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Preface

Integrity constraints have long been used to maintain database consistency,
thus ensuring that every possible database reflects a valid, consistent state of
the world. However, nowadays several applications have to deal with incon-
sistent databases, namely databases which violate given integrity constraints,
because integrity constraints may not be enforced or satisfied. For instance, in-
consistency may arise in data integration, where multiple autonomous sources
are integrated together. Even if the sources are separately consistent, the in-
tegrated database may be inconsistent. Inconsistency may also occur when
integrity constraints are unenforced because integrity checking is infeasible or
too costly. There are plenty of other scenarios where inconsistency arises.

Dealing with inconsistent databases we face the problem of extracting reli-
able information from them. In this regard, most of the works in the literature
are based on the consistent query answering (CQA) framework. This frame-
work relies on the notions of repair and consistent query answer. Intuitively,
a repair for a possibly inconsistent database is a consistent database which
“minimally” differs from the original one. In general, there may be more than
one repair for an inconsistent database. The consistent answers to a query
over a possibly inconsistent database are those answers that can be obtained
from every repair.

Several different dimensions of consistent query answering have been ex-
plored in the last years: different notions of repair minimality (leading to
different semantics for consistent query answers); different classes of queries
and integrity constraints; different methods of computing consistent query
answers.

In this thesis, we address several issues regarding the problem of repairing
and querying inconsistent databases; they are briefly introduced below.

In general, the consistency of an inconsistent database may be restored in
different ways. In this scenario it is natural to express preferences among the
updates which lead a database to a consistent state. For example, if a data-
base violates a functional dependency because of conflicting data coming from
different sources such conflicts may be resolved if the sources have different
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reliability. Similarly, new information may be preferred to old information.
In this regard, we propose prioritized active integrity constraints, a special
type of active rules which allows us to express integrity constraints, feasible
updates which should be performed (in order to restore consistency) when
integrity constraints are violated and preferences among such updates.

Inconsistency leads to uncertainty as to the actual values of tuple at-
tributes. Thus, it is natural to study the possible use of incomplete database
frameworks in this context. The set of repairs for a possibly inconsistent data-
base could be represented by means of an incomplete database whose possible
worlds are exactly the repairs of the inconsistent database. In this thesis we
address this issue considering a specific incomplete database framework: dis-
junctive databases.

We propose a framework for querying inconsistent databases in the pres-
ence of functional dependencies and foreign key constraints, where consistent
answers for a particular class of conjunctive queries can be computed in poly-
nomial time.

Computing consistent query answers is an intractable problem in the gen-
eral case. In order to cope with this problem, we propose a framework, based
on three-valued logic, which allows us to compute a sound and incomplete set
of consistent query answers in polynomial time.

The original notion of repair has been criticized as too coarse-grained :
deleting a tuple to remove an integrity violation potentially eliminates useful
information in that tuple. Moreover, the original notion of consistent query
answers does not allow us to discriminate among answers which are not con-
sistent. In order to cope with the aforementioned problems, we propose a
framework for querying inconsistent databases where both the notions of re-
pair and query answer differ from the classical ones.

Main Contributions

The main contributions of the thesis are the following:

1. The problem of expressing preferences among repairs is addressed. Specif-
ically, we propose a logical framework based on prioritized active integrity
constraints (PAICs) for handling constraints with preferences. A PAIC
allows us to express a universal integrity constraints, the feasible updates
which should be performed whenever the constraint is violated and pref-
erences among the feasible updates. Then, given a database and a set
of PAICs, founded repairs are those repairs obtained by performing only
feasible updates. Preferences among updates induce preferences among
founded repairs, so that preferred repairs can be identified among founded
repairs. The preferred query answers are those ones obtained from every
preferred repair. We propose a technique for computing founded repairs
which consists in deriving a disjunctive Datalog program from a set of
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PAICs so that the stable models of the so obtained program correspond
to founded repairs. We show that some desirable properties on the set of
preferred repairs hold in the proposed framework.

2. We study the problem of representing the set of repairs of a possibly
inconsistent database by means of a disjunctive database (i.e. a disjunctive
database whose minimal models are the repairs).
We show that, given a database and a set of denial constraints, there exists
a (unique) disjunctive database, called canonical, which represents the
repairs of the database w.r.t. the constraints and is contained in any other
disjunctive database with the same set of minimal models. We propose an
algorithm for computing the canonical disjunctive database.
Moreover, we study the size of the canonical disjunctive database in the
presence of functional dependencies for both set-repairs (consistent data-
bases for which the symmetric difference from the original database is
minimal under set inclusion) and card-repairs (consistent databases for
which the cardinality of symmetric difference from the original database
is minimal).

3. We investigate the problem of repairing and querying databases in the
presence of (particular sets of) functional dependencies and foreign key
constraints. We present a repairing strategy whereby only tuple updates
and insertions are allowed in order to restore consistency: when foreign
key constraints are violated, new tuples (possibly containing null values)
are inserted into the database; when functional dependency violations oc-
cur, tuple updates (possibly introducing unknown values) are performed.
We propose a semantics of constraint satisfaction for databases containing
null and unknown values, since the repairing process can lead to such data-
bases. The proposed approach allows us to obtain a unique repaired data-
base which can be computed in polynomial time. The result of the repair-
ing technique is an incomplete database (in particular, an OR-database).
The semantics of query answering over an inconsistent database consists
in computing certain answers on the repaired database. We also identify a
class of conjunctive queries whose answers can be computed in polynomial
time.

4. Since computing consistent query answers is in general an intractable
problem, we propose a technique for computing a sound and incomplete
set of consistent answers in polynomial time.
We propose three-valued repairing strategy relying on update operations
which make the truth value of database atoms true, false or undefined .
Thus, in this setting, three-valued databases are considered and a new
semantics of constraint satisfaction (for three-valued databases) is pro-
posed. For standard (two-valued) databases the proposed semantics coin-
cides with the classical one. We show that the set of three-valued repairs
defines a lower semi-lattice whose top elements are standard (two-valued)
repairs and whose bottom element is called deterministic repair.
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We show that by evaluating a query over the deterministic repair we get
sound, but not complete, consistent answers. We study some classes of
queries and constraints for which the proposed technique is also complete.
Moreover, we show that the deterministic repair and query answers can
be computed in polynomial time, by showing that a logic program whose
perfect model corresponds to the deterministic repair can be obtained by
suitably rewriting the integrity constraints associated with the database.

5. Finally, we propose a framework for querying inconsistent databases which
aims at preserving better the information in an inconsistent database and
providing more informative query answers. In order to achieve these goals,
we adopt notions of repair and query answer which differ from the clas-
sical ones. Specifically, the repairing strategy relies on value-updates, so
that the information of an inconsistent database is preserved better than
approaches based on tuple deletions. Answers to queries are tuples asso-
ciated with probabilities: this approach allows us to provide more infor-
mative answers to queries over inconsistent databases. We also propose a
technique for computing approximate probabilistic query answers in poly-
nomial time.

Organization

The thesis is organized as follows. In Chapter 1 we introduce basic concepts
and notations of first-order logic, disjunctive Datalog, relational databases
and integrity constraints. In Chapter 2 we provide a survey of the literature
on consistent query answering over inconsistent databases. In Chapter 3 we
present a framework for expressing preferences in repairing inconsistent data-
bases. In Chapter 4 we address the problem of representing a set of repairs
by means of a disjunctive databases. In Chapter 5 we consider the problem
of querying inconsistent databases in the presence of functional dependencies
and foreign key constraints, and identify a class of conjunctive queries whose
answers can be computed in polynomial time. Chapter 6 presents a framework,
based on three-valued logic, for computing sound but not complete consistent
query answers in polynomial time. In Chapter 7 we propose a framework for
querying inconsistent databases where query answers are probabilistic. Finally,
conclusions are drawn.
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1

Preliminaries

In this chapter, first-order logic, disjunctive Datalog, relational databases and
integrity constraints are introduced. We assume that the reader is familiar
with the aforementioned topics, so only basic concepts and notations used
hereafter are presented (for more, see [1, 73]).

1.1 First-Order Logic

A first-order language L is defined over an alphabet Σ which consists of count-
able sets of variable, predicate and function symbols. A predicate (resp. a
function) symbol is said to be a k-ary predicate (resp. function) symbol if the
number of arguments that it takes is equal to k. We assume that the binary
equality predicate symbol = is defined. A 0-ary function symbol is called a
constant. A first-order language is function-free if it contains only functions
with arity equal to zero.

The family of terms over the alphabet Σ is recursively defined as follows:
a constant or a variable is a term; f(e1, . . . , en) is a term if f is an n-ary
function symbol and the ei’s are terms.

The (well-formed predicate calculus) formulas over L are built using log-
ical connectives (¬,∧,∨), quantifiers (∀, ∃), terms and predicate symbols as
follows: p (e1, . . . , en) is an atomic formula (or atom) if p is an n-ary predicate
symbol and e1, . . . , en are terms; atomic formulas also include expressions of
the form e1 = e2 where e1 and e2 are terms; ¬ϕ,ϕ ∧ φ, ϕ ∨ φ,∃xϕ,∀xϕ are
formulas if ϕ and φ are formulas and x is a variable.

Free and bound occurrences of variables in formulas are recursively defined
in the following way: each variable occurrence in an atom is free; if φ is ϕ1∨ϕ2,
then an occurrence of variable x in φ is free if it is free as an occurrence of
ϕ1 or ϕ2; this is extended to the other connectives. If φ is ∃xϕ (resp. ∀xϕ),
then an occurrence of variable y 6= x is free in φ if is free in ϕ, whereas each
occurrence of x is bound in φ. In addition, each occurrence of x in φ which is
free in ϕ is said to be in the scope of ∃x (resp. ∀x) at the beginning of φ.
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A sentence is a well-formed formula that has no free variable occur-
rences. Sentences will also be called closed (first-order) formulas. A formula
is quantifier-free if no quantifier occurs in it.

A term or a formula is ground if no variables occur in it. A literal is an
atom A or a negated atom ¬A; in the former case it is positive, whereas in
the latter negative. Two literals are complementary, if they are of the form A
and ¬A, for some atom A.

An interpretation of a first-order language is a 4-tuple I = 〈U, C, P , F 〉,
where U is a nonempty set of abstract elements called the universe (of dis-
course) and C, P , F give meaning to the sets of constant, predicate and func-
tion symbols: C is a function from the constant symbols into U ; P maps each
n-ary predicate symbol p into an n-ary relation over U , i.e. a subset of Un;
F assigns to each k-ary function symbol f an actual function Uk → U . An
interpretation is finite if its universe of discourse is finite.

The Herbrand Universe of a first-order language L is the set of all ground
terms that can be constructed using constant and function symbols of L (if
the language has no constants, then it is extended by adding an arbitrary new
constant). The Herbrand Base of L is the set of all ground atoms constructed
from the predicates of L and the ground terms from the Herbrand Universe as
arguments. The Herbrand Universe and the Herbrand Base are both enumer-
able, and infinite if there is a function symbol of arity greater than zero. An
Herbrand interpretation is a subset of the Herbrand Base. It is an interpreta-
tion where the universe of discourse is the the Herbrand Universe, all terms
are interpreted as themselves, and each predicate symbol is mapped into a
subset of the Herbrand Base.

The notion of satisfaction of a formula by an interpretation is defined
in the standard way. An interpretation I is a model of a set Φ of sentences,
denoted as I |= Φ, if I satisfies each sentence in Φ. For a sentence ψ (resp. a set
Φ of sentences), an Herbrand model is an Herbrand interpretation satisfying ψ
(resp. every sentence in Φ). If Φ has no models, then Φ is said to be inconsistent
or unsatisfiable; otherwise it is said to be consistent or satisfiable.

We say that a sentence ψ (logically) implies (or supports) ν, denoted as
ψ |= ν, if every model of ψ is a model of ν too, and ψ is (logically) equivalent
to ν, denoted as ψ ≡ ν, if the set of models of ψ is equal to the set of models
of ν. A (first-order) theory is a set of sentence of a (first-order) language.

1.2 Disjunctive Datalog

Datalog is a well-known database query language. Basically, it is a function-
free first-order language. Next, we briefly introduce Disjunctive Datalog, which
extends Datalog with disjunction and negation. A (disjunctive Datalog) rule
r is of the form1:
1 The meaning of the symbols ‘∧’ and ‘,’ is the same



1.2 Disjunctive Datalog 3

p∨

i=1

Ai ←
m∧

j=1

Bj ,

n∧

k=m+1

not Dk, ϕ (1.1)

where p > 0, n ≥ 0, the Ai’s, the Bj ’s and the Dk’s are atoms, and ϕ is
a conjunction of built-in atoms of the form uθv where u and v are terms
and θ is a comparison predicate. The disjunction on the left-hand side of the
rule is called the head of r (denoted by Head(r)), whereas the conjunction
on the right-hand side is called the body of r (denoted by Body(r)). A rule
is safe if every variable occurring in it is safe; a variable x is safe if occurs
in a positive literal of the body or in a built-in atom of the form x = y
where y is either a constant or a safe variable. The expression H ← (B1,1 ∨
. . . ∨ B1,m1), . . . , (Bn,1 ∨ . . . ∨ Bn,mn

) can be used as shorthand for the rules
H ← B1,i1 , . . . , Bn,in where 1 ≤ ij ≤ mj for j = 1..n .

A (disjunctive Datalog) program is a finite set of rules. A not-free (resp.
or-free) program is called positive (resp. normal).

The Herbrand Universe (resp. Herbrand Base) of a program P , denoted
by UP (resp. BP ), is the set of all constants appearing in P (resp. the set of
all ground atoms constructed from the predicate symbols appearing in P and
the constants from UP ).

A rule or a program is ground if no variables occur in it. A rule r′ is a
ground instance of a rule r if r′ is obtained from r by replacing every variable in
r with some constant in UP ; ground(P ) denotes the set of all ground instances
of the rules in P .

An interpretation I for a program P is any subset of BP ; I is a model
of P if it satisfies all rules in ground(P ). The (model-theoretic) semantics
of positive programs assigns to P the set of its minimal models, denoted by
MM(P ), where a model M for P is minimal if no proper subset of M is
a model for P . For any interpretation I, P I is the ground positive program
derived from ground(P ) by 1) removing all rules that contain a negative literal
notA in the body s.t. A ∈ I, and 2) removing all negative literals from the
remaining rules. An interpretation I is a (disjunctive) stable model of P if
and only if I ∈ MM(P I). The stable model semantics assigns to P the set
SM(P ) of its stable models. It is well known that stable models are minimal
models (i.e. SM(P ) ⊆MM(P )) and that for positive programs minimal and
stable model semantics coincide (i.e. SM(P ) = MM(P )).

We now introduce a class of programs where the use of negation is re-
stricted. A program P is called stratified if it is possible to partition the (finite)
set S of all predicate symbols in P into sets {S1, . . . , Sr}, called strata, such
that for every rule of the form (1.1) in P there exists a constant c, 1 ≤ c ≤ r,
such that for every Ai Stratum(Ai) = c, for every Bj Stratum(Bj) ≤ c
and for every Dk Stratum(Dk) < c, where Stratum(A) = i iff the predicate
symbol of the atom A is in the stratum Si. Any partition {S1, . . . , Sr} of S
satisfying the previous conditions is called a stratification of P . We use the
term stratification of the rules of P to refer to the partition {P 1, . . . , P r}
of P s.t. P i contains the rules defining the predicates in Si (a rule defines a
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predicate p if an atom whose predicate symbol is p occurs in the head of the
rule). A stratified normal program admits a unique stable model.

In the following, rules of the form

← L1, . . . , Ln

where the Li’s are literals, will be used as a shorthand notation for

p ← L1, . . . , Ln, not p

where p is a propositional symbol not appearing elsewhere. The previous
rule emulates the integrity constraint false ← L1, . . . , Ln as the conjunction
L1, . . . , Ln must be false in every stable model.

1.3 Relational Databases

We assume that there exist countably infinite sets att, relname and dom
(called the underlying domain) of attributes, relation names and constants,
respectively. The previous sets are pairwise disjoint. A relation schema is of
the form p (A1, . . . , An) where p ∈ relname and every Ai ∈ att (a schema
can be also of the form p (U), where U is a set of attributes). A (relational)
database schema is a nonempty set of relation schemata. When different at-
tributes should have distinct domains, we assume a mapping Dom on att,
where Dom(A) is a set of constants called the domain of the attribute A.

A tuple over a relation schema p (A1, . . . , An) is a mapping assigning to
each attribute Ai an element in dom(Ai), i.e. it is a list of values 〈a1, . . . , an〉
where every ai is the value of the tuple on the attribute Ai. The value of a
tuple t on an attribute Ai will be denoted as t[Ai]. For a set of attributes
W = {Ai, . . . , Aj}, t[Ai, . . . , Aj ] (also denoted as t[W ]) is 〈t[Ai], . . . , t[Aj ]〉.

A relation instance (or simply relation) over a relation schema p (U) is a set
of tuples over p (U). In the following, a tuple t = 〈a1, . . . , an〉 over p (U), will
also be denoted by p (a1, . . . , an) (or p (t)) since under a logic-programming
perspective it is a fact (ground atom) over p. A database instance (or simply
database) over a database schema {p1(U1), . . . , pm(Um)} is a set of relations
{r1, . . . , rm} where each ri is a relation over the schema pi(Ui). Since each
tuple t in a relation p can be viewed as a fact p(t), a database can be viewed
as a finite set of facts.

1.4 Integrity Constraints

Integrity constraints express semantics information over data, i.e. properties,
relationships that are supposed to be satisfied among data and they are mainly
used to validate database transactions. They are usually defined by first-order



1.4 Integrity Constraints 5

formulas or by means of special notations for particular classes such as func-
tional and inclusion dependencies.

An integrity constraint (or dependency) is a first-order sentence of the
form:

(∀X)[Φ(X) → (∃Z)Ψ(Y )]

where X, Y and Z are sets of variables, Z = Y −X, Φ is a (possibly empty)
conjunction of atoms and Ψ is a nonempty conjunction of atoms. Equality
atoms of the form xi = xj , where xi and xj are variables, can occur in an
integrity constraint. Without loss of generality, we assume that no equality
atom occurs in Φ and no existentially quantified variable participates in an
equality atom in Ψ . Common classifications of dependencies are as follows:

• Full versus embedded : A full dependency is a dependency that has no
existential quantifiers.

• Single head versus multi-head : A dependency is single head if the right
hand formula involves a single atom and is multi-head otherwise.

• Tuple generating versus equality generating : A tuple generating depen-
dency is a dependency in which no equality atoms occur; an equality gen-
erating dependency is a dependency for which the right-hand formula is
a single equality atom (observe that an equality generating dependency is
single head and full).

• Typed versus untyped : A dependency is typed if there is an assignment
of variables to column positions such that (1) variables in relation atoms
occur only in their assigned position, and (2) each equality atom involves
a pair of variables assigned to the same position.

• Unirelational versus Multirelational : A dependency is unirelational if at
most one relation name is used and is multirelational otherwise.

Most of the dependencies developed in database theory are restricted cases
of some of the above classes. For instance, functional dependencies are unire-
lational, equality-generating dependencies. In the following, if not differently
stated, we will assume that a given set of constraints is satisfiable (or consis-
tent), that is there is a database instance that makes it true.

Given a database schema DS and a set IC of integrity constraints on DS,
an instance D of DS is said to be consistent w.r.t. IC if D |= IC in the
standard model-theoretic sense, inconsistent otherwise (D 6|= IC).

Next, we present some particular classes of constraints which will be of
interest in the following.

1.4.1 Universal Integrity Constraints

Universal integrity constraints are sentences of the form

∀X[A1 ∨ . . . ∨Am ∨ ¬B1 ∨ . . . ∨ ¬Bn ∨ ϕ]
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where the Ai’s and the Bj ’s are atoms, ϕ is a conjunction of built-in atoms,
X denotes the list of all variables appearing in the Bj ’s; variables appearing
in the Ai’s and in ϕ also appear in the Bj ’s. Universal integrity constraints
written under the previous form are said to be in standard format, even though
they can be rewritten as follows

∀X[B1 ∧ . . . ∧Bn ∧ φ → A1 ∨ . . . ∨Am]

where φ is the negation of ϕ; in turn, the previous constraint can be rewrit-
ten by moving literals from the head to the body and vice versa. Universal
constraints with at most two database literals (i.e., literals whose predicate
symbols are relation names) will be called binary universal constrains.

1.4.2 Denial Constraints

Denial constraints are universal integrity constraints of the form

∀X[¬B1 ∨ . . . ∨ ¬Bn ∨ ϕ]

that is only negative literals appear in the standard format of the universal
constraint. Denial constraints with n ≤ 2 will be called binary denial con-
straints.

1.4.3 Functional Dependencies

Functional dependencies are a special case of binary denial constraints. They
are typed, unirelational, equality-generating constraints of the form

∀X1, X2, X3, X4, X5[p (X1, X2, X4) ∧ p (X1, X3, X5) → X2 = X3]

where the Xi’s are tuple of variables. A more familiar formulation of the above
functional dependencies is p[V ] → p[W ] (or simply V → W if the relation
symbol is understood from the context), where V is the set of attributes of
p corresponding to X1 and W is the set of attributes of p corresponding
to X2 (and X3). Given a relation schema p(U) and a set FD of functional
dependencies over it, a key of p is a minimal (under ⊆) set K ⊆ U of attributes
such that FD entails K → U . In this case, we say that each K → W in FD
is a key dependency. If, additionally, K is the primary (one designed) key of
p, then K → W is called primary key dependency.

1.4.4 Inclusion Dependencies

An inclusion dependency, also known as referential integrity constraint, is a
sentence of the form

∀X∃Z[p(X) → q(Y,Z)]
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where X and Z are disjoint sets of variables and Y ⊆ X. The foregoing inclu-
sion dependency can be written also as p[V ] ⊆ q[W ], where V (resp. W ) is the
set of attributes of p (resp. q) corresponding to Y . Full inclusion dependencies
are those expressible without the existential quantifier (they are a special case
of binary universal constraints). For instance, ∀X, Y [p(X, Y ) → q(X)] is full.
Given an inclusion dependency p[V ] ⊆ q[W ], if W is a key of q then the de-
pendency is a foreign key constraint. If, additionally, W is the primary key of
q, then the dependency is called primary foreign key constraint. Let ID be a
set of inclusion dependencies over a database schema DS. Consider a directed
graph whose vertices are relation names from DS and such that there is an
edge (p, q) in the graph iff there is an inclusion dependency p[V ] ⊆ q[W ] in
ID. ID is acyclic if the above graph does not have a cycle.





2

Consistent Query Answers over Inconsistent
Databases

The problem of extracting reliable information from inconsistent databases
has been extensively studied in the past several years. Most of the works in
the literature rely on the consistent query answering (CQA) framework [4].
In this chapter we survey the literature on consistent query answering over
inconsistent databases. Specifically, we first introduce the basic notions of
repair and consistent query answer. Next, we present the main techniques for
computing consistent answers to queries. Then we present complexity results
of consistent query answering for different classes of queries and constraints.
Finally, we briefly summarize works in the literature where the notions of
repair and consistent query answer differ from the original ones.

2.1 Introduction

Integrity constraints have long been used to maintain database consistency,
thus ensuring that every possible database reflects a valid, consistent state of
the world. However, nowadays inconsistent databases arise in several scenarios
because integrity constraints may not be enforced or satisfied. For example,
when multiple autonomous data sources are integrated together, even if the
sources are separately consistent, the integrated database may be inconsistent.
In some contexts, integrity constraints may be unenforced because integrity
checking is too costly or infeasible. Dealing with inconsistent databases, we
face the problem of extracting reliable information from them. Different ap-
proaches have been developed in order to deal with inconsistency in a flexible
manner, they are illustrated in the following example.

Example 2.1. Consider a database schema consisting of two unary relations p1

and p2, and the denial constraint ∀x(¬p1(x) ∨ ¬p2(x)). Consider a database
consisting of the following facts: p1(a), p1(b), p2(a). Under prevention (usual
constraint enforcement), such instance could not arise: only one of p1(a) and
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p2(a) could be inserted into the database. Under ignorance (constraint non-
enforcement), no distinction is made between p1(a) and p1(b), despite that the
latter, not being involved in a constraint violation, appears to represent more
reliable information. Under isolation [18], both p1(a) and p2(a) are dropped
(or ignored in query answering). Under weakening [9, 62], p1(a) and p2(a) are
replaced by p1(a)∨p2(a). Allowing exceptions [15] means that the constraint is
weakened to ∀x(¬p1(x)∨¬p2(x)∨x = a), but query answering is not affected.

