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by Antonio Caliò

In the last two decades we witnessed the advent and the rapid growth of online social
networks (OSNs). The impact of their pervasive diffusion on everyday life has been
dramatic. In fact, social networks changed the way we interact with each other,
the way we access information and the way companies engage with their audience
or customers. A major consequence of the broad adoption and diffusion of social
networks is the availability of an unprecedented amount of user data, which enables
the opportunity for social and network scientists to investigate and observe many
facets of human behaviors. Arguably, one of the most interesting facet is related to
the notion of social influence.

Following this observation, this research project is mainly centered around the
concept of social influence, specifically its propagation and maximization. Therefore,
the goal of this thesis is twofold. To begin with, we investigate the complexity of in-
fluence propagation in real-world contexts. This leads to the definition of a novel class
of diffusion models. Such models represent an attempt to unify, under a well-defined
framework, all the aspects that contribute to the inherent complexity of any influ-
ence propagation phenomena. Afterwards, we devote our attention to the influence
maximization problem. To this purpose, we first provide a detailed characterization
of social influence from a topological perspective. Specifically, we want to understand
if and to what extent being a good spreader depends on being located into strategic
regions of a network.

Finally, we focus on the application of the influence maximization problem. In
particular, we address a variant of the original problem, which is especially suitable
for viral marketing scenarios. To this end, we propose two different diversity-sensitive
targeted influence maximization problems. Both proposals share a common intent,
which is assessing the benefit of embedding a notion of diversity into the process
of the seeds identification. Nonetheless, diversity is considered from two different
perspectives: (i) as a function of the topological properties of the nodes; (ii) as a
function of some categorical data available on the node level.
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“That gulden I staked upon manque–and there is something in the feeling that, though
one is alone, and in a foreign land, and far from one’s own home and friends, and
ignorant of whence one’s next meal is to come, one is nevertheless staking one’s very
last coin! Well, I won the stake, and in twenty minutes had left the Casino with a
hundred and seventy gulden in my pocket! That is a fact, and it shows what a last
remaining gulden can do. But what if my heart had failed me, or I had shrunk from
making up my mind?

No: tomorrow all shall be ended!”

F. Dostoevsky
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Chapter 1

Introduction

Starting from the early 2000s, we witnessed the booming of online social networks(OSNs).
This led to a renovated attention to many research questions related to the field of
social network analysis, or more in general network science.

Most of the merit of this renaissance can be ascribed to the proliferation of web
platforms where people can interact with one another (e.g., Facebook, Linkedin, In-
stagram, etc.). Consequently, nowadays researchers have at their disposal an unprece-
dented amount of network data, which enabled the development of many challenging
and exciting applications and studies. In particular, a rich body of these studies have
been devoted to the analysis of social influence and information diffusion.

As it is emerged from many interesting research works, social influence plays an
important role in shaping people’s behavior. As an explanatory example, we can
consider a famous study published in the New England Journal of Medicine [45]. For
their experimental assessment, the authors extracted a (offline) social network starting
from clinical records. The links between the individuals were discovered by taking into
account relationships of different nature (e.g., wife/husband, acquaintances, neighbor-
hood). The purpose of this analysis were to understand if, and to what extent, being
obese implies having an obese neighborhood in the constructed social network. Re-
markably, a person with an obese friend is 171% more likely to be obese than a person
without such friend.

The authors further extended their experiment to other real social life contexts
(e.g., musical tastes, wealth or beliefs). Their experiments provide compelling evidence
on the profound impact that social influence has on many different aspects of a person’s
real life [44].

The above results are expression of a well known phenomenon in network science,
which is referred as network homophily. According to this theory, which is implicitly
connected to the model of preferential attachment, similarity drives the formation of
new social ties in a social network. Intuitively, nodes are more inclined to connect
with other nodes if, at some level, they are similar to each other. This tendency is a
key-factor for determining social influence, which can be considered as the fuel of any
diffusion process. In fact, we can arguably say that network homophily is a fundamen-
tal ingredient to trigger a pervasive information diffusion. There is however a major
downside. In fact, as regards information diffusion, network homophily implies that
users have the tendency to mostly access information from like-minded sources [102].
This is clearly a dangerous habit. In fact, the lack of diversity and pluralism inevitably
favors the formation of information bubbles and the consequential polarization of a
network [64].

To understand the importance of studying how information propagates through a
network, we should consider the crucial role that platforms as Twitter had in both the
2016 presidential campaign and the entire presidency of Donald Trump, who actually
used the social network as his main communication channel. Therefore, it is fair to say
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that information diffusion can have a serious impact on many different scenarios (e.g.,
the adoption of political standpoints, technical innovations). Moreover, we recognize
the significance and the urgency to develop a deeper knowledge on how information
propagates through a network.

For the above reasons, in this work we address the inherent complexity underlying
any propagation process. We propose in fact a novel class of diffusion models –
informally, a diffusion model establishes the rules behind an information diffusion
process – with the purpose of capturing the complexity of any real world propagation
phenomena.

Among all the different applications of social influence analysis, viral marketing
(also known as word of mouth marketing) can be regarded as the “poster” application.
The goal of a viral marketing campaign is to detect, and then to activate, a small
number of influential individuals in a social network, so to reach the largest possible
fraction of users, leveraging on the virality of the propagation process. This vision led
to the definition of one of the main algorithmic problems in the context of information
diffusion, i.e., the influence maximization (IM) problem [97]. IM asks to find a set
of k users in an online social network that has the maximum influence spread, i.e.,
it activates the largest number of users. Theoretically, influence maximization is a
very challenging task, it is indeed an NP-hard problem. As a consequence, it is
extremely difficult to design effective solutions that are also able to scale up to big
social networks.

The importance and the significance of IM goes beyond viral marketing. In fact,
IM is a cornerstone for a family of applications in seemingly different domains and
settings. For instance, similarities can be found between influence maximization and
network monitoring, i.e., the problem of determining the best spots to locate a set of
expensive sensors, so that any malfunction can be detect as quick as possible [114].
There are also other algorithmic problems that support the relevance of IM, such as
rumor control [24, 82], and social recommendation [198].

Over the years, researchers have also proposed a number of different variations
on the IM problem. An interesting example is the targeted influence maximization
problem. As compared with the classic formulation of the problem, the targeted
version has a major difference, which makes him particularly suitable to address a
marketing scenario. That is, instead of trying to activate the largest possible fraction
of the entire network, a solution to the targeted influence maximization problem aims
to maximize the engagement among a particular portion of the users base. Clearly,
this represent a more realistic scenario, since the interest of a marketing campaign
is typically aimed towards a particular segment of customers. This variant of the
problem has been used in various fields. For instance, in [92] it is used in the context
of users engagement, where the social capital of a node determines whether or not it
has to be considered as target.

An interesting extension to this latter problem, which is addressed in this thesis,
is proposed in [26], where the authors introduce a notion of diversity. Although
there is evidence that diversity is able to enhance the performance in contexts as web
searching, ranking and recommendation algorithms [52, 70, 170, 202], it appears to
be surprisingly overlooked in the context of information diffusion. However, here we
recognize the crucial role that diversity can play in combating the formation of echo
chambers, namely those situations that favor the amplification or the reinforcement
of beliefs. In fact, it is also known that one major reason behind the formation of an
echo chamber is the indeed the lack of exposure to diverse sources of influence.
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Contributions

This thesis is concerned with a variety of research topics centered around the con-
cept of social influence, with emphasis on problems related to information diffusion
and influence maximization. More specifically, the following research topics can be
distinguished.

Modeling complex diffusion. Understanding the dynamics of information diffusion
phenomena has emerged as one of the most challenging task in Web science and
related fields of research. Since the first applications in contexts related to viral
marketing, the design of information diffusion models has provided effective support
to address a variety of influence propagation problems, first and foremost, the influence
maximization problem.

However, one criticism that arises from existing diffusion models is the concern
as to whether, and to what extent, they are sufficiently adequate to explain the real
complexity of influence propagation in modern social networks. The adherence of a
diffusion model with the mechanisms that drive an individual’s information consump-
tion becomes even more crucial if we consider the almost invisible boundary between
real and virtual social life. Moreover, the process of acquiring and sharing information
from reliable sources has often to cope with unlimited misinformation spots, which
can alarmingly affect everyone’s life.

Prompted by the above observations, in this research line which is addressed in
Chapter 3, we define some of the key-ingredients that any diffusion model should have
in order to face the inherent complexity of real world information diffusion. We then
embed these factors into a novel class of diffusion models, named Friend-Foe Dynamic
Linear Threshold Models (F 2DLT ). The following aspects are essential constituents
of our proposed models: (i) account for different kinds of social ties between users;
(ii) incorporate time-dependent variable to represent the latency of any propagation
process; (iii) account for users hesitation or inclination towards the adoption of an
information item; (iv) enable the possibility for users to change their opinion towards
alternative information items

Topological characterization of social influence. Understanding and measuring
the spread of “contagion” of an individual is a problem that has attracted the attention
of different research communities, e.g., physics, biology, epidemiology and network
science. One of the most interesting and well studied problem in this area is related
to the identification of the most effective spreaders, i.e., the most influential nodes, in
a network. These studies have a very broad impact, as their application is significant
in different domains, ranging from the diffusion of information/misinformation to the
spread of viruses.

Several heuristics have been proposed to approximate the nodes’ influence poten-
tial, mostly based on some notion of centrality (e.g., degree centrality, PageRank,
betweenness centrality). In recent years, in contrast with the above approach, which
considers social influence from a node-centric perspective, many have explored the
effectiveness of meso-scale properties in predicting a node influence.

Remarkably, this latter approach turned out to be very promising. In fact, most
of the times, properties such as the core-index, i.e., the index assigned by a core-
decomposition method, have proven to provide better insights on the actual spreading
potential of a node, as opposed to classic centrality measures.

However, we notice that these studies are mostly conducted on undirected graphs
and under classic epidemic models. We recognize that this is an unusual setting in the
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context of influence propagation and maximization, which is the main focus of this
work. For this reason, in this line of research, which is addressed in Chapter 4, we aim
at producing an extensive analysis to understand where state-of-the-art algorithms for
influence maximization locate their best spreaders with respect to a variety of graph
decomposition methods.

Our main goal is to understand if graph decomposition methods can consistently
support the identification of subnetworks where nodes have a good influence-spreading
potential.

Embedding Diversity into Targeted Influence Maximization problems. On-
line social networks are arguably the preferred communication tool for spreading in-
formation, or more in general, to reach out people. They can be considered as the
privileged ground for any viral marketing campaign. The main goal of any market-
ing campaign is to engage the largest number of individuals, i.e., customers. A viral
marketing campaign pursues this goal by exploiting the “word-of-mouth” phenomenon
that takes place among the users of a social network.

This scenario inspired a classic optimization problem, namely the influence max-
imization problem (IM). Even though, in its classic formulation, the IM problem ad-
dresses the entire network, we believe that, as far a marketing campaign is concerned,
a more natural choice would be to narrow the focus on an arbitrarily small portion
of the network. Such portion comprises for the target users of the campaign. This is
in fact the intuition underlying a well-studied variant of the IM problem, commonly
referred as targeted influence maximization. In this context, we notice that much em-
phasis is given to the size of the set of early adopters, while the benefits brought by
having diversified set of initial influencers is often, surprisingly, overlooked.

Intuitively, diversity means engaging people that are different from each others in
terms of kind (e.g., age, gender), socio-cultural aspects, or other characteristics.

In this line of research, addressed in Chapter 5 and Chapter 6, we aim to include
aspects related to diversity into a targeted influence maximization framework. We
devise two different approaches when it comes to measure the users diversity. The first
approach, proposed in Chapter 5, considers diversity from a topological standpoint.
The second approach, discussed in Chapter 6, is based on the assumption that a
set of categorical data is available at the node level, then diversity is defined as a
function of these categorical values. It is worth noticing that, although Chapter 5 and
Chapter 6 address a very similar optimization problem, their approach in measuring
nodes diversity is substantially different from each other, as well as are the algorithmic
solutions proposed for both problems. For this reason, they are addressed into two
separate chapters.
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Chapter 2

Background

This chapter offers an overview on preliminary concepts that will help the understand-
ing of the techniques and models adopted in subsequent chapters. We first introduce
the influence maximization (IM) problem in Section 2.1. In Section 2.2 we introduce
the notion of stochastic diffusion model. Specifically, we focus on two major settings
under which the influence maximization problem is commonly studied: progressive
diffusion (Section 2.2.1) and non-progressive diffusion (Section 2.2.1). For each of the
above two configurations we review some of the most used diffusion models under the
IM framework. We conduct a theoretical analysis on the complexity of the IM prob-
lem in Section 2.3, highlighting the most fundamental theoretical results related to
this problem. Such results are particularly important, since they enable the definition
of effective algorithmic solutions. Finally, in Section 2.4 we provide an overview on
some of the most well-known and significant algorithmic approaches to IM.

2.1 Essentials on influence maximization

The foundations of Influence Maximization (IM) as an optimization problem were
initially posed by Kempe et al. in their seminal work [97]. The problem requires a
social network graph G = 〈V ,E〉, which consists of two sets V and E. V 6= ∅ is the set
of nodes, i.e., users of the social network, while E is the set of ordered pairs of elements
in V , i.e., the edges representing the social links between the users. The input graph
is assumed to be directed. Therefore, for any node u ∈ V , N in(u) = {v|(v, u) ∈ E}
denotes the set of in-neighbors of u, while Nout(u) = {v|(u, v) ∈ E)}. denotes the set
of out-neighbors of u.

The IM problem asks to find a set of users, i.e., a seed set, with size at most k, that
maximizes the total influence among all the nodes in G. A straightforward example
of the IM problem is represented by a viral marketing campaign, where a company
wishes to spread the adoption of a particular product, exploiting a “word-of-mouth”
phenomenon. Therefore, behind any successful viral marketing campaign there is the
ability to exploit the ability of users to interact with each other and consequently to
influence each other decisions.

The amount of influence achieved by the detected seed set is measured by taking
into account the information diffusion process, triggered by the seed set, that takes
place between the users of the social graph. Typically, the outcome of this diffusion
process is referred as information cascade. The volume of such cascade, i.e., the
number of users involved in the propagation, determines the performance, thus the
quality, of a seed set. To quantify the volume of the information diffusion process,
we need to define an influence spread function. Moreover, we need to understand the
dynamics of a diffusion process and to define the rules underlying propagation. These
rules are defined in a stochastic diffusion model.
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In a stochastic diffusion model the diffusion proceeds in discrete time steps (with
time t = 0, 1, 2, . . . ). At each time step, each node v ∈ V is in a certain state. There
are at least two possible states: inactive and active.

Intuitively, when a node goes from being inactive to being active means that it has
adopted the new information, product or idea that is spreading along the network.
Conversely, an inactive node is a node that has not adopted the new item that is
propagating among the users.

In order to start, any diffusion model requires a seed set, i.e., the set or early
adopters, which is active at the very beginning of the process (t = 0). At each time
step t, the set of active users at that time is denoted by St ⊆ V .

Definition 1 provides a formal definition for a stochastic diffusion model.

Definition 1 (Stochastic Diffusion Model). Given a social network graph G = 〈V ,E〉,
an initial set of users S ⊆ V , a stochastic diffusion model M defines the randomized
process of generating the set of active users St for all t ≥ 1.

The set of active users at the end of the propagation process, i.e., the final active
set, is denoted by Φ(S), The influence spread function represents the size of the final
active set, in expectation.

Definition 2 (Influence Spread). Given a social network graph G = 〈V ,E〉, an initial
set of users S ⊆ V , and a stochastic diffusion model M, the influence spread of S,
denoted by σ(S), represents the expected number of users influenced by S.

σ(S) = E[|Φ(S)|] (2.1)

The influence function defined in Definition 2 is the objective function of the
influence maximization problem, which is formally defined as follows.

Definition 3 (Influence Maximization Problem). Given a social network graph G =
〈V ,E〉 a stochastic diffusion modelM, S ⊆ V with |S|≤ k of seed-nodes such that the
influence spread of S, denoted by σ(S), is maximized. That is, compute S ⊆ V such
that:

S = argmax
S′⊆V s.t. |S′|≤k

σ(S′) (2.2)

It should be noted that the IM problem is not defined with respect to a specific
stochastic diffusion model. Nonetheless, some diffusion models are more suitable than
others as they enable the possibility to design effective and efficient solutions to the
problem.

2.2 Diffusion models

Diffusion models have captures the attention of a lot of researches from many different
areas, e.g., data mining, databases networks and epidemiology. However, in this
section we focus only on those model that are relevant to the IM problem.

We categorize diffusion models into two different classes: progressive and non-
progressive. As regards the first class of models, once a node becomes active at time
t it keeps the same state for every subsequent time step t′ ≥ t. On the contrary, in a
non-progressive model nodes may switch back and forth between active and inactive
states.

Progressive models are best suited for modeling the adoption of a new technology,
a new product, etc., as the adoption is commonly regarded as a not reversible action
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(e.g, the purchase of a new tablet). On the other hand, non-progressive models are
best suited to model the diffusion of different opinions (e.g, the support for a particular
political idea).

In this section we describe a selection of the most representative models for each
of the two categories. Specifically, Section. 2.2.1 provides an overview on progressive
diffusion models, while Section 2.2.2 addresses the class of non-progressive diffusion
models.

2.2.1 Progressive diffusion

In any progressive diffusion model the active sets are monotonically non-decreasing,
i.e., S0 ⊆ S1 ⊆ S2 ⊆ . . . ⊆ Φ(S0) ⊆ V , where St denotes the set of active users at
time t. Therefore, if a node v belongs to St, than v ∈ St′ for any t′ ≥ t.

For each of the following models we provide the main definition along with an
alternative one, which is based on the notion of live-edge and possible world. More
specifically, given a graph G = 〈V ,E〉, each edge is marked as either live or blocked
accordingly to a certain randomized rule. This randomly generated subgraph is re-
ferred as live-edge graph and it represents a possible world for the propagation process.
Under a live-edge graph the diffusion is deterministic. Therefore, a node u is able to
activate another node v only if there exists a path connecting u to v in the live-edge.

Independent Cascade Model. The Independent Cascade (IC) model is introduced
for the first time by Kempe et al. in [97], inspired by the studies on interactive particle
systems in [55] and marketing [68, 69].

The IC model requires each edge (u, v) ∈ E to be associated with an influence
probability pu,v, corresponding to the extent to which node u is able to influence v.
Also, the activation attempts are independent from each other. The IC model is
formally defined as follow.

Definition 4 (Independent Cascade Model). The Independent Cascade Model re-
quires a social network graph G = 〈V ,E〉, where each edge u, vE has a an influence
probability denoted by pu,v, and the initial seed set S. At every time step t ≥ 1
the following rule applies: for any inactive node v ∈ V \ (St−1), for every node
u ∈ N in(v)∩(St−1 \St−2) u executed an activation attempt by performing a Bernoulli
trial with success probability pu,v. If the attempt is successful v is added into St, there-
fore we say that u activates v at time t.

Informally, when a node u is activated at time t, in the next time step it has a
single chance of activating each of its inactive out-neighbors v. If u is not able to
activate v, it will not be given with another opportunity to activate v. In case a node
v is activated by more than one of its in-neighbors at time t, the outcome is the same,
i.e., v will be added to St+1.

Example 1. Figure 2.1 shows an example of a diffusion process. Initially at t = 0
a single seed, the node z, is activated. At step t = 1, z successfully activates u but
it fails at activating v and x. At step t = 2, u successfully activates v, which at the
following step, t = 3, fails at activating x. At this point, the diffusion stops since there
are no more activation attempts to be performed.

The independent cascade model is particularly suitable for modeling the diffusion
in contexts where a single exposure may be sufficient to activate an individual (e.g.,
getting infected by a virus). This behavior is typically referred as simple contagion.
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Figure 2.1: An example of diffusion process according to the In-
dependent Cascade model. White denotes inactive nodes, and green
denotes active nodes. A solid black arc represents an original edge of
the graph. The value associated with each arc represents the influence
probability. A dotted arc between node u and v denotes that u failed
to activate v, while a solid red arc denotes that u has been able to
activate v.

The IC model has an equivalent live-edge based formulation. The randomized rule
to construct the live-edge graph is described in the following definition.

Definition 5 (Live-edge Graph Model with Independent Cascade Edge Selection.).
Given a social network graph G = 〈V ,E〉, the corresponding live-edge graph model is
obtained by selecting each (u, v) ∈ E with probability puv.

Intuitively, to generate a possible world according to the above definition we need
to carry out a Bernoulli trial for each edge in the graph. If the trial is successful the
corresponding edge is marked as live, otherwise it is marked as blocked, thus it is
removed from the resulting graph.

Linear Threshold Model. The Linear Threshold (LT) model is first proposed by
Kempe et al. in [97]. As opposed to the IC model, which focuses on simple contagions,
the LT model is inspired upon studies in the area of social science related to threshold
behaviors [29, 75]. A key feature of this model is represented by an aggregate function
(e.g., count, sum) that takes into account all the positive inputs received by a target
node, which becomes active as the aggregate signal exceeds a certain threshold.

The LT model requires each edge (u, v) ∈ E to be associated with an influence
weight wuv ∈ [0, 1], which reflects the importance of u in influencing v. The weights
are normalized such that for each node v the cumulative sum of its incoming edges is
at most one, i.e.,

∑
N in

+ (v)wuv ≤ 1. The LT model is formally defined as follow.

Definition 6 (Linear Threshold Model). The Linear Threshold Model requires a social
network graph G = 〈V ,E〉, where each edge (u, v) ∈ E has a an influence weight value
denoted by wuv, and the initial seed set S. Initially, each node v ∈ V independently
selects a threshold θv ∈ [0, 1], uniformly at random.

At every time step t ≥ 1 the following rule applies: for any inactive node v ∈
V \ (St−1), if the total weight of the edges from its active in-neighbors is at least θv,
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Figure 2.2: An example of diffusion process according to the Linear
Threshold model. White denotes inactive nodes, and green denotes
active nodes. A Solid black arc represents an original edge of the
graph. The value associated with each arc represents the influence
weight. A dotted arc between node u and v denotes that u is not
able to activate v, while a solid red arc denotes that u contributes
to v activation. Each node is also associated with the corresponding
threshold.

i.e.,
∑

N in
+ (v)∩S′t−1

wuv ≥ θv, then v is added to St, thus we say that v is activated at
time t.

Intuitively, the threshold θv represents the effort required to activate v. The
larger the value of θv the harder will be to activate v. It should be noted that once all
the thresholds are determined, the diffusion unfolds in a deterministic fashion. The
stochastic nature of the model is therefore represented by the random initialization of
the users’ thresholds. The random initialization reflects our lack of knowledge about
a user specific threshold.

Example 2. Fig. 2.2 shows an example of a diffusion process. At the beginning, each
node selects its activation threshold accordingly to Def. 6. Initially at t = 0 a single
seed, the node z, is activated. At step t = 1, z successfully activates u but it fails
at activating v and x. At step t = 2, thanks to the combined effort of u and z, v is
activated. At step t = 4 the combined influence of v and z triggers the activation of
x. At this point, the diffusion stops are there as there are no more activation attempts
to be performed.

The Linear Threshold model is particularly suitable for modeling the diffusion in
contexts where a target has to be exposed to multiple and independent sources of
influence to change its behavior. This dynamics is typical for the adoption of a new
and unproven technology, a controversial idea or a costly new product.

More generally, this scenario takes place when people may need positive reinforce-
ment from their friends before taking a particular action. This mechanism is referred
as complex contagion.

The LT model has an equivalent live-edge based formulation. The randomized
rule to construct the live-edge graph is described in the following definition.

Definition 7 (Live-edge Graph Model with Linear Threshold Model Edge Selection.).
Given a social network graph G = 〈V ,E〉, the corresponding live-edge graph model is
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obtained by selecting for each node v ∈ V at most one incoming edge with probability
proportional to the weight of the edge. Therefore, given a node v, among all incoming
edges (u, v) ∈ E only an edge is selected with probability wuv, and with probability
1−

∑
u∈N in(v)wuv no edge is marked as live. Each node selects its only live incoming

edge independently from the other nodes.

Triggering Model. The Triggering (TR) model is introduced by Kempe et al. in [97],
as a generalization the aforementioned IC and LT models. It is based on the notion
of triggering set. For any node u ∈ V , the triggering set, denote by Tu, is a subset
of u in-neighbors. A u node selects a subset among all the 2|N

in(u)| configurations,
according to some probability distribution. The triggering set of a node is responsible
for its activation.

The TR model is formally defined as follow.

Definition 8 (Triggering Model). The Triggering Model requires a social network
graph G = 〈V ,E〉 and the initial seed set S.

At t = 0, each node v ∈ V independently selects a triggering set Tv according to
some probability distribution.

At every time step t ≥ 1 the following rule applies: for any inactive node v ∈
(V \St−1), if it has an active neighbors in its selected triggering set, i.e., Tv∩N in(v)∩
St−1 6= ∅, then v is added to St, therefore we say that v is activated at at time t.

Since it is a generalization of the IC and LT model, the TR model is suitable
for modeling diffusion in contexts that have either a simple or a complex contagion
dynamics.

The TR model has an equivalent live-edge based formulation. The randomized
rule to construct the live-edge graph is described in the following definition.

Definition 9 (Live-edge Graph Model with Triggering Model Edge Selection.). Given
a social network graph G = 〈V ,E〉, the corresponding live-edge graph model is obtained
by selecting each edge (u, v) ∈ E if u ∈ Tv.

Informally, in the live-edge model corresponding to the Triggering model, an edge
(u, v) ∈ E is marked as live only if u belongs to the triggering set of v, i.e., u ∈ Tv.

2.2.2 Non-progressive diffusion

This section offers an introduction on a number of non-progressive models. A common
denominator for the following models is that they are original conceived for contexts
that are apparently distant from the context of influence propagation. Nonetheless,
at some point, they have been used to mode information diffusion, and influence
maximization.

It should be noted that, the purpose of this section is not to provide a comprehen-
sive introduction on non-progressive diffusion model. In fact, here we wish to provide
the reader with all necessary information to understand the main difference between
these models and the ones discussed in Section 2.2.1.

First of all, what makes a non-progressive diffusion model is the ability of any
active node to turn back to the inactive state. It means the active sets are non-
monotonically increasing, i.e., if a node is active at time step t, it will not necessarily
be active at any future time step t′ ≥ 1.

In this section we describe a class of well studied non-progressive models, i.e.,
epidemic models. More specifically, we introduce three of the most used models: SI,
SIR and SIS.
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Finally, we explore the strong connection that there exists between epidemic mod-
els and the IC model described in Section 2.2.1
Epidemic Models. Epidemic models were originally conceived to study the spread
of diseases among biological populations. However, in recent years researchers have
started to adopt these models to represent the diffusion of information in social net-
works. Unlike every model discussed above, epidemic models are formulated as fully
mixed models. It means they assume every individual can make contact with any other
person. In other words, they consider a network of contacts as a complete graph. Of-
ten, epidemic models are treated as continuous time models and their dynamics is
represented via a system of differential. The solution to such system of equations
provides numerical results on the dynamics of the diffusion among the population.

Analogously to stochastic diffusion models each individual transition between sev-
eral possible states. The taxonomy used to denote the different states considers the
transmission of a disease. Therefore, a node can assume one of the following three
states: (i) S which stands for susceptible, it means that a node can get the disease if
it gets in touch with an infected individual: (ii) I which stands for infected, a node in
this state is able to transmit the disease to other individuals; R which stands for re-
covered, a node in this state is a node healed from the disease, thus it is not contagious
anymore.

Each node passes through the same sequence of transitions and the model is named
after this sequence of possible transitions. For instance, the most basic model is the SI
model. It stands for susceptible-infected model. In allows a node to only transition
from susceptible to infected. The rate at which these transitions happen is called
infection rate, denoted by β.

The SI model is formally defined as follows.

Definition 10 (SI Model). Let s, i and n denote the fraction of susceptible, the
fraction of infected nodes and the total number of nodes in the system, respectively.
In a small unit of time dt, each infected node makes contact with all other nodes,
among which only s · n are susceptible. An infected node infects any susceptible node
with probability β. Since there are i · n infected nodes in total, after dt time unit, the
reduction to the fraction of susceptible node is i · n · s · n · β/n = β · s · i dotn. This
leads to the following differential equation:

ds

dt
= −β · s · i · n

Based on the observation that s+ i = 1, the differential equation in Definition 10
is solvable by the following closed-form:

i(t) =
i(0)eβnt

1− i(0) + i(0)eβnt

Where i(t) denotes the fraction of infected nodes ad time t. The solution corre-
sponds to the classic logistic growth curve (or S-shaped) illustrated in Figure. 2.3.

Another interesting model is the SIR model. It has the same behavior of the SI
model, but it accounts for an additional transition. Specifically, once a node is infected,
it always transitions to the recovered state. This model is particularly suitable to
represent the diffusion of a disease that generates life-time immunity once an individual
recover from it.

The rate at which the transitions from I to R happen is referred as recovery rate,
denoted by γ. Intuitively, this parameter represents the likelihood that an infected
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Figure 2.3: Logistic growth curve (S-shaped curve) for the SI model.

individual recovers from the disease obtaining an immunity that will prevent him/her
to further develop the disease.

The SIR model is formally defined as follows.

Definition 11 (SIR Model). Let s, i, r and n denote the fraction of susceptible, the
fraction of infected nodes, the fraction of recovered nodes and the total number of nodes
in the system, respectively. In a small unit of time dt, the reduction to the fraction of
infected nodes is γ · i. This leads to the following system of differential equations:

ds
dt = −β · s · i · n
di
dt = β · s · i · n− γ · i
dr
dt = γ · i
s+ i+ r = 1

.

The solution to the above system of equation returns the fraction of nodes for each
of the three categories, i.e., susceptible, infected and recovered.

An important metric of the SIR model is the basic reproduction number R0 =
βn/γ. This parameter represents the average number of new infections caused by an
infected node, during the time span of its infection, which on average lasts 1/γ time
units.

Interestingly, when R0 > 1 a significant portion of nodes are infected, on the
contrary when the reproduction number is below 1 only a small fraction of nodes are
infected, thus the diffusion tends to rapidly stop.

Intuitively, R0 quantifies the virality of the diffusion process. It depends on both
the infection and the recovery rate. Also, when this value exceeds the so called
epidemic threshold a large fraction of the population will be infected by the disease.

Finally, another commonly used model is the SIS model, where an infected node,
after it recovers from the disease, always returns to the susceptible state. The SIS
model is particularly suitable to represent the diffusion of a disease for which an
individual cannot develop a life-time immunity (e.g., the flu). The SIS model is
governed by differential equations that are similar to the ones derived for the SIR
model. The steady state in the SIS model is reached as time approaches to infinity.
Analogously to the SIR model, the epidemic threshold is 1. If the basic reproduction
number R0 is above that threshold then a non-zero fraction of nodes is infected at
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the steady state. On the contrary, if R0 is below the threshold the diffusion stops
exponentially, therefore no node is infected at the steady state.

Comparison with the Independent Cascade Model. Epidemic models can also
be used with on contact networks. As opposed to the classic model formulation, where
a node can potentially infect any other nodes in the network, under this setting an
individual can only infects the nodes within its neighborhood.

The SIR model on a contact network is extremely close to the IC model. In fact,
as described in Definition 12 and Definition 13, given an instance of the SIR model
we can derive an equivalent instance of IC model, and vice versa.

Definition 12 (Conversion from SIR to IC). Given an SIR model defined on a social
graph G = 〈V ,E〉 with parameters β and γ, an equivalent instance of an IC model
can be derived as follows.

For each edge (u, v) ∈ E, the influence probability is defined as: puv = 1 − (1 −
β)1/γ ' β/γ. In fact, each infected node is given with 1/γ attempts to activate v, each
of which with success probability β.

Definition 13 (Conversion from IC to SIR). Given an IC model defined on a social
graph G = 〈V ,E〉, where each edge (u, v) is associated with an influence probability
puv, an equivalent instance of the SIR model can be derived as follows. First we set
γ = 1, so that each node remains infected only for a single a unit of time, thus it has
a single chance of infecting its neighbors. Then we define a pairwise specific infection
rate for each edge (u, v), so that puv = βuv, where βuv denotes the probability that u
infects v.

It should be noted that epidemic models are mostly addressed by studies not
necessarily related to the context of information diffusion or influence maximization.
For example, in [30, 63, 147] is investigated how the network topology affects the
epidemic threshold. In [23, 46, 144] the authors are interested in investigating the
efficacy of immunization program under different models.

2.3 Complexity of influence maximization

Here we assess the computational complexity of the influence maximization problem
under the main progressive diffusion models presented in Section 2.2.1, namely the IC
and the LT models.

Solving an instance of an IM problem under any stochastic diffusion models in-
volves dealing with two different tasks: (i) the influence computation, i.e., evaluating
the influence spread σ(·); (ii) solving the combinatorial problem, that is finding the
optimal seed set. In the following, we argue that both problems are extremely hard.

Complexity of the influence computation. Under both the IC and the LT model
computing the influence spread of a seed set of users is a #P-hard problem. The
class #P contains counting problems whose counterpart decision version is in NP.

A NP problem asks if a particular instance has a solution (e.g., if a conjuctive-
normal-form (CNF) formula has a satisfying assignment), while a #P problem asks
to evaluate the number of possible solutions for the given instance (e.g., how many
satisfying assignments to a CNF formula). A problem P is said to belong to #P-
complete if it belongs to #P and every problem in this class can be reduced to P
with a polynomial time reduction. P is also said to belong to #P-hard if there exist
a problem in #P-complete that can be reduced to P in polynomial time.
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It should be noted that a #P-hard problem is also at least a NP-hard problem,
since counting the number of solutions implicitly answers to whether or not a solution
exists.

Theorem 1 (Theorem 1 of [37] and Theorem 1 of [197]). Computing the influence
spread σ(S) in a social graph G = 〈V ,E〉, with seed set S is #P-hard under both the
IC and LT models, even when |S|= 1

Proof (sketch). The #P-hardness under the IC model can be proven with a
reduction from the #P-complete problem s-t connectedness counting problem in a
directed graph. The #P-hardness under the LT model can be proven with a reduction
from the #P-complete simple path counting problem [192]. See [37, 197] for a complete
reduction.

�
The above theorem implies the #P-hardness of the influence maximization prob-

lem.

Corollary 1. The influence maximization problem is #P-hard under both the IC
and LT models, even for k = 1.

Complexity of the combinatorial problem. Besides the hardness of the influence
computations task, since the IM problem has a combinatorial nature, it contains some
NP-complete problems as special cases. Based on this observation, the following
theorem proves the NP-hardness of the problem.

Theorem 2 (Theorem 2.4 and 2.7 in [97]). Influence maximization problems under
both IC and LT models contain #P-complete problems as special cases, and thus are
NP-hard. Moreover, influence maximization under the IC model is NP-hard even if
the influence computation can be done in polynomial time.

Proof (sketch). Influence maximization under the IC model contains the NP-
complete set cover problem as a special case, while influence maximization under
the LT model contains the NP-complete vertex cover problem as a special case.
Consequently, IM is NP-hard under both the IC and LT models (see the proofs of
Theorem 2.4 and 2.7 of [97]).

Moreover, for influence maximization under the IC model, its set cover special case
is a bipartite graph with arcs from one partition to the other partition, with influence
probabilities as 1 on all arcs. In such special cases, influence computation given any
seed set is trivial by computing the size of the reachable set of nodes from the seed
set, so influence computation can be done in polynomial time. �

2.3.1 Greedy approach to influence maximization

In the previous section we show that IM is hard. More specifically, there are two
sources of hardness: the combinatorial nature of the problem and the influence compu-
tations task. A possible approach to address the combinatorial nature of the problem
is represented by a greedy selection strategy, described in Algorithm 1. The adoption
of a greedy strategy is motivated by the following theorem.

Theorem 3 ([152]). Let S∗ = argmax|S|≤k f(S) be the set maximizing f(S) among
all sets with size at most k. If f is a monotone and submodular set function and
f(∅) = 0, then if Sg is the solution provided by a greedy selection we have:

f(Sg) ≥ (1− 1

e
)f(S∗)
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Algorithm 1 Greedy(G, k, f): a general greedy algorithm

Input: The diffusion graph G = 〈V ,E〉; the size of the returned seed set k; a mono-
tone submodular function f .

Output: Seed set S of size k.
1: S ← ∅
2: for i← 1 to k do
3: u← argmaxw∈V \S(f(S ∪ {w})− f(S))

4: S ← S ∪ {u}
5: end for
6: return S

Proof. Let S∗ = {s∗1, s∗2, . . . , s∗k}. Let the greedy algorithm in Algorithm 1 select
elements s1, s2, . . . , sk in this order, such that Sg = {s1, s2, . . . , sk}. Let S∗i =
{s∗1, . . . , s∗i } and Sgi = {s1, . . . , si} for i = 1, dots, k and S∗0 = Sg9 = ∅. Then, for
every i = 0, 1, . . . , k − 1, we have:

f(S∗) ≤ f(Sgi ∪ S∗) monotonicity of f
= f(Sgi ∪ S∗k−1 ∪ {k∗k})
≤ f(Sgi ∪ {s∗k})− f(Sgi ) + f(Sgi ∪ S∗k−1) submodularity of f
≤ f(Sgi+1)− f(Sgi ) + f(Sgi ∪ S∗k−1) line 3 of Algorithm 1
≤ k(f(Sgi+1)− f(Sgi )) + f(Sgi ) repeating the above steps k times

Arranging the inequality we have:

f(Sgi=1) ≥ (1− 1

k
)f(Sgi ) +

f(S∗)

k
(2.3)

Multiplying by (1 − 1/k)k−i−1 on both sides of the above inequality and then
adding up all inequalities for i = 0, 1, . . . , k − 1, we obtain the final result:

f(Sg) = f(Sgk)

≥
∑k−1

i=0 (1− 1
k )k−i−1 f(S∗)

k
= (1− (1− 1

k )k)f(S∗)
≥ (1− 1

e )f(S∗)

The greedy approach referred by Theorem 3 is described in Algorithm 1. Intu-
itively, a greedy selection iteratively adds the node with the largest marginal gain
with respect to the current solution.

As stated in Theorem 3, Algorithm 1 provides a solution with approximation
guarantee only if the objective function, i.e., the influence spread function σ(·), has
both the properties of monotonicity and submodularity. These two properties are
formally defined as follow.

Definition 14 (Monotonicity). Let f be a set function defined over a domain denoted
by V , so that f : 2V 7→ R. We say f is (non-decreasing) monotone if and only if
f(S) ≤ f(T ) for any S ⊆ T ⊆ V .

Definition 15 (Submodularity). Let f be a set function defined over a domain de-
noted by V , so that f : 2V 7→ R. We say f is submodular if and only if f(S ∪ {v})−
f(S) ≥ f(T ∩ {v})− f(T ), for any S ⊆ T ⊆ V and for any v ∈ V .
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Informally, monotonicity means that adding more nodes to a seed set does not
reduce its influence spread. Submodularity can be understood as diminishing marginal
gains of the influence spread.

Therefore, Whenever the influence spread function of a diffusion model, i.e., σ(·),
satisfies the above properties,we can successfully approximate the optimal solution
accordingly to Theorem 3.

Fortunately, as stated in the following theorem, under the two main progressive
diffusion models, i.e., the IC and LT models, the influence spread is both monotone
and submodular.

Theorem 4 (Theorem 2.13 [33]). The influence spread function σ(·) in both the inde-
pendent cascade (IC) and the linear threshold (LT) models is monotone and submod-
ular.

Proof. In order to prove the above theorem we use the equivalent live-edge graph
obtained accordingly to the randomized rules defined in the Definition 5 and the
Definition 7 for the IC and the LT model, respectively. Given a social network graph
G = 〈V ,E〉, we denote with G the set of all possible live-edge graphs of G. Each
of the possible live-edge graph instances GL has a probability denoted by Pr(GL).
Regardless of the diffusion model, we can define the influence spread function with a
possible world semantics as in the following equation.

σ(S) =
∑
GL∈G

Pr(GL)|RGL
(S)|

IN the above equation RGL
(S) denotes the set of nodes reachable by any node in

S under the live-edge graph instance RGL
.

Since the linear combination of monotone (resp. submodular) functions with non-
negative coefficients – the probabilities associated with each possible live-edge graph
instance – is also monotone (resp. submodular), to prove the monotonicity (resp.
submodularity) of the influence spread function σ()̇ it is sufficient to prove that for
any live-edge graph GL, |RGL

()̇| is monotone (resp. submodular).
The monotonicity of |RGL

()̇| is straightforward, in fact the number of nodes
reached by the seed set S cannot decrease as we add more nodes in S.

To prove the submodularity of the function we nee to show that for any two subsets
S ⊆ T ⊆ V and a node v ∈ V , RGL

(T ∪ {v}) ⊆ RGL
(S ∩ {v}) \RGL

(S).
For any node u ∈ RGL

(T ∪ {v}) \ RGL
(T ), u is reachable from T ∪ {v} but it is

not reachable from T . Consequently, u must be reachable from v. Therefore, there is
no node in T th at is able to reach u. Since S ⊆ T , u cannot be reached by any node
in S neither, as it would otherwise belongs to RGL

(T ), leading to a contradiction. We
can say |RGL

(·)| is submodular under every possible GL, thus σ(·) is submodular.

There is a major drawback with Algorithm 1: it needs to evaluate the influence
spread function n · k times. Since computing these values is a very expensive task
( #P-hard), we first need to overcome this problem before we can apply the greedy
approach in reasonable time.

The solution proposed by Kempe et al in [97] is to estimate the influence spread
with Monte Carlo (MC) simulations. Thus, the value of the influence spread associated
with S is approximated by computing the average number of activated nodes over
a large number of simulations. Algorithm 2 shows the Monte Carlo based greedy
algorithm for influence maximization. The structure is the same as Algorithm 1, the
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Algorithm 2 Greedy(G, k): Monte Carlo greedy algorithm for influence maximiza-
tion
Input: The diffusion graph G = 〈V ,E〉; the size of the returned seed set k; a mono-

tone submodular function f .
Output: Seed set S of size k.
1: S ← ∅
2: for i← 1 to k do
3: u← argmaxw∈V \SMC − Estimate(S ∪ {w}, G)

4: S ← S ∪ {u}
5: end for
6: return S
7: procedure MC-Estimate(S,G)
8: cnt← 0
9: for i← 1 to N do
10: Simulate the diffusion process on graph G with seed set S
11: cnt← cnt+ |Φ(S)|
12: end for
13: return cnt/N

only exception is represented by the use of the procedure MC-Estimate for computing
the influence spread.

The accuracy of the estimate provided by MC-Estimate depends on the number of
different diffusion processes N . In general, larger values of N correspond to a higher
accuracy.

However, regardless of the level of accuracy offered by the Monte Carlo estimation,
we cannot rely on the results in Theorem 3, as it requires the influence spread to be
computed exactly. In fact, the MC procedure always returns a multiplicative γ-error
estimate of the original set function f . It means that for any subset S ⊆ V and for any
γ > 0 we have |f(S)− f̂(S)|≤ γv, where f̂ denotes the estimated of the set function.

Nevertheless, in [33] the authors show that with an adjustment to Theorem 3 it is
possible to prove that the Algorithm 2 achieves a (1− 1/e− ε)-approximation of the
optimal solution.

Theorem 5 (Theorem 3.6 of [33]). Let S∗ = argmax|S|≤k f(S) be the set maximizing
f(S) among all sets with size at most k, where f is a monotone and submodular set
function and f(∅) = 0. For any ε > 0, for any γ with 0 < γ ≤ ε/k

2+ε/k , for any function

estimate f̂ that is a multiplicative γ-error estimate of the function f , the output Sg of
the Monte Carlo based greedy algorithm guarantees:

f(Sg) ≥ (1− 1

e
− ε)f(S∗)

Proof. The proof follows the same structure as the proof of Theorem 3. Unfortunately,
we can no longer claim that f(Sgi ∪ {s∗k}) ≤ f(Sgi+1) since the element si+1 found by
the greedy algorithm with respect to the approximated function f̂ may not be the
optimal element with respect to the correct function f .
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Suppose that s̄i+1 = argmaxw∈V \Sgi (f(Sgi ∪{w})−f(Sgi )) = argmaxw∈V \Sgi f(Sgi ∪
{w}), then we have:

f(Sgi ∪ {∗k}) ≤ f(Sgi ∪ {s̄i+1}) by γ-error estimate of f̂

≤ 1
1−γ f̂(Sgi ∪ {s̄i+1}) by algorithm Greedy(k, f̂)

≤ 1
1−γ f̂(Sgi ∪ {si+1}) by algorithm Greedy(k, f̂)

≤ 1+γ
1−γ f(Sgi ∪ {S

g
i ∪ {si+1}} by γ-error estimate of f̂

Plugging the above inequality into Inequality 2.3 we have:

f(Sgi+1) ≥ 1− γ
1− γ

((1− 1

k
)f(Sgi ) +

f(S∗)

k
)

Multiplying both sides by ((1− 1/k)(1− γ)/(1 + γ))k−i−1 and then adding up all
inequalities for i = 0, 1, . . . , k − 1, we have:

f(S) = f(Sgk)

≥
∑k−1

i=0 ( (1−1/k)(1−γ)
1+γ )k−i−1 · 1−γ

(1+γ)k · f(S∗)

=
1−( 1−γ

1+γ
)k(1− 1

k
)k

(1+γ)k/(1−γ)−k+1f(S∗)

≥
1−( 1−γ

1+γ
)k· 1

e

(1+γ)k/(1−γ)−k+1f(S∗)

≥ 1− 1
e

(1+γ)k/(1−γ)−k+1f(S∗)

≥ (1− 1
e )(1− (1+γ)k

1−γ + k)f(S∗) since
1

1 + x
≥ 1− x,∀x0

≥ (1− 1
e − ( (1+γ)k

1−γ − k))f(S∗)

≥ (1− 1
e )f(S∗) since γ ≤ ε/k

2 + /k

he time complexity of Algorithm 2 is O(k|V |·N · |E|). In fact, it runs for k
iterations, at every iteration, for each node in V \ S an MC simulation is carried out,
which means starting N diffusion processes, each of which can take at most |E|, i.e.,
the traversal of the entire graph.

Theoretically, we can provide a bound on N , i.e., the number of simulations, so
that Algorithm 2 achieves the (1−1/e− ε) approximation ratio with high probability,
as stated in the following theorem.

Theorem 6 (Theorem 3.7 of [33]). With probability 1 − 1/|V | Algorithm 2 achieves
(1− 1/e− ε) approximation ratio in time O(k|V |·N · |E|), for both IC and LT models

Proof (sketch). By Theorem 5, to achieve the (1−1/e−ε) approximation ratio, we
need to guarantee the influence spread estimate error γ ≤ ε/k

2+ε/k . For any valid ε it is
sufficient to use γ ≤ ε

3k . We then use the Hoeffding bound for the number of required
simulation N . Let X1, X2, . . . , XN be a set of N independent random variables. Each
Xi varies in a range [ai, bi]. Let X̄ =

∑N
i=1Xi/N . According to the Hoeffding bound

we have:

Pr(|X̄ − E(X̄)) ≤ 2exp(− 2N2t2∑N
i=1(bi − ai)2

)
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Table 2.1: Summary of influence maximization algorithms under
classical diffusion models

Category Method Approximation

Simulation

MC-Greedy[97] 1− 1/e− ε
CELF[114] 1− 1/e− ε

CELF++[74] 1− 1/e− ε
GCA[197] 1− 1/e− ε

Proxy

DegDist [40] N.A.
GroupPR [134] N.A.

IRIE [96] N.A.
SPM[100] 1− 1/e1

MIA [38] 1− 1/e1

LDAG [35] N.A.
Simpath [72] N.A.

Sketch

NewGreIC [40] N.A.
StaticGreedy [43] 1− 1/e− ε

StaticGreedyDU [43] 1− 1/e− ε
PrunedMC [156] 1− 1/e− ε

RIS[20] 1− 1/e− ε
TIM/TIM+ [189] 1− 1/e− ε

IMM [188] 1− 1/e− ε
SSA [154] 1− 1/e− ε

For the case of Monte Carlo simulations, Xi is the number of active nodes in the i-
th simulation for some seed set S, and ai = 1, bi = |V |.X̄ is the Monte Carlo estimate.
E(X̄) is the true influence spread σ(S), and t = ε

3kσ(S). When t = ε
3kσ(S), the event

{|X̄ − σS|≤ t} implies that X̄ is a ε
3k -error estimate of E(X̄) = σS. Thus, it the

event {|X̄ − σS|≤ t} is true for any seed set S, then we have a ε
3k -error estimate of

σ(·), as a consequence the greedy algorithm achieves the (1− 1/e− ε) approximation
ratio. Finally, in the greedy algorithm, we estimate influence spread for totally nk
seed sets. Thus, we want the probability of exceeding the multiplicative ε

3k error for
each seed set be at most 1

n2k
, so that by union bound we can have probability of at

most 1 that some estimate exceeds the ε
3k error bound. Putting all these into the

above inequality, we have that the number of runs required by each MC simulation
is Θ(ε−2k−2 · |V |−2log(|V |2k)). It means that the running time of the algorithm is
O(ε−2k3 · |V |3|E|· log|V |) �

2.4 Algorithmic solutions

Despite its polynomial time complexity and the strong approximation ratio, Algo-
rithm 2 is far from being practical efficient. Its biggest problem is with the Monte
Carlo simulations required to estimate the influence spread. For this reason, since the
seminal work of Kempe et al. [97], many studies have tried to overcome the efficiency
issue with the classic Monte Carlo based greedy algorithm.

