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Abstract

Uncertainty and the curse of dimensionality are two crucial problems that
usually affect data clustering.

Uncertainty in data clustering may be typically considered at data level
or clustering level. Data level uncertainty is inherently present in the repre-
sentation of several kinds of data objects from various application contexts
(e.g., sensor networks, moving objects databases, biomedicine). This kind of
uncertainty should be carefully taken into account in a clustering task in order
to achieve adequate accuracy; unfortunately, traditional clustering methods
are designed to work only on deterministic vectorial representations of data
objects. Clustering uncertainty is related to the output of any clustering algo-
rithm. Indeed, the ill-posed nature of clustering leads to clustering algorithms
that cannot be generally valid for any input dataset, i.e., their output results
are necessarily uncertain. Clustering ensembles has been recognized as a pow-
erful solution to overcome clustering uncertainty. It aims to derive a single
clustering solution (i.e., the consensus partition) from a set of clusterings rep-
resenting different partitions of the same input dataset (i.e., the ensemble).
A major weakness of the existing clustering ensembles methods is that they
compute the consensus partition by equally considering all the solutions in
the ensemble.

The curse of dimensionality in data clustering concerns all the issues that
naturally arise from data objects represented by a large set of features and are
responsible of poor accuracy and efficiency achieved by traditional clustering
methods working on high dimensional data. Classic approaches to the curse
of dimensionality include global and local dimensionality reduction. Global
techniques aim at reducing the dimensionality of the input dataset by applying
the same algorithm(s) to all the input data objects. Local dimensionality
reduction acts by considering subsets of the input dataset and performing
dimensionality reduction specific for any of such subsets. Projective clustering
is an effective class of methods falling into the category of local dimensionality
reduction. It aims to discover clusters of objects along with the corresponding
subspaces, following the principle that objects in the same cluster are close to
each other if and only if they are projected onto the subspace associated to
that cluster.



viii Abstract

The focus of this thesis is on the development of proper techniques for
overcoming the crucial problems of uncertainty and the curse of dimension-
ality arising from data clustering. This thesis provides the following main
contributions.

Uncertainty. Uncertainty at a representation level is addressed by proposing:
� UK-medoids, which is a new partitional algorithm for clustering un-

certain objects, which is designed to overcome efficiency and accuracy
issues of some existing state-of-the-art methods;

� U-AHC, i.e., the first (agglomerative) hierarchical algorithm for clus-
tering uncertain objects;

� a methodology to exploit U-AHC for clustering microarray biomedical
data with probe-level uncertainty.

Clustering uncertainty is addressed by focusing on the problem of weighted
consensus clustering, which aims to automatically determine weighting
schemes to discriminate among clustering solutions in a given ensemble.
In particular:
� three novel diversity-based, general schemes for weighting the individ-

ual clusterings in a given ensemble are proposed, i.e., Single-Weighting
(SW), Group-Weighting (GW), and Dendrogram-Weighting (DW);

� three algorithms, called WICE, WCCE, and WHCE, are defined to eas-
ily involve clustering weighting schemes into any clustering ensembles
algorithm falling into one of the main classes of clustering ensembles
approaches, i.e., instance-based, cluster-based, and hybrid.

The curse of dimensionality. Global dimensionality reduction is addressed
by focusing on the time series data application context:
� the Derivative time series Segment Approximation (DSA) model is

proposed as a new time series dimensionality reduction method de-
signed for accurate and fast similarity detection and clustering;

� Mass Spectrometry Data Analysis (MaSDA) system is presented; it
mainly aims at analyzing mass spectrometry (MS) biomedical data by
exploiting DSA to model such data according to a time series-based
representation;

� DSA is exploited for profiling low-voltage electricity customers.
Regarding local dimensionality reduction, a unified view of projective clus-
tering and clustering ensembles is provided. In particular:
� the novel Projective Clustering Ensembles (PCE) problem is addressed

and formally defined according two specific optimization formulations,
i.e., two-objective PCE and single-objective PCE ;

� MOEA-PCE and EM-PCE algorithms are proposed as novel heuristics
to solve two-objective PCE and single-objective PCE, respectively.

Absolute accuracy and efficiency performance achieved by the proposed
techniques, as well as the performance with respect to the prominent state-
of-the-art methods are evaluated by performing extensive sets of experiments
on benchmark, synthetically generated, and real-world datasets.
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Introduction

1.1 Knowledge Discovery in Databases, Data Mining,
Clustering

Knowledge Discovery in Databases (KDD) is the non-trivial process of
identifying novel, valid, potentially useful, and ultimately understandable pat-
terns in data [FPS96]. The term “pattern” refers to a subset of the data ex-
pressed in some language or a model exploited for representing such a subset.
KDD aims to discover patterns that (i) do not result in straightforwardly
computing predefined quantities (i.e., non-trivial), (ii) can apply to new data
with some degree of certainty (i.e., valid), (iii) are previously unknown (i.e.,
novel), (iv) provide some benefit to the user or further task (i.e., potentially
useful), and (v) lead to insight, immediately or after some post-processing
(i.e., understandable).

The KDD process is an iterative and interactive sequence of the following
main steps (Fig. 1.1):

� selection, whose main goal is to create a target data set from the orig-
inal data, i.e., selecting a subset of variables or data samples, on which
discovery has to be performed;

� preprocessing, which aims to “clean” data by performing various opera-
tions, such as noise modeling and removal, defining proper strategies for
handling missing data fields, accounting for time sequence information;

� transformation, which is responsible of reducing and projecting the data,
in order to derive a representation suitable for the specific task to be per-
formed; it is typically accomplished by involving transformation techniques
or methods that are able to find invariant representations for the data;

� data mining, which deals with extracting the interesting patterns by choos-
ing (i) a specific data mining method or task (e.g, summarization, classifi-
cation, clustering, regression, and so on), (ii) the proper algorithm(s) for
performing the task at hand, and (iii) the appropriate representation for
the output results;
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Fig. 1.1. The Knowledge Discovery in Databases (KDD) process

� interpretation/evaluation, which is exploited by the user to interpret and
extract knowledge from the mined patterns, by visualizing the patterns;
this interpretation is typically carried out by visualizing the patterns, the
models, or the data given such models and, in case, iteratively looking
back at the previous steps of the process.

Data mining represents the “core” step of the KDD process, so much
so that the “data mining” and “KDD” terms are often treated as syn-
onyms [HK01]. Data mining tasks are classified into predictive and descrip-
tive [FPSU96]. Predictive tasks refer to building a model useful for predicting
future behavior or values for certain features. These comprise association anal-
ysis, i.e., discovering association rules that show attribute-value conditions
occurring frequently together in a given set of data; classification and predic-
tion, i.e., deriving some models (or functions) which describe data classes or
concepts by a set of data objects whose class label is known (i.e., the training
set); such models have the main goal of being used to predict the class of
objects whose class label is unknown as accurately as possible; deviation de-
tection, i.e., dealing with deviations in data, which are defined as differences
between measured values and corresponding references such as previous values
or normative values; evolution analysis, i.e., detecting and describing regular
patterns in data whose behavior changes over time. On the other hand, in a
descriptive data mining task, the model built has to describe the data in an
understandable, effective, and efficient form. Relevant examples of descriptive
tasks are data characterization, whose main goal is to summarize the general
characteristics or features of a target class of data, data discrimination, i.e., a
comparison of the general features of target class data objects with the general
features of objects from one or a set of contrasting classes, and clustering.

Given a set of data objects, clustering aims to identify a finite set of groups
of objects, i.e., clusters, so that the objects within the same cluster are “sim-
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ilar” to each other, whereas the objects belonging to different clusters are
“dissimilar”. The degrees of (dis)similarity among data objects are computed
and evaluated according to a similarity/distance measure that can be either
specified by the user or inherently employed in the specific clustering algo-
rithm. In a clustering task, there is no prior knowledge of the class labels
associated to the objects to be grouped; according to this feature, clustering
is often also referred to as unsupervised classification, to emphasize the dif-
ference with respect to the (supervised) classification task, in which the class
labels of the objects in the training set are known.

A large number of clustering algorithms has been proposed in the liter-
ature [JD88, KR90]. Traditionally, these algorithms share to each other the
following main features: (i) they work on a set of a data objects which are de-
scribed according to a “deterministic” vectorial representation, i.e., as tuples
of attribute or feature values; (ii) they assume and, consequently, guarantee
high performances only if the number of features describing each data ob-
ject is sufficiently small; (iii) they make the final decision about the output
result without taking into account additional information, possibly given by,
e.g., varying parameters and features and/or exploiting different algorithms or
similarity measures. Unfortunately, due to recent advances in database appli-
cations which lead to a significant increasing of the complexity of the data to
be treated, the above features make the traditional clustering algorithms not
easily applicable to a lot of newly emerged application contexts. Within this
view, major challenges in data clustering are focusing on overcoming issues
related to the crucial notions of uncertainty and the curse of dimensionality.

1.2 Uncertainty

Uncertainty in Data Representation. Handling uncertainty in data
management has been recently requiring more and more importance in a wide
range of application contexts [Agg09]. Data uncertainty naturally arises from,
e.g., implicit randomness in a process of data generation/acquisition, impre-
cision in physical measurements, application of approximation methods, and
data staling. This makes uncertainty inherently present in several application
domains. For instance, sensor measurements may be imprecise at a certain
degree due to the presence of various noisy factors (e.g., signal noise, in-
strumental errors, wireless transmission) [CLL06, CKP03]. To address this
issue, it is advisable to model sensor data as continuous probability distri-
butions [FGB02, DGM+05]. Another example is given by data representing
moving objects, which continuously change their location so that the exact
positional information at a given time instant may be unavailable [LHY04].
Moreover, some methods have recently been defined to handle uncertainty in
gene expression data [MFNL03, HRC+05, LMLR05]. Further examples come
from distributed applications, privacy preserving data mining, and forecasting
or other statistical techniques used to generate data attributes [AY09].
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Dealing with uncertain data has raised several issues in data manage-
ment and knowledge discovery. In particular, clustering uncertain data is
especially challenging and has been attracting increasing interest in recent
years [KP05a, KP05b, CCKN06, NKC+06, S. 07, KLC+08]. Indeed, in order
to produce meaningful results, uncertain data clustering algorithms have to
necessarily deal with the non-trivial issue of carefully considering and model-
ing uncertainty. This represents a crucial point, because, if data uncertainty
is not effectively taken into account and represented, any clustering algorithm
may probably fail in discovering accurate cluster structures.

Clustering Uncertainty. Clustering is typically affected by a different
kind of uncertainty, i.e., clustering uncertainty, which is somehow related to
the output results. Clustering uncertainty is mainly motivated by the “ill-
posed” nature of clustering: it is well-known that there do not exist defi-
nitely best algorithms, similarity measures, and parameter settings for pro-
viding general valid solutions to the clustering problem [JMF99]. Instead,
such choices have to be made depending on the specific data to be clustered.
Within this view, any clustering result outputted by a clustering algorithm
equipped with a specific similarity measure and parameter values cannot be
recognized as “certain”; rather, many different configurations of algorithm,
similarity measure, and parameter setting that lead to different output re-
sults (and, hence, to uncertainty in clustering results) should be in principle
taken into account.

Clustering ensembles [SG02], also known as consensus clustering or aggre-
gation clustering, has recently emerged as a powerful tool to face the issues
due to uncertainty in clustering results. In particular, clustering ensembles
aims to make a clustering solution more robust against the bias due to the
peculiarities of the specific clustering algorithm. Basically, clustering ensem-
bles resorts to the idea of combining multiple classifiers, which has received
increased attention in the last years [BK99]. Given a data collection, a set of
clustering solutions, or ensemble, can be generated by varying one or more as-
pects, such as the clustering algorithm, the parameter setting, and the number
of features, objects or clusters. Given an ensemble, a major goal is to extract
a consensus partition, i.e., a clustering solution that maximizes some objec-
tive function (the consensus function) defined by taking into account different
information available from the given set of clustering solutions.

1.3 The Curse of Dimensionality

The term “curse of dimensionality”, as originally coined in [Bel61], refers
to the impossibility of optimizing a function of many variables by a brute
force search on a discrete multidimensional grid [SEK04]. However, in data
management, the curse of dimensionality is more generally referred to all
the accuracy and efficiency issues due to high dimensional data, i.e., data
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Fig. 1.2. An example of time series data

whose representation is given by a large number of variables (i.e, features).
Major issues arising from the curse of dimensionality concern the sparsity of
data represented in high dimensional spaces and the meaningfulness of the
distance measure applied to this kind of data. Indeed, it has been shown
that, for certain data distributions, the relative distances of the closest and
farthest data points of an independently selected point goes to zero as the
dimensionality increases [BGRS99]; a similar result involving the absolute
distances and the Lp norm (p ≥ 3) has been proved in [HAK00]. Such results
make the curse of dimensionality phenomenon particularly critical especially
in a task of clustering, since it is well-known that clustering puts its basis on
the notion of similarity/distance between data objects.

Nowadays, high dimensional data arise from a lot of various application
domains. Relevant examples are biomedical data, text data, data managed by
e-commerce applications, web data, xml and semistructured data, time series
data. In particular, time series, i.e., sequences of (real) numeric values upon
which a total order based on timestamps is defined, are generally used to rep-
resent the temporal evolution of objects (cf. Fig. 1.21). To this purpose, man-
aging time series data by means of data mining techniques, and, in particular,
clustering, is challenging due to the enormous amounts of such data naturally
available from several sources of different domains, e.g., speech recognition,
financial and market data analysis, telecommunication and telemetry, sensor
networking, motion tracking, meteorology [WY05, Lia05].

Global Dimensionality Reduction. A well-known class of methods and
algorithms which aim to alleviate the issues arising from high dimensional
data is the so-called dimensionality or dimension reduction [Fod02]. The main
goal of dimensionality reduction is to compute, for each data object having m
dimensions (i.e., represented by a number of features equal to m), a different

1 Figure 1.2 is borrowed from [KS97].
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representation given by m′ features, where m′ ¿ m. The new m′-dimensional
representation is typically carried out globally to the entire set of objects, i.e.,
the same algorithm or scheme is exploited for all the objects.

Dimensionality reduction techniques can be classified into two main cat-
egories, namely domain-driven and general. Domain-driven techniques are
specific and specialized only for the application context that are designed to;
hence, they are not applicable or do not guarantee high performances when
involved in more general scenarios. As an example, there has been proposed a
lot of dimensionality reduction techniques for time series data [DTS+08]. Al-
though such techniques fulfill some crucial requirements arising from the time
series application context, such as, e.g., time-warping awareness, they cannot
be recognized as generally valid for different application domains. General di-
mensionality reduction aims to define methods that are suitable for dealing
with any kind of data. General techniques comprise feature selection [MBN02]
and feature extraction [GGNZ06]. According to feature selection, the dimen-
sionality is reduced by selecting a subset of the original features of the data
objects, while discarding the remaining ones. The crucial problem of choosing
the features to be maintained can be solved by taking into account differ-
ent criteria. For instance, according to wrapper models [KJ97, KSM00], the
relevant features are selected by evaluating the results obtained by running
one or more clustering algorithms on the reduced space. Entropy-based crite-
ria [DLY97, DCSL02] involve the evaluation of the entropy of the distribution
of the feature values in each dimension. On the other hand, feature extraction
methods construct a new, smaller set of features by exploiting the information
available from the original one. Well-established feature extraction techniques
include Principal Component Analysis (PCA) [DH73, Fuk90, Jol02], which
computes the new features as linear combinations of the original ones, and is
a special case of a more general matrix decomposition method called Singular
Value Decomposition (SVD) [Str88, Dep89, Sch91].

Local Dimensionality Reduction. In the context of data clustering, it
may happen that any cluster to be discovered “exists” in a specific subspace,
i.e., its objects are close to each other if (and only if) they are projected
onto that subspace. Thus, performing dimensionality reduction globally to the
entire set of objects may lead to meaningless clustering results. Indeed, global
dimensionality reduction might eliminate or transform one o more dimensions
that are potentially relevant to at least one cluster; also, since the subspaces
associated to each cluster may be in general different to each other, the global
reduced representation can be clearly not consistent with the subspaces of
the various clusters. An illustrative example of this scenario is depicted in
Fig. 1.3;2 the three clusters C1, C2, and C3 exist in the subspaces given by
the sets of features {x1}, {x2}, and {x3}, respectively; therefore, the subspaces
associated to each cluster are all different to each other and each dimension
is relevant to at least one cluster.

2 Figure 1.3 is borrowed from [PJAM02].
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Fig. 1.3. Three clusters existing in different subspaces

Within this view, for a clustering task, it is advisable to perform a dimen-
sionality reduction that is local to the single cluster. This is the main goal of
subspace clustering and projective (or projected) clustering [PHL04, KKZ09],
which aim to discover the cluster structure along with the subspaces corre-
sponding to each cluster. As a consequence, subspace and projective clustering
tend to be less noisy—because each group of data is represented over a sub-
space which does not contain irrelevant or redundant dimensions—and more
understandable—because the exploration of a cluster is much easier when
only few dimensions are involved. Projective clustering and subspace cluster-
ing problems are strictly related to each other.3 A major difference between
the two problems is that projective clustering outputs a single partition of the
input set of data objects, whereas subspace clustering aims to find a set of
clustering solutions, each one having clusters defined in a specific subspace.
Indeed, subspace clustering algorithms typically aim to find clustering struc-
tures in every possible “interesting” subspace.

1.4 Contributions

The focus of this thesis is on the crucial problems of uncertainty and the
curse of dimensionality arising from data clustering. The main contributions
of this thesis are summarized in the following.

Uncertainty. The problem of clustering data affected by uncertainty at a rep-
resentation level is deeply investigated. In particular, main contributions
in this respect include:

3 The terms “projective clustering” and “subspace clustering” are not used in a
unified way in the literature.
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� UK-medoids: a new partitional algorithm for clustering uncertain data,
which is designed to overcome efficiency and accuracy issues of some
existing partitional uncertain data clustering algorithms;

� U-AHC : the first (agglomerative) hierarchical algorithm for clustering
uncertain data;

� as a special case of uncertain data, the problem of clustering microarray
biomedical data with probe-level uncertainty is addressed and solved
by exploiting the U-AHC algorithm.

Clustering uncertainty is addressed from a clustering ensembles perspec-
tive, i.e., by focusing on the problem of weighted consensus clustering,
which aims to automatically determine weighting schemes to discriminate
among clustering solutions in a given ensemble. In particular, contribu-
tions of this thesis to clustering ensembles include:
� Single-Weighting (SW), Group-Weighting (GW), and Dendrogram-

Weighting (DW): three novel diversity-based, general schemes for
weighting the individual clusterings in a given ensemble;

� WICE, WCCE, and WHCE : three algorithms to easily involve cluster-
ing weighting schemes into any clustering ensembles algorithm falling
into one of the main classes of clustering ensembles approaches, i.e.,
instance-based, cluster-based, and hybrid.

The curse of dimensionality. Global dimensionality reduction is addressed
by focusing on a domain-driven scenario; in particular, the application
context taken into account is that of time series data. Contributions in
this regard are the following:
� Derivative time series Segment Approximation (DSA) model: a new

time series dimensionality reduction method (i.e, representation model)
designed for accurate and fast similarity detection and clustering of
time series data;

� Mass Spectrometry Data Analysis (MaSDA): a system for analyzing
mass spectrometry biomedical data, whose core exploits DSA to model
mass spectrometry data according to a time series-based representa-
tion;

� exploiting DSA for low-voltage electricity customer profiling.
Regarding local dimensionality reduction, the projective clustering and
clustering ensembles problems are viewed for the first time as two faces
of the same coin. In particular:
� the novel Projective Clustering Ensembles (PCE) problem is inves-

tigated and formally defined by providing two specific optimization
formulations, i.e., two-objective PCE and single-objective PCE ;

� MOEA-PCE and EM-PCE algorithms are proposed as novel heuristic
solutions to the two-objective PCE and single-objective PCE prob-
lems, respectively.
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1.5 Outline of the Thesis

This thesis is organized in five parts:

� Part I, Preliminaries, provides an introduction and the background to
clustering data mining task;

� Part II, Uncertainty in Data Clustering – data level, deals with the problem
of uncertainty at a data representation level arising from data clustering;

� Part III, Uncertainty in Data Clustering – clustering level, addresses the
so-called clustering uncertainty, by focusing, in particular, on the problem
of clustering ensembles;

� Part IV, The Curse of Dimensionality in Data Clustering – global dimen-
sionality reduction, focuses on global dimensionality reduction as a solution
for overcoming the curse of dimensionality problem in data clustering;

� Part V, The Curse of Dimensionality in Data Clustering – local dimension-
ality reduction, deals with the curse of dimensionality in data clustering
from a local dimensionality reduction perspective; in particular, the focus
is on the problem of projective clustering.

The five parts are articulated around the following chapters.
Chapter 1 informally describes the context of this thesis. It firstly intro-

duces the KDD process, paying particular attention on data mining, as a major
step of KDD, and clustering, i.e., the specific data mining task addressed in
this thesis. Then, it provides an overview of the problems of uncertainty and
the curse of dimensionality in data clustering, along with a brief summary of
the main existing techniques for overcoming these problems. Finally, the main
contributions and the outline of the thesis conclude the chapter.

Chapter 2 provides background notions to the clustering task in data min-
ing. The focus of the chapter is on the algorithms/criteria needed for a clear
explanation of the proposals discussed in the remainder of the thesis. It firstly
overviews the main existing classes of clustering approaches, namely, parti-
tional relocation, density-based, and hierarchical. Afterward, the problem of
soft clustering is introduced, along with the cluster validity criteria aimed at
assessing the quality of a clustering solution.

Chapter 3 deals with the problem of uncertainty in data representation,
which is analyzed from a clustering perspective. It provides a background
to the problem at hand. First, the main models used for representing data
uncertainty are discussed, particularly focusing on the model adopted by the
so-called uncertain objects, which are the specific kind of uncertain data taken
into account in this thesis. Furthermore, the prominent state-of-the-art meth-
ods for clustering uncertain objects are briefly reviewed.

Chapter 4 presents a new algorithm for clustering uncertain objects, called
UK-Medoids, which is mainly conceived to overcome accuracy and efficiency
issues of some of the current partitional algorithms for clustering uncertain
objects. It first defines the distance functions exploited by the proposed al-
gorithm, and, then, describes the K-Medoids-based scheme at the basis of
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UK-Medoids. The chapter ends by discussing the experiments carried out to
show accuracy and efficiency performances of UK-medoids with respect to the
other prominent state-of-the-art methods.

Chapter 5 introduces U-AHC, i.e., the first agglomerative hierarchical al-
gorithm for clustering uncertain objects. Before describing the prototype link-
based agglomerative scheme of U-AHC, it provides the definitions of the pro-
totypes used for summarizing the uncertain objects in a cluster and the new
information-theoretic criterion for comparing such prototypes. Moreover, the
chapter presents the experimental evaluation aimed at validating U-AHC in
terms of accuracy and efficiency, and with respect to the other existing algo-
rithms for clustering uncertain objects. The chapter concludes by presenting
an application of the U-AHC algorithm to clustering microarray biomedical
data with probe-level uncertainty.

Chapter 6 provides background to the clustering ensembles problem as
a valid and powerful solution for overcoming clustering uncertainty. It con-
cerns the main notions at the basis of clustering ensembles, along with a brief
overview of the major existing methods proposed in the literature for solving
such a problem.

Chapter 7 addresses the weighted consensus clustering problem by propos-
ing three general clustering weighting schemes, called Single-Weighting (SW),
Group-Weighting (GW), and Dendrogram-Weighting (DW). The main goal
of the proposed schemes is to assign a proper weight to each clustering solu-
tions in a given ensemble, in order to discriminate among such solutions when
performing a clustering ensembles task. After explaining the details of the
proposed SW, GW, and DW schemes, three further algorithms, i.e., WICE,
WCCE, and WHCE, are presented. Such algorithms are designed to easily
involve clustering weighting schemes into any instance-based, cluster-based,
and hybrid clustering ensembles algorithm, respectively. Finally, an extensive
experimental evaluation is presented. The main goal of these experiments is to
assess the impact of employing the proposed weighting schemes in clustering
ensembles, by comparing the performances of a large number of clustering
ensemble algorithms with and without each of the proposed schemes.

Chapter 8 focuses on time series data management. It provides background
definitions for the context at hand and a brief description of the state-of-the-
art on time series similarity detection and time series dimensionality reduc-
tion.

Chapter 9 presents a new time series representation model, called DSA,
which performs domain-driven dimensionality reduction in the context of time
series data in an effective and efficient way. Firstly, the novelty at the basis of
DSA, along with its main differences with respect to the competing methods,
are discussed. Secondly, the three main steps of the DSA model, i.e., derivative
estimation, segmentation, and segment approximation, are described in detail.
Finally, DSA accuracy and efficiency performances are extensively evaluated
and compared to those of the other existing time series dimensionality reduc-
tion techniques.
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Chapter 10 shows as the DSA model can be exploited for solving two
problems from real-world applications: (i) clustering of mass spectrometry
biomedical data, and (ii) low-voltage electricity customers profiling. The first
problem is addressed by describing the Mass Spectrometry Analyzing System
(MaSDA) and presenting several experiments aimed at assessing the validity
of the innovative approach proposed. As regards the second problem, the
specific approach to electricity customers profiling is presented, along with
the relative experimental evaluation.

Chapter 11 deals with local dimensionality reduction in data clustering. It
summarizes the main notions at the basis of subspace clustering and projective
clustering problems, putting particular emphasis on the latter. In this respect,
the problem of projective clustering is formalized and existing research on
projective clustering is briefly reviewed.

Chapter 12 addresses for the first time the Projective Clustering Ensembles
(PCE) problem, whose objective is to define methods for clustering ensembles
that are able to deal with ensembles of projective clustering solutions. Firstly,
PCE is formally defined according to two different optimization formulations,
namely a two-objective and a single-objective formulation. For each of the
proposed formulations, proper heuristic algorithms, i.e, MOEA-PCE and EM-
PCE, respectively, are described. MOEA-PCE and EM-PCE are eventually
evaluated in terms of accuracy by performing a large set of experiments on
several publicly available benchmark datasets.

Finally, Conclusion chapter ends the thesis by reviewing the main contri-
butions to uncertainty and the curse of dimensionality in data clustering, and
considering open problems and directions of future research.
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Clustering

Abstract This chapter provides an insight into the problem of clustering, which
represents the focus of this thesis. In particular, it reports on the major details
about clustering needed for the purposes of this thesis. The basis of partitional and
hierarchical clustering approaches are provided. The discussion about partitional
clustering is twofold: it concerns both partitional algorithms exploiting a relocation
scheme and density-based algorithms. Hierarchical clustering is treated by focusing
on the standard agglomerative scheme (AHC) and the classic linkage metrics typ-
ically used in any AHC approach (i.e., single link, complete link, average link, and
prototype link). Finally, the chapter describes the problem of soft clustering and the
criteria used in the remainder of the thesis for assessing the quality of any clustering
solution.

2.1 Clustering Solution

Definition 2.1 (clustering solution). Let D = {o1, . . . , on} be a set of data
objects and f : D×D → < be a distance function between the objects in D. A
clustering solution or simply a clustering C = {C1, . . . , CK} defined over D is
a partition of D into K groups, i.e., clusters, computed by properly exploiting
the information available from f .

Traditionally, the objects in the input set D are represented in terms of
deterministic vectors of numerical or categorical feature values. In that case,
each object oi is coupled with the corresponding vector ωi = [ωi1, . . . , ωim],
∀i ∈ [1..n]. If not differently specified, this thesis hereinafter refers to this
kind of representation for data objects. Also, in the remainder of this thesis,
any distance function f between data objects in D is assumed to satisfy the
following conditions:

1. f(oi, oi′) ≥ 0, ∀i, i′ ∈ [1..n]
2. f(oi, oi′) = 0 if and only if oi = oi′

3. f(oi, oi′) = f(oi′ , oi), ∀i, i′ ∈ [1..n]
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Fig. 2.1. A taxonomy of clustering approaches

Note that if f also satisfies the triangle inequality condition, i.e., f(oi, oi′) ≤
f(oi, oi′′) + f(oi′′ , oi′), ∀i, i′, i′′ ∈ [1..n], then f is a metric [LS74].

As mentioned in Chap. 1, any clustering is built in such a way that cluster
cohesiveness and separation, measured according to the input function f ,
are maximized. Clearly, such a criterion is too general; therefore, clustering
methods typically provide a specific objective function to minimize/maximize,
in order to formally define clusters that are compact and well-separated from
each other. Since these formulations usually leads to NP-hard problems, any
specific clustering method should define the corresponding heuristic algorithm
to find good approximations of the optimal solution.

In the literature, there has been defined a huge number of clustering meth-
ods and algorithms, which differ to each other for the optimization criterion,
the resolution strategy, and the computation of the distance between the in-
put objects. These algorithms can be classified according to a lot of different
taxonomies, such as, e.g., that reported in Fig. 2.1 [JD88]. Typically, accord-
ing to the top level of such taxonomies clustering approaches are classified
into two main categories, i.e., partitional (or partitioning) and hierarchical.

2.2 Partitional Clustering

Partitional clustering algorithms compute a single partition of the input
dataset. A significant subset of partitional algorithms exploits the relocation
scheme [Ber02], i.e., the objects are iteratively re-assigned to the clusters, until
a stop criterion is met. Another approach is that exploited by the density-based
methods [HK01], which try to discover dense connected components of data
objects.
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Algorithm 2.1 K-Means

Input: a set D = {o1, . . . , on} of data objects;
the number K of clusters in the output clustering solution;

Output: a clustering solution C∗ = {C∗1 , . . . , C∗K} defined over D

1: V∗ ← randomSelect(D, K)
2: repeat
3: compute C∗ according to (2.4) {object assigning}
4: compute V∗ according to (2.5) {centroid updating}
5: until convergence

2.2.1 Partitional Relocation Methods

Relocation scheme is at the basis of the well-known K-Means and K-
Medoids algorithms.

K-Means

The basic K-Means algorithm [Mac67] works on data objects represented
by deterministic vectors of numerical features.1 It is based on the minimization
of the Sum of Squared Error (SSE) [LC03] between each object in a cluster
and the corresponding cluster representative or prototype, which, in case of K-
Means, is called centroid. Formally, given an input dataset D = {o1, . . . , on},
a partition (clustering) C = {C1, . . . , CK} of D, and a set V = {v1, . . . ,vK} of
centroids, such that vk is the centroid of cluster Ck, ∀k ∈ [1..K], the objective
function to be minimized by K-Means is the following:

J(D, C,V) =
K∑

k=1

n∑

i=1

I[oi ∈ Ck]
m∑

j=1

(ωij − vij)2 (2.1)

where I[A] is the indicator function, which is equal to 1 when the event A
occurs, 0 otherwise.

The outline of K-Means algorithm is reported in Alg. 2.1. Essentially, K-
Means is based on a relocation scheme composed by two alternating steps. In
the object assigning step, the current clustering C∗ = {C∗1 , . . . , C∗K} is com-
puted, i.e., the objects are assigned to the proper cluster according to the
minimum distance from the centroids. In the centroid updating step, the set
V∗ = {v∗1, . . . ,v∗K} of cluster centroids is re-computed according to the as-
signments performed in the previous step. C∗ and V∗ are computed by solving
the following system of equations, which follow directly from the optimization
function reported in (2.1):

1 Several variants of the basic K-Means have been proposed in the litera-
ture [And73].
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∂ J

∂ Ck
= 0 (2.2)

∂ J

∂ vkj
= 0 (2.3)

It can be proved that the solutions of the previous equations are, respectively:

C∗k =
{

oi ∈ D | vk = arg minvk′∈V

m∑

j=1

(ωij − vk′j)2
}

(2.4)

v∗kj =
1
|C∗k |

n∑

i=1

I[oi ∈ C∗k ] ωij (2.5)

In the initialization step of K-Means, the set of initial centroids is com-
puted by randomly choosing K objects from the input dataset. The conver-
gence of the algorithm can be easily proved since, according to the way how
(2.4) and (2.5) have been derived, a gradient descent on the objective function
J is performed; hence, it holds that the alternating procedure at the basis of
K-Means converges to a local optimum of function J . The convergence cri-
terion can be precisely specified according to one of the following [MIH08]:
the algorithm may run until (i) the set of centroids does not change, (ii) the
assignments of the objects to the clusters do not change, or (iii) the current
value of J is equal to that computed in the previous iteration.

Finally, the computational complexity of K-Means is O(I K n m), where
I is the number of iterations needed for the convergence.

K-Medoids

K-Medoids algorithm shares with K-Means two main features. Firstly,
the alternating procedure at the basis of the relocation scheme is the same
for both the algorithms. Also, in both K-Medoids and K-Means, the object
assigning criterion involves the distance between objects and cluster proto-
types. However, unlike K-Means, cluster prototypes in K-Medoids are given
by the so-called medoids, i.e., specific objects in the cluster that satisfy proper
criteria.

Defining medoids as cluster prototypes has two main advantages with
respect to K-Means centroids [Ber02]. Firstly, while K-Means requires the
squared Euclidean norm to compute the distance between objects and cen-
troids, K-Medoids can in principle work with any distance function f provided
in input; this leads to the possibility of easily extending K-Medoids to be used
for data objects represented in a way more general than the numerical vectorial
form required by K-Means. Moreover, the choice of medoids is dictated by the
location of a predominant fraction of points inside a cluster and, therefore,
it is less sensitive to the presence of outliers. On the other hand, centroids
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have the advantages of clear geometric and statistical meaning, and easier
computation, in terms of both procedural and computational complexity.

One of the most general way to define medoids consists in taking into
account the sum of the distances between any object in a cluster and all the
other objects in the same cluster. According to such a criterion, a basic version
of K-Medoids can be easily defined by resorting to a scheme similar to that
employed by K-Means (Alg. 2.1), in which different ways for (i) computing
the distance between objects and prototypes, and (ii) defining prototypes
are exploited. In particular, the distance between objects and prototypes is
measured according to the input function f , and, in the definition of cluster
prototypes v∗k, ∀k ∈ [1..K], (2.5) is replaced with the following:

v∗k = arg min
o∈C∗k

∑

o′∈C∗k ,

o′ 6=o

f(o, o′) (2.6)

Since K is obviously O(n), the basic K-Medoids scheme leads to a com-
putational complexity of O(I F n2), where F is the cost of computing the
distance between any pair of objects according to function f ; it should be
noted that F is typically Ω(m). Therefore, K-Medoids is computationally
more expensive than K-Means.

More refined versions of K-Medoids comprise, e.g., Partitioning Around
Medoids (PAM) [KR87], Clustering LARge Applications (CLARA) [KR90],
Clustering Large Applications based upon RANdomized Search (CLARANS)
[NH94] and its extension working on spatial very large databases [EKX95].

2.2.2 Density-based Methods

The main idea underlying density-based clustering algorithms is that an
open set in an Euclidean space can be split into a number of connected com-
ponents. Such a concept is exploited for recognizing clusters as dense subsets
of the input dataset, where the notion of density requires a metric space to
satisfy soundness properties. In particular, any cluster is built incrementally
by starting from an initial point (representing any object in the input dataset)
and including, at each step, a set of neighbor objects; in this way, cluster grows
towards the direction of the density region.

Density-based algorithms have several advantageous features with respect
to relocation algorithms. Indeed, they perform well in detecting clusters hav-
ing irregular shapes, are robust to outliers, may effectively handle noisy data,
and have high scalability. On the other hand, density-based approaches may
suffer from some issues. First, they may fail in discovering the actual cluster
structure when the clusters have densities not equally-distributed. Moreover,
the discovered clusters may be not easily understandable, since they are com-
posed by connected objects which carry a great variety of feature values within
the cluster; this aspect may affect pattern identification and cluster charac-
terization.
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Most popular density-based clustering algorithms comprise DBSCAN and
OPTICS.

DBSCAN

DBSCAN (Density Based Spatial Clustering of Application with Noise)
[EKSX96] is one of the earliest density-based clustering algorithms. The out-
line of DBSCAN is shown in Alg. 2.2.

Algorithm 2.2 DBSCAN
Input: a set D of n data objects;

a real number ε representing the radius size;
an integer µ representing the minimum number of objects in the neighborhood
of any core point

Output: a clustering solution C∗ defined over D
1: C∗ ← ∅
2: for all o ∈ D such that o has not been visited do
3: mark o as visited
4: No ← getNeighbors(o,ε)
5: if |No| ≥ µ then
6: C ← {o}
7: expandCluster(C, No, ε, µ)
8: C∗ ← C∗ ∪ {C}
9: else

10: mark o as outlier
11: end if
12: end for

DBSCAN requires two input parameters, i.e., a real value ε which repre-
sents the radius of the hypersphere within which the neighbors of any object
are searched for, and µ, which is an integer representing the minimum number
of points within the hypersphere of radius ε needed for recognizing any object
as a core point. Basically, any object o ∈ D is recognized as a core point if and
only if the number of objects having distance from o lower than ε is greater
than or equal to µ.

The algorithm is essentially based on two main steps. In the first one, it
searches for core points among the objects that have not already been visited
(i.e., among the objects in D that do not yet belong to any cluster and have
not been previously marked as outliers). Once a new core point o has been
discovered, a new cluster C is built around o by means of the procedure
expandCluster. Such a procedure aims to iteratively look for core points
among the neighbor list of o. The procedure ends when the cluster C cannot
be further expanded, i.e, there are no more core points to be recognized. Using
proper data structures, the overall time complexity of DBSCAN is O(n log n).
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OPTICS

Effectiveness and efficiency of DBSCAN are both highly related to the
two input parameters ε and µ which are typically hard to set. Moreover, there
might exist different densities among clusters; thus, in order to properly dis-
cover clusters of different densities, ε and µ should not be global thresholds,
rather their values should vary depending on the specific cluster to be discov-
ered.

In order to overcome these issues, the OPTICS (Ordering Points To Iden-
tify the Clustering Structure) [ABKS99] algorithm aims to build an augmented
ordering of the objects in the input dataset by varying ε parameter in order
to cover a spectrum of all different ε′ ≤ ε. To build the ordering, OPTICS
requires to store additional information for each object, i.e., the core-distance
and the reachability-distance. The core-distance of any object o is the mini-
mum distance ε′ such that the neighbor list of o ∈ D computed according to
ε′ has size exactly equal to µ. The reachability distance of any object o with
respect to any other object o′ ∈ D, o 6= o′, is the minimum distance ε′ such
that o is “ε′-reachable” from o′, i.e., o′ is a core point according to ε′, and the
cluster C, which is built by means of procedure expandCluster invoked over
o′ and ε′, contains o.

The augmented ordering is finally exploited to efficiently extract all the
cluster structures based on any density threshold ε′ ≤ ε. Thus, by setting ε
equal to a number sufficiently large, OPTICS has a very low sensitivity to
parameter ε. A similar conclusion can be drawn for parameter µ.

OPTICS outputs a reachability plot, which stores information for extract-
ing a cluster hierarchy based on density, i.e., a set of clustering solutions
whose clusters have been computed by taking into account different density
thresholds. Due to this peculiarity, OPTICS is sometimes referred to as an
“hybrid” algorithm, in the sense that it shares features with both partitional
density-based and hierarchical algorithms.

2.3 Hierarchical Clustering

Instead of a single partition of the input dataset, hierarchical clustering
approaches output a hierarchy of clustering solutions that are organized into
a so-called dendrogram [JD88], i.e., is a tree aimed at graphically describing
such a hierarchy (cf. Fig. 2.22).

Definition 2.2 (dendrogram). A dendrogram defined over a set D of data
objects is a set T = {T1, . . . , TT } of cluster pairs, where Tt = 〈T ′t , T ′′t 〉, T ′t ⊆
D, T ′′t ⊆ D, ∀t ∈ [1..T ], and:

1. T ′′t ⊂ T ′t , ∀t ∈ [1..T ]

2 Figure 2.2 is borrowed from [Ols95].
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Fig. 2.2. A dendrogram showing a possible cluster hierarchy built upon a simple
dataset of 16 data objects

2. T ′′t ∩T ′′t′ = ∅ and T ′t ⊇ T ′′t ∪T ′′t′ , ∀t, t′ ∈ [1..T ] such that t 6= t′ and T ′t =
T ′t′
Any dendrogram defined according to Def. 2.2 can be alternatively defined

by taking into account the levels of the tree. The top level LQ (i.e., the root
of the tree) contains a single cluster composed by all the objects in the input
dataset, whereas in the bottom level L0 (i.e., the level containing the leaves
of the tree) there are singleton clusters, i.e., clusters composed by exactly one
input object. Intermediate levels contain partitions of the input dataset at a
different granularity. In particular, each level Lq, ∀q ∈ [1..Q−1] comprises a
number of clusters lower than that of level Lq−1 and greater than that of level
Lq+1; this property clearly leads to clusters having average size directly pro-
portional to the corresponding level number q. A level-organized dendrogram
can be formally defined as follows.

Definition 2.3 (level-organized dendrogram). Let T be a dendrogram
defined over a set D of data objects. A level-organized dendrogram derived



2.3 Hierarchical Clustering 23

Algorithm 2.3 standard AHC

Input: a set D = {o1, . . . , on} of data objects;
Output: a level-organized dendrogram T` = [L0, . . . ,LQ] defined over D

1: C ← {{o1}, . . . , {on}}
2: L0 ← C
3: repeat
4: 〈C′, C′′〉 ← closestClusters(C)
5: C ← C \ {C′, C′′} ∪ {C′ ∪ C′′}
6: append(T`, C)
7: until |C| = 1

from T is a list T` = [L0, . . . ,LQ], where each Lq, q ∈ [0..Q], is a partition
of D, and:

1. |L0| = |D|
2. |LQ| = 1
3. |Lq| > |Lq+1|, ∀q ∈ [0..Q−1]

Hierarchical clustering algorithms can be classified into two main cate-
gories, namely Agglomerative Hierarchical Clustering (AHC) and Divisive Hi-
erarchical Clustering (DHC) [JD88]. The difference between these two kinds
of approaches lies in the way how the dendrogram is computed. Agglomerative
algorithms start from the bottom level of the tree, and build the dendrogram
in a bottom-up way. According to divisive approaches the dendrogram is built
in a top-down way, by starting from the root of the tree.

The standard AHC scheme follows a greedy approach (cf. Alg. 2.3). Given
an input dataset D of size n, the starting point is a partition of D composed
by n singleton clusters. Such a partition composes the bottom level of the den-
drogram. At each iteration, the current level of the dendrogram is computed
by merging the “closest” pair of clusters in the previous level. This strategy
clearly leads to a dendrogram whose levels contain a number of clusters equal
to that of the previous level minus one. Hence, the algorithm terminates after
n− 1 iterations, i.e., when the whole tree has been built.

Linkage Metrics

A crucial point in the standard AHC scheme is the choice of a proper
linkage metric, i.e., a criterion to decide which is the closest pair of clusters
to be merged at each iteration [Mur83, Mur85, DE84]. Classic linkage metrics
comprise single link (SL) [Sib73], complete link (CL) [Def77], average link
(AL) [Voo86], and prototype link.

According to SL, CL, and AL metrics, also known as graph linkage met-
rics [Ols95], the pair of clusters to be merged is chosen by looking at the
minimum, maximum, and average among the pairwise distances between the
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objects in the two clusters, respectively. Formally, given a clustering C defined
over a set D of data objects, and a distance function f : D×D → < between
data objects, the pair of closest clusters 〈C ′, C ′′〉, C ′, C ′′ ∈ C, selected by SL,
CL, or AL is defined according to the following formulas, respectively:

〈C ′, C ′′〉 = arg min〈Ĉ′,Ĉ′′〉∈C×C,

Ĉ′ 6=Ĉ′′
min

o′∈Ĉ′,
o′′∈Ĉ′′

f(o′, o′′) (2.7)

〈C ′, C ′′〉 = arg min〈Ĉ′,Ĉ′′〉∈C×C,

Ĉ′ 6=Ĉ′′
max

o′∈Ĉ′,
o′′∈Ĉ′′

f(o′, o′′) (2.8)

〈C ′, C ′′〉 = arg min〈Ĉ′,Ĉ′′〉∈C×C,

Ĉ′ 6=Ĉ′′

1
|Ĉ ′||Ĉ ′′|

∑

o′∈Ĉ′,
o′′∈Ĉ′′

f(o′, o′′) (2.9)

Let us now discuss the computational complexity of any clustering algo-
rithm involving the standard AHC scheme along with one among SL, CL,
or AL metric. The function f is assumed to be able to compute the dis-
tance between any pair of data objects in O(F ), where F is typically Ω(m).
Clearly, näıve implementations lead to algorithms working in O(F n2 + n3),
for all SL, CL, and AL. This happens if the closest clusters to be merged
are recognized by scanning, at each iteration, all the pairwise distances
between the clusters in the current partition. If ad-hoc data structures
are used to store these pairwise distances (e.g., priority queues whose in-
sert/extract/delete operations are computed in logarithmic time), the com-
plexity becomes O(n2 (F +log n)) [MRS08]. However, by using more complex
data structures, it is possible to define algorithms working in O(F n2) for
each of the above metrics, i.e., SL [Sib73], CL [Def77], and AL [GM07].

