider the database D comprehensive of the only
relation works

works
john cs nyc

bob math rome

mary math rome

and the ontology Σ consisting of the following equality-generating
dependency σ:

works(E1, D, C1) ∧ works(E2, D, C2)→ C1 = C2.

The fact works(john, cs, nyc) states that john is an employee work-
ing in the cs department located in nyc. The other facts can be sim-
ilarly read. The dependency σ says that every department must
be located in a single city. Thus, the knowledge base (D, Σ) con-
sists of the table works and the EGD σ. All the facts in D satisfy σ,
since for each pair of tuples with the same constants in correspon-
dence of the second column (department), they have the same con-
stants also in correspondence of the third column (city). In the ex-
ample we have only two facts with the same value in the second col-
umn, works(bob, math, rome) and works(mary, math, rome), and they
also coincide in the third column.

�

Reasoning in the presence of inconsistent information is a prob-
lem that has attracted much interest in the last decades. Many incon-
sistency-tolerant semantics for query answering have been proposed,
and most of them rely on the central notions of consistent query answer
and repair.

A consistent answer to a query is a query answer that is entailed
by every repair, where a repair is a “maximal” consistent subset of
the facts of the knowledge base. Different maximality criteria have
been investigated, but all the resulting notions of repair share the
same drawback: a fact is either kept or deleted altogether, and delet-
ing entire facts can cause loss of “reliable” information, as illustrated
in the following example.

5.1. Introduction 83

Example 5.2. Consider the knowledge base (D, Σ) where D contains
the following facts:

works
john cs nyc

john math rome

mary math sidney

and Σ is an ontology consisting again of the following equality-generating
dependency σ:

works(E1, D, C1) ∧ works(E2, D, C2)→ C1 = C2.

Clearly, the last two facts violate σ, so every repair would discard
either of them.

If we pose a query asking for the employees’ name, the only con-
sistent answer is john. However, intuitively, we might consider reli-
able the information on mary being an employee, as the only uncer-
tainty concerns the math department and its city - roughly speaking,
the information in the first column of the works table can be consid-
ered “clean”. However, dropping entire facts cause loss of useful
information. �

To overcome the drawback illustrated above, [51] have recently
proposed a notion of repair based on updating values within facts.
Update-based repairing allows for rectifying errors in facts without
deleting them altogether, thereby preserving consistent values.

Example 5.3. Consider again the knowledge base of Example 5.2.
Using value updates as the primitive to restore consistency, and as-
suming that the only uncertain values are math’s cities, we get the
following two repairs:

john cs nyc

john math rome

mary math rome

john cs nyc

john math sidney

mary math sidney

If we ask again for the employees’ name, both mary and john are
consistent answers. �

Thus, an inconsistent knowledge base can admit multiple repairs.
They can be compactly represented by a “universal” repair, which
turns out to be a valuable tool to compute approximate query an-
swers. The basic idea is illustrated in the following example.

84 Chapter 5. Approximate Consistent Query
Answering over Inconsistent Knowledge Bases

Example 5.4. A universal repair for the two repairs of Example 5.3 is
reported below:

john cs nyc

john math ⊥1
mary math ⊥1

⊥1= rome∨ ⊥1= sidney

where ⊥1 is a labeled null, and the “global” condition at the bottom
restricts the admissible values for ⊥1, which are rome and sydney.
Every replacement of nulls with constants complying with the global
condition yields a repair. In fact, it is easy to see that when ⊥1 is
replaced with either rome or sydney the global condition is satisfied
and the two repairs in Example 5.3 are obtained.

We exploit such a representation for query answering, by com-
bining the condition of the universal repair with provenance infor-
mation during query evaluation. For instance, if we ask for the de-
partments that are not located in nyc, we get math with condition
⊥1 6= nyc, which combined with the global condition allows us to
conclude that math is a consistent answer (as its city is either rome or
sydney, and thus cannot be nyc for sure). �

Since consistent query answering in the considered setting is coNP-
complete, [51] developed a polynomial time approximation algorithm
to compute a sound but possibly incomplete set of consistent query
answers

This chapter presents the ACQUA system, which implements the
framework proposed in [51]. Specifically, the system allows users to
provide a knowledge base and a query, and computes a universal
repair as well as a sound set of consistent answers to the provided
query.

Now we provide the definitions of argument of a set of EGDs Σ
and argument and dependency graphs.

Definition 5.5. Let Σ be a set of EGDs. An argument of Σ is an ex-
pression of the form p[i], where p is an n-ary predicate appearing in
Σ and 1 ≤ i ≤ n.

Definition 5.6. The argument graph of a set Σ of EGDs is a directed
graph GΣ = (V, E), where V is the set of all arguments of Σ, and E
contains a directed edge from p[i] to q[j] labeled σ iff there is an EGD
σ ∈ Σ such that:

5.2. Related work 85

• the body of σ contains an atom p(t1, . . . , tn) such that either ti
is a constant or ti is a variable occurring more than once in the
body of σ, and

• the body of σ contains an atom q(u1, . . . , um) such that uj is a
variable also appearing in the head of σ.

The dependency graph of Σ is a directed graph ΓΣ = (Σ, Ω), where Ω
is the following set:

{(σ1, σ2)|GΣ = (V, E) ∧ (p([i], q[j], σ1), (q[j], r[k], σ2) ∈ E}.

We say that Σ is acyclic if its dependency graph is acyclic. Clearly, the
set consisting of the EGDs in Example 5.1 is acyclic. In the following
we will consider acyclic set of EGDs only.

The rest of this chapter is organized as follows: first we discuss
related work and illustrate the approximation algorithm proposed
in [51]; then, we provide an overview of the ACQUA system, dis-
cussing its architecture and how to interact with the system; finally,
we draw conclusions.

5.2 Related work

Reasoning in the presence of inconsistent information is a problem
that has attracted a great deal of interest in the AI and database com-
munities. Consistent query answering was first proposed in [5].

Query answering under various inconsistency-tolerant semantics
for ontologies expressed in DL languages has been studied in [3,
9]. Query answering in the presence of inconsistent ontologies ex-
pressed in (different fragments of) Datalog+/ has been investigated
in [77, 76].

Several notions of maximality for a repair have been considered
in [11]. [13] proposed an approach for the approximation of consis-
tent query answers from above and from below. [41] proposed an
approach based on three-valued logic to compute a sound but possi-
bly incomplete set of consistent query answers.

All the approaches above adopt the most common notion of re-
pair, where whole facts are removed. This can cause loss of informa-
tion. In real-life scenarios, it might well be the case that facts have
much more attributes and only a few of them are involved in incon-
sistencies, leading to significant loss of useful data.

