

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Scheduling Techniques
In High-Speed Packet Switches

Alessandra Scicchitano

UNIVERSITÀ DELLA CALABRIA

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in
Ingegneria dei Sistemi e Informatica

XX ciclo

Tesi di Dottorato

Scheduling Techniques
in High - speed Packet Switches

Alessandra Scicchitano
, J'CT ccL4QuL3

Coordinatore
Prof. Domenico Talia

Supervisori
Prof. Andrea Bianco

.d$L-

Prof. Antonella Molinaro

DEIS

DEIS – Dipartimento di Elettronica, Informatica e Sistemistica
Novembre 2007

Settore Scientifico Disciplinare: ING–INF/05

Ad Andrea ed alla mia famiglia

Prefazione

Packet switches are at the heart of modern communication networks. Ini-
tially deployed for local- and wide-area computer networking, they are now
being used in different contexts, such as interconnection networks for High-
Performance Computing (HPC), Storage Area Networks (SANs) and Systems-
on-Chip (SoC) communication. Each application domain, however, has par-
ticular requirements in terms of bandwidth, latency, scalability and delivery
guarantee. These requirements must be carefully taken into account and have
a major impact on the design of the switch.

We propose novel scheduling techniques that enable the construction of
distributed (multi-chip) schedulers for large crossbars, develop a scheme for
integrated scheduling of unicast and multicast traffic and study flow-control
mechanisms that allow switches to achieve lossless behavior while providing
fine-grained control of active flows. We also present a comparison between
synchronous and asyncronous systems showing that asynchronous switching
seems a competitive solution with respect to the more traditional synchronous
approach.

Rende,
November 2007 Alessandra Scicchitano

Indice

1 Introduction . 9
1.1 Background . 9
1.2 Contributions . 10
1.3 Outline of the Thesis . 10

2 Packet Switch . 13
2.1 General Architecture . 13

2.1.1 Switching Fabric . 14
2.2 Traffic conditions for a packet switch . 16
2.3 Buffering Strategies . 17

2.3.1 Output-queued (OQ) . 17
2.3.2 Input-queued (IQ) . 18
2.3.3 IQ switches with Virtual Output Queueing (VOQ) 19
2.3.4 Combined Input-Output-Queued (CIOQ) Switches 21

2.4 Scheduling Unicast Traffic in IQ Switches 22
2.4.1 Optimal Scheduling Algorithm . 22
2.4.2 Parallel Iterative Matching Algorithms 22
2.4.3 Sequential Matching Algorithms . 25

2.5 Scheduling Multicast Traffic in IQ Switches 26
2.5.1 Queueing . 26
2.5.2 Scheduling . 27

Parte I A Switching Architecture for Synchronous IQ Switch

3 Distributed Implementation of Crossbar Schedulers 31
3.1 Introduction . 31
3.2 Two- vs. three-phase algorithms . 31
3.3 Round Trip Time Latencies . 32
3.4 Multi-chip implementation . 33

6 Indice

4 Distributed Scheduler under Unicast Traffic Conditions 35
4.1 Scheduling algorithms with RTT latencies 35
4.2 Synchronous Round Robin . 36
4.3 Performance results . 38

5 Distributed Scheduler under Multicast Traffic Conditions . . 41
5.1 Multicast scheduling algorithms . 41
5.2 Improved Multicast Round Robin . 42
5.3 Performance results . 43

6 Distributed Integration of Unicast and Multicast Scheduling 49
6.1 Introduction . 49
6.2 Frame Integration . 50
6.3 Description of Scheduler . 50
6.4 Dynamic Frame . 50
6.5 Simulation Result . 51

Parte II A Switching Architecture for Asynchronous SANs

7 Introduction to Storage Area Networks . 63
7.1 Storage Area Networks . 63
7.2 Networking Technologies for SANs . 65

7.2.1 Fibre Channel . 65
7.2.2 Credit-based flow control . 66

8 The Switching Architecture . 69
8.1 System Overview . 69
8.2 Line-cards . 70
8.3 Switching fabric . 70

8.3.1 Improvement of multicast scheduling 71
8.4 Control mechanisms for lossless delivery . 73

9 Performance Results . 75
9.1 Performance results under multicast traffic conditions 75

Parte III Synchronous vs Asynchronous Switching

10 Synchronous versus Asynchronous under Multicast Traffic . 83
10.1 Introduction . 83
10.2 System Model . 84
10.3 Performance results . 86

Indice 7

Parte IV Conclusion

11 Conclusion . 93

Riferimenti bibliografici . 95

1

Introduction

1.1 Background

The history of packet-switched networks dates back to the ’60s, when deploy-
ment of the ARPANET, ancestor of the Internet, was initiated. In the ’90s
the Internet became a global and ubiquitous networking infrastructure, used
for business, entertainment and scientific purposes. Since then, the bandwidth
demand of the Internet community has been steadily increasing at exponen-
tial rates. To satisfy it, researchers and engineers have studied extensively the
design of high-performance switching fabrics, that are at the heart of Inter-
net routers. Today’s commercial Internet routers offer aggregate bandwidths
on the order of terabits per second and employ sophisticated algorithms for
packet buffering, processing and scheduling.

The success of this technology has led researchers to investigate its usage
in other domains, where the communication subsystem has become a primary
performance bottleneck. Packet switching is being used to build interconnec-
tion networks for High-Performance Computing (HPC) systems, where a large
number of computing nodes and memory banks must be interconnected. It
is replacing the traditional bus-based interconnection between servers and
storage devices, giving birth to Storage Area Networks (SANs).

While the benefits of using packet switching in these domains have long
been recognized, it is important to remember that each of them has its spe-
cific set of requirements, significantly different from those typical of computer
networks. Table 1.1 summarizes the requirements for packet switches used in
computer networks as well as in the two other domains we are considering.
The most significant differences are in terms of latency, aggregate bandwidth
and delivery guarantee.

Moreover, current technology trends are playing a significant role in the
design of packet switches. Issues such as power consumption, chip I/O band-
width limitations and packaging constraints are becoming primary concerns
for designers.

10 1 Introduction

IP Routers Fibre Channel HPC Interconnects
SAN Switches

Throughput Very Important Very Important Moderately Important

Latency Not Important Moderately Important Very Important

Delivery Can Tolerate Losses not Losses not
Guarantee Small Losses Acceptable Acceptable

Line Rate/ < 10 Gb/s < 10 Gb/s ≥ 40 Gb/s
Port Count ∼ 100 ports ∼ 100 ports ∼ 1000 ports

Tabella 1.1. Requirements of domain-specific interconnection networks.

1.2 Contributions

In this thesis we present new scheduling algorithms, aimed at distributed
switch implementation and Storage Area Networks respectively. We discuss
how the specific requirements of the respective domains and current technol-
ogy trends have influenced the design. More importantly, we present some of
the architectural innovations that allow them to satisfy the demanding needs
of their operating environments.

In Part I we study the distributed implementation of a crossbar sched-
uler, considering the effect of big latencies on its performance. Referring
to this, we present new scheduling algorithms, both for unicast and multi-
cast, that achieve a level of performance that is close to that of a single-chip
implementation.

In Part II we discuss the performance of a Storage Area Network under
multicast traffic conditions. The architecture presents a number of important
features, such as an asynchronous design and the presence of a central arbiter
that allow the switch to achieve lossless behavior and isolate congesting flows.

Finally in Part III, asynchronous and synchronous switch architectures are
compared under multicast traffic.

1.3 Outline of the Thesis

The thesis is organized as follows:

Chapter 2 introduces basic concepts and the terminology used in the rest
of the thesis. It provides an overview of switching architectures and a brief
survey of scheduling algorithms.
Chapter 3 introduces the problem of big latencies for interconnections in
multichip implementation.
Chapter 4 is devoted to the specific problem in unicast scenario: how to
build schedulers for large crossbars using multiple chips and overcoming
the delay and I/O bandwidth limitations caused by distribution.

1.3 Outline of the Thesis 11

Chapter 5 described how to solve the same problem but in a multicast
scenario.
Chapter 6 addresses the problem of scheduling unicast and multicast
traffic concurrently over a single fabric, achieving high overall performance
and providing fairness guarantees.
Chapter 7 opens Part II of the thesis, describing the evolution of
the server-storage interface and illustrating how Storage Area Networks
improve the organization of storage resources.
Chapter 8 introduces the switching architecture for SANs, focusing in
particular on the mechanisms used to achieve loss-free operation and
isolate congesting flows.
Chapter 9 contains a simulation-based study of system performance un-
der multicast traffic, analyzing the effects of system parameters (buffer
sizes, fabric and link speed-up) and traffic characteristics (uniformity,
packet size distribution).
Chapter 10 studies differences between synchronous and asynchronous
performance under multicast traffic.
Chapter 11 draws conclusions of the thesis.

2

Packet Switch

In this chapter we introduce the basic concepts and the terminology used in
the rest of the thesis. We first present the general architecture of a packet
switch and discuss the main distinguishing feature: buffer placement. After
an overview of output-queued (OQ), input-queued (IQ) and combined input-
output-queued (CIOQ) switches, we focus on the problem of scheduling uni-
cast and multicast traffic in IQ switches. We provide a survey of the most
popular scheduling algorithms and discuss their characteristics in terms of
performance and complexity.

Packet switching is a broad field, which has been studied extensively for
decades. A comprehensive treatment of the topic can be found in [1], [2]
and [3].

2.1 General Architecture

A packet switch is a network device that receives packets on input ports and
forwards them on the appropriate output ports. Figure 2.1 shows the architec-
ture of a packet switch with N input/output ports. Packets are received on
an input port and enter an ingress adapter, where they are stored (if neces-
sary) and processed. Processing may include look-up of the destination port,
recalculation of header fields (TTL, CRC, etc.) and filtering. Packets are then
transmitted through the switching fabric and reach the egress adapters, where
they are stored (if necessary) and prepared for transmission on the output
links. If the switching fabric operates only on fixed-size data units, variable-
size packets have to be segmented on the ingress adapter and reassembled on
the egress adapter. Usually an ingress adapter is coupled to an egress adapter
and they physically reside on a single board called linecard that can host
multiple bi-directional ports.

A switch is synchronous if the linecards and the fabric are coordinated by
mean of global clock signal and all ingress adapters start cell transmission at
the same time. If the switch is asynchronous, on the contrary, the linecards

14 2 Packet Switch

Switching Fabric

Ingress Adapter

Ingress Adapter

Ingress Adapter

Egress Adapter

Egress Adapter

Egress Adapter

Fabric Arbiter

Input 2

O1O3

O7

O1O1

O2O2

ON ONO7O2

Output 1

Output 2

Output N

Input 1

Input N

Data Link

Control Link

OX Packet (destined to output X)

Figura 2.1. General architecture of a packet switch.

and the fabric work on independent clock domains and transmission from
different ingress adapters is not coordinated. In general synchronous switch-
es internally operate on fixed-size cells, whereas asynchronous switches may
natively support variable-size packets. Synchronous architectures are more
popular because synchronicity simplifies many aspects of the design and im-
plementation of the device. However, asynchronous switches have advantages
as well, so they are being actively researched [4, 5, 6]. In the rest of this
chapter we will implicitly refer to synchronous, cell-based switches.

2.1.1 Switching Fabric

The switching fabric sets up connections between ingress and egress adapters.
It is non-blocking if a connection between an idle input and an idle output
can always be set-up, regardless of which other connections have already been
established. This is a very desirable property, because it helps the switch
in forwarding multiple packets concurrently, thus increasing throughput and
reducing latency.

The fabric may run at a higher data rate than the linecards; in this case
the ratio between the data rate of the fabric ports and that of the switch ports
is called speed-up. For example, in a synchronous switch with speed-up two, at
every time slot ingress/egress adapters can transmit/receive two cells to/from
the fabric. When speed-up is used, the egress adapters can receive cells from
the fabric at a higher rate than they can transmit on the output links, so they
need buffers to temporarily store cells in excess. The term speed-up generally
refers to the case in which both input and output fabric ports run faster than
the switch ports; however, it is possible to have output speed-up only, i.e.

2.1 General Architecture 15

to have only fabric output ports run at a higher data rate. Speed-up on the
fabric inputs only is possible but has no practical use.

Crossbar

Output 1 Output 2 Output 3

Crosspoint

Output 0

Input 0

Input 1

Input 2

Input 3

Figura 2.2. A 4× 4 crossbar.

The crossbar is a very simple fabric that directly connects n inputs to m
outputs, without intermediate stages. From a conceptual point of view, it is
composed by n + m lines, one for each input and one for each output, and
n×m crosspoints, arranged as depicted in Figure 2.2. Input i is connected to
output j if crosspoint (i, j) is closed.

Every output can be connected to only one input at a time, i.e. at most one
crosspoint can be closed on a column. However, one input can be connected
to multiple outputs at the same time by closing the corresponding crosspoints
on the input row. In this case the signal at the input port is replicated to all
the outputs for which the crosspoint is closed. The fabric has intrinsic support
for multicast (one-to-many) communication. The crossbar is obviously non-
blocking: an idle input (output) has all crosspoints its row (column) open,
thus it is enough to close the crosspoint at the intersection to connect them.

The simplicity of the crossbar and its non-blocking property make it a
very popular choice for packet switches. The main drawback is its intrinsic
quadratic complexity, due to the presence of n × m crosspoints. Crossbars
implemented on a single chip may also be limited by the amount of I/O
signals that must be mapped to chip pins. However, it is possible to build
a large multi-chip crossbar by properly interconnecting smaller single-chip
ones [7]. The complexity in terms of gates remains quadratic.

16 2 Packet Switch

2.2 Traffic conditions for a packet switch

The arrival of packets at the switch inputs can be modeled with a discrete-
time stochastic process. At every timeslot at most one fixed-size data unit,
called cell can arrive on each input. Variable-size packets can be considered
as “bursts” of cells received at the same input in subsequent timeslots and
directed to the same output.

We denote with λij the average arrival rate on input i of cells directed to
output j, normalized to the input/output link speed. The offered load from
input i is the (normalized) rate at which cells enter the switch on input i and
is represented by the term

∑N
j=1 λij , where N is the number of input/output

ports. Conversely, the offered load to output j is the (normalized) rate at which
cells destined to output j enter the switch and is equal to the sum

∑N
i=1 λij .

Traffic is admissible if no input/output links are overloaded, i.e. if the
arrival rate at the inputs and the offered load to the outputs are less than or
equal to the capacity of the input/output links. Formally, the admissibility
conditions can be stated as:

N∑

j=1

λij ≤ 1 ∀i = 1, . . . , N

N∑

i=1

λij ≤ 1 ∀j = 1, . . . , N

In these conditions it is theoretically possible for the switch to forward to the
outputs all the cells it receives on the inputs in finite time.

Traffic is uniform if a cell entering the switch can be directed to any output
with equal probability:

λij = 1/N ∀ i, j

It is independent and identically distributed (i.i.d.), also called Bernoulli, if
the probability that a cell arrives at an input in a certain timeslot:

• is identical to and independent from the probability that a cell arrives at
the same input in a different timeslot AND

• is independent from the probability that a cell arrives at another input.

The performance of a packet switch is mainly measured in terms of throughput
and latency. Throughput is the (normalized) rate at which the device forwards
packets to the outputs, latency is the time taken by a packet to traverse the
switch. A switch achieves 100% throughput if it is able to sustain an offered
load to all outputs equal to 1, under the hypothesis that traffic is admissible.

Multicast traffic

Under unicast traffic conditions, every packet received on input port has direct
to just one output port. In multicast traffic, conditions are different.

2.3 Buffering Strategies 17

Traffic generated by a single source and directed to multiple destinations is
called multicast. The set of outputs a multicast cell is destined to is called the
fanout set and its cardinality the fanout 1. For clarity, we distinguish between
the input cell that is transmitted to the switching fabric and the output cells
that are generated by the replication process.

A scheduling discipline is termed fanout splitting if it allows partial service
of an input cell, i.e. if the associated set of output cells can be transferred
to the outputs over multiple timeslots. No fanout splitting disciplines, on the
contrary, require all the output cells associated to an input cell to be delivered
at the outputs in the same timeslot. Fanout splitting offers a clear advantage
because it allows the fabric to deliver in every timeslot as many cells as possible
to the outputs, at the price of a small increase of implementation complexity.

The residue is the set of all output cells that lose contention for output
ports in a timeslot and have to be transmitted in subsequent timeslots.

2.3 Buffering Strategies

Due to traffic independence, the switch may receive in the same time slot
multiple cells directed to the same output. In this case there is a conflict
between inputs caused by output contention. It is not possible to forward
one of the contending cells and discard all the other, because the drop rate
would be unacceptable for any practical application. Therefore, the switch
is endowed with internal buffers to store cells that cannot be transmitted
immediately on the output link. The buffering strategy, mainly if the cells are
buffered before being transferred through the switching fabric or after, is a
major architectural trait and strongly influences performance, scalability and
cost of a switch [8].

2.3.1 Output-queued (OQ)

In OQ switches all cells arriving at the fabric inputs are immediately trans-
ferred through the switching fabric and stored at the outputs. At every times-
lot up to N cells directed to the same output can arrive, so the fabric must op-
erate with speed-up S = N and the memory bandwidth at each egress adapter
must be equal to N times the line rate of the switch ports2 (Figure 2.3).

If multiple cells are buffered at an egress adapter, it is necessary to decide in
which order they will be transmitted on the output link. This choice allows the
switch to prioritize different flows but does not have an impact on throughput.
The OQ switch offers ideal performance, i.e. it achieves 100% throughput
under any traffic pattern.

