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1. INTRODUCTION79

Routing problems typically arise in several areas of distribution man-80

agement and logistics, and their practical significance is widely known.81

The common objective of such problems is addressed to satisfy the82

total demand localized over a logistical network, by constructing a83

set of minimum feasible routes (i.e. with minimum travelingtime)84

starting from the depot and ending into it, and servicing a subset of85

required links or nodes in the network. In the node-routing problems86

the demand (or service) occurs in the nodes, while in the arc-routing87

problems is assumed to be along the arcs (or edges).88

In the general routing problems (GRPs) both two features are89

merged in a single problem. GRP can be exploited to model real-90

life problems, like optimal routing for garbage collectionover a road91

network: this is a very practical impact problem, in which compa-92

nies are interested to optimize total travel time in vehicles employed93

for the collections of garbage bins. Many practical logistic prob-94

lems may be studied by resorting to the arc and node-routing linear95

programming models. This thesis has been outlined in the follow-96

ings sections: in the first section some essential scientificliterature97

(9) has been presented; in the second section a mathematicalfor-98

mulation of the Mixed Capacitated General Routing Problem (MC-99

GRP) has been described and critically analyzed. In the third section100

a branch and cut algorithm has been proposed and some general-101

ized polyhedral results have been discussed and presented.Finally102

the computational results and complexity of the proposed algorithm103

have been illustrated.104
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1.1 Literature Review105

The MCGRP (also know as CGRP-m in [7]) is a routing problem106

that aims to minimize the total transportation cost of a set of routes107

servicing all required link and nodes. Each route starts from depot108

and ends into it by collecting a subset of required links and nodes109

without exceeding its capacity. We consider an homogeneousfleet110

of vehicles, with same capacity for each of them. In the scientific111

literature not many papers are related to the MCGRP: moreover in112

most of the cases, authors take into account capacitated or mixed113

graph features separately. Otherwise the MCGRP includes many114

well-known routing problems only as special cases. Here we pro-115

pose a fast overview of the main results produced over this kind of116

problem until now. Orloff in [3] proposed the first algorithmfor117

GRP on symmetric graph: it provides an unified approach to node-118

routing and arc-routing problems, useful for making tractable effec-119

tive big-sized problem of this kind. The classical Traveling Sales-120

man Problem (TSP) and the Chinese Postman Problem (CPP) are121

shown to be special limiting cases of the General Routing Problem:122

this implies that GRP is also a NP-Hard problem. Another impor-123

tant first result for GRP refers to separation problems associated with124

connectivity andR-odd cut inequalities: these are solvable in poly-125

nomial time, by means of max-flow calculations and the Padberg &126

Rao procedure (see [11], [1]). This result can be easily extended127

to the MGRP ([9]): in the course of the algorithm additional in-128

equalities of the above mentioned classes are generated as they are129

checked as violated. When this is no longer possible, and theLP130

solution is still not integral, we invoke branch and bound. If the re-131

sulting integer solution is feasible for the MGRP, it is optimal. Oth-132

erwise, the procedure terminates with a tight lower bound, but no133

feasible MGRP solution. A heuristic procedure for the MCGRPwas134

subsequently proposed in [4], with a single vehicle and working-135

hours constraints: this algorithm is based on route first-cluster sec-136
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ond and its dual approach cluster first-partition second. Then Letch-137

ford in [16] showed how to transform the General Routing Problem138

(GRP) into a variant of the Graphical Travelling Salesman Prob-139

lem (GTSP), and found also some important valid inequalities for140

the GRP polyhedron. In [1] author remarks other valid inequalities141

for the GRP, and he also explains how in Mixed Chinese Postman142

Problem (MCCP) we can define the set of feasible solutions by some143

specific conditions. Besides, it is shown that we can use without dis-144

tinction two or one integer variable(s) for representing edge cross-145

ing. Between the most important contributions of last years, many146

work was done by Corberan, Sanchis et al.: in [6] they described a147

new family of facet-inducing inequalities for the GRP, which seem148

to be very useful for solving GRP and RPP instances. Further,149

they shown new classes of facets obtained by composition of facet-150

inducing inequalities. In [7] it was proposed an improved heuristic151

procedure than [4], proved by some computational results: in par-152

ticular they solved successfully until 50 nodes and 98 link instances153

of mixed-graph, also capacitated. However this approach does not154

take in account transforming mixed graph instance into an equiva-155

lent ACVRP one, and use any exact procedure on this for solving156

original problem. Meanwhile [9] and [6] point attention about GRP157

polyhedron, finding important theoretical results. In particular, they158

proposed a cutting-plane algorithm with new separation procedures159

for three class of inequalities: extensive computational experiments160

over various sets of instances was included. Similarly in [5] au-161

thors proposed for GRP a very efficient local-search, in which their162

computational experiments produced high-quality solutions within163

limited computation time. Some authors had computed some good164

bounds for this problem: i.e., in [8] a lower bound is computed with165

a cutting-plane procedure, also invoking a branch-and-bound pro-166

cedure. Instead upper-bound is computed exploiting a heuristic or167

meta-heuristic procedure.168
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1.2 Contributions.169

In this section, we summarize the main contributions of thisthesis.170

We propose a MIP formulation for the problem using three-index171

variables: it has advantages of a good mathematical tractability, but172

for ”big” instances it could be very time-consuming and not usable173

in practice. So this was only a start point for our work, that aimed174

us to relax some complicating constraints (including integer and so175

called connectivity inequalities).176

We implemented a GRASP-based heuristic (Greedy Randomized177

Adaptive Search Procedure) to obtain an upper-bound for theMC-178

GRP. Our approach uses a cluster first-route second for making first179

routes, which are trivially feasible by construction. A distance def-180

inition between cluster and required element helps us to execute a181

post-optimization procedure, recombing routes and avoiding having182

some of them exceeding capacity. The variation of the numberof183

vehiclem∗ offers the flexibility of constructing feasible solution into184

the variable neighborhood. Finally we propose a branch&cutalgo-185

rithm to optimality solve several random-generated instances of the186

MCGRP: this was performed by extending to the MCGRP classi-187

cal connection, co-circuit and balanced-set inequalities. An in-deep188

analysis of our algorithm’s performances is faced by studying the189

improving gap obtained for each class of violated constraints.190



Part I191

PROBLEM DESCRIPTION.192



2. MATHEMATICAL FORMULATIONS FOR THE MCGRP193

2.1 Definitions.194

Let be:195

• G = (V,E,A) a mixed graph defined over a set of verticesV, a196

set of edgesE and a set of arcsA;197

• C = V \ {vdepot} the customer set, wherevdepot represents the198

node depot;199

• CR⊆C the required-customer set of nodes, with non-negative200

demandsqi > 0;201

• AR ⊆ A the required-customer set of arcs, with non-negative202

demandsdi j > 0;203

• ER⊆ E the required-customer set of edges, with non-negative204

demandsdi j > 0;205

• R= CR∪ER∪AR the set of required nodes, arcs and edges. In206

the following we will refer to each element ofR as ”required207

element”.208

• K = {1, . . . ,m∗} the set of vehicle indexes, with some capacity209

Q.210

Definition 1: We define:m=
⌈

∑(i, j)∈ER∪AR
di j +∑i∈CR

qi

Q

⌉

a lower-bound211

for m∗ (m≤m∗).212
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Observation 1: Finding the minimum numberm∗ of vehicles to ser-213

vice all the required elements can be reached by optimality solving214

the following 1-Bin packing problem:215

min m∗ = ∑
k∈M

yk (2.1)

∑
i∈CR

zk
i + ∑

(i, j)∈ER∪AR

xk
i j ≤Q ·yk,∀k∈M (2.2)

∑
k∈M

xk
i j = 1, ∀(i, j) ∈ ER∪AR (2.3)

∑
k∈M

zk
i = 1,∀i ∈CR (2.4)

xk
i j ,z

k
i ∈ {0,1} (2.5)

1-Bin Packing is a well-know NP-Hard class problem, which can216

be solved exactly only for small instances, or alternatively exploit-217

ing (meta)heuristics. Note that|M| represents the maximum vehicle218

number, and considering that this value can’t be greater than cardi-219

nality of all required elements, we can assign|M| = |CR|+ |ER|+220

|AR|.221

Definition 2: Given a mixed-graphG= (V,E,A) and an integer per-
mutationσ : Iv→ N such thatσ(i) = j with i ∈ Iv and j ∈ N, and
whereIv is the set of indices mapping all the vertices inV, a route is
defined as:

ρ = {(vσ(1),vσ(2)), . . . ,(vσ(h−1),vσ(h))) :

vσ(1) = vσ(h) ≡ vdepot∧

(vσ(i),vσ( j)) ∈ E∪A ∀i, j ∈ Iv∧

vσ(i+1) = vσ(i) ∀i ∈ Iv\{1,h+1}}

In fig 2.1 we show an example, where for sake of simplicity we222

usedσ(i) = i, ∀i ∈ Iv223
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3

2 4

1 5 6

9 8 7

Fig. 2.1: Route exampleρ = {(1,2)(2,3)(3,4)(4,5)(5,6)(6,7)(7,1)};

2.1.1 Problem and objective.224

The MCGRP generalizes many vehicle routing problems that have225

been studied in the last forty years, for which hundreds of papers226

have been written, either to give exact or heuristic procedures for227

their resolution and bounds.228

These are specific characterizations of our problem, and we can229

cite as examples:230

• if A = /0 = ER we have the Capacitated Vehicle Routing Prob-231

lem(CVRP);232

• if A = /0 = CR we have the Capacitated Arc Routing Prob-233

lem(CARP);234

• if E = /0 = ER we have the Asymmetric Capacitated Vehicle235

Routing Problem(ACVRP);236

• if k = 1 we have the General Routing Problem(CVRP);237

The Mixed Capacitated General Routing Problem can be for-238

mally defined as follows.239
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Definition 3: LetG= (V,E,A) be a strongly connected mixed graph240

where:241

• vertex 1∈V represents the depot, and exists at least a customer242

ci;243

• each link(i, j)∈E∈A has an associated non-zero costci j (note244

thatcii = 0 and∀(i, j) /∈ E ∈ A ci j = ∞);245

• it exists a customer subsetCR such that each vertexi ∈CR has246

got a positive demand 0< qi ≤Q;247

• it exists a customer subsetER such that each edgee= (i, j) ∈248

ER has got a positive demand 0< qe≤Q;249

• it exists a customer subsetAR such that each vertexa = (i, j) ∈250

AR has got a positive demand 0< qa≤Q;251

• the sum of all demands∑i∈CR
qi + ∑(i, j)∈ER∪ER

qi j does not ex-252

ceedQ, whereQ is fixed and constant.253

The objective is to findm toursQ−capacitated inG such that:254

• each tour passes through node 1;255

• all demandsqi,qe,qa are fully satisfied (i.e. no residual de-256

mands remains over a required component);257

• each customeri ∈CR, a ∈ A ande∈ E are served by exactly258

one of them tour;259

• the sum of all demands∑i∈CR
qi + ∑(i, j)∈ER∪ER

qi j does not ex-260

ceedQ;261

• the sum of all costs is optimal (i.e. minimum of sum the costs262

over the links into activated routes).263
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2.1.2 Cutsets.264