Another approach relies on the notions of repair and consistent query
answer, firstly proposed in [4]. A repair of a database w.r.t. a set of integrity
constraints is a consistent database which minimally differs from the original
one; the distance between two databases D1 and D2 is expressed by means
of the symmetric difference ∆(D1, D2) = (D1 −D2) ∪ (D2 −D1). Consistent
answers to a query over a possibly inconsistent database are those answers
which can be derived from every repair of the original database. We show the
basic ideas underlying consistent query answering in the following example.

Example 2.2. Let employee(Name, Salary, Dept) be a relation schema with
the functional dependency fd : Name → Salary Dept stating that each
employee has a unique salary and a unique department. Consider the following
relation instance r:

Name Salary Dept
john 50 cs
john 100 cs

Clearly, r is inconsistent w.r.t. f as it stores two different salaries for
the same employee john. There exist two repairs for r and f , namely
{employee(john, 50, cs)} (obtained by deleting the second tuple in r) and
{employee(john, 100, cs)} (obtained by deleting the first tuple in r). The con-
sistent answer to the query asking for the department of john is cs (as this
is the answer of the query in both the repairs) whereas the query asking for
the salary of john has no consistent answer (as the two repairs do not agree
on the answer).

Several different dimensions of consistent query answering have been ex-
plored after [4]:

• different notions of repair minimality (leading to different semantics for
consistent query answers);

• different classes of queries and integrity constraints;
• different methods of computing consistent query answers.

In this chapter, we will survey techniques for computing consistent query
answers, main complexity results on this topic and variants of the original
framework (an introduction to the central concepts of consistent query an-
swering is [24], whereas surveys on this topic are [13, 11]).

We now present the formal definitions of repair and consistent query an-
swer introduced in [4].
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Definition 2.1. Repair. Given a set IC of integrity constraints and two data-
bases D and R, we say that R is a repair of D w.r.t. IC if R |= IC and there
is no database D′ such that D′ |= IC and ∆(D′, D) ⊂ ∆(R, D).

We denote by rep(D, IC) the set of repairs of D w.r.t. IC. This set is
nonempty for satisfiable sets of constraints.

Definition 2.2. Consistent Query Answer (CQA). Let q, D and IC be re-
spectively a query, a database and a set of integrity constraints. A tuple t is a
consistent answer to q in D w.r.t. IC iff t is an answer to q in every repair of
D w.r.t. IC. We denote by consistentIC(q, D) the set of consistent answers
to q on D w.r.t. IC. Likewise, given a boolean query q′, we define true being
a consistent answer to q′ on D w.r.t. IC, denoted by D |=IC q′, if R |= q′ for
every repair R of D w.r.t. IC.

Two basic decision problems are:

• repair checking : Is a database a repair of another one w.r.t. the integrity
constraints?

• consistent query answering : Is a tuple a consistent query answer to a query
on a database w.r.t. the integrity constraints?

In this dissertation, we will consider only the latter problem. The data com-
plexity assumption is adopted [1, 75], that is the complexity of the problem is
measured as a function of the number of tuples in a database; the query and
the integrity constraints are considered fixed.

2.2 Computing CQAs: Methods

We note that already in the presence of a single primary key dependency there
are inconsistent relations with exponentially many repairs, as shown in the
following example.

Example 2.3. Consider the relation schema r(A,B) with the functional de-
pendency A → B. Let Dn (n > 0) be the family of databases, containing 2n
tuples, of the following form:

A B
a1 b1

a1 b2

...
...

an b1

an b2

It is easy to see that each database in Dn admits 2n repairs.
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Thus, computing consistent query answers by applying directly Defini-
tion 2.2 is impractical. Nevertheless, several practical mechanisms for the com-
putation of consistent query answers without computing all repairs have been
developed: query rewriting [4, 41, 42, 39, 40], compact representations of re-
pairs [26, 27], and logic programs [7, 20, 49, 50]. The first is based on rewriting
the input query q into a query qIC such that the evaluation of qIC returns the
set of consistent answers to q. This method works only for restricted classes of
queries and constraints. The second method relies on a compact representation
of the integrity constraint violations which is used during query evaluation.
The third approach uses disjunctive logic programs to specify all repairs, and
then with the help of a disjunctive logic programming system (e.g. [59]) finds
the consistent answers to a given query. Although this approach is applicable
to very general queries in the presence of universal constraints, the complex-
ity of evaluating disjunctive logic programs makes this method impractical for
large databases.

In this section we present the main proposed techniques for computing
consistent query answers, according to the aforementioned classification.

We observe that the techniques proposed in this thesis for computing query
answers over inconsistent databases (see Chapter 6 and Chapter 7) adopt the
approach of computing “approximate” query answers, rather than “exact”
query answers, in polynomial time. In Chapter 6 we will present a polynomial
time technique for computing sound but incomplete consistent query answers.
In Chapter 7 we will present an approach for computing approximate prob-
abilistic query answers over inconsistent databases in polynomial time (here
the semantics of query answering differs from the original one).

2.2.1 Query Rewriting

The query rewriting approach for computing consistent query answers consists
in rewriting a query q w.r.t. a set IC of integrity constraints into a query, say
it qIC , s.t. for every database D the consistent answers to q on D w.r.t. IC
are obtained by evaluating qIC directly on D (thus, without computing the
repairs).

First-Order Query Rewriting

In [41, 42] an algorithm for computing consistent answers has been proposed.
Specifically, given a query q, the algorithm returns a first-order query Q such
that for every possibly inconsistent database D, the consistent answers to q on
D can be obtained by evaluating Q directly over D. The algorithm works for
a particular class of conjunctive queries (which will be precisely characterized
below) and constraints which consists of one key dependency per relation; the
algorithm runs in linear time in the size of the query. Moreover, the same
papers show a class of queries s.t. for every query in the class, either the
consistent query answering problem is in PTIME or it is coNP-complete.
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Specifically, for this class of queries, the conditions of applicability of the
algorithm (which can be verified in polynomial time in the size of the query)
are necessary and sufficient in order to the consistent query answer problem
be in PTIME.

In the rest of this section, only conjunctive queries without repeated rela-
tion symbols are considered, that is every relation symbol occurs in a query
at most once. It is worth noting that, the problem of consistent query an-
swering for conjunctive queries in the presence of one key constraint per rela-
tion is known to be coNP-complete in general [19, 25]. This is the case even
for queries with no repeated relation symbols. Next, a class of conjunctive
queries for which the problem of computing consistent answers is tractable is
characterized. Let us introduce some definitions which are used to define the
aforementioned class of conjunctive queries.

Let q be a conjunctive query. The join graph G of q is a directed graph
such that (i) the vertices of G are the literals of q, (ii) there is an arc from ri

to rj if i 6= j and there is some existentially-quantified variable w in q s.t. w
occurs at the position of a nonkey attribute in ri and occurs in rj too (in any
position).

We say that there is a join on a variable w of q if w appears in two
literals ri(Xi, Yi) and rj(Xj , Yj) s.t. i 6= j (Xi and Xj are those variables
corresponding to the key attributes of ri and rj , respectively). If w occurs in
Yi and Yj , we say that there is a nonkey-to-nonkey join on w; if w occurs in
Yi and Xj , we say that there is a nonkey-to-key join; if w occurs in Xi and
Xj , we say that there is a key-to-key join. Given two literals ri(Xi, Yi) and
rj(Xj , Yj) of a query, we say that there is a full nonkey-to-key join from ri to
rj if every variable of Xj appears in Yi.

We now define the class of (tractable) conjunctive queries for which the
algorithm produces a rewriting.

Definition 2.3. Cforest query. Let q be a conjunctive query without repeated
relation symbols and all of whose nonkey-to-key joins are full. Let G be the
join graph of q. We say that q ∈ Cforest if G is a forest (i.e., every connected
component of G is a tree).

The rewriting algorithm is correct for queries in Cforest: let q be a query
belonging to Cforest, D be a database over a schema DS with a set IC of
integrity constraints consisting of one key dependency per relation, Q be the
first-order query returned by the algorithm; then, a tuple t is an answer to
Q over D iff t ∈ consistentIC(q,D). We next present some examples to show
the basic ideas underlying the algorithm (for more details, see [42]).

Example 2.4. Consider the database schema {r1(A,B)} where A is the pri-
mary key of r1. Let q = ∃x.r1(x, a), where a is a constant.Consider the (in-
consistent) database D1 = {r1(c1, a), r1(c1, b)}. It is easy to see that D1 |= q.
However, consistentIC(q, D1) (clearly, IC refers to the key constraint) is false
since the repair {r1(c, b)} 6|= q. Now, consider D2 = {r1(c1, a), r1(c1, b), r1(c2, a)}.
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It is easy to see that consistentIC(q, D2) is true. This is because there is a
key value in r1 (c2 in this case) that appears with a as its nonkey value,
and does not appear with any other constant a′ such that a′ 6= a. This can
be checked with a formula Qconsist(x) = ∀y′.r1(x, y′) → y′ = a. Indeed, the
query rewriting Q for q is the conjunction of q and Qconsist:

Q = ∃x.r1(x, a) ∧ ∀y′.r1(x, y′) → y′ = a

Example 2.5. Consider the database schema {r1(A,B), r2(C, D)} where A is
the primary key of r1 and C is the primary key of r2. Let q = ∃x, y, z.r1(x, y)∧
r2(y, z). Consider the (inconsistent) database D1 = {r1(c1, d1), r1(c1, d2),
r2(d1, e1)}. It is easy to see that D1 |= q. However, consistentIC(q, D1) is
false. Now, consider D2 = {r1(c1, d1), r1(c1, d2), r2(d1, e1), r2(d2, e2)}. It is
easy to see that consistentIC(q,D2) is true, since every nonkey value that
appears together with c1 in some tuple of r1 (in this case, d1 and d2) joins with
a tuple of r2. This can be checked with a formula Qconsist(x) = ∀y.r1(x, y) →
∃z.r2(y, z). The query rewriting algorithm yields the following query (which
is the conjunction of q and Qconsist):

∃x, y, z.r1(x, y) ∧ r2(y, z) ∧ ∀y.(r1(x, y) → ∃z.r2(y, z))

In general, the algorithm returns a first-order query Q that is obtained
as the conjunction of the input query q and a new query called Qconsist.
The query Qconsist is used to ensure that q is satisfied in every repair. It
is important to notice that Qconsist will be applied directly to the original
(possibly inconsistent) database, that is repairs will not be generated.

In [41, 42], it has been shown that minimal relaxations of the conditions
characterizing the class Cforest lead to intractability. In particular, it has been
shown the intractability of the consistent query answering problem for (1)
a conjunctive query whose join graph has a cycle of length two, and (2) a
conjunctive query whose join graph is a forest, but the query has some nonkey-
to-key joins that are not full. The former query is

∃x, x′, y.s1(x, y) ∧ s2(x′, y)

and the database schema is s1(A,B), s2(C,D) where A and C are the primary
keys of s1 and s2, respectively. The latter query is

∃x, x′, w, w′, z, z′,m.r1(x, w) ∧ r2(m,w, z) ∧ r3(x′, w′) ∧ r4(m,w′, z′)

where the database schema is r1(A, B), r2(C, D, E), r3(F,G), r4(H, I, L) with
A,CD, F,HI primary keys of r1, r2, r3, r4, respectively.

We now present the dichotomy result. Let q be a conjunctive query without
repeated relation symbols and all of whose nonkey-to-key joins are full. We
say that q is in the class C∗ if for every pair A and A′ of literals of q at most
one of the following conditions holds:

• there is a key-to-key join between A and A′,
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• there is a nonkey-to-nonkey join between A and A′,
• there are literals A1, . . . , Am in q such that there is a nonkey-to-key join

from A to A1, from Am to A′, and from Ai to Ai+1, for every i such that
1 ≤ i < m.

We say that a query q is in class Chard if q ∈ C∗ and q 6∈ Cforest. The
consistent query answering problem for every query in Chard is coNP-complete;
then for every query in C∗ the CQA problem is either PTIME or coNP-
complete.

Rewriting for SQL Queries

The papers [39, 40] present the ConQuer system which computes consistent
answers to SQL queries. Specifically, a special class of select-project-join (SPJ)
SQL queries with aggregation, grouping, set or bag semantics is considered
(this class will be precisely defined below), whereas the constraints consist
of at most one key constraint per relation. For set semantics, we are only
concerned with finding the set of tuples that occur in the query result for
every repair; under bag semantics, the multiplicity of a tuple in the consistent
query answer is the minimum multiplicity from any repair. The system relies
on a technique which rewrites SQL queries into SQL queries in such a way that
the latter allows us to retrieve the consistent answers to the original queries.

First, we will consider SPJ queries without aggregation or grouping. To
define the class of queries that can be handled by ConQuer, we first introduce
the notion of join graph. Given a SQL query q, the join graph G of q is a
directed graph such that:

• the vertices of G are the relations used in q,
• there is an arc from ri to rj if a non-key attribute of ri is equated with a

key attribute of rj .

Definition 2.4. Tree query. We say that a select-project-join-group-by query
q is a tree query if (1) every join condition of q involves the key of at least
one relation; (2) the join graph of q is a tree. We consider only queries con-
taining equi-joins (no inequality joins). The selection conditions may contain
comparisons (e.g., <) or functions. Each relation may be used at most once
in the query. The query may contain aggregate expressions.

Note that the previous definition restricts the nonkey-to-key joins of the query
to be acyclic, and does not permit non-key to non-key joins (since every join
must involve the key of a relation).

The rewriting technique consists in generating a subquery that retrieves
“candidates” consistent answers and another subquery which allows us to
filter out from the result of the former the answers which are not actually
consistent. The former subquery is a slight modification of the original one:
the observation here is that with key constraints and monotone queries, the
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evaluation of the original query on the source database gives a set of possible
answers (which is a superset of the consistent answers). The next example
illustrates the rewriting approach.

Example 2.6. Consider the following database D:
order

orderkey clerk custfk
o1 ali c1
o2 jo c2
o2 ali c3
o3 ali c4
o3 pat c2
o4 ali c2
o4 ali c3
o5 ali c2

customer
custkey acctbal

c1 2000
c1 100
c2 2500
c3 2200
c3 2500

over the schema {order(orderkey, clerk, custfk), customer(custkey, acctbal)}
where orderkey and custkey are primary keys. Consider the following query
q which retrieves the clerks who have processed orders for customers with a
balance over 1000:

SELECT o.clerk
FROM customer c, order o
WHERE c.acctbal>1000 AND o.custfk=c.custkey

A query rewriting Q that computes the consistent answers to q is the
following:

SELECT clerk
FROM Candidates Cand
WHERE NOT EXISTS ( SELECT * from Filter F

WHERE Cand.orderkey = F.orderkey)

where Candidates and Filter are the following subqueries:

Candidates AS ( SELECT DISTINCT o.orderkey, o.clerk
FROM customer c, order o
WHERE c.acctbal > 1000 and o.custfk=c.custkey)

Filter AS ( SELECT o.orderkey
FROM Candidates Cand

JOIN order o ON Cand.orderkey = o.orderkey
LEFT OUTER JOIN customer c ON o.custfk=c.custkey

WHERE c.custkey IS NULL OR c.acctbal ≤ 1000 )
UNION ALL
SELECT orderkey
FROM Candidates Cand
GROUP BY orderkey
HAVING COUNT(*) > 1)
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The Candidates subquery corresponds to the original query except that it
uses the DISTINCT keyword and the attribute orderkey of the relation order
has been introduced into the SELECT clause. In general, the Candidates sub-
query is obtained from the original one by introducing the DISTINCT keyword
and the key attributes of the relation at the root of the join graph of the
query into the SELECT clause. The evaluation of Candidates on D gives the
following answers {(o1, ali), (o2, jo), (o2, ali), (o3, pat), (o4, ali), (o5, ali)}.

The subquery Filter returns the orders that should be filtered out from
the result of Candidates because they are not consistent answers. In this case,
Filter returns the orders {o1, o2, o3}. The orders o1 and o3 are filtered out
by the former subquery of Filter, whereas the order o2 by the latter. The
order o1 is returned by Filter because the customer of the order, namely
c1, has not an account balance greater than 1000 for sure. The order o3 is
returned by Filter because it appears in a tuple (the fourth of order) which
does not join with any tuple of customer. Observe that Filter computes a
left-outer join between order and customer. Therefore o3 appears together
with a null value for attribute custkey in the left-outer join. The order o2 is
filtered out because its clerk maybe either jo or ali and thus o2 should not
contribute with its clerks to the consistent query answer of q. Observe that,
detecting of the cases in which non-key to key joins are not satisfied (as for
order o3) is obtained performing a left-outer join rather than an inner join.
This can be done because we are considering queries whose join graph is a
tree. Specifically, the left-outer join of the relations is obtained starting at the
relation at the root of the join graph (tree), and recursively traversing it in
the direction of its edges, that is, from a relation joined on a non-key attribute
to a relation joined on its key.

Q takes the tuples of the result of Candidates whose order is not retrieved
by Filter, and projects on the clerk attribute. The final result is {ali, ali},
which is the consistent answer. Notice that the Q computes not only the fact
that ali is a consistent answer, but also the correct multiplicity.

We now present the rewriting method for tree queries that may have group-
ing and aggregation. We will consider SQL queries of the following form:

SELECT G, agg1(e1) AS E1, . . . , aggn(en) AS En

FROM F
WHERE W
GROUP BY G

where G is the set of attributes we are grouping on, and agg1(e1), . . . , aggn(en)
are aggregate expressions with functions agg1, . . . , aggn, respectively (a func-
tion may be MAX, MIN, SUM). We will assume that the select clause renames the
aggregate expressions to E1, . . . , En. Notice that we are focusing on queries
where all the attributes in the group by clause appear in the select clause. This
is a restriction because, in general, SQL queries may have some attributes in
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the group by clause which do not appear in the select clause (although not
vice versa).

The semantics of query answering is that one proposed in [5], namely a
range for each value of G that is a consistent answer is given (observe that [5]
considers queries with just one aggregated attribute and no grouping). Before
formally presenting the semantics of query answering, we define the query qG

as the query obtained from q by removing all the aggregate expressions from
the SELECT clause, that is qG is of the form:

SELECT G
FROM F
WHERE W
GROUP BY G

Definition 2.5. Range-Consistent Query Answer.Let D be a database, q be
a query, and IC be a set of integrity constraints. We say that (t, r) is a
range-consistent query answer to q on D if

1. t is a consistent answer for qG on D; and
2. r = (minE1 ,maxE1 , . . . , minEn , maxEn), and for each i such that 1 ≤ i ≤

n:
• minEi ≤ πEi(σG=t(q(R))) ≤ maxEi , for every repair R; and
• πEi(σG=t(q(R))) = minEi , for some repair R; and
• πEi(σG=t(q(R))) = maxEi , for some repair R.

Example 2.7. Consider the following database D:

customer
custkey nationkey mktsegment acctbal

c1 n1 building 1000
c1 n1 building 2000
c2 n1 building 500
c2 n1 banking 600
c3 n2 banking 100

where custkey is the primary key. Consider the following query q, which re-
trieves the total account balance for customers in the building sector, grouped
by nation:

SELECT nationkey, SUM(acctbal)
FROM customer
WHERE mktsegment = ’building’
GROUP BY nationkey

Let qG be query obtained from q by removing its aggregate expression, that
is:
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SELECT nationkey
FROM customer
WHERE mktsegment = ’building’
GROUP BY nationkey

It is easy to see that nation n1 is the only consistent answer to qG on D.
Therefore, the range-consistent answer consists of a range of values for n1.
There are four repairs for the D w.r.t. the key constraint, namely:

D1 = {〈c1, n1, building, 1000〉, 〈c2, n1, building, 500〉, 〈c3, n2, banking, 100〉}
D2 = {〈c1, n1, building, 1000〉, 〈c2, n1, banking, 600〉, 〈c3, n2, banking, 100〉}
D3 = {〈c1, n1, building, 2000〉, 〈c2, n1, building, 500〉, 〈c3, n2, banking, 100〉}
D4 = {〈c1, n1, building, 2000〉, 〈c2, n1, banking, 600〉, 〈c3, n2, banking, 100〉}
The result of q on the repairs is the following:

q(D1) = {〈n1, 1500〉}
q(D2) = {〈n1, 1000〉}
q(D3) = {〈n1, 2500〉}
q(D4) = {〈n1, 2000〉}

Hence, the (range-consistent) answer to q is {(n1, 1000, 2500)}, because the
sum of the account balances for customers in the building sector and nation
n1 is:

• between 1000 and 2500, in every repair,
• 1000 in the repair D2,
• 2500 in the repair D3.

In the next example we illustrate the rewriting approach.

Example 2.8. We now show the rewriting for the query q of Example 2.7.
First, upper and lower bounds for the account balance of each customer are
obtained, and finally the sum of the account balances is computed.

The following subquery retrieves the lower and upper bounds for the ac-
count balance of the customers which always satisfies the query qG.

UnFilteredCandidates AS (
SELECT custkey, nationkey,

MIN(acctbal) AS minBal, MAX(acctbal) AS maxBal
FROM customer c
WHERE mktsegment = ’building’

AND NOT EXISTS ( SELECT *
FROM Filter
WHERE c.custkey=Filter.custkey)

GROUP BY custkey, nationkey)

The Filter subquery has been generated for the query qG as previously dis-
cussed for queries without aggregation or grouping. The filter retrieves the cus-
tomers which appear in some tuple that does not satisfy qG. By applying the
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filter on D, c2 and c3 are discarded from the result of UnFilteredCandidates.
The customer c1 is not filtered because its two tuples satisfy the query qG.
In the repairs D1 and D2, the account balance of c1 is 1000, whereas in
the repairs D3 and D4, the account balance of c1 is 2000. Therefore, it con-
tributes a minimum of 1000 and a maximum of 2000. Indeed, the result of
UnFilteredCandidates on D is {〈c1, n1, 1000, 2000〉}. Notice that the filter
is necessary because we would otherwise get the tuple 〈c2, n1, 500, 500〉 in the
result, which states that customer c2 contributes an amount of 500 in every
repair. This is not correct, since in the repairs D2 and D4, c2 does not satisfy
the query qG and therefore does not contribute to the sum of account bal-
ances. Thus, c2 contributes a minimum of 0 and a maximum of 500. This is
captured with the following query:

FilteredCandidates AS (
SELECT custkey, nationkey,

0 AS minBal, MAX(acctbal) AS maxBal
FROM customer c
WHERE mktsegment = ’building’

AND EXISTS ( SELECT *
FROM Filter
WHERE Filter.custkey=c.custkey)

AND EXISTS ( SELECT *
FROM QGCons
WHERE QGCons.nationkey=c.nationkey)

GROUP BY custkey, nationkey)

The result of FilteredCandidates is 〈c2, n1, 0, 500〉. In addition to checking
that the customer is filtered, we check that the nation (i.e., the attribute in
the group by of the original query) appears in the result of the consistent
answers to qG (denoted as QGCons in the query). This is necessary because
we do not want to retrieve ranges for the nations that are not consistent
answers. Finally, we obtain the range-consistent answers by summing up the
lower and upper bounds for each nation in the result of FilteredCandidates
and UnfilteredCandidates, as follows:

SELECT nationkey, SUM(minBal), SUM(maxBal)
FROM ( SELECT * FROM FilteredCandidates

UNION ALL
SELECT * FROM UnfilteredCandidates)

GROUP BY nationkey

In general, the rewriting deals with negative values as well.

2.2.2 Representing all Repairs

Chomicki et al. [26, 27] propose an approach for computing consistent query
answers which uses a representation of the integrity constraint violations.
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Specifically, projection-free relational algebra queries and denial constraints
are considered. In [25] it has been shown that consistent answers to projection-
free queries in the presence of denial constraints can be computed in polyno-
mial time (data complexity).

The approach proposed in [26, 27] relies on the notion of conflict hyper-
graph which represents all the integrity violations in a given database. Given
a database D and a set IC of denial constraints, the conflict hypergraph for
D w.r.t. IC, denoted by GD,IC , is a hypergraph whose set of vertices is the
set of tuples in D, whereas the set of edges consists of all the minimal sets of
tuples in D violating together a denial constraint in IC.

We first review the polynomial time algorithm presented in [25] for check-
ing the consistency of ground queries in the presence of denial constraints, then
we show how to use it to answer projection-free relational algebra queries. We
recall that the consistent answer to a ground query q on a database D w.r.t.
a set IC of denial constraints is true (resp. false) if R |= q (resp. R 6|= q) for
every repair R of D and IC.