1 The term “fanout” is often used to refer also to the set itself.
2 For simplicity we only consider memory write bandwidth.

18 2 Packet Switch

N

N

N

1

1

1

1

1

1

Switching Fabric

Input 1

Input N

Output 1

Output N

Input 2 Output 2

Figura 2.3. An Output-queued switch.

The problem with OQ switches is scalability: fabric speed-up and, above
all, egress adapters memory bandwidth, grow linearly with N . As the band-
width offered by commercial memories is on the same order of link rates, the
OQ architecture is a suitable choice only for systems with a small number of
ports or low link rates.

2.3.2 Input-queued (IQ)

In IQ switches the fabric transfers to the egress adapters only cells that can be
transmitted immediately on the output links. Those that are blocked because
of output contention are buffered on the ingress adapters (Figure 2.4).

1

1

1

1

1

Switching Fabric

1

Output 1

Output N

Output 2

1

1

1

Input 1

Input N

Input 2

Fabric Arbiter

Figura 2.4. Input-queued switch.

This strategy has the following crucial consequences:

2.3 Buffering Strategies 19

• buffers are not needed on the egress adapters, because at every timeslot
the cell received from the switching fabric can be transmitted immediately
on the output link3;

• the switching fabric does not need speed-up, because it must be able to
deliver at most one cell per timeslot to each egress adapter;

• the memory bandwidth of the buffers on the ingress adapters is equal to
the switch ports line rate, irrespective of N , because at most one cell per
timeslot arrives at each input;

• a scheduler is required to decide which among multiple cells contending
for the same output will be transferred; the fabric must be configured
accordingly.

In the simplest case, arriving cells are stored in FIFO queues and each ingress
adapter can only transmit the cell that is at the head of its queue. This
constraint leads to a phenomenon called “Head-of-the-line (HOL) Blocking”:
a cell that is at the head of its input queue and cannot be transferred because
of output contention blocks all the other cells in the same queue. Blocked
cells may be destined to outputs for which no other input is contending, so
the opportunity to transfer a cell is lost. HOL-blocking can severely degrade
performance: for large values of N it limits switch throughput to about 58%
under uniform i.i.d. traffic [8].

This level of performance is not acceptable, so in the past there have
been many attempts to overcome the problem, in general by relaxing the
FIFO constraint and allowing the scheduler to consider multiple cells from
the same queue. In recent years increased CMOS densities have made feasible
a new queueing architecture, called Virtual Output Queueing, that completely
eliminates HOL blocking and allows IQ switches to achieve high performance.

2.3.3 IQ switches with Virtual Output Queueing (VOQ)

Virtual Output Queues (VOQs) are sets of independent FIFO queues, each of
which is associated to a specific output [9]. In an IQ switch it is possible to
avoid HOL-blocking by deploying a set of N VOQs on each ingress adapter
(Figure 2.5). With VOQs, cells destined to different outputs can be served
in any order and do not interfere with each other; cells destined to the same
output, on the contrary, are served with a FIFO policy to preserve the ordering
of packets belonging to the same flow.

At every timeslot the scheduler must decide which cells to transfer through
the switching fabric, subject to the constraints that at most one cell can depart
from an ingress adapter and at most one cell can be delivered to an egress
adapter. The problem is equivalent to calculating a matching on a bipartite
graph, as illustrated in Figure 2.6. Nodes on the left and right side represent

3 We neglect flow-control issues and assume that a cell can always be transmitted
on an idle output link.

20 2 Packet Switch

1 1

11

Switching Fabric

1

1

Input N Output N

Output 1Input 1

Q1
Q2

QN

Q1

QN

Q2

VOQ Set 1

VOQ Set N

...

...

Fabric Arbiter

Figura 2.5. Input-queued switch with Virtual Output Queues.

fabric inputs and outputs respectively; dashed lines (edges) represent non-
empty VOQs, i.e. cells that can be chosen for transfer. A matching is a set
of edges such that each input is connected to at most one output and each
output to at most one input.

Matching ProblemVOQ Status A Maximal Matching

Figura 2.6. A Bipartite Graph Matching (BGM) problem.

A matching is maximum size if it contains the highest number of edges
among all valid matchings; it is maximal if it is not possible to add new edges
without removing previously inserted ones. For instance, the matching shown
in Figure 2.6 is maximal but not maximum: no edges can be added, but it is
easy to verify that there exists valid matchings with four edges. Edges can be
assigned weights, such as the number of cells enqueued in the corresponding
VOQ, or the time the cell at the head-of-the-line has been waiting for service.

2.3 Buffering Strategies 21

If weights are defined, the Maximum Weight Matching (MWM) is the one
that maximizes the sum of the weights associated to the edges it contains.

IQ switches with VOQs can achieve 100% throughput under any i.i.d.
traffic pattern, but only if very sophisticated scheduling algorithms are em-
ployed [10]. These algorithms are in general difficult to implement in fast
hardware and too complex to be executed in a single timeslot. However, as
we will discuss in Section 2.4, a number of heuristic matching algorithms
that achieve satisfactory performance with reasonable complexity have been
devised. Therefore input-queueing with VOQs is today the preferred architec-
ture for the construction of large, high-performance packet switches. From this
point on, when discussing IQ switches we will implicitly assume that VOQs
are present.

2.3.4 Combined Input-Output-Queued (CIOQ) Switches

OQ and IQ switches represent two diametrically opposing points in the trade-
off between speed-up and scheduling complexity. The former employ maxi-
mum speed-up but require no scheduling, the latter run without speed-up but
need complex schedulers. CIOQ switches (with VOQs) represent an interme-
diate point: they buffer packets both at the inputs and at the outputs, employ
moderate speed-up S (1 ≤ S ≤ N) and use simpler schedulers.

Early simulation studies of CIOQ switches showed that, under a variety of
switch sizes and traffic patterns, a small speed-up (between two and five) leads
to performance levels close to those offered by OQ switches. These hints led a
number of researchers to analytically investigate the maximum performance
achievable by CIOQ switches. Among the many results that were published,
these are particularly significant:

• With a speed-up S = 2 and proper scheduling algorithms, a CIOQ switch
can exactly emulate an OQ switch, for any switch size and under any
traffic pattern [11, 12]. “Emulating” means producing exactly the same
cell departure process at the outputs given the same cell arrival process at
the inputs.

• A CIOQ switch employing any maximal matching algorithm with a speed-
up of two achieves 100% throughput under any traffic pattern, under the
restriction that no input or output is oversubscribed and that the arrival
process satisfies the strong law of large numbers [13].

These results prove that with moderate speed-up the performance of an IQ
switch can be dramatically improved and that it can even reach the per-
formance of an OQ switch if proper scheduling is used. A small fractional
speed-up (S < 2) is also typically used to compensate for various forms of
overhead, such as additional headers that must be internally prepended to
cells and padding imposed by segmentation [14].

22 2 Packet Switch

2.4 Scheduling Unicast Traffic in IQ Switches

2.4.1 Optimal Scheduling Algorithm

The optimal scheduling algorithms for an IQ switch, i.e. the one that maxi-
mizes throughput, is the Maximum Weight Matching (MWM), when queue
lengths are used as weights [15]. McKeown et al. noted that, with this choice
of the weights, specific traffic patterns can lead to permanent starvation of
some queues [10]. However, they also proved that 100% throughput is still
achieved for any i.i.d. traffic pattern if the ages of HOL cells are used as
weights; in this case starvation cannot happen. The most efficient known algo-
rithm for calculating the MWM of a bipartite graph converges in O(N3 log N)
time [16]. Despite polynomial complexity, this algorithm is not practical for
high-performance packet switches, because it is difficult to implement in fast
hardware and cannot be executed in the short duration of a timeslot. For this
reason, a number of heuristic algorithms have been developed.

2.4.2 Parallel Iterative Matching Algorithms

Parallel iterative matching algorithms are the most popular class of heuristic
matching algorithms. All inputs in parallel try to match themselves to one
output by using a request-grant protocol. VOQ selection at the inputs and
contention resolution at the outputs are performed by arbiters (also called se-
lectors) using round-robin or random criteria. The process is iterated multiple
times, until a maximal matching is obtained or the maximum number of iter-
ations is reached. On average these algorithms converge in log2 N iterations,
but in the worst case they can take N .

PIM

PIM [17] (Parallel Iterative Matching) is one of the first parallel iterative
matching algorithms that have been proposed. In every timeslot the following
three phases are executed and possibly repeated multiple times:

1. Request: every unmatched input sends a request to every unmatched
output for which it has a queued cell.

2. Grant: every output that has been requested by at least one input
randomly selects one to grant.

3. Accept: if an input receives more than one grant, it selects randomly one
to accept.

The main disadvantage of PIM is that it does not perform well, as it
achieves only 63% throughput with a single iteration under uniform i.i.d.
traffic. Moreover, it employs random selection, which is difficult and expen-
sive to perform at high speed and can cause unfairness under specific traffic
patterns [18].

2.4 Scheduling Unicast Traffic in IQ Switches 23

RRM

RRM (Round-Robin Matching) [18] addresses some of the drawbacks of PIM
by replacing random selection with round-robin. The selection logic at each
input and output is composed by a round-robin selector and a pointer. Pointers
at the outputs are named grant pointers, whereas those at the inputs accept
pointers.

Every iteration of RRM entails the following three phases:

1. Request: every unmatched input sends a request to every output for which
it has a queued cell.

2. Grant: every output that has been requested by at least one input selects
one to grant in round-robin order, starting from the position indicated
by the grant pointer. The pointer is advanced (modulo N) to one input
beyond the one just granted.

3. Accept: if an input receives more than one grant it selects one to accept
in round-robin order, starting from the position indicated by the accept
pointer. The pointer is advanced (modulo N) to one output beyond the
one just accepted.

The performance of RRM is very close to that of PIM, so still quite poor.

i-SLIP

i-SLIP [19] is a improvement of RRM that, with an apparently minor modifi-
cation, achieves much higher performance. The three phases are modified as
follows:

1. Request: same as RRM.
2. Grant: every output that has been requested by at least one input selects

one to grant in round-robin order, starting from the position indicated by
the pointer. The pointer is advanced (modulo N) to one input beyond the
one just granted if and only if the released grant is accepted in the accept
phase.

3. Accept: same as RRM.

Moreover, the grant and accept pointers are updated only in the first iteration;
a detail that is crucial to prevent starvation of any VOQ under any traffic
pattern.

i-SLIP performs extremely well: under uniform i.i.d. traffic it achieves
100% throughput with a single iteration, because it guarantees desynchro-
nization of the grant pointers. When the switch is loaded at 100% and traffic
is uniform i.i.d, all VOQs are backlogged. Assume that the grant pointers at
multiple outputs point to the same input, i.e. they are synchronized. The input
receives multiple grants, accepts one and moves the accept pointer. Thanks
to the modification of the grant phase, only one of the grant pointers (the one
corresponding to the grant that has been accepted) is moved and leaves the

24 2 Packet Switch

group. For the same reason, at most one new grant pointer can join the group.
It is possible to prove that, after a transient period, all grant pointers point to
different inputs, regardless of their initial position. A maximum matching is
produced at every timeslot and 100% throughput is achieved. Desynchroniza-
tion is preserved as long as all VOQs are non-empty, because all the released
grants are accepted and so all the grant pointers move “in lockstep”.

Another important feature of i-SLIP is that it is fair and starvation free,
i.e. it does not favor some flows over others and guarantees that a cell at the
head of a VOQ will be served within finite time.

DRRM

DRRM [20] (Dual Round-Robin Matching) is a further variant of i-SLIP
that achieves similar performance with one less phase and less information
exchange between the input and the outputs.

The two phases performed in each iteration are:

1. Request: every unmatched input selects one unmatched output to request
in round-robin order, starting from the position indicated by a request
pointer. In the first iteration, the pointer is updated to one position beyond
the input just requested (modulo N) if and only if a grant is received in
the grant phase.

2. Grant: each output that has been requested by at least one input selects
one to grant in round-robin order, starting from the position indicated
by a grant pointer. In the first iteration the pointer is updated to one
position past the input just granted (modulo N).

A grant phase is not required because each input requests only one output,
so it can receive at most one grant, which is automatically accepted.

DRRM achieves 100% throughput under uniform i.i.d. traffic because in
this situation request pointers (moved only if a grant is received) desynchro-
nize.

Figure 2.7 shows the operation of the DRRM algorithm for a 4×4 switch.
At the end of the first iteration all pointers (except R4 and G1) are moved
forward by one position. As the matching is maximal, it is not necessary to
perform additional iterations.

FIRM

FIRM [21] is an improvement of i-SLIP that achieves lower average latency
by favoring FCFS order of arriving cells. It does so by introducing a minor
modification in the pointer update rule of the grant phase of i-SLIP: in the first
iteration, if a grant is not accepted, the grant pointer is moved to the granted
input. The authors also show that this modification reduces the maximum
waiting time for any request from (N − 1)2 + N2 to N2.

A similar modification has been proposed for DRRM in [22].

2.4 Scheduling Unicast Traffic in IQ Switches 25

1

34

2

1

34

2

1

34

2

1

34

2

1

34

2

1

34

2

1

34

2

1

34

2

Requests
Request

VOQ Status Grants Pointers
Grant

Request Phase Grant Phase

Pointers

R1

R2

R4

G1

G2

G3

G4

R3

Figura 2.7. The behavior of the DRRM algorithm in a sample scenario.

Weighted Algorithms

As an attempt to approximate the behavior of MWM and improve perfor-
mance under non-uniform traffic, heuristic iterative weighted algorithms have
been developed. Among these are i-OCF (Oldest Cell First), i-LQF (Longest
Queue First) and i-LPF (Longest Port First), proposed by Mekkittikul and
McKeown [23].

2.4.3 Sequential Matching Algorithms

Sequential scheduling algorithms produce a maximal matching by letting each
input add an edge at a time to an initially empty matching.

RPA [24] (Reservation with Pre-emption and Acknowledgement) and
RRGS [25] (Round Robin Greedy Scheduler) are examples of sequential
matching algorithms. An input receives a partial matching, adds an edge
by selecting a free output and passes it on to the next input. Inputs con-
sidered first are favored, because they find most outputs still available. To
avoid unfairness, the order in which inputs are considered is rotated at ev-
ery timeslot. These algorithms always produce a maximal matching, are fair
and can be pipelined to improve the matching rate. However, they require
strong interaction among the inputs and introduce latency at low load when
pipelined.

The Wavefront Arbiter [26] (WFA) is another popular sequential arbiter.
The status of all the N2 VOQs of the system is represented in a N×N request
matrix R: Ri,j = 1 if input i has a cell destined to output j, 0 otherwise. Sets of
VOQs that are positioned on a diagonal of the matrix are conflict-free, because

26 2 Packet Switch

they correspond to cells enqueued at different inputs and destined to different
outputs. Hence it is possible to produce a matching by sequentially “sweeping”
all the diagonals of the request matrix, excluding input and outputs that
have already been matched. WFA is fast, simple and offers good performance;
however, it suffers from some minor fairness and implementation issues [7].

2.5 Scheduling Multicast Traffic in IQ Switches

In an IQ switch replication can be achieved simply by transmitting cells
through the switching fabric multiple times, one for every egress adapter that
must be reached. However, the crossbar has intrinsic multicasting capabilities
and can replicate a cell to multiple outputs in a single timeslot. A scheduler
that takes advantage of this feature can reduce the latency experienced by
cells and the load on the fabric input ports, which are occupied for only one
timeslot.

In this section we briefly introduce the problem of scheduling multicast
traffic and present some of the most popular scheduling algorithms.

2.5.1 Queueing

A multicast cell can be destined to any subset of the N outputs, so the number
of possible fanout sets is 2N − 1. Even for moderate values of N it is not
practically feasible to provide a dedicated queue to cells with the same fanout
set, therefore HOL-blocking cannot be completely eliminated. Indeed, most
architectures store cell arriving on an ingress adapter in a single queue and
serve them in FIFO order.

To alleviate HOL-blocking, in [27] the authors propose a windowing scheme
that allows the scheduler to access any cell in the first L positions of the
queue. This scheme offers throughput improvements, but requires random-
access queues, which are complex to implement. Moreover, it is clearly not
effective under bursty traffic.

In [28] and [29] the benefits that can be gained by using a small number of
FIFO queues at each ingress adapter are investigated. When multiple queues
are present, it is necessary to define a queueing policy. Static queueing policies
always enqueue cells with a given fanout in the same queue, whereas dynamic
policies may enqueue them in different ones, depending on status parameters
such as queue occupancy. Static policies lose effectiveness when few flows
are active, because most of the available queues may remain empty, whereas
dynamic policies lead to out-of-order delivery.

In [32] maximum switch performance is analyzed, under the hypothesis
that a queue is provided for every possible fanout set. The results of this work
have great theoretical interest, because they show that an IQ switch is not
able to achieve 100% throughput under arbitrary traffic patterns, even if it
employs this ideal queueing architecture and the optimal scheduling discipline.

2.5 Scheduling Multicast Traffic in IQ Switches 27

2.5.2 Scheduling

The problem of scheduling multicast traffic in an input-queued switch has
been addressed by a number of theoretical studies. In [33] and [34] the per-
formance of various scheduling disciplines (such as random or oldest-cell-first)
is analyzed under different assumptions. Work in [35] studies the optimal
scheduling policy, obtaining it for switches of limited size (up to three inputs)
and deriving some of its properties in the general case.