86 Chapter 5. Approximate Consistent Query
Answering over Inconsistent Knowledge Bases

There have also been different proposals adopting a notion of re-
pair that allows values to be updated [16, 10]. In [16, 45, 46] focus
on FDs only. [10] allows only numerical attributes to be updated,
one primary key per relation is allowed, but keys are assumed to
be satisfied by the original database, and thus no repairing is pos-
sible w.r.t. keys. [37] considers numerical databases and a different
class of (aggregate) constraints. The repair strategy of [87] is quite
different in that any value in the database can be updated (includ-
ing on the left-hand side of FDs), provided that the set of changes is
“minimal” and yields a consistent database. None of the approaches
above has investigated the approximate computation of consistent
query answers - notice that [16, 10] have proposed approximation
algorithms for computing a repair with minimum distance from the
original database, and [45] consider approximate probabilistic query
answers.

Approximation algorithms for computing sound but possibly in-
complete sets of query answers in the presence of nulls have been
proposed in [54, 35], but no dependencies are considered therein,
and thus the database is assumed to be consistent.

5.3 Approximation Algorithm

In the introduction of this chapter, we have illustrated the repair
strategy adopted by the ACQUA system and the notion of a uni-
versal repair, which is a compact way of representing all repairs. The
universal repair can be leveraged for computing a sound set of con-
sistent query answers, which is the approach adopted by the approx-
imation algorithm proposed in [51]. The basic idea is illustrated in
the following example.

Example 5.7. Consider the knowledge base of Example 5.2 and the
query asking for the pairs of departments located in different cities.

The first step of our approach consists of computing a universal
repair, which is shown in Example 5.4.

The second step consists of adding the condition true to every fact
of the universal repair, which leads to the following “conditional”
instance (i.e., an instance where every fact is associated with a condi-
tion).

5.3. Approximation Algorithm 87

GUI	

Query	
	

DB		
	

EGDs	

DB	

Universal	Repair	

Universal		
Repair	
Engine	

(Approximate)		
Consistent	Query	Answers	

Approxima?on	
Algorithm	
Engine	

FIGURE 5.1: System Architecture.

john cs nyc true

john math ⊥1 true

mary math ⊥1 true

⊥1= rome∨ ⊥1= sidney

The third step consists of conditionally evaluating the query over the
conditional instance above. Intuitively, the conditional evaluation of
a query yields a set of facts, each associated with a formula stating
under which condition the fact can be derived. The result is as fol-
lows:

cs cs nyc 6= nyc

cs math nyc 6=⊥1
math cs ⊥1 6= nyc

math math ⊥1 6=⊥1

The last step tries to understand when a fact is certainly derived,
that is, whether a fact can be derived no matter how nulls are re-
placed (under the constraints stated by the global condition of the
universal repair). This is done by looking at the global condition of
the universal repair along with the local conditions in the result of
the conditional evaluation.

For instance, for the first fact above, it is easy to see that its condi-
tion, namely nyc 6= nyc, is always false. Thus, (cs, cs) is not returned

88 Chapter 5. Approximate Consistent Query
Answering over Inconsistent Knowledge Bases

as a consistent query answer. A similar argument applies to the last
fact: ⊥1 6=⊥1 is always false no matter how ⊥1 is replaced.

Consider now the second and third facts. The global condition
of the universal repair says that ⊥1 must be either rome or sydney.
The local conditions of the two facts say that those facts are derived
when ⊥1 is different from nyc. By combining the global and local
conditions, we can conclude that the facts are always derived, as ⊥1
is always different from nyc. Thus, (cs, math) and (math, cs) are re-
turned by the approximation algorithm - indeed, they are consistent
query answers. �

5.4 System Overview

The ACQUA system has been implemented in Java. The system ar-
chitecture is depicted in Figure 5.1. There are 4 main components:
a graphical user interface (GUI), the algorithm to compute a univer-
sal repair, the algorithm to compute an approximate set of consistent
query answers, and the database.

The GUI allows users to specify the query to be evaluated and the
knowledge base (i.e., a database with a set of EGDs). It provides the
knowledge base to the universal repair engine in order to compute a
universal repair. It also provides the knowledge base and the query
to the approximation algorithm engine in order to compute approx-
imate consistent query answers. Also, the GUI displays a univer-
sal repair (which receives from the universal repair engine) and the
query answers (received from the approximation algorithm engine).
The approximation algorithm engine leverages the universal repair
to compute a sound set of consistent answers to the query provided
by the GUI. The DB component simply stores and handles access to
the facts of the knowledge base.

The ACQUA system provides also an API which allows third
party applications to interact with the system.

We now go into the details of how to interact with the system. The
ACQUA’s graphical user interface is shown in Figure 5.2. A typical
interaction with the system involves the following steps:

1. The user specifies the input knowledge base, consisting of a
database and an (acyclic) set of EGDs. Specifically, for each
table in the database, its location in the file system is provided.
Tables are supposed to be in csv format. EGDs can be specified
in a text area, loaded from a file, and saved to a file.

5.5. Discussion 89

2. The user specifies the query to be evaluated (this is given in
Datalog syntax and has to be a stratified program). Queries can
be loaded from and saved to files.

3. The user launches the computation of a universal repair (this
does not involve query evaluation). After the computation has
finished, a universal repair is displayed.

4. The user launches the query evaluation. If a universal repair
has not been computed, first its computation is performed, and
then the query is evaluated. After the evaluation has finished,
the result (a sound set of consistent query answers) and the
execution time are displayed.

5.5 Discussion

We presented ACQUA, a system for approximate query answering
over inconsistent knowledge base consisting of EGDs. The main fea-
tures that characterize the ACQUA system are three. It relies on a
notion of repair allowing values within facts to be updated, which
allow users to preserve more information of the original database.
The system adopts a compact representation of all repairs (called
universal repair), which can be leveraged for query answering. The
ACQUA system implements a polynomial time approximation algo-
rithm to compute an under-approximation of consistent query an-
swers.

As directions for future work we plan to extend the ACQUA sys-
tem by providing support for more general classes of dependencies,
such as TGDs or arbitrary EGDs, and by integrating further approx-
imation algorithms.

90 Chapter 5. Approximate Consistent Query
Answering over Inconsistent Knowledge Bases

FIGURE 5.2: ACQUA system’s GUI.

91

Chapter 6

Probabilistic Answers over
Inconsistent
Knowledge Bases

Consistent query answering is a generally accepted approach for query-
ing inconsistent knowledge bases. A consistent answer to a query
is a tuple entailed by every repair, where a repair is a consistent
database that “minimally” differs from the original (possibly incon-
sistent) one. This is a somewhat coarse-grained classification of tu-
ples into consistent and non-consistent which does not provide much
information about the non-consistent tuples (e.g., a tuple entailed by
99 out of 100 repairs might be considered “almost consistent”).