Queries are assumed to be in CNF. This assumption does not reduce the
generality of the result, because every ground query can be converted to CNF
independently of the database, and thus without affecting the data complexity
of query evaluation. However, from a practical point of view, CNF conversion
may lead to unacceptably complex queries.

A query q is true in every repair of a database D if and only if each of the
conjunct of q is true in every repair of D. So the first step of the algorithm
reduces the task of determining whether true is the consistent answer to q to
answering the same question for every conjunct ψ : t1 ∨ . . . ∨ tm ∨ ¬tm+1 ∨
. . . ∨ ¬tn of q. This can be done by checking whether there exists a repair R
in which ¬ψ is true. If such a repair is not found for every conjunct of q, then
true is the consistent answer to q.

A repair in which ¬ψ is true contains tm+1, . . . , tn and does not contain
t1, . . . , tm. The algorithm selects nonderministically for every j, 1 ≤ j ≤ m,
an edge ej in GD,IC such that tj is in ej , and constructs a set of facts S such
that

S = {tm+1, . . . , tn} ∪
⋃

1≤j≤m,tj∈D

(ej − {tj})

and there is no edge e of GD,IC such that e ⊆ S. If the construction of S
succeeds, then a repair in which ¬ψ is true can be built by adding to S new
tuples from D until the set is maximal independent. The algorithm needs
m nondeterministic steps, a number which is independent of the size of the
database (but dependent on q), and in each of its nondeterministic steps selects
one possibility from a set whose size is polynomial in the size of the database.
So there is an equivalent PTIME deterministic algorithm.

Any relational algebra query q can be translated to a corresponding first-
order formula Φq(X) in a standard way. Since we consider only projection-
free relational algebra queries, the formula Φq(X) is quantifier-free. To be
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able to use the previous algorithm for ground queries, we have to ground
this formula, i.e., find an appropriate set of bindings for the variables in the
formula. This is done by evaluating an envelope query over the database. An
envelope query should satisfy two properties: (1) it should return a superset
of the set of consistent query answers for every database, and (2) it should be
easily constructible from the original query. Suppose that Eq is an envelope
query for a query q and let D and IC be a database and a set of denial
constraints respectively; then consistentIC(q, D) = {t ∈ Eq(D) | D |=IC

Φq(t)}
If a query does not use the difference operator (and thus is a monotonic

expression), the query itself is an envelope query. This may not be the case
when the query is not monotonic. In order to obtain an envelope query, two
operators F and G are defined by mutual recursion. The operator F defines
the envelope by overestimating the set of consistent answers. The auxiliary
operator G underestimates the set of consistent answers. They are recursively
defined as follows.

F (R) = R
F (E1 ∪ E2) = F (E1) ∪ F (E2)
F (E1 \ E2) = F (E1) \ G(E2)
F (E1 × E2) = F (E1)× F (E2)
F (σc(E)) = σc(F (E))
G(R) = ∆R

IC

G(E1 ∪ E2) = G(E1) ∪G(E2)
G(E1 \ E2) = G(E1) \ F (E2)
G(E1 × E2) = G(E1)×G(E2)
G(σc(E)) = σc(G(E))

where R is a relation, E1 and E2 are relational algebra expressions, ∆R
IC is a

relational algebra expression which evaluated over R gives the tuples common
to all the repair of R w.r.t. IC.

The paper [26] presents some optimizations for the previous algorithm and
experimental results.

The technique described above underlies the implementation of the system
Hippo [26, 27].

2.2.3 Logic Programs

A major line of work on CQA involves capturing repairs as answer sets of
logic programs with negation and disjunction [7, 20, 49, 50]. Such approaches
are quite general, being able to handle arbitrary universal constraints and
first-order queries. Determining whether an atom is a member of all answer
sets of such a logic program is ΠP

2 -complete. Therefore, a direct implemen-
tation of CQA using a disjunctive logic programming system like DLV [59] is
practical only for very small databases. We next present two techniques for
computing repairs by means of extended disjunctive logic programs and logic
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programs with exceptions, respectively, derived from the given set of integrity
constraints.

Computing Consistent Query Answers using Extended Disjunctive
Logic Programs

A logical framework for computing repairs and consistent query answers has
been proposed in [49, 50]. The proposed technique consists in rewriting in-
tegrity constraints into extended disjunctive logic programs, so that repairs
and consistent query answers can be derived from the stable models of such
programs.

The paper [50] introduces also repair constraints, a form of constraints
which can be used to specify which repairs are feasible, and prioritized update
rules which allow us to express preferences among repairs. A set of integrity
and repair constraints can be rewritten into an extended disjunctive logic pro-
gram such that feasible repairs corresponds to stable models and vice versa;
integrity constraints with prioritized updates can be rewritten into a priori-
tized disjunctive program [70] so that preferred repairs correspond to preferred
stable models of the obtained program and vice versa.

Universal integrity constraints are considered. It is assumed that they are
written under the following form:

∀X[B1 ∧ . . . ∧Bn ∧ φ → A1 ∨ . . . ∨Am]

where the Ai’s and the Bj ’s are atoms, φ is a conjunction of built-in atoms,
X denotes the list of all variables appearing in the Bj ’s; variables appearing
in the Ai’s and in ϕ also appear in the Bj ’s.

Given a universal constraint c of the form above, dj(c) denotes the ex-
tended disjunctive rule

¬B′
1 ∨ . . . ∨ ¬B′

n ∨A′1 ∨ . . . ∨A′m ← (B1 ∨B′
1), . . . , (Bn ∨B′

n), φ,
(not A1 ∨ ¬A′1), . . . , (not Am ∨ ¬A′m)

where C ′i denotes the atom derived from Ci by replacing the predicate sym-
bol p with the new predicate symbol pu. Observe that not and ¬ denote
respectively negation as failure and classical negation. The semantics of a
program with classical negation is defined by considering each negated pred-
icate symbol ¬p as a new predicate symbol syntactically different from p
and by adding to the program, for each predicate symbol p with arity n,
the constraint ← p(x1, . . . , xn),¬p(x1, . . . , xn). Given a set IC of universal
constraints, LP (IC) = {dj(c) | c ∈ IC}.

Given a database D and a set IC of universal constraints, let M be a
stable model of LP (IC) ∪D; then

R(M) = ( {p(t) | pu(t) ∈ M ∧ p(t) 6∈ D},
{p(t) | ¬pu(t) ∈ M ∧ p(t) ∈ D})
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Intuitively, the first (resp. second) set of R(M), denoted as R(M)+ (resp.
R(M)−), corresponds to the set of atoms which should be inserted into (resp.
deleted from) the original database in order to obtain a repair. We denote by
R(M, D) the database obtained from D by applying the deletions and the
insertions specified by M , that is R(M, D) = D ∪ R(M)+ −R(M)−.

In [50], it has been shown that for every repair S of D w.r.t. IC there
exists a stable model M of LP (IC) ∪D s.t. R(M, D) = S, and every stable
model M of LP (IC) ∪D is s.t. R(M, D) is a repair of D w.r.t. IC.

Example 2.9. Consider the database D = {p(a), p(b), q(a), q(c)} and the in-
clusion dependency (∀x) [ p(x) → q(x) ]. Clearly, D is inconsistent as it does
not satisfy p(b) → q(b). The repairs of D w.r.t. the inclusion dependency are
R1 = {p(a), p(b), q(a), q(c), q(b)} and R2 = {p(a), q(a), q(c)}. The rewriting of
the integrity constraint produces a program LP consisting of the disjunctive
rule:

¬pu(x) ∨ qu(x) ← (p(x) ∨ pu(x)), (not q(x) ∨ ¬qu(x))

which can be rewritten into the simpler form

¬pu(x) ∨ qu(x) ← p(x), not q(x)

since the predicates pu and ¬qu do not appear in the head of any rule. The
program LP ∪ D has two stable models, namely M1 = D ∪ {qu(b)} and
M2 = D ∪ {¬pu(b)}. Thus, R(M1, D) = R1 and R(M2, D) = R2.

A query is a pair 〈g, P 〉 where P is a stratified, non-recursive, normal
Datalog program and g, which is called query goal, is a predicate symbol
defined in P specifying the output relation. The answers to a query q on a
database D w.r.t. a set IC of integrity constraints are as follows:

q(D, IC)+ = { g(t) | ∀M ∈ SM(LP (IC) ∪D) g(t) ∈ SM(P ∪R(M, D))}
q(D, IC)− = { g(t) | 6 ∃M ∈ SM(LP (IC) ∪D) s.t. g(t) ∈ SM(P ∪R(M, D))}
q(D, IC)u = { g(t) | ∃M1, M2 ∈ SM(LP (IC) ∪D) s.t.

g(t) ∈ SM(P ∪R(M1, D)), g(t) 6∈ SM(P ∪R(M2, D))}

Example 2.10. Consider the database D and the set IC of integrity constraints
of Example 2.9. Moreover, let q be the query 〈s, P 〉, where P consists of
the rule s(x) ← p(x), q(x). Then, q(D, IC)+ = {s(a)}, q(D, IC)u = {s(b)},
and q(D, IC)− contains those atoms which are neither in q(D, IC)+ nor in
q(D, IC)u.

The proposed technique is general but expensive. In [50] it has been shown
that, given a database D, a query q, a set IC of functional dependencies and
a ground atom t, then checking whether

• t ∈ q(D, IC)+ is co-NP complete,
• t ∈ q(D, IC)− is co-NP complete,
• t ∈ q(D, IC)u is NP complete
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The co-NP hardness for the first case has also been proved in [5, 8] and subse-
quently in [25]. In [50] tractable cases have been identified as well: the answers
to a query of the form 〈g, ∅〉 on a database w.r.t. a set of functional dependen-
cies (or a set of full inclusion dependencies) can be computed in polynomial
time. Observe that these tractable cases have been identified also in [4, 25].

Now, repair constraints, a special type of constraints which allow us to
restrict the number of repairs, are introduced. A repair constraint is a rule of
the form

← up1(A1), . . . , upm(Am), L1, . . . , Ln

where up1, . . . , upm ∈ {insert, delete}, A1, . . . , Am are atoms and L1, . . . , Ln

are literals. Informally, the semantics of a repair constraint is as follows: if the
conjunction L1, . . . , Ln is true in a repair R then at least one of the updates
upi(Ai) which have led to R must be false.

Given a database D, a set IC of integrity constraints and a set RC of repair
constraints, a repair R of D w.r.t. IC satisfies RC (written R |= RC) if for
each ← insert(A1), . . . , insert(Ak), delete(Ak+1), . . . , delete(Am), L1, . . . , Ln

in RC then

• there is some Ai, 1 ≤ i ≤ k, which is not in R − D (that is, Ai has not
been inserted into D in order to get R), or

• there is some Ai, k + 1 ≤ i ≤ m, which is not in D − R (that is, Ai has
not been deleted from D in order to get R), or

• there is some Li which is false in R.

The repair R is said to be feasible if it satisfies RC.

Example 2.11. Consider the database D and the inclusion dependency of Ex-
ample 2.9. The repair constraints

← delete(q(X))
← insert(q(X))

state that the relation q cannot be modified. There is only one repair which
satisfies the repair constraints above, namely R2 = {p(a), q(a), q(c)} be-
cause it is obtained by deleting the fact p(b) from D; the other repair
R1 = {p(a), p(b), q(a), q(c), q(b)}, obtained by inserting the fact q(b), is not
feasible.

The formal semantics of databases with both integrity and repair con-
straints is given by rewriting the repair constraints into extended rules with
empty heads. In particular, the sets of integrity constraints IC and repair
constraints RC are rewritten into an extended disjunctive program LP . Each
stable model of LP ∪ D can be used to generate a feasible repair for the
database.

Given a repair constraint r of the form
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← insert(A1), . . . , insert(Ak), delete(Ak+1), . . . , delete(Am),
B1, . . . , Bl, not Bl+1, . . . , not Bn, ϕ

where the Ai’s and the Bi’s are base atoms, and ϕ is a conjunction of built-in
atoms, dj(r) denotes the rule (with empty head)

← A′1, . . . , A
′
k, ¬A′k+1, . . . ,¬A′m,

((B1, not¬B′
1) ∨B′

1), . . . , ((Bl, not¬B′
l) ∨B′

l),
((not Bl+1, notB′

l+1) ∨ ¬B′
l+1), . . . , ((not Bn, not B′

n) ∨ ¬B′
n), ϕ

where C ′i is derived from C by replacing the predicate symbol, say p, with pu.
Given a set RC of repair constraints, then LP (RC) = { dj(r) | r ∈ RC }.
LP (IC, RC) denotes the set LP (IC) ∪ LP (RC).

In order to satisfy the rule dj(r)

• some atom A′i (1 ≤ i ≤ k) must be false (i.e. Ai is not inserted into the
database), or

• some atom ¬A′j (k + 1 ≤ j ≤ m) must be false (i.e. Aj is not deleted from
the database), or

• some formula ((Bi, not¬B′
i) ∨B′

i) (1 ≤ i ≤ l) must be false (i.e. the atom
Bi is false in the repair), or

• some formula ((notBi, not B′
i) ∨ ¬B′

i) (l + 1 ≤ j ≤ n) must be false (i.e.
the atom Bi is true in the repair), or

• the conjunction of built-in literals ϕ must be false.

Observe that the formula (Bi, not¬B′
i) ∨ B′

i states that the atom Bi is true
in the repair as either it is in the original database and is not deleted or it is
inserted into the original database. Likewise, the formula (notBi, notB′

i)∨¬B′
i

states that the atom Bi is false in the repair as either it is not in the original
database and is not inserted or it is deleted from the original database.

Example 2.12. Consider the repair constraint:

← insert(p(a)), delete(p(b)), r(c), not q(b)

The derived rule is

← pu(a), ¬pu(b), ((r(c), not¬ru(c)) ∨ ru(c)),
((not q(b), not qu(b)) ∨ ¬qu(b))

In [50], it has been shown that given a database D, a set IC of universal
constraints, a set RC of repair constraints, for every feasible repair S of D
w.r.t. IC and RC there exists a stable model M of LP (IC,RC) ∪ D s.t.
R(M, D) = S, and every stable model M of LP (IC,RC)∪D is s.t. R(M, D)
is a feasible repair of D w.r.t. IC and RC.

Prioritized update rules are now introduced. They allows us to express
preferences among updates and, consequently, among repairs. A prioritized
update rule is of the form
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up1(A) ¹ up2(B)

where up1, up2 ∈ {insert, delete}, A and B are atoms. Given a set PC of
prioritized update rules, we denote by PC∗ the reflexive, transitive closure
of PC. A set of prioritized update rules PC is said to be consistent if there
are not two prioritized update rules in PC∗ of the form up1(A′) ¹ up2(B′)
and up2(B′′) ¹ up1(A′′) such that A′ unifies with A′′ and B′ unifies with B′′.
Given a repair R of a database D, update(R) = {insert(A) | A ∈ R −D} ∪
{delete(A) | A ∈ D − R} denotes the set of update atoms used to obtain R
from D.

Given a database D, a set IC of integrity constraints, a set RC of repair
constraints and a set PC of prioritized update rules, the relation v is defined
over the repairs of D as follows. For any repairs R1, R2 and R3 of D

• R1 v R1,
• R1 v R2 if

1. ∃e2 ∈ update(R2)− update(R1)
∃e1 ∈ update(R1)− update(R2)
such that (e1 ¹ e2) ∈ PC∗ and

2. 6 ∃e3 ∈ update(R1)− update(R2) such that (e2 ¹ e3) ∈ PC∗

• if R1 v R2 and R2 v R3, then R1 v R3.

If R1 v R2 we say that R2 is preferable to R1. We write R1 @ R2 if R1 v R2

and R1 6= R2. A repair R for D is said to be preferred if there is no repair R′

for D preferable to R (i.e. such that R @ R′).
A prioritized disjunctive program [70] can be obtained by rewriting in-

tegrity and repair constraints into disjunctive rules as it has been shown before
and then adding prioritized rules obtained from the rewriting of prioritized
update rules. Such a technique is sound and complete, that is for every pre-
ferred repair S there exists a preferred stable model M of the prioritized
disjunctive program s.t. R(M) = S, and every preferred stable model M of
the prioritized disjunctive program is s.t. R(M) is a preferred repair.

Computing Consistent Query Answers using Logic Programs with
Exceptions

Another approach for computing consistent query answers by means of logic
programs has been proposed in [6, 7]. Specifically, a generalization of Logic
Program with Exceptions (LPE) [58], called Disjunctive Logic Program with
Exceptions (DLPE), is exploited. Given a database and a set of (domain
independent) binary universal constraints, the technique allows us to provide
a DLPE s.t. there is a one-to-one correspondence between the e-answers sets
of the constructed program and the repairs. Therefore, the consistent answers
to general first-order queries can be obtained asking for the atoms which are
true in every e-answer set of the logic program.
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We briefly introduce LPEs and DLPEs. Logic programs with exceptions
(LPEs) are built with normal extended clauses, that is, with clauses where
the (non-disjunctive) head and the body are literals (with classical negation)
and weak negation (or negation as failure) may appear in the bodies [44].
Among those clauses, in a LPE there are positive default rules, that is clauses
with positive heads, whose conclusions can be overridden by conclusions de-
rived from exception rules, which are clauses with negative heads. The idea
is that exceptions have priority over defaults. To capture this intuition a new
semantics is introduced, namely e-answer sets.

Example 2.13. We show a logic program with exceptions that cleans a data-
base r(X, Y ) from tuples participating in the violation of the functional de-
pendency X → Y . First, we introduce a new predicate r′(X, Y ) that will store
the tuples in the clean version of the database. The program consists of the
following rules:

1. Default rule: r′(X,Y ) ← r(X,Y ).
It says that every tuple (X,Y ) passes from r to r′.

2. Negative exception rule: ¬r(X, Y ) ← r(X,Y ), r(X, Z), not Y = Z. 1

It says that tuples (X, Y ) in r where X is associated to different values
are not accepted in the clean table.

3. Facts: the contents of r plus X = X ←.

Intuitively, rule 2 should have a priority over rule 1.

The semantics of the program should take the priorities into account; they
should be reflected in the intended models of the program. The semantics of
an LPE is as follows. Let Π be a ground LPE and S be a set of ground literals.
A set of ground rules ΠS is generated as follows:

(a) Delete every rule in Π containing not L in the body, with L ∈ S.
(b) Delete from the remaining clauses every condition not L in the body, when

L 6∈ S.
(c) Delete every rule having a positive conclusion L with ¬L ∈ S.

The result is a ground extended logic program without not. We say that S is
an e-answer set of the original program if it is an answer set of ΠS . Observe
that (a) and (b) above are as in the answer sets semantics for extended logic
programs [43], whereas (c) takes exceptions into account.

In order to specify database repairs, LPEs are extended to accommodate
also negative defaults, i.e. defaults with negative conclusions that can be over-
ridden by positive exceptions, and extended disjunctive exceptions, i.e. rules of
the form
1 Observe that not and ¬ denote respectively negation as failure and classical nega-

tion. The semantics of a program with classical negation is defined by considering
each negated predicate symbol ¬p as a new predicate symbol syntactically differ-
ent from p and by adding to the program, for each predicate symbol p with arity
n, the constraint ← p(x1, . . . , xn),¬p(x1, . . . , xn).
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L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lr, not Lr+1, . . . , not Ln

where the Li’s are literals. The e-answer semantics is extended as follows.
The program ΠS is obtained by applying (a) and (b) as before whereas a new
version of the rule (c) has to be applied:

(c’)delete every (positive) default having a positive conclusion L, with ¬L ∈ S
and every (negative) default having a negative conclusion ¬L, with L ∈ S.

Now the result is a ground disjunctive logic program without not. If the can-
didate set of literals S belongs to the answer set of ΠS , namely the set of
minimal models of program ΠS , then we say that S is an e-answer set. The so
obtained program can be transformed into a disjunctive extended logic pro-
gram with answer set semantics; the latter can be transformed in turn into a
disjunctive program with stable model semantics.

We now present the approach of [6, 7]. Binary universal constraints written
in the standard format are considered, that is constraints of the form

∀X1, X2 [p1(X1) ∨ p2(X2) ∨ φ(X1, X2)]

where X1, X2 are tuples of variables and φ is a formula containing only built-
in predicates. There are three possibilities for binary constraints in terms of
sign of literals in them, namely the universal closures of:

(a) p1(X1) ∨ p2(X2) ∨ φ(X1, X2)
(b) p1(X1) ∨ ¬p2(X2) ∨ φ(X1, X2)
(c) ¬p1(X1) ∨ ¬p2(X2) ∨ φ(X1, X2)

As said before the approach consists in deriving a DLPE ΠBC from a
set BC of binary universal constraints so that ΠBC can be used to compute
consistent query answers. For each predicate symbol p that appears in some
integrity constraint, a new predicate symbol p′ representing the repaired ver-
sion of p is introduced; p′ contains the tuples corresponding to p in a repair
of the original database.

Moreover, ΠBC is obtained by introducing:

1. Persistence Defaults. For each base predicate p, the following persis-
tence defaults are introduced:

p′(X) ← p(X) (2.1)

¬p′(X) ← not p(X) (2.2)

The defaults say that all data persist from the original relations to their
repaired versions. The positive defaults (rules of type 2.1) will be subject
to negative exceptions, whereas the negative defaults (rules of type 2.2)
will be subject to positive exceptions.
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2. Stabilizing Exceptions. For each constraint of the form (a), i.e. p1(X1)∨
p2(X2) ∨ φ(X1, X2), the following pair of positive exception clauses is in-
troduced:

p′1(X1) ← ¬p′2(X2), ϕ(X1, X2)

p′2(X2) ← ¬p′1(X1), ϕ(X1, X2)

where ϕ is the negation of φ.
Similarly, for each constraint of the form (b), i.e. p1(X1) ∨ ¬p2(X2) ∨
φ(X1, X2), the following clauses are introduced

p′1(X1) ← p′2(X2), ϕ(X1, X2)

¬p′2(X2) ← ¬p′1(X1), ϕ(X1, X2)

Finally, for each constraint of the form (c), i.e. ¬p1(X1) ∨ ¬p2(X2) ∨
φ(X1, X2), the pair of negative exception clauses is introduced

¬p′1(X1) ← p′2(X2), ϕ(X1, X2)

¬p′2(X2) ← p′1(X1), ϕ(X1, X2)

These exceptions may override the persistence stated in the defaults above.
The meaning of the stabilizing exceptions is to make the integrity con-
straints be satisfied by the new predicates p′i. These exceptions are nec-
essary, but not sufficient to ensure that the changes, that the original
predicate should be subject to in order to restore consistency, are propa-
gated to the new predicates.

3. Triggering Exceptions. For each constraint of the form (a),(b) or (c)
the following disjunctive exception clause is introduced, respectively:
(a)

p′1(X1) ∨ p′2(X2) ← not p1(X1), not p2(X2), ϕ(X1, X2)

(b)

p′1(X1) ∨ ¬p′2(X2) ← not p1(X1), p2(X2), ϕ(X1, X2)

(c)

¬p′1(X1) ∨ ¬p′2(X2) ← p1(X1), p2(X2), ϕ(X1, X2)

These rules are necessary as a first step towards the repair of the original
database. They trigger the first changes, from the pi’s to the p′i’s; next
the stabilizing exceptions propagate all required changes.
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Given a database D and a set BC of domain independent binary universal
constraints, there is a one-to-one correspondence between the e-answer sets
of ΠBC ∪ D and the set of repairs for D w.r.t. BC. The consistent answers
to a query q over D w.r.t. BC are those atoms which are in every e-answer
set of q ∪ΠBC ∪D, that is those atoms which are true under the cautious or
skeptical answer set semantics.

This approach is very general because it applies to arbitrary first-order
queries. However, the systems computing answer sets work typically by
grounding the logic program. In the database context, this may lead to huge
ground programs and be impractical. In the general case, computing the sta-
ble model semantics for disjunctive programs is ΠP

2 − complete in the size of
the ground program. The deductive database system DLV [59] can be used
for computing repairs and consistent query answers.

2.3 Computing CQAs: Computational Complexity

As we observed before the definition of consistent query answer does not yield
a practical method for computing consistent answers. Indeed, in general the
problem is intractable. The table below summarizes the complexity results
obtained for different classes of queries (here we refer to the relational algebra)
and constraints. The data complexity assumption [75] is adopted, that is the
complexity of the problem is measured as a function of the number of tuples
in a database; the query and the integrity constraints are considered fixed.