Unlike SL, CL, and AL, prototype link metric does not involve any distance
f among data objects. Prototype link is instead based on the comparison
between cluster prototypes, which can be properly defined depending on the
specific context. More precisely, given a clustering C = {C1, . . . , CK}, a set
P = {P1, . . . , PK} such that Pk is the prototype of cluster Ck, ∀k ∈ [1..K],
and a distance function g : P × P → < between prototypes, the pair of closest
clusters 〈C ′, C ′′〉 selected according to the prototype link metric is defined as
follows:

〈C ′, C ′′〉 = arg min〈Ĉ′,Ĉ′′〉∈C×C,

Ĉ′ 6=Ĉ′′
g(P ′, P ′′) (2.10)

As a particular case of prototype link metrics, the so-called geometric link-
age metrics have been proposed in the literature [Ols95]. This kind of metrics
deals with specific definitions of cluster prototypes, such as prototypes defined
according to a centroid, median, or minimum variance criterion [Mur83]. As
an example, according to a centroid link metric, the prototype of a cluster is
defined as the arithmetic mean of the objects in the clusters, in a way simi-
lar to that employed by K-Means algorithm (cf. (2.5)). Centroid link clearly
works only for data objects represented by vectors of numerical features.
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Regarding the computational complexity of a hierarchical algorithm in-
volving the standard AHC scheme and the prototype link metric, it generally
depends on the time needed for computing (i) cluster prototypes, and (ii) the
distance between prototypes according to the function g.

2.4 Soft Clustering

All the discussions carried out so far focused on the hard clustering prob-
lem, whose main goal is to produce crisp partitions of the input dataset. A
partition is called “crisp” if any input data object belongs to exactly one
cluster of the partition.

However, for many application contexts, dealing with crisp partitions may
lead to loss of accuracy, since there might exist more than one “true” par-
tition to be discovered for the data at hand. As a result of focusing only
on one of these true partitions, like hard clustering algorithms do, critical
information about hidden relationships among data objects may be poten-
tially disregarded. Within this view, it is advisable to resort to soft (or fuzzy)
clustering algorithms [Ped90, BP92, Yan93, BB99a, BB99b, VP07, MIH08],
whose main goal is to output fuzzy partitions. A major feature of this kind of
partitions, which resort to the notion of fuzzy sets [Zad65], is that they are
composed by possibly overlapping clusters, i.e., each input data object may
belong to more than one cluster. To this purpose, a fuzzy partition is neces-
sarily coupled with a membership function [Pao89], which aims to numerically
quantify the degree of belonging of input data objects to the various clusters.
Thus, the set of clusters of the partition and the membership function are the
two ingredients of the definition of a soft clustering solution, which contrasts
that of (hard) clustering solution reported in Def. 2.1.

Definition 2.4 (soft clustering solution). Let D = {o1, . . . , on} be a set of
data objects. A soft clustering solution or simply a soft clustering defined over
D is a pair 〈L, Γ 〉, where L = {`1, . . . , `K} is a set of labels which uniquely
represent the K clusters, and Γ : L×D → < is a membership function which
numerically quantifies the degree of belonging of object oi to cluster labeled
with `k, ∀i ∈ [1..n], k ∈ [1..K], such that:

1. Γki ∈ [0, 1], ∀k ∈ [1..K], i ∈ [1..n]
2. 0 <

∑n
i=1 Γki < n, ∀k ∈ [1..K]

3. maxk∈[1..K] Γki > 0, ∀i ∈ [1..n]

where Γki hereinafter refers to Γ (`k, oi).

The three requirements reported in Def. 2.4 make function Γ falling into
the category of possibilistic or absolute membership functions [KK93, DK97].
A more restricted category comprises probabilistic or relative membership
functions [KK93, DK97], for which the following additional condition holds:
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K∑

k=1

Γki = 1, ∀i ∈ [1..n]

Fuzzy C-Means

Fuzzy C-Means (FCM) [Dun74] is a modified version of the popular K-
Means algorithm which handles fuzzy partitions of the input dataset and
deals with probabilistic membership functions. Essentially, the key idea is to
modify the objective function J (cf. (2.1)) of K-Means, in order to obtain soft
clustering solutions. More precisely, the optimization problem at the basis of
FCM is the following:

〈Γ ∗,V∗〉 = arg min
〈Γ,V〉

JF (D,L, Γ,V) (2.11)

s.t .
K∑

k=1

Γki = 1, ∀i ∈ [1..n] (2.12)

Γki ≥ 0, ∀k ∈ [1..K], i ∈ [1..n] (2.13)

where D = {o1, . . . , on} is a set of m-dimensional data objects, L = {`1, . . . , `K}
is a set of cluster labels, Γ : L × D → < is real-valued function, V =
{v1, . . . ,vK} is a set of centroids, such that vk is the centroid of cluster
labeled with `k, ∀k ∈ [1..K], and

JF (D,L, Γ,V) =
K∑

k=1

n∑

i=1

Γα
ki

m∑

j=1

(ωij − vij)2 (2.14)

Note that α > 1 is an integer user-defined parameter that guarantees the
nonlinearity of JF with respect to Γki, which is needed for ensuring that Γki

range within [0, 1] (instead of {0, 1}), for any solution of the problem defined
in (2.11)-(2.13).

FCM exploits a relocation partitional scheme similar to that of its corre-
sponding hard version. The main equations at the basis of such a scheme are
derived by resorting to the relaxed objective function J ′F , which is computed
according to the conventional Lagrange multipliers method [Bal70, TW81]:

J ′F (D,L, Γ,V) =
K∑

k=1

n∑

i=1

Γα
ki

m∑

j=1

(ωij − vij)2 +
n∑

i=1

λi

( K∑

k=1

Γki − 1
)

(2.15)

For a fixed assignment of V, the optimal Γ ∗ki is computed by solving the
following system of equations:

∂ J ′F
∂ Γki

= 0 (2.16)
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∂ J ′F
∂ λi

= 0 (2.17)

whose solution is:

Γ ∗ki =

[
K∑

k′=1

( ∑m
j=1(ωij − vkj)2∑m
j=1(ωij − vk′j)2

) 1
α−1

]−1

(2.18)

Analogously, for a fixed assignment of Γ , the optimal v∗kj is computed by
solving the following equations:

∂ J ′F
∂ vkj

= 0 (2.19)

∂ J ′F
∂ λi

= 0 (2.20)

which are solved by the following:

v∗kj =

n∑

i=1

Γα
ki ωij

n∑

i=1

Γα
ki

(2.21)

The basic scheme of FCM is that exploited for K-Means algorithm (cf.
Alg. 2.1), in which (2.4) and (2.5) are replaced with (2.18) and (2.21), respec-
tively.

Finally, it can be easily noted that the considerations about convergence
and computational complexity of K-Means also hold for FCM.

Fuzzy C-Medoids

Fuzzy C-Medoids (FCMdd) [KJY99, KJNY01] is a soft clustering algo-
rithm that follows the scheme of K-Medoids described in Sect. 2.2. Like the
corresponding hard version, FCMdd is not required to work only on objects
represented by numerical features or use the squared Euclidean norm to com-
pute the distances between objects and cluster prototypes. Instead, FCMdd
may in principle work on any kind of object representations, by exploiting
a function f : D × D → < designed for properly quantifying the distance
between the objects into the input dataset D.

Each iteration of the relocation scheme of FCMdd outputs a soft clustering
solution 〈L∗, Γ ∗〉, where L∗ = {`∗1, . . . , `∗K} is a set of cluster labels, and
V∗ = {v∗1 , . . . , v∗K} is a set of medoids. In particular, v∗k, ∀k ∈ [1..K], is
defined as:

v∗k = arg min
o∈D

∑

o′∈D,
o′ 6=o

(
Γ (`∗k, o′)

)α
f(o, o′) (2.22)
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whereas the values Γ ∗ki, ∀k ∈ [1..K], i ∈ [1..n], of the membership function Γ ∗

are computed according to the following:

Γ ∗ki =

[
K∑

k′=1

(
f(oi, vk)
f(oi, vk′)

) 1
α−1

]−1

(2.23)

Like in FCM algorithm, α > 1 is an integer user-defined parameter needed
for ensuring that Γ ∗ki range within [0, 1] (instead of {0, 1}).

Finally, it easy to observe that the computational complexity of FCMdd
is equal to that of the basic K-Medoids algorithm.

2.5 Cluster Validity

The effectiveness of hard clustering algorithms is evaluated by exploiting
cluster validity methods. As regards soft clustering, there have been defined
in the literature several methods for evaluating fuzzy partitions [WZ07]. How-
ever, one of the most common ways to evaluate soft clustering solutions is to
firstly transform fuzzy partitions into crisp partitions, and then apply (hard)
cluster validity methods. To this purpose, this section focuses only on meth-
ods for evaluating hard clusterings, which can be classified into three main
categories, i.e., external, internal, and relative criteria [TK99].

Relative cluster validity criteria aim to assess the accuracy of a clustering
algorithm by comparing the different results obtained by varying the values
of the input parameters. The descriptions of external and internal criteria are
provided in the following, along with the definitions of the specific external
and internal measures involved into the experiments of this thesis.

2.5.1 External Cluster Validity Criteria

According to external cluster validity criteria, the results of any clustering
algorithm is evaluated by resorting to some prior-knowledge available from
the input dataset. This thesis focuses on external criteria aimed at comparing
the clustering C obtained by a specific algorithm with respect to a reference
classification C̃ available for the data at hand. The reference classification of a
given dataset represents the “true” partition that should be ideally recognized
by any clustering algorithm. Therefore, the main goal of external criteria is to
evaluate how well a clustering fits a predefined scheme of known classes (i.e.,
natural clusters).

F1-Measure

F1-Measure (F1) [van79] is one the most commonly used Information Re-
trieval external criteria. It is defined as the harmonic mean of values that
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express the notions of Precision and Recall. Given a set D of data objects,
and two clustering solutions C = {C1, . . . , CK}, C̃ = {C̃1, . . . , C̃K′} defined
over D, Precision Pkk′ of cluster Ck ∈ C with respect to cluster C̃k′ ∈ C̃ is
the fraction of the objects in Ck that are contained into C̃k′ . Recall Rkk′ of
cluster Ck ∈ C with respect to cluster C̃k′ ∈ C̃ is the fraction of the objects in
C̃k′ that are contained into Ck. Formally:

Pkk′ =
|Ck ∩ C̃k′ |
|Ck| (2.24)

Rkk′ =
|Ck ∩ C̃k′ |
|C̃k′ |

(2.25)

If |Ck| = 0 (resp. |C̃k′ | = 0 ), it can be reasonably assumed that Pkk′ = 0
(resp. Rkk′ = 0).

Definition 2.5 (F1-Measure). Let D be a set of data objects, and C =
{C1, . . . , CK}, C̃ = {C̃1, . . . , C̃K′} be two clustering solutions defined over D.
F1-Measure of C with respect to C̃ is defined as follows:

F1(C, C̃) =
1
|D|

K′∑

k′=1

|C̃k′ | max
k∈[1..K]

F1kk′ (2.26)

where
F1kk′ =

2 Pkk′ Rkk′

Pkk′ + Rkk′

F1 is not symmetric and ranges within [0, 1], where higher values refer to
higher similarity between the clusterings to be compared.

Normalized Mutual Information

Normalized Mutual Information (NMI) [CT06] is a measure able to quan-
tify the statistical information shared between two distributions. NMI can be
used to express a sound indication of the degree of shared information between
any pair of clustering solutions. Thus, NMI can be exploited to measure the
similarity between any two clusterings C and C̃ defined over the same set D
of data objects.

Definition 2.6 (Normalized Mutual Information). Let D be a set of
data objects, and C = {C1, . . . , CK}, C̃ = {C̃1, . . . , C̃K′} be two clustering
solutions defined over D. Normalized Mutual Information between C and C̃ is
defined as follows:



30 2 Clustering

NMI(C, C̃) =

K∑

k=1

K′∑

k′=1

|Ck ∩ C̃k′ | log
( |D| |Ck ∩ C̃k′ |

|Ck||C̃k′ |

)

√√√√
(

K∑

k=1

|Ck| log
|Ck|
|D|

)(
K′∑

k′=1

|C̃k′ | log
|C̃k′ |
|D|

) (2.27)

It can be easily proved that NMI(C, C̃) ∈ [0, 1], and NMI(C, C̃) =
NMI(C̃, C), ∀C, C̃ defined over D.

Conditional Entropy

Conditional Entropy (or simply entropy) [Dom01] is a non-symmetric ex-
ternal cluster validity criterion based on information theoretic concepts similar
to those exploited by NMI. Given two clusterings C, C̃ to be compared, en-
tropy is based on the probability that an object in the cluster Ck belongs to
the cluster C̃k′ , i.e., Pr(C̃k′ |Ck), for each Ck ∈ C, C̃k′ ∈ C̃.

Definition 2.7. Let D be a set of data objects, and C = {C1, . . . , CK}, C̃ =
{C̃1, . . . , C̃K′} be two clustering solutions defined over D. Entropy of C with
respect to C̃ is defined as follows:

entr(C, C̃) =
1
|D|

K∑

k=1

− |Ck|
log K ′

K′∑

k′=1

Pr(C̃k′ |Ck) log Pr(C̃k′ |Ck) (2.28)

where

Pr(C̃k′ |Ck) =




|Ck ∩ C̃k′ |
|Ck| if |Ck| > 0

0 otherwise

According to the above definition, entropy ranges within [0, 1], and the
lower entr(C, C̃), the higher the similarity between the clustering solutions C
and C̃.

2.5.2 Internal Cluster Validity Criteria

Internal cluster validity criteria aim to evaluate a clustering solution using
only quantities and features inherent to the input dataset. This goal is typi-
cally accomplished by directly accessing the feature values of the data objects
and exploiting the distance measure used for producing the results.
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Intra-cluster and Inter-cluster Distances

Intra-cluster distance and inter-cluster distance are two popular internal
criteria to evaluate the quality of clustering solutions in terms of cluster co-
hesiveness and cluster separation, respectively. Given a clustering solution C,
the intra-cluster distance of any cluster in C is defined as the mean of the
pairwise distances between the objects in the cluster. The inter-cluster dis-
tance between any pair of clusters in C is computed by averaging the pairwise
distances between the objects in the two clusters. The overall intra-cluster
(intra(C)) and inter-cluster (inter(C)) distances are computed by averaging
the local values.

Definition 2.8 (intra-cluster distance). Let D be a set of data objects,
C = {C1, . . . , CK} be a clustering solution defined over D, and f : D ×D → <
be a distance function between the objects in D. The intra-cluster distance of
C is defined as follows:

intra(C) =
1
|C|

K∑

k=1

1
|Ck|(|Ck| − 1)

∑

o∈Ck

∑

o′∈Ck,
o′ 6=o

f(o, o′) (2.29)

Definition 2.9 (inter-cluster distance). Let D be a set of data objects,
C = {C1, . . . , CK} a clustering solution defined over D, and f : D×D → < a
distance function between the objects in D. The inter-cluster distance of C is
defined as follows:

inter(C) =
1

|C|(|C| − 1)

∑

〈C,C′〉∈C×C,
C 6=C′

1
|C||C ′|

∑

o∈C

∑

o′∈C′
f(o, o′) (2.30)

It is easy to note that the lower intra(C) and the higher inter(C), the higher
the quality of clustering C. Intra-cluster and inter-cluster distances can be
combined in order to measure the accuracy of any clustering in terms of a
single numerical value. As an example, the quality qual(C) of the clustering
solution C is defined as:

qual(C) = inter(C)− intra(C) (2.31)

Cophenetic Correlation Coefficient

Hierarchical clustering results can be evaluated in terms of the cophenetic
correlation coefficient [SR62]. This measure (ranging within [−1, 1]) aims to
evaluate a dendrogram produced by any hierarchical algorithm according to
how it preserves the pairwise distances between the original data points. In-
tuitively, the higher the cophenetic correlation value for a dendrogram, the
higher the compactness and the better the quality achieved by the hierarchical
algorithm.
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Definition 2.10 (cophenetic correlation coefficient). Let D = {o1, . . . , on}
be a set of data objects, T` = [L0, . . . ,LQ] a level-organized dendrogram rep-
resenting a cluster hierarchy defined over D, and f : D ×D → < a distance
function between the objects in D. The cophenetic correlation coefficient with
respect to D and T` is defined as:

CPCC(D,T`) =

n−1∑
i=1

n∑

i′=i+1

(
f(oi, oi′)− f

)(
τ(oi, oi′)− τ

)

√√√√
( n−1∑

i=1

n∑

i′=i+1

(
f(oi, oi′)− f

)2
) ( n−1∑

i=1

n∑

i′=i+1

(
τ(oi, oi′)− τ

)2
)

(2.32)

where τ(o, o′) denotes the dendrogrammatic distance between o and o′, which
indicates the level of the dendrogram where o and o′ are first joined together:

τ(o, o′) = min
{

q ∈ [1..Q]
∣∣∣

∑

L∈Lq

I[o ∈ L ∩ o′ ∈ L] = 1
}

and

f =
2

n(n− 1)

n−1∑

i=1

n∑

i′=i+1

f(oi, oi′)

τ =
2

n(n− 1)

n−1∑

i=1

n∑

i′=i+1

τ(oi, oi′)



Part II

Uncertainty in Data Clustering

– Data Level –





3

Uncertainty in Data Representation:
Background

Abstract This chapter provides background to uncertainty in data representation.
The problem of properly modeling data uncertainty has been addressed and solved in
various ways in the literature. We are particularly interested in the model exploited
for representing the so-called uncertain objects, which are at the basis of one of the
topics of this thesis. In this respect, a further goal is to provide a rough overview on
the main algorithms for clustering uncertain objects so far defined in the literature.
Such algorithms fall into two main categories, namely partitional relocation and
density-based.

3.1 Modeling Uncertainty in Data Representation

Depending on the application domain, several definitions of uncertainty in
data representation have been provided in the literature (e.g., [IL84, AKG87,
Sad91, LLRS97, DS04, GT06, Agg07]).

In general, for relational databases, uncertainty can be considered at differ-
ent levels of granularity, i.e., at table, tuple or attribute level [TXC07]. Table-
based uncertainty refers to the “coverage” of a table, i.e., how many tuples are
present in a table [Wid05, BSHW06]. According to tuple-based granularity,
the uncertainty is due to the fact that each individual tuple in the database
may exist or may not [Fuh95, DS04, DS05]. Finally, attribute-based models
concern uncertainty about the values of single attributes (features) of the
tuples in the database [WSCY99, PJ99, CKP03, DGMH04].

Regardless of the granularity, the specific way to express uncertainty can
involve fuzzy models [GUP06], evidence-oriented models [Lee92, LSS96], or
probabilistic models [SBHW06]. In fuzzy models, fuzzy entities, fuzzy at-
tributes, fuzzy relationships, fuzzy aggregation, fuzzy constraints, and so on
are used to model uncertainty [ZLPZ08]. The Dempster-Shafer Theory of Ev-
idence [Dem67, Sha76] is exploited for modeling uncertainty according to
evidence-oriented models. Probabilistic models exploit probability values and
distributions in order to quantify uncertainty.



36 3 Uncertainty in Data Representation: Background

(a) (b)

Fig. 3.1. Graphical representation of (a) a multivariate uncertain object and (b) a
univariate uncertain object

The focus of this thesis is on data containing attribute-level uncertainty
modeled according to probabilistic models. In particular, the specific proba-
bilistic representation taken into account in this thesis resorts to probability
distributions, which describe the likelihood that any given object appears
at each position in a multidimensional space [CKP03, KP05a, CCKN06].
Probabilistic models may in principle involve other forms to represent un-
certainty, such as statistical properties (e.g., error percentage or deviation
from an expected value); however, while these properties provide a concise
information about an uncertain set of values, probability distributions offer a
more-accurate solution in uncertainty modeling.

Data objects described in terms of probability distributions are hereinafter
referred to as uncertain objects.

Uncertain Objects

The two basic models generally used for representing uncertain objects are
the multivariate uncertainty model and the univariate uncertainty model.

In a multivariate uncertainty model, an m-dimensional uncertain object
is defined in terms of an m-dimensional region and a multivariate probability
density function (pdf), which stores the probability according to which the
exact representation of the object coincides with any point in the region. In a
univariate uncertainty model, an m-dimensional uncertain object has, for each
attribute, an interval and a univariate pdf that assigns a probability value to
each point within the interval. Depending on the specific application context,
an uncertain object can be modeled according to one of the two models. An
example of multivariate and univariate uncertain objects is shown in Fig. 3.1.

It should be noted that, in general, it is not straightforward to map mul-
tivariate objects into univariate objects, and vice versa. Indeed, deriving a
multivariate representation from a univariate one cannot be performed with-
out knowing in advance the conditional pdfs or making specific statistical
assumptions (e.g., statistical independence). On the other hand, transforming
a multivariate model into a univariate one requires the computation of the
marginal pdfs from the joint distribution; this can be a very complex and
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inefficient operation depending on the form and/or the dimensionality of the
distribution.

Definition 3.1 (multivariate uncertain object). A multivariate uncer-
tain object u is a pair (R, p), where R = [a(1), b(1)]× · · · × [a(m), b(m)] is the
m-dimensional region in which u is defined and p : <m → <+

0 is the probability
density function of u at each point x ∈ <m, such that:

∫

x∈<m\R

p(x)dx = 0 (3.1)

p(x) > 0, ∀x ∈ R (3.2)

Definition 3.2 (univariate uncertain object). A univariate uncertain ob-
ject u is a tuple (A(1), . . . , A(m)). Each attribute A(j), j ∈ [1..m], is a pair
(I(j), p(j)), where I(j) = [a(j), b(j)] is the interval of definition of A(j), and
p(j) : < → <+

0 is the probability density function that assigns a probability
value to each x ∈ <, such that:

∫

x∈<\I(j)

p(j)(x)dx = 0 (3.3)

p(j)(x) > 0, ∀x ∈ I(j) (3.4)

The definitions above involve the region/intervals of definition for the
pdf(s) associated to any uncertain object. This represents a key aspect, since
in many real applications these objects are defined according to limited re-
gion/intervals. Moreover, this allows for defining an uncertain object in a more
general way, since the case of uncertain object with unlimited region/intervals
is also implicitly taken into account in these models.

Also, Defs. 3.1-3.2 refer to the most general case of uncertain objects mod-
eled as continuous random variables and described by probability density func-
tions. Nevertheless, without loss of generality, these definitions include the dis-
crete case. Indeed, for any discrete multivariate uncertain object u = (R, p),
the m-dimensional region R = [a(1), b(1)] × · · · × [a(m), b(m)] bounds a dis-
crete set S of m-dimensional points, and the probability distribution function
p is a multivariate discrete pdf, also known as multivariate probability mass
function, defined as p : S → <+

0 . Analogously, for any discrete univariate un-
certain object u = (A(1), . . . , A(m)), the j-th attribute (j ∈ [1..m]) is defined
over an interval I(j) which bounds a discrete set S(j), and has a function
p(j) : S(j) → <+

0 which is a univariate probability mass function.
In the following, we assume statistical independence between any actual

location x′,x′′ ∈ <m of any two multivariate/univariate uncertain objects u′,
u′′ belonging to the same dataset D, i.e., we assume that

Pr(u′ ≡ x′∩u′′ ≡ x′′) = Pr(u ≡ x′) Pr(u′′ ≡ x′′), ∀u′, u′′ ∈ D, ∀x′,x′′ ∈ <m
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where u ≡ x denotes the event “the actual location of uncertain object u is in
the point x ∈ <m”.

Also, for any univariate object u = ((I(1), p(1)), . . . , (I(m), p(m))), we as-
sume statistical independence among its m dimensions:

Pr(u ≡ x) =
m∏

j=1

p(j)(xj)

for each point x = [x1, . . . , xm] ∈ <m.

3.2 Clustering of Uncertain Objects: State of the Art

In the context of uncertain data management, a lot of research has
been mainly focused on data representation and modeling, indexing, query
processing, and data mining (e.g., [DS07, ZLPZ08, AY09]). In particular,
data mining applications have involved various tasks, such as classifica-
tion [BZ04], outlier detection [AY08], association analysis [CKH07], and clus-
tering [KP05b, KP05a, CCKN06, NKC+06, S. 07, KLC+08]. The most rele-
vant approaches to clustering uncertain objects so far defined in the literature
fall into two main categories, namely partitional relocation and density-based.

3.2.1 Partitional Relocation Methods

One of the earliest partitional relocation-based attempts to solve the prob-
lem of clustering uncertain objects is the UK-Means algorithm [CCKN06],
which is an adaptation of the popular K-Means (cf. Chapt. 2) designed for
handling uncertain objects. UK-Means suffers from two major weakness. The
first one is related to an accuracy issue. Indeed, cluster centroids in UK-Means
are computed as deterministic objects using the expected values of the pdfs
of the clustered objects. Moreover, the efficiency of UK-Means is limited by
the expensive computation of the expected distance (ED) between uncertain
objects and cluster centroids (which are defined as deterministic objects), at
each iteration of the algorithm.

In order to improve the UK-Means efficiency, [NKC+06] proposes some
pruning techniques to avoid the computation of redundant EDs. Such tech-
niques make use of lower- and upper-bounds ad-hoc defined for each ED to
be calculated, in order to define a specific bounding-box for each uncertain
object; these boxes allow for eliminating some candidate assignments of ob-
jects to clusters and avoiding the corresponding ED computation. However,
a major problem of this approach is that it cannot guarantee high pruning
(hence, high efficiency), as it depends on the features of the objects in the
specific dataset.

Another pruning method to reduce the number of EDs calculation is de-
scribed in [KLC+08]. Such a method exploits Voronoi diagrams and has been
recognized as more effective than the basic bounding-box-based techniques.



3.2 Clustering of Uncertain Objects: State of the Art 39

In [S. 07], the CK-Means algorithm is proposed as a variant of UK-Means
that exploits the moment of inertia of rigid bodies in order to reduce the
execution time needed for computing EDs. Unfortunately, the soundness of
the CK-Means criterion for the ED computation is guaranteed only if the
mean squared error for the definition of the EDs is used and the distance
function is based on the Euclidean norm.

The methods proposed in [NKC+06, S. 07, KLC+08] attempt to reduce
the execution time required for computing the EDs. The Approximation by
Single Gaussian (ASG) method [XH07] belongs to a more general approach,
which aims to approximate the distance between an uncertain object and an-
other uncertain object. ASG has been proved to achieve accuracy close to the
exact distance calculation while improving the efficiency. Another approach
to the distance computation consists in defining a univariate pdf, or fuzzy
distance function, for each pair of uncertain objects; this univariate pdf stores
a probability for each distance value for two given objects. The final distance,
called fuzzy distance (FD), between the objects is computed by deriving an
aggregated, representative value (e.g., expected value) from the pdf of those
objects. This method has been presented originally in [KP05b] and proved to
be more effective than the standard Euclidean distance applied to vectors of
deterministic values.

3.2.2 Density-based Methods

Devising a fuzzy distance function is a key aspect in density-based ap-
proaches to clustering uncertain objects [KP05a, KP05b]. In [KP05a], the
FDBSCAN is proposed as a fuzzy version of the popular DBSCAN (cf.
Chapt. 2, Sect. 2.2.2), which uses fuzzy distance functions to compute the
core object and reachability probabilities. A similar approach is presented in
FOPTICS [KP05b]. Like the well-known density-based clustering algorithm
OPTICS (cf. Chapt. 2, Sect. 2.2.2), FOPTICS produces an augmented order-
ing of the objects based on the notion of fuzzy object reachability-distance;
this ordering can eventually be used to derive a cluster hierarchy.

While the majority of algorithms proposed for clustering uncertain ob-
jects are based on either partitional or density-based schemes, it should be
noted that there is poor research on (agglomerative) hierarchical clustering of
uncertain data. FOPTICS is close to a hierarchical scheme, although is sig-
nificantly different in constructing the cluster hierarchy. Indeed, FOPTICS
outputs a reachability plot, whereas the classic result of any hierarchical clus-
tering algorithm is a dendrogram. While reachability plots may be easier to
read than dendrograms for very large datasets, a dendrogram gives a clearer
view of the cluster membership of individual objects than a reachability plot
for a wide set of real cases [J. 03]; also, when a reachability plot is produced,
building the corresponding cluster hierarchy needs for a further step, which
is typically performed by employing either visualization or automatic tech-
niques [ABKS99].
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Clustering Uncertain Objects via K-Medoids

Abstract The centroid-based approach to clustering uncertain objects used in the
UK-Means algorithm presents two major weaknesses that are related to: (i) an ac-
curacy issue, since cluster centroids are computed as deterministic objects using
the expected values of the pdfs of the clustered objects; and, (ii) an efficiency is-
sue, since the expected distance between uncertain objects and cluster centroids is
computationally expensive.

In this chapter, we address the problem of clustering uncertain objects by propos-
ing a new algorithm, called UK-Medoids, which is designed to overcome the above
issues. UK-Medoids employs distance functions properly defined for uncertain ob-
jects, and exploits a K-Medoids scheme. Experiments have shown that UK-Medoids
outperforms existing algorithms from an accuracy viewpoint while achieving reason-
ably good efficiency.

4.1 Introduction

As mentioned in Chap. 3, the popular K-Means algorithm has been re-
cently adapted to the uncertain objects domain [CCKN06]. However, the re-
sulting algorithm, called UK-Means, has two major weak points. First, cluster
centroids are defined as deterministic objects and computed as the mean of the
expected values over the pdfs of the uncertain objects in the cluster; defining
centroids in this way may result in loss of accuracy, since only the expected
values of the pdfs of the uncertain objects are taken into account. Second, the
computation of the Expected Distance (ED) between cluster centroids and
uncertain objects is computationally expensive, as it requires non-trivial nu-
merical integral estimations; this represents an efficiency bottleneck at each
iteration of the algorithm.

In this chapter, we present UK-Medoids [GPT08a], a new algorithm for
clustering uncertain objects based on the K-Medoids clustering scheme. The
proposed algorithm exploits a distance function for uncertain objects, which
is not limited to consider only scalar values derived from the pdfs associated
to the objects (e.g., pdf expected values). This allows for better estimating
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the real distance between two uncertain objects, leading to significant im-
provement of the clustering quality. Also, UK-Medoids does not require any
expensive operation to be repeated at each iteration; indeed, the computa-
tion of the distances between uncertain objects in the dataset is performed
only once, thus guaranteeing a significant improvement of the efficiency with
respect to UK-Means.

4.2 Uncertain Distance

To measure the distance between uncertain objects, we need to devise
a suitable notion of uncertain distance, which is involved into the proposed
clustering algorithm. Uncertain distance is defined in terms of an uncertain
distance function. In order to make the uncertain distance independent from
the chosen uncertainty model, we provide definitions of uncertain distance
function for both multivariate and univariate uncertainty models (cf. Chap. 2,
Sect. 3.1).

Definition 4.1 (uncertain distance function). Given a set D = {u1, . . . , un}
of uncertain objects, the uncertain distance function defined over D is a func-
tion Θ : D ×D ×< → <+

0 , for which the following conditions hold:
∫

x∈<

Θ(ui, ui′ , x) dx = 1, ∀ui, ui′ ∈ D,

Θ(ui, ui′ , x) =
{

1, if i = i′, x = 0
0, if i = i′, x 6= 0

For any pair of uncertain objects ui, ui′ , i 6= i′, Θ can be derived from the
pdfs associated to the uncertain objects. The definition of Θ depends on the
uncertainty model used for representing ui and ui′ .

Uncertain Distance Function for Multivariate Objects

If ui = (Ri, pi), ui′ = (Ri′ , pi′) are multivariate uncertain objects, Θ is
defined as:

Θ(ui, ui′ , x) =
∫

x∈Ri

∫

x′∈Ri′

I[f(x,x′) = x] pi(x) pi′(x′) dx dx′ (4.1)

where f(x,x′) is a distance function between any pair x,x′ ∈ <m (e.g., Eu-
clidean norm), and I[A] is the indicator function, which is equal to 1 when
the event A occurs, 0 otherwise.
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Uncertain Distance Function for Univariate Objects

If ui = ((I(1)
i , p

(1)
i ), . . . , (I(m)

i , p
(m)
i )), ui′ = ((I(1)

i′ , p
(1)
i′ ), . . . , (I(m)

i′ , p
(m)
i′ ))

are univariate uncertain objects, Θ is defined as:

Θ(ui, ui′ , x)=
∫

x1∈<

· · ·
∫

xm∈<

I[f ′(x1, . . . , xm) = x]
m∏

j=1

Ψ (j)(ui, ui′ , xj) dx1 · · · dxm

(4.2)
where

� Ψ (j) : D ×D ×< → <,

� Ψ (j)(ui, ui′ , xj) =
∫

r∈I(j)
i

∫
s∈I(j)

i′

I[|r − s| = xj ] p
(j)
i (r) p

(j)
i′ (s) dr ds, j ∈ [1..m],

� f ′ : <m → < is a function that computes a scalar value from the com-
ponents of a vector (x1, . . . , xm). In this thesis, this function is defined as
f ′ =

√∑m
j=1 xj

2.

It can be proved that the condition
∫

x∈<
Θ(ui, ui′ , x) dx = 1 holds for both the

definitions of Θ, for all ui, ui′ in the dataset D.
Given an uncertain distance function Θ, it can be provided a definition of

uncertain distance by extracting a single, well-representative numerical value
from Θ.

Definition 4.2 (uncertain distance). Given a set D = {u1, . . . , un} of un-
certain objects, let Θ be the uncertain distance function defined over D. The
uncertain distance is a function θ : D ×D → <+

0 , which is defined as:

θ(ui, ui′) =
∫

x∈<

x Θ(ui, ui′ , x) dx (4.3)

According to (4.3), θ(ui, ui′) is the expected value of the uncertain distance
function θ between ui and ui′ . Note that, if ui, ui′ are multivariate uncertain
objects, θ(ui, ui′) can be directly computed as:

θ(ui, ui′) =
∫

x∈Ri

∫

x′∈Ri′

f(x,x′) pi(x) pi′(x′) dx dx′ (4.4)

whereas, if ui, ui′ are univariate uncertain objects, θ(ui, ui′) can be calculated
as:

θ(ui, ui′) = f ′(ψ(1)(ui, ui′), . . . , ψ(m)(ui, ui′)) (4.5)

where

ψ(j)(ui, ui′) =
∫

x∈I(j)
i

∫

x′∈I(j)
i′

|x− x′| p
(j)
i (x) p

(j)
i′ (x′) dx dx′, j ∈ [1..m].
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4.3 UK-Medoids Algorithm

In this section the proposed K-Medoids-based algorithm for clustering un-
certain objects, called UK-Medoids is presented. The outline of UK-Medoids
is given in Algorithm 4.1.

Algorithm 4.1 UK-Medoids

Input: a set D = {u1, . . . , un} of uncertain objects; the number K of output clusters
Output: a clustering C of D

1: compute distances θ(ui, ui′),∀ui, ui′ ∈ D
2: compute the set V = {v1, . . . , vK} of initial medoids
3: repeat
4: V ′ ← V
5: V ← ∅
6: C = {C1, . . . , CK} ← {∅, . . . , ∅}
7: for all u ∈ D do
8: {assign each object to the closest cluster, based on its uncertain distance to

cluster medoids}
9: vk ← arg minv′∈V′θ(u, v′)

10: Ck ← Ck ∪ {u}
11: end for
12: for all C ∈ C do
13: {recompute the medoid of each cluster}
14: v ← arg minu∈C

∑
u′∈C θ(u, u′)

15: V ← V ∪ {v}
16: end for
17: until V = V ′

The input for the UK-Medoids algorithm is a dataset D of n uncertain
objects and the number K of clusters to be discovered, and the output is a
set C of K clusters, i.e., a partition of D. Initially, all the uncertain distances
between any pair of objects ui, ui′ ∈ D are computed (Line 1). The distances
are calculated only once and are used at each iteration of the algorithm.
Afterward, the set of K initial medoids is computed (Line 2). The initial
medoids can be selected by means of either random chance or a suitable
procedure aimed to choose well-separated medoids (e.g., that proposed for
the Partitioning Around Medoids (PAM) algorithm [KR87]).

After the initialization steps, the algorithm performs the main loop (start-
ing from Line 3) which comprises two phases. In the first phase (Lines 7−11),
each object u in D is assigned to the cluster represented by the medoid v
closest to u. In the second phase, the medoids in the set V are recomputed
according to the objects assigned to each cluster (Lines 12− 16). Such phases
are iteratively repeated until a local optimum has not been reached, i.e., there
is no change in the current V with respect to the previous iteration (Line 17).
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Given a dataset D of n uncertain objects, it can be proved that the “online”
computational complexity of Alg. 4.1 (i.e., the complexity of the main loop,
Lines 3 − 16) is O(I n2), where I is the number of iterations needed for the
convergence of the algorithm.

4.4 Experimental Evaluation

We devised an experimental evaluation aimed to assess the ability of UK-
Medoids in clustering uncertain objects, both in terms of accuracy and ef-
ficiency. We also compared UK-Medoids to K-Means-based algorithms, i.e.,
UK-Means and its variant CK-Means (cf. Chap. 3).

4.4.1 Evaluation Methodology

Datasets

The experimental analysis was performed on benchmark datasets from
the UCI Machine Learning Repository [ANml]. We chose four datasets with
numerical real-value attributes, namely Iris, Wine, Glass, and Ecoli (cf. Ap-
pendix A).

All the selected datasets originally contain deterministic values, hence the
uncertainty was synthetically generated for each object of any dataset. In
particular:

� Generation of univariate uncertainty — For each univariate object u, we
generated the uncertain interval I(j) and the pdf p(j) defined over I(j),
for each attribute A(j), j ∈ [1..m]. The interval I(j) was randomly chosen
as a subinterval within [minuj ,maxuj ], where minuj (resp. maxuj ) is the
minimum (resp. maximum) deterministic value of the j-th attribute over
all the objects belonging to the same ideal class of u.
As concerns p(j), we considered two continuous density functions, namely
Uniform and Normal pdfs, and Binomial as a discrete mass function. We
set the parameters of Normal and Binomial pdfs in such a way that their
mode corresponded to the deterministic value of the j-th attribute of the
object u

� Generation of multivariate uncertainty — Similarly to the univariate case,
for each multivariate object u we generated the uncertainty region R as
the product of the intervals randomly generated for each attribute of u.
The distributions involved were (multivariate) Uniform and Normal pdfs.
The strategy for setting the parameters of the pdfs was the same as for
the univariate case.

Since univariate and multivariate models gave similar results, here we re-
port only results on the univariate models.
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Table 4.1. UK-Medoids vs. competing methods: clustering quality results (F1-
Measure)

dataset pdf UK-Means CK-Means UK-Medoids

Uniform 0.45 0.50 0.84
Iris Normal 0.84 0.85 0.88

Binomial 0.62 0.58 0.87

Uniform 0.46 0.50 0.80
Wine Normal 0.69 0.70 0.70

Binomial 0.63 0.58 0.73

Uniform 0.26 0.29 0.71
Glass Normal 0.63 0.59 0.68

Binomial 0.27 0.29 0.67

Uniform 0.30 0.33 0.73
Ecoli Normal 0.73 0.74 0.77

Binomial 0.50 0.44 0.72

Cluster Validity

To assess the quality of clustering solutions we exploited the availability
of reference classifications for the datasets. The objective was to evaluate how
well a clustering fits a predefined scheme of known classes (natural clusters).
To this purpose, we resorted to the F1-Measure external validity criterion (cf.
Def. 2.5).

Settings

In K-Means-based approaches, the set of initial centroids is randomly se-
lected. Therefore, to avoid that clustering results were biased by random
chance, we averaged accuracy and efficiency measurements over 100 differ-
ent runs. We made a similar choice also for UK-Medoids, since we noted that
the use of a refined strategy for selecting initial medoids (e.g., the procedure
proposed in [KR87]) gave no significant improvement with respect to random
selection.

We computed the integrals involved into the distances calculation by tak-
ing into account lists of samples derived from the pdfs. To accomplish this,
we employed the classic Monte Carlo sampling method.1 We also performed a
preliminary tuning phase to properly set the number of samples S; in particu-
lar, for each method and dataset, we chose S in such a way that there was no
significant improvement in accuracy for any S′ > S. In general, the optimal S
depended on the width of the uncertainty interval/region; however, according
to our experiments, 50 and 400ö500 samples represented a reasonably good
choice, for univariate and multivariate uncertainty model, respectively.

1 We used the SSJ library, available at http://www.iro.umontreal.ca/∼simardr/ssj/
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(a) Iris (b) Wine

(c) Glass (d) Ecoli

Fig. 4.1. UK-Medoids vs. competing methods: clustering time performances

4.4.2 Results

Accuracy

Table 4.1 summarizes the F1-Measure results obtained by UK-Medoids and
the other methods. We can observe that UK-Medoids drastically outperformed
UK-Means and CK-Means on all the datasets, with Uniform and Binomial
pdfs. In particular, compared to the best competing method(s), the accuracy
improvement obtained by UK-Medoids was from 34% to 42% with Uniform
pdfs and from 10% to 38% with Binomial pdfs. In case of Normal pdfs, UK-
Medoids performed 3ö5% better than the other methods on three datasets,
whereas all the methods behaved similarly in Wine. The reduction of gap
between UK-Medoids and K-Means-based approaches on Normal pdfs can
be explained in that, according to our uncertainty generation scheme, the
expected value of a Normal pdf associated to any attribute of each uncertain
object was set equal to the deterministic value of the attribute for that object.
This allowed the centroid generation strategy of UK-Means and CK-Means
to perform well in that case.

It should be also noted that UK-Means and CK-Means performed simi-
larly for all the pdfs and datasets, as expected, since they employ a similar
clustering scheme; the only differences between the two methods are due to
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(a) Iris (b) Wine

(c) Glass (d) Ecoli

Fig. 4.2. UK-Medoids vs. CK-Means: performance of the algorithm runtimes (pre-
computing phases are ignored)

random choices, such as selection of initial centroids and pdf sampling for the
computation of the integrals.

Efficiency

To evaluate the efficiency of UK-Medoids and the competing methods, we
measured their time performances in clustering uncertain objects.2 Fig. 4.1
shows the total execution times (in milliseconds) obtained by the methods
on the various datasets. For UK-Medoids and CK-Means, we calculated the
sum of the times obtained for the pre-computing phase (i.e., uncertain dis-
tances computation for UK-Medoids and cluster centroids computation for
CK-Means), along with the algorithm runtimes.

In the figure, it can be noted that UK-Medoids was 1ö2 orders of mag-
nitude faster than UK-Means, which was the slowest method on all datasets.
The slowness of UK-Means is mainly due to the EDs computation needed for
each object in the dataset, at each iteration of the algorithm.
2 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB

memory and running Microsoft WinXP Pro
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As expected, CK-Means outperformed UK-Medoids on all datasets, which
is explained by a difference between the computational complexities of the two
algorithms. Indeed, both the phases of pre-computing and algorithm execution
are quadratic (resp. linear) with the number of objects in the dataset for UK-
Medoids (resp. CK-Means). However, it should be emphasized that the CK-
Means algorithm is less general than the other methods, as it works only if
the mean squared error for the definition of the EDs is used and the distance
function is based on the Euclidean norm.

We also measured separately the times of the pre-computing phases, which
involve the calculation of uncertain distances (in UK-Medoids) and cluster
centroids (in CK-Means). Fig. 4.2 shows that the gap between UK-Medoids
and CK-Means was reduced with respect to that measured by including the to-
tal runtimes (Fig. 4.1). This result confirms that the major difference between
UK-Medoids and CK-Means is given by the pre-computing phase. Thus, in
case of multiple runs of the two algorithms, we can state that the performance
of UK-medoids and CK-means are comparable, since the pre-computing phase
has to be performed once.





5

Information-Theoretic Hierarchical Clustering
of Uncertain Objects

Abstract In the contest of clustering uncertain objects, a special emphasis has
been put on partitional relocation and density-based approaches, whereas hierarchi-
cal clustering has drawn less attention. In this chapter, we present a prototype link-
based agglomerative hierarchical algorithm for clustering uncertain objects, called
U-AHC. A major novelty of U-AHC lies in a well-founded information-theoretic ap-
proach to the computation of distance between cluster prototypes, which is at the
basis of the definition of a new proposed prototype link-based metric. Experiments
conducted on various datasets have shown that U-AHC outperforms state-of-the-art
methods for clustering uncertain objects from an accuracy viewpoint while achieving
efficiency comparable to density-based methods. U-AHC has achieved good results
also in clustering microarray data whose probe-level uncertainty is represented ac-
cording to a univariate model.

5.1 Introduction

In recent years, clustering of uncertain objects has been deeply investi-
gated from the point of view of both partitional algorithms exploiting a re-
location scheme (i.e., approaches K-Means- or K-Medoids-based) [CCKN06,
S. 07, GPT08a] and density-based algorithms [KP05a, KP05b]. On the other
hand, to the best of our knowledge, no hierarchical approach has been so far
proposed (cf. Chapt 3).