To overcome this limitation, we propose a probabilistic approach
to querying inconsistent knowledge bases, which provides more in-
formative query answers by associating a degree of consistency with
each query answer by associating a probability to each repair, de-
pending on the changes needed to obtain it [20].

6.1 Introduction

There has been a great deal of work on extracting reliable informa-
tion from inconsistent data, in both the AI and database communi-
ties. To deal with this problem, many semantics of query answer-
ing have been proposed. Most of them are based on the consistent
query answering framework [5]. The idea is that a tuple should be
considered a consistent answer to a query posed over an inconsis-
tent knowledge base if the tuple is a query answer in every repair,
where a repair is a consistent database that “minimally” differs from
the original one. Different variants of the consistent query answer-
ing problem have been investigated depending on the minimality

92 Chapter 6. Probabilistic Answers over Inconsistent
Knowledge Bases

criterion - e.g., see [11] - or the employed repair primitive to restore
consistency - e.g., see [9].

Regardless of the specific minimality criterion and repair primi-
tive, all the resulting frameworks share the same drawback, which
is a dichotomic classification of tuples in either consistent or non-
consistent ones. This can provide very little information to users in
many cases, as illustrated in the following example.

Example 6.1. Consider the knowledge base (D, Σ), where D contains
the following facts:

employee

bob cs nyc

mike cs nyc

alice cs paris

and Σ is an ontology consisting of the following equality-generating
dependency σ:

employee(E1, D, C1), employee(E2, D, C2)→ C1 = C2

As an example, the fact employee(bob, cs, nyc) states that bob is
an employee working in the cs department located in nyc. The de-
pendency σ says that every department must be located in a single
city. Clearly, the first two facts are conflicting with the last one. There
are two repairs for this inconsistent knowledge base, which are as fol-
lows (more details on the employed notion of repair will be provided
in the following):

R1 =
bob cs nyc

mike cs nyc

alice cs nyc

R2 =
bob cs paris

mike cs paris

alice cs paris

Repair R1 is obtained from the original database by replacing paris
with nyc, while R2 is obtained by replacing nyc with paris. The
query asking for the city of the cs department has no consistent an-
swers. Thus, a user trying to extract this information from the knowl-
edge base is left with no answer altogether, all she/he gets is the
empty set. �

To overcome the limitation illustrated in the example above, we
propose a probabilistic approach to querying inconsistent knowl-
edge bases whose aim is to provide more informative query answers
than the classical consistent query answering framework. The main

6.1. Introduction 93

idea is to give a “degree of consistency” to every repair, which is
then taken into account to assign a degree of consistency to query
answers.

Example 6.2. Consider again the scenario of Example 6.1. The degree
of consistency of R1 is 2/3, as nyc is supported by two facts out of
three in the original knowledge base, while the degree of consistency
of R2 is 1/3, as paris is supported by only one fact out of three.

Consider again the query asking for the city of the cs department.
Rather than providing no information (like classical consistent query
answers do), our query answers are nyc with confidence 2/3 (as this
is entailed by R1), and paris with confidence 1/3 (as this is entailed
by R2), which is much more informative than returning nothing. �

The previous examples illustrate the limitation of providing only
certain information and how this might be overcome by assigning a
degree of consistency to query answers (notice that consistent query
answers are still provided they have degree 1).

In this chapter, we consider knowledge bases where dependen-
cies are expressed by means of equality generating dependencies (EGDs).
Equality generating dependencies are one of the two major types of
data dependencies - the other major type consists of tuple-generating
dependencies (TGDs) - and can model several kinds of constraints
arising in practice, such as functional dependencies and thus key de-
pendencies.

In the presence of EGDs, the two main approaches to restore con-
sistency are to perform fact deletions or fact updates. A drawback
of the former is that entire facts are deleted to resolve inconsistency,
even if they may still contain “reliable” information. Thus, in this
chapter we adopt a notion of repair based on fact updates (we will
provide a precise definition in the following). Nonetheless, the ideas
developed here can be used also when a notion of repair based on
fact deletions is adopted.

As we show, providing more informative query answers comes
at a price: it is #P-hard. In light of this result, we discuss further de-
velopments providing polynomial time algorithms to compute ap-
proximate query answers.

Most inconsistency-tolerant approaches in the literature adopt the
classical notion of repair (via fact deletions/insertions) and consis-
tent query answer [65, 82, 13, 77, 76], while in this chapter we pro-
pose a probabilistic generalization where repairs use fact updates,
akin to [37, 87, 16, 51], and query answers are probabilistic. Some

94 Chapter 6. Probabilistic Answers over Inconsistent
Knowledge Bases

works on probabilistic query answering on inconsistent knowledge
bases exist [4, 46, 17], but [4] and [46] only consider restricted classes
of dependencies, while [17] deals with the classical notion of repair.

6.2 Preliminaries

We assume the existence of the following pairwise disjoint (count-
ably infinite) sets: a set Const of constants, a set Var of variables, and
a set Null of labeled nulls. Nulls are denoted by the symbol ⊥ sub-
scripted with natural numbers. A term is a constant, variable, or null.
We also assume a set of predicates, disjoint from the aforementioned
sets, with each predicate being associated with an arity, which is a
non-negative integer.

An atom is of the form p(t1, . . . , tn), where p is an n-ary predicate
and the ti’s are terms. We write an atom also as p(t), where t is a se-
quence of terms. An atom without variables is also called a f act. An
instance is a finite multiset of facts. A database is a finite set of facts
containing constants only. An instance containing only constants is
said to be complete. Notice that, as opposed to databases, instances
can contain duplicates - as shown in the following, instances are used
in intermediate steps during repairs’ computation and it is needed to
keep duplicates to count the number of modifications being made.
We assume the existence of a function db converting a complete in-
stance to a database by eliminating duplicates.

A homomorphism is a mapping h : Const∪ Var∪ Null→ Const∪
Var ∪ Null that is the identity on Const. Homomorphisms are also
applied to atoms and (multi) sets of atoms in the natural fashion, that
is, h(p(t1, . . . , tn)) = p(h(t1), . . . , h(tn)), and h(S) = {h(A)|A ∈ S}
for every (multi) set S of atoms. A valuation is a homomorphism ν
whose image is Const, that is, ν(t) ∈ Const for every t ∈ Const ∪
Var∪ Null.

With a slight abuse of notation, we sometimes treat a conjunction
of atoms as the set of its atoms. An instance J satis f ies σ, denoted J |=
σ, if whenever there exists a homomorphism h s.t. h(ϕ(x)) ⊆ J, then
h(xi) = h(xj). An instance J satis f ies a set Σ of EGDs, denoted J |= Σ,
if I |= σ for every σ ∈ Σ. A knowledge base (KB) is a pair (D, Σ),
where D is a database and Σ is a finite set of EGDs. We say that the
knowledge base is consistent if D |= Σ, otherwise it is inconsistent.