This section provides an overview on the main solutions for IM. Algorithms are
categorized as in the excellent survey [125]. More specifically, we have three different
classes: (i) simulation based; (ii) proxy-based; (iii) sketch-based.

For each class we highlight the main strengths and weaknesses as regards the
following aspects:

1The approximation bound is with respect to the reduced model
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• Model Generality: the ability to embrace different diffusion models with minimum
effort
• Practical Efficiency: the ability to efficiently solve the IM problem on large net-

works
• Theoretical Efficiency: the ability to provide solutions with approximation guar-

antee
Table 2.1 provides a guide to the following discussion.

Simulation Based. All the algorithms in this category adopt Monte Carlo simu-
lations to estimate the influence function. However, unlike Algorithm 2, they also
leverage on meta-heuristic search strategies in order to speed up the combinatorial
optimization task.
Pros: The main advantage is their model generality. They can be adapted to work
with any diffusion model – It is sufficient to incorporate the specific Monte Carlo
estimation procedure. Another advantage is their theoretical efficiency. As long as
the diffusion model enable a monotone and submodular influence function, we can
rely on the approximation ratio in Theorem 5.
Cons: Simulation based algorithms suffer of a poor practical efficiency. The main
reason is ascribed to the expensive the Monte Carlo simulations.
Proxy based. The key idea underlying this approach is to devise an efficient strategy
to approximate the influence function. Therefore, these algorithms are concerned with
the definition of a good proxy for the influence maximization function, instead of
having an accurate estimate.
Pros: The main advantage is their practical efficiency.
Cons: Typically, solutions provided by proxy-based algorithms have not any theoret-
ical guarantee. Consequently, the solution provided by any of these algorithm might
be arbitrarily bad.
Sketch-based. The key idea underlying this approach is to combine together practi-
cal efficiency and theoretical efficiency. Solutions provided by sketch-based algorithms
couple a theoretical approximation guarantee with a reasonable execution time. At
the center of their definition there is the concept of sketch. A sketch is a realization
of the influence network graph under a specific diffusion model, i.e., a possible world.
Pros: The main advantage is their ability to ensure both theoretically and practically
efficiency.
Cons: There is lack in terms of model generality. In fact, it is not easy to incorporate
different diffusion models, since they must enable the definition of an equivalent sketch
based formulation to compute the influence spread (e.g., the reachability set on a live-
edge graph model as for the IC and LT models).

2.4.1 Simulation based

The greedy procedure described in Algorithm 2 is a clear expression of a simulation
based approach. As shown in Theorem 6, the time complexity of is prohibitively ex-
pensive to deal with large graphs. Therefore, many researchers have tried to optimize
the simulation based greedy framework. In their attempts, it is possible to identify
two orthogonal strategies, which are discussed below.

Reducing the number of MC simulations. In each iteration of the greedy algo-
rithm, there are exactly |V \S| MC simulations to estimate the marginal gain of each
node. However, most of these computations could be avoided as they involve nodes
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with insignificant influence. Therefore, the intuition underlying this approach is to
prune all the nodes that have irrelevant marginal influence.

This is the main idea behind the CELF algorithm [114], which exploits the sub-
modularity of the influence function to reduce the number of influence computation.
Specifically, let ∆(u|Si) = σ(Si ∪ {u})− σ(Si) represent the marginal gain of node u
with respect to the set Si, that is the set constructed by the greedy algorithm up to the
i-th iteration. According to the definition of submdoularity, ∆(u|Si) is also an upper
bound for the marginal gain of u with respect to any Sj so that Si ⊆ Sj . Based on
this observation, the CELF algorithm first computes the marginal gain ∆(u|∅) for any
u ∈ V and it adds the best node into S1. At each subsequent iteration i = 2, . . . , k,
CELF visits each node in u ∈ V \ Si−1 in a descending order of their upper bounds of
∆(·|Si) and it computes ∆(u|Sj−1) by the means of an MC simulation.

The main trick is the early termination on the marginal gains update, which
prevents the algorithm to visit the entire node set. In fact, if the maximum upper
bound of an unvisited node is smaller than the maximum marginal gain among all the
visited nodes, then we can stop updating the upper bound of the remaining unvisited
nodes. In each iteration, CELF the node with the largest marginal gain.

Even though CELF does not improve the theoretical time complexity, the early
termination technique is able to provide a better practical efficiency, as it be up to
700 times faster than the greedy algorithm.

Following the above approach, in [74] is proposed the CELF++ algorithm, which
further reduces the number of MC simulations required by CELF. The main difference
between the two algorithms is that CELF++ computes both ∆(u|Si) and ∆(u|Si ∪
{vuj }) for each user u, where vuj is the node having the largest marginal gain among
all the nodes visited before u. In this way, CELF++ prevents the computation of
∆(·|Si+i) if Si+1 = Si ∪ {vuj } at the i+ 1 iteration.

Despite this slight change in the way the two algorithms update the nodes’ marginal
gain, the speedup brought by CELF++ over CELF is often negligible [5, 141].

Reducing MC complexity. This approach aims to speed up each individual MC
simulation, by rearranging the influence computation task. The algorithm proposed
in [197], i.e., the Community-based Greedy Algorithm (CGA), is clear example of this
approach. The key idea is to use a divide-and-conquer paradigm. At the beginning,
the graph is partitioned into a number of different communities. In the divide step
GCA computes the influence of each node within its community, while in the conquer
step the community-wise influence of each node is combined to decide the final seed
set. The main benefit derived by this approach is that the influence computations are
usually faster, since they are carried out with respect to only a portion of the entire
graph, i.e., the subgraph induced by a given community.

It should be noted that both the approaches discussed above merely mitigate the
scalability problem with any Monte Carlo based algorithm, without actually solve the
problem. For this reason, more recent studies have explored different paths, such as
the proxy and the sketch based algorithms introduced in the following sections.

2.4.2 Proxy based

The proxy-based approach trades theoretical efficiency for practical efficiency. The
heavy MC simulations to estimate the influence are replaced by the definition of
some efficient, yet effective, measure to approximate the influence spread. Also, most
of the time, a proxy-based algorithm is specifically designed to work with a specific
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diffusion model, therefore, as compared with simulation based algorithms, proxy based
algorithms have a disadvantage in terms of model generality.

Nonetheless, despite the theoretical disadvantage, empirical evaluations showed
that the quality of the solutions provided by proxy-based algorithms are often good
enough to compete with those provided by simulation-based approach. This result is
even more remarkable if we consider the significant gain in terms of efficiency brought
by proxy-based methods.

In the following we discuss two main strategies for the proxy-based algorithms: (i)
influence ranking; (ii) diffusion model reduction.

Influence Ranking Proxy. The key idea is to define a ranking function based on
a specifically designed metric that must be able to capture the nodes’ influence. This
ranking function is then used to drive the seed set selection process, so that the top
k nodes are included into the resulting seed set.

Two of the most basic approaches to influence ranking are the PageRank [159] and
the DistanceCentrality [59] algorithms. The former method uses the page rank score
of a node to approximate its influence while the latter uses the distance centrality.

Unfortunately, these simple approaches share a common weakness, they tend to
overestimate the influence spread of a set because of their inability to account for
influence overlaps (e.g., two seed nodes that have two overlapping sets of influenced
nodes).

Several other ranking methods have been proposed to address the above issue.
For instance, DegDis [40], based on the degree proxy – the influence of a node is
approximated by its degree – implements a discount mechanism to mitigate the effect
of the influence overlaps. More specifically, once a node u is selected as seed, the
influence score of any u’s neighbor v is discounted by a certain factor, e.g., v’ score
could be subtracted by 1 to account for the influence overlap with the selected seed, i.e,
u. A major flaw of the above discount mechanism is that it ignores indirect influence
paths.

The issue on the influence overlaps has been also addressed in [134] where the
authors define the Group-PageRank GPR. The GPR of a set of nodes S is straight-
forward, as it is simply the cumulative sum of the page rank score of every node in
S, discounted by a certain factor. As in DegDis, the discount factor penalizes the
selection of nodes with influence overlaps. Based on the above definition, the authors
define the GroupPR algorithm. It adheres to the classic greedy paradigm. In fact,
at each iteration, the node with the largest marginal gain is selected. The marginal
gain of the any node v ∈ V \ S is computed accordingly to either one of the follow-
ing methods: (i) Linear(S, v) - it recomputes the GPR for {S ∪ {v}} in O(|E vert);
(ii) Bound(S, v) - it uses the GPR of S along with the page rank of each node in
j ∈ {S ∪ {v}} to derive the GPR of {S ∪ {v}} in O(k).

Another interesting method, that generalize the Page-Rank proxy, is the Influence
Ranking Influence Estimation (IRIE) algorithm proposed in [96]. The key idea of
IRIE is to define a system of n linear equations with n variables, where n = |V |.
Each linear equation recursively defines the influence of a node u ∈ V as r(u) =
(1−APS(u))(1+α

∑
v∈Nout

u
puvr(v))). Intuitively, the influence of a node u comprises

the influence to itself (i.e., 1) plus the influence of u’s neighbors v scaled by the
probability of u to activate v. Moreover, the equations account for a damping factor
α ∈ (0, 1) and the probability of a node to be activated by the current seed set
selection, denoted by APS(·), which can computed with Monte Carlo simulations.
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The final seed set returned by IRIE is obtained by updating and solving the above
system of linear equations k consecutive times.

Diffusion Model Reduction Proxy. The key idea is to design a reduction for the
diffusion model provided as input, so that we can speed up the computation of σ(·).
There are two main strategies to pursue the above goal: (i) transforming the stochastic
diffusion model into a deterministic model; (ii) restricting the influence computation
to small portion of the graph.

Regardless of the strategy adopted to design the reduction, the seeds selection
stage always follows a greedy approach.

It should be noted that reductions are model-specific. For this reason, we sepa-
rately discuss the main algorithms for both the IC and LT models.

IC Model Reduction. The key idea is to reduce the number of paths involved in
the influence computation. This intuition is based on the observation that for any pair
of nodes u and v, among all the possible influence paths that might lead u to activate
v, it is possible to individuate a set of insignificant paths, namely those paths with
a small probability of success. Clearly, these paths can be ignored (almost) without
affecting the quality of the influence computation.

The first attempt is represented by the Shortest-Path Model (SPM) and SP1M
model proposed in [100]. The ideas is to regard as significant influence path only
those having the shortest path distance between any pair of nodes. Therefore, let
d(u, v) denote the minimum distance between u and v and d(S, v) = minu∈S d(u, v)
denote the minimum distance between any node in S and v. In the SPM model, a seed
set S is given with single chance to activate v after d(v, S) steps. The SP1M model
slightly generalizes the SPM model, as the seed set S is provided with an additional
attempt to activate v, at step d(S, v)+1. The intuition behind the SPM (resp. SP1M)
model is to prune all the paths with length larger than d(S, v) (resp. d(S, v) = 1 ).

The influence function under both models is monotone and submodular, thus a
greedy selection strategies provides a solution with (1−1/e) approximation guarantee.
However, the approximation guarantee is related to influence function under the SPM
model, not the original IC model. Actually, it is most likely that the solution derived
under the SPM model performs poorly under the IC model. This is particularly true
if the influence probabilities are neither small or constant.

Another reduction of the IC model, probably the most well-known, is themaximum
influence arborescence (MIA) model [38]. The main idea underlying this model is to
construct an arborescence of the input graph, so that the influence of each node u is
locally restricted to a small region of the graph with a tree structure rooted in u. This
strategy takes advantage of the fact that influence in trees can be computed efficiently
and exactly.

The MIA model consists of two main steps: (i) for any pair of nodes the maximum
influence paths (MIP) are computed; (ii) all the influence paths with probability below
a given threshold θ are ignored. The probability of an influence path is given by the
product of the influence probabilities of all the edges included in the path.

For any node u ∈ V the MIA model computes two arborescence:
• maximum influence in-arborescence, MIIA(v, θ), it contains all the maximum

influence paths ending at v, with probability at least θ
• maximum influence out-arborescence, MIOA(v, θ), it contains all the maximum

influence paths starting from v, with probability at least θ.
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Once the arborescence are derived, the marginal gain of a node can be computed
extremely fast. The influence function under the MIA model is also monotone and
submodular, thus a greedy selection strategy provides a (1 − 1/e)-approximation of
the optimal solution, with respect to the MIA influence function.

However, the MIA model has a major flaw. In fact, its performance decays ei-
ther when the graph is too dense or the influence probabilities are relatively high.
Specifically, with denser graphs a substantial fraction of the influence paths is pruned
by the threshold θ, this leads to a poor approximation of the influence spread under
the IC model. Moreover, in graphs with high influence probabilities, especially if θ is
small, few influence paths are pruned, thus the influence computation becomes more
expensive.

LT Model Reduction. The first reduction for the LT model is the LDAG model
proposed in [35]. The approach is very similar the one adopted for the IC model.
In fact, it is based on the observation that influence, under the LT model, can be
computed exactly and efficiently in directed acyclic graphs (DAGs). Therefore, the
influence of any node v ∈ V is restricted to a particular subgraph, i.e., LDAG(v, θ),
which is constructed by computing the shortest paths containing all the nodes exerting
an influence on v at least θ.

Unfortunately, the LDAG construction procedure is both computation and mem-
ory intensive and it does not scale well with the size of the input graph.

Another interesting LT reduction method is the Simpath algorithm proposed in [72].
It is based on a simple result: the influence of a set of node, under the LT model, can
be computed by enumerating all the simple paths starting from every node in the set.
Enumerating the simple paths is a #P-hard problem, for this reason the algorithm
introduces a pruning threshold θ so that the enumeration is limited only those paths
having influence at least θ. The influence of a node u ∈ V , i.e., σ(u),is then computed
by summing up all the simple paths starting from u having influence at least θ. Anal-
ogously, the influence of a set of nodes, i.e., σ(S) is given by the sum of the influence
of each node u ∈ S, with respect to the subgraph induced by V \ S ∪ {u}.

The algorithm adopts two optimization techniques to speed up the greedy selection
process. More specifically, in the first iteration, the Simpath algorithm finds a vertex
cover of the graph. Then, only the influence of the nodes included in the vertex cover
is computed directly, while the influence of the remaining nodes is derived starting
from the influence of nodes in the vertex cover. The second optimization consists in
finding, at each iteration after the first one, the top-l most promising seed candidates,
for which the marginal gain has to be computed exactly.

The main advantage of the Simpath algorithm over LDAG is that it does not
require to enumerate every simple path in advance. For this reason, Simpath often
provides a higher time and space efficiency.

The proxy-based approaches discussed in this section have an advantage in terms
of efficiency over any other simulation based approach. However, this advantage often
translates to having to deal with a problem that may not be directly related to IM – it
is the case of the influence ranking methods – or having to design a specific approach
for any diffusion model – it is the case of the model reduction approach.

2.4.3 Sketch based

A sketch-based approach aims at improving the simulation-based theoretical efficiency,
while preserving the same approximation guarantee. The focus is put on the main
bottleneck of any simulation-based approach, that is the need for heavy MC simula-
tions to evaluate the influence marginal gain of nodes. In order to avoid rerunning
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the MC simulations, all the methods discussed in this section pre-compute a number
of sketches upon which they evaluate influence.

Based on how these sketches are computed, we can devise two different cat-
egories: (i) Forward-Influence Sketch (FI-Sketch); (ii) Reverse-Reachable Sketches
(RR-Sketch).

Forward Influence Sketch. The idea of this approach is to construct an instance of
the influence propagation graph according to the given diffusion model. For instance,
under the IC model, a sketch of the input graph G = 〈V ,E〉, denoted by Gi, is
obtained by removing each edge (u, v) ∈ E with probability 1− puv.

Given a sketch Gi and a set S, the influence of S is the number of nodes reachable
from S. More generally, if we have as set of θ different sketches {G1, G2, . . . , Gθ} the
influence of a set of users, i.e., σ(S), is given by the average number of users reached
by S on the different θ sketches. That is, σ(S) = 1

θ

∑θ
i=1|RGi(S)|, where RGi(S)

denotes the set of nodes reachable by S on the sketch Gi.
Theoretical results show that this approach provides the same approximation

bound of the simulation based greedy algorithm, with high probability. This proba-
bility depends on the accuracy of the influence estimation, which is affected by the
number of sketches. In general, the larger the number of sketches the higher the
accuracy of the influence spread estimation will be.

Several algorithms are designed on top of the forward influence framework. New-
GreIC proposed in [40] applies the FI-Sketch procedure at the beginning of each iter-
ation of the greedy selection stage to evaluate the nodes’ marginal gain.

It should be noted that, even though the asymptotic complexity of generating a
sketch under the IC model is the same as running an MC simulation, the main ad-
vantage of NewGrecIC is that sketches are shared among the O(|V |) influence function
evaluation.

An issue with the above approach is the need to generate a new set of sketches
at the beginning of every iteration. However, it would be preferable to generate all
the required sketches in advance and then to use them for every influence estimation
required by the greedy selection process. The StaticGreedy algorithm [43] is based
this idea. It first generates θ different sketches, then it greedily selects the seed
nodes estimating their marginal gain considering the previously generated influence
sketches. StaticGreedy ensures a (1 − 1/e−) approximation of the optimal solution
high probability, as it is established by the following lemma.

Lemma 1 (Lemma 1 of [125]). With probability 1 − n−1, StaticGreedy requires θ =

(8 + 2ε)n · logn+log (|V |k )+log 2

ε2
sketches to achieve the (1−1/e− ε) approximation ratio.

The complexity of the static greedy is O(k · |V |·θ · |E|). Although it represents
an improvement over MC-Greedy it is still prohibitive for large graphs. The main
problem is with the influence evaluation, which takes O(|E|) time. For this reasons
many studies have tried to overcome this problem. For instance, StaticGreedyDU [43]
empirically improves the running time of StaticGreedy with the introduction of a
pruning mechanism. Specifically, after a node u is selected as seed in the i-th iteration,
all the nodes reachable by u are pruned from every pre-computed sketches. As a
consequence, any subsequent iteration has the benefit of estimating the influence on
sketches with a smaller size.

To further improve the performance of StaticGreedy, Ohsaka et al. propose PrunedMC [156].
This algorithm combines the pruning technique of StaticGreedyDU with the construc-
tion of an index structure on the influence sketches. More specifically, the algorithm
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Algorithm 3 RR− Sketch(G, k, θ): [189]
Input: The diffusion graph G = 〈V ,E〉; the size of the returned seed set k; Number

of RR Sets θ to be generated.
Output: Seed set S of size k.
1: S ← ∅
2: R ← ∅
3: Generate θ random RR sets and insert them into R
4: for i← 1 to k do
5: Pick the node vi that covers the most RR sets in R
6: Add vi into S
7: Remove from R all the RR sets that are covered by vi
8: end for
9: return S

builds a directed acyclic graph (DAG) for each sketch Gi. For each DAG, the algo-
rithm creates an index storing the ancestors and the descendants of the hub node,
namely the node with the largest degree. The trick to speed up the influence evalu-
ation is the following: given a node v, if it is the ancestor of a hub for a particular
sketch, there is no need to visit the descendants of the hub to get the set of users
reached by v. With this expedient the time required by any influence estimation is
significantly reduced.

Reverse Reachable Sketch. Any algorithm discussed in the previous section is
able to overcome the main problem with the FI-Sketch based approach, which is the
excessive time required for the sketches generation.

The Reverse Reachable Sketch (RR-Sketch) approach is able to overcome this
bottleneck. It is based on the intuition of Borgs et. al in [20], which are the first to
understand that it is not necessary to involve the entire graph during the generation
of a sketch.

Following this intuition the authors develop the RR-Sketch framework. The key
idea is that the influence of a set S can be computed by first the selecting a number
random nodes, and then seeing the fraction of these randomly selected nodes that
can be reached by S, under some influence sketch. Central to the entire approach are
the concept of Reverse Reachable Set (RR-Set) and Random Reverse Reachable Set
(Random RR-Set), which are formally defined as follow.

Definition 16 (RR-Set and Random RR-Set). Let G′ denote an FI-Sketch constructed
on G. The Reverse Reachable set of a node v, denoted by Rv, is the set of nodes that
can reach v on the considered sketch G′. A random RR set, RR(v) is generated on
an instance G′ sampled from the original graph G, where v is randomly selected from
the nodes in V .

Intuitively, a random RR set generated from v contains all the nodes that are
potentially able to influence v. Clarly, highly influential nodes a appear in many
random RR sets. Analogously, given a collection of Random RR Sets, if a set S
covers the largest fraction of those sets, it is most likely to be the optimal set.

Algorithm 3 describes, at a high level, the behavior of the RR-Sketch approach.
First, the algorithm generates θ random RR-Sets, then it uses the standard greedy
algorithm for the maximum coverage problem. In fact, the seed set S is essentially
the set covering the largest fraction of Random RR Sets.
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Crucial for Algorithm 3 is the definition of the number of RR sets to be generated,
i.e., θ, as it strikes the balance between accuracy and performance.

Borgs et al., in [20] design the RIS framework to bound the number of RR-Sets to
a threshold τ . Such threshold is set on the number of visited edges. Also, if τ is set to
O(ε−3 ·k · (|V |+|E|) · log2 n), the RIS framework provides a (1− 1/e− ε)-approximate
solution with probability 1− 1/n−1.

Unfortunately, the proposed framework does not achieve the practical efficiency,
as its running time complexity is still prohibitive to be used on large graphs.

The first to achieve the goal of practical efficiency is the TIM algorithm proposed
by Tang et al. in [189]. It is based on the RIS framework of Borgs et al., but it has
the merit of finding a better bound on the number of RR-Sets required to obtain a
solution with the same approximation guarantee as the RIS framework.

In fact, TIM requires O(−2·n · (log n + log
(
n
k

)
)/OPT ) RR-Sets. However, this

bound relies on the value OPT , i.e., the optimal value of the influence function, which
is unknown. The algorithm is therefore organized into two different stages: the first
stage is concerned with the parameter estimation, i.e., it estimates the value of OPT ,
thus it established the number of required RR-Sets, while the second stage is concerned
with seeds selection. While the second stage follows the same schema described in
Algorithm 3, the first stage is based on two different bootstrap techniques, designed
to estimate OPT The expected time complexity of TIM is O(ε−2 · (n+m) · log n).

Tang et al. further improve the performance of their TIM algorithm in [188], where
they propose the IMM algorithm. It follows the same schema as TIM, but it uses a
martingale analysis to provide a better bootstrap estimation of OPT .

One common issue with both IMM and TIM, is their large memory consumption.
This is due to the need of storing in the main memory a large number of RR-Sets,
especially for small values of ε, for the entire duration of the algorithm.

For this reason, many followup studies have tried to optimize the memory de-
mand of the above methods. Among these studies, an interesting approach is the one
adopted in the SSA algorithm proposed in in [154]. SSA starts by generating an initial
number of RR-Sketches. Then, at each iteration, it doubles the number of sketches
and extracts the seeds based on the current generated sketches. It stops when the
estimated influence of the seed set extracted in the i-th iteration is close enough to the
estimated influence of the seed set extracted in the previous iteration. The authors
of SSA claim their algorithm can achieve the (1− 1/e− ε) approximation ratio, even
though in [87] the authors discover an error in the original analysis of [154], which
can be easily fixed without a significant impact on the efficiency of the algorithm.

It should be noted that RR-Sketch based approaches have a significant advantage
over the FI-Sketch based approaches in terms of efficiency. In fact, the RR-Sketch
methods discussed in this section can be regarded as the state of the art algorithms
for IM.

2.5 Chapter notes

The influence maximization problem, proposed for the first time in [97], is extremely
challenging. It is an example of NP-hard problem, thus it is computationally in-
tractable. The source of its complexity lies with the two computational task that are
implicitly embedded into the definition of the problem, i.e., the influence computation
and the combinatorial problem of finding the best seed nodes for the propagation.
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Nonetheless, under the two most classic diffusion models, i.e., the Independent
Cascade and the Linear Threshold model, the monotonicity and submodularity of
the influence spread function can be exploited to design an effective greedy approach.
In fact, a greedy seeds’ selection strategy provides a (1 − 1/e)-approximation of the
optimal solution [152]. However, the bound is not directly applicable, unless we are
able to overcome the burden derived from the influence computation.

A first approach to mitigate the hardness of the influence computation, suggested
in [97], consists in relying on Monte Carlo simulations to estimate the influence func-
tion, as in Algorithm 2. Unfortunately, relying on MC simulations prevent us to
claim the original approximation bound of [152], since we need to account for the
multiplicative error introduced on the influence spread computation. As consequence,
the above bound needs to be modified to take into account the fact that the influ-
ence function is estimated, rather than computed exactly. Therefore, Algorithm 2
provides an (1− 1/e− ε)-approximation of the optimal solution, where ε depends on
the accuracy of the MC estimate.

Even though Algorithm 2 has a polynomial time complexity, it is far from being
practical efficient. For this reason, for many years researchers have tried to improve
over the classic Monte Carlo based greedy algorithm. In pursuing this goal, a number
of different paths have been explored (cf. Section 2.4). Nowadays, the sketch-based
algorithms, especially the ones based on the RIS framework [20], are arguably the
state-of-the-art for influence maximization.

In the following chapters, we first investigate if and to what extent the most
commonly used stochastic diffusion models – based on the ideas discussed in this
chapter – are able to capture the surprising complexity of real-world propagation
phenomena. As a result of this investigation, we formulate a novel class of diffusion
models, based on the Linear Threshold Model (cf. Chapter 3). We then devote our
attention to the classic influence maximization problem as introduced in [97]. More
specifically, we assess the opportunity of exploiting some graph-mining techniques to
effectively detect interesting regions of the diffusion graph, i.e., regions populated with
optimal spreaders (cf. Chapter 4). Finally, in order to capture emerging scenarios in
viral marketing applications, we revisit the classic IM problem. In particular, we
design a novel framework which introduces a combination of targeted aspects and
diversity-awareness (cf. Chapter5-6).
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Chapter 3

Complex Influence Propagation

To properly capture the complexity of influence propagation phenomena in real-world
contexts, such as those related to viral marketing and misinformation spread, informa-
tion diffusion models should fulfill a number of requirements. These include accounting
for several dynamic aspects in the propagation (e.g., latency, time horizon), dealing
with multiple cascades of information that might occur competitively, accounting for
the contingencies that lead a user to change her/his adoption of one or alternative
information items, and leveraging trust/distrust in the users’ relationships and its
effect of influence on the users’ decisions. To the best of our knowledge, no diffusion
model unifying all of the above requirements has been developed so far. In this work,
we address such a challenge and propose a novel class of diffusion models, inspired
by the classic linear threshold model, which are designed to deal with trust-aware,
non-competitive as well as competitive time-varying propagation scenarios. Our the-
oretical inspection of the proposed models unveils important findings on the relations
with existing linear threshold models for which properties are known about whether
monotonicity and submodularity hold for the corresponding activation function. We
also propose strategies for the selection of the initial spreaders of the propagation
process, for both non-competitive and competitive influence propagation tasks, whose
goal is to mimic contexts of misinformation spread. Our extensive experimental eval-
uation, which was conducted on publicly available networks and included comparison
with competing methods, provides evidence on the meaningfulness and uniqueness of
our models.

3.1 Introduction

Since the early applications in viral marketing, the development of information dif-
fusion models and their embedding in optimization methods has provided effective
support to address a variety of influence propagation problems.

However, due to the shrinking boundary between real and online/virtual social
life [14] along with the unlimited misinformation spots over the Web, e.g., fake
news [99, 105], deciding whether a source of information is reliable or not has become
a delicate task. For these reasons, understanding the complex dynamics of informa-
tion diffusion phenomena has emerged as a task of paramount importance, since the
way people act on the Web reflects how people behave in reality, which eventually
depends to some extent on the way everyone consumes and acquires information.

A few studies on the spreading of fake news and hoaxes [149, 151] argued that,
the likelihood of people to be deceived by a spreading information item is increased
because assessing the reliability and trustworthiness of the source generating and/or
sharing such item becomes harder. Within this view, one side effect is the tendency
of users to access information from like-minded sources [102] and at the same time, to
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be trapped inside information bubbles, thus favoring network polarization phenom-
ena [64].

Remarkably, the research community is still divided on this subject. In fact, few
studies argue that, due to the inherent diversity of the entire media environment
(e.g., newspapers, television, social networks), eco chambers are often overstated,
especially for political matters [54]. Nonetheless, the analysis carried out in [54] does
not necessarily neglect the presence of information bubbles, and it also recognizes the
need of avoiding their formation.

To this purpose, debunking and fact-checking are two important tools. One can
devise two main strategies when it comes to debunk information: real-time detection
and correction, or delayed correction [104]. However, in both cases, the response time
plays a crucial role into the effectiveness of the correction attempt, because users
tend to reinforce their own belief — a cognitive phenomenon known as confirmation
bias. Moreover, there is no guarantee about the effectiveness of such correction, on
the contrary, highlighting a fake news may even produce a backfire effect, i.e., driving
users’ attention towards the misleading piece of information.

In this scenario, it appears that one recipe to deal with the interleaving of in-
formation and dis/misinformation should be to educate people to be mindful of the
informative source. Unfortunately, it is often difficult to understand where an infor-
mation item originated from. Therefore, it turns out to be essential to capture the
effects that different types of social ties, particularly trust/distrust relationships, can
have on both the user behavior and propagation dynamics. Two related questions
hence arise:

Q1 What are the key-features that make a diffusion model able to explain the inherent
dynamic, and often competitive, nature of real-world propagation phenomena?

Q2 Do the currently used models of diffusion already incorporate such features?

To address questionQ1, we recognize a number of aspects as essential constituents
of a “realistic” information diffusion model, namely: (1) leveraging trust/distrust infor-
mation in the user relationships to capture different effects of influence on decisions
taken by a user; (2) accounting for a user’s change in adopting one or alternative
information items (i.e., relaxation of the diffusion progressivity assumption); (3) ac-
counting for a user’s hesitation or inclination towards the adoption of an information
over time; (4) accounting for time-dependent variables, such as latency, to explain the
propagation dynamics; (5) dealing with multiple cascades of information that might
occur competitively.

Motivating example. Our above hypothesis is supported by the following
example: consider a typical scenario occurring in a political campaign, where two
candidates want to target the audience of potential electors. Let’s assume, at the
start of the political campaign, every elector has a complete unbiased opinion towards
one of the two candidates. The ultimate decision about which candidate to vote it will
likely be affected by both “exogenous” and “endogenous” influencing factors, i.e., one
may be genuinely influenced by decisions taken by her/his social contacts — impact
of homophily factors — but s/he may also have formed her/his own opinion outside
the network of friends. In fact, not only friends, but also the network of foes has some
degree of influence over the decision process of an individual. As a consequence of such
negative influence received by foes, one may become more hesitant in taking a decision,
which would be reflected by a quiescence state of the elector before being fully engaged
in the promotion of the chosen candidate. Moreover, despite an elector may alternate
her/his opinion in favor of one or the other candidate before the final endorsement,
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it will be more difficult to induce this change over time. In this regard, a time-aware
notion of activation threshold is needed to mimic the effects of the confirmation bias.
Finally, all decisions must be taken before the time limit, i.e., the election day, which
constrains the political campaign period.

Question Q2 has been addressed by a relatively large corpus of research studies
in the last few years. A variety of methods, mainly built upon classic information
diffusion models such as Independent Cascade (IC) and Linear Threshold (LT) [97],
have tried to explain realistic propagation phenomena in order to solve optimization
problems related to influence propagation. As we shall discuss in Section 2, diffu-
sion models have been developed to incorporate one or more of the following aspects:
multiple, competitive cascades of information; time horizon for the unfolding of the
diffusion process; time-dependent influence; delay in the propagation; and trustwor-
thiness of the influence relations. However, to the best of our knowledge, all of the
above aspects have never been unified into the same (LT-based) diffusion model.

Contributions. In this chapter, we propose a novel class of diffusion models,
named Friend-Foe Dynamic Linear Threshold Models (F 2DLT ). They are based on
the classic LT model and are designed to deal with non-competitive as well as com-
petitive time-varying propagation scenarios. In our proposed models, the information
diffusion graph is defined on top of a trust network, so that the strength of trust and
distrust relationships is encoded into the influence probabilities. The response of a
user to the influencing attempts is described by the means of a time-varying activation
function, depending on both the inherent activation-threshold of the user and her/his
tendency of keeping or leaving the campaign-specific activation state over time. We
also introduce a quiescence function to model the latency or delay in the propagation,
which accounts for the involvement of the user’s foes in the information diffusion.
Remarkably, in our models, the trusted connections and distrusted connections play
different roles: only friends can exert a degree of influence for activation/contagion
purposes, whereas foes can only contribute to increase the user’s hesitation to com-
mit with the propagation process. For competitive scenarios, we define two models
with clearly different semantics: a semi-progressive model, which assumes that a user,
once activated, is only allowed to switch to a different campaign, and a non-progressive
model, which instead requires a user to have always the support of her/his in-neighbors
to keep the activation state with a certain campaign.

We provided several theoretical insights into the proposed models. In particular,
we demonstrated how each of our models could be reduced to other LT-based models
for which properties are known about whether monotonicity and submodularity hold
for the corresponding activation function.

Another contribution of this work is the definition of four seed selection strategies,
which mimic different, realistic scenarios of influence propagation. These strategies
are central to our methodology of propagation simulation, since the development of
optimization methods under our diffusion models is beyond the goals of this work.
Notably, in competitive scenarios, we have focused on combinations of strategies (to
associate with competing campaigns) that might be reasonably considered for a mis-
information spread limitation problem.

Experimental evaluation conducted on four real-world networks, also including
comparison with stochastic epidemic models and the dynamic linear-threshold (DLT)
model, has provided interesting findings on the meaningfulness and uniqueness of our
proposed models.
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Table 3.1: Summary of related work based on optimization prob-
lem, basic diffusion model (DM), competitive diffusion (C), non-
progressivity (NP), time-aware activation (TA), delayed propagation
(DP), trust/distrust relations (TD).

Ref. Problem DM C NP TA DP TD
[24] rumor blocking IC X
[191] rumor blocking IC X
[82] rumor blocking LT X
[57] rumor blocking distrib. X
[36] positive influ. max. IC X
[135] active time max. IC X
[58] PTS min. LT X
[31] positive influ. max. Voter X X
[183] positive influ. max. LT X X
[201] positive influ. max. LT X X
[131] time-constrain. influ. max. IC X
[34] time-constrain. influ. max. IC X
[150] positive influ. max. IC X X X X
[130] rumor blocking LT X X X
[137] positive influ. max. IC X

3.2 Related work

We overview information diffusion models that, in the attempt of explaining realistic
propagation phenomena, incorporate one or more of the following aspects: multiple,
competitive cascades of information, time horizon for the unfolding of the diffusion
process, time-dependent influence, delay in the propagation, trustworthiness of the
influence relations. Table 3.1 provides a guide to our discussion.

Please note that here we refer to the vast literature on probabilistic models origi-
nally designed to explain stochastic processes of information diffusion, which include
the classic Independent Cascade (IC) and Linear Threshold (LT) models [33], and
relating optimization problems, such as influence maximization. By contrast, we will
leave out of consideration deterministic models, such as the structural cascades specifi-
cally designed to model context/content-sensitive diffusion over an interaction network
(e.g., [49, 103]).

Also, it is worth noting that the information diffusion modeling problem we tackle
in this work is significantly different from the one addressed by epidemic models, such
as SIS, SIR(S), and SEIR(S) [83], already for the non-competitive scenario. Standard
epidemic models are originally defined as compartmental models, since the individuals
of a population are divided in compartments that describe an epidemiological state.
The parameters used to represent transition rates for changing states are absolute
constants, which means that the infection process in compartmental models has a de-
terministic behavior. Also, standard epidemic models are of mass-action type, since
individuals are represented as normalized fraction of a population which randomly in-
teract with each other. As discussed in [51], even social contagion based on stochastic
or generalized epidemic models (i.e., there is a probability distribution of rates to gov-
ern the infection process) is originally defined on random networks, and its revision to
deal with social networks would lead to more complicated models. In this regard, one
direction is taken by the stochastic individual-contact, network models, whereby SIS
and related models are reformulated by considering a stochastic infection process and
a network-based population of individually identifiable elements. In Section 3.5.3.1,
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we present a stage of experimental evaluation devoted to a comparison with such
models. However, even if epidemic models have also been used for social influence,
they are not the most common approach to such topic [163]. This is manly due to
the fact that identifying and modeling the causal mechanisms of the spread of ideas
is more difficult than for the spread of diseases. By contrast, the threshold models for
influence propagation (even the simplest ones) have two important features that are
not clearly present in epidemic models. First, individuals have different behaviors,
being such differences reflected in the distribution of activation thresholds associated
with the individuals; by contrast, in stochastic epidemic models, the state-transition
probabilities are drawn independently of the individuals’ relations. Second, an indi-
vidual’s behavior also depends on the behavior of other individuals s/he is linked to:
here, it is helpful to think about threshold models as an example of complex conta-
gions, whereby an individual takes an action as a result of the exposure to multiple
sources of influence; by contrast, epidemic models are more likely to represent simple
contagion, in that a single source of influence (as social contact) may suffice to cause
an individual’s action. Moreover, while the transition to the recovered state assumes
non-progressivity in stochastic diffusion models such as LT or IC, such a transition in
SIR(S) is defined to happen spontaneously, discarding any influence that may result
from the interaction with other individuals. For all such reasons, thresholds models
are usually considered more appropriate in contexts like the adoption of new tech-
nologies or controversial ideas [33]. And, in our work, we indeed follow this line of
research. One further point of divergence adheres to the notion of competitiveness
that is somehow found in advanced epidemic models: this refers to the presence of
two or multiple groups of individuals (with some distinguishing characteristics) which
are however affected by the same, single disease [80, 85, 94], therefore it corresponds
to a totally different notion than what is addressed in our work.

In the following, we briefly recall the definition of the LT model, which is at the
basis of our proposal; then, we focus on related work that address the aforementioned
aspects concerning complex propagation phenomena.

The classic Linear Threshold model. Given a directed graph representing
a social network, with estimates of influence probabilities provided as edge weights,
nodes can be “activated” (i.e., influenced) through an information cascade starting
from an initially selected set of seed nodes (i.e., early-adopters). At the beginning of
the information diffusion process, each node is assigned a threshold uniformly at ran-
dom from [0, 1]. The diffusion process unfolds in discrete time steps and follows certain
rules: nodes are either active or inactive; once activated, nodes cannot deactivate; an
active node may trigger activation of neighboring nodes; a node can be activated at
time t+ 1 by its active neighbors if their total influence weight at time t exceeds the
threshold associated to that node. The process runs until no more activations are
possible.

Competitive diffusion. A number of studies have been devoted to model com-
petitive diffusion; see, e.g., [33] for a general introduction to IC and LT classes of
competitive diffusion models. Focusing on competitive diffusion and related opti-
mization problems under the context of misinformation spread limitation, one of the
earliest work is [24], which proposes a multi-campaign IC model to address the in-
fluence limitation problem, i.e., to find a seed set of size k for one, “good” campaign
such that the number of nodes influenced by the other, “bad” campaign is minimized.
In [191], the problem of rumor blocking is addressed under the competitive IC model
and a randomized algorithm is developed for the selection of the seed set able to yield
the maximum reduction in the number of bad-infected nodes. An influence blocking
maximization problem is also addressed in [82], using competitive LT. In [36], the
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two competing cascades correspond to opposite opinions, where the negative one may
emerge spontaneously from any user in the network, e.g., a user got disappointed with
a purchased item and decides to spread negative opinion among her/his contacts. Lu
et al. [137] also address the aspect of complementarity between two competing cam-
paigns, under the assumption that if the two information items are correlated then
the adoption of one item might favor further adoption of the second item over time.

Non-progressive diffusion. While modeling the competitive nature of informa-
tion cascades, the above works however refer to progressive models. On the contrary, a
few studies have been proposed to model non-progressive diffusion. For instance, [135]
introduces a deactivation function into a continuous non-progressive model, whereas
an extension of LT is proposed in [58] to define a non-progressive strict majority
model. However, both models are also non-competitive.

Social ties and temporal aspects. All of the aforementioned works discard
two important aspects: (i) the nature of social ties and their impact on the influence
propagation, and (ii) time aspects concerning the diffusion process. The dichotomy
between opposite types of social ties (e.g., friend vs. foe relations) has been widely
studied in OSN analysis (e.g., [113]), however its incorporation into diffusion models
has been relatively little explored so far. For instance, two extensions of competitive
LT with negative relations are defined in [183], to support positive opinion maximiza-
tion, and in [201], to model the adoption of opinions from friends or opposite opinions
from foes. All of such models are competitive but do not consider temporal aspects
in the activation or propagation processes.

Several works have studied different types of temporal variables and their impact
on spreading processes (e.g., [93, 129, 194]), mainly focusing on lags and delays due
to the diverse response-time and heterogeneous susceptibility of users. In [131], the
authors propose a latency-aware IC model inspired by [93], in which an influencing
delay is introduced in the activation function. Under this model, a time-constrained
IM problem is defined, i.e., to find a seed set of size k such that the expected number
of nodes is activated before a given time limit. Another extension of IC is proposed
in [34], where a notion of meeting probability is introduced to control the activation of
neighbors. The models in [34, 131] are non-competitive. By contrast, the trust-based
latency-aware IC model proposed in [150] features competitiveness, non-progressivity,
temporal delay in propagation, and is also designed to deal with trust/distrust rela-
tions.

Dynamic behaviors. All of the previously mentioned works still lack aspects
modeling the dynamic behavior of the users. In particular, according to recent studies
about polarization of opinion in OSNs [2] and related works about misinformation
reduction [104, 119], a crucial aspect is to intervene before a competing campaign
can reach the users, or at least soon enough, so that a user does not have time to
radicalize her/his thoughts. This idea was first captured in [130], where a dynamic LT
model (DLT) is defined to deal with competitive information cascades. The influence
weights temporally decay according to a Poisson distribution, and every node can be
either positively or negatively activated at a given time depending on the absolute
value of the cumulative influence of its neighbors, while the activation sign depends
on the sign of the cumulative influence. Moreover, a dynamic behavior aspect lays on
the update of the activation threshold whenever a user switches her/his belief.

The latter work shares with our proposal all features of competitiveness, non-
progressivity (although deactivation is not allowed), time-aware propagation, dynamic
influence behavior, and incorporation of opposite opinions in the influence probabil-
ities; moreover, it is also based on LT. However, our competitive models differ from
DLT in [130] since (i) we explicitly model trust and distrust relationships to define the
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influence probabilities, (ii) our activation function takes into account only the trusted
connections while (iii) distinguishing between the two information cascades; (iv) we
introduce a quiescence function to model a delay in the information propagation de-
pending on the strength of influence exerted by distrust relations (i.e., foe neighbors);
finally, (v) the activation threshold in our models becomes stronger over time as a
node is holding a particular belief. In Section 3.5.3.2 we shall compare our models
with DLT.

3.3 Friend-Foe Dynamic Linear Threshold Models

In this section we describe our proposed class of Friend-Foe Dynamic Linear Threshold
(F 2DLT ) models, which is comprised of: the Non-Competitive F 2DLT (nC-F 2DLT ),
the Semi-Progressive Competitive F 2DLT (spC-F 2DLT ), and the Non-Progressive
Competitive F 2DLT (npC-F 2DLT ). We first provide an overview of the framework
based on F 2DLT . Next, we introduce key features common to all models, then we
elaborate on each of them.

3.3.1 Overview

Figure 3.1 illustrates the conceptual architecture of a framework for information dif-
fusion and influence propagation based on our proposed models. Given a population
of OSN users, the framework requires three main inputs: (i) a trust network, which is
inferred from the social network of those users to model their trust/distrust relation-
ships; (ii) user behavioral characteristics that are intrinsic to each user (i.e., exogenous
to an information diffusion scenario) and oriented to express two aspects: activation-
threshold, i.e., the effort needed to activate a user through cumulative influence from
her/his neighbors, and quiescence, i.e., the user’s hesitation in being actively commit-
ted with the propagation process; and, (iii) one or multiple competing campaigns, i.e.,
information cascades generated from the agent(s) having viral marketing purposes.
Moreover, the information diffusion process has a time horizon, and its temporal
unfolding is reflected in the evolution of the information diffusion graph: this also
depends on the dynamics of the users’ behaviors in response to the influence chains
started by the campaign(s), which admit that users may switch from the adoption of
a campaign’s item to that of another one. Putting it all together, our F 2DLT based
framework embeds all previously discussed aspects that are required to explain com-
plex propagation phenomena, i.e., competitive diffusion, non-progressivity, time-aware
activation, delayed propagation, and trust/distrust relations.

Please note that inferring a trust network from a social network is not an objective
of this work; rather, we assume that trust relationships between users of an OSN
are available and, as we shall describe next in this section, they are exploited as key
information to develop our proposed models. Several heuristics have been proposed
to infer a trust network from social relations and interactions among users in an
OSN. A common approach is to infer trust relationships based on the social influence
exerted by users over the network and propagation of trust ratings [67, 79, 95, 157].
Other studies utilize users’ activities in social media [66], or users’ attributes and
interactions [132], or combinations of aspects concerning user affinity, familiarity and
reputation [205], social influence, social cohesion and the effective valence expressed
by the users in the textual contents they produce [195]. The interested reader may
refer to [174, 186] for an exhaustive overview on the topic.
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Figure 3.1: Illustration of the information diffusion framework based
on our proposed F 2DLT

3.3.2 Basic definitions

We are given a trust network represented by a directed graph G = 〈V,E,w〉, with set
of nodes V , set of edges E, and weighting function w : E 7→ [−1, 1] such that, for
every edge (u, v) ∈ E, wuv := w(u, v) expresses how much v trusts its in-neighbor u.
Positive, resp. negative, value of wuv corresponds to a trust, resp. distrust, relation.

For every v ∈ V , we denote with N in
+ (v) and N in

− (v) the set of neighbors trusted
by v (i.e., friends of v) and the set of neighbors distrusted by v (i.e., foes of v), respec-
tively. Moreover, as required in linear threshold models, the constraints

∑
u∈N in

+ (v)wuv ≤
1 and

∑
u∈N in

− (v)|wuv|≤ 1 must be fulfilled.
Let G = G(g, q, T ) = 〈V,E,w, g, q, T 〉 be a directed weighted graph representing

the LT-based information diffusion graph associated with trust network G, where
T denotes a time interval for the diffusion process, g and q denote time-dependent
activation-threshold and quiescence functions. These are introduced in G to model
the aspects of time-aware activation and delayed propagation, respectively. We use
symbol St to denote the set of active nodes at time t, and symbol S̃t to denote the
set of active nodes for which, at t, the quiescence time is not expired yet, i.e., the
quiescent nodes.

Activation-threshold function. According to the LT model, every node v ∈ V
is associated with an exogenous activation-threshold, θv ∈ (0, 1], which corresponds
to the a-priori effort needed in terms of cumulative influence to activate the node.
We enhance this concept by defining an activation-threshold function, g : V, T 7→ R+,
such that for every v ∈ V and t ∈ T :

g(v, t) = θv + ϑ(θv, t),
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i.e., the activation of v at time t depends both on the user’s pre-assigned threshold,
θv, and on a time-evolving activation term, ϑ(·, ·), which models the dynamic response
of a user towards the activation attempt exerted by her/his neighbors.

To specify ϑ(·, ·), we devise two main scenarios for g(·, ·):

• A biased scenario, modeled as a non-decreasing monotone function, to cap-
ture the tendency of a user to consolidate her/his belief, according to the
confirmation-bias principle [2].

• An unbiased scenario, modeled as non-monotone function, whereby we assume
that a user could revise her/his uncertainty to activate over time, thus becoming
more or less inclined to change her/his opinion on an information item. This
is particularly meaningful in applications such as customer retention, or churn
prediction (i.e., a decrease in the activation-threshold would correspond to the
tendency of a user to churn in favor of another service).

Both variants ϑ(·, ·) range within the interval [0, 1], for any v ∈ V .
Let us first consider the biased scenario, which is focused on the confirmation

bias principle. We choose the following form for the activation-threshold function, by
which the value increases by increasing the time a node keeps staying in the same
active state:

g(v, t) = θv + ϑ(θv, t) = θv + δ ×min

{
1− θv
δ

, t− tlastv

}
, (3.1)

where tlastv denotes the last (i.e., most recent) time v was activated and δ ≥ 01 repre-
sents the increment in the value of g(v, t) for consecutive time steps. Thus, the longer
a node has kept its active state for the same information cascade (campaign), the
higher its activation value, and as a consequence, it will be harder to make the node
change its state, or even no more possible (i.e., g(v, t) saturates to 1, as the difference
(t− tlastv ) exceeds (1− θv)/δ).

In the unbiased scenario, we define the activation-threshold function such that, for
each v, the value of the function is maximum (i.e., 1) just after the activation, i.e., at
time t = tlastv +1, then for subsequent time steps, the function exponentially decreases
towards θv:

g(v, t) = θv + ϑ(θv, t) = θv + exp(−δ(t− tlastv − 1))− θvI[t− tlastv = 1], (3.2)

where I[·] denotes the indicator function, i.e., it equals 1 if t− tlastv = 1, 0 otherwise.
Note that δ is used differently w.r.t. the previous scenario, as it acts as a coefficient
that controls the decrease of the activation-threshold function over time.