In [36] the authors take a more practical approach: they specifically target
the design of efficient and implementable scheduling algorithms when FIFO
queueing is used and fanout splitting allowed. They provide important in-
sight on the problem and propose various solutions with different degrees of
performance and complexity. An important observation is that at any times-
lot, given a set of requests, all non-idling policies (those that serve as many
outputs as possible) transmits cells to the same outputs and leave the same
residue. What differentiates one policy from the other is residue distribution,
i.e. the criteria with which the set of output cells that have lost contention
is partitioned among the inputs. A concentrating policy assigns the residue
to as few inputs as possible. Policies exhibiting this property serve in each
timeslot as many HOL cells as possible, helping new cells to advance to the
head of the queue. As new cells may be destined to idle outputs, throughput
is increased. Actually a proof is given that for a 2×N switch a concentrating
policy is optimal, but it cannot be extended to switches of arbitrary size.

The first proposed algorithm, called “Concentrate” implements a purely
concentrating policy. However, the authors note that the algorithm suffers
from fairness issues, as it can permanently starve queues, so they proceed with
the design of TATRA, a concentrating algorithm with fairness guarantees. As
TATRA is difficult to implement in hardware, they further propose the Weight
Based Algorithm (WBA). WBA is a heuristic algorithm that approximates
concentrating behavior by favoring cells with small fanout and guarantees
fairness by giving priority to older cells. The algorithm works as follows:

1. At the beginning of every cell time each input calculates the weight of the
cell at the head of its queue, based on the age of the cell (the older, the
heavier) and the fanout (the larger, the lighter).

2. Each input submits a weighted request to all the outputs that it wishes
to access.

3. Each output independently grants the input with the highest weight; ties
are broken randomly.

In the specific implementation shown in the paper, the weight is calculated
ad W = αA − φF , where A is the age (expressed in number of timeslots),
F is the fanout and α and φ are multiplication factors that allow tuning of
the scheduler for performance or fairness. Large α implies that older cells are
strongly favored, improving fairness, while large φ penalizes cells with large
fanout, exalting the concentrating property and thus improving performance.

28 2 Packet Switch

Calculations show that a cell has to wait at the head of the queue for no
longer than (N(φ/α + 1) − 1) timeslots. WBA can be easily implemented in
hardware, as reported in the paper.

Parte I

A Switching Architecture for Synchronous IQ
Switch

3

Distributed Implementation of Crossbar
Schedulers

3.1 Introduction

IQ switches are suited for several application domains, such as traditional
routers/switches, SANs (Storage Area Networks), and HPC (High-Performance
Computing) interconnects; in most of these application domains, a large num-
ber of ports and high line rates are dominant and exceed single-chip imple-
mentation limits. Multichip implementation is limited by power density, gate
count, pin count, I/O bandwidth and wiring, due to the high degree of con-
nectivity between the input and output selectors [14]. In this thesis we present
new scheduling algorithms enabling the construction of schedulers for large
switches, while achieving a level of performance that is close to that of a
single-chip implementation.

3.2 Two- vs. three-phase algorithms

A very popular solution to determine a heuristic matching is to devise parallel,
iterative matching algorithms based on a three-phase (request-grant-accept)
[19, 21] or two-phase (request-grant) [44, 36, 20] scheme. Iterative matching
algorithms can be classified into two- and three-phase algorithms according to
the number of steps per iteration. In three-phase algorithms, there are request,
grant, and accept steps in every iteration. In the request phase, every input
sends a request to every output it has at least one cell for. In the grant phase,
every output independently selects one request to grant. As these decisions are
independent, multiple outputs may grant the same input. Therefore, in the
third phase, every input selects one grant to accept. Two-phase algorithms,
on the other hand, comprise only a request and a grant phase. In the request
phase, every input sends a request to one output for which it has at least one
cell. In the grant phase, every output independently selects a request to grant.
Because every input can receive one grant at maximum, there is no need for
an accept phase, i.e., every grant is automatically accepted.

32 3 Distributed Implementation of Crossbar Schedulers

Input and output selection is based on a prioritized round-robin mecha-
nism, i.e., the input (output) selector chooses the first eligible output (input)
starting from the position indicated by a pointer. The pointer update policy
is a crucial characteristic of each algorithm and must be chosen carefully to
guarantee performance and fairness. The update policies employed by these
algorithms share a common trait: once a connection (corresponding to a VOQ)
becomes highest priority, it will be given precedence over the other competing
ones until it is established. In i-SLIP this is achieved by having an output
grant the same input (in the first iteration) until the grant is accepted. In
DRRM, on the contrary, an input will keep requesting the same output (in
the first iteration) until it receives a grant. This feature guarantees fairness
and leads to pointer desynchronization [18], i.e., it assures that under heavy
traffic (when all the VOQs are nonempty) each output grants a different in-
put (i-SLIP) or each input requests a different output (DRRM). When this
happens, there are no conflicts and a maximum-size matching is produced in
every timeslot, leading to 100% throughput.

3.3 Round Trip Time Latencies

Recently, several researchers have addressed the problem of scheduling algo-
rithms in input queued switches when considering round trip time latencies
in the scheduling process. In [38] round trip latencies are introduced by the
need of addressing multi-rack implementation in very large switches. Multi-
rack implementation implies that the physical distance between line-cards and
the switching fabric is non negligible with respect to the time slot. As such,
performance of a centralized scheduler based on the classical iterative three-
phase (request-grant-accept) scheme are shown to degrade for large physi-
cal distances; a solution to cope with this problem is proposed, being based
on a differential signalling scheme and on a slight increase of the scheduler
complexity, which is assumed to keep track of VOQs state.

The centralized single-chip implementation of scheduling algorithms is
largely dominant; however, scalability problems may arise for very large high-
speed switches [39]. When looking at multi-chip implementations, device sep-
aration implies that decision taken by input/output selectors belonging to dif-
ferent devices are known only after an inter-chip latency, named RTT (Round
Trip Time). As such, as shown in Fig. 3.1, information critical i) to determine
the matching, ii) to update the pointers and iii) to issue new requests, is de-
layed by the inter-chip latency, causing performance degradation. RTTs may
be significant with respect to the time slot. Indeed, at high speed the time
slot is rather short (13ns at 40Gbit/s for a 64bytes packet) if compared with
inter-chip communication latencies which include propagation delays, data se-
rialization and pin sharing which may be required to overcome the I/O pin
count limit.

3.4 Multi-chip implementation 33

input status update
and selection

output selection
and status update

input
selector

output
selector

RTT
request

grant

Figura 3.1. Round trip time between input and output selectors.

3.4 Multi-chip implementation

Let us focus on iterative schedulers, based on three-phase or two-phase in-
formation exchange among inputs and outputs. These schedulers adopt OSs
(Output Selectors) to choose among multiple requests received by inputs and
ISs (Input Selectors) to select a proper request to issue in a given time slot
and to choose among multiple grants received by OSs. Scheduler distribu-
tion over several chips entails partitioning the selectors used to determine
a heuristic matching over physically separated devices. In a single-chip im-
plementation, all selectors are tightly coupled and decisions taken at inputs
(outputs) are immediately available to outputs (inputs). When dealing with
multi-chip implementations, the communication latency between devices im-
plies that algorithms devised to run under the hypothesis of having all the
scheduling state information available may not be optimal. Indeed, informa-
tion needed to update the pointer status or to issue new requests may be
known with a delay of some tens of cell time. Performance degradation and
loss of fairness were already shown to be a possible problem in this multi-chip
scenario.

Different levels of selectors distribution could be envisioned, which yield to
a different number of physically separated devices, as shown in Fig. 3.2. The
first obvious solution to reduce the scheduler complexity, labeled distribution
level DL1, is to implement the scheduler in two separate devices, each con-
taining respectively N input and N output selectors. This allows to roughly
divide by two the scheduler hardware complexity. Another extreme, labeled
distribution level DL3, is to distribute the selectors over 2N separate devices,
each device implementing one selector. This is referred to as fully distributed
solution, which permits a hardware complexity reduction by a factor of N .

34 3 Distributed Implementation of Crossbar Schedulers

IS1

IS4

IS3

IS2

OS1

OS2

OS3

OS4

IS1

IS4

IS3

IS2

OS1

OS2

OS3

OS4

OS1

OS2

OS3

OS4

IS1 IS1

IS4

IS3

IS2

OS4

OS3

OS2

OS1

IS4

IS3

IS2

DL0 DL1 DL2 DL3

Figura 3.2. Distribution levels of a centralized multi-chip scheduler: DL0 is
a monolithic, single-chip implementation, DL3 is a fully distributed multi-chip
implementation.

As an intermediate step, in [39] a further possible solution is proposed: the N
input selectors are physically separated in N devices, whereas all N output
selectors are implemented in a single device. This solution has a major draw-
back: it reduces the hardware complexity by a factor of two only. However,
having the output selectors in a single device permits coordination among
output selectors with no delay. This permits to implement schedulers with
more iterations in a single cell time, thus preserving good performance for
increasing RTTs; however, this limits scheduler scalability. As such, we focus
on schedulers suited to a fully distributed multi-chip scenario (distribution
level DL3).

4

Distributed Scheduler under Unicast Traffic
Conditions

4.1 Scheduling algorithms with RTT latencies

Dealing with RTTs among devices has a profound impact on scheduler de-
sign. In [39], the proposed two-phase scheduler is a direct extension of the
DRRM (Dual Round Robin Matching) scheduler[20], originally conceived for
a monolithic implementation, to a distributed environment.

Let us briefly summarize DRRM behavior, focusing on an enhanced ver-
sion of DRRM which achieves lower delays, thanks to a modified pointer
update rule similar to that used in FIRM (Fcfs in Round robin Matching)
[21]. In every iteration, first a request is sent by any unmatched input to the
first unmatched backlogged output in the round-robin order starting from the
current request pointer position. If an output receives more than one request,
it grants the one that appears first in the round-robin order starting from
the current position of the grant pointer. Request pointers are updated, in
the first iteration to point to the output selected in the request phase, and
further to one position (modulo N) beyond the output selected if and only
if the request is granted in the first iteration. Grant pointers are updated to
one position (modulo N) beyond the input granted in the first iteration.

In a monolithic implementation, all decisions are taken, and known, in a
single time slot, and pointers are updated accordingly. In a distributed imple-
mentation, first, request information is delayed by RTT/2 (assuming symmet-
ric RTTs) and the request pointer update cannot be performed immediately,
since grants will be available RTT/2 slots later. A straightforward extension of
DRRM to a distributed scenario would imply that requests to be issued in the
next time slot are based on pointer positions not updated, thus breaking the
round-robin de-synchronization mechanism and leading to throughput degra-
dation. Moreover, request selectors would not be able to accurately know the
number of underway grants, thus negatively affecting request decisions.

The distributed extension of DRRM proposed in [39] is based on the fol-
lowing ideas. Let us focus on a single iteration case. The key idea to keep the
pointer de-synchronization is to ensure that every pointer is updated at most

36 4 Distributed Scheduler under Unicast Traffic Conditions

once every RTT slots. As such, each input and output selector keeps a distinct
(request and grant) pointer for every RTT slots. Traditional pointer update
rules are used: Request pointers are only updated when the corresponding
grant arrives, one RTT after issuing the corresponding request, whereas grant
pointers are updated immediately after issuing a grant, since issued grants
are accepted by definition. In other words, with respect to a monolithic im-
plementation, RTT staggered schedulers are running in pipeline dealing with
requests and grants.

This implies that the scheduler complexity (in terms of required pointers)
increases linearly with RTT, since RTT pointer registers are required per se-
lector. An additional counter (modulo RTT) is needed to indicate the current
pointer to be used, whereas the combinatorial selection logic does not need
to be duplicated, since a multiplexer to select the proper register among the
RTT registers is enough to permit a correct behavior.

Another issue is related to pending requests. Indeed, only after RTT slots
it is possible to know whether an issued request was granted. In the mean-
time, input selectors should issue further requests. If the number of submitted
requests exceeds the number of enqueued cells, it may happen that a slot is
reserved for a VOQ that will become empty by the time the grant is received
at the input selector, thus wasting system resources. To solve this problem, a
PRC (Pending Request Counter) per VOQ plus a request history per input
selector are introduced [39]. Basically, new requests are issued only if the num-
ber of pending requests is smaller than the number of cells currently stored
in the corresponding VOQ. This choice, which further complicates the selec-
tor design, is fundamental to obtain good performance at low loads or under
heavily unbalanced traffic.

Further problems are related to the issue of dealing with more iterations in
a single time slot (see [39] for details). We disregard issues related to iterations,
which can be reasonably used only if all output selectors share the same
physical device. Indeed, iterations are based on the knowledge of the results
of previous iterations in the same time slot; in a fully distributed scheduler
with RTTs, knowledge of results of previous iterations requires RTT time
slots, thus basically preventing the possibility of iterating in this scenario.

4.2 Synchronous Round Robin

Let us now describe the SRR scheduler, initially disregarding issues related
to RTT for simplicity. The SRR scheme is based on a cyclic, TDMA-like,
preferential scheduling of VOQs. This preferential scheduling is obtained by
logically numbering the slots with an incremental counter s, ranging from 0
to N − 1, i.e., a modulo N counter. Slots are logically organized in frames,
named SRR frames; each frame comprises N slots.

Let us describe the input and output selectors behavior at time slot s:

4.2 Synchronous Round Robin 37

1. the input scheduler associated to input i preferentially selects for a trans-
mission the VOQ with destination output |i + s|N . In other words, a
preferential request is issued for output |i + s|N .

2. if the preferential VOQ is empty, a request for the longest VOQ is
attempted; ties among VOQs are broken according to a round-robin
scheme.

Output schedulers grant the preferential request, if issued; otherwise, a ran-
domly chosen request is granted among non-preferential conflicting requests.

Other possible solutions exist to break ties among VOQs at input selectors,
such as random or round-robin choice among non-preferential VOQs; howev-
er, the longest VOQ choice provides the best compromise between complexity
and performance, as discussed later. Note that the random choice among con-
flicting non-preferential requests at output selectors may be not the most
natural choice. Indeed, given that input selectors choose non preferential re-
quests exploiting a longest queue first algorithm, output selectors could select
the request corresponding to the longest VOQ among conflicting requests.
However, this would require an increase in signalling complexity, since VOQ
lengths should be sent to output selectors, and also a complexity increase at
output selectors, since conflicting request should be compared according to
their length. Selecting longest queues at inputs is easier, since queues could
be kept simply ordered by length; indeed, in a given time slot, at each input at
most one departure and one arrival can occur. Moreover, performance results
show that the benefit of the longest queue selection at outputs is marginal for
both balanced and unbalanced traffic.

Regardless of the fact that the request is granted or not, a new selection
is made in the next time slot, according to the above described algorithm. In
summary, for low switch loads SRR behaves similarly to a single-queue FIFO
strategy. At high loads, when all queues are always non-empty, the SRR pref-
erential scheduling deterministically orthogonalizes input request attempts, so
that a single preferential request is received by any output in a given time slot.
More precisely, for network loads larger than or equal to the channel capacity,
input selectors behave exactly like in a Time Division Multiple Access (TD-
MA) scheme: during a SRR frame, whose length is equal to N slots, all inputs
have exactly one access opportunity for transmissions toward each output,
and they exploit this access opportunity deterministically, thereby avoiding
potential conflicts at outputs. In this sense, SRR is throughput optimal under
overloaded uniform traffic conditions.

A nice property of SRR is that it can be used without any modification
i.e., with no complexity increase, to deal with RTTs. The only difference is
that grants will be received one RTT later with respect to request issue, thus
negatively affecting delays. However, we will show that even without exploiting
any pending request counter, performance at low loads are comparable with
those of iterative algorithms exploiting pending request counters.

38 4 Distributed Scheduler under Unicast Traffic Conditions

4.3 Performance results

We show performance results based on simulation runs exploiting a propri-
etary simulation environment developed in C language. Statistical significance
of the results are assessed by running experiments with an accuracy of 1%
under a confidence interval of 95%. We compare SRR with the distributed
extension of DRRM presented in [39]. The switch has N = 16 inputs and
outputs running at the same speed, and is loaded with either Bernoulli or
Bursty traffic with geometrically distributed burst sizes with an average burst
size of 10 cells; cells in the burst are all directed to the same output. Perfor-
mance indices are either average delays vs normalized switch throughput or
maximum achievable normalized throughput in overload. SRR performance
are reported as solid lines with black dots, the modified version of DRRM,
which accounts for multiple pointers to deal with RTTs, is labeled MP (Multi
Pointer) and plotted using dashed lines; different symbols refer to a variable
number of iterations.

0.01

0.1

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=0

MP i=1
MP i=4

SRR
iLQF i=1

LQF-1 i=1
TDMA

Figura 4.1. Performance comparison between SRR, MP, iLQF and TDMA under
uniform Bernoulli traffic in a monolithic scheduler implementation (RTT=0).

Let us first examine, in Fig.4.1, a scenario in which RTT=0, which cor-
responds to the traditional single-chip implementation of schedulers, under
uniform Bernoulli traffic. Besides DRRM and SRR, we plot also a TDMA
scheme, iLQF (Longest Queue First) [10] with one iteration, and LQF-1, a
simplified version of iLQF with one iteration where inputs send a single request
only (for the longest queue) per time-slot to outputs. Note that the TDMA
scheme corresponds to SRR using the preferential scheduling only whereas
LQF-1 corresponds to SRR using the non-preferential scheduling only. Clear-
ly, the preferential scheduling scheme of SRR is fundamental to obtain good
performance results at high loads: indeed, iLQF with i = 1 iteration saturates
at 0.65, whereas LQF-1 saturates at 0.61. At low loads the non-preferential

4.3 Performance results 39

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=2

MP i=1
MP i=4
MP i=8

SRR

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=4

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=10

1

10

100

1000

0 0.2 0.4 0.6 0.8 1
A

ve
ra

ge
 d

el
ay

Throughput

RTT=20

Figura 4.2. Performance comparison between SRR and MP under uniform
Bernoulli traffic for variable RTTs.

scheme of SRR becomes dominant, so that performance are close to those of
modified DRRM and much better than those of a pure TDMA.

