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Sommario

Negli ultimi decenni, con la rapida diffusione di Internet, la produzione di doc-
umenti testuali in formato elettronicòe aumentata in maniera esponenziale. Di
conseguenza, siè verificata una necessità crescente di soluzioni automatizzate per
l’organizzazione di grandi quantità di testi in formato digitale e una particolare
attenzionèe rivolta al loro uso futuro. La progettazione di tali soluzioniè stata
tradizionalmente oggetto di studio dell’Information Retrieval(IR), la disciplina
che si occupa dell’accesso automatico a dati la cui semanticaè scarsamente speci-
ficata. Esistono due approcci principali per fornire l’accesso efficace a vaste sor-
genti di dati non strutturati di tipo testuale: fornire strumenti per la ricerca di doc-
umenti rilevanti all’interno delle basi documentali (obiettivo dell’area di ricerca
denominataText Search); fornire strumenti per convertire tali sorgenti non strut-
turate in sorgenti strutturate, in modo da facilitarne la memorizzazione, l’accesso
e la navigazione. Questòe l’obiettivo dellaText Classification(TC), disciplina
che coniuga diverse aree di ricerca dell’IR, delMachine Learning(ML), e del
Natural Language Processing(NLP), e che mira alla costruzione di sistemi per il
partizionamento di una collezione di documenti non strutturati in gruppi semantici
attraverso l’assegnamento dei testi a una o più categorie predefinite. Possibili ap-
plicazioni della TC spaziano dall’indicizzazione automatica di articoli scientifici,
all’organizzazione delle email, allo spam filtering.

Negli ultimi anni sono stati proposti diversi metodi di generazione di classifi-
catori dei testi basati su tecniche di machine learning (ossia mediante l’uso di dati
di training etichettati), fra cui classificatorik nearest neighbor(k-NN) e metodi
basati su modelli probabilistici, tra i quali classificatori Bayesiani, classificatori
lineari, alberi di decisione, reti neurali, Support Vector Machines. Panoramiche
su questi sistemi sono riportate in[36; 52]. In [47; 17; 7] sono stati proposti
interessanti approcci per la generazione di classificatori basati regole. Questi pre-
sentano la desiderabile proprietà di essere leggibili e di agevole interpretazione, al
contrario di altri approcci (come ad esempio SVM, reti neurali etc). Alcuni metodi
(basati su regole e non) che tentano di sfruttare sia informazione positiva che neg-
ativa ai fini della classificazione dei testi possono essere trovati in letteratura[58;
25; 5; 64].

Tuttavia i sistemi di TC esistenti presentano ancora importanti limitazioni di
varia natura. In particolare:

• Molti approcci (classificatori Bayesiani, SVM, reti neurali) sono caratteriz-
zati da un modello di tipo black box, ovvero non possono essere interpretati
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da un lettore umano.

• Sistemi tradizionali per l’apprendimento di regole di classificazione, quali
RIPPER , generano classificatori che spesso constano di parecchie centi-
naia di regole, quindi di difficile interpretazione; inoltre, essi sono comp-
lessi e generalmente poco efficienti.

• I classificatori associativi applicati a problemi di TC (basati essenzialmente
su estensioni del popolare algoritmo di rule mining “a priori”), risultano al-
tres̀ı “leggibili”, ma la qualit̀a delle regole generate, a differenza di quelle
costruite per dati strutturati, risulta piuttosto bassa.

• Taluni metodi di induzione di classificatori associativi, proposti recente-
mente, consentono di definire regole con termini sia positivi che negativi,
e sono quindi caratterizzati da un maggiore livello di accuratezza del clas-
sificatore generato, ma anche da un processo di selezione delle regole più
macchinoso e meno efficiente in termini di tempo.

In questo lavoro di tesi, proponiamo un metodo originale per la generazione
automatica di classificatori testuali rule-based. Il sistema software che imple-
menta tale metodo, denominatoOLEX, genera un classificatore per le categorie
di interesse predefinite, attraverso un processo di apprendimento (training) da un
insieme di documenti pre-classificati (training set). Le regole generate daOLEX

hanno una struttura molto particolare, del tipo “un letterale positivo e più letterali
negativi”. Pìu specificatamente, un classificatoreè un insieme di regole logiche
proposizionali del tipo:

c ← t1 ∈ d, tn+1 /∈ d, · · · , tn+m /∈ d,

. . .

c ← tn ∈ d, tn+1 /∈ d, · · · , tn+m /∈ d

ciascuna caratterizzata da un termine positivo e da zero o più termini nega-
tivi, che sembrano individuare in maniera molto accurata i documenti che devono
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essere associati ad una categoria predefinita e quelli che devono invece essere scar-
tati. I termini positivi garantiscono una copertura (recall) elevata, mentre i termini
negativi consentono di tenere la precisione sotto controllo.

Il metodo proposto per la generazione di tali regole si basa su un’euristica per
determinare il “miglior” insieme di termini positivi (indicativi dell’appartenenza
di un documento ad una predefinita categoria) e quelli negativi (indicativi di non-
appartenenza) in base al quale costruire le regole di classificazione.

La nostra tecnica consente di risolvere molte delle limitazioni su esposte. Essa
possiede infatti le seguenti desiderabili proprietà:

• è basato su idee molto semplici e dirette e perciò fornisce una chiara intu-
izione del modello alla base del processo di apprendimento;

• i classificatori generati (ovvero l’insieme di regole logiche) sono compatti
(poche unit̀a, al massimo qualche decina di regole), leggibili e di agevole
interpretazione;

• fornisce elevata accuratezza;

• opera in maniera efficiente;

• è robusto, ovvero mostra un comportamento simile su tutti i dataset più
largamente utilizzati in letteratura su cuiè stato sperimentato.

Il sistema proposto presenta un comportamento simile o migliore rispetto ai
sistemi presenti in letteratura e risulta particolarmente adatto in contesti applicativi
a supporto dei processi di IR in cuiè necessario realizzare buone prestazioni.
Inoltre, in virtù della elevata dichiaratività del linguaggio utilizzato per la specifica
delle regole e della leggibilità del modello di classificazione generato, ben si presta
ad essere incluso in sistemi knowledge-based ed esteso mediante tecniche di pre-
processing semantico per il riconoscimento di concetti nei documenti, in modo
da sfruttare tale riconoscimento ai fini della classificazione dei documenti stessi
rispetto ad una data tassonomia di categorie.

In questa tesi ci concentriamo sulle questioni succitate: proponiamo una nuova
tecnica per la costruzione automatica di un classificatore di testi che da un lato
risulti leggibile e di facile comprensione, proprietà desiderabili e spesso assenti nei
sistemi di classificazione più avanzati (SVMs, Neural networks), ma che dall’altro
risulti anche efficace ed efficiente. Qui di seguito riportiamo brevemente i princi-
pali contributi di questa tesi.
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1. Studio della letteratura su metodi e sistemi di classificazione dei testi, che ha
consentito di ottenere una valutazione comparativa delle loro caratteristiche
nell’ambito della tematica di interesse;

2. Sviluppo di un nuovo metodo di machine learning per la generazione di
regole logiche per la classificazione testuale;

3. Sviluppo di un sistema prototipale che implementa il metodo di cui sopra;

4. Valutazione sperimentale e comparativa delle prestazioni del sistema realiz-
zato rispetto ai sistemi di varia natura di TC, sulle collezioni di documenti
maggiormente utilizzate in letteratura;

5. Integrazione e sperimentazione del sistema diOLEX all’interno di una pi-
attaforma di content management sviluppata nell’ambito del progetto PIA-
Exeura-03-06.
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Abstract

Information Retrieval is concerned with locating information that will sat-
isfy a user’s information need. Traditionally, the emphasis has been on text re-
trieval: providing access to natural language texts where the set of documents to
be searched is large and topically diverse. In a text categorization task, the system
is responsible for assigning a document to one or more categories from among a
given set of categories.

In this way, users are allowed to browse more easily the set of texts of their
own interests, by navigating in category hierarchies. This paradigm is very ef-
fective for retrieval and for filtering of information but also in the development
of user-driven on-line services. Given the large amounts of documents involved
in the above applications, automated approaches to categorize data efficiently are
needed.

The automated categorization (or classification) of texts into prespecified cat-
egories, although dating back to the early ’60s, has witnessed a booming interest
in the last ten years, due to the increased availability of documents in digital form
and the ensuing need to organize them. In the research community the dominant
approach to this problem is based on the application of supervised machine learn-
ing techniques: a general inductive process automatically builds a classifier by
learning, from a set of previously classified documents, the characteristics of one
or more categories. The advantages of this approach over the knowledge engi-
neering approach (consisting in the manual definition of a classifier by domain
experts) are a very good effectiveness, considerable savings in terms of expert
manpower, and straightforward portability to different domains.

A good text classifier is a classifier that efficiently categorizes large sets of
text documents in a reasonable time frame and with an acceptable accuracy, and
that provides classification rules that are human readable for possible fine-tuning.
If the training of the classifier is also quick, this could become in some applica-
tion domains a good asset for the classifier. Many techniques and algorithms for
automatic text categorization have been devised. According to published litera-
ture, some are more accurate than others, and some provide more interpretable
classification models than others. However, none can combine all the beneficial
properties enumerated above.
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In this dissertation, we have defined and implemented a novel approachOLEX,
for automatic text categorization.OLEX relies on an optimization algorithm whereby
a set of both positive and negative information are generated from a set of training
documents in order to learn profiles of predefined categories with respect to which
we wish to construct text classifiers. The proposed method is simple and elegant.
Despite this our text categorization method proves to be efficient and effective, and
experiments on well-known collections show that the classifier performs well. In
addition, training as well as classification are both fast and the generated rules are
human readable.

Olex has been fully integrated into an industrial text classification system de-
veloped at Exeura s.r.l.

Briefly, the main contributions of the thesis are the following:

1. We study methods and systems for automatic text classification, analyze
their complexity and their exploitation for a critical comparison.

2. We design a new machine learning method for generating logic rules for
text categorization.

3. We implement our approach in a prototype, theOLEX system.

4. We perform a systematic experimentation and report experimental results
on a number of well-known benchmark text collections to assess the impact
of our approach and to compare it with respect to other systems.

5. We integrate the support for learning process inOLEX Content Management
Suite, within project PIA-Exeura-03-06.



Introduction

Text Categorization

Automatic Text Categorization(ATC) has a long history, dating back at least to
1960, and has always been an important application and research topic since the
first usage of electronic documents. Until the late 80s, the dominant approach to
the problem involved knowledge-engineering automatic categorizers, i.e. manu-
ally building a set of rules encoding expert knowledge on how to classify docu-
ments. In the 90s, with the booming production and availability of on-line doc-
uments, automated text categorization has witnessed an increased and renewed
interest. A newer paradigm based onmachine learninghas superseded the previ-
ous approach.

The text classification task can be defined as assigning category labels to new
documents based on the knowledge gained in a classification system at the training
stage. In the training phase we are given a set of documents with class labels
attached, and a classification system is built using a learning method.

Nowadays, text categorization is a necessity due to the very large amount of
text documents that we have to deal with daily. A text categorization system can
be used in indexing documents to assist information retrieval tasks as well as in
classifying e-mails, memos or web pages in a yahoo-like manner. Needless to say,
automatic text categorization is essential.

A text classifier(or simply “classifier”) is a program capable of assigning
natural language texts to one or more thematic categories on the basis of their
contents. A number of machine learning methods to automatically construct clas-
sifiers using labelled training data have been proposed in the last few years, in-
cludingk-nearest neighbors (k-NN), probabilistic Bayesian, neural networks and
SVMs. Overviews of these techniques can be found in[36; 52]. In a differ-
ent vein, rule learning algorithms, such as[47; 17; 7], have become a successful
strategy for text categorization. Rule-based classifiers provide the desirable prop-

11



CONTENTS 12

erty of being readable, easy for people to understand, contrary to most of the
other approaches that lack interpretability (e.g., SVMs, Neural networks, etc.).
Several approaches (either rule-based or not) exploiting negative information for
text classification can be found in the literature, such as those in[58; 25; 6;
64].

Main Contribution

This thesis is concerned with the study of Text Categorization and the definition
of a novel approach exploiting both positive and negative information generated
from a set of training documents in order to learn profiles of predefined categories
with respect to which we wish to construct text classifiers.

Some evidence raised during our studies:

• Although many approaches have been proposed, automated text categoriza-
tion is still a major area of research primarily because the effectiveness of
current automated text classifiers is not faultless and still needs improve-
ment.

• Some methods are more accurate than others.

• Some methods provide more interpretable classification models than others.

• There is not a system which can combine all the beneficial properties men-
tioned above.

Our work faces the above issues, aiming at overcoming the limitations of ex-
istent text categorization systems by defining a novel method able to:

(i) perform as well as other methods in the literature.

(ii) be fast during both training and categorization phases.

(iii) build classifiers which can be read, understood and modified by humans.

In this dissertation we describeOLEX, a novel method for the automatic con-
struction of rule-based classifiers. Here, a classifier is a set of propositional rules
of the form

c ← t1 ∈ d, tn+1 /∈ d, · · · , tn+m /∈ d,
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. . .

c ← tn ∈ d, tn+1 /∈ d, · · · , tn+m /∈ d

stating the condition “if any of the terms (n-grams)t1, · · · , tn occurs ind and
noneof the termstn+1, · · · , tn+m occurs ind then classifyd under categoryc”.
Thus, the appearance of a (positive) termti, 1 ≤ i ≤ n, in a documentd re-
quires the contextualabsenceof a (possibly empty) set of other (negative) terms
tn+1, · · · , tn+m in order ford be classified underc1.
The process of constructing a classifier for a categoryc from a training setTS

relies on the following steps. First, the reduced vocabularyV is constructed by
selecting a set of “meaningful” terms fromTS. Second, starting fromV, an opti-
mization algorithm is applied to determine a “best” setXc of discriminatingterms
for c; a discriminating term is either positive (i.e., indicative of membership inc)
or negative (i.e., indicative of non-membership). Third, based onXc, the classifier
of c is constructed.
Experimental results, obtained on two standard benchmark data collections, namely,
REUTERS-21578 and OHSUMED, confirm the expectations on our model. In
summary they show that:

1. OLEX achieves good performance on both data collections, performing sim-
ilar or outperforming most of the existing classifiers; intuitively, the paradigm
“one positive term, zero or more negative terms” seems to be effective as
positive terms allow us to catch most of the right documents, while negative
ones help us not to make “too many” mistakes;

2. OLEX produces compact and readable classifiers – they usually range from
just some to a few dozens rules;

3. OLEX operates efficiently.

Briefly, the main contributions of the thesis are the following:

1. We study methods and systems for automatic text classification, analyze
their complexity and their exploitation for a critical comparison.

2. We design a new machine learning method for generating logic rules for
text categorization.

3. We implement our approach in a prototype, theOLEX system.

1in general,d may “satisfy” more classifiers, so that it may be assigned to multiple categories
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4. We perform a systematic experimentation and report experimental results
on a number of well-known benchmark text collections to assess the impact
of our approach and to compare it with respect to other systems.