Quiescence function. Each node in G is also associated with a quiescence value,
which quantifies the latency in propagation through that node. We define a quiescence
function, q : V, T 7→ T , non-decreasing and monotone, such that for every v ∈ V, t ∈ T ,
with v activated at time t:

q(v, t) = τv + ψ(N in
− (v), t),

where τv ∈ T represents an exogenous term modeling the user’s hesitation in being
fully committed with the propagation process, and ψ(N in

− (v), t) provides an additional

1We assume the second additive term in Equation (3.1) is zero if δ = 0.
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delay proportional to the amount of v’s neighbors that are distrusted and active, by
the time the activation attempt is performed by the v’s trusted neighbors:

q(v, t) = τv + ψ(N in
− (v), t) = τv + exp (λ×

∑
u∈St−1

|wuv|), (3.3)

where λ ≥ 0 is a coefficient modeling the average user sensitivity in the perceived
negative influence. Intuitively, this coefficient would weight more the negative influ-
ence as the diffusing informative item is more “worth of suspicion”. Note also that,
in Equation 3.3, wuv is a negative value, since u is a distrusted neighbor of v, i.e.,
u ∈ N in

− (v).

Rationale for activation and propagation. Our choice of using, on the one
hand, friends for the activation of a user, and on the other hand, foes to impact on
delayed propagation, represents a key distinction from related work [130, 183, 201].
Therefore, in our models, the trusted connections and distrusted connections play
different roles: only friends can exert a degree of (positive) influence, whereas foes
can only contribute to increase the user’s hesitation to commit with the propagation
process.

It should be noted that both activation and delayed propagation terms also in-
clude exogenous factors. We indeed take into consideration both the existence of
environmental and personal factors of influence on an individual’s behavior. Several
studies in information diffusion and influence maximization have reported evidences
that, apart from influence coming from social contacts, an individual may be affected
by some external event(s) and/or personal reasons to adopt an information [73] as
well as to delay the adoption of an information [90].

In our setting, we tend to reject as true in general, the principle “I agree with
my friends’ idea and disagree with my foes’ idea” (which is also close to the adage
“the enemy of my enemy is my friend”), since this would imply that the behavior of
a user should be completely determined by the stimuli coming from her/his neigh-
bors. Rather, according to most conceptual models developed in social science and
human-computer interaction fields (see, e.g., [15, 190]), we believe that the individual’s
influenceability has a component based on personal characteristics.

3.3.3 Non-competitive model

We introduce the first of the three proposed models, which refers to a single-item
propagation scenario. Figure 3.2 shows the life-cycle of a node in the diffusion graph
under this model.

Definition 1. Non-Competitive Friend-Foe Dynamic Linear Threshold Model
(nC-F 2DLT ). Let G = 〈V,E,w, g, q, T 〉 be the diffusion graph of Non-Competitive
Friend-Foe Dynamic Linear Threshold Model (nC-F 2DLT ). The diffusion process
under the nC-F 2DLT model unfolds in discrete time steps. At time t = 0, an initial
set of nodes S0 is activated. At time t ≥ 1, the following rule applies: for any inactive
node v ∈ V \ (St−1 ∪ S̃t−1), if

∑
u∈N in

+ (v)∩St−1
wuv ≥ g(v, t), then v will be added to

the set of quiescent nodes S̃t, with quiescence time equal to t∗ = q(v, t). Once the
quiescence time is expired, v will be removed from S̃t and added to the set of active
nodes St∗. The process continues until T is expired or no more activation attempts
can be performed.
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Figure 3.2: Life-cycle of a node in the nC-F 2DLT model.
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Figure 3.3: Uncertainty in an example two-campaign activation se-
quence.

3.3.4 Competitive models

Here we introduce the two competitive F 2DLT models. Let us first provide our
motivation for developing two different competitive models: through the following
example, we illustrate a particular situation that may occur when dealing with two
campaigns competitively propagating through a network. Please note that, through-
out the rest of this chapter, we will consider only two competing campaigns for the
sake of simplicity; nevertheless, our proposed models are generalizable to more than
two competing campaigns.

Example 1. Figure 3.3 shows an example activation sequence in a competitive sce-
nario between two information cascades, distinguished by colors red and green. At time
t = 0, nodes u and z are green-active, and their joint influence causes green-activation
of node v as well (since 0.3 + 0.5 ≥ 0.6). At time t = 1, as fully influenced by node x,
node z has switched its activation in favor of the red campaign. After this switch, at
time t = 2, it happens that v’s activation state is no more consistent with the (joint
or individual) influenced exerted by u and z. In particular, two mutually exclusive
events might in principle happen at t = 2: either v is deactivated or v maintains its
green-activation state. �

The uncertainty situation depicted in the above example prompted us to the defini-
tion of two models, namely semi-progressive and non-progressive F 2DLT : the former
corresponds to the case of v keeping its current (i.e., green) activation state, whereas
the latter corresponds to v returning to the inactive state. Clearly, the two models’
semantics are different from each other: the semi-progressive model assumes that a
user, once activated, cannot step aside, unlike the non-progressive one, which instead
requires a user to have always the support of her/his in-neighbors to keep activation.

Given two information cascades, or campaigns C ′, C ′′, for every time step t ∈ T
we will use symbols S′t and S′′t to denote the sets of active nodes, such that that
S′t ∩ S′′t = ∅, and analogously symbols S̃′t and S̃′′t as the sets of quiescent nodes, for
C ′ and C ′′, respectively. Also, St = S′t ∪ S′′t and S̃t = S̃′t ∪ S̃′′t.
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inactive quiescent active

C ′′

C ′
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Figure 3.4: Life-cycle of a node in competitive models. Straight lines
represent the
transitions common to both spC-F 2DLT and npC-F 2DLT , while
dashed lines
refer to npC-F 2DLT only.

It should also be noted that, while sharing the time interval (T ) of diffusion, C ′

and C ′′ are not constrained to start at the same time t0. Nevertheless, for the sake
of simplicity, we hereinafter assume that t0 = t′0 = t′′0 (with t0 ∈ T ), unless otherwise
specified (cf. Section 3.5).

Definition 2. Semi-Progressive Competitive Friend-Foe Dynamic Linear
Threshold Model (spC-F 2DLT ). Let G = 〈V,E,w, g, q, T 〉 be the diffusion
graph of Semi-Progressive Competitive Friend-Foe Dynamic Linear Threshold Model
(spC-F 2DLT ), and C ′, C ′′ be two campaigns on G. The diffusion process under the
spC-F 2DLT model unfolds in discrete time steps. At time t = 0, two initial sets of
nodes, S′0 and S′′0 , are activated for each campaign. At every time step t ≥ 1, the
following state-transition rules apply:

R1. For any inactive node v ∈ V \ (St−1 ∪ S̃t−1), if
∑

N in
+ (v)∩S′t−1

wuv ≥ g(v, t),

then v will be added to S̃′t; analogously, if
∑

N in
+ (v)∩S′′t−1

wuv ≥ g(v, t), then v will be

added to S̃′′t. If both conditions hold, i.e., v can be simultaneously activated by both
campaigns, a tie-breaking rule will apply, in order to decide which campaign actually
determines the node’s transition in the quiescent state.

R2. When a node v enters the quiescent state corresponding to C ′ (resp. C ′′) for
the first time, it will stay in the quiescent node-set S̃′t (resp. S̃′′t) until the quiescence
time is expired. After that, v will be moved to S′t (resp. S′′t ), i.e., it will become active
for C ′ (resp. C ′′).

R3. Given a node v active for C ′′, i.e., v ∈ S′′t−1, if
∑

N in
+ (v)∩S′t−1

wuv ≥ g(v, t)

and
∑

N in
+ (v)∩S′t−1

wuv >
∑

N in
+ (v)∩S′′t−1

wuv, then v will be removed from S′′t and added
to S′t; analogous rule holds for any node active for the first campaign.

Every node for which none of the above transition-state rules is triggered at time t, it
will keep its current state at time t+ 1.

The life-cycle of a node in spC-F 2DLT is shown in Figure 3.4. Note that, once a
node becomes active, it cannot turn back to the inactive state, but it can only change
the activation campaign. Moreover, switch transitions occur instantly.

Definition 3. Non-Progressive Competitive Friend-Foe Dynamic Linear Thresh-
old Model (npC-F 2DLT ). Let G = 〈V,E,w, g, q, T 〉 be the diffusion graph of Non-
Progressive Competitive Friend-Foe Dynamic Linear Threshold Model (npC-F 2DLT ),
and C ′, C ′′ be two campaigns on G. The diffusion process in npC-F 2DLT evolves ac-
cording to the same rules as in spC-F 2DLT plus the following rule concerning the
deactivation process of an active node:
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R4. For any active node v at time t−1, if
∑

N in
+ (v)∩S′t−1

wuv < θv and
∑

N in
+ (v)∩S′′t−1

wuv <

θv, then v will turn back to the inactive state at time t.

Every node for which none of the transition-state rules is triggered at time t (including
the ones defined for spC-F 2DLT ), it will keep its current state at time t+ 1.

It should be noted that a node’s deactivation rule depends on θv only (rather than
on the whole function g(v, t)); otherwise, every node activated at a given time could
deactivate itself in the next time step, due to the increase in its activation threshold.
This would eventually lead to a configuration in which all nodes in the network, except
the initially activated ones, are in the inactive state. The life-cycle of a node in the
npC-F 2DLT is illustrated in Figure 3.4. Note that, unlike in spC-F 2DLT , transitions
to inactive state are allowed.

3.3.5 Theoretical properties of the models

In this section we provide insights into the proposed models. Our main goal is to
understand how the features introduced in each of our LT-based models impact on the
models’ spread behavior, particularly on monotonicity and submodularity properties.
We organize our analysis into two parts: the first corresponding to non-competitive
diffusion, and the second to competitive diffusion.

3.3.5.1 Non-competitive diffusion

We show that nC-F 2DLT can be reduced to LT with quiescence time, hereinafter
denoted as LTqt . By proving the equivalence between the two models, we hence claim
that both the monotonicity and submodularity properties hold for nC-F 2DLT . Note
that since we deal with a progressive model, we assume without loss of generality that,
for every node v, the activation-threshold function has a constant value for the whole
duration of the diffusion process, i.e., g(v, t) = θv.

Definition 4. Reduction of nC-F 2DLT to LTqt . Given G = 〈V,E,W, g, q, T 〉
for nC-F 2DLT , a diffusion graph GLT = 〈VLT , ELT 〉 can be derived, under LTqt,
such that VLT = V and ELT = {(u, v)|(u, v) ∈ E,wuv > 0}. Every node v ∈ VLT
is assigned a quiescence time equal to the maximum value of the quiescence function
qv(·), i.e., τmaxv = τv + ψ(N in

− (v)).

Definition 4 exploits the fact that the distrust connections are not involved in the
activation process, but only in the calculation of the quiescence time. Therefore, we
can assume this time to be the maximum possible value, and hence we can study the
propagation under LTqt . The reduction of nC-F 2DLT to LTqt is meaningful since
the two models are proved to be equivalent, as we report in the following theoretical
result.

Proposition 1. The Non-Competitive Trust Threshold Model (nC-F 2DLT ) and the
Linear Threshold Model with quiescence time (LTqt) are equivalent. J

Proof. According to the definition of equivalence of two diffusion models in [33, 97],
in order to prove the equivalence of nC-F 2DLT and LTqt we need to prove that the
distribution of the active sets for any given seed set S0 is the same under the two
models. We provide a proof by induction, hence we consider the evolution of the
active sets during the diffusion rounds.
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Figure 3.5: Activation sequence for the LTqt model.

For the LTqt model, the probability of a node to be activated exactly at time t+1
(with t ≥ 1) is given by:

Pr(v ∈ S̃t+1 | v /∈ St) =
Pr(v ∈ S̃t+1, v /∈ St)

Pr(v /∈ St)

=
Pr(
∑

u∈St−1
wuv < θv ≤

∑
u∈St wuv)

Pr(
∑

u∈St−1
wuv < θv)

=

∑
u∈St\St−1

wuv

1−
∑

u∈St−1
wuv

(3.4)

Above, it should be noted that the joint probability Pr(v ∈ S̃t+1, v /∈ St) cor-
responds to the probability that the threshold associated with node v falls into the
interval denoted by the influence received by v until the previous time step and the
one received at the current time step. Moreover, Pr(v /∈ St) is just the probability
that, at time (t−1), the influence received by v is still below its threshold. Finally, we
derive the last equality in Equation 3.4, which intuitively denotes that the influence
exerted by the nodes in St \ St−1, i.e., the nodes turning into the active state exactly
in the current time step, is decisive to exceed the threshold θv.

For the npC-F 2DLT model, the conditional probability Pr(v ∈ S̃t−1 | v /∈ St)
can be derived starting from Equation 3.4 by constraining wuv such that u ∈ N in

+ (v),
i.e., only trusted relations are considered. This leads to an equivalent definition of
conditional probability, which holds for every time step t and seed set S0. Therefore,
we can conclude that the final active sets will be the same for both models.

It should be noted that, due to the quiescence times, the sets of active nodes in
the two models may not be the same at every time step, but the two final active sets
will match each other.

Since the introduction of quiescence time in LT does not have effect on the distri-
bution of the final active nodes [33], we obtain the following equivalence: LT ≡ LTqt
≡ nC-F 2DLT . Therefore, the activation function is still monotone and submodular
under nC-F 2DLT .

Example 2. Consider Figure 3.5, where the propagation process unfolds according
to the LTqt dynamics. Nodes u and z are chosen as initial seeds. Thresholds and
weights are set such that θ ≤ wuv and max{wvx, wzx} < θx ≤ wvx +wzx, therefore the
combined influence of v and z is required for the activation of node x. The dashed edge
denotes a distrust connection removed as a result of the reduction defined in Def. 4.
In the initial time step (t = 0), u activates v causing its transition from the inactive
state to the quiescent state (in yellow). When t = τmaxv , v turns to the active state,
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Figure 3.6: An example of non-terminating diffusion process

and together with z it becomes able to trigger the activation of node x (which will
eventually become active by the time-horizon T ).

It should be noted that the same dynamics holds for the nC-F 2DLT model, apart
from the difference that concerns the quiescence time of node v: this would be less than
τmaxv since y, a foe of v, is not involved in the propagation process. �

3.3.5.2 Competitive diffusion

We focus here on spC-F 2DLT and npC-F 2DLT , and show that both models can be
reduced to the Homogeneous Competitive Linear Threshold (H-CLT ) with Majority
Vote as tie-breaking rule [33]. This is a competitive, progressive model based on LT,
for which it is known that its activation function is monotone but not submodular
regardless of the particular tie-breaking rule.

To begin with, we might recall that the non-progressive LT-based diffusion can be
reduced to the progressive case, using a particular form of layered graph []. Given a
time interval T and a diffusion graph G = 〈V,E〉 for non-progressive LT, a new graph
GT can be derived such that every node v ∈ V will have a replica vt in every layer at
time t ∈ T , and for every edge (u, v) ∈ E there will be an edge (ut−1, vt) in GT .

Unfortunately, this serialization technique cannot be directly applied to our mod-
els, since it is not designed to deal with competitive or non-progressive diffusion and
it discards activation or delayed propagation aspects. In the following, we define
serialization techniques that are suitable for our competitive models and treat one
particular configuration at a time. One general requirement is related to the time
horizon to bound the unfolding of the diffusion process. In fact, when dealing with
competitive models, the termination guarantee is lost. A simple example is provided
next to depict such a non-termination scenario.

Example 3. In Figure 3.6, nodes u and z are chosen as seed for the green campaign
and the red one, respectively. Nodes v and x become green-active and red-active,
respectively, at time t = 1. Next, they will constantly switch their activation campaign,
causing non-termination of the diffusion process. �

Configuration 1: No quiescence time, constant activation-threshold We
assume that q(v) = 0 and g(v, t) = θv, for all v ∈ V, t ∈ T . For both spC-F 2DLT and
npC-F 2DLT , we claim their reduction to the H-CLT model with majority voting as
tie-breaking rule.

Definition 5. spC-F 2DLT graph serialization for reduction to H-CLT . Given
a time interval T , we define a layered graph GT = 〈V T , ET 〉 such that, for each layer at
time t ∈ T , every node v ∈ V will be represented in V T as a tuple 〈v1

t , v
2
t , v

3
t 〉. Instances

v1
t and v2

t have activation-threshold equal to 0, while v3
t has the same threshold as the

original node v ∈ V . The set of edges is defined as ET = {(u1
t , v

3
t+1) | (u, v) ∈ E, t, t+

1 ∈ T}∪{(v3
t , v

2
t ) | v ∈ V, t ∈ T}∪{(v2

t , v
1
t ) | v ∈ V, t ∈ T}∪{(v1

t , v
2
t+1) | v ∈ V, t ∈ T},

and the following constraint on edge weights must hold: ∀v2
t ∈ V T , w(v1

t−1, v
2
t ) <

w(v3
t , v

2
t ).
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In the above definition, triples act as connectors between two consecutive time-
layers. The role of any connector component is as a sort of “switch” to enable a node
choosing between its activation state in a layer and the one in the subsequent layer.
In other words, node v1

t is the main instance of node v, since the activation state of
v1
t reflects the state of v in the original graph, under spC-F 2DLT at time t; node v3

t

is the instance of v connected with other nodes from layer at t−1, therefore it reflects
the influence received by v in the original graph, at time t−1; if the activation attempt
to v3

t fails, node v2
t will be activated with the same state of v; otherwise, according

to the edge weight constraint (cf. Def. 5), v2
t will switch to the other campaign, and

then will propagate to instance v1
t . Recall that v1

t , v2
t have zero activation-threshold.

Figure A.1 in Appendix A.1 shows an example of serialization for a spC-F 2DLT
diffusion graph with time horizon set to 2.

It should be emphasized that, compared to the serialization method in [97], we
require replication of each node in each layer, and additional edges connecting the
replica-instances, in order to allow the maintenance of the activation state when no
activation event occurs between two time-consecutive layers.

Analogous reduction technique can be defined for the npC-F 2DLT model.

Definition 6. npC-F 2DLT graph serialization for reduction to H-CLT . Given
a time interval T , we define a layered graph GT = 〈V T , ET 〉 such that, for each layer
at time t ∈ T , every node v ∈ V will be represented in V T as a tuple 〈v1

t , v
2
t , v

3
t 〉.

Instances v1
t and v2

t have activation-threshold equal to 1 and 0, respectively, while v3
t

has the same threshold as the original node v ∈ V . The set of edges is defined as
ET = {(u1

t , v
3
t+1) | (u, v) ∈ E, t, t + 1 ∈ T} ∪ {(v3

t , v
2
t ) | v ∈ V, t ∈ T} ∪ {(v2

t , v
1
t ) |

v ∈ V, t ∈ T} ∪ {(v3
t , v

1
t ) | v ∈ V, t ∈ T} ∪ {(v1

t , v
2
t+1) | v ∈ V, t, t + 1 ∈ T}, and the

following constraints on edge weights must hold: ∀v2
t ∈ V T , w(v1

t−1, v
2
t ) < w(v3

t , v
2
t ),

and ∀v1
t ∈ V T , w(v2

t , v
1
t ) + w(v3

t , v
1
t ) = 1.

It should be noted that the last condition in Def. 6 imposes nodes v2
t and v3

t to
hold the same activation state in order to activate v3

t .
Analogously to the reduction of spC-F 2DLT to H-CLT , we can conveniently

devise a notion of “connector” component between any two consecutive layers, which
however in this case should also account for node deactivations.

Figure A.2 in Appendix A.1 shows an example of connector for the npC-F 2DLT
model.

Claim 1. For any given diffusion graph G under spC-F 2DLT (resp. npC-F 2DLT ),
assuming constant activation-threshold and no quiescence time, every node v in G
is active at time t ∈ T if and only if its corresponding instance v1

t is active in the
serialized graph GT (resp. npC-F 2DLT ). J

Configuration 2: Constant quiescence time, constant activation-threshold.
We assume that q(v) = τv and g(v, t) = θv, for all v ∈ V . For both spC-F 2DLT and
npC-F 2DLT , we claim their reduction to H-CLT with majority voting as tie-breaking
rule.

In this case, we need to consider that, whenever a node is activated, its quiescence
time may not expire before the time horizon; for this reason, we will consider only
nodes reachable from S0 = S′0 ∪ S′′0 within T , for any two given seed sets S′0 and S′′0 .
To identify such nodes, we define a quiescence-aware distance measure that accounts
for the quiescence times along the path connecting any two nodes. Given nodes u, v,
and the set P (u, v) of all paths between u and v, the distance from u to v will be
measured as d(u, v) = minp∈P (u,v)

∑
x∈p τx. Moreover, we denote with d(S0, v) the
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minimum distance between nodes u ∈ S0 and v. By exploiting this distance, we will
discard all nodes that cannot be “contagious” before the end of T , say tmax. Therefore,
the node set V T of the layered graph is defined as:

V T = {〈v1
t , v

2
t , v

3
t 〉 | ∀v ∈ V, t ∈ T, d(S0, v) < tmax}.

Each node v ∈ V with quiescence time τv will have connections from the previous
layers according to the following rule: for any layer at time t, if t < d(S0, v) then v
will not have any incoming edges, otherwise all incoming edges of v will be from the
layer at time t− τv − 1.

Using the above settings in the serialization method previously presented, it can
easily be demonstrated that both spC-F 2DLT and npC-F 2DLT can be reduced to
an equivalent H-CLT model.

Claim 2. For any given diffusion graph G under spC-F 2DLT (resp. npC-F 2DLT ),
assuming constant activation-threshold and constant quiescence time, every node v in
G is active at time t ∈ T if and only if its corresponding instance v1

t is active in the
serialized graph GT (resp. npC-F 2DLT ). J

Configuration 3: Variable quiescence time, constant activation-threshold
We assume that q(v, t) is variable, while g(v, t) = θv, for all v ∈ V, t ∈ T .

Like in the previous case, we need to specify the seed sets S′0, S′′0 . However, note
that the quiescence time of a node now depends on the actual activation state of its
in-neighborhood (cf. Equation 3.3), which makes it unfeasible a direct serialization of
the whole diffusion graph.

Starting from the original diffusion graph G, we derive an “intermediate” graph
Ĝ, which is equivalent to G unless each node v ∈ V is associated with a quiescence
time interval [τv, τ

max
v ], where τmaxv = τv + ψ(N in

− (v)). Let us denote with Gmin the
instance of Ĝ such that the quiescence time of every v ∈ Ĝ is τv, and with Gmax the
instance of Ĝ such that the quiescence time of every v ∈ Ĝ is τmaxv .

Although we cannot assert that spC-F 2DLT and npC-F 2DLT are equivalent
to H-CLT under the layered graph obtained by applying the previously described
serialization techniques, an important theoretical result can nonetheless be provided,
as reported next.

Claim 3. For any diffusion graph G under spC-F 2DLT (resp. npC-F 2DLT ), with
campaigns C ′, C ′′, assuming constant activation-threshold and variable quiescence time,
for any seed sets S′0 and S′′0 , it holds that:

σ′H-CLTmax(S′0, S
′′
0 ) ≤ σ′(S′0, S′′0 ) ≤ σ′H-CLTmin(S′0, S

′′
0 ), (3.5)

where σ′ is the number of nodes activated by C ′ under spC-F 2DLT (resp. npC-F 2DLT ),
σ′H-CLTmax(S′0, S

′′
0 ) and σ′H-CLTmin(S′0, S

′′
0 ) are the number of nodes activated by C ′

under H-CLT in the layered graph obtained by serialization of spC-F 2DLT (resp.
npC-F 2DLT ) on Gmax and Gmin, respectively. J

Enabling variable quiescence time, i.e., ψ(·), means that the exact time required
by each node to make a transition from the quiescent state to the active one cannot
be established in advance at the beginning of the propagation process. Since for any
node v the quiescent time ranges within [τv, τ

max
v ], we devise two opposite scenarios.

In the first scenario, represented by the rightmost side of Equation 3.5, each node is
assumed to wait the minimum amount of time, i.e., τmin, before its activation; this
leads to a higher fraction of nodes that could be activated before the time horizon
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Figure 3.7: Example connector for modeling the time-varying
activation-threshold
in the serialized graph under a competitive model.

T is reached. The second scenario, represented by the leftmost side of Equation 3.5,
assumes that each node has to wait the maximum possible quiescence time, i.e., τmax;
as a consequence, a smaller fraction of nodes will be able to complete the activation
process before the time limit, thus leading to a lower spread.
Configuration 4: No quiescence time, variable activation-threshold. We
assume that q(v) = 0 and g(v, t) = θv + ϑ(θv, t), for all v ∈ V, t ∈ T . For both
spC-F 2DLT and npC-F 2DLT , we claim their reduction to H-CLT with majority
voting as tie-breaking rule. In the following, we refer to the biased activation-threshold
function, although it is easy to show analogous considerations for the non-biased
activation-threshold function.

Because of the dynamic behavior of the activation-threshold function, we cannot
predict its value at any particular time step of the diffusion process; nevertheless,
by specifying the value of coefficient δ in Equation 3.1, we can derive the value of
tmaxv , which would suggest how many time-layers we have to look back in order to
know the actual threshold value of v at a particular time t. In order to capture such
dynamic aspect in H-CLT , we define a further serialization technique, built on top
of the previously defined. We will restrict to a particular case, afterwards we provide
some rules that apply to the general case.

Let us assume to focus on a particular node v, and at any two consecutive time
steps of activation for the same campaign its threshold increases by δ. Again, node
v will have replicas for any time-layer t, i.e., 〈v1

t , v
2
t , v

3
t 〉, with the first replica, v1

t ,
holding the actual state of v in the corresponding serialized graph for the competitive
model. In addition, we introduce further replicas, in number equal to the value tmaxv ;
suppose, for the sake of simplicity, tmaxv = 3, we derive replica nodes 〈v3,r1

t , v3,r2
t , v3,r3

t 〉,
such that each of them will have a threshold value in [θv, 1] with increment of δ.

Figure 3.7 illustrates this new component in the serialized graph.
Because this component is introduced as an extension of the previous techniques,

the meaning of the nodes v1
t−1, v

1
t−2, v

1
t−3 remains the same as in the previous cases.

On the right side of Figure 3.7, each of the additional replicas has a different value of
threshold and it is connected with nodes coming from the previous layers. Clearly, the
overall behavior of this component depends on the weights attached to every edge in
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Figure 3.8: Serialization of a diffusion graph under a competitive
model with time-varying activation-threshold.

the structure. In this regard, we define the following constraints on the edge weights:

w3,r1 > w13
1 (a)

∀i > 1 w13
i = w3,ri (b)

∀i ≥ 1 w13
i >

∑n
j>iw

13
j (c)

∀i ≥ 1 w3,ri >
∑n

j>iw
3,rj (d)

w3,r1 − w13
1 < w13

n (e)

(3.6)

It should be noted that the activation attempts are performed directly on the replicas.
Therefore, the above constraints on the edge weights control whether a node assumes
the state derived as the outcome of the most recent activation attempts, or the one
consistent with its personal history. as the outcome of the most recent activation
attempts or the one consistent with its personal history. Each of the aforementioned
inequality contributes to this decision process, following a different purpose. Equa-
tion 3.6(a) ensures that the state derived from the last activation attempt is always
preferred to the one derived from the previous time step. Equation 3.6(b) ensures
that the information coming from the previous time steps shall be given the same im-
portance as the one derived from the current replicas. Equation. 3.6(c-d) ensures that
the most recent information, i.e., the closest previous time steps, has higher priority
than the earliest one. Equation. 3.6(e) ensures that there is consistency with respect
to the state assumed in the closest previous time step and farthest involved time step
(e.g., the third previous time step in the addressed scenario).

Moreover, the threshold of the “central” node in the component (v3
t ) is set to w3,r1,

to ensure sequentiality of the diffusion. By setting θv3t equal to w
3,r1, we avoid that v3

t

can be activated by its own replicas belonging to layers preceding the t− 1-th layer.
Figure 3.8 shows how the above defined connector is integrated into a serialization

technique. In the figure, only the connections incident on vertex v are expanded. The
red edges are the ones connecting consecutive layers, therefore the replica v3,r1

t is con-
nected with the previous layer, the replica v3,r2

t is connected with the second previous
layer and so on. Blue edges represent the new connections due to the introduction of
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Table 3.2: Summary of evaluation network data.

Epinions Slashdot Wiki-Conflict Wiki-Vote
#nodes 131 828 77 350 116 836 7 118
#edges 841 372 516 575 2 027 871 103 675
% distrusted/negative-edges 14.7% 23.3% 61.9% 21.6%
avg. out-degree 6.38 6.67 17.36 6.68
diameter 14 11 10 7
clust. coeff. 0.093 0.026 0.015 0.128
strong LCC #nodes 36 490 23 217 116 836 1 178
strong LCC #edges 602 722 243 600 2 027 871 31 572

this new component.

Claim 4. For any given diffusion graph G under spC-F 2DLT (resp. npC-F 2DLT ),
assuming variable activation-threshold and no quiescence time, every node v in G
is active at time t ∈ T if and only if its corresponding instance v1

t is active in the
serialized graph GT (resp. npC-F 2DLT ). J

3.4 Evaluation methodology

3.4.1 Data

We used four real-world, publicly available networks, namely: Epinions [113], Slash-
dot [113], Wiki-Conflict [22] and Wiki-Vote [112]. Epinions is a “who-trust-whom”
network of the homonymous review site. Slashdot models friend/foe relations be-
tween the users of the homonymous technology-related news website. Wiki-Conflict
refers to Wikipedia users involved in an “edit-war”, i.e., edges represent either posi-
tive or negative conflicts in editing a wikipage. Wiki-Vote models “who-vote-whom”
relations between Wikipedia users that voted for/against each other in admin elec-
tions. Our choice of the evaluation datasets was mainly driven by two intents: (i)
to provide a reproducible evaluation framework based on publicly available network
data, and (ii) to test our models on a diversified set of real-world OSNs with suitable
characteristics for information propagation processes.

Table 3.2 summarizes main structural characteristics of the networks. To favor
meaningful competition of campaigns based on selected pairs of strategies, we limited
the diffusion context to the largest strongly connected component in each evalua-
tion network; note that, for Wiki-Conflict, the largest strongly connected component
coincides with the whole graph. Also, the clustering coefficient corresponds to the
definition of global transitivity in an undirected graph (the direction of the edges is
ignored).

All networks are originally directed and signed; in addition, the two Wikipedia-
based networks also have timestamped edges. In order to derive the weighted graphs
of influence probabilities, we defined the following method: for every (u, v) ∈ E, the
edge weight wuv was sampled from a binomial distribution B(|N in

+ (v)|, p) if u ∈ N in
+ (v)

(i.e., v trusts u), otherwise wuv ∼ −B(|N in
− (v)|, p), where the probability of success p

is equal to the fraction of trust edges in the network;
the rationale is that for higher fraction of trusted connections in the network, the

nodes will be more likely to trust each other, and hence each node is more likely to
be involved in the propagation process.

We performed 1, 000 samplings of edge weights, for each of the four networks.
Therefore, all presented results will correspond to averages of 1, 000 simulation runs.
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Figure 3.9: Stress configuration

3.4.2 Seed selection strategies

We defined four seed selection strategies, each of which mimics a different, realistic
scenario of influence propagation.

Exogenous and malicious sources of information. This method, hereinafter
referred to as M-Sources, aims at simulating the presence of multiple sources of ma-
licious information within the network. Here, an exogenous source is meant as a
node without incoming links, e.g., a user that is just interested in spreading her/his
opinion: such a node is also regarded as malicious if a high fraction of outgoing
influence exerted by the node is distrusted by out-neighbors. Formally, given a
budget k, the method selects the top-k users in a ranking solution determined as
r(v) = (W̄−/(W̄− + W̄+)) log(|Nout(v)|), for every v such that N in(v) = ∅, where
W̄+, W̄− are shortcut symbols to denote the sum of trust (resp. distrust) weights,
respectively, outgoing from v.

Exogenous and influential trusted sources of information. Analogously to
the previous method, this one, dubbed I-Sources, searches for the “best” influential
trusted sources. The ranking function is as r(v) = (W̄+/(W̄− + W̄+)) log(|Nout(v)|).
Note that this still takes into account the negative weights, because even a highly
trusted user might be distrusted by some other users (e.g., “haters”).

Stress triads. This strategy is based on the notion of structural balance in tri-
ads [113]. Figure 3.9 shows an example of stress-triad configuration: node v has two
incoming connections, the one from node z with negative weight, and the other from
u with positive weight, and there is also a trust link from z to u. We say that z is
a stress-node since, despite the distrusted link to v, it could also indirectly influence
v through the trusted connection with u. Based on that, our proposed Stress-Triads
strategy searches for all triads containing stress-nodes and selects as seeds the first k
stress-nodes with the highest number of triads they participate to.

Newcomers. We call a node v ∈ V as a newcomer if all of its incoming edges
are timestamped as less recent than its oldest outgoing edge. The start-time of v
is the oldest timestamped associated with its incoming edges. We divide the set
of newcomers into two groups obtained by equal-frequency binning on the temporal
range specific of a network. Upon this, we distinguish between two strategies, dubbed
Least-New and Most-New, which correspond to the selection of k newcomers having
highest out-degree among those with the oldest start-time and with the newest start-
time, respectively. Both strategies were applied to Wiki-Vote and Wiki-Conflict, due
to the availability of timestamped edges.
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(a) Epinions, I-Sources (b) Slashdot, M-Sources

(c) Wiki-Vote, Stress-Triads (d) Wiki-Conflict, Most-New

Figure 3.10: Spread of nC-F 2DLT by varying seed set size (k) and
selection strategy.

3.4.3 Settings of the model parameters

For every user v, the exogenous activation-threshold θv and quiescence time τv were
chosen uniformly at random within [0,1] and [0,5]. Moreover, λ (used in the quiescence
function) was varied between 0 and 5, while the coefficient δ (used in the activation-
threshold function) was selected in {0, 0.1} for the biased scenario (Equation. 3.1) and
kept fixed to 1 for the unbiased scenario (Equation 3.2).

3.5 Results

We organize the presentation of our experimental results into three parts. The first
part is devoted to the evaluation of the non-competitive model (Section 3.5.1), and the
second part for the competitive models (Sect. 3.5.2). In the third part (Section 3.5.3),
we present a comparative evaluation of our non-competitive model against IC and
stochastic individual-contact epidemic models, whereas for the competitive scenario,
we compare our models with the DLT model [130].

3.5.1 Evaluation of nC-F 2DLT

3.5.1.1 Spread, stressed users and negative influence

We analyzed the number of final activated users (i.e., spread) by varying the size (k)
of seed set, for every seed selection strategy. In this analysis, we assumed constant
activation thresholds (i.e., ϑ(·, ·) = 0) and constant quiescence times (i.e., ψ(·, ·) =
0). Moreover, we distinguished between “stressed ” and “unstressed ” users, being the
former regarded as active users having at least one distrusted active in-neighbor. As
shown in Figure 3.10 for some representative cases, besides the expected growth in
spread as k increases, we found the activation of stressed users lower in amount but
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(a) Epinions (b) Slashdot

(c) Wiki-Conflict (d) Wiki-Vote

Figure 3.11: Activation loss due to time-varying quiescence (for λ =
5, k = 50) under the nC-F 2DLT model.

following similar trend as that corresponding to unstressed users. For both types
of users, I-Sources revealed higher spread capability, followed by Stress-Triads, in all
networks (with the exception of Wiki-Vote). The two newcomers-based strategies
(where applicable) turned out to be effective as well, with Least-New prevailing on
Most-New for lower k. By contrast, M-Sources was in general unable to yield a spread
comparable to other strategies.

We further investigated the effect of distrusted connections on the spread during
the unfolding of the diffusion process.

In this regard, Table 3.3 shows the amount of nodes that, at the time of their
involvement in the propagation process, were negatively influenced by in-neighbors
activated at any previous time, along with their perceived negative influence. The
symbol “-” in Table 3.3 denotes that the corresponding seed-selection strategy does
not apply to a particular network.

In general, we observed a significant presence of negative influence spread when
using I-Sources and Stress-Triads. Considering Epinions and Slashdot, the former (resp.
the latter) corresponded to a negative influence spread of the order of thousands (resp.
hundreds), with average influence weight around 0.3 (resp. 0.2). The impact of these
strategies was lower in the Wikipedia networks (one order of magnitude below). M-
Sources yielded to null (in Epinions and Slashdot) but also non-negligible (in Wiki-Vote
and Wiki-Conflict) spread. By contrast, the newcomers-based strategies had small (in
Wiki-Vote) or negligible (in Wiki-Conflict) effect on the negative influence spread.
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Table 3.3: Summary about negative influence spread (k = 50).

Network

Strategy
M-Sources I-Sources Stress-Triads Most-New Least-New

Epinions # nodes 0 2 117 847 - -
avg weight 0 0.30 0.22 - -

Slashdot # nodes 0 4 599 345 - -
avg weight 0 0.32 0.19 - -

Wiki-Conflict # nodes 13 829 26 1 0
avg weight 0.22 0.05 0.01 0.02 0

Wiki-Vote # nodes 45 27 175 10 12
avg weight 0.21 0.13 0.22 0.04 0.07

3.5.1.2 Activation loss

As partially unveiled by the previous analysis, the users’ involvement in the propa-
gation process is affected by the behavior of the quiescence function, whose impact
would increase with the amount of distrusted influence in the spread. This further
prompted us to measure the activation loss, i.e., the percentage decrease of activated
users, due to the enabling of the time-varying quiescence factor (i.e., λ > 0 in Equa-
tion 3.3) in the users’ activation states. Figure 3.11 shows results corresponding to
relatively large λ (set to 5) and k (set to 50). For each seed selection strategy, the
curve is drawn by using polynomial splines,2 where the marked points (from low to
high time steps) refer to the 25%, 50%, 75% and 100% of the time horizon observed
for the diffusion process under the chosen strategy without time-varying quiescence
times. One general remark that stands out is a relatively high percentage of activation
loss for the initial time steps; this holds in particular for Stress-Triads, which might
be explained since the initial influenced users by means of this strategy tend to be
subjected to a certain amount of distrusted influence. As the time steps get closer to
the time horizon, the activation loss tends to significantly decrease, down to nearly
zero in most cases, with few exceptions including the use of I-Sources in Slashdot
and Epinions, and Stress-Triads and M-Sources in Wiki-Vote — note this is indeed
consistent with the previous analysis on negative influence spread.

3.5.2 Evaluation of competitive models

To analyze the behavior of spC-F 2DLT and npC-F 2DLT , we aimed at simulating a
scenario of limitation of misinformation spread, i.e., we assumed that one campaign,
the “bad” one, has started diffusing, and consequently another campaign, the “good”
one, is carried out in reaction to the first campaign.

3.5.2.1 Combining seed selection strategies

Within this view, we preliminarily investigated about strategy combinations that
might be reasonably considered for a misinformation spread limitation problem. Ta-
ble 3.4 provides a number of statistics we collected to characterize selected pairs of
strategies, for two campaigns carried out independently to each other, i.e., in a non-
competitive scenario, with k = 50. Using Stress-Triads for the bad campaign and
I-Sources for the good campaign was found to be significant for all networks, with
sharing percentage close to 100% in Epinions and Slashdot and above 80% in Wiki-
Conflict. Also, pairing M-Sources with I-Sources, and Least-New with Most-New, was
well-suited in Wiki networks.

2We used the splines2 R-package, available at https://CRAN.R-project.org/package=splines2.
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Table 3.4: Statistics about selected pairs of strategies for two campaigns: the seed set S(1)
0 (resp. S(2)

0 ) computed for the first-started
or “bad” (resp. second-started or “good”) campaign SS1 (resp. SS2), the spread |Φ(S

(1)
0 )|(resp.|Φ(S

(2)
0 )|), the Forest Wiener Index

(FWI) [103] to measure the structural virality over the k seed-rooted diffusion trees, the fraction of spread of the bad campaign shared
with the good campaign (shared column), the percentage of shared users that were activated first by the bad campaign (SS1 first column),
the average time of activation of the shared users, and the average time of activation of the shared users by the bad campaign before the
good campaign, and vice versa.

network SS1 SS2 |Φ(S
(1)
0 )| |Φ(S

(2)
0 )| FWI1 FWI2 shared SS1 first avg. activation time

any SS1 first SS2 first

Epinions Stress-Triads I-Sources 10595 23321 8.63 8.61 0.99 28% 6.03 0.67 5.27
M-Sources I-Sources 59 23321 0.12 8.61 0.01 100% 4.0 3.0 0.0

Slashdot Stress-Triads I-Sources 3263 18671 6.54 10.43 0.98 40% 6.56 2.54 7.63
M-Sources I-Sources 58 18671 0.13 10.43 0.05 100% 4.0 5.0 0.0

Wiki-Conflict
Stress-Triads I-Sources 344 5968 1.96 4.93 0.84 95% 2.43 1.43 4.93
M-Sources I-Sources 203 5968 0.0 4.93 0.75 98% 3.64 0 9.5
Least-New Most-New 216 424 0.07 0.86 0.7 100 % 3.77 0 0

Wiki-Vote
Stress-Triads I-Sources 727 394 5.36 3.35 0.45 78% 4.32 0.54 5.87
M-Sources I-Sources 172 394 2.28 3.35 0.41 79% 4.04 0.05 3.93
Least-New Most-New 165 159 1.03 1.74 0.13 63% 2.72 0.0 4.37
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(a) Epinions (b) Slashdot (c) Wiki-Conflict

(d) Wiki-Conflict (e) Wiki-Vote (f) Wiki-Vote

Figure 3.12: spC-F 2DLT : Spread, number of switched users, and
number of switches (log scale) by varying start-delay (∆ t0) of the
“good” campaign (second bars),for δ = 0 (left-most bar groups) and
δ = 0.1 (right-most bar groups), k = 50.

3.5.2.2 Setting and goals for the evaluation of competitive diffusion

As previously mentioned, the seed selection strategies chosen for the two campaigns
might not start at the same time, in which case we assume that the first-started one
is the bad campaign. Moreover, we used fixed-probability as tie-breaking rule, with
probability equal to 1 for the bad campaign. Also, we set the time horizon to the
end-time of the (non-competitive) diffusion of the bad campaign.

Our main goal in the analysis of the two competitive models was to understand
the effect of the setting of the activation-threshold function on the users’ campaign-
changes/deactivations, under the case of “real-time correction” or “delayed correction”
by the good campaign against the bad one (cf. Introduction).

3.5.2.3 Evaluation of spC-F 2DLT

We present results on the campaign spreads, the number of users activated for one
campaign that switched to the other campaign, and the total number of switches; the
latter two measurements are represented, in the barcharts shown in Figure 3.12, by
the lower and upper whiskers, respectively, in the linerange vertically placed on each
bar. Results correspond to start-delays ∆ t0 of the good campaign w.r.t. the bad one
(from 0 to 75% of the end-time of the bad campaign). For this analysis, we considered
the biased definition of the activation-threshold function (Equation 3.1).

One general remark is that, for δ = 0,∆ t0 = 0, the seed strategy that showed to
be most effective in spread in the non-competitive case (cf. Table 3.4) confirmed its
advantage against the other campaign’s strategy. Nevertheless, for δ > 0,∆ t0 > 0,
the two campaigns would tend to an equilibrium, or even to invert their trend (e.g., in
Epinions and Wiki-Vote). In particular, by accounting for (even little) confirmation
bias and letting both campaigns start at the same time, I-Sources slightly increases
its spread (which is explained since this strategy allows for activating first a high
fraction of shared users, e.g., 70% in Epinions); but, as the start-delay increases at
50%, the good campaign is no more able to save users from being influenced by the
bad campaign (i.e., Stress-Triads in Epinions, M-Sources in Wiki-Vote).
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Figure 3.13: spC-F 2DLT : spread of I-Sources (red) vs. Stress-Triads
(green),
for (a)-(c) the unbiased scenario and (d)-(f) the biased scenario of
activation-threshold
function, with δ set to 1 and 0.1, respectively, and k = 50.

Interesting remarks were also drawn from the analysis of the transitions from one
campaign to the other one. For δ = 0, as the start-delay increases, the number
of switched users follows a nearly constant trend in all networks (but Wiki-Vote,
where we observed a drastic decrease for both campaigns), while the total number
of switches is subjected to a more evident decreasing trend. Moreover, we observed
a higher number of (unique and total) switches from the bad campaign to the good
campaign, than vice versa, which occurred even when the spread of the bad campaign
was higher than the good one (e.g., in Wiki-Vote, for both combinations of strategy
choices). Setting δ = 0.1 led to a general decrease in the switch measurements w.r.t.
the corresponding previous case, and also to a substantial increase in “saved” users by
the good campaign.

Biased vs. unbiased activation-threshold function. We also investigated how
our proposed semi-progressive model behaves under the unbiased scenario correpond-
ing to the activation-threshold function (Equation 3.2).

Figure 3.13 shows flow diagrams of the spread based on spC-F 2DLT for the
selection of strategies I-Sources (red color) and Stress-Triads (green color), with the
activation-threshold function defined either for the unbiased scenario (plots on the
top) or for the biased scenario (plots on the bottom). In each plot, the height of
a vertical bar along with the percentage displayed upon it, denote the number of
active users at a particular time step and the ratio w.r.t. the maximum number of
active users achieved by the corresponding selection strategy. The space between two
consecutive bars corresponds to a time window, here set to 6 time steps for readability
reasons. In each window we record two main events: (i) the number of active nodes
that keep the same activation state, represented in base-2 logarithmic scale by the
flow connecting two consecutive bars for the same campaign, and (ii) the number of
users that switched from one campaign to the opposite one, represented in base-10
logarithmic scale by the flow connecting two consecutive bars with different colors.3

3The choice of two different logarithmic scales to represent the active users and the switched
users is for the sake of readability of the plots, since the number of switched users is typically orders
of magnitude smaller than the number of active users.
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(a) Epinions (b) Slashdot (c) Wiki-Conflict

(d) Wiki-Conflict (e) Wiki-Vote (f) Wiki-Vote

Figure 3.14: npC-F 2DLT : Spread, number of deactivated nodes,
and number of deactivations (log scale) by varying start-delay (∆ t0)
of the “good” campaign
(second bars), for δ = {0, 0.1}, k = 50.

Note that for this analysis we discarded the start delay for the good campaign.
As expected, the number of switched users tends always to be in favor the good

campaign, which has typically the best strategy of activation. However, and more
importantly, the number of switched users in the unbiased scenario is significantly
greater than in the biased scenario. Moreover, when the confirmation-bias effect is
enabled, the majority of the switches are concentrated in the initial time-windows,
then they follow a rapid decreasing trend until the time horizon. On the contrary, in
the unbiased scenario, there is still a concentration of switches in the early stages of the
propagation, but it becomes less evident and the number of switches tends to decrease
more smoothly as opposed to the confirmation-bias scenario. This is particularly
evident in Slashdot, where switches last until the latest time-windows, while in the
confirmation-bias scenario the switches stop just after the third time-window. No
significant differences can be observed on Wiki-Conflict, which is explained since the
majority of shared nodes are activated in the early stage of the propagation, where
the diffusion seems to behave in the same way regardless of the particular activation-
threshold function.

3.5.2.4 Evaluation of npC-F 2DLT

Compared to the evaluation of spC-F 2DLT , the spread trends observed under npC-F 2DLT
showed no particular differences. However, more importantly, the occurrence of de-
activation events, which are admitted by npC-F 2DLT , appeared to favor the good
campaign strategy, as shown in Figure 3.14. In particular, in Epinions and Slashdot,
the number of user-unique and total deactivations tend to increase for the bad cam-
paign and to decrease for the good one; moreover, although the spread of the good
campaign remains higher, the deactivations for the good campaign are more frequent
than those for the bad campaign as long as the start-delay remains zero or low, and the
confirmation bias factor is not introduced. A few differences arise in Wiki-Conflict. As
concerns Stress-Triads vs. I-Sources, although the 95% of shared users is activated first
by the bad campaign, this advantage revealed not to be enough to avoid that the good
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Figure 3.15: Complementary cumulative distribution functions of
node activations/
infections for nC-F 2DLT , IC, SIR (β = 0.2 and γ ∈ {0, 1}), and SEIR
(β = 0.2, γ ∈
{0, 1}, σ = 0.4), using k = 50 and strategy I-Sources.

campaign will eventually activate more users. In fact, the number of deactivations
with δ = 0.1 increases for Stress-Triads and is always higher than for I-Source, in which
the statistic remains nearly constant by increasing the start-delay. Similar situation
was observed for the combination M-Sources with I-Sources. Also, using Least-New
with Most-New led to no deactivations, which might be explained since the totality of
shared users was reached first by the bad campaign (cf. Table 3.4).

3.5.3 Comparative evaluation

We conducted a twofold comparative evaluation, divided in two stages. The first
one refers to the non-competitive scenario, whereby we compared nC-F 2DLT to two
epidemic models, i.e., SIR and SEIR, and the IC model. inspired by the studies in
the epidemiology field. The second stage of our evaluation addresses the comparison
between spC-F 2DLT with the DLT model [130], which is the closest to our work, as
we previously discussed in Section 3.2.