In Fig.5.1 we report delays as a function of the switch throughput for
variable RTTs under uniform Bernoulli traffic. No throughput limitations are
observed for both SRR and modified DRRM; SRR shows remarkably low de-
lays, improving performance as RTT increases. Only a slight delay impairment
can be noticed for low-medium loads and small RTTs; this is due to the miss-
ing pending request counters, which are instead used in the modified DRMM.
Recall that pending request counters are fundamental to avoid issuing too
many request for the same VOQ; indeed, if the number of requests issued ex-
ceeds the number of enqueued cells, which may happen at low-medium loads
and for large RTTs, it may happen that the VOQ becomes empty by the time
the grant is received, thus wasting system resources. Indeed, modified DRRM
without pending request counters performs much worse, as shown in Fig.4.3,
where SRR clearly outperforms the modified DRRM. Moreover, recall that
SRR, besides not exploiting any additional counter, does not require any it-
eration, thus allowing a fully distributed implementation; nevertheless, delay
performance are comparable with those of modified DRRM with logN = 4
iterations, and improve with increasing RTTs. Minor differences exist in this
scenario if the non-preferential VOQ choice at inputs in SRR is done on a

40 4 Distributed Scheduler under Unicast Traffic Conditions

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

A
vg

 d
el

ay

Throughput

RTT=4

MP i=1
MP i=4
MP i=8

SRR

Figura 4.3. Performance comparison between SRR and MP under uniform
Bernoulli traffic when MP is not using the PRC counters.

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
vg

 d
el

ay

Throughput

RTT=4

MP i=1
MP i=4
MP i=8

SRR
SRR-RND

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
vg

 d
el

ay

Throughput

RTT=20

Figura 4.4. Performance comparison between SRR and MP under uniform Bursty
traffic for variable RTTs.

round-robin basis instead of using a longest queue choice.
Similar performance are shown by SRR for Bursty traffic, as reported

in Fig.4.4. Delay properties are remarkable, since SRR shows much better
performance than modified DRRM with i = 1 iteration also under correlated
traffic. Note that SRR with the random choice of non-preferential VOQs at
input selectors, labelled SRR-RND in the plot, show much worse performance
than SRR for medium loads, thus justifying the choice of the longest VOQ
when the preferential queue is empty.

5

Distributed Scheduler under Multicast Traffic
Conditions

5.1 Multicast scheduling algorithms

We define the fanout set of a multicast cell as the set of outputs to which the
cell should be transferred. The cell fanout is the number of outputs in the
fanout set. A multicast scheduler may not be able to transfer a multicast cell
in a given time slot to all outputs in the cell fanout set, since some outputs
may be matched to other inputs by the scheduler. In this case, to enhance
performance, most multicast schedulers try to send a copy of the multicast
cell to the largest available set of outputs; this is often named fanout splitting
discipline. Fanout splitting disciplines may leave a residue, i.e., a copy of
the multicast cell that must reach the subset of output ports that were not
matched to the given input port in previous time slots.

We focus on two previously proposed multicast scheduling algorithms,
selected due to their ease of implementation and good performance: WBA
(Weight-Based Algorithm) [36] and mRRM [44]. Both rely on a single FIFO
queue at each input for multicast. We briefly remind the WBA and mRRM
scheduler behavior referring to a scenario where RTT=0 for simplicity. Both
schedulers are based on a two-phase request-grant algorithm.

WBA assigns weights to input cells based on their age and fanout at the
beginning of every cell time. Once weights are assigned, each OS chooses the
heaviest input among those subscribing to it. More precisely, at the begin-
ning of every cell time, each IS computes the weight of the new multicast
cell/residue at its HOL based on the age of the cell (the older, the heavier),
and the fanout of the cell (the larger, the lighter). Then, each IS sends this
weight to all outputs that the cell/residue at its HOL wishes to reach. Each
OS grants to the input with the highest weight, independently of other out-
puts, breaking ties with a random choice. Note that a positive weight should
be given to age to avoid input starvation. However, to maximize throughput,
fan-out are weighted negatively. Several weight assignments algorithm can be
adopted (see [36] for details). We use the weight definition chosen in the sim-
ulator available on the Web site at http://klamath.stanford.edu/tools/SIM/:

42 5 Distributed Scheduler under Multicast Traffic Conditions

The cell weight is equal to the number of inputs minus the cell fanout plus
the cell age.

Multicast Round Robin (mRRM) was designed to be simple to imple-
ment in hardware. A single pointer to inputs is collectively maintained by
all outputs. Each output selects the next input that requests it at, or after,
the pointer, following a round robin order. At the end of the cell time, the
single pointer is moved to one position beyond the first input that is served.
However, the single pointer update rule at OSs of mRRM does not permit
a fully distributed multi-chip implementation, since output selectors need to
be aware of other output selector choice to update the pointer value and this
would imply a delay equal to the RTT for pointer update rule that would
break the mechanism.

5.2 Improved Multicast Round Robin

Direct extensions of WBA and mRRM can be envisioned to deal with RTTs
among input/output selectors induced by multi-chip implementation. Since
grants are received at IS with a delay of RTT slots, a multicast cell is at the
head-of-the-line for at least RTT slots. To avoid issuing multiple requests for
the same cell, thus wasting resources, a number of queues equal to RTT+1 is
needed. ISs choose the queue from which the request is issued according to a
round-robin fixed scheme among input queues. As such, at most one request
per input queue is issued in each RTT. OSs keep working as in the basic WBA
and mRRM scheme.

Further extensions can be envisioned and are studied later when presenting
simulation results. Indeed, the single FIFO scheme when RTT=0 and its direct
extension to RTT+1 FIFO queues when RTT > 0 does not solve the issue of
HoL blocking for multicast flows. As such, in some experiments, we introduce
a limited number of k = 2 FIFO queues at each input and k = 2× (RTT + 1)
for RTT> 0. In this case, whereas output selectors operate as in the basic
scheme, input selectors choose one among the k queues according to queue
weights for WBA and to a round-robin scheme for mRRM.

The introduction of more queues at inputs, either to deal with RTTs or to
reduce the HoL blocking, introduces the issue of multicast flow assignment to
queues. Although several possible assignment strategies were studied in the
past [29, 30], in this paper we simply adopt a packet-by-packet load balancing
scheme among available queues. We are aware that this may introduce out-of-
sequence delivery, but we prefer to avoid studying assignment scheme in this
initial work and concentrate on the issue related to dealing with RTTs.

Let us now describe the IMRR (Improved Multicast Round Robin) sched-
uler, initially disregarding issues related to RTT for simplicity when a single
FIFO queue is available. The same concept of preferential input is kept as
in the mRRM algorithm: at each time slot, all output selectors keep a single
pointer to a preferential input. However, the pointer update rule is stateless;

5.3 Performance results 43

 0.1

 1

 10

 100

 1000

 10000

 100000

1.00.90.7 0.80.60.40.2

A
ve

ra
ge

 d
el

ay

Throughput

RTT=0

multi-copy
mRRM

WBA
WBA 2 queue

IMRR
IMRR 2 queue

RND

 0.1

 1

 10

 100

 1000

 10000

 100000

1.00.90.7 0.80.60.40.2

A
ve

ra
ge

 d
el

ay

Throughput

RTT=4

Figura 5.1. Performance comparison under uniform Bernoulli cell arrivals.

regardless of the granted cell, at each time slot, the pointer is increased (mod-
ulo N) according to a round robin scheme. This is fundamental to guarantee
that the scheduler can run in the fully distributed case, since no coordination
among output scheduler is required. Input selectors issue a request containing
a weight equal to the fanout of the selected cell. Output selectors choose the
request from the preferential input, if any, otherwise they grant the request
corresponding to the smallest fanout.

When more than one queue is present at inputs to avoid HoL (i.e., k = 2
queues for RTT=0 and k = 2×(RTT+1) queues for RTT> 0), input selectors
issue a request for the cell with largest weight, the weight being queue length
plus cell fanout.

5.3 Performance results

We show performance results based on simulation runs exploiting a propri-
etary simulation environment developed in C language. Statistical significance
of the results are assessed by running experiments with an accuracy of 1%
under a confidence interval of 95%. We compare IMRR with the previously
presented extensions of mRRM and WBA, with a random (RND) scheduler,
and with the multi-copy approach, where multicast cells are replicated at in-
puts and treated as unicast cells. In the multi-copy approach, the unicast SRR
scheduler [31] is run, given its good performance and adaptability to the fully
distributed multi-chip scenario.

The switch has N = 16 inputs and outputs running at the same speed;
cells are generated according to an i.i.d. Bernoulli process, i.e., at each time
slot, an input port receives a cell with probability ρ, 0 ≤ ρ ≤ 1, equal to the
input load. Later, we also consider packet arrivals, i.e., trains of cells willing
to reach the same output, the number of cells being drawn from a uniform
distribution ranging from 1 to 16 cells. Performance indices are either average
delays vs normalized switch throughput or maximum achievable normalized
throughput in overload.

44 5 Distributed Scheduler under Multicast Traffic Conditions

 0.1

 1

 10

 100

 1000

 10000

0.60.50.40.30.2

A
ve

ra
ge

 d
el

ay

Throughput

RTT=0

multi-copy
mRRM

WBA
WBA 2 queue

IMRR
IMRR 2 queue

RND

 0.1

 1

 10

 100

 1000

 10000

0.60.50.40.30.2

A
ve

ra
ge

 d
el

ay

Throughput

RTT=4

Figura 5.2. Performance comparison under gathered traffic with cell arrivals.

In terms of traffic distribution among input and output ports, we initially
consider both i) a uniform scenario, in which all input (and output) ports
are equally loaded and the fanout set of a new cell is generated randomly,
according to a uniform distribution, ii) a gathered scenario, where the traffic
is gathered over few (M = 5) active input ports and equally distributed
over all N = 16 output port. In the gathered scenario, the fanout set is
chosen according to a non-uniform binomial distribution, with mean fanout
hm = 3.66. More precisely, the probability Pf of choosing a fanout set of size
f is Pf = N/hm

(
N
f

)
(hm/N)f (1 − hm/N)N−f . This is a traffic pattern well

known to be hard to schedule [29]. Indeed, when all inputs are equally loaded,
the maximum sustainable traffic leads to a normalized input load which is at
most 1/E[f], E[f] being the average cell fanout size. If instead the traffic is
gathered among few inputs, the normalized input load for sustainable traffic
can approach 1, so that the efficiency in serving cells queued at the inputs
becomes important on performance. Note that the considered gathered traffic
scenario is far from being unrealistic. Multicast applications often generate
sustained and long-lasting flows, that may only engage few inputs and several
outputs at a given router or switch.

In both uniform and gathered traffic scenarios, unicast traffic is not giv-
en any special attention and is treated as a special case of multicast traffic
with fanout set equal to one. To analyze switch behavior in a more realistic
environment which includes a significant percentage of unicast traffic, we also
examine two mixed traffic scenarios, the first one comprising a variable mix
of unicast and broadcast traffic only, the second one in 50% of unicast and
50% of multicast traffic load the switch.

IMRR performance are reported as solid lines with circles, the modified
version of WBA is plotted using dotted lines with triangles, whereas the mod-
ified version of mRRM is identified by dashed lines with diamonds; the multi-
copy approach is plotted with a solid line with crosses, and the random sched-
uler with squares. White symbols refer to the case of a single FIFO for RTT=0
and RTT+1 queues for RTT> 0, whereas black symbols are used for k = 2
FIFOs for RTT+0 and k = 2× (RTT+1) FIFOs for RTT> 0.

5.3 Performance results 45

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t

Percentage of broadcast traffic

RTT=0

mRRM
WBA
IMRR

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t

Percentage of broadcast traffic

RTT=4

Figura 5.3. Performance comparison for uniform traffic and a variable percentage
of unicast and broadcast traffic only.

0.1

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=0

multi-copy
mRRM

WBA
IMRR

0.1

1

10

100

1000

10000

100000

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 d
el

ay

Throughput

RTT=4

Figura 5.4. Performance comparison for uniform traffic: 50% unicast and 50%
multicast traffic.

In Fig.5.1 we report delays as a function of the switch throughput for
variable RTTs under uniform multicast Bernoulli traffic with cell arrivals.
Only the multi-copy approach permits to obtain 100% throughput; however,
the price to be paid is a significant increase in the average delay at low-medium
loads when RTT=0. When increasing RTT to 4 time slots, all algorithms show
similar delay performance. No major differences are evident among multicast
schedulers, apart from a slight throughput increased obtained by the proposed
IMRR when using k FIFO queues per RTT. The RND scheduler performs
worse, as expected.

Despite its good performance in the uniform scenario, recall that the multi-
copy approach is reported only as a reference case; indeed, it cannot be used
in practice, since, for example, it is unable to sustain a broadcast flow over-
loading a single input. Indeed, when studying the performance of the switch
under gathered traffic in Fig.5.2, the throughput limitation of the multi-copy
approach becomes evident. In this scenario, the proposed IMRR approach
provides improved throughput especially when using k = 2 FIFO queues per
RTT. The WBA scheduler, despite its higher complexity, is unable to exploit
k = 2 FIFO queues to obtain performance benefits. The RND scheduler still

46 5 Distributed Scheduler under Multicast Traffic Conditions

presents the worse performance among the multicast schedulers (excluding
the multi-copy approach).

IMRR shows good throughput performance also when considering the traf-
fic scenario with unicast and broadcast traffic only, reported in Fig.5.3. When
broadcast traffic becomes dominant, all algorithms show similar, good, per-
formance. However, when unicast traffic becomes more significant, differences
among algorithms become evident even when using a single FIFO queue per
RTT, and IMRR outperforms the other algorithms.

In Fig.5.4 we report delays as a function of the switch throughput when
considering the scenario in which 50% of the traffic is uniform multicast and
50% is uniform unicast. Also in this case IMRR provides throughput benefits
with respect to WBA and mRRM both when RTT=0 and RTT > 0.

Finally, we study switch performance when considering packet arrivals
at inputs instead of cell arrivals. Packet size is uniformly chosen among 1
and 16 cells. When a packet is generated, it is segmented in cells and cells
are sequentially stored in the proper queue for successive transmission. Cells
access the switching fabric and are transmitted independently.

In Fig. 5.5 we report delays under uniform Bernoulli traffic. The surpris-
ing result is that WBA provides worse performance than IMRR and even of
RND, both when RTT=0 and RTT=4. Recall that WBA requires a significant
complexity increase with respect to the two other schedulers. This behavior
is highlighted not only by the uniform packet size distribution, but also by
other variable packet size distributions such as a trimodal distribution simi-
lar to the distribution of Internet packet size. The reason for the throughput
decrease can be explained by looking at the matching size PDF (Probability
Density Function) reported in Fig. 5.6 for RTT=0 (similar results not shown
hold for RTT=4) in overload. The matching size is computed as the number
of edges that the scheduler selects in each time slot. The uniform packet size
distribution penalizes the ability of the multicast schedulers in selecting large
size matchings, as visible when comparing the left plot for fixed packet size
with the right plot. This is due to the following phenomenon. When two badly
conflicting packets reach the HoL of their respective queue, they start com-
peting for the same set of resources (output ports). Non conflicting packets
in other queues can be transferred, but, since this conflicting situation lasts
for several time slots due to the packet size, there is an increasing chance
that other conflicting packets reach the HoL of other queues, creating a self-
sustaining conflicting situation. This behavior is shared by all schedulers, and
the maximum throughput is reduced from 0.9 to 0.8.

WBA further exacerbates this problem, since the weighted metric increas-
es the probability of making the same matching choice at output ports in
consecutive time slots. This is not true for both IMRR and RDN that, thanks
to the round-robin or random selection, make independent choice in each time
slot. To confirm this, in Fig. 5.7 the matching persistency PDF is reported
when RTT=0 (similar results, not shown, hold for RTT=4). The matching
persistency is computed according to the following algorithm: considering two

5.3 Performance results 47

consecutive time-slots, compute the persistency as the number of edges that
are selected in both matching. Clearly, the matching persistency ranges from
0 to 16. WBA shows an increase in matching persistency due to the memo-
ry effect created by the weighted metric when selecting the matching edges.
When using a fixed packet size distribution, with a packet size equal to the
cell size, this memory effect disappears. As such, weighted metrics, often pro-
posed when running multicast scheduler, should be reconsidered, since they
seem to offer good performance but only when considering cell-based arrivals,
a scenario not really significant in today networks.

In summary, IMRR presents equivalent or better performance than other
previously proposed multicast schedulers. IMRR does not require the compu-
tation of any delay based metrics, a rather complex task in today high-speed
switches. Furthermore, it is suited to a fully distributed implementation. Be-
sides this additional constraint, IMRR shows good performance both in the
traditional case of monolithic implementation as well as when considering
RTT induced by the multi-chip implementation of multicast schedulers.