5. We integrate the support for automatic generation of text classifiers inOLEX

Content Management Suite, within project PIA-Exeura-03-06.

Organization of the Thesis

This thesis consists of three parts. First, (i) we introduce the Text Categoriza-
tion problem, then (ii) we discuss some interesting related works and finally (iii)
we introduce our machine learning approach aimed at generating rule-based text
classifiers. More in details, the organization of the thesis is described as follows.

[ I ] The first part introduces the text categorization task, focuses on the ML ap-
proach to ATC and addresses some issues about performance measures and
standard test collections used to evaluate the effectiveness of a text classifier.

[ II ] The second part describes some related works concerning rule-based ap-
proaches that can be found in the literature as well as methods exploiting
negative information.

[ III ] Finally, the third part describesOLEX, a system for the automatic construc-
tion of rule-based text classifiers relying on a novel method exploiting both
positive and negative information.



Part I

Text Classification

15
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In this part we present Automated Text Categorization (ATC).

Automatic text classification (ATC) is a discipline at the crossroads of infor-
mation retrieval (IR), machine learning (ML), and computational linguistics (CL),
and consists in the realization of text classifiers, i.e. software systems capable of
assigning texts to one or more categories, or classes, from a predefined set. Appli-
cations range from the automated indexing of scientific articles, to e-mail routing,
spam filtering, authorship attribution, and automated survey coding.

This part of the thesis will focus on the ML approach to ATC, whereby a soft-
ware system (called the learner) automatically builds a classifier for the categories
of interest by generalizing from a training set of pre-classified texts.

The part is organized as follows:

• Chapter 1 provides a formal definition of the text classification problem.

• In Chapter 2 we give a detailed analysis of the performance measures de-
fined in Information Retrieval and their application to TC.

• Finally, in Chapter 3, we illustrate the benchmark corpora widely used to
evaluate text classifiers.



Chapter 1

Text Classification Problem

Automatic Text Categorization (ATC) is the problem of automatically assigning
one or more predefined categories to free text documents. While more and more
textual information is available online, effective retrieval is difficult without good
indexing and summarization of document content. Document categorization is
one solution to this problem.

In this chapter, we provide a formal definition of the text classification task
and we briefly review the most important applications in which ATC has been
used[51].

1.1 Problem Definition

Document (ortext) categorization(or classification) may be seen as the task of
determining anassignmentof a value from0, 1 to each entry of thedecision ma-
trix AS represented in Table 1.1: whereC = c1, ..., cm is a set of pre-defined
categories, andD = d1, ..., dn is a set of documents to be categorized. A value
of 1 for aij is interpreted as a decision to filedj underci, while a value of 0 is

d1 ... ... dk ... ... dn

c1 a11 ... ... a1k ... ... d1n

... ... ... ... ... ... ... ...
ci ai1 ... ... aik ... ... din

... ... ... ... ... ... ... ...
cm am1 ... ... amk ... ... dmn

Table 1.1: Decision Matrix A

17
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interpreted as a decision not to filedj underci.
More formally, the task is to approximate the unknown total function

f : D × C → {0, 1}

that describes how documents ought to be classified, by means of a total function

f ′ : D × C → {0, 1}

(called theclassifier, or model) such thatf andf ′ coincide as much as possible
(how to define precisely and measure this degree of coincidence, calledeffective-
ness, will be discussed in Chapter 2).
Fundamental to the understanding of this task are two observations:

• the categories are just symbolic labels. No additional knowledge of their
“meaning” is available to help in the process of building the categorizer; in
particular, this means that the “text” constituting the label (e.g.Art in a
news categorization task) cannot be used;

• the attribution of documents to categories should, in general, be attributed
on the basis of thesemanticsof the documents, and not on the basis ofmeta-
data(e.g. publication date, document type, etc.) that may be available from
an external source. This means that the notion of relevance of a document
to a category is inherently subjective.

Single-label and Multi-label Categorization

Most of the research in text categorization has been devoted tobinary problems
where a document is classified as eitherrelevantor notrelevantwith respect to a
predefined topic. However there are many sources of textual data such as Internet
News, electronic mail and digital libraries,which are composed of different topics
and which therefore pose amulti-classcategorization problem. We might want
that for a given integerk, exactlyk (or ≤ k, or ≥ k) elements ofC must be
assigned to each element ofD. The casek = 1 Is often called thesingle-labelcase
(or thenon-overlapping categoriescase). Moreover, in multi-class problems it is
often the case that documents are relevant to more than one category. For example
a news article may well be relevant to several topics. The general case in which
any number of categories from 0 tom may be assigned to the same document
is called themulti-labelcase. The common approach for multi-class, multi-label
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text categorization is to break the task into disjoint binary categorization problems
one for each class. To classify a new document one needs to apply all the binary
classifiers and combine their predictions into a single decision. The end result
is a ranking of possible topics. The main drawback with this approach is that it
ignores any correlation between the different classes.

Category-pivoted categorization or document-pivoted categoriza-
tion

An important distinction is whether we want to fill the matrix one row at a time
(category-pivoted categorization-CPC), or fill it one column at a time (document-
pivoted categorization. DPC). This distinction is mostly pragmatic rather than
conceptual, but is important in the sense that the setsC of categories andD of
documents are not always available in their entirety right from the start. DPC is
thus suitable when documents might become available one at a time over a long
span of time, e.g. in the case a user submits one document at a time for catego-
rization, rather than submitting a whole batch of them all at once. In this case,
sometimes the categorization task takes the form of ranking the categories in de-
creasing order of their estimated appropriateness for document d; because of this,
CPC is sometimes calledcategory-rankingclassification oron-lineclassification
[63]. CPC is instead suitable if we consider the possibility that a new category
cm+1 is inserted into a previously existing set of categoriesC = c1, ..., cm after a
number of documents have already been categorized underC, which means that
these documents need to be categorized undercm+1 too. In this case, sometimes
the categorization task takes the form of ranking the documents in decreasing or-
der of their estimated appropriateness for categorycm+1; symmetrically to the
previous case, DPC may also be calleddocument-rankingclassification. CPC is
more commonly used than DPC, as the case in which documents are submitted
one at a time is somehow more common than the case in which newer categories
dynamically crop up.

1.2 Applications of text categorization

The automatic categorization of texts dates at least from the early ’60s ([41]) and
it has been used in a number of various actual domains. In the following, we
briefly provide the most important applications of document categorization which
have become the focus of many recent research efforts.
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Automatic indexing for Boolean information retrieval systems

The first use to which automatic categorizers were put at, and the application that
spawned most of the early research in the field, is that of automatic document
indexing for use in information retrieval (IR) systems relying on a controlled dic-
tionary. The most prominent example of such IR systems is, of course, that of
Boolean systems. In these systems, each document is assigned one or more key-
words or keyphrases describing its content, where these keywords and keyphrases
belong to a finite set of words, called controlled dictionary) and often consist-
ing of a hierarchical thesaurus (e.g. the MESH thesaurus covering the medical
field [2]). Usually, this assignment is performed by trained human indexers, and
is thus an extremely costly activity. If the entries in the thesaurus are viewed
as categories, document indexing becomes an instance of the document catego-
rization task, and may thus be addressed by the automatic techniques. In this
case a typical constraint may be thatk1 ≤ x ≤ k2 keywords are assigned to
each document, for givenk1, k2. Document-pivoted categorization might typi-
cally be the best option, so that documents are categorized on a first come, first
served basis. Various automatic document categorizers explicitly addressed at
the document indexing application have been described in the literature[20; 23;
11].

Document organization

In general, all issues pertaining to document organization and filing , be it for
purposes of personal organization or document repository structuring, may be ad-
dressed by automatic categorization techniques. For instance, at the offices of a
newspaper, incoming classified ads should be, prior to publication, categorized
under the categories used in the categorization scheme adopted by the newspaper.
While most newspapers would handle this application manually, those dealing
with a high daily number of classified ads might prefer an automatic categoriza-
tion system to choose the most suitable category for a given ad. Note that in this
case a typical constraint might be that exactly one category is assigned to each
document. Again, a first-come, first-served policy might look the aptest here,
which would make one lean for a document-pivoted categorization style.
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Document filtering

Document filtering (also known as document routing) refers to the activity of cat-
egorizing a dynamic, rather than static, collection of documents, in the form of
a stream of incoming documents dispatched in an asynchronous way by an in-
formation producer to an information consumer[10]. A typical case of this is a
newsfeed, whereby the information producer is a news agency (e.g. Reuters or
Associated Press) and the information consumer is a newspaper. In this case, the
filtering system should discard (i.e. block the delivery to the consumer of) the doc-
uments the consumer is not likely to be interested in (e.g. all news not concerning
sports, in the case of a sports newspaper). Filtering can be seen as a special case of
categorization with non-overlapping categories, i.e. the categorization of incom-
ing documents in two categories, the relevant and the irrelevant. Additionally, a
filtering system may also perform a further categorization into topical categories
of the documents deemed relevant to the consumer; in the example above, all
articles about sports are deemed relevant, and should be further subcategorized
according e.g. to which sport they deal with, so as to allow individual journal-
ists specialized in individual sports to access only documents of high prospective
interest for them. The construction of information filtering systems by means of
machine learning techniques is widely discussed in the literature[50].

Web pages categorization

Automatic document categorization has recently arisen a lot of interest also for
its possible Internet applications. One of these is automatically categorizing Web
pages, or sites, into one or several of the categories that make up commercial
hierarchical catalogues (such as those embodied inYahoo! and other Internet
portals). When Web documents are catalogued in this way, rather than addressing
a generic query to a general-purpose Web search engine, a searcher may find it
easier to first navigate in the hierarchy of categories and then issue his search
from (i.e. restrict his search to) a particular category of interest. Automatically
categorizing Web pages has obvious advantages, since the manual categorization
of a large enough subset of the Web is problematic to say the least.
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1.3 Different Approaches to Document Categoriza-
tion

Knowledge-Engineering Approach

In the ’80s, the main approach used to the construction of automatic document cat-
egorizers involvedknowledge-engineeringthem, i.e. manually building an expert
system capable of taking categorization decisions. Such an expert system might
have typically consisted of a set of manually defined rules (one per category) of
type:

if < DNFBooleanformula > then < category >

to the effect that if the document satisfied< DNFBooleanformula > (DNF
standing fordisjunctive normal form), then it was categorized under< category >.
The typical example of this approach is the Construe system[28], built by Carnegie
Group for use at the Reuters news agency. The main drawback of this manual ap-
proach to the construction of automatic classifiers is the existence of aknowledge
acquisition bottleneck, similarly to what happens in expert systems. That is, rules
must be manually defined by a knowledge engineer with the aid of a domain ex-
pert (in this case, an expert in document relevance to the chosen set of categories).
If the set of categories is updated, then these two professional figures must inter-
vene again, and if the classifier is ported to a completely different domain (i.e.
set of categories), the work has to be repeated anew. On the other hand, it was
suggested that this approach can give very good effectiveness results: Hayes et al.
[28] report a 0.90 breakeven result (that we will define in Chapter 2) on a subset of
the REUTERS-21578 (a well known test collection that we review in Chapter 3)
test collection, a figure that outperforms most of the best classifiers built in the
late ’90s by machine learning techniques. However, no other classifier has been
tested on the same dataset as Construe, and it is not clear how this dataset was
selected from the REUTERS-21578 collection (i.e. whether it was a random or a
favourable subset of the whole collection). As convincingly argued in[62] and in
[51], the results above do not allow us to confidently say that these effectiveness
results may be obtained in the general case.

Machine Learning Approach

Since the early ’90s, a new approach to the construction of automatic document
classifiers, themachine learning approach[42], has gained prominence and even-
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tually become the dominant one. In the machine learning approach a general
inductiveprocess automatically builds a classifier for a categoryci by observing
the characteristics of a set of documents that have previously been classified man-
ually underci by a domain expert; from these characteristics, the inductive process
gleans the characteristics that a novel document should have in order to be cate-
gorized underci . Note that this allows us to view the construction of a classifier
for the set of categoriesC = c1, . . . , cm asm independent tasks of building a
classifier for a single categoryci ∈ C, each of these classifiers being a rule that
allows to decide whether documentdj should be categorized under categoryci.
The advantages of this approach over the previous one are evident: the engineer-
ing effort goes towards the construction not of a classifier, but of an automatic
builder of classifiers. This means that if the original set of categories is updated,
or if the system is ported to a completely different domain, all that is needed is the
inductive, automatic construction of a new classifier from a different set of man-
ually categorized documents, with no required intervention of either the domain
expert or the knowledge engineer. In terms of effectiveness, categorizers build
by means of machine learning techniques nowadays achieve impressive levels of
performance, making automatic classification a qualitatively viable alternative to
manual classification.

In this dissertation, owing to its wide applicability, we propose a new system
OLEX adopting the machine learning approach.

Training Set and Test Set

As previously mentioned, the machine learning approach relies on the existence of
a an initialcorpusCo = d1, ..., ds of documents previously categorized under the
same set of categoriesC = c1, . . . , cm with which the categorizer must operate.

This means that the corpus comes with acorrect decision matrixCAij.
A value of 1 forcaij is interpreted as an indication from the expert to filedj

underci, while a value of 0 for is interpreted as an indication from the expert not
to file dj underci. A documentdj is often referred to as a positive example ofci

if caij = 1, a negative example ofci if caij = 0.
For evaluation purposes, in the first stage of classifier construction the initial

corpus is typically divided into two sets, not necessarily of equal size:

• a Training SetTr = d1, . . . , dg. This is the set of example documents ob-
serving the characteristics of which the classifiers for the various categories
are induced;
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• a Test SetTe = dg+1, ..., ds. This set will be used for the purpose of testing
the effectiveness of the induced classifiers. Each document inTe will be
fed to the classifiers, and the classifier decisions compared with the expert
decisions; a measure of classification effectiveness will be based on how
often the values for theaij ’s obtained by the classifiers match the values for
thecaij ’s provided by the experts.

Note that in order to give a scientific character to the experiment the documents
in Te cannot participate in any way in the inductive construction of the classifiers;
if this condition were not to be satisfied, the experimental results obtained would
typically be unrealistically good.
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Performance Measures

As in the case of information retrieval systems, the evaluation of document clas-
sifiers is typically conducted experimentally, rather than analytically. The reason
for this tendency is that, in order to evaluate a system analytically (e.g. proving
that the system is correct and complete) we always need a formal specification of
the problem that the system is trying to solve (e.g. with respect to what correctness
and completeness are defined), and the central notion of document classification
(namely, that of relevance of a document to a category) is unfit for formalization,
due to its subjective character.

In this chapter, we report the classic IR notions ofprecision(Pr) andrecall
(Re), adapted to the case of document categorization classifiers, and some com-
bined measures, F-measure and break-even point, used throughout the remainder
of this dissertation in order to express evaluation of different classifiers previously
devised in literature compared with our systemOLEX.

