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Abstrat

This thesis fouses on the physial onnetion of large, �uid sales with small,

kineti wavelenghts and on the introdution of ollisional e�ets in weakly-

ollisional plasmas.

In the �rst part, the Mo�att & Parker problem, namely the ollision of

two ounter-propagating Alfvéni wave pakets, has been revisited by means

of magnetohydrodynamis (MHD), Hall MHD and hybrid kineti simula-

tions. The goal of this study was to extend the Mo�att & Parker problem

to the realm of kineti physis and show that, when introduing more om-

plex physial ingredients, the dynamis is quite di�erent with respet to the

pure ideal MHD ase. When the energy is transferred towards kineti sales

through nonlinear oupling mehanisms, the distribution funtion is strongly

perturbed and departs from loal thermodynamial equilibrium. The wave

pakets interation has been also haraterized in terms of strong and weak

turbulene, showing that features explained in terms of both kinds of turbu-

lene theories oexist.

In the seond part, a speial attention has been devoted to weakly olli-

sional plasma systems, in whih kineti e�ets and partile ollisions oexist

and ompete in shaping the partile veloity distribution. By means of nu-

merial simulations of relaxation towards equilibrium in presene of the full

Landau ollisional integral, it has been pointed out that ollisionality an be

e�etively enhaned by the presene of �ne veloity strutures in the partile

distribution funtion.

However, due to the high omputational ost of the Landau integral, sim-

pli�ed ollisional operators have been employed to simulate self-onsistently

the dynamis of weakly-ollisional plasmas. In partiular, the Dougherty

operator has been employed in 1D�3V phase spae on�guration (1D in

physial spae, 3D in veloity spae) to address the role of eletron-eletron

ollisions in the nonlinear regime of eletrostati waves propagation. Finally,

with the aim of simulating realisti physial onditions in experiments with

plasmas trapped in longitudinal mahines, numerial simulations in redued

1D�1V phase spae have been run to reprodue the proess of wave launhing

in real plasma devies.

The ultimate goal of this work was to support the idea that the om-

petition between kineti e�ets, whih tend to drive the system away from

equilibrium, and ollisions, whih work to thermalize the plasma, ould be the

physial ingredient underlying the mehanism of partile heating in weakly

ollisional systems, suh as the solar wind.



Sommario

Questa tesi riguarda l'analisi della onnessione delle sale �uide on le sale

inetihe e la desrizione degli e�etti ollisionali in un plasma debolmente

ollisionale.

Nella prima parte, il problema di Mo�att & Parker, riguardante la ol-

lisione di due pahetti d'onda Alfvénii, è stato rivisitato mediante simu-

lazioni magnetoidrodinamihe (MHD), Hall MHD e inetihe. L'obiettivo è

di estendere l'analisi del problema a sale inetihe e mostrare he, quan-

do si introduono e�etti più omplessi (ompressibilità, dispersione, e�etti

inetii), la dinamia è molto diversa rispetto al aso MHD. Quando l'e-

nergia è trasferita a sale inetihe mediante aoppiamenti nonlineari, la

funzione di distribuzione protonia mostra strutture lontane dall'equilibrio

termodinamio. L'interazione dei pahetti è inoltre aratterizzata in termi-

ni di turbolenza forte e debole, mostrando he, a valle dell'interazione dei

pahetti, oesistono aratteristihe spiegabili attraverso entrambe le teorie

della turbolenza.

La seonda parte ha riguardato invee la desrizione di un plasma de-

bolmente ollisionale, aratterizzato dalla ompetizione di e�etti inetii e

ollisioni nel determinare l'evoluzione della funzione di distribuzione parti-

ellare. Attraverso simulazioni numerihe di rilassamento verso l'equilibrio in

presenza dell'integrale ollisionale di Landau, è stato mostrato he la ollisio-

nalità può essere e�ettivamente intensi�ata dalla presenza di forti gradienti

nello spazio delle veloità.

Tuttavia, per l'eessivo osto omputazionale dell'integrale di Landau,

sono stati sviluppati aluni operatori ollisionali sempli�ati al �ne di simula-

re, in modo auto-onsistente, la dinamia dei plasmi debolmente ollisionali.

In partiolare l'operatore di Dougherty è stato utilizzato nello spazio delle

fasi 1D�3V (una dimensione nello spazio �sio, tre in veloità) per studiare

l'e�etto delle ollisioni elettrone-elettrone sulla propagazione di onde elet-

trostatihe nonlineari. In�ne, on lo sopo di simulare le ondizioni �sihe

realistihe ottenute negli esperimenti on plasmi intrappolati in mahine

longitudinali, sono state e�ettuate simulazioni numerihe nello spazio delle

fasi ridotto 1D�1V he riproduono il proesso di eitazione di un'onda nelle

mahine a plasma.

Lo sopo ultimo di questo lavoro era di supportare l'idea he la ompeti-

zione tra gli e�etti inetii, he tendono a guidare il sistema lontano dall'equi-

librio, e le ollisioni, he termalizzano il plasma, potrebbe essere l'ingrediente

�sio alla base dei meanismi di risaldamento delle partielle in un sistema

debolmente ollisionale, ome, ad esempio, il vento solare.
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Introdution

The plasma represents one of the most aptivating and, at the same time,

ommon physial systems in the Universe. Sine the last Century, several

e�orts have been devoted to analyze plasmas in order to understand the

dynamis of natural systems - suh as the inner matter of the stars or the

solar wind - or for reproduing the nulear fusion in laboratory devies for

engineering purposes.

Despite some studies reently foused on the presene of quantum e�ets,

plasmas are usually treated as lassial gases, omposed by a onsistent part

of ionized partiles (eletrons and ions). Within this framework, the parti-

les motion is a�eted by eletromagneti �elds through the Lorentz fore,

but partiles ontemporaneously modify eletromagneti �elds through the

soures terms (i.e. harges and urrents) of the Maxwell equations. This last

aspet, the so�alled self-onsisteny, introdues a ertain degree of omplex-

ity in modeling plasmas. For example, the oupling of harged partiles and

�elds allows the system to exhibit some olletive e�ets suh as waves and

instabilities. Partiles are also orrelated due to the presene of mirosopial

interation, i.e. ollisions, whih - as we will disuss in detail - ompliates

the analysis of the plasma dynamis. Moreover, any plasma model shows the

presene of strong nonlinearities in the harateristi equations, thus leaving

the door open to a huge branh of nonlinear physis phenomena suh as the

propagation and the interation of nonlinear waves or the onset of turbulent

�ows. Ultimately, the presene of turbulene in plasmas draws a subtle line

that onnets the study of a per se di�ult physial system like the plasma

with the turbulene, whih is one of the most historially analyzed but still

not ompletely understood phenomenon.
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Introdution

This huge physial omplexity redues the possibility of deriving analyti-

al results to few simple ases while, for a deeper omprehension, a numerial

approah is mandatory. In this perspetive, numerous methods have been

developed to study plasmas through a numerial approah, that allowed to

ahieve signi�ant improvements in understanding the system dynamis. In

several ases, numerial simulations have predited results later on�rmed

by means of laboratory experiments or through in-situ spaeraft measure-

ments, thus reinforing the role of numerial simulations as valid tools to

lead sienti� disoveries in plasma physis.

However, the physial omplexity is also re�eted in the numerial de-

sription of the system. Indeed, even though nonlinearities reovered in the

equations an be taken into aount easier numerially than analytially, one

should also remember that the introdution of nonlinearities - often assoi-

ated with the energy transfer towards small sales - raises important numer-

ial issues related to the adopted resolution and to the omputational ost

of numerial simulations.

From this point of view, it is important to review the methods usually

employed to model plasmas - within the �mean-�eld� assumption - by also

highlighting their omputational weight. The di�erent approahes orre-

spond to a desription whih is appropriate for a partiular range of sales

(frequenies and wavevetors). At the lowest frequenies, ions and eletrons

are loked together by eletrostati fores and behave like an eletrially

onduting �uid; this is the regime of the magnetohydrodynamis (MHD).

Historially the MHD represents one of the �rst attempts to model plasma

and assumes that i) plasma is a neutral onduting �uid where ollisions

are su�iently strong to maintain a loal thermodynamial equilibrium, i.e

the partile veloity distribution funtion shape is lose to the equilibrium

Maxwellian, and ii) the �uid is oupled to the magneti �eld through the

indution equation. This model is still widely adopted to analyze plasmas

at large sales. Several phenomenologies have been developed to study the

features of the MHD turbulene [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14℄ with

a partiular attention to appliations to the solar wind, that is a low-density,

high-temperature plasma whih �ows from the Sun in the heliosphere and
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Introdution

is strongly turbulent. Several extension of the MHD approah have been

proposed to inlude other physial ingredients whih our at smaller sales

suh as the Hall orretion (HMHD) [15, 16, 17℄. All these �uid models

have a similar omputational ost, that is proportional to N3
, being N the

number of gridpoints along eah spatial diretion. At somewhat higher fre-

quenies, eletrons and ions an move relatively to eah other, behaving like

two separate and inter-penetrating �uids: this is the two-�uid regime, whose

omputational ost is also proportional to N3
.

However, solar wind in-situ measurements revealed muh omplex fea-

tures whih go beyond the �uid treatment. Indeed, one the energy is trans-

ferred by turbulene towards smaller sales near the ion inertial lengths,

kineti physis signatures are often observed [12, 18, 19, 20℄. Collisions are

in general weak and wave-partile interations and turbulene mehanisms

tend to modify the partile VDF shape, whih displays a strongly distorted

out-of-equilibrium pro�le haraterized by the presene of non-Maxwellian

features (temperature anisotropies, beams, rings-like strutures et. et.)

[21, 22, 23, 24, 25℄. Numerous kineti models have been developed to under-

stand the dynamis at suh sales [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37℄.

Most of these models are ollisionless: ollisions are assumed to be far too

weak to produe any signi�ant e�et on the plasma dynamis and the plasma

obeys the Vlasov equation.

We will later ome bak to the role of ollisions in weakly ollisional

plasmas, sine this point deserves - in our opinion - a separate disussion.

It is worth to highlight instead the omputational ost of the ollisionless

models. We would also point out that, historially, two main families of nu-

merial approahes have been developed to integrate the Vlasov equation:

the Partile-In-Cell (PIC) [38, 39℄ and the Eulerian (HVM) [40, 41℄ algo-

rithms. The latter methods diretly integrate the Vlasov equation, while

the former solve the harateristis equations of the Vlasov equation for an

ensemble of quasi-partiles. PIC methods have been widely adopted sine

their implementation is relatively straightforward and the requested memory

is not huge. However they su�er the presene of a statistial noise due to the

�nite number of quasi-partiles. Indeed, it is neessary to �ount� the quasi-
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Introdution

partiles in a disretized phase spae for evaluating moments of the distribu-

tion funtion on a spatial grid, thus introduing the noise whih espeially

a�ets the dynamis at small sales. On the other hand, Eulerian Vlasov

odes are noise-free but their implementation is more di�ult and, sine the

full distribution funtion is evolved in phase spae, the memory requirements

are signi�antly larger than for PIC. Reently di�erent methods have been

also proposed to investigate the plasma dynamis [42, 43, 44, 45, 46, 47℄.

Fousing on ollisionless Eulerian kineti approahes, going from large to

small sales, one initially �nds the hybrid kineti models, whih are suess-

fully adopted to model the range of sales around the proton inertial sale.

These models assume that protons are kineti and their Vlasov equation is

numerially integrated; eletrons are instead onsidered as a bakground �uid

that omes into play only in the Ohm's law for the eletri �eld. The om-

putational ost for solving the full six-dimensional phase spae (three dimen-

sions in physial spae, three dimensions in veloity spae) is about N6
, being

N the number of gridpoints along a generi phase spae diretion. This om-

putational ost urrently represents the present limit whih an be ahieved

through modern HPC lusters and the resolution of suh simulations is often

limited by the memory apaity. Then, when one approahes the eletron

sales, ollisionless fully kineti simulations, whih solve the Vlasov equation

for both speies, are needed. The omputational ost of suh simulations is

always about N6
and the required memory is only slightly bigger (a fator 2)

ompared to the one of hybrid methods. However, desribing eletrons sales

by maintaining a realisti mass ratio implies that these simulations should

have an enough high resolution and also a very small time step. Based on

these onsiderations, we may argue that only with the next generation of

HPC lusters these simulations will be a�ordable.

Let us disuss now the importane of ollisions and the ompliations that

this physial e�et introdues in the system desription. The ollisionless

assumption, often adopted for analyzing plasmas with high temperature and

low density, is justi�ed with the fat that the partiles mean free path is

omparable with the plasma marosopi length sales [12℄. However, in

order to show that ollisions an be negleted, one usually assumes that
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Introdution

the shape of the partile VDF is lose to Maxwellian [22, 23, 24, 48℄. In

priniple, this ould be a problem for weakly-ollisional turbulent media suh

as the solar wind, where kineti physis strongly distort the partile VDFs

[21, 22, 23, 24, 25, 29, 30, 31, 33, 35, 41℄.

For suh systems, where kineti e�ets ompete with the presene of olli-

sions whih tend to restore the thermal equilibrium, ollisional e�ets are usu-

ally introdued through a �ollisional operator� at the right-hand side of the

Vlasov equation. These operators often inlude derivatives in veloity spae,

therefore the presene of strong gradients and non-Maxwellian features in the

veloity distribution funtion may enhane the e�ets of ollisions [49℄. We

would also highlight that ollisions are the unique mehanism, from a ther-

modynami point of view, able to produe irreversible heating in aordane

to the H theorem and, hene, to dissipate energy. Therefore, to properly

desribe suh senarios or to analyze laboratory plasmas, where ollisionality

is instead signi�ant [50, 51℄, ollisions should be taken into aount in the

plasma desription. However, it is extremely di�ult to handle ollisions:

the presene of veloity spae derivatives and multi-dimensional integrals in

the ollisional operators signi�antly inreases their omputational omplex-

ity [52, 53, 54, 55, 56℄. For example, by onsidering the Landau operator -

whih represents one of the most �natural� ollisional operators (it an be

derived by the Liouville theorem) and hoosing the full 3D�3V phase spae

(three dimensions in physial spae and three dimensions in veloity spae),

the omputational ost would be proportional to N9
(a three dimensional

integral must be omputed for eah point of the grid). Nowadays suh sim-

ulations annot be a�orded and only approximated models (redued phase

spae or simpli�ed operators) an be adopted [57, 58, 59, 60, 61, 62, 63, 64℄.

This thesis is omposed by two main parts whih respetively fous on

the onnetion of large, �uid sales with small, kineti ones and on the intro-

dution of ollisional e�ets in plasmas. In Part I, the well-known problem

of the interation of two olliding Alfvén wave pakets is revisited by means

of MHD, HMHD and hybrid kineti simulations. The aim of this part is

to extend the Mo�att & Parker problem to the realm of kineti physis and

exhibit that, when one introdues more omplex physial ingredients, the dy-
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Introdution

namis beomes quite di�erent with respet to the pure MHD treatment. It is

shown that when the energy is transferred towards kineti sales, the distribu-

tion funtion is strongly perturbed and exhibits an out-of-equilibrium shape.

Moreover the wave pakets interation is investigated in terms of strong and

weak turbulene and it is found that features explained in terms of both kinds

of turbulene theory oexist. Then, in Part II, we fous on the study of ol-

lisions in plasmas. We �rst show, by modeling ollisions through the fully

nonlinear Landau operator, that the ollisionality is e�etively enhaned by

the presene of strong gradients in the partile distribution funtion. In fat,

�ne strutures are dissipated muh faster than other global quantities as tem-

perature anisotropies. Nonlinearities present in the ollisional operator are

also signi�ant to give to ollisions the proper importane in terms of har-

ateristi times assoiated with the dissipation of suh strutures. However,

sine the Landau operator is too demanding from a omputational ost point

of view, we desribe the dynamis of weakly-ollisional plasmas by means of

self-onsistent ollisional simulation being ollisions modeled with simpli�ed

ollisional operators. In partiular, by retaining a three-dimensional veloity

spae, we model ollisions through the Dougherty operator [58, 59℄ and we

establish a suessfully omparison with the Landau operator; this allows to

perform self-onsistent simulations in the 1D�3V phase spae onerning the

nonlinear regime of eletrostati waves in presene of eletron-eletron olli-

sions. Finally, we restrit to the 1D�1V phase spae and we desribe i) the

problem of the initial state reurrene in a weakly ollisional plasma, show-

ing that ollisions annot in general prevent numerial reurrene without

a�eting the physial solution; ii) the waves launhing mehanism ommonly

adopted in laboratory plasmas, showing that seondary waves branh an be

generated at arbitrary phase speeds if the driver perturbs the distribution

funtion lose to suh veloity. However ollisions quikly dissipate these

�utuations.
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Part I

The Parker-Mo�att problem as a

ase study from �uid to kineti

sales
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The Parker-Mo�att problem

In this �rst part of the thesis we revisit the well-known problem on-

erning the interation of two A�véni wave pakets, already approahed by

Mo�att [5℄ and Parker [6℄ in the late Seventies. Our prinipal aim is to

extend the analysis from the ideal inompressible MHD treatment to more

omplex plasma senarios and, hene, to show that, when one moves be-

yond the MHD, numerous intriguing features are reovered as the result of

the presene of other physial e�ets suh as ompressibility, dispersion and

kineti physis.

One should also bear in mind that the interation of oppositely prop-

agating large amplitude inompressible Alfvéni wave pakets represents a

familiar perspetive on the hydromagneti desription of astrophysial and

laboratory plasma turbulene [3, 4℄. Indeed, various nonlinear phenomenolo-

gies are built on this paradigm [7, 8, 9, 10, 11, 13, 65, 66, 67, 68, 69℄. The

relevane of this phenomenon is due to the fat that Alfvéni perturbations

represent the main omponent of �utuations in natural plasmas, as diretly

measured in the fast streams of solar wind [12, 70℄ and inferred in the solar

orona by remote sensing observations [71, 72, 73℄. Therefore the interation

between oppositely propagating Alfvéni pakets an be onsidered as a sort

of �building blok� of nonlinear phenomena taking plae in inompressible

MHD turbulene. An essential feature is that large amplitude perturbations

in whih veloity u and magneti �eld b �utuations are Alfvénially orre-

lated, i.e. either u = (cA/B0)b or u = −(cA/B0)b (where cA and B0 are uni-

form bakground Alfvén veloity and magneti �eld, respetively), are exat

stable solutions to the equations of inompressible magnetohydrodynamis

(MHD) [1, 2℄. Hene, to indue nonlinear ouplings among the �utuations

and to exite turbulene, it is neessary to simultaneously onsider magneti

�utuations b and veloity �utuations u that have an arbitrary sense of

orrelation. This may be aomplished by superposing the two senses of or-

relation, in Alfvén units, u = +(cA/B0)b and u = −(cA/B0)b. One thread

emerging from this onerns the analysis of olliding wave pakets to reveal

properties of the MHD turbulene spetrum [4℄.

A di�erent emphasis was given by Mo�att [5℄ and Parker [6℄. Both of these

treatments analyzed the ollision of large amplitude inompressible, ideal
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The Parker-Mo�att problem

Alfvén wave pakets noting that nonlinear interation and mutual distortion

of the wave pakets are limited to the span of time during whih they spatially

overlap. BothMo�att and Parker argued that the pakets eventually separate

and propagate one again undisturbed without further interations.

The present part of this thesis addresses two questions that arise when

trying to apply this physial insight to high temperature extraterrestrial plas-

mas suh as the solar wind, where suh large amplitude Alfvéni �utuations

are routinely observed [70℄, or solar orona, where the interation of Alfvéni

wave pakets is thought to our [71, 72℄. First, ompressibility, dispersion

and kineti plasma e�ets are likely to be important in spae appliations,

and we ask if these give rise to signi�ant departures from the the Parker-

Mo�att senario. Seond, we ask whether the proposed separation of the

pakets after ollision is realized as envisioned, or if a wake of non-propagating

disturbanes might remain after very long times. We address these spei�

questions using a ompressible MHD model, a ompressible Hall MHD model

and two hybrid Vlasov models.

Beyond the assumption of inompressibility, we may antiipate genuinely

ompressible, dispersive and kineti e�ets that warrant examination in the

large amplitude wave pakets ollision problem. In the solar wind for exam-

ple, many intervals, espeially within 1 AU [74℄ or at high latitudes [75℄, are

highly Alfvéni, but even within suh intervals there are mixtures of Elsässer

amplitudes, small density variations, and a small parallel variane, as in the

well-quoted �5:4:1� variane ratio reported by [70℄. There have also been re-

ports of interplanetary magnetosoni wave pakets interation [76℄, while the

great power-law in the interstellar medium [77℄ is assoiated with eletron

density �utuations that may be either propagating or non-propagating [78℄.

Furthermore in plasmas suh as the solar wind, at smaller sales near the ion

inertial sale, one expets kineti properties [19℄ suh as spetral steepening

[12℄, dispersive wave e�ets [18, 20, 79℄ of both Kineti Alfvén Wave and

whistler types, along with temperature anisotropy, beams and other distor-

tions of the proton veloity distribution funtion (VDF) [21, 29, 30, 33, 35℄.

These ompliations plae the problem of ollisions of Alfvén wave pakets

in a muh more omplex framework.
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The Parker-Mo�att problem

In dealing with low Mah number quasi-inompressible �uid or MHD

models, either in numerial simulations [80, 81, 82℄, appliations [8, 71℄, or

in analytial theory [83, 84℄, one routinely deals with two signi�ant prop-

erties: �rst, the dominant quadrati ouplings are of the form k = p + q,

transferring energy into (or from) Fourier mode with wave-vetor k due to

nonlinear interations with modes at wave-vetors p and q. One onludes

that in general (unless, e.g., all exited wave vetors are o-linear) one ex-

pets exitations to spread rapidly among many wave-vetors, a proess that

over time an produe omplex mixing and turbulent �ows. Seond, in-

ompressible MHD nonlinear evolution proeeds as ∂z+i /∂t ∼ −z−j ∇jz
+
i and

∂z−i /∂t ∼ −z+j ∇jz
−
i in terms of Elsässer variables z±j = uj ± bj (jth ompo-

nents of veloity �eld uj and magneti �eld bj in Alfvén speed units), thus

allowing the immediate onlusion that nonlinear ouplings vanish unless the

Elsässer �elds z+ and z− have nonzero overlap somewhere in spae.

A similar problem, namely, the interation between non-loalized moder-

ate amplitude Alfvén waves at spatial sales omparable with the ion iner-

tial length, has been approahed within the weak turbulene framework [13℄

and gyro-kineti numerial simulations [69℄ as well as laboratory experiments

[85, 86, 87℄ have been performed. This approah, based on the assumption

of small-amplitude �utuations, desribes turbulene in terms of nonlinear

ouplings among waves, eah belonging to a well-de�ned propagating mode

and keeping its own properties, like the dispersion relation. The theory of

weak turbulene in plasmas have been widely studied within MHD [66, 68℄,

inluding dispersive e�ets [16℄ and also for high-frequeny waves [88, 89, 90℄.

Strong and weak turbulene theories an be onsidered somehow omplemen-

tary [67, 91℄, and there is a debate on the appliability of a "wave approah"

to desribe, for instane, turbulene in the solar wind [92, 93, 94, 95, 96, 97℄.

These properties not only provide motivation for the Alfvén wave paket ol-

lision problem, but also enter into some of its omplexity as an elementary

interation that generates turbulene.

The present part of this thesis is divided as follows. In Chapter 1 we

revisit the Parker-Mo�att problem by fousing on some global ��uid�-like

diagnostis whih allow to identify whih features are introdued moving

13
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beyond the ideal MHD treatment. The MHD evolution revisits the theoret-

ial insights desribed by Mo�att, Parker, Kraihnan, Chandrasekhar and

Elsässer in whih the oppositely propagating large amplitude wave pakets

interat for a �nite time, initiating turbulene. The extension to inlude om-

pressive and kineti e�ets maintains the gross harateristis of the simpler

lassi formulation, but also reveals intriguing features. The physial e�ets

taken into aount in the more realisti simulations play a signi�ant role.

After the wave pakets ollision, the omplexity of the strutures seems to

suggest that, probably, wave pakets may remain also onneted after their

interation. Moreover, the omparison of four di�erent models whih evolve

the same initial ondition ontribute to the spirit of �Turbulene Dissipation

Challenge� that has been reently disussed in the spae plasma ommunity

[98℄.

In Chapter 2 we fous on two features reovered in the Eulerian Vlasov-

Maxwell simulation, whih is noise-free ompared to the PIC simulation.

We report evidenes of the presene of non-Maxwellian signatures during

the wave pakets evolution and interation. Regions haraterized by strong

temperature anisotropies and nongyrotropies are reovered and the proton

distribution funtion displays a beam along the diretion of the loal mag-

neti �eld, similar to some reent observations of the solar wind [76℄. More-

over, by analyzing the features of the turbulene produed by the interation

of two olliding Alfvéni wave pakets, we �nd that weak and strong tur-

bulene senarios seem to oexist. The wave-like approah, based on the

analysis of polarization and orrelations, still helps in the haraterization of

some low-energy �utuations. However, several signatures of a strong turbu-

lene regime are also reovered. Blurred ω− k relations are found instead of

well-de�ned dispersion relations, along with a tendeny to build up ω = 0

strutures, typial of a strong turbulene regime.
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Chapter 1

Revisiting a lassi: the

Parker-Mo�att problem

In this Chapter we revisit the Parker-Mo�att problem by fousing on some

global ��uid�-like diagnostis whih allow to identify the features introdued

when departing from the ideal MHD treatment. In partiular, we desribe

how the senario is modi�ed by the presene of ompressible, dispersive and

kineti e�ets. During the wave pakets interation, as presribed by Parker

&Mo�att, nonlinear oupling proesses ause the magneti energy spetra to

evolve towards isotropy, while energy is transferred towards smaller spatial

sales. The new ingredients introdued with the HMHD and kineti simu-

lations play a signi�ant role and several quantities evolve di�erently with

respet to the MHD evolution. We also antiipate that the omplexity of

strutures produed by nonlinear interations in the HMHD and HVM ases

makes di�ult to determine whether the wave pakets atually attain a full

separation after the ollision.

We also examine this basi problem by means of a hybrid Partile-in-

Cell simulation (HPIC), whih allows omparison of two di�erent numerial

approahes (HVM and HPIC), whih refer to the same physial model. We

may antiipate that, in the HPIC ase, the system dynamis at small sales is

a�eted by the presene of partiles thermal noise and only the large spatial

sales features are disretely reovered during the evolution of the two wave
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pakets.

The struture of the Chapter is the following. In Setion 1.1 the numerial

models we adopted for the analysis are desribed in detail, then in Setion 1.2

the simulations are analyzed. Finally, we summarize the results in Setion

1.3. Results shown here have been olleted in two sienti� papers reently

published in The Astrophysial Journal [14℄ and Journal of Plasma Physis

[99℄.

1.1 Models and Approah

For problems suh as the one we fous here on, the system dimensionality

is ruial: in fat, a proper desription should onsider a three-dimensional

physial spae (i.e. three-dimensional wave vetors), where both parallel

and perpendiular asades are taken into aount [100, 101, 102℄. How-

ever, dynamial range of the spatial sales (wave numbers) represented in

the model is equally important to apture nonlinear ouplings during the

wave paket interation. Furthermore, performing a kineti Eulerian hybrid

Vlasov-Maxwell simulation in a full 3D�3V phase spae retaining a good

spatial resolution is too demanding for the present High Performane Com-

puting apability. Given that several runs are required to omplete a study

suh as the present one, a fully 3D approah would be prohibitive. There-

fore we restrit to the ase of a 2.5D physial spae, where vetorial �elds

are three-dimensional but their variations depend only on two spatial oor-

dinates (x and y). The HVM model has also a three dimensional veloity

spae grid. It is worth noting that 2.5D aptures the qualitative nature of

many proesses very well and it allows for a large system size, that, in turn,

ensures a large Reynolds number; however there might be some quantitative

di�erenes for some proesses [103, 104, 105℄.

The �uid models onsidered here are MHD and Hall MHD, whose dimen-
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sionless equations are:

∂tρ+∇ · (ρu) = 0 (1.1)

∂tu+ (u · ∇)u = − β̃
2ρ
∇(ρT ) + 1

ρ
[(∇×B)×B] (1.2)

∂tB = ∇×
[

u×B− ǫ̃
ρ
(∇×B)×B

]

(1.3)

∂tT + (u · ∇)T + (γ − 1)T (∇ · u) = 0 (1.4)

In Eqs. (1.1)�(1.4) spatial oordinates x = (x, y) and time t are respetively

normalized to L̃ and t̃A = L̃/c̃A. The magneti �eld B = B0 + b is saled to

the typial magneti �eld B̃, while mass density ρ, �uid veloity u, tempera-

ture T and pressure p = ρT are saled to typial values ρ̃, c̃A = B̃/(4πρ̃)1/2,

T̃ and p̃ = 2κB ρ̃T̃ /mp (being κB the Boltzmann onstant and mp the proton

mass), respetively. Moreover, β̃ = p̃/(B̃2/8π) is a typial value for the ki-

neti to magneti pressure ratio; γ = 5/3 is the adiabati index and ǫ̃ = d̃p/L̃

(being d̃p = c̃A/Ω̃cp the proton skin depth) is the Hall parameter, whih is

set to zero in the pure MHD ase. Details about the numerial algorithm

an be found in [106, 107℄.

On the other hand, hybrid Vlasov-Maxwell simulations have been per-

formed by using two di�erent numerial odes: an Eulerian hybrid Vlasov-

Maxwell (HVM) ode [40℄ and a hybrid Partile-in-ell (HPIC) ode [27℄.