We define cutsets∀S⊂V:265

• A+(S) = {(i, j) ∈ A, ∀i ∈ S, j ∈V \S}= A(S: V \S)266

• A−(S) = {( j, i) ∈ A, ∀ j ∈V \S, i ∈ S}= A(V \S: S)267

• E+(S) = {(i, j) ∈ E, ∀i ∈ S, j ∈V \S}= E(S: V \S)268

• E−(S) = {( j, i) ∈ E, ∀ j ∈V \S, i ∈ S}= E(V \S: S)269

• A+
R(S) = {(i, j) ∈ AR, ∀i ∈ S, j ∈V \S}= AR(S: V \S)270

• A−R(S) = {( j, i) ∈ AR, ∀ j ∈V \S, i ∈ S}= AR(V \S: S)271

• E+
R (S) = {(i, j) ∈ ER, ∀i ∈ S, j ∈V \S}= ER(S: V \S)272

• E−R (S) = {( j, i) ∈ ER, ∀ j ∈V \S, i ∈ S}= ER(V \S: S)273

• E(S) = E+(S)∪E−(S)274

• A(S) = A+(S)∪A−(S)275

• ER(S) = E+
R (S)∪E−R (S)276

• AR(S) = A+
R(S)∪A−R(S)277

• SR = S∩CR278

• γR(S) = ER(S)∪AR(S)∪SR279

2.2 Variables.280

We will use three-index variables, where superscript will always re-281

fer to k-route and subscript to(i, j) link (or i for a node).282
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2.2.1 Double-Edge variables.283

This representation requires a very large number of variable: if we284

got a very large majority of edges (i.e.|E| ≫ |A|) this could lead to285

very big models, whose could be computationally inefficient.286

Service-link variable:xk
i j287

We define the binary variable∀k = 1, . . . ,m:

xk
i j =

{
1 if k-vehicle serves link(i, j) ∈ E∪A ;
0 elsewhere.

Service-link variable:yk
i j288

We define the binary variable∀k = 1, . . . ,m:

yk
i j =

{
1 if k-vehicle crosses link(i, j) ∈ E∪A ;
0 elsewhere.

Service-node variable:zk
i289

We define the binary variable∀k = 1, . . . ,m:

zk
i j =

{
1 if k-vehicle serves nodei ∈CR ;
0 elsewhere.

The number of total variables is here 2· |E|+ |A|+ |V |, because290

we distinguish between straight (i.e. fromi node to j) and reverse291

crossings (i.e. fromj node toi) over every edges. In what following292

we will describe main conditions for our problem.293

2.2.2 Parity and balanced-se conditions294

Definition 4: Given a mixed graphG = (V,E,A), we say a node295

v ∈ V is even iff has got a even number of incident links (degree),296
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otherwise node is odd. Similarly we define a node beingR-even297

(resp. R-odd) iff has got a even (resp. odd) number of incident re-298

quired links. If degree is equal to 0, then the node is conventionally299

even.300

Definition 5: Given a mixed graphG = (V,E,A), a node setS⊆
V, an integer indexk ∈ K and an integer variableξ : L(S)→ N∪

{0}, with L(S) = E(S)∪A+(S)∪A−(S), we sayS is set-balanced iff
satisfy the following:

ξ (A+(S))+ξ (A−(S))+ξ (E(S))≤ uS

uS = |A+(S)|+ |A−(S)|+E(S), ∀S⊂V

That is, if we consider contribution of every activated traveling-301

variable (first member of inequality ) with respect to every possi-302

ble link of the same set (second member), we have that first sumis303

greater or equal touS, thenS is set-balanced (and vice-versa).304

Here we report two simple examples for clarifying these two con-305

ditions.306

4

1 3

2

Fig. 2.2: Mixed-graph for parity and balanced-set examples
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v parity
1 R-odd, even
2 R-even, odd
3 R-odd, even
4 R-even, odd

Tab. 2.1: Parity for Fig. 2.2.2 nodes

4

1 3

2

xk
1,4 = 1

yk
1,2 = 1

Fig. 2.3: Balanced-set example, wherexk
1,4 = 1 andyk

1,2 = 1.

In represented graph in fig. 2.2.2 we’ve got situation represented307

in Table 2.1.308

In mixed-graph represented in fig. 2.2.2 the balanced-set con-309

dition depends on activated variables: in fig. 2.3 is balanced,310

meanwhile in fig. 2.4 is unbalanced.311

2.3 Constraints.312

Here we will briefly describe the constraints for our problem. We313

need to minimize a cost function computed over all used routes, with314

the following requirements:315

1. every service component must be served only once (assign-316

ment);317

2. total quantity carried by every vehicle cant excess fixed capac-318

ity of that vehicle (knapsack:);319
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4

1 3

2

xk
1,2 = 1

yk
1,3 = 1

Fig. 2.4: Unbalanced-set example, wherexk
1,2 = 1 andyk

1,3 = 1.

3. we must assure parity for every node of every route (parity:) ;320

4. we must assure balancing for every node of every route (balanced-321

set:);322

5. we must assure every route is connected (connection:);323

We can express these constraints in mathematical form as fol-324

lows.325

2.3.1 Assignment326

m

∑
k=1

(xk
i j +xk

ji) = 1, ∀(i, j) ∈ ER⊆ E (2.6)

m

∑
k=1

xk
i j = 1, ∀(i, j) ∈ AR⊆ E (2.7)

m

∑
k=1

zk
i = 1, ∀(i, j) ∈CR⊆V (2.8)

Here we imposed three kind of constraints for each required edge327

(resp. arc and node), that is sum of these over allm routes must be328
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equal to 1, so every required elements must be served only a time:329

the number of trips is supposed constant and equal to lower-bound330

given in 1.331

2.3.2 Knapsack332

∑
(i, j)∈ER

di j (x
k
i j +xk

ji)+ ∑
(i, j)∈AR

di j x
k
i j + ∑

i∈CR

diz
k
i ≤Q, ∀k∈ K

(2.9)

These constraints impose for each route that fixed capacityQ of333

every vehicle cant be exceeded for every route we consider.334

2.3.3 Parity & balanced-set335

We represent parity and balanced-set condition as a single group of336

constraints, where in first member we count the total number of ac-337

tivated arcs and in second member edges contribution. That assures338

that in339

∑
∀ j: (i, j)∈A+

R(i)

xk
i j + ∑

∀ j: (i, j)∈A+(i)

yk
i j− ∑

∀ j: ( j,i)∈A−R(i)

xk
ji− ∑
∀ j: ( j,i)∈A−(i)

yk
ji =

∑
∀ j: ( j,i)∈E−R (i)

xk
ji + ∑
∀ j: ( j,i)∈E−(i)

yk
ji− ∑
∀ j: (i, j)∈E+

R (i)

xk
i j− ∑

∀ j: (i, j)∈E+(i)

yk
i j ,

∀i ∈V,∀k∈ K

2.3.4 Connection340

These constraints are used to assuring our tours are connected, that341

is every tour starts from depot and returns into it after servicing at342

least an element of the network. This can be expressed rewriting343

conveniently subtour elimination constraints for a connected graph344

G = (C\{1},E):345
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∑
∀ j:(i, j)∈E(S)

xi j ≥ 2,∀S⊆V

whereE(S) = {(i, j) ∈ E : i ∈ S, j ∈V \S}.346

We now must extend this inequality to everyk-route and taking347

into account both service and traversing variables:348

∑
∀ j:(i, j)∈E+

R (S)

xk
i j + ∑

∀ j:( j,i)∈E−R (S)

xk
ji + ∑
∀ j:(i, j)∈A+

R(S)

xk
i j + ∑

∀ j:( j,i)∈A−R(S)

xk
ji+

∑
∀ j:(i, j)∈E(S)

yk
i j + ∑

∀ j:(i, j)∈A(S)

yk
i j ≥ 2 ·η, ∀S⊆C, ∀ f ∈ γR(S), ∀k∈ K

where

η =







xk
i j +xk

ji , if (i, j) ∈ ER

xk
i j , if (i, j) ∈ AR

zk
i , if i ∈CR∩S

We introduced this term for limiting subtour elimination con-349

straint to only activated service variable, or to assure every route350

serves at least a required element. This is a critical class of con-351

straints because number of necessary inequality is equal to352

K ·
|C|

∑
k=2

(
|C|
k

)

2.3.5 Logical353

Our constraints overview is completed writing further inequality that354

fix priority betweenzk
i andxk

i , yk
i j variables, that is:355

zk
i ≤ ∑

j∈V:(i, j)∈E+
R (i)

xk
i j + ∑

j∈V:(i, j)∈A+
R(i)

xk
i j + ∑

j∈V:(i, j)∈E+(i)

yk
i j+
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∑
j∈V:(i, j)∈A+(i)

yk
i j∀k∈ K, ∀i ∈CR

This means that if we pass with routel for servicing a nodeh356

(zk
i = 1), then we need having al least a exiting variable from that357

node.358

2.4 Objective Function.359

With the above parameters and variables, a capacitated general rout-360

ing problem on mixed graph has the objective of minimize the total361

cost (i.e. traveling distance) of the vehicles for each usedroute.362

We can express this in mathematical form as:

min z∗ = ∑
k∈K

∑
(i, j)∈ER

ci j (x
k
i j +xk

ji)+ ∑
k∈K

∑
(i, j)∈AR

ci j x
k
i j +

∑
k∈K

∑
(i, j)∈E

ci j (y
k
i j +yk

ji)+ ∑
k∈K

∑
(i, j)∈A

ci j y
k
i j

2.5 LP Models for the MCGRP.363

Here we present the mathematical formulation of our problem(”com-364

plete” model), obtained combining all the constraints we’ve seen.365

2.5.1 Double-Edge variables.366

min z∗ = ∑
k∈K

∑
(i, j)∈ER

ci j (x
k
i j +xk

ji)+ ∑
k∈K

∑
(i, j)∈AR

ci j x
k
i j +

∑
k∈K

∑
(i, j)∈E

ci j (y
k
i j +yk

ji)+ ∑
k∈K

∑
(i, j)∈A

ci j y
k
i j (2.10)

m

∑
k=1

(xk
i j +xk

ji) = 1, ∀(i, j) ∈ ER⊆ E (2.11)
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m