In the rest of the chapter we consider acyclic sets of EGDs only.
For acyclic sets of EGDs we can define a partial order (Σ,<) where

6.2. Preliminaries 95

EGDs in Σ are ordered by reachability in ΓΣ. The result of evaluating
a query Q over a database D is denoted Q(D).

Repairs The notion of repair used here is based on updating facts
and assumes that conflicting facts denote an attribute-level uncer-
tainty in the data [51, 37, 10, 87, 16, 40]. Alternative approaches based
on fact deletions assume that conflicting facts denote a tuple-level un-
certainty [17, 83, 16]. The computation of repairs consists of a chase-
like procedure that acts as follows: whenever an EGD ϕ(x)→ xi = xj
is not satisfied by a database D, i.e. there exists an homomorphism
h such that D |= h(ϕ(x)) and h(xi) 6= h(xj), we have to enforce it by
making the two values equal, that is either h(xi) replaces h(xj) or vice
versa. A repair is obtained through an exhaustive application of this
repair step. Note that, although we follow the partial order (Σ,<) to
choose the EGD to enforce, there is a non-deterministic choice to be
made when selecting an EGD and when updating values; this may
lead to multiple repairs.

Example 6.3. Consider the set of EGDs

Σ = {σ1 : employee(X, Y1, Z1) ∧ employee(X, Y2, Z2)→ Y1 = Y2,
σ2 : employee(X1, Y, Z1) ∧ employee(X2, Y, Z2)→ Z1 = Z2}

and the database D:

bob cs rome

bob math rome

alice math nyc

By enforcing σ1 into the first two facts, either cs or math can be
chosen as bob’s department. If the latter is chosen, then the instance
D′ below is obtained.

Suppose now that σ2 is enforced into the last two facts of D′.
Then, either rome or nyc can be chosen as math’s city. If the former is
chosen, we obtain the instance D′′:

D′ =
bob math rome

bob math rome

alice math nyc

D′′ =
bob math rome

bob math rome

alice math rome

No further dependency enforcement is applicable at this point
and thus the database derived from D′′ by eliminating duplicates is
a repair. �

96 Chapter 6. Probabilistic Answers over Inconsistent
Knowledge Bases

The example 6.3 informally illustrated the basic idea of the re-
pair strategy we adopt. In the next section, we formally define it
and show how to associate probabilities to repairs on the basis of the
modifications that yielded them.

Notice that it might be possible to restore consistency in other dif-
ferent ways. For instance, in the first step of the example 6.3, one may
modify the employee names. However, we do not consider this op-
tion because it is unclear which (different) values should be assigned
(any constant in Const is a candidate value). For instance, bob in the
first fact might be replaced with rome, but this is somewhat arbitrary
and indeed does not make much sense. In contrast, our repair strat-
egy chooses candidate values that are somehow “justified” by the
content of the database (e.g., in the example above, bob works for ei-
ther the cs or the math department). Moreover, when EGDs are key
dependencies, the aforementioned way of restoring consistency may
lead to the introduction of entities that are not meaningful. Indeed,
our choice has been made by different approaches relying on value
updates - e.g., [16]. For special classes of EGDs, the repair strategy
based on updating values coincides with the repair strategy based
on fact deletions.

6.3 Probabilistic Repairs

One problem of the classical notion of consistent query answer is
that query answers can provide little information in the presence of
conflicting information. The alternative approach proposed in this
chapter is to compute probabilistic answers by taking into account in
to what extent information is updated to restore consistency.

In this chapter, we define probabilistic repairs and probabilistic
query answers. In the next section, we show how to compute a com-
pact representation of all probabilistic repairs. In both cases, we will
use probabilistic instances, which are used to represent a single prob-
abilistic repair in this section and are used to compactly represent all
probabilistic repairs in the next section. Probabilistic instances are in-
stances augmented with a set of probability assignments - intuitively,
expressions stating conditions on nulls and probabilities on the val-
ues they can take.

More formally, let C be the set of all expressions, called conditions,
that can be built using the standard logical connectives ∧,∨,¬, and
expressions of the form ti = tj, true and false, where ti, tj ∈ Const∪
Null. We will also use ti 6= tj as a shorthand for ¬(ti = tj). A

6.3. Probabilistic Repairs 97

homomorphism h satis f ies a condition ϕ, denoted h |= ϕ, if h(ϕ) is
true.

A probability assignment is an expression of the form P(ϕ1|ϕ2) = p,
where ϕ1, ϕ2 are conditions and p ∈ [0, 1].

A homomorphism h satis f ies a probability assignment P(ϕ1|ϕ2) =
p if the following holds true: if h |= ϕ2 then h |= ϕ1. Also, h satis f ies
a set Φ of probability assignments, denoted h |= Φ, if h satis f ies
every probability assignment in Φ. For ease of presentation, a proba-
bility assignment of the form P(ϕ1|true) = p will be simply written
as P(ϕ1) = p.

A probabilistic instance (PI) is a pair K = (J, φ), where J is an in-
stance and φ is a finite set of probability assignments. For any valu-
ation ν, we define:

Pr(ν, K) = Π{p | P(ϕ1 | ϕ2) = p ∈ Φ and ν |= ϕ2}.

The semantics of K is given by the set of its probabilistic worlds, that
is, the set of pairs (instance, probability) defined as follows:

pw(K) = {(ν(J), Pr(ν, K))|ν is a valuation s.t. ν |= Φ∧Pr(ν, K) > 0}.

The probabilistic repairs of an inconsistent knowledge base (D, Σ)
are computed starting from the probabilistic instance (D, ∅) and iter-
atively enforcing EGDs (following a topological sorting of ΓΣ). Dur-
ing the repair process we keep track of which values have been up-
dated and how many modifications have been applied using labeled
nulls and probability assignments. The enforcement of an EGD, which
we call probabilistic repair step, is informally shown in the next ex-
ample.