3.5.3.1 Comparison with the IC, SIR and SEIR models

We begin with briefly recalling the basic principles underlying the competitor mod-
els considered in this section. The independent cascade (IC) model is a stochastic
discrete-time diffusion model like LT, such that once a node becomes active, in the
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following time step of propagation it has a single chance of activating each of its
out-neighbors. As concerns the epidemic models SIR and SEIR, the individuals of
a population are divided in compartments that describe one of the following epi-
demiological states: susceptible (S), infective (I), latent-period or exposed (E), and
recovered (R); therefore, individuals transition through those states. It is important
to note that, since we need to treat each node in a network as an individual agent
in order to enable a comparison with our diffusion model, we implemented SIR and
SEIR based on a stochastic individual-contact network modeling as opposed to the
standard, deterministic compartmental modeling (cf. Section 3.2). Within this view,
the infection process in SIR is governed by two main parameters: (i) the transmission
or contact rate (β), i.e., the probability of a susceptible node to be infected by any
of its infected in-neighbors; and (ii) the recovery rate (γ), i.e. the probability of an
infected node to transition to the recovery state with immunity, thus consequently
stopping propagating the disease along the network. Moreover, in the SEIR model,
the transition to the exposed state is governed by the incubation rate (σ), which de-
fines the average duration of incubation as 1/σ; note that the notion of exposed state
somehow resembles the quiescent state of nodes in nC-F 2DLT .

Figure 3.15 shows the complementary cumulative distribution function (CCDF) of
the probability for a node of being active/infected from any given time step t to the
termination of the process. The presented results correspond to β set to 0.2 and γ set
to either 0 or 1: note that γ = 1 implies that any node recovers immediately after its
activation, and hence similarly to the IC model it has a single chance for activating
its susceptible out-neighbors; by constrast, setting γ = 0 implies that a node is unable
to recover after its activation, therefore similarly to nC-F 2DLT it will continue to
contribute to the activation of its susceptible/inactive out-neighbors until the end of
the process. (Further results for other settings of β and γ are reported in Appendix
B.) Moreover, for SEIR, we set σ = 0.4, thus imposing an average incubation time
equal to 2.5 time steps; this setting enables a fair comparison with our model, since
each node will be expected to spend the same amount of time in the quiescent state
for nC-F 2DLT (cf. Section 3.4.3) as in the exposed state for SEIR.

Looking at the figure, as expected IC and SIR (with γ = 1) show an almost
identical behavior, since most activations occur in the early stage of the propagation.
On the contrary, when γ = 0, the SIR model tends to behave relatively closer to
nC-F 2DLT rather than IC, since the activations appear more uniformly distributed
along the lifetime of the process. Also, the introduction of the exposed state in the
SEIR model forces the dynamics of the propagation to be further more similar to the
nC-F 2DLT model, especially with γ = 1. One general remark that stands out is
that nC-F 2DLT tends to favor a slower diffusion, since the propagation process lasts
consistently longer than IC and the epidemic models. Moreover, nC-F 2DLT yields a
smoother behavior in terms of time-decay of its CCDF than those corresponding to
the other models.

In general, we can state that already for the non-competitive scenario, epidemic
models even in their stochastic contact network formulation provide a differnt solution
in terms of behavioral dynamics w.r.t. our proposed nC-F 2DLT .

3.5.3.2 Comparison with the DLT model

We finally conducted a stage of comparative evaluation with the DLT method [130]
(cf. Section 3.2). To this purpose, we analyzed the trends of spread and corresponding
overlaps of activated nodes, under a competitive scenario. For DLT, we considered
two cases: the one including the decay of influence probabilities (with Poisson decay
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Figure 3.16: spC-F 2DLT vs. DLT: spread trends and overlaps, over
time up to
convergence of spC-F 2DLT , on Slashdot.
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Figure 3.17: spC-F 2DLT vs. DLT: overlap percentages at conver-
gence of the two
models, on Slashdot.

coefficient set to 1), and the other one discarding the influence decay (as also studied
in [130]), hereinafter dubbed DLT∗; as concerns our models, we were forced to use
spC-F 2DLT since DLT does not allow node deactivation.

Figure 3.16 shows results obtained on Slashdot, for the choice of strategies I-Sources
and Stress-Triads (similar trends were observed for Epinions and Wiki networks). A
first remark is that, regardless of the seed selection strategy, the diffusion process under
DLT terminates in a very few time steps, mainly due to the influence decay factor.
Also, before convergence, DLT enables the activation of more nodes than spC-F 2DLT ,
though this actually corresponds to a small portion of the finally activated nodes by
spC-F 2DLT and, in any case, with an overlap that is generally below the 50%.

We explored more in detail the spread overlap between spC-F 2DLT and DLT as
well as its variant without decay (DLT∗); for spC-F 2DLT , we considered the settings
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δ = 0 and δ = 0.1. Figure 3.17 shows the heatmaps for the percentages of overlap
of activated nodes at convergence of their respective models. As we observe in both
plots, and regardless of δ, the overlap between DLT∗ and spC-F 2DLT is around 40-
45%, which further drops to less than 10% when the influence decay is considered (the
lighter, the lower is the overlap).

Overall, we can conclude that DLT, and even its variant DLT∗ without influence
decay, behaves significantly different from our semi-progressive F 2DLT .

3.6 Discussion and usage recommendations

Our theoretical inspection of the proposed models, whose technical details have been
presented in Section 3.3.5, revealed two important findings:

(F1): The non-competitive, progressive model, nC-F 2DLT , is proven to be equiv-
alent to LT with Quiescence Time; therefore, the activation function in nC-F 2DLT
is monotone and submodular.

(F2): The competitive, non-progressive models, spC-F 2DLT and npC - F 2DLT ,
can be reduced, via graph serialization, to Homogeneous Competitive LT [33], which
is competitive and progressive, and has monotone, non-submodular activation func-
tion; therefore, the activation function in spC-F 2DLT and npC -F 2DLT is monotone
but not submodular. It should be emphasized that the basic technique of graph se-
rialization introduced in [97] to reduce the non-progressive LT-based diffusion to the
progressive case, cannot be applied to our proposed models, since it is not designed to
deal with competitive or non-progressive diffusion and it discards activation or delayed
propagation aspects; to overcome this issue, we provided new serialization techniques
and relating definitions of layered-graphs that are suitable for our competitive models,
focusing on particular settings of the activation-threshold and quiescence functions.

The two findings clearly have different impact on the development, upon our
F 2DLT models, of approximate solutions to influence maximization, rumor block-
ing, and related problems. On the other hand, in terms of expressiveness of our
competitive F 2DLT models, it should be noted that the serialization techniques re-
quire the construction of layered graphs whose size easily grows with some of the
models’ parameters, making the application of such serialized graphs unfeasible at a
large scale. Therefore, using our competitive F 2DLT models turns out to be essential
in the representation of complex, dynamic propagation phenomena.

Our proposed class of trust-aware, dynamic models for non-competitive and com-
petitive information diffusion offers a versatile solution for enhanced understanding of
complex influence-propagation phenomena that occur in real-life network scenarios.

Our models are also unique, since they have significantly different behavioral dy-
namics w.r.t. epidemic models and the dynamic linear threshold model, according to
theoretical considerations that were also clearly supported by empirical evidence in
our experimental evaluation.

It should be noted that the setting of the dynamic activation-threshold function ϑ
and quiescence function ψ, especially of their parameters δ and λ, respectively, plays a
crucial role in the expressiveness of our models, thus differently impacting on positive-
influence propagation and on negative-influence/misinformation limitation. We make
the following recommendations for the usage of our models.

• The results of our evaluation revealed that the average user’s sensitivity in the
negative influence perceived from distrusted neighbors (which is controlled by
λ) makes the seed identification process more aware of the negative influence
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spread, thus considering the quiescence-biased contingencies by which a non-
negligible fraction of users cannot be activated before the time limit.

• The confirmation-bias effect underlying δ may lead the “stronger” campaign (i.e.,
the one able to activate most users at the early steps of its diffusion) to increase
its spread capability.

• As shown by simulations under the semi-progressive competitive model (spC-F 2DLT ),
the combined effect of increased δ with an increase in the delay of the begin-
ning of the second-started (good) campaign may reduce its capability of “saving”
users from the influence of the bad campaign; therefore, to limit misinforma-
tion spread, the good campaign should concentrate its (activation) efforts in the
early stage of its diffusion.

• The non-progressive competitive model (npC-F 2DLT ) appears to be less sen-
sitive to the increase of δ. Yet, it tends to favor deactivation events (for users
previously activated by the weaker campaign) over switched events.

In this regard, it would be interesting to study how to learn the various parameters
in our models for the corresponding IM scenarios. Note that learning parameters for
IM tasks is a challenging problem, which is still largely open, given the relatively
little work done even under basic diffusion models [73, 168]. Major difficulties are in
the assumption of availability of past propagation data from which the parameters
would be learnt, which is in general difficult to obtain, and the large number of
parameters, which poses efficiency issues. To overcome these aspects, the approach
in [193] appears to be particularly promising, as it does not depend on the rules
that control how the propagation unfolds over time. Nonetheless, we expect that the
learning problem in our setting will easily become much more challenging, given the
presence of other parameters than just the diffusion probabilities, and the need for
coping with competitive influence scenarios. Therefore, we believe there will be much
work to do in such a direction.

3.7 Chapter notes

In this chapter we proposed a novel class of trust-aware, dynamic LT-based models
for non-competitive and competitive influence propagation in information networks.
Evaluation on real-world, publicly available networks included simulations of scenarios
of misinformation spread limitation, based on realistic strategies of selection of the
initial influential users.

We believe that our proposed models can pave the way for the development of
sophisticated methods to solve misinformation spread limitation and related opti-
mization problems. Remarkably, our models can profitably be used in a variety of
applications whereby there is an emergence to predict the time required to debunk fake
information, or to estimate how people are affected by the spread of competitive op-
posite opinions through a social network. Also, we envisage an effective support for
fact-checking, through a contextualization of the activation and quiescence functions
to the production/consumption of contents in interaction networks.
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Chapter 4

Topological Characterization of the
Most Influential Nodes

Estimating the spreading potential of nodes in a social network is an important prob-
lem which finds application in a variety of different contexts, ranging from viral mar-
keting to spread of viruses and rumor blocking. Several studies have exploited both
mesoscale structures and local centrality measures in order to estimate the spread-
ing potential of nodes. To this end, one known result in the literature establishes a
correlation between the spreading potential of a node and its coreness: i.e., in a core-
decompostion of a network, nodes in higher cores have a stronger influence potential
on the rest of the network. In this chapter we show that the above result does not hold
in general under common settings of propagation models with submodular activation
function on directed networks, as those ones used in the influence maximization (IM)
problem.

Motivated by this finding, we extensively explore where the set of influential nodes
extracted by state-of-the-art IM methods are located in a network w.r.t. different
notions of graph decomposition. Our analysis on real-world networks provides evi-
dence that, regardless of the particular IM method, the best spreaders are not always
located within the inner-most subgraphs defined according to commonly used graph-
decomposition methods. We identify the main reasons that explain this behavior,
which can be ascribed to the inability of classic decomposition methods in incorpo-
rating higher-order degree of nodes. By contrast, we find that a distance-based gener-
alization of the core-decomposition for directed networks can profitably be exploited
to actually restrict the location of candidate solutions for IM to a single, well-defined
portion of a network graph.

4.1 Introduction

Measuring and understanding the spread of “contagion” has attracted tremendous
attention as a universal phenomenon that is extensively studied in physical, biological,
and social networks. Exemplary application domains are related to social influence,
diffusion of information, misinformation or rumors, spread of viruses etc. In this
context, a key problem is the identification of the most effective spreaders in a social
network. In order to estimate the spreading potential of nodes in a social network,
several heuristics have been studied: centrality measures, such as degree or PageRank,
or mesoscale-structure-based properties of nodes, such as core decomposition. One
important study by Kitsak et al. [101] showed that the influential spreaders are those
located in the inner-most core of the network, in contrast to the fact that high-degree
or high-betweenness nodes could have little effect on the extent of a spreading process.
Since then, several studies have been proposed to improve the discriminating ability
(i.e., monotonic ranking of spreaders) of the core decomposition (e.g., [7, 71, 143]).
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Figure 4.1: Core decomposition over a directed network. Cores are
determined according to the nodes’ out-degree.

In this line of research, the network is assumed to be undirected, and the empirical
findings on the spreading process refer to standard epidemic models (e.g., SIR or SIS).

An alternative line of research corresponds to the widely studied influence maxi-
mization (IM) [97] problem: given a directed network, a (stochastic) diffusion model,
and a budget on the number s of seeds (i.e., early-adopters or initial influencers), IM
asks to find a s-sized seed-set S that maximizes the influence spread over the net-
work, i.e., the expected number of nodes that are activated, starting from S, at the
end of the diffusion process. The main distinction between finding a good seed-set and
estimating the spreading potential of nodes in isolation, is that the former problem
requires to take into account the cumulative effect of the influence spread. In fact,
different nodes may exert influence on largely overlapping portions of the network, so
that their cumulative spread would be wrongly estimated by just considering the sum
of their spreading potential.

Besides the difference in the network (directed vs. undirected) and in the diffusion
models, the difference between these two lines of research is better explained by the
next example.

Example 4. Let us consider the example graph in Figure 4.1. Suppose we are required
to select one seed of the propagation process (i.e., s = 1). It can be noted that node
v1 has a strategic location as it can reach all nodes in the graph. This is clearly an
ideal situation for an IM which, depending on the setting of influence probabilities
(here omitted for simplicity) and the diffusion model adopted, will likely select v1 as
seed. By contrast, most of the centrality measures will fail at capturing the spreading
ability of that node in the network. In fact, none among out-degree, directed closeness
and betweenness, and PageRank is able to rank v1 at the top. Also, considering the
outcomes of out-degree-based core decomposition of the example graph, any node in
the inner-most core (i.e., core with k = 3), would be preferred as seed to any other
node with lower core-index, including v1, despite no nodes in the inner-most core can
propagate outwards, thus they cannot be an optimal choice for an IM solution.

Motivated by the above observations, we aim at producing an extensive analysis of
where the set of influential nodes extracted by state-of-the-art IM methods are located
in a network w.r.t. different notions of graph decomposition. More specifically, we
want to understand whether decomposition algorithms can support the identification
of subnetworks where nodes have a good influence-spreading potential collectively,
rather than as independent individuals. In this regard, our study reveals that a
major limitation of classic decomposition algorithms in predicting the influence ability
of nodes, is that they are traditionally based on first- or second-order node-degree
information, and this may represent a myopic view on the topological properties that
would make a node a good spreader. We raise the following research questions:
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• In which cores do state-of-the-art algorithms for IM select their seeds in a directed
network (e.g., an online social network built upon following relation)?
• How are the seed locations sensitive to any particular graph-decomposition no-

tion?
• What are the internal/external connectivity characteristics that a portion of the

network should have to support the most influence potential of their nodes?
• What are the main limitations that may lead a graph decomposition method to

fail at determining the regions more densely populated of influential nodes?

Contributions. In this chapter we address the research questions above in a system-
atic way, through the following main steps. We first review a selection of representative
notions of graph decomposition, and adapt their extraction methods in order to en-
able their applicability to directed networks in influence spread estimation tasks. We
then empirically assess the effectiveness of those algorithms when it comes to detect-
ing good spreaders, both as a group of users and individual ones, on a selection of
real-world online social networks of different sizes and topological properties.

We evaluate IM algorithms in terms of their respective seed-selection strategies,
i.e., how they identify the seeds w.r.t. the considered graph-decomposition methods.
Moreover, since allocating seeds inside the inner subnetworks may not be the best
choice for IM, we investigate the reasons underlying this contingency.

Finally, we provide evidence that a major limitation that prevents classic decompo-
sition algorithms to find the most influential spreaders, is their inability to incorporate
higher-order degree of nodes. Our analysis shows that distance-based generalization
of core decomposition [17] provides a more informative characterization of how impor-
tant nodes are in terms of their reachability, thus providing an effective approach to
the identification of good spreaders.

4.2 Related work

We present related literature in the analysis of information propagation and influence
maximization, as well as the graph-decomposition methods that we will use in this
chapter.
Influence propagation. The analysis of social contagion, i.e., the spread of new
practices, beliefs, technologies and products through a population, driven by social
influence, is a very central theme in social sciences, and it has also attracted a lot
of interest in the data science community [16]. Such phenomenon develops in two
main subjects: the structure of the network and the actions or communications of
the users over the network. Researchers have studied the role played by the network
topology [200] and by several of its macroscopic characteristics, such as the level of
homophily [206] and the modular structure of the network [11, 148], as well as node-
level characteristics, such as their centrality, or their capacity of spanning structural
holes, thus bridging communities and facilitating, or blocking, the spread of infor-
mation. Other researchers have considered the social network and the log of past
user-activities jointly, and studied important problems such as learning the param-
eters of the propagation model, i.e., the strength of influence along each edge [73,
168], or how to distinguish real social influence from “homophily” [3, 19, 48, 108].
Finally, a wide literature exists on the analysis of social influence in specific domains:
for instance, studying person-to-person recommendation for purchasing books and
videos [116, 118], telecommunications services [84], or studying information cascades
driven by social influence in Twitter [8, 167].



66 Chapter 4. Topological Characterization of the Most Influential Nodes

Fueled by the seminal work by Kempe et al. [97], most of the attention has been
devoted to exploiting social influence for “word-of-mouth” driven viral marketing ap-
plications: this is the case of the stochastic optimization problem known as influence
maximization (IM). Given a social network, where each edge (u, v) is associated with
a weight (or probability) pu,v representing the strength of influence that u exerts over
v, IM requires to select the set of initial users that maximizes the expected spread, i.e.,
number of users in the social network that gets “infected", according to an assumed
underlying diffusion model. IM is NP-hard under most standard diffusion models,
such as Independent Cascade (IC) and Linear Threshold (LT) models, however, the
simple greedy algorithm provides (1 − 1/e) approximation guarantee, provided that
the diffusion model is monotone and submodular (like in the cases of IC and LT). Since
the expected spread cannot efficiently be evaluated exactly, most of the effort have
been devoted to address this scalability issue by reducing the number of needed Monte
Carlo estimations [115]. Alternatively, proxy-based methods have been developed to
avoid running Monte Carlo simulations, by estimating the influence spread of the
seed set through a reduced diffusion context; although, without ensuring theoretical
approximation guarantee.

A significant study that overcomes the efficiency bottleneck of the simulation
based methods, while preserving the theoretical approximation guarantee, is proposed
in [20], which introduces the Reverse Influence Sampling (RIS) framework for IM. The
key idea is that the expected spread can be estimated by taking into account a num-
ber of pre-computed sketches, i.e., realizations drawn from the distribution induced by
influence graph according to the diffusion model. This breakthrough result paved the
way for a variety of sketch-based algorithms. Tang et al. in [189] are the first to de-
sign a practically efficient solution, TIM/TIM+, whose improvement over RIS consists
in keeping the same theoretical complexity as [20] with significantly fewer sketches,
bounded by the influence of the unknown optimal set (OPT). More recent RIS-based
IMM [188] and SSA [154] algorithms share the common motif of estimating OPT with a
fewer number of sketches. IMM improves over TIM/TIM+ through a martingale anal-
ysis, while SSA takes an orthogonal perspective, as the number of sketches needed by
the algorithm is determined at runtime via an iterative approach. The TIM/TIM+,
IMM, and SSA methods will be used in our evaluation (Section 4.4–4.6).
Graph decomposition. Cores in a graph were first studied in [172] for characterizing
tightly-knit groups in social networks. Since then, core decomposition has been used
as a tool for several applications related to the understanding of mesoscale structural
characteristics of a network, but also to capture the centrality or influential status of
nodes. Among its advantages, core decomposition for an input graph is unique, and
hence well-defined, and it can be computed efficiently in linear time w.r.t. the number
of edges in the graph.

As mentioned in the Introduction, [101] is one of the earliest studies exploring rela-
tions between the spread of influence in undirected networks and core decomposition.
The study shows that, under the SIR epidemic model, nodes with the best spreading
potential are likely not those with the highest degree or betweenness centrality, but
are in the most internal core of the network.

Following the lead of [101], in [145] a similar analysis is carried out in terms of truss
decomposition [196]. Nodes selected within internal regions of a network according to
the truss decomposition, tend to produce infections that are significantly more viral
in the early steps of propagation as opposed to the one obtained started from the
most internal cores, though this advantage becomes less evident as the propagation
approaches to its termination.
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The k-peak decomposition proposed in [71] aims to find robust decomposition when
a network has distinct and independent regions of different edges density. Following
the same setting as [101], it is shown that when the initial spreaders are chosen among
those with the highest k-peak number, the size of the information cascade may be up
to 50% greater than the size based on k-core decomposition. In [7], the coreness
centrality is defined on top of the classic core decomposition, by aggregating the core-
index of all neighbors of a given node. Again under the SIR model and for undirected
and unweighted networks, this method has shown to produce better rankings than
those based on k-core decomposition.

A recent study [17] extends the k-core decomposition to account for a neighbor-
distance threshold h. Differently from [7], the proposed notion of (k, h)-core redefines
the coreness property based on a higher-order degree of nodes, i.e., the core-index of
a node is function of the number of nodes reachable up to a given distance h.

The notion of k-core decomposition was also extended to probabilistic graphs [18].
The (k, η)-core is defined as a subgraph such that each of its nodes has at least
degree k with confidence at least η. Notably, in an IM evaluation scenario, where the
edge probabilities are assumed to be influence propagation probabilities, the greedy
algorithm could in principle exploit the computation of (k, η)-cores in order to locate
the seeds in the inner most η-cores. Another bivariate-core notion is proposed in [65],
where the (k, l)-D-core is defined to account for nodes with in-degree at least k and
out-degree at least l. The significance of this approach was mainly assessed over
collaboration networks where, unlike social influence-driven networks, both the inward
and outward connectivities of nodes might be explicitly parametrized.

4.3 Decomposition of directed graphs

In this section, we present the graph decomposition methods examined in our study.
One notable point is that, since these methods are originally conceived for undirected
networks (cf. Section 4.2), we first need to revise their definitions in order to make
these methods amenable to support an IM task, which requires a directed network
as input context of influence propagation. Also, our choice of decomposition methods
was guided by two main factors: (i) they are able to scale to large networks; (ii) they
can be meaningfully extended to directed networks; and (iii) they are representatives
of the most widely used decomposition strategies and variants.

LetG = 〈V,E〉 be a directed graph, with set of nodes V and set of edges E ⊆ V ×V .
Given any subset S ⊂ V , we denote with G[S] = 〈S,E[S]〉 the subgraph of G induced
by S, where E[S] = {(u, v) | (u, v) ∈ E ∧ u, v ∈ S}. Also, for each v ∈ V , deginG (v),
resp. degoutG (v), denote the in-degree, resp. out-degree, of v in G.
k-Core decomposition. Given k ≥ 0, the k-core of a directed graph G = 〈V,E〉
is the maximal subgraph (denoted as Gk−core) corresponding to G[Ck] = 〈Ck, E[Ck]〉
such that each node v ∈ Ck has out-degree at least k, i.e., degoutG[Ck](v) ≥ k. The
degeneracy of the graph, hereinafter denoted as KC(G), is the highest value of k s.t.
Ck 6= ∅. The core associated with the graph degeneracy is also called the inner most
core. The core-index, or coreness, of a node v is the largest k such that v ∈ Ck and
v /∈ Ck+1.

It is easy to show that the well-known O(|E|) algorithm in [13] can straightfor-
wardly be adapted to a directed network: nodes are ordered by increasing out-degree,
then nodes u with lowest out-degree are iteratively removed from the graph and each
incoming neighbor of u decreases its out-degree, and the process continues until no
node remains. The core-index of a node is the out-degree at the moment of its removal.
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k-Peak decomposition. It is conceived on top of k-core decomposition, based on
the notion of k-contour. Given a graph G = 〈V,E〉, with degeneracy K=KC(G), a k-
contour (k ≥ 0) is the maximal subgraph recursively defined as the k-core of the graph
G \

⋃K
j=k+1Gj for all k < K, where Gj is the j-contour, and the same as the k-core

of G for k = K. The peak-number of a node is the value k such that the node belongs
to the k-contour. The peak-degeneracy of the graph, hereinafter denoted as KP (G),
is the highest value of k s.t. there is a non-empty k-contour; it is straightforward to
note that KP (G) =KC(G), for any graph G.

The k-peak decomposition algorithm assigns each node to exactly one contour.
Unlike core decomposition, k-peak decomposition does not account for connections
starting from outer cores (i.e., lower k cores) towards inner cores of the network.
To compute the k-peak decomposition, we iteratively apply our core-decomposition
algorithm for directed networks, over the subgraph obtained by removing all the nodes
belonging to the inner most core and assigning those nodes the peak number equal to
the value of the degeneracy before the removal.
k-Truss decomposition. In our setting, given any three nodes u, v, w, a triangle
4uvw is defined as a directed cycle between those nodes. The support sup(e,G) of an
edge e = (u, v) ∈ E in G is defined as |4uvw : 4uvw ∈ 4G|, where 4G denotes the
set of all triangles in the network. The k-truss of G (k ≥ 2), denoted by Tk, is the
largest subgraph of G such that ∀e ∈ ETk , sup(e, Tk) ≥ (k − 2). The truss-index of
an edge is the largest k-truss it belongs to.

Once the support of each edge is computed, we apply the algorithm proposed
in [196] to obtain the decomposition. However, since the k-truss decomposition is
defined with respect to the edges of the graph, we eventually assign a score to each
node that is equal to the average truss-index of the node’s outgoing edges. Also, we
denote with KT (G) the highest of the node truss-indexes.
Neighbor-coreness aggregation. Adapting from [7], each node v is assigned with
a neighbor-coreness score given by Cnc(v) =

∑
u∈Nout(v) c(u), where c(u) denotes the

core-index assigned to node u and Nout(v) is the set of v’s out-neighbors. We also
denote with KNC(G) the maximum neighbor-coreness score.

The algorithm for computing this score function extends the one used for directed
k-core: once computed the core-indexes, we apply the function Cnc(·) to account for
the out-neighbors’ contribution, for every node in the network.
Distance-based generalization of core decomposition. Given v ∈ V , a subset
S ⊆ V , and a neighbor-distance threshold h > 0, the h-neighborhood of v w.r.t. the
subgraph G[S] is NG[S](v, h) = {u ∈ S|u 6= v ∧ dG[S](v, u) ≤ h}, where dG[S](v, u)
denotes the shortest path distance from v to u in the subgraph of G induced by S.
The h-outdegree of a node w.r.t. S is defined as deghG[S] = |NG[S](v, h)|. Given k ≥ 0,
a (k, h)-core represents the maximal subgraph G[Ck] = (Ck, E[Ck]) such that every
node v ∈ Ck has h-outdegree at least k, i.e., deghG[Ck](v) ≥ k. Also, for any given h,
the distance-generalized degeneracy, KDGC

h (G), is the maximum k such that Ck 6= ∅.
To compute the (h, k)-cores, we adapted Algorithm 1 in [17] by specializing the

notion of h-neighborhood for out-neighbors.

Example 5. Let us consider again the example shown in Figure 4.1, to check whether
the various graph-decomposition algorithms are able to assign v1 with the highest
score. We have already observed that this is not the case when using the k-core
decomposition (cf. Example 4). Similar outcome holds also for the k-peak decompo-
sition — two distinct contours are found, with v1 having peak-number 0 along with
nodes v2, . . . , v6, and the remaining nodes with peak-number 3 — the k-truss decom-
position and the neighbor-coreness aggregation method — which assign the highest
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Table 4.1: Summary of evaluation network data.

network #nodes #edges avg. avg. dens. diam. #sources #sinks
in-deg. path len.

DBLP - DB 317K 1M 3.31 7.89 1 05e−5 31 127K 12K
Epinions - Ep 116K 722K 6.2 4.79 5 3e−5 16 28K 43K
Nethept - Net 15K 62K 4.1 5.83 2.7e−4 5 0 0
Twitter - Tw 21K 227K 10.38 6.28 4.7e−4 32 3K 3K

Instagram - Ig 17K 617K 35.25 4.24 2e−3 15 0 0
FriendFeed - FF 493K 19M 38.85 3.82 7.8e−5 32 42K 292K

score to nodes v7, . . . , v11. By contrast, the distance generalized core decomposition
is able to detect, for h = 2, three cores, where the inner-most one does contain node
v1 (along with v7, . . . , v11).

4.4 Evaluation methodology

We used 6 real-world online social network datasets, whose properties are summarized
in Table 4.1. Our choice of these network data is justified as they can be regarded as
benchmarks in IM or graph-decomposition studies. In particular, Epinions, DBLP,
Nethept networks were used in the original works proposing the three IM methods
under examination (i.e., TIM/TIM+, IMM, and SSA); the Twitter dataset was used
in [18] to assess the significance of uncertain graph decomposition for IM; Instagram
and FriendFeed were studied in [26] for targeted IM in a user engagement context.

We considered the two most commonly used diffusion models in IM, namely Inde-
pendent Cascade (IC) and Linear Theshold (LT) models [97]. The results presented
in the remainder of this chapter are only based on IC. The experimental results using
LT — which can be found in the Appendix B.1 — are consistent with the findings for
IC, reported in this chapter.

IC considers each node can be activated by each of its incoming neighbors indepen-
dently. Based on the influence probabilities pu,v for each edge (u, v), and given a seed
set S at time step 0, any diffusion instance of the IC model unfolds in discrete steps.
Each active node u at step t will attempt to activate, with probability pu,v each of
its outgoing neighbors v that is inactive at step t-1. Note that u has only one chance
to activate its outgoing neighbors. If the attempt is successful, v becomes active at
step t+1, otherwise v stays inactive. The diffusion instance terminates when no more
nodes can be activated. For specifying the influence probability of the edges we adopt
a widely-used strategy: each edge (u, v) is associated with a probability 1/degin(v),
where degin(v) is the number of in-neighbors of v.

The main goal of the experimental evaluation is to characterize the coreness of
those nodes considered to have a strong spreading potential. More specifically, we
want to investigate the capability of each graph-decomposition algorithm to locate
the most influential nodes within its inner-most regions.

Results are organized into two main sections: first, we focus on those methods that
rely only on first-order node-degree information (Section 4.5), then we evaluate the
impact of the adoption of a distance-aware generalization of the core-decomposition
(Section 4.6).

4.5 Degree-based cores

We investigate where the most influential nodes selected by state-of-the-art IM al-
gorithms — TIM/TIM+ [189], IMM [188], and SSA [154] (cf. Section 4.2) — are
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Figure 4.2: Normalized core-index (k/KC(G)) of the first 200 seeds
computed by (a,d) TIM+, (b,e) IMM, and (c,f) SSA, under the IC
model.

located in the network w.r.t. different graph-decomposition methods (Section 4.5.1).
Prompted by the results obtained in this early step of evaluation, we will delve into
the features that could be used as proxies for identifying a “good” subnetwork for
locating IM-(near)optimal influential spreaders (Section 4.5.2).

4.5.1 Seed selection order

To begin with, we analyzed the selection order of seeds discovered by each IM method,
under the IC model, in relation to their core index as produced by the classic core
decomposition.

Figure 4.2 reports on the y-axis the normalized core index (i.e., the core index
of the node divided by the degeneracy of graph) for the first 200 seeds — computed
by TIM+, IMM, and SSA, respectively — ordered on the x-axis according to their
selection order, i.e., the iteration corresponding to the insertion of a node into the
seed set. For this analysis, we report only results corresponding to two datasets;
nonetheless, these results are representative of a general scenario encompassing all
remaining networks. We refer the reader to the Appendix B.1 associated with this
chapter.

One remark that stands out is that the three IM methods exhibit a very consistent
behavior, which seems to depend mostly on the network. This is not really surpris-
ing, since all such algorithms share the state-of-the-art RIS-based approach in their
algorithmic scheme (cf. Section 4.2). While on dataset DB most of the seeds, with
few notable exceptions among the first seeds, are in peripheral cores (the majority of
the seeds have core-index between the 5-th and 25-th percentiles), for FF the situation
is slightly different: many seeds are selected in high cores, although a good portion
of seeds are identified in lower cores. What is common to both datasets (and to the
others not reported in Figure 4.2) is that, as hinted by the regression line in each
plot, as the selection progresses the various IM methods are more likely to identify
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Figure 4.3: From top to bottom, normalized core-index (k/KC(G)),
peak-number (k/KP (G)), neighbor-coreness (k/KNC(G)), and truss-
index (k/KT (G)) of the first 200 seeds computed by TIM+, under the
IC model.

the seeds among those with lower core index, i.e., in the periphery of the network.
This can be explained with the fact that our evaluation methods work under the IC
and LT diffusion models, whose activation functions are monotone and submodular:
after the earlier stages of seed selection, the IM methods would start exploring the
periphery of the network, since therein it will likely reside the nodes whose marginal
gain is potentially less affected by the earliest selections.

This is in contrast with the findings in [101, 145], according to which the most
influential nodes should reside in the inner-most core of the network. This difference
is due to the fact that those works consider a SIR propagation model, whereas we
use IC/LT, and on the fact that they focus on the spreading potential of nodes in
isolation, while our analysis considers the cumulative expected spread of the seed set
of the IM problem.

Results drawn from the previous analysis were confirmed by analogous evaluation
extended to the other graph decomposition methods and networks. As shown in Fig-
ure 4.3, in most networks (e.g., Tw, Ep, Net), the majority of the seeds are located
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in subnetworks that correspond to mid/low values of each particular decomposition
method. One exception is represented by Ig, where most seeds are located in the
inner subnetworks, provided that k-core or k-peak decomposition is used. Among
the various decomposition techniques, it can be noted that neighbor-coreness pro-
vides high-variance, hence poorly meaningful results for our analysis. This is ex-
plained since neighbor-coreness was originally conceived as a proxy solution for rank-
ing nodes w.r.t. their individual influence, rather than for achieving coarser-grain
graph-decompositions; this also prompted us to ignore it in the remainder of our
study. Another interesting remark regards the k-truss decomposition. In fact, identi-
fying the seeds within the inner-most subnetworks induced by this method appears to
be a disadvantageous choice for our purposes, as most of the seeds are located within
the outer subnetworks (i.e., those containing nodes with lower truss-index values).

The above results, coupled with the ones discussed in the previous section (Sec-
tion 4.5.1), provide evidence that allocating seeds in the inner-most regions of a net-
work may turn out to be a poorly effective strategy for IM. This contingency may
be ascribed to the fact that concentrating the selection of nodes within the same
subnetwork induced by a graph-decomposition technique, would prevent us to exploit
the submodularity of the activation function of the IM methods. Intuitively, it may
happen that the propagation remains trapped inside the densest regions of a network,
and consequently it will not be able to involve other parts of the network; this partic-
ularly holds for the k-truss decomposition, which considers the number of triangles a
particular node is involved in.

Notably, our findings totally fit the LT model as well (results corresponding to LT
can be found in the Appendix B.1).

4.5.2 Characterization of the cores/contours

Based on the results obtained so far, we can recognize two main groups in the eval-
uation data: the one corresponding to FF and Ig, and the other one including all
the remaining networks, where influential spreaders were found to be located in the
“outer” portions of the network, as opposed to the former group.

Hereinafter, we restrict our attention to the k-core and k-peak decomposition,
since they turned out to be the most promising and reliable ones to support our
next analysis aiming at understanding how to estimate the nodes’ influence-spread
potential. Thus, we will devote our attention to two main aspects: (i) how nodes
are distributed within the different cores/contours of the network, and (ii) how the
cores/contours are connected to each other.
Core/Contour distribution. Figure 4.4 shows how nodes are distributed over the
different cores of the network. If we compare these results in light of the previous
findings (Section 4.5.1), we observe that a lower skewness in the distribution would
correspond to the identification of seeds within the inner cores. In fact, the distri-
butions for FF and Ig, exhibit a much lower skewness (i.e., 3.2 and 2.3, resp.) as
compared to the one corresponding to the other networks, however with the exception
of Tw. Albeit the skewness could serve as a moderately good indicator of how effective
it will be to allocate seeds within the inner cores of a network, we need to further
investigate the characteristics of the cores.

As regards the k-peak decomposition (results shown in the Appendix B.1), we
observe it tends to favor skewer distributions than the core-decomposition ones. In
particular, although KC(G) =KP (G), the number of distinct contours in the evalua-
tion networks is found to be consistently smaller than the number of distinct cores in
the network. This implies that the k-peak decomposition may provide a coarser view
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Figure 4.4: Distribution of nodes over the cores of the network.
Each plot shows, for every core-index k (x-axis), the number of nodes
with core-index at most k on the rightmost y-axis, and the cumulative
distribution of core-index on the leftmost y-axis. Also, the skewness
of the distribution is reported inside each plot.

on a network structure, where most nodes are concentrated in the subnetworks with
lower peak number, thus hindering the ability of this technique to discriminate the
influence-spread potential of nodes.
Core/Contour connectivity. Here we focus on the connectivity from a core/contour
perspective. More specifically, we categorized edges into two separate classes, namely:
outward edges, if the source node has a core-index/peak-number equal to or greater
than the target node, and inward edges otherwise.

Figure 4.5 shows the fraction of edge-set that belongs to each of the two classes,
based on core-indexes of their sources — very similar behaviors were also found in
results corresponding to peak-numbers (shown in Appendix B.1). We recognize three
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Figure 4.5: Percentage of inward and outward edges vs. normal-
ized core-index k/KC(G). The i-th percentage bar (i = 1..9) corre-
sponds to edges such that the source node has normalized core-index in
(xi, xi+1], upon a segmentation of the x-axis values into ten intervals
(x1, x2], . . . , (x9, x10].

types of characteristics in the inward percentage-bars, as the normalized core-index
increases: (i) a roughly decreasing trend, for FF and Ig, (ii) a roughly constant trend,
for DB, and (iii) a roughly bimodal decreasing trend, for the remaining networks. For
the former group, while the inward percentage remains much higher than the outward
one until mid-high regimes in the x-axis, this gap tends to become small for the highest
cores, showing that nodes in the inner-most core (i.e., rightmost side of a plot) also
have a good connectivity towards the periphery of the network. Quite differently from
FF and Ig, Ep and Tw show a roughly bimodal decreasing behavior, which appears to
have a break-point around half of the degeneracy. Notably, this corresponds to the
core where most of the seeds are actually found according to the results discussed
earlier in this section (Section 4.5.1). However, while the second decreasing trend
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Figure 4.6: Distribution of the node’s average normalized core dis-
tance vs. normalized core-index k/KC(G). For each core-index k,
the corresponding boxplot represents the distribution of the average
normalized core distances computed for each node having core-index
k.

ends up with a 60% inward edges for the first and second inner-most cores in Ep, a
further interesting scenario occurs in Tw. Here, the nodes within the inner-most core
are mostly connected to each other, since a considerably high fraction of edges (above
80%) are inward. In DB, the inward edges are the large majority, regardless of the
core-indexes of their nodes, which might be ascribed to a relatively high percentage
of source nodes.
Pairwise core distances. We consider here a more robust measure than the in-
ward/outward property of edges, which accounts for the difference of core-index values
of two linked nodes. Given any edge (u, v), we define the pairwise normalized core
distance as dist(u, v) = (ku − kv)/KC(G), with ku and kv the core-index assigned to
u and v, respectively. Upon this, for each node u we compute the average normalized
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core distance over its out-neighbors. A positive value means that u is mostly con-
nected with nodes belonging to outer cores, and the greater the value, the more u’s
out-neighbors can be considered as peripheral w.r.t. the u’s location.

Figure 4.6 shows the boxplot distributions of average normalized core distance
w.r.t. the normalized core-index values. The analysis of such plots allows us to
integrate and enrich the results observed in Figure 4.5. Considering first Ig and
FF, where most of the seeds have the maximum core-index (Figsures 4.2–4.3), we
observe a clearly increasing trend of the nodes’ average normalized core distance.
With corresponding boxplot median around 0.5, nodes within the highest core-index
show to be well connected with nodes located in mid-level outer cores. A different
situation is observed on Tw, Ep, and DB, where the maximum average normalized core
distance mostly remains below 0.4, 0.3, and 0.1, respectively. Remarkably, in Ep
(Figure 4.6(c)), where most seeds have mid/low core-index (Figure 4.3), we observe
again a breakpoint in the distribution around half of the degeneracy, where the peak
of average normalized core occurs, while the second increasing trend almost remains
below positive values in the y-axis, with the inner-most boxplot having very low
median (around 0.1). Also, on DB (Figure 4.6(d)), the values of range of each boxplot
(always below 0.1) indicate that the edges tend to connect nodes that have very close
core-index, which is also consistent with the fact that nearly all seeds are not located
within the inner-most core (Figure 4.3).

4.5.3 Discussion

In this first stage of evaluation, we have learned that searching for influential spreaders
within the inner subnetworks (based on any particular decomposition method) does
not ensure to find the best seeds for an IM problem. Indeed, it should not be surprising
that topological properties of the networks take a crucial role in determining whether
or not nodes in the inner-most cores have the best influence-spreading potential. In
fact, Ig and FF, where most of the seeds were found in the inner-most core, are also the
networks that exhibit a significantly higher average in-degree and a network density
that is slightly higher than the other networks (Table 4.1). The remaining networks,
where seeds were mostly identified outside the inner-most cores, show a substantially
sparser structure, as indicated by their values of average path length, density, and
diameter.

We also found out that, when nodes in the inner subnetworks are mostly connected
with each other rather than towards nodes in outer subnetworks, IM methods tend
to select seeds among the set of nodes that couple a mid/low core-index with good
connectivity towards the inner subnetworks. We conjecture that a major limitation
of the decomposition methods considered so far, relies on their inability to leverage
higher-order degree of nodes. The next stage of evaluation is conceived around this
argument.

4.6 Higher-order cores

This section is dedicated to the evaluation of the only existing decomposition algo-
rithm based on higher-order degree, i.e., (k, h)-core decomposition.

Results are organized into three parts. In the first part, we replicate the same
setting adopted in the early step of the previous evaluation (cf. Section 4.5), in order to
assess the relation of (k, h)-core decomposition with the outcomes of an IM algorithm
(Section 4.6.1). Next, we assess the sensitivity of the decomposition w.r.t. the value
of the neighbor-distance threshold h (Section 4.6.2). Finally, we also investigate the
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Figure 4.7: Linear regression of the normalized distance-generalized
core-index (k/KDGC

h (G)) of the first 200 seeds computed by TIM+,
under the IC model.

individual influential-spreading potential of nodes, and put this in relation with the
decomposition outcomes (Section 4.6.4).

Please note that we shall focus our analysis on those networks where, by using all
the previously analyzed graph-decomposition methods, the seeds were mostly identi-
fied outside the respective inner-most cores.

4.6.1 Seed selection order

Analogously to the analysis presented in the first phase of Stage 1 (cf. Section 4.5.1),
we first investigated the relations between the (k, h)-core-index values and the selection
order of the discovered seeds.

Looking at the plots in Figure 4.7, it stands out that a significant fraction of
seeds is now found to be located in the inner-most (k, h)-core(s). This is particularly
evident in Ep and DB, where all top-200 seeds (i.e., not only the early-selected ones
corresponding to a small budget s) are in the inner-most core or immediately outer
one, with h ∈ {2, 3} and h = 3, respectively. A further important finding is that
while regression lines tend to rise up for higher h, with major gain from h = 1 (i.e.,
equivalent to core decomposition) to h = 2, this trend is not monotone in general.
Indeed, it may happen that an overly high value of h (typically higher than 4) could
lead to decreased performance, even worse than the corresponding core decomposition
(as observed for Tw, where the regression line for h = 5 lays on about 0.25).
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Table 4.2: Maximum (k, h)-core-index (leftmost) and number of dis-
tinct (k, h)-cores (rightmost), for varying h.

h = 1 h = 2 h = 3
DB 113 / 47 343 / 234 2135 / 1957
Ep 85 / 85 909 / 902 5357 / 5053
Net 31 / 13 69 / 69 389 / 384
Tw 24 / 24 270 / 270 1349 / 1250

4.6.2 Sensitivity to h

Here we delve into the characteristics of the (k, h)-cores detected by differently setting
h. In particular, we want to understand how nodes are distributed within the different
(k, h)-cores of the network, by varying h.

First, as reported in Table 4.2, we observe that the number of cores and the max-
imum core-index grow significantly as h increases — recall that h = 1 corresponds to
the classic k-core decomposition — which suggests how the (k, h)-core decomposition
can enable a fine-grain micro/mesoscale structure analysis.

In Figure 4.8, we observe that, when h > 1, the number of nodes in the subnetworks
with lower (k, h)-core-index is significantly smaller than for h = 1. This is clearly due
since nodes tend to be more connected to each other as h increases. More interestingly,
the inner-most generalized cores (i.e., tail of the distributions) are consistently more
populated than for h = 1. Nonetheless, as displayed in the insets of Figure 4.8 for all
networks, the inner-most generalized core covers a fraction of the whole node-set that
is relatively small, yet meaningful for a seed-set selection task.

4.6.3 Discussion

We have unveiled that the best-influential spreaders can actually be located within
one or very few inner-most core(s) of a network provided that a higher-order graph-
decomposition method is used. The neighbor-distance threshold (i.e., h) plays a key
role in the decomposition, since too large values of the parameter may in principle
lead, at the cost of increased computational overhead, to few cores covering most
nodes in the network, thus reducing the benefits of solving the identification of seeds
within a small subnetwork; this would mostly happen when the chosen h approaches
the average path length of the network, therefore more nodes fall into the same cores.
However, in practice, h ∈ {2, 4} turned out to be the most effective choice to concen-
trate the identification of a relatively large seed-set within the inner-most generalized
core. As one rule-of-thumb, a proper setting h is the one leading to observe the tail
in the distribution of generalized core-index as corresponding to a fraction of nodes
comparable with the budget for the seed-set to be discovered. Nonetheless, it emerges
an interesting opportunity for a theoretical investigation of relations between h and
structural characteristics of the network, which we leave as future work.

4.6.4 Individual influence-spreading ability

The above findings prompted us to further investigate whether the nodes assigned to
the inner-most core by the distance-generalized core decomposition have also individ-
ual spreading ability. More specifically, we want to determine the nodes’ individual
influential-spreading potential, i.e., the spread of each node as a singleton seed-set,
estimated through Monte Carlo simulation with 10 000 runs.

Figure 4.9 shows that a high (h, k)-core-index is in general a more reliable indicator
of the influence a node can individually produce. In fact, in many cases, nodes having
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Figure 4.8: Fraction of nodes per normalized distance-generalized
core-index k/KDGC

h (G), for varying h. Insets zoom in the tail of each
distribution, showing the exact number of nodes in the last quartile of
k/KDGC

h (G).

higher (h, k)-core-index exhibit higher influence potential. By contrast, such nodes are
not necessarily those with the highest core-index according to k-core decomposition.
Also, it should be noted the inner cores detected by k-core decomposition (h = 1) are
very different from the ones corresponding to higher values of h. In fact, many nodes
with low/mid core-index turn out to have a very high (h, k)-core-index.

To sum up, for an appropriate value of h, nodes in the inner-most cores are always
the ones having the highest influential-spread potential, either as singletons and as
groups (Section 4.6.1). This outstanding result clearly highlights the opportunity of
exploiting a distance-aware core decomposition for effectively solving top-influencer
identification problems that, while not being necessarily under the IM framework,
would avoid trapping into an under/over estimation of cumulative spread of a set of
nodes that is a typical of any top-s search centrality-based heuristic approach.
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Figure 4.9: Average spread of nodes w.r.t. selected combinations of
k-core-index (y-axis) and (h, k)-core-index for a particular choice of h
(x-axis). The expected spread of each node is computed by considering
the node as a singleton seed-set. Darker colors correspond to higher
normalized spread.

4.7 Chapter notes

In this we assessed for the first time the opportunity of leveraging on graph-decomposition
methods to simplify the problem of identification of the most influential spreaders in
directed network, under an influence maximization framework. We initially found
out that the correlation between the influential spreading power and the indexing of
nodes according to several graph-decomposition methods, is weaker than expected,
as we demonstrated that state-of-the-art IM algorithms do not generally locate their
seeds in the inner-most regions of a network, especially in networks with a sparse
structure. We showed that one major flaw of any of the classic decomposition algo-
rithm is related to the inability of integrating a notion of higher-order degree into
the decomposition scheme. By contrast, we found out that leveraging on a distance-
generalized core decomposition enables the desired outcome of detecting the most
influential spreaders in the inner-most generalized-core portion of the network.

This work opens several paths of further investigation. Our empirical assessment
of the relation between influence spread and different notions of graph-decomposition
paves the way to the opportunity of embedding advanced, distance-based generalized
decomposition methods in an IM-based influence analysis framework, with the purpose
of narrowing the search space of the best seeds only to specific portions of the network,
without even estimating in advance the influence probabilities. A related research
direction concerns the challenge of understanding what are the theoretical properties
underlying the relations between the neighbor-distance threshold h in the generalized
core decomposition method, and the structural characteristics of the input network,
in order to determine the minimum value of h that implies the detection of the most
influential nodes within the inner-most generalized core.
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Chapter 5

Topology-based Diversity-sensitive
Targeted Influence Maximization

Research on influence maximization has often to cope with marketing needs relating
to the propagation of information towards specific users. However, little attention
has been paid to the fact that the success of an information diffusion campaign might
depend not only on the number of the initial influencers to be detected but also on
their diversity w.r.t. the target of the campaign. Our main hypothesis is that if
we learn seeds that are not only capable of influencing but also are linked to more
diverse (groups of) users, then the influence triggers will be diversified as well, and
hence the target users will get higher chance of being engaged. Upon this intuition,
we define a novel problem, named Diversity-sensitive Targeted Influence Maximiza-
tion (DTIM), which assumes to model user diversity by exploiting only topological
information within a social graph. To the best of our knowledge, we are the first to
bring the concept of topology-driven diversity into targeted IM problems, for which we
define two alternative definitions. Accordingly, we propose approximate solutions of
DTIM, which detect a size-k set of users that maximizes the diversity-sensitive capital
objective function, for a given selection of target users. We evaluate our DTIM meth-
ods on a special case of user engagement in online social networks, which concerns
users who are not actively involved in the community life. Experimental evaluation on
real networks has demonstrated the meaningfulness of our approach, also highlighting
the usefulness of further development of solutions for DTIM applications.