∑
k=1

xk
i j = 1, ∀(i, j) ∈ AR⊆ A (2.12)

m

∑
k=1

zk
i = 1, ∀i ∈CR (2.13)

∑
(i, j)∈ER

di j (x
k
i j +xk

ji)+ ∑
(i, j)∈AR

di j x
k
i j + ∑

i∈CR

diz
k
i ≤Q, ∀k∈ K

(2.14)

zk
i ≤ ∑

j∈V:(i, j)∈E+
R (i)

xk
i j + ∑

j∈V:(i, j)∈A+
R(i)

xk
i j+

∑
j∈V:(i, j)∈E+(i)

yk
i j + ∑

j∈V:(i, j)∈A+(i)

yk
i j ,

∀i ∈CR, ∀k∈ K (2.15)

∑
∀ j: (i, j)∈A+

R(i)

xk
i j + ∑

∀ j: (i, j)∈A+(i)

yk
i j − ∑

∀ j: ( j,i)∈A−R(i)

xk
ji − ∑

∀ j: ( j,i)∈A−(i)

yk
ji =

∑
∀ j: ( j,i)∈E−R (i)

xk
ji + ∑

∀ j: ( j,i)∈E−(i)

yk
ji − ∑

∀ j: (i, j)∈E+
R (i)

xk
i j − ∑

∀ j: (i, j)∈E+(i)

yk
i j ,

∀i ∈V,∀k∈ K
(2.16)

∑
∀ j:(i, j)∈E+

R (S)

xk
i j + ∑

∀ j:( j,i)∈E−R (S)

xk
ji + ∑

∀ j:(i, j)∈A+
R(S)

xk
i j +

∑
∀ j:( j,i)∈A−R(S)

xk
ji + ∑

∀ j:(i, j)∈E(S)

yk
i j + ∑

∀ j:(i, j)∈A(S)

yk
i j ≥ 2 ·η,

∀S⊆C, ∀ f ∈ γR(S), ∀k∈ K (2.17)

xk
i j ∈ {0,1}, ∀(i, j) ∈ ER∪AR, ∀k∈ K (2.18)

yk
i j ∈ {0,1}, ∀(i, j) ∈ E∪A, ∀k∈ K (2.19)

zk
i ∈ {0,1}, ∀i ∈CR, ∀k∈ K (2.20)
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This complete formulation express the problem of minimizing367

the costs 2.10 over all the activated binary variables (i.e.route vari-368

ables), under the constraints of assignment (2.11 - 2.13), knapsack369

(2.14), priority (2.15), parity and balanced-set (2.16) and connection370

or subtour-elimination 2.17.371

In other terms, we need to optimize objective function 2.10,over372

the constraints that every required edge 2.11 and arc 2.12 isserved373

once, and analogous condition is valid for required nodes 2.13. 2.14374

is used for saying, for each vehicle we use the knapsack constraint,375

whereas 2.15 serves for binding between themselves link andnode376

variables (so called priority constraints).377

This last constraint can be more clear thinking i.e. if we pass with378

first vehicleh time fromi node, then we need to go out fromi at least379

h time during route building. 2.15 are parity and balanced setcon-380

straints, that assures we want to avoid a route pass through anode381

without exiting from it: in particular parity assures, roughly speak-382

ing, that for each node the number of incoming/outcoming links is383

always odd (i.e. 2,4,6, ... times); whereas balanced set assures for384

each node there is, at least, the same number of entering and exiting385

links. 2.17 are connection inequalities written for a mixedgraph,386

where we defined quantityη as said in 2.3.4.387

This formulation has got|V|+2· |E|+ |A| variables and a number
of constraints equal to:

|ER|+ |AR|+ |CR|+ |K| · (1+ |CR|+ |V|+∑k = 2. . . |C|

(
|C|
k

)

)

2.6 Short preliminary computational experiments.388

In this section we will show some preliminary experiments wehave389

done for validating and testing our model with double-edge vari-390

ables. We implemented our model using CPLEX solver and Java391

1.6, and ran our test with Intel DuoT5750 CPU with 3 GB of RAM.392
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2.6.1 Instances.393

Here we show the first computational experiments with randommixed394

graph instances varying from 3 to 13 nodes. We assigned capac-395

ity Q = 100 and varied demands which are distributed uniformly in396

[0, Q
4 ], meanwhile costs for every link are uniformly distributed in397

[CMIN,CMAX] (CMIN = 1,CMAX = 100). Nevertheless solving com-398

plete formulation CPLEX ends with out-of-memory error, making399

impossible obtaining an exact solution with complete formulation400

with n≥ 10 nodes instances.401

We specify that for skip out problem aimed in section 2.1 with402

lower-bound, we avoided taking demands value too ”near” toQ:403

it was seen experimentally that reducing this range aims to solve404

bigger instances of the same kind.405

For sake of simplicity, we now assumedepot≡ 1, while other406

nodes are from 2 to|N|: we used a randomized procedure for gener-407

ating a mixed graphG for running tests, as we describe in follows.408

Our procedure could be articulate in two steps:409

• generate randomized adjacency matrixm= [ci j ]i, j=1,...,|V|410

• usem for creating a new mixed-graphG with uniformly dis-411

tributed demands;412

In first step we need to give a value for the sizen of the matrix; this413

number will be used as starting input variable for our procedure.414

Next for eachi, j s.t. 1≤ i < j ≤ n, we assigned a random value415

to every costci j following a normal distribution between[1,100],416

considering a real range. Edges and arcs will be equally distributed417

in graph (i.e. 50% ) and, we considered opportunity of havingat418

least:419

• an edge(1,k), otherwise420

• two arcs(1,k),(h,1)421
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For the required components, we generate each time a random422

subset of service arcs, edges and nodes; the fixed capacity iscom-423

puted asQ= DMAX
2 +2·DMAX, whereDMAX is the maximum feasible424

demand value, fixed a priori (i.e.DMAX = 18).425

Finally we produce an input file structured as follows: in row426

1,2,3,4 we report depot index node, capacity, number of nodes and427

number of edges. In nextr +4 rows (r = 1, . . . , |E|) we represent an428

edge as follows:429

i j cij dij di dj430

431

with obvious meaning of every number, i.e. :432

2 3 27.0 12 7 0433

434

represents edge(2,3) with ci j = 27, di j = 12, d2 = 7, d3 = 0.435

Similarly we represent first the number of arcs and then, in next436

r + |E|+4 rows (r = 1, · · · , |A|) we report an arc in the same way as437

edge.438

So the input file structure can be summarize as:439

1440

Q441

|V|442

|E|443

i j cij dij di dj444

...445

|A|446

i j cij dij di dj447

448

As we said, we consider randomly generated instances from 3 to449

13 nodes, and some other instance we’ve used for a firstly compu-450

tational test. We represent every mixed graph graphically,showing451
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routes over them only for instances. For the sake of brevity,we will452

omit draw other routes for avoiding confusion and not reallysignifi-453

cant representations: nevertheless we report the generated routesρk454

for each instance that was possible to solve for this particular set of455

randomly generated ones.456

Results are summarized in Table 2.2, representing in every col-457

umn the following values:458

• id (instance identifier), here is equal to|V|;459

• Q, the capacity of every vehicle;460

• K, the lower-bound computed as we said in 1;461

• D, the sum of all demands;462

• |V|, the number of nodes;463

• |E|, the number of edges;464

• |A|, the number of arcs;465

• |CR|, the number of required-nodes;466

• |ER|, the number of required-edges;467

• |AR|, the number of required-arcs;468

2.6.2 Solutions.469

In table 2.3 we reported solution we’ve obtained, representing for470

every instance needed solving time (in ms)T , z∗ value when avail-471

able, and when not we report OOF for Out Of Memory error .472

Every mixed-graph is showed frome3 to e11 in following figs.473

. . . 2.21 - 2.6.2, in which we show for each link(i, j) coupleci j ,di j .474

Services in route are highlighted in bold on links, and are slanted475

over required nodes.476
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Tab. 2.2: instances Features.

id Q K D |V| |E| |A| |CR| |ER| |AR|
e3 100,00 1 40 3 2 1 1 2 1
e4 100,00 1 31 4 4 2 0 4 2
e5 100,00 2 112 5 7 3 3 7 3
e6 100,00 2 155 6 10 5 4 10 5
e7 100,00 2 129 7 13 8 1 13 8
e8 100,00 3 253 8 13 11 6 17 11
e9 100,00 3 221 9 22 14 3 22 14
e10 100,00 4 336 10 27 18 0 27 18
e11 100,00 4 335 11 32 23 5 32 23
e12 100,00 5 482 12 38 28 7 38 28
e13 100,00 6 588 13 45 33 10 45 33