Example 6.4. Consider the knowledge base (D, Σ), where D and Σ
are from Example 6.3. Starting from the probabilistic instance (D, ∅),
by enforcing σ1 into the first two facts, either cs or math can be chosen
as bob’s department. Therefore we obtain the following two (alter-
native) probabilistic instances K1 (left) and K2 (right):

bob ⊥1 rome

bob ⊥1 rome

alice math nyc

P(⊥1= cs) = 1/2

bob ⊥1 rome

bob ⊥1 rome

alice math nyc

P(⊥1= math) = 1/2

The only probabilistic world of K1 is (D1, 1/2), while the only proba-
bilistic world of K2 is (D2, 1/2), where D1 and D2 are as follows (and
are obtained by replacing ⊥1 with cs and math, respectively):

98 Chapter 6. Probabilistic Answers over Inconsistent
Knowledge Bases

D1 =
bob cs rome

bob cs rome

alice math nyc

D2 =
bob math rome

bob math rome

alice math nyc

As D1 |= Σ, (db(D1), 1/2) is a probabilistic repair. On the other
hand, D2 6|= Σ, and thus we need to keep applying pr-steps over
K2. By enforcing σ2 over the first and third facts of K2 we can get
the following two (alternative) probabilistic instances K3 (left) and
K4 (right):

bob ⊥1 ⊥2
bob ⊥1 rome

alice math ⊥2
P(⊥1= math) = 1/2
P(⊥2= rome) = 1/2

bob ⊥1 ⊥2
bob ⊥1 rome

alice math ⊥2
P(⊥1= math) = 1/2
P(⊥2= nyc) = 1/2

The only probabilistic world of K3 is (D3, 1/4), while the only
probabilistic world of K4 is (D4, 1/4), where D3 and D4 are as fol-
lows:

D3 =
bob math rome

bob math rome

alice math rome

D4 =
bob math nyc

bob math rome

alice math nyc

Since D3 |= Σ, (db(D3), 1/4) is a probabilistic repair. On the other
hand, D4 6|= Σ, and thus further pr-steps need to applied to K4. By
enforcing σ2 over the first two facts of K4 we can get the following
two (alternative) probabilistic instances K5 (left) and K6 (right):

bob ⊥1 ⊥3
bob ⊥1 ⊥3

alice math ⊥3
P(⊥1= math) = 1/2
P(⊥2= nyc) = 1/2

P(⊥3= rome) = 1/3

bob ⊥1 ⊥3
bob ⊥1 ⊥3

alice math ⊥3
P(⊥1= math) = 1/2
P(⊥2= nyc) = 1/2
P(⊥3=⊥2) = 2/3

The only probabilistic world of K5 is (D5, 1/12), while the only
probabilistic world of K6 is (D6, 1/6), where D5 and D6 are as fol-
lows:

D5 =
bob math rome

bob math rome

alice math rome

D6 =
bob math nyc

bob math nyc

alice math nyc

6.4. Discussion 99

Since D5 |= Σ and D6 |= Σ, both (db(D5), 1/12) and (db(D6), 1/6)
are probabilistic repairs, and no further pr-step need to be applied.

Thus, the probabilistic repairs are (db(D1), 1/2), (db(D3), 1/4),
(db(D5), 1/12), and (db(D6), 1/6). Notice that the sum of the prob-
abilities of the probabilistic repairs is 1. Also, notice that D3 and
D5 coincide. They might be replaced by a single probabilistic repair
(D′, 1/4 + 1/12), where D′ = D3 = D5. However, this does not af-
fect query answering, that is, the probabilistic query answers are the
same in both cases. �

6.4 Discussion

As a direction for future work, we planned to deepen the problem
dealt with in this chapter. The idea is to present a polynomial time
algorithm to compute approximate query answers where point prob-
ability are approximated by probability intervals. Thus, rather than
providing query answers of the form (t, p), where t is a tuple and p
is its probability, the approximation algorithm gives query answers
of the form (t, [`, u]) guaranteeing that p ∈ [`, u].

Further developments should consider more general frameworks
with TGDs [17] and logic rules [52, 18, 19].

101

Conclusions

Query answering in the presence of missing and inconsistent infor-
mation is a major problem which has been investigated through the
years, and research has recently focused on a number of approaches
with the objective to make the computation of certain and consistent
query answers feasible in practice, settling for under-approximations.

In the first part of this thesis we dealt with incomplete informa-
tion and we focused on polynomial time evaluation algorithms with
correctness guarantees, that is, techniques computing a sound but
possibly incomplete set of certain answers, being the exact compu-
tation of certain answers a coNP-hard problem. We illustrated ex-
isting approaches, pointing out that more accurate evaluation strate-
gies have higher running times, but they pay off with more certain
answers being returned. Thus, we presented the ACID system, a
system prototype providing a suite of state-of-the-art approximation
algorithms enabling users to choose the technique that best meets
their needs in terms of balance between efficiency and quality of the
results. The algorithms implemented and experimentally tested are
those we called eager, semi-eager, lazy and aware evaluation strate-
gies. Then, we showed how to query incomplete databases using
the ACID system, allowing users to choose the technique to be run.
Finally, we proposed a new strategy, called lazy+ evaluation, which
improves the lazy evaluation obtaining a good balance between run-
ning time and quality of the results. The experimental results we
reported confirm the effectiveness of the technique.

In the second part of the thesis, the focus moved to consistent
query answering, which is a principled approach for querying in-
consistent knowledge bases. It relies on the notions of repair, that
is, a maximal consistent subset of the facts in the knowledge base,
and consistent query answer, that is, a query answer entailed by ev-
ery repair of the knowledge base. We presented the ACQUA system,
which allows users to query inconsistent knowledge bases. Specifi-
cally, the system considers equality generating dependencies. Differ-
ent from the standard notion of repair, where entire facts are deleted

102 Chapter 6. Probabilistic Answers over Inconsistent
Knowledge Bases

to restore consistency (which might lead to loss of useful informa-
tion), the repair strategy adopted by ACQUA performs value up-
dates within facts, thereby preserving more information in the knowl-
edge base. An inconsistent knowledge base can admit multiple re-
pairs; the ACQUA system computes a compact representation of all
of them, called universal repair, which is also leveraged for query an-
swering. Since consistent query answering is intractable in the con-
sidered setting, ACQUA implements a polynomial time algorithm
to compute a sound (but not necessarily complete) set of consistent
query answers. The classification of query answers into consistent
and non-consistent ones does not provide much information about
the non-consistent query answers (e.g., a query answer entailed by
99 out of 100 repairs might be considered “almost consistent”). To
overcome this limitation, we proposed a probabilistic approach to
querying inconsistent knowledge bases, which provides more infor-
mative query answers by associating a degree of consistency with
each query answer by associating a probability to each repair, de-
pending on the changes needed to obtain it. Further developments
should consider more general frameworks, e.g., with TGDs and logic
rules.

103

Bibliography

[1] Serge Abiteboul and Gösta Grahne. “Update Semantics for In-
complete Databases”. In: VLDB’85, Proceedings of 11th Interna-
tional Conference on Very Large Data Bases, August 21-23, 1985,
Stockholm, Sweden. Ed. by Alain Pirotte and Yannis Vassiliou.
Morgan Kaufmann, 1985, pp. 1–12.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of databases. Vol. 8. Addison-Wesley Reading, 1995.

[3] Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. “On the
representation and querying of sets of possible worlds”. In:
Theoretical computer science 78.1 (1991), pp. 159–187.

[4] Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. “Clean
Answers over Dirty Databases: A Probabilistic Approach”. In:
Proceedings of the 22nd International Conference on Data Engineer-
ing, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA. Ed. by Ling
Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang.
IEEE Computer Society, 2006, p. 30.