5.1 Introduction

Online social networks (OSNs) are nowadays the preferred communication means for
spreading information, generating and sharing knowledge. One central problem is
the identification of influential individuals in an OSN such that, starting with them,
one can trigger a chain reaction of influence driven by “word-of-mouth”, which allows
for reaching a large portion of the network with a relatively little effort in terms of
initial investment (budget). This is commonly referred to as viral marketing principle,
which is the underlying motivation for a classic optimization problem in OSNs, namely
influence maximization (IM). The general objective of an IM method is to find a set of
initial influencers which can maximize the spread of information through the network
(e.g., [62, 72, 97, 121, 189, 211]).

Most of existing works in IM and related applications focus on the entire social
network through which the spread of influence is to be maximized. However, thinking
in terms of viral marketing, an organization often wants to narrow the advertisement
of its products to users having certain needs or preferences, as opposed to targeting
the whole crowd. Also, in an OSN scenario, some events or memes would be of interest
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only to users with certain tastes or social profiles. Our work fits into research on this
problem, hereinafter referred to as targeted IM.

Leveraging diversity for enhanced IM. While maximizing the advertising
of a product, an organization also needs to minimize the incentives offered to those
users who will reach out the target ones. This obviously raises the necessity of choos-
ing a proper number k of seed users (i.e., initial influencers) to be detected, which
corresponds to the budget constraint. Surprisingly, an important aspect that is often
overlooked is that the success of a viral marketing process might depend not only on
the size of the seed set but also on the diversity that is reflected within, or in relation
to, the seed set. Intuitively, individuals that differ from each other in terms of kind
(e.g., age, gender), socio-cultural aspects (e.g., nationality, race) or other characteris-
tics, bring unique opinions, experiences, and perspectives to bear on the task at hand;
moreover, in an OSN context, members naturally have different knowledge, commu-
nity experience, participation motivation and shared information [160, 166, 169]. It
is worth noticing that diversity has been generally recognized as a key-enabling di-
mension in data analysis, which is essential to enhance productivity, develop wiser
crowdsourcing processes, improve user satisfaction in content recommendation based
on novelty and serendipity, avoid information bubble effects, and ultimately have legal
and ethical implications in information processing [53, 162].

Bringing this picture into targeted IM scenarios, let us focus on the problem of
user engagement [4, 89, 146, 160]. Users that have not yet experienced community
commitment (i.e., they are not actively involved in the community life) often hail for
different background and motivation, and communicate on diverse topics, which makes
engaging them difficult. One effective strategy of user engagement should account
for the support and guidance from elder, active members of the community [179].
Therefore, by identifying the most diverse, active members, the triggering stimuli will
also be diversified. Since diverse individuals tend to connect to many different types
of members, the likelihood of effective engagement would be higher.

The challenge of diversity in targeted IM. Existing targeted IM methods are
not designed to embed a notion of diversity in their objective function. In this work, we
aim to overcome this limitation, using an unsupervised approach. That is, our research
relies on taking a perspective that does not assume any side-information or a-priori
knowledge on user attributes (e.g., personal profile, topical preference, community
role) that can enable diversification among users. By contrast, we assume that a user’s
diversity in a social graph can be determined based on topological properties related
to her/his neighborhood. Remarkably, this finds justifications from social science,
particularly from theories of social embeddedness [81] and boundary spanning [1, 176].
In particular, the latter explains how OSN users acquire knowledge from some of their
social contacts and then spread (part of) it to other contacts that belong to one or
more components of the social graph, e.g., topically-induced communities, as found
in [91].

Our main hypothesis is that if we learn seeds that are not only capable of influ-
encing but also are linked to more diverse (groups of) users, then we would expect
that the influence triggers will be diversified as well, and hence the target users will
get higher chance of being engaged.

Example 1. To advocate the above hypothesis, consider the example social graph
shown in Figure 5.1, where nodes represent individuals and edges express influence
relationships. Suppose this graph corresponds to the context of a diffusion process,
captured at a given time step, where for the sake of simplicity we omit to indicate
both the influence probabilities as edge weights and the active/inactive nodes. Let
us focus our attention on the square border node t, which represents a target node,
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Figure 5.1: Effect of topological diversity on the outcome of targeted
IM.

and assume that the colored nodes a, u1, u2 correspond to candidate seeds, for which
we know the individual cumulated spreading influence towards t and the individual
topological diversity according to some diversity function; in the figure, these scores
are displayed by the leftmost bar and the rightmost bar, respectively, associated to
each of the candidate seeds.
A conventional targeted IM method would add node a to the seed set, since it has
the highest capability of spread among the candidate seeds; however, a’s location
has two characteristics that, as we shall explain later, would imply poor topological
diversity: it does not receive any incoming connections from other components in
the graph, and it diffuses towards nodes that are all in the same subgraph having
t as sink. By contrast, the location of nodes u is strategical in terms of topological
diversity, since they could be influenced by one or more groups of nodes (in the figure
indicated as components enclosed within dashed clouds), thus potentially acquiring a
wider spectrum of varied information and perspectives. Selecting nodes u would hence
be favored by a diversity-aware targeted IM method as they might be more effective
in increasing node t’s engagement.

Two main research questions here arise concerning how to leverage users’ social
diversity in order to enhance the performance of a targeted IM task: (R1) how
to determine diversity at a large-scale, when we have no a-priori knowledge on user
attributes; and (R2) how the seed users should be learned by also considering diversity
w.r.t. a target set.

Contributions. In this work we contribute with the definition of a novel prob-
lem, named Diversity-sensitive Targeted Influence Maximization (DTIM). To the best
of our knowledge, we are the first to bring the concept of topology-driven diversity
into targeted IM problems. More specifically, to answer R1, we provide two alter-
native ways of modeling topology-driven diversity for targeted IM, which depend on
the approach adopted to exploit structural information from the diffusion subgraph
specific to a given target node. (Loosely speaking, a target-specific diffusion sub-
graph corresponds the portion of the diffusion graph involved, at a given time step,
in the unfolding of the diffusion towards a particular target node.) The first method,
dubbed local diversity , is designed to compute node diversity at each step of the ex-
pansion of a target-specific diffusion subgraph. The local diversity of a node captures
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the likelihood of reaching it from nodes outside the currently unfolded target-specific
diffusion subgraph. Our second method of topology-driven diversity, dubbed global
diversity , exploits the structural information of the fully unfolded target-specific dif-
fusion subgraph, and determines the diversity of nodes that lay on the boundary of
the subgraph, i.e., nodes that can receive influence links from nodes external to the
subgraph. Intuitively, this would allow us to capture a boundary-spanning effect of
external sources of influence coming from the rest of the social graph.

To address question R2, we capitalize on the local diversity and global diversity
definitions to develop alternative algorithms for the DTIM problem, dubbed L-DTIM
and G-DTIM. Both algorithms follow a greedy approach that exploits the search for
shortest paths in the diffusion graph, in a backward fashion from the selected target
set.

We evaluate our DTIM methods on a special case of user engagement in OSNs,
which concerns the crowd of users who do not actively contribute to the production
of social content. Such silent users, a.k.a. lurkers, might have great potential in terms
of social capital, i.e., acquired knowledge through the observation of user-generated
communications. Therefore, it is highly desirable to encourage (a portion of) silent
users to more actively participate and give back to the community. Note that while
we previously addressed this problem of user engagement in OSNs via a targeted
IM approach in [91, 92], in this work we further delve into understanding such a
challenging problem under the new perspective of diversity of the seeds to be identified
for maximizing the engagement of silent users.

Experimental evaluation using three real-world OSN datasets was conducted to
assess the meaningfulness of our approach, mainly in terms of characteristics of the
identified seeds and the activated target users, and how they are affected by tuning
the input and model parameters of our methods. We also included comparison with
two of the most relevant existing IM methods, namely TIM+ [189] and KB-TIM [127],
based on the state-of-the-art RIS approach. While this comparison has highlighted
the uniqueness of our methods, it also suggested to improve their efficiency. In this
respect, a further important contribution is the revisiting of RIS-based approximation
theory to our diversity-sensitive targeted IM problem.

Organization of the chapter. The rest of the chapter is organized as follows.
Section 2 discusses related work, focusing on diversity and targeted IM. Sections 3
presents our diversity-sensitive targeted IM problem, defines two alternative formula-
tions of topology-driven diversity, and presents the L-DTIM and G-DTIM algorithms.
In Section 4, we introduce a case study of user engagement for the evaluation of our
proposed framework. Experimental evaluation methodology and results are reported
in Section 5 and Section 6, respectively. Section 7 describes a RIS-based formulation
of DTIM. Section 8 draws conclusions and provides pointers for future research.

5.2 Related work

Diversity in information spreading. Most existing notions of diversity have
been developed around structural features of the network, or alternatively based on
user profile attributes. This broad categorization applies to various contexts, such as,
e.g., web searching and recommendation [122, 171, 203], and information spreading.
Focusing on the latter aspect, the authors in [107] propose a measure of controllability,
defined as the number of nodes able to spread an opinion through the whole network.
In [10], the IC model is extended to take into account the structural diversity of
nodes’ neighborhood. Main difference between the above mentioned approaches and
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our work, relies on the fact that they do not take into account any optimization
problem. Other works deal with the problem of estimating the spreading ability of a
single node in a network [60, 88]. Node diversity into the IM task has been introduced
in [184]. This work shares with ours the linear combination of spread and diversity in
the definition of objective function. However, our approach does not depend on user
characterization based on topic-biased or categorical distributions.

Targeted influence maximization. Research on targeted IM has gained atten-
tion in recent years. A few studies have assumed that the target is unique and a-priori
specified. In [77], the authors address the problem of finding the top-k most influential
nodes for a specific target user, under the IC model. In [76], the authors investigate
optimal propagation policies to influence a target user. In [204], the authors consider
the problem of acceptance probability maximization, whereby a selected user (called
initiator) wants to send a friendship invitation to a selected target which is not socially
close to the initiator (i.e., the two nodes have no common friends). The goal is to find
a set of nodes through which the initiator can best approach the target. Unlike the
above single-target IM methods, our DTIM approach aims at maximizing the proba-
bility of activating a target set which can be arbitrarily large, by discovering a seed
set which is neither fixed and singleton nor has constraints related to the topological
closeness to a fixed initiator.

In [127], the authors describe a keyword-based targeted IM method, named KB-
TIM. This assumes that each user is associated with a weighted term vector to capture
her/his preference on advertisements. A user with keywords in common with the ad-
vertisement will belong to the target set. KB-TIM relies on a state-of-the-art approach
for the classic IM problem, named reverse influence sampling (RIS) [20, 189], which
provides theoretical guarantees on the solutions. RIS consists of two main steps: (i)
computing, for a fixed number θ of nodes selected uniformly at random, the reverse
reachable sets, i.e., the sets of nodes that can reach them, and (ii) selecting k nodes
that cover the maximum number of reverse reachable sets. In [189], the authors show
that, when θ is large enough, this set has high probability of being a near-optimal
solution to IM. More in detail, they propose the TIM+ algorithm which derives the
parameter θ as function of a lower bound of the maximum expected spread among all
size-k node sets. The steps of KB-TIM are similar to TIM+, but as the former takes
into account only users relevant to an advertisement, it defines a different lower bound
for θ. Moreover, while in [20, 189] the random reverse reachable sets are sampled on-
line, KB-TIM allows the sampling procedure to be performed offline by building a
disk-based reverse reachable index for each keyword. Other targeted IM approaches
for target-aware viral marketing purposes are described in [110, 120, 133, 142].

It is worth emphasizing that, except KB-TIM and TIM+, all the above works focus
on the IC diffusion model. Note also that the study in [133], which is in principle suited
to any diffusion model, actually does not take into account the effect of multiple
spreaders (i.e., the diffusion process is considered only for computing the potential
influence of each node at a time).

5.3 Targeted influence maximization with topology-driven
diversity

5.3.1 Problem statement

Let G = G0(b, `) = 〈V ,E, b, `〉 be a directed weighted graph representing the infor-
mation diffusion graph associated with the social network G0 = 〈V ,E〉, where V is
the set of nodes, E is the set of edges, b : E → R∗ is an edge weighting function,
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and ` : V → R∗ is a node weighting function. The edge weighting function b cor-
responds to the parameter of the Linear Threshold (LT) model [97, 199], which we
adopt as information diffusion model in this work. Under the LT model, each node
can be “activated” by its active neighbors if their total influence weight exceeds the
threshold associated to that node. More formally, for any edge (u, v), the weight
b(u, v) resembles a measure of “influence” produced by u to v and it is such that∑

u∈N in(v) b(u, v) ≤ 1, where N in(v) is the in-neighbor set of node v. At the begin-
ning of the diffusion process, each node v is assigned a threshold uniformly at random
from [0, 1]. Given a set S ⊆ V of initial active nodes, an inactive node v becomes
influenced or active at time τ ≥ 1, if the total weight of its active neighbors is greater
than its threshold. The process runs until no more activations are possible. We denote
with µ(S) the final active set, i.e., the set of nodes that are active at the end of the
diffusion process starting from S.

Given G = 〈V ,E, b, `〉, the node weighting function ` determines the status of
each node as a target, i.e., a node toward which the information diffusion process is
directed. More specifically, for any user-specified threshold L ∈ [0, 1], we define the
target set TS for G as:

TS = {v ∈ V | `(v) ≥ L}. (5.1)

The objective function of our targeted IM problem is comprised of two functions.
The first one, we call capital, is determined as proportional to the cumulative status
of the target nodes that are activated by the seed set S.

Definition 17 (Capital). Given S ⊆ V , the capital C(µ(S)) associated with the final
active set µ(S) is defined as:

C(µ(S)) =
∑

v∈(µ(S)∩TS)\S

`(v) (5.2)

The capital function corresponds to the cumulative amount of the scores associated
with the activated (target) nodes, i.e., C(µ(S)). Remarkably, in Equation (5.2) we do
not consider nodes that belong to the seed set S, in order to avoid biasing the seed
set by nodes with highest scores.

The second measure is introduced to capture the overall diversity of the nodes in
set S w.r.t. the target set. We define it in terms of a function divt that is in turn
designed to measure the diversity of a node with respect to each of the target nodes
separately.

Definition 18 (Diversity). Given S ⊆ V , the diversity D(S) associated with the
target set TS ⊆ V is defined as:

D(S) =
∑
s∈S

∑
t∈TS

divt(s) (5.3)

As previously mentioned, our approach is to measure node diversity in relation
to the structural context of the information diffusion graph. In Section 5.3.2 we
shall elaborate on different ways of computing topology-driven diversity, and provide
alternative formulations for the divt function.

We now formally define our proposed problem of targeted IM, named Diversity-
sensitive Targeted Influence Maximization (DTIM).

Definition 19 (Diversity-sensitive Targeted Influence Maximization). Given a dif-
fusion graph G = 〈V ,E, b, `〉, a budget k, and a threshold L, find a seed set S ⊆
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V with |S|≤ k of nodes (users) such that, by activating them, we maximize the
Diversity-sensitive Capital (aDC):

S = argmax
S′⊆V s.t. |S′ |≤k

aDC

= argmax
S′⊆V s.t. |S′ |≤k

αC(µ(S
′
)) + (1− α)D(S

′
)

(5.4)

where α ∈ [0, 1] is a smoothing parameter that controls the weight of capital C with
respect to diversity D.

The objective function of the problem in Equation 5.4 is defined in terms of linear
combination of the two functions, capital and diversity. The problem in Def. 19
preserves the complexity of the IM problem and, as a result, it is computationally
intractable, i.e., it is still NP-hard. However, as for the classic IM problem, a greedy
solution can be designed since that the natural diminishing property holds for the
considered problem, as stated in the following.

Proposition 2. The capital function defined in Equation (5.2) is monotone and sub-
modular under the LT model.

Proof (sketch). By exploiting the equivalence between LT and the live-edge model
shown in [97], for any set A ⊆ V we can express the expected capital of the final
active set µ(A) in terms of reachability under the live-edge graph:

C(µ(A)) =
∑
∀X

Pr(X)C(RX(A)) (5.5)

where Pr(X) is the probability that a hypothetical live-edge graph X is selected from
all possible live-edge graphs, and RX(A) is the set of nodes that are reachable in
X from A. Since for all v ∈ V , `(v) is a non-negative value, C(RX(A)) is clearly
monotone and submodular. Thus, the expected capital under LT is a non-negative
linear combination of monotone submodular functions, and hence it is monotone and
submodular, which concludes the proof. �

Proposition 3. The diversity function defined in Equation (5.3) is monotone and
submodular.

Proof (sketch). As in both the formulations of topology-driven diversity provided
above, divt(v) returns a non-negative value for all v ∈ V , D(·) is clearly monotone.
To see that is also submodular, we have to verify that, ∀S, T ⊆ V with S ⊆ T and
∀v ∈ V \ T , D(S ∪ {v})−D(S) ≥ D(T ∪ {v})−D(T ). For definition of diversity, the
above expression can be written as D(S) +D({v})−D(S) ≥ D(T )−D({v})−D(T ),
hence it is nondecreasing submodular, which concludes the proof. �

�
In light of these theoretical results, aDC is also monotone and submodular as

it corresponds to a non-negative linear combination of monotone and submodular
functions.

5.3.2 Topology-driven diversity

Our perspective in modeling user diversity is to utilize only structural information
given by the topology of a social network graph. Therefore, we take the advantage of
a completely unsupervised process to avoid requiring any side-information or a-priori
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knowledge on user attributes that can enable diversification among users. Instead,
we draw inspiration from social science, in that the way a user is connected to others
within the OSN (a.k.a. social embeddedness) is recognized as a manifestation of diver-
sity of the individual in that online social environment [81]. This is also strictly related
to the theory of boundary spanning [1], which essentially states that OSN users may
naturally get knowledge from some of their social contacts and then spread (part of) it
to other contacts through one or more components of the social graph (e.g., topically
induced communities). Boundary spanning has also been recognized as an important
aspect to consider in order to adequately characterize those users that can show differ-
ent behaviors in terms of information-production and information-consumption when
considering them laying on the boundary of graph components [1, 180]. Upon the
above intuitions, we start from the following basic assumption:

Principle 1. The diversity of a user in a social graph can be determined based on
topological properties of her/his neighborhood.

Definition 20 (Target-specific information diffusion subgraph). Given the diffusion
graph G = 〈V ,E, b, `〉, defined over the social graph G0 = 〈V ,E〉, a target node
t ∈ TS, and a time step τ , we define the target-specific diffusion subgraph as the
directed acyclic graph G

(τ)
t = 〈Vt, Et〉 ⊆ G0, rooted in t, that corresponds to the

portion of G involved in the unfolding of the diffusion towards t, at time τ .

Definition 21 (Boundary set). Given a target-specific information diffusion subgraph
G

(τ)
t , its boundary set is defined as the set of nodes having at least one incoming

connection from nodes in G outside G(τ)
t :

B
(τ)
t = {v ∈ Vt | ∃(u, v) ∈ E \ Et} (5.6)

It is worth noticing here that, while the diffusion starts from a set of seed nodes
and follows the directed topology of G, a widely adopted way of modeling the search
for nodes that could reach target ones is to use the backward or reverse depth-first
search (e.g., [20, 72, 189]).

Definition 22 (Expansion of target-specific diffusion subgraph). Given a target-
specific information diffusion subgraph G

(τ)
t at time τ , its expansion at time τ + 1

is defined as the graph G(τ+1)
t resulting from the reverse unfolding of G(τ)

t such that
G

(τ+1)
t contains nodes in G that can reach nodes in the boundary set of G(τ)

t . More-
over, a target-specific diffusion subgraph is said fully expanded if no further backward
unfolding over G is possible.

For the sake of simplification, we hereinafter use symbolsGt, Bt instead ofG(τ)
t , B

(τ)
t

as the association with a particular time step τ is assumed to be clear from the con-
text. Moreover, for any v ∈ Bt, we denote with N in

¬Et(v) = N in(v) \ {u | ∃(u, v) ∈ Et}
the set of in-neighbors of v that are not linked to v in Gt.

We provide two alternative ways of modeling topology-driven diversity for targeted
IM, which depend on the strategy adopted to construct Gt:

• the first method is designed to compute node diversity at each step of the expan-
sion of the information diffusion subgraph for a given target t.Since the method
does not require information on the fully expanded diffusion subgraph for t, it
is referred to as local diversity .

• the second method, named global diversity , is instead designed to compute node
diversity on the fully expanded target-specific diffusion subgraph.
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In the following, we will provide a complete specification of each of the above
introduced diversity methods.

5.3.2.1 Local Diversity

Our notion of local diversity of node is designed to account for the progressive expan-
sion of the information diffusion graph for a given target node.

Given the currently unfolded Gt and a node v ∈ Bt with N in
¬Et(v) 6= ∅, our goal is

to determine the local diversity for every node u in N in(v) based on two main criteria:

Principle 2. The diversity of node u should be proportional to the likelihood of reach-
ing it from nodes outside the currently unfolded target-specific diffusion subgraph Gt,
i.e., proportional to the number of u’s in-neighbors in G not already in Gt.

Principle 3. The diversity of node u should be proportional to the increment con-
tributed by that node to the number of incoming links not already included in Gt.

Accordingly, we first characterize the diversity in the boundary set of Gt, and its
incremental update due to the insertion of a new node to Gt, then we provide our
definition of local diversity .

Definition 23 (Boundary diversity of set). Given the currently unfolded Gt, the
boundary diversity δt of Gt is defined as the number of nodes in N in

¬Et(v) averaged
over nodes v in Bt:

δt =
1

|Bt|
∑
v∈Bt

|N in
¬Et(v)| (5.7)

Note that the above definition is simple yet convenient to use in incremental com-
putations. Moreover, it is directly related to the amount of possible paths to diffuse
towards a particular target node. The study of alternative definitions of boundary
diversity could be an interesting direction as future work.

For each u ∈ N in(v), with v ∈ Bt, if u is inserted in Gt, the boundary diversity
will change accordingly, since Bt is updated to contain u. The boundary diversity
w.r.t. Bt being updated with u, denoted with δ+u

t , is straightforwardly determined as
follows:

δ+u
t =

|Bt|δt + |N in
¬Et(u)|

|Bt|+1
(5.8)

Definition 24 (Local diversity). The local diversity of u is defined as the ratio of
the boundary diversity conditional on inclusion of u in Gt, to the actual boundary
diversity:

divt(u) =
δ+u
t

δt
=

|Bt|
1 + |Bt|

(
1 +

|N in
¬Et(u)|∑

v∈Bt |N
in
¬Et(v)|

)
(5.9)

Intuitively, the local diversity applies to any node u that is in-neighbor of some
node that lays on the boundary of the currently unfolded Gt, and expresses the in-
crement due to node u to the overall likelihood of being reached from more different
portions of the diffusion graph G.
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5.3.2.2 Global Diversity

Our second method of topology-driven diversity computation relies on the availabil-
ity of structural information of the fully expanded target-specific diffusion subgraph.
While this solution loses the advantage of incremental computation, it also opens to
the opportunity of using more structural features to measure the diversity of a node.

Given a target node t, Gt is here meant as the fully expanded diffusion subgraph for
t. Moreover, the definition of boundary given in Equation 5.6 as well as the definition
of boundary diversity given in Equation 5.7 do not change; however, we will exploit
them at a “node level” rather than a “set-level” as for the local diversity .

First, the boundary diversity here assumes a slight different meaning with re-
spect to the local diversity case. It still captures the strength of the flow potentially
spanning over portions of the diffusion graph not already unfolded, which makes Prin-
ciple 2 hold; however, since the target-specific diffusion subgraph Gt is considered as
definitively unfolded, we conceptualize that:

Principle 4. The boundary spanning should be regarded as exogenous to the diffusion
process for a specific target, and hence intuitively associated to external sources of
influence coming from the rest of the social graph.

Definition 25 (Boundary diversity of node). Given a node v ∈ Bt, the boundary
diversity of v is defined as the contribution of v to the boundary diversity δt:

divBt (v) =
|N in
¬Et(v)|
|Bt|

(5.10)

Boundary diversity is set to zero for any v ∈ Vt \Bt.

While the concept of boundary diversity is essential to characterize the connectiv-
ity of boundary nodes from outside Gt, we also consider here to measure their outward
connectivity within Gt as the contribution a node gives to the average number of out-
neighbors of nodes in Bt that belong to Gt. We denote the latter as |Nout

Et
(v)|/|Bt|.

Moreover, we observe that, from the perspective of maximizing diversity of nodes that
propagates towards a given target, the overall measure of diversity of node should be
not only obviously proportional to its boundary diversity, but also proportional to its
outward internal span. The above considerations lead to the following definition.

Definition 26 (Global diversity). The global diversity of node v is defined as:

divt(v) = divBt (v)× f

(
|Nout

Et
(v)|

|Bt|

)
(5.11)

where f is a smoothing function to assign the outward internal span a weight at most
equal to the boundary diversity term.

In the following, we will refer to a logarithmic smoothing, i.e., f = log(1 +
|Nout

Et
(v)|/|Bt|), since we want the outward internal span of node has an impact lower

than the boundary diversity on the overall value of diversity.

5.3.3 The DTIM algorithms

In this section, we show our algorithmic solutions to the proposed Diversity-sensitive
Targeted InfluenceMaximization problem. According to the local diversity and global
diversity criteria previously introduced in Section 5.3.2, we provide two methods,



5.3. Targeted influence maximization with topology-driven diversity 91

named L-DTIM and G-DTIM, respectively; due to space limits of this chapter, they
are concisely reported in Algorithm 4.

Following the lead of the study in [72], L-DTIM and G-DTIM exploit as well the
search for shortest paths in the diffusion graph, however in a backward fashion. Along
with the information diffusion graph G, the budget integer k, the minimum score L
and a parameter α ∈ [0, 1] which controls the balance between capital and diversity,
L-DTIM and G-DTIM take in input a real-valued threshold η. This parameter is used
to control the size of the neighborhood within which paths are enumerated: in fact,
the majority of influence can be captured by exploring the paths within a relatively
small neighborhood; note that for higher η values, less paths are explored (i.e., paths
are pruned earlier) leading to smaller runtime but with decreased accuracy in spread
estimation.

Algorithm 4 DTIM- Diversity-sensitive Targeted Influence Maximization
Input: A graph G = 〈V ,E, b, `〉, a budget (seed set size) k, a target selection threshold L ∈ [0, 1], a path pruning threshold

η ∈ [0, 1], a smoothing parameter α ∈ [0, 1].
Output: Seed set S.
1: T ← V {nodes that can reach target nodes}
2: for u ∈ V do
3: if `(u) ≥ L then
4: TS ← TS ∪ {u} {identifies the target nodes}
5: end if
6: u.Dset← {} {initializes a data structure that keeps track of node diversity w.r.t. any target}
7: end for
8: while |S|< k do
9: for u ∈ T \ S do
10: u.C, u.D ← 0 {initializes each node’s capital and diversity to zero}
11: end for
12: T ← ∅
13: for t ∈ TS \ S do
14: Gt = 〈Vt, Et〉 ← 〈{t}, ∅〉 {initializes DAG rooted in t}
15: backward(〈t〉, 1, t)
16: if |S|= 0 then
17: updateDiversity(t)
18: end if
19: end for
20: S ← S ∪ {bestSeed}
21: end while
22: return S

23: procedure backward(P, pp, t)
24: v ← P.last(), T ← T ∪ {u}
25: while u ∈ Nin(v) ∧ u 6∈ S ∪ P.nodeSet() do
26: pp← pp× b(u, v) {updates the path probability}
27: if pp ≥ η then
28: u.C ← u.C + pp× `(t) {updates the overall node capital}
29: if |S|= 0 then
30: u.inf ← u.inf + pp {increases the overall influence of node u on the current target}
31: (∗) u.Dset(t)← divt(u) {computes the current node diversity w.r.t. the target by Eq.5.9}
32: Gt = 〈Vt ∪ {u}, Et ∪ {(u, v)}〉 {adds the edge (u, v) to the explored DAG}
33: else
34: u.D ← u.D + pp× u.Dset(t)
35: if u.aDC > bestSeed.aDC then
36: bestSeed← u {sets the current best seed node as u}
37: end if
38: end if
39: backward(P.append(u), pp, t)
40: end if
41: end while

42: procedure updateDiversity(t)
43: for v ∈ Vt do
44: (∗∗) v.Dset(t)← divt(v) {computes node diversity w.r.t. the target t by Eq. 5.11}
45: v.D ← v.D + v.inf × v.Dset(t) {updates the overall node diversity}
46: v.inf ← 0
47: if v.DIC > bestSeed.aDC then
48: bestSeed← v {sets the current best seed node as v}
49: end if
50: end for

(∗) Instruction at line 31 is performed by L-DTIM only.
(∗∗) Instruction at line 44 is performed by G-DTIM only.

In order to yield a seed set S of size at most k, during each iteration of the main
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loop (lines 8-21), both the variants of Algorithm 4 compute the set T of nodes that
reach the target ones and keep track, into the variable bestSeed, of the node with the
highest marginal gain (i.e., diversity-sensitive capital aDC).

The bestSeed node is found at the end of each iteration upon calling the subroutine
backward over all nodes in TS that do not belong to the current seed set S. This
subroutine takes a path P, its probability pp and the target t from which the visit
has started, and extend P as much as possible (i.e., as long as pp is not lower than
η). Initially, a path is formed by one target node, with probability 1 (line 15). Then,
the path is extended by exploring the graph backward, adding to it one, unexplored
in-neighbor u at time, in a depth-first fashion. Path probability is updated (line 26)
according to the LT-equivalent “live-edge” model [72, 97], and so the capital (line 28).
The process is continued until no more nodes can be added to the path.

Both G-DTIM and L-DTIM compute the node diversity only at the first iteration of
the main loop, i.e., when the seed set S is empty. Indeed, for each node, we keep track
of its diversity w.r.t. each target it can reach, by using data structure Dset. A major
difference between the two variants is that in G-DTIM the node diversity is computed
(through the subroutine updateDiversity) only when the whole subgraph rooted in t
has been completely built (line 44). In L-DTIM, instead, the node diversity is updated
every time the node has been reached (line 31). Note that the instruction at line 31
(resp. 44) is performed by L-DTIM (resp. G-DTIM) only. The value of diversity of a
node v is, in both the variants, smoothed with the influence that v might exert on t,
contributing to the overall diversity D of v (line 45).

Note that both the numerical values yielded by both global diversity and local
diversity functions divt might be subject to scaling in order to enable a fair comparison
with the numerical value yielded by the capital.

Example 2. Consider the example in Figure 5.2, where the target set includes
the square border node {t}. Let’s assume for simplicity we set k = 1, α = 0.5, η = 0
and we ignore the spread computation for nodes inside the other components of Gt
(represented within clouds in the figure). Moreover, the double arrows connecting
these components to nodes u1 and u2 count as two edges each. In the following, we
denote with pp [x→ · · · → y] the probability of the path from x to y, and with x.inf
the overall influence exerted by node x to the target.

The target node t can be reached through a (with a.inf = pp [a→ f → c→ t] +
pp [a→ c→ t] + pp [a→ g → t] = 0.098 + 0.06 + 0.24), b (with b.inf = pp [b→ t] =
0.35), c (with c.inf = pp [c→ t] = 0.2), d (with d.inf = pp [d→ h→ e→ t] =
0.045), e (with e.inf = pp [e→ t] = 0.15), f (with f.inf = pp [f → c→ t] = 0.14),
g (with g.inf = pp [g → t] = 0.3), h (with h.inf = pp [h→ e→ t] = 0.09), u1 (with
u1.inf = pp [u1 → d→ h→ e→ t] + pp [u1 → b→ t] = 0.0135 + 0.21), and u2 (with
u2.inf = pp [u2 → d→ h→ e→ t] + pp [u2 → b→ t] = 0.0315 + 0.14). Node a has
the largest chance of success in activating t, which results in the highest capital C.
However, since a does not have in-neighbors, its diversity is equal to zero for both the
diversity formulations.

Let us first focus on the behavior of G-DTIM. According to Equation 5.6, the set of
boundary nodes is Bt = {u1, u2}. By definition of global diversity (Equation 5.11), G-
DTIM computes the following values: u1.D = 2.08 (as divBt (u1) = 6/2 and divt(u1) =
3× log(1+2/2)), u2.D = 0.69 (as divBt (u2) = 2/2 and divt(u1) = 1× log(1+2/2)). By
applying the max-normalization to the node diversity, the final values are u1.D = 1
and u2.D = 0.33. As a result, for G-DTIM node u1 is chosen as seed node since it has
diversity-sensitive capital (aDC = 0.22× 0.5× (0.5 + 1) = 0.165) higher than that of
a (aDC = 0.4×0.5× (0.5+0) = 0.1) and u2 (aDC = 0.13×0.5× (0.5+0.33) = 0.05).
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Figure 5.2: Targeted IM vs. diversity-sensitive targeted IM. Edge
weights (values in blue) and node weights (values in green) are com-
puted by functions b and `. To avoid cluttering of the figure, the node
activation thresholds used by LT model here coincide with the node
weights.

The values of node diversity computed by L-DTIM depend on the order in which
nodes are reached during the backward visit. Assume to visit first the branch starting
from node e. According to Equation 5.9, L-DTIM computes the following values of
node diversity: e.D = 0.625 (divt(e) = 1/2 × (1 + 1/4) as Bt = {t}), h.D = 0.83
(divt(h) = 2/3× (1 + 1/4) as Bt = {t, e}), d.D = 1 (divt(d) = 2/3× (1 + 2/4) as Bt =
{t, h}), and, assuming to visit u1 before u2, u1.D = 1.47 (divt(u1) = 2/3×(1+6/5) as
Bt = {t, d}), u2.D = 0.9 (divt(u2) = 3/4×(1+2/10) as Bt = {t, d, u1}). Analogously,
it proceeds in computing the node diversity through branches c and g, whose values
of diversity are lower than 0.9 (not reported for the sake of readability). L-DTIM
eventually computes the following diversity: b.D = 0.92 (divt(b) = 3/4× (1 + 2/9) as
Bt = {t, u1, u2}), u1.D = 1.2 (divt(u1) = 3/4 × (1 + 6/10) as Bt = {b, u1, u2}), and
u2.D = 0.92 (divt(u2) = 3/4×(1+2/9) as Bt = {b, u1, u2}). Upon max-normalization
to the values so obtained, L-DTIM will choose b as seed node since it has diversity-
sensitive capital (aDC = 0.35 × 0.5 × (0.5 + 0.77) = 0.22) higher than that of u1

(aDC = 0.22× 0.5× (0.5 + 1) = 0.165).

5.4 Using DTIM to engage silent users in social networks

We evaluate our framework of targeted IM with topology-driven diversity on a special
case of user engagement in OSNs, which refers to the problem of how to turn silent
users into more active contributors in the community life.

All large-scale OSNs are characterized by a participation inequality principle: the
crowd does not take an active role in the interaction with other members, rather it
takes on a silent role. Silent users are also referred to as lurkers, since they gain
benefit from information produced by others, by observing the user-generated com-
munications at all stages (e.g., reading posts, watching videos, etc.), but without
significantly giving back to the community [56, 179].

Social science and human-computer interaction research communities have widely
investigated the main causes that explain lurking behaviors, which include subjective
reticence (rather than malicious motivations) to contribute to the community wisdom,
or a feeling that gathering information by browsing is enough without the need of
being further involved in the community. Moreover, lurking can be expected or even
encouraged because it allows users (especially newcomers) to learn or improve their
understanding of the etiquette of an online community [56].

Regardless of their motivations, lurkers might have great potential in terms of
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social capital, because they acquire knowledge from the OSN. They can become aware
of the existence of different perspectives and may make use of these perspectives in
order to form their own opinions, but they are unlikely to let other people know their
value. In this regard, it might be desirable to engage such users, or delurk them, i.e.,
to develop a mix of strategies aimed at encouraging lurkers to return their acquired
social capital, through a more active participation to the community life.

Engagement actions towards silent users can be categorized into four types [179]:
reward-based external stimuli, providing encouragement information, improvement
of the usability and learnability of the system, guidance from elders/master users
to help lurkers become familiar with the system as quickly as possible. It is worth
emphasizing that our approach is independent on the particular strategy of delurking
being adopted. The goal here is how to instantiate our DTIM algorithms in a user
engagement scenario where lurkers are regarded as the target users of the diffusion
process. Therefore, our goal becomes: Given a budget k, to find a set of k nodes
that are capable of maximizing the diversity-sensitive capital, i.e., the likelihood of
activating the target silent users through diverse seed users.

A key aspect of our approach in this scenario is that the selection of target users
is based on the solution produced by a lurker ranking algorithm [180–182] applied to
the social network graph G0. In Section 5.4.1 we provide a summary of the lurker
ranking method we used in this work, and in Section 5.4.2 we describe how the input
diffusion graph for DTIM is modeled, following our early work in [92].

5.4.1 Identifying target users through LurkerRank

Lurker ranking methods, originally proposed in [180, 182], are designed to mine silent
user behaviors in the network, and hence to associate users with a score indicating
her/his lurking status. Lurker ranking methods rely upon a topology-driven definition
of lurking which is based on the network structure only. Upon the assumption that
lurking behaviors build on the amount of information a node receives, the key intuition
is that the strength of a user’s lurking status can be determined based on three
basic principles: overconsumption, authoritativeness of the information received, non-
authoritativeness of the information produced.

The above principles form the basis for three ranking models that differently ac-
count for the contributions of a node’s in-neighborhood and out-neighborhood. A
complete specification of the lurker ranking models is provided in terms of PageRank
and AlphaCentrality based formulations. For the sake of brevity here, we will refer
to only one of the formulations described in [180, 182], which is that based on the
full in-out-neighbors-driven lurker ranking, hereinafter dubbed simply as LurkerRank
(LR).

Given the directed social graph G0 = 〈V ,E〉, where any edge (u, v) means that v
is is “consuming” or “receiving” information from u, the LurkerRank LR(v) score of
node v is defined as:

LR(v) = [.Lin(v) (1 + Lout(v))] + (1− ).p(v) (5.12)

where Lin(v) is the in-neighbors-driven lurking function:

Lin(v) =
1

out(v)

∑
u∈N in(v)

out(u)

in(u)
LR(u) (5.13)
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and Lout(v) is the out-neighbors-driven lurking function:

Lout(v) =
in(v)∑

u∈Nout(v) in(u)

∑
u∈Nout(v)

in(u)

out(u)
LR(u) (5.14)

where: in(v) (resp. out(v)) denotes the size of the set of in-neighbors (resp. out-
neighbors) of v, .isadampingfactorrangingwithin[0, 1](usuallysetto0.85), andp(v)isthevalueofthepersonalizationvector, whichissetto1/|V |bydefault.Topreventzeroorinfiniteratios, thevaluesof in(·)
and out(·) are Laplace add-one smoothed.

5.4.2 Modeling the diffusion graph

In Section 5.3.1, we introduced symbol `(v) to denote the weight of node v that
quantifies its status as target. In this application scenario, the higher is the lurker
ranking score of v the higher should be `(v).

We define the node weighting function ` upon scaling and normalizing the sta-
tionary distribution produced by the LurkerRank algorithm over G0. The scaling
compensates for the fact that the lurking scores produced by LurkerRank, although
distributed over a significantly wide range (as reported in [180]), might be numerically
very low (e.g., order of 1.0e-3 or below). Moreover, we introduce a small smoothing
constant in order to avoid that the highest lurking scores are mapped exactly to 1.
Formally, for each node v ∈ V , we define the node lurking value `(v) ∈ [0, 1) as follows:

`(v) =
π̃v −minr

(maxr −minr) + εr
(5.15)

where π̃ denotes the stationary distribution of the lurker ranking scores (π) divided
by the base-10 power of the order of magnitude of the minimum value in π, π̃v is the
value of π̃ corresponding to node v, maxr = maxu∈V π̃u, minr = minu∈V π̃u, and εr
is a smoothing constant proportional to the order of magnitude of the maxr value.

In order to define the edge weights so that they express a notion of strength of
influence from a node to another (as normally required in an information diffusion
model), we again exploit information derived from the ranking solution obtained by
LurkerRank as well as from the structural properties of the social graph. Our key idea
is to calculate the weight on edge (u, v) ∈ E proportionally to the fraction of the
original lurking score of v given by its in-neighbor u:

b0(u, v) =

 ∑
w∈N in(v)

out(w)

in(w)
πw

−1

out(u)

in(u)
πu (5.16)

Using Equation (5.16), we finally define the edge weight as:

b(u, v) = b0(u, v)× e`(v)−1 (5.17)

Note that Equation (5.17) meets the requirement
∑

u∈N in(v) b(u, v) ≤ 1, and accounts
for `(v) such that the resulting weight on (u, v) is lowered for higher `(v), i.e., the
more a node acts as a lurker, the more active in-neighbors are needed to activate that
node.
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5.5 Evaluation methodology

5.5.1 DTIM settings

We experimentally varied the input and model parameters in DTIM methods, namely:
the size of seed set (k), the target selection threshold (L), the path pruning threshold
(η), and the parameter α to control the contribution of diversity versus capital in the
objective function of DTIM methods. Note that, to simplify the interpretation of L,
we will instead use symbol L-perc to denote a percentage value that determines the
setting of L such that the selected target set corresponds to the top-L-perc of the distri-
bution of scores yielded by function `; particularly, we set L-perc ∈ {5%, 10%, 25%}.
As concerns η, though η = 1.0e-03 is the default as used in other IM algorithms
(e.g.,[72]), we set it to a lower value, η = 1.0e-04, to impact even less on the unfolding
of the information diffusion process; moreover, we will not present results correspond-
ing to η = 0 (i.e., no path-pruning), since we observed this negatively affects the
runtime by several orders of magnitude while yielding nearly identical results to those
corresponding to η = 1.0e-04.

5.5.2 Competing methods

We considered comparison with TIM+ [189] and KB-TIM [127], which are state-of-
the-art solutions to the IM (resp. targeted IM) problem, based on the RIS approach
(cf. Section 5.2).

Comparing DTIM with a non-targeted IM algorithm like TIM+ required to evaluate
the quality of seed sets produced by the competing algorithm under a targeted scenario.
To this purpose, we simply let TIM+ compute a size-k seed set over the entire graph
and then we estimated the capital over different target sets in accord with the setting
of DTIM. We considered two opposite settings for the main parameter (ε) in TIM+:
(i) the default ε = 0.1, which provides strong theoretical guarantees yet is adversarial
to the algorithm’s memory consumption, and (ii) ε = 1.0, which conversely provides
no approximation guarantees but high empirical efficiency; note that the latter setting
was also used by the TIM+’s authors in [189] for the comparison with SimPath. We
used default settings for the other parameters in TIM+.

As concerns KB-TIM, we modified the keyword-based target selection stage to make
it equivalent to the target selection adopted in DTIM. KB-TIM requires two main input
files to drive the target selection: (i) a sort of document-term sparse matrix, such that
each node (document) in the graph is assigned a list of keyword,#occurrences pairs,
and (ii) a list of keyword-queries, so that each query corresponds to the selection of
a subset of nodes in the graph. To prepare these input files, we defined three queries
corresponding to the setting L-perc ∈ {5%, 10%, 25%}, and accordingly created the
sparse matrix so that each node was assigned a keyword for each of the top-ranked
subsets it belongs to (e.g., a node in the top-10% set of lurkers will be assigned two
keywords, as it is also in the top-25% set); moreover, the #occurrences associated
with any keyword for a given node v was calculated as the node lurking value `(v)
suitably scaled and truncated to its integer part. Also, we used the incremental
reverse-reachable index (IRR) in KB-TIM.
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data # nodes # links avg avg clust. assorta-
in-deg. path len. coeff. tivity

FriendFeed 493,019 19,153,367 38.85 3.82 0.029 -0.128
GooglePlus 107,612 13,673,251 127.06 3.32 0.154 -0.074
Instagram-LCC 17,521 617,560 35.25 4.24 0.089 -0.012

Table 5.1: Summary of the evaluation network datasets

5.5.3 Data

We used FriendFeed [28], GooglePlus [117], and Instagram [181]1 network datasets.
Note that, for the sake of significance of the information diffusion process in latter
network, we selected the induced subgraph corresponding to the maximal strongly con-
nected component of the original network graph, hereinafter referred to as Instagram-LCC
(LCC stands for largest connected component). As major motivations underlying our
data selection, we wanted to maintain continuity with our previous studies [180, 181]
and use publicly available datasets. Table 5.1 summarizes main structural character-
istics of the evaluation network datasets.

5.6 Results

We present results of the evaluation of our proposed DTIM algorithms according to
three main objectives: analysis of the identified seed nodes (Section 5.6.1), analysis
of the activated target nodes (Section 5.6.2) and efficiency analysis (Section 5.6.3).2

5.6.1 Evaluation of identified seed nodes

5.6.1.1 Seed set overlap

In order to investigate the impact of taking into account diversity on the seed identi-
fication process, we initially analyzed the matching among seed sets produced by the
two DTIM methods with varying α.

This analysis of seed sets was twofold: (i) pair-wise evaluation of the overlaps
between seed sets produced by a particular DTIM method by varying α, and (ii) pair-
wise evaluation of the overlaps between seed sets produced by G-DTIM and L-DTIM
for particular values of α. Unless otherwise specified, results correspond to the largest
sizes of target set and seed set we considered (i.e., L-perc = 25% and k = 50), and
express the normalized overlap of any two seed sets, i.e., their intersection divided by
the seed set size.

Normalized seed set overlap. On GooglePlus (Figure 5.3), the normalized overlap
values span over the full range [0.0, 1.0], for both methods. In the heatmap correspond-
ing to G-DTIM, an overlap above than 50% is observed for values of α in different
subintervals, while variations in the seed set are generally more uniform for L-DTIM,
whereby the normalized overlap increases for higher values of α. Also, for both meth-
ods there is no overlap when comparing the seed set obtained for α = 0 (i.e., full
contribution of diversity in the DTIM objective function) with the seed set obtained
for any α > 0. These remarks generally hold regardless of the target set size when

1Available at http://people.dimes.unical.it/andreatagarelli/data/.
2All experiments were carried out on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM ma-

chine. All algorithms were written in C++. All competing algorithms refer to the original source
code provided by their authors.
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Figure 5.3: Heatmaps of normalized overlap of seed sets, for varying
α, with L-perc = 25% and k = 50, on GooglePlus.
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Figure 5.4: Heatmaps of normalized overlap of seed sets between
G-DTIM and L-DTIM, for α = {0.0, 0.3, 0.6, 0.9}, L-perc = 25% and
k = 50. (Suffix -L, resp. -G, denotes a particular setting of α that
refers to L-DTIM, resp. G-DTIM.)

using L-DTIM, while the contingencies of null overlap are more likely to occur for
lower L-perc when using G-DTIM. A large spectrum of normalized overlap values are
observed on FriendFeed as well (results not shown), particularly at least 0.25 for
G-DTIM and 0.4 for L-DTIM. Null overlap is mainly observed for low seed set size
(k = 5 using L-DTIM, and k ≤ 15 using G-DTIM). By contrast, Instagram-LCC gen-
erally shows a quite higher overlap than in the other networks (results not reported),
which might be ascribed to the particular contingency of strong connectivity that
characterizes Instagram-LCC.

Comparison between G-DTIM and L-DTIM seed sets. Figure 5.4 shows results
on the comparison of seed sets identified by G-DTIM and L-DTIM, respectively, cor-
responding to α = {0.0, 0.3, 0.6, 0.9}. On GooglePlus (Figure 5.4(a)), the seed sets
appear to be significantly different from each other for higher contributions of diversity
in the objective function (α < 0.3), while values of normalized overlap in the range
[0.5, 1] are observed for higher values of α. Analogous observations can be drawn for
FriendFeed (Figure 5.4(b)), yet with lower overlap values also for values of α in the
range [0.6, 0.9] (i.e., normalized overlap around 0.75).

Comparison with TIM+ and KB-TIM. We also analyzed the matching between
seed sets produced by DTIM algorithms and competing ones (results not shown).
Here we refer to the setting α = 1.0 (i.e., no diversity contribution), since TIM+ and
KB-TIM do not integrate any diversity notion in their formulations. The minimum
overlap of seed sets produced by DTIM is reached against KB-TIM in all cases and on
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all datasets; in particular, with the setting k = 50, L-perc = 25%, 0.48 for FriendFeed,
0.46 for GooglePlus, 0.60 for Instagram-LCC. In general, for large k, the normalized
overlap is within medium regimes, while it is close or equal to zero on FriendFeed.
Only for k = 5, the normalized overlap corresponds to mid-high values on GooglePlus
and Instagram-LCC. DTIM with α = 1 can have relatively high overlap with TIM+
(about 0.75), especially for high L-perc, on all datasets. However, for lower L-perc,
the overlap is low (for smaller k) to medium (for higher k).