For each route, we represented in bold the required arcs and edges477

and in italic required node.478
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Tab. 2.3: instances Solutions

id T[ms] Z*
e3 141,00 131
e4 46,00 422
e5 156,00 461
e6 641,00 860
e7 657,00 1284
e8 6031,00 1618
e9 10031,00 1731
e10 9326296,00 2481
e11 329078,00 2796
e12 OOM -
e13 OOM -

instancee3479

1 2

3

Instancee3480

ρ = (1,3), (3,2), (2,1), cρ = 131481

482

instancee4483

1 2

3 4

Instancee4484

ρ = (1,4), (4,2), (2,1), (1,4),(4,3), (3,2), (2,4), (4,3),(3,1), cρ = 422485

486
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instancee5487

1 2 3

4 5

Instancee5488

ρ1 = (1,4), (4,5), (5,3), (3,1),cρ1 = 150489

1 2 3

4 5

Instancee5490

ρ2 = (1,5), (5,2), (2,4), (4,3), (3,2), (2,1), cρ2 = 311491

492

instancee6493

1 2 3

4 5 6

Instancee6494

ρ1 = (1,3), (3,5), (5,2), (2,4), (4,3), (3,2), (2,4), (4,5), (5,2), (2,6),495

(6,3), (3,2),(2,1),496

497
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1 2 3

4 5 6

Instancee6498

ρ2 = (1,6), (6,4), (4,1), (1,5), (5,6), (6,1),499

500

instancee7501

1 2 3

4 5 6

7

Instancee7502

503

ρ1 = (1,3), (3,6), (6,5), (5,3), (3,4), (4,5), (5,7), (7,6), (6,1), (1,5),504

(5,2), (2,6), (6,4), (4,1)505
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1 2 3

4 5 6

7

Instancee7506

ρ2 = (1,7), (7,2), (2,4), (4,7), (7,3), (3,2),(2,1)507

508

instancee8509

1 2

3 4 5

6 7 8 (2.21)

Instancee8510

511

ρ1 = (1,6),(6,3), (3,7), (7,2), (2,4), (4,5), (5,3), (3,2), (2,1)512



2. Mathematical Formulations For The MCGRP 35

1 2

3 4 5

6 7 8 (2.22)

Instancee8513

514

ρ2 = (1,6), (6,8), (8,3),(3,7),(7,1), (1,8), (8,4), (4,7),(7,5),(5,8),
(8,4),(4,1),

1 2

3 4 5

6 7 8 (2.23)

Instancee8515

516

ρ3 = (1,5), (5,2), (2,8),(8,7),(7,6), (6,5), (5,2), (2,6),(6,4),(4,3),517

(3,1)518

1 2

3 4 5

6 7 8 9
(2.24)
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Instancee9519

ρ1 = (1,4), (4,3), (3,1), (1,5),(5,2), (2,4), (4,5), (5,7), (7,8),(8,4),520

(4,7), (7,3), (3,2), (2,1)521

ρ2 = (1,9), (9,7), (7,6), (6,4),(4,9), (9,2), (2,8), (8,5), (5,3),(3,8),522

(8,1)523

ρ2 = (1,7), (7,2), (2,6), (6,5),(5,9), (9,6), (6,8), (8,9), (9,3),(3,6),524

(6,1)525

1 2

3 4 5

6 7 8 9

10

(2.25)

Instancee10526

ρ1 = (1,5), (5,6), (6,3),(3,9), (9,2), (2,4), (4,1), (1,7), (1,7), (7,5),527

(5,6), (6,4), (4,5), (5,8), (8,4),(4,1)528

529

ρ2 = (1,8), (8,3), (3,2),(2,6), (6,10), (10,7), (7,9), (9,10), (10,8),530

(8,7), (7,2), (2,1)531

532

ρ3 = (1,10), (10,3), (3,5),(5,2), (2,10), (10,4), (4,3), (3,7), (7,6),533

(6,1)534

535

ρ4 = (1,9), (9,6), (6,8),(8,9), (9,5), (5,10), (10,7), (7,4), (4,9),
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(2,8), (8,3) (3,1)

1 2

3 4 5

6 7 8 9

10 11

Instancee11536



Part II537

UPPER-BOUNDS FOR THE MCGRP.538



3. OBTAINING A UPPER-BOUND FOR THE MCGRP.539

3.1 Heuristic Algorithm540

This algorithm is based over a GRASP (Greedy Randomized Adap-541

tive Search Procedure) approach: in every iteration, it builds up a542

first feasible solution and then improve it by a local search proce-543

dure.544

It uses ”cluster-first, route-second” approach: in the first phase
we try to build a fixed number (m) of clusterCh, where each one
has a certain number of required elements. Matching to each one of
them a total demand:

Dh = ∑
(i∈CR∩Ch

di + ∑
((i, j)∈ER∪AR∩Ch

di j , ∀h = 1, . . . , |C|

we must assure that everyDh has the minimum gap with respect545

to Q. We considered two possible strategies for satisfying thisre-546

quirement:547

Str. 1 Select randomly a seed (required element) for the firstcluster548

C1, and insert ”nearest” elementsr ∈ R to the one already be-549

longing toC1, until there are no more residual links or node550

with compatible demand: repeat same procedure for others551

cluster, until you’ve finished.552

Str. 2 Letm be the number of routes, and define a fictitious capacity553

¯Q( j) = j
m ·Q, ∀ j = 1, . . . , |X|: now fill cluster j (i.e. there’s554

at least another compatible element) considering new capacity555

¯Q( j). In second phase, consider every residual element and556

insert it into a available cluster, considering capacityQ.557
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Both of them require a ”distance” measurement:

d : Cj× t ∈Cj → R, ∀Cj ∈ X, ∀t ∈Cj

that we will specify later in this thesis.558

For choosing the best strategy for our purposes, we validated559

them solving the following model.560

min
m

∑
k=1
|λ k−

m

∑
s=1,s6=k

λ s|

(3.1)

s.t.

∑
k∈K

xk
i j = 1,∀(i, j) ∈ AR

(3.2)

∑
k∈K

xk
i j +xk

ji = 1,∀(i, j) ∈ ER

(3.3)

∑
k∈K

zk
i = 1, ∀i ∈CR

(3.4)

∑
i∈AR

dk
i j ·x

k
i j + ∑

i∈ER

dk
i j · (x

k
i j +xk

ji)+ ∑
i∈CR

qk
i ·z

k
i ≤Q, ∀k∈ K

(3.5)

xk
i j ,z

k
i ∈ {0,1}, λ k ∈ R+, ∀k,∀i ∈CR,∀(i, j) ∈ ER∪AR

(3.6)

This formulation aims to minimize the margin between every561

cluster lambda and everyone else: in our model that quantityis given562

by all k-required elements and capacityQ ratio. We then compare563

the cluster obtained solving this model with the ones obtained by our564

heuristic procedure, and results seems to confirm his general valid-565

ity. Obviously we must consider that we ignored the fact thattotal566
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cost for each cluster could be very high and so very far from the op-567

timum, interesting only to avoiding cluster with demands too much568

great with respect to others.569

For easier solving of model (avoiding absolute value), we intro-
duced constraints:

λ k−
m

∑
s=1

λ s = αk−β k, ∀k∈ K

αk,β k≥ 0, ∀k∈ K

and replace objective function 3.1 with:

min ∑
k∈K

αk +β k

Solving this model for the test-instances seen in previous chapter,570

it was seen experimentally that the second strategy works better than571

the first: in fact while the first approach is more fast and produces572

variable number of cluster (at leastm), the second aims to produce a573

fixed number of clusterm with uniformly distributed demands over574

all clusters.575

For the instance 8e, we have a total demandD = 253 so allocated:576

• D(1) = 96,D(2) = 98,D(3) = 59 for strategy 1;577

• D(1) = 87,D(2) = 66,D(3) = 100 for strategy 2;578

while solving exact model produces:579

• λ1 = 0.84,λ2 = 0.96,λ3 = 0.73580

If we measure:

S(i) =
100· |Q ·λi−D(i)|

Q ·λi

for i = 1,2,3 and compute average demand for each strategy, we
obtain:

(̄S) = (14+2+14)/3= 10%
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for first strategy and

(̄S) = (3.57+31+37)/3= 23.84%

for the second.581

3.2 Metrics: distance definition582

A distance over a setX is a function583

δ : X×X −→ R

which satisfy following properties:584

1. δ (x,y)≥ 0585

2. δ (x,y) = 0 ⇐⇒ x = y586

3. δ (x,y) = δ (y,x)587

4. δ (x,y)≤ δ (x,z)+δ (z,y), ∀x,y,z∈ X588

Let G′ be an oriented graph obtained from original mixed oneG589

replacing all edges with two opposite arcs and same cost: we build590

off-line a real matrix|R| × |R| (|R| = |CR|+ |ER|+ |AR|), in which591

we compute ”mean distances”dih, i,h∈ X ≡ R as follows. Now let592

δ (R1,R2) be the shortest path cost between required element couple593

(R1,R2). We distinguish six cases:594

• δ (A,B) = dAB+dBA
2 , A, B∈CR595

• δ (AB,C) = dBC+dCA
2 , AB∈ AR, B∈CR596

• δ (AB,CD) = dBC+dDA
2 , AB, CD∈ AR597

• δ (AB,C) = dBC+dCA+dAC+dCB
4 , AB∈ ER, C∈CR598

• δ (AB,CD) = dBC+dCD+dDA
3 , AB∈ AR, CD∈ ER599
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• δ (AB,CD) = dBC+dDA
2 + dCB+dAD

2 + dBD+dCA
2 + dDB+dAC

2 , AB,CD∈600

ER601

Finally we define distance between required elementh∈ Rand a
clusterCj as:

δ (h,Cj) =
1
|Cj |
·
|Cj |

∑
i=1

dih, ∀h∈ R,∀Cj ∈ X

A B

Case 1602

603

A B

C

Case 2604

605

A B

D C

Case 3606

607

A B

C
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Case 4608

609

A B

D C

Case 5610

611

A B

D C

Case 6612

613

3.3 Routing614

Routing is based over the computing of agreedyfunctiong(t):

g(t) : (t ∈Cj)→ R, ∀Cj ∈ X

where his value is equal to the minimum insertion cost oft in the615

current route, called ”incremental cost”. We’ve chosen to exploit the616

simplest (fastest) way for building a route, that is:617

• removing minimum cost path between two consecutive nodes618

(i.e. using notation introduced in 2 (vIP ≡ vσ(i),vHP≡ vσ(i+1),619

where IP 6= HP, IP,HP ∈ V stands for respectively insertion620

point and hook-up point)621

• addingπIP,t andπt,HP (minimum paths betweenh,t andt,k).622
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Since we use pre-computed minimum cost paths of the mixed-623

graph, we’re sure that the building route will have a (local)mini-624

mum cost. When we build a new route, initially we start with de-625

generate routeρk = {depot}, and after first insertion oft (either626

node or link) we will obtain:ρk = {path(depot,t), path(t,depot)}.627

In general after thek−th insertion (k > 1) k−route will be: ρk =628

{. . . path(IP,t), path(t,HP) . . .} (in fig. above we showed at link629

insertion).630

3.4 Algorithm631

In what follows we reported the algorithmic outlines of the heuristic.632

Algorithm 1 GRASP

Require: Mixed graphG, required elements set̄R=CR∪ER∪AR, objective func-
tion f , greedy functiong, parameterα ∈ [0,1], route setx = {. . . rk . . .}