While the proposed clustering algorithms mainly differ on the clustering
strategy and the cluster model, the adopted notions of distance between un-
certain objects come into two main approaches. The first approach consists in
computing the distance between aggregated values extracted from the proba-
bility distributions of the uncertain objects (e.g., expected values), which can
be performed with a complexity linear with S.1 The second approach instead

1 S may denote either the dimensionality of a discrete probability mass function,
or the number of statistically independent samples employed for approximating
a continuous probability density function.
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involves the computation of the so-called expected distance (ED) between
distributions (computed, e.g., as reported in (4.1)-(4.2)),2 which requires to
somehow compare the whole distributions and works in O(S2). Both these
approaches have some drawbacks in their own, as stated in, e.g., [KKPR05].
The first one, though particularly efficient, has clearly an accuracy issue, since
all the information available from the distributions is collapsed into a single,
representative numerical value. An opposite consideration holds for the ED-
based approach: it is accurate, but inefficient. Within this view, it should be
not advisable to involve the existing definitions of distance between uncertain
objects into any of the classic single link (SL), complete link (CL), or average
link (AL) metrics3 (cf. Chapt. 2, Sect. 2.3), and exploit one of these classic
linkage metrics into an agglomerative hierarchical clustering (AHC) scheme.
Instead, any AHC algorithm for clustering uncertain objects should involve
a linkage metric that is accurate, i.e., it should exploit all the information
available from the probability distributions, as well as efficient, i.e., it should
work in O(S).

Information-Theory (IT) represents a fruitful research area to devise dis-
tance measures for comparing probability distributions. IT measures typically
allows for computing the distance between distributions accurately and, most
of them, are able to work in linear time with respect to S. However, most of
the prominent existing IT measures, such as the popular ones falling into the
Ali-Silvey class [AS66], cannot be used to directly define distances for uncer-
tain objects. Indeed, such measures may have a number of shortcomings (e.g.,
do not satisfy the symmetric property, do not range within a bounded interval,
etc.) that limit their applicability. Most importantly, IT measures commonly
require that the probability distributions being compared hold for random
variables defined over a common event space (i.e., common domain region);
unfortunately, the domain regions of the probability distributions associated
to uncertain objects may not have wide intersections.

In this chapter, we present the first (agglomerative) hierarchical algorithm
for clustering uncertain objects, called U-AHC [GPTG08, GPTG09b], which
exploits a new prototype link-based metric, whose definition is specific to the
contest of uncertain objects.

The main contributions of this chapter can be summarized as follows.

1. We present U-AHC, i.e., a prototype link-based agglomerative hierarchical
algorithm for clustering uncertain objects, which brings for the first time a
hierarchical approach to group uncertain objects, by exploiting a standard
AHC scheme.

2 In this chapter, the term “expected distance” (ED) is used to denote a distance
computed between probability distributions, instead of a distance between a prob-
ability distribution and a deterministic vector, like in the UK-Means algorithm.

3 The term “metric”, here and in the following, is not used with the classic mathe-
matical meaning of distance in a metric space; it instead refers to a criterion for
comparing two clusters.
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2. As a major novelty of U-AHC, we propose a new prototype link-based
metric to choose the pair of clusters to be merged at each iteration of U-
AHC. It allows for overcoming the issues due to exploiting näıve linkage
metric definitions based on straightforwardly applying classic SL, CL, or
AL to the context of uncertain objects. Indeed, the proposed metric allows
for comparing prototypes effectively, as proved by some theoretical results,
and efficiently, since it works in O(S). The two main ingredients of the
new metric are:
- the prototype of any given cluster, which is computed as a mixture

model that summarizes the probability distributions of all the objects
within that cluster;

- a new IT distance measure for comparing prototypes, whose definition
is allowed by the definition of cluster prototypes as mixture densities.
The proposed IT distance is a compound measure which is established
based on two different ways of comparing probability distributions that
represent prototypes: (i) measuring the distance by involving the whole
probability distributions, and (ii) computing the difference between
the expected values of the distributions. The intuition behind this
definition of distance lies in the fact that comparing two distributions
by an IT distance is powerful but, in principle, not always applicable;
on the contrary, expected value of distributions is always computable
but represents a concise information which, in general, is not able to
capture the real proximity (which also depends on the shapes) between
probability distributions.

3. We provide a deep insight into the properties of the proposed compound
distance measure, by demonstrating its effectiveness and soundness in
comparing probability distributions of prototypes. In particular:
- we introduce a notion of adequacy of computing the distance between

any two probability distributions (of cluster prototypes) by means of a
given IT measure. Intuitively, this notion expresses to what degree an
IT distance measure is worth comparing two prototypes by involving
only their distributions. Indeed, a high value of adequacy implies that
the distance computation can exploit most of the information into the
probability distributions of the prototypes, thus ensuring high accu-
racy in detecting dissimilarities;

- based on the notion of adequacy, we show that the proposed com-
pound distance exploits an advantageous characteristic of the cluster
prototypes defined as mixture densities, i.e., the overlaps between the
prototypes’ domain regions are generally larger than the overlaps be-
tween the individual objects’ regions. Such a characteristic is employed
to theoretically prove an important result: a strong relationship holds
between the main ingredients that entail our proposal, i.e., the com-
pound distance, the definition of cluster prototype, and the prototype
link-based AHC scheme. Such a result allows us to claim that the pro-
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posed linkage metric is well-suited for effectively (as well as efficiently)
choosing the clusters to be merged.

4. We have conducted an extensive experimental evaluation on several
datasets (which include benchmark and real-world data collections) in
order to assess effectiveness of U-AHC algorithm in clustering uncertain
data. Compared to state-of-the-art partitional and density-based algo-
rithms, U-AHC achieved the highest quality on all the datasets. Moreover,
a study on the runtime performances has shown that U-AHC behaves as
good as or better than the density-based algorithms.

5.2 Uncertain Prototype

In the following, we discuss the first part of the prototype link-based metric
involved into the proposed U-AHC algorithm, i.e., the definition of uncertain
prototype, or simply prototype, as a new uncertain object computed to properly
summarize the features of all the uncertain objects in a given set. The second
part, i.e., the measure for comparing uncertain prototypes, is described in the
next section.

Since uncertain objects are represented by probability distributions, it is
reasonable to represent an uncertain prototype as a finite mixture, whose com-
ponents are the pdfs associated to the objects within the set to be summarized.

Finite mixtures have long been used to model various phenomena in which
more (independent) variables sum to a whole, being this characterized by the
fraction of each variable (component) [MP00]. Applications have arisen in dis-
joint scientific disciplines and led to the development of several variants and
extensions for special cases. As concerns data clustering, finite mixture mod-
els provide a foundation for probabilistic clustering (e.g., mixtures are often
used to model the form of cluster members) [JD88]. Also, defining uncertain
prototypes as mixture densities is an efficient operation, since it can be carried
out linearly with respect to the size of the set of objects to be summarized.
Other more complex definitions (such as, e.g., those based on the probability
that at least one uncertain object is located at any point x ∈ <m) inevitably
increase the computational complexity.

Definition 5.1 (multivariate uncertain prototype). Let C = {u1, . . . , un}
be a set of multivariate uncertain objects, where ui = (Ri, pi), Ri = [a(1)

i , b
(1)
i ]×

. . .× [a(m)
i , b

(m)
i ], for each i ∈ [1..n]. The multivariate uncertain prototype of

C is a pair PC = (RC , pC), where

RC =
[

min
i∈[1..n]

a
(1)
i , max

i∈[1..n]
b
(1)
i

]
× · · · ×

[
min

i∈[1..n]
a
(m)
i , max

i∈[1..n]
b
(m)
i

]
(5.1)

pC(x) =
1
n

n∑

i=1

pi(x) (5.2)
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Definition 5.2 (univariate uncertain prototype). Let C = {u1, . . . , un}
be a set of univariate uncertain objects, where ui = ((I(1)

i , p
(1)
i ), . . . , (I(m)

i , p
(m)
i )),

I(j)
i = [a(j)

i , b
(j)
i ], for each j ∈ [1..m], i ∈ [1..n]. The univariate uncertain pro-

totype of C is a tuple PC = ((I(1)
C , p

(1)
C ), . . . , (I(m)

C , p
(m)
C )) such that, for each

j ∈ [1..m]:
I(j)

C =
[

min
i∈[1..n]

a
(j)
i , max

i∈[1..n]
b
(j)
i

]
(5.3)

p
(j)
C (x) =

1
n

n∑

i=1

p
(j)
i (x) (5.4)

Proposition 5.3. Let C = {u1, . . . , un} be a set of multivariate uncertain
objects. The multivariate uncertain prototype PC is a multivariate uncertain
object.

Proof. Being C a set of multivariate uncertain objects, to prove that PC =
(RC , pC) is a (multivariate) uncertain object, we need to demonstrate that:

1. pC is a pdf,
2. (3.1) of Def. 3.1 holds, and
3. (3.2) of Def. 3.1 holds.

Condition (1) is true since pC represents a mixture of pdfs of the form∑n
i=1 αipi(x), where αi = 1/n. As concerns condition (2), we have that:

∫

x∈<m\RC

pC(x)dx =

=
∫

x∈<m\RC

1
n

n∑

i=1

pi(x)dx =
1
n

n∑

i=1

∫

x∈<m\RC

pi(x)dx

Since RC ⊇ Ri, ∀i ∈ [1..n] (cf. (5.1)), we have:

1
n

n∑

i=1

∫

x∈<m\RC

pi(x)dx =

=
1
n

n∑

i=1

( ∫

x∈<m\Ri

pi(x)dx −
∫

x∈RC\Ri

pi(x)dx
)

=
1
n

n∑

i=1

(0− 0) = 0

which proves condition (2).
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To prove condition (3), it can be straightforwardly noted that, due to the
definition of prototype region in (5.1), ∀x ∈ RC , there must exist at least
one pi, i ∈ [1..n], such that pi(x) > 0. Consequently, the following holds:
(1/n)

∑n
i=1 pi(x) > 0, ∀x ∈ RC , i.e.,

pC(x) > 0, ∀x ∈ RC (5.5)

which proves condition (3). ut
A result similar to that stated in Prop. 5.3 can be shown for the univariate

case, i.e., it can be proved that a univariate uncertain prototype is a univariate
uncertain object. We omit the details of the proof, since it is similar to that
exploited for proving Prop. 5.3. Also, we point out that this observation holds
in general: all the proofs concerning the univariate case may have reference to
the corresponding ones concerning the multivariate case. To this purpose, we
hereinafter report the proofs only for the multivariate case.

The following propositions are introduced to describe what is the form
of a multivariate/univariate uncertain prototype for a new cluster resulting
from the union of any two given clusters. Note that the proof of each of
these propositions is trivial since they can be straightforwardly derived from
Defs. 5.1-5.2.

Proposition 5.4. Given two sets Ck, Ck′ of m-dimensional multivariate un-
certain objects, such that Ck ∩ Ck′ = ∅, and the corresponding prototypes
PCk

= (RCk
, pCk

), PCk′ = (RCk′ , pCk′ ), let C = Ck ∪Ck′ be the set composed
by the objects in Ck and Ck′ , and PC = (RC , pC) the resulting prototype. It
holds that:

RC=
[

min
k̂∈{k,k′}

a
(1)

k̂
, max
k̂∈{k,k′}

b
(1)

k̂

]
×· · ·×

[
min

k̂∈{k,k′}
a
(m)

k̂
, max
k̂∈{k,k′}

b
(m)

k̂

]
(5.6)

pC =
|Ck|
|C| pCk

+
|Ck′ |
|C| pCk′ (5.7)

Proposition 5.5. Given two sets Ck, Ck′ of m-dimensional univariate un-
certain objects, such that Ck ∩ Ck′ = ∅, and the corresponding prototypes
PCk

= ((I(1)
Ck

, p
(1)
Ck

), . . . , (I(m)
Ck

, p
(m)
Ck

)), PCk′ = ((I(1)
Ck′

, p
(1)
Ck′

), . . . , (I(m)
Ck′

, p
(m)
Ck′

)),
let C = Ck ∪Ck′ be the set composed by the objects in Ck and Ck′ , and PC =
((I(1)

C
, p

(1)

C
), . . . , (I(m)

C
, p

(m)

C
)) the resulting prototype. For each j ∈ [1..m], it

holds that:
I(j)

C
=

[
min

k̂∈{k,k′}
a
(j)

k̂
, max
k̂∈{k,k′}

b
(j)

k̂

]
(5.8)

p
(j)

C
=
|Ck|
|C| p

(j)
Ck

+
|Ck′ |
|C| p

(j)
Ck′

(5.9)
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5.3 Comparing Uncertain Prototypes

5.3.1 Distance Measures for pdfs

Probability density functions are usually compared by using information-
theoretic (IT) measures, such as those falling into the Ali-Silvey class of dis-
tance functions [AS66]. These functions have been widely used in several ap-
plication contexts, such as signal processing, pattern recognition, and speech
recognition [AJ56, Bas89].

Two of the most frequently used distance measures for probability densities
are the Kullback-Leibler (KL) divergence [KL51, Kul59] and the Chernoff dis-
tance [Che52]. From a similarity viewpoint, a very useful notion is represented
by the Bhattacharyya coefficient [Bha43, Kai67]. Given any two continuous
pdfs g1 and g2, the Bhattacharyya coefficient (ρ) is defined as:

ρ(g1, g2) =
∫

x∈<m

√
g1(x) g2(x) dx (5.10)

The original “discrete” definition of ρ in [Bha43] considers g1 and g2 as multi-
nomial populations, each one consisting of K classes with associated proba-
bilities. In any case, ρ has a relevant geometric interpretation: it can be seen
as the cosine between the two vectors for g1 and g2, whose components are
the square root of the probabilities of the K classes that compose g1 and g2.
This interpretation also holds in the extended definition reported in (5.10),
which defines Bhattacharyya coefficient for continuous pdfs.

Based on the Bhattacharyya coefficient, various distance functions can in
principle be defined [Kai67]. In particular, the following measure

B(g1, g2) =
√

1− ρ(g1, g2) (5.11)

has a number of advantages with respect to other Bhattacharyya distances,
such as the commonly used definition of the form−log ρ, and other information-
theoretic measures, including as Kullback-Leibler or Chernoff. Unlike all the
other mentioned measures, B ranges within the interval [0, 1], which makes it
particularly suitable to be combined with measures that capture other aspects
when comparing two pdfs (cf. next subsection). Also, unlike the Chernoff dis-
tance (which is a more general case), B is easier and less expensive to compute
and satisfies the additive property for probability distributions even though
the random variables are not identically distributed. Such a property states
that the distance between two joint distributions of statistically independent
random variables equals the sum of the marginal distances. Finally, B is sym-
metric (unlike Kullback-Leibler) and satisfies the triangle inequality (unlike
− log ρ, Kullback-Leibler, and Chernoff).
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5.3.2 Combining Information-Theoretic Notions and Expected
Value on pdfs

Using an IT proximity measure represents a natural solution for devising
a notion of distance between uncertain prototypes; in particular, this choice is
essential to establish a function that is able to compare two pdfs by exploiting
the whole information stored in the pdfs. Also, IT measures are typically fast
to compute (linear with respect to S). However, this holds provided that
the comparison makes sense: indeed, it should be taken into account that IT
measures work out for pdfs that share a common event space (domain region).
By contrast, if the two pdfs do not have any intersection in their event spaces
(i.e., there is no common region in which both pdfs are greater than zero), the
distance according to any IT measure is always equal to the maximum value
possible (e.g., one for B, ∞ for KL).

We introduce a notion, called IT-adequacy, which quantifies to what degree
an information-theoretic distance measure is worth comparing two uncertain
prototypes by involving only their pdfs.

Definition 5.6 (IT-adequacy). Let g1 and g2 be two m-dimensional pdfs
(m ≥ 1), and R1 ⊆ <m, R2 ⊆ <m be two m-dimensional regions such that
(for i ∈ {1, 2}):

∫

x∈<m\Ri

gi(x)dx = 0 and gi(x) > 0 , ∀x ∈ Ri

The IT-adequacy between g1 and g2 with respect to R1 and R2 is defined as:

ΥR1,R2
(g1, g2) =

1
2

( ∫

x∈R1∩R2

g1(x) dx +
∫

x∈R1∩R2

g2(x) dx
)

(5.12)

ΥR1,R2
(g1, g2) (which ranges within [0, 1]) expresses the adequacy of com-

puting the distance between g1 and g2 by using a certain IT measure. In
particular, the higher ΥR1,R2

(g1, g2), the more the information coming from
g1 and g2 that is exploited in the comparison.

For the sake of simplicity of notation, we will use the symbols Υ (resp. Υ (j))
to denote the IT-adequacy relative to the comparison of any two multivariate
(resp. univariate) uncertain prototypes. Formally:

Υ (Pk, Pk′) = ΥRk,R
k′

(pk, pk′) (5.13)

for any two multivariate uncertain prototypes Pk = (Rk, pk), Pk′ = (Rk′ , pk′),
and

Υ (j)(Pk, Pk′) = Υ
I(j)

k
,I(j)

k′
(p(j)

k , p
(j)
k′ ) (5.14)

for any two univariate uncertain prototypes Pk = ((I(1)
k , p

(1)
k ), . . . , (I(m)

k , p
(m)
k )),

Pk′ = ((I(1)
k′ , p

(1)
k′ ), . . . , (I(m)

k′ , p
(m)
k′ )).
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It should be emphasized that a poor IT-adequacy may be computed when
the pdfs of uncertain prototypes being compared have small (or empty) over-
lapping areas. To address such cases, it may be advisable to express the prox-
imity between pdfs by resorting to the difference of their expected values.
Within this view, the main intuition underlying our notion of distance measure
between uncertain prototypes is to suitably combine an IT measure (which in
principle is not always applicable) with a concise (but always available) infor-
mation given by the expected values. Formally, we propose a distance measure
Θ for uncertain prototypes Pk and Pk′ which is expressed as a function of two
different terms:

Θ(Pk, Pk′) = f(ΘIT (Pk, Pk′), ΘED(Pk, Pk′)) (5.15)

where ΘIT involves a comparison by means of a certain IT measure, and ΘED

measures the distance proportionally to the difference of the expected values.

5.3.3 Distance Measure for Uncertain Prototypes

We now provide the definitions of the distance measures for comparing
uncertain prototypes involved into the proposed prototype link-based met-
ric. More precisely, according to (5.15), we specify the choices for (i) the IT
measure used for computing ΘIT , and (ii) the way of combining ΘIT and
ΘED.

As regards the first point, we chose the Bhattacharyya distance (B), as
defined in (5.11). In Sect. 5.3.1, we have already given motivations for which
this measure has been preferred to other IT measures (such as, e.g., − log ρ,
Kullback-Leibler or Chernoff). We point out that B ranges within [0, 1], which
makes this measure easily comparable and combinable with other distance
functions, which represents a major focus on this work. A further notable
remark is that B can be proved to be strictly related to Υ (Def. 5.6). Indeed,
B is based on ρ (the Bhattacharyya coefficient), for which the following nice
property holds.

Proposition 5.7. Let g1 and g2 be two m-dimensional pdfs (m ≥ 1), and
R1 ⊆ <m, R2 ⊆ <m be two m-dimensional regions such that (for i ∈ {1, 2}):

∫

x∈<m\Ri

gi(x)dx = 0, and gi(x) > 0, ∀x ∈ Ri

It holds that:
ρ(g1, g2) ≤ ΥR1,R2

(g1, g2)

Proof. Since g1 and g2 have a limited region of definition (i.e., R1 and R2,
respectively), the following statement holds:

ρ(g1, g2) =
∫

x∈<m

√
g1(x) g2(x) dx =

∫

x∈R1∩R2

√
g1(x) g2(x) dx
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Hence, to prove that ρ(g1, g2) ≤ ΥR1,R2
(g1, g2), it is sufficient to demonstrate

that: ∫

x∈R1∩R2

√
g1(x) g2(x) dx ≤

∫

x∈R1∩R2

1
2

(
g1(x) + g2(x)

)
dx

which can be straightforwardly proved to be a true statement, since the geo-
metric mean is never greater than the arithmetic mean. ut

Prop. 5.7 shows that the upper bound of the computation of ρ for any two
given pdfs is equal to the IT-adequacy between those pdfs. This represents
a key aspect in our framework since it supports the theoretical validity for
combining ΘIT and ΘED, as we shall show in a while.

Once established the IT distance measure to be used in ΘIT , we have to
define a way to properly combine ΘIT and ΘED. A first way is to introduce
a weighting factor ranging within [0, 1] to control the contribution due to B
with respect to the difference between the expected values, and define Θ as
a linear combination of ΘIT and ΘED. This weighting factor can be defined
proportionally to the width of the domain region shared between the pdfs of
the uncertain objects being compared.

The way of combining ΘIT and ΘED described above may represent a
reasonable choice to a certain extent, since the larger is the portion of the
pdfs involved into the Bhattacharyya distance computation, the smaller is the
need for comparing the pdfs by also considering the corresponding expected
values. However, it may happen the case in which two pdfs share a large
domain region but have most of their values (main portions of their areas)
over different intervals.

Within this view, a more robust way to weight the contribution due to
Θ might be based on the degree of overlap of the pdf areas. As previously
stated, this property is at the basis of the notion of IT-adequacy, which also
represents an upper bound for ρ. For this purpose, we define Θ as a linear
combination of ΘIT and ΘED:

Θ = 1− ((1−ΘIT ) + β (1−ΘED))

which is controlled by a factor β that is proportional to the IT-adequacy of
the pdfs of the objects to be compared. Indeed, since ΘIT = B =

√
1− ρ and

ρ ≤ Υ (cf. Prop. 5.7), it holds that:

1−ΘIT ≤ 1−
√

1− Υ

Thus, we can define factor β as:

β = 1− (1−
√

1− Υ )

which leads to the following formula for the overall Θ

Θ = 1− ((1−ΘIT ) + 1− (1−
√

1− Υ ) (1−ΘED)) =
= ΘIT −

√
1− Υ (1−ΘED)
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and to the following formal definitions.

Definition 5.8 (multivariate uncertain distance). The multivariate un-
certain distance between two multivariate uncertain prototypes Pk = (Rk, pk)
and Pk′ = (Rk′ , pk′) is defined as

Θ(Pk, Pk′)=B(pk, pk′)−
√

1− Υ (Pk, Pk′)× e−f(E[pk],E[pk′ ]) (5.16)

In (5.16), f : <m → <+
0 is a function that measures the distance be-

tween m-dimensional points (e.g., Euclidean norm), and E[p] denotes the
expected value of the pdf p. Moreover, note that ΘED is defined as equal
to 1 − e−f(E[pk],E[pk′ ]). The exponential function is used to make ΘED rang-
ing within [0, 1], and, therefore, comparable to ΘIT (which also ranges within
[0, 1]).

Definition 5.9 (univariate uncertain distance). The univariate uncer-
tain distance between two univariate uncertain prototypes Pk = ((I(1)

k , p
(1)
k ), . . . ,

(I(m)
k , p

(m)
k )) and Pk′ = ((I(1)

k′ , p
(1)
k′ ), . . . , (I(m)

k′ , p
(m)
k′ )) is defined as

Θ(Pk, Pk′) = f ′(θ(1), . . . , θ(m)) (5.17)

where

θ(j) = B(p(j)
k , p

(j)
k′ )−

√
1− Υ (j)(Pk, Pk′) e−|E[p

(j)
k ]−E[p

(j)
k′ ]|

for each j ∈ [1..m].

In (5.17), f ′ : <m → <+
0 is any function that computes a scalar value

from the components of an m-dimensional vector. In particular, we define
f ′(θ(1), . . . , θ(m)) = (1/m)

√∑m
j=1 (θ(j))2 .

Proposition 5.10. Given any two uncertain prototypes Pk = (Rk, pk) and
Pk′ = (Rk′ , pk′), Θ(Pk, Pk′) assumes values within [0, 1].

Proof.

Θ(Pk, Pk′) = B(pk, pk′)−
√

1− Υ (Pk, Pk′)× e−f(E[pk],E[pk′ ]) =

=
√

1− ρ(pk, pk′)−
√

1− Υ (Pk, Pk′)× e−f(E[pk],E[pk′ ])

= 1− [Θ′
kk′ + Θ′′kk′ ]

where
Θ′kk′ = 1−

√
1− ρ(pk, pk′) and

Θ′′
kk′ =

(
1−

(
1−

√
1− Υ (Pk, Pk′)

))
× e−f(E[pk],E[pk′ ])
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Since ρ(pk, pk′) ≤ Υ (Pk, Pk′) (Prop. 5.7), we have that Θ′
kk′ ≤ 1−

√
1− Υ (Pk, Pk′),

consequently:

min Θ(Pk, Pk′) =
= 1− [maxΘ′

kk′ + max Θ′′kk′ ]

= 1−
[
1−

√
1− Υ (Pk, Pk′) +

+
(

1−
(

1−
√

1− Υ (Pk, Pk′)
))]

= 0

Moreover, since Θ′
kk′ and Θ′′

kk′ are minimum if and only if ρ(pk, pk′) and
e−f(E[pk],E[pk′ ]) are individually minimum (i.e., ρ(pk, pk′) = 0 and f(E[pk], E[pk′ ]) →
+∞), then:

max Θ(Pk, Pk′) =
= 1− [minΘ′

kk′ + min Θ′′kk′ ]

= 1−
[
0 +

√
1− Υ (Pk, Pk′)× e−∞

]
= 1

ut
We now give an insight into the behavior of the proposed distance function

Θ, when the two terms ΘIT and ΘED are close to their extreme values, i.e.,
they are close to either zero or one. We show a number of properties only for
the multivariate definition of Θ, since it is easy to prove that they also hold
for each θ(j) term (j ∈ [1..m]) of the univariate version of Θ.

1. Since B(pk, pk′) = 0 if and only if pk = pk′ , i.e., Pk = Pk′ , and B(pk, pk′) =
0 implies that Υ (Pk, Pk′) = 1, we have:

lim
B(pk,pk′ )→0

Θ(Pk, Pk′) = 0 (5.18)

Indeed, if Pk = Pk′ then Θ(Pk, Pk′) is equal to zero.
2. Let us denote Θ(2) = 1−

√
1− Υ (Pk, Pk′)× e−f(E[pk],E[pk′ ]). It is easy to

see that:
lim

B(pk,pk′ )→1
Θ(Pk, Pk′) = Θ(2) (5.19)

To prove the soundness of this property, it should be noted that:

lim
Υ (Pk,Pk′ )→0

Θ(2) = 1− e−f(E[pk],E[pk′ ])

i.e., if the IT-adequacy between Pk and Pk is low, the only information
exploited for computing Θ is the distance between E[pk] and E[pk′ ], which
is clearly reasonable. Moreover:

lim
Υ (Pk,Pk′ )→1

Θ(2) = 1
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which is intuitively correct since, if Υ (Pk, Pk′) is high, Θ would tend to
the distance value computed by B, which tends to one in this case.

3. Let Θ(3) = B(pk, pk′)−
√

1− Υ (Pk, Pk′). It holds that:

lim
f(E[pk],E[pk′ ])→0

Θ(Pk, Pk′) = Θ(3) (5.20)

This property holds due to the following additional considerations.

lim
Υ (Pk,Pk′ )→0

Θ(3) = 0

Indeed, if Pk and Pk′ have low IT-adequacy, Θ would take into account
only f(E[pk], E[pk′ ]), which tends to 0 in this case. Also:

lim
Υ (Pk,Pk′ )→1

∆(3) = B(pk, pk′)

In this case, since the IT-adequacy is high, it is correct to focus on
the shapes of the pdfs, i.e., to compute Θ by only considering the term
B(pk, pk′);

4. Finally:
lim

f(E[pk],E[pk′ ])→+∞
Θ(Pk, Pk′) = B(pk, pk′) (5.21)

which holds since Pk and Pk′ may be similar to a certain degree (in a way
inversely proportional to B(pk, pk′)) even if the expected values of the
corresponding pdfs pk and pk′ are dissimilar. This highlights as Θ allows
for overcoming limitations of the distance between expected values and
further supports for the robustness of Θ.

5.4 U-AHC Algorithm

We present here the proposed AHC-based algorithm for clustering uncer-
tain objects, named U-AHC. The outline of U-AHC is given in Alg. 5.1.

The input for U-AHC algorithm is a dataset D of n uncertain objects
and a positive integer S, which denotes the number of pdf samples used for
integral estimations; the output is a hierarchy T of clusters (a dendrogram).
The algorithm follows the classic AHC scheme. The proposed implementation
makes use of a priority queue (Q) to store the inter-cluster distances in order
to improve the computational efficiency—the lower the distance between a
pair of clusters, the higher the corresponding priority in Q.

The initialization steps (Lines 1-11) are in charge of computing the list of
samples for each object (procedure object sampling) and the initial set of clus-
ters composed by n singletons along with the corresponding prototypes (Lines
2-6). The initial pair-wise distances are computed by the prototype distance
procedure (Funct. 5.1) and inserted into the priority queue (Lines 8-11). Note
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Algorithm 5.1 U-AHC
Input: a set D = {u1, . . . , un} of uncertain objects, the number S of samples used

for integral estimations
Output: a set of partitions T (i.e., a dendrogram)

{initialization}
1: C ← ∅, Q ← ∅
2: for all u ∈ D do
3: object sampling(u, S)
4: C ← {u}, PC ← u
5: C ← C ∪ {C}
6: end for
7: T ← {C}
8: for all Ck, Ck′ ∈ C, Ck 6= Ck′ do
9: d ← prototype distance(Ck, Ck′ , PCk , PCk′ )

10: Q.insert(Ck, Ck′ , d)
11: end for

{main loop}
12: repeat
13: (Ck, Ck′) ← Q.removeMin()
14: C ← Ck ∪ Ck′

15: PC ← compute prototype(Ck, Ck′ , PCk , PCk′ ) {(5.6)–(5.9)}
16: for all C ∈ C, C 6= Ck, C 6= Ck′ do
17: Q.remove(C, Ck)
18: Q.remove(C, Ck′)
19: d ← prototype distance(C, C, PC , PC)
20: Q.insert(C, C, d)
21: end for
22: C ← C \ {Ck, Ck′} ∪ {C}
23: T ← T ∪ {C}
24: until |C| = 1

that, in order to estimate the integrals numerically, each uncertain object (in-
cluding the uncertain prototypes) is associated with its corresponding list of
samples during the whole execution of the algorithm (procedure get samples).

The main loop of the algorithm (Lines 12-24) is repeated until the whole
hierarchy has been built, i.e., the number of clusters in the current clustering
C is equal to one. At each iteration, the pair of the two clusters having the
minimum distance is extracted from the priority queue (Line 13) and the two
clusters are merged to form a new cluster C (Line 14). Afterward, the proce-
dure compute prototype (Line 15) updates the prototype of C by computing
the new region/intervals of definition according to (5.6) and (5.8), pdfs ac-
cording to (5.7) and (5.9), and samples. More precisely, computing the new
list of samples is accomplished by involving the Markov Chain Monte Carlo
(MCMC) sampling method [W. 70], which is suitable for mixture densities.
Once the merging step has been completed, the priority queue is updated
(Lines 16-21). For each cluster C in the current clustering, the distances be-
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tween C and the earlier clusters Ck, Ck′ are removed from Q (Lines 17-18)
and replaced with the distance from the new cluster C (Lines 19-20). We
assume that any removal operation Q.remove(C, C ′) may implicitly perform
also Q.remove(C ′, C).

Function 5.1 prototype distance
Parameters: a pair C, C′ of clusters and their respective prototypes PC , PC′

Returned data: a real value d within [0, 1]
1: UB ← compute ub values(C, C ′, PC , PC′) {(5.12) }
2: Pr ← ∅,S ← ∅
3: if |C| < |C′| then
4: S ← get samples(PC)
5: for all S′ ∈ S do
6: Pr ← Pr ∪ compute probability(C′, S′)
7: end for
8: else
9: S ← get samples(PC′)

10: for all S′ ∈ S do
11: Pr ← Pr ∪ compute probability(C, S′)
12: end for
13: end if
14: DIT ←compute B values(PC , PC′ ,S, P r) {(5.11)}
15: DED ← compute ED values(PC , PC′) {(5.16)–(5.17)}
16: d ← uncertain distance(DIT , DED, UB) {(5.16)–(5.17)}
17: return d

The prototype distance function (Funct. 5.1) computes a distance value d
between the prototypes of any two given clusters C and C ′ according to ei-
ther Def. 5.8 or Def. 5.9. This function consists of three main phases. First, a
set UB is computed to contain the upper-bound values of the Bhattacharyya
coefficient (i.e., the IT-adequacy values) between the pdfs of the prototypes of
C and C ′ (Line 1); these values are calculated according to (5.12), and involve
the cumulative distribution functions (cdfs) of the objects within the clusters
C and C ′. Afterward, the compute B values procedure computes the set DIT

of Bhattacharyya distance values according to (5.11) (Line 14); this procedure
estimates the integrals needed for deriving the Bhattacharyya coefficient by
taking into account the set of samples S and the set Pr of “new” probabilities
(Lines 3-13). The sets Pr and S are created as follows: the set S is built up
with the samples of the prototype of C (resp. prototype of C ′) if |C| is smaller
than (resp. greater than or equal to) |C ′|, and Pr contains the probabilities of
each sample in S computed according to the pdfs of the objects in C ′ (resp. C).
In the third phase, the compute ED values procedure computes the set DED

of distances based on the expected values; in particular, DED is populated
by computing the exponential of the negative of the distances between the
expected values of the prototypes (Line 15). Finally, the uncertain distance
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procedure computes the final distance value d according to either (5.16) (mul-
tivariate case) or (5.17) (univariate case), by considering the values in the sets
DIT , DED and UB (Line 16). Note that |UB | = |DIT | = |DED| = 1, in the
multivariate case, whereas |UB | = |DIT | = |DED| = m, in the univariate case.

Computational Aspects

Let us now discuss the computational complexity of Alg. 5.1, given a
dataset D of n uncertain objects and a number S of samples. As previously
discussed, Alg. 5.1 uses the prototype distance function (Funct. 5.1), whose
complexity can be trivially proved to be O(S min{|C|, |C ′|}). Furthermore,
we assume that (i) the operations of insertion/deletion/extraction of any ob-
ject into/from the priority queue Q are performed in O(log |Q|), and (ii) the
number m of dimensions of the uncertain objects is a constant. The costs of
the various steps of Alg. 5.1 are summarized as follows:

� the initialization steps, i.e., computing the lists of samples for each un-
certain object and the set of initial clusters (Lines 2-6), and initializing
the priority queue (Lines 8-11), are executed in O(S n) and O(n2 log n),
respectively;

� the main loop (Lines 12-24) is repeated n − 1 times; therefore, each step
of this loop has the following total cost:
– extracting from Q the pairs of clusters having the minimum distance

(Line 13) is O(n log n);
– merging the clusters Ck, Ck′ (Line 14) is O(

∑n−1
i=1 maxĈ∈C(r) |Ĉ|) =

O(
∑n−1

i=1 i) = O(n2), where C(r) is the set of clusters computed at the
r-th iteration;

– in the compute prototype function, the most expensive operation is re-
sampling from the new mixture density (i.e., the new prototype), which
is O(S (|Ck| + |Ck′ |)). Therefore, computing a new prototype for all
the iterations of the algorithm (Line 15) is O(

∑n−1
i=1 S maxĈ∈C(r) |Ĉ|) =

O(S
∑n−1

i=1 i) = O(S n2);
– in the internal loop (Lines 16-21), the operations of insertion/deletion

into/from the priority queue (Lines 17, 18, and 20) are performed in
O(n2 log n). The prototype distance (Line 19) is computed by taking
into account the list of samples of one of the two clusters, which has a
cost O(

∑n−1
i=1

∑
Ĉ∈C(r) S |Ĉ|) = O(S

∑n−1
i=1

∑
Ĉ∈C(r) |Ĉ|) = O(S n2);

� updating C (Line 22) and T (Line 23) is obviously O(n).

In conclusion, we can state that Alg. 5.1 works in O(n2(S + log n)). For
many real cases, the condition that S is Ω(log n) typically holds; under this
assumption, the computational complexity of Alg. 5.1 can be rewritten as
O(S n2).
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5.5 Impact of IT-adequacy on the Behavior of U-AHC

Proposition 5.3 states that uncertain prototypes are uncertain objects.
Thus, the distance measures proposed in Defs. 5.8-5.9 in principle work for
any multivariate and univariate uncertain object, respectively. However, we
provide in the following some theoretical results aimed at assessing that the
proposed distances satisfy the accuracy requirement only if they are exploited
into an AHC scheme to compare uncertain prototypes defined as mixture
densities. Hence, adopting the measures in Defs. 5.8-5.9 for measuring the
distance between any two uncertain objects may be inappropriate. We point
out that this is not a limitation of our work, since we are not interested
in defining a new distance measure between uncertain objects, but rather a
measure for comparing prototypes defined as mixture densities into an AHC
algorithm.

Before presenting the main results of this section, let us define a simple
lemma and provide some background notations—to avoid overloading the no-
tation, we assume that clustering and related items refer to the r-th iteration
of the U-AHC algorithm, with r ∈ [1..n− 1].

Lemma 5.11. Let u = (R, p) be a multivariate uncertain object. Given any
R′ ⊂ <m, it holds that:

∫

R∩R′
p(x)dx =

∫

R′
p(x)dx

Proof. To prove the lemma, it is easy to see that:
∫

R∩R′
p(x)dx =

∫

R′
p(x)dx−

∫

R′\R

p(x)dx =
∫

R′
p(x)dx

If R′ ⊂ R, then the above equality holds trivially, since R∩R′ = R′ and p is
also defined over R′. Otherwise, if R ⊂ R∪R′, it holds that

∫

R′\R

p(x)dx) = 0

Finally, as a special case, if R′ ∩R = ∅ then the integral of p over the empty
set is equal to zero as well as the integral of p over any external region R′. ut
� P = {P1, . . . , Pn−r+1} is a set of prototypes of the form Pq = (Rq, pq),

for q ∈ [1..n − r + 1], which correspond to the clustering solution C =
{C1, . . . , Cn−r+1} obtained by U-AHC (at the r-th iteration);

� k, k′ ∈ [1..n − r + 1] are two indices such that Ck, Ck′ ∈ C is the pair of
clusters to be merged, and

� C = Ck ∪ Ck′ is the new cluster formed;
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� P = (R, p) is the prototype of C.

Theorem 5.12. Let α ∈ [0, 1] be a constant, Ψq(C, α) = Υ (Pq, P )−(αΥ (Pq, Pk)+
(1− α)Υ (Pq, Pk′)). Given α̂ = |Ck|/(|Ck|+ |Ck′ |), for each q ∈ [1..n− r + 1],
q 6= k, q 6= k′, it holds that:

Ψq(C, α̂) =
1
2

(
(1− α̂)

∫

Rk

pq(x)dx + α̂

∫

Rk′
pq(x)dx

)

Proof. Let us denote with Iφ(Φ) an integral of the form
∫

Φ
pφ(x)dx. By setting

α equal to α̂, we have that:

Ψq(C, α̂) =

=
1
2

(
Iq(Rq ∩R) + I(Rq ∩R)

)
+

−
[
α̂

2

(
Iq(Rq ∩Rk) + Ik(Rq ∩Rk)

)
+

+
1− α̂

2

(
Iq(Rq ∩Rk′) + Ik′(Rq ∩Rk′)

)]

Since for any multivariate uncertain object u = (R, p) and any R′ ⊂ <m

it holds that (Lemma 5.11):
∫

R∩R′
p(x)dx =

∫

R′
p(x)dx

and p = α̂pk + (1− α̂)pk′ (cf. (5.7)), then:

Ψq(C, α̂) =

=
1
2

(
Iq(Rk) + Iq(Rk′) + α̂Ik(Rq) +

+ (1− α̂)Ik′(Rq)
)
−

[
α̂

2

(
Iq(Rk) + Ik(Rq)

)
+

+
1− α̂

2

(
Iq(Rk′) + Ik′(Rq)

)]

=
1
2

(
(1− α̂)Iq(Rk) + α̂Iq(Rk′)

)

=
1
2

(
(1− α̂)

∫

Rk

pq(x)dx + α̂

∫

Rk′
pq(x)dx

)

ut
Corollary 5.13. For each q ∈ [1..n− k + 1], q 6= k, q 6= k′, if Υ (Pq, Pk) 6= 0
or Υ (Pq, Pk′) 6= 0, then Ψ(C, α̂) > 0; otherwise Ψ(C, α̂) = 0.
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The above theorem and corollary state that the notion of IT-adequacy
plays an important role when comparing the (prototype of) clusters in every
iteration of the proposed U-AHC algorithm. In particular, given any two clus-
ters Ck, Ck′ being merged and any other cluster Cq, there is a strong relation
between the individual IT-adequacy of Pk and Pk′ with respect to Pq, and the
IT-adequacy of the prototype of the (new) merged cluster with respect to Pq.
More precisely, the IT-adequacy of the prototype of the (new) merged cluster
to Pq is not lower than (the combination of) the individual IT-adequacy of Pk

and Pk′ with respect to Pq. As a special case, if there is an overlap between the
region of Pk (or Pk′) and Pq, the IT-adequacy resulting from the merging step
will increase. Thus, the accuracy in comparing the pair of clusters in U-AHC
is not decreasing (and, in many cases, strictly increasing) as the iterations of
U-AHC increase.

5.6 Experimental Evaluation

The proposed U-AHC algorithm was evaluated in performing effective
clustering of uncertain data. The experimental evaluation was also con-
ducted to give a comparison of U-AHC with existing partitional reloca-
tion algorithms (i.e., UK-Means [CCKN06], CK-Means [S. 07], and UK-
Medoids [GPT08a]) and density-based algorithms (i.e., FDBSCAN [KP05a]
and FOPTICS [KP05b]).

In the next two subsections, we discuss the evaluation methodology and
the main experimental results from both accuracy and efficiency viewpoints,
respectively.

5.6.1 Evaluation Methodology

Datasets

Experiments were performed on benchmark datasets from UCI Machine
Learning Repository [ANml]. In particular, we selected eight datasets with nu-
merical real-valued attributes, namely Iris, Wine, Glass, Ecoli, Yeast, ImageSeg-
mentation, Abalone, and LetterRecognition (cf. Appendix A). These datasets
were originally established as collections of data with deterministic values.
We synthetically generated uncertainty in these collections using pdfs of dif-
ferent forms (i.e., Uniform, Normal and Gamma), obtaining both univariate
and multivariate uncertain objects. We follow the methodology described in
Chapt. 4, Sect. 4.4.1.

Cluster Validity

To assess the quality of clustering solutions we exploited the availability
of reference classifications for the datasets. The objective was to evaluate how
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well a clustering fits a predefined scheme of known classes (natural clusters).
To this purpose, we resorted to the F1-Measure external validity criterion (cf.
Def. 2.5).

Settings

The integrals involved into the distances calculation were computed by
taking into account lists of samples derived from the pdfs. For this purpose, we
employed the classic Monte Carlo and Markov Chain Monte Carlo sampling
methods.4

Computing the set of initial centroids and medoids (in K-Means- and K-
Medoids-based methods) and computing the set of samples (for all methods)
correspond to non-deterministic operations; therefore, to avoid that clustering
results were biased by random chance, the accuracy and efficiency measure-
ments for all methods were averaged over 100 different runs.

We performed a tuning phase for the parameters ε (i.e., the threshold for
the distance of the neighbors of an object) and µ (i.e., the minimum number
of points within the neighborhood of an object) required by the density-based
approaches FDBSCAN and FOPTICS. We set these parameters to the values
that allowed each method to achieve the best accuracy results.

For our U-AHC and FOPTICS, we also needed for selecting a partition of
proper size from the clustering solution obtained by each of these methods. In
particular, we considered the partition obtained by cutting the dendrogram
at the level corresponding to the desired number of output clusters (e.g.,
equal to the desired number of ideal classes for each benchmark dataset). For
FOPTICS, we initially derived a cluster hierarchy by converting the reacha-
bility plot into a dendrogram according to the automatic procedure described
in [SQL+03].

5.6.2 Results

Accuracy

Table 5.1 and Table 5.2 summarize the F1-Measure results obtained by
U-AHC and the other methods on the various datasets for the univariate and
multivariate models, respectively. In either table, the last two rows contain
the average F1-Measure score obtained by each method and the average per-
centage of quality gain obtained by U-AHC against each other method.

A first important remark is that U-AHC achieved the highest quality on
all the datasets. On average, U-AHC outperformed the other methods, with
average gains that ranged from 8.2% (vs. UK-Medoids) to about 18.4% (vs.
FDBSCAN), in the univariate case, and from 10% (vs. UK-Medoids) to 18%
(vs. FOPTICS), in the multivariate case.