Discussion. The seed set overlap analysis has revealed that accounting for diver-
sity can yield significant differences in the behavior of the DTIM methods in terms
of seed identification. Indeed, by varying α within its full regime of values leads to
a wide spectrum of values of normalized seed set overlap. In particular, the changes
in overlap are more evident when varying α at lower regimes, thus indicating that
higher contribution of diversity w.r.t. capital leads to more significantly diversified
seed sets. Remarkably, the overlap can be close to zero when comparing two seed sets
respectively obtained with α = 0 and with α = 1, i.e., completely different seed nodes
can be identified when accounting for either diversity or capital only in the target IM
objective function.

The two proposed notions of diversity turn out to be quite dissimilar to each
other: indeed, the normalized overlap of seed sets yielded by L-DTIM and G-DTIM,
respectively, is generally below 50%, which is further reduced for low values of α. The
local diversity notion appears to be less sensitive to α than global diversity; however,
for low α and size of target set, L-DTIM tends to produce more diverse seed sets than
G-DTIM, for any particular setting of k.

Our DTIM methods with α = 1 produce seed sets that have overlap with KB-TIM
ones below 50% on FriendFeed and GooglePlus, and 60% on Instagram for k = 50,
L-perc = 25%; when compared to TIM+, the seed set overlap can be relatively higher.

5.6.1.2 Structural characteristics of seeds

We analyzed topological characteristics of the identified seeds, focusing on basic mea-
sures of node centrality, namely outdegree, betweenness, and coreness. We present
here a summary of main findings, and refer the reader to the Appendix C for detailed
results.

One major remark that stands out is that accounting for diversity in DTIM meth-
ods produces the effect of choosing seed nodes that can differ from those that would be
obtained otherwise (i.e., using only capital term in the objective function) according
to selected topological criteria. This result, coupled with analogous considerations
previously drawn about diversification in terms of set overlap, hence strengthens the
significance of accounting for diversity in the targeted IM process. Structural charac-
teristics tend to be marginally affected by the setting of L-perc when L-DTIM is used,
while the behavior with G-DTIM is much more dependent on L-perc, especially for
smaller size of target set (L-perc = 5%). Also, each of the competing methods leads
to the identification of seeds that are less different from each other than DTIM seeds
being obtained for most of the settings of α, in terms of all the topological measures
considered.
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Figure 5.5: Capital in function of α and k, with L-perc set to 25%,
on GooglePlus.

5.6.2 Evaluation of activated target nodes

5.6.2.1 Capital

We discuss results on the expected capital of the target users activated by a given set
of seed users. The estimation procedure is based on the results of IMC Monte Carlo
simulations of the LT diffusion process, with IMC set to 10 000.3 Note that while the
identification of the seeds depends on the full DTIM objective function, here we focus
on the value of the capital function C only.

Beyond the expected increase in capital with α (which means weighting less di-
versity than capital in the objective function), the impact of α on the behavior of
DTIM algorithms is evident, especially for k > 10, with capital value that can vary
up to three orders of magnitude. The generally upward trends of C are explained in
function of both α and k, particularly they are more rapidly increasing for mid-low α
and k > 10. Also on all datasets, L-DTIM yields a higher average capital value, for
every k, than that observed with G-DTIM. Similar overall behaviors are shown by the
DTIM algorithms for different sizes of target set.

More in detail, on GooglePlus (Figure 5.5), when using G-DTIM the capital value
increases rapidly, reaching around 80% for α < 0.5 and k ≥ 20; for L-DTIM, we
observe an even sharper increase in the value of C for small α (0.2), then the trends
become nearly constant for higher α. Similar behaviors are shown on FriendFeed,
though the increasing trends are less monotone for k < 30. On Instagram-LCC, the
relatively small size and high connectivity of this network makes capital values subject
to an average variation of about 15% over the full range of α.

Comparison with TIM+ and KB-TIM. Capital obtained by DTIM methods is shown
to be much higher than that of competing methods, on all networks and for various
k and L-perc. The performance gain is more significant on FriendFeed, with average
percentage of increment from 9.85% (for L-perc = 5%) to 3.49% (L-perc = 25%)
w.r.t. TIM+, and even larger (from 35% to 59%) w.r.t. KB-TIM. On the two largest
networks, as the size of target set increases, a general decreasing trend is observed
in the gap between DTIM and TIM+ (resp. KB-TIM) capital values, which might be
explained since a larger target set implies that a larger fraction of the entire node set
could be reached.

3A pseudo-code of the Monte Carlo based algorithm for capital estimation can be found in the
Appendix C
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Figure 5.6: Time performance (in seconds) for varying k, with α =
0.5 and L-perc = 25%.
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Figure 5.7: Time performance (in seconds) for varying k and α, with
L-perc = 25%, on GooglePlus.

5.6.2.2 Target activation probabilities

A further stage of evaluation was performed to understand how different settings of
α and k impact on the activation probability of nodes targeted by DTIM methods.
We regard the activation probability of a node as the number of times it has been
activated divided by the number of runs of Monte Carlo simulation for the estimation
of capital. We present here a summary of main findings concerning this evaluation,
and refer the reader to the Appendix C for detailed results.

For both DTIM algorithms, the activation probability follows a non-decreasing
trend as α increases. The likelihood of obtaining high activation probability grows
with α, i.e., the amount of target nodes that have high probability of activation
increases by increasing α. The analysis of density distributions also puts in evidence
that the density peak corresponding to low activation probability is higher for lower
values of α, whereas the density corresponding to high activation probability increases
for higher values of α. Nevertheless, on the two largest datasets, we also observe that
choosing a relatively large k leads a significant portion of target nodes to have mid-
high activation probabilities already for α = 0.1, thus suggesting that target nodes
can be activated even with strongly unbalancing capital with diversity. By contrast,
when choosing a small k, little changes in the value of α can significantly impact on
the amount of more likely activated target nodes.
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5.6.3 Efficiency analysis

Figure 5.6 reports on time performance of G-DTIM and L-DTIM on the various net-
works, for 5 ≤ k ≤ 50 and α = 0.5. The execution time of both methods shows a
roughly linear increase with k, on all networks. (Note that the FriendFeed time series
are shown in the figure insets, as they correspond to orders of magnitude higher than
for the other networks, due to the larger size of FriendFeed). Also, G-DTIM turns out
to be slightly faster than L-DTIM, which might be ascribed to the fewer computations
of node diversity needed by G-DTIM w.r.t. L-DTIM.

As shown in Figure 5.7 for GooglePlus in particular (though similar behaviors
also characterize the other networks), varying α with fixed k does not significantly
impact on the time performance of both DTIM methods. This would indicate that,
for a given seed set size, the methods’ effort in computing the global/local diversity
as well as the capital contributions in the objective function is not greatly affected by
the value of α. Analogous remarks are also drawn for the other settings of L-perc.

As regards TIM+ and KB-TIM (results not shown), it comes without surprise
that both outperform DTIM methods. For instance, on our largest network (i.e.,
FriendFeed), the execution times of TIM+ (with ε = 0.1) are between 6.3 (k = 50)
and 11.9 (k = 5) seconds — note that the increase in runtime by decreasing k is in line
with the theoretical and experimental results shown in [189]; yet, KB-TIM execution
times are always below 0.7 seconds regardless of L-perc, which might also depend on
the extremely low number of queries and keywords used by KB-TIM in our setting.

5.7 RIS-based formulation of DTIM

The gap in efficiency shown by our DTIM algorithms w.r.t. the competing RIS-
based ones, prompted us to investigate how to adapt RIS-based approximations to
our diversity-sensitive, targeted IM problem.

5.7.1 Revisiting RIS theory for the DTIM problem

The reverse influence sampling (RIS) [20] relies on the concept of reverse reachable
(RR) set. Intuitively, the random RR set generated from G for a randomly selected
user u (i.e., the root of the RR set) contains the users who could influence u. By
generating many random RR sets on different random users, if a user has high potential
to influence other users, then s/he will likey appear in those random RR sets. Thus,
if a seed set covers most of the RR sets, it will likely maximize the expected spread.
Upon this principle, Corollary 1 in [189] states that E[F (S)/θ] = E[µ(S)]/n, where
F (S) denotes the number of RR sets covered by the node set S, µ(S) is the spread of
S, θ is the number of RR-sets, and n = |V |.4

In our setting, every node v ∈ V is selected as root of an RR-set with probability
proportional to its status as target node, i.e., p(v) = `′(v)

LTS
, where `′(v) = `(v) if

v ∈ TS, zero otherwise, and LTS =
∑

v∈TS `
′(v). In the following, we state that for

any set of nodes S, the expected value of the fraction of RR sets covered by S is
equal to the normalized expected value of the capital associated with the activation
of target nodes due to S as seed set.

4For the sake of simplicity of notation, we omit to declare random variable symbols when using
the expected value operator E[·].
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Proposition 4.

E
[
F (S)

θ

]
=

E[C(µ(S))]

LTS
(5.18)

Proof (sketch). Following notations used in [128], let p(S → v) denote the proba-
bility that v is activated by seed set S. Thus, the expected capital associated with S
can be expressed as:

E[C(µ(S))] =
∑
v∈V

p(S → v)`′(v) (5.19)

By Lemma 2 in [189], the probability that a set S overlaps with an RR set Rv
rooted in a node v is equal to the probability that S, when used as a seed set, can
activate v, i.e.,

p(S → v) = Pr[S ∩Rv 6= ∅]. (5.20)

Therefore, it holds that

E[F (S)/θ] =
∑
v∈V

p(v) Pr[S ∩Rv 6= ∅]

=
∑
v∈V

`′(v)

LTS
p(S → v)

=
E[C(µ(S))]

LTS

(5.21)

�
Estimation of the number of RR sets. In [189], the objective is to find

a number θ of RR sets such that θ ≥ λ/OPT , where OPT denotes the maximum
expected spread of any size-k seed set, and λ is determined as a function of the size of
the graph, k and the approximation factor ε. Since OPT is unknown, a lower bound
for it must be computed.

Following from Lemma 4 in [189], the expected spread of a randomly sampled node
can be expressed in terms of the expected value EPT of the number of edges pointing
to nodes in an RR set (width), such that EPT ≤ m

nOPT holds, with m = |E|. We
revise this result to state that the expected value of the width of an RR set can be an
accurate estimator of the capital associated with any node when randomly selected
as a seed.

Proposition 5.
(LTS/m) EPT = E[C({v})] ≤ OPT (5.22)

Proof (sketch). Let w(Ru) denote the width of an RR set rooted in node u, and
Ru ∼ R denote an RR set rooted in node u sampled from the distribution of all RR
sets. We have thapp:tdiversity:at:
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EPT =
∑
u∈V

`′(u)

LTS
ERu∼R[w(Ru)]

=
1

LTS

∑
u∈V

`′(u)
∑
Ru∼R

Pr[Ru]
∑
v∈V

Pr[v → u|Ru]

=
1

LTS

∑
Ru∼R

Pr[Ru]
∑

(v,u)∈E

`′(u) Pr[v → u|Ru]

=
1

LTS

∑
(v,u)∈E

E[C(µ({v}))]

=
m

LTS
E[C(µ({v}))]

(5.23)

�
To avoid unnecessarily large values of θ, it is desired to find a lower error bound in

terms of the mean of the expected spread of a set S (over the randomness in S and the
influence propagation process), denoted as KPT , such that (n/m)EPT ≤ KPT ≤
OPT holds. To this aim, Lemma 5 in [189] estimates KPT as KPT = nER∼R[κ(R)],
taking the average over a set of random RR sets R from the possible world R, where
κ(R) = 1 − (1 − w(R)

m )k and w(R) is the width of R. Again, we revise this result in
our setting:

Proposition 6. Given a random RR set R, and denoted with TSR the set of target
nodes in R, it holds that

κ̂(R) =

[
1−

(
1− |TSR|

m

)k] ∑
v∈R `

′(v)

|TSR|
. (5.24)

Therefore,
KPT = nER∼R[κ̂(R)]. (5.25)

Proof (sketch). Given an RR set R, let us denote with A the event of selecting
an edge in G that points to a target node, and with B the event of selecting an
edge in G that points to a node in R. The probability of these events are Pr[A] =
|TS|/m and Pr[B] = w(R)/m. The conditional probability of A given B is equal to
Pr[A|B] = |TSR|/w(R), where symbol TSR is used to denote the set of target nodes
in R. Thus, the probability of selecting an edge pointing to a target node contained
in R is Pr[A∩B] = Pr[A|B] Pr[B] = |TSR|

w(R) ·
w(R)
m = |TSR|

m . Given k randomly selected
edges, the probability that at least one of these points to a target node in R is

κ̂(R) = 1 −
(

1− |TSR|m

)k
. This quantity is finally smoothed by

∑
v∈R `

′(v)

|TSR| , i.e., the
average `′ value over the target nodes belonging to R. �

5.7.2 Developing RIS-based DTIM algorithms

We sketch here a reformulation of DTIM based on the RIS approach. To this purpose,
we start from TIM+ and adapt it to our DTIM problem. This requires four key
modifications:
- M1: Revise the sampling over the nodes in G.
- M2: Modify the KPT estimation procedure (i.e., TIM+’s Algorithm 2).
- M3: Modify the refinement of KPT to obtain a potentially tighter lower-bound of
OPT (i.e., TIM+’s Algorithm 3).



5.7. RIS-based formulation of DTIM 105

-M4: Modify the node selection procedure (i.e., TIM+’s Algorithm 1) for determining
a size-k seed set.

In the following, we elaborate on each of the above points, which overall constitute
a 4-stage workflow for the development of RIS-based DTIM methods.

Sampling (M1). As previously discussed, we define a probability distribution
over the nodes in G such that the probability mass for each node v is non-zero and
proportional to the value of `(v) if v ∈ TS, and zero otherwise.

Parameter estimation (M2). The RR sets must be generated in such a way
that the roots are sampled from the above defined probability distribution (i.e., the
root of any RR set is a target node). Moreover, the original function κ is replaced
with Equation (5.24).

Parameter refinement (M3). Starting from the set R′ of all RR sets produced
to estimate KPT , the size-k seed set S′ is generated by selecting those nodes that,
while covering RR sets in R′, maximize the capital w.r.t. R′. More specifically, each
RR set in R′ is associated with a score equal to the value of ` of its root node, and
every node is associated with a score equal to the sum of RR-set-scores the node
belongs to. In the main loop, at each of the k iterations, the node v with maximum
score is identified and added to S′, all RR sets covered by v are removed from R′, and
the node scores are recomputed.

Once computed S′, a new set R′′ of RR sets is generated and used to derive F̄ ,
which contains the root nodes of all RR sets in R′′, and F , which is the subset of root
nodes of RR sets that have non-empty overlap with S′. Next, we compute the fraction
of capital associated with F , i.e., f =

∑
v∈F `

′(v)/
∑

v∈F̄ `
′(v). Quantity f is finally

exploited to derive the new lower-bound analogously to the last two instructions in
TIM+’s Algorithm 3.

Node selection (M4). Let us first consider the case in which the diversity
function is discarded from the DTIM objective function. The node selection procedure
turns out to be analogous to the first step described in M3, where the number θ of
RR sets to generate is computed based on the refined KPT . In the general case,
the node selection procedure needs to also include the global/local diversity values
when scoring the nodes w.r.t. the RR sets they cover. We provide here an informal
description of the essential steps to perform.

Let Rv denote the set of RR sets rooted in v. Upon this, we build a tree index
Λ(v), with root v, by aggregating all live-edge paths reaching v. Note that the tree
is constructed in a backward fashion; also, every node other than v has at most one
incoming edge, and it could appear in many paths and at different distance from v.

Let us first consider the global diversity of a node in Rv. The boundary set of
Λ(v) is the multiset of all leaf nodes in the tree. The RR-global-diversity of a node u
in Λ(v) is determined as the mean of its global diversity values by possibly considering
the multiple occurrences of u as leaf. By averaging the RR- global-diversity values
over all trees in which node u appears, we compute the total RR-global-diversity of u.
To compute the RR-local-diversity, we need to consider each level of Λ(v) at a time,
and hence the boundary set of each subtree resulting from truncating Λ(v) at a given
distance from v. We then average the scores of a node u over all trees in which u
appears to have the total RR-local-diversity of u.

Finally, the total RR-diversity of a node is linearly combined with the correspond-
ing capital score, in order to drive the search for the node with maximum DIC to be
identified at the k-th iteration of the node selection procedure.
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5.8 Chapter notes

We presented a novel targeted IM problem in which the objective function is defined
in terms of spreading capability and topology-based diversity w.r.t. the target users.
We proved that the proposed objective function is monotone and submodular, and
developed two alternative algorithms, L-DTIM and G-DTIM, to solve the problem un-
der consideration. Significance and effectiveness of our algorithms have been assessed,
also in comparison with baselines and state-of-the-art IM methods, using publicly
available, real-world network graphs. We have also provided theoretical foundations
to develop RIS-based DTIM methods.

As future research, it would be interesting to investigate diversity notions based on
boundary spanning principles that might rely on community detection solutions; other
opportunities in this regard would certainly come from the integration of side informa-
tion representing user profiles. We also plan to evaluate the RIS-DTIM method, which
promises to overcome the efficiency issues of the current DTIM methods. Finally, it is
worth noting that our proposed approach is versatile, as it can easily be generalized
not only to other cases of user engagement (for example, introducing newcomers to
a community), but also to any other application of targeted IM in which account-
ing for diversity of users based on their relationships/interactions with other users, is
beneficial to the enrichment of influence propagation outcome with effects of varied
social capital. In this respect, we can envisage further developments from various
perspectives, including human-computer interaction, marketing, and psychology.
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Chapter 6

Attribute-based Diversity-sensitive
Targeted Influence Maximization

In the previous Chapter 5 we have highlighted the importance and significance of
accounting for diversity measures in the context of influence maximization.

As it is also emerged from several other studies, our analysis confirmed that em-
bedding diversity into knowledge discovery activities often leads to the identification
of more novel, more meaningful and broader patterns.

Following a common thread with the previous chapter, here we address the same
targeted influence maximization problem, while we consider diversity from an orthog-
onal perspective. That is, instead of measuring diversity with respect to the network
topology, here we investigate the opportunity of defining diversity as a function of
some side-information available on the user level.

More formally, in this chapter we propose the integration of a categorical-based
notion of seed diversity into the objective function of a targeted influence maximization
problem.

In this respect, we assume that the users of a social network are associated with
a categorical dataset where each tuple expresses the profile of a user according to a
predefined schema of categorical attributes.

Upon this assumption, we design a class of monotone submodular functions specif-
ically conceived for determining the diversity of the subset of categorical tuples as-
sociated with the seed users to be discovered. This allows us to develop an efficient
approximate method, with a constant-factor guarantee of optimality. More precisely,
we formulate the attribute-based diversity-sensitive targeted influence maximization
problem under the state-of-the-art reverse influence sampling framework, and we de-
velop a method, dubbed ADITUM, that ensures a (1− 1/e− ε)-approximate solution
under the general triggering diffusion model.

Extensive experimental evaluation based on real-world networks as well as synthet-
ically generated data has shown the meaningfulness and uniqueness of our proposed
class of set diversity functions and of the ADITUM algorithm, also i n comparison
with methods that exploit numerical-attribute-based diversity and topology-driven
diversity in influence maximization.

It should be also noted that the ADITUM algorithm represents a major advance
over the approach described in Chapter 5, as it provides a stronger flexibility – it can
easily incorporate different notions of diversity – and it delivers better performance
both in terms of efficacy and efficiency.
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6.1 Introduction

Online social networks (OSNs) are a suitable environment for propagating influence
between connected individuals, so that they have become the most profitable channel
for a variety of purposes related to viral marketing, advertisement campaigns, news
propagation, and many others. In this regard, a classic optimization problem is in-
fluence maximization (IM), which is to discover a set of seeds, i.e., initial influencers
or early-adopters, that can maximize the spread of information through the network
(e.g., advertising of a product) [33, 97]. The basic principle is that, by finding the
most effective users to endorse an idea/product/information and to influence other
users in the network, a chain reaction of influence can be activated and driven by a
“word-of-mouth” effect, in such a way that with a very small marketing cost (i.e., the
number of initial influencers) a very large portion of the network will be reached. The
extent of this portion can conveniently be limited to a selection of users depending on
predetermined constraints, such as based on strategic location or interest in contents
that are being diffused; in fact, in many practical scenarios, companies want to tailor
their advertisement strategies in order to address only selected OSN-users as potential
customers. This is the perspective adopted in the context of targeted IM which is also
a focus of this work.

Maximizing the spread of information is directly related to an a-priori specified
budget as the number of seeds. In a more complex “budgeted” scenario of profit
maximization, each of these seeds could be associated with a different cost to engage
it as early-adopter, which would imply to account for these costs as constraints in a
(targeted) IM problem.

Moreover, we have the opportunity to make the seed-selection step in IM more
sensitive to user features.

In particular, we believe that the “influence potential” of the seeds being selected
can be well-explained in terms of diversity that may characterize the seeds. Intuitively,
influencers that are diverse to each other according to certain features (e.g., age,
gender, socio-cultural aspects, preferences) might have more opinions, experiences,
and perspectives to bear on the influence propagation process. As a consequence,
identifying a set of seed users that have as more different characteristics as possible
from each other, will be helpful to enhance the marketing or information-propagation
campaign strategies to engage the target users. Indeed, before taking any decision for
active involvement in a given propagation scenario, every user in the network would
like to acquire enough information, possibly from different perspectives. Therefore, by
identifying the most diverse seed users, the triggering stimuli will also be diversified,
and since diverse individuals tend to connect to many different types of members, the
likelihood of influencing the targets would be higher.

Accounting for diversity in influence propagation has important implications, also
from an ethical viewpoint. In fact, favoring diversity in selecting the early-adopters
as well as in targeting the users to reach is strictly related to being exposed to diverse
opinions: as previously argued in [6], the latter can significantly contribute to disrupt
information bubbles or echo chambers — where pre-existing opinions are maintained
and reinforced — thus raising the level of democratic debate.

Despite the importance of leveraging diversity for improved solutions to IM prob-
lems, it comes to our surprise that relatively few studies have considered diversity in
such a context. Some work has focused on understanding relations between diversity,
or fairness, and effectiveness/efficiency in the spreading ability [10, 60, 88, 177]. Node
diversity into the IM task was first introduced by Tang et al. [185], where numerical
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attributes reflecting user preferences on some predefined categories (e.g., movie gen-
res) are considered to address a generic IM task. In [26], we originally defined an IM
problem that is both targeted and diversity-sensitive for the seed selection, however,
it only considers specific notions of diversity that are driven by the topology of the
information diffusion graph. Also, [6] studied diversity of exposure, which relies on
an item-aware propagation setting.

Contributions. In this work, we aim to advance research on IM by formulating
a novel targeted IM problem that accounts for categorical attribute-based diversity of
the seeds to be identified. Our contributions are summarized as follows.

• We propose the Attribute-based DIversity-sensitive Targeted InflUence Maxi-
mization problem, dubbed ADITUM.1 A key aspect is that the set of nodes in
the network is associated with a categorical dataset, which would represent the
node profiles according to a schema of categorical attributes and corresponding
values.

• We provide conceptually different notions of diversity that are able to reflect the
variety in the categorical attributes and their values that characterize the seeds
being discovered. Remarkably, we design a class of nondecreasing monotone and
submodular functions for categorical diversity, each of which also has the nice
property of enabling incremental computation of a node’s marginal gain when
added to the current seed set. To the best of our knowledge, we are the first
to propose a formal systematization of approaches and functions for determin-
ing submodular set diversity in influence propagation and related problems in
information networks.

• We design our solution to the ADITUM problem under the Reverse Influence
Sampling (RIS) paradigm [20, 189], which is widely recognized as the state-of-
the-art approach for IM problems. One challenge that we address is revisiting
the RIS framework to deal with both the targeted nature and the diversity-
awareness of the ADITUM problem.

• We develop the ADITUM algorithm, which returns a size-k seed set ensuring an
approximation ratio of (1− 1/e− ε), with high probability (at least 1− |V |−1),
in O(ε−2k(|E|+|V |) log|V |) time (with ε sampling error) on a diffusion graph
with |V | nodes and |E| edges, under the Triggering model, which is a general
diffusion model adopted by most existing work in monotone submodular IM.

• We thoroughly analyzed our proposed diversity functions on synthetically gen-
erated datasets, and

we experimentally evaluated ADITUM on publicly available network datasets,
three of which were used in a user engagement context, one in community in-
teraction, and the other one in recommendation.

We make this choice so we can compare ADITUM against the methods in [185]
and [26].

Plan of the chapter. The remainder of this chapter is organized as follows. Sec-
tion 6.2 discusses related work, with emphasis on targeted IM and diversity-aware IM.
Section 6.3 formalizes the information diffusion context model, the objective function,
and the optimization problem under consideration. Section 6.4 presents our study on

1Latin term for access, admission, audience.
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monotone and submodular diversity functions for categorical data modeling the pro-
files of nodes in a network. Section 6.5 describes our proposed approach and algorithm
for the ADITUM problem. Sections 6.6 and 6.7 contain our experimental evaluation
methodology and results, respectively. In Section 6.8, we provide our conclusions and
pointers for future research.

6.2 Related work

Given a weighted directed graph, an information diffusion model, and a positive in-
teger k, the problem of IM is to find a seed set S of size k that maximizes the
expected number of active nodes at the end of the diffusion process started from S.
The foundations of IM as an optimization problem were initially posed by Kempe
et al. in their seminal work [97], and rely on two main findings. The first one is
the intractability of the problem in its two sources of complexity, i.e., to discover a
k-sized seed set that maximizes the expected spread, and to estimate the expected
spread of the final active node-set. The second result is the possibility of designing
an approximate greedy solution with theoretical guarantee. More precisely, despite
IM red being proven to be NP-hard under most stochastic diffusion models, such as
Independent Cascade (IC) and Linear Threshold (LT) models, a greedy framework
can be developed to achieve (1 − 1/e) approximation guarantee, provided that the
influence function is nondecreasing monotone and submodular [152], like in the cases
of IC and LT models. Intuitively, monotonicity means that adding more nodes to a
seed set does not reduce its influence spread, while submodularity can be understood
as diminishing marginal gains of the influence spread. However, since the expected
spread cannot efficiently be evaluated exactly, the solution proposed in [97] resorts
to a Monte Carlo based estimation, which however is a bottleneck preventing the IM
method to scale on very large graphs. For this reason, many efforts have been devoted
to address the scalability issue in the Monte Carlo based greedy algorithm, mostly
by reducing the number of Monte Carlo estimations [114]. Alternatively, proxy-based
methods have been developed to avoid running Monte Carlo simulations, by estimat-
ing the influence spread of the seed set through a reduced diffusion context; however,
without ensuring theoretical approximation guarantee. Example methods following a
proxy-based approach are MIA/PMIA [39], LDAG [41], and SimPath [72].

A breakthrough study that overcomes the efficiency bottleneck of the simulation
based methods, while preserving the theoretical approximation guarantee, is proposed
by Borgs et al. [20], which introduces the Reverse Influence Sampling (RIS) frame-
work for IM. The key idea is that the expected spread can be estimated by taking
into account a number of pre-computed sketches, i.e., realizations drawn from the
distribution induced by both the diffusion model and the influence graph.

This breakthrough result paved the way for a variety of sketch-based algorithms.
Tang et al. in [189] are the first to design upon the findings in [20] a practically efficient
solution, TIM/TIM+, whose main improvement over RIS consists in the ability of
keeping the same theoretical bound as [20] with significantly fewer sketches, bounded
by the influence of the unknown optimal set (OPT). TIM/TIM+ can perform orders
of magnitude faster than the greedy algorithm, overcoming the bottleneck in the
computation of the expected spread by exploiting the RIS technique. Since then,
other methods have followed, such as IMM [188], SSA [154], BCT [153], and TipTop
[123], which share the common motif of estimating OPT with a fewer number of
sketches. Also, [138] generalizes the theoretical results in [20, 189] to any diffusion
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Table 6.1: Categorization of IM related works discussed in this arti-
cle.

problem approach methods/references

Influence Maximization

Simulation-based Greedy [97], CELF [114]
Proxy-based MIA/PMIA [39], LDAG [41],

SimPath [72]
Sketch-based RIS [20], TIM/TIM+ [189],

[138], IMM [188], SSA [154],
[98], BCT [153], TipTop [123]

Targeted Influence Maximization

Single target [76, 77, 204]
Topic-dependent target [12, 32, 111, 127]
Topic-dependent diffusion [50, 92, 109, 121, 126, 158,

212]
Benefit-aware [78, 140, 153, 187]
Network-structure-aware [21, 27, 42, 124, 165, 173, 175,

209, 210]
Mixed [86, 121], [9, 155]

Diversity in Influence Propagation
Fairness in spreading [177]
Diversity in diffusion models [10, 88]
Diversity-aware IM [6, 26, 185]

model with an equivalent live-edge model of the diffusion graph. Furthermore, the
sketch-based approach has been extended in [98] to deal with IM in dynamic graphs.

In the following, we will focus our discussion on variants of IM problems and
approaches that consider notions of target users and criteria for seed selection, followed
by the current status of research on diversity in IM contexts;

Table 6.1 provides a summary of the IM related works discussed in this article.
For broader and more complete views on the IM topic, the interested reader can

refer to recent surveys, such as [125, 161, 178].
Targeted influence maximization. Research on targeted IM has gained at-

tention in recent years. Early studies have focused on the special case of a single
selected target-node [76, 77, 204]. By contrast, more general targeted IM methods,
like ours, aim at maximizing the probability of activating a target set of arbitrary
size by discovering a seed set which is neither fixed and singleton nor has constraints
related to the topological closeness to a fixed initiator.

Targeted IM methods typically account for information on contents and/or users’
characteristics; depending on the type of such characteristics, targeted IM methods
can be divided into topic-aware, benefit-aware, and network-structure-aware methods.

The first category is motivated by the fact that a user is likely to be influenced by
messages (e.g., advertisements) being diffused that are relevant to information that
match the user’s interests or preferences. Therefore, a user whose interests match
with the query topics or keywords might be regarded as a target node, and the goal
is to maximize the spread among such target users [12, 32, 111, 127]. Also, content
information can be incorporated into the diffusion process or the influence probability
estimation. For instance, in [109], a family of probabilistic diffusion models is proposed
to exploit vectors of features representing the content of information to be diffused and
the profile of users. In [212], the IC model is adapted to accommodate user preferences,
which are learned from a set of users’ documents labeled with topics. User activity,
sensitivity, and affinity are considered in [50] to define node features, which are then
used to adjust the influence between any two users. In the conformity-aware cascade
model [121], the influence probability from node u to node v is computed based on
a sentiment analysis approach and proportionally to the product of u’s influence and
v’s conformity, where the latter refers to the inclination of a node to be influenced by
others. A group-based influence maximization method is proposed in [126] to solve the
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IM problem over the conformity-aware diffusion model which utilizes different types
of conformity behaviors (where people conform to the opinions and actions of others
by submitting to perceived group pressure) based on user profiles and group profiling.
In [92], the targeted IM problem is studied in the context of user engagement, whereby
a node is regarded as target on the basis of its social capital. In [158], under a non-
submodular framework, the goal is to find a k-sized seed set to initiate the diffusion
that will maximize the spread among the nodes with the target-label, while keeping the
diffusion among the nodes with the non-target label within a pre-specified threshold.

The second category of targeted IM methods refers to profit maximization prob-
lems, where the influence spread is seen as the benefit gained by viral marketing and
the cost for seed selection is the amount to pay for viral marketing. In this respect, the
users in a social network are likely to bring different amounts of benefit if activated,
and have different costs for seed selection. For instance, [140] proposed pricing strate-
gies to optimize the profit return of viral marketing, through hill-climbing heuristics.
More recently, other works focused on approximation solutions for profit maximiza-
tion with theoretical guarantee [153, 187]. Also, a perspective under deterministic
linear threshold model is taken in [78].

Leveraging the mesoscale structure of the information-diffusion network allows
for the development of several strategies to drive the seed selection and targeted
IM. Most existing methods of this category exploit the availability of a community
structure or graph partitioning solution (e.g., [21, 27, 42, 124, 165, 173, 175, 210]. In
some cases, the network structure is also exploited in combination with (community-
level) topic interests, conformity-aware (e.g., [86, 121]), or cost constraints (e.g., [9,
155]). Coreness is considered in [209] for estimating nodes’ influence and developing
a simulated annealing based algorithm for IM.

Recently, in [25], the authors extensively explore where the set of influential nodes
extracted by state-of-the-art IM methods are located in a network w.r.t. different
notions of graph decomposition.

Note that the large majority of the aforementioned works are concerned with the
development of heuristics for IM (even under a non-submodular framework, in some
cases), while we are interested in designing a targeted IM solution with approximation
guarantee. Moreover, all of these methods discard a major aspect in our work, that
is, an explicit notion of categorical set diversity for the seed nodes.

Diversity in influence maximization. Diversity has been recognized as a key-
enabling dimension in several tasks that are relevant in information management and
filtering, such as web searching, ranking, and recommendation (e.g., [52, 70, 170, 202]).
It also relates to novelty and serendipity, for instance to improve user satisfaction
in content recommendation. Moreover, diversity has attracted attention in machine
learning as concerns the development of fair strategies to control the bias and its effect
on the outcomes of supervised learning tasks (e.g., [207, 208]).

Understanding how to design IM methods in a fair way is addressed in [177]. Fair-
ness in seed selection (resp. in outreach) is meant as choosing (resp. reaching) nodes
that are uniformly distributed w.r.t. the available communities in the network. Upon
an analysis based on the IC model in a network that follows preferential-attachment
with a two-community homophily model, the study in [177] argues that a strategic,
feature-aware heuristic is fairer and more efficient than feature-blind methods.

However, a relatively little amount of work has been devoted to integrating di-
versity in the objective function of IM problems. One of the earliest attempts is
provided in [10], which extends the IC model to account for the structural diversity
of nodes’ neighborhood, however without addressing an optimization problem. Other
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works have studied relations between diversity and spreading ability, but focusing on
a single node in a network [88].

Tang et al. [185] proposed the first study on diversity-aware IM, where a linear
combination of the expected spread function and a numerical-attribute-based diversity
is maximized by means of heuristic search strategies, defined upon classic centrality
measures. In [26], we formulated the topology-driven diversity-sensitive targeted IM
problem, dubbed DTIM, with an emphasis on maximizing the social engagement of a
given network. The provided solution, built upon the SimPath method [72], relies on
the LT model. It should be noted that, although the optimization problem presented
in this work is similar to the one in [26], here we provide different formulation and
algorithmic solution since, unlike DTIM, (i) our proposed ADITUM builds on state-
of-the-art approximation methods for IM, and (ii) it is designed to handle different
notions of attribute-based diversity. In Sections 6.6–6.7, we present a comparative
evaluation with the methods in [185] and [26].

Another related work is that proposed in [6], where it is assumed that the diverse
viewpoints (to which users may be exposed) are represented by a number of message
items propagating through the network; moreover, users are supposed to have an
individual predisposition towards an item, which impacts on the probability of further
disseminating the item. Under this setting, the goal is to find a small number of seeds
and items so that the overall diversity of exposure of all users is maximized. Again,
this problem is however different from ours, both in terms of information propagation
setting (i.e., we do not rely on messages, neither on concepts of item leanings and user
leanings) and objective function (i.e., we want to maximize the overall diversity within
the seed set rather than the sum of diversity exposure levels of all nodes resulting from
a predetermined itemset assignment).

6.3 Problem statement

Representation model Given a social network graph G0 = 〈V ,E〉, with set of
nodes V and set of edges E, letG = G0(b, t) = 〈V ,E, b, t〉 be a directed weighted graph
representing the information diffusion context associated with G0, with b : E → (0, 1]
edge weighing function, and t : V → (0, 1] node weighing function.

Function t determines the status of each node as target, i.e., a node toward which
the information diffusion process is directed. Given a user-specified threshold τTS ∈
[0, 1], we define the target set TS for G as:

TS = {v ∈ V |t(v) ≥ τTS}.

Function b corresponds to the parameter of the Triggering model [97] which, in
line with several existing studies on IM, is also adopted here as information diffusion
model. Under this model, each node chooses a random subset of its neighbors as
triggers, where the choice of triggers for a given node is independent of the choice for
all other nodes. If a node u is inactive at a given time and a node in its trigger set
becomes active, then u becomes active at the subsequent time. Notably, Triggering
has an equivalent interpretation as “reachability via live-edge paths”, such that an edge
(u, v) is designated as live when v chooses u to be in its trigger set. Therefore, b(u, v)
represents the probability that edge (u, v) is live. Linear Threshold and Independent
Cascade [97] are special cases of Triggering with particular distributions of trigger
sets.
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Note also that function b and t are usually defined as data-driven. We will discuss
possible instances of both functions in Section 6.6.2.

Objective function The objective function of our targeted IM problem is com-
prised of two functions. The first one, denoted as C(·), is determined as the cumu-
lative amount of the scores associated with the target nodes that are activated by a
given seed set. Following the terminology in [26], we call this function social capital,
or simply capital, which is defined as

C(µ(S)) =
∑

v∈µ(S)∩TS

t(v) (6.1)

where µ(S) denotes the set of nodes that are active at the end of the diffusion starting
from S.

The second term in our objective function, denoted as div(·), is introduced to
determine the diversity of the nodes in any subset of V . As previously mentioned, our
approach is to measure diversity in terms of a-priori knowledge provided in the form
of symbolic values corresponding to a predetermined set of categorical attributes. In
Section 6.4, we provide a class of diversity functions for categorical datasets.

We now formally define our proposed problem of targeted IM, Attribute-based
DIversity-sensitive Targeted InflUence Maximization (ADITUM).

Definition 7. (Attribute-based Diversity-sensitive Targeted Influence
Maximization) Given a diffusion graph G = 〈V ,E, b, t〉, a budget k, and a threshold
τTS, find a set S ⊆ V with |S|≤ k of seed-nodes such that

S = argmax
S′⊆V s.t. |S′|≤k

α× C(µ(S′)) + (1− α)× div(S′) (6.2)

where α ∈ [0, 1] is a smoothing parameter that controls the weight of capital C(·) w.r.t.
diversity div(·).

The problem in Definition 7 preserves the NP-hard complexity of the IM problem.
However, as for the classic IM problem, if we are able to design an objective function
that is monotone and submodular, then the output of a greedy solution provides a
(1 − 1/e)-approximation guarantee w.r.t. the optimal solution [152]. To this aim,
we need to ensure that Equation 6.2 is a linear combination of two monotone and
submodular functions. Recall that, given a finite set Ω, any function f : 2Ω 7→ R
is said to be monotone iff f(S) ≤ f(S′) for any S ⊆ S′ ⊆ Ω, and submodular iff
f(S ∪ {x})− f(S) ≥ f(S′ ∪ {x})− f(S′) for any S ⊆ S′ ⊆ Ω and x ∈ Ω \ S′.

Monotonicity and submodularity of the capital function C(·) was previously demon-
strated in [26]. In the next section, we provide our definitions of div(·).

6.4 Monotone and submodular diversity functions for a
set of categorical tuples

We assume that the nodes in the social network graph G0 = 〈V ,E〉 are associated with
side-information in the form of symbolic values that are valid for a predetermined set
of categorical attributes, or schema, A = {A1, . . . , Am}. For each A ∈ A, we denote
with domA its domain, i.e., the set of admissible values known for A, and with dom
the union of attribute domains. Moreover, we define valA : V 7→ domA as a function
that associates a node with a value of A. For any S ⊆ V , we will also use symbols
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domA(S) and dom(S) to denote the subset of values in domA, resp. dom, that are
associated with nodes in S.

Given the schema A, we will refer to the categorical tuple associated to any v ∈ V
as the profile of node v, and to the categorical dataset for all nodes in V as the
profile set of V . We will use symbol A[v] to denote the profile of v and symbol DS
to denote the profile set of nodes in S ⊆ V . Note that DS is a multiset such that
DS =

⋃
v∈S A[v], and any A[v] is generally regarded as a sparse vector, as it could

containmissing values for some attributes; i.e., if we denote with ⊥ a missing attribute
value, A[v] = 〈valA1(v) ∨ ⊥, . . . , valAm(v) ∨ ⊥〉. Moreover, we will use symbol |A[v]|
to denote the actual length of A[v] as the number of attribute values contained in the
profile.

General requirements Given our setting of an information diffusion graph G =
G0(b, t) = 〈V ,E, b, t〉 associated with G0, here we define a class of functions div that,
for any S ⊆ V with associated DS , satisfy the following requirements:

• div(S) defines a notion of diversity of nodes in S w.r.t. their categorical repre-
sentation given in DS ;

• div(S) must be nondecreasing monotone and submodular ; hereinafter, we will
use the more simple term “monotone and submodular”;

• for any v ∈ V \S, the marginal gain div(S ∪ {v})− div(S) should be computed
efficiently;

• div(S) should be meaningful, in terms of ability in capturing the subtleties
underlying the variety of node profiles according to their categorical attributes
and values.

6.4.1 Challenges in defining set diversity functions

Before providing our definitions of diversity functions in Sects. 6.4.2–6.4.5, here we
mention some of the negative outcomes that were drawn by an attempt of devising
apparently simple and intuitive approaches based on attribute-wise functions as well
as based on profile-wise functions. Eventually, this demonstrates their unsuitability
as diversity functions for the task at hand, as they do not satisfy one or more of the
above listed general requirements.

Let us begin with attribute-wise functions. Given A ∈ A and S ⊆ V , one simple
approach would be to compute the number of unique values admissible for A that
occur in DS , normalized by the size of S; however, this coarse-grain function is not
only unable to characterize the variety of nodes in terms of repetitions of the different
values of the attribute under consideration, but also it is not nondecreasing monotone
since it decreases by adding nodes with identical values of the attribute. The desired
properties of monotonicity and submodularity could be satisfied by just counting the
number of unique values of attribute in DS , however at the cost of a further worsening
in meaningfulness, thus obtaining a useless notion of diversity.

An alternative approach would be to aggregate pairwise distances of the node
profiles w.r.t. a given attribute. For instance, we could count the (normalized) number
of mismatchings over each pair of nodes in a set; however, it is easy to prove that the
derived function will not be submodular in general.

Let us now extend to calculating pairwise distances of the node profiles over the
entire schema. In this regard, we could consider a widely-applied measure for com-
puting the distance between two sequences of symbols, namely Hamming distance.
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However, for different varying set-size-based normalization schemes, this might result
in a function that is not submodular or even not monotone. Alternatively, we could
consider a standard statistic for dissimilarity of finite sample sets, namely Jaccard
distance. This is defined as the complement of Jaccard similarity, that is, for any two
sets, substracting from 1 the ratio between the size of the intersection and the size of
the union of the sets. (In our context, a sample set corresponds to a categorical tu-
ple, i.e., a node profile.) Again, the resulting function will not ensure submodularity.
The interested reader can refer to the Appendix for analytical details of the afore-
mentioned functions and relating examples that show their unsuitability as monotone
submodular diversity functions.

6.4.2 Attribute-wise diversity

In this section, we discuss the first of our proposed diversity functions, which is
attribute-wise. We consider a notion of set diversity that builds on the variety in
the amount and type of categorical values that characterize the nodes in a selected
set. In particular, we consider a linear combination of the contributions the various
attributes provide to the diversity of nodes in a set.

Definition 8. Given a set of categorical attributes A = {A1, . . . , Am} and associated
profile set D for the nodes in a graph G0 = 〈V ,E〉, we define the attribute-wise
diversity of any set S ⊆ V as:

div(S) =
∑

j=1..m

ωj divAj (S) (6.3)

where divAj (S) evaluates the diversity of nodes in S w.r.t. attribute Aj, and ω’s are
real-valued coefficients in [0, 1], which sum up to 1 over j = 1..m.

To meet the monotonicity, submodularity, meaningfulness and efficiency require-
ments, we provide the following attribute-specific set diversity function.

Definition 9. Given a categorical attribute A, with domain of values domA, and node
set S ⊆ V, we define the attribute-specific set diversity for S as:

divA(S) =
∑

a∈domA(S)

na∑
i=1

1

iλ
(6.4)

where na is the number of nodes in S that have value a for A, and λ ≥ 1.

One nice property of the function in Equation 6.4 is that the contribution of a
node to the set diversity, i.e., the node’s marginal gain can be determined at constant
time, thus without recomputing the set diversity from scratch. This holds based on
the following fact.

Fact 1. The marginal gain of adding a node v to S is equal to∑
j=1..m

ωj
∑

a∈dom(Aj) ∧ a∈A[v]

(na + 1)−λ,

where na is the number of nodes in S that have value a for A, and λ ≥ 1.

Proposition 7. The attribute-wise diversity function defined in Equation 6.3 is mono-
tone and submodular.
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Proof. Function div(S) in Equation. 6.3 is monotone and submodular provided that
divA(S) in Equation 6.4 is such as well, for any choice of A ∈ A and setting of coeffi-
cients ω, since div(S) is a linear combination of functions divA(S) with nonnegative
weights. Monotonicity of Equation 6.4 is trivially satisfied. As concerns submodular-
ity, let us assume λ = 1 without loss of generality. Note that the inclusion of a node u
into S is 1/k1, with k1 equal to the size of S′ ⊆ S such that, for each v ∈ S′, it holds
that valA(v) ≡ valA(u); moreover, the inclusion of node u into T (S ⊆ T ) is 1/k2,
with k2 equal to the size of T ′ ⊆ T such that for each v ∈ T ′, valA(v) ≡ valA(u).
Since S ⊆ T , it holds that k2 ≥ k1, or 1/k1 ≥ 1/k2, which concludes the proof.

Lemma 2. Given a set S and a categorical attribute A, let na denote the number of
nodes in S whose profile contains the value a ∈ dom(A). For any

S = argmax
S′⊆V s.t. |S′|≤k

divA(S′)

it holds that, for every pair of categorical values a, a′ ∈ dom(A), if na − na′ > 1, then
there cannot be a node v in V \ S such that a′ ∈ A[v].

Proof. Assume by contradiction that there exists a set S that maximizes divA (for any
A ∈ A) such that MA −mA > 1. Without loss of generality, assume MA = mA + 2
and λ = 1. Let a(M) and a(m) denote the categorical values corresponding to MA and
mA, respectively. It is easy to note that if we remove a node with profile containing
a(M), resp. a(m), then divA will decrease by a δ− = 1/(MA) factor, resp. increase by
a δ+ = 1/(mA + 1) factor. Since δ− < δ+, the diversity value is increased, therefore
S cannot be the optimal solution, which proves our statement.

We also observed that the theoretical maximum value reached by Equation 6.3
depends only on the budget k, as provided by the following result.

Proposition 8. Given the set of categorical attributes A = {A1, . . . , Am}, m-real
valued coefficients ωj ∈ [0, 1] (j = [1..m]), and a budget k, the theoretical maximum
value for Equation 6.3 is function of k and determined as (dj , |domAj |):

div∗[k] =
m∑
j=1

ωj

dj k/dj∑
i=1

1

iλ
+
k mod dj

(1 + k
dj

)λ

 (6.5)

Proof (sketch).Equation 6.5 can be derived based on the observation that the
maximum possible value achievable w.r.t. a budget k is obtained when the categorical
values are equally distributed among the k nodes. Without loss of generality, let us
consider the case with one categorical attributeA. If we need to select k nodes, one at a
time, the best choice corresponds to select the node with value a∗ = argmina∈domA(S)

na, as it yields the maximum marginal gain. It straightforwardly follows that, by
adopting this strategy, a set S can be produced to satisfy the requirement stated in
Lemma 2 for the maximization of Equation 6.3. �

6.4.3 Distance-based diversity

In Section 6.4.1, we showed that an aggregation by sum of the profile-wise Hamming
distances does not generally ensure submodularity or even monotonicity. Given the
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profiles of two nodes u, v, the Hamming distance is defined as:

distH(u, v) =

m∑
j=1

1[valAj (u) 6= valAj (v)], (6.6)

where 1[·] denotes the indicator function.2

To design a set function that satisfies both the properties of monotonicity and
submodularity, we borrow the notion of Hamming ball introduced in [164], i.e., a set
of objects each having a Hamming distance from a selected object-center at most
equal to a predefined threshold, or radius. Our definition of Hamming ball for a given
node in the network takes also into account the influence range of the node, i.e., all
the nodes reachable starting from the node at the center of the “ball”. Formally, given
v ∈ V and a positive integer ξ, we define the Hamming ball as:

Bξv = {u | u ∈ IR(v) ∧ distH(u, v) ≤ ξ}, (6.7)

where IR(v) ⊆ V denotes the set of nodes u for which there exists a path connecting
v to u. Restricting the Hamming balls to the center’s influence range is beneficial in
terms of efficiency, and also licit since only the Hamming balls that are meaningful in
an influence spread scenario might be considered.

Definition 10. Given a set of categorical attributes A = {A1, . . . , Am} and associated
profile set D for the nodes in a graph G0 = 〈V ,E〉 and a radius ξ, we define the
Hamming-based diversity of any S ⊆ V as:

div(S) = |
⋃
v∈S

Bξ
v | (6.8)

Intuitively, since similar nodes have overlapping Hamming balls, by taking the
union in Equation 6.8 we implicitly force the selection of seeds so that nodes are as
different as possible from each other. Moreover, one nice effect of accounting for the
influence reachable set in computing the Hamming balls, is that we inherently favor
the selection of nodes with higher connectivity, hence large influence range, which is
a particularly valuable aspect for our problem.

The above defined function has the property of allowing an incremental computa-
tion of the marginal gain of any node.

Fact 2. The marginal gain of adding a node u to S, with u having Hamming ball Bξ
u,

is equal to | Bξ
u \Bξ

S |, where B
ξ
S = ∪v∈S Bξ

v.