2.1 Measures of Categorization Effectiveness

The experimental evaluation of classifiers, rather than concentrating on issues of
efficiency, usually tries to evaluate theeffectivenessof a classifier, i.e. its capa-
bility of taking the right categorization decisions. The main reasons for this bias
are that efficiency is a notion dependent on the hw/sw technology used. Once this
technology evolves, the results of experiments aimed at establishing efficiency
are no longer valid. This does not happen for effectiveness, as any experiment
aimed at measuring effectiveness can be replicated, with identical results, on any
different or future hw/sw platform; effectiveness is really a measure of how the
system is good at tackling the central notion of classification, that of relevance of
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a document to a category.
In the following subsections we provide a definition of the effectiveness mea-

sures of precision, recall and F-measure and break-even point.

2.1.1 Precision and Recall

Classification effectiveness is measured in terms of the classic IR notions of pre-
cision (Pr) and recall(Re), adapted to the case of document categorization.

• Precisionwrt ci (Pri) is defined as the conditional probability

P (caix = 1|aix = 1)

i.e. as the probability that if a random documentdx is categorized underci,
this decision is correct.

• Analogously,recall ci (Rei)is defined as the conditional probability

P (aix = 1|caix = 1)

i.e. as the probability that, if a random documentdx should be categorised
underci, this decision is taken.

These category-relative values may be averaged, in a way to be discussed
shortly, to obtain Pr and Re, i.e. values global to the whole category set. Bor-
rowing terminology from logic, Pr may be viewed as the “degree of soundness”
of the classifier wrt the given category setC, while Re may be viewed as its “de-
gree of completeness” wrtC. As they are defined here,(Pri) and (Rei) (and
consequently Pr and Re) are to be understood, as subjective probabilities, i.e. val-
ues measuring the expectation of the user that the system will behave correctly
when classifying a random document underci. If we define

• FPi false positiveswrt ci the number of documents of the test set that have
been incorrectly classified underci;

• TNi true negativeswrt ci the number of documents of the test set that have
been correctly not classified underci;

• TPi true positiveswrt ci the number of documents of the test set that have
been correctly classified underci;
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• FNi false negativeswrt ci the number of documents of the test set that have
been incorrectly not classified underci.

precision wrtci and recall wrtci may thus be estimated as:

(Pri) =
TPi

TPi + FPi

(2.1)

(Rei) =
TPi

TPi + FNi

(2.2)

For obtaining estimates of precision and recall relative to the whole category
set, two different methods may be adopted:

• microaveraging: precision and recall are obtained by globally summing
over all individual decisions, i.e.:

(Pri)µ =
TP

TP + FP
(Rei)µ =

TP

TP + FN
(2.3)

• precision and recall are first evaluated locally for each category, and then
globally by averaging over the results of the different categories, i.e.

(Pri)
M =

∑m

i=1 Pri

m
(2.4)

(Rei)
M =

∑m

i=1 Rei

m
(2.5)

[51] underlies how these two methods may give quite different results, espe-
cially if the different categories are unevenly populated: for instance, if the classi-
fier performs well on categories with a small number of positive test instances, its
effectiveness will probably be better according to macroaveraging than according
to microaveraging. There is no agreement among authors on which is better. Some
believe that microaveraged performance is somewhat misleading because more
frequent topics are weighted heavier in the average[57] and thus favour macroav-
eraging, while others believe that topics should indeed count proportionally to
their frequency, and thus lean towards microaveraging.
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2.1.2 Combined measures

Neither precision nor recall make sense in isolation of the other. In fact, in order to
obtain a classifier with 100% recall, one would only need to set every threshold to
0, thereby obtaining the trivial acceptor (i.e. the classifier that classifies all docu-
ments under all categories). Quite obviously, in this case precision would usually
be very low (more precisely, equal toapc, the average percentage of categories
per test document). Conversely, it is well-known from everyday information re-
trieval practice that higher levels of precision may be obtained at the price of a
low recall. In practice, by tuning thresholds, a classification algorithm is tuned so
as to improvePr to the detriment ofReor viceversa. A classifier should thus be
measured by means of a combined effectiveness measure which both Pr and Re
concur to determine. Various such measures have been proposed, among which
the following are most frequent:

• effectiveness is computed as thebreakeven point, i.e. the value at whichPr
equalsRe

• effectiveness is computed as the value of theFα function ([34]), for some
0 ≤ α ≤ 1 :

Fα =
1

α 1
Pr

+ (1 − α) 1
Re

(2.6)

In this formulaα may be seen as the relative degree of importance attributed toPr
andRe: if α = 1, thenFα coincides withPr, if α = 0 thenFα coincides withRe.
Usually, a value ofα= 0.5 is used, which attributes equal importance toPr and
Re. Rather thanF0.5 this is usually calledF1 (see[34] for details). As shown in
[62], for a given classifier, its breakeven value is always less or equal than itsF1

value.
Once an effectiveness measure is chosen, a classifier can be tuned (e.g. thresh-

olds and other internal parameters can be set) so that the resulting effectiveness is
the best achievable by that classifier. The tuning of a parameterp (be it a threshold
or other) is normally done experimentally.
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Standard Test Collections

The existence, public availability, and widespread acceptance of a standard cor-
pora (that is, set of documents) for a given information retrieval task are beneficial
to research on this task, because they allow different researchers to experimentally
compare their own systems by comparing the results they have obtained on this
benchmark.

In this chapter, we introduce two well-know collections, REUTERS-21578
corpus and OHSUMED corpus, commonly used in text categorization experimen-
tation. In the following chapters of this dissertation, we will present, where pos-
sible, a systematic, comparative study of experiments on these corpora conducted
in previous works and by our systemOLEX.

3.1 Benchmark Dataset

To establish the retrieval performance of an IR system, it is necessary to use
benchmark dataset. Among the test collections available in the public domain,
especially two play a dominant role and are widespread accepted:

• the REUTERS-21578 corpus

• the OHSUMED corpus

These two text collections (especially REUTERS-21578 together with its older
version REUTERS-22173 ) are the most used for the experimentation performed
in text categorization.

Unfortunately, to use the same test collection it is necessary but not sufficient
for obtaining definitive results concerning whether a given classifier outperforms
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another, because many of these experiments have been carried out in sometimes
different experimental conditions. In fact, at least six different versions (including
REUTERS-21578 ) of the REUTERS-22173 collection have been carved out of
the original and used for experimentation.

In order to directly compare the experimental results on two different classi-
fiers, the experiments should be performed under the following conditions[51]:

• the same collection (i.e. same documents and same categories) is used for
both classifiers;

• the same choice (split) of training set and test set is made for both classifiers;

• the same effectiveness measure is used for both classifiers.

Unfortunately, much of earlier experimentation (at least until 1997) was not
performed with this rules in mind, therefore results reported by these researches
are seldom directly comparable. By experimenting three different classifiers on
five versions of ReutersOld[60] has experimentally shown that a lack of compli-
ance with these three conditions (and with the first condition in particular) may
significantly influence the experimental results. In particular,[60] shows that ex-
periments carried out on Version 2 are not directly comparable with those using
later versions, since the former includes a significant percentage (58%) of unla-
belled test documents which, being negative examples of all categories, tend to
depress effectiveness.

3.2 Reuters Corpus

The REUTERS-21578 test collection1, together with its earlier variants, has been
a standard benchmark for the text categorization task throughout the last 10 years.
It consists of a revised version of an older corpus known as ReutersOld[33].

The documents are newswire stories covering the period between 1987 and
1991. The documents were originally labelled by Carnegie Group, Inc. and
Reuters, Ltd. in the course of developing the CONSTRUE text categorization
system[27], and were subsequently collected and formatted by David Lewis with
the help of several other people. The previous version of the collection REUTERS-
22173 , was used in a number of published studies up until 1996, when a revision

1Distribution 1.0 test collection is available for research purposes only from
http://www.daviddlewis.com/resources/testcollections/reuters21578
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of the collection resulted in the removal of 595 duplicates from the original set of
22,173 documents, thus leaving the 21,578 documents that now make REUTERS-
21578 , and in the correction of several other errors. The REUTERS-21578 doc-
uments actually used in TC experiments are only 12,902, because the creators
of the collection found ample evidence that the other 8,676 documents had not
been considered for labeling by the people who manually assigned categories to
documents (indexers). To make different experimental results comparable, stan-
dard splits (i.e., partitions into a training and a test set) have been defined by the
creators of the collection on the 12,902 documents. Apart from very few excep-
tions, TC researchers have used theModApt́e split, in which 9,603 documents are
selected for training and the other 3,299 form the test set.

As we will see in Chapter 9 and in Chapter 10, the experiments performed on
this dataset on our systemOLEX refer to the ModApt́e split. An interesting and
complete analysis of this split is reported in[18].

Group of Categories

There are five groups of categories that label REUTERS-21578 documents:

• EXCHANGES

• ORGS

• PEOPLE

• PLACES

• TOPICS.

Only the TOPICS group has actually been used in TC experimental research, be-
cause the other four groups do not constitute a very challenging benchmark for
TC. The TOPICS group contains 135 categories. Some of the 12,902 legitimate
documents have no categories attached to them, but unlike the 8,676 documents
removed from consideration they are unlabelled because the indexers deemed that
none of the TOPICS categories applied to them. Among the 135 categories, 20
have (in the ModApt́e split) no positive training documents; as a consequence,
these categories have never been considered in any TC experiment, because the
TC methodology requires deriving a classifier either by automatically training an
inductive method on the training set only, and/or by human knowledge engineer-
ing based on the analysis of the training set only.
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Reuters Subsets

Because the 115 remaining categories have at least one positive training exam-
ple each, in principle they can all be used in experiments. However, several re-
searchers have preferred to carry out their experiments on different subsets of
categories. Globally, the three subsets that have been most popular[18] are :

• R(10) : the set of the 10 most populated categories, that is the categories
with the highest number of positive training examples

• R(90): the set of 90 categories with at least one positive training example
and one test example ([18] asserts R(90) to be the most frequently chosen
subset )

• R(115): the set of 115 categories with at least one positive training example

[18] show how this collection has several characteristics that make it interest-
ing for TC experimentation: similar to many other applicative contexts, it is mul-
tilabel, i.e., each documentdi may belong to more than one category; the set of
categories is not exhaustive, i.e., some documents belong to no category at all; the
distribution of the documents across the categories is highly skewed, in the sense
that some categories have very few documents classified under them (positive ex-
amples) while others have thousands; there are several semantic relations among
the categories (e.g., there is a category WHEAT and a category GRAIN, which
are obviously related), but these relations are hidden (i.e., there is no explicit hi-
erarchy defined on the categories). This collection is also fairly challenging for
TC systems based on machine learning (ML) techniques, because several cate-
gories have (under any possible split between training and test documents) very
few positive training examples, making the inductive construction of a classifier a
hard task. All of these properties have made REUTERS-21578 the benchmark of
choice for TC research in the past years.

3.3 OHSUMED Corpus

The OHSUMED documents2 are titles or title-plus-abstract from medical journals
(Ohsumed actually consists of a subset of the Medline document base); the cate-
gories are the terms of the MeSH thesaurus[2]. This test collection was created
to assist information retrieval research. It is a clinically-oriented Medline subset,

2publicly available from ftp://medir.ohsu.edu/pub/ohsumed
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consisting of 348,566 references (out of a total of over 7 million), covering all ref-
erences from 270 medical journals over a five-year period (1987-1991). The test
database is about 400 megabytes in size. A number of fields normally present in
the Medline record but not pertinent to content-based information retrieval have
been deleted. The only fields present include the title, abstract, MeSH indexing
terms, author, source, and publication type. The original test collection was sub-
sequently used in experiments with the SMART retrieval system[29].

From the 50,216 documents in 1991 which have abstracts, a commonly used
split [31] consists in using the first 10,000 for training and the second 10000 for
testing. The classification task considered here is to assign the documents to one
or multiple categories of the 23 MeSHdiseasescategories. In chapter9 we will
refer to this subsets of documents and categories, thus, it will be possible to make
a direct comparison with the results obtained in[31]. Other used the OHSUMED

collection for TC experiments, e.g.,[63], but the employed document set and cat-
egories vary. How observe[44], literature results can give an indication of the
magnitude order of the OHSUMED performance. For instance, from the fact that
accuracy does not overcome 70% in all results obtained in different portion of
OHSUMED , it possible to argue that this corpus is more difficult than REUTERS-
21578 , for which classifiers reaches 86% of accuracy. This is a confirm that here,
differently from REUTERS-21578 that is characterized by a rather direct corre-
spondence between words and categories (for the category “wheat” for example,
the occurrence of the word “wheat” in a document is an very good predictor) the
connection between words and categories is less direct[31].
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Related Work
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As mentioned in the introduction, this dissertation concerns withOLEX, a tech-
nique for the automatic learning of rule-based classifiers which exploits negative
information (i.e., absence of terms). In this part we present some related works
concerning rule-based approaches that can be found in the literature as well as
methods exploiting negative information.
The part is organized as follows.

• In Chapter 4 we analyze a new classification method for automatic text
categorization introduced in[5] that borrows from market basket analysis
techniques using association rule mining in the data-mining field. Then we
describe decision trees (e.g. in C4.5[48]), we provide a description of a
good example of rule-based method, that is the popular rule-induction al-
gorithm RIPPER[16; 14], and finally we briefly discuss about TRIPPER
(Taxonomical Ripper)[55], a RIPPER extension exploiting knowledge in
the form of taxonomies.

• In Chapter 5 we investigate the use of negative information in previous ap-
proach: we first discuss about a proposal of a variant of thek-NN approach,
taking into account evidence provided by negative training instances[25],
and then we illustrate a recent feature selection approach[64] for text cate-
gorization thatexplicitlyconsiders negative features.

• In Chapter 6 we describe a new framework that uses different types of as-
sociation rules, positive and negative, for classifyingstructured dataand
then we analyze an associative text classifier exploiting both presence and
absence of words to perform classification recently devised by[9].
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Rule-Based Classifiers

Many text classifiers that have been proposed in the literature using machine learn-
ing techniques, as probabilistic models or SVM, are essentially quantitative (i.e.
numeric), and as such have sometimes been criticized since, effective as they may
be, are not readily interpretable by humans. A class of algorithms that do not suf-
fer from this problem are symbolic (i.e. non-numeric) algorithms, among which
inductive rule learners and decision tree inducers are the most important examples.

Rule-based classifiers learn by inferring a set of rules (a disjunction of con-
junctions of atomic tests) from pre-classified documents. Rule-based systems en-
joy a number of desirable properties, the former of which the fact that people can
read classifiers, understand and modify them. Certain types of prior knowledge
can also be easily communicated to rule-based systems. Recent studies in the
data mining community proposed new methods for classification employing asso-
ciation rule mining[37; 39]. These classification systems discover the strongest
association rules in the database and use them to build a categorizer.These associa-
tive classifiers have proven to be powerful and achieve high accuracy. However,
they were initially implemented and tested only on small numerical datasets from
the UCI archives1.

In this chapter we analyze a new classification method for automatic text cate-
gorization introduced in[5] that borrows from market basket analysis techniques
using association rule mining in the data-mining field. Then we describe deci-
sion trees (e.g. in C4.5[48]), we provide a description of a good example of
rule-based method, that is the popular rule-induction algorithm RIPPER[16;
14], and finally we briefly discuss about TRIPPER (Taxonomical Ripper)[55], a

1 University of California Irvine knowledge discovery in databases archive.
http://kdd.ics.uci.edu/.
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RIPPER extension exploiting knowledge in the form of taxonomies.