4 We used the SSJ library, available at http://www.iro.umontreal.ca/∼simardr/ssj/
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Table 5.1. U-AHC vs. competing methods: accuracy results (F1-Measure) for uni-
variate models

dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS U-AHC

Uniform 0.841 0.963 0.886 0.919 0.886 0.993
Iris Normal 0.849 0.849 0.855 0.871 0.907 0.905

Gamma 0.622 0.501 0.848 0.893 0.905 0.628
Uniform 0.500 0.724 0.810 0.664 0.695 0.984

Wine Normal 0.500 0.704 0.578 0.653 0.713 0.954
Gamma 0.500 0.581 0.581 0.692 0.713 0.595

Uniform 0.639 0.670 0.697 0.768 0.718 0.828
Glass Normal 0.577 0.552 0.513 0.514 0.438 0.822

Gamma 0.379 0.314 0.644 0.468 0.438 0.550

Uniform 0.653 0.795 0.696 0.436 0.477 0.915
Ecoli Normal 0.609 0.741 0.528 0.544 0.477 0.726

Gamma 0.533 0.412 0.693 0.401 0.477 0.450
Uniform 0.497 0.562 0.618 0.515 0.543 0.719

Yeast Normal 0.471 0.458 0.288 0.291 0.316 0.577
Gamma 0.403 0.306 0.469 0.331 0.316 0.406

Uniform 0.810 0.798 0.769 0.426 0.419 0.552
Image Normal 0.623 0.655 0.451 0.416 0.419 0.836

Gamma 0.545 0.353 0.656 0.339 0.419 0.503
Uniform 0.331 0.294 0.590 0.447 0.439 0.719

Abalone Normal 0.288 0.217 0.265 0.136 0.209 0.577
Gamma 0.360 0.200 0.313 0.565 0.607 0.406

Uniform 0.529 0.629 0.776 0.344 0.318 0.792
Letter Normal 0.449 0.451 0.490 0.247 0.318 0.531

Gamma 0.432 0.215 0.584 0.265 0.318 0.603

avg. score 0.539 0.539 0.608 0.506 0.521 0.690
avg. gain 15.1% 15.1% 8.2% 18.4% 16.9% —

Table 5.2. U-AHC vs. competing methods: accuracy results (F1-Measure) for mul-
tivariate models

dataset pdf UK-means CK-means UK-medoids FDBSCAN FOPTICS U-AHC

Iris Uniform 0.948 0.962 0.907 0.929 0.907 1
Normal 0.859 0.897 0.888 0.929 0.907 0.962

Wine Uniform 0.735 0.747 0.761 0.767 0.713 0.826
Normal 0.707 0.705 0.749 0.691 0.713 0.795

Glass Uniform 0.677 0.703 0.653 0.575 0.636 0.779
Normal 0.540 0.551 0.579 0.868 0.828 0.891

Ecoli Uniform 0.787 0.790 0.728 0.443 0.477 0.743
Normal 0.745 0.740 0.560 0.416 0.477 0.795

Yeast Uniform 0.533 0.538 0.622 0.599 0.528 0.684
Normal 0.455 0.457 0.318 0.374 0.420 0.486

Image Uniform 0.780 0.801 0.765 0.482 0.419 0.837
Normal 0.628 0.637 0.649 0.415 0.419 0.684

Abalone Uniform 0.288 0.290 0.531 0.499 0.439 0.492
Normal 0.215 0.217 0.288 0.497 0.558 0.572

Letter Uniform 0.637 0.636 0.763 0.320 0.318 0.798
Normal 0.442 0.435 0.595 0.353 0.318 0.613

avg. score 0.624 0.632 0.647 0.571 0.567 0.747
avg. gain 12.3% 11.5% 10.0% 17.6% 18.0% —

Overall, we observe that all the clustering methods obtained their respec-
tive best performances according to the uniform distribution in nearly all
datasets. Moreover, in general, the algorithm performances improved in the
multivariate case.
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Among the competing methods, UK-Medoids behaved better than the
other ones—10 out of 24 times (in the univariate case) and 6 out of 16 times (in
the multivariate case)—obtaining an average quality gain up to 10% and 8% in
the univariate and multivariate cases, respectively. The partitional algorithms
performed slightly better than the density-based algorithms in the univariate
case, whereas this gap tended to increase in the multivariate case. Moreover,
ignoring the results that refer to uniform pdfs, the density-based algorithms
(especially FOPTICS) performed as good as or better than the partitional
ones. It should also be noted that FOPTICS and FDBSCAN behaved closely,
as well as UK-Means and CK-Means. This was not surprising since the two
couples of algorithms employ similar clustering schemes.

Efficiency

As regards as the efficiency evaluation, we were actually interesting in mea-
suring the runtime performance of U-AHC in relation to the other methods.
For the sake of brevity of presentation, here we present results concerning the
univariate case on the four largest datasets, namely Yeast, ImageSegmentation,
Abalone, and LetterRecognition; however, the performance trends observed on
the rest of the datasets and for the multivariate case were roughly similar to
those presented in the following.5 Note also that we left out of consideration
times for operations which are usually carried out in an off-line mode, i.e.,
computing the list of samples for every uncertain object (required by all al-
gorithms), the matrix of pair-wise distances (UK-Medoids and U-AHC), the
gravity centers (expected values) and the distances between each uncertain
object and its gravity center (CK-Means).

Figure 5.1 shows the clustering time performances (in milliseconds) of the
various methods on the selected datasets. We can see that, as we expected,
CK-Means outperformed all the other methods, including UK-Means; clearly,
in this case, the significant gain observed is mainly due to the optimization
employed by CK-Means for the EDs calculation. On the other hand, it should
be recalled that the CK-Means algorithm works only if the mean squared error
for the definition of the EDs is used and the distance function is based on the
Euclidean norm.

UK-Medoids was the second fastest method, even better than UK-Means;
we indeed observed that UK-Medoids in general required less iterations for the
convergence than UK-Means. Our U-AHC compared closely to the density-
based algorithms. More precisely, FDBSCAN performed better than U-AHC,
although in times of the same order of magnitude, and U-AHC as close as or
slightly better than FOPTICS in turn.

It is also easy to see how the plots in Fig. 5.1 are very similar over the var-
ious datasets. In general, it should be noted that the clustering performances

5 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB
memory and running Microsoft WinXP Pro.
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(a) Yeast (b) ImageSegmentation

(c) Abalone (d) LetterRecognition

Fig. 5.1. U-AHC vs. competing methods: clustering time performances in the uni-
variate model

followed the (on-line) computational complexities of the corresponding al-
gorithm, namely O(I S n) for UK-Means, O(I n) for CK-Means, O(I n2)
for UK-Medoids—I is the number of iterations required for the algorithm
convergence—O(n2) for FDBSCAN, and O(S n2) for FOPTICS and U-AHC.

5.7 Exploiting U-AHC for Clustering Microarray Data

5.7.1 Microarray Data and Probe-level Uncertainty

A major goal in genomics [UCA09, BC09] is to discover gene relationships
and their role in diseases (functional genomics). DNA microarray [TBA+02]
is a technology used in molecular biology and medicine which is able to trap
and measure the relative quantity of a large number of genes with a single
experiment. Probes that are able to trap genes (targets) consist of thousands
of microscopic spots organized as a matrix and placed on a glass or silicon
chip. The probes-target hybridization is quantified through techniques based
on fluorescence. When an experiment is performed, the spots of the microarray
matrix generate intensity values, which measure the expression levels of the
genes. Recently, the Affymetrix company introduced an advanced chip version,
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called Human Gene 1.0 ST chip, by which the analysts can explore the whole
mRNA transcript in a single experiment [PPT+08].

Microarray data analysis is challenging. In particular, there are two major
issues to face. A first issue is related to the high dimensionality of microarray
data, which makes it necessary to resort to computer-based methods. Another
issue is that the spots of the array trap information generally do not have a
straightforward meaning; rather, the spots have to be compared and analyzed
by possibly using statistical techniques.

Many approaches to microarray data analysis have been proposed by the
research community [Dra03]. Most of them are essentially based on data min-
ing techniques, in particular clustering methods [GMW07, JD88]. Clustering
allows for understanding the huge mass of data in microarrays by grouping
them in homogeneous subsets (clusters). In this way, cluster analysis aims to
discover natural structures within the data and to help the analyst in iden-
tifying common structures and patterns in microarrays; for instance, finding
similar expression patterns (i.e., co-expressed genes) which are related to cel-
lular functions.

Microarray clustering approaches can be divided into three main categories
[JTZ04]: (i) gene-based clustering, which treats genes as objects and samples
as clustering features; (ii) sample-based clustering, where samples are the ob-
jects to be clustered and genes are the features; (iii) co-clustering approaches,
where genes and samples are treated symmetrically (samples and genes can
be both objects and features).

After several years of quantitative measurements of microarray probe-level
data, new models have been proposed in order to manage the uncertainty of
gene expression levels both in a single chip and across multiple chips. A novel
probabilistic modeling approach is presented in [LMLR05], where the bind-
ing affinity of probe-pairs across multiple chips is modeled through a prob-
abilistic model using Gamma distributions. In [LLAR07], a gene expression
clustering algorithm has been proposed, which exploits the probabilistic mod-
eling described above in order to improve performances with respect to classic
techniques.

Within this view, we propose a new approach to modeling probe-level
uncertainty in microarray data [GPT+09b], in order to achieve better quality
in clustering results than traditional approaches. Basically, we propose to
model microarray data with probe-level uncertainty as univariate uncertain
objects (cf. Def. 3.2) and exploit U-AHC algorithm to discover a proper cluster
hierarchy of genes.

5.7.2 Experimental Evaluation

Methodology

The U-AHC algorithm was evaluated in performing effective clustering of
microarray data. In particular, the experiments were carried out on four large
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microarray datasets, namely Leukaemia, Neuroblastoma, Myelodysplastic, and
Mouse (cf. Appendix A).

The probe-level uncertainty for each dataset was extracted by exploiting
the multi-mgMOS method [LMLR05].6 For each dimension, the multi-mgMOS
method yields a set of information that includes mean, standard deviation and
principal percentiles (i.e., 5%, 25%, 50%, 75%, 95%). The information out-
putted by multi-mgMOS was exploited to model uncertainty according to the
univariate uncertainty model. In particular, the univariate pdfs of each uncer-
tain object (i.e., each row in the microarray matrix) was built by employing
two different methods:

� Normal method, where Normal pdfs were easily derived from a combina-
tion of mean values with standard deviations;

� Percentiles-based method, where suitable statistical models were involved
to fit pdfs to percentiles [Sil86].

We performed a gene-based clustering in such a way that each group de-
scribes a particular macroscopic phenotype, such as cancer expressions or bi-
ological states [JTZ04]. Since there is no available reference classification for
such data, we resorted to internal validity criteria based on the cophenetic cor-
relation coefficient, which was exploited to evaluate a dendrogram according
to how it preserved the pairwise distances between the original data objects
(cf. Def. 2.10), and to the notion of quality (qual), defined in terms of intra-
and inter-cluster distances (cf. (2.31)).

Results

For Leukaemia and Neuroblastoma datasets, we carried out multiple runs
of U-AHC and its competing methods by varying the clustering size from a
minimum of 5 to a maximum of 50 clusters. The clustering solutions obtained
were evaluated by means of the internal criterion qual.

Figure 5.2 shows the quality results (qual) obtained by the clustering meth-
ods on the selected microarray datasets. As we can see, U-AHC achieved the
best results averaged over the cluster sizes. In particular, U-AHC achieved
the highest quality on Leukaemia (up to around 8% against the density-based
methods), whereas behaved on average better than the other methods on Neu-
roblastoma; here, it can be noted that the density-based methods had a rapid
decrease of the performances by increasing the number of clusters. By con-
trast, this decreasing trend was less evident in partitional methods on both
datasets, which performed quite closely each other and tended to maintain a
roughly constant quality on average. Also, the uncertainty generation based
on percentiles (Fig. 5.2 (b) and (d)) generally led to higher quality results
than the case in which normal pdfs are used to model the uncertain objects
(Fig. 5.2 (a) and (c)).
6 We used the Bioconductor package PUMA (Propagating Uncertainty in Microar-

ray Analysis), available at http://www.bioinf.manchester.ac.uk/resources/puma/
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(a) Leukaemia — Normal pdf (b) Leukaemia — Percentiles-based pdf

(c) Neuroblast. — Normal pdf (d) Neuroblast. — Percentiles-based pdf

Fig. 5.2. Accuracy results of U-AHC and competing methods in clustering microar-
ray data (quality)

Table 5.3. Accuracy results of U-AHC in clustering microarray data (cophenetic
coefficient)

dataset pdf form cophenetic
value

Leukaemia Normal 0.76
Percentiles-based 0.82

Neuroblastoma Normal 0.67
Percentiles-based 0.75

Myelodysplastic Normal 0.80
Percentiles-based 0.89

Mouse Normal 0.84
Percentiles-based 0.92

We also evaluated the performance of U-AHC on Leukaemia, Neuroblas-
toma, Myelodysplastic, and Mouse in terms of cophenetic correlation coefficient.
Such results are summarized in Table 5.3, where it can be noted that U-AHC
obtained good accuracy results on all the datasets, from 67% to 84% with
Normal pdfs. Also, the uncertainty generation based on percentiles generally
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led to higher quality results than the previous case (about 8% on average);
this improvement can be easily explained by the fact that percentiles provide
a more refined representation of the uncertainty than the summarized infor-
mation of mean value and standard deviation used for Normal pdf modeling.
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Clustering Ensembles: Background

Abstract This chapter provides background to the problem of clustering ensembles,
which represents the solution to the clustering uncertainty problem addressed in this
thesis. We firstly discuss the main notions that characterize clustering ensembles,
i.e., the notions of ensemble, consensus partition, and diversity. Afterward, the state
of the art in clustering ensembles is briefly reviewed by discussing the main methods
falling into direct, instance-based, cluster-based, and hybrid classes of approaches.

6.1 Basic Definitions

Definition 6.1 (ensemble). Given a set D of data objects, an ensemble
defined over D is a set E = {C1, . . . , CH}, where Ch is a clustering solution
defined over D, for each h ∈ [1..H].

Definition 6.2 (consensus partition). Given a clustering ensemble E, a
consensus partition derived from E is a clustering solution C∗E that maximizes
a given consensus function by exploiting information available from E.

For the sake of generality, any clustering ensembles method should be re-
quired to derive the consensus partition without accessing the original features
of the objects in the data collection.

Building up an ensemble can be addressed by various ways, such as using
different subsets of features [SG02, GTBC04], using different clustering algo-
rithms [YY04], varying one or more (random) parameters of the clustering
algorithm [BF98, FB03a, TJP03], or using different datasets obtained, e.g.,
by re-sampling the original dataset [SG02, DF03, FJ03, MTP04]. A crucial
factor in the ensemble generation is the notion of diversity, which is used to
quantify how the various clustering solutions in an ensemble are dissimilar to
each other. This notion has been recognized as highly related to the accuracy
of the consensus partition derived from an ensemble [FB03a, KH04, HKT06].

Definition 6.3 (partition-through diversity). Given a clustering ensem-
ble E, a partition-through diversity measure defined over E is a function
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δP : E×E → < that quantifies, for each pair of clustering solutions Ch, Ch′ ∈ E,
how Ch and Ch′ are dissimilar to each other.

In the literature, partition-through diversity functions have been defined
by resorting to external criteria used for assessing the quality of a clustering
solution, such as NMI or F1, which are similarity measures that range within
[0, 1] (cf. Sect. 2.5). More precisely, the NMI- and F1-based partition-through
diversity measures between two clustering solutions C′ and C′′ can be defined
according to the following formulas, respectively:

1−NMI(C′, C′′) (6.1)

1−
√

F1(C′, C′′)× F1(C′′, C′) (6.2)

Note that the geometric mean is used in the definition of the F1-based
partition-through diversity since F1 is originally not symmetric, unlike NMI.

Starting from the notion of partition-through diversity, the definitions of
clustering and ensemble diversity notions are provided in the following.

Definition 6.4 (clustering diversity). Given a clustering ensemble E =
{C1, . . . , CH} and a partition-through diversity measure δP defined over E, the
clustering diversity measure is a function δC : E → < such that:

δC(Ch) =
1

H − 1

∑

h′∈[1..H],
h′ 6=h

δP (Ch, Ch′), h ∈ [1..H]

Definition 6.5 (ensemble diversity). Given a clustering ensemble E =
{C1, . . . , CH} and a partition-through diversity measure δP defined over E, the
ensemble diversity of E is defined as:

δE =
2

H(H − 1)

H−1∑

h=1

H∑

h′=h+1

δP (Ch, Ch′)

6.2 State of the Art

Clustering ensembles methods can be classified into four main approaches,
namely direct, instance-based, cluster-based, and hybrid.

6.2.1 Direct Methods

Direct clustering ensembles methods are defined according to optimization
criteria that involve a direct comparison between the solutions in the ensem-
ble and the consensus partition. The algorithms proposed in [DWH01, DF03,
FB03b] explicitly solve the label correspondence problem to find a correspon-
dence between the cluster labels across the clusterings. In [LDJ07], clustering
ensemble is mapped to a Nonnegative Matrix Factorization (NMF) problem.
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6.2.2 Instance-based Methods

Instance-based methods are developed by involving a direct comparison be-
tween data objects. Most instance-based methods operate on the co-occurrence
or co-association matrix M. For each pair of objects (o′, o′′), this matrix stores
the number of partitions of the ensemble in which o′ and o′′ appear in the
same cluster divided by the size of the ensemble. In the Majority Voting (MV)
algorithm [Fre01], M is “cut” at a given threshold, i.e., all the objects whose
pairwise entry in M is greater than the threshold are joined into the same
cluster. This approach has been proved to be equivalent to applying an AHC
algorithm with single link metric on M, cutting the resulting dendrogram
according to the threshold [FJ02].

Other algorithms are based on using M either as a new data matrix [KHT06]
or as a pair-wise distance matrix involved into a specific clustering algorithm.
The Agglomeration (AGGL) algorithm [GMT07] uses Expectation Maximiza-
tion or AHC with average linkage, whereas the Iterative Voting Consensus
(IVC) algorithm [NC07] uses K-Means. In [ZTGG02], the AHC algorithm is
applied to a pair-wise distance matrix derived from M by taking into account
the statistical “signal” of the clusters in the ensemble.

In [SG02], clustering ensembles is mapped to a graph/hypergraph parti-
tioning problem. The authors present two instance-based clustering ensem-
bles methods, namely the Cluster-based Similarity Partitioning Algorithm
(CSPA) and the HyperGraph Partitioning Algorithm (HGPA). CSPA induces
a weighted graph from M and partitions it using the well-known graph parti-
tioning algorithm METIS [KK98]. HGPA builds a hypergraph whose vertices
are the data objects and the hyperedges are given by the clusters of all the
clustering solutions in the ensemble; the consensus partition is then obtained
by partitioning the hypergraph using HMETIS [KAKS97].

More recent graph-partitioning-based approaches are proposed in [AK03,
DA09]. In [AK03], the weight of each edge (o′, o′′) in the induced graph is de-
fined in terms of the size of the nearest neighbor list shared between the data
objects o′ and o′′. In [DA09], the Weighted Similarity Partitioning Algorithm
(WSPA) is proposed to combine multiple partitions that result from differ-
ent runs of the projective clustering algorithm Locally Adaptive Clustering
(LAC) [DGM+07].

In [TJP05, WSB09], the features of the input data objects are re-defined
according to the information available from the ensemble (e.g., by considering
the specific cluster label, for each clustering of the ensemble) and involved
into EM-like procedures.

6.2.3 Cluster-based Methods

Cluster-based clustering ensembles approaches are based on the principle
“to cluster clusters”. The key idea is to run a clustering algorithm on the
set of all the clusters produced by the clustering solutions in the ensemble,
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in order to compute a set of meta-clusters. The consensus partition is finally
computed to assign each data object to the meta-cluster that maximizes some
assignment criterion (e.g., majority voting).

The study in [BF98] proposes a two-stage clustering procedure. In the first
stage, clustering solutions are obtained by multiple runs of the K-Means algo-
rithm. Then, the output centroids from these clustering solutions are clustered
by a further run of K-Means, and the resulting meta-centroids are used for
the data assignment step.

The Meta-CLustering Algorithm (MCLA) [SG02] builds a graph whose
vertices are the clusters of the various clustering solutions in the ensemble,
and each edge (C ′, C ′′) has a weight equal to the Jaccard similarity coeffi-
cient [JD88] between the clusters relatively associated to the vertices C ′ and
C ′′. The set of meta-clusters is computed by applying METIS on the graph,
whereas the objects are assigned to the meta-clusters according to a majority
voting criterion.

In [BO04], a MetaCluster Search (MCS) algorithm is formulated as a lin-
ear optimization problem to compute the optimum set of meta-clusters. The
inter-cluster similarity is defined in terms of the Jaccard coefficient, and the
assignment of the objects to the meta-clusters is accomplished by majority
voting.

6.2.4 Hybrid Methods

Hybrid clustering ensembles methods attempt to combine ideas coming
from both instance-based and cluster-based approaches. The objective is to
build a hybrid bipartite graph whose vertices belong to the sets of objects and
clusters.

The Hybrid Bipartite Graph Formulation (HBGF) algorithm [FB04] builds
a bipartite graph whose edges (vO

i , vC
j ) have weights equal to 1, if the object

vO
i belongs to the cluster vC

j according to the clustering C ⊃ vC
j ; otherwise,

the weights are equal to zero. The clustering ensembles result is obtained
by partitioning the graph according to standard methods (e.g., METIS) or
spectral graph partitioning algorithms (e.g., [NJW01]).

The Weighted Bipartite Partitioning Algorithm (WBPA) [DA09] follows
the same overall scheme of HBGF, although it allows for extending the range
of weight values from {0, 1} to [0, 1].

In [DA09], the authors also propose the Weighted Subspace Bipartite
Partitioning Algorithm (WSBPA). Given a set of projective clustering solu-
tions computed by the LAC projective clustering algorithm [DGM+07], WS-
BPA yields a consensus partition whose clusters are coupled with real-valued
weights that quantify the relevance of each feature for that cluster.
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6.2.5 Cluster Ensemble Selection and Weighted Consensus
Clustering

Recently, there has been an increasing interest for some problems related
to clustering ensembles; in particular, the cluster ensemble selection prob-
lem [CENS06, FL08] is to select a proper subset of solutions from an ensem-
ble, and the weighted consensus clustering problem [LD08] is to automatically
determine a proper weight for each solution in the ensemble. The key moti-
vation for both problems arises from the fact that selecting a proper subset
of clustering solutions (resp. assigning a proper weight to each clustering so-
lution) allows for extracting a more accurate consensus partition than using
the whole ensemble (resp. the unweighted version of the algorithm).





7

Diversity-based Weighting Schemes
for Clustering Ensembles

Abstract Current methods of clustering ensembles typically fall into instance-
based, cluster-based, or hybrid approaches; however, most of such methods fail in
discriminating among the various clusterings that participate to the ensemble. In
this chapter, we address the problem of weighting clustering ensembles by proposing
general weighting approaches based on different implementations of the notion of di-
versity. We introduce three weighting schemes for clustering ensembles, called Single
Weighting, Group Weighting and Dendrogram Weighting, which are independent of
the particular method of clustering ensembles and designed to take into account cor-
relations among the individual clustering solutions in different ways. We show how
these schemes can be instantiated into any instance-based, cluster-based and hybrid
clustering ensembles methods. Experiments have shown that the performance of the
clustering ensembles algorithms increases when the proposed weighting schemes are
employed.

7.1 Introduction

In recent years, various consensus functions for clustering ensembles have
been defined and coupled with heuristic algorithms for maximizing them.
Heuristic clustering ensembles algorithms are commonly based on three main
approaches, namely instance-based clustering ensembles, cluster-based cluster-
ing ensembles, and hybrid clustering ensembles (cf. Chapt. 6). A common limit
of all these approaches is that the consensus functions that they optimize are
defined by equally considering the various clustering solutions in the ensemble.
This is clearly a weak assumption for a number of reasons; for instance, an en-
semble may be comprised of very different clusterings, as well as clusters that
are somehow correlated with each other may appear in distinct clusterings
of the ensemble. As a consequence, treating the constituent solutions of an
ensemble equally and averaging over them to extract the consensus partition
may not be effective.

In this chapter, we address the weighted consensus clustering problem
by leveraging the importance of employing weighting schemes to discriminate
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among the clustering solutions in an ensemble in extracting a proper consensus
partition [GTG09]. Such a problem has been firstly introduced in [LD08].
However, that work proposes an optimization of an objective function which
is derived from a specific formulation of the problem of clustering ensembles
based on Nonnegative Matrix Factorization (NMF) [LDJ07]. By contrast, our
work focuses for the first time on the development of general schemes for
weighting clusterings which can be applied to any clustering ensembles method
regardless of a specific approach. Thus, our proposed schemes are not related
to any specific formulation of the clustering ensembles problem.

The contributions in this respect can be summarized as follows:

1. we propose three weighting schemes, called Single Weighting, Group
Weighting, and Dendrogram Weighting, which are designed to take into
account correlations among the individual clustering solutions to different
levels;

2. we describe how any instance-based, cluster-based, and hybrid clustering
ensembles approach can be easily reformulated to include weighting for
the clustering solutions that participate to an ensemble;

3. we experimentally evaluated various state-of-the-art methods, for each
one of the mentioned clustering ensembles approaches, with and without
employing weighting schemes. Results have shown the beneficial impact
of using a weighting scheme in improving the quality of the consensus
partition from clustering ensembles.

7.2 Clustering Ensembles Weighting Schemes

Given a clustering ensemble E = {C1, . . . , CH}, we are interested in defining
a vector W = (w1, . . . , wH) of weights , in such a way that each component
wh in W is assigned to the clustering solution Ch and reflects the relevance of
Ch in determining the consensus partition.

In principle, W can be defined by resorting to traditional criteria that
assess the validity of a clustering solution (cf. Chapt. 2). Unfortunately, this
way is not applicable in this context, since neither external nor internal clus-
tering validity criteria can be employed. Indeed, external criteria require prior
knowledge of the ideal classification, whereas internal criteria can be used only
if the original features of the clustered objects are available.

in the following, we propose three general schemes to compute the vec-
tor W , called Single Weighting (SW), Group Weighting (GW) and Dendro-
gram Weighting (DW). Each of these schemes is based on theoretical con-
siderations on ensemble diversity (cf. Chapt. 6) and computes the vector
W = (w1, . . . , wh) in such a way that wh ∈ [0, 1], for each h ∈ [1..H], and∑H

h=1 wh = 1.
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7.2.1 Single Weighting

The SW scheme takes into account each Ch ∈ E individually. The key idea
consists in evaluating the ensemble diversity of E \ {Ch}, i.e., δE\{Ch}, and
defining wh proportionally to δE\{Ch}.

Most research works focusing on clustering ensembles diversity suggest to
generate ensembles according to a maximum diversity criterion, which states
that the higher the ensemble diversity, the better the accuracy of the con-
sensus partition extracted from the ensemble [FB03a, KH04, DA09]. This is
an empirical assumption, which may not hold in general. Indeed, the study
in [HKT06] shows that, in some cases, ensembles generated by a median di-
versity criterion (i.e., ensembles that exhibit a moderate level of diversity)
produce a more accurate consensus partition than ensembles having higher
diversity.

We take into account both the above intuitions and define W in such a
way that it follows a mixture density composed by

� a linearly increasing distribution, W ′, which defines weights according to
a maximum diversity criterion,

� a Normal distribution, W ′′, which computes weights according to a median
diversity criterion.

Precisely, we define W as:

W = α W ′ + (1− α) W ′′ (7.1)

W ′ = (w′1, . . . , w
′
H) is a vector whose component values w′h linearly increase

as the quantity δE\{Ch} decreases. By contrast, the normally distributed com-
ponents of W ′′ = (w′′1 , . . . , w′′H) are defined in such a way that the maximum
value in W ′′ corresponds to the clustering solution Ch having the median
δE\{Ch}. The importance of the two vectors W ′ and W ′′ in computing W is
established by the user-defined parameter α (ranging within [0, 1]). Formally,
each w′h of W ′ (h ∈ [1..H]) is defined as:

w′h =
(

1− δE\{Ch}∑H
h′=1 δE\{Ch′}

)/(
H − 1

)
(7.2)

and each w′′h of W ′′ (h ∈ [1..H]) is defined as:

w′′h =
Nµ,σ(δE\{Ch})∑H

h′=1 Nµ,σ(δE\{Ch′})
(7.3)

where Nµ,σ is the Normal probability density function having mean µ and
standard deviation σ, i.e.,

Nµ,σ(x) =
1√
2πσ

e
− 1

2

(
x−µ

σ

)2
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Let us denote with ∆ the set {δE\{C} | C ∈ E}, and with d, dmin, dmax the
median, the minimum and the maximum value in ∆. We define µ = d and
σ = d̂/3, where d̂ = maxd∈{dmin,dmax}|d− d|. This choice of σ guarantees that

the condition
∫ d+d̂

d−d̂
Nµ,σ(x)dx ≈ 1 holds.

7.2.2 Group Weighting

The SW scheme leads to the construction of the vector W by considering
each clustering solution individually. However, an ensemble may not contain
only solutions that are totally dissimilar to each other; instead, in a real
scenario, an ensemble comprises a number of subsets of (highly) correlated
clusterings, which tend to bias the consensus partition.

Within this view, an intuitive refinement of SW can work as follows. The
subsets of correlated clusterings are initially detected, then a macro-weight
is preliminarily assigned to each of these subsets to quantify the importance
of the whole corresponding group of clusterings. Based on the macro-weight
assigned to the specific subset, a micro-weight is finally computed for each
clustering of that subset.

The aforementioned idea is at the basis of the proposed GW scheme, whose
outline can be summarized as follows:
1: partition the ensemble E into a set of clusters (of clusterings) C = {C1, . . . , CK}
2: compute the weight vector WC = (w

(1)
C , . . . , w

(K)
C ), where each w

(k)
C , k ∈ [1..K],

is assigned to the cluster (of clusterings) Ck ∈ C
3: compute the weight vector W = (w1, . . . , wH) from WC, in which each wh,

h ∈ [1..H], is assigned to the clustering solution Ch ∈ E
As shown in the outline, the task of detecting the subsets of correlated

clusterings is accomplished by clustering the clustering solutions. This idea is
not new in the context of clustering ensemble, since it has been previously in-
volved into the cluster ensemble selection problem [CENS06, FL08]. However,
in this work we bring out for the first time this idea for solving the weighted
consensus clustering problem.

Once the “to cluster clusterings” step has been performed, the vector WC

is computed in a way similar to the SW scheme. The only difference is that GW
considers the ensemble diversity of the sets obtained by subtracting the clus-
tering solutions in the various clusters from the whole ensemble; by contrast,
SW takes into account the diversity of the ensemble when a single clustering
solution is subtracted from it. Formally, we compute WC as:

WC = α W ′
C + (1− α) W ′′

C (7.4)

where each w
(k)′

C of W ′
C (k ∈ [1..K]) is defined as:

w
(k)′

C =
(

1− δE\Ck∑K
k′=1 δE\Ck′

)/(
K − 1

)
(7.5)
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and each w
(k)′′

C of W ′′
C (k ∈ [1..K]) is defined as:

w
(k)′′

C =
Nµ,σ(δE\Ck

)
∑K

k′=1 Nµ,σ(δE\Ck′ )
(7.6)

From WC, we compute the vector of micro-weights W , which is the output
of the GW scheme. Each wh of W (h ∈ [1..H]) is defined as:

wh = wSW
h,k × ŵk (7.7)

where

� wSW
h,k is the weight assigned to the clustering solution Ch according to the

SW scheme, when the ensemble is given by Ck ∈ C. Ck is the cluster such
that Ch ∈ Ck,

� ŵk ∈ WC is the weight assigned to Ck in the first step of GW.

7.2.3 Dendrogram Weighting

A major issue in the GW scheme is the requirement of a clustering algo-
rithm to partition the ensemble and its relative parameter settings, such as
the number of output clusters. To this purpose, we define a further weighting
scheme, named Dendrogram Weighting (DW), to maintain the advantageous
features of the GW scheme while overcoming the problem of choosing a clus-
tering algorithm. The DW scheme is based on theoretical considerations on
the dendrogram which can be built over the clustering solutions in the en-
semble. In particular, DW consists of two main steps. First, the clusterings in
the ensemble are clustered by using a hierarchical algorithm in order to orga-
nize them into a dendrogram. Then, the dendrogram is used as an intuitive
tool for understanding relationships among the clusterings; this information
is eventually exploited for properly defining the clustering weights.

Once a dendrogram T` has been defined over the ensemble E ,1 the weight
vector W is finally computed by associating each clustering solution Ch ∈ E
with a coefficient γh. This coefficient expresses the correlation of Ch with the
other clusterings in the ensemble, based on the set Sh (i.e., the set of different
clusters of the dendrogram that contain Ch). Precisely, γh is defined as directly
proportional to the size of Sh and inversely proportional to the sum of the
dendrogram levels that contain the clusters in Sh:

γh =
Q−1∑
q=1

(Q− q)I(T`, Ch,Lq) (7.8)

where I(T`, Ch,Lq) is an indicator function that returns 1 if there exists some
“new” cluster at the level Lq of dendrogram T` that contains Ch, otherwise

1 We refer to level-organized dendrograms as defined in Def. 2.3.
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the function returns 0. Formally, let L̂q ∈ Lq and L̂q−1 ∈ Lq−1 be the clusters
such that Ch ∈ L̂q and Ch ∈ L̂q−1:

I(T`, Ch,Lq) =
{

1 if L̂q 6= L̂q−1

0 otherwise

The intuition underlying γh can be explained as follows. If the clustering Ch

belongs to a large number of different clusters in the dendrogram, then Ch

is expected to be correlated with a large number of other clusterings in the
ensemble; therefore, γh should be low. On the other hand, the higher the
dendrogram level of the clusters containing Ch, the lower the correlation of
Ch with the other clusterings in the ensemble; indeed, a high dendrogram
level means that the corresponding clusters are less compact than the clusters
formed at the lower levels.

In order to define the final weight vector W , we resort to a similar approach
used for the SW scheme. In particular, we employ the same equations used
for SW (i.e., (7.1)-(7.3)), where δE\{Ch} is replaced with the coefficients γh,
h ∈ [1..H].

Computational Aspects.

Given an ensemble of size H, the computational complexity of the proposed
weighting schemes is the following.

� Single Weighting performs in O(H2)
� Group Weighting performs in O(A + KH2), where A is the execution

cost required by the “to cluster clusterings” step, and K is the number of
output clusters of clusterings. Under the reasonable assumption that K is
a constant and A is O(KH2), the complexity of the GW scheme is O(H2)

� Dendrogram Weighting performs in O(H2)

7.3 Involving Weights in Clustering Ensembles
Algorithms

In this section we provide a formulation of the instance-based, cluster-
based and hybrid clustering ensembles methods which takes into account
weights for the clustering solutions in the ensembles.

7.3.1 Weighted Instance-based Clustering Ensembles

Algorithm 7.1 outlines the general scheme of a weighted instance-based
clustering ensembles method (WICE).

Initially, each data object oi ∈ D is replaced with a new one o′i which
is defined over the space of features according to the information stored in
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Algorithm 7.1 WICE: Weighted Instance-based Clustering Ensembles

Input: a set D = {o1, . . . , on} of data objects, where oi = (ωi1, . . . , ωim), i ∈ [1..n];
an ensemble E = {C1, . . . , CH} defined over D;
a weight vector W = (w1, . . . , wH)

Output: the consensus partition C∗E
1: for all i ∈ [1..n] do
2: replace oi with o′i = (ω′i1, . . . , ω

′
iH)

3: end for
4: for all a ∈ [1..n], b ∈ [1..n] do
5: (M′)ab = Φ(w1φ(ω′a1, ω

′
b1), . . . , wHφ(ω′aH , ω′bH), Γ (o′a, o′b))

6: end for
7: C∗E ← cluster(D,M′)

E (Lines 1-3). Each feature ω′ih of o′i (h ∈ [1..H]) is defined according to
the clustering solution Ch ∈ E and depends on the specific instance-based
algorithm. Once the objects o′i have been defined, the matrix M′ storing the
(weighted) pair-wise distances for the data objects is computed (Lines 4-6).
Each entry (M′)ab is computed in terms of the functions Φ : <H+1 → <,
φ : <2 → <, and Γ : <2H → <. Note that Φ, φ and Γ are properly defined
depending on the specific instance-based algorithm. The entries in M′ should
give more weight to the information coming from clusterings whose associated
weights are higher. Finally, the output consensus partition C∗E is computed by
performing a further clustering task on the objects in D, where M′ is used as
the pair-wise distance matrix (Line 7).

According to Alg. 7.1, any instance-based method provides a specific
way of computing the objects o′i, and the functions Φ, φ and Γ . As an ex-
ample, a clustering ensembles algorithm using a co-occurrence matrix with
Euclidean distance values (e.g., [GMT07, NC07]) should be equipped with
o′i = (λ1(oi), . . . , λH(oi)), where each λh(o) returns the identifier of the
cluster in Ch that contains o, whereas Φ(y1, . . . , yH+1) =

√
y1 + · · ·+ yH ,

φ(y1, y2) = (y1 − y2)2, and Γ (y1, . . . , y2H) = 0.

7.3.2 Weighted Cluster-based Clustering Ensembles

The weighted cluster-based clustering ensembles algorithm, WCCE, con-
sists of two main phases (Algorithm 7.2).

First, a preliminary task of clustering is performed over the union set DM
of all the clusters belonging to the clustering solutions in E , in order to obtain
a set M of meta-clusters (Lines 2-4). The clustering procedure involves MDM
as a matrix storing the distances between the pairs of clusters in DM (Line
3). MDM is properly defined according to the specific cluster-based algorithm
(e.g., by using the Jaccard coefficient). Then, the output consensus partition is
derived by assigning each oi ∈ D to one and only one meta-cluster inM (Lines
5-8) based on: (i) some criterion of object-to-meta-cluster assignment (which
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Algorithm 7.2 WCCE: Weighted Cluster-based Clustering Ensembles

Input: a set D = {o1, . . . , on} of data objects;
an ensemble E = {C1, . . . , CH} defined over D;
a weight vector W = (w1, . . . , wH)

Output: the consensus partition C∗E
1: C∗E = {C∗

1 , . . . , C
∗
K} ← {∅, . . . , ∅}

2: DM ← ⋃
C∈E C

3: MDM ← pair−wise−distances(DM)
4: M = {M1, . . . , MK} ← cluster(DM,MDM)
5: for all i ∈ [1..n] do
6: find Mk ∈M such that Mk ← assign(oi,M, W )
7: C

∗
k ← C

∗
k ∪ {oi}

8: end for

depends on the specific cluster-based method) and (ii) the weight vector W
defined over the ensemble.

Most cluster-based algorithms adopt the so-called majority voting [SG02,
BO04] as an object-to-meta-cluster assignment criterion. Precisely, each oi ∈
D is assigned to the meta-cluster M̂ = arg maxM∈M

∑
C∈M I[oi ∈ C].

A weighted version of the majority voting criterion can be easily derived
inasmuch as each oi ∈ D is assigned to the meta-cluster

M̂ = arg max
M∈M

∑

C∈M

wI[oi ∈ C]

where w is the weight associated to the clustering C ∈ E such that C ∈ C.

7.3.3 Weighted Hybrid Clustering Ensembles

Any hybrid clustering ensembles method exploits information coming from
both instance-based and cluster-based approaches, and can be described by
the outline reported in Alg. 7.3.

Initially, a hybrid bipartite graph G is built (Lines 1-9). The vertex set of
G contains both the data objects in D (the set Vo) and the clusters of each
clustering solution in E (the set Vc) (Lines 1-2). The weighted edge set E
comprises links between vertices in Vo and vertices in Vc, whereas the weight
of each edge is defined according to the specific hybrid algorithm and takes
into account the weight vector W (Lines 3-8). The weights in W are used to
enhance the edge weights; precisely, given any two nodes v1 ∈ Vo, v2 ∈ Vc

and the corresponding edge e = (v1, v2), the (new) associated weight ŵ is
obtained by multiplying w (i.e., the weight originally assigned to the edge
e by the specific hybrid method) to (1 + wh), where wh in W is the weight
associated to the clustering Ch such that v2 ∈ Ch. Finally, the output consensus
partition is derived by partitioning G by means of a suitable procedure (e.g.,
METIS [KK98]) that depends on the specific hybrid algorithm.
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Algorithm 7.3 WHCE: Weighted Hybrid Clustering Ensembles

Input: a set D = {o1, . . . , on} of data objects;
an ensemble E = {C1, . . . , CH} defined over D;
a weight vector W = (w1, . . . , wH)

Output: the consensus partition C∗E
1: Vo ← D
2: Vc ←

⋃
C∈E C

3: E ← ∅
4: for all vo ∈ Vo do
5: for all vc ∈ Vc do
6: ŵ = weight(vo, vc, E , W )
7: E ← E ∪ {(vo, vc, ŵ)}
8: end for
9: end for

10: G ← 〈Vo ∪ Vc, E〉
11: C∗E ← partition(G)

7.4 Experimental Evaluation

We devised an experimental evaluation in order to assess the impact of
employing the proposed weighting schemes in clustering ensembles. To this
purpose, we evaluated and compared the performances of instance-based,
cluster-based and hybrid clustering ensemble algorithms with and without
each weighting scheme. Specifically, in the experiments we involved the fol-
lowing clustering algorithms which have been discussed in Chapt. 6:

� CSPA [SG02], HGPA [SG02], WSPA [DA09], MV [Fre01], AGGL [GMT07],
and IVC [NC07], as instance-based methods;

� MCLA [SG02] and MCS [BO04], as cluster-based methods;
� HBGF [FB04] and WBPA [DA09], as hybrid methods.

Note that, in case of weighted clustering ensembles, we adapted each of the
selected clustering methods according to the algorithm schemes presented in
Sect. 7.3.

In the following, we discuss the evaluation methodology used in the ex-
periments, and present the main experimental results obtained on the various
datasets.

7.4.1 Evaluation Methodology

Datasets

We used five benchmark datasets from the UCI Machine Learning Repos-
itory [ANml], namely Glass, Ecoli, ImageSegmentation, ISOLET, and Letter-
Recognition. In addition to UCI datasets, we used two time series datasets
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coming from different application domains [KXWRta], namely Tracedata and
ControlChart. For a description of the selected datasets, see Appendix A.

Cluster Validity

To assess the quality of a consensus partition belonging to an ensemble,
we exploited the availability of reference classifications for the datasets. The
objective was to evaluate how well a clustering fits a predefined scheme of
known classes (natural clusters). To this purpose, we resorted to NMI (cf.
Def. 2.6) and F1 (cf. Def. 2.5) measures.

Ensemble Generation

To generate an ensemble we varied the clustering algorithm, the setting of
the selected clustering algorithms, the number of features of the original data
objects, and the number of output clusters. Precisely, the ensemble for each
dataset was built up as follows:

1. We computed a set of clustering solutions, which were obtained by per-
forming multiple runs of the K-Means algorithm on the specific dataset
with different random initializations.

2. We completed the ensemble by adding a further set of clustering solutions
obtained by varying the feature selection of the original data, the clus-
tering algorithm, and the number of output clusters. In particular, the
feature set was varied by randomly selecting subsets having 40%, 50%,
60%, 70%, 80%, 90%, and 100% size of the original feature space. The K-
Means and AHC with average link algorithms were used for the clustering
task, and the output clustering solutions were composed by a number of
clusters equal to 2 and 50%, 75%, 100%, 150%, and 200% of the number
of ideal classes of the specific dataset.

Setting of Weighting Schemes

For each of the proposed weighting schemes, we used both NMI and F1 in
order to measure the ensemble diversity (cf. (6.1)-(6.2)). We also performed
a preliminary phase of tuning of the parameter α and finally presented the
clustering performance corresponding to the relative best setting of α for each
weighting scheme. We noted that varying α seemed not to have a significant
impact on the overall results—a generally valid setting was α = 0.65.

In addition to the setting of α, the GW scheme also requires the selection of
a clustering algorithm for the step “to cluster clusterings”. We tried different
well-known algorithms, such as K-Means and AHC with single link, complete
link, and average link. In the following, we present results obtained by using
the AHC with average link.
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Setting of Clustering Ensembles Methods

For each method and dataset, we set the number of output clusters K
equal to the number of ideal classes of the specific dataset. Also, as far as
the graph-partitioning-based methods (i.e., CSPA, HGPA, WSPA, MCLA,
HBGF, WBPA), we set the METIS parameters as suggested in [KK98]; WSPA
and WBPA additionally require the number of LAC iterations, which was set
equal to the size of the ensemble generated for each dataset.

It should be remarked that setting the clustering methods had a marginal
importance in this work, since the main focus of our experimental evaluation
was on assessing the effectiveness of the methods with and without employing
the proposed weighting schemes.

7.4.2 Results

Tables 7.1–7.4 show the accuracy results obtained by the various clustering
ensembles algorithms, with and without employing weighting schemes, on the
selected datasets. Accuracy results are reported in terms of NMI and F1.

Evaluation of Weighted Clustering Ensembles

Looking at the tables, a first important remark is that, for each of the
clustering algorithms, weighted settings led to better performance in general.

Regardless of the specific weighting scheme or clustering ensembles algo-
rithm, we observed the following maximum improvements of clustering quality
with respect to the case no weighting scheme was used: 24% on ControlChart,
22% on ISOLET, 18% on ImageSegmentation, 15% on Glass, 12% on Letter-
Recognition, 11% on Tracedata, and 8% on Ecoli.

Evaluation of Weighting Schemes

Comparing the proposed weighting schemes, the DW scheme led to the
maximum quality improvements on all the datasets. Moreover, the DW-based
weighted version of each clustering ensembles method performed as good as
or better than the original (unweighted) clustering method in most cases (i.e.,
except WSPA on Glass and MV on LetterRecognition, with F1 and NMI as
diversity measures, respectively).