Primary keys Arbirary keys Denial Universal

σ × − P [4] P[4] P [25] P (binary) [4]

ΠP
2 -complete [71]

σ × − ∪ P [25] P [25] P [25] ΠP
2 -complete [71]

σ π P [25] co-NPC [25] co-NPC [25] ΠP
2 -complete [71]

σ π × co-NPC [25] co-NPC [25] co-NPC [25] ΠP
2 -complete [71]

P (Cforest) [42]

σ π × − ∪ co-NPC [25] co-NPC [25] co-NPC [25] ΠP
2 -complete [71]

Fig. 2.1. Complexity of CQA: relational algebra
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Observe that in the presence of denial constraints the problem of com-
puting consistent query answers is in PTIME as long as the projection is
not used [4, 25]. By using the projection operator, the problem becomes in
general intractable [25]. However, in the presence of primary keys only, a par-
ticular class of conjunctive queries, called Cforest, for which the problem is
in PTIME has been identified [42] (see Section 2.2.1). Finally, observe that
in the presence of universal integrity constraints, the problem is in general
ΠP

2 -complete [71], although for binary universal constraints and queries not
using the projection and the union operators the problem is in PTIME [4].

2.4 Variants of CQA

After the paper [4], several works varying the notions of repair and consistent
query answer have been proposed. We first survey those works adopting a
notion of repair which differs from the original one.

For denial constraints, integrity violations can only be removed by deleting
tuples, so all the repairs are subsets of the given database. In the presence
of general universal or referential integrity constraints, violations can also
be removed by adding tuples. Allowing tuple insertions makes sense if the
information in the source database may be incomplete (e.g. in data integration
applications). On the other hand, if the data in the database is complete but
possibly incorrect, as in data warehousing applications, it is natural to consider
only repairs constructed using tuple deletions.

The above considerations have lead to the definition of new classes of
repairs:

• D-repairs, constructed using a minimal set of deletions [25],
• I-repairs, constructed using a minimal set of deletions and some, not nec-

essarily minimal set of insertions [19].

These classes of repairs lead to different notions of consistent query answers.
If we consider D-repairs, given a set F of primary key functional dependen-

cies and a set IN of foreign-key constraints, every repair of a database w.r.t.
F ∪ IN may be obtained as a repair of the single D-repair of the database
w.r.t. IN (this unique repair can be obtained by deleting the tuples violat-
ing the foreign-key constraints). Then, one can adapt any polynomial-time
method for CQA w.r.t. primary key constraints, for example [42], to com-
pute consistent query answers w.r.t. any set of primary key and foreign-key
constraints in polynomial time. However, in more general settings, the inter-
actions between functional and inclusion dependencies get complex, and CQA
become quickly intractable [25].

As for I-repairs, in [19] it has been shown that for such repairs in the pres-
ence of primary key functional dependencies and arbitrary inclusion dependen-
cies CQA becomes undecidable. A class of inclusion dependencies, called non-
key-conflicting, is presented, for which the interaction between functional and
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inclusion dependencies is limited and consequently CQA is co-NP-complete.
In the same setting, by considering the original definition of repair, the prob-
lem of consistent query answering is undecidable in the general case whereas
is ΠP

2 -complete for non-key-conflicting inclusion dependencies.
Furfaro et al. [47, 38] adopt a notion of repair which extends the original

one by allowing tuples to be made undefined (in addition to be inserted and
deleted). The proposed framework allows us to compute a sound and incom-
plete set of consistent query answers (according to the original definition) in
polynomial time. The work is presented in Chapter 6.

The original notion of repair has been criticized as too coarse-grained :
deleting a tuple to remove an integrity violation potentially eliminates useful
information in that tuple. More fine-grained methods seek to define repairs
by minimizing attribute modifications [12, 14, 48, 76]. In particular, Bertossi
et al. [12] and Bohannon et al. [14] use various notions of numerical distance
between tuples. In both cases the existence of a repair within a given distance
of the original database instance turns out to be NP-complete. To achieve
tractability the former proposes approximation, and the latter heuristics. Wi-
jsen [77] has shown how to combine tuple- and attribute-based repairs in a
single framework. To achieve the effect of attribute-based repairing, his ap-
proach decomposes an inconsistent relation using a lossless-join decomposition
and subsequently joins the obtained projections. PJ-repairs are defined to be
the repairs (according to the original definition) of the resulting relation.

A repairing strategy based on value-modifications has been adopted also
in [48], which is presented in Chapter 7.

Now we briefly look at the proposed variants of the notion of consistent
query answer.

In order to provide more informative query answers to aggregation queries,
Arenas et al. [8] propose to return the minimal interval containing the set of
the values of the aggregate function obtained in some repair. The paper [8]
contains a detailed analysis of the data complexity of computing interval an-
swers in the presence of functional dependencies, and showed the influence of
the cardinality |F | of the given set of functional dependencies F .

The notion of repair and consistent query answer has been generalized to
the context of probabilistic databases by Andritsos et al. [2]. In such databases
probabilities are associated with individual tuples. The considered constraints
consist of one (primary) key per relation. Then the probabilities of the con-
flicting tuples sum up to one. A repair also has an associated probability,
which is the product of the probabilities of the tuples belonging to the re-
pair. There is a natural way to compute the probability of an answer: sum up
the probabilities of the repairs in which the answer appears in the query re-
sult. Such answers, with the associated probabilities, are called clean answers.
Clearly, consistent answers are those clean answers that have probability one.
In the same work, a way to compute clean answers through query rewriting
is also presented. The method applies to a class of conjunctive queries closely
related to Cforest (see Section 2.2.1).
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Greco and Molinaro [48] propose a notion of probabilistic query answer
over inconsistent databases, that is query answers are tuples associated with
probabilities. The probability of a tuple depends on the number of repairs from
which the answer tuple is obtained. A technique for computing probabilistic
answers, relying on probabilistic databases, is presented. Such a technique
allows us to compute approximate probabilistic answers in polynomial time.
This work is presented in Chapter 7.

2.5 Discussion

In this chapter we have surveyed the literature of consistent query answer-
ing. First, we have presented the main techniques for computing CQAs.
Specifically, we have classified them into three approaches: query rewrit-
ing [4, 41, 42, 39, 40], compact representations of repairs [26, 27], and logic
programs [7, 20, 49, 50]. The first two approaches allows us to compute con-
sistent query answers in polynomial time, but have limited applicability; the
last approach is applicable to very general queries and constraints, but leads
to high complexity. Next, we have proposed complexity results on computing
consistent query answers: here the main remark is that in several cases for
which the problem is in PTIME, the projection operator leads to intractabil-
ity. Finally, we have briefly presented the main works in the literature where
the notions of repair and consistent query answer differ from the original ones
proposed in [4].
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Prioritized Active Integrity Constraints

This chapter presents a logical framework wherein constraints and preferences
are used for database integrity maintenance and querying. The proposed ap-
proach is based on the use of a special type of integrity constraints, called
Prioritized Active Integrity Constraints (PAICs), whose body defines an in-
tegrity constraint, whereas the head contains a set of partially ordered actions,
which should be performed, if the body constraint is not satisfied, to make
consistent the database. Therefore, a preference relation among repairs is in-
troduced on the base of the (partially ordered) actions specified in the head of
PAICs. On the base of the preference relation, a set of preferred repairs is iden-
tified and preferred query answers are derived by considering only preferred
repairs. We show some desirable properties of preferred repairs which hold in
our framework. We also shows how PAICs can be rewritten into disjunctive
Datalog programs so that repairs can be obtained from the computation of
stable models.

3.1 Introduction

The motivation of this work stems from the observation that as an inconsistent
database can be repaired in different ways, it is natural to express preferences
among the possible actions which make the database consistent.

Example 3.1. Consider the database schema consisting of the relation schemas
emp(Name, Dept) and dept(Name) with a referential integrity constraint sta-
ting that a department appearing in the relation emp must occur in the rela-
tion dept too. This constraint can be defined through the first order formula:

∀(E, D) [ emp(E,D) → dept(D) ]

Consider now the inconsistent instance D = {emp(john, cs), emp(john, deis),
dept(deis)}. The database can be repaired either by inserting the missing
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fact dept(cs) or by deleting the fact emp(john, cs). In this scenario, suppose
that the insertion of a missing department is preferable to the deletion of an
existing employee. This preference can be expressed by means of the following
prioritized active integrity constraint:

∀(E,D) [ emp(E,D), not dept(D) → +dept(D) Â −emp(E,D) ]

Then, the repaired database obtained by inserting the fact dept(cs) is prefer-
able to the repaired database obtained by deleting the fact emp(john, cs) and
is the unique preferred repaired database.

The novelty of the presented approach consists in the formalization of Pri-
oritized Active Integrity Constraints (PAICs), a flexible and easy mechanism
for specifying the preference among updates. More specifically, prioritized ac-
tive integrity constraints are constraints which allow us to define the actions
to be performed if a constraint is violated and also to introduce a partial
order on the actions. We show that databases with universally quantified pri-
oritized constraints admit preferred repairs and (preferred) consistent answers
if the set of constraints is satisfiable. We also present how the computation
of repairs and consistent answers can be done by rewriting constraints into a
disjunctive Datalog program and computing the stable models of the target
program; every repair can be obtained from a stable model of the Datalog
program and vice versa.

The chapter is organized as follows. Section 3.2 present syntax and seman-
tics of prioritized active integrity constraints. Section 3.3 presents a technique
for deriving a disjunctive Datalog program from a set of PAICs in such a way
that the stable models of the obtained program correspond to founded repairs
Finally, in Section 3.4 we discuss related works and draw conclusions.

3.2 Syntax and Semantics of PAICs

In this section an extension of integrity constraints, which allows us to specify
for each constraint the actions to be performed to satisfy it and preferences
between them, is presented. The actions are defined by means of insertions
and deletions. First we present the syntax of PAICs and next their semantics.

Syntax

An update atom is of the form +a(X) or −a(X), where a(X) is a stan-
dard atom. A ground atom +a(t) states that a(t) will be inserted into the
database, whereas a ground atom −a(t) states that a(t) will be deleted from
the database. Given an update atom +a(X) (resp. −a(X)), Comp(+a(X))
= not a(X) (resp. Comp(−a(X) = a(X)) denotes the complementary lit-
eral of the update atom +a(X) (resp. −a(X)). Given a set Up of ground
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update atoms, the following sets are defined: Up+ = {a(t) | + a(t) ∈ Up},
Up− = {a(t) | −a(t) ∈ Up} and Comp(Up) = {Comp(±a(t)) | ±a(t) ∈ Up}.
Up is said to be consistent if it does not contain two update atom +a(t) and
−a(t) (i.e. if Up+ ∩ Up− = ∅). Given a database D and a consistent set of
update atoms Up, Up(D) denotes the updated database D ∪ Up+ − Up−.

In this chapter, a minimal set of updates which leads a database to a
consistent state will be called repair (it is precisely defined below); a repaired
database is the result of applying a repair over the original database.

Definition 3.1. Given a database D and a set of integrity constraints IC,
a repair for 〈D, IC〉 is a consistent set of update atoms R such that 1)
R(D) |= IC and 2) there is no consistent set of update atoms Up ⊂ R
such that Up(D) |= IC.

Given a database D and a set of integrity constraints IC, the set of all
repairs (resp. repaired databases) for 〈D, IC〉 is denoted as repairs(D, IC)
(resp. repaired(D, IC)).

Definition 3.2. Given a database D and a set of integrity constraints IC, an
atom A is true (resp. false) with respect to IC if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined.

Definition 3.3. A (universally quantified) Active Integrity Constraint (AIC )
is of the form:

(∀X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) →
p∨

i=1

±ai(Yi)] (3.1)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0, . . . , n] and Yi ⊆ X for i ∈ [1, . . . , p].

In the above definition the conditions X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0, . . . , n]
and Yi ⊆ X for i ∈ [1, . . . , p] guarantee that variables are range restricted.

Active integrity constraints contain in the head the actions to be performed
if the constraint defined in the body is not satisfied.
Given an AIC r of the form (3.1) St(r) denotes the standard constraint:

(∀ X) [
m∧

j=1

bj(Xj),
n∧

j=m+1

not bj(Xj), ϕ(X0) → ]

derived from r by removing the head update atoms. Moreover, for a set of
active integrity constraints IC, St(IC) denotes the corresponding set of stan-
dard integrity constraints, i.e. St(IC) = {St(r) | r ∈ IC}.
Definition 3.4. A (universally quantified) Prioritized Active Integrity Con-
straint (PAIC ) is of the form:
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(∀ X)[

m̂

j=1

bj(Xj),

n̂

j=m+1

not bj(Xj), ϕ(X0) →
p1_

i=1

±a1
i (Y

1
i ) Â · · · Â

pk_
i=1

±ak
i (Y k

i ) ] (3.2)

where X =
⋃m

j=1 Xj , Xi ⊆ X for i ∈ [0, . . . , n] and Y j
i ⊆ X for j ∈ [1, . . . , k]

and i ∈ [1, . . . , pj ].

Prioritized active integrity constraints contain in the head the actions to
be performed if the constraint defined in the body is not satisfied and express
preferences among them.
Intuitively, the meaning of

∨p1
i=1±a1

i (Y
1
i ) Â ∨p2

i=1±a2
i (Y

2
i ) is that the actions

±a1
1(Y

1
1 ), · · · ,±a1

p1
(Y 1

p1
) are preferable to the actions ±a2

1(Y
2
1 ), · · · ,±a2

p2
(Y 2

p2
).

Given a (P)AIC r = (∀X)[Φ → Ψ ], Φ is called body of r (denoted by
Body(r)), whereas Ψ is called head of r (denoted by Head(r)).

Definition 3.5. A (prioritized) active integrity constraint is said to be in
canonical form if for each update literal ±a(X) appearing in the head, a
literal Comp(±a(X)) also appears in the body. A set of (prioritized) active
integrity constraints is said to be canonical if all constraints are in canonical
form.

In the rest of the chapter, (universally quantified) prioritized active in-
tegrity constraints in canonical form are considered. The motivation for re-
stricting our attention to canonical AICs is due to the fact that in [22, 23] it
has been shown that for every ground AIC r, every head update atom ±A
such that Comp(±A) 6∈ Body(r) is useless and can be deleted.

Semantics

In the following firstly the definition concerning the truth value of ground
atoms and ground update atoms with respect to a database D and a consistent
set of update atoms Up is given, then the formal definition of founded and
preferred repair is provided.

Definition 3.6. Given a database D and a consistent set of update atoms
Up, the truth value of

• a positive ground literal a(t) is true w.r.t. (D, Up) if a(t) ∈ Up(D),
• a negative ground literal not a(t) is true w.r.t. (D,Up) if a(t) 6∈ Up(D),
• a ground update atom ±a(t) is true w.r.t. (D, Up) if ±a(t) ∈ Up,
• built-in atoms, conjunctions and disjunctions of literals is given in the

standard way,
• a ground AIC φ → ψ is true w.r.t. (D, Up) if φ is false w.r.t. (D, Up).

Definition 3.7. Let D be a database, IC a set of AICs and R a repair for
〈D,IC〉.
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• A ground update atom±a(t) ∈ R is founded if there exists r ∈ ground(IC)
s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (D, R−{±a(t)}).
We say that ±a(t) is supported by r w.r.t. R.

• A ground rule r ∈ ground(IC) is applied w.r.t. (D, R) if there exists
±a(t) ∈ R s.t. ±a(t) appears in Head(r) and Body(r) is true w.r.t. (D,R−
{±a(t)}), We say that r supports ±a(t) w.r.t. R.

• R is founded if all its atoms are founded.
• R is unfounded if it is not founded.

The set of founded update atoms in R with respect to 〈D, IC〉 is denoted as
Founded(R, D, IC), whereas Unfounded(R,D, IC) = R−Founded(R, D, IC).
Thus, update atoms of founded repairs are inferable by means of AICs. Given
a database D and a set of AICs IC, repairsf (D, IC) (resp. repairs(D, IC))
denotes the set of founded repairs (resp. all the repairs) for 〈D, IC〉. Clearly,
the set of founded repairs is contained in the set of repairs (repairsf (D, IC) ⊆
repairs(D,St(IC))).

Example 3.2. Consider the following set of AICs IC:

∀(E, P, D)[ mgr(E, P ), prj(P, D), not emp(E, D) → +emp(E, D) ]

∀(E, D1, D2)[ emp(E, D1), emp(E, D2), D1 6= D2 → −emp(E, D1) ∨ −emp(E, D2) ]

The first constraint states that every manager E of a project P carried out
by a department D must be an employee of D, whereas the second one says
that every employee must be in only one department. Consider now the data-
base D = { mgr(e1, p1), prj(p1, d1), emp(e1, d2)}. There are three repairs
for D: R1 = {−mgr(e1, p1)}, R2 = {−prj(p1, d1)} and R3 = {+emp(e1, d1),
−emp(e1, d2)}. R3 is the only founded repair as only the update atoms
+emp(e1, d1) and −emp(e1, d2) are derivable from IC.

Definition 3.8. Let c be a PAIC and IC a set of PAICs, then

• AC(c) denotes the active constraint derived from c by replacing symbol Â
with ∨. Moreover, AC(IC) = {AC(c) | c ∈ IC}.

• SC(c) denotes the standard constraint derived from c by deleting the up-
date atoms appearing in the head. Moreover, SC(IC) = {SC(c) | c ∈ IC}
(i.e. SC(IC) = St(AC(IC))).

• CC(c) denotes the active constraint derived from SC(c) by inserting an
update atom ±a(X) in the head if Comp(±a(X)) appears in the body of
c. Moreover, CC(IC) = {CC(c) | c ∈ IC}.

Example 3.3. Consider the following set of prioritized active integrity con-
straints IC:

c, not a, not b → +a Â +b Â −c
c, not d → −c

The following constraints can be derived:
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• AC(IC) consists of the active constraints

c, not a, not b → +a ∨+b ∨ −c
c, not d → −c

• SC(IC) consists of the standard constraints

c, not a, not b →
c, not d →

• CC(IC) consists of the active constraints

c, not a, not b → +a ∨+b ∨ −c
c, not d → −c ∨+d

Given a database D and a set of PAICs IC, the set of repairs (resp. founded
repairs) for 〈D, IC〉 is denoted by repairs(D, IC) (resp. repairsf (D, IC)).

Fact 3.1 Given a database D and a a set of PAICs IC

• repairs(D, IC) = repairs(D,AC(IC)) = repairs(D,SC(IC))
• repairsf (D, IC) = repairsf (D,AC(IC)) 2

The above fact states that the repairs for a database D and a set of PAICs
IC can be derived by considering the corresponding active (resp. standard)
integrity constraints AC(IC) (resp. SC(IC)), whereas founded repairs can
be derived by considering active constraints AC(IC), obtained by replacing
symbol Â with ∨ in the head of prioritized active integrity constraints.

Definition 3.9 (Preferences between repairs). Let D be a database and
IC a set of PAICs. For any repairs R1, R2 and R3 in repairs(D, IC), we say
that:

• R1 w R1.
• R1 w R2 if:

1. R1 ∈ repairsf (D, IC) and R2 6∈ repairsf (D, IC), or
2. a) R1, R2 ∈ repairsf (D, IC) or R1, R2 6∈ repairsf (D, IC) and

b) there are two update atoms ±a(t) ∈ R1 and ±b(u) ∈ R2 and a
(ground) prioritized active integrity constraint c such that
(i) head(c) = ... ± a(t) ... Â ... ± b(u) ... and
(ii) c supports ±a(t) w.r.t. R1 and ±b(u) w.r.t. R2.

• If R1 w R2 and R2 w R3, then R1 w R3.

If R1 w R2, then R1 is preferable to R2. Moreover, if R1 w R2 and R2 6w R1,
then R1 A R2. A repair R is a preferred repair if there is no repair R′ such
that R′ A R.

The set of preferred repairs for a database D and a set of prioritized active
integrity constraints IC is denoted by repairsp(D, IC).
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Example 3.4. Consider the database D = {c} and the set of PAICs IC of
Example 3.3. R1 = {−c}, R2 = {+a,+d} and R3 = {+b, +d} are the three
repairs for 〈D, IC〉; their relation is: R1 A R2 A R3 and the preferred repair
is R1.

The next theorem states the relation between preferred, founded and gen-
eral repairs.

Theorem 3.2. Let D be a database and IC a set of PAICs, then

repairsp(D, IC)
{⊆ repairsf (D, IC) if repairsf (D, IC) 6= ∅
⊆ repairs(D, IC) if repairsf (D, IC) = ∅

2

Given a set D of facts and a predicate symbol p, then D[p] denotes the
set of facts in D whose predicate symbol is p. Queries are expressed by means
of stratified Datalog programs. More formally, a (Datalog) query q is a pair
(g, P ) where g is a predicate symbol, called the query goal, and P is a stratified
Datalog program. The answer to a Datalog query q = (g, P ) over a database
D is M [g], where M is the unique minimal model in MM(P ∪D), and will
be denoted as q(D).

Given a database D, a set of prioritized integrity constraints IC and a
query q = (g, P ), the preferred consistent answer of the query q on the
database D, denoted as q(D, IC), gives three sets, denoted as q(D, IC)+,
q(D, IC)− and q(D, IC)u. These contain, respectively, the sets of g-tuples
which are true (i.e. belonging to

⋂
R∈repairsp(D,IC) q(R(D))), false (i.e. not

belonging to
⋃

R∈repairsp(D,IC) q(R(D))) and undefined (i.e. set of tuples
which are neither true nor false). It is worth noting that the preferred consis-
tent answer of a query considers only the preferred repairs rather than all the
repairs.

Desirable properties.

We now introduce desirable properties on the set of preferred repairs. Prop-
erties which should be satisfied by families of preferred repairs have been
introduced in [28]. Here we adapt properties defined in [28], where preferences
are static, to our framework.

Given a database D and a set of PAICs IC, then the following properties
can be identified:

• Non-emptiness: 〈D, IC〉 always admits some preferred repairs.
• Monotonicity: adding preference information can only narrow the set of

preferred repairs.
• Non-discrimination: if no preference information is expressed, any repair

is a preferred repair.
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Given two sets of PAICs IC1 and IC2, we say that IC1 C IC2 if IC1 is
derived from IC2 by replacing one or more Â symbols with the ∨ symbol.

Definition 3.10. Given a set of PAICs IC and two relation symbols a and b,
we say that ±a (inserting into or deleting from a) is preferable to ±b (inserting
into or deleting from b) w.r.t. IC and we write ±a ÀIC ±b, if:

1. there is a PAIC c ∈ IC such that Head(c) = ... ±a(X) ... Â ... ±b(Y ) ...,
or

2. there exists ±c such that ±a ÀIC ±c and ±c ÀIC ±b.

Observe that the above condition could be relaxed by considering ground
atoms instead of predicate symbols.

The following theorem shows some properties of PAICs.

Theorem 3.3. Let D be a database and IC a set of PAICs.

1. Non-emptiness: repairsp(D, IC) 6= ∅ if IC is satisfiable.
2. Monotonicity: IC ′ C IC ⇒ repairsp(D, IC) ⊆ repairsp(D, IC ′) ifÀIC

is acyclic, i.e. there does not exist an update atom ±a such that ±a ÀIC
±a. 1

3. Non-discrimination:
if IC = CC(IC) then repairsp(D, IC) = repairs(D, IC).

3.3 Computing Repairs Through Datalog Programs

A general approach for the computation of repairs and consistent answers
in the presence of databases with universal integrity constraints has been
proposed in [49]. The technique is based on the generation of a disjunctive
program DP(IC) derived from the set of integrity constraints IC. The repairs
for a database D can be generated from the stable models of DP(IC) ∪ D.
We now present an extension of this technique for prioritized active integrity
constraints in canonical form.

Definition 3.11. Given a set of prioritized active integrity constraints IC,
then DP(IC) is the disjunctive datalog program derived from IC (or equiva-
lently from SC(IC)) by replacing a PAIC of the form (3.2) with a disjunctive
rule of the form:Wm

j=1−bj(Xj) ∨
Wn

j=m+1 +bj(Xj) ←
Vm

j=1(bj(Xj) ∨ +bj(Xj)),Vn
j=m+1(not bj(Xj) ∨ −bj(Xj)), ϕ(X0)

and by adding a constraint

← −b(X), +b(X)

for each predicate symbol b.
1 Note that also the approach proposed in [28] satisfies monotonicity property under

the assumption that the priority relation is acyclic.
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Example 3.5. Consider the set of integrity constraints IC of Example 3.3. The
following set of rules DP(IC) can be derived:

+a ∨+b ∨ −c ← (c ∨+c), (not a ∨ −a), (not b ∨ −b)
−c ∨+d ← (c ∨+c), (not d ∨ −d)

← +a,−a
← +b,−b
← +c,−c
← +d,−d

It is worth noting that, in considering atoms of the form +a(t), −a(t) and
a(t), the symbols +a, −a and a are assumed to be different predicate symbols.