 1

 10

 100

 1000

 10000

 100000

 0.2 0.4 0.6 0.8

A
ve

ra
ge

 d
el

ay

Throughput

RTT=0

RND
IMRR
WBA

 1

 10

 100

 1000

 10000

 100000

 0.2 0.4 0.6 0.8

A
ve

ra
ge

 d
el

ay

Throughput

RTT=4

Figura 5.5. Performance comparison under uniform Bernoulli packet arrivals.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

M
at

ch
in

g
si

ze
 P

D
F

Matching size

Fixed packet size

RND
IMRR
WBA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10 12 14 16

M
at

ch
in

g
si

ze
 P

D
F

Matching size

Uniform packet size

Figura 5.6. Matching PDF for RTT=0 under uniform Bernoulli packet arrivals.

48 5 Distributed Scheduler under Multicast Traffic Conditions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16

M
at

ch
in

g
pe

rs
is

te
nc

y
PD

F

Matching size

Fixed packet size

RND
IMRR
WBA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16

M
at

ch
in

g
pe

rs
is

te
nc

y
PD

F

Matching size

Uniform packet size

Figura 5.7. Matching persistency for RTT=0 under uniform Bernoulli packet
arrivals.

6

Distributed Integration of Unicast and
Multicast Scheduling

6.1 Introduction

The problem of integration between the unicast and the multicast scheduling
has been studied, from a theoretical point of view in [40]. These authors also
proposed an integration scheme that consists of scheduling multicast traffic
fist and using the remaining resource for unicast. The main disadvantage of
this scheme, which we call sequential, is that it easily leads to starvation of
unicast traffic: a single input loading the switch with broadcast traffic would
suffice to prevent unicast from getting any service at all.

In [41] the authors have proposed an improvement of the sequential
scheme, in which unicast and multicast traffic are alternatively scheduled first
in different time slot to avoid starvation. The choice of which scheduler runs
first in a given interval must be based on traffic characteristics, in particular
it must be based on the ratio of unicast to multicast traffic. If the ratio is not
estimated properly or it value changes over time, system throughput can be
severely degraded.

In [42] the authors showed that an approach to achieve integrated schedul-
ing is to treat multicast traffic as unicast, but distributing the burden of cell
replication over multiple ports. The main disadvantage with this scheme is
that it potentially introduces high latency.

In [43] it is introduced an integration scheme called FILM (FILter&Merge)
in which the integration scheme is based on two block: the request filter and
the integration block. In this scheme the two schedulers run in parallel and in-
dependently. The integration block decides which unicast and multicast edges
will be part of the integrated matching. The set of edges that are excluded
from the integrated matching is called remainder. The request filter is a block
capable of reserving a subset of the switch inputs and outputs by dropping
the corresponding unicast and multicast requests. Reservations are made at
any time slot based on information received from the integration block and
the status of the queue. This scheme has the advantage that it doesn’t have

50 6 Distributed Integration of Unicast and Multicast Scheduling

to know the characteristics of the traffic and it avoids the starvation of a type
of traffic.

6.2 Frame Integration

We define frame as a succession of slot of predetermined length. The use of
the frame allows us to obtain a simple integration scheme. The integration
scheme is based on the idea of labelling each slot either as a unicast or as a
multicast slot. In unicast slots, priority is given to unicast traffic; in multicast
slots multicast traffic has higher priority.

6.3 Description of Scheduler

In a ”multicast slot”, a multicast scheduling algorithm defines a multicast
matching and a unicast scheduling algorithm defines a unicast matching. All
the edges found by the multicast scheduler are to be part of integrated match-
ing adding with all the edges found by the unicast scheduler not in conflict
with the multicast edges. As the multicast scheduler we choose uses IMRR
[49] and as the unicast scheduler SRR [31].

In a ”unicast slot”, for the unicast traffic, is used a modified version of
the SRR algorithm. The modification aim to improve the performance of the
multicast traffic which uses an LQF algorithm. The SRR scheme is based on
a cyclic, TDMA-like, preferential scheduling of VOQs. In the request phase,
the unicast scheduler sends the request for all the preferential VOQ. If a
preferential VOQ is empty, a request for the longest VOQ is attempt; ties
among VOQs are broken randomly. The multicast scheduler sends the requests
in agreement whit the fanout set of the cell in head of the queues, i.e, it
sends a request for any output in its fanout-set. Output schedulers grant
the preferential request, if issued. Otherwise the request sent by the heaviest
queue is chosen, in agreement to a LQF scheme, also taking into account the
multicast request, in contrast to the original SRR scheme.

To improve performance, i.e., decreasing the conflict at the output selector,
the common characteristic of IMRR and SRR to define preferential requests is
exploited. Within a unicast slot, if an input sends a SRR preferential request,
it doesn’t send a request for multicast traffic. In the same way, in a ”multicast
slot”, if an input sends a preferential request, according to the IMRR scheme,
it doesn’t send a request for unicast traffic.

6.4 Dynamic Frame

We call a frame as static when it is predetermined and it doesn’t change for
the duration of the simulation; therefore in this case, the frame scheme always

6.5 Simulation Result 51

uses the same frame. Otherwise we call a frame dynamic when it changes in
relation to the incoming traffic. In this case, the frame scheme will use a frame
that will be redefined every time-window. A time-window corresponds, in our
case, to 256 slot. The system calculates, at the end of that time, the total of
unicast cells arrive to the inputs and the total of multicast cells multiplied by
the respective fanout.

The frame is defined by assigning the slots to a unicast (multicast) traf-
fic in proportion to the number of unicast (multicast) cells arrived in that
time-window. We use a dynamic frame in order to obtain a scheme which
doesn’t depend on estimates of the traffic characteristics and which doesn’t
lose performance because of changes in the traffic. Thanks to the use of the
dynamic frame, the frame scheme fits the incoming traffic and it obtains good
performance as shown in the following paragraph.

6.5 Simulation Result

We have studied the performance of the system by simulation and then
compared to the results obtained by the same simulation for the FILM scheme.

The simulated system is an 8x8 switch with inputs buffers that can store
1000 cells. Cells are generated according to an i.i.d Bernoulli process, i.e, in a
time slot every input port receives a cell with probability ρ, equal to the input
load. Each cell has a probability P of being a multicast cell. The fanout of
multicast cells is uniformly distributed between 2 and 8. The traffic is uniform,
i.e., all outputs have the same probability of being the destination of a unicast
cell or of belonging to the fanout of a multicast cell. The total load on the
switch is ρ(P ∗F +(1−P)), where F is the average fanout, in our case F = 5,
whereas P e ρ are varied to obtain the desired multicast load on the switch.

The tests for the frame scheme were made both for static frame, i.e, fixed
frame with the 50% of unicast slots and 50% of multicast slots, and also for
dynamic frame. We observed the total throughput as well as the individual
throughputs of unicast and multicast traffic as the fraction of multicast traffic
(MCF) grows from 0 (unicast only) to 1 (multicast only). Ideally, the through-
put achieved by each traffic type should be equal to the corresponding share
of the output load, and the total should be 100%.

The graphs 6.1 and 6.2 show the throughput achieved by FILM compared
with the throughput achieved by the static frame scheme and the dynamic
frame scheme. Both frame schemes always get higher performance than FILM,
above all when the multicast traffic is predominant, i.e., when MCF is greater
than 0.5. In the case of MCF = 0.7 the difference between the dynamic frame
scheme and FILM is more than 7%. It is interesting how on the FILM scheme,
when the unicast is the predominant traffic type, i.e., 0 < MCF < 0.5,
the unicast throughput exhibits a degradation whereas in the dynamic frame
scheme the unicast data flow is always transferred completely. For example,

52 6 Distributed Integration of Unicast and Multicast Scheduling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t

Fraction of Multicast Traffic (MCF)

Throughput Vs MCF - FILM vs Static Frame RTT=0

FILM RTT=0 Multicast
FILM RTT=0 Unicast

FILM RTT=0 Total

Static Frame RTT=0 Multicast
Static Frame RTT=0 Unicast

Static Frame RTT=0 Total

Figura 6.1. Static Frame Vs. FILM RTT=0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t

Fraction of Multicast Traffic (MCF)

Throughput Vs MCF - FILM vs Dynamic Frame RTT=0

FILM RTT=0 Multicast
FILM RTT=0 Unicast

FILM RTT=0 Total

Dynamic Frame RTT=0 Multicast
Dynamic Frame RTT=0 Unicast

Dynamic Frame RTT=0 Total

Figura 6.2. Dynamic Frame Vs. FILM RTT=0

when MCF=0.3, the unicast throughput reaches only the 94%, as we con see
on the graphs 6.1 and 6.2

The graphs 6.3 and 6.4 show the throughput achieved by FILM compared
with the throughput achieved by the static frame scheme and the dynamic
frame scheme in case of RTT=8. Both frame schemes don’t suffer losses in
terms of throughput anyway, when the multicast traffic is predominant, the
FILM scheme has significant losses in terms of throughput caused mainly by
traffic multicast. The worst case is MCF=0.8, when the FILM scheme loses
about 8% of the throughput and the difference with the dynamic frame scheme

6.5 Simulation Result 53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t

Fraction of Multicast Traffic (MCF)

Throughput Vs MCF - FILM vs Static Frame RTT=8

FILM RTT=8 Multicast
FILM RTT=8 Unicast

FILM RTT=8 Total

Static Frame RTT=8 Multicast
Static Frame RTT=8 Unicast

Static Frame RTT=8 Total

Figura 6.3. Static Frame Vs. FILM RTT=8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
ro

u
g
h
p
u
t

Fraction of Multicast Traffic (MCF)

Throughput Vs MCF - FILM vs Dynamic Frame RTT=8

FILM RTT=8 Multicast
FILM RTT=8 Unicast

FILM RTT=8 Total

Dynamic Frame RTT=8 Multicast
Dynamic Frame RTT=8 Unicast

Dynamic Frame RTT=8 Total

Figura 6.4. Dynamic Frame Vs. FILM RTT=8

becomes 15%.
These two graphs 6.5 6.6 show the performance in terms of delay of the

static frame scheme when MCF=0.5 by varying the ratio of unicast slot to
multicast slot within the frame. The best performance are obtained by frame
with 50% unicast slots and 50% multicast slots, in analogy with the value of
MCF. To change the ratio inside the frame, the performance worsens if we
increase the unicast slots. The worst case is when the frame is composed only
from unicast slots. Whereas the performance doesn’t vary considerably if we
increase the ratio of multicast slots.

54 6 Distributed Integration of Unicast and Multicast Scheduling

 1

 10

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

Static Frame RTT=0

Only Unicast
U9/M1
U8/M2
U7/M3
U6/M4
U5/M5

Film

Figura 6.5. Static Frame RTT=0

 1

 10

 100

 1000

 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

Static Frame RTT=0

Only Multicast
U1/M9
U2/M8
U3/M7
U4/M6
U5/M5

Film

Figura 6.6. Dynamic Frame RTT=0

The graphs 6.7 and 6.8 show the average delay of the cells in function
of offered load when MCF=0.5, i.e., when each traffic type is responsible for
half of the output load. For value of RTT=0 the FILM scheme obtains better
performance compared to both of the frame schemes, in terms of delay. In the
case of RTT=8 both of frame schemes obtain better performance than FILM
scheme for load values higher to 0.7.

The graphs 6.9 and 6.10 show the average delay of the cells in function
of offered load when MCF=0.8. For RTT=0 and for loads less than 0.8, the
performance are similar for all three of the scheme analysed, but for high loads,

6.5 Simulation Result 55

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

MCF=0.50 rtt=0

Static Frame
Dynamic Frame

FILM Base

Figura 6.7. Frame Vs. FILM MCF=0.50 RTT=0

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

MCF=0.50 rtt=8

Static Frame
Dynamic Frame

FILM Base

Figura 6.8. Frame Vs. FILM MCF=0.50 RTT=8

the frame scheme, in particular dynamic, gets the best results. A similar trend
is obtained in the case of RTT=8 where the dynamic frame scheme obtains
the best performance for all of the load values.

The graphs 6.11 and 6.12 show the trend of average delay of the cells both
for static and dynamic frame schemes for increasing value of MCF. The biggest
differences between the curves are for loads between0.5 and 0.93. In this range
the best performance are obtained in the case of MCF=0.9 for both frame
schemes, anyway we have the worst performance for MCF=0.1. Comparing
the two frame schemes, we can see that for values of MCF minors of 0.5, i.e.,

56 6 Distributed Integration of Unicast and Multicast Scheduling

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

MCF=0.8 RTT=0

Static Frame
Dynamic Frame

FILM Base

Figura 6.9. Frame Vs. FILM MCF=0.80 RTT=0

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

MCF=0.8 RTT=8

Static Frame
Dynamic Frame

FILM Base

Figura 6.10. Frame Vs. FILM MCF=0.80 RTT=8

when the unicast traffic is predominant, the dynamic scheme obtain the best
performance, whereas for values of MCF greater than 0.5 the performance
between the two schemes are similar.

In the tests show on the graphs 6.13,6.14 and 6.15 we have used an 8x8
switch where an input receives only broadcast cells and the remaining 7 inputs
receive cells unicast. Cells are generated according to an i.i.d Bernoulli process,
i.e, every input port receives a cell with probability ρ. The graphs show the
results for MCF equal to 0.2, 0.5 and 0.9. For MCF=0.2 and MCF=0.9 the
frame schemes obtain the best results. In this scenario the dynamic scheme

6.5 Simulation Result 57

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

Static Frame RTT=0

MCF = 0.9
MCF = 0.8
MCF = 0.7
MCF = 0.6
MCF = 0.5
MCF = 0.4
MCF = 0.3
MCF = 0.2
MCF = 0.1

Figura 6.11. Static Frame RTT=0

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

Dynamic Frame Rtt=0

MCF = 0.9
MCF = 0.8
MCF = 0.7
MCF = 0.6
MCF = 0.5
MCF = 0.4
MCF = 0.3
MCF = 0.2
MCF = 0.1

Figura 6.12. Dynamic Frame RTT=0

obtains better performance than the static scheme.
In the tests show on the graphs 6.16 and 6.17 we have changed the type of

traffic. The simulated system is a 16x16 switch in which the cells are generat-
ed according to an i.i.d Bernoulli process. The unicast traffic is uniform and
fanout-set of traffic multicast is determined by ”binomial fanout” described
in [29]. From the graphs 6.16 and 6.17 the frame scheme obtains better per-
formance than the FILM scheme both for RTT=0 and for RTT=8. This is
due to a better management of multicast data flows in the frame scheme.

58 6 Distributed Integration of Unicast and Multicast Scheduling

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
la

y

Throughput

MCF=0.2 Rtt=0

Static Frame
Dyamic Frame

FILM Base

Figura 6.13. Frame Vs. FILM MCF=0.2 RTT=0

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
la

y

Throughput

MCF=0.5 Rtt=0

Static Frame
Dyamic Frame

FILM Base

Figura 6.14. Frame Vs. FILM MCF=0.5 RTT=8

6.5 Simulation Result 59

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e
la

y

Throughput

MCF=0.9 Rtt=0

Static Frame
Dyamic Frame

FILM Base

Figura 6.15. Frame Vs. FILM MCF=0.90 RTT=0

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

RTT=0

Static Frame
Dynamic Frame

FILM

Figura 6.16. Frame Vs. FILM MCF=0.8 RTT=0

60 6 Distributed Integration of Unicast and Multicast Scheduling

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e
la

y

Throughput

RTT=8

Static Frame
Dynamic Frame

FILM

Figura 6.17. Frame Vs. FILM MCF=0.8 RTT=8

Parte II

A Switching Architecture for Asynchronous
SANs

7

Introduction to Storage Area Networks

7.1 Storage Area Networks

Storage Area Networks (SANs) have emerged as the key solution to address
the performance, scalability, reliability and maintainability issues posed by
DAS. The SAN is a dedicated network infrastructure that provides meshed,
any-to-any connectivity between servers and storage devices.

The introduction of networking concepts and technologies as a replace-
ment of a single, direct connection, redefines the relationship between servers
and storage devices and enables the design of new information systems, as de-
picted in Figure 7.1. Storage resources are now a separated and well-delimited
component of the system and servers become the front-end towards the users.

This novel organization of storage resources enables the implementation
of new paradigms, providing several benefits [45]:

• Storage consolidation: as servers are no-longer directly connected to
disks, all the disks can be physically relocated in one or more disk arrays.
Disk arrays are devices able to host tens or hundreds of disks. By using
the management interface of the disk array, the storage administrator can
allocate to each server a proper fraction of the total capacity. Additional
space can be provided without disruption by adding disks to the array and
reconfiguring it. Storage consolidation can take place even across multiple
disk arrays.

• Remote replication and disaster recovery: data can be protected
from disk faults by using a technique called “mirroring”. A pool of physical
disks of equal capacity is combined in a single, virtual disk of the same
capacity. Data written to the virtual disk is physically stored on all the
disks in the pool. If any of the disks in the pool fail, data is immediately
available on the others and the server can continue its operations without
disruption. As a SAN can connect devices located tens of Kilometers away,

64 7 Introduction to Storage Area Networks

LAN / WAN

SAN

Clients

Servers

Storage
Devices

Figura 7.1. An information system employing a SAN

data can be replicated on remote sites, providing protection even in case
of disasters, such as natural calamities or terrorist attacks.

• Server clustering: a cluster is a set of servers working concurrently on the
same set of data. Clustering provides higher performance (as the servers
work in parallel) and higher reliability (if one of the server fails, it simply
goes out of the cluster). Although complex issues exist at the operating
system and application level (inter-process communication, concurrent da-
ta access, etc.) a SAN effectively promotes clustering because it allows easy

7.2 Networking Technologies for SANs 65

sharing of common data.
• LAN-free, server-free backup: data stored in multiple disk arrays can

be backed up directly to large, shared tape drives, without traversing the
LAN and without involving the servers. All operations are scheduled and
managed from a single, central location.