4.1 Association Rule Mining

Association Rules Generation

Association rule mining is a data mining task that discovers relationships among
items in a transactional database. Association rules have been extensively studied
in the literature. The efficient discovery of such rules has been a major focus
in the data mining research community. From the originalapriori algorithm[3]

there has been a remarkable number of variants and improvements culminated
by the publication the FP-Tree growth algorithm[26]. However, most popular
algorithms designed for the discovery of all types of association rules, are apriori-
based.
Formally, association rules are defined as follows.

Definition 4.1 Let I = {i1, i2, . . . , im} be a set of items; letD be a set of trans-
actions, where each transactionT is a set of items such thatT ⊆ I. A transaction
T is said to containX, a set of items inI, if X ⊆ T . An association ruleis an
implication of the form:

X ⇒ Y

whereX ⊆ I, Y ⊆ I andX ∩ Y = ∅.

Definition 4.2 The ruleX ⇒ Y has asupports in the transaction setD if s% ,
of the transactions inD containX ∪ Y .

In other words, the support of the rule is the probability thatX andY hold together
among all the possible presented cases.

Definition 4.3 It is said that the ruleX ⇒ Y holds in the transaction setD with
confidencec if c%, of transactions inD that containX also containY .

In other words, the confidence of the rule is the conditional probability that the
consequentY is true under the condition of the antecedentX. The problem of
discovering all association rules from a set of transactionsD consists of generating
the rules that have a support and confidence greater than given thresholds. These
rules are calledstrong rules.
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The main idea behind apriori algorithm is to scan the transactional database
searching for k-itemsets (k items belonging to the set of items I). As the name of
the algorithm suggests, it uses prior knowledge for discovering frequent itemsets
in the database. The algorithm employs an iterative search and uses k-itemsets
discovered to find (k+1) itemsets. The frequent itemsets are those that have the
support higher than a minimum threshold.

Associative Classifiers

Besides the classification methods described above, recently a new method that
builds associative general classifiers has been proposed. In this case the learning
method is represented by the association rule mining. The main idea behind this
approach is to discover strong patterns that are associated with the class labels.
The next step is to take advantage of these patterns such that a classifier is built
and new objects are categorized in the proper classes. Two such models were pre-
sented in the literature: CMAR[37] and CBA[39]. Although both of them proved
to be effective and achieve high accuracy on relatively small UCI datasets[19],
they have some limitations. Both models perform only single-class classification
and were not implemented for text categorization. In many applications, however,
and in text categorization in particular, multiple class classification is required.

Building an Associative Text Classifier

A method to build a categorization system that merges association rule mining
task with the text classification problem is devised in[5]. Once the entire set
of rules has been generated, some pruning techniques are applied for reducing
the set of association rules found in the text corpora. Then the association rules
set is used in the prediction of classes for new documents. details on the pro-
cess are given in the subsections below. If a documentDi is assigned to a set
of categoriesC = {c1, c2, . . . , cm} and after word pruning the set of termsT =

{t1, t2, . . . , tn} is retained, the following transaction is used to model the docu-
mentDi : {c1, c2, . . . , t1, t2, . . . , tn} and the association rules are discovered from
such transactions representing all documents in the collection. The association
rules are, however, constrained in that the antecedent has to be a conjunction of
terms fromT , while the consequent of the rule has to a member ofC.
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Association Rule Generation

In [5], the algorithm introduced, takes advantage of the apriori algorithm to dis-
cover frequent term-sets in documents. Eventually, these frequent itemsets associ-
ated with text categories represent the discriminate features among the documents
in the collection. The association rules discovered in this stage of the process are
further processed to build the associative classifier. Using the apriori algorithm
on transactions representing the documents would generate a very large number
of association rules, most of them irrelevant for classification. Apriori-based al-
gorithm used in[5] is guided by the constraints on the rules to discover. While
building a classifier, the interesting rules are those ones that indicate a category
label, rules with a consequent being a category label.
In other words, given the document model described above, rules of the form:

T ⇒ ci

whereTj ⊆ T andci ⊆ C. are discovered.
To discover these interesting rules efficiently the rule shape constraint is pushed

in the candidate generation phase of the apriori algorithm in order to retain only
the suitable candidate itemsets. Moreover, at the phase for rule generation from
all the frequent k-itemsets, the rule shape constraint is used again to prune those
rules that are of no use in the classification.

[5] present two approaches considered in building an associative text classifier.
The first one ARC-AC (Association Rule-based Classifier with All Categories) is
to extract association rules from the entire training set following the constraints
discussed above. As a result of discrepancies among the categories in a text collec-
tion of a real-world application, the authors discovered that it is difficult to handle
some categories that have different characteristics (small categories, overlapping
categories or some categories having documents that are more correlated than oth-
ers). Therefore a second solution ARC-BC (Associative Rule-based Classifier By
Category) is proposed to solve such problems. In this latter approach each set of
documents belonging to one category is considered as a separate text collection to
generate association rules from. If a document belongs to more than one category
this document will be present in each set associated with the categories that the
document falls into.

A serious drawback of ARC-BC algorithm is the high number of rules com-
posing the classifier that are generated. Although the rules are human readable
and understandable if the amount of rules generated is too large it is time consum-
ing to read the set of rules for further tuning of the system. This problem leads
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to the introduction of pruning methods. Although the rules are similar to those
produced using a rule-based induced system, the approach is different. In addi-
tion, the number of words belonging to the antecedent could be large (in some
experiments carried out by[5] up to 10 words), while in some studies with rule-
based induced systems, the rules generated have only one or a pair of words as
antecedent.

Pruning the Set of Association Rules

The number of rules that can be generated in the association rule mining phase
could be very large. Because such a huge amount of rules could contain noisy
information which would mislead the classification process and make the classi-
fication time longer[5] present some pruning methods based on the definition of
more general rule and higher ranked rule: eliminate the specific rules and keep
only those that are more general and with high confidence, and prune unnecessary
rules by database coverage.

Prediction of Classes Associated with New Documents

The set of rules selected after the pruning phase represent the actual classifier.
This categorizer is used to predict with which classes new documents are labeled.
Given a new document, the classification process searches in this set of rules for
finding those categories that are the closest to be assigned to the document pre-
sented for categorization by employing a dominance factor (proportion of rules of
the most dominant category in the applicable rules for a document to classify).

Experimental results reported in[5] show that the association rule-based clas-
sifier performs well and its effectiveness is comparable to most well-known text
classifiers. One major advantage of the association rule-based classifier is its rel-
atively fast training time. The drawback lies in the huge set of rules generated
that have to be submitted to a time-consuming phase of pruning. Notwithstanding
this, the use of associative rules to text classification introduced in[5] is interest-
ing as rules generated are understandable and can easily be manually updated or
adjusted if necessary.

4.2 Decision Trees

A decision tree text classifier consists of a tree in which internal nodes are labelled
by terms, branches departing from them are labelled by tests on the weight that the
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term has in the representation of the test document, and leaf nodes are labelled by
(not necessarily different) categories. Such a classifier categorizes a test document
dj by recursively testing for the weights that the terms labeling the internal nodes
have in the representation ofdj , until a leaf node is reached; the label of this leaf
node is then assigned todj. Most such text classifiers assume a binary document
representation, and thus consist of binary trees.

There are a number of standard packages around for the induction of a decision
tree from a training set, and most decision tree approaches to TC have made use
of one such package. Among the most popular packages are ID3 (used in[22]),
C4.5 (used in[15; 17; 31; 35]) and C5 (used in[38]).

A possible procedure for the induction of a decision tree for categoryci from
a set of training examples consists in adivide and conquerstrategy of recursively:

(i) checking whether all the training examples have the same label (eitherci or
ci);

(ii) if not, selecting a termtk, partitioning the training examples into classes of
documents that have the same value fortk, and placing each such class in a
separate subtree.

The process is recursively repeated on the subtrees until each leaf node of the tree
so generated contain training examples assigned to the same categoryci, which
is then chosen as the label for the leaf node. The key step of this process is
the choice of the termtk on which to operate the partition, a choice which is
generally made according to an information gain or entropy criterion. However,
such a “fully grown” tree may be prone to overfitting, as some branches may be
excessively specific to the training data. Any decision tree induction method thus
includes a method for growing the tree and one for pruning it, i.e. for removing
the overly specific branches so as to minimize the probability of misclassifying
test documents. Variations on this basic schema for tree induction abound.

4.3 Inductive Rule Learning Methods

A classifier for categoryci built by an inductive rule learning method consists of a
disjunctive normal form (DNF) rule, i.e. of a conjunction of conditional formulae
(“clauses”). Clause premises denote the presence or absence of terms in the test
document, while the clause head denotes the decision whether to classify it or not
underci. DNF induction methods are known to be of equal power to decision tree
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methods from machine learning theory. However, one of their advantages is that
they tend to generate more compact classifiers than decision tree inducers.

Rule induction methods usually attempt to select from all the possible covering
rules (i.e. those rules that correctly classify all the training examples) the “best”
one according to some minimality criterion. While decision trees are typically
induced through a top-down, “divide-and-conquer” strategy, DNF rules are often
induced in a bottom-up fashion.

At the start of the induction of the classifier forci, every training example is
viewed as a clauseτ1, . . . , τn → γi , whereτ1, . . . , τn are the terms contained in
the document andγi equalsci or ci according to whether the document is a posi-
tive or negative example ofci. This set of clauses is already a DNF classifier for
ci, but obviously scores tremendously high in terms of overfitting. The induction
algorithm employs then a process of generalization whereby the rule is simplified
through a series of modifications (e.g. removing premises from clauses, or merg-
ing clauses) that maximize its compactness while at the same time not affecting
the “covering” property of the classifier. At the end of this process, a “pruning”
phase similar in spirit to that employed in decision trees is applied, where the
ability to correctly classify all the training examples is traded for more generality.
Individual DNF rule learners vary widely in terms of the methods, heuristics and
criteria employed for generalization and for pruning.

In the following sections we illustrate a popular inductive rule learner RIP-
PER and its extension with taxonomic knowledge TRIPPER .

4.3.1 RIPPER

RIPPER (RepeatedIncrementalPruning toProduceError Reduction), was pro-
posed by[14]. It consists of two main stages:

• the first stage constructs an initial ruleset using a rule induction algorithm
called IREP*(Incremental Reduced Error Pruning) [24];

• the second stage further optimizes the ruleset initially obtained.

These stages are repeated for k times. IREP*[14] is called inside RIPPER -k for
k times, and at each iteration, the current dataset is randomly partitioned in two
subsets: a growing set, that usually consists of 2/3 of the examples, and a pruning
set, consisting in the remaining 1/3. These subsets are used for two different
purposes: the growing set is used for the initial rule construction (the rule growth
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phase) and the pruning set is used for the pruning (the rule pruning phase). IREP*
uses MDL[49] as a criterion for stopping the process.

The rule growth phase

The initial form of a rule is just a head (the class value) and an empty antecedent.
At each step, the best condition based on its information gain is added to the
antecedent. The stopping criterion for adding conditions is either obtaining an
empty set of positive instances that are not covered or not being able to improve
the information gain score.

The rule pruning phase

Pruning is an attempt to prevent the rules from being too specific. Pruning is
done accordingly to a scoring metric denoted byv∗. IREP* chooses the candidate
literals for pruning based on a score which is applied to all the prefixes of the
antecedent of the rule on the pruning data. The score is defined as follows:

v ∗ (rule, prunepos, pruneneg) =
p − n

p + n
(4.1)

wherep (n) denotes the total number of positive (negative) instances covered by
the rule.

4.3.2 TRIPPER

TRIPPER[55] is a taxonomy-based extension of RIPPER . The key ingredients
of TRIPPER are:

1. the use of an augmented set of features based on taxonomies defined over
values of the original features (WordNet in the case of text classification) in
the growth phase

2. the replacement of pruning, as an overfitting avoidance method, with the
more general method of abstraction guided by a taxonomy over the features.

Before discussing these issues, we need to provide a formally definition of taxon-
omy.
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Definition 4.4 Let S = v1, v2, ...vn be a set of feature values. LetT be a directed
tree wherechildren(i) denotes the set of nodes that have incoming arrows to the
nodei. A node i is calledleaf if it has no children. Ataxonomy Tax(T,S)is a
mapping which assigns to a nodei of the treeT a subsetSof Swith the following
properties:

Tax(T, S)(i) =
⋃

j∈children(i)

Tax(T, S)(j) (4.2)

Leaves(T ) = S (4.3)

Improvement at Rule Growth Phase

Introducing the taxonomical knowledge at the rule-growth phase is a straightfor-
ward process we call feature space augmentation. The augmentation process takes
all the interior nodes of the attribute value taxonomy and adds them to the set of
candidate literals used for the growth phase.

Improvement at Rule Pruning Phase

A more general version of feature selection than pruning is abstraction: in the case
of abstraction, instead of casting the problem as a matter of preserving or discard-
ing a feature, we are able to choose from a whole range of levels of specificity for
the feature under consideration.
The algorithm devised in[55] uses exactly this idea to incrementally search for
useful abstractions for the literals in the suffix to be pruned according to thev*
score of the rule prefixes.

Comparison with RIPPER

Experiments reported in[55], were performed on the benchmark dataset REUTERS-
21578 using theModApte split[8] of training and testing data. Only the ten
biggest classes in the dataset were used (i.e. REUTERS-21578 subset called R(10)
in [18], as shown in Chapter 3) and only the 300 best features were used as in-
puts to the classifier. The experiments compare RIPPER with TRIPPER . The
text-specific taxonomies used for experiments on the REUTERS-21578 dataset
comes from WordNet[1], using only the hypernymy relation that stands for “isa”
relation between concepts.[55] experiments show that TRIPPER outperforms,
or performs as well as RIPPER in terms of break-even point on the REUTERS-
21578 dataset in a majority (8 out of 10) of classes; TRIPPER generates more
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abstract (and often more comprehensible) rules than RIPPER : some of the ab-
stract literals discovered to be important for a third of the 10 classes. Furthermore,
the rules generated by TRIPPER are often more concise than those generated by
RIPPER .
The usefulness of abstraction is confirmed by the prevalence of abstract literals
in almost all the rules of every rule set. Both of the phases (growth and pruning)
generated improvements, lending empirical support for the idea that both of the
extensions are useful.

The experiments reported in[55] show that TRIPPER generally outperforms
RIPPER on the REUTERS-21578 text classification task in terms of break-even
points, while generating potentially more comprehensible rule sets than RIPPER .
The additional computation cost of TRIPPER is small when compared with RIP-
PER , consisting in an additional multiplicative factor that represents the height
of the largest taxonomy, which in the average case scales logarithmically with the
number of feature values.