As far as the other two weighting schemes, the adoption of GW led to
better maximum performance than SW in nearly all datasets. However, con-
sidering the average performance (i.e., the average increase in accuracy with
respect to the unweighted settings, over all the algorithms), GW behaved less
reliably than SW. This can be explained since GW requires a phase of pa-
rameter tuning which is more critical than in the SW case; however, GW is in
principle designed as a refinement of SW and is really effective in improving
the performance of the clustering ensembles algorithms.
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Table 7.1. Evaluating SW, GW, and DW clustering weighting schemes: (a) Glass,
and (b) Ecoli

(a)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.56 0.61 0.65 0.66
F1 0.77 0.78 0.74 0.78

HGPA NMI 0.55 0.57 0.56 0.57
F1 0.66 0.71 0.75 0.72

WSPA NMI 0.65 0.67 0.73 0.71
F1 0.75 0.71 0.73 0.72

MV NMI 0.65 0.65 0.64 0.70
F1 0.71 0.72 0.69 0.74

AGGL NMI 0.67 0.67 0.65 0.68
F1 0.70 0.70 0.70 0.70

IVC NMI 0.55 0.68 0.65 0.70
F1 0.71 0.77 0.75 0.80

MCLA NMI 0.56 0.61 0.62 0.65
F1 0.64 0.70 0.65 0.67

MCS NMI 0.58 0.58 0.57 0.60
F1 0.70 0.68 0.67 0.70

HBGF NMI 0.64 0.64 0.62 0.64
F1 0.76 0.77 0.76 0.77

WBPA NMI 0.66 0.69 0.70 0.73
F1 0.68 0.70 0.73 0.71

(b)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.66 0.68 0.65 0.69
F1 0.70 0.70 0.68 0.70

HGPA NMI 0.64 0.64 0.66 0.65
F1 0.70 0.71 0.74 0.71

WSPA NMI 0.59 0.62 0.59 0.62
F1 0.62 0.64 0.63 0.63

MV NMI 0.68 0.69 0.66 0.69
F1 0.85 0.85 0.84 0.86

AGGL NMI 0.63 0.67 0.67 0.69
F1 0.74 0.75 0.77 0.75

IVC NMI 0.65 0.63 0.66 0.68
F1 0.80 0.74 0.86 0.80

MCLA NMI 0.59 0.62 0.65 0.67
F1 0.69 0.70 0.73 0.73

MCS NMI 0.58 0.58 0.57 0.60
F1 0.70 0.68 0.67 0.70

HBGF NMI 0.62 0.62 0.59 0.62
F1 0.72 0.74 0.70 0.75

WBPA NMI 0.71 0.72 0.74 0.72
F1 0.73 0.75 0.75 0.77

For instance, on ISOLET (Table 7.2), GW allowed the clustering ensembles
algorithms to achieve up to 22% (resp. 21%) of maximum quality improve-
ment according to NMI (resp. F1), against the 16% (resp. 17%) improvement
obtained by employing the SW scheme. However, on the same dataset, no
benefit resulted from the adoption of the GW scheme in six out of twenty
cases (over all the algorithms and the reported performance).
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Table 7.2. Evaluating SW, GW, and DW clustering weighting schemes: (a) Image-
Segmentation, and (b) ISOLET

(a)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.49 0.51 0.53 0.51
F1 0.55 0.56 0.60 0.59

HGPA NMI 0.38 0.50 0.53 0.56
F1 0.45 0.54 0.55 0.59

WSPA NMI 0.53 0.63 0.63 0.61
F1 0.61 0.71 0.70 0.68

MV NMI 0.45 0.45 0.46 0.45
F1 0.69 0.78 0.77 0.75

AGGL NMI 0.58 0.58 0.58 0.58
F1 0.68 0.69 0.66 0.69

IVC NMI 0.51 0.57 0.55 0.60
F1 0.59 0.65 0.60 0.69

MCLA NMI 0.51 0.52 0.52 0.54
F1 0.63 0.63 0.68 0.67

MCS NMI 0.58 0.58 0.57 0.60
F1 0.70 0.68 0.67 0.70

HBGF NMI 0.48 0.53 0.51 0.53
F1 0.57 0.58 0.60 0.59

WBPA NMI 0.51 0.52 0.53 0.52
F1 0.53 0.55 0.57 0.57

(b)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.55 0.55 0.58 0.58
F1 0.62 0.62 0.65 0.64

HGPA NMI 0.45 0.59 0.55 0.61
F1 0.50 0.62 0.57 0.63

WSPA NMI 0.55 0.62 0.63 0.66
F1 0.64 0.70 0.70 0.74

MV NMI 0.49 0.50 0.46 0.50
F1 0.75 0.81 0.74 0.84

AGGL NMI 0.66 0.67 0.63 0.68
F1 0.72 0.72 0.71 0.72

IVC NMI 0.44 0.60 0.66 0.66
F1 0.53 0.70 0.74 0.73

MCLA NMI 0.55 0.62 0.60 0.62
F1 0.67 0.67 0.71 0.73

MCS NMI 0.58 0.58 0.57 0.60
F1 0.70 0.68 0.67 0.70

HBGF NMI 0.56 0.69 0.68 0.66
F1 0.63 0.69 0.69 0.65

WBPA NMI 0.58 0.60 0.63 0.61
F1 0.65 0.66 0.71 0.70

Evaluation of Diversity Measures

Using F1 as diversity criterion, the accuracy results were generally higher
than in the NMI setting, i.e., the maximum quality of the consensus partition
observed on all the datasets always referred to F1 values. However, from the
perspective of the advantages that can be derived from using a weighting
scheme, the highest average gains (over the performance of all the methods)



100 7 Diversity-based Weighting Schemes for Clustering Ensembles

Table 7.3. Evaluating SW, GW, and DW clustering weighting schemes: Letter-
Recognition

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.40 0.48 0.47 0.48
F1 0.51 0.60 0.61 0.62

HGPA NMI 0.41 0.40 0.38 0.41
F1 0.51 0.48 0.52 0.53

WSPA NMI 0.43 0.45 0.45 0.45
F1 0.52 0.53 0.49 0.53

MV NMI 0.72 0.70 0.68 0.70
F1 0.80 0.80 0.80 0.80

AGGL NMI 0.63 0.64 0.63 0.65
F1 0.68 0.70 0.74 0.74

IVC NMI 0.38 0.43 0.41 0.43
F1 0.46 0.56 0.55 0.58

MCLA NMI 0.45 0.49 0.51 0.53
F1 0.56 0.59 0.59 0.62

MCS NMI 0.48 0.50 0.50 0.53
F1 0.50 0.52 0.48 0.55

HBGF NMI 0.40 0.41 0.42 0.42
F1 0.51 0.52 0.50 0.55

WBPA NMI 0.46 0.48 0.50 0.51
F1 0.52 0.52 0.56 0.57

were obtained in terms of NMI on four out of seven datasets (i.e., Glass, Ecoli,
ISOLET, and ControlChart).

For instance, on ControlChart, using the DW scheme led to a maximum
increase in quality (with respect to unweighted clustering methods) which
was equal to 24% and 19% in terms of NMI and F1, respectively; the average
increase in quality was 8% (NMI) and 6.5% (F1). On ImageSegmentation, the
maximum gain was achieved in terms of NMI (18%, against 14% by F1) by
using the DW scheme; the average improvement instead referred to the F1
diversity (5.2%, against 4.3% by NMI).

Evaluation of Clustering Ensembles Methods

Instance-based methods showed better performance with respect to meth-
ods belonging to the other two clustering ensembles approaches, on all datasets
(except for Tracedata). For instance, considering the results based on NMI, we
observed the following differences between the maximum NMI values scored
by the best and the worst approach: 19% on LetterRecognition, 16% on Con-
trolChart, 10% on ImageSegmentation, 9% on Ecoli, 8% on Tracedata and Glass,
and 7% on ISOLET.

Concerning the algorithms, MV ranked first followed by IVC and HGPA,
according to the F1-based diversity criterion; by contrast, in the NMI-based
evaluation, more algorithms alternated with each other as best performer on
the various datasets.

However, looking at the average performance over all the methods for
each clustering approach and dataset, we observed that there was no ap-
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Table 7.4. Evaluating SW, GW, and DW clustering weighting schemes: (a) Trace-
data, and (b) ControlChart

(a)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.50 0.51 0.48 0.50
F1 0.53 0.54 0.51 0.54

HGPA NMI 0.53 0.55 0.56 0.58
F1 0.64 0.65 0.67 0.67

WSPA NMI 0.50 0.50 0.50 0.50
F1 0.52 0.55 0.55 0.57

MV NMI 0.50 0.54 0.57 0.54
F1 0.53 0.59 0.62 0.63

AGGL NMI 0.50 0.57 0.58 0.57
F1 0.54 0.64 0.60 0.64

IVC NMI 0.50 0.58 0.56 0.59
F1 0.54 0.63 0.60 0.64

MCLA NMI 0.58 0.60 0.63 0.64
F1 0.71 0.70 0.73 0.75

MCS NMI 0.57 0.58 0.57 0.60
F1 0.63 0.68 0.65 0.66

HBGF NMI 0.50 0.51 0.53 0.54
F1 0.53 0.60 0.62 0.62

WBPA NMI 0.45 0.50 0.53 0.56
F1 0.52 0.53 0.56 0.62

(b)

method diversity accuracy
no weights SW GW DW

CSPA NMI 0.78 0.81 0.75 0.82
F1 0.82 0.82 0.80 0.82

HGPA NMI 0.68 0.80 0.77 0.81
F1 0.72 0.87 0.83 0.85

WSPA NMI 0.51 0.61 0.72 0.75
F1 0.60 0.75 0.79 0.79

MV NMI 0.83 0.84 0.86 0.84
F1 0.84 0.86 0.87 0.87

AGGL NMI 0.74 0.74 0.75 0.74
F1 0.76 0.77 0.78 0.77

IVC NMI 0.69 0.74 0.82 0.82
F1 0.75 0.76 0.80 0.82

MCLA NMI 0.63 0.64 0.70 0.66
F1 0.69 0.71 0.75 0.75

MCS NMI 0.58 0.58 0.57 0.60
F1 0.70 0.68 0.67 0.70

HBGF NMI 0.72 0.72 0.76 0.73
F1 0.78 0.77 0.80 0.78

WBPA NMI 0.56 0.69 0.72 0.73
F1 0.62 0.78 0.79 0.78

proach prevailing against the remaining ones. In particular, the best average
results were achieved by the instance-based methods on LetterRecognition and
ControlChart, the hybrid methods on Glass, Ecoli and ISOLET, and the cluster-
based methods on ImageSegmentation and Tracedata.
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Time Series Data Management: Background

Abstract A time series is a (large) sequence of (real) numeric values upon which
a total order based on timestamps is defined. Detecting similarity between time
series data in an effective and efficient way is particularly challenging in a clus-
tering scenario. In this respect, the most used distance measure is Dynamic Time
Warping (DTW), which allows for fulfilling some critical requirements needed when
comparing two time series, while having some issues, such as the poor efficiency.
The other significant state-of-the-art similarity measures are based on either refine-
ments of DTW, or well-established string matching techniques. Since time series
data typically have large dimensionality, another crucial aspect is the dimension-
ality reduction, which is commonly performed on time series to satisfy efficiency
requirements.

8.1 Time Series Data and Dynamic Time Warping

Definition 8.1 (time series). A time series is a sequence X = [(y1, z1), . . . ,
(yj , zm)], where each couple (yj , zj) is composed by a real numerical value (yj)
and an integer (zj) denoting a timestamp, where z1 is assumed to be equal to
0.

As is often the case by assuming a fixed sampling period, X can be simply
rewritten as X = [y1, . . . , ym]. We hereinafter refer to time series having fixed
sampling period.

In a contest of clustering, a crucial aspect is the similarity detection among
time series data. A trivial way to quantify the similarity between two equal-
length time series X = [y1, . . . , ym] and X ′ = [y′1, . . . , y

′
m] is to resort to the

squared Euclidean norm:

L2(X,X ′) =
m∑

j=1

(yj − y′j)
2

This approach is used in several early works on time series data management
(e.g., [AFS93]), essentially because the Euclidean norm is fast to compute and



106 8 Time Series Data Management: Background

Fig. 8.1. An example warping path

(a) (b)

Fig. 8.2. Two time series aligned according to (a) Euclidean norm and (b) DTW

is a metric. Nevertheless, it has some important drawbacks, i.e., it is unable
to deal with noisy time series and time series with different lengths or shifted
in the time axis.

A more refined way to compare two time series is “warping” the time axis
in order to achieve an alignment between the data points of the series. The
Dynamic Time Warping (DTW) algorithm has long been known in speech
recognition [RJ93], and shown to be an effective solution for measuring the
distance between time series [BC94].

Given two time series X = [y1, . . . , ym] and X ′ = [y′1, . . . , y
′
m′ ], DTW

performs a non-linear mapping of one sequence to another by minimizing
the total distance between them. Initially, a (m × m′)-matrix Ω is built to
contain the squared Euclidean distances between X points and X ′ points,
that is Ωjj′ stores the value (yj − y′j′)

2, ∀j ∈ [1..m], j′ ∈ [1..m′]. To find the
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best alignment between the two time series, a warping path (i.e., a sequence of
matrix elements) ω1, ω2, . . . , ωk, . . . , ωK (where max{m,m′} ≤ K ≤ m+m′+1
) is computed in such a way that:

1. ω1 = Ω11

2. ωK = Ωmm′

3. ωk = Ωjj′ ⇒ ωk−1 = Ωĵĵ′ , 0 ≤ j − ĵ ≤ 1, 0 ≤ j′ − ĵ′ ≤ 1, ∀k ∈ [2..K]

An example of warping path is depicted in Fig. 8.1, whereas Fig. 8.2 shows
the alignments between two example time series according to Euclidean norm
and DTW.1 The DTW distance between X and X ′ is finally defined as:

DTW (X, X ′) = min
ω1,ω2,...,ωk,...,ωK

√∑K
k=1ωk

K
(8.1)

Hence, the DTW distance involves the computation of the minimal warping
path, which can be retrieved by using a dynamic programming algorithm,
working in O(m m′).2

Unlike Euclidean norm, DTW allows elastic shifting of a sequence to pro-
vide a better match with another sequence, thus it can handle time series with
local time shifting and different lengths. On the other hand, a major drawback
is due to its high computational complexity, which is quadratic with respect
to the lengths of the series to be compared.

8.2 State of the Art

In the following, we discuss the state-of-the-art for similarity search/detection
and dimensionality reduction in time series data.

8.2.1 Similarity Measures

A major weakness of DTW is that it tends to produce “singularities”, i.e.,
alignments of a single point of a series with multiple points of another series.
This phenomenon becomes undesirable when unexpected singularities are pro-
duced. An effective variant of DTW, called Derivative Dynamic Time Warping
(DDTW) [KP01], has been proposed to reduce the singularity phenomenon.
Basically, DDTW considers new features in the sequences while maintaining
a computational complexity equal to DTW. The novelty of DDTW is that
local derivatives of the data points are estimated to capture information on
the trends in the sequences and to find a warping more robust to singulari-
ties. For instance, two data points having identical values, one with a negative
1 Figures 8.1 and 8.2 are borrowed from [KP01].
2 The dynamic programming algorithm exploits the following recursive formula:

γ(j, j′) = Ωjj′ + min{γ(j − 1, j′ − 1), γ(j − 1, j′), γ(j, j′ − 1)}, ∀j ∈ [1..m], j′ ∈
[1..m′], where γ(0, 0) = γ(1, 0) = γ(0, 1) = ∞, and γ(m, m′) = DTW (X, X ′).
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slope (i.e., part of a falling trend) and the other one with a positive slope (i.e.,
part of a rising trend), are correctly not mapped each other when DDTW is
used. In a sense, DDTW can be seen as DTW equipped with a preliminary
preprocessing step, in which the original data points are replaced with their
derivatives.

An alternative, although not computationally more convenient approach
to similarity search and detection in time series is based on edit distance-
like string matching measures. The Longest Common SubSequence (LCSS)
algorithm [VGK02] is a variant of the edit distance that uses the length of
the longest common subsequence of two sequences to define the distance be-
tween them. LCSS can deal with noisy time series by performing approximate
matching rather than exact matching of time series, although it suffers from
large-grained similarity. Edit Distance with Real sequences (EDR) [CÖO05]
performs the same distance quantization of LCSS (which is parametric with
respect to a tolerance threshold) in order to remove noisy effects. Unlike LCSS
and EDR, Edit distance with Real Penalty (ERP) [CN04b] is a metric and still
supports local time shifting. ERP can be seen as a variant of EDR and DTW,
although it does not require a noise-tolerance threshold like EDR, and does
not replicate previous data points to add a gap like DTW.

8.2.2 Dimensionality Reduction Techniques

To address the high dimensionality issue in time series, there are mainly
two basic approaches: approximating a time series by a piecewise discontinu-
ous function or applying a low-order continuous function to a time series.

The first approach includes Discrete Wavelet Transform (DWT) [CF99,
WAA00], Swinging Door (SD) [Bri90], Piecewise Linear Approximation (PLA)
[PH74, KP98], Piecewise Aggregate Approximation (PAA) [KCPM01, KP00,
YF00], Adaptive Piecewise Constant Approximation (APCA) [CKMP02], and
Symbolic Aggregate approXimation (SAX) [LKLC03]. Using DWT, a time se-
ries is represented in terms of a finite length, fast decaying, oscillating and
discretely sampled waveform (mother wavelet), which is scaled and translated
in order to create an orthonormal wavelet basis. Each function in the wavelet
basis is related to a real coefficient: the original series is reconstructed by
computing the weighted sum of all the functions in the basis, using the cor-
responding coefficient as weight. The Haar basis [BGG97] is the most widely
used in wavelet transformation. The DWT representation of a time series of
length m consists in identifying m wavelet coefficients, whereas a dimension-
ality reduction is achieved by maintaining only the first d coefficients (with
d ¿ m).

SD is a data compression technique that belongs to the family of piecewise
linear trending functions. Recently, SD has been adopted in several PI data
analysis scenarios (e.g., [TCS04]). Also, in [ICS07], SD has been compared to
wavelet compression. The SD algorithm employs a heuristic to decide whether
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a value is to be stored within the segment being grown or it is to be the begin-
ning of a new segment. Given a pivot point, which indicates the beginning of
a segment, two lines (the “doors”) are drawn from it to envelop all the points
up to the next one to be considered. The envelop has the form of a triangle
according to a parameter that specifies the initial amplitude of the lines. The
setup of this parameter has impact on the data compression level.

In the PLA method, a time series is represented by a piecewise linear
function, i.e., a set of line segments. Several methods have been proposed to
recognize PLA segments (e.g., [PH74, KP98]); among these methods, the most
efficient ones are able to produce a PLA representation with computational
complexity linear with the length of the time series.

PAA transforms a time series of m points in a new one composed by
d segments (with d ¿ m), each of which is of size equal to m/d and is
represented by the mean value of the data points falling within the segment.
Like PAA, APCA approximates a time series by a sequence of segments, each
one represented by the mean value of its data points. A major difference from
PAA is that APCA can identify segments of variable length. Also, the APCA
algorithm is able to produce high-quality approximations of a time series by
resorting to solutions adopted in the wavelet domain.

The SAX representation of a time series involves three steps. Initially, the
PAA version of a time series is computed, then the PAA coefficients are quan-
tized, and finally each quantization level is represented by a single character,
called SAX symbol.

It should be noted that representing a time series of m points according to
DWT, SD, (the fastest versions of) PLA, PAA, and SAX can be performed
in O(m), whereas the complexity of APCA is O(m log(m)).

Dimensionality reduction techniques based on piecewise discontinuous ap-
proximations can be combined with existing similarity measures, in order to
decrease the computational cost in similarity searches. In particular, the use
of DTW on the coefficients obtained by segmenting a time series has been
investigated in the literature (e.g., [KP00]), and several lower bounding mea-
sures operating on segmented versions of a time series have been defined.
Among these methods, the Fast search method for dynamic Time Warping
(FTW) [SYF05] has been proposed as one of the most effective methods that
use the time warping distance on a coarse version of the original sequences.

The other approach to dimensionality reduction, which approximates a
time series with a continuous polynomial, includes Singular Value Decompo-
sition (SVD) [KJF97, KAS98], Discrete Fourier Transforms (DFT) [RM98,
RM97], and Chebyshev polynomials [CN04a, MH03]. SVD consists of space ro-
tation and truncation applied on a data matrix and is computationally more
expensive than all the other discussed methods for dimensionality reduction.
DFT and Chebyshev approaches are quite close to DWT: they are based on
the use of a set of orthonormal functions, whose contributions to the whole
representation are given by the relating coefficients. Major differences among
these representations regard the functions that compose the orthonormal ba-
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sis (i.e., sine waves for DFT, and Chebyshev polynomials for Chebyshev) and
the computational cost (i.e., O(m log m) for DFT, and O(m) for Chebyshev).
Also, Chebyshev approximation is very close to the optimal minimax poly-
nomial, which represents an approximation able to minimize the maximum
deviation from the original data points.
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Fast and Accurate Similarity Detection
in Time Series Data

Abstract Similarity search and detection is a central problem in time series data
processing and management. Most approaches to this problem have been developed
around the notion of dynamic time warping, whereas several dimensionality reduc-
tion techniques have been proposed to improve the efficiency of similarity searches.
Due to the continuous increasing of sources of time series data and the cruciality of
real-world applications that use such data, there is a challenging demand for sup-
porting similarity detection in time series in a both accurate and fast way. This
chapter proposes a concise yet feature-rich representation of time series, on which
the dynamic time warping can be applied for effective and efficient similarity detec-
tion of time series. We present the Derivative time series Segment Approximation
(DSA) representation model, which originally features derivative estimation, seg-
mentation and segment approximation to provide both high sensitivity in capturing
the main trends of time series and data compression. We extensively compare DSA
with state-of-the-art similarity methods and dimensionality reduction techniques in
a clustering framework. Experimental evidence from effectiveness and efficiency tests
on various datasets shows that DSA is well-suited to support both accurate and fast
similarity detection.

9.1 Introduction

Most research on time series data management and knowledge discovery
has been devoted to the similarity search and detection problem, which arises
in many tasks such as indexing and query processing, change detection, fre-
quent pattern mining, classification, and clustering. In particular, clustering
of time series data has been attracting a growing interest in several scenarios.
For instance, in the biomedical domain, frequently posed problems include
finding groups of genes with similar expression profiles across a number of
experiments, organizing patients according to different healthy/disease con-
ditions, and finding groups of similar functional activities of the human brain
in response to a given stimulus. In the socio-economics domain, clustering
energy/power consumption patterns can support applications of fraud detec-



112 9 Fast and Accurate Similarity Detection in Time Series Data

tion. Other challenging scenarios involve, for instance, seasonality patterns of
retail data, personal income data, models of ecological dynamics, multimedia
data streams. A more exhaustive list of applications which demand for time
series clustering can be found in [Lia05].

The common approach to compare two time series is the Dynamic Time
Warping (DTW) algorithm, which allows to “warp” the time axis in order to
achieve an alignment between the data points of the series (cf. Chapt. 8).

Besides the similarity problem in time series, another issue concerns the
high dimensionality that characterizes time series data in many application
domains. To address this issue, various dimensionality reduction techniques
have been proposed, following two main approaches in which a (continuous)
time series is approximated with either a piecewise discontinuous function or
a low-order continuous function (cf. Chapt. 8).

Dimensionality reduction methods are useful for modeling time series into
a more compact form. However, while this can help to compare time series
efficiently, dimensionality reduction methods may lose significant information
about the main trends in a time series, which are essential to effective sim-
ilarity detection. Indeed, in many real-world applications there is a growing
interest in developing methods that are able to fit an emerging demand for
both accurate and fast similarity detection. In this respect, we believe there
is a number of special requirements that should be satisfied by any represen-
tation model to support accurate and fast similarity detection in time series,
which are summarized as follows:

� Time warping-awareness. Time series should be modeled into a form that
can be naturally mapped to the time domain. This will make it feasible to
benefit from using dynamic time warping for similarity detection.

� Low complexity. Due to the high dimensionality of time series data, mod-
eling time series should be performed maintaining a reasonably low com-
plexity, which is possibly linear with the series length.

� Sensitivity to relevant features. It is clearly desirable that time series ap-
proximation is able to preserve as much information in the original series
as possible. For this purpose, approximating a time series should be ac-
complished in such a way that it tailors itself to the local features of the
series, in order to capture the important trends of the series.

� Absence of parameters. Most representation models and dimensionality
reduction methods require the user to specify some input parameters, such
as, e.g., the number of coefficients or symbols. However, prior domain
knowledge is often unavailable, and the sensitivity to input parameters can
seriously affect the accuracy of the representation model or dimensionality
reduction method.

In this chapter, we present a time series representation model which is con-
ceived to support accurate and fast similarity detection. This model is called
Derivative time series Segment Approximation (DSA) [GRT06, GPTG07,
GPTG09a], as it yields a concise yet feature-rich time series representation
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by combining the notions of derivative estimation, segmentation and segment
approximation.

DSA involves a segmentation scheme that employs the paradigm based on
a piecewise discontinuous function. However, in contrast to any other tech-
nique of dimensionality reduction, the segmentation step is performed on the
derivative version of the original time series, rather than directly on the raw
time series. The derivative estimates represent a new feature space that en-
ables the identification of the trends of the original series. Moreover, the final
step of segment modeling allows for concisely fitting the detected trends in a
low-dimensional, time warping-aware representation of the original time series.
As we proved experimentally, the intuition underlying the DSA model works
out very advantageously in supporting accurate and fast similarity detection;
indeed, DSA is able to fulfill all of the desiderata mentioned above:

� DSA sequences can be compared by using DTW directly;
� the derivative-based feature generation allows for representing a time series

by focusing on the characteristic trends in the series;
� the segmentation step in DSA has a computational complexity which is

linear with the series length, and is adaptive with respect to the identified
trends of the series;

� the absence of mandatory input parameters in DSA addresses the unavail-
ability of prior domain knowledge.

We conducted an extensive experimental evaluation of DSA within a clus-
tering framework, by considering aspects of effectiveness as well as efficiency.
This evaluation necessarily involved the prominent state-of-the-art methods
for time series representation and dimensionality reduction. Experimental ev-
idence has shown that DSA supports accurate and fast similarity detection,
in terms of a number of results.

9.2 Derivative time series Segment Approximation
(DSA)

In this section, we describe the proposed Derivative time series Segment
Approximation (DSA) model to represent time series into a concise form which
is designed to capture the significant variations in the time series profile. More
precisely, a DSA sequence is the result of a transformation that applies to a
time series and yields a shorter sequence of values approximating the segments
identified in the derivative version of the original series. DSA entails derivative
estimation, segmentation and segment modeling to map a time series into
a different value domain which allows for maintaining information on the
significant features of the original series in a dense and concise way.

Given a time series of length m, DSA computes a new sequence χ of d
values, with d ¿ m, by three main steps:
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1. Derivative estimation — the original time series is transformed into a new
one in which each point is replaced with its first derivative estimate.

2. Segmentation — the derivative time series is decomposed into variable-
length segments, each of which is comprised of a subsequence of points
having close slopes.

3. Segment approximation — the individual segments are substantially
mapped to angular values, which represent synthetic information on the
average slopes within the segments.

9.2.1 Derivative Estimation

Given a time series X = [y1, . . . , ym], the derivative estimation step yields
a sequence Ẋ = [ẏ1, . . . , ẏm], whose elements are first derivative estimates of
the points in X.

A simple yet effective derivative estimation model is that exploited in [KP01]—
we hereinafter refer to it as DDTW estimation model—which computes, for
each point (except the first and the last one in the series), the mean value
between the slope of the line from the left neighbor to the point and the slope
of the line from the left neighbor to the right neighbor. Formally:

ẏj =





ẏj+1 if j = 1
1
2 [(yj − yj−1) + 1

2 (yj+1 − yj−1)] if j ∈ [2..m-1]
ẏj−1 if j = m

(9.1)

We slightly modify the DDTW estimation model by also considering the
slope of the line from the point to the right neighbor; actually, this modi-
fication leads to an algebraic simplification producing an expression that is
equivalent to consider only the slope of the line from the left neighbor to the
right neighbor. The derivatives of the first and the last point in the series are
computed by taking into account their respective neighbors as well. Formally:

ẏj =





yj+1 − yj if j = 1
1
2 (yj+1 − yj−1) if j ∈ [2..m-1]
yj − yj−1 if j = m

(9.2)

We investigated how the performances of DSA and DDTW may vary de-
pending on the derivative estimation model. As we describe in Appendix B, the
DSA derivative estimation model reported in (9.2) leads to a better derivative-
based feature space than the DDTW derivative estimation model defined in
(9.1).

9.2.2 Segmentation

Segmenting a time series of length m consists in identifying d−1 delimiter
points (d ¿ m) to partition the series into d contiguous subsequences of points
having similar features.
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In our approach, segmentation is computed on the derivative version of a
time series. Precisely, a derivative time series Ẋ = [ẏ1, . . . , ẏm] is transformed
into a sequence SẊ = [s1, . . . , sd] of variable-length segments of the form
sl = sl,1, . . . , sl,κl

] = [ẏl1 , . . . , ẏlκl
], such that:

� s1,1 = ẏ1 and sd,κd
= ẏm, and

� for each l ∈ [1..d-1], sl,κl
immediately precedes sl+1,1 in the time axis.

A critical aspect in segmentation is how to determine the segment delim-
iters. For this purpose, we follow a sliding windows approach, i.e., a segment is
grown until it exceeds an error threshold, and the process continues from the
next point not yet considered. Although more refined segmentation schemes
could be devised (e.g., top-down or bottom-up schemes) [KCHP01], in this
work we chose to pursue the above idea for the sake of its simplicity.

The key idea in our segmentation method is to break a series according
to the first point such that the absolute difference between it and the mean
of the previous points is above a certain threshold ε; this point becomes the
anchor for the next segment to be identified in the rest of the series. Formally,
let µ(sl) denote the mean of the points in a sequence sl of SẊ :

µ(sl) =
∑κl

h=1 ẏlh

κl
, for each l ∈ [1..d-1]

The sequence sl is identified as a segment if and only if

|µ([sl,1, . . . , sl,h])− sl,h+1| ≤ ε, ∀h ∈ [1..κl − 1]

and
|µ([sl,1, . . . , sl,κl

])− sl+1,1| > ε

Intuitively, this condition allows for aggregating subsequent data points
having very close derivatives; in this way, the new segment sl represents a
subsequence of points with a specific trend.

To estimate the threshold ε, we resort to an index of spread of the (deriva-
tive) data points within a sequence. The objective is to produce a number
of segments that is large enough to capture the “characteristic” trends in
the original series (i.e., subsequences of points having close derivative esti-
mates), but small enough to guarantee a reasonably good degree of com-
pression. Within this view, we initially devised three definitions of ε, namely
dataset-oriented, series-oriented, or segment-oriented.

The dataset-oriented definition of ε aims to express this threshold accord-
ing to a given collection of time series. Given a dataset D of n time series, ε
can be defined as:

ε(D) =
1
n

n∑

i=1

|Ẋi|
max{|Ẋ| | X ∈ D}σ(Ẋi)
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where σ(Ẋi) denotes the standard deviation over the points in the i-th deriva-
tive series, and normalization of the series lengths is provided to deal with
variable-length series.

The above definition is reasonably adequate when most time series in the
collection show similar shapes; however, this may not necessarily hold in sev-
eral real domains (e.g., sensor network measurements). A different way of
computing ε can be series-oriented, i.e., globally to each individual time series
X:

ε(Ẋ) = σ(Ẋ)

Another definition of ε may involve the individual segments being identified
in each series. We can hence define a segment-oriented ε for each segment sl

as follows:
ε(sl) = σ(sl)

It is easy to observe that, regardless the definition of ε, the segmentation
step on a dataset of n series can be performed in O(n×mmax), where mmax

is the maximum of the series lengths. Since the segment-oriented definition is
tailored to the local features of an individual series, we chose to adopt it in
the segmentation step of our DSA model.

It is worth noting that the segmentation step in DSA does not require any
user-specified parameter, since the threshold ε is automatically computed by
analyzing information of each series. By contrast, this step is not automatic
for other methods of dimensionality reduction, e.g., APCA, SAX, SD, PAA,
PLA, Chebyshev, DWT, and DFT (cf. Chapt. 8), where the user is required
to specify an input, such as the number of segments or coefficients being
computed.

9.2.3 Segment Approximation

The individual segments of a derivative time series are represented with a
synthetic information capturing their respective main features. More precisely,
each segment sl is mapped to a pair formed by the value zl+1, where zl is the
timestamp of the last point (ẏlκl

) in sl, and an angle that explains the average
slope of the portion of time series bounded by sl. This is mathematically
expressed by the notion of arctangent applied to the mean of the (derivative)
points in each segment.

Given a segmented derivative time series SẊ = [s1, . . . , sd], the final step
of segment approximation yields a sequence χ = [(β1, t1), . . . , (βd, td)] such
that

βl = arctan(µ(sl)), l ∈ [1..d]
tl = tl−1 + κl, l ∈ [1..d]

where we assume t0 = 0 for any DSA sequence.
Modeling a given time series by means of the DSA representation hence

leads to a new sequence whose elements (pairs angle-timestamp) still maintain
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a direct association to the original time domain, while concisely representing
the features of original points. This makes the DSA model able to fully support
dynamic time warping, i.e., (dis)similarities between DSA sequences can be
computed by using DTW-based measures.

As a final remark, it is easy to observe that the time complexity of com-
puting a DSA sequence from a time series of length m has a total cost O(m),
since the three steps, namely differentiation, segmentation, and segment ap-
proximation, are O(m), O(m), and O(d) (d ¿ m), respectively.

9.3 Experimental Methodology

We devised an experimental evaluation to assess the ability of the pro-
posed DSA in supporting effective and efficient similarity detection within a
clustering framework. We compared DSA against state-of-the-art methods for
modeling and comparing time series data, which include LCSS, EDR, ERP,
DTW, DDTW, and FTW as distance measures, and APCA, SAX, PAA, PLA,
SD, Chebyshev, DWT, and DFT as dimensionality reduction methods (cf.
Chapt. 8). Since DSA and the competing dimensionality reduction methods
are not similarity/distance measures, we chose to apply DTW over the seg-
ments/coefficients computed by each particular representation scheme in the
time domain (i.e., APCA, SAX, PAA, PLA, SD, and DSA), whereas we used
the Euclidean distance (L2) to compare the sequences obtained by Chebyshev,
DWT, and DFT, as suggested in their respective works.

Before going into the details of the experimental results, in this section
we introduce the selected datasets, the clustering algorithms, and the validity
criteria used in the experimental evaluation. We also discuss the preliminary
task of preprocessing of the raw time series and the setup of the various
methods that compete with our DSA.

9.3.1 Datasets

We selected six benchmark time series datasets, namely GunX, Trace-
data, CBF, ControlChart, Twopat, and Mixed-BagShapes. In addition, we also
used OvarianCancer, which contains proteomic spectra generated by Surface-
Enhanced Laser Desorption and Ionization - Time Of Flight Mass Spectrom-
etry (SELDI-TOF MS). Figure 9.1 shows the shapes of sample representative
instances in each dataset, whereas Appendix A reports on a description of the
selected datasets.

It should be emphasized that OvarianCancer data, like most of MS datasets,
are huge-dimensional and largely affected by noisy factors. Noise is typically
due to a number of reasons, such as sample preparation, insertion of the sam-
ples into the mass spectrometer, and instrumental and measurement errors.
For this purpose, OvarianCancer spectra were subject to a preliminary pre-
processing phase specific for MS data. MS preprocessing has been recognized
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Fig. 9.1. Sample instances from the test datasets used for evaluating DSA perfor-
mance. One time series from each class is displayed for each dataset

as a crucial step for tasks of MS data management and knowledge discovery,
and mainly consists of operations such as noise reduction, baseline subtrac-
tion, and peak detection. The interested reader can find details about the
preprocessing steps carried out in [GPT+08b].

It is interesting to take a look at the impact on the time series dimension-
ality by using DSA. Table 9.1 shows that DSA achieves a 59% compression
of the original series lengths on average, with a maximum compression per-
centage of 97% in the OvarianCancer dataset. As we shall discuss later in this
section, the reasonably good rate of compression achieved by DSA does not
have a negative impact on the accuracy in detecting similarities.

9.3.2 Cluster Validity

To assess the effectiveness of clustering algorithms, we assess how well a
clustering solution fits a given scheme of known classes, thanks to the avail-
ability of reference classifications for all the test datasets. In particular, we
resort to the F1-Measure as defined in Def. 2.5.
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Table 9.1. Segmentation and compression using DSA

dataset # of time steps avg. # of DSA segments compression

GunX 150 68 55%
Tracedata 275 118 57%
ControlChart 60 35 42%
CBF 128 77 40%
Twopat 128 38 70%
Mixed-BagShapes 1,614 816 49%
OvarianCancer 28,000 943 97%

9.3.3 Algorithms

Finding the best strategy of time series clustering is not an objective of this
work; rather, we are interested in assessing the impact of the proposed time
series representation model in similarity detection, and hence we conceived a
standard clustering framework for time series data. Specifically, we resorted
to well-known paradigms, namely partitional clustering and agglomerative
hierarchical clustering (cf. Chapt. 2). As stated in [Lia05], partitional and
hierarchical clustering methods have been extensively used in the context of
time series clustering.

Partitional Clustering

The partitional clustering paradigm is characterized by simplicity and low
computational and memory requirements. In this work, we use the popular K-
Means algorithm (cf. Chapt. 2). It is worth noting that choosing the number
of output clusters does not represent a drawback in our evaluation context,
since we selected datasets for which reference classifications are available, and
hence we were able to fix the number of clusters equal to the actual number of
classes in each clustering experiment. Also, we addressed the random selection
of the initial cluster centroids by performing multiple runs of the K-Means
algorithm to avoid that the quality results were due to random chance.

In order to define the cluster centroids, we adopted two strategies de-
pending on whether or not the representation model produces variable-length
segments. Concerning SAX, PAA, PLA, SD, Chebyshev, DWT, and DFT, we
compute the cluster representatives by simply averaging the corresponding
coefficients over the time series in any specific cluster. In the following, we
present a method for computing cluster representatives of DSA sequences;
we remark that although this method has been originally conceived for DSA
clusters, it can be easily adapted to any representation model that is able to
produce variable-length segments (coefficients), such as APCA.

Computing Cluster Representatives of DSA sequences in K-Means

Let us denote with Cχ = {χ1, . . . , χn} a cluster of DSA sequences, where
each χi has the form [(βi1, ti1), . . . , (βidi

, tidi
)], and with C = {X1, . . . , Xn}
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the cluster of original time series such that each Xi ∈ C is associated with
a unique χi ∈ Cχ. The objective is to compute a DSA sequence prototype
rep(Cχ) as the representative of cluster C.

We identify a fixed number V of segments over which the average series
is defined. We can reasonably define the number of segments V as the closest
integer to the mean (

∑n
i=1 di)/n over all the series χi ∈ Cχ. The timestamps

associated to the new V segments are defined as t̂v = tmax × v/V , for each
v ∈ [1..V ], where tmax = max{tidi

| χi ∈ Cχ} (i ∈ [1..n]) and t̂0 = 0. For
each χi, the angle β′iv

corresponding to the timestamp t̂v (with t̂v ≤ tidi
)

is computed to be equal to the angle βiu
of the u-th segment including the

point sampled at time t̂v. Formally, β′iv
is equal to the angle βiu

such that
(βiu

, tiu
) ∈ χi and tiu−1 < t̂v ≤ tiu

, for all i ∈ [1..n], v ∈ [1..V ]. Note that any
pair (β′iv

, t̂v) is introduced only if the condition t̂v ≤ tidi
holds, i.e., if the i-th

time series is defined in the timestamp t̂v.
For each χi the new Vi pairs (β′iv

, t̂v) are then included in the rewritten
DSA sequence χ′′i = [(β′′i1 , t

′′
i1

), . . . , (β′′iqi
, t′′iqi

)] which is computed as

time-sort{(βi1 , ti1), . . . , (βidi
, tidi

), (β′i1 , t̂1), . . . , (β
′
iVi

, t̂Vi
)}

where t̂Vi is the new timestamp with maximum value defined over the i-th
sequence.

Formally, for each χi ∈ Cχ, the sequence χ̂i = [(β̂i1 , t̂1), . . . , (β̂iV , t̂Vi)] is
computed, where

β̂iv =

∑
(β′′iu

,t′′iu
)∈χ′′i ∧ t′′iu

∈(t̂v−1,t̂v] [ β′′iu
× (t′′iu

− t′′iu−1
) ]

t̂v − t̂v−1

, v ∈ [1..Vi]

The DSA representative rep(Cχ) is finally computed as:

rep(Cχ) = [(β1, t̂1), . . . , (βV , t̂V )], where βv =

∑
t̂v≤t̂Vi

∧i∈[1..n] β̂iv

|{t̂v|t̂v ≤ t̂Vi}|
for each v ∈ [1..V ]. Note that ∆t = t̂v − t̂v−1 is a constant for each v ∈ [1..V ].

Hierarchical Clustering

The agglomerative hierarchical clustering paradigm allows us to test the
competing methods in a clustering framework which does not rely on a notion
of cluster prototype and on the cluster initialization. For this purpose, we use
the UPGMA algorithm (Unweighted Pair Group Method using arithmetic
Averages), which exploits the standard AHC scheme, along with an average
link metric (cf. Chapt. 2).
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9.3.4 Preprocessing Time Series

Raw time series are usually preprocessed by smoothing data points in
order to reduce the noise in the data. Moving average represents the simplest
family of smoothing models, as it is a compromise between the mean and
the random walk model. Given a raw time series X = [y1, . . . , ym] and a
smoothing degree λ (i.e., the maximum width of the moving average), the
centered λ-point moving average recomputes the data points by considering
both the previous and next observations around a center:

ysmoothed
j =





µ([y1, . . . , yj+%]) if j−% ≤ 0
µ([yj−%, . . . , yj+%]) if j−% > 0 and j+% ≤ m
µ([yj−%, . . . , ym]) if j+% > m

where % = (λ−1)/2 denotes the maximum number of back and forward points
that are taken into account for smoothing the j-th point.

More refined models, such as exponential smoothing models, compute the
weighted average of past observations on the basis of previously smoothed ob-
servations. Given a smoothing factor ϕ ∈ [0, 1], the simple exponential smooth-
ing is computed as:

ysmoothed
j =

{
yj if j = 1
ϕ yj + (1− ϕ) ysmoothed

j−1 if j > 1

It should be emphasized that denoising is essential to make the data
amenable to further analysis tasks, regardless of the specific representation
method or distance measure used. In particular, in derivative-based feature
spaces, denoising time series data (e.g., via a smoothing function) before dif-
ferentiating them is necessary to avoid that the approximation of derivatives
by finite differences will amplify the noise present in the data. In this respect,
the combination of smoothing prior to the step of derivative estimation in
our DSA approach (as well as in DDTW) can be seen as somehow similar
to the regularization of a differentiation process [TA77], although potentially
less accurate and general.

9.3.5 Settings

Unlike our DSA, most of the competing methods require one or more
parameters to be set. In some cases, which include LCSS, EDR, ERP, and
Chebyshev, typical settings are suggested in their respective works; specifi-
cally, the matching thresholds for LCSS and EDR are assumed to be equal to
(max σ(Xi))/4 and minσ(Xi) respectively (for all the series Xi in a dataset),
the constant gap for ERP is set to 0, and the number of coefficients for Cheby-
shev is set to 20. Such parameter settings revealed to be good enough to enable
the respective methods to achieve their best performances in accuracy. In par-
ticular, we took care in monitoring the behavior of the Chebyshev method,
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and finally found no significant improvement in accuracy by increasing the
number of Chebyshev coefficients.

In other cases, to make a comparative evaluation possible in terms of ac-
curacy and efficiency, we aimed to prepare the various methods to perform
at levels of data compression which were as close as possible. We tried sev-
eral values for the parameters of APCA, SAX, PAA, PLA, DWT, DFT, and
FTW. More precisely, for each dataset and algorithm, we varied the setting
of each of these methods in such a way that it achieved the same compression
(i.e., number of segments) obtained by DSA, and ±5%, ±10%, and ±20%
of the DSA compression; then, we measured the relative clustering quality
(F1-Measure) scores and finally chosen the setting corresponding to the best
score. Analogously, the alphabet length (i.e., the number of symbols) required
by SAX was chosen, for each dataset and clustering algorithm, as the value
that led to the best trade-off between clustering quality and time performance.

A final remark concerns SD, which requires a deviation threshold (i.e., the
“doors” amplitude); however, setting this parameter is even more difficult,
since the compression factor (i.e., the number of segments) cannot be specified
directly in swinging door compression. In [TCS04, XCCH02], many calibration
trials are conducted to find the deviation thresholds corresponding to a given
compression factor, for each dataset. We followed this approach and set the
deviation threshold in such a way that the number of segments produced by
SD was as close as possible to the number of segments produced by DSA,
finally choosing the value that led to the best clustering quality.

9.4 Experimental Results

9.4.1 Effectiveness Evaluation

We measured the ability of DSA and the competing methods in supporting
time series clustering effectively. We investigated how clustering results can
be influenced by choosing different alternatives for data preprocessing and
setting the parameters therein involved; then, we assessed the performance of
DSA and the other methods according to their respective best settings.