• Storage resources management: the ability to have a consistent and
unified view of all the storage devices greatly simplifies monitoring and
allocation of resources, as well as provisioning and planning.

In general, the deployment of a SAN enables virtualization, i.e. the capability
to provide to computing nodes a logical view of available storage resources
that is independent of the physical location and the specific characteristics of
the devices.

7.2 Networking Technologies for SANs

SANs are networks in all respects and present all the features typical of net-
working technologies. The most important characteristics inherited from the
networking world are:

• serial transport, to ship data over long distances at high rates
• data packetization, to achieve high link efficiency and fair sharing of

network resources
• addressing schemes that support very large device population
• routing capabilities, to provide multiple, redundant paths between source

and destination devices
• a layered architecture, to support the transport of different protocols at

the upper layers and the usage of different interfaces at the lower ones.

SANs can be built using different networking technologies, however, it it
is important to remember that servers, operating systems and applications
still expect from the storage interface a “channel-like” behavior, i.e. high-
speed, low-latency, error-free communications. Networking technologies used
to implement SANs must therefore be carefully chosen and deployed in order
to satisfy these strict requirements.

Today the preferred networking technology for SANs is Fibre Channel, al-
though different solutions such as iSCSI (based on TCP/IP and Ethernet[46])
or Infiniband[37] have been proposed.

7.2.1 Fibre Channel

Fibre Channel is a multi-purpose, standard-based networking technology,
specifically designed for computing environments. Its design is based on the
assumption that the transport media (copper cable or optical fiber) is reliable,
hence error recovery mechanisms are reduced to a minimum and are mostly

66 7 Introduction to Storage Area Networks

left to upper layer protocols. Data are fragmented and encapsulated in net-
work protocols with minimum overhead, in order to achieve high efficiency.
Intermediate nodes guarantee that frames will not be discarded, duplicat-
ed or delivered out-of-order under any circumstances. A simple, credit-based
mechanism is used for flow and congestion control. These characteristics of
the data-path make a full hardware-based implementation feasible. Incoming
frames can be processed by end nodes at very high speed and do not incur
the latency induced by large reassembly and reordering buffers.

7.2.2 Credit-based flow control

Flow control mechanisms are used to regulate the rate at which a transmitter
sends frames, in order to achieve efficient bandwidth utilization without over-
whelming the receiver. These mechanism represent one of the most important
characteristics of a networking technology and have a very strong influence
on the design of network devices.

In Fibre Channel networks flow control mechanisms are based on the con-
cept of credit. A credit represents the ability of a receiver to accommodate
one frame. The receiver grants to the transmitter an initial number of credits,
typically proportional to the size of its buffers. The transmitter is authorized
to send one frame for each credit it has received; after that it has to stop until
it receives more. As soon as the receiver has finished processing an incoming
frame (for instance, it has passed it to upper layers) it can free the resources
that were used by that frame and grant a new credit.

Node Node
buffer

to
buffer

buffer
to

buffer

buffer
to

buffer
Switch Switch

end−to−end

Figura 7.2. Flow control levels

Fibre Channel provides two levels of flow control: “buffer-to-buffer” and
“end-to-end”. Buffer-to-buffer flow control takes place between pairs of ad-
jacent ports, such as a link between a node and a switch or between two
switches. It operates on all the packets traversing the link, without the capa-
bility to discriminate among multiple flows. End-to-end flow control, on the
contrary, operates only between end-nodes and is performed per flow, i.e. if
a node is receiving multiple flows, it controls each of them them separately.
The two levels are illustrated in Figure 7.2.

7.2 Networking Technologies for SANs 67

Credit-based flow control mechanisms guarantee that a device accepts in-
coming frames only if it has the resources to service them. Switches can use
such mechanisms to regulate incoming traffic, but once they have accepted a
frame, they are not allowed to drop it.

8

The Switching Architecture

8.1 System Overview

The switch is composed by a buffered switching fabric, and a given number of
line-cards, comprising input and output buffers, as shown in Fig. 8.1. Every
line-card is composed by an input port and an output port (port multiplexing
is not considered for simplicity). Line-cards receive packets and store them
in input buffers. The switching fabric transfers (multicast) packets from the
line-card input buffer to the line-cards hosting the destination output ports,
exploiting its intrinsic multicast capability. Switching fabric I/O links are
not oversubscribed nor constitute a bottleneck. Backpressure control signals
regulate buffer access to avoid data loss.

input ports output ports input ports output ports

Switching Fabric

N LC

In Module In ModuleOut Module Out Module

Line−CardLine−Card 1

Figura 8.1. Switch architecture: components and communications channels

70 8 The Switching Architecture

8.2 Line-cards

Line-cards contain two separate buffering stages for multicast packets entering
and exiting the switch, named respectively In-module and Out-module. The
In-module memory is organized as a single FIFO queue. Each position in the
queue is dimensioned for a maximum transfer unit (MTU). If a smaller packet
is enqueued, the residual part of that memory portion remains unusable. This
choice potentially results in inefficient use of the In-module memory when
dealing with small-size packets, but the buffer management policy can be
implemented using simply one counter. Normally this is not a major issue,
because line-cards can host a moderately large amounts of memory. The Out-
module stores multicast packets received from the switching fabric in a buffer
organized as a single FIFO queue. This very fast memory is accessed “per-
byte”, hence the number of available positions depends on the size of enqueued
packets.

8.3 Switching fabric

The switching fabric consists of a crossbar with no internal buffers in cross-
points, but with a small single on-chip high-speed FIFO queue at each in-
put and output. Buffers in the switching fabric are needed due to the fully
asynchronous switch behavior. The crossbar may have a moderate internal
speed-up K to mitigate the effect of Head-of-the-line (HOL) blocking of FIFO
queues; however, in the simulation analysis, we consider K = 1. Fabric out-
put queues are larger than fabric input queues to sustain temporary overload
conditions. Both input and output queues are accessed per-byte to maximize
space efficiency.

Each fabric output has a fabric scheduler that controls access from fabric
inputs. When an input wants to be connected to an output, it sends a request
to the corresponding output fabric scheduler. The output scheduler sends
grants to inputs. In case multiple inputs request the same output, the output
scheduler solves the contention according to a round-robin (or random) policy.

The crossbar has an internal multicasting capability: it can replicate a
packet to multiple outputs at the same time with no extra cost. The asyn-
chronous behavior poses different challenges with respect to synchronous slot-
ted switching when dealing with multicast traffic. In synchronous switching,
decision are taken synchronously by all output schedulers at time slot bound-
aries. As such, no output remains unnecessarily idle if enough traffic is avail-
able at inputs. When considering asynchronous behavior, output schedulers
make independent decisions at different times. However, some sort of grant
synchronization at inputs can be useful, to avoid sending multicast packets
only according to a multi-copy scheme, i.e.. as independent unicast packets.
Indeed, the multi-copy approach is known to be an inefficient scheduling tech-
nique. For example, when considering as an admissible traffic pattern a single

8.3 Switching fabric 71

broadcast flow in overload at a given input, the multi-copy approach gives a
maximum throughput of 1/N . On the other hand, waiting to gain access to all
the intended outputs before transmitting a packet can be counterproductive,
because it forces outputs that have already granted access to stay idle while
the other outputs become free.

To exploit the benefits of crossbar replication without compromising effi-
cient usage of output ports, the formerly proposed scheduling scheme [47] was
based on three phases:

• Waiting phase: every input sends a request for every output in the fanout
set of the HoL packet stored in the fabric input buffer. Each input collects
the grants received from the outputs until a timeout T expires;

• Multicast transmission phase: After timeout expiration, each input sends
the multicast packet to every output that granted its request, using the
internal multicast capability of the crossbar;

• Unicast transmission phase: If the input has not received the grants from
all outputs during the waiting phase, it sends an individual copy of the
packet to the remaining destinations as soon as each output grants the
request.

The timeout is used to obtain a “grant synchronization” effect at inputs: in-
puts waiting for grants from outputs belonging to the multicast packet fanout
set may better exploit the fabric multicast capability if more outputs grant
the request during timeout expiration. Indeed, the larger the number of re-
ceived grants, the smaller the number of transmissions required to transfer
a multicast cell to the outputs in the fanout set. On the other hand, while
waiting for timeout expiration, no transmission occur: thus, the timeout value
must be carefully set to balance these two effects on performance. In other
words, strictly enforcing a no-fanout splitting policy, i.e., a multicast packet
is transferred only once, when all the outputs in the fanout set are available,
may induce performance degradation due to blocking. On the other hand,
splitting the multicast packet in too many transmissions, when using a fanout
splitting policy, increases too much the load on the switching fabric, thus,
reducing performance.

8.3.1 Improvement of multicast scheduling

The modification we propose to enhance switch performance is to substitute
the unicast transmission phase with a number of multicast transmission phas-
es until the multicast packet is fully transmitted. This modification requires
a minor complexity increase, and provides significant benefits. Note that no
timeout expiration is necessary after the first multicast transmission phase,
since inputs aggregate grants received from outputs during the packet trans-
mission time. Furthermore, the adoption of the multicast transmission phase

72 8 The Switching Architecture

only, permits, as shown later, to avoid the use of the timeout to synchro-
nize grants, a parameter whose value should be set properly to obtain good
performance.

This scheduler is named round robin scheduler in the remainder of the
chapter, since multiple requests received by an output scheduler while the
output is engaged in a packet transmission are served according to a round
robin order. It is well known that round-robin (or random) schedulers do not
perform particularly well, since no information on the relative importance or
urgency of packets is used when selecting the input to which the request is
granted. A better solution can be to use some “weighted” metric when sending
requests from inputs and when selecting the input to which to issue the grant
at outputs. Examples of weighted schedulers defined for synchronous switches
are LQF (Longest Queue First) [10] for unicast traffic, WBA (Weight Based
Arbiter) [36] and GS (Greedy Scheduler) [29] for multicast traffic. One nat-
ural choice of weight is the queue length (LQF), since the longer the queue
the higher the input load; the scheduler tries to favor highly-loaded inputs to
improve performance. However, since the maximum queue length is finite, this
weight is significant only when losses are not experienced, i.e., in low-medium
loads. On the contrary, all the queues experiencing losses have constant queue
length, independently from their congestion level and the queue length met-
ric would not help in this scenario. When presenting WBA, several metrics
were proposed and compared. Given the similar performance provided by the
various metrics, we choose the weight equal to the number of inputs minus
the packet fanout plus the packet age (measured as the difference between
the current time minus the time at which the packet entered the queue). In-
deed, packet age, although being a complex metric to be managed, permits to
discriminate packets experiencing long starvation periods. Moreover, taking
into account also the packet fanout permits to favor multicast packets with
large fanout sets, packets known to be more difficult to schedule. Finally, we
also considered the GS weight, the product of the queue length by the actual
fanout size of the packet at the head of the queue. In contrast with the WBA
metric, the GS metric does not require any packet delay computation.

However, two major differences can be highlighted in asynchronous switch-
ing with respect to the more traditional synchronous scenario. First, in syn-
chronous switches, all outputs receive weight information at the same time,
at slot boundaries, from all inputs. As such, coordination among output selec-
tors can be envisioned to optimize packet selection. Indeed, since all outputs
make an input selection in each time slot, it is more likely that several out-
puts select the same input request if the associated weight is much larger than
other weights. Second, due to the packet segmentation process at inputs and
to the cell-based packet transfer in the switching fabric, several requests with
different weights are sent for a given packet in consecutive time slots, until
the multicast packet is fully extracted from the input queue. None of these
two properties hold in asynchronous switches, since each output selects a
new request independently, when a packet transmission ends, and the request

8.4 Control mechanisms for lossless delivery 73

is issued only once, when the packet reaches the head of the corresponding
FIFO queue. As such, weighted metrics could be less effective than in the
synchronous case.

Finally, also multicast schedulers like MRR cannot be easily used in an
asynchronous scenario. Indeed, MRR is based on the idea of keeping, in all
outputs, a common pointer (a modulo N counter) to inputs. The pointer is
used to preferentially grant, according to a round-robin scheme, requests in-
coming from inputs in a given time slot. This common reference clearly favors
the possibility of selecting the same input at many outputs, thus preserving
as much as possible the no-fanout splitting property of the scheduler. This
scheduler cannot be used in asynchronous switches, since no coordination can
be easily enforced among outputs.

To summarize, besides the round-robin scheduler, three weighted sched-
ulers running on three different metrics are also studied:

• LQF metric: each request contains the length of the FIFO queue at the
corresponding input;

• WBA metric: the weight is equal to the number of inputs minus the cell
fanout plus the packet age;

• GS metric: the weight is the product of the queue length by the actual
fanout size of the cell at the head of the queue.

8.4 Control mechanisms for lossless delivery

To support lossless delivery, the switch adopts an internal backpressure mech-
anism that regulates access to buffers to prevent overflow. When the buffer
occupancy overcomes a high threshold, a backpressure signal is activated to
block packet transmissions from upstream buffering stages. When the buffer
occupancy becomes smaller than a low threshold, the backpressure signal is
deactivated and transmission can restart. In case of persistent congestion, all
the buffers in the data path eventually fill-up and the backpressure signal
propagates back to the source(s).

Four backpressure signals are available:

1. from the Out-modules to the fabric output queues;
2. internally to the fabric, from fabric output queues to fabric input queues;
3. from fabric input queues to the In-modules;
4. from the In-module to the input ports.

Backpressure prevents packet losses: however it is not selective, i.e. it
blocks all flows, even those which are not responsible for congestion. In [6]
we illustrated the benefits achieved by controlling individually unicast flows
with centralized arbitration. The same result cannot be easily obtained for
multicast, because the number of possible flows traversing the switch grows
exponentially (rather than quadratically) with the number of ports N . This

74 8 The Switching Architecture

implies that switch resource can be hardly assigned per-flow. In particular,
both on the ingress and egress side of line-cards packets are stored in a single
FIFO queue, regardless of their fanout set.

9

Performance Results

9.1 Performance results under multicast traffic
conditions

We show performance results based on simulation runs exploiting a propri-
etary simulation environment developed in C language. Statistical significance
of the results are assessed by running experiments with an accuracy of 1%
under a confidence interval of 95%.

Unless otherwise specified, we refer to a switch with N = 16 input and
output ports, where all input and output lines run at the same data rate,
normalized to 1, and no internal speedup is available. When backpressure is
enabled, the high threshold, which triggers the backpressure signal, is set to
the buffer size, the low threshold is set to 80% of the buffer size.

The average amount of offered traffic at each input (output) is called the
input (output) load. Input (output) loads are normalized to line rates: a load
equal to 1 means a fully utilized input (output) line. The traffic at the input
of a switch is said to be admissible if no input load is larger than 1, and no
output load is larger than 1.

We first consider Bernoulli arrivals with uniform multicast traffic distribu-
tion, both in terms of input/output port distribution and fanout distribution,
and then we also examine a Bernoulli arrival process in a gathered scenario,
as described in 5.3.

Multicast applications often generate sustained and long-lasting flows, that
may only engage few inputs and several outputs at a given router or switch.

Five packet size distributions are considered:

• constant packet size, all packets of minimum size (mTU, minimum transfer
unit of 120 bytes),

• constant packet size, all packets of maximum size (MTU=2000 bytes),
• uniform packet size, ranging from mTU to MTU
• trimodal packet size (120 bytes, 1040bytes, 2000 bytes) with probability

40%, 30%, 40% respectively,

76 9 Performance Results

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

Old scheduler

uniform
minimum
maximum

tri 40-20-40
tri 33-33-33

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5 1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

New scheduler

Figura 9.1. Performance comparison between the old and the new switching fabric
scheduler

• trimodal packet size (120 bytes, 1040bytes, 2000 bytes) with probabilities
33%, 33%, 33% respectively.

We first show the performance benefit of the newly proposed multicast
round robin fabric scheduler; backpressure is activated among all buffering
stages. Fig. 9.1 clearly shows that the new scheduler outperforms the old
scheduler. Constant packet size permit to obtain higher throughput mainly
thanks to a better efficiency in the use of input fabric FIFO queues. Increas-
ing the packet size variance by using trimodal or uniform distributions worsen
performance. This is a peculiar behavior of asynchronous architecture, where-
as cell-based synchronous switches suffer less this impairment, thanks to the
packet segmentation process at input ports.

 0.3

 0.45

 0.6

 0.75

 0.9

 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

No timeout

uniform
minimum
maximum

tri 40-20-40
tri 33-33-33

Figura 9.2. Performance when no timeout is adopted in the fabric scheduler

Fig. 9.2 shows that when adopting the new multicast scheduler, the initial
timeout used to synchronize grants is not needed. Indeed, whereas perfor-
mance for trimodal and uniform traffic distributions are not modified, since
the performance limitation is due to the inability of filling up input fabric
FIFO queues, performance increase significantly, reaching about 90% of link
capacity, when using fixed size packets. Indeed, when using fixed size packets,
due to the buffering stage at fabric input, inputs tend to synchronize packet

9.1 Performance results under multicast traffic conditions 77

transmissions. For example, when a broadcast packet is scheduled for trans-
mission, all output ports become free at the same time. Being all the packets
of the same fixed size, all successive transmissions become exactly synchro-
nized, increasing switch performance. If a timeout expiration is used in the
first phase of the multicast scheduling algorithm, this synchronization effect
is partially lost, since each multicast packet requires a different number of
transmissions to be completely transferred to the outputs belonging to the
fanout set. In summary, using a timeout in the scheduling phase either does
not provide performance advantages or worsen performance. Thus, no time-
out is used in the multicast scheduling phase when adopting the round robin
scheduler.