For both ases protons are desribed by a kineti equation and eletrons

are a Maxwellian, isothermal �uid. In the Vlasov model, an Eulerian rep-

resentation of the Vlasov equation for protons is numerially integrated. In

PIC method, the distribution funtion is Monte-Carlo disretized and the

Newton-Lorentz equations are updated for the �maro-partiles�. Eletro-

magneti �elds, harge density and urrent density are omputed on a spatial

grid [38, 108℄.
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Dimensionless HVM equations are:

∂tf + v · ∇f+
1

ǫ̃
(E+ v ×B) · ∇vf = 0 (1.5)

E− me ǫ̃2

mp
∆E = −ue ×B− ǫ̃β̃

2n

(

∇Pe −
me

mp
∇ ·Π

)

+
me

mp

[

u×B+
ǫ̃

n
∇ · (n (uu− ueue))

]

(1.6)

∂B
∂t

= −∇×E ; ∇×B = j (1.7)

where f = f(x,v, t) is the proton distribution funtion. In Eqs. (1.5)�(1.7),

veloities v are saled to the Alfvén speed c̃A, while the proton number den-

sity n =
∫

f d3v, the proton bulk veloity u = n−1
∫

vf d3v and the proton

pressure tensor Πij = n−1
∫

(v−u)i (v−u)jf d3v, obtained as moments of the

distribution funtion, are normalized to ñ = ρ̃/mp, c̃A and p̃, respetively.

The eletri �eld E, the urrent density j = ∇×B and the eletron pressure

Pe are saled to Ẽ = (c̃AB̃)/c, j̃ = cB̃/(4πL̃) and p̃, respetively. More-

over, eletron inertia e�ets have been onsidered in Ohm's law to prevent

numerial instabilities (being me/mp = 0.01, where me is the eletron mass,

and ue = u− ǫ̃j/n), while no external resistivity η is introdued. A detailed

desription of the HVM algorithm an be found in [40, 106, 107℄. On the

other hand, the hybrid PIC run has been performed using the P3D hybrid

ode [39℄ and all the numerial and physial parameters are the same as the

HVM run. The P3D ode has been extensively used for reonnetion and

turbulene (See, for example, Refs. [27, 109℄).

In both lasses of performed simulations (�uid and kineti), the spatial

domain D(x, y) = [0, 8π] × [0, 2π] is disretized with (Nx, Ny) = (1024, 256)

in suh a way that ∆x = ∆y and spatial boundary onditions are periodi.

For the HVM run, the veloity spae is disretized with a uniform grid with

51 points in eah diretion, in the region vi = [−vmax, vmax] (being vmax =

2.5c̃A) and veloity domain boundary onditions assume f = 0 for |vi| >
vmax (i = x, y, z); while, in the HPIC ase, the number of partiles per

ell is 400. Moreover βp = 2v2th,p/c̃
2
A = β̃/2 = 0.5 (i.e. vmax = 5vth,p),

ǫ̃ = d̃p/L̃ = 9.8 × 10−2
, kdp = ǫ̃−1 ≃ 10 and kde =

√

mp/me × ǫ̃−1 ≃ 100.
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Figure 1.1: (Color online) Contour plots of the initial perturbations. Left and right

olumns refer respetively to b and u. Top, entral and bottom rows indiate the

x, y and z omponents of the perturbations.

The bakground magneti �eld is mainly perpendiular to the x − y plane:

B0 = B0(sin θ, 0, cos θ), where θ = cos−1 [(B0 · ẑ) /B0] = 6◦ and B0 = |B0|.
In the initial onditions, ions are isotropi and homogeneous (Maxwellian

veloity distribution funtion in eah spatial point) for both kineti simu-

lations. Then, large amplitude magneti b and bulk veloity u perturba-

tions are introdued. Density perturbations are not imposed, whih im-

plies nonzero total pressure �utuations. Initial perturbations onsist of two

Alfvéni wave pakets with opposite veloity-magneti �eld orrelation. The

pakets are separated along x and, sine B0,x 6= 0, they ounter-propagate.

The nominal time for the ollision, evaluated with respet to the enter of

eah wave paket, is τ ≃ 58.9.

The magneti �eld perturbation b has been reated by initializing energy

in the �rst four wave-numbers in the y diretion while, due to the x spatial

loalization (enfored by projetion), many wave-numbers along x are exited

initially. Then, a small bz(x, y) omponent has been introdued in suh a

way that the transverse ondition, B0 · b = 0, is hold in eah domain point.
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Finally, the veloity �eld perturbation u is generated by imposing that u and

b are orrelated (anti-orrelated) for the wave paket whih moves against

(along) the magneti �eld B0x. The ontour plots of the initial ondition are

shown in Fig. 1.1, where left (right) olumn refers to b (u) perturbations.

The intensity of the perturbation is 〈b〉rms/B0 = 0.2, therefore the Mah

number isMs = 〈u〉rms/vth,p = 0.4. The intensity of �utuations with respet

to the in-plane �eld B0x is quite strong, with a value of about 2. It is worth

to note that the inverse of the intensity of the �utuations with respet to

the in-plane magneti �eld is related to the parameter τNL/τcoll, where τNL

is the harateristi nonlinear time and τcoll is the harateristi ollision

time. If τNL/τcoll ≪ 1, several nonlinear times our in a single ollision

and wave pakets an be signi�antly perturbed by nonlinear e�ets. On

the other hand, if τNL/τcoll > 1, many ollisions are neessary to strongly

distort wave pakets. By evaluating τNL ≃ ∆/u (wave paket width ∆,

perturbations amplitude u) and τcoll ≃ ∆/V (in-plane Alfvén propagation

speed V ≃ 0.1cA), it turns out that τNL/τcoll ≃ 0.5. Therefore our simulations

stand in a parameter range where nonlinear e�ets an be suh important

that a strong turbulene senario may be present.

1.1.1 Disussion of the Initial Conditions

The imposed initial perturbations orrespond to two large amplitude Alfvén

wave pakets in the sense that magneti and veloity perturbations are fully

orrelated in eah paket, and the pakets are separated in spae. With zero

density variation, a weak in-plane uniform magneti �eld, and a relatively

strong out of plane uniform magneti �eld, this initial ondition is one for

whih the reasoning of Mo�att and Parker disussed above would be appli-

able in the ontext of an inompressible model.

In addition, the initial data also exatly satisfy the transversality on-

dition B0 · b = 0, whih in linear ompressible MHD would orrespond to

the Alfvén eigenmode, if indeed the amplitude were in�nitesimal. Here the

amplitude is large, so small amplitude theory is unlikely to be relevant to

the nonlinear evolution. Furthermore, the ondition of the proper Alfvén
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Figure 1.2: (Color online) Contour plots of the out of plane omponent of the

urrent density jz(x, y) at several time instants t = 29.5 (a), t = τ = 58.9 (b),

t = 70.7 () and t = 98.2 (d). From left to right, eah olumn refers to the MHD,

HMHD, HVM and HPIC ases, respetively. For the HPIC simulation, jz(x, y) has
been smoothed in order to remove partile noise.

eigenmode obtained in large amplitude ompressible MHD theory, namely

B = |B| = const is not satis�ed by our initial perturbations [92℄. This

suggests that pressure and density �utuations may be generated during the

wave pakets evolution. Therefore, the initial data are nonlinear eigenmodes

of inompressible MHD, but not exat eigenmodes of ompressible MHD.

On the other hand we do not expet signi�ant di�erenes beause the ini-

tial B = |B| �utuations are not very large (less than 10%).

1.2 Numerial results: a diret omparison be-

tween di�erent models

In this Setion we fous on the desription of the results of the four di�erent

simulations (MHD, HMHD, HVM and HPIC) by fousing on some ��uid�-

like diagnostis whih help to understand the system dynamis and, also, to

highlight the di�erenes between the adopted models.

Figure 1.2 reports a diret omparison between the simulations, showing

the ontour plots of the out-of-plane omponent of the urrent density jz =

(∇ × B) · ẑ. Vertial olumns from left to right in Fig. 1.2 refer to MHD,

HMHD, HVM and HPIC simulations, respetively; while eah horizontal row

refers to a di�erent time instant: t = 29.5 (a), t = τ = 58.9 (b), t = 70.7 ()
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and t = 98.2 (d).

In eah simulation the initially separated wave pakets ounter-propagate,

approah eah other [panels (a) of Fig. 1.2℄, and ollide at t = τ . During

the ollision [panels (b) of Fig. 1.2℄, jz intensi�es, and, sine the overlapping

wave pakets interat nonlinearly, the dynamis produes small sales that

an be easily appreiated by examining the width of the urrent strutures.

After the ollisions [panels () and (d) of Fig. 1.2℄, the wave pakets ontinue

their motion while displaying a signi�antly perturbed shape. Indeed the jz

ontours indiate that urrent strutures are muh more omplex after that

the ollision ours. Moreover, their shape exhibits also a urvature whih

is not antiipated prior to the ollision and whih indiates the presene

of energy in modes with gradients along the y diretion, transverse to the

propagation.

Signi�ant di�erenes are reovered in the MHD ase with respet to the

HMHD, HVM and HPIC runs. While the MHD evolution is symmetri with

respet to the enter of the x diretion, in the other ases this symmetry

is broken also before the wave pakets interation due to the presene of

dispersive e�ets whih di�erentiate the propagation along and against B0x.

Moreover, during the wave pakets overlap [Fig. 1.2(b)℄, smaller sales stru-

tures are formed in the HMHD and the HVM ases with respet to the pure

MHD evolution, while the HPIC run - despite it reovers several signi�ant

features of the wave pakets interation - su�ers the presene of partiles

thermal noise, whih has been arti�ially smoothed out in Fig. 1.2. After

the ollision [Fig. 1.2 () and (d)℄, the di�erene between the MHD and the

other simulations beomes stronger. In partiular, some vortial strutures

at the enter of the spatial domain are reovered in the HMHD and HVM

ases, in ontrast to the pure MHD ase. Moreover, the Vlasov simulation

tends to produe smaller sales during the interation sine very thin ur-

rent sheet strutures are formed. Furthermore, some seondary ripples are

reovered, in the HVM simulation, in front of eah wave paket. These se-

ondary, low-amplitude ripples are not reovered in the other simulations: in

fat, they annot be appreiated in the HPIC run where the noise prevents

the formation of suh strutures while, in the Hall simulation, they are only
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Figure 1.3: (Color online) Temporal evolution of the energy terms: ∆Ekin (blak),

∆Eth (red) and ∆EB (blue) for the MHD, HMHD, HVM and HPIC runs.

roughly visible. The nature of these low-amplitude ripples is ompatible with

a KAW-like ativity and will be disussed in detail in the next hapter.

In order to ompare models and odes, we display, in Fig. 1.3, the tempo-

ral evolution of the energy variations ∆E. Blak, red and blue lines indiate

respetively the kineti∆Ekin, thermal∆Eth and magneti∆EB energy vari-

ations, while eah panel from (a) to (d) refers to the MHD, HMHD, HVM

and HPIC runs, respetively. The evolution of ∆Ekin and ∆EB is quite om-

parable in all the performed simulations and, in the temporal range where

wave pakets ollide, magneti and kineti energy is exhanged. On the other

hand, the evolution of the thermal energy ∆Eth di�ers in the HPIC ase om-

pared to the other simulations. Indeed, ∆Eth remains quite lose to zero for

all the simulations exept for the HPIC run, where it grows almost linearly

for the presene of numerial noise. It is worth to note that, as the number

of partiles inreases, the evolution of ∆Eth would probably get loser to the

one obtained in the MHD, HMHD and HVM simulations.
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A point of omparison of our simulations with respet to the theoretial

ideas given by Mo�att and Parker is to examine the behavior of ross heliity.

Those theoretial treatments assume ideal non-dissipative onditions, so that

the total ross heliity is onserved and moreover the expetation is that

the separate wave pakets after the ollision have the same ross heliity

as prior to the interation. Furthermore the initial and �nal states, in the

ideal treatment, have equipartition of �ow and magneti �eld energy, with

departures from equipartition possible during the interation. To examine

these, Fig. 1.4 shows the temporal evolution of (a) the normalized residual

energy σr(t), and (b) the normalized ross-heliity σc(t) [12℄, respetively

de�ned as σr = (eu − eb)/(eu + eb) and σc = (e+ − e−)/(e+ + e−) , where

e± = 〈(z±)2〉/2, eu = 〈u2〉/2, eb = 〈b2〉/2 and z± = u ± b. In eah panel

of Fig. 1.4, blak, dashed blue, dashed green and red lines refer to MHD,

HMHD, HVM and HPIC ases, respetively.

Figure 1.4 (a) shows the evolution of the normalized residual energy σr,

whih is similar in all the simulations. In partiular σr ≃ 0 in the initial stage

of the simulations. Then, σr strongly osillates during the wave pakets ol-

lisions, �rst to positive values indiating a positive orrelation of the Elsässer

�elds, then moving more strongly towards negative values of orrelation, and

returning to positive orrelation again prior to �nally approahing zero one

again. The σr osillations are well orrelated with the osillations of ∆EB

and ∆Ekin seen in Fig. 1.3.

Deeper insights are revealed by the evolution of the ross-heliity σc,

showed in Fig. 1.4 (b). Indeed, for ideal inompressible MHD, the ross

heliity remains onstant, and for this initial ondition, σc = 0. Here, σc

is well-preserved in the MHD run, despite this simulation is ompressible.

This means that the ompressible e�ets, introdued here by the fat that

initial perturbations are not pressured balaned, are not strong enough to

break the σc invariane. On the other hand, for the remaining simulations

(HMHD, HVM and HPIC), σc is not preserved: i) it shows a jump around

t = τ = 58.9, due to the presene of kineti and dispersive e�ets, and ii)

there is an initial growth of σc followed by a relaxation phase. It seems also

signi�ant to point out that, the initial growth of σc ours faster in the
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Figure 1.4: (Color online) Temporal evolution of the normalized residual energy

σr(t) (a), ross heliity σc(t) (b) and generalized ross heliity σg(t) (). In eah

panel blak, blue, green and red lines indiate the MHD, HMHD, HVM and HPIC

simulations, respetively.

kineti ases ompared to the HMHD one. This may re�et the fat that the

initial ondition evolves di�erently in the Hall MHD simulation ompared to

the kineti runs.

In order to understand the role of the Hall physis, we also omputed the

normalized generalized ross heliity σg = 2eg/(eu + eb), where eg = 0.5 〈u ·
b+ ǫ̃ω ·u/2〉, and ω = ∇×u, whih is an invariant of inompressible HMHD

[15, 17℄. Figure 1.4() displays the temporal evolution of σg(t) for the MHD

(blak), the HMHD (dashed blue), HVM (dashed green) and HPIC (red)

simulations. Note that the evolution of σg is trivial for the MHD simulation

where, sine ǫ̃ = 0, σg = σc. Moreover, it an be easily appreiated that, for

the HMHD ase, σg is almost preserved and does not exhibit any signi�ant

variation due to the ollision itself, even though it shows a slight inrease

in the initial stages of the simulation followed by a deay towards σg = 0

[similar to the growth of σc reovered in Fig. 1.4(b)℄. On the other hand

the two kineti ases, whih exhibit a similar behavior, show a fast growth

of σg in the initial stage of the simulations followed by a deay phase [similar

to the growth of σc reovered in Fig. 1.4(b)℄; then, during the ollision, σg

signi�antly inreases. We may explain the evolution of σc and σg as follows.

In the MHD run, ompressive e�ets ontained in the initial ondition as

well as ompressible ativity generated during the evolution are not strong

enough to break the invariane of σc (i.e. of σg). Instead, in the Hall MHD

simulation, the �rst break of the σc invariane observed in the initial stage of

the simulation annot be assoiated with the Hall e�et sine also σg is not

25



Revisiting a lassi: the Parker-Mo�att problem

Figure 1.5: (Color online) Temporal evolution of 〈j2z 〉 for the MHD (blak), HMHD

(blue), HVM (green) and HPIC (red) simulations. For the HPIC simulation, 〈j2z 〉
has been smoothed in order to remove partile noise.

preserved in this temporal region and σc and σg have a similar evolution. On

the other hand, the jump reovered in σc around t ≃ τ = 58.9 is signi�antly

related to the Hall physis. In fat, sine σg does not exhibit a similar jump

at t ≃ τ , we argue that the physis whih produes the growth of σc is the

Hall physis (whih is taken into aount in the invariane of σg). Finally, the

prodution of both σc and σg reovered in the kineti simulations annot be

ompletely assoiated with the Hall e�et (whih, of ourse, is still present)

but kineti and ompressive e�ets may have an important role.

In order to explore the role of small sales into the dynamis of olliding

wave pakets, we omputed the averaged mean squared urrent density 〈j2z 〉 as
a funtion of time. This quantity indiates the presene of small sale ativity

(suh as prodution of small sale urrent sheets), and is reported in Figure

1.5 for all the simulations. As in the previous �gures, blak, blue dashed,

green dashed and red lines refer to the MHD, HMHD, HVM and HPIC ases,

respetively. All models show a peak of 〈j2z 〉(t) around the ollision time t ≃ τ

due to the ollision of wave pakets. After the ollision, some high-intensity

urrent ativity persists in all the simulations. The qualitative evolution

〈j2z 〉(t) is similar in eah simulation, however - after the ollision - bigger

values of 〈j2z 〉 are reahed in the MHD and HVM ases with respet to the
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HMHD and HPIC runs.

Other quantities that provide physial details about our simulations are

ǫρ = 〈δρ2〉 (ompressibility) and the enstrophy ǫω = 〈ω2〉/2 (�uid vortiity ω).
Note that δρ = ρ−〈ρ〉. Figure 1.6 reports the temporal evolution of ǫρ (a) and

ǫω (b) for all the runs. Blak, blue dashed, green dashed and red lines indiate

respetively the MHD, HMHD, HVM and HPIC ases. The ǫρ evolution

shows that density �utuations peak around t ≃ 63.8 and t ≃ 83.4. The �rst

peak is due to the interation between the two wave pakets. The seond

peak of density �utuations appears to be due to propagation of magnetosoni

�utuations generated by the initial strong ollision. One generated these

modes propagate aross the periodi box and provide an �eho� of the original

ollision. Moreover, from the initial stage of the simulations, ǫρ exhibits some

small modulations, whih are produed by the absene of a pressure balane

in the initial ondition. In fat, as pakets start to evolve, low-amplitude

fast perturbations (learly visible in the density ontour plots, not shown

here) propagate aross the box and ollide faster ompared to the �main�

wave pakets themselves. Moreover, by omparing the di�erent simulations,

one noties that, for t < 20, kineti and Hall runs tend to produe a similar

evolution of ǫρ, slightly bigger ompared to the MHD ase. Then, around

t ≃ 20, the HMHD run displays a stronger ompressibility with respet to

the kineti ases. This di�erene is probably due to the presene of kineti

damping phenomena whih our in the kineti ases.

The enstrophy ǫω is displayed in Fig. 1.6(b). All the runs exhibit a simi-

lar evolution of ǫω up to the wave paket ollisions. Then, after the ollision,

a signi�ant level of ǫω is reovered in all the simulations, thus indiating

that �ne sale struture in the veloity, i.e., vortial strutures are produed

during the ollisions, and these persist after the ollision. Moreover, MHD

and HMHD ases exhibit a quite similar level of ǫω, slightly bigger ompared

to the one reovered in the HVM and HPIC ases, where probably kineti

damping does not allow the formation of strong vortial strutures at small

sales by transferring energy to the VDF [see. e.g., [110, 111℄℄. It is inter-

esting to note that the general pro�le of enstrophy and mean square urrent

follow similar trends in time. This an be expeted as the inertial range
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Figure 1.6: (Color online) Temporal evolution of ǫρ(t) (a) and ǫω(t) (b). In eah

panel, blak, blue, green and red lines indiate the MHD, HMHD, HVM and HPIC

simulations, respetively. For the HPIC simulation, ǫω(t) has been smoothed in

order to remove partile noise.

of turbulene typially provides near-equipartition of veloity and magneti

�utuation energy, even in fairly simple on�gurations [112℄. However, when

examined in more detail, one often �nds, as here, that the magneti �utu-

ations are usually about a fator of two more energeti in the inertial range

part of the spetrum, as they are, for example in the solar wind [113℄. This

inequality is here re�eted in the fat that 〈j2z 〉 > 〈ω2/2〉.
It is interesting to ompare di�erent simulations also by looking at power

spetral densities (PSDs). Figures 1.7 show the magneti energy PSD in-

tegrated along ky Eb,y(kx) =
∑

ky
Eb(kx, ky) (left olumn) and along kx

Eb,x(ky) =
∑

kx
Eb(kx, ky) (right olumn); while eah row respetively refers

to t = 29.5 (top row), t = τ = 58.9 (enter row) and t = 98.2 (bottom row).

The yan dashed line shows the k−5/3
slope for referene while, in eah panel,

blak, blue, dashed green and red lines indiate respetively MHD, HMHD,

HVM and HPIC simulations. Moreover, to ompare the two wave-number

diretions, gray lines in eah panel report the orresponding PSD obtained

from the MHD run, redued in the other diretion [for example, in the top

row left panel, the gray line refers to Eb,x(ky) for the MHD simulation while

other urves in the same panel report Eb,y(kx)℄. It is interesting to note

that, at t = 29.5, all the simulations exhibit a steep spetrum in Eb,y(kx),

related to the initial ondition whih requires involvement of a wide range of
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Figure 1.7: (Color online) Magneti energy PSDs Eb,y(kx) =
∑

ky
Eb(kx, ky) (left

olumn) and Eb,x(ky) =
∑

kx
Eb(kx, ky) (right olumn) at three time instants:

t = 29.5 (top), t = τ = 58.9 (middle) and t = 98.2 (bottom). In eah panel blak,

blue, green and red lines refer to the MHD, HMHD, HVM and HPIC simulations,

respetively; while yan lines show the −5/3 slope for referene. Moreover, to

ompare Eb,y(kx) and Eb,x(ky), the gray lines in eah panel refer only to the MHD

simulation and report Eb,x(ky) in the left olumn and Eb,y(kx) in the right olumn.

wave-numbers kx. Then, during the evolution, the spetra show a transfer

of energy towards small sales, at higher kx and at higher ky. In fat, muh

of the energy Eb,y(kx) is ontained, at t = τ , in a bump around k = 1. At

t = 88.4 the bump is less lear and the spetrum Eb,y(kx) is quite well de-

veloped and the spetral slope, at sales larger than the ion inertial sale, is

lose to −5/3. A break in Eb,y(kx) an be also appreiated around kdp ≃ 10.

Moreover, the di�erene in power between Eb,y(kx) and Eb,x(ky) - the lat-

ter being signi�antly smaller than the former - tends to redue in the �nal

stages of the simulations, thus suggesting the presene of nonlinear ouplings

whih e�iently transfer energy in both diretions of the wavevetors spae

and, hene, ause spetra to beome more isotropi.
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1.3 Summary

To summarize, in this Chapter we ompared our numerial odes by analyzing

some global �uid-like diagnostis and we onlude that the Mo�att-Parker

senario is quite well satis�ed by MHD. However, other intriguing features

are observed when one moves beyond the MHD treatment. Indeed, several

quantities (espeially the ross-heliity) indiates that the evolution is dif-

ferent when one introdues more omplex senarios and the omplexity of

the strutures produed by nonlinear interations in the HMHD and HVM

simulations makes it di�ult to determine whether the wave pakets atually

attain a full separation after their ollision.

Moreover, during the wave pakets interation, as presribed by Parker

& Mo�att, nonlinear oupling proesses ause the magneti energy spetra

to evolve towards isotropy and energy is transferred towards smaller spatial

sales. After the wave pakets interation magneti energy spetra exhibits

a �power law�-like pro�le, whose slope is lose to −5/3 at bigger sales, while

a spetral break is reovered around kdp. In the next Chapter we will fous

on the nature of the interation whih produes suh spetrum, trying to

desribe it in terms of wave-like ativity and strong turbulene.

The omparison between kineti odes suggests that HVM and HPIC sim-

ulations display qualitatively similar features at large sales. However, when

one aims to analyze the dynamis at small sales, HPIC simulations su�ers

from thermal partile noise. Indeed, magneti energy spetra di�er in the

HPIC ase as ompared to the HVM ase, sine, in the former ase, spetra

saturate at small sales due to the numerial noise, visible - in partiular - in

the ontour plots of jz . Based on these onsiderations, in the next Chapter

we will ontinue the analysis of the kineti features produed in the Alfvén

wave pakets ollision, by fousing only on the HVM simulation.
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Chapter 2

Kineti turbulene generated by

Alfvén wave ollisions

In this hapter we fous on two partiular aspets of the HVM simulation

desribed previously. The former regards the prodution of kineti e�ets

during the evolution and the ollision of the two wave pakets [Setion 2.1℄,

while the latter onerns the haraterization of the wave pakets interation

in terms of wave-like ativity and strong turbulene [Setion 2.2℄.

Indeed, several indiators of kineti e�ets (temperature anisotropies,

nongyrotropies or non-Maxwellian indexes) have been implemented. These

quantities indiate that the veloity distribution funtion exhibits out of equi-

librium features before the wave pakets interation due to the fat that the

initial ondition is not an even solution of the HVM equation. Kineti e�ets

beome more intense during the interation and a beam along the magneti

�eld diretion is also reovered in the veloity distribution funtion similarly

to some reent solar wind observations [76℄.

We desribe also the wave pakets interation as onerns the presene of

weak or strong turbulene. It has been found that the presene of seondary

small amplitude ripples, whih are reovered after the ollision at the front

of eah wave paket, an be suessfully explained in terms of a wave-like

ativity and are identi�ed as Kineti Alfvén Waves. However the general

piture is more omplex and other signatures of a strong turbulene senario
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oexist with the presene of these �utuations. Indeed, after the ollision, the

magneti energy does not rigidly follow a standard wave dispersion relations,

but tends to spread over a wide band of the ω − k plane. Furthermore, a

large part of the energy is stored in the ω = 0 �hannel�, thus indiating that

stationary strutures, typial of a strong turbulent senario, are produed

during the interation.

Finally, in Setion 2.3 we onlude by summarizing our work. The results

shown here have been olleted in two sienti� papers: the �rst has been

reently published in Journal of Plasma Physis [99℄ while the seond is in

preparation [114℄.

2.1 Kineti features reovered during the wave

pakets interation

We begin the desription of kineti signatures present in the Vlasov simu-

lation by looking at the temperature anisotropy in the partile distribution

funtion. Fig. 2.1 reports the ontour plots of the temperature anisotropy

T⊥/T‖, where the parallel and perpendiular diretions are evaluated in

the loal magneti �eld frame (LBF), at four time instants: t = 29.5 (a),

t = τ = 58.9 (b), t = 70.7 () and t = 98.2 (d). Clearly, temperature

anisotropy is present even before the main wave pakets ollision [Fig. 2.1(a)℄,

due to the fat that the initial on�guration is not solution of the HVM equa-

tions and, hene, its dynamial evolution leads to anisotropy prodution.

Moreover, a more areful analysis suggests that the left wave paket tends to

produe regions where T⊥/T‖ < 1 lose to the paket itself (loalized around

x ≃ 9.5), while the right wave paket (loalized around x = 15.7) is har-

aterized by T⊥/T‖ > 1. The presene of di�erent temperature anisotropies

(T⊥/T‖ < 1 or T⊥/T‖ > 1) is related to the asymmetry with respet to the

enter of the x diretion. Indeed, the dynamis of the wave pakets is di�er-

ent if they move parallel or anti-parallel to B0,x. This produes the di�erent

temperature anisotropy reovered in the top panel of Fig. 2.1.

When the pakets ollide [Fig. 2.1 (b)℄, sheets haraterized by a strong
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Figure 2.1: (Color online) Contour plots of the temperature anisotropy, for the

HVM run, evaluated in the LBF at four time instants: (a) t = 29.5, (b) t = τ =
58.9, () t = 70.7 and (d) t = 98.2.

temperature anisotropy (T⊥/T‖ > 1) are reovered, spatially orrelated with

the urrent density strutures. Then, at t = 70.7 [Fig. 2.1 ()℄, wave pakets

split again and a region, loalized at (x, y) ≃ (14.3, 1.0), where the temper-

ature anisotropy suddenly moves from values T⊥/T‖ < 1 towards T⊥/T‖ > 1

ones is present. We will show that this region also exhibits the presene of

strong departures from the equilibrium Maxwellian shape. At the �nal stage
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Figure 2.2: (Color online) Contour plots of the degree of temperature non-gyrotropy

Dng, for the HVM run, evaluated in the LBF at four time instants: (a) t = 29.5,
(b) t = τ = 58.9, () t = 70.7 and (d) t = 98.2.

of the simulation [Fig. 2.1 (d)℄, eah wave paket ontinues traveling, aom-

panied by a persistent level of temperature anisotropy, whih is, indeed, well

orrelated with the urrent strutures [See Fig. 1.2(d)℄.

It is interesting to point out that, beyond the presene of temperature

anisotropies, regions haraterized by a nongyrotropy of the partile VDF are

also reovered. Many methods have been proposed to evaluate the nongy-

34



Kineti turbulene generated by Alfvén wave ollisions

Figure 2.3: (Color online) Temporal evolution of ǫmax(t) for the HVM run.

rotropy [115, 116℄. Here we make use of the �nongyrotropy degree� Dng [115℄,

whih is proportional to the root-mean-square of the o�-diagonal elements

of the pressure tensor. Fig. 2.2 reports the ontour plots of nongyrotropy

degree Dng at four time instants: t = 29.5 (a), t = τ = 58.9 (b), t = 70.7 ()

and t = 98.2 (d). As for the temperature anisotropy, the evolution of the two

wave pakets tends to produe nongyrotropy features even before the wave

pakets ollision [Fig. 2.2(a)℄. Then, during the ollision [Fig. 2.2(b)�()℄,

the nongyrotropy Dng beomes more intense and it is also quite well orre-

lated with the urrent strutures [See 1.2(b)�()℄. At the �nal stage of the

simulation [Fig. 2.2(d)℄, eah wave paket is onnoted by a level of nongy-

rotropy whih is quite bigger ompared to the value before the ollision. The

presene of nongyrotropi regions suggests that it is fundamental to retain a

full veloity spae where the VDF is let free to evolve and, eventually, distort.

It is worth to note that the approah based on gyro-averaged assumptions

laks the presene of suh nongyrotropies.