Tuning Preprocessing Parameters

We used the smoothing functions previously described in Sect 9.3.4 to
preprocess the time series in each dataset. In the case of centered moving
average, the smoothing degree λ(= 2% + 1) was varied within a typical range,
namely [5..9], whereas ϕ in exponential smoothing settings was varied from 0
to 1 by a 0.1 step. Moreover, we tried to perform zero, one or more iterations
of smoothing (up to 5), on the various datasets and for each preprocessing
scheme; the rationale here is that smoothing should be avoided to prevent
loss of information for low-noise series and, conversely, excessive noise might
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Table 9.2. DSA vs. competing methods: avg quality results (F1-Measure) for K-
Means

GunX Trace Control CBF Twopat Mixed- Ovarian
data Chart BagSh. Cancer

LCSS 0.59 0.30 0.50 0.79 0.36 0.32 0.34
EDR 0.54 0.74 0.88 0.86 0.42 0.70 0.58
ERP 0.72 0.62 0.76 0.58 0.39 0.48 0.34
DTW 0.66 0.78 0.87 0.89 0.95 0.77 0.60
DDTW 0.89 1 0.89 0.97 0.95 0.76 0.62
FTW 0.74 0.90 0.81 0.67 0.55 0.73 0.58
L2 on DFT 0.63 0.77 0.78 0.67 0.39 0.70 0.36
L2 on DWT 0.61 0.67 0.76 0.74 0.36 0.68 0.36
L2 on CHEBY 0.57 0.72 0.70 0.69 0.38 0.72 0.34
DTW on SD 0.67 0.95 0.85 0.87 0.89 0.76 0.69
DTW on PLA 0.73 0.77 0.89 0.87 0.75 0.74 0.60
DTW on PAA 0.68 0.78 0.87 0.86 0.73 0.75 0.59
DTW on SAX 0.73 0.77 0.83 0.87 0.69 0.71 0.58
DTW on APCA 0.77 0.81 0.89 0.83 0.91 0.74 0.55
DTW on DSA 0.92 1 0.90 0.96 0.97 0.78 0.75

be treated with multiple smoothing. It should be noted that, in the case of
K-Means evaluation, we performed multiple runs of the K-Means algorithm
and finally averaged the quality results over the runs to obtain a single value
of F1-Measure.

We observed that smoothing helped to improve the performance of the
various methods on all the datasets, except OvarianCancer; OvarianCancer rep-
resented an exception since, in this case, data was preliminarily subject to
domain-specific preprocessing steps (cf. Sect. 9.3.1), hence further preprocess-
ing via smoothing would have tended to cause loss of information on poten-
tially significant data features.

Exponential smoothing revealed to be more effective than moving average,
as it was selected 74 out of 90 times as the best preprocessing way. Parameter
ϕ was set to low values in most cases, thus suggesting the need for a greater
smoothing effect (which is indeed achieved by values of ϕ closer to zero). Also,
the number of smoothing iterations appeared to be not relevant in practice;
three iterations of smoothing were enough in most cases, except for SD which
always required four or five iterations. In Appendix C, we report further details
about the preprocessing stage, including the best settings and an evaluation
of the impact of smoothing on the various datasets.

Table 9.3 reports on the quality results obtained by the UPGMA algo-
rithm. A first remark on these results is that the F1-Measure scores for the
various methods were generally much lower than the corresponding results ob-
tained by the K-Means algorithm on all the datasets, except OvarianCancer;
in particular, for DTW on DSA, there was a quality decrease from 19% (in
GunX) to 36% (in CBF and ControlChart). However, like in K-Means cluster-
ing, DTW on DSA revealed to behave as good as or better than the other
methods and, in some cases (i.e., CBF and Mixed-BagShapes) we observed
quality improvements with respect to the corresponding results by K-Means.
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Table 9.3. DSA vs. competing methods: quality results (F1-Measure) for UPGMA

GunX Trace Control CBF Twopat Mixed- Ovarian
data Chart BagSh. Cancer

LCSS 0.47 0.23 0.38 0.39 0.24 0.24 0.33
EDR 0.49 0.38 0.41 0.47 0.28 0.28 0.56
ERP 0.49 0.37 0.40 0.40 0.33 0.28 0.54
DTW 0.61 0.48 0.48 0.51 0.61 0.38 0.61
DDTW 0.72 0.76 0.54 0.49 0.64 0.41 0.63
FTW 0.60 0.52 0.44 0.44 0.50 0.40 0.63
L2 on DFT 0.60 0.40 0.29 0.47 0.39 0.28 0.62
L2 on DWT 0.60 0.40 0.29 0.47 0.39 0.28 0.62
L2 on CHEBY 0.60 0.40 0.29 0.47 0.39 0.28 0.62
DTW on SD 0.51 0.55 0.40 0.49 0.43 0.42 0.60
DTW on PLA 0.61 0.63 0.40 0.51 0.43 0.29 0.61
DTW on PAA 0.61 0.61 0.36 0.51 0.56 0.41 0.61
DTW on SAX 0.61 0.60 0.48 0.56 0.44 0.31 0.61
DTW on APCA 0.61 0.63 0.40 0.51 0.43 0.29 0.61
DTW on DSA 0.73 0.82 0.54 0.60 0.67 0.51 0.73

Accuracy in Time Series Clustering

We evaluated DSA and the other methods in two clustering frameworks,
namely K-Means and UPGMA. In relation to the selected clustering algo-
rithm, each method was used with the best preprocessing setup for the spe-
cific dataset. In any case, the quality of the obtained clustering solutions was
calculated in terms of F1-Measure.

Table 9.2 refers to K-Means clustering and shows the quality results av-
eraged over 100 runs of this algorithm. Looking at the table we can see that
DTW on DSA sequences (for short, DTW on DSA) was the first ranked
method in all the datasets except CBF; however, in this dataset, DTW on
DSA was only 1% below the performance of DDTW, which turned out to be
the best method among the competing ones. Also, DTW on DSA always led
to better results than DTW alone. It should be emphasized that the compar-
ison with DDTW is particularly important in order to gain an insight into
the role of derivative-based features in time series representation and the im-
pact of combining derivative estimation and segmentation in the accuracy of
similarity detection.

DTW on DSA performed as good as or better than the remaining methods,
and the performance difference was quite evident in some cases. In particular,
DTW on DSA led to quality improvements up to about 59% with respect to
DWT, DFT, and Chebyshev, and up to 25% with respect to SAX, PAA, PLA,
SD, and APCA. Among these competing methods, it can be noted that DTW
on APCA and SD obtained the best results; in general, DTW on APCA,
SD, SAX, PAA, and PLA achieved higher quality clustering than Chebyshev,
DWT, and DFT.

9.4.2 Efficiency Evaluation

We measured the time performances of DSA and the other methods in ac-
complishing the tasks of modeling and clustering time series. For each dataset,
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we randomly selected samples of sizes equal to 25%, 50%, 75%, and 100% of
the size of the entire dataset and, for each sample and method, we used the
respective best preprocessing setup.1 We left the string matching based ap-
proaches (i.e., LCSS, EDR, and ERP) out of this presentation since they
revealed to be drastically slower than all the other methods.2

Performances in Time Series Modeling

Table 9.4 summarizes the best performances (in milliseconds) in modeling
time series on the various datasets. PAA, PLA, SAX, SD, and DWT per-
formed as the fastest methods; actually, this result was not surprising since
simpler models obviously lead to higher efficiency and, at the same time, lower
accuracy. DFT and APCA were always by far slower than the other methods.
Our DSA was close to the fastest methods in most cases; in particular, com-
pared to Chebyshev, the larger the dataset the faster was modeling by DSA
with respect to modeling by Chebyshev polynomials. It is important to note
that, since DSA shares with PAA, PLA, SD, and SAX the same asymptotic
time complexity (i.e., linear with the series length), the time differences be-
tween DSA and these fast methods should be not really relevant in practical
contexts.

Table 9.4. DSA vs. competing methods: best time performances (msecs) in time
series modeling

GunX Trace Control CBF Twopat Mixed- Ovarian
data Chart BagSh. Cancer

DFT 2,835 8,276 1,652 3,679 4,701 286,829 570,056
DWT 8 13 9 5 17 48 181
CHEBY 58 58 173 87 232 46 14
SD 7 15 14 17 24 65 262
PLA 4 7 2 3 4 21 46
PAA 2 3 2 2 4 14 41
SAX 8 13 11 11 19 56 67
APCA 1,758 7,151 412 657 2,358 68,739 135,982
DSA 15 40 27 31 52 143 391

Performances in Time Series Clustering

We also evaluated the time performances for the clustering task, including
in this stage the time required by the series modeling task as well; for the sake
of brevity, we present here results obtained by the K-Means algorithm, and
we focus on time warping-aware representations.
1 For each of the smaller samples of the datasets, we performed a preprocessing

stage for the various methods, as we did for the entire datasets (see Sect. 9.4.1).
2 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB

memory and running Microsoft WinXP Pro.
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(a) GunX (b) GunX

(c) Tracedata (d) Tracedata

(e) ControlChart (f) ControlChart

(g) CBF (h) CBF

Fig. 9.2. DSA vs. competing methods: time performances in time series modeling
and clustering (GunX, Tracedata, ControlChart, CBF)

Figures 9.2–9.3 and the summary reported in Table 9.5 show that DTW
on DSA drastically improved the clustering performances of basic DTW and
DDTW; clearly, this was a consequence of the dimensionality reduction due
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(a) Twopat (b) Twopat

(c) Mixed-BagShapes (d) Mixed-BagShapes

(e) OvarianCancer (f) OvarianCancer

Fig. 9.3. DSA vs. competing methods: time performances in time series modeling
and clustering (Twopat, Mixed-BagShapes, OvarianCancer)

to the segmentation performed by DSA. More surprisingly, DSA behaved very
close to the fastest competing methods: indeed, it is interesting to note that
the performance difference between DSA and PAA, SAX, PLA, and SD was
not as evident as in the modeling performances previously observed; in par-
ticular, DSA-based clustering was even faster than PAA, SAX, PLA, and SD
on Twopat (the largest dataset) and Mixed-BagShapes (the dataset with the
highest number of classes). This suggests that our DSA is able to yield a
time series representation that might require more time to be computed, but
generally is more accurate yet convenient to fit the whole task of clustering.
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Table 9.5. DSA vs. competing methods: summary of best time performances
(msecs) in time series modeling and clustering

GunX Trace Control CBF Twopat Mixed- Ovarian
data Chart BagSh. Cancer

DTW 1,548 8,018 2,298 2,564 3,548 594,446 4,071,815
DDTW 2,518 10,345 3,117 2,789 4,971 664,885 4,098,329
FTW 368 1,491 405 926 5,254 237,823 5,252,045
DTW on SD 511 2,912 814 1,317 870 240,744 22,655
DTW on PLA 253 1,286 652 2,342 1,103 218,272 20,588
DTW on PAA 197 1,103 601 2,262 812 216,196 18,685
DTW on SAX 413 1,113 805 1,132 1,941 282,312 18,403
DTW on APCA 2,865 19,503 3,793 2,563 4,864 749,003 9,282,532
DTW on DSA 521 3,733 792 1,587 377 121,402 23,821

9.4.3 Summary of Results and Discussion

We evaluated the capabilities of our DSA as well as the competing methods
in supporting similarity detection within a clustering framework. Of course,
the extent to which such a framework actually led to good solutions depend
on how each of the following critical aspects was devised: (i) the preprocess-
ing scheme, (ii) the similarity method and its application in relation to a
representation model, and (iii) the clustering algorithms.

Since the focus of this work is on a compact representation of derivative-
based features of time series and its impact on similarity detection, it should
be emphasized that the evaluation framework is indeed “parametric” with
respect to the algorithms. In order to provide a complete specification of our
evaluation framework, we conducted experiments using standard clustering
algorithms mainly because of their simplicity, applicability, and relatively less
dependence on algorithmic parameters.

Facing with the experimental results presented in the previous sections
and having the focus on point (ii), we can summarize the main remarks of
our study as follows:

� Applying the dynamic time warping (DTW) to DSA sequences leads to
clustering solutions that are more accurate than those obtained by us-
ing DTW on the original time series. The advantage taken by DSA is
essentially due to the combination of a derivative-based feature genera-
tion with dimensionality reduction by segmentation. In this way, DTW on
DSA performs as good as or better than the major methods for time series
representation and dimensionality reduction (i.e., SAX, APCA, PLA, SD,
PAA, Chebyshev polynomials, etc.) and even than DDTW alone.

� Modeling a time series into a DSA sequence is reasonably fast if com-
pared to other methods of dimensionality reduction, which is supported
by a computational complexity that is linear with the series length; most
importantly, the trade-off between accuracy and compactness of DSA se-
quences makes performing similarity detection more advantageous.
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Involving the DSA Model
into Real Case Applications

Abstract This chapter presents some results aimed at assessing the effectiveness
and the efficiency of the DSA time series representation model introduced in the
previous chapter when exploited for representing data from scenarios that are ap-
parently very different from that for which it is originally conceived (i.e., the context
of time series data management). In particular, the focus here is on mass spectrome-
try (MS) biomedical data, and low-voltage (LV) electricity load profile data. In this
respect, we present MaSDA, a system performing advanced analysis on MS data
represented according to the DSA model. MaSDA system provides a wide set of MS
preprocessing operations and embeds a number of tools implementing various tasks
of data mining and knowledge discovery, in order to assist the user in taking criti-
cal clinical decisions. Furthermore, we focus on the characterization of LV customers
based on their consumption data, by describing a clustering framework for detecting
groups of customers having similar consumption behavior. The proposed framework
exploits the DSA model for representing load profile data and was evaluated on a
real application concerning the characterization of Enel (i.e., a large international
energy utility) customers.

10.1 Mass Spectrometry Data Management

Mass spectrometry (MS) is a powerful analytical technique that can be
applied to tissue or serum samples in order to extract interesting biological
information in the form of proteomic patterns [GV03, AM03]. A mass spec-
trometer is able to produce and separate ions of different masses from a sam-
ple, so that the output spectral data consists of a vector of counts, where each
count is the number of ions hitting the spectrometer detector during a small,
fixed interval of time. A mass spectrum is typically represented as a plot of ion
abundance (intensity) versus the mass-to-charge ratio (m/z ). A sound analysis
of mass spectra allows for identifying macromolecules contained in the origi-
nal compounds by associating (portions of) proteins to their peak expressions
in a spectrum. Techniques for spectra generation usually depend on sample
preparation and ionization, used instrument and ions/macromolecules detec-
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tions. Mostly used methods are Matrix-Assisted Laser Desorption/Ionization
- Time Of Flight Mass Spectrometry (MALDI-TOF MS) [KH88] and Surface-
Enhanced Laser Desorption/Ionization - Time Of Flight Mass Spectrometry
(SELDI-TOF MS) [HY93].

Mass spectrometry approaches have been recently coupled with advanced
data analysis techniques in order to discover useful knowledge that can aid
clinicians in early detecting disease-related biological states. A common task of
MS knowledge discovery consists in classifying spectra to discriminate them
based on their biological states (e.g., healthy or diseased individuals). This
task has to cope with huge dimensionality and frequently occurring noise in
MS data, and becomes even harder when a training set of positive/negative
examples from data is poorly available. In this case, the goal is to organize a
collection of spectra (whose classification is unknown) into meaningful groups
(i.e., clusters), based on interesting relationships discovered in the data. Clus-
tering of MS data finds natural application to many real MS scenarios, since
the various pathologic states from clinical studies need to be identified and
discriminated in an unsupervised way.

A further crucial point in mass spectrometry is preprocessing. MS data pre-
processing has been recognized as a mandatory phase in mass spectra data
analysis [CBM07]. The need for preprocessing mass spectra arises since (i)
data obtained from a mass spectrometer have very large dimensionality and
(ii) MS data are naturally corrupted by various noisy factors. Several research
studies have been proposed on the development of preprocessing steps for MS
data (e.g., [CBM07, WNP03]), and in some cases they have focused on specific
steps, such as baseline subtraction [WCD+05, SS04, RJFD99], peak identifi-
cation [WKG04, YMA+03], and peak alignment [WCC05, Jef05, SS04]. Also,
there has been recently a growing interest for developing MS data preprocess-
ing systems that are able to fulfill the following main requirements: filtering
data and highlighting relevant spectra portions with respect to non-relevant
ones (e.g., noise), and allowing the user to perform the various preprocessing
stages iteratively and interactively.

In this section, we present MaSDA – Mass Spectrometry Data Analysis, a
system for advanced analysis of MS data [GPT+09c]. The general objective
of MaSDA is to assist the user in discovering useful knowledge from MS data.
The discovered patterns of knowledge might eventually support the user (e.g.,
the clinician) to take critical decisions; for instance, if interesting relationships
on certain biological conditions referring to a given disease have been found
out by analyzing MS data, then one might use this new information to design
new therapies.

The key idea underlying our approach to MS data analysis, which is im-
plemented in the MaSDA system, is to exploit the temporal information im-
plicitly contained in mass spectra and model such data as compact time series
by employing the DSA model (cf. Chapt. 9). The proposed MS data represen-
tation model is aimed to take some advantages with respect to the traditional
count-vector-based approaches to MS data representation, in particular:
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� The problem of high dimensionality in MS data is addressed by identifying
variable-length segments in the time series representing mass spectra. Each
one of these segments is conceived to be comprised of locally tight points,
and is finally mapped to a synthetic information. This enables to dras-
tically reduce the number of noisy dimensions while preserving relevant
features (i.e., trends in the series profile).

� The critical task of preprocessing MS data is relatively simplified by em-
ploying major existing techniques for similarity detection in time series
(cf. Chapt. 8), which allow for dealing with mass spectra in a way more
robust to noise and suited to different profiles of the spectra.

Another important aspect of our MS data analysis system is that it offers
a graphical tool for preprocessing the raw mass spectra, with the following
main features [GPT+08b]:

� Wide set of supported preprocessing operations – it is designed to cover
most of the MS data preprocessing steps that have been recognized as
relevant in the literature;

� Efficiency – it guarantees high performance in MS preprocessing, by adopt-
ing fast algorithms for each step. This allows for efficiently dealing with
high dimensional data;

� Support for user interaction – it enables the user to monitor and control
the whole preprocessing task; in particular, the user can choose which
preprocessing steps have to be performed and their execution order, and
she/he can properly set the parameters involved into each step;

� Ease-to-use – it provides a user-friendly graphical interface and a simple
wizard which guides the user in each preprocessing step;

� Web-based access – it makes use of the Java� Web Start technology,1

which allows for launching the tool directly from the Web.

Besides the functionalities of MS preprocessing and time series based MS
modeling, MaSDA system is designed to perform various tasks of MS data
analysis, by employing data mining and knowledge discovery techniques, and
to evaluate and visualize the patterns of knowledge discovered from the input
MS data. As experimentally proved on publicly available datasets, our sys-
tem has been shown to be a valid support for the user interested in effectively
and efficiently analyzing MS data. As experimentally proved on publicly avail-
able datasets, our system has been shown to be a valid support for the user
interested in effectively and efficiently analyzing MS data.

10.1.1 Prior Work in Mass Spectrometry Data Management

In the last few years several systems for MS data management have been
developed, ranging from domain-specific tools to general-purpose platforms.

1 http://java.sun.com/products/javawebstart/
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For instance, the database management system presented in [TSD+06] in-
volves a statistical data analysis software to compare healthy and sick patients.
MS-Analyzer [CV07] is a system that allows the ontology-based design of dis-
tributed applications for management, preprocessing and graphical analysis
of MS data.

Recently, there has been a lot of research confirming the need for extract-
ing knowledge from MS data. This has mainly involved various tasks aimed
at identifying biological patterns and organize them at different degrees of
automation.

Data mining techniques have been recognized as a valuable support
to discovering significant patterns from MS data. The main focus in the
MS domain has been on the task of supervised classification, or simply
classification, that is learning how to assign each instance with a cate-
gory from a set of predefined categories (classes). The problem of MS data
classification has been addressed by using different machine learning ap-
proaches, including decision trees [GFdS+05, PKS+04], discriminant analy-
sis [MEZ+05], support vector machines [PKS+04, WNP+04], and genetic algo-
rithms [BMW+03, PAH+02]. A comparison of different classification methods
has been presented in [WAF+03, WNP03].

Clustering of MS data has been attracting a growing interest in various
MS applications. A common way to address this problem is to apply clas-
sic clustering schemes and equip them with the Euclidean distance. For in-
stance, [PWJ+04] uses an average link agglomerative hierarchical clustering
equipped with Euclidean distance in order to identify groups of proteins that
show similar patterns of proteins copurifying with components of TFIID.
In [SSML06], hierarchical clustering is applied to consolidate peak lists of
GC-MS (Gas Chromatography-Mass Spectrometry) metabolic profiling data
acquired on Leishmania mexicana, and to separate the wild-type and two
mutant parasite lines based on their metabolic profile.

The study presented in [SHR+03] is focused on comparing spectra with
respect to their peak heights. This is accomplished by employing principal
component analysis to compare relative orders of the peak heights rather
than directly peak heights.

[ZAHB00] uses a grid-based clustering algorithm to discover the functional
molecules for determining structures of the pharmacological compounds.
[BGM+05] proposes to map spectra to a complex space using discrete Fourier
transformation. A thresholding approach is then adopted to denoise and re-
duce the length of each spectrum, and Bayesian model-based clustering is
applied to the reconstructed data. However, poor experimental tests (only
on one, small dataset of 70 patients) do not support the understanding of
practical impact of this advanced approach.

It should be noted that most approaches to clustering MS data mainly
differ each other with respect to the preprocessing steps and the clustering
schemes used, whereas spectra representation models have been rarely inves-
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tigated. Within this view, the basic idea presented here is to model spectra
emphasizing the natural temporal evolution of protein profiles.

Also, most of the above works on MS data classification/clustering as-
sume that clinical studies have been conducted on the data collections being
available a-priori knowledge on the data domain. This typically drives the
development of classification/clustering methodologies such that they may fo-
cus on only some portions of the original spectra, that is portions which likely
contain potential discriminatory patterns (biomarkers). By contrast, our ap-
proach can be in principle applied to the entire spectra as well; nevertheless
our underlying MS representation model is able to automatically performs
dimensionality reduction on the spectra, thus preserving their relevant infor-
mation.

10.1.2 The Mass Spectrometry Data Analysis (MaSDA) System

The MaSDA system consists of five main modules, which are sketched in
Fig: 10.1 and described below:

1. MS Data Preprocessing: it performs one or more preprocessing steps on
the raw spectra in order to make them amenable to the further analysis
stage. In particular, this module includes at least the following prepro-
cessing operations: range cut, peak smoothing, detection of valid peaks,
baseline correction, quantization, and normalization.

2. Time Series based MS Data Modeling: this module transforms the pre-
processed MS data into time series, using a model conceived to maintain
the significant trends (peak profiles) while reducing the data dimensions.

3. MS Data Analysis: it includes a number of submodules each performing a
certain task of knowledge discovery, such as cluster analysis, frequent pat-
tern discovery, data summarization, and so on. The input for this module
is the preprocessed spectra, which is of the form either original (output of
module 1) or based on time series (output of module 2).

4. Pattern Evaluation: it is in charge of assessing the validity of the discov-
ered knowledge patterns.

5. Knowledge Presentation: this module finally presents the discovered knowl-
edge by using visualization tools.

10.1.3 Pre-analysis Processing

A raw spectrum generated by a mass spectrometer is substantially a
combination of three components: the true signal, a baseline signal, and
noise [CBM07]; in particular, the true signal contains biological information,
whereas the base intensity level (baseline) varies from point to point across
the m/z axis, so that intensity values that are under the baseline represent
ground noise and should be hence filtered out. Separating and reconstructing
such individual components from a raw spectrum is a hard task, since their
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Fig. 10.1. The overall conceptual architecture of the MaSDA system

analytical forms are not known. Thus, spectra usually need to be subject to
one or more preprocessing operations, in order to make them amenable to
further analysis phases.

Since the variety of spectrometry platforms, experimental conditions and
clinical studies, there exists a number of preprocessing operations (see, e.g.,
[CBM07, WNP03]). While there has not been shared agreement about a pre-
processing scheme, a reasonable list of preprocessing steps on mass spectra
can be given as follows:

� calibration, which is used to map the observed time of flight into the in-
ferred mass-to-charge ratio;

� filtering or denoising, which aims to reduce random noise generated by
electronic or chemical causes;

� baseline correction, which is in charge of recognizing and filtering out the
baseline signal of mass spectra;

� normalization, which makes peak intensities understandable over a uni-
form range;
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Fig. 10.2. A sample screenshot of the MaSDA system for MS preprocessing

� peak detection, which is in charge of locating specific proteins or peptides
on the identified locations on the m/z axis and typically involves an assess-
ment of the spectra local maxima and their signal-to-noise ratio (S/N );

� peak quantification, which represents each detected peak by means of a
concise information (e.g., peak heights or areas);

� peak matching/alignment, which aims to recognize the peaks in different
samples that correspond to the same biological molecule.

In this section we describe the capabilities of the MaSDA module for MS
preprocessing we called MSPtool. MSPtool is a Java� based tool that imple-
ments most of the MS preprocessing operations discussed above (cf. Fig. 10.2).
This tool offers its features visually in order to assist the user in performing
an MS preprocessing task, i.e., observing the raw spectra, selecting an appro-
priate sequence of preprocessing steps, and choosing the parameter setting for
each of the selected preprocessing steps.

MSPtool is able to deal with various formats storing the raw spec-
trum/spectra to be preprocessed, including plain-text files, comma separated
values files (CSV), and XML data. Also, the tool allows the user to graphically
represent preprocessed spectra, which is useful to visually explore (and com-
pare) the spectra profiles before and after the preprocessing step. Figure 10.3
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Fig. 10.3. MSPTool preprocessing wizard - summary of the preprocessing settings

shows a screenshot of the last step of the preprocessing wizard, which reports
a summary of the preprocessing setting; in this step, it is also possible to
change the order of the selected preprocessing operations.

It should be noted that, although MSPtool has been originally designed as
a standalone application, we have also provided a Web-based version using the
Java� Web Start technology. This feature of the tool is mainly motivated by
our intention to make MSPtool publicly available and to simplify the processes
of deployment and upgrade of the tool.2 In the following, we describe the main
steps of MS data preprocessing involved into MSPtool.

2 A beta version of the MS data preprocessing tool is available at the following
Web address: http://polifemo.deis.unical.it/∼gtradigo/jnlp/msptool/
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Range Cut

This step performs a cut of the m/z range of the spectra, in order to
filter out those portions of spectra that do not contain relevant biological
information.

Peak Smoothing

Peak smoothing falls into the category of peak detection/quantification
operations. This step aims to smooth the peak profiles in the spectra and to
reconstruct the theoretical Gaussian profile of the peaks. An ideal peak profile
comprises two parts: a monotonic ascending side and a monotonic descending
side. We call M-peak a spectrum peak having its intensity higher than both
the previous and the next point, i.e., a local maximum in the spectrum (cf.
Fig 10.4 (a)–(b)).

The peak smoothing algorithm has a parameter wp, peak amplitude, which
is a function of the mass spectrometer resolution. This parameter can be ini-
tially set to the average width of peaks in the spectrum, or modified according
to the data features. Basically, the algorithm works as follows: first, it detects
all the M-peaks in the spectrum; each M-peak (except the last one) is com-
pared with the next M-peak. If the distance between these two M-peaks is
lower than wp/2 then either a descending phase or an ascending phase can
occur, and the spectrum is modified such that the resulting peak has the
expected pseudo-Gaussian shape for both the ascending and the descending
sides (cf. Fig. 10.4 (c)–(d)).

Valid Peaks Recognition

Valid peaks recognition is a further step of peak detection/quantification.
This step aims to recognize as valid peaks the local maxima into a mass spec-
trum that satisfy specific requirements. In particular, the algorithm for valid
peaks recognition implemented into MSPtool takes into account the signal-to-
noise ratio (S/N ) and works as follows: for each spectrum, the S/N at each
local maximum of the spectrum is computed as the ratio of the intensity at
the maximum to the local noise estimate; then, only the local maxima having
S/N greater than a user-defined threshold (multiplicative factor) are recog-
nized as valid peaks. The non-valid peaks in a spectrum are discarded from
the further analysis.

Baseline Correction

This step aims to identify the baseline signal in the spectra and filter out
all spectra intensity values below the baseline. The user can choose a function
that approximates the baseline (i.e., the baseline function) and setting the
parameters for each function. MSPtool offers the following baseline functions:
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(a) (b)

(c) (d)

Fig. 10.4. Peak smoothing: (a) example M-peaks and (b) the corresponding ideal
peak; (c) three local M-peaks and (d) the resulting profile after smoothing

linear function, logarithmic function, exponential function and piecewise lin-
ear function. The first three functions approximate the baseline as a linear,
logarithmic and exponential function, respectively, whereas the definition of
the piecewise linear function is as follows. The m/z range of each spectrum is
divided into a user-defined number of equally-sized windows. The final piece-
wise linear function is composed by a number of linear functions, each of them
properly defined according to the associated window. For each window, the
corresponding linear function is computed by solving a line fitting problem to
the local minima in the window.

Quantization

This step performs a quantization of the spectra, i.e, a discretization of
the original intensity values according to specific quantization levels. A non-
uniform quantization model is used in the MPStool in such a way that two
or more ranges in the intensity axis are identified and subject to different
fine-grained quantization.
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Normalization

Spectra normalization changes spectra shapes by transforming original
intensity values into new ones proportionally calculated according to a certain
fixed range. MSPtool implements various normalization techniques, including
z-normalization and min-max normalization. The former subtracts the mean
over all the spectra intensities from each intensity value and then divides this
difference by the standard deviation over all the spectra intensities; the latter
scales the intensity values such that, for each m/z and over all the spectra,
the smallest intensity value becomes zero and the largest intensity becomes
one.

10.1.4 Time Series-Based Modeling of MS Data

A (preprocessed) mass spectrum is a sequence of paired values S =
[((m/z)1, I1), . . . , ((m/z)m, Im)], where each pair is comprised of a mass-to-
charge-ratio value and the associated intensity value. A mass spectrum so
defined can be trivially modeled as a time series X = [(y1, z1), . . . , (ym, zm)]
whose yj correspond to the spectrum intensity values Ij , and the timestamps
zj correspond to the values (m/z)j . Indeed, the notion of time implicitly lies
in the sequence of mass-to-charge values.

Time series representing mass spectra are typically high dimensional data.
Thus, it is desirable to model such time series into a compact representation
that synthesizes the significant variations in the time series profile. For this
purpose, we exploit the DSA representation model introduced in Chapt. 9.

We remark that the number d of segments produced by DSA is usually
much smaller than the number of original points in the series (i.e., d ¿ m).
This enables a significant increment of performance efficiency for the various
data analysis algorithms that will be performed on DSA representations of
mass spectra.

10.1.5 Using the MaSDA System for Organizing MS Data

A major task of MS knowledge discovery consists in classifying spectra in
order to discriminate them on the basis of their biological information (e.g.,
healthy or diseased individuals). To cope with huge dimensionality and fre-
quently occurring noise in MS data, this task requires careful preprocessing
and modeling of the data. However, the organization task is particularly diffi-
cult when a-priori knowledge on the predefined set of categories or a training
set of positive/negative examples from data is poorly or not available at all.
In this case, the goal is to infer an organization of a collection of MS data into
meaningful groups (i.e., clusters), based on interesting relationships discov-
ered in the data. Clustering of MS data finds natural application to many real
MS scenarios, since the various pathologic states from clinical studies might
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Fig. 10.5. A screenshot of the MaSDA tool for clustering MS data

require to be discovered in an unsupervised way. In the following we describe
how MaSDA can be used to organize MS data by a task of cluster analysis.

Figure 10.5 shows a screenshot of a Java� based tool embedded in MaSDA
for clustering MS data (available from the OvarianCancer dataset [PAH+02], cf.
Appendix A). On the left of this figure, we can observe a number of component
panels devoted to the configuration of a clustering experiment, which involves
the choice of the preprocessing (smoothing) function, the model of cluster
representative, the method of representation and similarity between series,
and the algorithm of clustering. On the right of the figure, each of the output
clusters and relating representative can be explored using different choices of
visualization; the clustering results can be also saved into a file for further
reloading. Also, we can observe in the menu bar the presence of a command
for launching the preprocessing tool (MSPtool) previously described.

Another important task allowed by MaSDA is data summarization. Given
a set of MS time series, the objective here is to generate a summary, or proto-
type sequence that is able to capture the most relevant features of the series
in the given set. Since the input series may have different length and scales,
the task is not trivial (i.e., we cannot directly resort to the computation of an
“average” time series); rather, a concise representation is desirable to include
the significant trends in the set as well as to filter out irrelevant informa-
tion [GPTG09a]. Figure 10.6 shows an example of summarization of a certain
set of time series data.
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(a) (b)

Fig. 10.6. An example of data summarization: (a) a set of time series and (b) the
computed prototype

10.1.6 Experimental Evaluation

The MaSDA system has been tested on various real MALDI/SELDI-TOF
MS data obtained using different clinical studies under different mass spec-
trometry platforms and experimental conditions; in particular, some of the
used collections are publicly available from authoritative sources (e.g., the
NCI’s Center for Cancer Research [fCRsp]), other ones have been provided by
the proteomics laboratory at the Magna Græcia University of Catanzaro.3

A major goal of the experiments conducted on MS data by using MaSDA
was to identify groups of subjects that show similar characteristics according
to the expected pathological states (e.g., in the Prostate dataset [POP+02]
(cf. Appendix A) different cancer or benign conditions at various levels of
PSA). Moreover, in this context a challenge is represented by the discovery
of the proteomic profiles that distinguish disease-related or cancer conditions
from the healthy ones. For instance, some discriminatory patters might be
found out around early m/z values, other ones might be detected according
to sequences of peaks at a certain intensity level. Intuitively, this issue can
be more easily addressed by exploiting our time-series-based modeling of MS
data: indeed, the compact representation that is substantially comprised of
relevant features in the data (while discarding various noisy factors) favors
the identification of significant patterns in the spectra.

In this section we describe the experimental evaluation aimed to assess ef-
fectiveness of the proposed system. We first present the data used in the main
experiments, the cluster validity criteria adopted, and our evaluation method-
ology. Then we discuss the experimental results from both a quantitative and
qualitative point of view.

3 http://proteomics.unicz.it
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Datasets

Typical datasets in real-world MS application domains contain just tens
or hundreds of spectra [CBM07]. We used datasets available from the NCI’s
Center for Cancer Research [fCRsp], namely Cardiotoxicity, Pancreatic, and
Prostate. All these datasets contain SELDI-TOF spectra and were obtained
using different clinical studies under different mass spectrometry platforms
and experimental conditions (cf. Appendix A).

Cluster Validity

To evaluate clustering quality, we exploit the availability of a reference
classification for the data and use measures that allow for computing how
well a clustering solution fits a predefined scheme of known classes (natural
clusters). In particular, we resort to the F1-Measure (Def. 2.5) and entropy
(Def. 2.7) external cluster validity criteria.

Evaluation Methodology

The objective of our evaluation methodology was to automatically mea-
sure the quality of a clustering solution. This requires to define the following
elements for each experimental test: the data, the way(s) to preprocess the
data, the clustering algorithm along with the distance/similarity measure and
the choice of number of clusters, and the quality measure(s). In this work, we
are given the previously presented datasets, and F1-Measure and Entropy as
the quality measures.

Regarding clustering algorithm(s), it should be emphasized that the pro-
posed system is parametric with respect to the clustering scheme. In this
work, we resort to centroid-based partitional K-Means clustering algorithm
(cf. Chapt. 2), due to the advantages offered in terms of simplicity, execution
time and space requirement. We equipped the K-Means with either the Eu-
clidean distance (L2) or the Dynamic Time Warping (DTW) (cf. Chapt. 8);
the latter has been used on the spectra modeled as time series by means of
our DSA, whereas the Euclidean distance is referred to as the baseline method
for computing distance among MS data.

As far as the data preprocessing, we did not fix a unique way to preprocess
data but rather we identified the following sequences of operations as different
preprocessing setups:

(S1) baseline subtraction, peak detection, normalization;
(S2) peak detection, baseline subtraction, normalization;
(S3) baseline subtraction, normalization;
(S4) peak detection, normalization;
(S5) peak detection, baseline subtraction;
(S6) baseline subtraction, peak detection;
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(a)

(b)

(c)

Fig. 10.7. Evaluating MaSDA system—clustering quality results (F1-Measure on
the left, Entropy on the right): (a) Cardiotoxicity, (b) Pancreatic, and (c) Prostate

(S7) baseline subtraction;
(S8) peak detection;
(S9) normalization.

Results

For each test dataset, we conducted various runs of K-Means algorithm,
by varying the preprocessing setup, and compared the results obtained by our
time series based approach with the standard Euclidean approach.

Quantitative Evaluation

We initially focused on testing the ability of the framework to detect and
distinguish all the meaningful groups in the data, that is 4 for Cardiotoxicity
and Prostate and 2 for Pancreatic. Thus, for all experiments on a specific
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Table 10.1. Evaluating MaSDA system: summary of clustering results on the var-
ious test datasets

DSA L2
# clust. F1 entr preproc. F1 entr preproc.

(K) (prec./rec.) setting (prec./rec.) setting

Cardiotoxicity 4 .72 .19 S7 .69 .19 S4/9
(.75 / .68) (.70 / .69)

Cardiotoxicity 2 .76 .38 S2 .67 .45 S4/9
(.78 / .73) (.67 / .67)

Pancreatic 2 .57 .48 S3 .55 .49 S3
(.58 / .56) (.57 / .53)

Prostate 4 .76 .14 S8 .75 .14 S8
(.84 / .69) (.84 / .68)

Prostate 2 .78 .34 S8 .77 .34 S8
(.79 / .78) (.79 / .76)

dataset, we fixed the number of clusters exactly to the number of classes
associated with that dataset.

Figure 10.7 shows the quality results obtained on the various datasets,
and compares our DSA-based approach to the standard Euclidean distance.4

Clustering performances were generally affected by the selected preprocess-
ing setup, while baseline subtraction revealed to be essential for improving
the clustering quality in most cases. Notice that only setups S4, S8 and S9
were considered for Pancreatic, since this dataset was been already subject to
baseline subtraction.

Our DSA-based approach achieved reasonably good clustering results at
least in Cardiotoxicity and Prostate; in Pancreatic, clustering inevitably resulted
in lower performances mainly due to the dominant presence of m/z values with
very low intensity values and just a few characteristic trends in the spectra.
Anyway, for all datasets the DSA-based approach was able to achieve higher
F1-Measure and lower entropy scores than the standard Euclidean approach.

Table 10.1 summarizes the quality results (i.e., F1-Measure along with
corresponding precision and recall, and entropy) referring to the best prepro-
cessing setups; for each dataset and method, the best preprocessing setup is
that leading to the highest quality in terms of F1-Measure. This table also
includes results obtained by a two-class task of clustering; precisely, for Car-
diotoxicity and Prostate, we also tried to select only the data assigned with
the definite cancer (diseased) or the definite non-cancer (healthy) classes, and
then we performed clustering on this subsets. The objective here was to give
emphasis on distinguishing solely the extreme classes.

Performing K-Means with DTW on DSA sequences behaved as good as
or better than standard Euclidean distance on the original spectra, up to a
10% improvement (Cardiotoxicity, 2 classes). It should be noted that the ad-
vantage of using the DTW on DSA sequences becomes important since the
DSA model yields compact yet dense representations of the original spectra.

4 Reported results were averaged over 100 runs of K-Means algorithm with a very
low standard deviation (ranging between 0.001 and 0.008).
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(a)

(b)

(c)

(d)

Fig. 10.8. Evaluating MaSDA system—clusters vs. natural classes from
Prostate: (a) cluster and (b) class of cancer with PSA>10 ng/ml; (c) cluster and
(d) class of no evidence of disease

The lower dimensionality of the spectra-series achieved by DSA is beneficial
for the efficiency of the clustering task (and further post-processing analysis),
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while not affecting negatively the clustering effectiveness. To report some de-
tails, the following data compression ratios were achieved (on the preprocessed
spectra): 64% on Cardiotoxicity, 65% on Pancreatic, and 97% on Prostate. The
latter result is particularly significant since it shows that a very high com-
pression was obtained for a dataset on which DSA still performs very closely
to (slightly better than) the standard approach based on L2.

Qualitative Evaluation

It is useful to gain an insight into the output clusters with respect to the
real classes. In particular, here we concentrate on Prostate and compare the
definite cancer and no-evidence-of-disease clusters to their respective group-
ings in the reference classification (Figure 10.8)—for the sake of comparison,
original spectra have been displayed for both clusters and classes. In Prostate,
as discovered by authors of the study in [POP+02], there is a number of
main discriminatory patterns, mostly distributed in the early m/z values.
Figures 10.8(a) and (b) plot spectra belonging to the cluster and the class of
definite cancer, respectively. At a first glance, the two plots look quite simi-
lar, suggesting that most cancer spectra have been correctly recognized. Also,
we have highlighted on Figs. 10.8(a) some of the most evident trends that
distinguish the cancer conditions from the healthy ones. Analogously, we can
observe similar graphs for the healthy cluster/class (Figs. 10.8(c)/(d)).

Other Preliminary Results

In addition to the ones presented above, further experiments were per-
formed on two more datasets [GPT+07]: OvarianCancer [PAH+02] (cf. Ap-
pendix A), and a smaller dataset consisting of MALDI data generated at
the proteomics laboratory at Magna Græcia University of Catanzaro. In both
datasets, spectra fall into either the healthy class or the diseased class. Fig-
ure 10.9 shows raw and preprocessed spectra of OvarianCancer dataset.

Noise reduction was performed considering a linear model for the baseline.
A peak was recognized as valid if its maximum intensity value is at least
2.5 times the corresponding noise intensity value. Quantization step was set
to 2,000 counts for intensity values within the range [0..10,000] and to 500
counts for values greater than 10,000. Moreover, the range of (m/z) values
was reduced to focus only on significant portions of the spectra. In particular,
the cut involved two m/z intervals: the first interval corresponds to intensity
values close to zero (i.e., with m/z ranging within [0..15,000]) and the second
one corresponds to intensity values identifying spectrum contaminants such
as the polymer between [43,000..56,384] m/z.

Clustering results on OvarianCancer highlighted high effectiveness provided
by the proposed system. In particular, the expected two classes were well-
recognized with precision, recall and F1-Measure values measured in 0.88,
0.86 and 0.87, respectively. Note that such values are sufficiently high (i.e.,
they are close to 1) proving that our system was capable both to identify
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(a) (b)

(c) (d)

Fig. 10.9. Evaluating MaSDA system on OvarianCancer dataset: on top, raw spectra
of (a) control class and (b) diseased class; on bottom, preprocessed spectra of (c)
control class and (d) diseased class

homogeneous groups of MS data and to separate different data in distinct
classes, according to biomarkers associated to discriminant peaks.

The framework was also tested on the MALDI dataset produced at Magna
Græcia University of Catanzaro. It is worthy to noticing that we encoun-
tered different issues in the preprocessing phase with respect to OvarianCancer,
which are due to their different originating laboratories. Nevertheless, MaSDA
system obtained comparable quality results.

10.2 Low-voltage Electricity Customer Profiling Based
on Load Data Clustering

Today energy markets are characterized by a growing insecurity in the
wake of their liberalization. Due to an increasing customer volatility, it is
becoming more difficult for utilities to plan their investments for the next
decades. The new deregulated energy market needs utilities that have to face
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with challenging issues, which mainly arise from the new way of conceiving
frameworks as customer-centric instead of early supplier-centric ones. In ad-
dition, the problem of characterizing and predicting their customers’ behavior
and fitting a proper tariff policy accordingly has been recognized as relevant
in this context. Designing new tariff structures allows the energy utilities to
encourage competition, efficiency, economical use of the resources. By means
of proper tariffs, it is possible to support customers’ interests and, at the same
time, to recover the cost of electricity in a reasonable time. At the end of the
chain air pollution due to CO2 power plants emissions could be reduced (peak
shifting, power losses reduction) [McC03, PPB97]. Enel, a large international
power utility, has recently completed an Italian project called the Telegestore
project [BCR05, Rog07]. New smart meters recently adopted are able to mea-
sure and store load profiles of their mass-market LV customers in a flexible
and effective way.

In recent years, problems in load profile data management have been arisen
due to the technological improvement in electricity utility devices. A signifi-
cant research effort has been focused on load profile classification, especially
regarding clustering of medium-voltage customers and short-term load fore-
casting of anomalous days.

Customer classification puts the basis for properly designing tariff struc-
tures. The use of load pattern-based features has been identified as a key factor
for classifying customers on the basis of their electrical consumption behavior.
Classification allows utilities to promote collective tariffs rather than individ-
ual ones for each customer.

All the proposed techniques for load profile classification generally be-
long to pattern recognition and data mining approaches [FRVG05, CNP+05,
CNP06, NDJR06, ALB+07, THD07, TSTK08]. Load profiles are usually rep-
resented as time sequences and the notions of proximity used for comparing
them are typically based on the Euclidean distance. In the context of load
profile clustering, the most used approaches refer to partitional clustering
and hierarchical clustering (cf. Chapt. 2).