 0

 0.15

 0.3

 0.45

 0 2 4 6 8 10 12 14 16

PD
F

(P
ro

b.
 D

en
si

ty
 F

un
ct

io
n)

Matching size

uniform
minimum

maximum
tri 40-20-40
tri 33-33-33

Figura 9.3. Matching size distribution in overload under uniform traffic

Again, the asynchronous architecture suffers the increase on the packet
size variance due to the independent behavior of schedulers at output ports.
This is confirmed by the “matching” size distribution shown in Fig. 10.2. No
matching can be defined in an asynchronous architecture. However, we period-
ically sample the switching fabric configuration counting the number of active
input/output connections: we call this number matching size. The scheduler
difficulty in creating large size matching is clearly increasing with increasing
variance in the packet size distribution. Thus, the saturation throughput is
directly tied to the variance of the packet size distribution.

In Fig. 10.4, the beneficial effect of backpressure is shown when dealing
with non-admissible traffic. Indeed, whereas backpressure activation or deac-
tivation makes no evident difference when the output load is below or close to
1, in deep overload the absence of a backpressure mechanism induces higher
losses for trimodal packet size distributions (and marginally higher losses for
uniform packet size distribution).

This is a rather counter intuitive behavior. Indeed, when backpressure is
active, the packet size distribution in the input FIFO buffers at fabric input is
kept constant, regardless of input load, since the source is blocked until 80%
of the buffer becomes available. This justifies why no differences are evident
when increasing the input load. On the contrary, when backpressure is inac-

78 9 Performance Results

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

Backpressure off

uniform
minimum
maximum

tri 40-20-40
tri 33-33-33

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

Backpressure on

Figura 9.4. Backpressure effect

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.25 0.5 0.75 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Round-robin scheduler

uniform
minimum

maximum
tri 40-20-40
tri 33-33-33

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.25 0.5 0.75 1
N

or
m

al
iz

ed
 D

el
ay

Normalized Throughput

LQF scheduler

Figura 9.5. Packet delays for two different multicast schedulers

tive, in deep overload, small packets have a higher chance of being stored in
input FIFOs at fabric inputs. Indeed, when a small packet is transferred, only
small packets can be stored in the buffer; when a large packet is transferred,
it is enough to store few small packets in the buffer to prevent the possibility
of storing a new large packet. Thus, a large number of small packets is stored
in fabric buffers, and the average size of packets stored in the input FIFOs
decreases as the load increases. This should intuitively lead to an increase in
throughput when backpressure is inactive, since the switch should behave sim-
ilarly to the case of fixed packet size, being the packet size variance decreasing
as the input load increases.

However, consider a case when a large packet is transferred from a given
input to a set of outputs, and suppose that many small packets are stored
in other input queues. Suppose also that small packets are blocked due to
contention. This blocking behavior induces a significant throughput decrease,
since the transmission time of a large packet with respect to the transmission
time of a small packet is significant. In deep overload, this event is more
likely to occur with respect to the case of variable packet size distribution,
since many small packets are stored in input buffers. Since performance losses
are more evident in this “blocking” scenario when inputs store many small
packets, this justifies the throughput decrease.

9.1 Performance results under multicast traffic conditions 79

In summary, activating backpressure does not provide performance penal-
ties and helps stabilizing system performance in overload. As such, we will
activate the backpressure mechanism in all subsequent simulations. To under-
stand if the penalty provided by the packet size variance is an intrinsic feature
of asynchronous architectures or if it depends on the adopted scheduler, we run
simulations with all the “weighted” schedulers previously described. Results
are reported in Fig. 9.5 as normalized packet delays, i.e. delay normalized to
the packet size, for uniform multicast traffic. We report the results for the LQF
scheduler, because no difference were visible by varying the weight metric. The
weighted metric does not provide any benefit with respect to the round-robin
scheduler; sometimes, performance are even worse, as with trimodal and uni-
formly variable packet size in both delay and saturation throughput. This
results confirms similar observations presented in [29] for synchronous archi-
tectures. Performance advantages for more complex weighted schedulers, such
as the GS scheduler, are evident only when using more than one FIFO queue
at each input, a queue architecture not studied in this paper. Besides, the
same general trend by which asynchronous architectures suffer for the packet
size variance is maintained.

The same conclusion can be drawn when examining the switch under gath-
ered traffic, in Fig. 9.6. As expected, in this scenario the maximum achievable
throughput is drastically reduced. The general phenomenon of better perfor-
mance for fixed packet size is even highlighted by this traffic pattern. Results
not reported confirm that schedulers based on weighted metrics do not provide
evident benefits to switch performance.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Round-robin scheduler

uniform
minimum

maximum
tri 40-20-40
tri 33-33-33

Figura 9.6. Packet delays for gathered traffic

Finally, in Fig. 9.7 we report the normalized delay for uniform and gath-
ered traffic when adopting a speedup k = 2 for the round robin scheduler.
Performance increase, but only for uniform traffic the maximum throughput
reaches one regardless of packet size distribution. For gathered traffic, only
with fixed packet size the maximum throughput is achieved. The packet size
variance penalty is still visible in terms of packet delays at low-medium load.

80 9 Performance Results

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Uniform traffic

uniform
minimum

maximum
tri 40-20-40
tri 33-33-33

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Gathered traffic

Figura 9.7. Packet delays for speedup k = 2, for uniform and gathered traffic

Parte III

Synchronous vs Asynchronous Switching

10

Synchronous versus Asynchronous under
Multicast Traffic

10.1 Introduction

IQ architectures were proposed many years ago as the only viable solution to
build high-speed large-size packet routers. Traditional data network IQ switch-
es and routers operate in a synchronous fashion: time is divided in intervals of
equal size, called time-slots, and all modules (line-cards and switching fabric)
have a common time reference. Variable-size packets are segmented into fixed-
size data units called cells, transferred synchronously through the switching
fabric within a time-slot and reassembled at the output line-cards.

The interest in asynchronous switching architectures has recently raised
e.g., in the Storage Area Networks (SANs) scenario. Asynchronous behavior
may provide advantages in terms of scalability, cost and simplicity [4]. In an
asynchronous switch, line-cards and the switching fabric run on independent
clock domains. As such, global clock distribution is not needed, thus avoiding
a very complex task especially when the system is distributed over multiple
racks. Furthermore, no synchronized transmission through the switching fabric
is required and variable-length packets can be supported natively, without
the need for segmentation and reassembly buffers. Finally, fabric arbitration
can be simplified because output contentions can be solved independently,
without employing centralized scheduling algorithms. The distributed nature
of asynchronous architecture raises some concern against their performance.

Switch architectures are compared under multicast traffic. Although mul-
ticast traffic represents only a small portion of today traffic, multicast support
in switches and routers is a must. Indeed, multicast traffic in SANs enables
applications such as disaster recovery, remote data replication and distribut-
ed multimedia systems. Furthermore, besides being used in multi-media data
applications, broadcast traffic is important in Ethernet switches both to sup-
port applications that rely on LAN broadcast capability, e.g., ARP, as well as
to internally distribute forwarding tables. Finally, whereas some comparisons
were made for unicast traffic [48], to the best of our knowledge no results are
available for multicast traffic.

84 10 Synchronous versus Asynchronous under Multicast Traffic

Multicast packets are characterized by their fanout set, the set of output
ports to which they are directed. The packet fanout is the number of different
destinations of a multicast packet, i.e., the cardinality of the fanout set.

10.2 System Model

Although synchronous and asynchronous architectures may have slightly dif-
ferent characteristics derived from technological constraint, we wish to ab-
stract as much as possible the system model to obtain two architectures
comparable in a fair way.

We focus on an N × N switch, N being the number of line-cards, with
a buffer-less crossbar with intrinsic multicast capability as switching fabric:
it can replicate a packet to multiple outputs at the same time with no extra
cost.

A single FIFO queue is available in each line-card. Although this choice
introduces the well-known HoL (Head of the Line) blocking phenomenon, it is
normally considered as a reasonable scenario for multicast traffic. Indeed, to
completely avoid HoL blocking, at each input port, 2N−1 separate queue, one
per multicast flow, would be needed. This is an unreasonable number in large
size switches. Dealing with a reduced number of queues k << 2N is a viable
solution, but it introduces either the problem of mapping multicast flows to
queues or out of sequence delivery.

To support lossless delivery, the switch may adopt an internal backpressure
mechanism that regulates access to buffers to prevent overflow. When the
buffer occupancy overcomes a high threshold, a backpressure signal is activated
to block packet transmissions from upstream buffering stages. In this situation,
packet generation is stopped. When the buffer occupancy becomes smaller
than a low threshold, the backpressure signal is deactivated and transmission
can restart.

We consider two-phase request-grant multicast schedulers. One Input Se-
lector (IS) and one Output Selector (OS) exist in each line-card. In the request
phase, an IS issues a requests for the HoL multicast packet to all OS whose
output port is in the packet fanout set. In the grant phase, OSs solve re-
quest contentions, normally independently, by choosing a single request to
grant. The various multicast schedulers associate different metrics, if any, to
requests and exploit different contention resolution algorithms at OSs.

When considering asynchronous behavior, ISs and OSs schedulers make in-
dependent decisions at different times, since requests/grants are issued when
the input/output becomes idle, i.e., when a packet transmission ends. In
synchronous switching, requests and grants are issued synchronously by all
ISs/OSs at time slot boundaries, since all inputs and outputs become free at
the same time, being engaged in transmissions that last exactly one time slots.
Centralized single-chip scheduler implementation is largely dominant in syn-
chronous switches; therefore, coordination among ISs and OSs could be easily

10.2 System Model 85

envisioned. However, most multicast schedulers do not exploit this coordina-
tion feature, which is indeed often used in unicast schedulers, for example
when iterating the scheduling phase several times in a given time slot.

Being decisions made independently by each IS/OS in both cases, the main
difference between asynchronous and synchronous scheduling behavior relies
in the timing at which scheduling decisions are made. However, whereas in
synchronous switches all inputs and outputs are always available at time slot
boundaries, in asynchronous switches, at high load, when an input and a set
of outputs becomes available, the chance of finding other available inputs is
relatively small. As such, it is likely that the same input/ouputs is selected
again for a new transmission. Obviously, this effect is mitigated by multicast
transmissions with a large fanout set, since in this case many outputs become
idle at the same time, and by the fact that the next multicast packet at the
HoL queue in the idle input may have a fanout set different from the previous
one. Still, a performance penalty could be expected in the asynchronous case.

Note that, in asynchronous switches, some sort of grant synchronization
at inputs can be useful, to avoid sending multicast packets only according
to a multi-copy scheme, i.e.. as independent unicast packets. an approach
known to be an inefficient scheduling technique. On the other hand, waiting
to gain access to all the intended outputs before transmitting a packet can be
counterproductive, because it forces outputs that have already granted access
to stay idle while the other outputs become free. We disregard all these issues
to keep a relatively simple independent scheduling at each port.

First, we consider the random (RND) scheduler. When a packet transmis-
sion ends, one among the multiple requests received by an OS while the output
was engaged in a packet transmission is randomly chosen. Random schedulers
have performance limitations, since no information on the relative importance
or urgency of packets is used when selecting the input to which the request
is granted. To overcome these limitations, “weighted” metrics were proposed.
A weight is associated with each request at each IS and it is used to select
the input to which to issue the grant at OSs. As in Chapter 8.3, we consid-
er weighted schedulers such as LQF (Longest Queue First) [10] for unicast
traffic, WBA (Weight Based Arbiter) [36] and GS (Greedy Scheduler) [29] for
multicast traffic remembering that:

• LQF metric: each request contains the length of the FIFO queue at the
corresponding input;

• WBA metric: the weight is equal to the number of inputs minus the cell
fanout plus the packet age;

• GS metric: the weight is the product of the queue length by the actual
fanout size of the cell at the head of the queue.

As we already said, in synchronous switches, all outputs receive weight
information at the same time, at slot boundaries, from all inputs and, due
to the packet segmentation process at inputs and to the cell-based packet
transfer in the switching fabric, several requests with different weights are

86 10 Synchronous versus Asynchronous under Multicast Traffic

sent for a given packet in consecutive time slots, until the multicast packet
is fully extracted from the input queue. None of these two properties hold in
asynchronous switches, since each output selects a new request independently,
when a packet transmission ends, and the request is issued only once, when the
packet reaches the head of the corresponding FIFO queue. As such, weighted
metrics could be less effective than in the synchronous case.

10.3 Performance results

Performance results are based on simulation runs. Statistical significance of
the results is assessed by running experiments with an accuracy of 2% under
a confidence interval of 95%.

We refer to a switch with N = 16 input and output ports, where all
input and output lines run at the same data rate, normalized to 1. When
backpressure is enabled, the high threshold, which triggers the backpressure
signal, is set to the buffer size, the low threshold is set to 80% of the buffer size.
Each FIFO queue size is fairly large (10000 packets) to examine a situation
close to the asymptotic case of infinite buffer size. The average amount of
offered traffic at each input (output) is called the input (output) load. Input
(output) loads are normalized to line rates: a load equal to 1 means a fully
utilized input (output) line. The traffic at the input of a switch is said to be
admissible if no input load is larger than 1, and no output load is larger than
1.

As usual, we consider Bernoulli arrivals with uniform multicast traffic dis-
tribution, both in terms of input/output port distribution and multicast flow
distribution, and a Bernoulli arrival process in a gathered scenario, where the
traffic is gathered over few active input ports (M = 5) and equally distribut-
ed over all N = 16 output ports, with a fanout set chosen according to a
non-uniform binomial distribution, with mean fanout hm = 3.66 [29].

Four packet size distributions are considered:

• minimum constant packet size, all packets of 120 bytes,
• maximum constant packet size, all packets of 2000 bytes,
• uniform packet size, ranging from 120 to 2000 bytes
• trimodal packet size (120 bytes, 1040bytes, 2000 bytes) with probability

40%, 20%, 40% respectively,

We compare in Fig. 10.1 the asynchronous architecture with a traditional
synchronous cell-based switch under the RND scheduler. Packet delays are
normalized to the packet size. When a packet reaches an empty switch, it
is immediately transmitted with simply a store and forward packet delay in
both architectures.

No major differences are evident in terms of delays at low loads in Fig. 10.1.
The synchronous switch shows a higher saturation throughput with respect to
the asynchronous switch when considering trimodal and uniform packet size

10.3 Performance results 87

distribution. The segmentation effect helps in compensating the increasing
variance in the packet size distribution, whereas the asynchronous architec-
ture suffers this effect due to the independent behavior of schedulers at output
ports. This is confirmed by the matching size distribution shown in Fig. 10.2
on the left for the asynchronous case. Formally, matching cannot be defined
in an asynchronous architecture. We periodically sample the switching fab-
ric configuration counting the number of active input/output connections: we
call this number matching size. The scheduler difficulty in creating large size
matching is clearly increasing with increasing variance in the packet size dis-
tribution. Thus, the saturation throughput is directly tied to the variance of
the packet size distribution in the asynchronous case.

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.25 0.5 0.75 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Async switch - RND scheduler

uniform
minimum

maximum
tri 40-20-40

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.25 0.5 0.75 1
N

or
m

al
iz

ed
 D

el
ay

Normalized Throughput

Sync switch - RND scheduler

Figura 10.1. Packet delays for RND scheduler under uniform traffic

 0

 0.1

 0.2

 0.3

 0.4

 0 4 8 12 16

M
at

ch
in

g
si

ze
 P

D
F

Matching size

Async switch - RND scheduler

uniform
minimum

maximum
tri 40-20-40

 0

 0.1

 0.2

 0.3

 0.4

 0 4 8 12 16

M
at

ch
in

g
si

ze
 P

D
F

Matching size

Sync switch - RND scheduler

Figura 10.2. Matching size distribution in overload under uniform traffic

However, when considering fixed size packet distributions, the asynchronous
switch shows a slightly higher saturation throughput. This is due to the syn-
chronization effect induced by the fixed size packets. Indeed, constant packet
size permit to obtain higher throughput mainly thanks to a better efficiency
in the use of input FIFO queues. Note that this effect does not hold in syn-
chronous architectures with fixed maximum packet size distribution. Indeed,
even if the centralized synchronous multicast scheduler makes independent de-

88 10 Synchronous versus Asynchronous under Multicast Traffic

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.25 0.5 0.75 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Async switch - WBA scheduler

uniform
minimum

maximum
tri 40-20-40

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.25 0.5 0.75 1

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Sync switch - WBA scheduler

Figura 10.3. Packet delays for WBA scheduler under uniform traffic

cision at each time slot, when two or more large packets difficult to schedule,
i.e., creating output conflicts, reach the input FIFOs head-of-the-line, there is
a large chance that other conflicting packets reach the head-of-the-line at other
inputs. This situation lasts for many time slots, and it becomes self-sustaining,
since the longer the conflicting period, the higher the chance of having an in-
creasing number of conflicting packets. Note that the “new” conflicting packets
will contend with the “old” one for many time slots. Thus, packet transmis-
sion times increase significantly and throughput loss becomes significant. This
phenomenon disappears for fixed minimum size packets, since the conflicting
state lasts a single time slot. In asynchronous architectures, once the conflict
is solved, packets are completely transferred toward the destination, and there
is no self-sustaining conflicting behavior.