To further support the idea that kineti e�ets are generated during the

interation of the wave pakets, we omputed the L2
norm di�erene [30, 31,

35℄:

ǫ(x, y, t) =
1

n

√

∫

[f(x,v, t)− fM(x,v, t)]2 dv (2.1)

whih measures the displaements of the proton VDF f(x,v, t) with respet
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Figure 2.4: (Color online) (Left) Contour plots of ǫ(t), for the HVM run, at t =
70.7. (Right) Proton distribution funtions, in the spatial point (x∗, y∗) where

ǫ(x∗, y∗, t) = max(x,y) ǫ(x, y, t) at t = 70.7. The loal magneti �eld diretion is

indiated by a red line.

to the assoiated Maxwellian distribution funtion fM(x,v, t), built in suh

a way that density, bulk speed and total temperature of the two VDFs are

the same. Figure 2.3 reports the evolution of ǫmax(t) = maxD(x,y)
ǫ(x, y, t)

as a funtion of time. As for previous non-Maxwellian indiators, also ǫmax

moves away from zero in the early phases of the simulation due to the fat

that the initial ondition is not a Vlasov solution. After the initial jump,

ǫmax remains almost onstant up to the wave pakets interation. During

the ollision, ǫmax grows and reahes its maximum at t = 70.7. Then it

dereases and saturates at a value about two times bigger than the value

before the ollision, thus suggesting, again, that there is �net� prodution of

non-Maxwellian features during the wave pakets interation.

The left panel of Figure 2.4 shows the ontour plot of ǫ(x, y, t) at the time

instant t = 70.7 (when ǫ reahes its maximum value). The ǫ ontours are or-

related with the urrent strutures and with the anisotropi/nongyrotropi

regions. Moreover, a blob-like region where ǫ reahes its maximum is present.

This area is assoiated with the region where the temperature anisotropy

moves from T⊥/T‖ < 1 to T⊥/T‖ > 1 [See Fig. 2.1()℄. In this area the VDF

strongly departs from the Maxwellian. The right panel of Fig. 2.4 shows the

three dimensional isosurfae plot of the VDF at t = 70.7 and in the spatial

point (x∗, y∗) where ǫ is maximum. A well-de�ned beam, parallel to the loal

magneti �eld diretion, is observed in the VDF of Fig. 2.4. The drift speed
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of the beam is about c̃A. The prodution of a beam due to the interation

of two wave pakets has been also pointed out by He et al. in a reent paper

where solar wind in-situ observations are presented [76℄.

2.2 Turbulene features generated by Alfvén

wave paket ollisions

In this setion we haraterize the pakets interation in terms of wave-like

ativity and strong turbulene. We remind the reader that i) the ratio be-

tween the nonlinear time τnl and the ollision harateristi time τcoll is about

1/2, this indiating that a strong turbulene senario may our and ii) power

spetra resulting after the ollision have slopes ∼ −5/3, typial of a strong

turbulene situation [See Fig. 1.7℄, and a spetral break is reovered around

kdp ≃ 10.

Here, we fous on the desription of two features reovered after the

ollision: i) seondary ripples appear in front of eah wave paket as small

amplitude �utuations propagating almost purely along x and ii) urrent

sheets tend to distort produing some vortial strutures at the enter of the

spatial domain. Both features an be appreiated in Figs. 1.2(�d) (third

olumn) and in Fig. 2.5, that reports the shade surfae of jz(x, y, t). In

Fig. 2.5 The horizontal plane orresponds to the spatial oordinates x and

y, while the temporal evolution is given by the vertial blue axis.

In order to understand the physial mehanism driving the prodution

of these seondary low amplitude �utuations, we started from the evidene

that these ripples propagate mainly along x. Moreover, Fig. 2.6 (a) reports

the evolution of |B|(x, y0, t∗) (blak) and n(x, y0, t
∗) (red) as a funtion of x

in the region where these disturbanes are present x = [17.5, 21.6] and for

y = y0 = 1.2 and t = t∗ = 98.2: learly, density n �utuations are anti-

orrelated with the |B| �utuations, this being typial of Kineti Alfvén and

slow magnetosoni waves [79, 106, 107℄.

A seond aspet whih helps to disriminate about di�erent type of waves

is the polarization [106℄, whih an be evaluated through the hodogram of
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Figure 2.5: (Color online) Iso-surfaes of the urrent density jz(x, y, t). Red, green
and blue axes orrespond to the x, y and temporal diretions, respetively.

two magneti �eld omponents, as explained in detail in Ref. [106℄. Figure

2.6 (b) reports the hodogram of δBz(x, y0, t
∗) as a funtion of δBy(x, y0, t

∗),

in the region x = [17.5, 21.6] and for y = y0 = 1.2 and t = t∗ = 98.2. The red

square in Fig. 2.6 (b) reports the initial x point x = 17.5. The hodogram

shows a lok-wise verse of rotation with inreasing x. This verse of rotation

is ompatible only with KAW or fast magnetosoni �utuations, as om-

puted by means of a linear solver where the evaluated k‖ ≃ 1.73 = 0.17kdp

and k⊥ ≃ 16.2 = 1.59kdp have been utilized. Finally, by omputing the

propagation speed of these �utuations, we found that this veloity is om-

patible with the KAWs propagation speed. Therefore, based on these three

methods (orrelations, polarization and propagation speed) we onlude that

the small amplitude �utuations are ompatible with KAW-like �utuations.

The presene of these �utuations an be explained as follows: the inter-

ation of the two wave pakets transfers energy towards smaller sales and,

38



Kineti turbulene generated by Alfvén wave ollisions

Figure 2.6: (Color online) (a) Shape of |B| (blak) and n (red) as a funtion of x in

the region x = [17.5, 21.6] and for y = y0 = 1.2 and t = t∗ = 98.2. (b) Hodogram of

δBz(x, y0, t
∗) as a funtion of δBy(x, y0, t

∗) for x = [17.5, 21.6] and for y = y0 = 1.2
and t = t∗ = 98.2. The red square indiates the initial x point x = 17.5.

sine the initial disturbanes are mainly Alfvéni, the energy is transferred

along the Alfvén waves branh, therefore produing KAW �utuations.

The explanation of the system dynamis just in terms of wave-like ativity

is restritive and the KAW small amplitude �utuations we desribed above

are just one piee of a muh more omplex senario. In fat, sine τnl/τcoll <

1, a strong turbulene regime may be reahed. In order to point out that the

piture an be atually more omplex, we performed the following analysis.

First, we seleted two temporal windows of duration T ≃ 29.5, before (I)

and after (II) the wave pakets ollision. In both windows, the magneti

energy Eb(x, t) is quite stationary, this allowing us to implement a full spatio-

temporal Fourier transform of Eb(x, t) to get Eb(k, ω). Note the ω resolution

is quite high: in fat the ω mesh grid is about 2π/T ≃ 0.21, being this value

quite smaller than the ω resolution ommonly reovered through spaeraft

measurements [93, 95, 96, 97℄. This last quantity gives information about

how the magneti energy is distributed in the three-dimensional spae k−ω.

Figure 2.7 reports the ontour plots of Eb,y(kx, ω) (left) and Eb,x(ky, ω) (right)

in region I (top) and II (bottom).

Before the interation, the energy Eb,y(kx, ω) is reovered mostly at rela-

tively larger sales and is distributed in two branhes of waves: the Alfvéni

waves branh (smaller phase speed) and the fast magnetosoni waves branh
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Figure 2.7: (Color online) Contour plots of the Logarithm of the magneti energy

spetra in the spetral spae. Left olumn displays Eb,y(kx, ω) = 〈Eb(k, ω)〉ky in

the plane kx − ω in the temporal region I (a) and II () while the right olumn

reports Eb,x(ky, ω) = 〈Eb(k, ω)〉kx in the plane ky − ω in the temporal region I (b)

and II (d).

(larger phase speed). It is worth noting that, sine the bakground mag-

neti �eld is quasi-perpendiular to the propagation plane, the Alfvén speed

is muh smaller ompared to the Fast magnetosoni phase speed, while the

oexistene of di�erent waves branhes before the main interation of the two

wave pakets on�rms that our initial perturbations are not purely Alfvéni

eigenmode but also ontain some magnetosoni �utuations. Moreover, some

Bernstein �utuations are also present along the fast waves branh at high

frequenies. On the other hand, the energy Eb,x(ky, ω) is quite loalized

around ω = 0.

During the wave pakets ollision, the nonlinear ouplings transfer energy

towards small sales. The energy transfer an be easily appreiated in the
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bottom panels of Fig. 2.7. Indeed, both Eb,y(kx, ω) () and Eb,x(ky, ω) (d)

exhibit a distribution of energy muh more populated at high wavenumbers

with respet to the energy distribution in the region I. The distribution of

energy is signi�antly spread in the spetral spae and does not rigidly follow

dispersion relations: a one-like region is populated along the kx diretion,

while a wide blob is overed in the ky diretion. This suggests that the wave

pakets interation annot be simply desribed in terms of weakly nonlinear

ouplings ourring along the dispersion relation, but o�-dispersion ouplings

and strong turbulene ativity are also important. Note that the presene

of standard dispersion relations is weakened even after a single ollision: the

senario would be muh more omplex if wave pakets ould interat several

times or for a longer time period.

To better point out the fat that, during the wave pakets interation,

o�-dispersion hannels are populated as a result of strong turbulene, Fig.

2.8 reports the pro�le of Eb,y(kx = k∗, ω) as a funtion of ω and at a given

kx = k∗ = 15.3 = 1.5kdp, while the inset of Fig. 2.8 reports Eb,x(ky = k∗, ω)

as a funtion of ω and at a given ky = k∗ = 15.3 = 1.5kdp. Fig. 2.8 essentially

represents a ut of Figs. 2.7 at a given wavenumber, indiated with a green

dashed line in Fig. 2.7. Red and blak lines in Fig. 2.8 refer to the temporal

windows before (I) and after (II) the wave pakets ollision, respetively. As

it an be easily appreiated from Figs. 2.7(a�), the range of ω has been

opportunely hosen to fous on Alfvéni �utuations.

Before the ollision (red line), the energy is onstrained in a relatively

narrow band whose width is about few ω0 ≃ 2π/T . Then, after the wave

pakets interation (blak line), the energy is instead signi�antly spread (the

populated frequeny band width inreases about a fator 5). This on�rms

that the energy �ows towards smaller sales far from the weakly nonlinear

oupling predition. Furthermore, the amplitude of Eb,y(kx = k∗, ω) inreases

for all the frequenies range showed in Fig. 2.8, thus representing, again,

the prodution of small sales �utuations obtained during the wave pakets

interation.

Finally, the energy assoiated with strutures at ω = 0 signi�antly in-

reases after the ollision; this suggests that turbulent stationary strutures
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Figure 2.8: (Color online) Plot of Eb,y(kx = k∗, ω), being k∗ = 15.3, as a funtion

of ω in the region I (blak) and II (red). The small inset plots Eb,x(ky = k∗, ω) as
a funtion of ω in the region II.

have been generated during the wave pakets interation. A seond signature

onerning the prodution of stationary �utuations an be also observed in

Fig. 2.7() and in the inset of Fig. 2.8, where the energy is peaked at ω ≃ 0,

similarly to some reent solar wind observations [97℄.

2.3 Summary

To summarize, we foused on the HVM simulation and we desribed the

presene of kineti e�ets and the harateristis of the turbulene generated

in the Alfvéni wave paket ollisions. A ertain degree of non-Maxwellianity

is also reovered before the interation as a byprodut of the initial ondition

whih is not an exat HVM solution. However, several kineti e�ets indi-

ators suggest that kineti signatures are more intense during the ollision,

due to the nonlinear oupling mehanisms whih populate smaller sales. We

also investigated the wave pakets interation in terms of waves ativity and

strong turbulene. We found that the wave approah an be suessfully

42



Kineti turbulene generated by Alfvén wave ollisions

applied to small amplitude �utuations identi�ed as KAWs, while a deeper

omprehension must also onsider the presene of strong turbulene features

suh as the weakening and the broadening of the dispersion relations and the

prodution of quasi-stationary ω = 0 �utuations.
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Disussion

Here we summarize the aim whih led us to onsider the problem of two

ounter-propagating A�véni wave pakets and the main results obtained.

We arried out a omparative study using di�erent plasma simulation meth-

ods to examine the dynamial evolution that aompanies the interation or

�ollision� of two oppositely propagating wave pakets. In partiular, we de-

sribed the wave pakets interation by means of MHD, Hall MHD and hybrid

kineti simulations of the same physial on�guration. Kineti simulations

have been performed with two di�erent odes: an Eulerian Vlasov-Maxwell

ode [40℄ and hybrid Partile-in-ell ode [27℄. This preliminary examination

of the fate of the Mo�att and Parker onjeture in the ontext of ompress-

ible as well as dispersive and kineti models has produed a satisfatory, if

not omplete, piture. The basi physis of large amplitude Alfvén waves

ollisions as envisioned by Mo�att and Parker [5, 6℄ is reovered, however

several intriguing harateristis emerge as one move beyond the ideal MHD

treatment and the dynamis beomes more omplex.

In eah simulation, the interations and the strutures produed in the

ollision are su�iently omplex that it is di�ult to determine whether the

wave pakets atually attain a full separation after the ollision. Indeed,

we note that very omplex urrent and vortiity strutures are produed at

small sales and these �utuations are indiative of a spread of energy in

the wave vetors plane, whih is almost perpendiular to B0. The energy

spetra evolve toward isotropy in this plane, although one would expet a

degree of spetral anisotropy to persist due to the presene of the weak in-

plane magneti �eld. Furthermore, to the extent that the interation of the

pakets has a �nite lifetime, any suh relaxation would be expeted to be
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inomplete in a single interation time.

In addition, we reall that in the inompressible ideal MHD ase, the ross

heliity is onserved, so that after the ollision in that ase, the separated

wave pakets will eah ontain the same energy that was present in the initial

state. However, ross-heliity is not preserved in the Hall and kineti ases

sine dispersive and kineti e�ets are at work in the simulations and a

signi�ant variation is observed during the interation.

Note that we also analyzed the same physial problem employing sev-

eral theoretial models and numerial models and suh results are of interest

in the ontext of the Turbulent Dissipation Challenge [98℄. The HPIC and

HVM methods should desribe, approximately, the same physis (the hybrid

Vlasov treatment of ollisionless plasma dynamis) and the omparison be-

tween the two odes is interesting from a methodologial perspetive. The

two kineti performed simulations are able to take into aount the dynam-

is whih ours at large spatial sales and their omparison is quite disrete

in this range of sales. However, the HPIC runs laks auray at smaller

spatial sales, thus indiating that the Eulerian approah better desribes

the dynamis of the system at these sales. The omparison is expeted to

beome better if the number of partile per ell in the PIC simulation gets

bigger [28, 34℄.

Based on the last onsideration, we analyzed the prodution of kineti sig-

natures by fousing only on the HVM simulation. Several kineti indiators

show that wave pakets tend to produe kineti e�ets suh as temperature

anisotropies and nongyrotropies also before the main wave pakets inter-

ation. This is related to the fat that the initial ondition, onsisting of

quasi-Alfvéni wave pakets, is not a Vlasov equilibrium and it dynamially

leads to the prodution of kineti features. However, the analysis of kineti

e�ets before and after the main wave pakets ollision indiates that some

kineti features are enhaned by the ollision itself and eah wave paket is

signi�antly haraterized by a strong degree of non-thermal signatures. The

presene of nongyrotropies suggests that desriptions based on redued ve-

loity spae assumptions may partially fail the desription of suh features.

During the wave paket ollision, a beam in the veloity distribution funtion
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is observed to form along the diretion of the loal magneti �eld. This har-

ateristi may onnet our results with the general senario of wave pakets

observed in natural plasmas suh as the solar wind [76℄.

Finally we haraterized the interation of two olliding Alfvéni wave

pakets by means of HVM simulation in terms of wave-like ativity and strong

turbulene signatures. Sine the ratio between the nonlinear time to the

overlapping time allows a quite strong turbulene senario, it is signi�ant

to �gure out whih features of a wave-like approah resist to the strong

turbulent regime and, on the other hand, whih harateristis are lost. We

found that a wave-like analysis, based on polarization and orrelation, is still

useful to haraterize the low-energy ripples reovered in the urrent density

ontour plot whih are assoiated with KAW like �utuations. However

signatures of strong turbulene are also reovered. In partiular the energy

in the ω− k plane is spread after the wave pakets ollision and the presene

of dispersion relations is signi�antly weakened. The energy ontained in the

ω = 0 �utuations also inreases, thus suggesting the prodution of stationary

strutures assoiated with urrent strutures.

The kineti models we implemented to desribe the problem of the two

olliding Alfvéni wave pakets neglets inter-partile ollisions. Within these

approahes, the partile veloity distribution funtion is free to explore the

full veloity spae and exhibits strongly distorted shapes [30, 33, 35℄. Here

we also gave expliit evidene that evident non-Maxwellian signatures are

reovered in the VDF as a result of the wave pakets interation. However,

the presene of out-of-equilibrium VDF pro�les opens a fundamental ques-

tion: sine ollisionality expliitly depends on gradients in veloity spae, an

suh gradients (i.e. �ne strutures) loally enhane the e�et of ollisions?

In other words, where strong gradients in veloity spae are reovered, an

ollisions be negleted? The next part of the thesis will fous on addressing

the answers, whih - as we will see - are extremely di�ult, to these ques-

tions; showing, in partiular, that ollisionality is e�etively enhaned when

one takes into aount the presene of �ne veloity strutures.
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Part II

Beyond the Vlasov approah:

how to introdue ollisions in a

ollisionless plasma

47



Collisions in a ollisionless plasma

In the previous part of this thesis we extended the problem of two olliding

Alfvéni wave pakets, previously investigated within a �uid approah, to

the ollisionless, kineti plasma physis framework, where the distribution

funtion is let free to explore the full veloity spae. We showed that, when

the typial sales of kineti proesses are reahed, the distribution funtion

beomes strongly distorted as a onsequene of suh mehanisms. We propose

here to make a step forward into the omprehension of the plasma dynamis

by taking into aount inter-partile ollisions.

The desription of ollisional e�ets in plasmas represents historially a

huge sienti� topi in whih signi�ant numerial and theoretial e�orts

have been made even in reent years. In a weakly ollisional plasma, suh as

the solar wind, ollisions are usually onsidered far too weak to produe any

signi�ant e�et on the plasma dynamis [12℄. However, several observations

indiate that the solar wind is inessantly heated during its travel through

the heliosphere. Indeed, the temperature deay along the radial distane

is muh slower than the preditions of adiabati models of the solar wind

expansion [117, 118, 119, 120℄. Hene, some loal heating mehanisms play

a signi�ant role to supply the energy needed to heat the plasma.

Numerous senarios have been proposed to understand the plasma heat-

ing (See [12℄ and referenes therein). Among these proesses, turbulene

e�iently ontributes to the loal heating of solar wind [119, 121, 122℄, sine

the energy transfer towards small sales - where dissipative proesses are

at work [123℄ - is more e�ient as the �ow beomes more turbulent. On

the other hand, a long-standing debate about whih dissipative proesses

are preferred by the plasma is still waiting for a lear and de�nitive answer.

Many of the proposed models are often based on the ollisionless assump-

tion, justi�ed beause the Spitzer-Harm ollisional time [124℄ is muh bigger

than other dynamial times. However, some important aveats should be

expliitly introdued.

Firstly, any ollisionless mehanism laks the ultimate part of the de-

sription of the heating proess, that is the prodution of heat related to the

irreversible approah towards the thermal equilibrium (i.e. to the dissipation

of phase spae strutures). Several proesses (e.g. nonlinear waves) are in
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fat able to inrease the partile temperature, evaluated as the seond or-

der moment of the partile distribution funtion. However, the free energy

ontained in the VDFs is not in general onverted into heat but it an be

also transformed in other forms of ordered energy (e.g. through miroinsta-

bilities) [125℄. On the other hand, ollisions are the unique mehanism able

to degrade the information ontained in the VDFs free energy into heat by

approahing the thermal equilibrium, thus produing heating in the standard

thermodynamial sense. Seondly, the evaluation of the Spitzer-Harm olli-

sional time stritly assumes that the VDF shape is lose to the Maxwellian.

Sine this assumption does not often hold in the solar wind [21, 35℄, the

hypothesis on whih is based the ollisionless assumption may loally fail.

Based on these last onsiderations, numerous studies have been reently on-

duted in order to take into aount ollisional e�ets in a weakly ollisional

plasma suh as the solar wind [49, 62, 63, 126, 127, 128, 129, 130, 131℄.

In these onditions, kineti physis and ollisions are in ompetition be-

tween eah other: the former works to produe deformations of the partile

distribution funtion, while the latter - introdued through a ollisional op-

erator at the right hand-sides of the Vlasov equation - tends to restore the

equilibrium Maxwellian. The evolution of the plasma is, therefore, the result

of the omplex ombination of these two e�ets. The hoie of the partiular

ollisional operator remains an open problem. Numerous derivations from

�rst priniples (e.g. Liouville equation) indiates that the most general olli-

sional operators for plasmas are the Lenard-Balesu operator [54, 55℄ or the

Landau operator [52, 56℄. Both operators are nonlinear �Fokker-Plank�-like

operators whih involve veloity spae derivatives and three-dimensional in-

tegrals. The Landau operator introdues an upper ut-o� of the integrals at

the Debye length to avoid the divergene for large impat parameters, while

the Balesu-Lenard operator solves this divergene in a more onsistent way

through the dispersion funtion. Therefore the Balesu-Lenard operator is

more general ompared to the Landau operator from this point of view. How-

ever, we would remark that both operators are derived by assuming that the

plasma is not too far from the thermal equilibrium, hene both operators

ould lak the desription of inter-partile ollisions in a strongly turbulent
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plasma. Moreover, the numerial approah of the Lenard-Balesu operator is

muh more di�ult than the one of the Landau operator. We also point out

that, as far as we know, an expliit derivation of the Boltzmann operator for

plasmas starting by the Liouville equation does not still exist [132℄. However,

although the adoption of the Boltzmann operator for desribing ollisional

e�ets in plasmas is questionable from a theoretial perspetive, it still re-

mains a quite valid options sine Boltzmann and Fokker-Plank operators

are intrinsially similar [52, 127℄.

In this perspetive, by modeling ollisions with the fully nonlinear Lan-

dau operator [52℄, we reently showed that �ne veloity spae strutures are

dissipated muh faster than global non-thermal features suh as temperature

anisotropy [49℄. In other words, the ollisionality an be e�etively enhaned

by the presene of strong gradients in veloity spae and the presene of ve-

loity spae �ne strutures may break the quasi-Maxwellian assumption on

whih the ollisionless approah is based. The entropy prodution due to the

relaxation of the VDF towards the equilibrium ours on several harater-

isti times - muh smaller than the Spitzer-Harm harateristi time [124℄.

These harateristi times are assoiated with the dissipation of partiular

veloity spae strutures and ould be omparable with other dynamial

times (e.g. miroinstabilities growth rates). Therefore, ollisions ould be

an additional e�ient ingredient to properly desribe the irreversible heating

observed in the solar wind. Sine the presene of suh strong veloity spae

gradients tends to naturally enhane ollisionality, high-resolution measure-

ments of the partile VDF in the solar wind are ruial for a proper de-

sription of heating mehanisms [133℄. Moreover, retaining nonlinearities in

the ollisional operators is also ruial. In fat, we ompared the ollisional

relaxation of an out-of-equilibrium VDF under the e�et of the fully nonlin-

ear Landau operator and of its linearized version. Results indiate that, if

one neglets nonlinearities, harateristi dissipation times are signi�antly

larger than in the ase of the fully nonlinear operator. The dissipation of

suh strutures gets, therefore, slower by linearizing the ollisional operator.

It is worth to remark that these results have been obtained in the ase of a

fore-free homogeneous plasma, beause the simulations the Landau opera-
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tor are highly demanding; hene, they learly need to be on�rmed in the

self-onsistent ase. However, our results, whih are highlighted in Chapter

1, are still signi�ant to provide a step forward in the omprehension of a

tough problem as heating of the solar wind.

Sine the numerial implementation of both Landau and Balesu-Lenard

operators is di�ult from the omputational point of view (e.g. the ompu-

tational ost of the Landau operator in full phase spae is proportional to

N9
, being N the gridpoints number along eah diretion), several simpli�ed

operators have been previously employed. We may distinguish these simpler

operators in two lasses. The �rst type of operators - as the Bathanar-

Gross-Krook [57, 61℄ and the Dougherty operators [58, 59, 64, 129℄ - aims

to model ollisions in the realisti three-dimensional veloity spae but by

adopting a simpler struture of the operator. On the other hand, the seond

lass of ollisional operators works in a redued, one-dimensional veloity

spae assuming that the dynamis mainly our in one diretion. Although

this approah is �unphysial� (ollisions naturally at in three dimensions),

these operators an satisfatorily model ollisions in laboratory systems, suh

as the long and thin plasma olumns ontained in Penning-Malmberg trap

devies [62, 63, 134, 135, 136℄, where the dynamis evolves along only one

diretion.

In Chapter 2 we fous on the Dougherty operator. First, we ompare

the Dougherty operator with the Landau operator through a numerial in-

vestigation of the relaxation toward equilibrium of a spatially homogeneous

plasma in absene of �elds, in full three-dimensional geometry in veloity

spae. Even though the mathematial form of the two ollisional operators

is evidently di�erent, we found that the ollisional evolution of the relevant

moments of the partile distribution funtion (temperature and entropy) are

similar in the two ases, one an �ad ho� time resaling proedure has been

performed. This time resaling results, in pratie, in dividing the ollisional

frequeny in the Dougherty operator by a fator α ≃ 3.55, whose value has

been determined empirially from the numerial simulations. Then, sine the

Dougherty operator requires a signi�antly lighter omputational e�ort with

respet to the omplete Landau integral, self-onsistent plasma simulations
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in presene of ollisions an be a�orded, even in the multi-dimensional phase

spae geometry. We show results of self-onsistent ollisional simulations of

a plasma omposed of kineti eletrons and immobile protons, in a nonlinear

regime and in the ase of weak ollisionality. We fous, in partiular, on the

onomitant role of ollisions and kineti e�ets for the ases of i) the linear

and nonlinear evolution of the bump-on-tail instability and ii) the exita-

tion of the so-alled Kineti Eletrostati Eletron Nonlinear (KEEN) waves

[137, 138℄.

Then, in Chapter 3, we desribe the evolution of a weakly-ollisional

plasma in the redued 1D�1V phase spae by fousing on two separate prob-

lems. First, we study the e�et of arti�ial ollisions on the reurrene of

the initial states. Collisions are here modeled through the Lenard-Bernstein

operator [139℄. By deomposing the linear Vlasov-Poisson system in the

Fourier-Hermite spae, the reurrene problem is investigated in the linear

regime of the damping of a Langmuir wave and of the onset of the bump-on-

tail instability. The analysis is then on�rmed and extended to the nonlinear

regime through a Eulerian ollisional Vlasov-Poisson ode. Despite being

routinely used, an arti�ial ollisionality is not a viable way of preventing re-

urrene in numerial simulations without ompromising the kineti nature

of the solution. Moreover, it is shown how numerial e�ets assoiated to

the generation of �ne veloity sales, an modify the physial features of the

system evolution even in nonlinear regime. This means that �lamentation-

like phenomena, usually assoiated with low amplitude �utuations ontexts,

an play a role even in nonlinear regime.

Finally, we analyze the method adopted in laboratory plasmas for trigger-

ing �utuations in both a ollisionless and weakly ollisional plasma. When

exiting Eletron Aousti Waves, we �nd that a new branh of small am-

plitude, nonlinear and non dispersive waves is reovered. The generation of

these waves is disussed in detail as well as their existene in a weakly ol-

lisional plasma. Indeed, also for small ollisionality values, these seondary

waves are suddenly dissipated, while the main eletron-aousti waves branh

undergoes an exponential damping omparable with experimental observa-

tions.
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Chapter 1

Collisional relaxation of �ne

veloity strutures in plasmas

We disuss here the ollisional dissipation of non-Maxwellian features in

the partile veloity distribution funtion in a weakly ollisional plasma, by

means of Eulerian numerial simulations. Due to the nonlinear nature of

the Landau operator, the analytial treatment as well as the self-onsistent

numerial simulations of the Landau operator in 6D phase spae are hard

goal to ahieve yet. Thus, we deided to address the ollisional relaxation of

a spatially homogeneous fore-free plasma and to model ollisions between

partiles of the same speies.

We show here how ollisionality e�ets are inreased as the veloity dis-

tribution funtion exhibits strong gradients in veloity spae [Setion 1.1℄.

Indeed, �ne veloity strutures are dissipated muh faster ompared to global

quantities. Furthermore, the expliit omparison of the e�ets of the nonlin-

ear Landau operator and its linearized version indiates that veloity stru-

tures are smoothed out slowly if nonlinearities are negleted. This suggests

that taking expliitly into aount nonlinearities in the ollisional operator

is ruial to give the proper importane to ollisional e�ets [Setion 1.2℄.

Results shown here have been awarded with the 2016 �V.C.A. Ferraro�

Prize of the Italian Physial Soiety and have been olleted in two sienti�

papers. The �rst paper has been reently published in Physial Review Letter
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[49℄, while the seond one is in press in Journal of Plasma Physis [140℄ as

an invited paper for the �V.C.A. Ferraro� Speial Issue.

1.1 Collisional relaxation of �ne veloity stru-

tures in plasmas

The dimensionless Landau equation for the partile distribution funtion

f(v) reads as follows:

∂f(v)

∂t
= π

(

3

2

)
3
2 ∂

∂vi

∫

d3v′ Uij(u)

[

f(v′)
∂f(v)

∂vj
− f(v)

∂f(v′)

∂v′j

]

, (1.1)

being f normalized suh that

∫

d3vf(v) = n = 1 and Uij(u)

Uij(u) =
δiju

2 − uiuj

u3
, (1.2)

where u = v − v
′
, u = |u| and the Einstein notation is introdued. In Eq.

(1.1), and from now on, time is saled to the inverse Spitzer-Harm frequeny

ν−1
SH [124℄, being νSH ≃ 8× (0.714πne4 ln Λ)/(m0.5(3kBT )

3/2), and veloity to

the partile thermal speed vth =
√

kBT/m. Note that m, e, n and T are the

partile mass, harge, density and temperature, while kB is the Boltzmann

onstant and lnΛ is the Coulombian logarithm. Details about the numerial

solution of Eq. (1.1) an be found in Ref. [64℄.