In this section, we present a clustering framework for electricity customer
load profiles, which is supported by information on meta-data (e.g., customer
type, meter type, day, contract, location) [GPT+09a]. Enel supported this
work by providing data about 30,000 LV load profiles of anonymous Italian
customers. Handling such a large collection of customer load data has repre-
sented an important effort of our work. The proposed framework exploits a
time series-based representation of load profiles by means of the DSA model
(cf. Chapt. 9).

A major emphasis of our study is on the most typical class of electricity
customers, i.e., private, residential domestic customers. Moreover, differently
from other related work, each customer load profile was segmented with re-
spect to the type of day, which enabled a characterization of the customers’
profiles on a per day basis.
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We performed experiments by varying the clustering algorithm and the
distance measure. More precisely, we used the standard K-Means and the
Euclidean distance as baseline method. However, we also resort to the DTW
(Dynamic Time Warping) distance, which is widely known to provide a better
way to compare time series. Moreover, we introduce a simple top-down parti-
tional algorithm, named TS-Part. A major feature of TS-Part is that, unlike
the K-Means algorithm, it does not require the user to specify a desired num-
ber of output clusters.

Experimental results have shown that the DTW supports higher-quality
clustering than the Euclidean distance, in terms of both cluster separation
and compactness. The best performance corresponded to setting TS-Part with
the DTW, which resulted in more clusters than those obtained by using the
Euclidean distance. However, we observed that most of the data tend to group
together in a relatively small number of clusters. This scenario enables the
identification of relevant aspects which allow for supporting the design of
tariff policies.

10.2.1 Low-voltage Electricity Customer Data

As discussed in the previous section, the Enel utility is capable of measur-
ing and storing customer load profiles effectively. Such an expertize of Enel is
summarized in the Telegestore project [BCR05, Rog07].

The Enel Telegestore architecture is shown in Fig. 10.10. Communication
between meters and concentrator is accomplished by a PLC (Power Line Car-
rier) channel, whereas the public GPRS/GSM Network is responsible for the
communication between the concentrator and the central system. All energy
related data are first collected from the smart meters by the concentrator.
Then, such data are uploaded by the central system. The Enel Telegestore
network devices consist of more than 31 millions of smart meters and more
than 350,000 concentrators installed and remotely managed [Rog07].

Enel smart meter is able to record and store active and reactive load
profiles for all the four energy quadrants. A load profile represents the shape of
the customer consumption chronologically ordered. Given a sampling period
time, a smart meter logs the consumption corresponding to the associated
location in a circular buffer. The sampling period is programmable and ranges
from 1 to 60 minutes; as default, this is set to 15 minutes which leads to store
38 days of load data, where each day is 96-sample long.

The smart meter also stores a flag register of “sample validity” in the
stream of load data. This flag indicates a critical fault occurred during the
sample measurement (e.g., a voltage interruption). In the experimental eval-
uation, we used this register to identify wrong samples and to correct each of
them by using linear interpolation between the previous and the next valid
sample.
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Fig. 10.10. The Enel Telegestore architecture

10.2.2 Clustering Load Profile Data

Algorithms

In this section, we describe the algorithms used for clustering load profiles.
According to most of research works on clustering load profiles, we resort
to the well-known paradigm of partitional relocation clustering, and exploit
the K-Means algorithm (cf. Chapt. 2). We assume that the cluster centroids
are computed as simple averages of the data (load profiles) in any specific
cluster, since all the data have the same length in our context. Of course, this
assumption does not hold in general, and more refined methods for computing
cluster centroids in time series data might be used [GPTG09a].

We also propose a top-down partitional algorithm, named TS-Part. This
algorithm follows a clustering strategy which is inspired to the AutoPart algo-
rithm [Cha04]. A major feature of the AutoPart algorithm is that the number
of output clusters is not required as a parameter, rather it is determined dur-
ing the clustering task. This represents an advantage in many real application
contexts, like ours, in which there is no a priori information which guides the
user to properly set the number of output clusters.

The outline of TS-Part is reported in Alg. 10.1. TS-Part starts by con-
sidering the dataset D as a single cluster (Line 1), then two main steps are
iteratively repeated until the convergence is reached (Lines 3-6). The first step
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consists in finding the best split for each cluster in the current clustering C
(Funct. 10.1). The second step recomputes the cluster centroids and reassigns
all the data objects according to the current partition Ĉ; this step is accom-
plished like in the K-Means algorithm. The convergence of the algorithm is
reached when the split procedure does not perform any split (Line 6).

Algorithm 10.1 TS-Part
Input: A set D of data objects
Output: A partition C of D
1: C ← D
2: Ĉ ← split(C) {Funct. 10.1}
3: repeat
4: C ← relocation(Ĉ)
5: Ĉ ← split(C)
6: until Ĉ = C

In Funct. 10.1, the quality of a given clustering solution is computed as
the difference between the inter-cluster distance and the intra-cluster distance
(cf. Chapt. 2). The split operation hence depends on a threshold of minimum
quality, which is initially set as the quality of the input clustering. Also, an
outlier in a cluster is identified as an object whose distance from the associated
centroid is maximum.

Cluster Validity

To assess the effectiveness of results provided by the clustering algorithms,
we resorted to internal criteria to evaluate both compactness and separation
of a clustering solution. In particular, we employed two of the most used cri-
teria in load profile clustering, namely Mean Index Adequacy and Clustering
Dispersion Indicator [CNP+05, CNP06, THD07, TSTK08]. Both criteria re-
lies on information on the data to be clustered, the centroids of the clustering
solution, and the number of desired clusters.

Let D = {X1, . . . , Xn} be a dataset of time series and C = {C1, . . . , CK}
be a clustering solution for D. We denote with V = {v1, . . . , vK} the set of
centroids such that vk is the centroid of the cluster Ck,∀k ∈ [1..K]. We define
the following distance measures:

$(vk, Ck) =
√

1
|Ck|

∑

X∈Ck

f(vk, X)2

ϑ(Ck) =

√
1
2n

∑

X∈D

$(X, Ck)2
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Function 10.1 split
Input: A set C = {C1, . . . , CK} of clusters
Output: A set Ĉ of K′ clusters, where K′ ≥ K
1: Ĉ ← ∅
2: q0 ← quality(C)
3: for all C ∈ C do
4: X∗ ← outlier(C)
5: C′ ← C \ {X∗}, q′max ← quality(C′)
6: C′′ ← {X∗}, q′′max ← quality(C′′)
7: splittable ← false
8: for all X ∈ C, X 6= X∗ do
9: q′ ← quality(C′ \ {X})

10: q′′ ← quality(C′′ ∪ {X})
11: gain′ ← (q′ − q′max)/q′max

12: gain′′ ← (q′′ − q′′max)/q′′max

13: if gain′ > q0 ∨ gain′′ > q0 then
14: q′max ← q′, q′′max ← q′′

15: C′ ← C′ \ {X}, C′′ ← C′′ ∪ {X}
16: splittable ← true
17: end if
18: end for
19: if splittable then
20: Ĉ ← Ĉ ∪ {C′} ∪ {C′′}
21: else
22: Ĉ ← Ĉ ∪ {C}
23: end if
24: end for
25: return Ĉ

where f(· , · ) is a distance measure for comparing time series, e.g., Euclidean
or DTW distance.

Based on the above formulas, the Mean Index Adequacy (MIA) and Clus-
tering Dispersion Indicator (CDI) validity criteria are defined as follows:

MIA(C) =

√√√√ 1
K

K∑

k=1

$(vk, Ck)2 (10.1)

CDI(C) =
1

ϑ(V)

√√√√ 1
K

K∑

k=1

ϑ(Ck)2 (10.2)

MIA measures the compactness of a clustering solution by averaging the
distances between each object within a cluster and its centroid. CDI expresses
the degree of cluster separation as directly proportional to the average of the
intra-cluster distance between the objects within the same cluster and in-
versely proportional to the pair-wise distances between the cluster centroids.
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For both criteria, lower values correspond to higher quality clustering solu-
tions.

10.2.3 Experimental Evaluation

Data Description and Preparation

We were granted access to about 30, 000 Enel Italian LV customer load
profiles, measured during the period between the first week of February 2009
and the last week of March 2009. All the load profiles have been provided in
anonymous form.

The load profile set was preliminarily partitioned according to meta-data
associated to each individual customer. Such meta-data represents commercial
and technical extra attributes that the Enel utility provided with each load
profiles. Specifically, customer meta-data includes the following attributes:

� Meter type: specifies the power capacity and the number of phases (i.e,
single-phase, multi-phase) of the meter associated to the customer;

� Contractual power: the maximum contractual power allowed to the cus-
tomer;

� Contract date: the start date of the customer’s contract;
� Commercial category: identifies the type of customer, including residential

domestic, non-residential domestic, public lightning, etc.;
� Product category: identifies a particular (private or public) usage of the

energy contract;
� Zone: geographical location of the customer.

According to the above information, we filtered in the available load pro-
files which correspond to the most common customer type, which is the “pri-
vate”, “residential domestic” customer. We also considered only the active
energy type. The resulting 5, 000 load profiles were segmented in order to ex-
tract daily profiles. Since each daily profile is comprised of 96 samples, we
obtained 30 daily profiles of 96 samples from each customer profile. More-
over, daily profiles were further partitioned depending on the type of day;
precisely, we distinguished “weekdays” profiles from “saturdays” profiles and
“sundays/holidays” profiles. According to this classification, we found 132, 041
“weekdays”, 24, 527 “saturdays”, and 24, 541 “sundays/holidays” daily pro-
files.

The Rialto Suite for Data Mining

Experiments and analysis described in this work were conducted using
Exeura Rialto� [Ria]. Rialto is a graphical environment for performing
data mining and knowledge discovery tasks. Unlike other similar data mining
tools, Rialto contains most of the functionalities required by one user-friendly
tool that allows users to design, create, explore, analyze, and execute data
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Fig. 10.11. A snapshot of the Exeura Rialto� suite for data mining

mining tasks, as well as to deploy predictive and descriptive models into other
tools, applications, and systems.

Rialto uses an intuitive, graphical interface for designing and developing
workflows, i.e., sequences of functions and operations. Functions are repre-
sented by workflow nodes. A Rialto workflow is built using three types of
nodes: tables, tasks, and models.

� Tables are used to store and manage data. It is conceptually similar to
tables in a relational database.

� Tasks are operations used to gather new data, storing them in tables. They
are also used to filter, transform, and apply data mining algorithms to the
data stored in tables. Tasks can be executed sequentially or in parallel.

� Models are used to represent the results obtained by a mining task on a
table.

A Java plug-in enables integration of domain-specific functionalities and
development of tools that support the analytical frameworks for specific do-
mains. Thanks to the possibility of extending the capabilities of Rialto, it was
possible to generate a set of ad-hoc plug-ins for management of the data from
the Enel legacy repositories. The implemented plug-ins concern acquisition,
preprocessing, data analysis, statistics and visualization, data modeling, dis-
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tance measures (i.e., Euclidean norm and DTW), and clustering algorithms
(i.e., K-Means and TS-Part).

Preliminary Results

We present here main results from clustering experiments on the three
types of daily load profile sets, namely “weekdays”, “saturdays”, and “sun-
days/holidays”. For each of the three cases, we performed multiple runs of
both clustering algorithms (i.e., K-Means and TS-Part) and finally averaged
the quality results, in terms of MIA and CDI, obtained over the runs. Each al-
gorithm was equipped with Euclidean distance or DTW as distance measure.
For each setting, the number of clusters was determined by TS-Part and then
used to set the parameter (i.e., initial value of the number of output clusters)
for the K-Means.

clustering distance # of clusters MIA CDI
algorithm measure

K-Means Euclidean 10 9.775 0.682
TS-Part Euclidean 10 9.103 0.914
K-Means DTW 66 7.986 0.008
TS-Part DTW 72 5.514 0.004

Table 10.2. Clustering load profile data: best (average) performance on Weekdays
load profiles

clustering distance # of clusters MIA CDI
algorithm measure

K-means Euclidean 19 7.456 0.100
TS-part Euclidean 19 6.520 0.124
K-means DTW 31 12.942 0.010
TS-part DTW 37 10.310 0.009

Table 10.3. Clustering load profile data: best (average) performance on Saturdays
load profiles

Tables 10.2–10.4 summarize the best (average) performance of the clus-
tering algorithms obtained on the three cases. Using the DTW as distance
measure mostly enabled either clustering algorithm to produce higher quality
clustering solutions with respect to the ones obtained by using the Euclidean
distance. This always holds in terms of CDI for all the cases, and also in terms
of MIA for the “weekdays” case (which corresponds to the largest set of daily
load profiles). The better separation (CDI) obtained by using DTW reflects an
increase in the number of clusters, which is explained by the fact that DTW
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clustering distance # of clusters MIA CDI
algorithm measure

K-means Euclidean 17 9.964 0.109
TS-part Euclidean 17 6.946 0.156
K-means DTW 29 13.773 0.014
TS-part DTW 32 11.646 0.012

Table 10.4. Clustering load profile data: best (average) performance on Sun-
days/holidays load profiles

is more sensitive than the Euclidean distance to time shifts and, consequently,
it is capable of detecting more specific/descriptive clusters. The best results
in each table correspond to the use of our TS-Part algorithm equipped with
DTW. It should be noted that the better performance of TS-Part against
K-Means concerns both MIA and CDI.

However, as we can see in Fig. 10.12 referring to TS-Part with DTW,
most of the profile data were assigned to a relatively small number of clusters,
whereas a significant part of clusters likely corresponds to untypical habits of
certain residential domestic customers (e.g., customers spending most of their
time in residences which are located in places different from those declared in
the contract).

It should be emphasized that the presence of a few, large clusters at-
tracts major attention from a perspective of tariff policy design; conversely,
the many, small clusters will be probably discarded. We indeed observed that,
in typical behaviors of residential domestic customers, most of the energy
consumption is concentrated on the lunch and dinner hours.

Fig. 10.12. Distribution of weekdays load profiles over clusters obtained by TS-Part
with DTW



Part V

The Curse of Dimensionality
in Data Clustering

– Local Dimensionality Reduction –





11

Projective Clustering: Background

Abstract Dimensionality reduction techniques that operate locally to each single
cluster have been recognized as a valid and powerful solution to the problem of
the curse of dimensionality in data clustering. Such techniques aim to discover one
or more clustering solutions along with the subspaces associated to each cluster of
the discovered clustering(s). The subspaces can be either axis-aligned or arbitrarily-
oriented. According to the way how the local dimensionality is performed and the
clustering solution(s) are built, major existing research works in this area may be-
long to either subspace clustering or projective clustering approaches. This chapter
provides some background to the projective clustering problem, including a brief
overview of the state-of-the-art.

11.1 Axis-aligned vs. Arbitrarily-oriented Subspaces

The typical issues arising from the curse of dimensionality in data clus-
tering can be effectively overcome by performing a reduction of the dimen-
sionality locally to the single cluster. This approach has been recognized as
generally more effective than the classic global dimensionality reduction (cf.
Chapt. 1).

The main goal of local dimensionality reduction techniques is to discover
the cluster structure along with a set of subspaces, each one associated to
a cluster of the discovered structure. The key idea underlined this approach
is that, in a high dimensional representation (feature) space, the objects in a
given cluster are highly similar to each other if (and only if) they are projected
onto the subspace associated to the cluster they belong to.

A subspace assigned to any cluster can be axis-aligned (also known as axis-
parallel) or arbitrarily-oriented (also known as generalized). The former refers
to subspaces identified by hyperplanes parallel to the axes of the full represen-
tation space. They are represented by a subset of the features of the original
feature space, and formally defined by orthogonal vectors v = [v1, . . . , vd]
such that vl ∈ {0, 1}, ∀l ∈ [1..d], and

∑d
l=1 vl = 1 (d < m, where m is
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Fig. 11.1. Some projective clusters existing in arbitrarily-oriented subspaces

the dimensionality of the full representation space). Arbitrarily-oriented sub-
spaces are identified by hyperplanes that may have a general orientation with
respect to the axes of the full dimensional space. An example of clusters ex-
isting in arbitrarily-oriented subspaces is depicted in Fig. 11.1.1 It should be
noted that, given a full representation space Σ of dimensionality m, the num-
ber of all possible axis-aligned subspaces of Σ is O(2m), whereas all possible
arbitrarily-oriented subspaces of Σ are obviously an infinite number.

Several research works have recently addressed the problem of local dimen-
sionality reduction considering arbitrarily-oriented subspaces [AY00, AM04,
TXO05, GHPT05, BKKZ04, ABK+06a, ABK+06b, ABK+07b, ABK+07c,
ABD+08]. However, the focus of this thesis is on axis-aligned subspaces.

11.2 Subspace Clustering vs. Projective Clustering

Local dimensionality reduction considering axis-aligned subspaces has
been addressed by focusing on the subspace clustering [AGGR98] and pro-
jective (or projected) clustering [APW+99] problems. Although the two prob-
lems are strictly related to each other and the terms “subspace clustering”
and “projective clustering” are not used in a unified way in the literature,
there exist several differences between these problems.

The main goal of (axis-aligned) subspace clustering is to find all possi-
ble “interesting” subspaces of the original representation space, and, for each
relevant subspace, discover the clusters existing in that subspace. As a major
result, the output of any subspace clustering algorithm is a set of subspace clus-
ters, i.e., clusters composed by a set of data objects and a set of features which
identify the subspace. The output subspace clusters can be overlapping from

1 Fig 11.1 is borrowed from [ABK+07b].
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the point of view of both the associated subspaces and the object-to-cluster
assignments (i.e., at a data clustering level). Existing subspace clustering al-
gorithms [AGGR98, CFZ99, NGC01, KKK04, AKMS07, LLSW07] typically
generate the subspaces to be analyzed in a bottom-up way. Indeed, they usually
start from one-dimensional subspaces and consider, at each step, subspaces of
dimensionality greater than that taken into account in the previous step. Sub-
space clustering algorithms differ to each other for the technique involved to
generate subspaces, the strategies for pruning non interesting subspaces (e.g.,
Apriori -like strategies), and the approaches for discovering clusters given a
subspace recognized as interesting [PHL04, KKZ09].

By contrast, projective clustering outputs only one cluster structure. A ma-
jor peculiarity is that, like in the subspace clustering case, the output clusters
are coupled with their corresponding subspaces (i.e., set of features). However,
unlike subspace clustering, the clusters outputted by projective clustering may
overlap only with respect to the associated subspaces.

11.3 Projective Clustering: Basic Definitions

The main goal of axis-aligned projective clustering is to discover a proper
projective clustering solution, i.e., a set of projective clusters. A projective
cluster is a pair composed by a subset of the input dataset D and a (axis-
aligned) subspace of the original dimensional space in which data objects in
D are originally represented.

Axis-aligned projective clustering approaches fall into two main cate-
gories. According to the first one, the subset of features that identifies the
subspace at hand is not coupled with any further information. Thus, the
feature-to-cluster assignment is considered as equally weighted, i.e., no infor-
mation is provided to discriminate among the features of the subspace. A
more refined model allows for unequally weighted feature-to-cluster assign-
ment [DPGM04, DGM+07, CJW08]. More precisely, a proper weight is as-
signed to each feature of the original full dimensional space, in order to some-
how quantify the probability that such a feature belongs to the subspace at
hand. In particular, the stronger the correlation of data objects in a cluster
along a feature, the more the weight assigned to it.

Within this view, for the sake of generality, it is advisable to deal with
projective clustering solutions that include both the equally and unequally
weighted feature-to-cluster assignment models. Furthermore, for the same rea-
son, hard as well as soft data object clustering should be taken into account
(cf. Chapt. 2, Sect. 2.4). Thus, we hereinafter refer to the following general
definition of projective clustering solution.

Definition 11.1 (projective clustering solution). Let D = {ω1, . . . , ωn}
be a set of m-dimensional points (numerical vectors), where each ω =
(ωi1, . . . , ωim) represents a data object oi, ∀i ∈ [1..n]. A projective cluster-
ing solution C defined over D is a triple 〈L, Γ, ∆〉:
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� L = {`1, . . . , `K} is a set of cluster labels which uniquely represent the K
clusters

� Γ : L × D → SΓ is a function which stores the probability that ωi be-
longs to the cluster labeled with `k, ∀k ∈ [1..K], i ∈ [1..n], such that∑K

k=1 Γki = 1, ∀i ∈ [1..n], where Γki hereinafter refers to Γ (`k, ωi)
� ∆ : L × [1..m] → [0, 1] is a function which stores the probability that the

j-th feature is a relevant dimension for the objects in the cluster labeled
with `k, ∀k ∈ [1..K], j ∈ [1..m], such that

∑m
j=1 ∆kj = 1, ∀k ∈ [1..K],

where ∆kj hereinafter refers to ∆(`k, j)

Note that Def. 11.1 comprises both the cases of soft and hard data object clus-
tering, as well as the cases of feature-to-cluster assignments equally weighted
and unequally weighted. More precisely, C = 〈L, Γ, ∆〉 is a hard (resp., soft)
projective clustering solution if SΓ = {0, 1} (resp., SΓ = [0, 1]), whereas C
has feature-to-cluster assignments equally weighted if, for any given cluster
labeled with `k, k ∈ [1..K], ∆kj = ∆kj′ , ∀j, j′ ∈ [1..m].

11.4 Projective Clustering: State of the Art

Existing axis-aligned projective clustering algorithms can be classified in
bottom-up, top-down, soft, and hybrid methods [KKZ09].

11.4.1 Bottom-up Methods

Bottom-up methods are based on two steps, i.e., finding subspaces rec-
ognized as “interesting”, and assigning each data object to the most similar
subspace. Thus, the projective cluster structure is computed by firstly search-
ing, in a bottom-up way, for the subspaces to be associated to the discovered
projective clusters.

The Projected Clustering via Cluster Cores (P3C) algorithm [MSE08] deals
with numeric as well as categorical data and is designed to work in the case
of projected clusters to be discovered on very few relevant dimensions. P3C
is also able to compute overlapping projected clusters.

In [SZ04], the authors propose the Support and Chernoff- Hoeffding bound-
based Interesting Subspace Miner (SCHISM) algorithm. SCHISM mines inter-
esting subspaces rather than projective clusters, hence, it is not exactly a pro-
jective clustering algorithm, but solves a related problem: finding subspaces
to look for clusters.

11.4.2 Top-down Methods

Top-down approaches aim to find the subspace to be associated to each
cluster during the clustering stage, starting by taking into account the full
dimensional space.
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A top-down approach based on histograms is proposed by EPCH (Efficient
Projective Clustering by Histograms) [KWC05], which identifies dense regions
in each low-dimensional histogram. In [LXY00], the CLTree (CLustering based
on decision Trees) algorithm assigns a common class label to all existing data
points representing input objects and adds additional points uniformly dis-
tributed over the data space and labeled as a different class. Then, a decision
tree is trained to separate the two classes.

Further approaches belong to hierarchical, partitional relocation, and
density-based categories. Hierarchical algorithms are proposed in [YCN04,
ABK+06a]. HARP (a Hierarchical approach with Automatic Relevant dimen-
sion selection for Projected clustering [YCN04] follows an AHC scheme with
single link and requires two main parameters to control the cluster construc-
tion, which are the minimum number of selected dimensions and a threshold
for selecting a dimension in a forming cluster. Unlike HARP, the Hierarchi-
cal Subspace Clustering (HiSC) algorithm [ABK+06a] produces a hierarchy
of nested subspace clusters, i.e., a dendrogram storing relationships of lower
dimensional subspace clusters that are embedded within higher-dimensional
subspace clusters.

Partitional relocation methods [APW+99, YCN05] follows a classic relo-
cation, alternating scheme (cf. Chapt. 2). PROCLUS (PROjected CLUStering
algorithm) [APW+99] is a K-Medoids algorithm which makes a clustering ini-
tialization over the full dimensional space and, besides the number of desired
clusters, requires a further parameter concerning the average dimensional-
ity of cluster, which is not trivial to set. For this purpose, PROCLUS may
fail in detecting clusters of very different sizes. Variants of PROCLUS com-
prises FINDIT (a Fast and INtelligent subspace clustering algorithm using
DImension voTing) [WLKL04], which employs some heuristics to enhance
efficiency and clustering accuracy, and SSPC (SemiSupervised Projected Clus-
tering) [YCN05], which is able to further enhancing accuracy by using domain
knowledge in the form of labeled objects and/or labeled attributes.

The PreDeCon algorithm proposed in [BKKK04] belongs to the class of
density-based approaches. It exploits the density-based full dimensional clus-
tering algorithm DBSCAN (cf. Chapt. 2) by using a specialized subspace
distance measure that captures the subspace of each cluster.

11.4.3 Soft Methods

All the above methods provide clustering solutions which are hard at
data clustering level and have feature-to-cluster assignments equally weighted.
However, a recent corpus of study has focused on algorithms able to produce
soft data clusterings [MSE08, CJW08], and/or clusterings having feature-to-
cluster assignments unequally weighted [DGM+07, CJW08].

Locally Adaptive Clustering (LAC) [DGM+07] performs local feature se-
lection in order to enable distance measures reflect local correlations of data.
The soft feature selection procedure in LAC assigns weights to the features in
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such a way that the stronger the correlation of data along a dimension, the
more the weight assigned to it. The strength of this increase, which determines
the incentive for clustering on more features, is controlled by a parameter h̃.
However, at a data clustering level, LAC outputs hard clusters.

The very recent study proposed in [CJW08] focuses on a probabilistic
modeling of projected clusters and proposes a Fuzzy Projective Clustering
(FPC) algorithm, which can produce overlapping clusters, like P3C, and can
also assign different weights to the subspace dimensions.

11.4.4 Hybrid Methods

Hybrid methods share some features with both actual projective clustering
and subspace clustering methods. Indeed, they do not typically assign each
data object to one cluster nor aim at finding all clusters in all interesting
subspaces [KKZ09].

Most hybrid algorithms follows a density-based approach. Density-based
Optimal Projective Clustering (DOC) [PJAM02] is a density-based algorithm
that greedily discovers projected clusters. It can handle variable-size clusters
and does not require the number of clusters as input parameter; however,
it is sensitive to a different user-defined parameter required to control the
cluster quality, and assumes that the projected clusters are hypercubes of
same side-length over all dimensions. In [YM05], MINECLUS is proposed as
an improvement to the efficiency of DOC based on an optimized adaptation of
the frequent pattern tree growth method. The key idea is to model a data point
(representing an input data object) as an itemset comprised of the dimensions
in which the point is within a certain distance from a given pivot point.

DiSH (Detecting Subspace cluster Hierarchies) [ABK+07a] follows a simi-
lar idea as PreDeCon but uses a hierarchical clustering model. DiSH exploits
an algorithm that is inspired by the density-based hierarchical clustering al-
gorithm OPTICS (cf. Chapt. 2).

FIRES (FIlter REfinement Subspace clustering) [KKRW05] computes one-
dimensional clusters using any clustering technique provided in input by the
user. These one-dimensional clusters are then merged by applying a “to cluster
clusters” step. The clusters discovered by FIRES may overlap or not, but,
usually, FIRES cannot produce all clusters in all interesting subspaces.



12

Projective Clustering Ensembles

Abstract Recent advances in clustering have been focused on clustering ensembles
and projective clustering approaches, which distinctly aim to face typical issues in
many clustering problems. However, such approaches are originally devised indepen-
dently from each other. In this chapter, we address for the first time the projective
clustering ensembles (PCE) problem, whose main goal is to derive a proper projective
consensus partition from an ensemble of projective clustering solutions. We formal-
ize PCE as an optimization problem which is designed to satisfy strong requirements
on the independence on the specific clustering ensembles algorithm, ability to handle
hard as well as soft data clustering, and different feature weightings. Specifically, we
provide two formulations of PCE: as a two-objective optimization problem, in which
the two objectives respectively account for the object-based and the feature-based
representations of the solutions in the ensemble, and as a single-objective problem, in
which the object-based and feature-based representation are embedded into a single
function to measure the distance error between consensus partition and ensemble.
Experiments have demonstrated the significance of the proposed methods for PCE,
showing clear improvements in terms of accuracy of the output consensus partition.

12.1 Introduction

Research on clustering has traditionally assumed that, given a set of in-
put data and a clustering problem for that data, (i) the problem at hand is
addressed by a specific clustering method, which is usually equipped with a
certain distance/similarity measure, and (ii) all the features (or dimensions)
of the given data are considered during the clustering task.

The above assumptions are usually given for enabling a proposed approach
to satisfy some special requirements for data clustering, such as simplicity,
practical applicability, understandability of the results, and low computational
cost. On the other hand, such assumptions may bring any clustering method
to incur serious issues in both effectiveness and efficiency, especially when
(1) the problem at hand is inherently multi-faceted as there is a number
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of (differently relevant) aspects according to which a clustering task can be
naturally performed, and/or (2) the input data is highly dimensional.

Issue 1 is related to the fact that a solution for the clustering problem is in-
evitably biased due to the peculiarities of the specific clustering algorithm be-
ing used; therefore, even though the chosen algorithm can be optimally tuned
for a given input data or application domain, the structure of the discovered
clusters will necessarily impact on the actual “usefulness” of the solution. Is-
sue 2 is instead related to the so-called curse-of-dimensionality (cf. Chapt. 1),
which breaks down the significance of the concept of proximity (thus, cluster)
as the number of dimensions or features increases.

As discussed in the previous chapters, proper methodologies have been
studied to distinctly address the above issues in clustering problems, orthog-
onally to the existing literature on clustering algorithms and data proximity
measures. Clustering ensembles has recently emerged as a powerful tool to face
issue 1 (cf. Chapt. 6), whereas a number of projective clustering techniques
has been developed to overcome issue 2 (cf. Chapt. 11).

In this chapter, the problem of projective clustering ensembles (PCE) is
addressed for the first time [GDT09]. The objective is to define methods for
clustering ensembles that are able to deal with ensembles of projective clus-
tering solutions and provide a projective consensus partition. In particular,
we focus on ensembles composed by projective clustering solutions as defined
in Def. 11.1.

The projective consensus partition to be discovered is computed as a so-
lution of an optimization problem having one or more objective functions,
which are defined by exploiting information available from the input ensem-
ble. Moreover, since we are interested in developing general methods for PCE,
the objective functions in the optimization problem should meet the following
strong requirements: (i) to discard the original feature values of the input data;
(ii) to be independent on the specific clustering algorithm and on any prior
knowledge on the setup for ensemble generation; (iii) to handle hard as well as
soft data clustering in a projective setting; (iv) to allow for feature-to-cluster
assignments which are unequally weighted. Assigning feature to clusters with
unequal weights enables solutions in which the subspaces associated to each
cluster are expressed in terms of feature weights which are computed in such
a way that the stronger the correlation of data along a dimension, the more
the weight assigned to it.

Within this view, we propose two formulations of PCE in terms of opti-
mization problem. More precisely, we propose a two-objective and a single-
objective formulation of PCE: the first one involves two distinct objective
functions which account for the data object clustering and feature-to-cluster
assignment, respectively; the second formulation instead has a unique objec-
tive function which acts as an error criterion in the computation of any cluster
(of a candidate clustering solution) by involving both the object-based repre-
sentation and the feature-based representation of the cluster.
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For each of the two proposed formulations of PCE, we develop well-founded
heuristics, in which a multi-objective evolutionary strategy [Deb01] and an
EM-like approach are employed. Experiments conducted on ten benchmark
datasets have shown that both the proposed algorithms lead to more accurate
consensus partitions, in terms of internal similarity with respect to reference
classifications (i.e., external classifications and clustering ensembles) and in
terms of intra-cluster error-rate.

We point out that, to the best of our knowledge, the PCE problem has not
been investigated previously. Among the existing clustering ensemble methods
in the literature (cf. Chapt. 6, Sect. 6.2), we think that WSBPA [DA09] is the
only one that could be in principle compared to the approaches proposed
in this chapter. However, WSBPA does not represent a valid solution for
the PCE problem, since it does not satisfy any of the above requirements.
Indeed, WSPA (i) requires to access the original features of the data objects,
(ii) works only if the projective solutions are generated by running a specific
projective clustering algorithm (i.e., LAC [DGM+07]), and (iii) does not deal
with projective solutions that are soft at data clustering level.

12.2 Preliminaries

In this section, we provide the basic notions which shall be recalled dur-
ing the explanation of the proposals of this chapter. Within this view, we
hereinafter refer to a projective clustering solution as defined in Def. 11.1.

Definition 12.1 (projective ensemble). Given a set D of data objects,
a projective ensemble defined over D is a set E = {C1, . . . , CH}, where each
Ch = 〈L(h), Γ (h), ∆(h)〉 is a projective clustering solution defined over D, ∀h ∈
[1..H], and L(h) ∩ L(h′) = ∅, ∀h, h′ ∈ [1..H], h 6= h′.

Definition 12.2 (ensemble label set). Let E = {C1, . . . , CH} be a projective
ensemble, where Ch = 〈L(h), Γ (h),∆(h)〉, ∀h ∈ [1..H]. The ensemble label set
of E is defined as L = {l1, . . . , lH} =

⋃H
h=1 L(h).

Definition 12.3 (projective cluster representation). Let D = {ω1, . . . , ωn}
be a set of m-dimensional data objects and E be a projective ensemble de-
fined over D. The n-dimensional object-based representation and the m-
dimensional feature-based representation for the cluster labeled with lh, ∀h ∈
[1..H], are given by the vectors γh and δh, respectively, which are defined as
follows:

γh = (γh1, . . . , γhn) = (Γ ′k′1, . . . , Γ
′
k′n)

δh = (δh1, . . . , δhm) = (∆′
k′1, . . . , ∆

′
k′m)

where the Γ ′ and ∆′ functions are involved in the solution C′ ∈ E such that
C′ = 〈L′, Γ ′,∆′〉, L′ = {`′1, . . . , `′K′}, lh ∈ L′, and k′ ∈ [1..K ′] is the index
such that `′k′ = lh.
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12.3 Two-objective Projective Clustering Ensembles

A projective consensus partition C∗ = 〈L∗, Γ ∗,∆∗〉 derived from an ensem-
ble E should meet two different kinds of requirements: the first one is related
to the data object clustering of the solutions in E , whereas the other one re-
gards the feature-to-cluster assignment of the solutions in E . For this purpose,
the projective clustering ensembles problem can be naturally formulated as a
two-objective optimization problem:

C∗ = arg min
Ĉ

[
Ψo(Ĉ, E , D), Ψf (Ĉ, E , D)

]
(12.1)

where Ψo and Ψf are two optimization functions that account for the data
clustering and the feature-to-cluster assignment of the projective clusterings
in E , respectively. Note that the only constraints for the above formulation are
those required for guaranteeing that Ĉ is a well-defined projective clustering
solution (cf. Def. 11.1).

The functions Ψo and Ψf are defined using a clustering-based approach,
which involves a comparison of the projective clustering solutions Formally,
we have:

Ψo(Ĉ, E , D) =
∑

C∈E
ψo(C, Ĉ) (12.2)

Ψf (Ĉ, E , D) =
∑

C∈E
ψf (C, Ĉ) (12.3)

where ψo(Ch, Ch′) (resp., ψf (Ch, Ch′)) is a function that measures the distance
between the projective clustering solutions Ch = 〈L(h), Γ (h), ∆(h)〉 and Ch′ =
〈L(h′), Γ (h′),∆(h′)〉 in terms of their corresponding object-based partitioning
(resp., feature-to-cluster assignment):

ψo(Ch, Ch′) =
1
2

(
ψo(Ch, Ch′) + ψo(Ch′ , Ch)

)
(12.4)

ψf (Ch, Ch′) =
1
2

(
ψf (Ch, Ch′) + ψf (Ch′ , Ch)

)
(12.5)

where

ψo(Ch, Ch′) =
1

|L(h)|
|L(h)|∑

k=1

(
1− max

k′∈[1..|L(h′)|]
J
(
a(h)

k ,a(h′)
k′

))

ψf (Ch, Ch′) =
1

|L(h)|
|L(h)|∑

k=1

(
1− max

k′∈[1..|L(h′)|]
J
(
b(h)

k ,b(h′)
k′

))

with
a(y)

z =
(
Γ

(y)
z1 , . . . , Γ (y)

zn

)

b(y)
z =

(
∆

(y)
z1 , . . . ,∆(y)

zn

)
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and

J
(
u,v

)
=

u vT

‖u‖2 + ‖v‖2 − u v

ranging within [0, 1] and denoting the extended Jaccard similarity coefficient
(also known as Tanimoto coefficient) between two any real-valued vectors u
and v [JD88].

The MOEA-PCE Algorithm

The NP-hard problem P defined in (12.1) is a multi-objective optimization
problem, in which the objectives are conflicting with each other; consequently,
it is particularly hard to solve, since traditional optimization techniques do not
apply. The conventional approach for solving this kind of problems consists
in re-defining it as a single-objective problem, whose optimization function is
computed as a weighted linear combination of the functions in the original
problem. Unfortunately, this approach has several drawbacks, such as, e.g.,
mixing non-commensurable objectives, hard setting of the weight to assign
to each function, prior knowledge of the application domain [Deb01]. A more
refined approach that has been recognized as particularly appropriate in pro-
viding valid solutions for the problem at hand is given by the Multi Objective
Evolutionary Algorithms (MOEAs) [Deb01]. This class of methods is able to
solve a multi-objective problem maintaining the underlined multi-objective
structure of the given problem, i.e., without combining the various objective
functions into a single one.

Within this view, in order to provide a valuable heuristic for P , we resort
to the MOEAs domain and define the proposed MOEA-based Projective Clus-
tering Ensembles (MOEA-PCE) algorithm. In particular, we exploit the elitist
MOEA Nondominated Sorting Genetic Algorithm-II (NSGA-II) [DPAM02],
whose evolutionary strategy is based on the notion of Pareto-ranking.

Definition 12.4 (domination). Let P be a multi-objective optimization
problem of the form

{
x∗ = arg min

x̂
[f1(x̂), . . . , fs(x̂)]

}

and x′ and x′′ two candidate solutions of P . x′ dominates x′′ (x′ ≺ x′′) if and
only if

fi(x′) ≤ fi(x′′), ∀i ∈ [1..s], and

∃j ∈ [1..s] : fj(x′) < fj(x′′)

Definition 12.5 (Pareto-optimality). Let P be a multi-objective optimiza-
tion problem of the form

{
x∗ = arg min

x̂
[f1(x̂), . . . , fs(x̂)]

}
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and S a population of individuals for P , i.e., a set of candidate solutions of
P . S∗P ⊆ S is a Pareto-optimal solution set of P with respect to S if and only
if

x ⊀ x∗, ∀x ∈ S, ∀x∗ ∈ S∗P
Definition 12.6 (Pareto-ranking). Let P be a multi-objective optimization
problem of the form

{
x∗ = arg min

x̂
[f1(x̂), . . . , fs(x̂)]

}

and S a population of individuals for P . The Pareto-ranking function η : S →
N for P is defined as

η(x) = min{r ∈ N, r > 0 : x ∈ S∗P,r}, ∀x ∈ S
where S∗P,z is the Pareto-optimal solution set of P with respect to the popula-
tion

SP,z = {x′ ∈ S : η(x′) ≥ z}
The Pareto-ranking function η is exploited by NSGA-II algorithm for perform-
ing the classical MOEA steps of selection, crossover, and mutation. Such steps
put also the basis for the proposed MOEA-PCE algorithm, whose outline is
given in Alg. 12.1.

Algorithm 12.1 MOEA-PCE

Input: a projective ensemble E defined over a set D of data objects; the number
K of clusters in the output projective consensus partitions; the population size
t; the maximum number I of iterations

Output: a set S∗ of projective consensus partitions

1: S ← populationRandomGen(E , t, K)
2: it ← 1
3: repeat
4: η ← computeParetoRanking(S) {cf. Def. 12.6}
5: 〈S ′,S ′′〉 ← 〈Š ′ ⊂ S, Š ′′ ⊂ S〉 : |Š ′| = |S|/2, |Š ′′| = |S|/2, Š ′ ∪ Š ′′ =

S, η(x′) ≤ η(x′′), ∀x′ ∈ Š ′, x′′ ∈ Š ′′
6: S ′CM ← crossoverAndMutation(S ′)
7: S ← S ′ ∪ S ′CM

8: it ← it + 1
9: until it = I

10: η ← computeParetoRanking(S)
11: S∗ ← {x′ ∈ S : η(x′) ≤ η(x′′),∀x′′ ∈ S, x′′ 6= x′}

The algorithm starts by randomly generating the initial population S of t
individuals (Line 1), and proceeds by performing the main loop until a max-
imum number I of iterations has been reached (Lines 3-9). At each iteration,
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the Pareto-ranking function η, defined with respect to the current population
S, is computed according to Def. 12.6, where the problem denoted with P
is the one reported in (12.1) (Line 4). The specific procedure used for com-
puting η is the one described in [DPAM02]. The η values of each individual
in S are then exploited for sorting S and partitioning it into two equal-sized
subsets, i.e., S ′ and S ′′, so that each individual in S ′ has a η value not greater
than any other individual in S ′′ (Line 5). The subset S ′ is involved into a
crossover-and-mutation step, which is performed as described in [SD94] (Line
6). In particular, the mutation step consists in adding random Gaussian noise
to each solution in S ′. The result of this step is the “offspring” set S ′CM of
new individuals, which, together with S ′, forms the new population (Line 7).
Finally, the Pareto-optimal solution set S∗ (i.e., the set of output projective
consensus partitions) is derived from the population S computed at the last
iteration of the algorithm (Line 11).

Computational Aspects.

Let us now discuss the computational complexity of Alg. 12.1, given a set
D of n m-dimensional data objects, a projective ensemble E of size H defined
over D, the number K of clusters in the output projective consensus partitions,
the size t of the population, and the number I of maximum iterations. Also,
we assume that the total number of cluster labels in E (i.e., the size of the set
L, cf. Sect 12.1) is O(K H). The costs of the various steps of Alg. 12.1 are
summarized as follows:

� the random initialization step (Line 1) is O(t K (n + m));
� the computeParetoRanking function (Line 4) comprises two steps: (i) com-

puting the values of the functions Ψo (cf. (12.2)) and Ψf (cf. (12.3)) for each
new individual in S, which is O(t H K2 (n + m)), and (ii) computing the
η values for S, which is performed in O(t2), according to the procedure
described in [DPAM02]. Therefore, since t is O(H), the total cost for the
step at Line 4 is O(t H K2 (n + m));

� partitioning S into the subsets S ′ and S ′′ (Line 5) is O(t log t);
� the crossover & mutation operations (Line 6) are performed inO(t K (n + m));
� computing the output set S∗ (Lines 10− 11) is O(t H K2 (n + m)).

In conclusion, since the steps of the main loop (Lines 3-9) are repeated I
times, we can state that Alg. 12.1 works in O(I t H K2 (n + m)).

12.4 Single-objective Projective Clustering Ensembles

The two-objective projective clustering ensembles formulation may incur
issues concerning the parameter setting and the interpretation of the conver-
gence criterion. Within this view, we alternatively propose a different formu-
lation which is computationally lower than MOEA-PCE in many practical



172 12 Projective Clustering Ensembles

cases, and is based on a single objective function which applies to the whole
information coming from the input ensemble E :

C∗ = arg min
Ĉ

Q(Ĉ, E) (12.6)

s.t .
K∑

k=1

Γ̂ki = 1, ∀i ∈ [1..n] (12.7)

m∑

j=1

∆̂kj = 1, ∀k ∈ [1..K] (12.8)

Γ̂ki ≥ 0, ∆̂kj ≥ 0,

∀k∈ [1..K], i∈ [1..n], j∈ [1..m] (12.9)

where

Q(Ĉ, E) =
K∑

k=1

n∑

i=1

Γ̂
α

ki

H∑

h=1

γhi

m∑

j=1

(
∆̂kj − δhj

)2

(12.10)

and α > 1 is an integer that guarantees the nonlinearity of Q with respect
to Γ̂ki, which is needed for ensuring that the values of Γ̂ki range within [0, 1]
(instead of {0, 1}), for any solution of the problem P defined in (12.6)-(12.9).1

Let us now discuss the rationale underlying the definition of the optimiza-
tion function Q. Essentially, Q measures the error of representing any cluster
labeled with ˆ̀

k of the candidate clustering solution Ĉ by means of the Γ̂ki

(object-based representation) and ∆̂kj (feature-based representation) values;
such errors are summed up over all the clusters of Ĉ. The error of representing
a cluster labeled with ˆ̀

k by means of Γ̂ki and ∆̂kj is measured according to
the information available from the ensemble E ; precisely, it is computed by
considering, for each object ωi in D, the sum of the (weighted) squared Eu-
clidean distances between the feature-based representations of cluster ˆ̀

k (i.e.,
∆̂kj values) and any cluster belonging to the solutions in E (i.e., δhj values,
for cluster labeled with lh); the weight for each of these distances is computed
as the probability that ωi belongs to both clusters ˆ̀

k and lh, i.e., the product
of Γ̂ki and γhi. The final error for the cluster labeled with ˆ̀

k is computed
as the sum of such weighted distances over all the objects in D. Clearly, it
is reasonable that a well-defined projective consensus partition should mini-
mize the function Q, since its clusters would have a low (properly weighted)
distance from each other cluster of the various solutions in the ensemble, in
terms of both object-based and feature-based representations.