[5] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. “Con-
sistent Query Answers in Inconsistent Databases”. In: Proceed-
ings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, May 31 - June 2, 1999,
Philadelphia, Pennsylvania, USA. Ed. by Victor Vianu and Chris-
tos H. Papadimitriou. ACM Press, 1999, pp. 68–79.

[6] Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak.
Foundations of data exchange. Cambridge University Press, 2014.

[7] Paolo Atzeni and Nicola M. Morfuni. “Functional Dependen-
cies and Constraints on Null Values in Database Relations”. In:
70.1 (1986), pp. 1–31.

[8] L Bertossi, Andrea Calı̀, and Mostafa Milani. “Query answer-
ing on expressive Datalog+/-ontologies”. In: CEUR Workshop
Proceedings. 1644. CEUR. 2016.

104 BIBLIOGRAPHY

[9] Leopoldo E. Bertossi. Database Repairing and Consistent Query
Answering. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2011.

[10] Leopoldo E. Bertossi, Loreto Bravo, Enrico Franconi, and An-
drei Lopatenko. “The complexity and approximation of fixing
numerical attributes in databases under integrity constraints”.
In: Inf. Syst. 33.4-5 (2008), pp. 407–434.

[11] Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué.
“Querying Inconsistent Description Logic Knowledge Bases un-
der Preferred Repair Semantics”. In: Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada. Ed. by Carla E. Brodley and Peter
Stone. AAAI Press, 2014, pp. 996–1002.

[12] Meghyn Bienvenu and Magdalena Ortiz. “Ontology-Mediated
Query Answering with Data-Tractable Description Logics”. In:
Reasoning Web. Web Logic Rules - 11th International Summer School
2015, Berlin, Germany, July 31 - August 4, 2015, Tutorial Lectures.
Ed. by Wolfgang Faber and Adrian Paschke. Vol. 9203. Lecture
Notes in Computer Science. Springer, 2015, pp. 218–307.

[13] Meghyn Bienvenu and Riccardo Rosati. “Tractable Approxi-
mations of Consistent Query Answering for Robust Ontology-
based Data Access”. In: IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013. Ed. by Francesca Rossi. IJCAI/AAAI, 2013,
pp. 775–781.

[14] Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank
Wolter. “Ontology-based data access: A study through disjunc-
tive datalog, CSP, and MMSNP”. In: ACM Transactions on Database
Systems (TODS) 39.4 (2014), pp. 1–44.

[15] Joachim Biskup. “A Formal Approach to Null Values in Database
Relations”. In: Advances in Data Base Theory. 1979, pp. 299–341.

[16] Philip Bohannon, Michael Flaster, Wenfei Fan, and Rajeev Ras-
togi. “A Cost-Based Model and Effective Heuristic for Repair-
ing Constraints by Value Modification”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005. Ed. by Fatma Özcan.
ACM, 2005, pp. 143–154.

BIBLIOGRAPHY 105

[17] Marco Calautti, Leonid Libkin, and Andreas Pieris. “An Op-
erational Approach to Consistent Query Answering”. In: Pro-
ceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Houston, TX, USA, June 10-15,
2018. Ed. by Jan Van den Bussche and Marcelo Arenas. ACM,
2018, pp. 239–251.

[18] Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Tru-
bitsyna. “Checking Termination of Logic Programs with Func-
tion Symbols through Linear Constraints”. In: Rules on the Web.
From Theory to Applications - 8th International Symposium, RuleML
2014, Co-located with the 21st European Conference on Artificial
Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20,
2014. Proceedings. Ed. by Antonis Bikakis, Paul Fodor, and Du-
mitru Roman. Vol. 8620. Lecture Notes in Computer Science.
Springer, 2014, pp. 97–111.

[19] Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Tru-
bitsyna. “Logic Program Termination Analysis Using Atom Sizes”.
In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge.
AAAI Press, 2015, pp. 2833–2839.

[20] Marco Calautti, Nicola Fiorentino, Sergio Greco, Cristian Moli-
naro, and Irina Trubitsyna. “Probabilistic Answers over Incon-
sistent Knowledge Bases”. In: Proceedings of the 28th Italian Sym-
posium on Advanced Database Systems, Villasimius, Sud Sardegna,
Italy (virtual due to Covid-19 pandemic), June 21-24, 2020. Ed. by
Maristella Agosti, Maurizio Atzori, Paolo Ciaccia, and Letizia
Tanca. Vol. 2646. CEUR Workshop Proceedings. CEUR-WS.org,
2020, pp. 48–55.

[21] Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. “A gen-
eral Datalog-based framework for tractable query answering
over ontologies”. In: J. Web Semant. 14 (2012), pp. 57–83.

[22] Andrea Calı̀, Georg Gottlob, and Andreas Pieris. “Advanced
processing for ontological queries”. In: Proceedings of the VLDB
Endowment 3.1-2 (2010), pp. 554–565.

[23] Ashok K. Chandra and Philip M. Merlin. “Optimal Implemen-
tation of Conjunctive Queries in Relational Data Bases”. In:
1977, pp. 77–90.

106 BIBLIOGRAPHY

[24] E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks”. In: Commun. ACM 13.6 (1970), pp. 377–387.

[25] E. F. Codd. “Extending the Database Relational Model to Cap-
ture More Meaning”. In: 4.4 (1979), pp. 397–434.

[26] E. F. Codd. “Relational Completeness of Data Base Sublanguages”.
In: Research Report / RJ / IBM / San Jose, California RJ987 (1972).

[27] Edgar F Codd. “Further normalization of the data base rela-
tional model”. In: Data base systems 6 (1972), pp. 33–64.

[28] Marco Console, Paolo Guagliardo, and Leonid Libkin. “Ap-
proximations and Refinements of Certain Answers via Many-
Valued Logics”. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference,
KR 2016, Cape Town, South Africa, April 25-29, 2016. Ed. by Chitta
Baral, James P. Delgrande, and Frank Wolter. AAAI Press, 2016,
pp. 349–358.

[29] Transaction processing performance council. “TPC benchmark
H standard specification, November 2014. Revision 2.17.1.” In:
(TPC-H).

[30] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. “On reconciling data exchange, data in-
tegration, and peer data management”. In: Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. 2007, pp. 133–142.

[31] Cristhian Ariel D Deagustini, Maria Vanina Martinez, Marcelo
A Falappa, and Guillermo R Simari. “Datalog+-ontology con-
solidation”. In: Journal of Artificial Intelligence Research 56 (2016),
pp. 613–656.

[32] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian
Popa. “Data exchange: semantics and query answering”. In:
Theoretical Computer Science 336.1 (2005), pp. 89–124.