We initially onsider the mutual e�et of a loal deformation of the par-

tile VDF (a plateau) and the global temperature anisotropy, by omparing

the evolution of two initial VDFs:

f1(v) = C1fM,T⊥
(vx)fM,T⊥

(vy)fp,T‖
(vz) , (1.3)

f2(v) = C1fM,T⊥
(vx)fM,T⊥

(vy)fM,T‖
(vz) , (1.4)

where C1 and C2 are normalization onstant. The total temperature T ,

where T = v2th in dimensionless units, is given by T = (T‖ + 2T⊥)/3 and

A = T⊥/T‖ = 2. Finally fM,Ti
is a generi Maxwellian with temperature Ti
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Figure 1.1: (a) Time evolution of T⊥ and T‖ for the ase of f1(v) (blak-solid line)

and f2(v) (red-dashed line). (b) Time evolution of ∆S for the ase of f1(v) (blak-
solid line) and f2(v) (red-dashed line). The vertial blue-dashed line in panels (a)�

(b) indiates the time instant t = τ1. () Distribution funtion f1(vx = vy = 0, vz)
as a funtion of vz at t = 0 (blak-solid line) and at t = τ1 (red-dashed line).

and [63, 129℄:

fp,T‖
(vz) = fM,T0(vz)−

fM,T0(vz)− fM,T0(V0)

1 + [(vz − V0)/∆Vp]np
(1.5)

where T0 = 1, V0 = 1.44, ∆Vp = 0.5 and np = 8. The funtion fp,T‖
(vz) is

onstruted in suh a way to have a plateau of width∆Vp around v = V0, that

is f ′
p,T‖(vz) is about null in the interval V0 −∆Vp/2 <≃ vz <≃ 2V0 +∆Vp/2,

being exatly zero at vz = V0. Note that the plateau represents one of the

most ommon non-Maxwellian features generated by nonlinear wave-partile

interations.

It is worth to note that f1(v) is a bi-Maxwellian funtion, while f2(v) is

Maxwellian in the perpendiular diretions with a plateau entered in vz = V0

in the parallel diretion. We also point out that f1(v) and f2(v) have the

same temperature (seond order moment) in eah diretion. Moreover, for

the funtion f1(v), we reset the small mean veloity (≃ 10−2
) produed

by the presene of the plateau. The three-dimensional veloity domain is

disretized with Nvx = Nvy = 51 and Nvz = 1601 grid points. We point

out that the resolution along vz has been inreased signi�antly in order to

resolve the short veloity sales assoiated with the plateau presene. Finally,

the distribution funtion is set equal to zero for |vj| > vmax = 6vth, being

j = x, y, z.

As shown in Fig. 1.1 (a), the time evolution of parallel and perpendiular
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Figure 1.2: (a) Dependene of fe on vz. (b) Time history of ∆S. Red dots in panel

(b) indiate the time instants t = τ1, t = τ1 + τ2, t = τ1 + τ2 + τ3.

temperatures of f1(v) (blak-solid line) and f2(v) (red-dashed line) is learly

the same. On the other hand, the evolution of the entropy variation ∆S =

S(t)−S(0) (S = −
∫

f ln fdxdv), reported in Fig. 1.1(b), displays signi�ant

di�erenes. In partiular, for f1(v) (blak-solid urve), the ase in whih

a plateau is present, ∆S saturates at a larger level than that reovered for

f2(v) (red-dashed urve). In order to investigate the reasons of suh di�erent

behavior of the entropy for f1(v) and f2(v), we performed a multi-exponential

�t [141℄ of ∆S for the two ases, with the following urve:

∆S(t) =

K
∑

i=1

∆Si

(

1− e−t/τi
)

, (1.6)

τi being the i�th harateristi time and K is evaluated through a reursive

proedure.

From this analysis, we found that, while for the ase of f2(v) [red-dashed

urve of Fig. 1.1(b)℄ ∆S shows an exponential growth with a single har-
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Figure 1.3: Distribution funtion f(vx = 0, vy = 0, vz) as a funtion of vz at t = τ1
(a), t = τ1 + τ2 (b) and t = τ1 + τ2 + τ3 (). Red dashed lines in panels (a)�()

indiate the equilibrium Maxwellian �nally reahed in the simulation.

ateristi time (τ ≃ 2ν−1
SH), for f1(v) [blak-solid urve of Fig. 1.1 (b)℄, i.

e. in the presene of a plateau, two di�erent harateristi times are reov-

ered: a fast harateristi time τ1 = 0.14ν−1
SH [indiated in Fig. 1.1(a)�(b)

by a vertial blue-dashed line℄ in whih 25% of the total entropy growth is

ahieved, and a slow harateristi time τ2 = 2.03ν−1
SH during whih the re-

maining 75% of the total entropy growth is observed. We argue that the

existene of the harateristi time τ1 is due to the presene of the plateau,

and in partiular it is assoiated with the sharp veloity gradients in f1(v),

while τ2 is related to the initial temperature anisotropy. In fat, as it an be

seen in Fig. 1.1() where f1(vx = vy = 0, vz) is plotted as a funtion of vz

at t = 0 (blak-solid line) and at t = τ1 (red-dashed line), the initial plateau

is ompletely smoothed out by ollisional e�ets in a time lose to τ1, while

from Fig. 1.1(a) one realizes that at t ≃ τ1 the temperature anisotropy is

still present.

To further support the idea that the presene of sharp veloity gradients

in the partile VDF auses the entropy to grow over di�erent time sales,

we made an additional numerial experiment of ollisional relaxation, on-

sidering a di�erent initial ondition for Eq. (1.1). This new initial ondition

has been designed as follows. Firstly, we performed a 1D�1V Vlasov-Poisson

simulation (kineti eletrons and motionless protons) with high numerial

resolution in the z− vz phase spae domain (Nz = 256, Nvz = 1601). In this

simulation, we externally fored the system, initially at equilibrium, through

a sinusoidal driver eletri �eld, in order to exite a large amplitude ele-
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tron aousti wave (EAW) [142℄, as it has been done numerially in Refs.

[137, 143, 144℄ and in laboratory experiments with nonneutral plasmas in

Refs. [50, 145℄. As disussed in these papers, the propagation of large am-

plitude EAWs is haraterized by the generation of phase spae strutures of

the Bernstein-Green-Kruskal (BGK) type [146℄ in the eletron distribution

funtion fe(z, vz), assoiated with trapped partile populations. Then, we

seleted the spatial point z0 in the numerial domain, where this BGK-like

phase spae struture displays its maximum veloity width, and onsidered

the veloity pro�le f̂e(vz) = fe(z0, vz). In Fig. 1.2(a), we report the depen-

dene of f̂e on vz; here, it an be appreiated that f̂e is highly distorted due

to nonlinear wave-partile interation proesses and displays the presene of

sharp veloity gradients (bumps, holes, spikes et.). At this point, we evalu-

ated the seond order veloity moment of f̂e, that is the temperature Te, and

built up the three-dimensional VDF f(vx, vy, vz) = fM,Te
(vx)fM,Te

(vy)f̂e(vz).

We emphasize that this VDF has the same temperature in eah veloity di-

retion, but presents strong non-Maxwellian deformations along vz, as shown

in Fig. 1.2(a), whih make the system to be far from equilibrium. The time

history of∆S, obtained when using fe as initial ondition for Eq. (1.1), is pre-

sented in Fig. 1.2(b). As in the previous simulations, the three-dimensional

veloity domain in this ase is disretized by Nvx = Nvy = 51 and Nvz = 1601

gridpoints.

By analyzing the entropy growth through the same method of multi-

exponential �t disussed previously, three harateristi times are reovered

in this ase, whose values are reported below, together with the orresponding

perentage of entropy variation:

• τ1 = 3.5 · 10−3ν−1
SH → ∆S1/∆Stot = 13%

• τ2 = 1.3 · 10−1ν−1
SH → ∆S2/∆Stot = 42%

• τ3 = 4.9 · 10−1ν−1
SH → ∆S3/∆Stot = 40%

Charateristi times τ1, τ2 and τ3 are indiated as red diamonds in Fig. 1.2(b).

In Fig. 1.3, we plot f as a funtion of vz for vx = vy = 0, at three di�erent

times t = τ1 (a), t = τ1 + τ2 (b) and t = τ1 + τ2 + τ3 (): during the time
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Figure 1.4: Iso-surfae plot of the initial VDFs fsw(v) [(a)℄, f̃sw(v) [(b)℄ and f̂sw(v)
[()℄, respetively.

τ1, steep spikes visible in Fig. 1.2(a) are almost ompletely smoothed out;

at time τ1+ τ2 the remaining plateau region is signi�antly rounded o�, only

a gentle shoulder being left; �nally, after a time τ1 + τ2 + τ3, the ollisional

return to equilibrium is ompleted for the most part (a small perentage

≃ 5% of the total entropy growth is �nally reovered for larger times and

orresponds to the �nal approah to the equilibrium Maxwellian, indiated

by red-dashed lines in the three panels of Fig. 1.3).

Compared to the ase shown in Fig. 1.1, here we reovered an additional

extremely fast harateristi time (≃ 10−3ν−1
SH), assoiated with the sharp ve-

loity gradients of f along vz, while we did not detet the large harateristi

time (≃ 2ν−1
SH) assoiated with the temperature anisotropy in the previous

ase.

Numerial experiments disussed so far give a lear message: ollisional

dissipation of small veloity sales in the partile VDF ours over di�erent

time sales, inversely proportional to the sharpness of the veloity gradients

assoiated with those sales. As we disussed above, these harateristi

times an be signi�antly smaller than the Spitzer-Harm ollisional time

[124℄, this meaning that the presene of veloity gradients in fat speeds

up the growth of the entropy of the system. These evidenes suggest that

when the partile VDFs exhibit small veloity sale deformations, the quasi-

Maxwellian approximation, on whih the Spitzer-Harm ollisional evolution

is based, is no longer appropriate.
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In order to explore the impliations of our results to the general ase

of the solar wind plasma, we performed our analysis on a three-dimensional

proton VDF fsw(v), obtained from the hybrid Vlasov-Maxwell [40℄ numerial

simulations of solar wind deaying turbulene desribed in detail in Refs.

[30, 31, 33, 35, 41℄. As shown in Fig. 1.4(a), where the three-dimensional

iso-surfae plot of fsw is reported, kineti e�ets along the asade make the

VDF depart from the spherial shape of Maxwellian equilibrium and resemble

a deformed potato. Then, having in mind to mimi low resolution VDF

measurements by a real spaeraft, we �tted fsw(v) with a tri-Maxwellian

funtion f̃sw(v) [Fig. 1.4(b)℄ and with a bi-Maxwellian funtion f̂sw(v) [Fig.

1.4()℄. In order to point out the loss of physial information aused by

not adequately resolving the sharp veloity gradients in the partile VDFs,

the funtions fsw, f̃sw and f̂sw are used as initial onditions in three new

simulations of Eq. (1.1), in whih the veloity domain is now disretized

by Nvx = Nvy = Nvz = 51 gridpoints, as in the simulations in Refs. [30,

31, 33, 35, 41℄. The results for the entropy growth of these new numerial

experiments are reported in Fig. 1.5, where we show the time evolution of∆S

for the VDFs fsw(v) (blak-solid line), f̃sw(v) (red-dashed line) and f̂sw(v)

(blue-dashed line), respetively.

As for the previous ases disussed above, also here the time history of

∆S is evidently a�eted by the presene of �ne veloity sales and steep

Figure 1.5: Entropy growth for the initial VDFs fsw(v) (blak line), f̃sw(v) (red

line) and f̂sw(v) (blue line), respetively.
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gradients in the partile VDF. Any �tting proedure, whih smooths out the

�ne veloity strutures, redues the entropy growth: in fat, the simulation

with the funtion f̂sw(v) as initial ondition displays a ollisional entropy

growth about 20 times smaller than that reovered for ase of the funtion

fsw(v). Moreover, through the multi-exponential �t analysis performed on

∆S for the simulation initialized with fsw, we found two harateristi times:

a fast one τ1 = 0.20ν−1
SH, in whih 26% of the total entropy growth is ahieved,

and a slow one τ2 = 0.82ν−1
SH, during whih the remaining 74% of the total

entropy growth is observed. By analyzing VDF iso-surfae plots (not shown

here) at di�erent times in the simulation, we realized that after a time t = τ1

ollisions have dissipated most of the sharp veloity gradients whih were

initially present in the VDF. We point out that, sine the numerial resolution

for this simulation is about �fty times smaller than in the previous ase,

sharp veloity gradients [as those shown in Fig. 1.2 (a)℄ are not visible in the

partile VDF, even though it displays signi�ant non-Maxwellian features

[see Fig. 1.4 (a)℄. Hene, the lak of veloity resolution presumably does

not allow to reover the extremely fast harateristi time (≃ 10−3ν−1
SH) in

the evolution of ∆S, observed for the simulation initialized with the veloity

pro�le in Fig. 1.2 (a).

1.2 Nonlinear and linearized ollisional opera-

tors

The seond aspet analyzed here onerns the nonlinearities of ollisional

operators. As introdued above, the Landau operator involves strong non-

linearities and, despite ollisional operators are quite often simpli�ed to their

linearized versions, it is signi�ant to onsider nonlinearities. Indeed, a lin-

earized operator may hide or redue the importane of veloity spae gra-

dients. Therefore, we present a ase study where we fous on one of the

initial onditions desribed in the previous setion and we ompare its evolu-

tion, obtained through the fully nonlinear Landau operator and its linearized

version, in a fore-free homogeneous plasma.
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Under these assumptions, we numerially integrate the following dimen-

sionless ollisional evolution equations for the partile distribution funtion

f(v, t):

∂f(v, t)

∂t
= π

(

3

2

)
3

2 ∂

∂vi

∫

d3v′ Uij(u)

[

f(v′, t)
∂f(v, t)

∂vj
− f(v, t)

∂f(v′, t)

∂v′j

]

(1.7)

∂f(v, t)

∂t
= π

(

3

2

)
3

2 ∂

∂vi

∫

d3v′ Uij(u)

[

f0(v
′)
∂f(v, t)

∂vj
− f(v, t)

∂f0(v
′)

∂v′j

]

(1.8)

being f normalized suh that

∫

d3vf(v) = n = 1 and Uij(u) the projetor

de�ned in Eq. (1.2). In Eqs. (1.7�1.8), and from now on, time is saled

to the inverse Spitzer-Harm frequeny ν−1
SH [124℄ and veloity to the partile

thermal speed vth. Details about the numerial solution of Eqs. (1.7�1.8) an

be found in Refs. [49, 64℄. Moreover, in Eq. (1.8), f0 is the three-dimensional

Maxwellian distribution funtion assoiated with the initial ondition of our

simulations f(v, t = 0) and built in suh a way that density, bulk veloity

and temperature of the two distributions f(v, t = 0) and f0(v) are the same.

Clearly the two equations di�er beause Eq. (1.7) refers to the nonlinear

Landau operator, already adopted in Set. 1.1, while Eq. (1.8) evolves the

linearized Landau operator, obtained by linearizing the Fokker-Plank oe�-

ients of Eq. (1.7). Veloity domain disretization and boundary onditions

are the same as in the previous setion.

For the urrent simulations, we hose as initial ondition one of the initial

onditions adopted in the previous setion. In partiular, we seleted the one

obtained as a ut of a 1D�1V Vlasov-Poisson simulation where KEEN waves

are triggered. The shape of the 1V ut of the partile distribution funtion

an be appreiated in Fig. 1.2(a). We remark that this VDF does not initially

exhibit any temperature anisotropy but it still shows strong non-Maxwellian

deformations along vz, due to the presene of trapped partiles.

Figure 1.6 reports the temporal evolution of the entropy variation ∆S =

S(t)−S(0) (S = −
∫

f ln fd3v), whih gives information about the approah

towards equilibrium. Blak and red lines respetively refer to the ase of the

fully nonlinear Landau operator and the linearized operator. Sine the initial

ondition is the same for both operators, the total growth of entropy ∆S is
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the same in terms of absolute values. In the ase where nonlinearities are

taken into aount the entropy grows muh faster ompared to the linearized

operator ase. Indeed, in the ase of the full Landau operator, the total

entropy growth is reahed in about 1÷2ν−1
SH ; while, for the linearized Landau

operator, the entropy grows on 4÷ 5ν−1
SH .

To better point out how the dissipation of �ne veloity spae strutures

is a�eted by the presene of the nonlinearities, we performed the multi-

exponential �t of ∆S presented in the previous setion [49, 141℄. When

ollisions are modeled by means of the fully nonlinear Landau operator, we

already found that three harateristi times are reovered:

• τnl1 = 3.5 · 10−3 ν−1
SH → ∆Snl

1 /∆Stot = 13%

• τnl2 = 1.3 · 10−1 ν−1
SH → ∆Snl

2 /∆Stot = 42%

• τnl3 = 4.9 · 10−1 ν−1
SH → ∆Snl

3 /∆Stot = 40%

As disussed in the previous Setion, the presene of several harateristi

times is assoiated with the dissipation of di�erent veloity spae strutures.

Fig. 1.7 reports f(vx = vy = 0, vz) as a funtion of vz at the time instants

Figure 1.6: (Color online) Time history of ∆S in the ase of the fully nonlinear

Landau operator (blak) and the linearized Landau operator (red). Blue diamonds

indiate the time instants t = τnl1 , t = τnl1 + τnl2 and t = τnl1 + τnl2 + τnl3 ; the green

triangles refer to t = τ lin1 , t = τ lin1 + τ lin2 and t = τ lin1 + τ lin2 + τ lin3 .
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Figure 1.7: Distribution funtion f(vx = 0, vy = 0, vz) as a funtion of vz, obtained
in the ase of the fully nonlinear Landau operator. Panels from (a) to (d) respe-

tively display the time instants t = τnl1 (a), t = τnl1 + τnl2 (b), t = τnl1 + τnl2 + τnl3

() and t = tfin (d).

t = τnl1 (a), t = τnl1 + τnl2 (b), t = τnl1 + τnl2 + τnl3 () and t = tfin (d). These

time instants are displayed in Fig. 1.6 with blue diamonds.

The same analysis performed in the ase of the linearized Landau operator

(red line of Fig. 1.6) indiates that, as in the nonlinear operator ase, three

harateristi times are obtained. The values of these harateristi times

are, however, muh di�erent ompared to the ones previously reovered:

• τ lin1 = 1.1 · 10−2 ν−1
SH → ∆Slin

1 /∆Stot = 11%

• τ lin2 = 2.7 · 10−1 ν−1
SH → ∆Slin

2 /∆Stot = 23%

• τ lin3 = 1.5 ν−1
SH → ∆Slin

3 /∆Stot = 63%

Moreover, when looking at the evolution of the distribution funtion, one

an easily �gure out that this is qualitatively similar to the ase of the fully

nonlinear operator. Fig. 1.8(a�d) reports f(vx = vy = 0, vz) as a funtion of

vz at the time instants t = τ lin1 (a), t = τ lin1 + τ lin2 (b), t = τ lin1 + τ lin2 + τ lin3

() and t = tfin (d). These time instants are displayed in Fig. 1.6 with

green triangles. As reovered in the fully nonlinear operator ase, the initial
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spikes in the initial ondition are �attened after the time t = τ lin1 (a). Then,

at t = τ lin1 + τ lin2 (b), the plateau is rounded o�. Finally, after a time

t = τnl1 + τnl2 + τnl3 (), the ollisional relaxation to equilibrium is almost

ompleted and a very small perentage ≃ 3% of the total entropy growth is

�nally reovered for larger times and orresponds to the �nal approah to

the equilibrium Maxwellian (d).

Sine several harateristi times are reovered in both ases, we an

argue that fully nonlinear and linearized operators are both able to reover

the harateristi that �ne veloity spae strutures are dissipated faster as

their sale gets �ner (e.g. as the veloity spae gradients beome stronger).

However, the speed at whih suh strutures are smoothed out is signi�antly

weakened if one neglets nonlinearities: eah harateristi times reovered

in the ase of a linearized operator is signi�antly bigger (about 2÷ 5 times)

than the orrespondent harateristi times reovered with the fully nonlinear

operator. It is also worth mentioning that the amount of entropy prodution

due to di�erent veloity strutures also hanges by ignoring nonlinearities:

in the ase of the fully nonlinear Landau operator about 55% of the total

Figure 1.8: Distribution funtion f(vx = 0, vy = 0, vz) as a funtion of vz, obtained
in the ase of the linearized Landau operator. Panels from (a) to (d) respetively

display the time instants t = τ lin1 (a), t = τ lin1 + τ lin2 (b), t = τ lin1 + τ lin2 + τ lin3 ()

and t = tfin (d).
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entropy is due to the dissipation of the initial spikes and to the rounding of

the suessive plateau, while - in the linearized operator ase - only about the

30% of the total entropy is due to these two proesses. Hene a signi�ant

di�erene between the two operators is reovered and, bearing in mind to

ompare the ollisional harateristi times with other dynamial times, it is

fundamental to properly attribute the importane of ollisions by taking into

aount the nonlinearities present in the ollisional integral.

1.3 Summary

To summarize, we here disussed the role of the VDF �ne veloity stru-

tures in enhaning the plasma ollisionality. In partiular, by means of Eule-

rian simulations of ollisional relaxation of a spatially homogeneous fore-free

plasma, we have shown that the system entropy growth ours over several

time sales, whih gets smaller as VDF gradients beome steeper. We re-

ported lear evidenes that these gradients are dissipated by ollisions in a

time muh shorter than that assoiated with global non-Maxwellian features,

e.g. temperature anisotropies. This harateristi time may be omparable

or even smaller than the instability growth rates invoked to explain the SW

anisotropi VDFs [147, 148℄ or than the nonlinear dynamis times, as re-

ently disussed through a lassial treatment of ollisions [131℄. We �nally

pointed out how the laks of resolution in the VDFs measurements mask a

relevant part of physial information hidden in the sharp veloity gradients

of the non-Maxwellian VDFs, observed ubiquitous, for example, in the SW

[21, 25℄. Future spae missions, planned to inrease both energy and angu-

lar resolutions of the VDFs measurements, will provide ruial insights for

the longstanding problems of plasma heating and partile energization in the

interplanetary medium.

Moreover, fousing on the omparison of the full Landau operator and its

linearized version, we showed that both nonlinear and linearized ollisional

operators are able to detet the presene of several time sales assoiated with

the ollisional dissipation of small veloity sales. This an be explained

by the fat that the linearized operators also involve derivatives while do
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not take into aount the �seond-order� gradients related to the Fokker-

Plank oe�ients of the Landau operator, whih may in�uene the absolute

value of suh times. For both evolutions, the reovered harateristi times

are signi�antly smaller than the Spitzer-Harm ollisional time [124℄, this

meaning that the presene of sharp veloity spae gradients speeds up the

entropy growth of the system. However, the importane of suh harateristi

times is signi�antly a�eted and, in general, weakened if nonlinearities are

ignored in the ollisional operator. In the ase of a linearized ollisional

operator, one obtains muh slower harateristi times with respet to the

ase where operator nonlinearities are taken into aount. Therefore, we

onlude that the presene of nonlinearities in the ollisional operator should

be taken into aount, sine it may a�et the relevane of fast harateristi

times - assoiated with the ollisional relaxation of �ne veloity strutures -

with respet to other dynamial times [131, 147, 148℄.
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Chapter 2

Collisional e�ets desribed

through simpli�ed ollisional

operators: the Dougherty

operator

As desribed in the Introdution of the urrent part of this thesis, self-

onsistent ollisional simulations where ollisions are modeled by the fully

nonlinear Landau operator annot be easily performed due to the ompu-

tational ost of the Landau integral. Therefore, simpli�ed ollisional oper-

ators are usually onsidered to model ollisionality. Here we fous on the

Dougherty operator, whih has been proposed by Dougherty in 1964 to de-

sribe ollisions among partiles of the same speies in 3D�3V physial sys-

tems [58, 59℄.

Even though the Dougherty operator has been set up in a phenomeno-

logial way, it satis�es the main properties of a good ollisional operator

[134, 135℄:

• it vanishes for any thermal equilibrium distribution funtion and it dis-

plays the Maxwellian distribution funtion as a long-time limit solution;

• it onserves partile number, momentum and energy;
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• it desribes the dominane of small-angle sattering through a veloity-

spae di�usion term.

However, sine the Dougherty operator is expliitly phenomenologial and it

has not been formally derived from the Landau ollisional operator, �rstly it

ould give rise to evolution times whih an be di�erent from those predited

by the Landau operator by some numerial fator and seondly it does not

desribe the veloity dependene of the di�usion oe�ients in veloity spae.

Note that the Dougherty operator is signi�antly less time demanding than

the full Landau ollisional integral. In fat, the omputational time tc for

1D�3V (1D in physial spae and 3D in veloity spae) Eulerian simulations

whih inlude the full Landau operator sales as tc ∼ N7
(where N is the

number of gridpoints, assumed, for simpliity, to be the same for eah phase-

spae oordinate); for the Dougherty operator, the saling is tc ∼ N4
; this

signi�ant redution of tc allows to run numerial experiments of the self-

onsistent eletrostati dynamis of a ollisional plasma in 1D�3V geometry.

For this reason, in Setions 2.1 and 2.2, we try to fae the �rst problem by

analyzing the behavior of the Dougherty operator [58℄, as ompared to that

of the omplete Landau integral, through a numerial investigation of the

relaxation toward equilibrium of a spatially homogeneous plasma in absene

of �elds, in full three-dimensional geometry in veloity spae. To perform

this analysis, we desribe numerially the return to equilibrium of several

non-Maxwellian veloity distributions, and ompare quantitatively the time

evolution of the veloity distribution itself and of temperature and entropy.

Interestingly enough, for the ases disussed in this thesis, the system evolu-

tion obtained when ollisions are modeled through the Dougherty operator

results very similar to the ase where the full Landau integral is employed,

provided an �ad ho� time resaling is performed. This time resaling results,

in pratie, in dividing the plasma parameter g in the Dougherty operator

by a fator α ≃ 3.55, whose value has been determined empirially from the

numerial simulations. We point out that, due to the omputational ost of

the numerial approximation of the Landau integral, this analysis ould not

be performed in situations of self-onsistent plasma evolution, not even in

eletrostati approximation.
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In Setion 2.3, one the relationship between the Landau and Dougherty

operators has been established, we employ the Dougherty operator to model

partile ollisions, resaling the plasma parameter as disussed above and

making the assumption that this proedure works to mimi the Landau in-

tegral also in self-onsistent eletrostati situations. We analyze two ases

of the eletrostati dynamis of a plasma omposed of kineti eletrons and

immobile protons, in a nonlinear regime and in the ase of weak ollisionality.

We fous, in partiular, on the onomitant role of ollisions and kineti ef-

fets in shaping the partile distribution funtion, whih, in turn, determines

the plasma evolution. We performed our analysis in two spei� ases: the

linear and nonlinear evolution of the bump-on-tail instability and the exi-

tation of KEEN waves [137, 138℄. We emphasize that our numerial results

an be relevant for laboratory plasma experiments, in whih ollisional e�ets

are weak but often not negligible. We point out also that our numerial sim-

ulations retain only eletron-eletron ollisions, negleting eletron-proton

interations and eletron ollisions with heavy partiles [56℄.

Results shown here have been olleted in two sienti� papers reently

published in Journal of Plasma Physis [64℄ and Physis of Plasmas [129℄.

2.1 Landau and Dougherty ollisional opera-

tors

We onsider here the ollisional relaxation of a plasma in presene of ollisions

among partiles of the same speies (eletron-eletron or ion-ion). We assume

that the plasma is spatially homogeneous and no �eld (self-onsistent or

external) is present.

The expliit form of the Landau operator, in dimensionless units, is the

following:

∂f

∂t

∣

∣

∣

∣

coll

=
g ln Λ

8π

∂

∂vi

∫

d3v′ Uij(u)

[

f(v′)
∂f(v)

∂vj
− f(v)

∂f(v′)

∂v′j

]

, (2.1)

f(v) being the partile distribution funtion, normalized suh as

∫

d3v f(v) =
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n = 1, g = 1/nλ3
D the plasma parameter, ln Λ ≃ − ln g/3 the Coulombian

logarithm and Uij(u) the projetor

Uij(u) =
δiju

2 − uiuj

u3
, (2.2)

where u = v−v
′
and u = |u|. For brevity and larity, we avoided to expliitly

indiate the time dependene of the distribution funtion f . Moreover, the

Einstein summation notation has been introdued.

The dimensionless Dougherty operator is the following:

∂f

∂t

∣

∣

∣

∣

coll

=
g ln Λ

8π

n

T 3/2

∂

∂vj

[

T
∂f(v)

∂vj
+ (v − V )j f(v)

]

. (2.3)

where n =
∫

d3vf(v) = 1, V = 1/n
∫

d3v vf(v), T = 1/3n
∫

d3v(v −
V )2f(v) respetively the density, the mean veloity and the temperature

of the plasma.

In the previous equations, time is saled to the inverse plasma frequeny

ωp, lengths to the Debye length λD and veloities to the thermal speed vth.

From now on, all physial quantities will be saled with these harateristi

parameters.

It is worth to remark that both operators exhibit a similar Fokker-Plank

struture, weighted with di�erent oe�ients, satisfy onservation of mass,

energy and momentum and obeys an H-theorem [58, 59, 149℄.

By looking at Eqs. (2.1)-(2.3), one an realize that the projetor Uij(u)

that ouples the veloity v, at whih the Landau ollisional operator is eval-

uated, and the integration variable v
′
is absent in the Dougherty operator.

This signi�antly simpli�es the numerial solution, sine the veloity inte-

grals in the Dougherty operator (n, U and T ) an be evaluated one for eah

time step in the simulation. In the ase of spatially homogeneity, this re-

dues the omputational ost from N6
(Landau operator) to N3

(Dougherty

operator); for the general non-homogeneous ase with three dimensions in

physial spae, the omputational ost dereases from N9
(Landau operator)

to N6
(Dougherty operator).
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2.2 Relaxation toward equilibrium: a numeri-

al omparison

To begin this setion, we shortly disuss the numerial strategy adopted

to solve the ollisional time evolution equation for the partile distribution

funtion:

∂f

∂t
=

∂f

∂t

∣

∣

∣

∣

coll

, (2.4)

where ∂f/∂t|coll is given by Eq. (2.1) for the ase of the Landau operator and

by Eq. (2.3) for the Dougherty operator. We will refer to Eq. (2.4) as the

Landau or the Dougherty equation, depending on whih ollisional operator

is used in the right-hand side.