Ensure: A feasible solution ¯x for MCGRP
f (x̄) = ∞
for it = 1 tomaxiterdo

x = /0
construct(G, R̄,g,α)
local(G, R̄, f ,x)
if f (x) < f (x̄) then

x̄ = x;
f (x̄) = f (x);

end if
end for
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Algorithm 2 construct

Require: G, R̄= CR∪ER∪AR, g, α ∈ [0,1]
Ensure: A feasible solution ¯x for MCGRP

X← generateClusters;
k = 0
while X 6= /0 do

Cj ← f irst(X)
rk = {depot}
while Cj 6= /0 do

t← f irst(Cj)
for all t ∈Cj do

compute(g(t))
end for
gmin = min{g(t) : t ∈Cj}
gmax= max{g(t) : t ∈Cj}
RCL= {s∈Cj : g(s) ∈ [g,g+α(gmax−gmin)]}, α ∈ [0,1]
let s̃be a random element fromRCLset
rk← update(rk, s̃)
Cj ←Cj \{s̃}

end while
X← X \{Cj}

end while

Algorithm 3 local

Require: G, R̄, f , x
Ensure: A feasible solution ¯x for MCGRP

while ¬ localOpt(x) do
x
′
= neightboor(x) such thatf (x

′
) < f (x)

x = x
′

f (x) f (x
′
)

end while

This was implemented in Java 1.6 and used for upper-bound com-633

puting on all the instances.634



4. SOLVING THE MCGRP-LB.635



Part III636

A BRANCH-AND-CUT ALGORITHM FOR THE637

MCGRP.638
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Our branch-and-cut algorithm is based over the checking of vi-639

olated cut constraints, and subsequent add to model seen in??. In640

what following we introduce three kind of inequalities for our prob-641

lem, explaining their meaning and including a cutting-plane algo-642

rithm for finding and checking them.643
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5.1 Connectivity Inequalities.645

Here we consider the complicating constraints that expressconnec-646

tion with depot (2.17):647

∑
(i, j)∈ER(S)

(xk
i j +xk

ji )+ ∑
(i, j)∈A+

R(S)

xk
i j + ∑

( j,i)∈A−R(S)

xk
ji + ∑

(i, j)∈E(S)

(yk
i j +yk

ji)+

+ ∑
(i, j)∈A+(S)

yk
i j + ∑

( j,i)∈A−(S)

yk
ji ≥ 2(xk

uv+xk
vu)

︸ ︷︷ ︸

(u,v)∈ER

or 2 xk
uv

︸︷︷︸

(u,v)∈AR

or 2 zk
s

︸︷︷︸

s∈SR

;

∀S⊆V\{1},γR(S) 6= /0;∀(u,v) ∈ ER(S)∪AR(S);∀s∈ SR;∀k∈ K.

These inequalities would be written in exponential number,being648

|S| the power-set cardinality of allG nodes: clearly this is not done649

in practice. So we write them checking iteratively only the violated650

one, adding them to our model and solving the resulting problem;651

then we will stop procedure when there’s no other violation.652

i i
′

j j
′

ci j ,di j ci j = c ji ,di j = d ji
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5.1.1 Connectivity Inequalities Separation Algorithm.653

Let G
′
= (V,A

′
) be the digraph builded from mixed-graphG replac-

ing every edge with a symmetric couple of two-way arcs(i, j), ( j, i),
with ci j = c ji anddi j = d ji . Let C R = {CR

1 , . . . ,CR
p} be strongly R-

connected components set ofG
′
, and considerVR

C1
, . . . ,VR

Cp
as the

corresponding vertices set. These components coincide in fact with
all the strongly connected subgraphs ofG

′
induced fromVR, ER∪AR.

Then we write into MCGRP starting formulation the (5.1), forall
S= VR

Ci
such thatVR

Ci
doesn’t contains depot vertex. Being

S̄k≡ (x̄k, ȳk, z̄k) ∈Z
2(|ER|+|E|)+(|AR|+|A|)+|VR|
+

for all k = 1, . . . , |K| we proceed as follows:654

• build graphḠk = (V̄k, Ēk, Āk) in Ḡk where are defined:655

– V̄k = {r ∈V|z̄k
r > 0 or x̄k

r j > 0 or ȳk
ir > 0 or x̄k

r j > 0 or ȳk
jr >656

0,∀1≤ i 6= j ≤ |V|};657

– Ēk = {(h,k) ∈ E|x̄k
hk > 0 or ȳk

hk > 0 or x̄k
kh > 0 or ȳk

kh > 0,658

∀1≤ i 6= j ≤ |V|};659

– Āk = {(h,k) ∈ A|x̄k
hk > 0 or ȳk

hk > 0, ∀1≤ i 6= j ≤ |V|};660

• determineG
′k p connected components (i.e. applying Prim-661

Dijkstra to every node), and letC
′k = {C

′k
1 , . . . ,C

′k
p} be the662

corresponding vertices set, andV
′k

C1
, . . . ,V

′k
Cp

their vertices. Be-663

tween this last set of nodes, remove components with index664

1≤ p̄≤ p such that 1∈V
′k

Cp̄
.665

• build an asymmetric support graph̄Gk = (V̄k, Ēk) in which con-666

sider a fictitious nodes∈ V̄k for each connected component667

with only customers fromG
′k. All of these nodess∈ V̄k are668

linked to t ∈ V̄k if exists in G at least a link between vertex669

couple (V
′k

Cs
, V

′k
Ct

). If no link exists, we insert a fictitious edge,670

having zero cost, in̄Ek. Ēk is described by:671
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– edges(s,t) of cost :

∑
(i, j)∈ER(V

′k
Cs

:V
′k

Ct
)

(x̄k
i j + x̄k

ji)+ ∑
(i, j)∈E(V

′k
Cs

:V
′k

Ct
)

(ȳk
i j + ȳk

ji)+

∑
(i, j)∈AR(V

′k
Cs

:V
′k

Ct
)

x̄k
i j + ∑

( j,i)∈AR(V
′k

Ct
:V
′k

Cs
)

x̄k
ji+

∑
(i, j)∈A(V

′k
Cs

:V
′k

Ct
)

ȳk
i j + ∑

( j,i)∈A(V
′k

Ct
:V
′k

Cs
)

ȳk
ji

– ER(V
′k

Cs
: V

′k
Ct

) = {(i, j) ∈ ER : i ∈ V
′k

Cs
, j ∈ V

′k
Ct
}: set of re-672

quired edges incident intoV
′k

Cs
vertices;673

– E(V
′k

Cs
: V

′k
Ct

) = {(i, j) ∈ E : i ∈ V
′k

Cs
, j ∈ V

′k
Ct
} : set of edges674

incident intoV
′k

Cs
vertices;675

– AR(V
′k

Cs
: V

′k
Ct

) = {(i, j) ∈ AR : i ∈ V
′k

Cs
, j ∈ V

′k
Ct
} : set of re-676

quired arcs going out fromV
′k

Cs
vertices;677

– AR(V
′k

Ct
: V

′k
Cs

) = {( j, i) ∈ AR : j ∈ V
′k

Ct
, i ∈ V

′k
Cs
} : set of re-678

quired arcs going intoV
′k

Cs
vertices;679

– A(V
′k

Cs
: V

′k
Ct

) = {(i, j) ∈ A : i ∈ V
′k

Cs
, j ∈ V

′k
Ct
} : set of arcs680

going out fromV
′k

Cs
vertices;681

– A(V
′k

Ct
: V

′k
Cs

) = {( j, i) ∈ A : j ∈ V
′k

Ct
, i ∈ V

′k
Cs
} : set of arcs682

going intoV
′k

Cs
vertices;683

• build the maximum spanning tree (MSTk) over Ḡk (i.e. using684

Prim-Dijkstra) such that in every step of generation we firstly685

put a new nodeh∈ V̄k and then check the violation of inequali-686

ties (5.1) in setV
′k

Ch
. If there’s a violation, we insert correspond-687

ing inequalities in the current problem.688
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• after building MST, we remove a single edge every time and689

check inequalities violations into every generated subtree.690

In Figure (5.1) we represented a MCGRP instance, withQ = 10,691

and demands/costs are represented by(ci j ≥ 0,di j ≥ 0). The opti-692

mal solution of mathematical model with assignment, knapsack,693

priority, parity, balanced-set and connection only for a subset of694

R−connected components is:695

• x1
72 = 1;y1

17 = y1
21 = 1;r1 = (1−7−2−1);c1 = 21;696

• x2
39 = 1;y2

98 = y2
83 = 1;z2

3 = z2
8 = 1;r2 = (3−9−8−3);c2 =697

10;698

• y3
15 = y3

51 = 1;z3
5 = 1;r3 = (1−5−1);c3 = 4;699

• x4
14 = x4

16 = 1;y4
45 = y4

51 = y4
61 = 1;r4 = (1−4−5−1−6−700

1);c4 = 27;701

where the objective value isz= 62.702

The connection constraint introduced into starting formulation
for S= {3,9} andk = 2 is satisfied for the current optimum so-
lution, which does not represent a feasible one for the problem
because the following inequality is violated:

y2
31+y2

32+y2
34+y2

35+y2
82+y2

92+y2
13+y2

23+y2
53+y2

28+y2
29≥ 2x2

39;

with S= {3,8,9}. GraphḠ2 is then formed by a unique repre-703

sentative node for the connected componentC
′2
1 , defined byV

′2
C1

=704

{3,8,9}; so we introduce into current model inequality (??).705

5.1.2 Algorithmic outline (Connectivity cuts)706

In ?? and?? we reported in pseudo-code the separation algorithm707

for the connectivity cuts: this will be used in the final part of thesis708

for computing some significant results. We assumed thatd andq709
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Fig. 5.1: G = (V,E,A).