Definition 3.12. Given an interpretation M , we denote as UpdateAtoms(M)
the set of update atoms in M . Given a set S of interpretations, we define
UpdateAtoms(S) = {UpdateAtoms(M)|M ∈ S}.
Theorem 3.4. Given a database D and a set of canonical prioritized active
integrity constraints IC, then:

• (Soundness) for every stable model M of DP(IC) ∪D, UpdateAtoms(M)
is a repair for 〈D, IC〉;

• (Completeness) for every database repair S for 〈D, IC〉 there exists a stable
model M of DP(IC) ∪ D such that S = UpdateAtoms(M). 2

Example 3.6. Consider the database D = {c} and the set of PAICs IC of
Example 3.3. The stable models of DP(IC) ∪ D are M1 = {c,−c}, M2 =
{c,+a,+d} and M3 = {c, +b,+d}. Each stable model corresponds to a repair
for 〈D, IC〉 and vice versa.

Definition 3.13. Given a set of prioritized active integrity constraint IC,
then FP(IC) is the datalog program obtained as follows:

• for each update atom ±a(X) defined in DP(IC), the following rule is
introduced:

← ±a(X), not founded±a(X)

• if ±a(X) appears in the head of a constraint c ∈ AC(IC), that is c is of
the form:

(∀X)[

m̂

j=1

bj(Xj),

n̂

j=m+1

not bj(Xj), Comp(±a(X)), ϕ(X0) →
p_

i=1

±ai(Yi) ∨ ±a(X)]

then the following rule is introduced:

founded±a(X) ← Comp(±a(X)),
Vm

j=1((bj(Xj) ∧ not − bj(Xj)) ∨ +bj(Xj)),Vn
j=m+1(not bj(Xj) ∧ not + bj(Xj)) ∨ −bj(Xj)), ϕ(X0)

Given a set of prioritized active integrity constraint IC, then FDP(IC) =
DP(IC) ∪ FP(IC).
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Example 3.7. Consider the set of integrity constraints IC of Example 3.3. The
following set of rules FP(IC) can be derived:

← +a, not founded+a
← +b, not founded+b
← −c, not founded−c
← +d, not founded+d

founded+a ← not a, ((c ∧ not − c) ∨+c), ((not b ∧ not + b) ∨ −b)
founded+b ← not b, ((c ∧ not − c) ∨+c), ((not a ∧ not + a) ∨ −a)
founded−c ← c, ((not b ∧ not + b) ∨ −b), ((not a ∧ not + a) ∨ −a)
founded−c ← c, ((not d ∧ not + d) ∨ −d)

Theorem 3.5. Given a database D and a set of canonical prioritized active
integrity constraints IC, then:

• (Soundness) for every stable model M of FDP(IC)∪D, UpdateAtoms(M)
is a founded repair for 〈D, IC〉;

• (Completeness) for every founded repair S for 〈D, IC〉 there exists a stable
model M of FDP(IC) ∪ D such that S = UpdateAtoms(M). 2

Example 3.8. Consider the database D = {c} and the set of PAICs IC of
Example 3.3. The unique stable model of FDP(IC) ∪ D is M = {c,−c}
whose update atoms correspond to the unique founded repair for 〈D, IC〉.

Observe that given a set of PAICs IC and a database D, then DP(IC) ∪D
gives all the possible repairs for 〈D, IC〉, whereas DP(IC) ∪ FP(IC) ∪ D
gives only the founded repairs as the constraints in FP(IC) discard every
stable model of DP(IC) ∪ D which does not correspond to a founded repair.

Theorem 3.6. Let D be a database and IC a set of prioritized active integrity
constraints, then

repairsp(D, IC)

{
⊆ UpdateAtoms(SM(FDP(IC) ∪D)) if SM(FDP(IC) ∪D) 6= ∅
⊆ UpdateAtoms(SM(DP(IC) ∪D)) if SM(FDP(IC) ∪D) = ∅

2

3.4 Discussion

We have introduced prioritized active integrity constraints, a simple and pow-
erful form of active rules with declarative semantics, well suited for expressing
preferences among repairs. A prioritized active integrity constraint defines an
integrity constraint, the actions which should be performed if the constraint
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is not satisfied and preferences among these actions. These preferences deter-
mine a partial order among feasible repairs, so that preferred repairs can be
selected among all the possible repairs. It has been shown that prioritized ac-
tive integrity constraints can be rewritten into disjunctive Datalog programs
and that repairs can be computed through the computation of stable models.

The increased interest in preferences in logic programs is reflected by an
extensive number of proposals and systems for preference handling. Most of
the approaches propose an extension of Gelfond and Lifschitz’s extended logic
programming by adding preference information [32, 44, 70, 80]. The literature
distinguish static and dynamic preferences. Static preferences are fixed at
the time a theory is specified, i.e. they are “external” to the logic program
[70], whereas dynamic preferences appear within the logic program and are
determined “on the fly” [17, 32]. The most common form of preference consists
in specifying a strict partial order on rules [32, 44, 70, 80], whereas more
sophisticated forms of preferences also allow us to specify priorities between
conjunctive (disjunctive) knowledge with preconditions [17, 70]. In [28] the
framework of consistent query answer is extended by allowing preferences
among tuples to be expressed. Several families of preferred repairs (i.e. subsets
of repairs selected with priorities) have been also investigated.





4

Disjunctive Databases for Representing
Repairs

In this chapter we address the problem of representing the set of repairs of
a possibly inconsistent database by means of a disjunctive database. Specif-
ically, the class of denial constraints is considered. We show that, given a
database and a set of denial constraints, there exists a (unique) disjunctive
database, called canonical, which represents the repairs of the database w.r.t.
the constraints and is contained in any other disjunctive database with the
same set of minimal models. We propose an algorithm for computing the
canonical disjunctive database. Finally, we study the size of the canonical dis-
junctive database in the presence of functional dependencies for both repairs
and cardinality-based repairs.

4.1 Introduction

Inconsistency leads to uncertainty as to the actual values of tuple attributes.
Thus, it is natural to study the possible use of incomplete database frameworks
in this context. The set of repairs for a possibly inconsistent database could
be represented by means of an incomplete database whose possible worlds are
exactly the repairs of the inconsistent database.

In this chapter, we consider a specific incomplete database framework:
disjunctive databases. A disjunctive database is a finite set of disjunctions of
facts. Its semantics is given by the set of minimal models. There is a clear intu-
itive connection between inconsistent and disjunctive databases. For instance,
consider the following example.

Example 4.1. Consider the following relation r

employee
Name Salary Dept
john 50 cs
john 100 cs
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and the functional dependency f : Name → Salary Dept stating that
each employee has a unique salary and a unique department. Clearly, r is
inconsistent w.r.t. f as it stores two different salaries for the same employee
john. Assuming that the database is viewed as a set of facts and the sym-
metric difference is used to capture the distance between two databases,
there exist two repairs for r w.r.t. f , namely {employee(john, 50, cs)} and
{employee(john, 100, cs)}. These repairs could be represented by the disjunc-
tive database D = {employee(john, 50, cs)∨ employee(john, 100, cs)}, as the
minimal models of D are exactly the repairs of r w.r.t. f .

Disjunctive databases have been studied for a long time [55, 56, 66, 34].
More recently, they have again attracted attention in the database research
community because of potential applications in data integration, extraction
and cleaning [10]. Our approach should be distinguished from the approaches
that rely on stable model semantics of disjunctive logic programs with negation
to represent repairs of inconsistent databases [7, 20, 50].

In this chapter we address the problem of representing the set of repairs of
a database w.r.t. a set of denial constraints by means of a disjunctive database
(in other words, a disjunctive database whose minimal models are the repairs).

We show that, given a database and a set of denial constraints, there ex-
ists a unique, canonical disjunctive database which (a) represents the repairs
of the database w.r.t. the constraints, and (b) is contained in any other dis-
junctive database having the same set of minimal models. We propose an
algorithm for computing the canonical disjunctive database which in general
can be of exponential size. Next, we study the size of the canonical disjunc-
tive database in the presence of restricted functional dependencies. We show
that the canonical disjunctive database is of linear size when only one key in
considered, but it may be of exponential size in the presence of two keys or
one non-key functional dependency. Finally, we demonstrate that these results
hold also for a different, cardinality-based semantics of repairs [63].

The chapter is organized as follows. In Section 4.2, we introduce some basic
notions in disjunctive databases. In Section 4.3, we present an algorithm to
compute the canonical disjunctive database and show that this database is
contained in any other disjunctive database with the same minimal models.
In Section 4.4, we study the size of the canonical disjunctive databases in the
presence of functional dependencies. In Section 4.5, we investigate the size
of the canonical disjunctive databases under the cardinality-based semantics
of repairs. Finally, in Section 4.6 we draw the conclusions and outline some
possible future research topics.
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4.2 Disjunctive Databases

A disjunctive database D is a finite set of non-empty disjunctions of distinct
facts. A disjunction containing exactly one fact is called a singleton disjunc-
tion. A set M of facts is a model of D if M |= D; M is minimal if there is no
M ′ ⊂ M s.t. M ′ |= D. We denote by MM(D) the set of minimal models of
D. For a disjunction d ∈ D, Sd denotes the set of facts appearing in d. Given
two distinct disjunctions d1 and d2 in D, we say that d1 subsumes d2 if the
set of facts appearing in d1 is a (proper) subset of the set of facts appearing
in d2, i.e. Sd1 ⊂ Sd2 . Moreover, the reduction of D, denoted by reduction(D),
is the disjunctive database obtained from D by discarding all the subsumed
disjunctions, that is

reduction(D) = {d | d ∈ D ∧ @d′ ∈ D s.t. d′ subsumes d}.
Observe that for any disjunctive databaseD,MM(D) = MM(reduction(D)).

4.3 Representing Repairs Through Disjunctive
Databases

In this section we propose an algorithm to compute a disjunctive database
whose minimal models are the repairs of a given database w.r.t. a set of de-
nial constraints. We show that the so computed disjunctive database is the
canonical one, that is any other disjunctive database whose minimal models
coincide with the repairs of the original database is a superset of the canon-
ical one (containing, in addition, only disjunctions which are subsumed by
disjunctions in the canonical disjunctive database).

We denote by D(D,F ) the disjunctive database returned by Algorithm 1
with the input consisting of a database D and a set F of denial constraints. In
the second step of the algorithm, every fact t s.t. {t} is an edge of the conflict
hypergraph is discarded.

The disjunctions introduced in the step 5 allow us to guarantee that the
minimal models are maximal (consistent) subsets of D. Intuitively, a disjunc-
tion of the form t ∨ t1 ∨ . . . ∨ tn (which contains one fact from each edge
containing t) prevents from having a model m of D̂ which contains neither t
nor the ti’s as in this case m would not be maximal.

The disjunctions introduced in the step 9 allow us to guarantee that the
minimal models of D(D,F ) are consistent w.r.t. F . Specifically, the loop in
lines 6–9 is performed until D̂ satisfies the following property: for every edge
e = {t1, . . . , tk} of the conflict hypergraph (k > 1), if there are t1∨D1, . . . , tk∨
Dk ∈ D̂ s.t. each Di is not an empty disjunction, then {D1∨. . .∨Dk} is also in
D̂. As it is shown in the proof of Theorem 4.1, this property entails that every
minimal model of D̂ does not contain {t1, . . . , tk}. Observe that the loop ends
when D̂ does not change anymore; at each iteration new disjunctions are added
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Algorithm 1
Input: a database D and a set F of denial constraints
Output: a disjunctive database whose minimal models are the repairs for D and F

1 : bD := ∅
2 : D′ := D − {t | {t} is an edge of GD,F }
3 : for each t ∈ D′

4 : Let edgesD′,F (t) = {e1, . . . , en}
5 : bD := bD ∪ {t ∨ t1 ∨ . . . ∨ tn | ti ∈ ei and ti 6= t for i = 1..n}
6 : repeat until bD does not change
7 : for each edge e = {t1, . . . , tk} in GD′,F

8 : for each t1 ∨D1, . . . , tk ∨Dk ∈ bD s.t. Di is not an empty disjunction
and Di does not contain any fact t′ 6= ti in e, i = 1.. k

9 : bD := bD ∪ {D1 ∨ . . . ∨Dk}
10 : return reduction(bD)

to D̂. Since the number of disjunctions is bounded (if the original database
has h facts, there cannot be more than 2h − 1 disjunctions) the algorithm
always terminates. In the last step of the algorithm, subsumed disjunctions
are deleted. The following theorem states the correctness of Algorithm 1.

Theorem 4.1. Given a database D and a set F of denial constraints, the set
of minimal models of D(D,F ) coincides with the set of repairs of D w.r.t. F .

Proof. Since the the disjunctive database D(D, F ) returned by Algorithm 1
is equal to reduction(D̂) (step 10), then MM(D(D, F )) = MM(D̂). First we
prove
(1) rep(D, F ) ⊆MM(D̂) and next (2) rep(D, F ) ⊇MM(D̂).
(1) Consider a repair r in rep(D, F ). First we show that (a) r is a model of
D̂ and next (b) that it is a minimal model.
(a) We prove that r satisfies each disjunction in D̂ by induction. Specifically,
as base case we consider the disjunctions introduced in the step 5 of the
algorithm, whereas the inductive step refers to the disjunctions introduced
in the step 9. Suppose by contradiction that r does not satisfy a disjunc-
tion t ∨ t1 ∨ . . . ∨ tn introduced in the step 5. Observe that edgesD′,F (t) ⊆
edgesD,F (t) and each edge e′ in edgesD,F (t) − edgesD′,F (t) is s.t. there is a
fact t′ ∈ e′ s.t. {t′} is an edge of GD,F (clearly, t′ 6∈ r). Since in each edge in
edgesD,F (t) there is a fact (different from t) which is not in r, then r ∪ {t}
is consistent, which violates the maximality of r. The inductive step consists
in showing that r satisfies any disjunction added to D̂ in the step 9 assuming
that r satisfies D̂. A disjunction D1 ∨ . . .∨Dk, where the Di’s are not empty
disjunctions, is added to D̂ whenever there exist t1 ∨D1, . . . , tk ∨Dk in D̂ s.t.
e = {t1, . . . , tk} is an edge of GD′,F , and Di does not contain any fact t′ 6= ti
in e, for i = 1..k. Since r satisfies all the disjunctions t1 ∨D1, . . . , tk ∨Dk and
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does not contain some fact tj in e (as e is an edge of GD,F too), it satisfies
the disjunction Dj and then D1 ∨ . . . ∨Dk as well. Hence r is a model of D̂.
(b) We now show that r is a minimal model, reasoning by contradiction. As-
sume that there exists a model m′ ⊂ r and let t be a fact in r but not in m′.
Observe that t is a conflicting fact (it cannot be the case that there is a model
of D̂ which does not contain a non-conflicting fact because the algorithm in-
troduces, in the step 5, a singleton disjunction d for each non-conflicting fact
d). Moreover, as r is a repair, t is s.t. {t} is not an edge of GD,F and then t
is in D′. For each edge ei in edgesD′,F (t) = {e1, . . . , en} there is a fact ti 6= t
which is not in r as it is consistent and edgesD′,F (t) ⊆ edgesD,F (t). The same
holds for m′ as it is a subset of r. Then, the disjunction t ∨ t1 ∨ . . . ∨ tn in
D̂ (added in the step 5) is not satisfied by m′, which contradicts that m′ is a
model. Hence r is a minimal model of D̂.

(2) Consider a minimal model m in MM(D̂). We show first (a) that it is
consistent w.r.t. F and then (b) that it is maximal.
(a) First of all, it is worth noting that D̂ doesn’t contain a singleton disjunction
t s.t. t is a conflicting fact of D. This can be shown as follows. Two cases may
occur: either {t} is an edge of GD,F or it is not. As for the first case, since
we have proved above that each repair of D and F is a model of D̂ and no
repair contains t, it cannot be the case that t is a singleton disjunction of
D̂. Let us consider the second case. For any conflicting fact t in D s.t. {t}
is not an edge of GD,F , there exist a repair r1 s.t. t ∈ r1 and a repair r2

s.t. t 6∈ r2. As we have proved above, there are two minimal models of D̂
corresponding to r1 and r2, then it cannot be the case that t ∈ D̂. We prove
that m is consistent w.r.t. F by contradiction, assuming that m contains a
set of facts t1, . . . , tk s.t. e = {t1, . . . , tk} is in GD,F . Let Sti = {D | ti ∨D ∈
D̂ and D 6= ∅ does not contain any fact t′ 6= ti in e} for i = 1..k. Two cases
may occur: either (a) there is a set Sti which is empty or (b) all the sets Sti

are not empty. (a) Let tj be a fact in e s.t. Stj is empty. It is easy to see
that m−{tj} is a model, which contradicts the minimality of m. (b) For each
D1 ∈ St1 , . . . , Dk ∈ Stk

, it holds that D1 ∨ . . . ∨Dk ∈ D̂. Then there is a set
Stj s.t. m satisfies each D in Stj , otherwise it would be the case that some
D1∨ . . .∨Dk in D̂, where Di is in Sti for i = 1..k, is not satisfied. It is easy to
see that m − {tj} is a model, which contradicts the minimality of m. Hence
m is consistent w.r.t. F .
(b) Now we prove that m is a maximal (consistent) subset of D reasoning by
contradiction, thus assuming that there exists m′ ⊃ m which is consistent.
Let t be a fact in m′ but not in m. Since m′ is consistent, for each edge ei in
edgesD′,F (t) = {e1, . . . , en} there is a fact ti 6= t which is not in m′. The same
holds for m as it is a (proper) subset of m′. This implies that m doesn’t satisfy
the disjunction t∨ t1 ∨ . . . ∨ tn in D̂ (added in the step 5), thus contradicting
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the fact the m is a model. Hence m is a maximal consistent subset of D, that
is a repair. 2

Given a database D with n facts, a rough bound on the size of D(D, F )
is that it cannot have more than 2n − 1 disjunctions and each disjunction
contains at most n facts, for any set F of denial constraints (in the next
section we will study more precisely the size of D(D, F ) for special classes of
denial constraints, namely functional dependencies and key constraints).

The following theorem allows us to identify all the disjunctive databases
which have the same minimal models of a given disjunctive database. Specifi-
cally, it states that given a disjunctive database D, any other disjunctive data-
base with the same minimal models is a superset of reduction(D) containing
in addition only disjunctions subsumed by disjunctions in reduction(D). This
result allows us to state that there is a (unique) disjunctive database repre-
senting the repairs for a given database and a set of denial constraints which
is contained in any other disjunctive database with the same set of minimal
models. We call such a disjunctive database canonical. Algorithm 1 computes
the canonical disjunctive database (see Corollary 4.1).

Theorem 4.2. Given a disjunctive database D, the set R of all disjunctive
databases having the same minimal models as D is equal to:

R= {D′ | reduction(D) ⊆ D′ ∧
∀d′ ∈ D′ − reduction(D) ∃d ∈ reduction(D) which subsumes d′}

Proof. We denote by S(D) the set of all the disjunctive databases whose
minimal models are MM(D). In order to prove that R = S(D), first we show
that (1) each disjunctive database in R is also in S(D) and next that (2) each
disjunctive database in S(D) is in R too.
(1) Consider a disjunctive database D′ in R. It is easy to see that
reduction(D′) = reduction(D). As a disjunctive database and its reduction
have the same minimal models,MM(D′) = MM(D) and henceD′ is in S(D).

(2) We show that any disjunctive database not belonging to R is not in S(D).
We recall that for a disjunction d, Sd denotes the set of facts appearing in
d. Consider a disjunctive database Dout which is not in R. Two cases may
occur: (a) reduction(D) 6⊆ Dout or (b) reduction(D) ⊆ Dout and ∃d′ ∈ Dout−
reduction(D) s.t. there is no d ∈ reduction(D) which subsumes d′.
(a) As reduction(D) 6⊆ Dout, there is a disjunction a in reduction(D) which
is not in Dout. Two cases may occur:

• there exists a1 ∈ Dout which subsumes a;
• the previous condition does not hold.

Let us consider the first case and let I be the interpretation S − Sa1 where S
is the set of facts appearing in reduction(D). It is easy to see that I is a model
of reduction(D) (the only disjunctions that I could not satisfy are those ones



4.4 Functional Dependencies 53

that contain only facts in Sa1 ; such disjunctions are not in reduction(D) as
they subsume a and reduction(D) does not contain two disjunctions s.t. one
subsumes the other). Then, there exists M ⊆ I which is a minimal model of
reduction(D). As a1 ∈ Dout, each model of Dout contains a fact in Sa1 , then
M is not a minimal model of Dout and soMM(reduction(D)) 6= MM(Dout).
Hence Dout 6∈ S(D).
We consider now the second case. We show that Dout 6∈ S(D) in a similar
way to the previous case. Let I be the interpretation S − Sa where S is the
set of facts appearing in Dout. It is easy to see that I is a model of Dout

(the only disjunctions that I could not satisfy are those ones which contain
only facts in Sa; such disjunctions are not in Dout as Dout contains neither
a nor a disjunction which subsumes a). Then, there exists M ⊆ I which is
a minimal model of Dout. As a ∈ reduction(D), each model of reduction(D)
contains a fact in Sa, then M is not a minimal model of reduction(D); hence
Dout 6∈ S(D).
(b) Let I be the interpretation S − Sd′ where S is the set of facts appearing
in reduction(D). It is easy to see that I is a model of reduction(D) (the only
disjunctions that I could not satisfy are d′ and those ones which subsume
d′). Then, there exists M ⊆ I which is a minimal model of reduction(D). As
d′ ∈ Dout, each model of Dout contains a fact in Sd′ , then M is not a minimal
model of Dout; hence Dout 6∈ S(D). 2

Corollary 4.1. Given a database D and a set F of denial constraints, then
D(D, F ) is the canonical disjunctive database whose minimal models are the
repairs for D and F .

Proof. Straightforward from Theorem 4.1 and 4.2. 2

From now on, we will denote by Dmin(D, F ) the canonical disjunctive
database whose minimal models are the repairs for a database D and a set
F of denial constraints. Whenever D and F are clear from the context, we
simply write Dmin instead of Dmin(D, F ).

4.4 Functional Dependencies

In this section we study the size of the canonical disjunctive database repre-
senting the repairs of a database in the presence of functional dependencies.
Specifically, we show that when the constraints consist of only one key, the
canonical disjunctive database is of linear size, whereas for one non-key func-
tional dependency or two keys the size of the canonical database may be
exponential.
We observe that in the presence of only one functional dependency, the con-
flict hypergraph has a regular structure that “induces” a regular disjunctive
database which can be identified without performing Algorithm 1. When two
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key constraints are considered, we are not able to provide such a characteri-
zation; this is because the conflict hypergraph can have an irregular structure
and it is harder to identify a pattern for Dmin.

Given a disjunction d, we denote by ||d|| the number of facts occurring in
d. The size of a disjunctive database D, denoted as ||D||, is the number of
facts occurring in it, that is ||D|| = ∑

d∈D ||d||. We study the size ||Dmin|| of
Dmin as a function of the size of the given database.

One key. Given a relation r and a key constraint k stating that the set X
of attributes is a key of r, we denote by cliques(r, k) the partition of r into
n = |π

X
(r)| sets C1, . . . , Cn, called cliques, s.t. each Ci does not contain two

facts with different values on X. Observe that (i) facts in the same clique
are pairwise conflicting with each other, (ii) the set of repairs of r w.r.t. k is
{{t1, . . . , tn} | ti ∈ Ci for i = 1..n}.
Proposition 4.1. Given a relation r and a key constraint k, then Dmin is
equal to

{t1 ∨ . . . ∨ tm | ∃C = {t1, . . . , tm} ∈ cliques(r, k)}
Proof. It is straightforward to see that the minimal models of the disjunctive
database reported above are the repairs of r w.r.t. k; since it coincides with
its reduction, Theorem 4.2 implies that it is the canonical one. 2

It is easy to see that when one key constraint is considered, ||Dmin|| = |r|.
Proposition 4.2. Given a relation and a key constraint, Dmin is computed
in polynomial time by Algorithm 1.