[33] Ronald Fagin, Phokion G Kolaitis, Lucian Popa, and Wang-
Chiew Tan. “Reverse data exchange: coping with nulls”. In:
ACM Transactions on Database Systems (TODS) 36.2 (2011), pp. 1–
42.

[34] Nicola Fiorentino, Cristian Molinaro, and Irina Trubitsyna. “Op-
timizing the Computation of Approximate Certain Query An-
swers over Incomplete Databases”. In: International Conference
on Flexible Query Answering Systems. Springer. 2019, pp. 48–60.

BIBLIOGRAPHY 107

[35] Nicola Fiorentino, Sergio Greco, Cristian Molinaro, and Irina
Trubitsyna. “ACID: A System for Computing Approximate Cer-
tain Query Answers over Incomplete Databases”. In: Proceed-
ings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
Ed. by Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein. ACM, 2018, pp. 1685–1688.

[36] Nicola Fiorentino, Sergio Greco, Cristian Molinaro, and Irina
Trubitsyna. “ACQUA: Approximate Consistent Query Answer-
ing Over Inconsistent Knowledge Bases”. In: 2019 IEEE Second
International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE). IEEE. 2019, pp. 107–110.

[37] Sergio Flesca, Filippo Furfaro, and Francesco Parisi. “Query-
ing and repairing inconsistent numerical databases”. In: ACM
Trans. Database Syst. 35.2 (2010), 14:1–14:50.

[38] Enrico Franconi and Sergio Tessaris. “On the Logic of SQL Nulls”.
In: Proc. 6th Alberto Mendelzon Int. Workshop on Foundations of
Data Management. 2012, pp. 114–128.

[39] Enrico Franconi and Sergio Tessaris. “The Algebra and the Logic
for SQL Nulls”. In: Proc. 20th Italian Symposium on Advanced
Database Systems. 2012, pp. 163–175.

[40] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona
Perri, and Francesco Scarcello. “Census Data Repair: a Chal-
lenging Application of Disjunctive Logic Programming”. In:
Logic for Programming, Artificial Intelligence, and Reasoning, 8th
International Conference, LPAR 2001, Havana, Cuba, December 3-
7, 2001, Proceedings. Ed. by Robert Nieuwenhuis and Andrei
Voronkov. Vol. 2250. Lecture Notes in Computer Science. Springer,
2001, pp. 561–578.

[41] Filippo Furfaro, Sergio Greco, and Cristian Molinaro. “A three-
valued semantics for querying and repairing inconsistent databases”.
In: Ann. Math. Artif. Intell. 51.2-4 (2007), pp. 167–193.

[42] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello
Santoro. “The LLUNATIC data-cleaning framework”. In: Pro-
ceedings of the VLDB Endowment 6.9 (2013), pp. 625–636.

[43] Gösta Grahne. The problem of incomplete information in relational
databases. Vol. 554. Springer Science & Business Media, 1991.

[44] John Grant. “Null Values in a Relational Data Base”. In: 6.5
(1977), pp. 156–157.

108 BIBLIOGRAPHY

[45] Sergio Greco and Cristian Molinaro. “Approximate Probabilis-
tic Query Answering over Inconsistent Databases”. In: Concep-
tual Modeling - ER 2008, 27th International Conference on Concep-
tual Modeling, Barcelona, Spain, October 20-24, 2008. Proceedings.
Ed. by Qing Li, Stefano Spaccapietra, Eric S. K. Yu, and Antoni
Olivé. Vol. 5231. Lecture Notes in Computer Science. Springer,
2008, pp. 311–325.

[46] Sergio Greco and Cristian Molinaro. “Probabilistic query an-
swering over inconsistent databases”. In: Ann. Math. Artif. In-
tell. 64.2-3 (2012), pp. 185–207.

[47] Sergio Greco, Cristian Molinaro, and Francesca Spezzano. In-
complete Data and Data Dependencies in Relational Databases. Syn-
thesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, 2012.

[48] Sergio Greco, Cristian Molinaro, and Francesca Spezzano. “In-
complete data and data dependencies in relational databases”.
In: Synthesis Lectures on Data Management 4.5 (2012), pp. 1–123.

[49] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Ap-
proximation algorithms for querying incomplete databases”.
In: Information Systems 86 (2019), pp. 28–45.

[50] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Com-
puting Approximate Certain Answers over Incomplete Databases”.
In: Proceedings of the 11th Alberto Mendelzon International Work-
shop on Foundations of Data Management and the Web, Montev-
ideo, Uruguay, June 7-9, 2017. Ed. by Juan L. Reutter and Divesh
Srivastava. Vol. 1912. CEUR Workshop Proceedings. CEUR-
WS.org, 2017.

[51] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Com-
puting Approximate Query Answers over Inconsistent Knowl-
edge Bases”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org, 2018,
pp. 1838–1846.

[52] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. “Logic
programming with function symbols: Checking termination of
bottom-up evaluation through program adornments”. In: The-
ory Pract. Log. Program. 13.4-5 (2013), pp. 737–752.

BIBLIOGRAPHY 109

[53] Sergio Greco, Fabian Pijcke, and Jef Wijsen. “Certain query an-
swering in partially consistent databases”. In: Proceedings of the
VLDB Endowment 7.5 (2014), pp. 353–364.

[54] Paolo Guagliardo and Leonid Libkin. “Making SQL Queries
Correct on Incomplete Databases: A Feasibility Study”. In: Pro-
ceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. Ed. by Tova Milo and Wang-Chiew
Tan. ACM, 2016, pp. 211–223.

[55] Sven Hartmann, Markus Kirchberg, and Sebastian Link. “De-
sign by example for SQL table definitions with functional de-
pendencies”. In: 21.1 (2012), pp. 121–144.

[56] Sven Hartmann and Sebastian Link. “The Implication Problem
of Data Dependencies over SQL Table Definitions: Axiomatic,
Algorithmic and Logical Characterizations”. In: 37.2 (2012).

[57] Sven Hartmann and Sebastian Link. “When data dependencies
over SQL tables meet the logics of paradox and S-3”. In: 2010,
pp. 317–326.

[58] Jian He, Enzo Veltri, Donatello Santoro, Guoliang Li, Giansal-
vatore Mecca, Paolo Papotti, and Nan Tang. “Interactive and
deterministic data cleaning”. In: Proceedings of the 2016 Interna-
tional Conference on Management of Data. 2016, pp. 893–907.

[59] Tomasz Imielinski and Witold Lipski Jr. “Incomplete Informa-
tion in Relational Databases”. In: J. ACM 31.4 (1984), pp. 761–
791.

[60] Tomasz Imielinski and Witold Lipski. “On Representing In-
complete Information in a Relational Data Base”. In: 1981, pp. 388–
397.