1 Another alternative way to obtain Γ̂ki ∈ [0, 1] is given by the introduction of
properly-defined regularization terms (see, e.g., [LM99]).
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Algorithm 12.2 EM-PCE

Input: a projective ensemble E defined over a set D of data objects; the number
K of clusters in the output projective consensus partition;

Output: the projective consensus partition C∗

1: L∗ ← {1, . . . , K}
2: 〈Γ ∗, ∆∗〉 ← randomGen(E , K)
3: repeat
4: compute Γ ∗ according to (12.11)
5: compute ∆∗ according to (12.12)
6: until convergence
7: C∗ = 〈L∗, Γ ∗, ∆∗〉

The EM-PCE Algorithm

In order to provide a heuristic solution for the NP-hard problem defined
in (12.6)-(12.9), we define a novel procedure that is inspired to the popular
Expectation Maximization (EM) algorithm [DLR77].

The proposed algorithm, i.e., EM-based Projective Clustering Ensembles
(EM-PCE) (Alg. 12.2), consists of two main EM-like steps, which are iter-
atively repeated until a convergence criterion is met. Such steps exploit the
function Q (cf.(12.10)) and aim to find an optimal solution for Γ̂ki (resp., ∆̂kj)
values, while maintaining fixed ∆̂kj (resp., Γ̂ki) values. The basic equations
for the two steps are:

Γ ∗ki =

[
K∑

k′=1

(
Λki

Λk′i

) 1
α−1

]−1

(12.11)

∆∗
kj =

Φkj

Ξk
(12.12)

where

Λki =
H∑

h=1

γhi

m∑

j=1

(
∆̂kj − δhj

)2

Ξk =
n∑

i=1

Γ̂
α

ki

H∑

h=1

γhi

Φkj =
n∑

i=1

Γ̂
α

ki

H∑

h=1

γhi δhj

Let us now derive the expressions reported in (12.11) and (12.12), i.e., the
solutions for the problem P defined in (12.6)-(12.9). Since P has inequality
constraints (cf. (12.9)), in order to find the optimal solution by means of the
conventional Lagrange multipliers method, we consider the relaxed problem
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P ′ obtained by temporarily discarding the inequality constraints from the
constraint set of P .

We define the new (unconstrained) objective function Qλ for P ′ as follows:

Qλ(Ĉ, E) = Q(Ĉ, E)+
n∑

i=1

λ′i

( K∑

k′=1

Γ̂k′i−1
)

+
K∑

k=1

λ′′k

( m∑

j′=1

∆̂kj′−1
)

(12.13)

For a fixed assignment of ∆̂kj , we compute the optimal Γ ∗ki by solving the
following system of equations:

∂ Qλ

∂ Γ̂ki

= α (Γ̂ki)α−1 Λki + λ′i = 0 (12.14)

∂ Qλ

∂ λ′i
=

K∑

k′=1

Γ̂k′i − 1 = 0 (12.15)

Solving (12.14) with respect to Γ̂ki and substituting such a solution in (12.15),
we obtain:

K∑

k′=1

( −λ′i
α Λk′i

) 1
α−1

= 1 (12.16)

Solving (12.16) with respect to λ′i and substituting such a solution in (12.14),
we obtain:

α (Γ̂ki)α−1 Λki−
[

K∑

k′=1

(
1

α Λk′i

) 1
α−1

]−(α−1)

= 0 (12.17)

Finally, solving (12.17) with respect to Γ̂ki, we obtain the optimal solution
Γ ∗ki for P ′, whose expression is exactly equal to that reported in (12.11):

Γ ∗ki =

[
K∑

k′=1

(
Λki

Λk′i

) 1
α−1

]−1

(12.18)

Analogously, for a fixed assignment of Γ̂ki, we compute the optimal ∆∗
kj

by solving the following equations:

∂ Qλ

∂ ∆̂kj

=
n∑

i=1

Γ̂
α

ki

H∑

h=1

2 γhi

(
∆̂kj−δhj

)
+λ′′k = 0 (12.19)

∂ Qλ

∂ λ′′k
=

m∑

j′=1

∆̂kj′ − 1 = 0 (12.20)

Equation (12.19) is equal to:

2 ∆̂kj Ξk − 2 Φkj + λ′′k = 0 (12.21)
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Thus, solving (12.21) with respect to ∆̂kj and substituting such a solution in
(12.20), we obtain:

m∑

j′=1

(
2 Φkj′ − λ′′k

2 Ξk

)
= 1 (12.22)

Solving (12.22) with respect to λ′′k and substituting such a solution in (12.21),
we obtain:

2 ∆̂kj Ξk − 2 Φkj +
2
m

( m∑

j′=1

Φkj′ −Ξk

)
= 0 (12.23)

Finally, as it can easily be proved that
∑m

j′=1 Φkj′/Ξk = 1, (12.23) can be
solved with respect to ∆̂kj to obtain the optimal ∆∗

kj solution for P ′, whose
expression is exactly equal to that reported in (12.11):

∆∗
kj =

Φkj

Ξk
+

1
m

( m∑

j′=1

Φkj′

Ξk
− 1

)
=

Φkj

Ξk
(12.24)

In can be trivially noted that, according to the solutions for the problem
P ′ that have been just derived (reported in (12.18) and (12.24)), it holds that
Γ ∗ki ≥ 0, ∆∗

kj ≥ 0, ∀k ∈ [1..K], i ∈ [1..n], j ∈ [1..m]. Therefore, such solutions
satisfy the inequality constraints (reported in (12.9)) that were temporarily
discarded in order to define the relaxed problem P ′; thus, they represent the
optimal solutions of the original problem P .

Proposition 12.7. Algorithm 12.2 converges to a local optimum of the func-
tion Q defined in (12.10).

Proof. According to the expression reported in (12.10), the value of function
Q at the r-th iteration of Alg. 12.2 (for short, Q(r)) can be expressed as a
function of three terms:

Q(r) = f(G(r),D(r), E)

where E is the input projective ensemble, and G(r) and D(r) are a K × n

and K×m matrices, respectively, whose elements are defined as G(r)
ki = Γ

(r)
ki ,

D(r)
kj = ∆

(r)
kj , ∀k ∈ [1..K], i ∈ [1..n], j ∈ [1..m], with Γ

(r)
ki and ∆

(r)
kj denoting

the values Γ ∗ki and ∆∗
kj computed according to (12.11) and (12.12) at the r-th

iteration of the algorithm, respectively.
According to how (12.11) has been derived, the first step of the main

cycle of the algorithm (Line 4) computes the values in the matrix G at the
(r + 1)-th iteration, i.e., G(r+1), in such a way that:

G(r+1) = arg min
Ǧ

f(Ǧ,D(r), E)

Thus, it holds that
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f(G(r+1),D(r), E) ≤ f(Ǧ,D(r), E), ∀ Ǧ

and, in particular:

f(G(r+1),D(r), E) ≤ f(G(r),D(r), E) (12.25)

Analogously, according to how (12.12) has been derived, the second step
of the main cycle of the algorithm (Line 5) computes the values in the matrix
D at the (r + 1)-th iteration, i.e., D(r+1), in such a way that:

D(r+1) = arg min
Ď

f(G(r+1), Ď, E)

Thus, it holds that

f(G(r+1),D(r+1), E) ≤ f(G(r+1), Ď, E), ∀ Ď

and, in particular:

f(G(r+1),D(r+1), E) ≤ f(G(r+1),D(r), E) (12.26)

Due to the results reported in (12.25) and (12.26), it holds that

f(G(r+1),D(r+1), E) ≤ f(G(r+1),D(r), E) ≤ f(G(r),D(r), E)

Therefore, since f(G(r+1),D(r+1), E) = Q(r+1) and f(G(r),D(r), E) = Q(r),
then:

Q(r+1) ≤ Q(r) (12.27)

The result in (12.27) proves that Alg. 12.2 performs a descendant gra-
dient over the function Q, i.e., the value of Q at the (r + 1)-th iteration of
the algorithm is lower than or equal to the value of Q at the previous iter-
ation. Furthermore, as the domain of definition of function Q is limited by
the constraints reported in (12.7)-(12.9), the execution of the algorithm will
necessarily terminate when a fixed point (i.e., a local minimum of Q) will be
reached, i.e., when Q(r∗) = Q(r∗−1) will hold at the r∗-th iteration. ut

Computational Aspects

Let D be a set of n m-dimensional data objects, E be a projective en-
semble of size H defined over D, and K a positive integer representing the
number of clusters in the output projective consensus partition. Assuming
that H is O(K H), it holds that both (12.11) and (12.12) are computed
in O(H K2 n m); therefore, the computational complexity of Alg. 12.2 is
O(I H K2 n m), where I is the number of iterations needed for the conver-
gence of the algorithm.
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12.5 Experimental Evaluation

We devised an experimental evaluation in order to assess the accuracy of
the consensus partitions obtained by the proposed algorithms MOEA-PCE
and EM-PCE. We recall that such algorithms are the first attempts to solve
the projective clustering ensembles problem introduced in this chapter; thus,
the comparison did not involve any other technique. In the following, we first
discuss the evaluation methodology used in this work, which includes the
selected datasets, the strategy used for generating the ensembles, the setup
of the proposed algorithms and the measures to assess the quality of the
consensus partitions. Then, we present the main experimental results obtained
on the various datasets.

12.5.1 Evaluation Methodology

Datasets

We used eight benchmark datasets from the UCI Machine Learning Repos-
itory [ANml], namely Iris, Wine, Glass, Ecoli, Yeast, Segmentation, Abalone
and Letter, and two time series datasets from the UCR Time Series Classifi-
cation/Clustering Page [KXWRta], namely Tracedata and ControlChart. See
Appendix A for more details.

Cluster Validity

For each dataset D = {ω1, . . . , ωn}, where ωi = (ωi1, . . . , ωim), ∀i ∈ [1..n],
accuracy of the results by the proposed algorithms, i.e., accuracy of the con-
sensus partition Č = 〈Ľ, Γ̌ , ∆̌〉, |Ľ| = Ǩ, was evaluated in terms of:

1. similarity with respect to the (hard) reference classification C̃, which is
defined as:

C̃ = 〈L̃, Γ̃ , ∆̃〉
where L̃ = {˜̀1, . . . , ˜̀K̃} and Γ̃ are directly available from D, whereas ∆̃ is
computed according to the following formula [DGM+07] (∀k ∈ [1..K̃], j ∈
[1..m]):

∆̃kj =
e−Λkj/h̃

m∑

j′=1

e−Λkj′/h̃

where

Λkj =
( n∑

i=1

Γ̃ki

)−1 n∑

i=1

Γ̃ki

(
vkj − ωij

)2
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vkj =
( n∑

i=1

Γ̃ki

)−1 n∑

i=1

Γ̃ki ωij

also, parameter h̃ of LAC,2 in our experiments, was set equal to 0.2. The
evaluation between Č and C̃ was performed according to both object- and
feature-based representations, by using 1−ψo (cf. (12.4)) and 1−ψf (cf.
(12.5)), respectively;

2. similarity with respect to the solutions in the input ensemble E , according
to 1 − Ψo(Č, E , D) (cf. (12.2)), i.e., comparison in terms of object-based
representation, and 1− Ψf (Č, E , D) (cf. (12.3)), i.e., comparison in terms
of feature-based representation;

3. error-rate (ER) [DGM+07], which is an internal criterion and measures
the intra-cluster compactness:

ER(Č) =
Ǩ∑

k=1

m∑

j=1

∆̌kj

( n∑

i=1

Γ̌ki

)−1 n∑

i=1

Γ̌ki

(
vkj − ωij

)2

Ensemble Generation

For each set of experiments and dataset we generated 20 different ensem-
bles; all the reported results were averaged over the results obtained on each
such ensembles. Ensembles for each dataset were generated by running the
LAC algorithm [DGM+07], where the diversity of the solutions was guaran-
teed by randomly choosing the initial centroids and varying the parameter h̃ in
LAC. LAC yields projective clusterings that are hard at data clustering level
and have feature-to-cluster assignments unequally weighted; consequently, in
order to test the ability of the proposed algorithms to deal also with soft
clustering solutions and with solutions having feature-to-cluster assignments
equally weighted, we generated each ensemble E as a composition of four
equal-sized subsets, namely E1, E2, E3, and E4 such that:

� E1 contains solutions that are hard at data clustering level and have
feature-to-cluster assignments unequally weighted, i.e., solutions obtained
by standard LAC;

� E2 contains solutions that are hard at data clustering level and have
feature-to-cluster assignments equally weighted. Starting from a LAC so-
lution C = 〈L, Γ,∆〉 defined over a set of n m-dimensional objects, where
L = {`1, . . . , `K}, we derive the corresponding projective clustering C′,
having feature-to-cluster assignments equally weighted, as follows:

C′ = 〈L, Γ, ∆′〉
where

∆′
kj = b∆kj + 1/mc, ∀k ∈ [1..K], j ∈ [1..m]

2 This parameter controls the incentive for clustering on more features depending
on the strength of the correlation of data along the features.
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� E3 contains solutions that are soft at data clustering level and have feature-
to-cluster assignments unequally weighted. Starting from a LAC solution
C = 〈L, Γ,∆〉 defined over a set of n m-dimensional objects, where L =
{`1, . . . , `K}, we derive the corresponding soft projective clustering C′′ as
follows:

C′′ = 〈L, Γ ′′,∆〉
where

Γ ′′ki = Pr(k|i), ∀k ∈ [1..K], i ∈ [1..n]

and Pr(k|i) is the probability of the cluster labeled with `k given the
observation of the object ωi, which is computed as described in [DA09].

� E4 contains solutions that are soft at data clustering level and have feature-
to-cluster assignments equally weighted, which are derived from the stan-
dard LAC solutions according to the methods employed for generating E2

and E3, respectively.

Setting of the Proposed Algorithms

We performed a tuning phase for properly setting the parameters of
the proposed methods. We experimentally observed that our methods were
scarcely influenced by any specific setting, which allowed us to easily detect
setup values well-suited to each of the evaluation datasets. Precisely, in case
of the MOEA-PCE algorithm, the population size (t) was set equal to 15% of
the ensemble size and the number I of maximum iterations equal to 200; also,
the random Gaussian noise needed for the mutation step was obtained by per-
forming a Monte Carlo sampling on a Gaussian probability density function
with a null mean value and variance equal to one. In case of the EM-PCE
algorithm, parameter α of the objective function Q (cf. (12.10)) was set equal
to 2.

12.5.2 Results

For each algorithm, dataset and ensemble, we performed 50 different runs
and reported average results, and maximum (best) results with relative stan-
dard deviation. Note that for the MOEA-PCE algorithm, which may output
one or more consensus partitions, we averaged the results over the whole out-
put population.

Evaluation w.r.t. Reference Classification

Table 12.1 and Table 12.2 show the performance on the various datasets
in terms of similarity with respect to the reference classifications, by consid-
ering the object-based representation and the feature-based representation,
respectively.
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Table 12.1. MOEA-PCE and EM-PCE: similarity results w.r.t. reference classifi-
cation (object-based representation)

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.

dataset avg-max avg max-std (avg) avg max-std (avg)

Iris .632 .925 .919 .925 .015 +.287 .762 .767 .040 +.130
Wine .738 .910 .913 .928 .105 +.175 .782 .840 .028 +.044
Glass .565 .775 .683 .768 .046 +.118 .639 .644 .002 +.074
Ecoli .421 .689 .603 .686 .054 +.182 .329 .419 .040 -.092
Yeast .675 .750 .723 .745 .015 +.048 .638 .641 .001 -.037
Segmentation .590 .821 .755 .835 .049 +.165 .653 .663 .004 +.063
Abalone .509 .520 .518 .558 .043 +.009 .512 .542 .002 +.003
Letter .522 .640 .597 .612 .031 +.075 .554 .562 .006 +.032
Tracedata .772 .868 .862 .998 .059 +.090 .875 .935 .030 +.103
ControlChart .681 .981 .895 .965 .049 +.214 .790 .806 .007 +.109

Table 12.2. MOEA-PCE and EM-PCE: similarity results w.r.t. reference classifi-
cation (feature-based representation)

ensemble MOEA-PCE EM-PCE
gain gain
w.r.t. w.r.t.
ens. ens.

dataset avg-max avg max-std (avg) avg max-std (avg)

Iris .662 .998 .988 1 .029 +.326 .845 .895 .043 +.183
Wine .822 .989 .955 .997 .027 +.133 .869 .899 .080 +.047
Glass .731 .891 .851 .900 .027 +.120 .817 .877 .041 +.086
Ecoli .763 .879 .858 .884 .016 +.095 .903 .953 .052 +.140
Yeast .720 .805 .790 .804 .009 +.070 .684 .690 .003 -.036
Segmentation .618 .720 .729 .737 .049 +.111 .625 .632 .008 +.007
Abalone .716 .754 .759 .849 .023 +.043 .726 .748 .013 +.010
Letter .646 .693 .767 .818 .012 +.121 .780 .786 .007 +.134
Tracedata .661 .818 .755 .811 .0.25 +.094 .753 .773 .021 +.092
ControlChart .663 .894 .880 .910 .016 +.217 .734 .774 .022 +.071

In both cases, it can be noted how the performances of the proposed al-
gorithms lead to an average similarity of the output consensus partition(s)
that are generally comparable or far better than the average intra-ensemble
similarity. According to the object-based representation (Table 12.1), the aver-
age improvements (gains) by MOEA-PCE and EM-PCE over all datasets are
13.6% and 4.3%, respectively, with peaks above 16% on five out of ten datasets
by MOEA-PCE (up to 29% on Iris), and peaks above 10% on three datasets
by EM-PCE (up to 13% on Iris). Analogously, according to the feature-based
representation (Table 12.2), the average improvements by MOEA-PCE and
EM-PCE over all datasets are 13.3% and 7.3%, respectively.

MOEA-PCE hence outperforms EM-PCE in nearly all datasets, especially
according to the object-based representation; however, it seems that the best
results achieved by EM-PCE deviate from the average less than the corre-
sponding results by MOEA-PCE.
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Evaluation in Terms of Similarity w.r.t. Ensemble

Using the ensemble for each dataset as a reference for comparison, Ta-
ble 12.3 summarizes the (average) similarity results obtained by MOEA-PCE
and EM-PCE.

It is interesting to observe that both the algorithms achieve an average
similarity above 94% according to the object-based representation. Also, the
algorithms perform well according to the feature-based representation, al-
though MOEA-PCE tends to prevail EM-PCE (86.8% against 80.3%).

Table 12.3. MOEA-PCE and EM-PCE: average similarity results w.r.t. ensemble

MOEA-PCE EM-PCE
obj-based feat.-based obj-based feat.-based

dataset repres. repres. repres. repres.

Iris .968 .843 .925 .722
Wine .989 .876 .986 .847
Glass .969 .933 .960 .725
Ecoli .989 .928 .996 .914
Yeast .962 .965 .968 .947
Segmentation .939 .967 .932 .842
Abalone .979 .977 .972 .971
Letter .930 .721 .910 .677
Tracedata .966 .830 .913 .750
ControlChart .853 .638 .815 .634

Table 12.4. MOEA-PCE and EM-PCE: error rate results

ref. class. ensemble MOEA-PCE EM-PCE
gain gain gain gain
w.r.t. w.r.t. w.r.t. w.r.t.

dataset avg min avg min std ref. class. avg ens. avg min std ref. class. avg ens.

Iris .157 .166 .122 .131 .124 .004 +.026 +.035 .138 .138 0 +.019 +.028
Wine .089 .111 .039 .041 .039 .001 +.048 +.070 .074 .068 .052 +.015 +.037
Glass .029 .082 .009 .013 .009 .003 +.016 +.069 .050 .048 .010 -.021 +.032
Ecoli .038 .056 .020 .033 .021 .007 +.005 +.023 .048 .040 .005 -.010 +.008
Yeast .030 .049 .035 .039 .036 .002 -.009 +.010 .047 .041 .005 -.017 +.002
Segm. .007 1.404 .007 .011 .007 .003 -.004 +1.393 .027 .013 .054 -.020 +1.377
Abalone .032 .028 .022 .023 .017 .007 +.009 +.005 .013 .010 .005 +.019 +.015
Letter 1.632 .185 .098 .130 .109 .007 +1.502 +.055 .770 .764 .006 +.862 -.585
Tracedata .068 .078 .045 .053 .045 .005 +.015 +.025 .082 .078 .020 -.014 -.004
ControlChart 5.152 2.697 .650 .807 .657 .080 +4.345 +1.890 0.932 0.854 .050 +4.220 +1.765

Evaluation in Terms of Error Rate

Table 12.4 compares the performance of MOEA-PCE and EM-PCE to
both the reference classification and the ensemble, for each dataset, in terms
of error rate. The gain values refer to differences between the error rate relative
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to reference classification (resp., ensemble) and the error rate of the specific
algorithm.

Similarly to the previously discussed evaluations based on an external
criterion, this evaluation shows that MOEA-PCE outperforms the standard
ensemble, obtaining an average improvement (gain) over all the datasets of
+0.6 w.r.t. the reference classification and +0.358 w.r.t. the ensemble. EM-
PCE also improves upon the error rate of the reference classification (+0.51)
and of the ensemble (+0.27).



Conclusion

The main goal of KDD (Knowledge Discovery in Databases) process is to
identify novel, valid, potentially useful, and ultimately understandable pat-
terns in data. It comprises several steps, and data mining is the most repre-
sentative one.

This thesis has focused on data mining and, in particular, on the task of
clustering, whose main goal is, given a set of objects and a distance function
between such objects, to partition such a set into a number of compact and
well-separated clusters, where compactness and separation are measured ac-
cording to the input distance measure. In particular, this thesis has addressed
two main problems arising from clustering: the problem of uncertainty and
the problem of the curse of dimensionality.

Uncertainty

Uncertainty in data clustering has been investigated in this thesis look-
ing at two different aspects, i.e., uncertainty that can be inherently present
in the representation of particular kind of data, and the so-called clustering
uncertainty, which refers to uncertainty that typically affects the clustering
output.

The specific model of uncertainty in data representation taken into ac-
count in this thesis is that exploited for representing the so-called uncertain
objects, i.e, objects described by a multidimensional region of definition, which
is a finite subset of the full dimensional space, and one or more probability
distributions aimed at providing the probability that the exact location of
the object coincides with a specific point of the region of definition. In this
respect, two new algorithms for clustering uncertain objects has been pro-
posed. The first one, called UK-Medoids, is a K-Medoids-based algorithm,
mainly designed for overcoming some issues that typically affect the existing
state-of-the-art partitional algorithms for clustering uncertain objects. The
second algorithm proposed, i.e., U-AHC, is the first agglomerative hierarchi-
cal clustering algorithm for this kind of data. A major novelty of U-AHC is
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the definition of a novel prototype link-based criterion for choosing the pair of
clusters to be merged at each iteration of the standard AHC greedy scheme.
Such a criterion exploits some notions from Information Theory, and has been
proved to be particularly sound for the context of uncertain objects. A further
contribution in this regard has been concerned the use of U-AHC algorithm
in a real application context, i.e, it has been adapted to handle microarray
biomedical data with probe-level uncertainty.

The other aspect related to uncertainty in data clustering addressed in this
thesis has concerned the clustering level; indeed, due to its intrinsic ill-posed
nature, clustering naturally outputs results that are unavoidably affected by
uncertainty. In order to properly solve this problem, several clustering ensem-
bles methods has been defined in the literature. Such methods aim to overcome
clustering uncertainty by generating a set of clustering solutions, i.e., an en-
semble, and determining the final clustering (i.e., the consensus partition) by
properly exploiting the information available from the ensemble.

In this respect, this thesis has focused on the newly emerged problem of
weighted consensus clustering, whose main goal is to discriminate among the
solutions in the ensemble in order to recognize those that should in principle
be taken in higher consideration than the remaining ones by any clustering en-
sembles algorithm. In particular, three schemes for weighting the solutions in
the ensemble has been proposed based on the notion of ensemble diversity, i.e.,
Single Weighting (SW), Group Weighting (GW), and Dendrogram Weighting
(DW). A major novelty of the proposed weighting schemes is their general-
ity, because they are defined only exploiting information available from the
ensemble while not requiring any particular clustering ensembles algorithm
or consensus function to work. Accordingly, the proposed schemes are easily
applicable to any existing clustering ensembles algorithm falling into one of
the most popular categories of clustering ensembles algorithms, i.e., instance-
based, cluster-based, and hybrid. In this regard, a further contribution has been
regarded the development of three algorithms, i.e., Weighted Instance-based
Clustering Ensembles (WICE), Weighted Cluster-based Clustering Ensembles
(WCCE), and Weighted Hybrid Clustering Ensembles (WHCE), which allow
for easily exploiting the information given by any proposed weighting scheme
directly within any instance-based, cluster-based, or hybrid clustering ensem-
bles algorithm.

The Curse of Dimensionality

The curse of dimensionality in data clustering is related to all the (accu-
racy and efficiency) issues which typically arise from applying classic cluster-
ing algorithms to data objects having large dimensionality. To overcome this
problem, classic approaches resort to global and local dimensionality reduction
techniques.

This thesis has focused on global dimensionality reduction by taking into
account the scenario of time series data. In this respect, a new dimensional-
ity reduction technique (i.e., representation model) for time series data has
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been proposed, called Derivative time series Segment Approximation (DSA).
The proposed model is essentially based on a simple idea that has not been
previously involved into any of the existing state-of-the-art time series rep-
resentation models; such an idea consists in performing a segmentation pro-
cedure on the derivative version of the original time series. This allows for
capturing the main trends of the series and obtain high compression with-
out significant loss of accuracy. Further contributions in this respect has been
concerned the adaptation of DSA to some real application contexts. In par-
ticular, DSA has been exploited for managing mass spectrometry biomedical
data, and low-voltage electricity customer load profile data.

Regarding local dimensionality reduction, the problem of projective clus-
tering has been taken into account. The main goal of projective clustering
is to discover clusters along with the corresponding subspaces, which have to
be identified by respecting the following principle: data objects in the same
cluster are highly similar to each other if and only if they are projected onto
the subspace associated to that cluster.

In this regard, this thesis has introduced the novel problem of Projective
Clustering Ensembles (PCE), which aims to give an unified view of the prob-
lems of clustering ensembles and projective clustering. In particular, the focus
of PCE is on the development of techniques aimed at properly discovering
a projective consensus partition from an ensemble composed by projective
clustering solutions. More precisely, two specific formulation of PCE as an
optimization problem have been provided, i.e., two-objective PCE and single-
objective PCE. These formulations take into account the information available
form the ensemble at a data clustering level and a feature level by defining two
objective functions conflicting with each other (two-objective PCE) or com-
bining these two different kinds of information into a single objective function
(single-objective PCE). Furthermore, for each one of the proposed formu-
lations, two heuristic algorithm have been defined, called MOEA-PCE and
EM-PCE, respectively. MOEA-PCE resorts to the context of Multi Objective
Evolutionary Algorithms, whereas EM-PCE exploits a scheme similar to that
employed by the popular Expectation Maximization clustering algorithm.

Future Research

The research described in this thesis can be further extended in several
directions.

Regarding uncertainty in data representation, two interesting problems
which received so far few consideration in the literature can be addressed: the
problems of semi-supervised clustering of uncertain objects and projective
clustering of uncertain objects. The first one refers to clustering uncertain
objects in a such a way that the entire process is guided by a set of con-
straints aimed at suggesting which objects should belong to the same cluster
and which ones should not. The challenge here is due to the form of the con-
straints, which can be in turn probabilistic (i.e., uncertain) like the objects to
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be clustered. Projective clustering of uncertain objects should aim to discover
projective clusters whose subspaces are sound given the intrinsic probabilistic
representation of the uncertain objects. As a result, such subspaces can be in
turn considered as random variables, which can be described by pdfs derived
by properly taking into account pdfs of the uncertain objects.

Research on clustering uncertainty and, in particular, on clustering en-
sembles may be extended as follows. The information-theoretic properties of
the weight distributions outputted from the clustering weighting schemes SW,
GW, and DW can be deeply analyzed in order to (i) auto-determine the user-
defined parameter α involved in all the proposed schemes, and (ii) select a
small number of clustering solutions to reduce the size of the ensemble with-
out penalizing the accuracy of the consensus partition. Moreover, in addition
to diversity and accuracy that are commonly involved for solving clustering
ensemble selection problem, further structural ensemble properties may be
exploited to develop innovative approaches to solve such a problem. A further
objective is analyzing the theoretical properties of the hybrid approach, in
order to give proper formulation(s) of this approach as an optimization prob-
lem (thus, not only limited to the graph-based formulation) and define proper
heuristic solutions for the formulation(s) at hand.

The contribution of this thesis to local dimensionality reduction, i.e., the
formulation of the novel projective clustering ensembles (PCE) problem, is
actually at an early stage; thus, the improvements in this regard are man-
ifold. A first goal to be accomplished is developing proper instance-based,
cluster-based, and hybrid formulations of PCE (like for standard clustering
ensembles), in order to define heuristics with lower complexity, both computa-
tional and implementation, than the formulations proposed in this thesis (i.e.,
two-objective PCE and single-objective PCE). A further goal is to provide
a more detailed insight into the theoretical properties of two- and single-
objective PCE, in order to improve accuracy by deriving a new formulation
from the combination of the original ones. Moreover, since PCE is clearly
related to the notion of uncertainty both in clustering output and in the sub-
spaces associated to the various clusters, future research in this regard might
concern the study of the probabilistic properties of PCE, particularly focusing
on model-based clustering methods and techniques from the uncertain objects
management context.
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Appendix: Datasets Used in the Experiments

A.1 UCI Datasets

Table A.1 reports on the main characteristics of the benchmark datasets
from UCI Machine Learning Repository [ANml] involved into the experiments
of this thesis.

Table A.1. UCI benchmark datasets used in the experiments

dataset # of objects # of attributes # of classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5
Yeast 1,484 8 10
ISOLET 1,800 617 6
ImageSegmentation 2,310 19 7
Abalone 4,124 7 17
LetterRecognition 7,648 16 10

Iris contains measurements relating different iris plants. Wine refers to re-
sults of a chemical analysis on Italian wines derived from three different cul-
tivars. In Glass, each glass instance is described by the values of its chemical
components. Ecoli contains data on the Escherichia Coli bacterium, which are
identified with values coming from different analysis techniques. Yeast objects
describe the main features and the localization of various proteins. ISOLET
contains objects representing letters of the alphabet spoken by certain sub-
jects; we selected a subset of objects representing the letters A, B, C, D, E,
and G. ImageSegmentation contains objects that were randomly drawn from
a database of seven outdoor images; the images (3x3 regions) were hand-
segmented to create a classification for each pixel. Abalone is about differ-
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ent types of abalone shells. LetterRecognition contains character images cor-
responding to the capital letters in the English alphabet; we selected the
instances of each letter from A to J.

A.2 Time Series Datasets

Six time series datasets (cf. Table A.2) were selected for carrying out the
experiments of this thesis. All of these are publicly available from UCR Time
Series Classification/Clustering Page [KXWRta].

Table A.2. Time Series datasets used in the experiments

dataset # of objects # of attributes # of classes

GunX 200 150 2
Tracedata 200 275 4
ControlChart 600 60 6
CBF 300 128 3
Twopat 800 128 4
Mixed-BagShapes 160 1,614 9

GunX comes from the video surveillance domain. Tracedata simulates sig-
nals representing instrumentation failures. In CBF (Cylinder-Bell-Funnel),
each class is characterized by a specific pattern, namely a plateau (C), an in-
creasing ramp followed by a sharp decrease (B), a sharp increase followed by
a decreasing ramp (F). ControlChart contains synthetically generated control
charts which are classified into one of the following: normal, cyclic, increasing
trend, decreasing trend, upward shift, and downward shift. In Twopat, two
different patterns (upward step and downward step) are used to define the
classes down-down, up-down, down-up, and up-up. Mixed-BagShapes contains
time series derived from shapes belonging to nine classes (bone, cup, device,
fork, glass, hand, pencil, rabbit and tool).

A.3 Microarray Datasets

Our experiments were performed on four large microarray datasets, each
of which describing the expressions of thousands of genes in biological tissues,
as shown in Table A.3.

Three datasets, namely Leukaemia, Neuroblastoma and Myelodysplastic are
cancer tissue data of humans [oMHgi], while Mouse is about mouse tis-
sues [EEml]. Leukaemia describes the transformation process of leukaemia
stem cells initiated by MLL-AF9 fusion gene. Neuroblastoma contains expression-
based screening results for neuroblastoma differentiation. In Myelodysplastic,
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Table A.3. Microarray datasets used in the experiments

dataset # of objects (genes) # of attributes (conditions)

Leukaemia 22,690 21
Neuroblastoma 22,282 14
Myelodysplastic 22,277 25
Mouse 45,101 10

somatic chromosomal deletions in cancer are measured by means of an RNA-
mediated interference (RNAi)-based approach to discovery of the 5q− disease
gene, which is a subtype of the myelodysplastic syndrome characterized by
a defect in erythroid differentiation. Mouse contains a transcription profiling
of mouse cochlea Reissner’s membrane (RM). This is grown as explants and
treated with dexamethasone and then subject to RNA extraction to investi-
gate gene expressions.

A.4 Mass Spectrometry Datasets

We used mass spectrometry datasets publicly available from [fCRsp]. All
these datasets contain SELDI-TOF spectra and were obtained using different
clinical studies under different mass spectrometry platforms and experimental
conditions. Table A.4 summarizes their main characteristics.

Table A.4. Mass spectrometry datasets used in the experiments

dataset # of objects # of attributes # of classes

OvarianCancer 49 28,000 2
Cardiotoxicity 115 7,105 4
Pancreatic 181 6,771 2
Prostate 322 15,154 4

In OvarianCancer [PAH+02] the spectra are derived from an analysis of
serum samples of a female population belonging to two classes (ovarian cancer
diseased and healthy). Also, OvarianCancer spectra were subject to a prelimi-
nary preprocessing phase specific for MS data [MCK+05, WNP03]. Cardiotox-
icity contains high resolution, binned spectra used in a toxiproteomic analysis
of anthracycline-induced cardiotoxicity [PRH+04]. Data are labeled according
to four classes: definite negative (24), probable negative (43), probable positive
(10), definite positive (34). Pancreatic comprises high resolution, binned spec-
tra used in a study on premalignant pancreatic cancer detection [HPM+03].
There are here two classes: control (101), pancreatic intraepithelial neoplasias
(80). Prostate includes low resolution spectra used in a study on prostate can-
cer, which have already been provided with the baseline subtracted [POP+02].



190 A Appendix: Datasets Used in the Experiments

Data is assigned with four classes: cancer and PSA level > 10 ng/ml (43), can-
cer and PSA level within [4..10] ng/ml (26), benign and PSA level > 4 ng/ml
(190), no evidence of disease and PSA level < 1 ng/ml (63).



B

Appendix: DDTW and DSA
Derivative Estimation Models

Approximating the derivative of a given series plays an essential role in the
DDTW method as well as in our DSA. We have described both the DDTW
and DSA derivative estimation models in Chapt. 9, Sect. 9.2.1 ((9.1)-(9.2)).
Here we present some experimental results which show a comparison of these
two models concerning their (i) performance in approximating real derivatives
of standard functions and (ii) impact on the performance of DSA and DDTW.

B.1 Evaluation of the Approximation of Real Derivative
Functions

Let f(x) : < → < be a continuous function and f ′(x) : < → < be its first
derivative. Let R = [x1, . . . , xm] ∈ <m denote a sequence of real values, over
which we suppose to define a sequence X and the corresponding sequence X ′ of
actual derivative values. Formally, let X = [y1, . . . , ym] and X ′ = [y′1, . . . , y

′
m],

such that yj = f(xj) and y′j = f ′(xj), ∀j ∈ [1..m]. Given X, we also denote
with Ẋ = [ẏ1, . . . , ẏm] the approximation derivative version of X which is
obtained by a certain estimation model.

We compute the average approximation error of Ẋ (i.e., the estimated
derivative sequence) with respect to X ′ (i.e., the actual derivative sequence)
as follows:

e(Ẋ, X ′) =
1
m

m∑

j=1

|ẏj − y′j |
|y′j |

Figure B.1 shows a comparison between the DDTW and DSA derivative
estimation models on four example functions, namely a cubic polynomial, an
exponential function, a sine wave, and the Gaussian function. Table B.1 re-
ports on the average approximation errors (in percentage) obtained by using
the two models on the selected functions. It can be noted that the DSA deriva-
tive estimation model produces an average error of approximation which is
always lower than the error by the DDTW model.
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(a) cubic (b) exponential

(c) Gaussian (d) sin wave

Fig. B.1. Approximation errors on derivative estimation: DDTW model vs. DSA
model

Table B.1. Average approximation errors on derivative estimation: DDTW model
vs. DSA model. Each function is valued on 101 points over the range [−5, +5].

function DDTW model DSA model

cubic 4.52% 1.12%
exponential 2.48% 0.26%
Gaussian 1.99% 0.08%
sine 11.48% 0.5%

B.2 Impact on the Performance of DSA and DDTW

In the main experimental sections we have presented clustering results ob-
tained on the various data sets by using DSA and DDTW. Since both methods
are characterized by a distinct model of derivative estimation, it was also in-
teresting to gain an insight into the impact of this model on the performance
of DSA and DDTW. For this purpose, we exchanged the respective models
of derivative estimation in DSA and DDTW and then repeated the relative
experimental evaluation in clustering frameworks.
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Table B.2 shows the clustering results obtained by K-Means and UPGMA
when DDTW was equipped with the DSA derivative estimation model, and
compares these results with those previously reported in Table 9.2 and Ta-
ble 9.3. The modified version of DDTW led to better performances than the
original DDTW method in most cases, in particular Mixed-BagShapes (4%
by UPGMA and 2% by K-Means), Twopat (3% by UPGMA and 1% by K-
Means), and ControlChart (2%).

Analogously, Table B.3 reports on the clustering results when DSA was
equipped with the DDTW derivative estimation model, and compares them
with the original performances of DSA. Again, the DSA derivative estimation
model prevailed against the DDTW one in most cases—OvarianCancer (5%
by UPGMA and 4% by K-Means), CBF and GunX (4% by K-Means and 2%
by K-Means), Mixed-BagShapes (3% by K-Means and 2% by UPGMA), and
Twopat (2%).

Table B.2. DDTW-based clustering results by varying the derivative estimation
model

clustering derivative GunX Tracedata ControlChart CBF Twopat Mixed-Bag Ovarian
algorithm estimation Shapes Cancer

K-Means DSA .90 1 .91 .95 .96 .78 .63
DDTW .89 1 .89 .96 .95 .76 .62

UPGMA DSA .72 .78 .56 .48 .67 .45 .64
DDTW .72 .76 .54 .49 .64 .41 .63

Table B.3. DSA-based clustering results by varying the derivative estimation model

clustering derivative GunX Tracedata ControlChart CBF Twopat Mixed-Bag Ovarian
algorithm estimation Shapes Cancer

K-Means DSA .92 1 .90 .96 .97 .78 .75
DDTW .90 1 .91 .92 .95 .75 .71

UPGMA DSA .73 .82 .54 .60 .67 .51 .73
DDTW .69 .80 .56 .62 .65 .49 .68

The above results led us to conclude that the DSA derivative estimation
model can enhance the DDTW method in practice; conversely, the DDTW
derivative estimation model does not bring any beneficial effect to (in general,
it may negatively affect) the performance of the DSA method.
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Appendix: Impact of Time Series
Preprocessing on Similarity Detection

As we have discussed in Chapt. 9, Sect. 9.3.4, smoothing is performed prior
to the mining tasks in order to handle noise in the raw data, regardless of the
particular representation method or distance measure used. In our experimen-
tal evaluation, smoothing turned out to be useful for all the methods on every
dataset—except for the OvarianCancer case. The intuition that skipping the
smoothing stage would cause a decrease in performing similarity detection
was supported by experimental evidence when we tried to directly classify the
original (i.e., non-smoothed) data. Indeed, as shown for some prominent meth-
ods in Table C.1, the decrease would be significantly high in most datasets,
with peaks of around 50% on ControlChart, CBF, and Twopat.

Another important remark is that the relative performances of most of the
various methods (including our DSA) do not vary substantially whether or
not smoothing is performed. This indicates that the representation model and
similarity/distance measure play a more important role than the preprocessing
operations in determining the best approach(es) to similarity detection in time
series.

A special remark should also be made on the OvarianCancer dataset which
is huge-dimensional and largely affected by noisy factors, like most of mass
spectra datasets. On this dataset, DSA performed far better than DDTW,
precisely +13% by K-Means, +10% by UPGMA, in terms of F1-Measure (cf.
Tables 9.2–9.3).

Table C.2 summarizes the best preprocessing setups for DSA and the other
methods on the various datasets, using the K-Means algorithm; we left the
best setups for UPGMA out of the presentation, since they resulted fairly
similar to those obtained by K-Means in most datasets. In the table, term
MA (resp., EXP) stands for moving average (resp., exponential smoothing)
and is followed by the value set for λ (resp., ϕ) and the number of iterations.
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Table C.1. Time series clustering: K-Means performance reduction in case of no
smoothing

GunX Tracedata ControlChart CBF Twopat Mixed-BagShapes

FTW -21% -16% -41% -29% -23% –
DTW -16% -2% -46% -48% -53% -4%
DDTW -19% – -47% -57% -50% –
DWT -6% -17% -37% -35% -15% –
SD -5% -19% -45% -46% -47% –
PLA -14% -1% -47% -46% -35% -3%
PAA -7% -2% -46% -46% -30% -5%
SAX -22% -2% -43% -47% -25% -4%
APCA -18% -5% -48% -42% -46% -4%
DSA -19% – -48% -54% -51% –

Table C.2. Summary of the preprocessing setups providing the best time series
clustering results by K-Means

GunX Trace Control CBF Twopat Mixed-Bag Ovarian
data Chart Shapes Cancer

LCSS MA λ=9 MA λ=5 EXP ϕ=0.3 No smooth. EXP ϕ=0.1 No smooth. No smooth.
it=3 it=3 it=1 it=4

EDR No smooth. EXP ϕ=0.3 EXP ϕ=0.7 EXP ϕ=0.7 No smooth. EXP ϕ=0.1 No smooth.
it=5 it=1 it=1 it=3

ERP EXP ϕ=0.1 EXP ϕ=0.1 EXP ϕ=0.7 EXP ϕ=0.1 MA λ=5 EXP ϕ=0.5 No smooth.
it=5 it=1 it=3 it=5 it=3 it=5

FTW EXP ϕ=0.3 No smooth. EXP ϕ=0.7 EXP ϕ=0.1 EXP ϕ=0.3 EXP ϕ=0.5 No smooth.
it=3 it=3 it=3 it=3 it=2

DTW EXP ϕ=0.1 No smooth. EXP ϕ=0.9 No smooth. EXP ϕ=0.9 EXP ϕ=0.1 No smooth.
it=3 it=1 it=5 it=5

DDTW EXP ϕ=0.9 EXP ϕ=0.1 EXP ϕ=0.3 EXP ϕ=0.5 EXP ϕ=0.1 EXP ϕ=0.1 No smooth.
it=3 it=1 it=5 it=5 it=1 it=1

DFT EXP ϕ=0.2 EXP ϕ=0.1 MA λ=9 EXP ϕ=0.1 EXP ϕ=0.2 MA λ=5 No smooth.
it=4 it=3 it=2 it=1 it=4 it=1

DWT EXP ϕ=0.1 EXP ϕ=0.6 EXP ϕ=0.3 EXP ϕ=0.1 EXP ϕ=0.6 EXP ϕ=0.1 No smooth.
it=2 it=2 it=1 it=3 it=3 it=2

CHEBY EXP ϕ=0.1 EXP ϕ=0.9 EXP ϕ=0.7 EXP ϕ=0.5 MA λ=9 EXP ϕ=0.9 No smooth.
it=3 it=5 it=5 it=1 it=3 it=3

SD EXP ϕ=0.7 MA λ=9 EXP ϕ=0.6 EXP ϕ=0.3 EXP ϕ=0.3 EXP ϕ=0.9 No smooth.
it=5 it=5 it=4 it=4 it=5 it=4

PLA EXP ϕ=0.1 MA λ=5 EXP ϕ=0.5 EXP ϕ=0.5 EXP ϕ=0.3 EXP ϕ=0.4 No smooth.
it=1 it=1 it=1 it=1 it=1 it=1

PAA EXP ϕ=0.1 EXP ϕ=0.5 EXP ϕ=0.7 EXP ϕ=0.7 EXP ϕ=0.1 EXP ϕ=0.1 No smooth.
it=1 it=1 it=3 it=1 it=1 it=1

SAX EXP ϕ=0.3 EXP ϕ=1 EXP ϕ=0.4 EXP ϕ=0.5 EXP ϕ=0.1 EXP ϕ=0.5 No smooth.
it=3 it=1 it=3 it=1 it=1 it=3

APCA EXP ϕ=0.1 EXP ϕ=0.7 EXP ϕ=0.7 No smooth. EXP ϕ=0.5 EXP ϕ=0.1 No smooth.
it=3 it=5 it=3 it=1 it=3

DSA EXP ϕ=0.9 EXP ϕ=0.1 EXP ϕ=0.2 EXP ϕ=0.4 EXP ϕ=0.2 EXP ϕ=0.1 No smooth.
it=3 it=1 it=2 it=3 it=2 it=2
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tering in Arbitrarily Oriented Subspaces. In Proc. SIAM Int. Conf. on
Data Mining (SDM), pages 763–774, 2008.
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