Chapter 5

Use of Negative Information in TC

Several approaches (either rule-based or not) exploiting negative information for
text classification can be found in the literature, such as those in[58; 25; 6;
64]. In this chapter we focus our attention on some of them. In Section 5.1
we analyzek-NNneg, a proposal of a variant of thek-NN approach, taking into ac-
count evidence provided by negative training instances[25], while in Section 5.2
we illustrate a recent feature selection approach[64] for text categorization that
explicitlyconsiders negative features.

5.1 A variant of k-NN using Negative Evidence

In [25], the authors observe that the basic philosophy underlyingk-NN and all
the instance-based algorithms in the TC literature, is that only positive instances
of a category are used as evidence towards the fact that documentdj belongs to
categoryci.

Therefore they first propose a variant of thek-NN approach, calledk-NNneg,
with the purpose of taking into account also evidence provided by negative train-
ing instances, and then devise a variant, calledk-NNp

neg, with the intention of
appropriately limiting negative contribution of very dissimilar negative training
instances.

5.1.1 Instance Based Classifier Induction

One of the most popular paradigms for the inductive construction is theinstance-
basedapproach, which is well exemplified by thek-NN algorithm (used e.g. by
[59]).

46
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For deciding whether a documentdj should be classified under a categoryci,
k-NN select thek training documents most similar todj. Those documentsd′

z that
belong toci are seen as carrying evidence towards the fact thatdj also belongs
to ci, and the amount of this evidence is proportional to the similarity betweend′

z

anddj. Classifying a document withk-NN this means computing

CSVi(dj) =
∑

d′z∈Trk(dj)

RSV (dj, d
′

z) · viz (5.1)

where

- CSVi(dj) refers toCategorization Status Valueand measures the computed ev-
idence thatdj belongs toc;

- RSV (dj, d
′
z) refers toRetrieval Status Valueand measures the semantic relat-

edness betweendj andd′
z;

- Trk(dj) represents the set of thek training documentsd′
z with the highest

RSV (dj, d
′
z);

- the value ofviz is defined as followsviz =

{

1 if d′
z is a positive instance ofci

0 if d′
z is a negative instance ofci

The thresholdk is usually determined experimentally on a validation set.[61;
62] has found a range value of30 ≤ k ≤ 45 to provide the best effectiveness.

5.1.2 Negative Evidence in Instance-Based Classifiers

In thek-NNneg method proposed in[25], the equation 5.2 is modified considering
new values forviz

- viz =

{

1 if d′
z is a positive instance ofci

−1 if d′
z is a negative instance ofci

In thek-NNneg method, if a documentd′
z is a negative instance ofci, this fact

is not ignored anymore like in originalk-NN, and it is instead used as evidence of
the fact thatdj does not belongs toci.

[25] carry out a systematic experimentation on REUTERS-21578 benchmark,
by comparing their classifier induction method with the standardk-NN at different
values of thresholdk. They observe that the devised variantk-NNneg performs as
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well as the original methodk-NN but no better than it, and has moreover the draw-
back of being less robust than the original version because of greater sensitivity
to the choice of thresholdk. In factk-NNneg reaches its peak of effectiveness for
k = 10 and therefore a limited number of training documents similar to the test
document is needed (whilek-NN reaches a slight higher effectiveness fork = 50),
but it degrades somehow for values ofk greater than 10 (whilek-NN performances
rise with higher values ofk). A valuable interpretation of these results given by
the authors is that negative evidence brought by training documents very dissim-
ilar from the test document may be self-defeating. Even in other works[31] the
“least negative instances” (i.e. the negative instances most similar to the positive
ones) are considered the most interesting ones, because they are the the most hard
to separate from the positive instances. Moving from this observations, authors
then propose a variant ofk-NNneg with the intention of downplaying the influence
of the “most negative instances”(i.e. the negative instances most dissimilar to the
positive ones).

This variant ofk-NNneg, calledk-NNp
neg, is defined in[25] by modifying equa-

tion as follows:

CSVi(dj) =
∑

d′z∈Trk(dj)

RSV (dj, d
′

z)
p · viz (5.2)

By raising componentRSV to power of parameterp, it is possible to ap-
propriately de-emphasizing the importance of very dissimilar training instances.
Preliminary performed experiments confirmed authors’intuition:k-NNp

neg method
(provided with a careful choice of level of de-emphasizing represented by the pa-
rameterp) consistently outperforms both standardk-NN andk-NN1

neg.

5.2 A use of Negative Information in Feature Selec-
tion

In [64] is proposed a feature selection approach for text categorization thatexplic-
itly considers negative features. It constructs a feature set for each category by first
selecting a set of terms highly indicative ofmembershipas well as another set of
terms highly indicative ofnon-membership, then unifying the two sets. The size
ratio of the two sets is empirically chosen to obtain optimal performance. This is
in contrast with the standard local feature selection approaches that either

• only select the terms most indicative of membership or
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• implicitly but not optimally combine the terms most indicative of member-
ship with non-membership.

[64] conduct systematic experiments on several feature selection metrics: chi-
square, correlation coefficient, odds ratio, and a coefficient called GSS, proposed
in [25], that is a simplified variant of the chi-square. Their results, compared to
those ones of standard approaches, show that the proposed approach, considering
improves text categorization performance.



Chapter 6

Associative Classifiers with Negation
for Structured Data and Texts

Associative classifiers for structured data has been recently introduced in litera-
ture. An associative classifier is a small set of classification rules which form a
model of the data. The classifier is used to assign a class label to new data for
which the class label is unknown. A notable feature of associative classifiers is
the understandability of the generated model, which can be read and interpreted
also by a human being. The first proposals of associative classifiers differ only in
the way rules are ranked and selected in the model.

Traditional associative classification techniques, when applied to text catego-
rization, yield a classifier which is usually characterized by low precision and high
recall.

Recently have been devised new techniques, for classifying structured data
and texts, aimed at improving traditional associative classification models taking
advantage ofnegative information.

In this chapter, we analyze two interesting approaches proposed in the last
years in this direction:

• the first, called ARC-PAN, consists of a new framework that uses different
types of association rules, positive and negative, for classifyingstructured
data. Negative association rules of interest are rules that either associate
negations of attribute values to classes or negatively associate attribute val-
ues to classes.

• the second, called NeW, considers in the text classification task both pres-
ence and absence of words to perform classification to increase the quality
of the rules included in the text classifier.

50
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6.1 Associative Classifiers with Negation

Recent studies in the data mining community proposed new methods for classifi-
cation employing association rule mining [9, 10, 2, 3]. These associative classi-
fiers have proven to be powerful and achieve high accuracy. However, they were
only discovering and using positive association rules in the classification process.
In this section we analyze and discuss the potential of negative association rules
in the categorization task introduced in[6].

6.1.1 Negative Association Rules

This section extends terminology introduced in the previous chapter for associa-
tion rules with the definition ofnegativeassociation rules.

[12] mentioned for the first time the notion of negative relationships in the
literature. Their model is chisquare based. They use the statistical test to verify
the independence between two variables. To determine the nature (positive or
negative) of the relationship, a correlation metric was used.

In [39] the authors present a new idea to mine strong negative rules. They com-
bine positive frequent itemsets with domain knowledge in the form of a taxonomy
to mine negative associations. However, their algorithm is hard to generalize since
it is domain dependant and requires a predefined taxonomy. A similar approach is
described in [19].

[58] derived a new algorithm for generating both positive and negative as-
sociation rules. They add on top of the support-confidence framework another
measure called mininterest (the argument is that a ruleA ⇒ B is of interest only
if supp(A

⋃

B) − supp(A)supp(B) ≥ mininterest). Although they introduce
the “mininterest” parameter, the authors do not discuss how to set it and what
would be the impact on the results when changing this parameter.

In [6] is defined asgeneralized negative association rule, a rule that contains
a negation of an item (i.e a rule for which its antecedent or its consequent can be
formed by a conjunction of presence or absence of terms).

An example for such association would be as follows:

A ∧ ¬B ∧ ¬C ∧ D → E ∧ ¬F.

Deriving such an algorithm that can determine such type of associations is
not an easy problem, since it is well known that the itemset generation in the
association rule mining process is an expensive one.
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It would be necessary not only to consider all items in a transaction, but also
all possible items absent from the transaction. There could be a considerable
exponential growth in the candidate generation phase. This is especially true in
datasets with highly correlated attributes. That is why it is not feasible to extend
the attribute space by adding the negated attributes and use the existing association
rule algorithms.

To avoid this problem, in[6] authors consider the generation and use in the
classification process of a subset of the generalized negative association rules and
refer to them asconfined negative association rules.

A confined negative association rule is one of the follows:

¬X → Y or
X → ¬Y

where the entire antecedent or consequent must be a conjunction of negated at-
tributes or a conjunction of non-negated attributes.

As we will see in the third part of this dissertation, this restriction is not in-
troduced in our approach, that allows both negative and positive items (i.e. in our
terminology negative and positive discriminating terms) in the antecedent (i.e.,
according to our notation, in datalog rule body).

6.1.2 Generation of Positive and Negative Rules

The most common framework in the association rules generation is the support-
confidence one. Although these two parameters allow the pruning of many asso-
ciations that are discovered in data, there are cases when many uninteresting rules
may be produced. In this section we analyze another framework considered in[6]

that adds to the support-confidence some measures based on correlation analysis.
The algorithm proposed in[6] generates a set of rules which is the union of

so called PCR (Positive Classification Rules) and NCR (Negative Classification
Rules). This set of rules is later used in the classification stage. The algorithm
creates only rules of the form:

setof features→ classlabel.

The algorithm is an apriori-like process. It generates first the set of frequent
1-itemsets. Once the 1-frequent itemsets is generated the candidate setsC2 to Cn,
belonging to a setC keeping all class labels existing in the data set, are found as a
join betweenFk−1 andF1. Those candidates that exceed minimum support thresh-
old are added to the corresponding frequent set. For each candidate the PONERG
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Y ¬Y
∑

row

X f11 f10 f1+

¬X f01 f00 f0+
∑

col f+1 f+0 N

Figure 6.1: 2x2 Contingency table for binary variables

function (POsitive andNEgativeRule Generation) is called to generate the posi-
tive and negative association rules. The PONERG function generates the positive
and negative rules based on the item correlation with a class label. This function
takes as input an itemset and the set of class labels. Correlation coefficient mea-
sures the strength of the linear relationship between a pair of two variables. It is
discussed in the context of association patterns in[53].

Definition 6.1 For two variablesX andY , the correlation coefficient is given by
the following formula:

ρ =
Cov(X,Y )

σXσY
(6.1)

In this equation,Cov(X, Y ) represents the covariance of the two variables and
σXstands for the standard deviation.

Let X andY be two binary variables. Table 6.1 summarizes the information
aboutX andY variables in a dataset in a 2x2 contingency table. The cells of
this table represent the possible combinations ofX andY and give the frequency
associated with each combination.N is the size of the dataset considered. The
correlation coefficient between the item and the class label is computed in[6]

according the following definition (that is a variant ofφ correlation coefficient
introduced by Pearson):

φ =
Nf11 − f1+ ∗ ff+1

√

f1 + (N − f1+)f+1(N − f+1)
(6.2)

If the correlation in absolute value is greater than the correlation threshold
given, than the classification rule is of interest. If the correlation is positive, a
positive association rule is discovered. When the correlation is negative, negative
rules are generated. Given two itemsX andY ,

• apositiveassociation rule is a rule of the form
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X → Y

• anegativeassociation rule is one of the follows:

¬X → Y

or

X → ¬Y .

Once the rules are generated, they are added to PCR or NCR if their confidence
exceeds the minimum confidence threshold.

The values for the correlation coefficient are chosen by the authors consid-
ering first as correlation threshold the value 0.5, to discover strong correlations.
However, there were two datasets where no strong correlations were discovered
between attribute values and class labels. For these cases, the threshold was low-
ered to the 0.3 value to discover moderate correlations.

The set of rules that were generated by algorithm PONERG of[6] represent the
actual classifier. This categorizer is used to predict to which classes new objects
are attached. Given a new object, the classification process searches in this set of
rules for those classes that are relevant to the object presented for classification.
The set of positive and negative rules discovered are ordered by confidence and
support. This sorted set of rules represents the associative classifier called by[6]

ARC-PAN(Association Rule Classification with Positive And Negative).
In [6] the authors observe that the association rules of the typeX → C and

¬X → Ccan be treated in the same way. Both of them have a confidence attached
and they have an association with the class label. These types of rules can be con-
sidered together and their confidence can be added to theC class total. However,
the rules of the typeX → ¬C have to be treated differently.[6] chose to sub-
tract their confidences from the total confidence of their corresponding class but
investigating other methods to score these kind of rules remains an open issue.

[6] tested their proposed algorithm on some datasets from UCI ML Repository
[19] and compared with C4.5[48] and CBA[39]. The results for the classification
with classifier based on the positive and negative rules (ARC-PAN) seem encour-
aging. When all types of rules are used the classification accuracy increases on
three datasets when compared with classifier C4.5 and with the CBA. The clas-
sification accuracy can be improved as well with only the generation of positive
association rules that are strongly correlated.[6] show also as a drastic reduction
in rule number takes place when the correlation measure is used to derive inter-
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esting rules. Moreover, as observed from the error results presented, the error rate
remains in the same range, or even decreases in some cases.

A small set of classification rules is very desirable. When a small set of clas-
sification rules is presented, the classification phase is faster, which can be impor-
tant for some applications. Another advantage is that a small set becomes human
readable. It is realistically feasible to read, edit and augment hundreds of rules,
but thousands of rules is impractical. Because of the transparency of the associa-
tive classifier, manually updating some rules is favorable and practical in many
applications.

6.2 Associative Text Classifiers with Negation

In this section we analyze a very recent technique, proposed in[9]: the devised
system, called NeW (NegatedWords classifiers), in order to increase the precision
of previous approaches defining associative text classifiers, proposes the use of
classification rules includingnegated words, i.e. words that the considered docu-
ment should not contain. Differently from the ARC-PAN technique for structured
data, examined in the previous section, in the body of negative rules generated by
NeW “positive” and “negative” items can occur together. Classification rules with
negated words are in the form “if a document includes wordsA andB, but not
wordZ, then it belongs to classC”.

As mining classification rules with negated words becomes quickly intractable
when decreasing the support threshold,[9] tackle this problem by generating
negated words only to specialize rules that may wrongly classify training doc-
uments. Hence precision is increased, without losing recall.

6.2.1 Specializing Associative Rules by means of Negated Words

Association rules[4] are rules in the formX → Y . For classification purposes
X is a set of items (words), andY a class label.[9] says that a set of itemsX
matches a documentd if X ⊆ d. As usual, the quality of an association rule is
measured by its support, given by the number of documents matchingX ∪Y over
the number of documents in the database, and its confidence, given by the number
of documents matchingX ∪ Y over the number of documents matchingX.

Absence of items, initially proposed in[12], are introduced in[9] to improve
the quality of associative classifiers. Classification rules with negated items are in
the form:
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XZ → c

whereX andZ are sets of items (that is words), andc is a class label. SetX
contains “positive” items and cannot be empty. SetZ contains “negated” (i.e.,
absent) items and may be empty. When introducing item negation, the definition
of document matching is refined as follows.