[61] Tomasz Imieliński and Witold Lipski Jr. “Incomplete informa-
tion in relational databases”. In: Readings in Artificial Intelligence
and Databases. Elsevier, 1989, pp. 342–360.

[62] Paraschos Koutris and Jef Wijsen. “Consistent query answer-
ing for primary keys”. In: ACM SIGMOD Record 45.1 (2016),
pp. 15–22.

[63] Paraschos Koutris and Jef Wijsen. “Consistent query answer-
ing for self-join-free conjunctive queries under primary key
constraints”. In: ACM Transactions on Database Systems (TODS)
42.2 (2017), pp. 1–45.

110 BIBLIOGRAPHY

[64] Paraschos Koutris and Jef Wijsen. “The Data Complexity of
Consistent Query Answering for Self-Join-Free Conjunctive Queries
Under Primary Key Constraints”. In: Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Mel-
bourne, Victoria, Australia, May 31 - June 4, 2015. Ed. by Tova
Milo and Diego Calvanese. ACM, 2015, pp. 17–29.

[65] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco
Ruzzi, and Domenico Fabio Savo. “Inconsistency-tolerant query
answering in ontology-based data access”. In: J. Web Semant. 33
(2015), pp. 3–29.

[66] Maurizio Lenzerini. “Data Integration: A Theoretical Perspec-
tive”. In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 3-5,
Madison, Wisconsin, USA. Ed. by Lucian Popa, Serge Abiteboul,
and Phokion G. Kolaitis. ACM, 2002, pp. 233–246.

[67] Mark Levene and George Loizou. “Database Design for Incom-
plete Relations”. In: 24.1 (1999), pp. 80–125.

[68] Leonid Libkin. “Certain answers as objects and knowledge”.
In: Artif. Intell. 232 (2016), pp. 1–19.

[69] Leonid Libkin. “How to Define Certain Answers”. In: Proceed-
ings of the Twenty-Fourth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge. AAAI
Press, 2015, pp. 4282–4288.

[70] Leonid Libkin. “Incomplete data: what went wrong, and how
to fix it”. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. 2014, pp. 1–
13.

[71] Leonid Libkin. “SQL’s Three-Valued Logic and Certain An-
swers”. In: 18th International Conference on Database Theory, ICDT
2015, March 23-27, 2015, Brussels, Belgium. Ed. by Marcelo Are-
nas and Martı́n Ugarte. Vol. 31. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015, pp. 94–109.

[72] Leonid Libkin. “SQLs three-valued logic and certain answers”.
In: ACM Transactions on Database Systems (TODS) 41.1 (2016),
pp. 1–28.

[73] Y. Edmund Lien. “On the Equivalence of Database Models”.
In: 29.2 (1982), pp. 333–362.

BIBLIOGRAPHY 111

[74] Witold Lipski. “On Semantic Issues Connected with Incom-
plete Information Databases”. In: 4.3 (1979), pp. 262–296.

[75] Witold Lipski Jr. “On relational algebra with marked nulls pre-
liminary version”. In: Proceedings of the 3rd ACM SIGACT-SIGMOD
symposium on Principles of database systems. 1984, pp. 201–203.

[76] Thomas Lukasiewicz, Enrico Malizia, and Cristian Molinaro.
“Complexity of Approximate Query Answering under Incon-
sistency in Datalog+/-”. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden. Ed. by Jérôme Lang. ijcai.org,
2018, pp. 1921–1927.

[77] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris,
and Gerardo I. Simari. “From Classical to Consistent Query
Answering under Existential Rules”. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig.
AAAI Press, 2015, pp. 1546–1552.

[78] Cristian Molinaro, Jan Chomicki, and Jerzy Marcinkowski. “Dis-
junctive databases for representing repairs”. In: Annals of Math-
ematics and Artificial Intelligence 57.2 (2009), pp. 103–124.

[79] Marie-Laure Mugnier and Michaël Thomazo. “An introduc-
tion to ontology-based query answering with existential rules”.
In: Reasoning Web International Summer School. Springer. 2014,
pp. 245–278.

[80] Mauro Negri, Giuseppe Pelagatti, and Licia Sbattella. “Formal
Semantics of SQL Queries”. In: ACM Trans. Database Syst. 16.3
(1991), pp. 513–534.

[81] Robert A. Di Paola. “The Recursive Unsolvability of the Deci-
sion Problem for the Class of Definite Formulas”. In: J. ACM
16.2 (1969), pp. 324–327.

[82] Riccardo Rosati. “On the Complexity of Dealing with Inconsis-
tency in Description Logic Ontologies”. In: IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011. Ed. by Toby
Walsh. IJCAI/AAAI, 2011, pp. 1057–1062.

[83] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

112 BIBLIOGRAPHY

[84] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, Volume I. Vol. 14. Principles of computer science series.
Computer Science Press, 1988. ISBN: 0-7167-8069-0.

[85] M.Y. Vardi. “On the Integrity of Databases with Incomplete
Information”. In: Symposium on Principles of Database Systems
(PODS). 1986, pp. 252–266.

[86] Jef Wijsen. “A survey of the data complexity of consistent query
answering under key constraints”. In: International Symposium
on Foundations of Information and Knowledge Systems. Springer.
2014, pp. 62–78.

[87] Jef Wijsen. “Database repairing using updates”. In: ACM Trans.
Database Syst. 30.3 (2005), pp. 722–768.

[88] Carlo Zaniolo. “Database Relations with Null Values”. In: 28.1
(1984), pp. 142–166.

	Acknowledgements
	Preface
	Preliminaries
	Relational Databases
	Relational Model
	Integrity Constraints

	Query Languages
	Relational Algebra
	Relational Calculus
	Domain Independent and Safe RC Queries
	Conjunctive Queries

	Incomplete Databases
	Syntax and Semantics
	Query answering
	Representation Systems
	Codd tables
	Naive tables
	Conditional tables
	Horn tables

	Nulls in SQL

	Approximate query answering over incomplete databases: state of the art
	Introduction
	L-approach
	GL-approach
	GML-approaches
	Eager evaluation
	Semi-eager evaluation
	Lazy evaluation
	Aware evaluation

	A System Prototype for Approximate Query Answering over Incomplete Data
	Introduction
	System Overview
	Demonstration
	Discussion

	Optimizing the Computation of Approximate Certain Query Answers over Incomplete Databases
	Introduction
	Experimental Evaluation of Approximation Algorithms
	Novel Approach
	Experimental Evaluation of Lazy+
	Discussion

	Approximate Consistent Query Answering over Inconsistent Knowledge Bases
	Introduction
	Related work
	Approximation Algorithm
	System Overview
	Discussion

	Probabilistic Answers over Inconsistent Knowledge Bases
	Introduction
	Preliminaries
	Probabilistic Repairs
	Discussion

	Conclusions
	Bibliography