The veloity derivatives in both Landau and Dougherty operator are eval-

uated numerially through a sixth-order entered �nite di�erene sheme

[62, 63℄, while for the time derivative a �rst-order Eulerian sheme has been

employed. The expliit expressions of the shemes for the veloity derivatives

are the following:

∂f

∂vj

∣

∣

∣

∣

i

=
−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi+3

60∆vj
,(2.5)

∂2f

∂v2j

∣

∣

∣

∣

i

=
2fi−3 − 27fi−2 + 270fi−1 − 490fi + 270fi+1 − 27fi+2 + 2fi+3

180∆v2j
;(2.6)

i being a generi grid point along the veloity diretion j and ∆vj the mesh

size along the j-th veloity diretion.

In the numerial veloity domain, f is set equal to zero for |v| > vmax,

where vmax = 6vth,m along eah diretion, where vth,m = max {vth,‖, vth,⊥}.
The number of grid points used to disretize the veloity numerial domain

has been hosen suh that the ratio∆vj/vth,j is almost onstant for j = x, y, z.

We typially use 101 grid points in vz and 51 grid points in vx and vy.

The time step∆t is hosen in suh a way to satisfy the Courant-Friedrihs-

Levy ondition for the numerial stability of time expliit �nite di�erene

shemes [150℄.

In the following Subsetions, we will desribe the omparison between
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Landau and Dougherty operators in di�erent ases, i. e., initializing the om-

putation with di�erent initial partile veloity distributions. In Se. 2.2.1 the

evolution of a bi-Maxwellian veloity distribution is disussed. Then, in Se.

2.2.2 we analyze the relaxation of veloity distributions with a plateau and

a beam along one veloity diretion. Finally, in Se. 2.2.3, the evolution of a

more �distorted� veloity distribution, whih omes out from a self-onsistent

1D�1V Vlasov-Poisson simulation of nonlinear wave-partile interation, is

disussed.

2.2.1 Bi-Maxwellian veloity distribution

We onsider the following bi-Maxwellian non-drifting veloity distribution:

f(vx, vy, vz) =
1

(2π)3/2 T⊥

√

T‖

exp

[

−
(

v2x
2T⊥

+
v2y
2T⊥

+
v2z
2T‖

)]

. (2.7)

Here, the subsript ‖ indiates the z diretion, while x and y are the

perpendiular (⊥) diretions. We de�ne the temperature anisotropy as A =

T⊥/T‖.

From the analytial point of view, by assuming that the distribution fun-

tion remains a bi-Maxwellian during the proess of ollisional relaxation, one

an integrate Eq. (2.4) in the ase of both Landau and Dougherty operators

to obtain the evolution equation for parallel and perpendiular temperatures.

In the ase of the Landau operator [151℄, one gets:

dT⊥

dt
= −ν

L

(

T⊥ − T‖

)

, (2.8)

dT‖

dt
= 2ν

L

(

T⊥ − T‖

)

; (2.9)

νT being a thermalization frequeny given by:

ν
L
=

g ln Λ

8π3/2T
3/2
‖

−3 +
(

Ã+ 3
)

ϕ(Ã)

Ã2
, (2.10)
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Figure 2.1: (Color online) Time evolution of parallel and perpendiular tempera-

tures obtained from Eqs. (2.8)−(2.9) (blak solid lines) and Eqs. (2.12)−(2.13)
(red dashed lines). The initial anisotropy is A = 4 and the plasma parameter

g = 10−2
.

where Ã = A− 1 and

ϕ(x) =











tan−1(
√
x)/

√
x x > 0

1 x = 0

tanh−1(
√
−x)/

√
−x x < 0

(2.11)

It is worth noting that, in Eqs. (2.8)−(2.9), the total temperature T =

(2T⊥ + T‖)/3 remains onstant in time.

In the same way, for the ase of the Dougherty operator, one an easily

get:

dT⊥

dt
= −2ν

D

3

(

T⊥ − T‖

)

, (2.12)

dT‖

dt
= 2

2ν
D

3

(

T⊥ − T‖

)

; (2.13)

ν
D
being a thermalization frequeny written as:

ν
D
=

g ln Λ

8π

n

T 3/2
. (2.14)

For the ase of the Dougherty operator an evolution equation for the entropy
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S = −
∫

d3vf ln f an be easily dedued, and reads:

dS

dt
= nν

D

[

T
T⊥ + 2T‖

T⊥T‖

− 3

]

. (2.15)

Figure 2.1 shows the time evolution of parallel and perpendiular tem-

peratures obtained from Eqs. (2.8)−(2.9) (blak solid lines) and from Eqs.

(2.12)−(2.13) (red dashed lines). In this spei� ase the initial anisotropy

is A = 4, while the value of the plasma parameter is g = 10−2
. In this plot,

time is normalized to the inverse Spitzer-Harm frequeny [124℄ νSH , that is

the harateristi ollisional frequeny for relaxation proesses in plasmas,

and resaled by a fator α. The value of α is set equal to 1 in the ase

of the Landau operator, while in the ase of the Dougherty operator it is

determined numerially in suh a way to minimize the following funtion:

σ(α) =

√

1

tmax

∫ tmax

0

{

[

T
(L)

‖ (t)− T
(D)

‖ (αt)
]2

+
[

T
(L)

⊥ (t)− T
(D)

⊥ (αt)
]2
}

dt

(2.16)

where tmax is the time at whih the thermal equilibrium is established. This

proedure gives α = 3.55 for the Dougherty operator.

It is worth noting that resaling the time by α = 3.55 in the ase of the

Dougherty operator orresponds to resaling the thermalization frequeny

ν
D
by 1/α; in other words, the ollisional e�et of the Dougherty operator is

made �slower� than it would be originally.

As it is lear from Fig. 2.1, when resaling the time as explained above,

the evolution of perpendiular and parallel temperatures obtained through

the Landau equations (2.8)−(2.9) and the Dougherty equations (2.12)−(2.13)
looks losely similar for many Spitzer-Harm times. We have heked that the

value of the resaling fator α does not depend on the value of g.

The analytial preditions for the time evolution of T⊥ and T‖ provide

exellent benhmarks to hek the diret numerial solution of Eq. (2.4).

Therefore we solved numerially Eq. (2.4) in the ase of the Landau opera-

tor and of the Dougherty operator, through the Eulerian algorithm shortly
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Figure 2.2: (Color online) (a) Time evolution of the parallel and perpendiular

temperatures for the Landau operator ase. The blak solid line represents the

time evolution of the moments equations [Eqs. (2.8)−(2.9)℄, while the red dots

orrespond to the time evolution of the temperatures obtained from the numeri-

al evolution of Eq. (2.4). (b) Time evolution of the parallel and perpendiular

temperatures for the Dougherty operator ase. The blak solid line represents the

time evolution of the moments equation [Eqs. (2.12)−(2.13)℄, while the red dots

orrespond to the time evolution of the temperatures obtained from the numerial

evolution of Eq. (2.4). () Time evolution of the entropy growth obtained from

Eq. (2.15) and from the numerial evolution of the Eq. (2.4) for the ase of the

Landau operator (red dots) and the Dougherty operator (blue dots), respetively.

presented previously. Then, we ompared the results of these simulations for

the evolution of T⊥ and T‖ with the theoretial solutions. In these diret

simulations the initial ondition for the veloity distribution is given by Eq.

(2.7) with A = 4 and the plasma parameter is g = 10−2
.

In Fig. 2.2 (a) the evolution of T⊥ and T‖ is reported for the ase in

whih the Landau operator is used in the right-hand side of Eq. (2.4). The

analytial urves from Eqs. (2.8)−(2.9) are indiated as blak solid lines,

while the results of the diret simulation as red stars. In the same way, Fig.

2.2 (b) shows the omparison between theory and numerial results for the

ase of the Dougherty operator. In both ases we get a very good agreement

between analytial and numerial results. Again, the time saling fator is

α = 1, 3.55 for the ase of the Landau operator and of the Dougherty operator

respetively.

Finally, in Fig. 2.2 () we report the entropy growth obtained through the

diret simulation of Eq.(2.4), in the ase of the Landau operator (red stars),

of the Dougherty operator (blue stars). The blak solid line indiates the
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Figure 2.3: (Color online) Snapshot (iso-ontour levels) of the distribution funtion

in the whole 3V spae at four di�erent times: α t1 νSH = 0.00 (a), α t2 νSH = 0.70
(b), α t3 νSH = 1.38 () and α t4 νSH = 4.13 (d).

analytial solution from the time evolution of S from Eq. (2.15). Here, we

point out that at time t ≃ 1.5ν−1
SH the Landau solution slightly departs from

the Dougherty solution even when time is resaled by the fator α = 3.55. A

better agreement has been reovered for α = 3.35. It is worth noting that, in

both ases, the �nal temperature and the total entropy growth are in agree-

ment with the thermodynamial predition on the �nal temperature and on

the entropy variation between the initial ondition (three Maxwellian distri-

bution funtions with di�erent temperatures onsidered as isolated systems)

and the equilibrium distribution funtions at saturation (three Maxwellian

distribution funtions with the same temperature). This shows that the nu-

merially produed entropy variation is negligible with respet to the entropy

variation produed by the ollisional terms.

Eulerian algorithms allow for a lean desription (almost noise-free) of the

veloity distribution. Figures 2.3 (a)-(d) show four snapshots of the veloity

77



Collisional e�ets desribed through the Dougherty operator

distribution at four di�erent times for a Dougherty simulation of Eq. (2.4)

with initial anisotropy A = 8 and g = 10−2
. The sequene of plots illustrates

how ollisions work to restore the spherial shape of the veloity distribution,

whih orresponds to the isotropi Maxwellian on�guration.

2.2.2 Plateau and Beam veloity distributions

In order to investigate whether the time resaling proedure allows in gen-

eral to reprodue the ollisional Landau relaxation through the simpli�ed

Dougherty operator, in this Setion we follow numerially the ollisional evo-

lution of veloity distributions with sharp gradients in one veloity diretion.

In partiular, we onsidered a veloity distribution with a plateau along vz

(fp) at t = 0 and a veloity distribution with a beam along vz (fb) at t = 0.

This kind of veloity distributions are usually generated by resonant wave-

partile interation proesses and are very ommon features reovered, for

example, in solar-wind spaeraft observations [21℄ and in laboratory plasma

experiments [143, 152℄.

For these new set of simulations the plasma parameter is g = 10−2
. The

expliit expressions of the initial veloity distributions are:

fp(vz) = f0(vz)−
[

f0(vz)− f0(vp)
]

·
[

1 +

(

vz − vp
dvp

)mp
]−1

(2.17)

fb(vz) = f0(vz) +
nb√
2πTb

exp

[

−(vz − Vb)
2

2Tb

]

(2.18)

being f0(vz) = 1/
√
2π exp[−v2z/2], vp = 1.44, mp = 8, dvp = 0.5 and

nb = 0.17, Vb = 2.2 and Tb = 0.1.

Figure 2.4 (a)-(b) show the initial veloity distributions fp and fb, re-

spetively. Panels ()-(d) in the same �gure display the time evolution of

S obtained through the Landau operator (blak solid line) and through the

Dougherty operator (red stars), for the initial onditions fp and fb respe-

tively. The resaling fator is given the value α = 1, 3.55 for the Landau

operator and the Dougherty operator, respetively. We note that, for the

plateau initial ondition fp, the Landau solution and the Dougherty solu-
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Figure 2.4: (Color online) In the top row, the initial veloity distributions funtions

along vz are shown for the plateau ase [Eq. (2.17)℄ (a) and for the beam ase [Eq.

(2.18)℄ (b). In the bottom row, the entropy growth is presented for the Landau

operator (blak solid line) and for the Dougherty operator (red dashed line) for the

plateau ase () and for the beam ase (d).

tion almost superpose one on another, one time has been resaled. A slight

disrepany is reovered for the ase of the beam initial ondition fb.

A better agreement between Landau solution and Dougherty solution an

be obtained slightly modifying the value of the saling parameter α (better

hoies would be α = 3.35 for the plateau initial ondition and α = 3.75 for

the beam initial ondition), whih, however, remains very lose to the value

α = 3.55 predited from the analytial onsiderations in the previous setion.

2.2.3 Trapped partile distribution funtion

As a �nal ase, in this setion we ompare Landau and Dougherty operators

in the proess of ollisional relaxation of a veloity distribution generated by

the proess of partile trapping. The trapped partile distribution funtion
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Figure 2.5: (Color online) (a) Phase spae portrait of the distribution funtion

obtained through a self-onsistent 1D�1V Vlasov-Poisson simulation at time tωp =
500 zoomed in the region x = [2, 18], v = [0, 4]. The red vertial line indiates the

value of z at whih we get the veloity pro�le fv(vz), shown in panel (b). () Time

evolution of the entropy growth for the Landau operator ase (blak solid line) and

for the Dougherty operator ase (red dots).

is obtained by means of a 1D�1V self-onsistent Vlasov-Poisson simulation

(with no ollisions) with kineti eletrons and �xed protons. In this sim-

ulation, the initial plasma is spatially homogeneous, with Maxwellian dis-

tribution of veloities. The phase spae numerial domain is disretized by

256× 101 grid points in physial and veloity spae, respetively.

We launh into the plasma an external driver sinusoidal eletri �eld of

the form:

E
D
(z, t) = E0 g(t) sin[k(z − vφt)] (2.19)

where E0 = 0.2 ωpmvth/e (m and e being the eletron mass and harge,

respetively), k = 0.26λ−1
D , vφ = 1.42vth and

g(t) =























sin (πt/100) t < 50

1 50 ≤ t < 150

cos [π(t− 150)/100] 150 ≤ t < 200

0 t ≥ 200

(2.20)

This external �eld is turned o� one a population of trapped partiles has

been reated. Figure 2.5 (a) shows the phase spae portrait of the eletron

distribution funtion fe(z, vz) at a �xed instant of time, after the driver has

been turned o�. Here, a vortial struture, typial signature of the presene
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of trapped partiles, is reovered. At this point, we onsider the veloity

pro�le fv(vz) = fe(zm, vz), where zm (red vertial line in the plot) is the

spatial point orresponding to the maximum veloity width of the trapping

region. The veloity pro�le fv(vz) is reported in Fig. 2.5 (b).

Therefore, we build a three-dimensional veloity distribution as follows:

f(vx, vy, vz) = C f
M
(vx, vy)fv(vz) (2.21)

where the onstant C is hosen suh that

∫

f(vx, vy, vz) d
3v = n = 1 and

f
M
(vx, vy) = exp

(

−
v2x + v2y
2T

)

(2.22)

with

Uz =
1

n

∫

vzfv(vz) dvz (2.23)

T =
1

n

∫

(vz − Uz)
2fv(vz) dvz (2.24)

The three-dimensional veloity distribution f(vx, vy, vz) is used as initial

ondition for the diret simulations of Eq. (2.4), performed for both the

Landau and the Dougherty operator. Figure 2.5 () shows the evolution

of the entropy for the ase of the Landau operator (blak line) and of the

Dougherty operator (red dots). In this �gure, as in previous examples, time

has been saled by α = 1, 3.55 for the Landau operator and the Dougherty

operator, respetively. Even in this ase a slight disrepany in the evolution

of S is reovered, while a better agreement is found when the saling fator

is given the value α = 3.75 for the Dougherty simulation.

Finally, in Fig. 2.6 (a)-(d), we diretly report the veloity distribution

f (evaluated at vx = vy = 0) versus vz at four di�erent times in the sim-

ulation. The blak line in eah plot represents the solution obtained when

the Landau operator is onsidered, while the red-dashed line orresponds to

the Dougherty solution. Here α = 1, 3.55 for the Landau operator and the

Dougherty operator, respetively.
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Figure 2.6: (Color online) Veloity distributions obtained from the numerial so-

lution of the Landau equation (blak solid line) and of the Dougherty equation

(red dashed line) at four di�erent times α t1 νSH = 0.03 (a), α t2 νSH = 0.34 (b),

α t3 νSH = 0.69 () and α t4 νSH = 1.38 (d).

It is worth noting that, during the relaxation proess, the form of the

veloity distributions display di�erent details. In partiular the Dougherty

operator seems to be faster than the Landau operator, in smoothing the

veloity gradients. This is onsistent with the fat that, when slightly in-

reasing more and more the value of the resaling fator α for the Dougherty

simulation, the detailed evolutions of the veloity distributions approah eah

other more and more. The di�erent behavior of the two operators an be due

to the di�erent way they smooth and weight the gradients in veloity spae.

To summarize, for all veloity distributions onsidered in this work, the

value of the fator α = 3.55 allows to almost superpose the results for the

time evolution of T⊥ and T‖ obtained in the ase of the Landau operator and

of the Dougherty operator. For the time evolution of the entropy, the two

operators exhibit slight di�erenes, presumably due to the di�erent roles of
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the veloity gradients in the Landau and the Dougherty operator. However,

we point out that the maximum relative disrepany for the time evolution

of entropy, in a one Spitzer-Harm time, is about 6%. Our results allow to

onlude that the lak of physial details that one relentlessly introdues

by approximating the Landau operator with the Dougherty operator an

be onsidered negligible ompared to the advantage of having a ollisional

operator, the Dougherty one, that an be easily used and implemented in

self-onsistent Eulerian simulations and that reprodues satisfatorily the

Landau ollisional thermalization, one an appropriate time resaling has

been introdued.

2.3 Nonlinear regime of eletrostati waves in

presene of eletron-eletron ollisions

In this setion, we present the e�ets of inluding eletron-eletron olli-

sions in self-onsistent Eulerian simulations of eletrostati wave propagation

in nonlinear regime. Based on the onsiderations of the previous setion,

eletron-eletron ollisions are modeled through the full three-dimensional

Dougherty ollisional operator; this allows the elimination of unphysial

byproduts due to redued dimensionality in veloity spae. The e�ets of

non-zero ollisionality are disussed in the nonlinear regime of the symmetri

bump-on-tail instability and in the propagation of KEEN waves. For both

ases it is shown how ollisions work to destroy the phase-spae strutures

reated by partile trapping e�ets and to damp the wave amplitude, as the

system returns to the thermal equilibrium. In partiular, for the ase of the

KEEN waves, one ollisions have smoothed out the trapped partile popu-

lation whih sustains the KEEN �utuations, additional osillations at the

Langmuir frequeny are observed on the fundamental eletri �eld spetral

omponent, whose amplitude deays in time at the usual ollisionless linear

Landau damping rate.
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2.3.1 Mathematial and Numerial Approah

We onsider a plasma omposed by kineti eletrons and motionless pro-

tons and analyze the dynamis of this system in eletrostati approxima-

tion. As disussed earlier, we model eletron-eletron ollisions through the

Dougherty operator [58, 59, 135℄ and neglet eletron-proton and proton-

proton ollisions, as their harateristi time is signi�antly longer than that

for eletron-eletron interations [56, 62, 63℄.

We onsider the following dimensionless Dougherty-Poisson (DP) equa-

tions, in 1D�3V phase spae on�guration:

∂f

∂t
+ vx

∂f

∂x
+

∂φ

∂x

∂f

∂vx
=

∂f

∂t

∣

∣

∣

∣

coll

(2.25)

− ∂2φ

∂x2
= 1−

∫

f d3v ; (2.26)

where f = f(x,v) is the eletron distribution funtion, φ = φ(x) = −dE/dx

is the eletrostati potential (E is the eletri �eld) and ∂f/∂t|coll is the

Dougherty ollisional operator. Due to their inertia, the protons are onsid-

ered as a motionless neutralizing bakground of onstant density n0 = 1. In

previous equations, time is saled to the inverse eletron plasma frequeny

ωpe, veloities to the initial eletron thermal speed vth,e; onsequently, lengths

are normalized by the eletron Debye length λDe = vth,e/ωpe and the eletri

�eld by ωpemvth,e/e (m and e being the eletron mass and harge, respe-

tively). For the sake of simpliity, from now on, all quantities will be saled

using the harateristi parameters listed above.

The Dougherty ollisional operator [58, 59℄ has the following form:

∂f

∂t

∣

∣

∣

∣

coll

= ν(n, T )
∂

∂vj

[

T
∂f

∂vj
+ (v − V )j f

]

; (2.27)

here, ν(n, T ) is the ollision frequeny:

ν(n, T ) = ν0
n

T 3/2
; ν0 =

g ln Λ

α8π
; (2.28)

where g = 1/nλ3
D,e is the plasma parameter, ln Λ ≃ − ln g/3 is the Coulom-
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bian logarithm, α = 3.55 is the saling fator disussed previously, and the

subsript j indiates the j-th vetor omponent. Moreover n =
∫

d3vf ,

Vj = 1/n
∫

d3v vjf , T = 1/3n
∫

d3v (v −V)2f are respetively plasma den-

sity, mean veloity and temperature. These last quantities obviously depend

on oordinate x, sine f = f(x,v). Einstein notation has been used in Eq.

(2.27).

We solve numerially Eqs. (2.25)�(2.26) through a Eulerian ode based

on a �nite di�erene sheme for the approximation of spatial and veloity

derivatives of f over the grid-points [40, 153, 154℄. Time evolution of the

distribution funtion is approximated by using the splitting sheme proposed

by Filbet et al. [126℄ (see also Refs. [62, 63℄ for details about the numerial

algorithm). We employ periodi boundary onditions in physial spae and

f is set equal to zero for |vj | > vmax, where vmax = 6vth,e. Phase spae is

disretized with Nx = 128 grid points in the physial domain Dx = [0, L]

and Nvx ×Nvy ×Nvz points in the three-dimensional veloity domain (Nvx =

101, Nvy = Nvz = 51). Finally, the time step ∆t has been hosen in suh

a way to satisfy Courant-Friedrihs-Levy ondition [150℄ for the numerial

stability of time expliit �nite di�erene shemes.

2.3.2 Numerial Results

We present and disuss the results of kineti Eulerian simulations in two

di�erent physial situations: the linear and nonlinear regime of the bump-

on-tail instability and the exitation and propagation of the KEEN waves.

Bump-on-tail instability

In this setion, we fous on the proess of bump-on-tail instability [155, 156℄

in a ollisional plasma, in order to point out the role of ollisions on the

onset of the instability and on its nonlinear saturation. The initial eletron

distribution funtion onsidered for the numerial runs has the following

form:

f(vx, vy, vz, t = 0) = f0(vx)fM
(vy)fM

(vz) (2.29)
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Figure 2.7: (Color online) Veloity dependene of f0; the vertial red-dashed line

indiates the wave phase speed.

where:

f0(vx) =
n1

(2πT1)1/2
exp

(

− v2x
2T1

)

+
n2

(2πT2)1/2
×

[

exp

(

−(vx − V0)
2

2T2

)

+ exp

(

−(vx + V0)
2

2T2

)

]

(2.30)

f
M
(vj) =

1

(2πT )1/2
exp

(

−
v2j
2T

)

; j = y, z (2.31)

with n1 = 0.97, n2 = 0.015 (n0 = n1 + 2n2 = 1), V0 = 4.0, T1 = 1.0 and

T2 = 0.2. Moreover, f
M
(vj=y,z) is a normalized Maxwellian with temperature

T = 1/n
∫

dvx(vx −Vx)
2f0(vx). In these onditions, the plasma initially does

not present any temperature anisotropy among the three veloity diretions.

Choosing an initial eletron veloity distribution that is symmetri in vx

guarantees an initial state with no net plasma urrents or magneti �elds

[156℄.

At t = 0, we perturb the system with a sinusoidal density perturbation of

amplitude A1 ≃ 5.6×10−4
; we set the length of the spatial domain L ≃ 22, in

suh a way to exite the most unstable wavenumber (the one with the largest

growth rate) k∗ = 2π/L ≃ 0.28, whose value has been predited through a

linear Vlasov solver, whih omputes numerially the roots of the eletrostati

dieletri funtion. This density perturbation produes (through Poisson
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Figure 2.8: (Color online) Time evolution of log |Ek1(t)/Ek1(0)|, for ν0 = 0.0 (a)

and ν0 = 2.17 × 10−3
(b); here, the red-dashed urves represent the theoretial

predition for the instability growth rate γthI ≃ 7.46× 10−2
. In panel (), the time

evolution of the entropy variation ∆S (in %) is reported for ν0 = 0.0 (blak-solid

urve) and ν0 = 2.17 × 10−3
(red-solid urve).

equation) an initial sinusoidal eletri �eld of amplitude E1 ≃ 2 × 10−3
.

Figure 2.7 shows f0 as a funtion of vx; here, the vertial red-dashed line

represents the value of the wave phase speed vφ, whih learly falls in the

unstable region where df0/dvx|vφ > 0.

Figure 2.8 (a) displays the time evolution of the logarithm of the fun-

damental eletri �eld spetral omponent Ek1 (where k1 = k∗
), normalized

to its initial value (log |Ek1(t)/Ek1(0)|), for a ollisionless simulation. In the

early stage of the system evolution, a linear exponential growth of the wave

amplitude is observed with growth rate γobs
I = 7.29 × 10−2

; this value is in

good agreement with the theoretial expetation obtained through a numer-

ial linear Vlasov solver γth
I = 7.46 × 10−2

(red-dashed line). Later in time,

nonlinear e�ets ome into play and arrest the exponential growth; in this

regime, the wave amplitude displays nearly periodi osillations around an

almost onstant saturation level. These osillations are driven by partile

trapping proesses [157, 158℄ and typial vortial strutures are generated in

the longitudinal (x− vx) phase spae, in the veloity range around vφ.

When ollisions are taken into aount, the system evolution an hange

signi�antly. In Figure 2.8 (b), we show a ollisional simulation with ν0 ≃
2.17 × 10−3

. For suh value of the ollision frequeny, the linear growth of

the wave amplitude remains lose to exponential with a growth rate some-

what less than that for the ollisionless ase. This suggests that, in this
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Figure 2.9: x − vx ontour plot of the eletron distribution funtion (zoomed in

the veloity range ≃ vφ), evaluated at vy = vz = 0, for ν0 = 0.0 (top row) and

ν = 2.17 × 10−3
(bottom row), at the time instants t = τ1 = 80 (left olumn) and

t = τ2 = 320 (right olumn).

senario, the damping rate due to ollisions is lower than the growth rate

of the instability, thus showing that ollisions are too weak to prevent the

instability onset. However, the nonlinear saturation of the instability is evi-

dently a�eted by ollisions. In fat, from Figure 2.8 (b), one noties that the

saturation amplitude is dereased with respet to the ollisionless ase and

that the eletri osillations are signi�antly damped after the saturation of

the instability, as ollisions work to smooth out the trapping struture and

to drive the partile distribution towards the equilibrium Maxwellian shape.

Additional runs with larger values of ν0 (not presented here) show how also

the linear phase of the system evolution is modi�ed in the strong ollisional

regime and eventually the onset of the instability is ompletely prevented.

We evaluated also from the simulations the entropy S = −
∫

f ln f dx dv.
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Figure 2.10: (Color online) Semi-logarithmi plot of f(x0, vx, vy = 0, vz = 0) as

a funtion of vx at the time instant t = 1200, for ν0 = 0.0 (blak-solid line) and

ν0 = 2.17×10−3
(red-solid line); the blak-dashed urve indiates the orresponding

Maxwellian.

In Fig. 2.8 () we ompare the entropy growth,de�ned as ∆S = [S(t)−S(t =

0)]/S(t = 0), for the ollisionless ase (blak solid line) and for the weekly

ollisional ase with ν0 = 2.17× 10−3
(red solid line). Sine the ollisionless

Vlasov system is an iso-entropi system, the small entropy growth (≃ 0.15%)

reovered in the ollisionless simulation is obviously due to numerial e�ets

(�lamentation). On the other hand, in the ollisional ase, the inrease in

entropy (about 10 times larger than the unphysial entropy growth for the

ollisionless simulation) is mainly due to the e�et of ollisions whih drive

the system towards thermal equilibrium, aording to H theorem.

To onlude this Setion, in Fig. 2.9 we show the x − vx ontour plots

(zoomed in the veloity range ≃ vφ) of the distribution funtion evaluated

at vy = vz = 0; the top/bottom row in this �gure orresponds to the ol-

lisionless/ollisional ase. We plot the distribution funtion at two instants

of time in the simulations (τ1 = 80 and τ2 = 320), indiated by the ver-

tial solid-blue lines in Figs. 2.8 (a)�(b); τ1 orresponds to the end of the

exponential growth phase of the wave amplitude, while τ2 is piked in the

nonlinear regime of wave propagation. In the top row of Fig. 2.9 (olli-

sionless ase), one reognizes (left panel) the vortial phase-spae struture

at vx ≃ vφ ≃ 3.5, typial signature of partile trapping, whih is persistent
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in time (right panel). A similar phase-spae vortex (not shown here) is re-

overed at vx ≃ −3.5; the two ounter-propagating phase spae trapping

populations are assoiated with the standing plasma wave launhed by the

initial density perturbation and ampli�ed by the bump-on-tail instability. In

the bottom row of the same �gure (ollisional ase), at t = τ1 [Fig. 2.9 ()℄,

the vortex has a smaller veloity width as ompared to the ollisionless simu-

lation; moreover, ollisions prevent the generation of �ne veloity sales and,

at t = τ2 [Fig. 2.9 (d)℄, the trapping struture has been almost ompletely

smoothed out.

Figure 2.10 shows, in a semi-logarithmi plot, the dependene of the dis-

tribution funtion on vx (evaluated at a �xed spatial position x0, and at

vy = vz = 0) at the time instant t = 1200, for the ollisional simulation

(red-solid line) and the ollisionless one (blak-solid line). The point x0 or-

responds to the spatial position where the phase spae vortex moving with

positive veloity has its maximum veloity width. In the ollisional ase,

thermal equilibrium has been almost restored by ollisions, while, in absene

of ollisions, the distribution funtion still displays many strong deviations

from the Maxwellian pro�le (represented by the blak-dashed urve). We

point out that the asymmetry of the veloity pro�le for the ollisionless sim-

ulation in Fig. 4 (blak-solid line) is due to the fat that at t = 1200 the two

ounter-propagating phase spae trapping vorties are not exatly aligned in

phase spae (i. e. their enters are not in the same spatial loation).