Definition 6.2 [9] A set of itemsX ∪ Z matchesa documentd if X ⊆ d and
Z ∩ d = ⊘.

The support of a classification rule with negated itemsXZ → c, analogously to
traditional (i.e. positive) association rules, is given by the number of documents
matchingX ∪ Z → c over the number of documents in the data set. Confidence
is given by the number of documents matchingX ∪ Z ∪ c over the number of
documents matchingX ∪ Z.

In order to extract rules with negated words, the inclusion of a negated word w
in a transactiont whenw 6∈ t, albeit a very straightforward solution, causes itemset
extraction to become unfeasible also for very high support thresholds.[9] address
this issue by first extracting “traditional” classification rules (without negated
items) and then by specializing only a subset of the classification rules by se-
lectively adding negated words. The NeW extraction algorithm proposed in[9] is
based on the FP-growth[26] association rule mining algorithm, adapted to extract
only classification rules. Classification rules are extracted with a different support
threshold for each class, in order to appropriately represent also unfrequent classes
[40]. We adopted the (simpler) approach of CBA[40]. For each class ci the min-
imum support threshold minsupi is computed asminsupi = freq(ci) ∗ minsup,
wherefreq(ci) is the frequency ofci in the training data andminsup is the se-
lected minimum support threshold. During rule extraction theχ2 test is applied to
discard negatively correlated and uncorrelated rules.

Only words positively correlated with at least one class label are considered,
while all other words are pruned from the documents. Since rules including neg-
atively correlated words are usually not accurate, the quality of generated rules is
increased. Furthermore, the complexity of the extraction task is reduced.

The number of classification rules generated by rule extraction can be huge.
Hence, this set is usually pruned[37; 39] to select a small subset of high qual-
ity rules. During the pruning phase, performed by means of the commonly used
database coverage technique[37; 39],[9] apply a specialization technique in order
to increase the precision of selected rules. Differently from previous approaches,
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before including a ruler in the classifier,[9] specialize it with negated words. Spe-
cialization occurs only ifr assigns at least a training document to the wrong class.
In this case,r is specialized by adding one at a time the most frequent words
included in the misclassified documents, but in none of the correctly classified
documents. On training data, rules with negated words increase precision (previ-
ously misclassified documents might now be covered by a more appropriate rule)
without losing recall (the class assignment of all correctly classified documents is
not altered). On test data, while negated words still yield an increase in precision,
they may cause a negligible recall loss (some correctly assigned documents may
not be covered any more because of negated words). Before performing database
coverage, a global order is imposed on the rule set. Rules are sorted by decreasing
confidence, support, and length (number of items in the rule body). In NeW a
training data is removed from the training set (i.e., it is no more considered) when
it has been covered by rules passing a database threshold coverage, analogously
to [37]. Other approaches (e.g.,[39] remove each training data as soon as it is
covered by one rule.

Including more than one rule for each training data increases the number of
rules in the model. Hence, when classifying a new document, NeW has a wider
choice of rules and it may have better chance to correctly classify new documents.

Before including a ruler in the classifier,NeW considers it for specialization if
it misclassifies at least one training document. The initial set of candidate negated
words contains all words included in at least 2 “wrong documents”r.wDocs (i.e.
true negative training documents covered byr) but not included in any ofr.rDocs

(i.e true positive training documents covered byr). Requiring the absence of
these words from a document prevents misclassification of documents by means
of r. The most frequent wordw, that is the candidate negated word contained
in the largest number of documents in the true negative training documents) is
added tor as a negated word. If several words have the same frequency, they
are considered in lexicographical order. All documents including wordw are
deleted fromr.wDocs, becauser does not cover them any more. Sincew can
only be present in wrong documentsr.wDocs , the classification of documents in
r.rDocs is not affected. The set of candidate negated words is computed again on
the remaining documents inr.wDocs. The specialization process continues until
r misclassifies at least one document and at least one negated word is available.

[9] report a set of experimental results performed by NeW on the commonly
used ModApte split of the REUTERS-21578 Corpus. The experiments show that
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NeW’s results are higher or closer to most previous approaches (e.g., SVM[31],
K-NN [61], ARC-BC [6], C4.5[48]). The experiments also highlight the impor-
tance of negated words on the quality of the classifier. NeW achieves better results
than previous associative classifier ARC-BC[6].

The NeW algorithm in[9] has been evaluated by creating a binary classifier
for each classci and by computing the recall/precision breakeven point (BEP)
measure (the point at which precision and recall are equal).

NeW outperforms some previous approaches (Bayes, Rocchio, C4.5 and ARC-
BC), while it has performance lower than K-NN and SVM.

[9] remarks how, without negated words, NeW yields a “medium” quality
classifier, in which both macro-average BEP, and micro-average BEP are about
5-7% lower than that of NeW with negated words. This quality difference is due
to a significant increase in the precision of specialized rules. Rules with negated
words allow NeW to retain the high recall characterizing associative classifiers
(the number of true positive is rather stable), while precision is increased (the
number of false positive decreases significantly).
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This part of dissertation describesOLEX, a novel method for the automatic
construction of rule-based text classifiers.OLEX relies on an optimization algo-
rithm whereby a set of (both positive and negative) discriminating terms is gener-
ated for the category being learned. Such terms are then used to construct a clas-
sifier of the form “if termt1 or ... termtn occurs in documentd, and none of terms
tn+1, · · · tn+m occurs ind, thend belongs to categoryc”. The proposed method is
simple and elegant. Despite this, the results of a systematic experimentation per-
formed on both the REUTERS-21578 and the OHSUMED data collections show
thatOLEX is both effective and efficient.

The part is organized as follows.

• In Chapter 7 we introduce the problem and our terminology.

• In Chapter 8 we presentOLEX learning process based on a novel optimiza-
tion algorithm.

• In Chapter 9 we show the results of a systematic experimentation performed
on both the most widely used text categorization test collection.

• In Chapter 10 we will concentrate on the following aspects: the expres-
siveness of the rules learned by Olex, the way they are learned and their
effectiveness.



Chapter 7

Problem Definition and Terminology

In this chapter we introduce terminology used in the remainder of this dissertation
and the statement of problem that our devised method is aimed at solving.

7.1 Problem Statement

Throughout the following chapters we assume the existence of

• a finite setC of categories,

• a finite setD of documents (calledcorpus)

• the relationI ⊆ C ×D (the idealclassification) which says, for each docu-
mentd ∈ D, the categories ofC to whichd belongs.

The corpusD is partitioned into a

• training setTS and a

• validation set.

We denote byTSc the subset ofTS whose documents belong to categoryc ac-
cording toI (thetraining set ofc).

Now, the problem is that of automatically inducing, for eachc ∈ C, a set of
classification rules (theclassifier, or categorizer, of c), by learning the properties
of c from TSc.

Once a classifier has been constructed, its capability to take the right catego-
rization decision is tested by applying it to the documents of the validation set and
then comparing the predicted classification to the ideal one. The effectiveness of
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Table 7.1: List of the main symbols

Symbol Description
D corpus of documents
C set of categories
TS training set
TSc training set of categoryc
f , k, n tuning parameters: f is a term scoring

function,k the number of terms per
category andn the n-gram length

V (f, k, n) reduced vocabulary
t term (n-gram)
t+, t− positive and negative discriminating terms
Xc set of discriminating terms for categoryc
F (Xc) F-measure as a function ofXc

a classifier is measured in terms of the classical notions ofprecision, recall and
F-measure[52].

In table 7.1 it is reported a list of the main symbols used throughout the fol-
lowing chapters.



Chapter 8

Learning Rules with Negation

In this chapter we presentOLEX optimization algorithm whereby a set of (both
positive and negative) discriminating terms is generated from a set of training
documents in order to learn profiles of predefined categories with respect to which
we wish to construct text classifiers. Such terms are then used to construct a
classifier of the form ”if termt1 or ... termtn occurs in documentd, and none
of termstn+1, · · · tn+m occurs ind, thend belongs to categoryc”. The proposed
method is simple and elegant. Despite this, as we will see in the next chapter,
OLEX is both effective and efficient.

OLEX classifier induction process consists of three main steps:

• Pre-processing

• Learning

• Classifier Construction.

The following sections illustrate exhaustively each step.

8.1 Pre-processing

To process documents, we transform them according to the following steps:Stop
word removal, StemmingandN-gram Extraction.
Stopword removal. Stopwords are words, such as prepositions, pronouns, etc.,
that are used to structure phrases rather than provide meaning. We remove them
by using a list of common stopwords.
Stemming Stemming is used to reduce words to their root. Porter[46] has defined
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Table 8.1: Feature scoring functions used for vocabulary reduction (N is the total
number of documents).

Function Notation Mathematical form references

Information gain IG(t, c) A
N
× log N ·A

(A+C)(A+B)
+ C

N
× log N ·C

(A+C)(C+D)
[13; 63]

Chi-square CHI(t, c) N(AD−CB)2

(A+C)(B+D)(A+B)(C+D)
[13; 63]

Odds Ratio OR(t, c) A(N−B)
B(N−A)

[13]

a widely used algorithm for word stemming, and we have incorporated it in our
system.
N-gram extraction. According to[13], we define an-gramt (in the following of-
ten called ”term”) as a set{s1, · · · , sn} of n word stems. We say thatt occurs in
a documentd if, after stop word removal,d contains a sequence of (consecutive)
words whose stems are exactly those int. Notice that the order of appearance in
d of the words giving rise tot is immaterial, so that phrases like ”information re-
trieval” and ”retrieving information” map to the same 2-gram{inform, retriev}.
We considern-grams forn ≤ 3.

8.2 Learning

The learning task is based on two steps, namely,Vocabulary ReductionandSelec-
tion of Discriminating Terms. The input consists of the pre-processed documents
of the training setTS, along with the ideal classificationI. The output consists,
for each categoryc ∈ C, of a set of discriminating terms.

8.2.1 Vocabulary Reduction by Term Selection

This task is aimed at controlling the dimension of the training data. The advan-
tage is two-fold: first, the search space of our optimization algorithm (see Subsec-
tion 8.2.2) is considerably reduced; second, irrelevant or redundant features in the
training data, that may degrade the accuracy of the learning phase, are removed.
A comparative study of a number of feature scoring functions can be found in[63;
21].



Chapter 8. Learning Rules with Negation 65

Given a categoryc, let Tc be the set of terms occurring in the pre-processed
documents ofTSc. With each elementt ∈ Tc we associate the quantitiesA, B,
C andD defined, according to the two-way contingency table of a termt and a
categoryc, as follows:A is the number of documents in the training setTSc where
t occurs;B the number of documents not inTSc wheret occurs;C the number
of documents inTSc wheret does not occur, andD the number of documents not
in TSc wheret does not occur. Now, selecting the setVc(f, k, n) of the k best
terms forc, of length≤ n, consists in: (1) scoring the terms inTc, of length≤ n,
by using the feature scoring functionf chosen among those shown in Table 8.1,
namely, information gain IG, chi-square CHI and odd ratios OR, and (2) keeping
thek terms that score highest.

Definition 8.1 (Reduced Vocabulary)Given a scoring functionf and integersk
andn (n ≤ 3), thereduced vocabularyof the corpusD isV (f, k, n) = ∪c∈CVc(f, k, n).

As we will see in Section9.1,f , k andn represent the tuning parameters of our
approach.
The intuition behind the above definition is that, by selecting the highest scored
terms for each categoryc and putting them all together inV (f, k, n), the reduced
vocabulary will contain the terms that are highly indicative of membership inc

(i.e., those that have been chosen as representative ofc) as well as the terms that
are highly indicative of non-membership inc (i.e., those that have been chosen as
representative of other categories).

8.2.2 Generation of Discriminating Terms

This task is the heart of our method. Here, the aim is that of devising, for each
categoryc ∈ C, a set of terms taken from the reduced vocabularyV (f, k, n),
some of which are indicative of membership inc, some others of non-membership,
capable of ”best” characterizing the documents in the training setTSc of c. Since
the whole optimization task consists of|C| independent sub-tasks (one for each
category), in the following we will concentrate on a single categoryc ∈ C.

Definition 8.2 (Discriminating Terms) We are given the reduced vocabulary
V (f, k, n), for fixed values off , k andn, and a categoryc ∈ C. A discrimi-
nating term(for c) is a pair< t, s >, wheret is a term inV (f, k, n) ands, the
sign of t, an element of{+,−}. We will represent< t, s > asts. A discrimi-
nating term (often ”d-term”, for short) with sign ”+” (resp. ”-”) is calledpositive

(resp. negative) d-term. We say thatts occurs in a documentd if t occurs in
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d. Intuitively, a positive d-term forc occurring ind is interpreted as indicative
of membership ofd in c, while a negative d-term is taken as evidence against
membership.

Example 8.3 (Discriminating Terms) Assume that the set of d-terms associated
with categoryc is Xc = {t+1 , t+2 , t−3 , t−4 }, wheret1, t2, t3, t4 are terms from the
reduced vocabulary. The intuitive meaning ofXc is the following: a documentd
containing eithert1 or t2, but neithert3 nor t4, is classifiable underc; otherwise it
is not.

Let ∆(t) denote the set of documents of the training setTS where termt occurs.
Thus, given the set of discriminating terms

Xc = {t+1 , · · · , t+n , t−n+1, · · · , t−n+m}

the set

Θ(Xc) =
n

⋃

i=1

∆(ti) \
n+m
⋃

j=n+1

∆(tj)

of the documents containing some positive d-term ofXc and none of the negative
d-terms inXc, represents the set of all documentsclassifiableunderc according
to Xc. Precision, recall and F-measure w.r.t.c resulting from classifyingΘ(Xc)

underc are the following:

Pr(Xc) =
|Θ(Xc) ∩ TSc|

|Θ(Xc)|
(8.1)

Re(Xc) =
|Θ(Xc) ∩ TSc|

|TSc|
(8.2)

F (Xc) =
2Pr(Xc) · Re(Xc)

Pr(Xc) + Re(Xc)
=

2 · |Θ(Xc) ∩ TSc|

|Θ(Xc)| + |TSc|
. (8.3)

PROBLEM DTERM-GENERATION. We are given: (1) the reduced vocabulary
V (f, k, n), for fixed values off , k andn, (2) the set∆(t), for eacht ∈ V (f, k, n),
of the documents wheret occurs and (3) the training setTSc of c. Then the prob-
lem is finding a setXc of discriminating terms forc such thatF (Xc) is maximum.