are the input demand vectors (respectively for links and nodes). The710

complete separation procedure is also described.711

Algorithm 4 connectivitySeparationAlg(K, S′ )

Require: A feasible solutionS
′
for MCGRP, an integer valueK

Ensure: All violated connectivity inequalities with respect to optimal solution of
the current relaxation problem (v)

1: for k = 1 toK do
2: G′(k)← buildMGraph(G,S′,k)
3: if G′(k) 6= /0 then
4: crs(k)← connectedComponents(G’(k))
5: crs′(k)← componentsWithoutDepot(crs)
6: if crs′(k) 6= /0 then
7: G(k)← buildSupportGraph(S′,crs′(k),k)
8: v← v∪checkAndAddConstraints(S′,G(k),k)
9: end if

10: end if
11: end for
12: return S′;
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Algorithm 5 Connection-Cuts

Require: Mixed-graphG = (V,E,A)
Ensure: Sub-optimal solutionS∗CC

1: K ← computeLowerBound(d, q, Q )
2: S’← solveRelaxedProblem(G,K )
3: repeat
4: v← doSepAlg(K, S′ )
5: S’← updateSolution(v )
6: until |v|> 0

5.2 Co-Circuit Inequalities.712

Definition 6: Given a mixed-graphG = (V,E,A) and a node subset713

S⊂ V, a link-cutset is defined as the setγ(S) = E(S)∪A+(S)∪714

A−(S), that is set of all edges and arcs inSnodes.715

It is defined for all required links the setγR(S) = ER(S)∪A+
R(S)∪716

A−R(S). The co-circuit inequalities assure that every link-cutset being717

crossed an even number of times, regardless of vehicle beingused.718

Let beS⊆V, F ⊆ γR(S) andF
′
⊆ γ(S), such that|F |+ |F

′
| is odd.719

The following co-circuit inequalities express the condition that if an720

odd subsetF ∪F
′
has a vertex intoS, then at least an element from721

γ(S) must be served or crossed:722

∑
(i, j)∈γR(S)\F

xk
i j + ∑

(i, j)∈γ(S)\F ′
yk

i j ≥ ∑
(i, j)∈F

xk
i j + ∑

(i, j)∈F ′
yk

i j−|F |−|F
′
|+1

whereS⊆ V, F ⊆ γR(S), F
′
⊆ γ(S), |F |+ |F

′
| is odd andk =723

1, . . . ,m.724

In what following we specific every term of this inequality;725

• ∑(i, j)∈γR(S)\F xk
i j = ∑(i, j)∈ER(S)\F(xk

i j +xk
ji )+∑(i, j)∈A+

R(S)\F xk
i j +726

∑( j,i)∈A−R(S)\F xk
ji ;727
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• ∑(i, j)∈γ(S)\F ′ y
k
i j = ∑(i, j)∈E(S)\F ′(y

k
i j +yk

ji)+∑(i, j)∈A+(S)\F ′ y
k
i j +728

729

∑( j,i)∈A−(S)\F ′ y
k
ji ;730

• ∑(i, j)∈F xk
i j = ∑(i, j)∈ER(S)∩F(xk

i j +xk
ji)+∑(i, j)∈A+

R(S)∩F xk
i j +731

∑( j,i)∈A−R(S)∩F xk
ji ;732

• ∑(i, j)∈F ′ y
k
i j = ∑(i, j)∈E(S)∩F ′(y

k
i j +yk

ji)+∑(i, j)∈A+(S)∩F ′ y
k
i j +733

∑( j,i)∈A−(S)∩F ′ y
k
ji .734

5.2.1 Co-circuit Inequalities Separation Algorithm.735

Cut-Trees.736

In the following we will refer to the concepts described in the paper737

proposed by [1]. LetG = (V,E) be a weighted undirected graph in738

which a vector of weightsw∈Q|E|+ is defined, and letX ⊂V be a set739

of terminal vertices. A cut-tree is an edge-weighted tree spanning740

X, and representing the minimum cut inG between every pair of741

vertices inX.742

More formally, the cut-tree consists of:743

1. a mappingπ : V→ T such thatπ(x) = x, ∀x∈ X744

2. an adjacency relationship∼, defined onX, such thatx ∼ y745

means thatx andy are connected by an edge of the tree.746

Then if we removex from a cut-tree, then the setX will be par-747

tioned into two disjoint setsXx andXy, so that a cut(U,U) in G (also748

called ”cut inducted” by edgex∼ y) is defined.749

Perhaps following condition must hold:750

• for every pairsx,y∈ X with x∼ y, the cut inducted by the edge751

x∼ y is a minimum(x,y)−cut inG with respect to the weights752

w;753
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Definition 7: Given a graphG with weights vectorw, let H be a754

connected subgraph ofG, and consider a set of verticesU ⊂V, then755

the graph which results fromG by identification of the vertex set of756

H as a vertex ofU is said supernode. In other words we say that the757

new graph is obtained by ”shrinking”G.758

Given a cut-treeC defined with respect toT, it satisfy following759

properties:760

1. C supernodes define aV partition :V =
⋃

S∈L S;761

2. Evert vertex ofT is exactly contained into a single unique su-762

pernode and is said terminal (or representative);763

3. let(R,S) be a cut-treeC branch, and letr ∈ T es∈ T represen-764

tatives: (R,S) weight is maximum(r,s)-flow in G: λG(r,s) =765

f (R,S);766

4. removing(R,S) from C determine partition of node set in two767

distinct subsets, which defines a minimum capacity cut inG768

betweenr ands, representative respectively forR andS;769

Given a supernodeR in C , let (R,S1), . . . ,(R,Sl ) be branches of770

tree incident into it:771

V
′
:= V\U ∪{u},u /∈U ;E

′
:= E\(E(U : U)∪E(U : V\U))∪

{e= (i,u)|i /∈U,(i, j) ∈ E, j ∈U};

A
′
:= A\(A(U : U)∪A(U : V\U)∪A(V\U : U))∪

{a = (i,u)|i /∈U,(i, j) ∈ A, j ∈U}∪

{a = (u, i)|i /∈U,( j, i) ∈ A, j ∈U};

whereE(U : U) (A(U : U)) represents edges (arcs) set with ex-772

tremes intoU , while E(U : V\U) (A(U : V\U))represents edges773

(arcs) set with first vertex intoU and other intoV\U , and similarly774
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for V\U : U . This operation make possible thatU be substituted775

with a single vertexu in which are concentrated (shrunk) every ver-776

tices inU , and then let be removed all parallel links incident intou.777

So merged link weight is expressed by:778

γiu = ∑
∀ j∈U :(i, j)∈E

γi j ; (5.1)

γiu = ∑
∀ j∈U :(i, j)∈A

γi j ; (5.2)

γui = ∑
∀ j∈U :( j,i)∈A

γ ji . (5.3)

Let (i, j) ∈ E∪A be aG link, then graphG\(i, j) is the one we779

obtain contracting(i, j) through the identification of their vertices780

(U = {i, j}): If H is a connected subgraph ofG, resulting related781

graph by shrinkingH is equivalent toU = V(H) (by identification782

of H vertices).783

Well-known Gomory-Hu exact algorithm for cut-tree determina-784

tion is outlined in what following:785
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Algorithm 6 Cut-tree

Require: Mixed-graphG = (V,E,A) and setT ⊂V of terminal vertex.
Ensure: Cut-treeC .

1: Let beL := V.
2: while T 6= /0 do
3: Select randomly at ∈ T and let beR∈L supernode inC where there ist.

Let r beR representative.
4: Let GR be shrinking graph obtained by identification of all supernodes

S1, . . . ,Sl in C , incident intoR, with verticessi, i = 1, . . . , l .
5: Let beλGR(r, t) = λG(r, t) max flow from sourcer to sinkt computed over

GR, and let beδ (X) minimum (r, t)-cut in GR. Clearly if GR is discon-
nected, it is not possible sending flow fromr a t, otherwise maximum flow
is zero andδ (X) = (VCr ,VCt ), whereVCr , VCt is respectively the connected
components vertices set ofr, t.

6: Let beL = (L \{R})∪ ({R∩X}∪ (R∩X)). SupernodeR is replaced by
supernodesR∩X andR∩X, connected by a link which weight isf (R∩
X,R∩X) = λGR(r, t) = λG(r, t).

7: ∀i = 1, . . . , l , replace every branch(R,Si) with a new one(R∩ X,Si)
weightedf (R∩X,Si) = f (R,Si) if si ∈ X, or a branch(R∩X,Si) weighted
f (R∩X,Si) = f (R,Si) if si ∈ X.

8: if R∩X or R∩X contains only terminalt then
9: T = T\{t}.

10: end if
11: end while

Let G = (V,E,A) be the mixed graph:786

• Let (x̄, ȳ, z̄) be such that ¯x∈{0,1}((2|ER|+|AR|)×|K|), ȳ∈Z
((2|E|+|A|)×|K|)
+ ,787

and let be ¯z∈ {0,1}|CR|×|K| relaxed solution. Build related di-788

graphGk by only variables ¯xk
i j > 0, x̄k

ji > 0, ȳk
i j > 0 e ȳk

ji > 0.789

FromGk we can define a new related graphG+
k as following:790

1. every arc(i, j) ∈ Gk is splitted into two arcs introducing a791

new vertexsi j betweeni and j;792

2. new arc(i,si j ) ∈ G+
k is then saidnormal half, and it has793

even label and capacity ¯wk
isi j

= x̄k
i j + ȳk

i j ;794
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3. complemented arc(si j , j)∈G+
k is saidcomplemented half,795

it has odd label and capacity: ¯wk
si j j = 1− x̄k

i j − ȳk
i j .796

EveryV+
k vertex has got even or odd label, if respectively in-797

cide a even or odd number of labeled odd arcs: in what follow-798

ing we show typical situation that can occur while buildingGk799

andG+
k .800

(a) Required edge inG (b) Arc in Gk

Fig. 5.2: First case inGk building

(a) Required and dead-
headed edge inG

(b) Pair of opposite arcs in
Gk

Fig. 5.3: Second case inGk building

• Let Tk be terminal vertex set defined as odd labeled set inG+
k ;801
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(a) Arc in G (b) Arc in Gk

Fig. 5.4: Third case inGk building

• Invoca l’algoritmo [6] su G+
k conTk insieme dei vertici termi-802

nali e costruisci il cut-treeCG+
k
.803

Fig. 5.5: FromGk to G+
k .