Proposition 9. The Hamming-based diversity function defined in Equation 6.8 is
monotone and submodular.

Proof (sketch).Monotonicity of Equation 6.8 is trivial. In fact, since the equation
takes into account the union of the Hamming balls associated with any node in the
set, greater sets can only lead to greater Hamming balls, thus Equation 6.8 is only
allowed to increase.

As concerns the submodularity, it should be noted that for any S ⊆ T ⊆ V , it
holds that Bξ

S ⊆ Bξ
T . In light of Fact 2, we can write the inequality between the

2For any two nodes u and v, we assume that if either u’s or v’s profile does not contain a value
in the domain of Aj (i.e., missing value for Aj), with j = 1..m, then the indicator function will be
evaluated as 1.
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marginal gain of any node v with respect to S and T as:

����div(S)+ | Bξ
v \Bξ

S | −����div(S) ≥ ����div(T )+ | Bξ
v \Bξ

T | −����div(T )

In order to prove the submodularity, we can proceed by contradiction. Suppose there
exists a node v such that the following inequality is strictly satisfied:

�
��| Bξ
v |− | B

ξ
v ∩Bξ

S | < �
��| Bξ
v |− | B

ξ
v ∩Bξ

T |
| Bξ

v ∩Bξ
S | > | Bξ

v ∩Bξ
T |

It is easy to verify that the above inequality is a contradiction, in fact since Bξ
S ⊆

Bξ
T , there cannot exist any node u belonging to the intersection in the leftmost side

of the equation that does not belong to the intersection in the rightmost side. �

6.4.4 Entropy-based diversity

Diversity for categorical data can naturally be associated with notions of heterogeneity,
or variability, for discrete random variables, such as entropy and Gini-index. Unfor-
tunately, it is easy to note that such measures cannot be used to define a monotone
submodular function of diversity as long as they are evaluated on any discrete random
variable whose sample space (i.e., set of admissible values) corresponds to the categor-
ical content of DS , for any S ⊆ V . For instance, if we describe each node-profile, resp.
each attribute-value, in DS by means of a vector whose generic entry represents the
frequency of that profile, resp. attribute-value, then the entropy for the correponding
probability mass function does not even preserve monotonicity for any T ⊇ S.

Nonetheless, it is known that entropy is monotone and submodular if defined for
a set of discrete random variables [61]. Given a collection X = {Xi}ni=1 of discrete
random variables, with images (countable sets) here denoted as FXi (i = 1, . . . , n),
the entropy function H : 2X 7→ [0,+∞) is defined as:

H(X1, . . . , Xn) = E[− logP (X1, . . . , Xn)]

= −
∑

x1∈FX1

· · ·
∑

xn∈FXn

P (X1 =x1, . . . , Xn=xn) logP (X1 =x1, . . . , Xn=xn).

where x1, . . . , xn are particular values ofX1, . . . , Xn, respectively, and P (X1 =x1, . . . , Xn=
xn) denotes the joint probability that the values of the variables Xi are, respectively,
equal to xi (i = 1, . . . , n).

As previously mentioned, the entropy function defined above satisfies the proper-
ties of monotonicity and submodularity [61]. In fact, it holds that H(XS) ≤ H(XT )
and that H(XS , X) − H(XS) ≥ H(XT , X) − H(XT ), with XS ⊆ XT ⊆ X and
X ∈ X , X /∈ XT . Hence, one question here becomes how to suitably define the
variables over DS , for any S ⊆ V . We next provide an intuitive definition that is valid
in our context.

Definition 11. Given any S ⊆ V , we define a set XS = {Xi}i=1..|S| of discrete
random variables associated with the profiles of nodes in S, where for each vi ∈ S,
Xi : dom 7→ {0, 1}, such that dom is equipped with a probability function that assigns
each a ∈ dom with its relative frequency in D, and Xi takes the value 1 if a is contained
in A[vi], 0 otherwise.
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It is known that the set entropy H(X1, . . . , Xn) can be rewritten in terms of
conditional entropy through a chain rule for discrete random variables [47]:

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|Xn−1, . . . , X1).

That is, the entropy of a collection of random variables is the sum of the conditional
entropies. In particular, given three variables, it holds that:

H(X1, X2, X3) = H(X1) +H(X2, X3|X1)

= H(X1) +H(X2|X1) +H(X3|X2, X1)

= H(X1, X2) +H(X3|X2, X1).

It should also be noted that a sequence of random variables can be considered
as a single vector-valued random variable, therefore the joint probability distribution
p(X ) can also be seen as the probability distribution p(X) of the random vector
X = [X1, . . . , Xn]. This naturally reflects as well on the computation of the conditional
entropy of a variable given a sequence of random variables.

Definition 12. Given a set of categorical attributes A = {A1, . . . , Am} and associated
profile set D for the nodes in a graph G0 = 〈V ,E〉, we define the entropy-based
diversity of any S ⊆ V as:

div(S) = H(X1, . . . , X|S|) =

|S|∑
i=1

H(Xi|X<i), (6.9)

where XS = {Xi}i=1..|S| is the set of discrete random variables corresponding to nodes
in S, X<i denotes the vector of variables X1, . . . , Xi−1, and

H(Xi|X<i) = −
∑

x∈{0,1}i−1

p(X<i=x)

×
∑

xi∈{0,1}

p(xi|X<i=x) log p(xi|X<i=x)

= −
∑

x∈{0,1}i−1

p(X<i=x)×H(Xi|X<i=x).

In the above equation, note that the enumeration of 0-1 tuples of length i is
only limited to the joint variable combinations corresponding to the attribute-values
occurring in D, whereas for all other attribute-values a′ not in D, the same tuple of
all zeros is associated with the sum of probabilities of a′ in D.

The following fact states that the entropy-based diversity function allows for an
incremental computation of a node’s marginal gain.

Fact 3. The marginal gain of adding a node v to S is equal to the conditional entropy
H(X|S|+1 | X<|S|+1).

Proposition 10. The entropy-based diversity function defined in Equation 6.9 is
monotone and submodular.

Proof (sketch).Monotonicity and submodularity are ensured given the strict rela-
tion between the joint entropy function and a polymatroid [61]. Moreover, as con-
cerns submodularity in particular, note that in the inequality H(XS , X) −H(XS) ≥
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H(XT , X)−H(XT ) (with XS ⊂ XT ⊆ X and X ∈ X , X /∈ XT ), each of the two terms
is just the conditional entropy of variable X given XS and XT , respectively. Therefore,
H(X|XS) ≥ H(X|XT ) holds since conditioning cannot increase entropy. �

6.4.5 Class-based diversity

We now introduce a subclass of diversity functions which differs from the ones pre-
viously described in that it exploits a-priori knowledge on a grouping of the node
profiles. This might be particularly relevant in scenarios where we are interested in
distinguishing the nodes based on a coarser grain than their individual profiles. An
available organization of the profiles into categorically-cohesive groups could reflect
some predetermined equivalence classes of the profiles w.r.t. a given schema of at-
tributes A. (This in principle also includes the opportunity of defining profile groups
based on the availability of a community structure over the set of nodes in the net-
work.)

A simple yet efficient approach to measure diversity based on the exploitation of
profile groups is to cumulate the selection rewards for choosing nodes with a profile
that belongs to any given class.

Definition 13. Given a set of categorical attributes A = {A1, . . . , Am} and associated
profile set D for the nodes in a graph G0 = 〈V ,E〉, we define the class-based diversity
of any S ⊆ V as:

div(S) =
∑
l=1..h

f(
∑

vj∈Cl∩S
rj) (6.10)

where C = {C1, . . . , Ch} is a partition of D (i.e.,
⋃h
l=1Cl = D, and C ∩ C ′ = ∅, for

each C,C ′ ∈ C, with C 6= C ′), f : R 7→ R is any non-decreasing concave function, and
rj > 0 is the selection reward for vj ∈ V .

The effect of f is that repeatedly selecting nodes of the same class yields increased
diminishing gains for the previously selected nodes. In fact, since f is nonnegative
concave and f(0) ≥ 0, f is also subadditive on R+, i.e.,

∑+∞
xi=0 f(xi) ≥ f(

∑+∞
xi=0 xi).

Therefore, adding (to the set S being discovered) a node from a different class is
preferable in terms of marginal gain than adding a node from an already covered
class. Example instances of f(x) are

√
x and log(1 + x), but any other non-decreasing

concave function can in principle be adopted. We now provide the lower bound and
upper bound of Equation 6.10 when the logarithmic function is adopted.

Proposition 11. Given a budget k and h classes, the function in Equation 6.10,
equipped with f(x) = log(1 + x), with rj = 1, ∀vj ∈ V , achieves the minimum value
of log(1 + k) when all k nodes belong to the same class (i.e., 1 class covered), and
the maximum value of k when all k nodes belong to different classes (i.e., k classes
covered).

Proof (sketch).The values of log(1+k) and k are immediately derived by evaluating
Equation 6.10 for the cases h = 1 and h = k, respectively. The proof of k as upper
bound is immediate. To prove that log(1 + k) is the lower bound of Equation 6.10,
consider w.l.o.g. a uniform class distribution, i.e., there are k/h (with h < k) nodes
that belong to each class. In this case, it holds that div(S) = h log(1 + k/h), for
any size-k S. It follows that the inequality log(1 + k) ≤ h log(1 + k/h) must be
verified (with equality iff h = 1). This is immediately derived by observing that, after
algebraic manipulation, the above inequality holds iff (1 + k)hh ≤ (h+ k)h, which is
true since the terms on the left side are contained in the polynomial (h+ k)h. �
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Again, the above defined function enables an incremental computation of the
marginal gain of any node.

Fact 4. The marginal gain of adding a node v to S, with v belonging to class Cl, is
equal to log(1 + r/Rl), where r is the reward of adding v and Rl is one plus the sum
of rewards of nodes in S that belong to class Cl.

Proposition 12. The partition-based diversity function defined in Equation 6.10 is
monotone and submodular.

Proof (sketch).Monotonicity and submodularity of the function in Equation 6.10
can directly be derived from the mixture property of submodular functions and the
composition property of submodular with nondecreasing concave functions [136], re-
spectively. In fact, the summation argument of f is a collection of modular functions
with nonnegative weights (and hence is monotone), the application of f yields a sub-
modular function, and finally summing up over the groups retains monotonicity and
submodularity. �

6.5 A RIS-based framework for the ADITUM problem

We develop our framework for the ADITUM problem based on the Reverse Influence
Sampling (RIS) paradigm first introduced in [20] and recognized as the state-of-the-art
approach for IM problems.

As discussed in Section 6.2, the RIS based approach overcomes the limitations
of the Monte Carlo based greedy approach to IM. The RIS paradigm relies on the
following two concepts. Given the diffusion graph G with node set V and edge set
E, let G be an instance of G obtained by removing each edge e ∈ E with probability
1− p(e), where p(e) denotes the probability on edge e in G. The reverse reachable set
(RR-Set) rooted in v w.r.t. G contains all the nodes reachable from v in a backward
fashion. A random RR-Set is any RR-Set generated on an instance G, for a node
selected uniformly at random from G.

The key idea of the RIS framework is that the more a node u appears in a random
RR-Set rooted in v, the higher the probability that u, if selected as seed node, will
activate v. The design of the RIS framework follows a two-phase schema [20]: (1)
Generate a certain number of random RR-Sets, and (2) Select as seeds the k nodes
that cover the most RR-Sets. (The latter step can be solved by using any greedy
algorithm for the Maximum Coverage problem.)

Based on RIS, Tang et al. [189] developed the TIM and TIM+ algorithms that
achieve (1−1/e−ε)-approximate solutions for the IM problem, with at least 1−|V |−l
probability in time O((k+ l)(|E|+|V |) log|V |/ε2), where l = 1 by default. TIM/TIM+
works in two major stages: parameter estimation and seed selection. The first stage
aims at deriving a lower-bound for the maximum expected spread that can be achieved
by a size-k seed set, from which depends the number θ of random RR-Sets that must
be generated in the second stage; the latter essentially coincides with the second
phase of the RIS method. Note that TIM+ is designed to improve upon TIM by
adding an intermediate step between parameter estimation and node selection, which
heuristically refines θ into a tighter lower bound of the maximum expected influence
of any size-k node set. Also, it should be noted that further developments introduced
to speed up TIM+, like IMM [188], still maintain the same computational complexity
as TIM+.
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The effectiveness of TIM+ is explained by Lemma 2 provided in [189], which states
that, if θ is sufficiently large, the fraction of random RR-Sets covered by any seed set
S is a good and unbiased estimator of the average node-activation probability.

6.5.1 Proposed approach

Our proposed RIS-based framework follows the above discussed two-phase schema,
however it originally embeds both the targeted nature and the diversity-awareness in
an influence maximization task. To accomplish this, we revise the two-phase schema
as follows.

Parameter estimation We want to understand how much capital can be captured
from a size-k seed set. Therefore, to compute the number θ of RR-Sets, we need to
identify a lower-bound on the maximum capital score.

We select a node v as the root of an RR-Set with probability p(v) ∝ t(v). Since
we are interested in the activation of the target nodes only, we set

p(v) =
t′(v)

TTS
, with t′(v) =

{
t(v), if v ∈ TS
0, otherwise

and TTS =
∑

u∈TS t(u). We leverage on the TIM+ procedures KPTEstimation and
RefineKPT, in order to estimate a lower-bound for the average activation probabil-
ity achieved by any optimal seed set of size k. At a high level, the KPTEstimation
procedure starts by generating a relatively small number of RR sets upon which an
initial approximation of the expected spread is computed. The number of RR sets
is iteratively increased until the estimate matches a certain error bound. The Re-
fineKPT procedure improves over the first lower-bound estimation. More specifically,
it computes an initial seed set upon the random RR sets generated in the last itera-
tion of KPTEstimation, and estimates the spread of this initial seed set w.r.t. a new
selection of RR sets; the number of these new RR sets is kept reasonably high in order
to ensure the accuracy of the last estimate. Finally, RefineKPT returns the maximum
value between the first and the last approximation.

Note that we can rely upon the two TIM+ procedures since the capital achieved is
contingent on the activation process, thus we still need to have an unbiased estimator
for the spread function. In fact, any target node will contribute in terms of capital as
long as it has been activated starting from the seed set. The lower-bound on the ex-
pected spread allows us to derive a lower-bound on the average activation probability,
from which we compute the expected capital score of a seed set as

E[C(S)] = TTS(E[µ(S)])/|V |. (6.11)

Above, the rightmost term is the average fraction of total capital score TTS , the seed
set S is able to capture. Moreover, since every random RR-Set is rooted in a target
node, the aforementioned Lemma 2 [189] ensures that E[µ(S)]/|V | is very close to the
average activation probability of the target nodes.

Seed selection Once all θ RR-Sets are computed, the second phase is in charge of
detecting the k seeds. To this end, we take into account a notion of set-diversity to
choose the candidate seeds. The selection of best seeds is accomplished in a greedy
fashion, one seed at a time. A node v is associated with a linear combination of (i)
the node’s capital score, obtained by summing the target scores of the roots of the
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RR-Sets to which v belongs and that are not already covered by seeds, and (ii) the
node’s diversity score, which corresponds to the node’s marginal gain for the diversity
function w.r.t. the current seed set.

Remarks The objective function we seek to maximize is a linear combination of two
main quantities: the expected capital and the diversity of the seeds. Note that there
is a key difference between these two measures: the former is defined globally over
the whole network, while the latter is limited to the seed nodes, namely the solution
itself.

Our approach hence reflects this inherent interplay between capital and diversity.
In fact, the sampling procedure in the first stage corresponding to the parameter
estimation, is driven by only the capital score — there are no seeds upon which the
diversity must be assessed — whereas the diversity aspect comes into play only during
the process of seed set formation, thus it drives the discovery of the seeds.

6.5.2 The ADITUM algorithm

We describe here algorithmic details of our proposed approach to solve the Attribute-
based Diversity-sensitive Targeted Influence Maximization problem we provided in
Definition 7, which originally embeds a categorical-set diversity function into the IM
optimization criterion.

Algorithm 5 shows the pseudocode of our implementation of ADITUM. The algo-
rithm starts by identifying the target nodes (line 1), then it infers the number θ of
RR-Sets to be computed, according to TIM+ subroutines of estimation and refine-
ment of KPT , i.e., the mean of the expected spread of possible size-k seed sets (line
2). In lines 4-6, the θ RR-Sets are generated by invoking the computeRandomRRSet
procedure (lines 4-6). The procedure buildSeedSet eventually returns the size-k seed
set (lines 7-8). In the following, we provide details about the two procedures.

Procedure computeRandomRRSet starts by sampling node r as the root of R from
a distribution of probability proportional to the target-node scores (line 11). Each
RR-Set is associated with an integer identifier and the root node (line 12) — this
information is needed since the capital associated with a set is given by the target
score of its root. Finally, an instance of the influence graph G ∼ G is computed
according to the live-edge model related toM, then all the nodes that can reach r in
G are inserted in the RR-Set to be returned.

Procedure buildSeedSet exploits a priority queue q, which is initialized (line 16)
to store triplets comprised of: value of the linear combination of capital and diversity,
node and iteration which the value refers to. The triplets are ordered by decreasing
values of capital-diversity combination. For each node v, its capital score is computed
by summing the target score of all nodes that are roots of an RR-Set v belongs to
(line 18). Moreover, the v’s diversity score is computed as its marginal gain for the
div function w.r.t. the current seed set (line 19), according to the particular diversity
notion involved (cf. Facts 1–4, Section 6.4). Once all the scores are computed, the
procedure starts to select the seeds, by getting at each iteration the best triplet from
the queue (line 23): if the choice is done at iteration it equal to the number of nodes
currently in the seed set (line 24), then v is inserted in S, and all sets covered by v are
stored in CS; otherwise, all the scores are to be recomputed. By denoting with R(v)
the set of random RR-Set containing v, the v’s capital score is decreased by the target
score of each node r that is root of an already covered RR-Set (i.e., a set in R(v)∩CS)
(line 28), and this set is also removed from R(v) (line 29). The diversity score needs
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Algorithm 5 Attribute-based DIversity-sensitive Targeted InflUenceMaximization
(ADITUM)
Input: A diffusion graph G = 〈V, E , b, t〉 based on triggering modelM, a budget k, a target

selection threshold τTS ∈ [0, 1], a smoothing parameter α ∈ [0, 1].
Output: Seed set S of size k.
1: TS ← {v | t(v) ≥ τTS}{Select the target nodes}
2: Compute θ by using TIM+ procedures KPTEstimation and RefineKPT
3: R ← ∅
4: for i← 1 to θ do
5: R← computeRandomRRSet(TS,M, i)
6: R ← R∪ {R}
7: end for
8: S ← buildSeedSet(R, k, α){Seed Selection stage}
9: return S

10: procedure computeRandomRRSet(TS,M, id)
11: R← ∅Initialize the RR-Set
12: Select node r ∈ TS as root, with probability p(r) ∝ t(r)
13: R.id← id,R.root← rAssociate id and root to the RR-Set
14: Add to R the nodes that can reach r according to live-edge model ofM
15: return R

16: procedure buildSeedSet(R, k, α)
17: q ← ∅{Priority queue for lazy-greedy optimization}
18: for v ∈ V do
19: v.pushedC ←

∑
R∈R(v) c(root(R))

20: v.pushedD ← marginalGainInDiversity(v, ∅)
21: q.add(〈(α× v.pushedC + (1− α)× v.pushedD), v, 0〉)
22: end for
23: S ← ∅, CS ← ∅
24: repeat
25: 〈aDC_val, v, it〉 ← q.removeF irst()
26: if it = |S| then
27: S ← S ∪ {v}, CS ← CS ∪R(v)
28: else
29: for R ∈ R(v) ∩ CS do
30: v.pushedC ← v.pushedC − t(root(R))
31: Remove R from R(v)
32: end for
33: v.pushedD ← marginalGainInDiversity(v, S)
34: q.add(〈(α× v.pushedC + (1− α)× v.pushedD), v, |S|〉)
35: end if
36: until |S|= k
37: return S

also to be recomputed, finally the updated triplet is inserted into the priority queue
(lines 30-31). The procedure loop ends when the desired size k is reached for the seed
set (line 32).

Proposition 13. ADITUM runs in O((k+ l)(|E|+|V |) log|V |/ε2) time and returns a
(1− 1/e− ε)-approximate solution with at least 1− |V |−l probability.

Proof (sketch).ADITUM is developed under the RIS framework and follows the
typical two-phase schema of TIM/ TIM+ methods, i.e., parameter estimation and
(seed) node selection, for which the theoretical results in the Proposition hold. Due
to the targeted nature of the problem under consideration, the expected capital must
be computed in place of the expected spread; however, this only implies to choose
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Table 6.2: Summary of real-world networks used in our experimental
evaluation. Assortativity corresponds to the directed version of degree-
based assortativity. Sinks and sources are nodes having zero out-degree
and zero in-degree, respectively.

network #nodes #edges avg. avg. clust. assorta- #sources #sinks
in-degree path length coeff. tivity

FriendFeed 493 019 19 153 367 38.85 3.82 0.029 -0.128 41 953 292 003
GooglePlus 107 612 13 673 251 127.06 3.32 0.154 -0.074 35 341 22
Instagram 17 521 617 560 35.25 4.24 0.089 -0.012 0 0
MovieLens 943 229 677 243.5 1.87 0.752 -0.323 1 1
Reddit 11 224 91 924 8.18 4.11 0.083 -0.072 0 0

a distribution over the roots of the RR-Sets, which depends on the target scores of
the nodes in the network. Thus, the asymptotic complexity of TIM/TIM+ is not
increased. Moreover, two major differences occur in the seeds selection phase of ADI-
TUM w.r.t. TIM/TIM+, i.e., the lazy forward approach and the computation of the
marginal gain w.r.t. the diversity function. However, both aspects do not affect the
asymptotic complexity, since the former allows saving runtime only and the latter
does not represent any overhead (computing a node’s marginal gain is made in nearly
constant time, for each of the diversity functions). Therefore, we can conclude that
ADITUM has the same asymptotic complexity of TIM/TIM+. �

6.6 Evaluation methodology

6.6.1 Data

We used both synthetic and real-world data for our experimental evaluation. We
selected real-world online social networks (OSNs) as input graphs for the influence
maximization task, while for the specification of the categorical data, we adopted
a twofold methodology: firstly, we developed a generator of synthetic categorical
datasets as benchmark for an in-depth analysis of the different diversity functions;
secondly, we exploited user profile data, when available, associated to the users in the
evaluation OSNs.

Synthetic data. Our developed generator of synthetic categorical datasets re-
quires the following parameters as inpuattribute:t: the number m of attributes of the
schema A, the number n of categorical tuples (i.e., vectors of categorical attribute
values) to be generated according to A, the number of symbols (admissible values)
for each attribute (i.e., |domA|, for every A ∈ A), and the type of distribution of
the values of each attribute. All generated data tuples will have no missing attribute
values. We set n = 1000, m = |A| from 5 to 50, |domA|= {5, 10, 15} (∀A ∈ A), while
the selected types of per-attribute distributions are uniform (with parameters 0 and
1), standard normal, and exponential (with rate λ = 1).

Real-world networks. We chose five real-world OSNs, namely:
FriendFeed [26], GooglePlus [26], Instagram [26],MovieLens [185], and Reddit [106].

Table 6.2 shows main statistics about the evaluation networks. Our choice of the
datasets is motivated by the following reasonattribute:s:

• reproducibility, i.e., all of the networks are publicly available;

• diversification of the evaluation scenarios, which include user engagement and
item recommendation;
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• continuity w.r.t. previous studies;

• fair comparative evaluation, i.e., we based our choice also in relation of the
competing methods included in our evaluation, so to enable a fair comparison
between them and our ADITUM.

FriendFeed, GooglePlus, and Instagram network datasets refer to OSNs previously
studied in a user engagement scenario, which has been recognized as an important
case in point for demonstrating targeted IM tasks [26]. For each of these networks,
the meaning of any directed edge (u, v) is that user v is “consuming” information
received from u (e.g., v likes/comments/rates a u’s media post). No side information
is originally provided with such datasets, therefore we synthetically generated the user
profiles as followattribute:s: Given m categorical attributes, each with ni admissible
values (i = 1..m), we associated each user with a set of values sampled from either
uniform or exponential (with λ = 1) distribution. We set m = ni = 10. We used
these datasets also for comparison with DTIM.

Originally used for movie recommendation, MovieLens is associated with a (user,
movie-genre) rating matrix storing the number of movies each user rated for each
genre, at any given time over a predefined observation period. This dataset was
previously included in the evaluation of our competitor Deg-D. To enable ADITUM to
work on MovieLens, we mapped each genre to an attribute, with unique rating-values
as corresponding attribute-values. The MovieLens network was built so to have users
as nodes and any directed edge (u, v) is drawn if user u rated first at least 10 movies
in common with v (timestamps are available in the original data).

Reddit network represents the directed connections between two subreddits, i.e.,
communities on the Reddit platform. Each connection refers to a post in the source
community that links to a post in the target community. From the original network,
we kept only the connections for which the source post is explicitly positive towards
the target post, and finally extracted the largest strongly connected component to
overcome sparsity issues. Reddit connections are also rich in terms of numerical
attributes associated with each source post, which include both lexical and sentiment
information. We selected 11 attributes which appeared to be the most informative for
influence propagation reasons.3 To generate the profile of each node (community), we
grouped the posts by community and summed up the scores for each attribute; finally,
the values of each attribute were discretized through a 10-quantile binning scheme.

6.6.2 Evaluation goals and settings

We devised different settings according to our evaluation goals, which are organized
into three main stages of analysis. Hereinafter, we will use notations div(AW ), div(HB),
div(E), div(C) to refer to the attribute-wise, Hamming-, entropy-, and class-based
definitions of diversity functions, respectively.

Stage 1 – Sensitivity of diversity functions The first stage of evaluation is
focused on an analysis of the proposed diversity functions regardless of the context of
the ADITUM problem. More specifically, we want to understand the relations between
the size of a set of categorical tuples, the number of attributes (size of the schema), the
number of attribute symbols and their distribution, and how these affect the behavior
of each diversity function.

3We selected the POST_PROPERTIES attributes corresponding to the following identifierat-
tribute:s: 19, 20, 21, 43, 44, 45, 46, 51, 52, 53, 66.
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Using our synthetically generated datasets, and for every combination of seed-
set size k and number i ∈ [1..m] of attributes to select from the data schema, we
considered the following experimental settingattribute:s:

(S1.1) We evaluated the expected diversity via Monte Carlo simulation with 10 000
runs. More specifically, in each run of the simulation, we first randomly selected
a size-k set of categorical tuples projected over the first i attributes in A, then
we measured its diversity, according to each diversity function.

(S1.2) For each diversity function, we computed the size-k set of categorical tuples
that maximizes its value.

Intuitively, both settings enable us to characterize and comparatively evaluate the
diversity functions when varying properties of the input data. Moreover, the second
setting is also concerned with finding the input conditions that allow for maximizing
each diversity function.

Stage 2 – Evaluation of ADITUM For the second stage of evaluation, we con-
sidered ADITUM instantiations with each of the definitions of diversity proposed in
Section 6.4. We experimentally varied the setting of ADITUM parameterattribute:s:
the seed-set size k, within [5..50], the smoothing parameter α, from 0 to 1 with step
0.1, and the target selection threshold τTS ; the latter was controlled in terms of
percentage of top-values from the target score distribution, thus we selected target
sets corresponding to the top-{5%, 10%, 25%}. We used the default ε = 0.1 for the
approximation-guarantee in the parameter estimation phase. Concerning the edge
weighing function (b) and the node weighing function (t), we devised the following
settingattribute:s:

(S2.1) The first setting refers to the basic, non-targeted setting adopted in [185], i.e.,
b(u, v) = 1/nv, with nv number of v’s in-neighbors, and t(u) = 1, for all u, v in
V . We used this setting for MovieLens evaluation.

(S2.2) The second setting refers to Reddit, for which the influence weights are set to
be proportional to the amount of interactions between communitiattribute:es:
for any two nodes u and v, b(u, v) = Puv/Pv, where Puv is the number of posts
of u directed to v, and Pv is the total number of posts having v as target. The
node weighing function is here simply defined as the in-degree function, in order
to mimic a scenario of influence targeting as corresponding to communities that
are highly popular in terms of post recipients.

(S2.3) The third setting refers to a user engagement scenario and applies to Friend-
Feed, GooglePlus and Instagram, which were previously used in that context [26].
User engagement is addressed as a topology-driven task for encouraging silent
users, a.k.a. “lurkers”, to return their acquired social capital, through a more
active participation to the community life. Note that such users are effective
members of an OSN, who are not actively involved in tangible content produc-
tion and sharing with other users in the network, but rather they are information
consumers. Given this premise, in [26] a specific instance of targeted IM is de-
veloped such that lurkers are regarded as the target of the diffusion process.
Therefore, the user engagement task becomattribute:es: Given a budget k, to
find a set of k nodes that are capable of maximizing the likelihood of “activating”
(i.e., engaging) the target lurkers. In this context, the two weighing functions
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rely on a pre-existing solution of a lurker ranking algorithm applied to the so-
cial graph. The intuition is as follows (the interested reader is referred to [26]
for analytical details about the weighing functions): For any node v, the node
weight t(v) indicates the status of v as lurker, such as the higher the lurker rank-
ing score of v the higher should be t(v); for any edge (u, v), the weight b(u, v)
is computed to measure how much node u has contributed to the v’s lurking
score calculated by the lurker ranking algorithm, which resembles a measure of
“influence” produced by u to v.

Stage 3 – Comparative evaluation with competing methods The closest
methods to ADITUM are DTIM [26] and Deg-D [185]. As previously mentioned,
DTIM addresses targeted IM, but it considers topology-driven notions of diversity
only; conversely, Deg-D assumes a numerical representation of node attributes and
the addressed problem is not targeted.

The objective function in DTIM [26] shares the capital term with ADITUM, which
is however combined with a diversity term defined as

∑
s∈S

∑
v∈TS divv(s), i.e., the

sum of diversity scores that each seed has in relation with each of the target nodes,
where divv(·) is either the global topology-driven or the local topology-driven di-
versity function [26]. To enable a comparison with DTIM, we integrated its global
topology-driven diversity function into our RIS-based framework, following the guide-
lines provided in [26].

Deg-D [185] follows a simple greedy scheme to maximize the objective function (1−
γ)
∑

u∈S deg(u) + γD(S), where deg(u) denotes the out-degree of node u, while D(S)

represents the diversity of the set S, whose value is given by: D(S) =
∑M

m=1 f(
∑

u∈S ωum×
g(u)), whereM denotes a given number of types of external information, γ is a smooth-
ing parameter, ωum ∈ [0, 1] is a real-valued coefficient expressing the preference of node
u toward type m, f denotes any nondecreasing concave function (with default form
set to f(x) = log(1 + x)), whereas g is a function defined for each node u, either
as g(u) = 1 or g(u) = deg(u); the two different definitions of g lead to the variants
named Deg-DU and Deg-DW, respectively. Note that, compared to α in ADITUM,
γ in Deg-D has an opposite role, therefore we set γ = 1 − α in all the experiments.
Moreover, Deg-D requires a numeric vector of sizeM to be associated with each node.
Therefore, to account for the numerical representation of node attributes handled by
this method, we devised two settingattribute:s:

• Comparison of the two methodattribute:s: ADITUM upon categorical represen-
tation derived from a numerical representation of nodes’ attributes vs. Deg-DU
and Deg-DW upon normalized numerical representation;

• Integration of the uniform and weighted functions, i.e., Deg-DU and Deg-DW,
resp., into our RIS-based framework, upon numerical representation of nodes’
attributes.

Remarks on the scope of evaluation It should be noted that, although many methods
exist for targeted IM, no one has the same diversity-aware goal or data features as
ours; one exception is represented by the two methods discussed above, for which
nonetheless we had to devise suitable settings to allow for a fair comparison. As a
consequence, it would be useless to compare the spread produced by our method to
the spread achieved by any other method that does not incorporate diversity into the
activation function; also, no comparison would make sense in terms of the seeds to be
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identified, since any variability in the categorical attributes of the seed set discovered
by a method that is not diversity-sensitive would be due to random chance.

Another notable point is that, for the sake of significance of experimental results,
our evaluation framework requires that an IM method must be equipped with an
activation function that is monotone submodular, in order to support the development
of an approximate solution with theoretical guarantee. This advocates our choice of
leaving out of consideration any non-submodular diversity measure adopted in contexts
of search-result diversification (cf. Section 6.2).

6.7 Experimental results

6.7.1 Stage 1 - Sensitivity of diversity functions

To characterize the behavior of our diversity functions, we analyzed their sensitiv-
ity to the input categorical data, by varying the number of attributes, the number
of attribute symbols, and their distribution. Our assessment is focused around the
following two statistattribute:ics: (i) the relative change rate and (ii) the average
Jensen-Shannon divergence.

The relative change rate of a diversity function is computed w.r.t. the change in
the size of the set of categorical tuples upon which the diversity is evaluated. Formally,
given any two set-size values, k1 and k2, with k2 > k1, we define the relative change
rate of a diversity function f aattribute:s:

rcr(f, k1, k2) =
1

k2 − k1

f(k2)− f(k1)

f(k1)
,

where f(k) denotes the evaluation of function f on sets of size k based on Monte Carlo
simulations, as previously discussed in Section 6.6.2.

We also measured the Jensen-Shannon divergence to compare any two sets of
categorical tuples according to the frequency of the values occurring in each particular
attribute of their schema. More precisely, for any given attribute A ∈ A and set of
categorical tuples S, we first computed a distribution of probabilities corresponding
to the relative frequencies of the symbols in A over the tuples of set S. If we denote
this distribution with distS,A, the Jensen-Shannon divergence between any two sets
S1 and S2 w.r.t. A is defined aattribute:s:

JSDiv(distS1,A ‖ distS2,A) =
1

2
KL(distS1,A ‖ mean) +

1

2
KL(distS2,A ‖ mean)

where mean = 1
2(distS1,A + distS2,A) and KL(X ‖ Y ) denotes the Kullback-Leibler

divergence between any two probability distributions X,Y ; we used base-2 logarithm
so to bound the Jensen-Shannon divergence by 1, for any two probability distribu-
tions. Finally, for any two sets S1 and S2 sharing the same schema A, we computed
the overall Jensen-Shannon divergence between S1 and S2 as the average of their
divergence values over all attributes in A.

We organize the presentation of our main results as follows. We first investigate
the sensitivity of each diversity function, in terms of its relative change rate w.r.t.
the number of attributes, in Section 6.7.1.1, and the number of attribute symbols, in
Section 6.7.1.2. Next, in Section 6.7.1.3, for each pair of diversity functions, we analyze
the Jensen-Shannon divergence of the probability distributions for the categorical
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Figure 6.1: Relative change rate of diversity functions by varying
the number of attributes (|A|), on different categorical datasets. Dif-
ferent colors correspond to different projections of the dataset: the
darker the color, the higher the number i of attributes selected from
the schema, where i ∈ [5..50] with increments of 5. The number of
attribute symbols is set to 15.

tuple sets that respectively maximize the corresponding diversity function (cf. second
setting of Stage 1, Section 6.6.2).

6.7.1.1 Effect of the number of attributes

We are interested in understanding how the size of the schema impacts on the change
rate of each diversity function. In fact, since increasing the number of attributes
enables accounting for more information, it might be desirable that the relative change
rate of a diversity function will not vary greatly; otherwise, when contextualized to
the ADITUM setting, this would introduce an issue of selecting a proper size of the
categorical data schema upon which the function needs to be maximized in order to
provide its best perfomance.

Figure 6.1 shows the relative change rate of diversity functions by varying the
number of attributes. Please note that the results shown in the figure discard the
class-based diversity function, since our goal here is to analyze the explicit effect of
the number of attributes on the behavior of a diversity function. This effect might
not fully be understood for the class-based diversity, because it is actually evaluated
on a single attribute (external to the schema A) whose values depend on how the
categorical tuples were originally grouped (cf. Section 6.4.5).
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As a general remark, it can be noted a non-increasing trend of the relative-change-
rate curve of each function, regardless of the data characteristics. This is obviously
expected, since all functions are submodular: as k increases, the relative change rate
decreases, which is explained since this can intuitively be seen as related to the average
marginal gain due to the inclusion of new elements to the input set, which becomes
smaller as the set-size increases.

Considering the relative change rate of the attribute-wise diversity (Figs. 6.1(a-c)),
we observe differences in the range of values (wider for the uniform distribution, nar-
rower for the exponential distribution), but no effects due to the number of attributes.

Conversely, as shown in Figs. 6.1(d-f), the entropy-based diversity turns out to
be slightly more sensitive to the number of attributes in the dataset schema, with
the relative-change-rate curves that tend to increase in amplitude and become more
similar by increasing the number of attributes (this is particularly evident with the ex-
ponential distribution, i.e., Figure 6.1(d)). As concerns the Hamming-based diversity
function (Figs. 6.1(g-i)), we observe that, when the number of attributes is small, there
is almost no variation of the relative change rate of the function: in fact, when ξ ' |A|,
it is highly likely that only few tuples would have a Hamming ball comprising most of
the profiles in the categorical dataset, and consequently the advantage of adding new
tuples to the current set becomes negligible. Moreover, the Hamming-based diversity
function shows to be more sensitive than the entropy-based one, especially when using
an exponential distribution of the attribute values. In general, the relative change rate
of the Hamming-based diversity function tends to be higher than those of the other
two functions. (Additional results corresponding to other settings of ξ are reported in
the Appendix, Figure D.1.)

Overall, our analysis has unveiled a relative robustness of the diversity functions
w.r.t. the size of the schema, which supports the hypothesis stated at the beginning of
this section. This holds strongly for the attribute-wise diversity and, to a less extent,
for the entropy-based diversity, whereas for the Hamming-based diversity, it holds for
uniform and normal attribute-value distributions.

6.7.1.2 Effect of the number of attribute values

Here, we analyze the relative change rate of each diversity function from the perspec-
tive of the number of admissible values for each attribute.

As it can be observed from the results shown in Figure 6.2, the higher the number
of attribute symbols, the higher the relative change rate of every function. This
is clearly explained since, by extending the domain of the attributes in the schema
associated with a given set of categorical tuples, it is likely an increase in the growth
rate of diversification within the set.

In particular, a larger domain of attribute values improves the chance of picking
a new tuple having symbols not already present in the current set’s domain. As a
consequence, the value of k at which each relative-change-rate curve starts to become
nearly constant needs to be higher as the number of attribute symbols increases. In
other words, the average marginal gain has a more rapidly decreasing trend when the
number of attribute symbols is lower.

Looking at the plots in Figs. 6.2(a)-(d), it can be noted that when using an ex-
ponential distribution for the attribute values, the relative change rates do not sig-
nificantly vary with the number of attribute symbols. This should be ascribed to the
skewness of the distribution, which dilutes the impact of diversification within the
dataset due in principle to an increase in the number of attribute values, especially if
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Figure 6.2: Relative change rate of diversity functions by varying the
number of attribute symbols, on different categorical datasets (with
|A|= 50). Attribute values are distributed according to exponential
(top row), uniform (mid row), and normal (bottom row) distributions.
Different colors correspond to different number of values (darkest for
15).

the data tuples are selected uniformly at random (like in this setting of evaluation),
thus without an informed search strategy.

Analogously to what we observed in Figure 6.1, the trends corresponding to uni-
form distributions tend to be slightly smoother than the normal and exponential ones.
The Hamming-based diversity function shows no significant variations with the size of
attribute domains, which should however be ascribed to the fact that the size of the
schema (i.e., |A| is set to 50) is significantly higher than the value of the Hamming
ball radius (ξ).

Overall, our diversity functions reveal to be robust to variations in the attribute do-
mains (especially for exponentially distributed attribute-values), which complements
our remarks drawn from the previous evaluation.

6.7.1.3 Pairwise evaluation of diversity functions

Figures 6.3–6.4 show results on the average Jensen-Shannon divergences obtained by a
pairwise comparison of our diversity functions, for various settings of the synthetically
generated categorical data. Please note that for the setting of the radius in the
Hamming-based diversity, we adaptively selected the radius in function of the size of
the schema; besides for the sake of brevity of presentation of this comparative analysis
of the diversity functions, this choice is also motivated by the outcomes of a sensitivity
analysis that we conducted for the Hamming-based diversity, which is discussed later
in this section.
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Figure 6.3: Average Jensen-Shannon divergence of the probability
distributions associated with the optimal k-sized sets for any two diver-
sity functions, by varying k, size of the schema A, and attribute-value
distributions. The number of attribute symbols is set to 15.

At a first glance, it can be noted that the divergence generally varies within a rela-
tively large interval — recall that the divergence is always non-negative and bounded
by 1. This indicates that the set of categorical tuples that maximizes a particular
diversity function can be very different to the optimal sets for the other diversity
functions.

Looking at the scale of the values in each heatmap, the range of divergence values
is generally wider for uniform attribute-value distributions (bounded by 0.6 in most
cases), and narrower for exponential distributions, regardless of a particular pair of
diversity functions being compared. Moreover, for exponential distributions, when the
entropy-based diversity is involved in a comparison, we observe little variations and,
generally, quite low (resp. high) values of divergence for number of attributes greater
than (resp. equal to or lower than) five.

Another general remark is that the divergence tends to decrease as k increases
and, to a less extent, as |A| increases. For low-mid regimes of k (i.e., up to 25-30), the
divergence values lay on the corresponding mid-upper range, with little variations as
different numbers of attributes are used. However, when the size of the schema is very
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Figure 6.4: Analogously to Figure 6.3, average Jensen-Shannon
divergence of the probability distributions associated with the opti-
mal k-sized sets for any two diversity functions. The radius of the
Hamming-based diversity is set as a function of the number of at-
tributattribute:es: ξ = 0.4 × |A| for exponential distribution, and
ξ = 0.8× |A| for normal and uniform distributions.

low (i.e., |A|≤ 5) and regardless of the type of attribute-value distribution, it is likely
to have very high divergence for any k. This hints at an interesting finding about the
diversity functions, which are indeed capable of diversifying sets of categorical tuples
in a different way, even for a small number of attributes.

Sensitivity of Hamming-based diversity to ξ As previously mentioned, we in-
vestigated about the effect of the radius on the behavior of div(HB). The setting
of ξ in div(HB) is crucial, since too low values of the radius will lead to very small
Hamming balls for most tuples in a given set, and hence to limited diversity of the
set; by contrast, too high values of ξ will lead to Hamming balls that likely cover a
large fraction of the tuple set. Instead, it might be preferable to set ξ in such a way
to obtain as many relatively large and non-overlapping Hamming balls as possible, in
order to better capture the diversity between the different tuples in the categorical
dataset.
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Figure 6.5: Distribution of the Hamming-ball sizes of the tuples in
D (normalized by the number of tuples, i.e., |D|) for selected values
of the ratio between the radius ξ and the number of attributes |A|,
and for different attribute distributions and number of symbols (i.e.,
|domA|).

We computed the distribution of the individual Hamming-ball sizes associated
with all tuples in an input dataset by setting the ratio ξ/|A| in (0, 1] with increments
of 0.1. Results are shown in Figure 6.5, where we present only the distribution box-
plots corresponding to meaningful values of the ratio ξ/|A|, i.e., we discarded boxplots
corresponding to Hamming-ball sizes near to zero or the total number of tuples. Look-
ing at the figure, we identify three main situations, which correspond to the type of
attribute distributions. For the exponential case, we observe that ξ/|A|≥ 0.6 yields
too large Hamming balls, since the median size is above the 80% of the total number
of tuples; by contrast, setting ξ/|A| within [0.4, 0.5] leads to smaller, more preferable
Hamming-ball sizes. When the attribute value distribution is uniform, high values
of ξ/|A| lead to Hamming-ball sizes that can be very large or small, depending on
the number of attributes; in particular, as the number of attribute symbols increases,
the range of the boxplots decreases. Analogous remarks can be drawn for the normal
distribution case, although it appears to be less sensitive to the number of attribute
symbols if compared with the uniform distribution case (e.g., for the same number
of attribute symbols (15), a ratio of 0.9 yields a boxplot whose median is above 0.7,
whereas for the uniform distribution is around 0.24).
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Figure 6.6: Capital estimation for seed sets obtained by ADITUM:
RIS-based estimation by ADITUM vs. estimation by Monte Carlo
simulations, with top-25% target selection.

6.7.2 Stage 2 - Evaluation of ADITUM

We pursued three main evaluation goals, around which we organize the presentation
of our results. First, we want to assess the significance of the estimation of capital
produced by ADITUM (Section 6.7.2.1). Second, we want to understand the effect of
each of the proposed definitions of diversity on the solutions provided by ADITUM (cf.
Section 6.7.2.2). Third, we analyze the sensitivity of ADITUM w.r.t. the α parameter
and the attribute distributions (Section 6.7.2.3).

6.7.2.1 Capital estimation

To begin with, we analyzed the correctness of the RIS-based estimation of the capital
captured by the seeds discovered by ADITUM, which refers to Equation 6.11. By cor-
rectness, here we mean that the RIS-based estimation of capital in ADITUM should be
close to the capital estimation provided by Monte Carlo simulation. To this purpose,
we compared the ADITUM capital estimation (i.e., α = 1) with the average capital
score produced by a given seed set (provided by ADITUM) over 10 000 Monte Carlo
runs.

As shown in Figure 6.6, for top-25% target selection and varying k, the two capital
estimations are practically identical (i.e., relative error almost zero), even for higher
k. The same holds for other settings of target selection. This confirms the correctness
of the RIS-based estimation of capital in ADITUM.
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Figure 6.7: Entropy of the seed sets obtained by ADITUM for various
diversity functions, with top-25% target selection and α = 0.

6.7.2.2 Effect of the diversity functions

To understand the impact of the diversity notion on the ADITUM performance, we
inspected the degree of diversification within the set of categorical tuples associated
with the seed-set solution induced by each of the proposed functions. To this purpose,
we first measured the entropy of the distribution of attribute-values in the profiles
associated with a seed-set S, which is defined as

Entropy(S) =
∑

a∈dom(S)

na∑
a′∈dom(S) na′

log

(
na∑

a′∈dom(S) na′

)
.

Then, we multiplied the value of Entropy(S) by a factor ζ = (1+log(|dom|/ |dom(S)|))−1

that penalizes more for smaller fraction of attribute-values covered by the profile set
of S. Clearly, the higher the value of ζ × Entropy(S), the better in terms of diversi-
fication the set S detected by ADITUM.

Results shown in Figure 6.7 indicate that div(AW ) generally yields seed sets with
higher entropy than the other diversity functions — in fact, to maximize div(AW ),
ADITUM tends to favor a uniform distribution of the attribute-values over the seed
set. Also, div(AW ) achieves higher coverage of the attribute domains (i.e., lower pe-
nalization factor ζ). The second best diversity function is div(E), which shows trends
similar to div(AW ) but with lower values of seed-set entropy for any k.

Conversely, div(C) and div(HB) lead to less diversified seed sets. This is actually
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Figure 6.8: Class-based diversity on Instagram by varying the num-
ber of classes, k, and α, with top-25% target selection.

not surprising since the class-based notion of diversity relies on the grouping of the
profiles (i.e., coarser grain than at attribute-value level) and it is maximized when all
profiles in S are chosen from different classes (i.e., k ≡ h, cf. Section 6.4.5), regardless
of the distribution of their constituent attribute-values. In this regard, we further
investigated how the combination of the budget k and the number of classes (into
which the profile set is partitioned) affects the diversity value. Figure 6.8 shows that
div(C) increases more rapidly with the increase in the number of classes w.r.t. k.

Also, the Hamming-based diversity div(HB) consistently behaves worse than div(AW )

and div(E), while it is comparable to div(C) for radius set to five. As we have discussed
in Section 6.7.1.3, div(HB) strongly depends on the setting of the radius ξ, and the
diversity increases by increasing ξ since the union of the Hamming balls of the nodes
in the seed set tends to grow.

It should be emphasized that the above results are complementary to the ones
discussed in Section 6.7.1.3. In fact, while the latter focused on comparing the diver-
sity functions in terms of the average Jensen-Shannon divergence between attribute-
specific distributions, here we are interested in comparing the ability of seed-set diver-
sification due to the functions in terms of entropy of the distributions over the whole
domain of the attributes and also proportionally to the amount of covered attribute
domain.

In the remainder of the result presentation we will refer to the attribute-wise
diversity only. Our justification is that div(AW ) (i) has shown effectiveness in the
diversification of the seed set that is as good as or better than div(E), while outper-
forming div(C) and div(HB), (ii) it allows marginal gain computation that is clearly
more efficient than the conditional entropy computation required in div(E), and (iii)
it does not depend from additional a-priori knowledge like div(C) does, or parameters
like div(HB) does.

6.7.2.3 Sensitivity to α

Parameter α allows for controlling the balance between the capital function and the
diversity function in our problem (cf. Definition 7), i.e., the higher the value of α,
the more ADITUM focuses on maximizing the capital rather than the diversity of the
categorical data associated with the nodes in the current seed set. The setting of α
can be experimentally provided to meet user-specified requirements. Nonetheless, in
the following we discuss results of an analysis of sensitivity that we carried out to
improve our understanding of how α impacts on the behavior of ADITUM.
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Figure 6.9: Expected capital, by varying α ∈ {0, 0.25, 0.5, 1}, with
k ∈ [5, 50], top-25% target selection, and exponential distribution of
attributes (except Reddit).