Proof. It is easy to see that after the first loop (steps 3-5) Algorithm 1
produces Dmin and, after that, step 9 is never performed. 2

Two keys. We now show that, in the presence of two key constraints, Dmin

may have exponential size. Let Dn (n > 0) be the family of databases, con-
taining 3n facts, of the following form:

A B
t11 a b1

...
...

...
tn1 a bn

t12 a1 b1

t13 a1 b′1
...

...
...

tn2 an bn

tn3 an b′n
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Let D ∈ Dn and A,B be two keys. The conflict hypergraph for D w.r.t. the
two key constraints consists of the following edges:

{{ti1, tj1} | 1 ≤ i, j ≤ n ∧ i 6= j} ∪

{{ti1, ti2} | 1 ≤ i ≤ n} ∪ {{ti2, ti3} | 1 ≤ i ≤ n}
Thus, the conflict hypergraph contains a clique {t11, . . . , tn1} of size n and,
moreover, ti1 is connected to ti2 which is in turn connected to ti3 (i = 1..n).

Example 4.2. The conflict hypergraph for a database in D4, assuming that A
and B are two keys, is reported in Figure 1.
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Fig. 4.1. Conflict hypergraph for a database in D4 w.r.t. A, B key constraints

The following proposition identifies the canonical disjunctive database for
a database in Dn for which A and B are keys; such a disjunctive database
has exponential size.

Proposition 4.3. Consider a database D in Dn and a set of constraints F
consisting of two keys, A and B. Then Dmin is equal to D where

D = {ti2 ∨ ti3 | 1 ≤ i ≤ n} ∪
{ti1 ∨ ti2 ∨

∨
z=1..n ∧ z 6=i tz | 1 ≤ i ≤ n ∧ tz ∈ {tz1, tz3}}

Proof. First of all, we show that the minimal models of D are the repairs
of D w.r.t. F ; in particular we prove that (1) MM(D) ⊆ rep(D, F ) and (2)
MM(D) ⊇ rep(D, F ).
(1) Consider a minimal model m ∈ MM(D). First we show that (a) m is
consistent w.r.t. F and next (b) that it is maximal.
(a) Let E be the set of edges of GD,F . First we show that for each e = {t′, t′′}
in E and pair of disjunctions d′ = t′ ∨ D′, d′′ = t′′ ∨ D′′ in D s.t. D′ (resp.
D′′) does not contain t′′ (resp. t′), there is a disjunction in D which is equal
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to or subsumes D′ ∨ D′′; next we show that this property implies that m is
consistent w.r.t. F . We recall that E is the union of the following three sets:

E1 = {{ti1, tj1} | 1 ≤ i, j ≤ n ∧ i 6= j}

E2 = {{ti1, ti2} | 1 ≤ i ≤ n}
E3 = {{ti2, ti3} | 1 ≤ i ≤ n}

Let us consider the case where e ∈ E1, that is e = {ti1, tj1} (1 ≤ i, j ≤ n ∧
i 6= j). Then a disjunction in D containing ti1 but not tj1 is of the form

d′1 : ti1 ∨ ti2 ∨ tj3 ∨
∨

z=1..n ∧ z 6=i,j

t′z

where t′z ∈ {tz1, tz3}, or of the form

d′2 : th1 ∨ th2 ∨ ti1 ∨ tj3 ∨
∨

z=1..n ∧ z 6=h,i,j

t′z

where 1 ≤ h ≤ n ∧ h 6= i, j and t′z ∈ {tz1, tz3}. Likewise, a disjunction in D
that contains tj1 but not ti1 is of the form

d′′1 : tj1 ∨ tj2 ∨ ti3 ∨
∨

z=1..n ∧ z 6=i,j

t′′z

where t′′z ∈ {tz1, tz3}, or of the form

d′′2 : tk1 ∨ tk2 ∨ tj1 ∨ ti3 ∨
∨

z=1..n ∧ z 6=k,i,j

t′′z

where 1 ≤ k ≤ n ∧ k 6= i, j and t′′z ∈ {tz1, tz3}. In all the four possible cases,
there is disjunction in D which subsumes D′ ∨D′′:

• if d′ = d′1 and d′′ = d′′1 , then there exist both tj2 ∨ tj3 and ti2 ∨ ti3 in D
which subsume D′ ∨D′′;

• if d′ = d′1 and d′′ = d′′2 , then there exists ti2 ∨ ti3 in D which subsumes
D′ ∨D′′;

• if d′ = d′2 and d′′ = d′′1 , then there exists tj2 ∨ tj3 in D which subsumes
D′ ∨D′′;

• if d′ = d′2 and d′′ = d′′2 , then both th1 ∨ th2 ∨ ti3 ∨ tj3 ∨
∨

z=1..n ∧ z 6=h,i,j t′z
and tk1 ∨ tk2 ∨ ti3 ∨ tj3 ∨

∨
z=1..n ∧ z 6=k,i,j t′′z , which are in D, subsume

D′ ∨D′′.

Let us consider the case where e ∈ E2, namely e = {ti1, ti2} (1 ≤ i ≤ n). A
disjunction containing ti1 but not ti2 is of the form

tk1 ∨ tk2 ∨ ti1 ∨
∨

z=1..n ∧ z 6=i,k

tz
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where 1 ≤ k ≤ n ∧ k 6= i and tz ∈ {tz1, tz3}, whereas a disjunction containing
ti2 but not ti1 is of the form ti2 ∨ ti3. Thus, D′ ∨D′′, which is equal to

tk1 ∨ tk2 ∨ ti3 ∨
∨

z=1..n ∧ z 6=i,k

tz

is in D. Finally, consider the last case where e ∈ E3, that is e = {ti2, ti3} (1 ≤
i ≤ n). A disjunction containing ti2 but not ti3 is of the form

ti1 ∨ ti2 ∨
∨

z=1..n ∧ z 6=i

t′z

where t′z ∈ {tz1, tz3}, whereas a disjunction containing ti3 but not ti2 is of the
form

th1 ∨ th2 ∨ ti3 ∨
∨

z=1..n ∧ z 6=h,i

t′′z

where 1 ≤ h ≤ n ∧ h 6= i and t′′z ∈ {tz1, tz3}; D′ ∨D′′ is subsumed or equal
to the disjunction

th1 ∨ th2 ∨ ti1 ∨
∨

z=1..n ∧ z 6=h,i

t′′z

which is in D.
Assume by contradiction that m is not consistent. Then there are two facts

ta, tb ∈ m s.t. {ta, tb} ∈ E. Let Sta = {D | ta∨D ∈ D and D does not contain
tb} and Stb

= {D | tb ∨D ∈ D and D does not contain ta}. As we have seen
before, both these sets are not empty. We have previously proved that for each
Da ∈ Sta and Db ∈ Stb

there is a disjunction in D which equals or subsumes
Da ∨Db. Then, there is a set Stx among Sta and Stb

s.t. m satisfies each D
in Stx , otherwise there would be Da ∈ Sta , Db ∈ Stb

and a disjunction in D
which is equal to or subsumes Da ∨Db which is not satisfied by m. Consider
the interpretation m′ = m−{tx} and let ty be the fact among ta and tb which
is not tx. We now show that m′ is a model, that contradicts the minimality of
m. Clearly, m′ satisfies every disjunction in D which does not contain tx. As
for the disjunctions in D containing tx, it is easy to see that they are satisfied
by m′: disjunctions containing ty are satisfied since ty ∈ m′, disjunctions not
containing ty are satisfied as well since m′ satisfies every disjunction in Stx .
Hence m is consistent w.r.t. F .
(b) Now we prove that m is a maximal (consistent) subset of D. First of all,
we note that for each fact t ∈ D there is a disjunction t ∨ t1 ∨ . . . ∨ tn in D
s.t. t1, . . . , tn are facts conflicting with t:

• for the facts ti2 and ti3 (i = 1..n) such disjunctions are ti2 ∨ ti3;
• for the facts ti1 (i = 1..n) such disjunctions are ti1∨ ti2∨

∨
z=1..n ∧ z 6=i tz1.

Assume by contradiction that m is not a maximal (consistent) subset of D.
Then there exists m′ ⊃ m which is consistent. Let t be a fact in m′ but not in
m. Since m′ is consistent, each fact conflicting with t is not in m′ and, thus,
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neither in m. This implies that m doesn’t satisfy the disjunction t∨t1∨ . . .∨tn
containing t and some fact conflicting with it: the fact that m is a model is
contradicted.
(2) Consider a repair r for D and F . We show first (a) that r is a model of D
and next (b) that it is a minimal model.
(a) Suppose by contradiction that r is not a model of D, then there is a dis-
junction d ∈ D which is not satisfied by r. Specifically, d is either of the form
ti2∨ ti3 (1 ≤ i ≤ n) or ti1∨ ti2∨

∨
z=1..n ∧ z 6=i tz, 1 ≤ i ≤ n and tz ∈ {tz1, tz3}.

In the former case, r ∪ {ti3} is consistent, since the only fact conflicting with
ti3, namely ti2, is not in r. This contradicts the maximality of r. As for the
latter case, let T3 = {tj3 | tj3 appears in d}. For each tj3 ∈ T3 we have that
tj2 ∈ r, because r does not contain tj3 and tj3 is conflicting only with tj2 (if
tj2 was not in r, then r would not be maximal). Then for each tj3 ∈ T3, since
r contains tj2, it does not contain tj1 otherwise it would not be consistent.
Thus r does not contain any fact tk1 with 1 ≤ k ≤ n ∧ k 6= i. Since r contains
neither the facts tk1’s nor ti2, which are all the facts conflicting with ti1, then
r ∪ {ti1} is consistent (observe that ti1 6∈ r). This contradicts the maximality
of r. Hence r is a model of D.
(b) We now show that r is a minimal model of D reasoning by contradiction.
Assume that there exists a model m′ ⊂ r of D and let t be a fact in r but
not in m′. All the facts conflicting with t are not in r as r is consistent. The
same holds for m′ since it is a (proper) subset of r. We recall that for each
fact t′ ∈ D there is a disjunction in D containing t′ and only facts conflicting
with t′; then there is a disjunction d : t ∨ t1 ∨ . . . ∨ tn in D s.t. t1, . . . , tn are
facts conflicting with t. Since m′ does not satisfy d, it is not a model, thus we
get a contradiction. Hence r is a minimal model of D.

We have shown that the minimal models of D are the repairs of D w.r.t. F .
Since D = reduction(D), from Theorem 4.2 we have that D is the canonical
disjunctive database whose minimal models are the repairs of D w.r.t. F . 2

Corollary 4.2. Consider a database D in Dn and let A and B be two keys;
||Dmin|| = 2n + (n + 1) · n2n−1.

Proof. From Proposition 4.3, it is easy to see that Dmin contains n disjunc-
tions of 2 facts and n2n−1 disjunctions of n + 1 facts. 2

One functional dependency. Given a relation r and a functional de-
pendency f : X → Y , we denote by cliques(r, f) the partition of r into
n = |π

X
(r)| sets C1, . . . , Cn, called cliques, s.t. each Ci does not contain two

facts with different values on X. For each clique Ci in cliques(r, f) we de-
note by clusters(Ci) the partition of Ci into mi = |π

Y
(Ci)| sets G1, . . . , Gmi ,

called clusters, s.t. each cluster doesn’t contain two facts with different values
on Y . It is worth noting that (i) facts in the same cluster are not conflicting
each other, (ii) given two different clusters G1, G2 of the same clique, each



4.4 Functional Dependencies 59

fact in G1 (resp. G2) is conflicting with every fact in G2 (resp. G1), (iii) the
set of repairs of r w.r.t. f is {G1 ∪ . . . ∪Gn | Gi ∈ clusters(Ci) for i = 1..n}.
Proposition 4.4. Given a relation r and a functional dependency f , then
Dmin is equal to D where

D = {t1 ∨ . . . ∨ tk | ∃C ∈ cliques(r, f) s.t. clusters(C) = {G1, . . . , Gk}
and t1 ∈ G1, . . . , tk ∈ Gk}

Proof. We show first (1) that each minimal model of D is a repair for r and
f and next (2) that each repair of r w.r.t. f is a minimal model of D.
(1) Consider a minimal model m of D. Let cliques(r, f) = {C1, . . . , Cn} be
the cliques for r and f . For each clique Ci in cliques(r, f) there is a cluster Gj

in clusters(Ci) = {G1, . . . , Gk} s.t. Gj ⊆ m (otherwise m would not satisfy
the disjunction t1 ∨ . . . ∨ tk in D where th ∈ Gh and th 6∈ m, h = 1..k). Let
G1, . . . , Gn be such clusters, where each Gl is a cluster of Cl for l = 1..n.
Since G1 ∪ . . . ∪ Gn ⊆ m and G1 ∪ . . . ∪ Gn |= D, then m = G1 ∪ . . . ∪ Gn,
which is, as we have observed before, a repair.
(2) Consider a repair s in rep(r, f). As s consists of one cluster for each
clique, it is easy to see that s is a model of D. We show that s is minimal by
contradiction assuming that there exists s′ ⊂ s which is a model of D. Let t
be a fact in s which is not in s′. Let Ct and Gt be the clique and the cluster,
respectively, containing t; moreover let clusters(Ct) = {Gt, G1, . . . , Gk}. The
disjunction t ∨ t1 ∨ . . . ∨ tk, where ti ∈ Gi, i = 1..k, which is in D, is not
satisfied by s′ as s′ contains exactly one cluster per clique (thus it does not
contain any fact in Gi, i = 1..k) and does not contain t. This contradicts the
fact that s′ is a model. So s is a minimal model of D.
Hence the minimal models of D are exactly the repairs for r and f ; as D is
equal to its reduction, Theorem 4.2 entails that D = Dmin. 2

Clearly, the size of Dmin may be exponential if the functional dependency
is a non-key dependency, as shown in the following example.

Example 4.3. Consider the relation r, consisting of 2n facts, reported below
and the non-key functional dependency A → B.

A B C
t′1 a b1 c1

t′′1 a b1 c2

...
...

...
...

t′n a bn c1

t′′n a bn c2

There is a unique clique consisting of n clusters Gi = {t′i, t′′i }, i = 1..n. Then
Dmin = {t1 ∨ . . . ∨ tn | ti ∈ Gi for i = 1..n} and ||Dmin|| = n2n.
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4.5 Cardinality-based Repairs

In this section we consider cardinality-based repairs, that is consistent data-
bases which minimally differ from the original database in terms of the number
of facts in the symmetric difference (in the previous sections we have consid-
ered consistent databases for which the symmetric difference is minimal under
set inclusion, we will refer to them as S-repairs).

We show that, likewise to what has been presented in Section 4.4, the
size of the canonical disjunctive database (representing the cardinality-based
repairs) is linear when only one key constraint is considered, whereas it may
be exponential when two keys or one non-key functional dependency are con-
sidered.

It is easy to see that in the presence of only one key constraint the
cardinality-based repairs coincide with the S-repairs, so the canonical dis-
junctive database is of linear size.

When the constraints consists of one functional dependency, it is easy to
see that if for every clique its clusters have the same cardinality, then the
cardinality-based repairs coincide with the S-repairs. This is the case for the
database of Example 4.3, where the size of the canonical disjunctive database
is exponential.

Finally, we consider the case where two key constraints are considered.
We directly show that the size of the canonical disjunctive database is also
exponential.

Lemma 4.1. Consider a database D in Dn and a set of integrity constraints
F consisting of two keys, A and B. Then the set of S-repairs is is equal to R
where

R = {{t12, . . . , tn2}} ∪
{ {ti1, ti3} ∪

⋃
j=1..n ∧ j 6=i{tj} | 1 ≤ i ≤ n ∧ tj ∈ {tj2, tj3}}

Proof. It is easy to see that each database in R is a S-repair.
Consider a S-repair r of D w.r.t. F . We show that r is in R using reasoning
by cases:

• Suppose that t13 ∈ r. Then t12 6∈ r and either (1) t11 ∈ r or (2) t11 6∈ r.
1. Since t11 ∈ r, for j = 2..n tj1 6∈ r and either tj2 or tj3 is in r, that is

r = {t11, t13, t2, . . . , tn} where tj ∈ {tj2, tj3}, j = 2..n. It is easy to see
that r ∈ R.

2. Since t11 6∈ r, there exists tk1 ∈ r with 2 ≤ k ≤ n. Then tk2 6∈ r and
tk3 ∈ r. For j = 2..n ∧ j 6= k, tj1 6∈ r and either tj2 or tj3 is in r, that
is r = {t13, tk1, tk3} ∪

⋃
j=2..n ∧ j 6=k{tj} where tj ∈ {tj2, tj3}. Clearly,

r ∈ R.
• Suppose that t13 6∈ r. Then t12 ∈ r and t11 6∈ r. Two cases may occur:

either (1) there exists tk1 ∈ r with 2 ≤ k ≤ n or (2) tj1 6∈ r for j = 1..n.
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1. Since tk1 ∈ r then tk2 6∈ r and tk3 ∈ r. For j = 2..n ∧ j 6= k tj1 6∈ r and
either tj2 or tj3 is in r, that is r = {t12, tk1, tk3} ∪

⋃
j=2..n ∧ j 6=k{tj}

where tj ∈ {tj2, tj3}. It is easy to see that r ∈ R.
2. r = {t12, . . . , tn2} which is in R. 2

Corollary 4.3. Consider a database D in Dn and a set of integrity con-
straints F consisting of two keys, A and B. Then the set of cardinality-based
repairs is

{ {ti1, ti3} ∪
⋃

j=1..n ∧ j 6=i

{tj} | 1 ≤ i ≤ n ∧ tj ∈ {tj2, tj3}}

Proof. Straightforward from Lemma 4.1. 2

The following proposition identifies the canonical disjunctive database for
a database in Dn for which A and B are keys; such a disjunctive database is
of exponential size. In the following proposition and corollary, Dmin denotes
the canonical disjunctive database representing the set of cardinality-based
repairs.

Proposition 4.5. Consider a database D in Dn and a set of integrity con-
straints F consisting of two keys, A and B. Then the canonical disjunctive
database Dmin is equal to D where

D = {ti2 ∨ ti3 | 1 ≤ i ≤ n} ∪ {t1 ∨ . . . ∨ tn| ti ∈ {ti1, ti3}, i = 1..n}

Proof. We first show that (1) each cardinality-based repair of D w.r.t. F
is a minimal model of D and next that (2) each minimal model of D is a
cardinality-based repair.
(1) Consider a cardinality-based repair r of D w.r.t. F . We show first that (a)
r is a model of D and next that (b) it is a minimal model.
(a) From Corollary 4.3, it is easy to see that r satisfies each disjunction ti2∨ti3
in D, 1 ≤ i ≤ n. Since Corollary 4.3 entails that there exists 1 ≤ j ≤ n
s.t. {tj1, tj3} ⊆ r, then r satisfies each disjunction t1 ∨ . . . ∨ tn in D (where
ti ∈ {ti1, ti3}, i = 1..n). Thus r is a model of D.
(b) We observe that for each fact t ∈ D there is a disjunction t∨ t1∨ . . .∨ tn in
D s.t. t1, . . . , tn are facts conflicting with t: for the facts ti2 and ti3 (i = 1..n)
such disjunctions are ti2∨ti3; for the facts ti1 (i = 1..n) there is the disjunction
t11 ∨ . . . ∨ tn1. In the same way as in Proposition 4.3, it can be shown that r
is a minimal model of D.
(2) Consider a minimal model m of D. The fact that m is a S-repair of D
w.r.t. F can be shown in the same way as in Proposition 4.3.
It is easy to see that {t12, . . . , tn2} is not a model of D and then, from
Lemma 4.1 and Corollary 4.3, m is a cardinality-based repair of D w.r.t.
F .
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We have shown that D represents the cardinality-based repairs of D w.r.t. F ;
since D = reduction(D), from Theorem 4.2 we have that D is the canonical
one. 2

Corollary 4.4. Consider a database D in Dn and let A and B be two keys;
||Dmin|| = 2n + n2n.

Proof. From Proposition 4.5, it is easy to see that Dmin contains n disjunc-
tions of 2 facts and 2n disjunctions of n facts. 2

4.6 Discussion

In this chapter we have addressed the problem of representing, by means of
a disjunctive database, the set of repairs of a database w.r.t. a set of de-
nial constraints. We have shown that, given a database and a set of denial
constraints, there exists a unique canonical disjunctive database representing
their repairs: any disjunctive database with the same set of minimal models
is a superset of the canonical one, containing in addition disjunctions which
are subsumed by the disjunctions in the canonical one. We have proposed
an algorithm to compute the canonical disjunctive database. We have shown
that the size of the canonical disjunctive database is linear when only one key
is considered, but it may be exponential in the presence of two keys or one
non-key functional dependency. We have shown that these results hold also
when cardinality-based repairs are considered.

Future work in this area could explore different representations for the
set of repairs. For instance, one can consider formulas with negation or non-
clausal formulas. Such formulas can be more succinct than disjunctive data-
bases, making query evaluation, however, potentially harder. We also observe
that in the case of the repairs of a single relation the resulting disjunctive data-
base consists of disjunctions of elements of this relation. It has been recognized
that such disjunctions should be supported by database management systems
[10]. Moreover, one could consider restricting inconsistent databases in such a
way that the resulting repairs can be represented by relational databases with
OR-objects [55]. In this case, one could use the techniques for computing cer-
tain query answers over databases with OR-objects [56] to compute consistent
query answers over inconsistent databases. Finally, other kinds of representa-
tions of sets of possible worlds, e.g., world-set decompositions [3], should be
considered. For example, the set of repairs of the database in Example 4.3 can
be represented as a world-set decomposition of polynomial size.



5

Polynomial Time Queries over Inconsistent
Databases

This chapter investigates the problem of repairing and querying relational
databases which may be inconsistent with respect to functional dependencies
and foreign key constraints. Specifically, particular sets of functional depen-
dencies, called canonical, are considered.

We present a repairing strategy whereby only tuple updates and insertions
are allowed in order to restore consistency: when foreign key constraints are
violated, new tuples (possibly containing null values) are inserted into the
database; when functional dependency violations occur, tuple updates (pos-
sibly introducing unknown values) are performed. We propose a semantics
of constraint satisfaction for databases containing null and unknown values,
since the repairing process can lead to such databases. The proposed approach
allows us to obtain a unique repaired database which can be computed in poly-
nomial time. The result of the repairing technique is an incomplete database
(in particular, an OR-database). The consistent query answers over an incon-
sistent database are the certain answers on the repaired database. Relying
on the results on the complexity of query processing in OR-databases, we
identify conjunctive queries for which consistent answers can be computed in
polynomial time.

5.1 Introduction

In this chapter we deal with the problem of repairing and querying databases
in the presence of functional dependencies and foreign key constraints. Specifi-
cally, we consider particular sets of functional dependencies (called canonical)
where attributes appearing on the right-hand side of functional dependencies
cannot appear also on the left-hand side. We propose a repairing strategy
which aims at preserving the information in the original database as much
as possible: when foreign key constraints are violated new tuples are inserted
into the database, whereas tuples updates are performed to make the database
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consistent w.r.t. functional dependencies; thus tuple deletions are never per-
formed. Since tuple insertions and updates may introduce respectively null
and unknown values in the database, we propose a semantics of constraint
satisfaction for databases containing null and unknown values. Let us give the
basic idea of our approach in the following example.

Example 5.1. Consider the following database:

Project
Name Manager

p1 john
p1 bob
p2 carl

Employee
Name Phone
john 123
bob 111

Suppose to have the following set of constraints (functional dependencies and
foreign key constraints):

• fd1 : Name → Manager defined over Project,
• fd2 : Name → Phone defined over Employee,
• fk : Project[Manager] ⊆ Employee[Name].

The database is inconsistent as it violates both fd1 and fk: there are two
different managers for the same project p1, and the manager carl, appearing
in the project relation, is not in the employee relation. In this case, the repaired
(consistent) database is as follows:

Project
Name Manager

p1 #1
p2 carl

Employee
Name Phone
john 123
bob 111
carl ⊥1

where #1 is an unknown value whose domain is {john, bob} whereas ⊥1 is a
(labeled) null value. Therefore, in order to satisfy the functional dependency
fd1 we have introduced the unknown value #1 which expresses the fact that
p1 has a unique manager that could be either john or bob. Observe that the
first tuple in the project relation does not lead to a violation of fk because
the manager of p1, whoever he may be, is in the employee relation too. The
consistency of the original database w.r.t. fk has been restored by inserting
the manager carl into the employee relation.