Chapter 8. Learning Rules with Negation 67

Algorithm DTERM-Generation

Input : the reduced vocabularyV (f, k, n), for given values of the tun-
ing parametersf , k and n; the set of documents∆(t), for eacht ∈
V (f, k, n), and the training setTc of c;
Output : a suboptimal setXc of discriminating terms;
Method: perform the following steps:

1. let f opt = 0 andXc = X = ∅;
2. letDT = {t+i , t−i | ti ∈ V (f, k, n)} be the set

of all discriminating terms constructible fromV (f, k, n);
3. while DT 6= ∅
4. let ts ∈ DT be the most relevant d-term, i.e., the one which added toX,
5. maximizes the objective functionF evaluated by equation 8.3;
6. X = X ∪ {ts};
7. DT = DT \{t+, t−};
8. if F (X) > f opt then
9. f opt = F (X);
10. Xc = X;
11. end-if;
12. end-while;
13. return Xc;

Figure 8.1: Algorithm DTERM-GENERATION

DTERM-GENERATION is a NP-complete problem. Thus, to deal with it,
we have defined the greedy heuristics sketched in Figure 8.1. Essentially, the
algorithm computes the sequence

F (X0) = 0 , · · · , F (Xi) = F (Xi−1 ∪ {tsi}), · · · ,

F (Xp) = F (Xp−1 ∪ {tsp})

whereX0 = ∅; the (approximated) solution provided by the algorithm is a setXi

of d-terms such thatF (Xi) ≥ F (Xj), for j = 1, p. The while-loop (see line 3
of Figure 8.1), whereby the above sequence is generated, is controlled byDT =

{t+1 , t−1 , · · · , t+p , t−p }, i.e., the set of all d-terms obtainable from the reduced vocab-
ulary V (f, k, n); at each round, the algorithm picks the d-termts ∈ DT with the
maximum relevance, i.e., the one which maximizesF (X∪{ts}); the evaluation of
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F is based on equation 8.3 above. Then,ts is removed fromDT . We notice that
the setXc of d-terms computed by Algorithm DTERM-GENERATION contains
at least one positive d-term.

Fact 1 Algorithm DTERM-GENERATION takes timeO(m2), wherem = |V (f, k, n)|

is the number of terms in the reduced vocabulary (for given values off , k andn).

Proof. (sketch) We first notice that|DT |= 2·|V (f, k, n)|,DT being by definition
the set{t+i , t−i | ti ∈ V (f, k, n)} of all discriminating terms constructible from
V (f, k, n) (see Figure 8.1). Thus, the while loop of DTERM-GENERATION
is ran inO(m) time, wherem = |V (f, k, n)|. Now, at each step of this loop,
the most ”relevant” discriminating term inDT is chosen by computing, for each
elementts ∈ DT , the valueF (X ∪ {ts}) of the objective functionF . This is
clearly done inO(m) time. It turns out that DTERM-GENERATION takes time
O(m2). ¤

One point that is worth noticing is that, since Algorithm DTERM-GENERATION
relies on the reduced vocabulary, the computation of negative d-terms requires the
same computational effort as the computation of positive ones.

8.3 Classifier Construction

As we have seen in the previous section, given the set

Xc = {t+1 , · · · t+n , t−n+1, · · · , t−n+m}

of d-terms for categoryc, a documentd is classifiableunderc according toXc if
any of t1, · · · , tn occurs ind and none oftn+1, · · · , tn+m occurs ind. Based on
that, we are now in a position to define theclassifierof c.

Definition 8.4 (Classifier) Let

Xc = {t+1 , · · · t+n , t−n+1, · · · , t−n+m}

be the set of d-terms for categoryc. Theclassifierof c is the set of (classification)
rulesχc = {r1, · · · , rn}, whereri, 1 ≤ i ≤ n, is:

c ← ti ∈ d, tn+1 /∈ d, · · · , tn+m /∈ d.

Informally, a ruleri, 1 ≤ i ≤ n, succeeds w.r.t a documentd if ti occurs ind and
none oftn+1, · · · , tn+m occurs ind. Thus, the informal meaning ofχc is: classify
d underc if (and only if) any rule inχc succeeds w.r.t.d, i.e., if d is classifiable
according toXc.
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Example 8.5 (Classifier) LetXc = {t+1 , t+2 , t−3 , t−4 } be the set of d-terms ofc.
Thenχc consists of the following rules:

c ← t1 ∈ d, t3 /∈ d, t4 /∈ d,

c ← t2 ∈ d, t3 /∈ d, t4 /∈ d.



Chapter 9

Experimental Results

Il this chapter we show the results of a systematic experimentation performed
on both the most widely used text categorization test collection: the REUTERS-
21578 corpus and the OHSUMED corpus. They show thatOLEX is both effective
and efficient. Another set of experiments was conducted on another texts collec-
tion, that is not a benchmark corpus(FCSI), belonging to an American insurance
company interested in automatically categorizing documents at present manually
labelled by insurance experts.

9.1 Experiments Setup and Performance Metrics

We have experimentally evaluated our algorithm using two well-known bench-
mark corpora, the REUTERS-21578 and the OHSUMED collections, and a further
texts collection, the so called FCSI.
According to our method, we performed on these data sets the following steps:

1. computation of the reduced vocabularyV (f, k, n), for given values off
(scoring function),k (number of terms taken from each category) andn

(maximum term length);

2. for each category, execution of the optimizer for the computation of the
associated set of d-terms;

3. for each category, generation of the classifier.

We repeated the above three steps for different values off , k andn, each time
testing the classifiers over the validation set. To measure the classification effec-
tiveness, we used the standard definition of micro-averaged precision and recall
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(see Chapter 2):

µPr =
Σc∈CTPc

Σc∈C(TPc + FPc)
; µRe =

Σc∈CTPc

Σc∈C(TPc + FNc)

whereTPc is the number oftrue positivedocuments w.r.t.c (i.e., the number of
documents of the validation set that have correctly been classified underc), FPc

the number offalse positivedocuments w.r.t.c andFNc the number offalse neg-
ativedocuments w.r.t.c. Based on the above formulas, both the micro-averaged
F-measure (withβ = 1) and the micro-averaged break-even point (BEP) have
been calculated (the latter as the arithmetic average of micro-averaged precision
and recall).

9.2 Reuters

The first data set we considered is the REUTERS-21578 (see Section 3.2. To this
corpus we have applied the ModApté split in which 9,603 documents (those hav-
ing at least one category assigned and are dated earlier than April 7th, 1987) are
used to form the training set (TS) and 3,299 (those having at least on category
assigned and are dated April 7th, 1987 or later) to form the validation set.
We have conducted a first group of experiments on the ten most populated cate-
gories (we will refer to them as R10) listed in table 9.3. To this end, we have:

1. performed the vocabulary reduction by selecting the best terms from the
entiretraining set of each category in R10;

2. run the optimization algorithm for each categoryc in R10 by considering
as positive examplesall documents in its training setTSc and as negative
examples those inTS \ TSc;

3. classified w.r.t. the categories in R10all the 3,299 documents in the valida-
tion set.

Since the tuning of the algorithm parameters has been carried out over the valida-
tion set, the performance results we are presenting must be interpreted as an upper
bound to the performance of our approach.
Table 9.1 shows the micro-averaged values for Precision, Recall and F-measure
obtained by using the different selection functions shown in Table 8.1 to select
vocabularies with sizes ranging from 30 to 6,000, each consisting of n-grams of
length ranging between 1 and 3. The following points are worth noticing. First,
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Table 9.1: Micro-averaged Precision, Recall and F-measure over R10. The n-
gram length is variable, ranging from 1 to 3. Highlighted with bold font, the best
performance of each feature scoring function.

Reduced Reduction Function
Vocabulary IG CHI OR
(N. of terms) µPr µRe µF µPr µRe µF µPr µRe µF

30 79.62 77.79 78.69 83.22 75.13 78.97 98.85 36.88 53.72
200 86.32 80.41 83.26 87.40 81.13 84.14 96.36 47.3 60.13
400 88.27 84.00 86.08 88.76 83.35 85.97 95.22 50.70 66.17
600 89.21 82.81 85.89 89.12 84.03 86.50 93.04 53.25 67.73
1000 88.70 82.92 85.70 89.72 82.70 86.07 90.63 57.30 70.21
1500 87.61 82.74 85.11 89.09 83.28 86.09 88.79 59.96 71.58
2000 88.68 81.56 84.97 88.50 82.60 85.45 87.19 64.26 73.99
6000 86.76 80.16 83.33 89.04 80.48 80.43 84.31 69.97 76.47

on R10OLEX achieves a maximum micro-averaged F-measure of 86.50, obtained
by using the CHI function and a vocabulary of 600 terms (60 terms per category).
Second, functions IG and CHI perform likewise, with a slight predominance of
CHI, while OR performs worst. The latter is indeed characterized by high pre-
cisions but very poor recalls (contrary to IG and CHI, both characterized by a
good balancing of precision and recall values); this stems from the tendency of
OR to select very specific terms. Third, reducing the dimension of the vocabulary
provides a benefit in terms of categorization performance. For instance, using
the CHI function, classifiers perform highest at a vocabulary size of 600 features;
likewise, for the IG function only 400 features are needed. We notice that a fur-
ther reduction of the vocabulary to 3 terms per category entails just a slight loss in
categorization performance. Much larger vocabularies are on the contrary needed
for the OR function (it performs highest at 6,000 terms), because of its aptitude to
be very selective (high precisions but poor recalls). In general, the observed effect
of vocabulary reduction is similar to that noted in[63].
In Table 9.2, we show the effect of the n-gram length on the classifier perfor-
mance. In particular, we compare the results shown in Table 9.1, obtained by
using variable-length n-grams (n=1-3), with those obtained by restricting to only
one-grams (that is, the classicalbag-of-wordrepresentation). Interestingly, as far
as CHI and IG is concerned, the difference between the two cases is quite neg-
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ligible, while variable-length n-grams perform significantly better in the case of
OR. This is likely due to the following: both IG and CHI naturally tend to select
short-length n-grams, so that the selected terms are substantially the same in the
case of fixed length n=1 and variable length n=1-3; contrary to this, as already
mentioned, OR has a strong tendency to select n-grams of length 3, so that the
selected terms are significantly different in the case of fixed length n=1 and vari-
able length n=1-3. Previous results with using multi-word terms show different
conclusions. In some cases, e.g.[43], using such terms improve the classification
accuracy, while in others, e.g.,[45] no positive effects are detected.

Table 9.2: Micro-averaged F-measure over R10 for n-gram length equal to 1 (L=1)
and n-gram length ranging between 1 and 3 (L=1-3)

Reduced Reduction Function
Vocabulary IG CHI OR
(N. of terms) L=1 L=1-3 L=1 L=1-3 L=1 L=1-3

200 83.80 83.26 84.42 84.14 54.11 60.13
600 85.43 85.89 86.43 86.50 61.05 67.73
1500 85.18 85.11 86.50 86.09 67.17 71.58

Table 9.3 shows the performance of each of the categories in R10 when the
selection function is CHI and the vocabulary size is 600 terms.

Here, for each of the ten categories the size of the respective training set is
reported. The columns labelled “Optimization” show the value of the F-measure
predicted by the optimizer, along with the number of both positive and negative
learned d-terms. We point out that the number of positive d-terms for a classifier
coincides with the number of its rules. The columns labelled “Validation” show
the Precision, Recall, F-measure and Break Even Point (BPE) values obtained by
the learned classifiers on the validation set. As far as optimization is concerned,
we emphasize the predominance of negative terms over positive ones (282 against
89), so stressing on the importance of negative information in our category pre-
diction technique. For an instance, for categoryearn the optimization algorithm
has learned 11 positive terms (such as “vs”, “loss”, “earn”, “oper year”, etc.) and
31 negative ones (such as “money”, “market open”, “tonn”, “opec”, etc.). So, the
classifier learned forearnconsists of 11 rules of the following type

earn← “vs” ∈ d, “money” /∈ d, · · · , “market open”/∈ d
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Table 9.3: Optimization and validation results for the categories in R10; the fea-
ture scoring function isCHI and the vocabulary dimension is 600. The sign′′+′′

means positive d-term,′′−′′ negative d-term. The number of positive d-terms for
a classifier coincides with the number of its classification rules.

Category Optimization Validation
Name Size F + - Pr Re F BEP
earn 2877 93.90 11 31 97.38 95.86 96.61 96.62
acq 1650 84.88 18 41 92.08 82.47 87.01 87.28
money-fx 538 76.53 14 39 69.44 69.83 69.63 69.64
grain 433 92.82 7 14 92.36 89.26 90.78 90.81
crude 389 81.74 15 17 82.58 77.78 80.11 80.18
trade 369 72.02 1 39 59.78 47.01 52.63 53.40
interest 347 65.58 8 22 62.10 45.04 52.21 53.57
wheat 212 92.27 1 7 86.25 97.18 91.39 91.72
ship 197 85.56 12 15 80.00 76.40 78.16 78.20
corn 181 91.30 2 7 85.00 91.07 87.93 88.04

Total 89 232
micro-avg 89.12 84.03 86.50 86.58

earn← “loss” ∈ d, “money” /∈ d, · · · , “market open”/∈ d

· · ·

expressing that if either term “vs” or term “loss” or ... occurs ind, and none of
terms “money” or “market open” or ... occurs ind then classifyd under cate-
gory earn (here, each term is represented as an alphabetically ordered sequence
of stems). This classifier provides a F-measure for categoryearnequal to 96.61,
slightly better than the value predicted by the optimizer (93.90). On this regard,
we notice that the predicted F-measure values are highly reliable - the difference
between predicted and test values being on the average around±5%.
To conclude this section, we report on the experiments conducted on R90, i.e., the
set of the 90 categories with at least one positive training example and one test
example. Here, the “best” micro-averaged F-measure is 80.01, obtained by using
the CHI function and a reduced vocabulary consisting of 60 terms/category. In
table 9.4 we show the F-measure values for all categories of R90 with at least one
hundred positive examples. Here, there not exist any correlation between the size
of the training set and the respective F-measure value (notice that categories in
table 9.4 are listed in decreasing order of size, ranging from 2877 to 101). This
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Table 9.4: F-measure for the categories of R90 with at least 100 positive examples

Category Size F
earn 2877 96.62
acq 1650 87.28
money-fx 538 69.64
grain 433 90.81
crude 389 80.18
trade 369 53.40
interest 347 53.57
wheat 212 91.72
ship 197 78.20
corn 181 88.04
money-supply 138 60.32
dlr 131 50.30
oilseed 124 76.57
sugar 126 86.88
coffee 111 89.66
gnp 101 60.00

micro-avg (all) 80.01

means that our method can learn accurate classifiers even for relatively small cat-
egories (this is not the case of other machine learning techniques, e.g., decision
tree induction classifiers[30]).

Time Efficiency

The optimization algorithm run times on R10, for two values of the vocabulary
size, are reported in Table 9.5.

Those times were obtained on a 2 GHz Pentium 1 Gb RAM.

9.3 OHSUMED

The second data set we considered is OHSUMED (see Section 3.3). In particu-
lar, we took into account the collection consisting of the first 20,000 documents
from the 50,216 medical abstracts of the year 1991. The first 10,000 were used
for training and the second 10,000 for testing. The task considered was to assign
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Table 9.5: Optimization run times (in seconds).