In summary, increasing the packet size variance, by using trimodal or uni-
form packet size distributions, worsen performance in asynchronous architec-
tures, whereas cell-based synchronous switches suffer less this impairment,
thanks to the packet segmentation process at input ports, but suffer for large
packet size.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

Asynchronous back OFF

uniform
minimum
maximum

tri 40-20-40

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Normalized Output Load

Synchronous back OFF

Figura 10.4. Backpressure effect

In Fig. 10.4, the beneficial effect of backpressure for asynchronous archi-
tectures is shown when dealing with non-admissible traffic. Indeed, whereas

10.3 Performance results 89

backpressure activation or deactivation makes no evident difference when the
output load is below or close to 1, in deep overload the absence of a backpres-
sure mechanism induces higher losses for trimodal packet size distributions
(and marginally higher losses for uniform packet size distribution).

This is a rather counter intuitive behavior. Indeed, when backpressure is
active, the packet size distribution in the input FIFO buffers at fabric input is
kept constant, regardless of input load, since the source is blocked until 80%
of the buffer becomes available. This justifies why no differences are evident
when increasing the input load. On the contrary, when backpressure is inac-
tive, in deep overload, small packets have a higher chance of being stored in
input FIFOs at fabric inputs. Indeed, when a small packet is transferred, only
small packets can be stored in the buffer; when a large packet is transferred,
it is enough to store few small packets in the buffer to prevent the possibility
of storing a new large packet. Thus, a large number of small packets is stored
in fabric buffers, and the average size of packets stored in the input FIFOs
decreases as the load increases. This should intuitively lead to an increase in
throughput when backpressure is inactive, since the switch should behave sim-
ilarly to the case of fixed packet size, being the packet size variance decreasing
as the input load increases.

However, consider a case when a large packet is transferred from a given
input to a set of outputs, and suppose that many small packets are stored
in other input queues. Suppose also that small packets are blocked due to
contention. This blocking behavior induces a significant throughput decrease,
since the transmission time of a large packet with respect to the transmission
time of a small packet is significant. In deep overload, this event is more
likely to occur with respect to the case of variable packet size distribution,
since many small packets are stored in input buffers. Since performance losses
are more evident in this “blocking” scenario when inputs store many small
packets, this justifies the throughput decrease.

In summary, activating backpressure does not provide performance penal-
ties and helps stabilizing system performance in overload.

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.2 0.4 0.6

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Async switch - RND scheduler

uniform
minimum

maximum
tri 40-20-40

 0.1
 1

 10
 100

 1000
 10000

 100000

 0.2 0.4 0.6

N
or

m
al

iz
ed

 D
el

ay

Normalized Throughput

Sync switch - RND scheduler

Figura 10.5. Packet delays for RND scheduler under gathered traffic

90 10 Synchronous versus Asynchronous under Multicast Traffic

To understand if the described characteristics are an intrinsic feature of
the studied architectures or if they depend on the adopted scheduler, we run
simulations with all the “weighted” schedulers previously described. We report
the results for the WBA scheduler only, because no difference were visible by
varying the weight metric. In asynchronous architectures, the weighted metric
does not provide any benefit with respect to the random scheduler; sometimes,
performance are even worse, as with trimodal and uniform packet size. In the
synchronous case, an improvement is visible only when dealing with minimum
packet size, i.e. when the cell is matched to the packet size. For other packet
size distributions WBA worsen performance. The same general trend by which
asynchronous architectures suffer for the packet size variance and synchronous
ones provide performance advantages only for fixed packet size matched to the
cell size is maintained.

This results confirms similar observations presented in [29] for synchronous
architectures. Performance advantages for more complex weighted schedulers,
such as the GS scheduler, are evident only when using more than one FIFO
queue at each input, a queue architecture not studied in this paper.

The same conclusion can be drawn when examining the switch under gath-
ered traffic, in Fig. 10.5. As expected, in this scenario the maximum achievable
throughput is drastically reduced. The general phenomena are confirmed or
highlighted by this traffic pattern. Results not reported confirm that sched-
ulers based on weighted metrics do not provide evident benefits to switch
performance also in the gathered traffic scenario.

Parte IV

Conclusion

11

Conclusion

In the first part of this thesis we have dealt with the problem of fully distribut-
ed multi-chip scheduling implementation in input queued switches. Multi-chip
implementation implies that i) decisions taken by input and output selectors
should be independent, being the selectors realized in different devices and ii)
any information exchange among selectors implies a RTT delay, which may
be larger than few tens of slot time.

First of all, we have proposed a new scheduler for unicast traffic, named
SRR, i) is suited to a fully distributed implementations, ii) does not require
any complexity increase as a function of increasing RTTs, iii) does not require
any iteration to improve matching selection.

SRR shows performance comparable with those of a previously proposed
distributed scheduler, a modified version of DRRM able to deal with RTT
among devices. This is a remarkable achievement, since the modified DR-
RM scheme is not suited to a fully distributed implementation, requiring i)
all output selectors in the same device to permit iterations, ii) a number of
pointers and counters linearly increasing with RTTs. The only SRR penalty
is the need of keeping ordered by queue length the VOQs at input selectors,
a relatively easy task given that at most one cell can arrive and at most one
cell can depart in each time slot.

After unicast, we have dealt with multicast, that is, as known, more com-
plex to schedule than unicast. The proposed modified multicast scheduler,
named IMRR, is suited to a fully distributed multi-chip implementation, and
shows performance improvements with respect to previously proposed multi-
cast schedulers directly adapted to the multi-chip scenario. Unfortunately, all
algorithms show increased average delays at low loads for increasing RTTs, a
problem that would be nice to study and solve in the future.

At the last we devoted our attention to the problem of scheduling con-
currently unicast and multicast traffic in an input-queued switch. We have
defined a integration scheme based on frame, which using schedulers as SRR
and iMRR. The use of these two schedulers makes the frame scheme suit-
able to a fully distributed implementation, does not require any complexity

94 11 Conclusion

increase as a function of increasing RTTs and does not require any iteration
to improve matching selection. On the contrary the FILM scheme requires an
increase of complexity as a function of increasing RTTs and it use iteration.

The use of the dynamic frame allows the frame scheme to get good perfor-
mance for any type of traffic in input and for each MCF’s value. The definition
of the dynamic frame does not increase the complexity of the frame scheme,
which remains O(N2).

We have shown how the Frame Scheme obtain performance comparable to
the FILM scheme in the case of RTT different from zero. This is a remarkable
achievement because the FILM scheme is not suited to a fully distributed
implementation.

In the second part an asynchronous loss-less switching architecture was
described, and its performance under multicast traffic was studied. Simula-
tions are used to analyze switch performance under various traffic patterns
and for different schedulers.

Asynchronous architectures suffer variability in packet size distribution,
which reduces switch performance both in terms of throughput and delays.
This general trend holds regardless of the considered scheduler and the mul-
ticast traffic pattern. More complex schedulers based on “weighted” metrics
do not provide evident benefits in this scenario, where a single FIFO queue
is available. A moderate speedup helps in reducing this performance penal-
ty. Backpressure mechanisms may be beneficial to stabilize performance in
overload and do not penalize switch performance in any of the examined
scenarios.

Finally, in the last part, we study the differences between asynchronous and
synchronous system. Asynchronous architectures suffer variability in packet
size distribution, which reduces switch performance both in terms of through-
put and delays. This general trend holds regardless of the considered scheduler
and the multicast traffic pattern. More complex schedulers based on “weight-
ed” metrics do not provide evident benefits in this scenario, where a single FI-
FO queue is available. A moderate speedup helps in reducing this performance
penalty. Backpressure mechanisms may be beneficial to stabilize performance
in overload and do not penalize switch performance in any of the examined
scenarios.

In summary, synchronous or asynchronous architectures provide compa-
rable performance. Asynchronous schedulers suffers from an increase in the
variance of packet size distribution, whereas synchronous switches suffer from
large packet size with respect to the cell size. Given the technological advan-
tages of asynchronous switching as outlined in the Introduction, asynchronous
switching seems a competitive solution with respect to the more traditional
synchronous approach. Note that we have disregarded issues related to the
fixed size penalty, which is implicit in synchronous switches. Taking this into
account would make asynchronous switching even more competitive.

Riferimenti bibliografici

1. H. J. Chao, C. Lam, and E. Oki, Broadband Packet Switching Technologies.
John Wiley & sons, Sept. 2001.

2. A. Pattavina, Switching Theory. John Wiley & sons, 1998.
3. J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks.

Boston, MA: Kluwer, 1990.
4. M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos, “Variable

packet size buffered crossbar (cicq) switches,” in Proc. IEEE International Con-
ference on Communications (ICC 2004), vol. 2, (Paris, France), pp. 1090–1096,
June 20–24, 2004.

5. K. Yoshigoe and K. Christensen, “A parallel-polled virtual output queued
switch with a buffered crossbar,” in Proc. IEEE Workshop on High-
Performance Switching and Routing HPSR 2001, (Dallas, TX), pp. 271–275,
May 2001.

6. A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and E. Schiattarella, “Perfor-
mance analysis of storage area network switches,” in Proc. IEEE Workshop on
High-Performance Switching and Routing HPSR 2005, (Hong Kong), 2005.

7. W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. San Francisco, CA: Morgan Kaufmann, 2003.

8. N. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on a space
division switch,” IEEE Trans. Commun., vol. 35, pp. 1347–1356, Dec. 1987.

9. Y. Tamir and G. Frazier, “High performance multi-queue buffers for vlsi com-
munication switches,” in Proc. 15th Ann. Symp. Comp. Archi., pp. 343–354,
June 1988.

10. N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans. Commun., vol. 47,
pp. 1260–1267, Aug. 1999.

11. S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output
queueing with a combined input output queued switch,” IEEE J. Sel. Areas
Commun., vol. 17, pp. 1030–1039, June 1999.

12. I. Stoica and H. Zhang, “Exact emulation of an output queueing switch by a
combined input output queueing switch,” in Proc. 6th IEEE/IFIP IWQoS ’98,
(Napa Valley, CA), pp. 218–224, May 1998.

96 Riferimenti bibliografici

13. J. G. Dai and B. Prabhakar, “The throughput of data switches with and without
speed-up,” in Proc. IEEE INFOCOM 2000, vol. 2, (Tel Aviv, Israel), pp. 556–
564, Mar. 2000.

14. C. Minkenberg, R. Luijten, F. Abel, W. Denzel, and M. Gusat, “Current issues
in packet switch design,” ACM Computer Commun. Rev., vol. 33, pp. 119–124,
Jan. 2003.

15. L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks,” IEEE/ACM Trans. Automat. Control, vol. 37, pp. 1936–1948, Dec.
1992.

16. R. E. Tarjan, Data Structures and Network Algorithms. Murray Hills, NJ: Bell
Labs, 1983.

17. T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed switch scheduling
for local area networks,” ACM Trans. Comput. Syst, vol. 11, pp. 319–352, Nov.
1993.

18. N. McKeown, Scheduling Algorithms for Input-Queued Switches. PhD thesis,
University of California at Berkeley, 1995.

19. N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,”
IEEE/ACM Trans. Networking, vol. 7, pp. 188–201, Apr. 1999.

20. H. Chao and J. Park, “Centralized contention resolution schemes for a large-
capacity optical ATM switch,” in Proc. IEEE ATM Workshop, (Fairfax, VA),
pp. 11–16, May 1998.

21. D. Serpanos and P. Antoniadis, “Firm: A class of distributed scheduling al-
gorithms for high-speed ATM switches with multiple input queues,” in Proc.
IEEE INFOCOM 2000, vol. 2, (Tel Aviv, Israel), pp. 548–555, Mar. 2000.

22. Y. Li, S. Panwar, and H. Chao, “On the performance of a dual round-robin
switch,” in Proc. IEEE INFOCOM 2001, vol. 3, (Anchorage, AK), pp. 1688–
1697, Apr. 2001.

23. A. Mekkittikul and N. McKeown, “A practical scheduling algorithm to achieve
100% thorughput in input-queued switches,” in Proc. IEEE INFOCOM ’98,
(San Francisco, CA), pp. 792–799, Apr. 1998.

24. M. Ajmone Marsan, A. Bianco, and E. Leonardi, “RPA: A simple, efficient, and
flexible policy for input buffered ATM switches,” IEEE Commun. Lett., vol. 1,
pp. 83–86, May 1997.

25. A. Smiljanić, R. Fan, and G. Ramamurthy, “RRGS-round-robin greedy schedul-
ing for electronic/optical terabit switches,” in Proc. IEEE GLOBECOM 1999,
(Rio de Janeiro, Brazil), pp. 584–555, Dec. 1999.

26. Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI communication
switches,” IEEE Trans. Parallel and Distributed Systems, vol. 4, pp. 13–27, Jan.
1993.

27. W. T. Chen, C. F. Huang, C. Y. L., and W. Y. Hwang, “An efficient cell-
scheduling algorithm for multicast atm switching systems,” IEEE/ACM Trans.
Networking, vol. 8, pp. 517–525, Aug. 2000.

28. P. Gupta and N. McKeown, “Designing and implementing a fast crossbar
scheduler,” IEEE Micro, vol. 19, pp. 20–28, Jan./Feb. 1999.

29. A. Bianco, P. Giaccone, E. Leonardi, F. Neri, and C. Piglione, “On the number
of input queues required to support multicast traffic in input queued switches,”
in Proc. IEEE Workshop on High-Performance Switching and Routing HPSR
2003, (Torino, Italy), pp. 49–54, June 24–27, 2003.

Riferimenti bibliografici 97

30. A.Bianco, P.Giaccone, C.Piglione, S.Sessa “Practical Algorithms for Multi-
cast Support in Input Queued Switches”, in Proc. IEEE Workshop on High-
Performance Switching and Routing HPSR 2006, (Poznan, Poland), June
2006

31. A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi, E. Schiattarella, “Dis-
tributed scheduling in input queued switches”,in Proc. IEEE International
Conference on Communications (ICC 2007), (Glasgow, Scotland), June 2007

32. M. Ajmone Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Mul-
ticast traffic in input-queued switches: Optimal scheduling and maximum
throughput,” IEEE/ACM Trans. Networking, vol. 11, pp. 465–477, June 2003.

33. J. Hayes, R. Breault, and M. Mehmet-Ali, “Performance analysis of a multicast
switch,” IEEE/ACM Trans. Commun., vol. 39, pp. 581–587, Apr. 1991.

34. J. Y. Hui and T. Renner, “Queueing analysis for multicast packet switching,”
IEEE Trans. Commun., vol. 42, pp. 723–731, feb/mar/apr 1994.

35. Z. Liu and R. Righter, “Scheduling multicast input-queued switches,” J.
Scheduling, vol. 2, pp. 99–114, 1999.

36. B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast scheduling for input-
queued switches,” IEEE J. Sel. Areas Commun., vol. 15, pp. 855–866, June
1997.

37. G. F. Pfister, “An introduction to the InfiniBand architecture,” in High Perfor-
mance Mass Storage and Parallel I/O: Technologies and Applications (H. Jin,
T. Cortes, and R. Buyya, eds.), ch. 42, pp. 617–632, New York, NY: IEEE
Computer Society Press and Wiley, 2001.

38. C. Minkenberg, “Performance of i-SLIP scheduling with large round-trip la-
tency,” in Proc. IEEE Workshop on High-Performance Switching and Routing
HPSR 2003, (Torino, Italy), pp. 49–54, June 24–27, 2003.

39. C. Minkenberg, F. Abel, and E. Schiattarella, “Distributed crossbar sched-
ulers,” in To appear in Proc. IEEE Workshop on High-Performance Switching
and Routing (HPSR 2006), (Poland), 2006.

40. M. Andrews, S. Khanna, and K. Kumaran, “Integrated scheduling of unicast
and multicast traffic in an input-queued switch,” in Proc. IEEE INFOCOM
1999, vol. 3, pp. 1144–1151, Mar. 1999.

41. M. Song and W. Zhu, “Integrated queueing and scheduling for unicast and
multicast traffic in input-queued packet switches,” in Proc. 2nd IASTED In-
ternational Conference on Communication and Computer Networks, (M.I.T.,
Cambridge, MA), Nov. 2004.

42. A. Smiljanić, “Scheduling of multicast traffic in high-capacity packet switches,”
IEEE Communications Magazine, pp. 72–77, Nov. 2002.

43. C. Minkenberg, E. Schiattarella, “Fair Integrated Scheduling of Unicast and
Multicast Traffic in an Iput-Queued Switch,“ in To appear in Proc. IEEE
Workshop on High-Performance Switching and Routing (HPSR 2006)(Poland),
2006.

44. N. McKeown and B. Prabhakar, “Scheduling multicast cells in an input-queued
switch,” in Proc. IEEE INFOCOM 1996, vol. 1, pp. 271–278, Mar. 1996.

45. T. Clark, Designing Storage Area Networks. Addison Wesley, 2 ed., 2003.
46. J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E. Zeidner, “Internet

Small Computer Systems Interface (iSCSI).” RFC 3720 (Proposed Standard),
Apr. 2004.

98 Riferimenti bibliografici

47. A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and E. Schiattarella, “Multicast
support for storage area network switches,” in IEEE GLOBECOM 2006, San
Francisco,(USA),2006.

48. I. Iliadis, W.E. Denzel, “Analysis of Packet Switches with Input and Output
Queueing”, IEEE Transactions on Communications , vol. 41, no. 5, pp. 731-740,
May. 1993.

49. A. Bianco, A. Scicchitano, “Multicast multi-chip schedulers in input queued
switches,“ in To appear in Proc. IEEE Workshop on Qos in Multiservice IP
Networks (QoS-IP 2008)(Italy), 2008.