Kineti eletrostati eletron nonlinear waves

For the simulations of KEEN wave exitation [138, 137℄, we refer to a previous

work by Cheng et al. [159℄. Aording to these authors, the box length

for this simulation is set L = 24.166. At t = 0 the plasma is spatially

homogeneous with density n0 = 1 and isotropi Maxwellian in veloities

with temperature T = 1. In order to produe the exitation of KEEN waves,

we drive the plasma through an external eletri �eld of the form [137℄:

E
D
(x, t) = E0 g(t) sin[k0(x− vφt)] , (2.32)
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Figure 2.11: (Color online) Time evolution of the �rst four eletri �eld spetral

omponents for the simulations with ν0 = 0.0 (a), ν0 = 3.23 × 10−4
(b) and

ν0 = 2.17 × 10−3
(). The blak-dashed urves in panels (b) and () indiate the

theoretial Landau predition γL ≃ 3.40 × 10−3
for Langmuir wave damping rate.

where E0 is the maximum driver amplitude, k0 = 2π/L = 0.26 is the funda-

mental wavenumber, vφ = 1.42 and

g(t) =























sin (πt/100) t < 50

1 50 ≤ t < 150

cos [π(t− 150)/100] 150 ≤ t < 200

0 t ≥ 200

. (2.33)

The external �eld is turned o� after a time at whih past experiene

indiates that optimal trapping of partiles is ahieved (i.e., an appropriate

ratio of an eletron trapping period for the external drive). We performed

di�erent simulations by varying the value of the plasma parameter g, and

onsequently of ν0 (ν0 = 0.00, 3.23× 10−4, 2.17 × 10−3
), keeping �xed E0 =

0.05.

Figure 2.11 shows the evolution of the �rst four eletri �eld spetral

omponents (with wavenumbers k1 = k0, k2 = 2k0, k3 = 3k0 and k4 = 4k0),

for ν0 = 0.00 (a), ν0 = 3.23× 10−4
(b) and ν0 = 2.17× 10−3

() respetively.

In the ollisionless ase [Fig. 2.11 (a)℄, we reover one of the typial

features of the KEEN waves [137, 138, 159℄. While the driver is turned on,

the energy injeted into the fundamental wavenumber omponent (blak line)

�ows also to the higher spetral omponents (red, blue and yellow solid lines).

After the driver has been turned o�, the resulting eletri signal is omposed
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Figure 2.12: (Color online) Spetral energy of the fundamental eletri �eld om-

ponent as a funtion of frequeny, for the stronger ollisional ase with ν0 =
2.17 × 10−3

, omputed in the time intervals 0 ≤ t ≤ 180 (blak urve), and

400 ≤ t ≤ 1200 (red urve). The vertial lak-dashed urve indiates the value of

the Langmuir frequeny of the fundamental wavenumber.

by many wavenumbers, in a stable ratio one with another, thus departing

signi�antly from the purely sinusoidal spatial shape of the driver �eld.

Figures 2.11 (b)-() display the time evolution of the eletri �eld spetral

omponents in two di�erent ollisional plasmas, for ν0 = 3.23 × 10−4
and

ν0 = 2.17× 10−3
, respetively.

Beginning with the behavior while under the drive, on omparing the be-

havior to that without ollisions, the behavior seems quite straightforward.

For the weakly ollisional ase of Fig. 2.11 (b), in the initial phase of the

system evolution (i.e., up to t = 200), when the external driver is on, the ex-

itation of the spetral omponents does not seem to be signi�antly a�eted

by ollisions i.e., the early parts of Figs. 2.11 (a) and 2.11 (b) look muh

alike. On the other hand the response of Fig. 2.11 () with strong ollisions

is muh weaker.

Turning now to the behavior after the drive has stopped, a signi�ant

di�erene between the damping is apparent between the ases where the
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Figure 2.13: x − vx ontour plot of the eletron distribution funtion (zoomed in

the veloity range ≃ vφ), evaluated at vy = vz = 0, for simulations with ν0 =
0.0, 3.23 × 10−4, 2.17 × 10−3

(top, middle and bottom row, respetively) and at

di�erent times t = 200, 320, 400 (left, middle and right olumn, respetively).

damping is zero (Fig. 2.11 (a)), moderate (Fig. 2.11 (b)), and strong (Fig.

2.11 ()). At the extremes, the ollisionless KEEN behavior of Fig. 2.11 (a)

with its strongly persistent harmonis is in striking ontrast to the highly

ollisional ase of Fig. 2.11 () where the fundamental is the only omponent

whih survives in the long time limit. For intermediate ollision frequeny

(ν0 = 3.23× 10−4
) ase of Fig. 2.11 (b), in the time interval 200 ≤ t ≤ 550,

the higher harmoni eletri �eld omponents derease somewhat faster than

the fundamental (as one might expet) at roughly onstant rates, but then

there ours a fairly sudden and remarkable transition (for 500 ≤ t ≤ 600)

to a muh lower deay rate for the fundamental and an inreased deay rate

for the higher (2, 3, 4) harmonis. Thus at late times only the fundamental

omponent survives.
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These late-time fundamental deay rates reovered for the two ollisional

ases (Figs. 2.11 (b) and 2.11 ()) seem almost independent of the ollision

frequeny. Through a areful analysis of the time signals, we realized that

the osillations on the fundamental wavenumber, observed for t > 600 in

Fig. 2.11 (b) and for t > 200 in Fig. 2.11 (), our at the Langmuir fre-

queny, whih is larger than the frequeny of the KEEN waves exited by the

driver. The dashed urves in Figs. 2.11 (b)-() represent the predition for

ollisionless Landau damping rate [160℄, whih �ts learly well the numeri-

al results, for both the intermediate and strong ollisional ases. In order

to understand the origin of these Langmuir �utuations, we performed the

Fourier analysis of the eletri signal, in the time interval in whih the driver

is still on; this analysis revealed that the Langmuir frequeny has been driven

by the driver itself, whih pumps energy at the KEEN frequeny, with an

additional small amount of energy at the Langmuir frequeny on the funda-

mental. The exitation of this additional Langmuir osillation by the driver

is due to the fat that the external eletri �eld is turned on and o� quite

abruptly (with sharp time gradient in its amplitude). These abrupt kiks on

the plasma exite Langmuir �utuations, sine they are proper modes of the

system. Presumably, a smoother ramping up and down of the driver �eld

(see Ref. [143℄) would have eliminated this additional Langmuir osillation,

but it would have required a signi�antly longer time for the driving proess.

To substantiate the onlusions above, in Fig. 2.12, we report the spe-

tral energy of the fundamental omponent as a funtion of frequeny, for the

stronger ollisional ase with ν0 = 2.17×10−3
, omputed in the time intervals

0 ≤ t ≤ 180 (blak urve), in whih the driver is still on, and 400 ≤ t ≤ 1200

(red urve), in whih the driver is o�. As it an be seen in this �gure, when

the driver is on, the main KEEN frequeny peak is observed together with a

low energy peak at the Langmuir frequeny (vertial dot-dashed blak line in

the �gure); on the other hand, when the driver is o�, the KEEN �utuations

are killed by ollisions and only the Langmuir peak is visible. Finally, the

fat that these Langmuir osillations deay at the ollisionless Landau damp-

ing rate suggests that ollisions, whih strongly a�et the evolution of the

KEEN �utuations, are negligible at higher Langmuir phase speeds, where
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the partile veloity distribution remains lose to a Maxwellian during the

simulation.

To onlude this Setion, in Fig. 2.13 we show the ontour plots of the

eletron distribution funtion (evaluated at vy = vz = 0) in the longitudi-

nal (x − vx) phase spae, for simulations with ν0 = 0.0, 3.23 × 10−4, 2.17 ×
10−3

(top, middle and bottom row, respetively) and at di�erent times t =

200, 320, 400 (left, middle and right olumn, respetively). These ontour

plots learly show how the phase spae trapping struture, whih is persis-

tent in the ollisionless simulation and sustain the KEEN �utuations, is

smoothed out by ollisions as fast as ν0 inreases.

2.4 Summary

To summarize the results presented above, we performed a detailed ompar-

ison between the Landau operator [52℄ and the Dougherty operator [58℄ by

means of Eulerian kineti simulations of a homogeneous, �eld-free plasma in

a three-dimensional veloity spae.

As a �rst step, by looking at the ollisional relaxation proesses of a

bi-Maxwellian veloity distribution, we have realized that an "ad ho" time

resaling proedure allows to make the time evolution of parallel and perpen-

diular temperatures desribed by the Dougherty operator in Eqs. (2.12)�

(2.13) very lose to the one obtained when the full Landau integral is em-

ployed [Eqs. (2.8)−(2.9)℄, despite the profound mathematial di�erenes be-

tween the two operators. Pushed by these surprising analytial �ndings, we

employed an Eulerian algorithm to simulate numerially the return toward

equilibrium of several veloity distributions (bi-Maxwellian, beam distribu-

tion, plateau distribution et.), for whih we veri�ed that the Dougherty-

Landau time resaling fator α is the same and does not hange with respet

to the analytial predition obtained for the bi-Maxwellian ase.

We would like to point out that, sine the Dougherty operator does not

desribe the veloity dependene of the di�usion oe�ients in veloity spae,

we annot assure that the time-saling fator we determined does not hange

in situations where the distribution funtion is extremely distorted with re-
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spet to a Maxwellian one. Therefore, the detailed omparison between Lan-

dau and Dougherty ollisional operators in full self-onsistent simulations will

be the subjet of future works. However, sine the two ollisional operators

behave in a very similar way for about one Spitzer-Harm time, the Dougherty

operator an be employed in a wide range of kineti simulations to replae

the muh more omplex and omputationally demanding Landau operator.

One of these kind of ollisional self-onsistent simulations have been de-

sribed in Set. 2.3, where the propagation of nonlinear eletrostati waves in

a weakly ollisional plasmas has been analyzed. Eletron-eletron ollisions

have been modeled through the Dougherty ollisional operator for eletron-

eletron ollisions, in full three-dimensional geometry in veloity spae. We

desribed numerially the onset and nonlinear saturation of the bump-on-

tail instability [155, 156℄ (in its symmetri form) and the exitation and

propagation of the so-alled Kineti Eletrostati Eletron Nonlinear waves

[137, 138, 159℄, in situations of intermediate range of plasma ollisionality.

In this way, we get rid of the restritive ollision-free assumption, keeping,

however, the system dynamis far from the strong ollisional �uid regime,

where the plasma always remains at thermodynami equilibrium. In other

words, the physial regime of interest here is the one where kineti e�ets,

whih tend to drive the system far from the thermodynami equilibrium, and

ollisions, whih tend to restore the Maxwellian on�guration, ompete and

ombine themselves, shaping the partile distribution funtion in a omplex

way.

For the ase of the symmetri bump-on-tail instability, we notied that

the onset of the instability (and the exponential growth of the wave ampli-

tude) is almost una�eted, for the value of ollision frequeny hosen in our

simulations. On the other hand, the nonlinear saturation phase, in whih

the �utuations are maintained at almost onstant amplitude thanks to the

phase-spae deformation of f , is dramatially modi�ed by ollisions, whih

work to smooth out any departure of f from Maxwellian and damp the wave

amplitude.

Conerning the simulations of the KEEN waves, we found that, in pres-

ene of ollisions, the trapping phase spae struture reated by the driver
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�eld is smoothed out. As a onsequene, the KEEN �utuations are dis-

sipated in time. In the ase of intermediate ollisionality, the fundamental

spetral omponent and its harmonis (we have shown the �rst four) survive

for a while after the driver is turned o�. We notied that in the long time

limit the fundamental omponent displays a residual energy at the Lang-

muir frequeny and its amplitude deays in time at a rate in good agreement

with the ollisionless damping rate predited by Landau in Ref. [160℄. As

explained previously, this Langmuir �utuation has been triggered by the ex-

ternal �eld during the driving proess. In the ase of stronger ollisionality,

again �utuations on the fundamental omponent appear at the Langmuir

frequeny in the long time limit, while the higher spetral omponents at the

KEEN frequeny are now very rapidly smoothed out by ollisions, right after

the driver has been turned o�. The fat that the late-time deay rate of the

fundamental is independent of the ollision frequeny, being in agreement

with the ollisionless Landau damping rate, suggests that the wave dissipa-

tion due to ollisions is less e�ient than the Landau damping proess at high

Langmuir phase speeds, where the partile veloity distribution remains lose

to a Maxwellian. On the other hand, the presene of (even weak) ollisions

is ritial for the survival of the KEEN �utuations, sine the smoothing of

the partile veloity distribution indued by ollisions prevent the existene

of the KEEN mode itself.
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Chapter 3

Collisional e�ets desribed in a

redued phase spae

So far, ollisions have been modeled in the realisti three-dimensional velo-

ity spae. However, in this framework, high-resolution numerial simulations

annot be performed for omputational reasons. Therefore, another lass

of ollisional operators, whih assume a redued phase spae dimensionality,

has been introdued. Sine ollisions naturally work in a three-dimensional

veloity spae, this assumption is not appropriate from a basi point of view.

However, when ollisions at on longitudinal eletrostati waves and the sys-

tem dynamis ours preferentially in a unique diretion, one an quite well

desribe ollisional e�ets in a redued one-dimensional veloity spae.

Here we restrit to suh 1D�1V phase spae and we analyze two di�erent

problems: the e�ets of ollisions on the problem of numerial reurrene

[Set. 3.1℄ and the desription of the waves launhing proess in olumn of

plasma in both ollisionless and weakly ollisional ases [Se. 3.2℄.

Results shown here have been olleted in one sienti� paper published

in Physis of Plasma [161℄, whih has been seleted as Featured Artile in

the February 2016 Issue of Physis of Plasmas, while a seond paper is still

in preparation [162℄.
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3.1 Collisional e�ets on the numerial reur-

rene

When the Vlasov-Poisson equations are studied by means of Eulerian numer-

ial simulations, one enounters, for low amplitude �utuations, the prob-

lem of the initial state reurrene. As explained by Cheng et al. [163℄,

the reurrene phenomenon is intimately related to the presene of a free-

streaming term in the distribution funtion and to the �lamentation problem

[159, 163, 164, 165, 166, 167, 168℄. Sine the mesh-size of the veloity grid is

neessarily �nite, the initial state is periodially re-onstruted, and thus the

eletri �eld exhibits a fake reurrene of the initial state, whose period is

Trec = 2π/k∆v, k being the perturbation wavenumber and ∆v the numerial

grid mesh in veloity spae.

In this setion, the e�ets of ollisions on the phenomenon of the numer-

ial reurrene are disussed. Collisions are modeled through the Lenard-

Bernstein (LB) operator, �rstly proposed in 1958 by Lenard and Bernstein

[139℄ as a full three-dimensional veloity spae ollisional operator. The LB

operator is a linear Fokker-Plank ollisional operator whih belongs, as the

Dougherty one [58, 59℄, to the lass of �simpli�ed� ollisional operators and

both ollisional terms an be interpreted as advetion-di�usion operators in

the veloity spae.

Interestingly, the same e�et on the spetrum indued by LB ollisions

has been disussed in Ref. [169℄ in the ontext of spetral deformation. This

is a tehnique introdued for the Vlasov-Poisson system in [170℄, where a non-

unitary transformation is applied to the linear operator, in suh a way that its

eigenvalues with nonzero real part remain unhanged, while the ontinuum

of neutral modes is damped. In analogy to the ase of LB operator, the

Landau damping is reovered as a true eigenmode. Therefore, we suggest

that the LB operator might be interpreted as a spetral deformation to the

ollisionless Vlasov-Poisson system. However, the preise identi�ation of

the transformation whih is equivalent to the LB operator is left for future

work.

The aim of our analysis is to understand if reursive e�ets or any other

99



Collisional e�ets desribed in a redued phase spae

numerial e�et assoiated to limited veloity resolution of Eulerian alu-

lations an be suessfully removed by making use of a ollisional operator,

without inreasing the number of gridpoints in the veloity domain (and with-

out altering the physial features of the system evolution). In ase of positive

response, this would be extremely useful espeially for multi-dimensional sim-

ulations, where the veloity resolution is limited for omputational reasons.

We show that, in general, the ollision frequeny ν whih is suitable for

preventing reurrene in the linear regime is a funtion of the perturbation

wavenumber: as the wavenumber inreases a stronger ollisionality is nees-

sary to avoid the onset of the numerial reurrene. Moreover, by fousing

on the nonlinear Landau damping and in partiular on the formation of a

Bernstein-Greene-Kruskal (BGK) nonlinear wave [146, 157℄, we show that i)

the ollisionless ase is also slightly a�eted by reurrene and ii) ollisional

e�ets beome important when the dynamis evolve to the nonlinear stage.

Therefore, it seems impossible to use the LB operator to avoid the nu-

merial reurrene and, simultaneously, preserve the phase spae strutures

developed as in the ollisionless ase. Of ourse, in the ase of higher veloity

resolution, for whih the reurrene time is signi�antly larger than the har-

ateristi time of the physial proess of interest (Landau damping, onset of

instabilities, generation of nonlinear BGK strutures and so on), the use of

a ollisional operator opportunely tailored to eliminate numerial reurrene

does not a�et the reliability of the physial results for times smaller than

the reurrene time. However, let us remark that this ase is not the one of

interest in our analysis in whih we intentionally hoose to have reurrene

in the initial stage of the simulations, whih typially annot a�ord a very

�ne resolution in veloity spae (espeially in multi-dimensions). Finally, by

exploring the reurrene e�et on the bump-on-tail instability [156℄, we show

that the reurrene a�ets both the linear exponential growth and the non-

linear saturation of the instability by produing a fake growth in the eletri

�eld and that, as in the nonlinear Landau damping ase, ollisional e�ets are

not able to prevent the initial state reurrene without signi�antly altering

the nonlinear strutures.

In summary, the purpose of this setion is twofold. First, we show how
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reursive e�et and �lamentation, whih are usually desribed in the ontext

of low amplitude �utuations, an also be problemati in nonlinear phenom-

ena, suh as the saturation regime of the bump-on-tail instability. Seond,

we disuss a useful diagnosti, in terms of expansion of the veloity spae into

Hermite funtions, that allows to better appreiate the e�et of an arti�ial

ollisional operator in phase spae.

Let us summarize the ontent of the setion. In Se. 3.1.1 the theoretial

bakground of the problem is given and the numerial strategies adopted to

approah the solution are explained. Then, in Se. 3.1.2, the reurrene

e�ets on the Landau damping phenomenon are desribed in both linear and

nonlinear regimes by transforming the Vlasov-Poisson system into Hermite-

Fourier oordinates and by means of Eulerian simulations. Moreover, we

investigate how ollisional e�ets prevent the reurrene problem but, at the

same time, smooth out the nonlinear plasma dynamis features as the system

evolves to the nonlinear regime. Then, in Se. 3.1.3 we analyze the initial

state reurrene problem and the ollisional e�ets for the ase of the bump-

on-tail instability.

3.1.1 Theoretial bakground and numerial models

Here we onsider a quasi-neutral and unmagnetized plasma omposed by

kineti eletrons and immobile bakground ions. We assume that only ele-

trostati interations our between partiles, therefore the Maxwell system

redues to the Poisson equation. Furthermore, sine eletron-ion and ion-

ion ollision frequenies are muh smaller than the eletron-eletron one, we

take into aount only eletron-eletron ollisions [56℄. As introdued above,

eletron-eletron ollisions are modeled through the LB ollisional operator

[139℄.

The normalized ollisional Vlasov-Poisson (VP) equations - where olli-

sions are modeled through the LB ollisional operator - in the 1D�1V (one

dimension in physial spae and one dimension in veloity spae) phase spae
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on�guration reads:

∂f

∂t
+ v

∂f

∂x
+

∂φ

∂x

∂f

∂v
=

∂f

∂t

∣

∣

∣

∣

coll

(3.1)

− ∂2φ

∂x2
= 1−

∫

f dv ; (3.2)

where f = f(x, v) is the eletron distribution funtion, φ(x) is the eletro-

stati potential, de�ned as E = −dφ/dx (E is the eletri �eld) and ∂f/∂t|coll
is the LB ollisional operator. Due to their inertia, the protons are onsidered

as a motionless neutralizing bakground of onstant density n0 = 1. In pre-

vious equations, time is saled to the inverse eletron plasma frequeny ωpe,

veloities to the initial eletron thermal speed vth,e; onsequently, lengths are

normalized by the eletron Debye length λDe = vth,e/ωpe and the eletri �eld

by ωpemvth,e/e (m and e being the eletron mass and harge, respetively).

For the sake of simpliity, from now on, all quantities will be saled using

the harateristi parameters listed above.

The saled Lenard-Bernstein [139℄ ollision operator is:

∂f

∂t

∣

∣

∣

∣

coll

= ν
∂

∂v

[

∂f

∂v
+ vf

]

(3.3)

being ν the onstant ollisional frequeny. The LB operator preserves global

mass. Moreover, if the distribution funtion has null average speed V = 0

and unitary temperature T = 1, being V = 1/n
∫

dvfv, n =
∫

dvf and

T = 1/n
∫

dv(v − V )2f respetively plasma mean veloity, density and tem-

perature, it onserves also momentum and energy.

In the following we analyze the equations system Eqs. (3.1)�(3.2) oupled

to Eq. (3.3). For the sake of simpliity, we refer to this system ompatly

as Eqs. (3.1)�(3.2). Two di�erent analyses have been performed on Eqs.

(3.1)�(3.2) and are brie�y explained in the following two subsetions.

Fourier-Hermite deomposition (Linear analysis)

A very onvenient way of studying the properties of the LB operator in the

linear regime is by employing an expansion of the linearized distribution fun-
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tion into a Fourier-Hermite basis. Here, we use the so-alled asymmetrially

weighted Hermite funtions [42, 44, 171℄:

Ψn(ξ) = (π2nn!)−1/2Hn(ξ)e
−ξ2

(3.4)

Ψn(ξ) = (2nn!)−1/2Hn(ξ), (3.5)

where Hn is the n-th Hermite polynomial, de�ned as

Hn(ξ) = (−1)neξ
2 dn

dξn

(

e−ξ2
)

, (3.6)

and ξ = v/
√
2. The basis in Eqs. (3.4)�(3.5) has the following properties:

∫ ∞

−∞

Ψn(ξ)Ψ
m(ξ)dξ = δn,m, (3.7)

vΨn(ξ) =
√
n+ 1Ψn+1(ξ) +

√
nΨn−1, (3.8)

dΨn(ξ)

dv
= −

√

(n+ 1)Ψn+1(ξ), (3.9)

δn,m being the Kroneker delta. Eqs. (3.1)�(3.2) are linearized around an

homogeneous equilibrium that, when expanded in Hermite funtions, reads

f0(v) =
∑

n=0C
eq
n Ψn(ξ). Note that, for a Maxwellian equilibrium with zero

mean veloity, all oe�ients Ceq
n are null for n > 0. The perturbed distri-

bution funtion f1(x, v) = f(x, v)− f0(v) is expanded as:

f1(x, v) =
∑

n,j

Cn,jΨn

(

v√
2

)

eikjx, (3.10)

with kj = 2πj/L, and L the domain length. By using the orthogonality of

the Fourier-Hermite basis, one obtains, for eah kj mode:

dCn,j

dt
+ ikj

(

√
n+ 1Cn+1,j +

√
nCn−1,j +

√
2n

k2
j

C0,jC
eq
n−1

)

+ nνCn,j = 0

(3.11)

Note that Ψn(ξ) is an eigenfuntion of the LB operator of Eq. (3.3), with

eigenvalue nν, and thus the use of the resaling fator in the argument of
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the basis in Eqs. (3.4)�(3.5) allows to obtain a rather ompat formulation

(ompare, for instane, with the formulation in [172℄). In partiular, the

linear equation (3.11) an be written in matrix form as:

d
−→
Cj

dt
= Aj

−→
Cj , (3.12)

where

−→
Cj is the vetor de�ned as (C0,j, C1,j, C2,j, . . .)

T
, and the matrix Aj is

de�ned as

Aj = −ikj



















0 1 0

1 +
√
2Ceq

0 /k2
j ν/ikj

√
2 0

2Ceq
1 /k2
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√
2 2ν/ikj
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3 0

√
6Ceq

2 /k2
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√
3 3ν/ikj

√
4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.



















(3.13)

The ollisionality ν a�ets only the diagonal entries of the matrix. One

again, this is due to the fat that the Hermite basis is an eigenfuntion of

the LB operator. Of ourse, when numerially solving the linear problem in

Eq. (3.12), one has to trunate the matrix A, that is, one has to hoose the

maximum number NH of Hermite modes in the expansion of Eq. (3.10), by

setting Cn,j = 0 for any n > NH (other losures have been investigated, see,

e.g. [173, 174℄). This orresponds to de�ning the resolution in veloity spae.

It is preisely the inability to apture inreasingly �ner sales in veloity spae

that gives rise to the phenomenon of reurrene in the numerial solutions of

Vlasov equation. This beomes partiularly lear by looking at the reurrene

e�et within the framework of the Hermite basis expansion in veloity.

Eulerian Vlasov ode (nonlinear analysis)

The other approah onsists in the numerial solution of Eqs. (3.1)�(3.2)

through a Eulerian ode based on a �nite di�erene sheme for the approx-

imation of spatial and veloity derivatives of f over the grid-points. Time

evolution of the distribution funtion is approximated through the splitting

sheme �rst introdued by Filbet et al. [126℄ [see Refs. [62, 63℄ for details
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Figure 3.1: (Color online) Temporal evolution of the Hermite oe�ients |Cn|
(in logarithm sale) as a funtion of the Hermite mode n and the time t for the
ollisionless ν = 0 ase.

about the numerial algorithm℄, whih is a generalization of the well-known

splitting sheme disussed by [163℄. We impose periodi boundary onditions

in physial spae and f is set equal to zero for |v| > vmax, where vmax = 6vth,e.

Phase spae is disretized with Nx grid points in the physial domain and

Nv points in the veloity domain. Finally, the time step ∆t has been hosen

in suh a way to respet the Courant-Friedrihs-Levy ondition [150℄ for the

numerial stability of time expliit �nite di�erene shemes.

The plasma is initially in an equilibrium state and we perturb the sys-

tem through an osillating density perturbation whih produes, through the

Poisson equation, a perturbative eletri �eld of amplitude δE.

3.1.2 Landau damping

In the present setion, reurrene e�ets and ollisional e�ets on this phe-

nomenon are desribed for the the ase of the Landau damping of a Langmuir

wave.

First, we study a ollisionless (ν = 0) linear Landau damping ase, for the

wavenumber k = k1 = 2π/L = 0.35 (being L = 18), by means of the Fourier-

Hermite deomposition with NH = 800. The system is initially perturbed

through a spatially sinusoidal eletri �eld perturbation, whih translates,
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Figure 3.2: (Color online) Spetrum of the matrix A for four inreasing values of

ollisionality: ν = 5× 10−5, 1× 10−4, 2× 10−4, 5× 10−4
respetively in blak, red,

blue and gold dots. The blak squares represent the Landau roots.

in the Fourier-Hermite spae, to initialize the vetor

−→
Cj as (1, 0, 0, . . .)

T
(the

eletri �eld is proportional to C0).

Figure 3.1 shows the temporal evolution of the absolute value of the Her-

mite oe�ients |Cn| in logarithm sale. Sine the �lamentation in veloity

spae naturally produes small veloity sales, Hermite oe�ients of inreas-

ingly higher modes are exited. When the largest mode gets exited, the trun-

ation of the series ats as a re�eting boundary (around time T ∼ 75), and

the perturbation travels bak towards lower modes. Around time T ∼ 150,

the eletri �eld damping is abruptly interrupted and a value lose to the

initial value is restored. Let us note that, although the eletri �eld will not

be a�eted until the reurrene time T ∼ 150, the distribution funtion is

spuriously altered from time T ∼ 75, that is when the perturbation re�ets

on the boundary.

As we mentioned earlier, the e�et of a non-null ollisionality in the

Vlasov-Poisson linear operator is to modify the spetrum of eigenvalues. Lan-

dau damping is not anymore due to the phase-mixing of a ontinuous set of

neutral mode. Moreover, for a large enough value of ν, it appears as the least-

damped eigenvalue of the system. This is shown in Figure 3.2, where, for the

same value of k = k1 = 0.35, we show the spetrum of the matrix A for four

inreasing values of ollisionality: ν = 5× 10−5, 1× 10−4, 2× 10−4, 5× 10−4
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(respetively in blak, red, blue and gold dots). The damping rate γ and

the wave propagation frequeny ω are respetively shown on the horizontal

and vertial axes of Fig. 3.2. The values orresponding to the theoretial

Langmuir roots (γ = γL = −3.37 × 10−2
and ω = ±1.22), obtained through

the numerial evaluation of the Landau dispersion funtion roots, are shown

as blak squares. We emphasize that the spetrum of the matrix A di�ers

from the spetrum of the in�nite-dimensional Vlasov-Poisson-LB operator.

In fat, while for the latter the Landau root is a disrete eigenvalue in the

limit ν → 0, Figure 3.2 learly shows that, in the presene of a �nite veloity

resolution, a small ollisionality ats to distort the disrete representation

of the Case-Van Kampen ontinuum. In other words, a su�iently large

ollisionality value (depending on the veloity resolution) is needed in order

to reover the Landau root as a disrete mode. Indeed, it is lear that, for

ν = 5 × 10−4
(gold points), the spetrum exhibits two eigenvalues overlap-

ping with the proper Landau roots value and, therefore, the proper Landau

damping is restored.

In order to larify the behavior of the oe�ients |Cn| in the ase where the
ollisionality restores the proper Landau damping (i.e. ν = 5×10−4

), we show

in Fig. 3.3 the temporal evolution of the Hermite oe�ients |Cn|. Clearly

Figure 3.3: (Color online) Temporal evolution of the Hermite oe�ients |Cn| as
a funtion of the Hermite mode n and the time t for the ollisional ν = 5 × 10−4

ase.
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Figure 3.4: (Color online) Temporal evolution of log |Ek|(t) with k = k1. The blak,
red and blue lines indiate respetively ν = 0, ν = 5× 10−5

and ν = 5× 10−4
. The

red and blue dashed lines show respetively the theoretial damping with Landau

damping γL and the instant time t = Trec.

the re�eting e�et disussed for Fig. 3.1 has now ompletely vanished and

the eletri �eld damping does not show any reurrene. Sine the ollisional

operator damps the high Hermite modes or, in other words, sine ollisional

e�ets stop the prodution of small veloity sales, the veloity �lamentation

is not orretly aptured.