In the example above, observe that a labeled null value has been introduced
for the phone number of carl since this information is missing. Specifically,
we know neither if the telephone number of carl does not exist nor if the
telephone number exists but is not known. Thus, neither the “nonexistent” (a
value does not exist) nor the “unknown” (a value exists but it is not known)
interpretation of the null is applicable in this situation. Here the null value
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is interpreted as “no information” [78, 79], that is a placeholder for either a
nonexistent or an unknown value. Thus, both unknown and null values express
incomplete information, even though unknown values are “more informative
than” null values.

As it will be shown in the chapter, given an inconsistent database and a
set of constraints consisting of functional dependencies and foreign key con-
straints, the proposed repairing strategy allows us to obtain a unique repaired
database which can be computed in polynomial time.

It is worth noting that, the so obtained (incomplete) database represents a
set of “possible worlds”, namely the databases which are obtained by replacing
every unknown value with a constant of its domain. The “certain answers”
to a query over such a database are those tuples which can be derived from
every possible world [56, 55, 54]. Observe that, in our case, a possible world
can contain labeled nulls; the evaluation of a query over such a database
treats each labeled null like a standard constant. We propose a semantics
of query answering over inconsistent databases which naturally follows from
the previous observations: the consistent answers to a query over a possibly
inconsistent database are the certain answers in the repaired database.

Example 5.2. Consider the database of Example 5.1. The consistent answer
to the query asking for the manager of p2 is carl, because this answer can be
obtained from every possible world of the repaired database. Clearly, there is
no consistent answer to the query asking for the manager of p1. Observe that,
the consistent answer to the query asking for the telephone number of p2’s
manager is ⊥1, that means that we have no information about it.

Since repaired databases are OR-databases, on the complexity of query
processing in OR-databases, we identify conjunctive queries for which consis-
tent answers can be computed in polynomial time.

The rest of the chapter is organized as follows. Section 5.2 introduces
a semantics of constraint satisfaction for databases containing null and un-
known values, and a repairing strategy. The problem of querying inconsistent
databases is tackled in Section 5.3. Finally, Section 5.4 contains concluding
remarks and related work.

5.2 Repairing Inconsistent Databases

In this section we investigate the problem of repairing databases that are in-
consistent w.r.t. functional dependencies and foreign key constraints. Specif-
ically, in this chapter we consider particular sets of functional dependencies,
called canonical, which are introduced in the following definition.1

1 In the rest of this chapter, we assume that functional dependencies are nontrivial
and in standard form.
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Definition 5.1. Canonical sets of functional dependencies. Let FD be a set
of functional dependencies over the relation schema r(U). FD is said to be
in canonical form if for each functional dependency X → A ∈ FD does not
exist a functional dependency Y → B ∈ FD such that A ∈ Y .

Thus, a set of functional dependencies is canonical if there is no attribute
appearing in the right-hand side of a functional dependency and in the left-
hand side of another one. When the database schema consists of more than one
relation schema, each schema is associated with a canonical set of functional
dependencies. It is easy to see that, given a canonical set FD of functional
dependencies over a relation schema r(U), there exists a unique key K of r
and, moreover, every functional dependency X → A in FD is s.t. X ⊆ K.
Thus, we observe that we deal with primary foreign key constraints.

Most of the proposed approaches for repairing inconsistent databases rely
on tuple insertions and deletions; only a few works have investigated the com-
putation of repairs by means of tuple updates ([76]). We propose a repairing
strategy which aims at preserving the information in the original database as
much as possible: when foreign key constraints are violated new tuples are
inserted into the database whereas tuples updates are performed to make the
database consistent w.r.t. functional dependencies; thus tuple deletions are
never performed. As it has been shown in Example 5.1, null and unknown
values can be introduced when repairing w.r.t. foreign key constraints and
functional dependencies, respectively.

In the rest of this section, first we present a semantics of constraint satis-
faction for databases containing null and unknown values, next we propose a
repairing strategy.

5.2.1 Semantics of Constraint Satisfaction

First of all, let us introduce databases containing null and unknown values.
We assume to have two infinite enumerable domains D# = {#1, . . . , #n, . . .}
and D⊥ = {⊥1, . . . ,⊥k, . . .} of distinct unknown values and distinct labeled
nulls, respectively. The database domain, denoted as Dom#,⊥, contains, in
addition to a set Dom of standard constants, the unknown values D# and the
null values D⊥, i.e. Dom#,⊥ = Dom∪D# ∪D⊥ (likewise, given an attribute
Ai, its domain is Dom#,⊥(Ai) = Dom(Ai)∪D# ∪D⊥ where Dom(Ai) is the
set of constants for the attribute Ai). The sets of constants, null and unknown
values are pairwise disjoint. A relation R over the schema r(A1, . . . , An) is a
subset of Dom#,⊥(A1) × · · · ×Dom#,⊥(An), where each unknown value #j
appearing in R in correspondence of an attribute Ai is associated with a finite
set of constants dom(#j) ⊆ Dom(Ai) (we call dom(#j) the domain of #j).
Given a tuple t ∈ R, we denote by ground(t) the set of tuples obtained from
t by replacing every unknown value occurring in t with a constant from its
domain. We will call databases containing neither null nor unknown values
complete databases. We point out that source databases are complete (and
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possibly inconsistent) and the proposed repairing strategy leads to consistent
databases possibly containing null and unknown values.

We present first a semantics of constraint satisfaction for databases con-
taining null and unknown values in the presence of foreign key constraints,
and next a semantics for functional dependencies (in this chapter we consider
only canonical sets of functional dependencies, see Definition 5.1).

Definition 5.2. Satisfaction of foreign key constraints. Let R,S be two rela-
tions with schemata r(U), s(V ) respectively, and fk be a foreign key constraint
of the form r(X) ⊆ s(Y ). R and S satisfy fk if for each tuple tR ∈ R

• there exists Xi in X s.t. tR[Xi] =⊥j , or
• for each tuple t′R ∈ ground(tR[X]) there is a tuple tS ∈ S s.t. t′R = tS [Y ].

Clearly, a database D satisfies a set FK of foreign key constraints if it satisfies
every foreign key constraint in FK.

In the above definition, if a tuple t ∈ R contains a null value on some attribute
in X, then it does not violate the foreign key constraint fk. Observe that, if
such a tuple could violate fk, a reasonable way (relying on tuple insertions) to
repair the database would lead to the insertion in S of a new tuple containing
null values on attributes belonging to the primary key, which is not desirable
(we recall that we deal with primary foreign key constraints). If a tuple t ∈ R
does not contain any null value on X, intuitively, it could be any tuple in
ground(tR) and, in order to consider the constraint not violated by tR, we
require that any tuple in ground(tR) does not violate the constraint (under
the standard semantics). When complete databases are considered, the previ-
ous definition coincides with the classical semantics of foreign key constraint
satisfaction.

Example 5.3. Consider the database schema of Example 5.1 and the following
database.

Project
Name Manager

p1 ⊥1

p2 #1

Employee
Name Phone
john 123

where dom(#1) = {john, bob}. The first tuple of the project relation does
not lead to a violation of Project[Manager] ⊆ Employee[Name] since it has
a null value on the attribute Manager. With regard to the second tuple in
the project relation, since the manager of p2 could possibly be bob and he is
missing in the employee relation, the database is inconsistent.

Now we present the semantics of constraint satisfaction w.r.t. functional
dependencies. As it has been observed before, given a canonical set FD of
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functional dependencies over a relation schema r(U), every functional depen-
dency X → Y in FD is s.t. each attribute Xi ∈ X belongs to the primary key
of r. Since null values cannot occur in correspondence of such attributes, in
the following definition we assume that, given a relation R over r(U), every
tuple t ∈ R contains constants or unknown values on attributes appearing
in the left-hand side of some functional dependency. Moreover, for the sake
of simplicity of presentation, we say that dom(c) = {c} for every constant
c ∈ Dom.

Definition 5.3. Satisfaction of functional dependencies. Given a relation R
and a functional dependency fd = X → A over the schema r(U), R satisfies
fd if for every pair t1, t2 of tuples in R,

∧
Xi∈X(dom(t1[Xi])∩dom(t2[Xi]) 6= ∅)

implies t1[A] = t2[A]. Clearly, R satisfies a set FD of functional dependencies
if it satisfies every functional dependency in FD.

In the previous definition, similarly to the semantics for foreign key con-
straints, if two tuples in R could possibly have the same value on X, thus
we require that they have same value on A in order to consider fd not vi-
olated. In the presence of complete databases the above definition coincides
with the classical semantics of satisfaction of functional dependencies.

Example 5.4. Consider the database schema of Example 5.1 and the following
database (the employee relation is empty and then omitted).

Project
Name Manager

p1 ⊥1

p1 #1
p1 carl

where dom(#1) = {john, bob}. The tuples in the above relation are pairwise
violating fd1 : Name → Manager as they have the same information on
Name but different information on Manager.

5.2.2 Repairing

We now present how to repair inconsistent databases. Basically, we introduce
a rule to be applied whenever functional dependency violations occur, and
another rule to be applied when foreign key constraints are violated. Our
repairing strategy consists in applying these rules in some arbitrary order as
long as they are applicable. We show that this procedure always terminates
and the final consistent database does not depend on the order the rules have
been applied. Finally, we show that the repairing process is polynomial time.

Let D be a database and FD, FK be sets of functional dependencies
and foreign key constraints respectively. The aforementioned rules are the
following:
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• FKC rule: if there exist two relations R and S in D with schemata r(U)
and s(V ) respectively, a foreign key constraint fk : r(X) ⊆ s(Y ) in FK
and a tuple tR ∈ R which violate fk (according to Definition 5.2), then
we say that the FKC rule is applicable. The rule is applied as follows: for
each tuple t ∈ ground(tR[X]) s.t. there is no tuple tS ∈ S s.t. tS [Y ] = t
insert a tuple tnew into S s.t. tnew[Y ] = t and ∀Ai ∈ (V −Y ) tnew[Ai] =⊥j

where ⊥j is a fresh labeled null.
• FDC rule: if there exist a functional dependency fd : X → A ∈ FD and a

relation R over r(U), and two tuples t1, t2 in R which violate fd (according
to Definition 5.3), then we say that the FDC rule is applicable. For the
sake of simplicity of presentation, we say that dom(⊥i) = ∅ for every
unknown value ⊥i∈ D⊥ and dom(c) = {c} for every constant c ∈ Dom.
The rule is applied as follows. Let d = dom(t1[A])∪dom(t2[A]). If d = {c}
then t1[A] := c, t2[A] := c. If d = ∅ then t1[A] :=⊥j , t2[A] :=⊥j , where
⊥j is a fresh null value, and every occurrence of the old values t1[A] and
t2[A] elsewhere is replaced with ⊥j . If both the previous cases do not hold
then t1[A] := #i, t2[A] := #i, where #i is a fresh unknown value with
domain dom(#i) = d, and every occurrence of the old values t1[A] and
t2[A] elsewhere, only if unknown values, is replaced with #i.

Therefore, when a foreign key constraint is violated, the missing informa-
tion is simply inserted into the database. By inserting a new tuple into the
database, it may be the case that some information about the new tuple is
missing and then we need to use null values. We adopt the no information in-
terpretation of null values because, as it has been shown in Example 5.1, this
interpretation allows us to model every kind of missing information, whereas
adopting the unknown or the nonexistent interpretation non-factual informa-
tion can be stored in the database.

Example 5.5. Consider the database of Example 5.3. By applying the FKC
rule, the consistent database reported below is obtained.

Project
Name Manager

p1 ⊥1

p2 #1

Employee
Name Phone
john 123
bob ⊥2

Thus, we have inserted bob into the employee relation as it could be p2’s
manager.

The proposed rule for repairing w.r.t. functional dependencies stems from
the observation that, if a relation contains two tuples t1, t2 which are equal
on a set X of attributes, and a functional dependency X → A is defined, this
means that t1[X] (equivalently, t2[X]) should be associated with a unique
A-value. When this is not the case, that is t1 and t2 violate X → A, we
modify both of them on the attribute A in such a way that they have the
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same information on this attribute. Specifically, when t1, t2 do not have a null
value on A we “fix” them by assigning the same (unknown) value on A; the
possible values for this unknown value come from the old values of t1 and t2 on
A. Observe that the domain of an unknown value consists of constants which
come from the original (complete) database, and, in particular, these values
were in the original database in positions where the unknown value occurs.

Example 5.6. Consider the database schema of Example 5.1 and the following
database (the employee relation is empty and then omitted).

Project
Name Manager

p1 #1
p1 carl

where dom(#1) = {john, bob}. Clearly, the database violates fd1 : Name →
Manager. By applying the FDC rule, we obtain the following consistent data-
base:

Project
Name Manager

p1 #2

where dom(#2) = {john, bob, carl}.
Let us consider the case where t1[A] and t2[A] contain null values. If

t1[A] =⊥i and t2[A] =⊥j , with i 6= j, then the same (fresh) labeled null
is assigned to both t1[A] and t2[A] (every occurrence of ⊥i and ⊥j elsewhere
is replaced with the new labeled null). Let us now consider the case where
there is only one null values among t1[A] and t2[A]. As we have stressed several
times, a null value is interpreted as no information (the value either exists but
it is not known or does not exist) whereas we can say more about unknown
values (a value exists but it is not know and a finite set of possible values is
known). In a sense, both constants and unknown values are more informative
than null values. The proposed repairing strategy aims at exploiting functional
dependencies to “infer” more precise information on null values: suppose that
t1[A] is a null value whereas t2[A] is not, then we replace the null value with
t2[A]. We show this idea in the following example.

Example 5.7. Consider the database below.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl

Suppose that the following constraints are defined.
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• fd1 : Name → Dept, City defined over Employee,
• fd2 : Name → Manager defined over Department,
• fk : Employee[Dept, City] ⊆ Department[Name, City].

Thus, a department can be located in different cities and has a unique man-
ager. As the pair cs,milan is missing in the department relation, the database
violates fk. By applying the FKC rule we obtain the following database.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl
cs milan ⊥1

The obtained database is inconsistent w.r.t. fd2 since there are two tuples
in the department relation regarding the same department cs and contain-
ing different information about its manager. As the first tuple states that
the manager of cs is carl, whereas the second tuple does not say anything,
it seems to be reasonable replacing the null value with a more precise infor-
mation which comes from the first tuple, that is we exploit the functional
dependency to “infer” missing information. By applying the FDC rule, the
following consistent database is obtained.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl
cs milan carl

Observe that unknown values are introduced only in correspondence of
attributes appearing in the right-hand side of functional dependencies and,
since we consider canonical sets of functional dependencies, unknown values
never appear in correspondence of attributes in some left-hand side.

We point out that, since the original database is complete, every null
value is introduced either by the FKC rule or by the FDC rule. As it has been
discussed above, null values introduced by the FKC rule are no information
nulls. Null values introduced by the FDC rule are used just for assigning
the same label to different null values, and this does not change their no
information interpretation. Thus, we deal only with no information nulls.

It is worth noting that the repairing strategy we propose consists in ap-
plying the FDC and FKC rules as long as they are applicable.

Definition 5.4. Repairing sequence. Let D be a complete database, FD be
a set of functional dependencies and FK be a set of foreign key constraints.
A repairing sequence of D w.r.t. FD and FK is a (possibly infinite) sequence
D0, . . . , Dj , . . . s.t. D0 = D and for each i > 0 Di is the database obtained
by applying the FDC or the FKC rule to Di−1.

The following proposition states that the proposed repairing process al-
ways terminates.
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Proposition 5.1. Let D be a complete database, FD be a set of functional
dependencies and FK be a set of foreign key constraints. Each repairing se-
quence of D w.r.t. FD and FK is finite. 2

Given a database D, a set FD of functional dependency and a set FK of
foreign key constraints, a repairing sequence D, . . . , Dn is complete if Dn

satisfies FD ∪ FK (we call Dn repaired database). Clearly, Proposition 5.1
entails that a repaired database always exists.

Corollary 5.1. Let D be a complete database, FD be a set of functional de-
pendencies and FK be a set of foreign key constraints. There exists a repaired
database Dn for D w.r.t. FD and FK. 2

The following theorem states that, up to renaming of unknown and null
values, the repaired database is unique.

Theorem 5.1. Let D be a complete database, FD be a set of functional de-
pendencies and FK be a set of foreign key constraints. There exists a unique
repaired database for D w.r.t. FD and FK (up to renaming of unknown and
null values). 2

As stated in the following theorem, the proposed repairing strategy is
polynomial time.

Theorem 5.2. Let D be a complete database, FD be a set of functional de-
pendencies and FK be a set of foreign key constraints. The repaired database
of D w.r.t. FD and FK can be computed in polynomial time. 2

5.3 Query Answering

In this section we present a semantics of query answering over possibly incon-
sistent databases. Relying on the results in [56], we show that there exists a
class of conjunctive queries which can be evaluated in polynomial time.

In this section we consider only conjunctive queries. A conjunctive query
Q is of the form ∃y Φ(x, y) where Φ is a conjunction of literals (a literal is of
the form p(t1, . . . , tn) where p is a relation symbol and each ti is a term, that
is a constant or a variable) and x is the set of free variables of Q (x and y are
sets of variables).

The proposed semantics of query answering stems form the following ob-
servations. The repairing strategy presented in the previous section lead to
a consistent database possibly containing unknown and (labeled) null values.
Specifically, the so obtained database is an OR-database [56] and thus it rep-
resents a set of “possible worlds”, namely the databases which are obtained
by replacing every unknown value with a constant of its domain (observe that
we treat labeled nulls like standard constants). The “certain answers” to a
query over an OR-database are those tuples which can be derived from every
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possible world of the database (we observe that, in our case, a possible world
can contain labeled nulls; the evaluation of a query over a possible world
treats such null values like standard constants). Then, it is natural to define
the semantics of query answering over a possibly inconsistent database as the
certain answers over its repaired database (Definition 5.5 below). Let D be
an OR-database. We denote by pw(D) the set of possible worlds of D.

Definition 5.5. Consistent Query Answers. Let D be a complete database,
FD be a canonical set of functional dependencies, FK be a set of foreign key
constraints and Q be a conjunctive query. Let D be the repaired database for
D w.r.t. FD and FK. The consistent answers to Q on D w.r.t. FD and FK
are:

Qc(D, FD ∪ FK) =
⋂

D∈pw(D)

Q(D)

where Q(D) denotes the result of applying Q over D.

Relying on the results in [56], we show that there exists a class of conjunc-
tive queries whose consistent answers can be computed in polynomial time.
The data complexity of queries is considered.

Let us briefly recall the results in [56]. Basically, OR-Tables are relations
(as presented at the beginning of Section 5.2.1) which do not contain labeled
null values. Unknown values are also called OR-Objects. Only in correspon-
dence of certain attributes, OR-Tables are allowed to have variables and this
is pre-designated by a typing function α. Given a database schema DS, let
Att be the set of attribute symbols in DS. The typing function α is defined
as α : Att → {ATOMIC, OR}. Those attributes that are mapped to OR are
called OR-Attributes.

Given a query Q and a literal l in Q, we denote by V AR(l) the set of
variables occurring in l.

Definition 5.6. Given a query Q, two literals l1 and l2 in Q are connected to
each other if V AR(l1) ∩ V AR(l2) 6= ∅ or, if there exists a literal l3 in Q such
that l1 is connected to l3 and V AR(l3) ∩ V AR(l2) 6= ∅.

Given a database schema DS, a query Q and a literal l = p(x1, . . . , xn)
in Q, then a variable xi in l occurring in correspondence of an attribute A is
said to label A. Moreover, xi occurs as OR in l if it is in correspondence of
an OR-Attribute (according to the typing function α for DS).

Definition 5.7. Let DS be a database schema, α be the corresponding typing
function, Q be a query and l1, l2 be two different literals in Q. Then l1 marks
l2 if there exists a variable y ∈ V AR(l1) ∩ V AR(l2), such that y occurs as
OR in l1 or, if there is another literal l3 in Q such that l1 marks l3 and l3 is
connected to l2.

Marking depends on both the typing function and the way the variables are
shared in Q.
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Definition 5.8. A query Q is an acyclic query if there are no two literals l1
and l2 in Q such that l1 marks l2 and l2 marks l1. A query which is not acyclic
is called cyclic query.

Given a database schema DS, a typing function α for it and a query Q, we
denote by MODIFY (α,Q) the typing function obtained by modifying α in
such a way that every attribute labeled by a free variable in Q is ATOMIC.
Proper conjunctive queries are those queries in which every pair of literals
have different relation symbols.

Theorem 5.3. [56] Let DS be a database schema, α be its typing function,
Q be a proper conjunctive query and D be a database instance on DS. Let
α′ = MODIFY (α,Q). Then, the data complexity of computing the certain
answers of Q over D is in PTIME iff Q is acyclic with respect to α′. 2

We recall that null values appearing in repaired databases are treated as
constants in query evaluation. Consider a complete database D, a canonical
set FD of functional dependencies and a set FK of foreign key constraints.
Let D be the repaired database for D w.r.t. FD and FK. According to the
previous theorem, we can identify proper conjunctive queries which can be
evaluated in polynomial time on D. As the certain answers computed on D
coincide with the consistent answers for D w.r.t. FD and FK and D can
be computed in polynomial time, we can identify queries whose consistent
answers over the original database can be computed in polynomial time.

5.4 Discussion

This chapter has proposed a framework for repairing and querying relational
databases which may be inconsistent with respect to functional dependencies
and foreign key constraints. Specifically, canonical sets of functional depen-
dencies have been considered, that is sets of functional dependencies where
attributes appearing on the right-hand side cannot appear also on the left-
hand side. In order to restore the consistency of inconsistent databases, we
have proposed a repairing strategy that performs tuple insertions when foreign
key constraints are violated and tuple updates when functional dependency
violations occur (tuple deletions are never performed). Since tuple insertions
and updates may introduce, respectively, null and unknown values in the data-
base, we have proposed a semantics of constraint satisfaction for databases
containing null and unknown values. Our approach always allows us to obtain
a unique (up to renaming of unknown and null values) repaired database which
can be computed in polynomial time. The result of the repairing technique is
an incomplete database (in particular, an OR-database). The consistent query
answers over an inconsistent database are the certain answers on the repaired
database. The results in [56] on the complexity of query processing in OR-
databases allows us to identify conjunctive queries which can be evaluated in
polynomial time.
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In [60] a semantics of satisfaction of functional and inclusion dependencies
in the presence of databases with null values is presented. Here the null value
is interpreted as “unknown”. The classical chase procedure is extended to
incomplete relations and used to test whether a database satisfies a set of
constraints. The axiomatization and the implication problem of functional
and inclusion dependencies is studied. No repairing strategy is provided.
The issue of dealing with databases containing null values in the presence of
integrity constraints has been considered also in [16]. In this work, null values
are also used to repair the original database. The paper considers a wide class
of integrity constraints which includes universal integrity constraints, denial
constraints, cyclic sets of inclusion dependencies and others. The proposed
semantics of constraint satisfaction takes into account the relevance of the
occurrence of a null value in a relation and is compatible with the way null
values are usually treated in commercial database management systems. The
notion of repair is that one presented in [4], that is a consistent database
instance which minimally differs from the original database.





6

A Three-Valued Semantics for Querying and
Repairing Inconsistent Databases

As it has been show in Section 2.3, computing consistent query answers is
in general an intractable problem; polynomial techniques have been proposed
only for restricted forms of constraints and queries (see Section 2.2).

In this chapter, a technique for computing “approximate” consistent an-
swers in polynomial time is presented [38, 47]. We consider universal integrity
constraints and Datalog queries. The proposed approach is based on a repair-
ing strategy where update operations assigning an undefined truth value to
the “reliability” of tuples are allowed, along with updates inserting or deleting
tuples. The result of a repair can be viewed as a three-valued database satis-
fying the given constraints. In this regard, a new semantics (namely, partial
semantics) is introduced for constraint satisfaction in the context of three-
valued databases, which aims at capturing the intuitive meaning of constraints
under three-valued logic.

It is shown that, in order to compute “approximate” consistent query an-
swers, it suffices to evaluate queries by taking into account a unique repair
(called deterministic repair), which in some sense “summarizes” all the pos-
sible repairs. The so obtained answers are “approximate” in the sense that
are safe (true and false atoms in the answers are, respectively, true and false
under the classical two-valued semantics), but not complete. We also study
some classes of queries and constraints for which the proposed technique is
also complete.