Effect on the expected capital We investigate the relation between α and the
expected capital achieved by the identified seed set, for varying k. Results in Fig-
ure 6.9 show that, as expected for α = 0, the capital remains very low and grows
very slowly by increasing k. More interestingly, we observe that even mid-low values
of α are sufficient to enable ADITUM to achieve a significant fraction of the capital
that would be obtained with α = 1 (i.e., without contribution of diversity); moreover,
for α ' 0.75, this gap tends to become quite low or even negligible. This is particu-
larly evident in Instagram, whereby we observe no particular variations already with
α = 0.5, especially for low values of k. This fact might be ascribed to the relatively
high connectivity of our Instagram network, which in fact corresponds to the maximal
strongly connected component of the original graph [26]; consequently, there might be
many solutions having high performance in terms of achieved capital. Similar consid-
erations hold for FriendFeed and GooglePlus networks, where the capital gap becomes
very small for α = 0.75; compared to the situation observed in Instagram, we should
consider that our FriendFeed and GooglePlus networks contain a certain amount of
source and sink nodes, which inevitably hinder the spreading process upon which the
capital estimation is based. Also, as the network connectivity becomes sparser, like in
Reddit (which has an average in-degree significantly lower than the other networks),
the capital gap due to a setting of α below one may remain high for any k > 5.
Please note that results for top-5% and top-10% target selection thresholds, which
are reported in the Appendix -Figure D.2, confirm the trends observed in Figure 6.9.
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Figure 6.10: Normalized overlap of seed sets, by varying α within
the range [0, 1] (with increments of 0.1, on both x-axis and y-axis),
and for k = 50, top-25% target selection, and exponential distribution
of attributes (except for Reddit).

Evaluation of identified seed sets Heatmaps in Figure 6.10 show the pairwise
overlaps of seed sets, normalized by k, for varying α. Focusing first on the overlaps
between the seed set corresponding to α = 1 (i.e., capital contribution only) and the
ones corresponding to diversity at different degrees (α < 1), the overlap decreases
rapidly for lower α. This trend is less evident for Instagram because of its tighter
connectivity than FriendFeed, GooglePlus and Reddit, as previously discussed. While
overlaps always change for pairs of seed sets corresponding to different settings of α,
it seems that the fading of overlaps becomes more gradual on networks with stronger
small-world characteristics (i.e., GooglePlus). Please note that results corresponding
to top-5% or top-10% target selection (shown in Appendix, Figs. D.3), also confirm
the variability in the seed set overlap, which is again more evident on the larger
networks.

Effect of the attribute distribution The previous analysis refers to exponential
distribution of the attributes. We observed however that the sensitivity of ADITUM
to the setting of α becomes much lower for a uniform distribution of the attribute
values. This prompted us to investigate the reasons underlying this behavior. To this
end, we compared the diversity value associated to each seed set, by varying α and
distributions, with the maximum possible value div∗[k] (Equation 6.5; this is achieved
when all the attribute values are equally distributed over the seeds. Not surprisingly,
looking at the insets of Figure 6.11 that correspond to uniform distribution, we observe
that the trends of seed-set diversity at varying α are all close to each other as well
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Figure 6.11: Exponential (main) vs. uniform (inset) distribution:
attribute-wise of seed set for varying k and α, top-25% target selection,
and comparison to maximum diversity value.

as to the maximum value. By contrast, using exponential distributions (main plots
of Figure 6.11), it is evident that the slope of the diversity tends to decrease with
higher α, thus increasing the gap with the maximum diversity curve. Moreover,
different settings of the target selection threshold have no significant impact on the
trends already observed for top-25% (results shown in Appendix, Figs. D.6-D.5). In
the following, results correspond to exponential distribution of the attributes, unless
otherwise specified.

Usage recommendations for setting the value of α Here we aim to provide a
summary of our major findings concerning the impact of α on the ADITUM behavior,
in the form of practical guidelines for the setting of this parameter in real scenarios.

As a general remark, the user should take into account two main aspectattribute:s:
the topological structure of the input network, and the distribution of the categorical
attribute values. Indeed, networks showing high connectivity or with a large strongly
connected component may favor the setting of α around mid values (i.e., α ' 0.5) to
achieve both capital and diversity that diverge the least from the respective values
corresponding to the extremes of the range of α. In general, since real networks nor-
mally contain source and sink nodes, a good trade-off turns out to be setting α ' 0.75.
However, if the network structure is quite sparse, a significant gap in the capital should
be expected as α moves away from one. Moreover, the above remarks are related to
exponential distributions of the attribute values, while a uniform distribution would
not significantly impact on the choice of α.
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6.7.3 Stage 3 - Comparative evaluation with competing methods

In the last stage of evaluation, we comparatively evaluated ADITUM with the com-
peting methods DTIM (Section 6.7.3.1) and Deg-D (Section 6.7.3.2).

6.7.3.1 Comparison with DTIM

We first evaluated the integration of the topology-driven diversity function of DTIM [26]
into our RIS-based framework. We analyzed the normalized overlap of seed sets ob-
tained by ADITUM and by the variant based on the topology-driven function, respec-
tively. Figure 6.12 shows low-mid normalized overlap between the pairs of seed sets
corresponding to most of the combinations of α. Remarkably, when discarding the
contribution of capital in the respective objective functions (i.e., α = 0 for both meth-
ods), the overlap is zero, or almost zero, which clearly confirms the expected, large
difference between topology-driven and attribute-based notions of diversity. More-
over, the overlap tends to be lower for the largest networks, which are also sparser
(and hence, more realistic) than our Instagram network.

We also compared ADITUM and DTIM in terms of the expected capital and running
time. In Figure 6.13, the insets show results of a Monte Carlo simulation (with 10 000
runs) for the estimation of the capital associated with the seed sets provided by each
of the methods with α = 1 (i.e., without the diversity contribution). It should be
noted that, to ensure the highest estimation accuracy for DTIM without significantly
worsening its efficiency, we set its path-pruning threshold η to 10−4, which is the
lowest value recommended in [26, 72]. We observe that ADITUM keeps a relatively
small advantage over DTIM in terms of estimated capital. Nonetheless, as shown in
the main plots of Figure 6.13, ADITUM outperforms DTIM in terms of running time,
up to 3 orders of magnitude (e.g., in FriendFeed with k ≥ 10), and this gap becomes
even more evident as both k and the network size increase. The runtime advantage of
ADITUM w.r.t. DTIM is actually not surprising, and can be clearly explained due to
the differences in practical efficiency between the approach used by ADITUM and the
approach used by DTIM, i.e., RIS-based TIM+ for ADITUM and SimPath for DTIM. In
fact, it has been demonstrated in [189] that TIM+ consistently outperforms SimPath
in terms of efficiency.

Note also that, while the running time of DTIM tends to increase linearly in k, for
ADITUM it may even decrease with k: likewise TIM+, this is a result of the interplay
of the main factors that determine the number of random RR-Sets.

6.7.3.2 Comparison with Deg-D diversity and attribute representation

As previously discussed in Section 6.6.2, we conducted a comparative evaluation with
Deg-D to accomplish two goals. First, and more importantly, we want to understand
how the seed sets produced by ADITUM differ from the ones produced by the variant
of Deg-D with uniform function, i.e., Deg-DU, and the variant of Deg-D with weighted
function, i.e., Deg-DW. The second aspect of evaluation does not involve ADITUM,
rather it is concerned with an adaptation of our RIS framework to the numerical-
attribute diversity used by Deg-D.

Figure 6.14 shows the normalized overlaps of seed sets obtained by ADITUM com-
pared with either those obtained by Deg-DU or by Deg-DW. Results correspond to
selected values of Deg-D parameter γ, which equals 1−α, and refer to a generic, non-
targeted IM scenario. Looking at the two heatmaps in the figure, there is evidence
of the fact that the seed-set overlaps between ADITUM and Deg-D are always quite
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Figure 6.12: Topology-based vs. attribute-based diversity: Normal-
ized overlap of seed sets, for selected values of α (on x-axis, corre-
sponding to ADITUM, and on y-axis, corresponding to the ADITUM
variant equipped with the global topology-driven diversity function of
DTIM), k = 50, and top-25% target selection.

low, roughly in the range 0.28 ∼ 0.43. This holds for both variants of Deg-D and for
any choice of γ, since Deg-D appears to have little sensitivity to the setting of γ (i.e.,
1− α) and the type of function.

Figure 6.15 shows results corresponding to numerical attribute representation and
integration of Deg-DU and Deg-DW functions into our framework, here denoted as
RIS-U and RIS-W. We set γ = α = 0.5 to equally balance the contributions of
diversity and spread in the methods’ objective function. We observe that the seed-
set diversity values are the same for the two methods in the uniform setting of the
numerical-attribute diversity (i.e., Deg-DU and RIS-U ). Conversely, in the weighted
setting, the RIS-based diversity curve is only slightly below the Deg-DW curve. Also,
the insets show very similar expected spread (on average over 10 000 Monte Carlo
runs). Overall, this indicates flexibility of our RIS-based framework, which can also
be properly adapted to integrate numerical-based diversity functions.

6.8 Chapter notes

We proposed a novel targeted influence maximization problem which accounts for the
diversification of the seeds according to side-information available at node level in
the general form of categorical attribute values. We defined a class of nondecreasing
monotone and submodular functions to determine diversity of the categorical profiles
associated to seed nodes. Our developed RIS-based ADITUM algorithm was compared
to two IM methods, the one exploiting topology-driven diversity and the other one
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Figure 6.15: Deg-DU vs. RIS-U (left) and Deg-DW vs. RIS-W (right)
on MovieLens numerical attribute representation: seed set diversity
and, in the inset, expected spread by varying k, for γ = 0.5.

accounting for numerical-based diversity in IM. While showing different and more
flexible behavior than the competitors, ADITUM takes the advantages of ensuring
the RIS-typical theoretical-guarantee and computational complexity under a general,
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categorical-based setting of node diversity. A further strength point of our diversity-
sensitive framework lays on its versatility since ADITUM can easily be extended to
incorporate other definitions of node diversity. In this regard, we plan to define diver-
sity notions based on representation learning techniques, including network embedding
methods.
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Chapter 7

Conclusions

The research presented in this thesis has investigated the analysis of social influence
and information diffusion in online social networks. We provided an extensive anal-
ysis on existing diffusion models to individuate the weaknesses that prevent them to
capture the complexity of real-world propagation phenomena. Upon the recognition
of such weaknesses, we designed a novel class of diffusion models, namely the F 2DLT
(Friend-Foe Dynamic Linear Threshold Model) models. Even though they are inspired
by the LT model, they show significant differences with this classic diffusion model.
For instance,our diffusion models are focused around the notion of trust.

Also, our diffusion models provide a rich set of features, such as the activation-
threshold and the quiescence functions. Together, these two features enable the possi-
bility to represent phenomena as the time-aware activation and the delayed response
of users with respect to the network’s activation attempts. We also showed how, by
tuning the above two aspects, we can configure different propagation environments,
to which we referred as biased and unbiased scenario.

We believe that our models can pave the way to design more sophisticated methods
to solve emerging and challenging problems in the domain of information diffusion. For
instance, as regards problems concerned with the misinformation spread, our models
can be a valid tool to account for the intricate patterns that drive the information con-
sumption of polarizing information items, which might lead users to remain trapped
into their information bubble.

We also devoted a lot of attention to one of the key-algorithmic problems in the
context of information diffusion, namely the influence maximization problem. We as-
sessed if, and to what extent, graph-decomposition algorithms can be used to support
the identification of the most influential users in a social network. Surprisingly, in
contrast with previous studies, we found out that the correlation between the spread-
ing potential of a users and its position into the inner-most cores of a network weaker
than expected. In fact, in our experiments, we provided evidence of the fact the state-
of-the-art algorithms for IM do not necessarily pick their optimal spreaders within
the inner most regions of a network. We also observed that with the adoption of
more sophisticated methods for graph-decomposition, such as the distance-generalized
core decomposition (DGC) algorithm, whose main feature is the ability to incorporate
higher-order degree of information, we can easily detect the regions of the graph that
are more densely populated with very effective spreaders.

Finally, another important contribution of this work is the definition of two opti-
mization problems that can be regarded as variants of the classic IM problem. More
specifically, we addressed a targeted influence maximization problem, where the objec-
tive function takes into account diversity of the selected seed set. In the first problem,
i.e., the Diversity-sensitive Targeted Influence Maximization (DTIM), the diversity
seed nodes is defined with respect to their topological properties. To this purpose, we
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formulated two different measures to quantify diversity: the local diversity and global
diversity. We also designed two algorithmic solutions, i.e., the L-DTIM and G-DTIM,
to effectively solve the DTIM problem.

The second problem, i.e., Attribute-based DIversity-sensitive Targeted InflUence
Maximization (ADITUM), is similar to the previous one, but it considers a different
setting. In fact, in contrast to the DTIM problem, the ADITUM problem assumes
that each node is associated with a set of categorical attributes. These attributes
define what we called the profile of a user, with respect to which we measure the
seeds’ diversification. To this purpose, we proposed a class of diversity functions
with four separate definitions. Each one tackles diversity from a different perspective.
Nonetheless, every proposed function has the convenient properties of monotonicity
and submodularity. The above definitions are then embedded within our algorithmic
solution, i.e., the ADITUM algorithm, which is formulated after the state-of-the-art
RIS framework [20]. We also showed the superiority of our proposed solution over
several competing methods on different axes, i.e., effectiveness, efficiency and flexibil-
ity. Especially, we recognize the versatility of our approach as one of its key feature.
In fact, our algorithm can easily accomodate other diversity functions and, as long as
they are monotone submodular, we can take advantage of the approximation guaran-
tee ensured by the greedy framework our algorithm is designed upon.

A future direction of this research would be to explore the opportunity of extending
the notion of diversity using other paradigms. For instance, based on representation
learning techniques, such as network embedding methods. These methods are able to
provide a low-dimensional, vector-based, representation of the graph by the means of
state-of-the-art machine-learning methods. Therefore, each node is associated with a
vector that inherently characterizes its topological properties. One can easily envisage
an extension to our proposed diversity-sensitive influence maximization problems. In
fact, nodes can be also diversified with respect to their vector-based representation,
previously discretized as our framework requires, and then incorporated within the
ADITUM algorithm.

Another direction would be to extend our set of diversity functions, renouncing
on their submodularity property. This brings another challenging research question,
since, as we have largely discussed in Chapter 2, a submdoular function enables the
definition of effective solutions to the IM problem. Under this new setting, we need
to completely redesign our algorithm, as we can no loner rely on the approximation
bound ensured by the RIS framework. Therefore, we believe it would be interesting
to reformulate our approach after different paradigms, such as the sandwitch approx-
imation discussed in [139], which is specifically designed to optimize non-submodular
functions.

Finally, as a general remark, we believe that studies on social influence should
address novel social media platforms, since their are essential to understand how it
is changing the way we interact with each other. In factg, the communication tools
provided to their users by modern social media platforms like Instagram or TikTok,
which are mostly based on visual contents (e.g., photos, short videos), are extremely
different from the earliest social media platforms. It implies that social influence may
manifest itself in different ways. Due to the impact that these platforms have on the
real life of people, especially the youngsters, we encourage the computer, social, or
data science community to embrace this challenge, so to gain a deeper knowledge on
this complex phenomena.
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App. A

Complex Influence Propagation

A.1 Additional details on the properties of the models

Figure A.1 shows an example of serialization for a spC-F 2DLT diffusion graph with
time horizon set to 2. Dashed lines correspond to the edges in the original graph,
whereas solid lines correspond to the edges in the resulting serialized graph. Each
of the four nodes in the original graph is replicated as a triple on each of the two
time-layers. Triples act as “connectors” between two consecutive time-layers.

Analogously to the reduction of spC-F 2DLT to H-CLT , we can conveniently
devise a notion of “connector” component between any two consecutive layers, shown in
Figure A.2, which in the case of npC-F 2DLT needs to account for node deactivations.

Example 6 shows a selection of possible configurations for the component utilized
in competitive models shown in Figure 3.7, in order to prove the correctness of the
set of constraints in Equation 3.6.

Example 6. In the example of Figure A.3, we assume that node v in the original
graph needs three consecutive time steps to reach the unit value for its threshold.

On the right side of each subfigure, there are the additional node replicacomplex:s:
〈v3,r1
t , v3,r2

t , v3,r3
t 〉, where v3,r3

t has the maximum value for the activation threshold.
FigureA.3a represents the case when the node has already reached the maximum

value of its threshold and its in-neighbors are only able to activate the first two replicas,
which is not enough for making v change its activation campaign. We need thus to
verify that:

red︷ ︸︸ ︷
w3,r1 + w3,r2 <

green︷ ︸︸ ︷
w13

1 + w13
2 + w13

3 (A.1)

w3,r1 +���w3,r2 < w13
1 +�

�w13
2 + w13

3 (A.2)

w3,r1 − w13
1 < w13

3 (A.3)

Note that the inequality in (A.3) holds (cf. Equation 3.6(e)).
Figure A.3b shows the case when v is active for just two consecutive time steps.

Therefore, the configuration on the right side of the figure is enough to activate v in
favor of the red-campaign. Therefore, the following inequality must hold:

red︷ ︸︸ ︷
w3,r1 + w3,r2 >

green︷ ︸︸ ︷
w13

1 + w13
2 (A.4)

w3,r1 +���w3,r2 > w13
1 +�

�w13
2 + w13

3 (A.5)
y1 > x1 (A.6)

Above, inequality in (A.6) holds as given in Equation 3.6(a).
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Figure A.1: Serialization of the diffusion subgraph involving nodes
u, v, z, x,
under spC-F 2DLT , with time horizon set to 2. Symbol φ denotes a
value
chosen at random in (0.5,1].

Figure A.3c shows the case when the node v switched from one campaign to the
opposite in the middle of the three consecutive time steps. In this case the activation
of node v3,r1

t must guarantee the change of activation campaign. So the following
inequality must hold:

red︷ ︸︸ ︷
w3,r1 + w13

2 >

green︷ ︸︸ ︷
w13

1 + w13
3 (A.7)

Indeed the validation is straightforward, because all the summations on the left side in
A.7 are by definition greater than the one on the right side.

Figure A.3d shows the case when at time step t none of the in-neighbors of v is
able to activate it. In this case, the node will keep its previous state, and it will do
it only after the activation of the corresponding replica at the very previous time, this
allow us to guarantee the sequentiality of the whole process. �
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Figure A.4: Complementary cumulative distribution functions of
node infections for SIR and SEIR with β ∈ {0.2, 0.6}, γ ∈ {0, 0.25, 1}),
and σ = 0.4, using k = 50 and strategy I-Sources.

A.2 Additional details on epidemic models

Figure A.4 provides a focus on the behavior of SIR and SEIR models in terms of
varying parameters (i.e., transmission rate β, recovery rate γ, and incubation rate σ)
for the analysis discussed in Section 3.5.3.1.

We observe that, for both models, most of the infections tend to occur at the early
time steps of the propagation as β increases. On the other hand, higher values of
γ yield cascades that show a smoother decay over time, and consequently they last
longer than those corresponding to smaller γ.
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Table B.1: Maximum peak-number and number of different contours
(first column) vs. maximum core-index and number of different cores
(second column)

k-peak k-core
FF 160 / 30 160 / 160
Ig 48 / 14 48 / 47
DB 113 / 45 113 / 47
Ep 85 / 22 85 / 85
Net 31 / 15 31 / 13
Tw 23 / 14 24 / 24

App. B

Topological characterization of the
most influential nodes

B.1 Seed selection order

To begin with, we analyzed the selection order of seeds discovered by each IM method
in relation to the decomposition index values. decomposition algorithm.

Considering first the k-core decomposition, Figure B.1 shows the core-index (di-
vided the degeneracy of graph) for the first 200 seeds — computed by TIM+, IMM,
and SSA, respectively — according to their selection order, i.e., the iteration corre-
sponding to the insertion of a node into the seed set being computed. Results in B.1
refer to the LT model. It is clear that the diffusion model has no perceivable impact
on the seed selection process It should be noted that the choice of the diffusion model
has no perceivable impact on the seed selection process.

We observe that the way each algorithm locates the seed nodes through the cores
of the network is invariant with respect to the propagation model.

B.2 Effect of graph decomposition

The analysis carried out in the previous section is extended to other decomposition
methods. Results are reported in Figure B.2.

We can conclude that, the particular choice of the diffusion model does not play
a crucial role in determining the seeds location within different regions of a graph. In
fact, this consideration applies consistently with respect to every considered network
and decomposition algorithm.
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Figure B.1: Normalized core-index (k/KC(G)) of the first 200 seeds
computed by (a,d) TIM+, (b,e) IMM, and (c,f) SSA, with respect to
the LT model.

B.2.0.1 Consistency between the algorithms

In Figure B.5-B.6 we show the same results as the ones shown in the previous section,
but with respect to the LT model and the other IM algorithms considered in Chapter 4.

No particular different trend can be noted between the different algorithms. This
result confirms, once again, that all the state-of-the-art IM algorithms share a similar
behavior of seed selection.

B.2.0.2 Characterization of the Cores/Contours

In this section we report the results related to the contour distributions, which com-
plement the results on core distributions we presented in Section 4.5.2.

Table B.1 shows that the k-peak decomposition provides in general fewer distinct
contours than distinct cores. Moreover, Figure B.3 shows that the k-Peak decompo-
sition tends to induce skewer distributions than the one induced by the core decom-
position.

Figure B.4 shows the results related to the classification of the edges into the
outward and inward classes as defined in Section 4.5.2.

The same trends observed for the k-Core decomposition also apply in this context.
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Figure B.2: From top to bottom, normalized core-index (k/KC(G)),
peak-number (k/KP (G)), neighbor-coreness (k/KNC(G)), and truss-
index (k/KT (G)) of the first 200 seeds computed by TIM+, under the
LT model.
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Figure B.3: Distribution of nodes over the peak-numbers of the net-
work. Each plot shows, for every core-index k (x-axis), the number
of nodes with peak-number at most k on the leftmost y-axis, and the
cumulative distribution of core-index on the rightmost y-axis. Also,
the skewness of the distribution is reported inside each plot.
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Figure B.4: Percentage of inward and outward edges vs. normalized
peak-number k/KP (G). The i-th percentage bar (i = 1..9) corre-
sponds to edges such that the source node has normalized core-index
in (xi, xi+1], upon a segmentation of the x-axis values into ten intervals
(x1, x2], . . . , (x9, x10].
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Figure B.5: From top to bottom, normalized core-index (k/KC(G)),
peak-number (k/KP (G)), neighbor-coreness (k/KNC(G)), and truss-
index (k/KT (G)) of the first 200 seeds computed by IMM, under the
LT model.
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Figure B.6: From top to bottom, normalized core-index (k/KC(G)),
peak-number (k/KP (G)), neighbor-coreness (k/KNC(G)), and truss-
index (k/KT (G)) of the first 200 seeds computed by SSA, under the
LT model.
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Algorithm 6 Monte Carlo Estimation of Capital
Input: A graph G = (V ,E, b, `), a target selection threshold L ∈ [0, 1], seed set S, number

of Monte Carlo iterations IMC

Output: Capital C(µ(S))
1: curr_C ← 0
2: for u ∈ S do
3: u.isActive← true
4: end for
5: for j = 1 to IMC do
6: for v ∈ V \ S do
7: v.isActive← false
8: v.receivedInf ← 0
9: ϑv ← −1

10: end for
11: temp← S
12: while temp 6= ∅ do
13: u← temp.remove(0)
14: for v ∈ Nout(u) ∧ v.isActive = false do
15: v.receivedInf ← v.receivedInf + b(u, v)
16: if ϑv = −1 then {node v has been reached for the first time during the current

simulation}
17: choose ϑv ∼ U [0, 1]
18: if v.receivedInf ≥ ϑv then
19: v.isActive← true
20: temp← temp ∪ {v}
21: if `(u) ≥ L then
22: curr_C ← curr_C + `(v)
23: end for
24: end while
25: end for
26: return curr_C/IMC

App. C

Topology-based Diversity-sensitive
Targeted Influence Maximization

C.1 Monte carlo estimation of capital

Algorithm 6 sketches the Monte Carlo procedure of simulation of the LT diffusion
process for estimating the capital associated with the target nodes that are finally
activated by a given seed set.
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Figure C.1: Coefficient of variation (CV) of topological properties
of identified seed nodes, with k = 50, by varying α and L-perc, on
GooglePlus: (a)–(c) L-DTIM, (d)–(f) G-DTIM.

C.2 Note on LurkerRank for targeted IM

LurkerRank does not require any information other than the network topology, in
which node (user) relationships are asymmetric and indicate that one node receives
information from another one. The actual meaning of “received information” can
depend on the specific context of network evaluation; in general, it refers to either a
social graph (i.e., (u, v) ∈ E means that v is follower of u) or an interaction graph
(e.g., v likes or comments u’s posts); LurkerRank has been indeed evaluated on both
scenarios [180, 181].

For purposes of targeted IM, both social and interaction relations can be seen as
indicator of user influence. However, we note that influence is normally produced
regardless of actual, visible interaction between two users. Yet, information on in-
teraction data might be significantly sparse in real SNs, causing a flawed setting for
an IM task. Without any loss of generality we have assumed that the graph G0 (on
which LurkerRank is applied) is a followship graph.

C.3 Additional results

C.3.1 Structural characteristics of seeds

In this section we report details concerning analysis of structural characteristics of the
detected seeds (cf. Section 5.6.1.2)

Figure C.1 shows the coefficient of variation (hereinafter denoted as CV) of se-
lected topological measures over the seed nodes, by varying α and target set size
(L-perc). Looking at results on the outdegree, we observe decreasing trends for CV
by increasing α up to 0.5, followed by roughly constant trends set around 0.4, for both
DTIM methods. Consistently with the analysis on seed set overlap, L-DTIM seeds tend
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(a) (b) (c)

Figure C.2: Activation probabilities (y-axis) for each target node
(x-axis), obtained by G-DTIM for varying α. Results correspond to
L-perc = 25%, k set to 5 (top) and 50 (bottom), on (a) Instagram-
LCC, (b) GooglePlus, and (c) FriendFeed.

to have similar outdegree regardless of L-perc, while in the case of G-DTIM, relatively
small variations occur for L-perc = {5%, 10%} by varying α. As concerns betweenness,
CV generally increases with α up to high values (0.7, 0.9), then drastically reduces
to zero; this indicates that when diversity is discarded, seeds tend to correspond to
source nodes in the graph. Analogously to the outdegree analysis, the trends for
varying L-perc are quite similar to each other in the L-DTIM case. Considering core-
ness, CV ranges within a much smaller interval than that corresponding to outdegree
and betweenness, i.e., (0.6, 0.76) with L-DTIM, (0.64, 0.73) with G-DTIM. Again, the
variability over the seeds computed by L-DTIM is much less affected by the setting
of L-perc than in the G-DTIM case, with a general increasing trend up to mid-high
values of α.

As concerns the competing methods, KB-TIM identifies seed nodes having average
CV that does not significantly change in terms of L-perc, specifically: (0.42, 0.40) for
outdegree, (3.41, 3.52) for betweenness, and 0.61 for coreness. TIM+ identifies seed
nodes that have on average 0.45 CV of outdegree, 0.0 CV of betweenness, and 0.70
CV of coreness.

C.3.2 Target activation probabilities

In this section we report detailed results concerning the analysis of the target activa-
tion probabilities (cf. Section 5.6.2.2) with the aim of deepening our understanding
of how different settings of α impact on the activation probability of nodes targeted
by DTIM. We regard the activation probability of a node as the number of times
the node has been activated divided by the number of Monte Carlo runs (IMC , cf.
Algorithm 6).
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(a) (b) (c)

Figure C.3: Activation probabilities (y-axis) for each target node
(x-axis), obtained by L-DTIM for varying α. Results correspond to
L-perc = 25%, k set to 5 (top) and 50 (bottom), on (a) Instagram-
LCC, (b) GooglePlus, and (c) FriendFeed.
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Figure C.4: Density distributions of activation probabilities obtained
by G-DTIM, for varying α, with L-perc set to 25%, k = 50, on (a)
Instagram-LCC, (b) GooglePlus, and (c) FriendFeed.

In order to analyze the above property of target nodes, we present first the ac-
tivation probability values of the nodes in the final active set, shown in Figures C.2
and C.3. Next we discuss the density distributions pdf(x) with variable x modeling
the vector of activation probabilities associated with the nodes in the final active set,
reported in Figures C.4 and C.5.

Plots of activation probability distributions. Figures C.2 and C.3 show the
activation probabilities versus the target nodes, by varying the values of α and k, for
G-DTIM and L-DTIM.

Considering first the performance of G-DTIM (Figure C.2), there is an evident gap
between the activation probabilities obtained for low α (i.e., α ≤ 0.4), and higher
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Figure C.5: Density distributions of activation probabilities obtained
by L-DTIM, for varying α, with L-perc set to 25%, k = 50, on (a)
Instagram-LCC, (b) GooglePlus, and (c) FriendFeed.

values of the parameter, with the maximum activation probability values (and max-
imum coverage of the target set) generally obtained for α = 0.9 and α = 1.0. On
Instagram-LCC (Figure C.2(a)), given the generally low values of activation proba-
bilities, and the high overlap among the seed sets obtained when varying α, the gap
between minimum and maximum values is strongly reduced w.r.t. other datasets,
with α = 1.0 showing only small increase on the activation of targets w.r.t. α = 0.0.
Note also that for k = 50, there is a very small number of nodes showing activa-
tion probability within [0.0, 0.1]: this would hint that, when estimating the activation
probabilities, the set of activated nodes remains almost unaffected in all the R Monte
Carlo runs (while in other cases there are a bunch of nodes which are reached by
the influence diffusion process only for a small number of runs, resulting in near-zero
activation probabilities). More interesting behaviors are observed for GooglePlus
(Figure C.2(b)). For k = 5 (upper plot), mid-high activation probabilities are reached
for a small set of nodes starting from α = 0.5, but the majority of target nodes is
activated for α ≥ 0.9, with activation probabilities in the range [0.0, 0.6]. However,
for k = 50 (lower plot), a significant set of target nodes shows mid-high activation
probabilities already for α = 0.1, indicating that, with a relatively large k, low values
of α are sufficient to activate target nodes while taking into account diversity. As re-
gards FriendFeed (Figure C.2(c)), activation probabilities obtained for 0.0 ≤ α ≤ 0.6
are generally higher than the ones obtained for the other two datasets. Nevertheless,
for k = 5 (upper plot), a value of α = 0.7 is needed to reach significant activation
probabilities on a vast portion of the target set. Most target nodes are again reached
for α = 0.9, but it can be noted that there is a large band of target nodes (on the
right side of the plot) which reaches mid-high probabilities only for α = 1.0. This
indicates that in large networks, when using low k, even small variations on the value
of α can significantly impact on the effectiveness of the influence maximization pro-
cess. Looking at the results obtained for k = 50 (lower plot), we observe that the set
of target nodes obtaining a significant activation probability is relevant already for
α = 0.0, with a coverage on a large portion of the target set starting for α = 0.1.

Quite similar qualitative remarks can be drawn about the performance of L-DTIM
(Figure C.3). As regards Instagram-LCC (Figure C.3(a)), for k = 5 (upper plot) no
visible improvement in the activation probabilities can be observed starting from α ≥
0.1, while the results are similar to the ones discussed for G-DTIM for k = 50 (lower
plot). On GooglePlus (Figure C.3(b)), a general improvement of the performance
obtained for α = 0.1 can be noted, while the results obtained for different α values are
similar to the ones observed for G-DTIM. The improvement is more evident for k = 5
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(upper plot), but remains significant also for k = 50 (lower plot). On FriendFeed,
an increment in the activation probability values obtained for 0.0 ≤ α ≤ 0.5 can be
noted for k = 5 (upper plot), w.r.t. the situation described for G-DTIM. With k = 50
(lower plot), higher probabilities than the ones observed for G-DTIM are observed for
α = 0.0.

Density distributions of activation probability. Figures C.4 and C.5 show
density distributions of activation probability obtained for G-DTIM and L-DTIM, re-
spectively.

Focusing first on GooglePlus, similar trends can be noted for both G-DTIM (Fig-
ure C.4(b)) and L-DTIM (Figure C.5(b)). A density peak corresponding to low activa-
tion probability values (close to 0.0) can be noted for low values of α (i.e., α ≤ 0.6 for
G-DTIM and α ≤ 0.4 for L-DTIM). This peak slightly decreases for increasing values
of α, yielding a relatively wide area of nearly constant density (e.g., around 2) which
covers a range of activation probabilities from 0.0 up to about 0.6.

A roughly bi-modal distribution can be observed for FriendFeed, for both G-DTIM
(Figure C.4(c)) and L-DTIM (Figure C.5(c)). It is easy to recognize a first peak corre-
sponding to near-zero activation probability values, and a second one located around
0.6; hence, the first peak becomes lower and the second peak higher by increasing α.

Analogously to previous evaluation settings, situation on Instagram-LCC is dras-
tically different from the other two datasets, which in this case corresponds to roughly
Normal distributions for varying α. Using G-DTIM (Figure C.4(a)), the density distri-
bution has a mean activation probability which spans from approximately 0.2 for low
values of α to values close to 0.3 for higher values of α. Using L-DTIM (Figure C.4(b)),
due to the high overlap of the seed sets obtained when varying α, all distributions are
nearly identical, and centered on an average value of activation probability around
0.25.

It should be noted that the density distributions referring to the setting α = 0.0 are
omitted from Figures C.4 and C.5. The reason behind this choice is that, as discussed
in the previous analysis, in some cases there is a large gap between the activation
probabilities obtained with α = 0.0 and α = 0.1. Here the entity of such a gap causes
the curve of density distribution for α = 0.0 to have a peak corresponding to very
high values of probability density function for near-zero values of activation probability
(which, if showed, would force us to use a larger scale, making the other curves difficult
to read). This contingency is observed on GooglePlus for both versions of DTIM, and
FriendFeed for G-DTIM, while in other cases the density curve for α = 0.0 can be
relatively close (FriendFeed with L-DTIM) or nearly identical (Instagram-LCC for
G-DTIM and L-DTIM) to the curve shown for α = 0.1.

C.3.3 Correlation analysis between capital and diversity measure-
ments

Tables C.1 and C.2 summarize results of correlation analysis between the sequence of
capital values and the sequence of diversity values associated to the nodes at conver-
gence of the diffusion process, for each of the DTIM methods and for selected settings
of parameters.
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Table C.1: Correlation analysis between capital and diversity mea-
surements: G-DTIM

network α L-perc k correlation
(%)

GooglePlus 0.1 10 5 -0.001
GooglePlus 0.5 10 5 -0.004
GooglePlus 0.9 10 5 -0.005
GooglePlus 0.1 25 5 0.006
GooglePlus 0.5 25 5 -0.001
GooglePlus 0.9 25 5 -0.006
FriendFeed 0.1 10 5 -4.4e-05
FriendFeed 0.5 10 5 -7.8e-05
FriendFeed 0.9 10 5 -8.1e-05
FriendFeed 0.1 25 5 0.004
FriendFeed 0.5 25 5 0.003
FriendFeed 0.9 25 5 0.001
GooglePlus 0.1 10 50 -0.008
GooglePlus 0.5 10 50 -0.008
GooglePlus 0.9 10 50 -0.007
GooglePlus 0.1 25 50 -0.008
GooglePlus 0.5 25 50 -0.006
GooglePlus 0.9 25 50 -0.011
FriendFeed 0.1 10 50 -1.6e-04
FriendFeed 0.5 10 50 -2.3e-04
FriendFeed 0.9 10 50 -2.7e-04
FriendFeed 0.1 25 50 5.5e-04
FriendFeed 0.5 25 50 3.0e-04
FriendFeed 0.9 25 50 3.3e-04

Table C.2: Correlation analysis between capital and diversity mea-
surements: L-DTIM

network α L-perc k correlation
(%)

GooglePlus 0.1 10 5 0.169
GooglePlus 0.5 10 5 0.059
GooglePlus 0.9 10 5 0.008
GooglePlus 0.1 25 5 0.148
GooglePlus 0.5 25 5 0.054
GooglePlus 0.9 25 5 0.004
FriendFeed 0.1 10 5 0.085
FriendFeed 0.5 10 5 0.046
FriendFeed 0.9 10 5 0.018
FriendFeed 0.1 25 5 0.076
FriendFeed 0.5 25 5 0.052
FriendFeed 0.9 25 5 0.020
GooglePlus 0.1 10 50 0.225
GooglePlus 0.5 10 50 0.088
GooglePlus 0.9 10 50 0.025
GooglePlus 0.1 25 50 0.229
GooglePlus 0.5 25 50 0.097
GooglePlus 0.9 25 50 0.020
FriendFeed 0.1 10 50 0.164
FriendFeed 0.5 10 50 0.126
FriendFeed 0.9 10 50 0.069
FriendFeed 0.1 25 50 0.180
FriendFeed 0.5 25 50 0.131
FriendFeed 0.9 25 50 0.064





169

App. D

Attribute-based Diversity-sensitive
Targeted Influence Maximization

D.1 Example calculation of diversity functions

We provide a numerical example of application of the proposed diversity functions.
Let us consider the following simple categorical dataset, with five tuples and four
attributes:

A1 A2 A3 A4

v1 • � ⊕ $
v2 • 5 � $
v3 • � 	 €
v4 ? � ⊕ £
v5 ∗ 4 ⊕ £

We want to compute the marginal gain of each node w.r.t. the set S = {v1, v2},
according to each diversity function.

Attribute-wise diversity. For the sake of simplicity, we assume each attribute
is equally important, i.e., the coefficients ωi are the same for all Ai with i = 1..4,
therefore they will be ignored for the purpose of this example. By setting λ = 1, the
attribute-wise diversity of S is div(AW )(S) = 7. To compute the marginal gain, Fact 1
applies. For instance, the marginal gain of adding v3 to S is given by (n• + 1)−λ +
(n� + 1)−λ + (n	 + 1)−λ + (n€ + 1)−λ = 1/3 + 1/2 + 1 + 1 = 2.83. Analogously, the
marginal gain of adding v4 to S is 3.0, and the marginal gain of adding v5 to S is 3.5.

Hamming-based diversity. Assuming a radius ξ = 2, and that the influ-
ence range of each node vi (i = 1..4) in the graph contains all the other nodes,
the Hamming-balls associated with each tuple are the following: Bξ

v1 = {v2, v3, v4},
Bξ
v2 = {v1}, Bξ

v3 = {}, Bξ
v4 = {v1, v5} and Bξ

v5 = {v4}. Given the above Hamming-
balls, the Hamming-based diversity of S is div(HB)(S) = |Bξ

v1 ∪ B
ξ
v2 |= 4. Based on

Fact 2, the marginal gain of adding v3 to S is given by |Bξ
v3 \ B

ξ
S |, which is equal to

0. Analogously, the marginal gain of adding v4 to S is 1, and the marginal gain of
adding v5 to S is 0.

Entropy-based diversity. Each tuple is associated with a random variable; for
instance, v1 is associated with the following variable denoted as Xv1 :

Xv1 = 〈
A1︷ ︸︸ ︷

1︸︷︷︸
•
, 0︸︷︷︸

?

, 0︸︷︷︸
∗
,

A2︷ ︸︸ ︷
0︸︷︷︸
5

, 0︸︷︷︸
4

, 1︸︷︷︸
�

,

A3︷ ︸︸ ︷
0︸︷︷︸
�
, 1︸︷︷︸
⊕
, 0︸︷︷︸
	
,

A4︷ ︸︸ ︷
1︸︷︷︸
$

, 0︸︷︷︸
€
, 0︸︷︷︸

£
〉
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Moreover, a probability distribution is defined over the attribute symbols, where each
symbol is associated with its relative frequency through the entire dataset; for in-
stance, we have the probabilities p(•) = 3/20 and p(?) = p(∗) = 1/20.

In order to measure the diversity of S, we need to compute the joint probability
distribution of variables Xv1 and Xv2 . Let us consider the following table, whose first
row corresponds to the attribute probability distribution and the subsequent two rows
correspond to the variables associated with the tuples in S, i.e., v1 and v2.

• ? ∗ 5 4 � � ⊕ 	 $ € £
p 3/20 1/20 1/20 1/20 1/20 3/20 1/20 3/20 1/20 2/20 1/20 2/20
Xv1 1 0 0 0 0 1 0 1 0 1 0 0
Xv2 1 0 0 1 0 0 1 0 0 1 0 0

We can present the joint probability distribution of Xv1 and Xv2 as the following
table:

Xv2

Xv1 0 1 P (Xv2)

0 7/20 = 0.35 6/20 = 0.3 0.65
1 2/20 = 0.1 5/20 = 0.25 0.35

P (Xv1) 0.45 0.55

Moreover, the outer bottom row and the outer rightmost column correspond to the
marginal probability distribution for Xv1 and the marginal probability distribution for
Xv2 , respectively.

The entropy-based diversity of S, assuming without loss of generality that v2 was
added after v1, is as follows: div(E)(S) = H(Xv1 , Xv2) = H(Xv1) + H(Xv2 |Xv1) =
H([9/20, 11/20])+(9/20)H([7/9, 2/9])+(11/20)H([6/11, 5/11]) = 0.99+0.89 = 1.88.

In order to compute the marginal gain of adding v3 to S, following Fact3, we
first need to derive its conditional distribution P (Xv3 |Xv1 , Xv2), following the same
procedure as before. Then, the marginal gain is given by the conditional entropy
H(Xv3 |Xv1 , Xv2), which is equal to 0.84. Analogously, the marginal gain of adding v4

to S is 0.34, and the marginal gain of adding v5 to S is 0.64.
Class-based diversity. Suppose to partition the dataset according to the first

attribute of the schema, A1, i.e., the symbols in A1 are regarded as class labels. Also,
let us set reward r = 1 for all tuples and the aggregation function f(x) = log(1 + x).
The class-based diversity of the set S is div(C)(S) = 1.09. Based upon Fact 4, the
marginal gain of adding v3 is given by log(1 + r/Rl) = 0.28, where Cl = • (i.e., the
class of v3) and R• = 3. Analogously, the marginal gain of adding v4 or v5 is 0.69, as
their respective classes are not covered by the tuples in S.

D.2 Inappropriate set-diversity functions

We report details about a number of functions that, despite their simplicity, were
demonstrated to be unsuitable as diversity functions for our problem (cf. Section 6.4.1).

Concerning attribute-wise functions, we discussed that a simple approach would
be to aggregate pairwise distances of the node profiles w.r.t. a given attribute A.
We consider in particular the following definition based on pairwise attribute-value
mismatchings:

f1(S,A) =
1

|S|
∑
u,v∈S

1[valA(u) 6= valA(v)],
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where 1[·] denotes the indicator function.1 It is easy to prove that this function is non-
submodular; to give empirical evidence of this fact, consider the following example.
We are given S = {u, v, x} with valA(u) = valA(v) = a1 and valA(x) = a2, and T =
{u, v, x, y} with valA(y) = a1. Suppose that node z, with valA(z) = a2, is inserted
into S and T , then it holds that: f1(S,A) = 2

3 , f1(S ∪ {z}, A) = 4
4 , f1(T,A) = 3

4 , and
f1(T∪{z}, A) = 6

5 . It follows that f1(S∪{z}, A)−f1(S,A) 6≥ f1(T∪{z}, A)−f1(T,A).
Note also that the property of submodularity still does not hold if the normalization
term (i.e., |S|) is discarded in f1(·).

Let us now extend to computing pairwise distances of the node profiles in their
entirety, focusing on the Hamming distance, as defined in Equation (6.6). Upon this,
let us define f2(S) =

∑
u,v∈S,u6=v dist

H(u, v), and two normalized versions: f̂2(S) =

(1/(2|S|))f2(S) and ̂̂
f2(S) = (1/|S|(|S|−1))f2(S). It is easy to check that none of

such functions is appropriate. Let us consider the following example. We are given a
schema with three attributes (m = 3) and sets S = {u, v}, such thatA[u] = 〈a1,⊥,⊥〉,
A[v] = 〈a2,⊥,⊥〉, and T = {u, v, x}, such that A[x] = 〈a3, b1, c1〉. Suppose that node
z, with A[z] = 〈a4,⊥,⊥〉, is inserted into S and T , then it holds that: f2(S) = 2,
f2(T ) = 14, f1(S∪{z}) = 6, and f1(T∪{z}) = 24. It follows that f2(S∪{z})−f2(S) 6≥
f2(T∪{z})−f2(T ). Considering f̂2(·), we have: f̂2(S) = 1

2 , f̂2(T ) = 7
3 , f̂2(S∪{z}) = 1,

and f̂2(T ∪{z}) = 3; thus, again f̂2(S∪{z})− f̂2(S) 6≥ f̂2(T ∪{z})− f̂2(T ). Yet, when

using ̂̂f2(·), we have: ̂̂f2(S) = 1, ̂̂f2(T ) = 7
3 ,
̂̂
f2(S ∪ {z}) = 1, and ̂̂f2(T ∪ {z}) = 2; in

this case, mononicity is not even satisfied (since ̂̂f2(T ∪ {z}) 6≥ ̂̂f2(T )).
Alternatively, we considered Jaccard distance, i.e., given the profiles of any two

nodes u, v:

distJ(u, v) = 1−
∑m

j=1 1[valAj (u) = valAj (v)]

|A[u]|+|A[v]|−
∑m

j=1 1[valAj (u) = valAj (v)]
.

Upon this, let us define f3(S) =
∑

u,v∈S,u6=v dist
J(u, v), and normalized version:

f̂3(S) = (1/(2|S|))f2(S). Like previous functions, it can be empirically shown that
f3(·) and f̂3(·) are not appropriate for our purposes. Suppose we are given a schema
with five attributes (m = 5) and sets S = {u, v}, such that A[u] = 〈a, b, c,⊥,⊥〉,
A[v] = 〈a, b,⊥, d,⊥〉, and T = {u, v, x}, such that A[x] = A[v]. Suppose that node
z, with A[z] = 〈a,⊥,⊥, d, e〉, is inserted into S and T , then it holds that: f3(S) =
1, f3(T ) = 2, f3(S ∪{z}) = 18

5 , f3(T ∪{z}) = 28
5 . It follows that f3(S ∪{z})−f3(S) 6≥

f3(T∪{z})−f3(T ). Considering f̂3(·), we have: f̂3(S) = 1
4 , f̂2(T ) = 1

3 , f̂2(S∪{z}) = 3
5 ,

and f̂2(T ∪ {z}) = 7
10 ; thus, again f̂3(S ∪ {z})− f̂3(S) 6≥ f̂3(T ∪ {z})− f̂3(T ).

The above Jaccard distance function could also be exploited to allow for measuring
the dissimilarity of all profiles in any set S = {v1, . . . , vk} ⊆ V :

f4(S) = 1−
∑m

j=1 1[valAj (v1) = . . . = valAj (vk)]∑m
j=1|

⋃
v∈S{valAj (v)}|

.

However, it is straightforward to show that the above function can easily yield
useless results; e.g., referring to the previous example, the marginal gains of z w.r.t.
S and T are the same. Even worse, a normalization of f4(S) by set-size does not even
ensure monotonicity.

1For any nodes u and v, we assume that if either u’s or v’s profile is not associated with a value
in the domain of A (i.e., missing value for A), then the indicator function will be evaluated as 1.
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Figure D.1: Relative change rate of the Hamming-based diversity
function with radius ξ = 3 (top) and ξ = 10 (bottom) by varying the
number of attributes (|A|), on different categorical datasets. Different
colors correspond to different projections of the dataset: the darker the
color, the higher the number i of attributes selected from the schema,
where i ∈ [5..50] with increments of 5. The number of per-attribute
admissible values is set to 15.

D.3 Additional experimental results

Figure D.1 shows additional results on the relative change rate of the Hamming-based
diversity function (cf. Section 6.7.1.1). As supplementary material for Section 6.7.2,
Figure D.2 shows additional results on the relation between capital and diversity func-
tions in ADITUM, while Figures D.3-D.4 and Figures D.6-D.5 show results on normal-
ized overlap of seed sets and results on a comparison between exponential and uniform
distributions, respectively, for top-5% and top-10% target selection thresholds.

D.4 Effect of the attribute distribution

As supplementary material for the analysis on effects due to the attribute distribution
discussed in Section 6.7.2, Figures D.6-D.5 shows further results on comparison be-
tween exponential and uniform distributions, for top-5% and top-10% target selection
threshold.
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Figure D.2: Expected capital, by varying α ∈ {0, 0.25, 0.5, 1}, with
k ∈ [5, 50], top-5% (a–d) and top-10% (e–h) target selection, and ex-
ponential distribution of attributes (except Reddit).
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Figure D.3: Normalized overlap of seed sets, for α ∈ [0, 1] (with
increments of 0.1), k = 50, top-5% (top) and top-10% (bottom) target
selection, and exponential distribution of attributes.
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Figure D.4: Normalized overlap of seed sets, for α ∈ [0, 1] (with
increments of 0.1), k = 50, top-5% (top) and top-10% (bottom) target
selection, and exponential distribution of attributes.
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Figure D.5: Exponential (main) vs. uniform (inset) distribution:
seed-set diversity for varying k and α, top-5% (a–c) and top-10% (d–
f) target selection, and comparison to maximum diversity value.
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Figure D.6: Exponential (main) vs. uniform (inset) distribution:
seed-set diversity for varying k and α, top-5% (a–c) and top-10% (d–
f) target selection, and comparison to maximum diversity value. —-
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