Minimum odd cuts804

Let be, without loss of generality,G= (V,E,γ) a symmetric weighted805

graph, with weightsγ ∈Q|E|+ on every edge. LetT ⊂V be a node set806

with even number of odd vertices: a cutδ (U) is definedT-odd (or807

odd) is |T ∩U | is an odd number. The minimum odd cut problem808



5. Valid Inequalities. 62

consists in determination of a odd cutδ (U) having minimum weight809

γ(δ (U)). Padberg & Rao (1982) give a routine for finding this: it810

firstly call Gomory-Hu procedure for the cut-tree building (with ter-811

minal T), and check every branch of the tree for each of the|T|−1812

cuts which their induce. This algorithm has got complexity equal to813

O(|T||V||E|log(|V|2/|E|)).814

Padberg-Rao separation algorithm815

In what following we report Padberg-Rao algorithm for finding max-816

imum violation of cocircuit inequalities: as a matter of fact, blossom817

inequalities (originally found by this procedure) is reducible to a818

minimum odd cut problem819



5. Valid Inequalities. 63

Algorithm 7 Parity cut separation

Require: G = (V,E,A), S= (x̄, ȳ, z̄)
Ensure: Minimum odd setsSk in which we check co-circuit inequalities viola-

tions.
1: Let beε = 1.
2: for k = 1 tom do
3: Let beSk = /0.
4: Gk = RelaxationGraph(G, x̄, ȳ).
5: G+

k = AuxiliaryGraph(Gk, x̄, ȳ).
6: DetermineTk terminal vertices set (odd nodes inG+

k ): Tk = GetOdd(G+
k ).

7: Invoke [6] on G+
k and build cut-treeCG+

k
: CG+

k
= CutTree(G+

k ,Tk).

8: for each|Tk|−1 branch inCG+
k

do
9: Let beδ (Uk) related cut-set fromUk. Note thatUk is a super-node set of

the tree.
10: cut-checking: if |Tk∩Uk| is odd and ¯wk(δ (Uk)) = f (Uk : Lk\Uk) < ε

set inSk original nodes ofG such that are contained intoUk supernodes:
Sk = GetVertices(G,Uk) for which (??) are violated. Note thatf (Uk :
Lk\Uk) represents flow on the branch corresponding toδ (Uk) cut. If
there is more than a violation, select minimum cardinality set Umin

k =

argmin{|Uk| : w̄k(δ (Uk)) < ε}, and if there exist more minimum sets
Sk = {Si

k = GetVertices(G,U i
k)}i∈M, whereM = {h∈N : Uh

k = Umin
k }.

11: end for
12: for eachSi

k ∈ Sk, let beF i
k = {(i, j) ∈ γR(Si

k) : x̄k
i j > 0 or x̄k

ji > 0} e F
′i
k =

{(i, j) ∈ γ(Si
k) : ȳk

i j > 0 orȳk
ji > 0} cutset for which write the (??).

13: end for

Algorithmic Scheme820

For a better performance we select to use the following heuristic: as821

a matter of fact, our problem is a MIP with integer values and the822

solution corresponds in every case.823

5.3 Balanced-Set Inequalities.824

Let be the weights:

wk
i j = xk

i j +yk
i j , ∀(i, j) ∈ A
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Algorithm 8 Separation Heuristic for the Co-circuit inequalities

for i = 1 tom do
let begk← related digraph forx(k) > 0 ory(k) > 0
for all n∈ N(gk) do

if isOdd(n) then
γ(S)← linkCutSet(n)
γR(S)← γ(S)∩ (ER∪AR)
F ←{(i, j) ∈ γR(S)t.c. ∃xk

i j > 0}

F ′←{(i, j) ∈ γ(S)t.c. ∃yk
i j > 0}

if |F|+ |F ′| is oddthen
add to the problem violated inequality forn, k

end if
end if

end for
end for

,
wk

i j = xk
ji +yk

ji +xk
i j +yk

i j , ∀(i, j) ∈ E

.825

and definef (S) = wk(A+(S))−wk(A−(S))+wk(E(S)). Replac-
ing values we obtain:

f (S) = xk(A+
R(S))+yk(A+(S))−xk(A−R(S))−yk(A−(S))+

xk(ER(S))+yk(E(S))≥ 0

Imposing f (S) not negative means avoiding unbalancing situations,
i.e. c > 0 ingoing arcs anda+ b < c links (a arcs andb edges):
so this means that we’re imposing that the number of outgoingarcs
from S, not balanced from ingoing arcs, must be less or equal to
incident edges number. As said in [? ]:

f (S) = wk(δH(S∪{0})−P= ∑
i∈S

(w+
i −w−i )+wk(E(S))

Obviously if f (S) < 0 then a violation over currentSset is checked.826

Definition 8: A node setS⊂V having minimumf (S) value is said827

most unbalanced set.828
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Norbert & Picard showed in 1996 that this problem is equivalent829

to determination the maximum of a quadratic function in binary830

variables opportunely formulated, which for what showed Picard &831

Ratliff (1975) e Picard & Queyranne (1980) is equivalent solving a832

maximum flow problem on a related graph with|V|+2 nodes.833

Let be
P = ∑

i∈V
w0i

and consider symmetric graphH = (VH ,EH) whereVH =V∪{0,n+

1} andEH = E∪E1∪E2, where

E1 = {e= (0, i)∀i ∈V t.c. we = max{w−i −w+
i ,0}}

,
E2 = {e= (i,n+1)∀i ∈V t.c. we = max{w+

i −w−i ,0}}

.834

Rewriting equation that expressesf (S) we obtain: wk(E(S)) +835

∑i∈V\Sw0,i + ∑i∈Swi,n+1−∑i∈V w0i = wk(E(S)) + ∑i∈S(w
+
i −w−i )836

where we replacedw0,i = max{w−i −w+
i ,0} andwi,n+1 = max{w+

i −837

w−i ,0}.838

Expressing weights in function of values of current solution vari-
ables we have:

xk(ER(S))+yk(E(S))+xk(A+
R(S))+yk(A+(S))−

xk(A−R(S))−xk(A−(S))≥ 0

5.3.1 Balanced-Set Separation839

• Let be:w+
i = w(A+(i)) andw−i = w(A−(i)),∀i ∈V;840

• Build capacitated and asymmetric graphH = (VH ,EH) where841

VH =V∪{0,n+1} (0, n+1 are fictitious vertices) whileEH =842

E∪E0,i ∪Ei,n+1 (where new sets are double arcs which link 0843

andn+1 with each otheri ∈V.844



5. Valid Inequalities. 66

Weights corresponds with capacities also defined, and the oth-845

ers are given by:846

– w0,i = max{w+
i −w−i ,0},∀i ∈V847

– wi,n+1 = max{w−i −w+
i ,0},∀i ∈V848

• Solve a maximum flow problem onH between sources = 0849

and sinkt = n+1: minimum capacity cutS∗∪{0} imply that850

S∗ be the most unbalanced set onG
k
.851

Please note that in mixed case considering the expression:f (S) =852

xk(A+
R(S))+yk(A+(S))−xk(A−R(S))−yk(A−(S))+xk(ER(S))+yk(E(S))≥853

0854

we expressed quantities as following

xk(ER(S)) = xk(E+
R (S))−xk(E−R (S))

,
yk(E(S)) = yk(E+(S))−yk(E−(S))

,855

that is, all (arcs and edges) ingoing contributes are considered856

with negative sign.857



Part IV858

RESULTS AND ANALYSIS.859



6. EXPERIMENTS & RESULTS.860

Definition 9: Give a mixed graphG = (V,E,A) with required ele-861

mentsVR ⊂ V, AR ⊂ A, ER ⊂ E, a R−connected component of a862

mixed graph is a mixed subgraphG′ = (V ′,E′,A′) in which any863

two nodesx,y ∈ V, v1 6= v2 are connected to each other by paths864

x= p1, p2, . . . , pi, pi+1, . . . , pl = y in which each linkpi, pi+1 is such865

that:866

• i, i +1∈ ER;867

• i, i +1∈ AR;868

• i or i +1∈VR, ∀i = 1,2, . . . , l −1;869

and to which no more nodes or links can be added while preserving870

its connectivity (maximal connected subgraph).871

Every nodes belonging to each distinctG′ in G are saidR−nodes,872

while the set of all of them will be aimed asRS.873

Definition 10: Give a mixed graphG = (V,E,A) with required ele-874

mentsVR⊂V, AR⊂ A, ER⊂ E, a subsetR is saidR−odd iff it has a875

odd number of inbound and outboundR−links.876

6.1 A simple relaxed LP Model (MCGRP-LP).877

We will show now a simple linear model for obtaining a lower-878

bound for our problem. Relaxation model is obtained from complete879

model?? relaxing constraints 2.17 and rewriting them only for the880

R−nodes just defined. The objective function remains the same as881

seen previously.882
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min . . . (6.1)

m

∑
k=1

(xk
i j +xk

ji) = 1, ∀(i, j) ∈ ER⊆ E (6.2)

m

∑
k=1

xk
i j = 1, ∀(i, j) ∈ AR⊆ A (6.3)

m

∑
k=1

zk
i = 1, ∀i ∈CR (6.4)

∑
(i, j)∈ER

di j (x
k
i j +xk

ji)+ ∑
(i, j)∈AR

di j x
k
i j + ∑

i∈CR

diz
k
i ≤Q, ∀k∈ K

(6.5)

zk
i ≤ ∑

j∈V:(i, j)∈E+
R (i)

xk
i j + ∑

j∈V:(i, j)∈A+
R(i)

xk
i j+

∑
j∈V:(i, j)∈E+(i)

yk
i j + ∑

j∈V:(i, j)∈A+(i)

yk
i j ,

∀i ∈CR, ∀k∈ K (6.6)

∑
∀ j: (i, j)∈A+

R(i)

xk
i j + ∑

∀ j: (i, j)∈A+(i)

yk
i j − ∑

∀ j: ( j,i)∈A−R(i)

xk
ji−

∑
∀ j: ( j,i)∈A−(i)

yk
ji = ∑

∀ j: ( j,i)∈E−R (i)

xk
ji + ∑

∀ j: ( j,i)∈E−(i)

yk
ji−

∑
∀ j: (i, j)∈E+

R (i)

xk
i j − ∑

∀ j: (i, j)∈E+(i)

yk
i j ,

∀i ∈ R : R⊂V is R−odd,∀k∈ K (6.7)
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∑
∀ j:(i, j)∈E+