Voc
Size earn acq money grain crude trade interest wheat ship corn TOT
30 1.20 1.30 2.70 0.20 0.10 3.90 0.50 0.04 2.00 0.10 12.40
600 57.00 82.01 71.86 10.00 13.02 61.87 29.20 28.10 18.90 40.04 412.00

Table 9.6: Experimental results on the 5 most frequent MeSH “diseases” cat-
egories of OHSUMED and micro-averaged performance over all 23 categories.
The feature scoring function isCHI and the vocabulary dimension is 690 (30
terms/category)

Category Optimization Validation
Name Size F + - Pr Re F BEP
Pathology 1799 58.27 77 74 41.47 55.92 47.62 48.70
Cardiovascular 1249 80.43 20 51 72.46 72.40 72.43 72.43
Immunologic 525 75.55 13 17 73.57 66.47 69.84 70.02
Neoplasms 1163 80.47 22 25 77.55 79.14 78.34 78.35
Digestive System 588 72.56 23 39 70.45 60.76 65.25 65.61

Total (all) 388 696
micro-avg (top 5) 60,60 65,99 63,18 63,30
micro-avg (all) 59.62 59.36 59.49 59.49

those documents to one or more categories of the 23 MeSHdiseases. For lack of
space, we report here only a brief summary of the experimental results.
The behavior of our system on OHSUMED confirms the one observed on the
REUTERS-21578 and can be summarized as follows: first, functions IG and
CHI perform in a similar way (the latter a little better), while OR performs worst;
second, reducing the vocabulary size has a positive effect on the performance;
indeed, the system achieves (see Table 9.6), with 30 terms per category selected
through the CHI function, the best micro-averaged F-measure equal to 59.49 (it is
63.18 over the five most populated categories); third, IG and CHI are substantially
invariant w.r.t. the n-gram length, while OR performs better with variable-length
n-grams; finally, there is no correlation between the size of the training set and the
accuracy of the induced classifier.
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9.4 FCSI

The last corpus we considered is the one we called FCSI. Unlike the previous ones,
it is not a benchmark corpus, but it is a collection of documents (car accidents
reports realized by police officers) belonging to an American insurance company,
MCM. The real necessity of the insurance company is that of distinguishing cases
in which a dossier represents a case of subrogation (that is, cases in which the
company requests to a third party the compensation for damages caused to one
of its own insured party) from those which does not. Therefore, in this particular
domain we individuated 2 disjoint categories of interest:

• SUBROGATIONYES (or subroYES)

• SUBROGATIONNO (or subroNO).

At present, MCM uses a classification system based on rules manually written by
insurance experts. The company is interested in our automatic learning system,
and therefore we can envisage an interesting proposal of an industrial application
for our research results.

For learning the classifiers, we selected, from the whole corpus, which con-
tains about 35,000 documents, the subset of documents already manually clas-
sified. The so created training corpus consisted of 2,962 documents. It was ran-
domly split into two parts with a percentage of 60% to form the training set (which
thus contains 1,778 documents), and the validation set (which contains 1,184 doc-
uments).

In the first phase of experimentation, we followed the flow already outlined for
the experiments on the other two corpora, for the purpose of generating the best
classifiers for both categories. Like the other two cases, we generated classifiers
for different values of the tuning parameters of our model (i.e., scoring function,
number of terms and n-gram length). The detailed results are summarized in
Table 9.7, Table 9.8 and Table 9.9. It can be noted that the best classifiers for
the two categories are obtained using different scoring functions and vocabulary
size. In particular, for category subroYES, the best classifier (F= 93.46) was
generated using a vocabulary reduced at 100 terms per category, evaluated through
the function OR (Table 9.9). This is likely due to the specificity of the underlying
domain, rich of terms particularly faithful to the subject of interest and to the
composition of the training set of this category for which a more selective scoring
function (which is OR) turns out to be more effective than others. Contrary to
this, category subroNO has a very different behavior; indeed, its best classifier
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Table 9.7: Performance values for the classifiers obtained considering ngrams
with length variable from 1 to 3 and the selection function CHI

Reduced SUBROG YES SUBROG NO
Vocabulary
(N. of terms) Pr Re F Pr Re F

20 76.02 94.76 84.36 80.82 37.03 50.79
40 75.48 95.47 84.31 84.68 63.60 72.64
60 75.33 95.61 84.27 87.27 78.87 82.86
80 75.76 95.61 84.54 88.94 80.75 84.65
100 75.76 95.61 84.54 88.94 80.75 84.65
120 75.76 95.61 84.54 88.94 80.75 84.65
160 77.26 95.75 85.52 86.42 83.89 85.14
300 77.12 95.47 85.32 89.09 82.01 85.40

Table 9.8: Performance values for the classifiers obtained considering ngrams
with length variable from 1 to 3 and the selection function IG

Reduced SUBROG YES SUBROG NO
Vocabulary
(N. of terms) Pr Re F Pr Re F

20 76.02 94.76 84.36 85.79 68.20 75.99
40 75.48 95.47 84.31 86.28 72.38 78.72
60 75.99 95.47 84.62 85.94 80.54 83.15
80 75.98 95.89 84.78 86.27 84.10 85.17
100 75.81 95.89 84.68 86.85 84.31 85.56
120 77.13 96.03 85.55 90.02 81.17 85.37
160 77.28 95.89 85.59 89.20 81.17 85.00
300 78.77 92.49 85.08 90.37 82.43 86.22

(F= 86.22) is generated from a vocabulary consisting of 300 terms per category,
selected through the function IG (Table 9.8). By using both the above classifiers
we obtain a micro-average F-measure equal to 91,00%.

To conclude this section, we remark that, also on the FCSI training corpus,
score functions IG and CHI show a similar behavior and that the reduction of the
vocabulary brings advantages to the effectiveness of the produced classifier.
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Table 9.9: Performance values for the classifiers obtained considering ngrams
with length variable from 1 to 3 and the selection function OR

Reduced SUBROG YES SUBROG NO
Vocabulary
(N. of terms) Pr Re F Pr Re F

40 98.79 81.02 89.03 87.88 12.13 21.32
100 96.27 87.82 91.85 86.41 18.62 30.64
200 93.73 93.20 93.46 92.31 27.62 42.52
400 89.74 94.19 91.91 86.73 35.56 50.44
600 88.44 93.20 90.76 82.11 37.45 51.44

9.5 Final Remarks

The reported experimental results show a number of enjoyable properties ofOLEX:

1. its capability to learn accurate classifiers even from small vocabulary sizes;
(see table 9.1);

2. the substantial independence of the accuracy of the induced classifiers from
the size of the training sets (see tables 9.4 and 9.6);

3. simplicity and readability of classifiers; it is worth noticing that, in the
case of R10,OLEX classifiers range from 1 rule (for categories “trade” and
“wheat”) to 18 (for “acq”) – see the number of positive terms in Table 9.3;
needless to say, small classifiers are highly desirable, as they are both faster
and more comprehensible (thus allowing possible human refinement of cat-
egories);

4. high accuracy in practical applications (see FCSI experimentation) and

5. high time efficiency.

Further,OLEX shows a uniform behavior on all data sets we considered, which is
a noticeable proof of robustness.
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Comparison and Discussion

In this chapter, we will concentrate on the following aspects: the expressiveness
of the rules learned by Olex, the way they are learned and their effectiveness.

10.1 Rule Expressiveness

What is original in our approach is the paradigm “one positive term, more negative
terms”. Intuitively, it seems that positive terms allow us to catch most of the right
documents (i.e., they guarantee high recall values), while negative ones help us not
to make “too many” mistakes (i.e., they improve the precision of positive terms),
thus providing a good discriminatory ability. There is a strict relation between the
expressiveness of such rules and the compactness of the induced classifiers.
To our knowledge, no other rule induction methods provide the same rule lan-
guage. For instance, RIPPER[17] uses the notion of “context” of a wordw, that
is, a set of other words that mustco-occurwith w within a documentd in order
for d be classified under a given category. Thus, RIPPER’s classification rules
are Horn clauses (i.e., rules with only positive literals in their bodies) of the form
c ← w1 ∈ d, · · · , wn ∈ d, wherewi is a word,1 ≤ i ≤ n. 1

Associative classifiers, such as CBA[39], CMAR [37] and MCAR[54], have re-
cently been proposed and represent a promising approach. Here, a classification
rule is an association ruleX → C, whereX is a set of attributes andC a class
label. Associative rule induction methods exploiting negative information are de-

1 Notice that RIPPER can learn rules having (positive) literals stating that a word occurs 0
times in a document. However, on sparse data these literals are not chosen very often by their
general purpose literal selection heuristics.

80
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scribed in[6] and[9]. In [6], a negative rule is eitherX → ¬C or¬X → C, where
¬X denotes a conjunction of negated attribute; it turns out that the antecedent of a
rule consists of eitherall negated orall positive attributes (i.e., positive and nega-
tive terms cannot occur at the same time). Contrary to this, the approach described
in [9] allows associative rules of the formX,¬Y → C, where¬Y is a (possibly
empty) conjunction of negated terms.

10.2 How Rules are Learned

Associative Classifier induction methods are essentially based on extensions of
the popular association rule mining algorithmapriori. For instance, in[6], a rule
is generated when the correlation coefficient between the itemsetX and the class
labelC is in absolute greater than the given correlation threshold. In particular,
if the correlation is positive (resp. negative) a positive (rep. negative) association
rule is generated.
Concerning “traditional” rule-based classifiers, two dominant techniques for rule
learning can be found in the literature: decision trees and “divide-and-conquer”
methods. Both rely on a two-stage process: first they induce an initial set of rules
(the rule growth phase) and then refine them by some optimization techniques
(the rule pruning phase). A practical implementation of decision-tree-based ap-
proach is C4.5, the archetype of this class of systems; after the decision tree has
been transformed into a rule set, C4.5 implements a pruning stage which requires
four steps to produce the final rule set - a rather complex and time consuming
task (in fact, C4.5 showed to be extremely inefficient in many example sets). A
more efficient decision-tree-based rule induction algorithm has recently been re-
ported in[32]. The ”divide-and-conquer” algorithms represent a more direct way
to generate rules. Practical implementations of this approach are RIPPER[17]

and Swap-1[56]. TRIPPER (Taxonomical RIPPER)[55] extends RIPPER using
Wordnet to guide rule induction.
The method proposed in this thesis does not fall in any of the aforementioned
schemes. Rather, it relies on a simple, yet effective, optimization algorithm for the
computation of discriminating terms. Unlike C4.5 and RIPPER, which requires
lengthy optimization processes (the former to discard, the latter to adjust the in-
duced rules), it is a single-step process which does not need any post-induction
optimization. The implementation, although at a prototypical level, showed to be
very efficient on large data sets.
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10.3 Rule Effectiveness

We preliminarily observe that, although many results are available in the literature
(e.g.[7; 32]), a direct comparison is often difficult, as different training sets and/or
experimental settings have been used. For this reason, we restrict our attention to
the results shown in[55; 9; 31], which refer to settings similar to ours. In[55],
RIPPER and TRIPPER are assessed on R10. By comparing those results with the
ones of Table 9.3 above, we observe that Olex generally outperforms RIPPER, and
is competitive with TRIPPER (even though this system makes use of prior knowl-
edge). In[9], the associative classifier NeW is tested on R90, where it achieves
a micro-averaged BEP of 81.8 (slightly higher than the 80.01 of Olex). In[31],
Joachims compares the performance on R90 of SVMs with four classifiers, obtain-
ing the following break-evens: 86.4 SVM, 82.3 k-NN, 79,9 Rocchio, 79,4 C4.5
(decision tree), 72.2 Bayes Classifiers. As we can see, our approach (BEP=80.01)
outperforms Rocchio, C4.5 and Bayes classifiers, but performs worse than SVMs
and kNN. We note that K-NN and SVM, albeit yielding better classification re-
sults, do not yield an interpretable model that allows a human being to understand
the classification result.
Concerning the OHSUMED test set, in[31] Joachims categorizes the same test col-
lection we used in our experimentation to compare the performance of SVMs with
four classifiers. According to the reported results,OLEX (BEP = 59.5) performs
better than Naive Bayes (57.0), Rocchio (56.6), k-NN (59.1) and C4.5 (50.0),
while it is less effective than SVMs (66.0).



Chapter 11

Conclusions

In this dissertation we proposed a novel approach for the automatic construction
of rule-based text classifiers. Here, a classifier is a set of classification rules whose
antecedent contains one positive literal and zero or more negative literals. Exper-
imental results are very encouraging. In summary, the proposed method enjoys a
number of desirable properties:

1. it is based on very simple and straightforward ideas and thus provides a
clear intuition of what learning is about;

2. classifiers are readable, easy for people to understand, contrary to most of
the other approaches that lack interpretability;

3. despite its simplicity, it can provide high performances in practical applica-
tions;

4. it operates efficiently;

5. it is accurate even for relatively small categories (i.e., it is not biased towards
majority classes);

6. it is robust, i.e., shows a similar behavior on both data sets we have experi-
mented.

In summary, the main contributions of the work are the following:

1. We have studied methods and systems for automatic text classification, an-
alyze their complexity and their exploitation for a critical comparison.
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2. We have designed a new machine learning method for generating logic rules
for text categorization.

3. We have implemented our approach in a prototype, theOLEX system.

4. We have performed a systematic experimentation and report experimental
results on a number of well-known benchmark text collections to assess the
impact of our approach and to compare it with respect to other systems.

5. We have integrated the support for learning process inOLEX Content Man-
agement Suite, within project PIA-Exeura-03-06.



Chapter 12

Future Work

In this dissertation we show howOLEX seems to be a very interesting learning
technique. Despite the method is simple and elegant, the system is both effec-
tive and efficient, as reported in experimental results. However, there is still room
for improvements. In particular, by allowing exactly one positive literal, the pro-
posed method suffers from being unable to express co-occurrence based feature
dependencies. This might represent a severe limitation to the rule language ex-
pressiveness. To overcome this restriction, we are currently involved at devising
an efficient and effective algorithm for generatinggeneralized rules, i.e., rules
supporting conjunctions of positive terms in their bodies.
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and Ross Wilkinson, editors,Proceedings of SIGIR-96, 19th ACM Interna-
tional Conference on Research and Development in Information Retrieval,
pages 307–315, Z̈urich, CH, 1996. ACM Press, New York, US. An extended
version appears as[17].

[17] William W. Cohen and Yoram Singer. Context-sensitive learning meth-
ods for text categorization.ACM Transactions on Information Systems,
17(2):141–173, 1999.

[18] Franca Debole and Fabrizio Sebastiani. An analysis of the relative hardness
of Reuters-21578 subsets.Journal of the American Society for Information
Science and Technology, 2004. Forthcoming.

[19] C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of ma-
chine learning databases, 1998.

[20] B.J. Field. Towards automatic indexing: automatic assignment of controlled-
language indexing and classification from free indexing.Journal of Docu-
mentation, 31(4):246–265, 1975.

[21] George Forman. An extensive empirical study of feature selection metrics
for text classification.Journal of Machine Learning Research, 3:1289–1305,
2003.

[22] Norbert Fuhr and Chris Buckley. A probabilistic learning approach for doc-
ument indexing.ACM Trans. Inf. Syst., 9(3):223–248, 1991.

[23] Norbert Fuhr, Stephan Hartmann, Gerhard Knorz, Gerhard Lustig, Michael
Schwantner, and Konstadinos Tzeras. AIR/X – a rule-based multistage
indexing system for large subject fields. In André Lichnerowicz, edi-
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