In order to omplete our analysis, we numerially solve Eqs. (3.1)�(3.2)

through the �nite-di�erene numerial ode presented earlier, for di�erent

values of the ollisional frequeny ν. We set the initial sinusoidal density

perturbation suh that the perturbation eletri �eld amplitude is δE = 10−3
.

The phase spae is disretized with Nx = 64 and Nv = 101 points. Let us

remark that, with the parameters hoie just desribed, the reurrene time

is Trec = 2π/k∆v ≃ 150.

The time evolution of the logarithm of the absolute value of the �rst

Fourier omponent k = k1 of the eletri �eld log |Ek|(t) is shown in Fig.

3.4. The blak, red and blue lines orrespond respetively to the ollisionless

ase (ν = 0), intermediate ollisional ase (ν = 5 × 10−5
) and stronger

ollisional ase (ν = 5×10−4
). The last ase is the ase in whih the Landau

damping root is reovered in the spetrum shown in Fig. 3.2, thanks to the

e�et of ollisions. The red and blue dashed lines in Fig. 3.4 indiates the
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theoretial Landau damping rate γL = −3.37×10−2
and the reurrene time

t = Trec ≃ 150 respetively.

For the three ases, the eletri �eld spetral omponent evolution is

approximately the same for t < Trec and the eletri �eld is damped at

the proper Landau damping rate γL. Then, around t = Trec ≃ 150, the

ollisionless and the intermediate ollisional ases (blak and red solid lines of

Fig. 3.4) present a fake �jump� in the signal due to the initial state reurrene

problem. On the other hand, in the stronger ollisional ase ν = 5×10−4
(blue

solid line of Fig. 3.4), the reurrene e�et disappears and the unphysial

�jump� is ompletely suppressed by ollisional e�ets. It is worth to note

that, in this ase, the reurrene does not our neither at times multiples of

the reurrene period.

Based on the results presented above, the inlusion of a weakly ollisional

operator to prevent the numerial reurrene e�et might look onvenient;

however, the onsequenes of inluding ollisionality into the Vlasov-Poisson

system must be investigated with are.

Figure 3.5 shows the di�erene between the damping rate γM of the least

damped mode and the damping rate γL of the Landau root, as a funtion of

the ollisional rate ν, for three di�erent values of k = 0.35, 0.45, 0.55, (blak,

Figure 3.5: (Color online) The blak, red and blue lines show the di�erene between

the damping rate γM of the least damped mode and the damping rate γL of the

Landau root, as a funtion of the ollisional rate ν, for three di�erent values of

k = 0.35, 0.45, 0.55 respetively.
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Figure 3.6: (Color online) (a) Temporal evolution of log |Ek|(t) with k = k1 for

the ollisionless ase (blak line) and the ollisional ν = 5 × 10−4
ase (red line).

The blue dashed vertial line indiates the reurrene period Trec. The distribution

funtion around the phase speed v = vφ at the �nal time instant f(x, v, t = tfin)
is shown in panels (b)�() for the ollisionless (b) and ollisional () ase.

red and blue line, respetively). As explained in Figure 3.2, for ν → 0,

and �xed veloity resolution, the Case-Van Kampen spetrum [175, 176℄ is

reovered (see Fig. 3.2), and γM → 0. The intersetion between the red

dashed and the solid lines indiates the value of ollisionality that is required

to reover the orret Landau damping as a disrete eigenmode. Moreover,

bearing in mind that both γM and γL are negative quantities, values above

the red-dashed line in the �gure indiate that the ollisional rate is not large

enough to reover the Landau damping as the least damped eigenvalue, while

values below the red-dashed line indiate over-damping with respet to the

Landau damping. Figure 3.5 learly indiates that there is not a single value

of ollisionality that would allow to reover the orret Landau damping for

a spetrum of several wavenumbers. Sine larger wavenumbers are subjet

to stronger damping, they would require a larger ollisional rate.

Moreover, if the initial �eld amplitude is inreased in order to explore the

nonlinear evolution of the Landau damping, the ollisionality, whih was able

of preventing reurrene in the linear simulation, beomes strong enough to

smooth the nonlinear physial features of the Landau damping. In order to

larify this point, we perform a simulation with the same parameters of the

linear one explained above (see Fig. 3.4) and we inrease δE = 10−1
. Figure

3.6 (a) shows the time evolution of log |Ek|(t) for k = k1 for the ollisionless

ase (blak solid line) and for the ollisional ase ν = 5 × 10−4
(red solid
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line). The blue dashed line in Fig. 3.6 indiates the reurrene period

Trec = 2π/k∆v ≃ 150. We remark that this spei� value of ollisional

frequeny is the one whih prevents reurrene e�ets in the linear ase, still

preserving the orret value of Landau damping.

It is lear that, in the non-linear ollisionless ase, the Landau damping

is arrested by nonlinear e�ets (partile trapping) and, as a onsequene, the

eletri �eld starts osillating around a nearly onstant saturation level. On

the other hand, in the ollisional ase, the physial senario hanges drasti-

ally and the eletri �eld amplitude displays evident ollisional damping.

In phase spae, nonlinear e�ets manifest as the generation of a vorti-

al trapping population, moving with veloity lose to the wave phase speed

(vφ ≃ 3.50). This is shown in Figs 3.6 (b)�() where the ontour plots of

the distribution funtion f(x, v) at time t = 400 for the ollisionless ase (b)

and for the ollisional ase () are reported. It is lear from the ompari-

son of panels (b) and () of Fig. 3.6 that ollisions prevent the generation

of the phase-spae trapping population, sine they work to smooth out any

deformation of the partile distribution funtion and to drive the system

toward thermal equilibrium. In other words, as soon as kineti e�ets pro-

due distortions (and, onsequently, sharp veloity gradients) of the partile

distribution, ollisional e�ets beome more intense to keep the veloity dis-

tribution lose to a Maxwellian. Therefore, it is quite lear that ollisional

e�ets are not able to prevent the reurrene problem without destroying the

plasma dynamis harateristis.

In order to understand whether hanging the resolution in veloity spae

[165, 166℄ a�ets the physial features of the system, we performed additional

simulations in ollisionless regime, inreasing the number of gridpoints in the

veloity domain: Nv = 101, 201, 401, 1001, 2001, 4001; Nv = 101 [indiated

with blue rosses in Figs. 3.7 (a�b)℄ orresponds to the ase depited in Fig.

3.6.

We omputed the following quantities as �proxies� of numerial auray:

• The osillation period Tosc of the wave, evaluated in the time interval

t ≥ Trec);
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• The time tmax where the eletri �eld envelope reahes its �rst maxi-

mum [≃ 100 in Fig. 3.6(a)℄;

• The osillation period τ of the eletri �eld envelope, de�ned as the

average of the di�erene between two onseutive maximum points in

the log |Ek|(t) evolution;

• The saturation eletri �eld Ek,sat at whih the eletri �eld spetral

power saturates.

The quantities Tosc and tmax (not shown here) do not depend on Nv, the

relative variations between the two extremes ases (Nv = 101 and Nv = 4001)

being always smaller than the 1%. On the other hand, in Fig. 3.7 we report

the dependene of Ek,sat (a) and τ (b) on Nv. Clearly, these two quantities

approah a saturation value (red-dashed line) as Nv inreases. The relative

variations between the values obtained with Nv = 101 and the orresponding

saturation values (red dashed lines) are about the 4% for Ek,sat and 10% for

τ . We onlude that even in the nonlinear ase shown in Fig. 3.6 the limited

resolution in the veloity domain slightly a�ets the physial evolution of

the system. However, as disussed above, adding a ollisional operator to

eliminate these unphysial e�ets produes drasti hanges in the kineti

aspets of the dynamis with respet to the ollisionless ase.

Figure 3.7: (Color online) The osillation period of the eletri �eld envelope τ (a)

and the saturation eletri �eld Ek,sat (b) as a funtion of Nv. The blue rosses

indiate the Nv ase ase depited in Fig. 3.6.
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3.1.3 Bump-on-tail instability

In the urrent setion the reurrene e�ets on the bump-on-tail instabil-

ity are desribed by performing a similar analysis to that performed in the

previous Setion. The initial distribution funtion is the following:

f0(v) =
n0

(2πT0)1/2
exp

(

− v2

2T0

)

+
nb

(2πTb)1/2
×

[

exp

(

−(v − Vb)
2

2Tb

)

+ exp

(

−(vx + Vb)
2

2Tb

)

]

(3.14)

The ore density and temperature are respetively n0 = 0.98 and T0 = 1,

while the bump density, mean veloity and temperature are nb = 0.01, Vb = 4

and Tb = 0.4 respetively. Is it lear that f0(v) represents a Maxwellian

distribution funtion to whih two bumps are superimposed at both positive

and negative side of the veloity domain. Moreover the veloity symmetry

in the veloity shape of f0(v) guarantees an initial null urrent. In Hermite

spae, the parity of f0(v) translates to having Ceq
n = 0 for all odd n.

First of all, as performed in Se. 3.1.2, we study the ollisionless (ν = 0)

linear evolution of the bump-on-tail instability onset for k = k1 = 2π/L =

0.25 (being the plasma length L = 25) by perturbing initially the system

Figure 3.8: (Color online) Temporal evolution of the Hermite oe�ients |Cn| as a
funtion of the Hermite mode n and the time t for the ollisionless ν = 0 ase.
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through a spatially sinusoidal eletri �eld perturbation. Here the Hermite

modes number is NH = 400. Figure 3.8 shows the temporal evolution of the

absolute value of the Hermite oe�ients |Cn|. Only the �rst 100 modes are

shown, to better appreiate the reurrene on the low order modes. As in Fig.

3.1 for the Landau damping, the �lamentation reates small veloity sales

and, due to the trunation of the Hermite series - whih orresponds, in the

Eulerian ode, to the presene of a �nite veloity grid size - the boundary

re�ets bak the perturbation towards lower modes. The main di�erene

with respet to the Landau damping ase is that now there is an eigenmode

whose amplitude grows exponentially in time. The eigenmode has a ertain

struture in Hermite spae, and is loalized between modes 5 and 10. One

the �lamentation bounes bak beause of the trunation of the series, the

unstable eigenmode is perturbed, around time T ∼ 150. Therefore, in the

bump-on-tail ase, the reurrene is muh more evident as a fake perturbation

ating on the unstable eigenmode, rather than on the eletri �eld. In fat,

as we show in the following, the reurrene of the eletri �eld is more modest

than for the Landau damping ase.

In order to larify how the reurrene ats on the instability onset, we

perform some Eulerian simulations where the phase spae is disretized with

Nx = 128 point while Nv is variable in order to hange the reurrene pe-

riod: Nv = 101 (Trec ≃ 200), Nv = 201 (Trec ≃ 400) and Nv = 1001

(Trec ≃ 2000). We perturb the system through a sinusoidal density per-

turbation whose wavenumber is k = k1 = 0.25. The density perturbation

amplitude is δn = 2.51×10−6
whih orresponds to a perturbed eletri �eld

of amplitude δE = 10−5
. By evaluating the dispersion funtion roots of the

Vlasov equation we an alulate, for the spei� wavenumber, the linear

growth rate of the instability γth
I = 9.20 × 10−3

and the wave phase speed

vφ = 3.90.

Figures 3.9 (a)�(b) show respetively the temporal evolution of log |Ek|(t)
with k = k1 and the phase spae ontour plot at the �nal time of the simula-

tion t = tfin for the high resolution ase (Nv = 1001). Clearly the instability

is not a�eted by the reurrene and, in the linear stage, the �eld amplitude

grows up exponentially in aordane with the theoretial predition [red

114



Collisional e�ets desribed in a redued phase spae

Figure 3.9: (Color online) (a) Temporal evolution of log |Ek|(t) with k = k1 for

the ollisionless reurrene-free (Nv = 1001) ase. The red dashed line represents

the theoretial growth expetation exp(γthI t). (b) Contour plot of the distribution
funtion around the phase spae v = vφ at the �nal time instant f(x, v, t = tfin).

dashed line in Fig. 3.9 (a)℄. As nonlinear e�ets beome important, the �eld

saturates at a onstant value and in the phase spae, a BGK-like struture

[146, 157℄ is formed [see Fig. 3.9(b)℄. The phase spae struture is well-

loalized around the phase speed v = vφ and its width is quite in aordane

with the theoretial predition.

In ontrast with the ase just shown, when the veloity resolution de-

reases, reursive e�ets our. Panels of Figs. 3.10 show the results of two

simulations with resolution Nv = 101 (left olumn) and Nv = 201 (right

olumn). For eah olumn, the top panel [Figs. 3.10 (a)�(b)℄ desribes the

temporal evolution of log |Ek|(t), while the enter panel [Figs. 3.10 ()�(d)℄

displays the quantity ∆Ek%, de�ned as the relative di�erene (expressed in
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Figure 3.10: (Color online) Reurrene e�ets on the bump-on-tail instability for

the Nv = 101 (left olumn) and Nv = 201 (right olumn) simulations. The top

panels (a)�(b) show the temporal evolution of log |Ek|(t) with k = k1 for the low-

resolution ase (blak line) and for the reurrene-free ase (red solid line), while

the red dashed line indiates the theoretial growth expetation exp(γthI t). The

entral panels ()�(d) display the quantity ∆Ek% (blak line) and the reurrene

period t = Trec (blue dashed line). Finally the bottom panels (e)�(f) visualize the

distribution funtion ontour plot around the phase spae v = vφ at the �nal time

instant f(x, v, t = tfin).

perentage) between |Ek|(t) at a given resolution and |Ek|(t) for the olli-

sionless reurrene-free ase. Finally, the bottom ontour plot [Figs. 3.10

(e)�(f)℄ exhibits the distribution funtion f(x, v, t = tfin) at the �nal time

and around the phase speed v = vφ. Let us remark that, in order to better

visualize the phase spae strutures in Fig. 3.10 (e)�(f), we performed an

interpolation of the distribution funtion over a more resolved grid without

altering the physial features of the phase spae struture itself.

116



Collisional e�ets desribed in a redued phase spae

Figure 3.11: (Color online) Temporal evolution (blak line) of log |Ek|(t) with

k = k1 for the ase Nv = 201 and with ollisional frequeny ν = 1.5 × 10−6

(a), ν = 4.1 × 10−6
(b) and ν = 6.6 × 10−6

() respetively. In eah panel the

red solid line shows the evolution of log |Ek|(t) for the ollisionless reurrene-free
(Nv = 1001) ase while the red dashed line displays the theoretial linear instability

growth.

It is lear that the reurrene also manifests in the instability onset. By

fousing on the linear stage of the instability growth, the eletri �eld am-

plitude seems to exponentially inrease at a rate in aordane with the

theoretial expetations, represented with red dashed lines in Figs. 3.10 (a)�
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(b). Moreover, as introdued above, in ontrast with the Landau damping

ase, the reurrene e�et does not strongly manifest as a fake jump around

the reurrene time t = Trec. However, by analyzing the temporal evolution

of ∆Ek% [see Figs. 3.10 ()�(d)℄, an abrupt inrease of ∆Ek% is observed

around the reurrene period, shown in Figs. 3.10 ()�(d) with blue dashed

lines. This disontinuity is due to reursive e�ets and it means that, after

the reurrene period, the eletri �eld evolution in the ase with a lower

resolution strongly departs from the reurrene-free ase (∆Ek% ≃ 100%).

Thus, although reursive e�ets annot be appreiated in the linear stage of

the instability growth by looking diretly at Figs. 3.10 (a)�(b) (the sale is

logarithmi and a variation about the 100% annot be easily highlighted),

the �eld evolution is atually disturbed by reurrene.

Furthermore, reurrene phenomena a�et the nonlinear evolution of the

instability. E�etively, by fousing on Fig. 3.10 (a)�(b), in the ase with-

out reurrene the eletri �eld power opportunely saturates at a onstant

value (red line) while, on the other hand in the ases with reurrene the

eletri �eld does not saturate and it ontinues to slowly inrease. Finally,

by fousing on the distribution funtion at the �nal time instant t = tfin [see

Figs. 3.10 (e)�(f)℄, in both ases a phase spae struture is produed around

the orret phase speed. By omparing these phase spae strutures with

the hole reated in the reurrene-free ase [Fig. 3.9 (b)℄, some di�erenes

learly reveal. First, phase spae strutures obtained in the ases with reur-

rene are less resolved ompared to the one of the reurrene-free ase and

this is obviously related to the di�erent veloity grid size: e�etively, sine

the veloity grid size is smaller in the reurrene-free ase, �ner sales are

naturally reated ompared to the ases at lower resolution. Moreover, the

vortex width seems to be slightly wider in the Nv = 101 ase [Fig. 3.10 (e)℄

ompared to both the ollisionless reurrene-free ase [Fig. 3.9 (b)℄ and to

the Nv = 201 ase [Fig. 3.10 (f)℄. In other words, sine the eletri �eld does

not saturate in presene of reursive e�ets, the phase spae struture tends

to inrease its width.

The e�ets of the initial state reurrene on the bump-on-tail instability

represents a novel and quite unexpeted feature in the analysis of the re-
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ursive phenomena. Both linear and nonlinear stages of the instability are

a�eted by reurrene: the eletri �eld evolution departs from the evolution

in the ase without reurrene (Nv = 1001) around t = Trec. Furthermore the

nonlinear saturation, whih is properly retained in the ase at high resolution,

is interrupted by reurrene as the veloity grid size gets larger. Moreover,

due to the absene of the eletri �eld saturation, the distribution funtion

shows a vortex properly entered around the right phase speed but whose

width tends to be bigger ompared to the ase without reurrene. Finally,

although initial state reurrene phenomena are often related to linear phys-

ial problems, here we have found some new and interesting reurrene e�et

features whih our in the nonlinear regime.

In order to explore if a ollisionality desribed by the LB operator ould

represent a good way to prevent numerial reurrene in the ase of the

bump-on-tail instability, we fous on the Nv = 201 resolution ase ad we

perform several ollisional simulations by hanging the ollisional frequeny

ν.

Figs. 3.11 (a)�() display, through blak lines, the temporal evolution of

log |Ek|(t) with k = k1 for the ases: ν = 1.5× 10−6
(a), ν = 4.1× 10−6

(b)

and ν = 6.6 × 10−6
(). In eah panel of Fig. 3.11 red solid lines indiate

the evolution in the ollisionless ase without reurrene [the same shown

in Fig. 3.9 (a) and in Figs. 3.10 (a)�(b)℄ while the red dashed line shows

the theoretial expetation for the instability growth urve exp(γth
I t), being

γth
I = 9.2× 10−3

.

As expeted, ollisions inhibit the instability and tend to restore thermal

equilibrium. However in the ase ν = 1.5×10−6
[see Fig. 3.11 (a)℄, ollisions

weakly a�et the eletri �eld evolution whih, as in the ollisionless ase, do

not saturate and overtake the reurrene-free ase evolution [red line in Fig.

3.11 (a)℄.

As ollisional frequeny inreases, the eletri �eld evolution tends to be

dissipated. In the intermediate ase ν = 4.1 × 10−6
[see Fig. 3.11 (b)℄, the

eletri �eld reahes, at the end of the simulation, almost the same power of

the ollisionless ase without reurrene; however its evolution departs from

the referene red urve around t ≃ 600, where the reurrene-free ase [red
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line in Fig. 3.11 (b)℄ presents a stronger power level than the ollisional

Nv = 201 ase [blak line in Fig. 3.11 (b)℄. On the other hand, in the ase

ν = 6.6 × 10−6
[see Fig. 3.11 ()℄, a signi�ant di�erene between the two

evolutions appears at even smaller time instants and ollisions learly a�et

the linear instability regime. In partiular, the linear growth rate in the

ollisional Nv = 201 ase [blak line in Fig. 3.11 ()℄ is signi�antly smaller

than the ollisionless Nv = 1001 ase [red line in Fig. 3.11 ()℄. Moreover, as

in the ollisionless reurrene-free ase, at the �nal stages of the simulation

the eletri �eld spetral power exhibits an almost �at behavior at a lower

power value ompared to the ollisionless reurrene-free ase.

In order to point out how phase spae is a�eted by ollisions, Figs. 3.12

(a)�() show the ontour plots of the distribution funtion f(x, v, t = tfin) at

the �nal time instant t = tfin and zoomed around the phase speed v = vφ for

the ases: ν = 1.5× 10−6
(a), ν = 4.1× 10−6

(b) and ν = 6.6× 10−6
(). As

in Fig. 3.10 (e)�(f), even in Fig. 3.12 (a)�() we performed an interpolation

of the distribution funtion over a more resolved grid. In all the three ases

shown in Fig. 3.12 (a)�() a phase spae struture is observed around the

wave phase speed and its width redues as ollisional frequeny inreases.

Clearly as ollisions beome stronger, phase spae strutures are smoothed

out and present a smaller size.

We highlight that, as ollisional frequeny gets bigger, the instability is af-

feted by ollisions more intensely. Moreover, sine ollisions tend to restore

the equilibrium, they have been ative sine the initial stage of the simu-

lation (the initial distribution funtion is out of equilibrium). Furthermore

they remain ative until the equilibrium is reovered and inessantly work

to smooth out all the wave features (eletri �eld signal and phase spae

strutures). Therefore, at longer times (not shown here), the phase spae

strutures shown in Figs. 3.12 get smaller and disappear, while the ele-

tri �eld signal shown in Figs. 3.11 is dissipated by ollisional e�ets. We

onlude that, as in the nonlinear Landau damping ase, an arti�ial olli-

sionality is not able to prevent the initial state reurrene in the bump-on-tail

instability onset. In partiular we found two di�erent senarios: ollisions are

so weak that reurrene is still ative or, on the other hand, they a�et both
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Figure 3.12: (Color online)The distribution funtion ontour plots around the phase

spae v = vφ at the �nal time instant f(x, v, t = tfin) for the ase Nv = 201 and

with ollisional frequeny ν = 1.5×10−6
(a), ν = 4.1×10−6

(b) and ν = 6.6×10−6

().

reurrene e�ets and physial evolution of the system by deeply smoothing

the eletri �eld and the phase spae struture.

3.1.4 Summary

In this setion we analyzed in detail the problem of the initial state reur-

rene in a weakly ollisional plasma, where eletron-eletron ollisions have

been modeled through the Lenard-Bernstein ollisional operator [139℄. We
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foused on two study ases: the Landau damping of a Langmuir wave and

the bump-on-tail instability onset. For both ases, the analysis in the linear

regime has been performed through the deomposition of the linear Vlasov-

Poisson system into the Fourier-Hermite spae. In partiular, the expansion

of the distribution funtion in terms of Hermite funtions separates naturally

di�erent veloity sales and it allows to better desribe reursive e�ets and

appreiate the role of the ollisional operator in phase spae. Moreover, the

analysis has been extended to the nonlinear regime through a 1D�1V Eu-

lerian ollisional Vlasov-Poisson ode, already tested and used in previous

works (see Refs. [62, 63℄).

Reently some authors (see Refs. [172, 177, 178℄ and referenes therein)

pointed out that an opportune ollisionality an prevent the onset of reursive

e�ets and restore the orret Landau damping. This indiation suggested us

to investigate whether the inlusion of an arti�ial ollisionality ould be used

to prevent reurrene in numerial simulations without the loss of physial

details due to ollisional e�ets. However, we have shown that the ollisional

frequeny ν whih is suitable for preventing numerial reurrene in the linear

regime depends on the perturbation wavenumber; furthermore, ollisional

e�ets beome important when the system evolves to the nonlinear regime

and, for the same value of ollisionality whih prevents reursive e�ets in the

linear stage, any nonlinear wave is strongly dissipated by ollisional e�ets.

Finally, we pointed out that numerial e�ets assoiated to the generation

of �ne veloity sales an modify the physial features of the system evolution

even in nonlinear regime. This has been shown by fousing on the nonlinear

Landau damping phenomenon and on the bump-on-tail instability both in

linear and nonlinear regime. Our results indiate that �lamentation-like and

reursive e�ets, often assoiated with evolution in linear regime, an also

be important in the nonlinear ase. We also onlude that the addition

of a ollisional operator, with the aim of preventing the reurrene of the

initial state and other numerial e�ets related to limited resolution in the

veloity domain, signi�antly hanges the evolution of nonlinear waves and

the orresponding phase spae portrait.
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3.2 Seondary waves branh in an externally

fored plasma

In the present setion we desribe, by means of Eulerian Vlasov-Poisson

simulations, the method adopted for triggering waves in laboratory plasmas

devies, like, for example, Penning-Malmberg traps [50, 145, 182℄. Plasma

waves are usually launhed through an external eletri potential, loalized

in a partiular region of the plasma olumn. This driver osillates in time

[φD ≃ sin(ωDt), being ωD the driver pulsation℄ and it is adiabatially turned

on and o� to selet the waves frequeny [50, 145, 179, 180, 181, 182℄.

On the other hand, when the dynamis of these systems is modeled by

means of numerial simulations, external drivers selet at the same time

pulsation and wavenumber [ED ≃ sin(kx − ωDt), where ωD/k = vφ,D℄. As

in experimental setups, these external drivers are also turned on and o�

adiabatially. This kind of drivers has been widely implemented to exite

Trivelpiee-Gould (TG) waves, EAWs [143, 144, 183, 184, 185℄ or KEEN

Waves [129, 137, 138, 159℄ as well as for the analysis of auto-resonane proess

[186, 187℄.

The two types of drivers desribed above present di�erent features: in

experiments, the driver is spatially loalized while, in simulations, it usually

permeates all the omputational box. To resolve this disrepany, we imple-

ment in a numerial simulation a more realisti, loalized driver and analyze

the wave triggering proess in detail. We onsider both the ases of a ollision-

less and a weakly ollisional plasma omposed of kineti eletrons and a bak-

ground of motionless ions. Eletron-eletron ollisions are modeled through

the one-dimensional Dougherty operator [58, 59, 62, 63, 134, 135, 136℄. In

this framework, we study the exitation of linear Langmuir waves and non-

linear EAWs. By fousing on the Langmuir waves ase, we desribe the basi

mehanism whih selets frequeny and wavenumber of the waves. As we

will show in detail in the following, the driver �eld is omposed of a temporal

adiabati funtion, whih selets the mode frequeny through a resonane

proess, and of a spatial loalization funtion exiting several spatial Fourier

omponents. This represents a novel features ompared to previous simu-
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lations (see Refs. [129, 137, 138, 144, 159, 184, 185℄) where only a �single�

wavenumber was exited.

Then, we analyze the triggering proess of EAWs, whih are undamped

aousti-like waves, whose phase speed is about the eletron thermal speed

(vEAW
φ ≃ 1.31vth). It is worth to note that the standard Vlasov-Poisson lin-

ear theory based on a Maxwellian equilibrium distribution funtion predits

that these �utuations are heavily damped. However, Holloway and Dorning

[142℄ showed that, when the equilibrium distribution funtion presents �at

regions with vanishing veloity derivative, undamped EAWs appear as non-

linear solutions of the Vlasov-Poisson system and exhibit Bernstein-Greene-

Kruskal modes-like harateristis [146℄. Let us also remark that nonlinear

modes whose phase speed is lose to the thermal speed has been predited

for astrophysial plasmas [29, 188℄ and reently observed in solar wind data

[189, 190℄.

When we trigger EAWs in our simulations, surprisingly a new branh of

nonlinear and non-dispersive waves is observed in the ollisionless ase be-

yond the standard EAWs �utuations. The phase speed of these �utuations

is about ≃ 0.5vth (vEAW
φ /3) and they are generated by the loalized driver,

whih perturbs the VDF in several phase spae regions. Indeed, the VDF

exhibits a small bump around v ≃ 0.5vth as a result of the driver e�ets,

therefore a beam-like instability ould ause the onset of these modes.

Moreover we show that, also for small values of ollisionality, these se-

ondary waves are not reovered; this suggests that ollisions inhibit the for-

mation of small sale strutures in the VDF and, hene, the triggering of

seondary beam-modes. This is probably the reason why these �utuations

are not routinely observed in laboratory plasma experiments, where a low

level of ollisionality is always present. It is worth to point out that, despite

we analyzed a neutral plasma, the wave launhing mehanism is quite general

and our onsiderations ould be easily extended to nonneutral plasmas.

The struture of the setion is the following: in Se. 3.2.1 we theoretially

analyze the basi equations system and the ation of the loalized driver and

we brie�y desribe our numerial ode. Then, in Se. 3.2.2, we fous on the

triggering of linear Langmuir waves and on the basi frequeny resonane
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proess. Then, in Se. 3.2.3, we analyze the EAWs launhing proess in both

a ollisionless [Se. 3.2.3℄ and a weakly ollisional [Se. 3.2.3℄ plasma.

3.2.1 Theoretial analysis

We onsider a plasma omposed of kineti eletrons and motionless pro-

tons within the eletrostati approximation. Eletron-eletron ollisions are

inluded at the right-hand side of the Vlasov equation through the one-

dimensional Dougherty operator [58, 59, 134, 135℄. We solve the following

dimensionless Dougherty-Poisson (DP) equations, in 1D�1V phase spae on-

�guration:

∂f

∂t
+ v

∂f

∂x
+

∂ (φ+ φD)

∂x

∂f

∂v
=

∂f

∂t

∣

∣

∣

∣

coll

(3.15)

− ∂2φ

∂x2
= 1−

∫

f dv ; (3.16)

where f = f(x, v, t) is the eletron distribution funtion, φ = φ(x) =

−dE/dx is the eletrostati potential (E is the eletri �eld), φD = φD(x)

is the external potential driver and ∂f/∂t|coll is the Dougherty ollisional

operator. Due to their inertia, protons are onsidered as a motionless neu-

tralizing bakground of onstant density n0 = 1. In previous equations, time

is saled to the inverse eletron plasma frequeny ωpe, veloities to the ini-

tial eletron thermal speed vth,e; onsequently, lengths are normalized by the

eletron Debye length λDe = vth,e/ωpe and the eletri �eld by ωpemevth,e/e

(me and e being the eletron mass and harge, respetively). For the sake of

simpliity, from now on, all quantities will be saled using the harateristi

parameters listed above.