R (S)

xk
i j + ∑

∀ j:( j,i)∈E−R (S)

xk
ji + ∑

∀ j:(i, j)∈A+
R(S)

xk
i j +

∑
∀ j:( j,i)∈A−R(S)

xk
ji + ∑

∀ j:(i, j)∈E(S)

yk
i j + ∑

∀ j:(i, j)∈A(S)

yk
i j ≥ 2 ·η,

∀ f ∈ γR( RS )∀k∈ K (6.8)

Here we summarize the main features of our relaxation:883

• report (1)-(6) identically, and solve it at root node;884

• write checked-as-violated (8) for everyR-connected compo-885

nents;886

• write checked-as-violated (7) for everyR-odd components;887

The resulting value of so builded model will give uszLB value,888

while zUB was computed with our heuristics fixing iteration number889

respectively tomaxIter=. . . , maxIteration=. . . . Instead comput-890

ing of z∗ value was done following this algorithmic outline, which891

repeat the procedure adopted for computingzLB until there is at least892

a violated constraint.893

6.1.1 Not-capacitated Instances Results (connectivity-cuts)894

We validated our model testing it on some instances used by Cor-895

beran et al. for their experimentations on cutting plane algorithm for896

the General Routing Problem (see??). These are not-capacitated897

instances of mixed graph with demands either over nodes and links,898

and it is significant because permits to obtain always optimal val-899

ues with good time performance (only 1 second in such cases).We900

also note here that instanceGD427 was not still solved to optimal-901

ity, and our optimum value (42550,0) is very close to upper-bound902

(near 0,17%) and lower-bound (0,05%) previously known.903
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Algorithm 9 3-cuts separation Heuristic

Require: G = (V,E,A), ci j

Ensure: z∗

1: Solve relaxed model(1)− (6) and letS= (x̄, ȳ, z̄) be solution.
2: currViols← /0
3: repeat
4: size = size(currViols)
5: size2 = size(currViols)
6: stop← updateConstraints(currViols);
7: if stopthen
8: break;
9: end if

10: currViols = currViols∪ parity (currViols)
11: currViols = currViols∪ balanced (currViols)
12: currViols = currViols∪ connection (currViols)
13: size2 = size2 + size(currViols)
14: until size 6= size2
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Name V E A CR ER AR z z z∗ USER CPLEX ALL T
alba11 116 158 16 86 14 3 9419 9419 9419 166 18 184 0,1688
alba13 116 125 49 76 17 5 10744 10744 10744 80 14 94 0,5156
alba15 116 99 75 93 7 6 11332 11332 11332 56 3 59 0,0215
alba17 116 96 78 83 11 8 10795 10795 10795 70 13 83 0,0292
alba19 116 77 97 83 11 8 11410 11410 11410 48 4 52 0,0215
alba31 116 160 14 42 45 6 9870 9870 9870 44 53 97 0,0556
alba33 116 126 48 47 35 12 11315 11315 11315 23 23 46 0,0271
alba35 116 108 66 45 32 20 11435 11435 11435 18 28 46 0,0208
alba37 116 90 84 47 26 20 11742 11742 11742 29 12 41 0,0132
alba39 116 89 85 45 28 26 12766 12766 12766 18 21 39 0,0188
alba51 116 157 17 13 81 9 10931 10931 10931 8 57 65 0,2333
alba53 116 126 48 12 65 26 12480 12480 12480 10 24 34 0,0181
alba55 116 103 71 16 51 34 15558 15558 15558 15 31 46 0,0194
alba57 116 102 72 18 55 41 14893 14893 14893 12 18 30 0,0139
alba59 116 104 70 20 58 38 15848 15848 15848 6 38 44 0,0139
alba71 116 161 13 8 116 10 12566 12566 12566 5 120 125 2,0153
alba73 116 119 55 12 81 35 16647 16647 16647 2 60 62 0,0111
alba75 116 106 68 3 83 46 14887 14887 14887 1 54 55 0,0063
alba77 116 97 77 8 71 51 17427 17427 17427 1 52 53 0,0076
alba79 116 84 90 8 59 63 15501 15501 15501 19 30 49 0,0042
alba91 116 164 10 1 148 10 14497 14497 14497 63 104 167 0,1160
alba93 116 138 36 2 124 33 15680 15680 15680 1 107 108 0,0194
alba95 116 98 76 0 88 72 19032 19032 19032 20 28 48 0,0056
alba97 116 87 87 1 76 73 19338 19338 19338 9 16 25 0,0056
alba99 116 90 84 2 79 74 20026 20026 20026 14 26 40 0,0090
GD427 1000 611 1612 292 187 362 42473,9 4257442550 222 64 286 99,3
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6.1.2 Capacitated Artificial Instances Results (connectivity-cuts)904

Here we tried to solve our artificial instances as done in 2.6,and905

reported here some results. We considered base dataset seenin first906

part of the thesis (from 3e to 13e): extending him from 15 links to907

59 nodes.908

Here we reported previous seen results confronting time needed909

to close instances: in general we’ve seen that branch-and-cut is less910

time-consuming than using the complete formulation. For com-911

pleteness we reported optimum values in each case (routes was also912

equivalent).913

All the instances was closed except fore12, but we note thate13914

was instead now closed.915

Tab. 6.1: instances Solutions (cuts)

id T[ms] Z∗ Tcuts [ms] Z∗cuts
e3 141,00 131 281,0 131
e4 46,00 422 109,0 422
e5 156,00 461 172,0 461
e6 641,00 860 157,0 860
e7 657,00 1284 218,0 1284
e8 6031,00 1618 1297,0 1618
e9 10031,00 1731 547,0 1731
e10 9326296,00 2481 13421,0 2481
e11 329078,00 2796 1969,0 2796
e12 OOM - - -
e13 OOM - 62,5 3859

In what following we reported results for another extended set916

of instances: for some of them was not possible terminating solv-917

ing procedure for an Out-Of-Memory (OOM) error. We reported918

here name, K (number of vehicles), V, E, A, CR, ER, AR, number919

of CPLEX cuts, number of user (connection) cuts, optimum value,920

seconds required, lower-boundz and upper-boundz for z.921
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name K V E A CR ER AR CPLEX USER CUTS z∗ Seconds z z
istanza15e.txt 1 15 59 46 7 5 5 4 1 5 821 0,08 740 1241
istanza18e.txt 2 18 85 68 8 5 6 3 54 57 739 0,32 705 1480
istanza21e.txt 3 21 115 95 8 12 9 - - - OOM - 1110 2215
istanza24e.txt 3 24 149 127 8 16 7 - - - OOM - 1232 2736
istanza27e.txt 1 27 188 163 17 13 15 6 0 6 1982 0,13 1878 3334
istanza30e.txt 2 30 232 203 16 27 17 - - - OOM - 1960 3725
istanza33e.txt 1 33 280 248 21 25 23 18 0 18 2269 0,14 2244 4229
istanza36e.txt 2 36 332 298 23 31 37 0 253 253 3477 8,89 3356 6155
istanza39e.txt 2 39 389 352 16 35 28 - - - OOM - 3033 5522
istanza42e.txt 1 42 451 410 24 49 35 12 0 12 3888 0,00 3871 7836
istanza45e.txt 2 45 517 473 22 56 43 - - - OOM - 5033 8127
istanza48e.txt 1 48 587 541 19 50 60 14 0 14 5530 0,20 5520 8901
istanza51e.txt 3 51 662 613 22 56 62 - - - OOM - 6426 10938
istanza54e.txt 2 54 742 689 35 61 67 0 1748 1748 6958 398,00 6841 11710
istanza57e.txt 2 57 826 770 20 71 88 - - - OOM - 8114 13655
istanza60e.txt 2 60 914 856 36 99 62 - - - OOM - 7867 15180
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

51 52 53 54

Graphical solution for instancee54, first route922

923
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

51 52 53 54

Graphical solution for instancee54, second route924

925



7. COMPUTATIONAL COMPLEXITY.926

Finally we report our computational complexity analysis either for927

the GRASP algorithm than the exact approach. We will use the so928

calledO() notation, that is:929

Definition 11: an algorithm has time boundO( f (n)) if there exist930

constantsN andK such that for every input of sizen≥ N the algo-931

rithm will not take more thanK · f (n) processing time (see??).932

7.1 GRASP Complexity.933

This procedure is made by two parts: in the start we generate clus-934

ters, then we try to define a first route over every of them. In the935

worst case, the shortest path computing for every node inV was936

computed with Floyd-Warshall algorithm (O(|V|3)), which is the937

predominant operation with respect to others (metrics, etc.).938

7.2 Exact Algorithm Complexity939

Complexity analysis was done considering thatS= (x,y,z) dimen-940

sion is equal to|ER + AR|+ |E + A|+ |CR|: in the worst case hy-941

pothesis, that is whenE≡ ER, A≡ AR, V ≡CR, Scardinality can be942

expressed as 2(|E +A)|)+ |V|. In our analysismquantity is consid-943

ered in our computations, but in typical cases it can be approximated944

for our purposes as a constant (m≈ 1).945

RELAXATION . Relaxed model solving requires as predominant946

action the computing ofR−connected components int the mixed947
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graphG: this operation was made in our implementation inO(|V|2),948

so total complexity ism·O(|V|2).949

PARITY. Parity checking need buildingm∗ digraphs from solu-950

tionS( O(1) ), finding odd nodes, computing quantitiesγ(S),γR(S),F,F ′951

and eventually add a new constraint to the problem. So this proce-952

dure has gotm·O(|V|) complexity.953

BALANCED-SET. This routine, after building support graphs (con-954

stant time), requires as predominant action the Ford & Fulkerson955

algorithm: in general it needsm·O(|E + A| · f ). Considering our956

implementation complexity of this phase ism·O(|E +A| · |V|2).957

CONNECTION. After building support graphs this last phase re-958

quires as predominant action the Prim-Dijkstra algorithm|V| times959

(for computing connected components): using adjacency matrix it960

needsm·O(|V|2). Considering our implementation complexity of961

this phase ism·O(|V|3).962
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