The Dougherty ollisional operator [58, 59℄ has the following form:

∂f

∂t

∣

∣

∣

∣

coll

= ν(n, T )
∂

∂v

[

T
∂f

∂v
+ (v − V ) f

]

; (3.17)
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here, ν(n, T ) is the ollisional frequeny:

ν(n, T ) = ν0
n

T 3/2
; ν0 =

g ln Λ

8π
; (3.18)

where g = 1/nλ3
D is the plasma parameter, ln Λ ≃ − ln g/3 is the Coulombian

logarithm, subsript j indiates the j-th vetor omponent and n =
∫

dvf ,

V = 1/n
∫

dv vf , T = 1/3n
∫

dv (v − V )2f are respetively plasma density,

mean veloity and temperature. The Einstein onvention has been intro-

dued in Eq. (3.17).

The driver shape φD(x, t) is the following:

φD(x, t) = φ0 h(x)g(t) sin(ωDt) , (3.19)

being respetively

g(t) =

[

1 +

(

t− τ

∆τ

)ng
]−1

; h(x) =

[

1 +

(

x− x0

∆x0

)nh
]−1

(3.20)

the temporal g(t) and spatial h(x) adiabati funtions whih respetively

model the antenna �loality� and the adiabati turning on and o� funtion of

the driver. Sine the eletrostati potential is spatially loalized, the eletri

�eld beomes spread in terms of spatial Fourier omponents. On the other

hand, the temporal funtion g(t) selets the frequeny ω of the plasma modes.

Indeed, the Fourier transform of g(t) is loalized around the driver frequeny

ωD with a width omparable with 1/∆τ . Therefore, as the driver temporal

extension gets bigger, the driver frequeny width beomes smaller. In Eqs.

(3.20) x0 = L/2, ∆x0 = L/16 and nh = 16, while the values of τ , ∆τ and ng

will be given later in the next setion. Eqs. (3.15)�(3.16) are solved with the

same methods desribed in previous setion and in Refs. [62, 63℄. The phase

spae is here disretized with Nx = 256 gridpoints in the physial domain

Dx = [0, L] and Nv = 12001 gridpoints in the veloity domain.

In the following setions we desribe simulations results about Langmuir

waves (Se. 3.2.2) and EAWs (Se. 3.2.3). In both ases, the initial ondition

is a homogeneous Maxwellian without any density perturbation.
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3.2.2 Langmuir waves

Here we desribe the results of three di�erent simulations, whose parameters

are listed in Tab. 3.1. For all the simulations the driver is turned on for a

time interval ∆τ = 40 T , being T the wave period, while ED = 5× 10−6
.

SIM L k1 = k0 = 2π/L ωD ωD = ω(k)
A 26 0.242 1.098 YES, for k = k1
B 26 0.242 1.200 NO, for any k
C 200 0.031 YES, for k = k1

Table 3.1: Parameters of the Langmuir waves simulations.

In the �rst simulation (SIM A), the driver osillates at a frequeny ωD

whih is in resonane with the ω(k1) plasma mode frequeny, being ω(k1)

evaluated with a linear numerial solver. Figure 3.13 shows the time evolution

of the �rst two eletri �eld Fourier omponents |Ek|(t) in blak solid (k = k1)

and red dashed (k = k2) lines. |Ek2|(t) is reported as an illustrative ase for

other non-fundamental Fourier omponents, whih exhibit similar behaviors

to |Ek2|(t). Yellow vertial lines indiate the time instants t = τ1 and t = τ2,

orresponding to the times when the driver is set on and o�. For the sake of

simpliity let us analyze Fig. 3.13 by onsidering three time periods: t ≤ τ1

(I) , τ1 ≤ t ≤ τ2 (II) and t ≥ τ2 (III).

Figure 3.13: (Color online) Time evolution of |Ek|(t) for k = k1 (blak line) and

k = k2 (red line) relative to SIM A. The two yellow vertial lines indiate the time

instants at whih the driver is turned on t = τ1 and o� t = τ2, while the blue

dashed line represents the theoretial exponential damping with damping rate γL.
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When the driver grows up adiabatially (I), several Fourier omponents

inrease their powers and |Ek1|(t) overtakes the non-fundamental ompo-

nents. Then, while the driver is on (II), the di�erene between |Ek1 |(t) and
the other Fourier omponents beomes stronger. The power of the fundamen-

tal omponent ontinues to inrease and |Ek1|(t) exhibits a non-�at pro�le,

due to the fat that the plasma is responding to the external driver through

the Langmuir wave generation. The other omponents remain instead at

the power level due to the driver. When the driver is turned o� (III), only

|Ek1 |(t) survives and displays an exponential damping, whose oe�ient is in

agreement with the Landau damping rate γL = −1.404 × 10−3
[blue dashed

urve in Fig. 3.13(a)℄.

In this ase (SIM A) the launhing mehanism is quite lear: the external

eletri �eld drives several spatial Fourier omponents but, at the same time,

it temporally selets the driving frequeny. The driver pulsation is perfetly

resonant with the theoretial pulsation of the Langmuir wave ω(k) with k =

k1, therefore the plasma response ours at a pure Langmuir wave. Other

spatial omponents, whih ould be exited by the driver spatial loalization,

are not e�etively triggered beause they are not resonant with the driver

[ω(kj) 6= ωD for j 6= 1℄.

The seond simulation (SIM B) has the same parameters as SIM A exept

for the driver frequeny whih is now ωD = 1.20 [ωD 6= ω(kj) for all the set

of kj℄. Figure 3.14(a) shows the time evolution of the �rst two eletri �eld

Fourier omponents |Ek|(t) in blak solid (k = k1) and red dashed (k = k2)

lines. The yellow vertial lines indiate the instants t = τ1 and t = τ2,

orresponding to the times when the driver is set on and o�.

The evolution of non-fundamental omponents [ompare the red urves of

Fig. 3.13 and 3.14(a)℄ is the same of the on-dispersion (SIM A) ase, being

in both simulations the k = k2 wavenumber not resonant with the driver

[ω(k2) ≃ 1.60℄. However, |Ek1|(t) does not inrease while the driver is turned
on and it remains almost at the driver level. When the driver is turned o�, the

eletri �eld |Ek1|(t) is damped out at the orret Landau damping rate [blue

dashed line in Fig. 3.14 (a)℄. It is also signi�ant to evaluate the osillation

peaks of Ek for a given k. Fig. 3.14(b) reports |Ek1(ω)| shape as a funtion
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Figure 3.14: (Color online) (a) Time evolution of |Ek|(t) for k = k1 (blak line)

and k = k2 (red line) relative to SIM B. The two yellow vertial lines indiate the

time instants at whih the driver is turned on t = τ1 and o� t = τ2, while the blue
dashed line represents the theoretial exponential damping with damping rate γL.
(b) Osillation peak of the �rst Fourier omponent of the eletri �eld, given by

the pro�le of |Ek(ω)| as a funtion of ω. The peaks are evaluated after that the

driver has been set o�. The blue and red dashed lines represent respetively the

driver pulsation ωD and the �proper� Langmuir wave frequeny ω(k1).

of ω, being |Ek1(ω)| the temporal Fourier transform of Ek(t) preformed in

the temporal range when the driver is turned o�. Clearly |Ek1(ω)| peaks at
the Langmuir mode frequeny ω(k1). This indiates that, one the driver has

been set o�, the plasma exites the Langmuir mode with frequeny ω(k1),

thus resulting in a frequeny shift from ωD to ω(k1).

To understand the results desribed above for SIM A and SIM B, we

numerially evaluated, for eah set of parameters in Tab. A, the Fourier

transform of the temporal part of the driver g(t) sin(ωDt):

η(ω) =

∫ ∞

0

dte−iωt sinωDt

1 +
(

t−τ
∆τ

)ng
, (3.21)
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Figure 3.15: (Color online) Absolute value of η(ω) for the SIM A (a) and SIM B

(b). The red urves in both panel indiate the �proper� Langmuir frequeny ω(k1).

whih gives information about the frequeny window that eah wavenumber

feels during the driving proess. Figures 3.15 (a)�(b) show the pro�le of

|η(ω)| as a funtion of ω for the on-dispersion (SIM A) ase (a) and for the

o�-dispersion (SIM B) ase (b). The red solid lines in Figs. 3.15 (a)�(b)

indiates the Langmuir modes frequeny. In SIM A, the driver is resonant

with the mode frequeny ω(k1) [see Fig. 3.15(a)℄, therefore this mode is

e�etively triggered by the driver. The other modes have pulsation ω(kj),

being j > 1, muh di�erent with respet to ωD (e.g. ω(k2) ≃ 1.60), therefore

they do not fall in the aessible ω window for being exited.

On the other hand, in the o�-dispersion (SIM B) ase, the driver is not

perfetly resonant with any Langmuir mode [see Fig. 3.15(b)℄. Therefore

the triggering of the k = k1 is less powerful than in the SIM A ase beause,

despite ω(k1) falls in a region where |η(ω)| is weak but not exatly null, the

130



Collisional e�ets desribed in a redued phase spae

Figure 3.16: (Color online) (a) Time evolution of |Ek|(t) for k = k1 (blak line) and

k = k2 (red line) relative to SIM C. The two yellow vertial lines indiate the time

instants at whih the driver is turned on t = τ1 and o� t = τ2. (b) Absolute value
of η(ω) for the same simulation. The red urves indiate the �proper� Langmuir

frequenies ω(k1) and ω(k2).

fundamental wavenumber reeives a small amount of energy by the driver.

We also show the results of the third simulation (SIM C), where the

plasma length is muh bigger ompared to SIM A and SIM B and ω(k1) = ωD.

Fig. 3.16 (a) reports the temporal evolution of the �rst two eletri �eld

Fourier omponents |Ek|(t) in blak (k = k1) and red (k = k2) solid line. In

ontrast with previous ases [see Fig. 3.13 and Fig. 3.14(a)℄, here the seond

Fourier omponent, as well as other omponents not expliitly shown in Fig.

3.16(a), are also exited. This happens beause wavenumbers are smaller and

loser ompared to previous ases, therefore many Langmuir modes [See Fig.

3.16(b) whih displays ω(k1) and ω(k2) respetively in red and blue lines℄
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are resonant with the driver. These modes are moreover almost undamped

beause their wavenumbers are small, therefore, when the driver is turned

o�, |Ek|(t) is almost �at.

The three simulations desribed above let us understand that the loalized

driver selets - through the adiabati temporal funtion g(t) - a frequeny

window entered around ωD, whose width is omparable with 1/∆τ and

where the energy is non-uniformly pumped. The spatial loalizing funtion

Figure 3.17: (Color online) Time evolution of |Ek|(t): k = k1 (a), k = k2 (b) and

k = k3 () for the EAWs simulation. In eah panel the red dashed lines indiate

the temporal instants at whih the driver is turned on t = τ1 and o� t = τ2.
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h(x) produes instead the exitation of several wavenumbers. If any Lang-

muir mode frequeny ω(k), being k one of the disrete wavenumbers that

the driver an exite, is resonant with the driving frequeny ωD, the mode is

de�nitively triggered.

3.2.3 Eletron-aousti waves

Here we move to the more omplex senario of EAWs. Indeed, ompared to

the Langmuir waves ase, we show that, sine the dispersion relation is of

the aousti type, nonlinear ouplings an easily our and several harmonis

are generated along the dispersion relation. Sine the driver is strong enough

to trigger nonlinear waves (i.e. to modify the VDF), seondary beam-like

instabilities are also generated. Moreover, we investigate both the ase of

ollisionless and weakly ollisional plasmas.

Collisionless ase

Here we analyze the ollisionless ase by fousing on a simulation where

the driver pulsation is ωD = 0.455 and L = 20. The �rst wavenumber

k1 = k0 = 2π/L (being L = 20 the plasma length) orresponds to a on-

dispersion EAWs (ωD/k1 = vEAW
φ = 1.45). Moreover, the driver is turned

Figure 3.18: (Color online) Osillation peaks of the �rst three Fourier omponents

of the eletri �eld given by the pro�le of |Ek(vφ = ω/k)| as a funtion of the phase

speed vφ = ω/k: k = k1 (a), k = k2 (b) and k = k3 (). The temporal Fourier

transform has been performed in the temporal range after that the driver has been

set o�. Red dashed lines indiate the �rst three phase speeds whih are triggered

by the driver.
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Figure 3.19: (Color online) Osillation peaks, as showed in Fig. 3.18(a)�(d), of

the �rst three Fourier omponents of the eletri �eld represented in the k�ω plane

through single points. The two blak lines displays the line with phase speed

vφ,1 = vEAW
and vφ,3 = vEAW/3, while the red dashed horizontal line shows the

driver pulsation ω = ωD.

on for ∆τ = 5τtr, being τtr = 2π/
√
Ekk the nonlinear trapping time, while

ng = 10. The driver amplitude is ED = 5× 10−2
.

Figures 3.17 (a)�() show the temporal evolution of |Ek|(t) being k = k1

(a), k = k2 (b) and k = k3 (). In eah panel of Fig. 3.17, |Ek|(t) rises up
for the driver e�et, whih is turned on between the two red vertial dashed

lines t = τ1 and t = τ2, and, when the driver is turned o�, many eletri �eld

spetral omponents survive.

To understand how the plasma reats to the driver �eld, we evaluated

the frequeny osillation peaks of Ek for a given k and in the range when

the driver is turned o� (t > τ2). Figures 3.18 (a)�() show |Ekj |(vφ,j) for

j = 1 (a), j = 2 (b) and j = 3 () as a funtion of vφ,j = ω/kj. Red

vertial lines in Figs. 3.18 represent the �rst three phase speeds whih are

triggered by the driver. Indeed, sine the driver pulsates at ωD and exites

several wavenumbers, several veloity values are exited: vφ,j = vφ,D/j, being

vφ,D = ωD/k. In eah panel two peaks loated at vEAW
φ = vφ,1 and vφ,3 =

vEAW
φ /3 are reovered, therefore two straight lines with phase speeds vEAW

φ

and vEAW
φ /3 are populated in the k�ω plane, shown in Fig. 3.19.

It is interesting to point out how the �nal on�guration in the k�ω plane,
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Figure 3.20: (Color online) Panel (a) show the ontour plot of the distribution

funtion at the �nal time t = tfin = 17000 f(x, v, t = tfin) in the veloity range

v = [0, 2] while the panel (b) displays a spatial ut of the distribution funtion

f(x = x0, v, t = tfin) as a funtion of v. In both panels the red dashed lines

indiate the phase speed vφ,1 and vφ,3 - whih orrespond to osillation peaks in

the eletri �eld - while the blue line shows the phase speed vφ,2 - whih is related

to a plateau due to the driver but not yet present in the osillation peaks of the

eletri �eld.

shown in Fig. 3.19, is generated. For this reason, we performed the analysis

based on Ek(ω) at di�erent simulation stages. At the beginning, eah spatial

omponent osillates with the driver (along the red dashed line in Fig. 3.19).

Then, while the driver is still turned on, the straight line of peaks at vEAW
φ

is generated. This proess an be interpreted as a weakly nonlinear oupling

(or seondary harmonis generation) ourring along the EAW branh [191℄.

Finally, when the driver is turned o�, the seondary peaks line at vEAW
φ /3

appears.

The dynamis is extremely omplex and, in general, the eletri �eld does
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Figure 3.21: (Color online) Zoom of the distribution funtion ontour plot

f(x, v, t = tfin) in the veloity region v = [0.3, 0.7].

not osillate just at the EAW phase speed but it exhibits several osillation

peaks. To �gure out how the driver and the presene of these peaks model

the distribution funtion in phase spae, we show the ontour plot of the

distribution funtion f(x, v, t = tfin) in the veloity region v = [0.2, 2] in

Fig. 3.20 (a), while Fig. 3.20 (b) displays f(x = x0, v, t = tfin) as a funtion

of v being x0 = L/4 and tfin = 17000. Red dashed lines in Figs. 3.20 (a)�

(b) indiate v = vEAW
φ and v = vEAW

φ /3, while the dashed blue line shows

v = vEAW
φ /2.

The distribution funtion exhibits the expeted EAW BGK-hole, loalized

at the orret EAW phase veloity, whose width is in aordane with the

theoretial expetation [192℄. Therefore, as in previous works [144, 185℄, our

driver orretly triggers EAWs. However, other strutures are also generated

at lower veloities whih are not reovered in previous simulation studies,

where the usual non-loalized has been employed. A �at plateau, whih

resembles the �o�-dispersion� like plateau obtained in Ref. [144, 185℄, is

observed at vEAW
φ /2. Moreover, a large �at top pro�le is reovered around

v = 0 whose width is about∆vtop = 0.4. This ould be due to the fat that, at

small veloities, the driver thikens many exitable phase speeds (vφ ∝ 1/k)

and the presene of many phase speeds onentrated in the same phase spae

region (i.e. many plateaus overlap in this region) may ause a �attening

proess of the VDF. Furthermore a small BGK-like vortex is loalized at
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Figure 3.22: (Color online) Time evolution of |Ek|(t), being k = k1, for g = 10−7

(a), g = 3× 10−7
(b) and g = 10−6

(). In eah panel the red dashed lines indiate

the temporal instants at whih the driver is turned on t = τ1 and o� t = τ2.

v = vEAW
φ /3 (See the zoom of the VDF around v = vEAW

φ /3 showed in Fig.

3.21). Phase spae strutures showed in Figs. 3.20 are signi�antly di�erent.

The strutures onneted with eletri �eld osillations (v = vEAW
φ , vEAW

φ /3)

show a BGK-like struture, while the ones due to the driver whih instead

does not generate a plasma response are �at and homogeneous (v = vEAW
φ /2).

The novel feature of our simulations onerns the presene of an unex-

peted, seondary, straight line of frequeny osillation peaks in the k�ω plane

with phase speed vφ = vEAW
φ /3. These �utuations, whih are reovered after

that the driver is turned o� and are related to a small BGK-like struture in

phase spae, ould be generated by the driver through a beam-like instability.

Indeed, the VDF exhibits a a small bump around v = vEAW
φ /3 ≃ 0.5 due to

the driver nonlinearity even before the formation of the BGK-like struture

at vEAW
φ /3. We suggest that this small bump may generate a beam-like in-

stability, whih gives rise in the nonlinear regime to a BGK-like vortex in the

distribution funtion. This bump is present only at v = vEAW
φ /3, therefore

the beam-like instability mehanism due to the bump ould be in aordane

with the observation that suggests the presene of a seondary osillation

peaks series only for vφ = vEAW
φ /3.

Collisional ase

In order to �gure out if, in a weakly ollisional plasma, the seondary wave

branh survives or is dissipated by ollisional e�ets, here we analyze some
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Figure 3.23: (Color online) Frequeny osillation peaks of |Ek|(t), being k = k1, for
g = 10−7

(blak), g = 3×10−7
(red) and g = 10−6

(blue) represented as a funtion

of the phase speed vφ. The green dashed line displays the EAWs phase speed

vφ,1 = vEAW
φ while the greem dotted line shows the phase speed vφ,3 = vEAW

φ /3.

ollisional simulations, where ollisions are modeled through the Dougherty

operator [See Eq. (3.17) in Se. 3.2.1℄. We show that these seondary �utu-

ations are not reovered when a small ollisionality is introdued, while the

EAWs are damped in time. This last feature has been also observed in lab-

oratory experiments [50, 182℄ and it is qualitatively similar to the Zakharov

and Karpman (ZK) ollisional damping predited in Ref. [193℄. The values of

ollisionality onsidered are in the range g = [10−7, 10−6], whih orresponds

to realisti situations in a Penning-Malmberg apparatus.

Figures 3.22 (a)�() show the temporal evolution of |Ek|(t) (k = k1), for

the ases g = 10−7
(a), g = 3 × 10−7

(b) and g = 10−6
(). Red lines

indiate the time instants when the driver has been turned on (τ1) and o�

(τ2). For τ1 < t < τ2, the evolution in the three ases is quite similar

[ompare also with Fig. 3.17 (a)℄. On the other hand, for t > τ2, |Ek1|(t)
exhibits an exponential damping, with damping rate proportional to the

ollisional frequeny ν0 and other omponents (not shown here) display the

same qualitative behavior of |Ek1|(t). Damping rates for the ases g = 10−7
,

g = 3 × 10−7
and g = 10−6

are respetively γC = −2.75 × 10−5
, γC =

−7.24× 10−4
and γC = −2.27× 10−4

. These results systematially di�ers by

the ZK predition of ollisional damping by a fator about 2 ÷ 3. However,

ZK results have been obtained by assuming that i) the VDF di�ers from

the Maxwellian only in the resonane region and ii) the phase speed is muh
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Figure 3.24: (Color online) Left, enter and right olumns display respetively the

ontour plots of the distribution funtion f(x, v, t) for the ases g = 10−7
(a),

g = 3× 10−7
(b) and g = 10−6

() at two time instant t = 10000 (top) and at the

time instant t = tfin = 17000 (bottom).

bigger than the thermal speed and both onditions are not satis�ed in our

simulations; this fat may explain the quantitative disrepany between the

observed damping and the ZK predition.

To �gure out whether the seondary frequeny peaks our also in the

ollisional ases, we evaluated Ek(vφ) for eah ase showed in Figs. 3.22(a)�

() in the time window when the driver is turned o�. Figure 3.23 shows

|Ek(vφ)| as a funtion of the phase speed vφ = ω/k for the ases g = 10−7

(blak), g = 3×10−7
(red) and g = 10−6

(blue). In eah ase |Ek(vφ)| exhibits
a well-de�ned single peak around the proper EAWs phase speed vφ,1 = vEAW

φ

[green dashed lines in Fig. 3.23℄; while the seond peak at vφ,3 = vEAW
φ /3

[green dotted lines in Fig. 3.23℄ is not present. Other spatial wavenumbers

(not shown here) exhibit the same behavior.

This harateristi is orroborated through the analysis of the distribution

funtion in phase spae. The top panels of Fig. 3.24 display the ontour plots

of the distribution funtion f(x, v, t = 10000) in the veloity spae region

v = [0.2, 2] for the ases g = 10−7
(aI), g = 3 × 10−7

(bI) and g = 10−6

(I), while the bottom panels of Fig. 3.24 indiate f(x, v, t = tfin), being
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tfin = 17000 for the ases g = 10−7
(aII), g = 3 × 10−7

(bII) and g =

10−6
(II). By omparing the �nal stages of the ollisionless and ollisional

simulations [ompare Figs. 3.24 (aII)�(II) with Fig. 3.20 (a)℄, it is easy to

establish that the ollisional ase do not show the small BGK-like struture at

v = vEAW
φ /3. E�etively, in orrespondene of the small BGK-like struture

in Fig. 3.20(a)℄, in the ollisional ases only a small �at and homogeneous

area is present, this indiating that ollisions prevent the formation of the

seondary peaks of osillations. Furthermore, omparing panels (I) and (II) of

Fig. 3.24, one noties that EAW holes tend to be smoothed out by ollisional

e�ets, bigger the ollisional frequeny faster the smoothing due to ollisions.

3.2.4 Summary

In this setion, we foused on the wave launhing proess whih is ommonly

adopted to trigger eletrostati �utuations in laboratory plasmas. This pro-

ess, whih is based on a loalized external driver whih triggers plasma

waves, has been here desribed in detail by means of Eulerian kineti sim-

ulations. First, by fousing on the triggering of linear Langmuir waves, the

basi resonane wave launhing mehanism has been analyzed. It is found

that the driver non-uniformly pumps energy in a frequeny window entered

around its pulsation, while, in priniple, several wavenumbers an be exited.

Then, we analyzed the ase of EAWs. Beyond the exitation of EAWs, a

new branh of small amplitude, aousti-type, nonlinear waves, whose phase

speed is vφ = vEAW
φ /3 ≃ 0.5, is reovered. These �utuations may be gener-

ated as an e�et of a beam-like instability due to the presene of a small bump

in the ore of the distribution funtion, generated by the driver nonlinearity.

The existene of this seondary waves, in a weakly ollisional plasma has been

disussed. Also for small values of ollisionality - omparable with the ol-

lisionality of realisti laboratory apparatus, these �utuations are suddenly

dissipated. The main EAW branh su�ers instead an exponential damping,

similar to the one observed in experiments.

We remark that our work has two main interesting points. Firstly, sine

the driver exites several phase speeds, additional wave branhes an be ex-
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ited. This e�et is intimately related to the driver nonlinearity. When the

driver ats for enough time or its amplitude is su�iently big, nonlinear ef-

fets generate non-Maxwellian features in the partile VDF. One plateaus

or bumps are generated in the distribution funtion, other branhes of �u-

tuations an be exited aording to Refs. [142, 194℄. Seondly, ollisions

have an essential role into the dissipation of these seondary modes: even for

small values of the ollisional frequeny these seondary �utuations are not

reovered. The presene of ollisions in laboratory devies may be the reason

why these modes have not been yet observed in laboratory plasmas.
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We summarize here the main results showed in this part of the thesis whih

foused on the desription of ollisional e�ets in weakly ollisional plasmas.

We �rst showed, by modeling ollisions through the fully nonlinear Lan-

dau operator, that ollisionality an be signi�ant also in a weakly ollisional

plasma. Indeed, strong veloity spae gradients, whih naturally develop in

the partile distribution funtion as an e�et of wave-partile interations and

- in general - of turbulene asade, are dissipated muh faster than other

global non-Maxwellian features. These harateristi dissipation times an

be muh smaller than the Spitzer-Harm time. This suggests that, when the

partile distribution funtion exhibits �ne veloity spae strutures, ollisions

an be loally enhaned and ould be omparable with other harateristi

dynamial times.

However, as desribed in detail, the omputational ost of the Landau

operator is signi�antly high and, nowadays, it is not possible to perform

self-onsistent simulations where ollisions are modeled through this opera-

tor. Therefore, simpli�ed ollisional operators are routinely adopted. Here,

we initially modeled ollisions through the Dougherty operator in the full

three-dimensional veloity spae. We reovered a quite good agreement be-

tween the Landau and the Dougherty operators in the relaxation of spatially

homogeneous fore-free plasmas. Hene, we performed self-onsistent ele-

trostati simulations of a plasma omposed of kineti eletrons and immobile

protons, in a nonlinear regime and in the ase of weak ollisionality. By fo-

using on the onset of the bump-on-tail instability and on the propagation of

KEEN waves, we desribed the ompetitive role of kineti proesses, whih

tend to modify the partile VDF, and ollisions, whih instead tend to restore
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the thermal equilibrium.

Then, we restrited to a redued 1D�1V phase spae where we desribed

two di�erent phenomena. First, we analyzed the role of ollisions on the re-

urrene of the initial state, by showing that the arti�ial ollisionality annot

prevent reurrene without signi�antly ompromise the kineti features of

the solution. Moreover, we pointed out that �lamentation-like phenomena,

usually assoiated with linear �utuations, an play a role even in nonlinear

regime.

Finally, we desribed the method, usually adopted in laboratory plasmas

devies, for exiting waves. When triggering Eletron Aousti Waves, a

new branh of small amplitude, nonlinear and non-dispersive waves has been

also reovered beyond the main EAWs branh. These seondary �utuations

are generated by the external, nonlinear driver and tend to be quikly dis-

sipated when a small ollisionality - omparable with the one of laboratory

experiments - is onsidered.
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The full omprehension of the dynamis of weakly ollisional plasmas suh

as the solar wind is one of the intriguing hallenges for the spae plasmas si-

enti� ommunity. The solar wind is a omplex, strongly turbulent medium

whose dynamis involves several proesses at di�erent spatial and tempo-

ral sales. The energy is transferred along the spetrum from large, inje-

tion sales, where the dynamis is modeled within a �uid approah, towards

smaller sales where a kineti approah is needed. Although kineti models

are often ollisionless, one should bear in mind that ollisions may have a

signi�ant role for properly desribing dissipative irreversible proesses.

In this thesis we have initially examined the interplay of �uid and ki-

neti sales by revisiting the Mo�att & Parker problem by means of MHD,

Hall MHD and hybrid kineti numerial simulations. This problem, whih

onerns the interation of ounter-propagating Alfvéni wave pakets, was

investigated in the late Seventies in the ideal inompressible MHD ase and

it is onsidered the �building-blok� senario for triggering turbulene. Here,

by extending the desription to the realm of kineti plasmas, we showed that

the introdution of dispersion and kineti physis makes the dynamis muh

more omplex with respet to the MHD ase. Indeed, strong turbulene sig-

natures oexist with a waves-like ativity and it is di�ult to determine if

wave pakets attain a full separation after their interation, as predited by

the Mo�att & Parker theory.

Our simulations onerning the Mo�att & Parker problem suggest that,

one kineti sales are reahed, the partile distribution funtion is strongly

a�eted by wave-partile resonanes and kineti turbulene and, as a natural

onsequene, its shape is signi�antly perturbed. This feature is also reov-
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ered by means of other kinds of numerial simulations or through solar wind

in-situ measurements. The presene of these veloity spae distortions makes

us address a fundamental question, whih underlies the results showed in the

seond part of the thesis. Sine ollisional e�ets expliitly depend on veloity

spae gradients, ould these �ne strutures loally enhane the plasma olli-

sionality, despite it is usually onsidered far too weak to produe signi�ant

e�ets?

We reported evidenes that the ollisionality an be e�etively enhaned

also in a weakly ollisional plasmas. Indeed, by modeling ollisions through

the fully nonlinear Landau operator and fousing on the ollisional relaxation

of a homogeneous fore-free plasma, we showed that �ne veloity strutures

are dissipated muh faster (with harateristi times muh smaller than the

Spitzer-Harm time) than other global non-Maxwellian features. Therefore,

when the partile distribution funtion exhibits strong veloity spae gra-

dients, ollisions an be e�etively enhaned and ould be omparable with

other harateristi dynamial times. The nonlinearities present in the math-

ematial form of the Landau operator are also important to properly ompare

ollisional times with other dynamial times.

Performing self-onsistent simulation where ollisions are modeled with

the Landau operator is nowadays problemati for the Landau operator om-

putational ost. Hene, ollisions are usually taken into aount by means

of simpli�ed operators. We here modeled ollisions through the Dougherty

operator. We established a good omparison between the Landau and the

Dougherty operator in the ase of the ollisional relaxation of a spatially

homogeneous fore-free plasma, this allowing to perform self-onsistent olli-

sional simulations, in the 1D�3V on�guration, regarding the propagation of

nonlinear eletrostati waves. Finally, restriting to the 1D�1V phase spae,

we analyzed two separate problems: the e�ets of ollisions on the phe-

nomenon of the reurrene of the initial states and the launhing problem,

namely the methods ommonly adopted in laboratory plasmas for triggering

waves.
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