6.1 Introduction

In the general case, the problem of computing consistent queries answers is
hard. We propose a polynomial-time technique for computing “approximate”
consistent query answers in the presence of universal integrity constraints.
This class of constraints is relevant in practice, as it suffices to express func-
tional dependencies, join dependencies, and other forms of constraints which
are often used to manage data consistency. The proposed approach is based on
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a repairing strategy allowing tuple insertions and deletions as updates, as well
as update operations assigning an undefined truth value to the “reliability” of
tuples. The result of a repair can be viewed as a three-valued database which
satisfies the specified constraints. In this regard, we introduce a new semantics
for constraint satisfaction in the context of three-valued databases, which aims
at capturing the intuitive meaning of constraints under three-valued logic.

We show that, in order to compute “approximate” consistent query an-
swers, it suffices to evaluate queries by taking into account a unique repair
(called deterministic repair), which in some sense “summarizes” all the possi-
ble repairs. The so obtained answers are “approximate” in the sense that they
are safe (true and false atoms in the answers are, respectively, true and false
under the classical two-valued semantics), but not complete. Thus, we show
that the deterministic repair can by computed by evaluating the (unique)
stable model of a logic program, whose rules are a suitable rewriting of the
integrity constraints which takes into account the content of the source data-
base.

The novelty of the proposed approach consists in (i) the definition of a
three-valued semantics for constraint satisfaction under three-valued data-
bases, (ii) the definition of (three-valued) repairs under such a semantics, (iii)
the definition of consistent query answers for Datalog queries under the pro-
posed semantics. More specifically:

• We consider databases whose atoms may be either true or undefined (miss-
ing tuples are assumed to be false). The reason for considering three-valued
databases is that in the computation of repairs under three-valued seman-
tics, some of the atoms may not be assumed to be true or false and they
are assumed to be undefined .

• As databases may be three-valued, we propose a different semantics for
the satisfaction of integrity constraints which for standard (two-valued)
databases coincides with the classical semantics.

• We propose three-valued repairs consisting of update operations which
make the truth value of database atoms true, false or undefined . We show
that the set of three-valued repairs defines a lower semi-lattice whose top
elements are standard (two-valued) repairs and whose bottom element
defines the deterministic repair.

• We show that “approximate” consistent answers can be computed by tak-
ing into account only the database obtained by applying the deterministic
repair to the source (inconsistent) database. This evaluation is sound (true
and false atoms in the answers are, respectively, true and false under the
classical two-valued semantics), but not complete.

• Finally, we show that deterministic repairs and query answers can be com-
puted in polynomial time, by showing that a logic program whose perfect
model corresponds to the deterministic repair can be obtained by suitably
rewriting the integrity constraints associated with the database.
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The rest of the chapter is organized as follows. In Section 6.2, notation
and terminology used in this chapter are presented. In Section 6.3 a constraint
satisfaction semantics for three-valued databases, called partial, is proposed.
This section also introduces the definition of repair and of consistent query
answers under the partial semantics. Section 6.5 presents a technique which
allows us to derive logic rules from constraints and to compute deterministic
repairs by considering the fixpoint of such a program. Finally, in Section 6.6
related works are discussed and conclusions are drawn.

6.2 Notation and Terminology

Three-valued semantics. Notions of interpretation, minimal model and
stable model can be extended to three-valued (or partial) semantics, where
every atom may be either true or false or undefined .

For any three-valued interpretation I, I+ (resp. I−, Iu) denotes the set
of true (resp. false, undefined) (ground) atoms in I. The value of a ground
atom A w.r.t. an interpretation I is denoted as valueI(A) (this is extended
to literals, conjunctions and disjunctions). In this context, truth value order
true > undefined > false is assumed, and ¬undefined = undefined .

Any partial model M can be defined by means of two sets of atoms (for
instance, the true and false atoms M+ and M−). A model M = 〈M+,M−〉
for a program P is minimal if there is no model N = 〈N+, N−〉 such that
N+ ⊆ M+, N− ⊇ M− and N 6= M .

Also in the case of three-valued semantics, positive programs admit a
unique minimal model. Given a program P , PM denotes the ground positive
program obtained from ground(P ) by replacing every negative body literal
¬A with its truth value w.r.t. M . An interpretation I is a partial stable model
of P if and only if I ∈ MM(PM ). The set of partial stable models of a
program P is denoted by PSM(P ), and the intersection of all partial stable
models (equal to = 〈⋂M∈PSM(P) M+,

⋂
M∈PSM(P) M−〉) is a partial stable

model also known as the well-founded model (denoted by WFM(P )) [74].

Queries. Given a set D of facts and a predicate symbol p, then D[p] denotes
the set of facts in D whose predicate symbol is p. Queries are expressed by
means of Datalog programs. More formally, a (Datalog) query q is a pair (g, P )
where g is a predicate symbol, called the query goal, and P is a Datalog pro-
gram. The answer to a Datalog query q = (g, P ) over a database D is M [g],
where M is the unique minimal model in MM(P ∪D), and will be denoted
as q(D).

Integrity constraints. Given a universal integrity constraint ic of the form

∀X[L1 ∧ . . . ∧ Lm ∧ φ → Lm+1 ∨ . . . ∨ Ln]
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where the Li’s are literals and φ is a conjunction of built-in atoms, the con-
junction on the left-hand side of the implication is the body of ic, denoted by
Body(ic), whereas the disjunction on the right-hand side of the implication is
called the head, denoted by Head(ic).

A ground instance of ic w.r.t. a database D is obtained from ic by replac-
ing every variable with a constant in the Herbrand universe UD and elim-
inating the universal quantifier. The set of ground instances of ic w.r.t. D
is denoted as groundD(ic). Given a set IC of universal constraints and a
database D, we define the ground instance of IC w.r.t. D as groundD(IC) =⋃

ic∈IC groundD(ic). Clearly, for any IC and D, the cardinality of
groundDB(IC) is polynomial in the size of D. For the sake of simplicity, when-
ever D is understood from the context, we simply write ground(IC) instead
of groundD(IC).

We assume that constraints are written as an implication with empty head.
In the following, we consider ground constraints without built-in atoms, as,
when evaluating the ground instance of a constraint, built-in atoms evaluating
to true can be disregarded, and constraints with built-in atoms evaluating to
false can be deleted (as they are trivially satisfied).

Finally, given a set of constraints IC, we assume that ground(IC) does not
contain any pair of constraints ic1, ic2 such that the set of literals occurring
in ic1 is a proper subset of the literals occurring in ic2: in fact, in this case,
the satisfaction of ic1 implies the satisfaction of ic2, thus the latter can be
disregarded.

Repairing databases. In this chapter, we use the term repair for a minimal
(under set inclusion) set of tuple insertions/deletions which lead a database
to a consistent state. Repaired databases are consistent databases obtained
from the source database by applying a repair. Update operations can be
represented by update atoms of the form a(X)+ (inserting atom) or a(X)−

(deleting atom). Intuitively, a ground atom a(t)+ states that a(t) must be
inserted into the database, whereas a ground atom a(t)− states that a(t)
must be deleted from the database. Given a set Up of ground update atoms,
we define the sets: Up+ = {a(t) | a(t)+ ∈ Up}, Up− = {a(t) | a(t)− ∈ Up}.
We say that Up is consistent if it does not contain two “conflicting” update
atoms a(t)+ and a(t)− (i.e., if Up+ ∩ Up− = ∅). Given a database D and a
consistent set of update atoms Up, we denote as Up◦D the updated database
D ∪ Up+ − Up−.

Definition 6.1. Given a database D and a set IC of universal constraints, a
repair for 〈D, IC〉 is a consistent set of update atoms R such that: 1) R◦D |=
IC and 2) there is no consistent set of update atoms Up ⊂ R such that
Up ◦D |= IC.

The set of the repairs for a database D w.r.t a set IC of universal constraints
is denoted as repairs(D, IC). It is worth noting that repairs(D, IC) is not
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empty for any set of universal constraints: in fact, deleting all the tuples from
a database leads to a consistent state.

Definition 6.2. Given a query q = (g, P ), the consistent answer to q (CQA)
on database D w.r.t. a set IC of universal constraints, denoted as q(D, IC),
is the triplet of sets q(D, IC)+, q(D, IC)−, q(D, IC)u, where:

• q(D, IC)+ = {g(t) | g(t) ∈ ⋂
R∈repair(D,IC) q(R ◦D)};

• q(D, IC)− = {g(t) | g(t) ∈ BD∪P ∧ g(t) 6∈ ⋃
R∈repairs(D,IC) q(R ◦D)};

• q(D, IC)u = {g(t) | g(t) ∈ BD∪P − (q(D, IC)+ ∪ q(D, IC)−)}.
In the previous definition q(D, IC)+ is the set of g-tuples which are true,

that is each tuple g(t) in q(D, IC)+ is in q(RD) for each repaired database
RD; q(D, IC)− is the set of g-tuples which are false, that is for each tuple g(t)
in q(D, IC)− there is no repaired database RD such that g(t) is in q(RD);
finally, q(D, IC)u is the set of undefined tuples, that is tuples which are neither
true nor false.

In the following section, we will introduce a new framework for repairing
and querying inconsistent data. Our approach is based on a different notion
of repair (namely, partial repair), enabling tuples to be inserted, deleted, or
made undefined. In order to distinguish the proposed notion of repair from
that of Definition 6.1 (based on insert/delete operations only), we will refer to
the latter as total repair. Likewise, we will refer to the consistent answer eval-
uated by considering all the databases resulting from total repairs as classical
consistent query answer.

6.3 Partial Repairs

The proposed framework is based on the notion of partial repair, which extends
the total repairs presented in the previous section. Specifically, a partial repair
makes a database consistent by making tuples true, false, or undefined.

As applying a partial repair to a database results in a three-valued data-
base, we introduce a new (three-valued) semantics of constraint satisfaction,
which for total repairs (and two-valued databases) coincides with the classical
semantics, and aims at preserving different aspects of the two-value semantics
when moving to the three-valued logic.

In the following, given a three-valued database D, we denote with D+

(resp. Du, D−) the set of tuples which are true (resp. undefined , false) in D.

6.3.1 Constraint Satisfaction Under Partial Semantics

The semantics of constraint satisfaction can be trivially extended from two-
valued databases to three-valued databases: given a three-valued database D
and a ground constraint ic, D satisfies ic, denoted as D |= ic, if
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valueDB(Head(ic)) ≥ valueDB(Body(ic)). This semantics of constraint satis-
faction will be referred to as three-valued semantics.

However, there are some aspects of the two-valued semantics which are
not preserved by the above-mentioned extension to the three-valued logic.
Specifically, under the two-valued semantics, literals appearing in a constraint
can be moved from the head to the body and vice versa without modifying
the truth value of the constraint, but this property does not hold under the
three-valued semantics.

Example 6.1. Consider the database D consisting of D+ = {a} and Du =
{b, c}. This database satisfies the constraint ic = a ∧ b ⊃ c, but does not
satisfy the constraint ic′ = b∧¬c ⊃ ¬a which is derived from ic by moving a
to the head and c to the body. In fact, D |= ic as valueDB(Body(ic)) =
valueDB(Head(ic)) = undefined , while D 6|= ic′ as valueDB(Body(ic′))
undefined and valueDB(Head(ic′)) = false.

In some sense, the above-reported example shows that, given an integrity
constraint ic defined on a two-valued database, the interpretation of ic in the
three-valued context may not capture some aspects of the meaning of the orig-
inal constraint. Thus, in the following, we introduce a new semantics (namely,
partial semantics) for constraint satisfaction in the presence of three-valued
databases. As it will be clearer in the following, the introduction of this seman-
tics is at the basis of our framework for extracting reliable information from
inconsistent databases: we will show that, given an inconsistent two-valued
database, there is a “partial” repair which yields a consistent three-valued
database (where consistency is defined by partial semantics) and which sum-
marizes all the possible total repairs, enabling “approximate” query answers
to be computed.

Under the two valued semantics, a (denial) constraint whose body is false
is satisfied. Therefore, in order to satisfy a constraint ic, a literal appearing
in ic must be false if all other literals are true. For instance, a constraint of
the form L ⊃ states that the literal L must be false.

Given a set IC of ground constraints, we define the set ΨIC = W∞
IC(∅)

where

WIC(T ) = {¬L | ∃ic = L ∧ L1 ∧ · · · ∧ Ln ⊃∈ IC s.t. L1, . . . , Ln ∈ T}
Intuitively, ΨIC defines the set of literals which must be true in order to

satisfy IC (that is, a literal L in ΨIC is true in any database which satisfies
IC). Once ΨIC has been evaluated, the set IC of ground constraints can be
“simplified” performing the following steps:

1. for each constraint ic ∈ IC, every literal L occurring in ic such that either
L or ¬L is in ΨIC can be replaced with the corresponding truth value;

2. constraints in IC containing the truth value false in the body can be
deleted, whereas the truth value true can be deleted from the body con-
junctions.
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The reduced set of constraints obtained from IC by performing the sequence
of steps explained above will be denoted as Red(IC).

Example 6.2. Consider the set IC = {a ⊃,¬a∧ b ⊃,¬b∧ c∧d ⊃ } of (ground)
integrity constraints. The set ΨIC is equal to {¬a,¬b}. The reduced set of
constraints contains only the constraint c ∧ d ⊃ (the first two constraints are
deleted as a and b are replaced with false).

Observe that, given a set IC of ground constraints, every constraint in
Red(IC) contains at least two literals and no built-in literal.

Definition 6.3. Let ic be a ground constraint of the form L1 ∧ · · · ∧ Ln ⊃
with n > 1. We define the set of extended constraints derived from ic as:

ext(ic) = {
∧

Lj∈T

Lj ⊃
∨

Lj∈{L1,···,Ln}−T

¬Lj | T ⊂ {L1, ..., Ln} ∧ |T | > 0}

Moreover, given a set IC of ground integrity constraints of the form above,
we define the set ext(IC) = ∪ic∈ICext(ic).

Basically, given a constraint ic, ext(ic) is the set of constraints which are
derived from ic by moving body literals to the head so that both the head
and the body are not empty.

The following definition states when a set of constraints is satisfiable under
partial semantics.

Definition 6.4. Let D be a database and IC be a set of constraints. Then,
D satisfies IC under partial semantics (denoted as D |=PS IC) if

• D |= Ψground(IC) (i.e., Ψground(IC) ⊆ D+ ∪ {¬A | A ∈ D−}), and
• D |= ext(Red(ground(IC)))

Since under the classical three-valued semantics a (ground) constraint ic
in Red(ground(IC)) can change its truth value by moving literals from the
body to the head and vice versa (see Example 6.1), in the definition above we
say that a database D satisfies ic under partial semantics if D satisfies (under
classical three-valued semantics) all constraints which can be derived from ic
by moving any set of literals to the head (provided that both the head and
the body of the derived constraints are not empty).

Example 6.3. Consider the following set IC of ground integrity constraints:

a ⊃
¬a ∧ b ⊃
¬a ∧ c ∧ ¬d ⊃
b ∧ e ∧ ¬f ⊃
¬g ∧ h ⊃

Thus ΨIC = {¬a,¬b}, Red(IC) is as follows
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c ∧ ¬d ⊃
¬g ∧ h ⊃

and ext(Red(IC)) is as follows

c ⊃ d ¬g ⊃ ¬h
¬d ⊃ ¬c h ⊃ g

The database D consisting of D+ = ∅, D− = {a, b, e, f}, Du = {c, d, g, h}
satisfies IC under partial semantics as D |= ΨIC and D |= ext(Red(IC)). The
same holds for the database D1 consisting of D+

1 = ∅, D−
1 = {a, b, c, d, e, f},

Du
1 = {g, h}, as well as the database D2 consisting of D+

2 = ∅, D−
2 =

{a, b, e, f, g, h}, Du
2 = {c, d}.

Proposition 6.1. Let D be a database and IC a set of ground full constraints.
Then, D |= ext(Red(IC)) iff, for each constraint ic = L1 ∧ · · · ∧ Ln ⊃
in Red(IC), either (i) some literal Li is false w.r.t. D, or (ii) all literals
L1, · · · , Ln are undefined w.r.t. D.

Proof. First of all, we recall that, for every constraint in Red(IC) (and,
consequently, in ext(Red(IC))), the number of literals is strictly greater than
1.

We first show that if, for each ic ∈Red(IC), either (i) or (ii) holds, then
D |= ext(Red(IC)). Clearly, for every ic ∈ Red(IC) such that there is some
literal Li which is false w.r.t. D, it holds that every constraint in ext(Red(ic))
is satisfied, since either its body is false (as it contains Li) or its head is true
(as it contains ¬Li). Analogously, for each ic ∈ Red(IC) whose literals are
undefined, every constraint in ext(Red(ic)) is satisfied, as both its body and
head evaluate to undefined.

We now show the inverse implication, reasoning by contradiction. Assume
that D |= ext(Red(IC)) and there is an ic ∈Red(IC) where some literal Li is
true w.r.t. D and all the other literals L1, ..., Li−1, Li+1, ..., Ln are either true
or undefined. This implies that the constraint L1, ..., Li−1, Li+1, ..., Ln ⊃ ¬Li

of ext(Red(ic)) is not satisfied in D, thus contradicting D |= ext(Red(IC)). 2

Example 6.4. Consider the set IC = {a ∧ b ⊃, b ∧ ¬c ⊃} of ground integrity
constraints. Then, ext(IC) = {a ⊃ ¬b, b ⊃ ¬a, b ⊃ c, ¬c ⊃ ¬b}. These
constraints are satisfied iff either (i) b is false, or (ii) a is false and c is true,
or (iii) a is false and both b and c are undefined , or (iv) c is true and both b
and a are undefined , or (v) all atoms a, b and c are undefined .

Observe that the cardinality of ext(ic) is exponential in the number of
literals appearing in ic. We now show that it is sufficient to consider a number
of derived constraints equal to the number of database literals appearing in
ic.
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Definition 6.5. Let ic be a ground constraint of the form L1 ∧ · · · ∧ Ln ⊃
with n > 0. We define the single-head extended constraints derived from ic as

sh-ext(ic) = {L1 ∧ · · · ∧ Li1 ∧ Li+1 ∧ · · · ∧ Ln ⊃ ¬ Li | i ∈ [1..n] }
Moreover, given a set IC of ground (denial) constraints, we define sh-ext(IC) =
∪ic∈IC sh-ext(ic).

Basically, given a constraint ic, sh-ext(ic) is the set of constraints which
are derived from ic by moving exactly one body literal to the head.

Proposition 6.2. Given a database D and a set IC of ground full constraints,
then D |= ext(Red(IC)) iff D |= sh-ext(Red(IC)).

Proof. The implication D |= ext(Red(IC)) ⇒ D |= sh-ext(Red(IC)) triv-
ially follows from the fact that sh-ext(Red(IC)) ⊆ ext(Red(IC)). We now
show that the inverse implication holds too by proving its contrapositive (that
is, D 6|= ext(Red(IC)) ⇒ D 6|= sh-ext(Red(IC))).

Let ic be a constraint in ext(Red(IC)) such that D 6|= ic. If ic is of the
form L1∧· · ·∧Ln−1 ⊃ Ln, then it is the case that ic ∈ sh-ext(Red(IC)), thus
D 6|= sh-ext(Red(IC)) holds too. Otherwise, the head of ic consists of at least
two literals, that is ic is of the form L1 ∧ · · · ∧ Lm ⊃ Lm+1 ∨ · · · ∨ Ln, where
n − m > 1. As D 6|= ext(Red(IC)), two cases may occur: 1) the body of ic
evaluates to true, whereas the head of ic evaluates to either false or undefined;
2) the body of ic evaluates to undefined, whereas the head of ic evaluates to
false.

If case 1) holds, it means that all the body literals of ic evaluate to true,
whereas the head literals to false or undefined. Consider the constraint ic′ in
sh-ext(Red(IC)) obtained from ic by moving the head literals to the body
and one of the body literals to the head. It is easy to see that D 6|= ic′ (as the
body of ic′ evaluates to either true or undefined, while its head evaluates to
false), thus D 6|= sh-ext(Red(IC)).

Analogously, if case 2) holds, then at least one body literal of ic evaluate to
undefined, the other body literals to either true or undefined, whereas all the
head literals evaluate to false. Consider the constraint ic′′ in sh-ext(Red(IC))
obtained from ic by moving all the head literals to the body and the un-
defined body literals to the head. It is easy to see that D 6|= ic′′ (as the
body of ic′′ evaluates to true, while its head evaluates to undefined), thus
D 6|= sh-ext(Red(IC)). 2

Therefore, in the definition of partial semantics (Definition 6.4), instead
of considering the set ext(Red(ground(IC))), whose size is exponential in
the number of database literals appearing in the body of constraints, we
can consider sh-ext(Red(ground(IC))), whose size is linear in the number
of ground constraints and the number of literals appearing in the body of
constraints. Consequently, we have that D |=PS IC if (i) D |= Ψground(IC),
and (ii) D |= sh-ext(Red(ground(IC))).
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6.3.2 Repairing Databases

An update atom is of the form a(X)+ or a(X)− or a(X)u. As said before, a
ground update atom a(t)+ states that a(t) will be inserted into the database,
whereas a(t)− states that a(t) will be deleted from the database. The meaning
of a ground update atom a(t)u is that a(t) is made undefined.

Definition 6.6. A database update Up for a database D is a set of update
atoms such that for each a(t)v ∈ Up

• there is no atom a(t)v′ ∈ Up such that v′ 6= v, and
• the atom a(t) does not belong to Dv. 2

Basically, the first condition stated in Definition 6.6 means that Up can-
not perform two distinct update operations on the same database atom. The
second condition means that every update operation in Up must change the
truth value of the database atom on which it is applied.

In the following we also use the notations Up+ = {a(t)|a(t)+ ∈ Up},
Up− = {a(t)|a(t)− ∈ Up} and Upu = {a(t)|a(t)u ∈ Up} to denote the set of
atoms which are made, respectively, true, false, and undefined by Up.

Given a database D and a database update Up for D, the application
of Up to D, denoted by Up ◦ D, gives the following sets: (i) (Up ◦ D)+ =
(D+ − Upu − Up−) ∪ Up+ and (ii) (Up ◦D)u = (Du − Up+ − Up−) ∪ Upu.
Observe that the set (Up ◦D)− = BDB − (Up ◦D)+− (Up ◦D)u is also equal
to (D− − Up+ − Upu) ∪ Up−.

Definition 6.7. Given a database D and a set IC of constraints, a partial
repair for 〈D, IC〉 is a database update R for D s.t. (i) (R ◦D) |=PS IC, and
(ii) there is no database update Up s.t. (Up ◦D) |=PS IC and Up ⊂ R.

The definition above states that a repair for a database and a set of
integrity constraints, under partial semantics, is a minimal database up-
date which makes the database consistent. Repaired databases are consis-
tent databases derived from the source database by applying repairs over
it. Given a database D and a set IC of integrity constraints, the set of all
possible partial repairs for 〈D, IC〉 is denoted as repairsPS(D, IC). More-
over, repairedPS(D, IC) denotes the set of all possible repaired databases for
〈D, IC〉, i.e. repairedPS(D, IC) = {R ◦D | R ∈ repairsPS(D, IC)}.

Given two repairs R1 and R2, we say that R1 v R2 if R+
1 ⊆ R+

2 and
R−1 ⊆ R−2 . The same notation will be used for databases, namely, given two
databases D1 and D2, we say that D1 v D2 if D+

1 ⊆ D+
2 and D−

1 ⊆ D−
2 .

Lemma 6.1. Let D be a database and IC a set of integrity constraints over
D. For each two repairs Ri and Rj in repairsPS(D, IC), there exists a repair
Rk in repairsPS(D, IC) s.t. Rk v Ri and Rk v Rj.

Proof. For each two repairs Ri, Rj in repairsPS(D, IC), we build a database
update Rk as follows:
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1. Rk := Ri∩Rj . Observe that, if Ri and Rj are two distinct repairs, there ex-
ists some constraint ic in Red(ground(IC)) such that Rk◦D 6|= sh-ext(ic).

2. for each constraint ic : A1 ∧ . . . ∧ Am ∧ ¬Am+1 ∧ . . . ∧ ¬An ⊃ in
Red(ground(IC)) such that Rk ◦D 6|= sh-ext(ic),
Rk := Rk − {A+

1 , . . . , A+
n , A−1 , . . . , A−n } ∪ {Au

1 , . . . , Au
n}

3. repeat Step 2 until Rk ◦D |= sh-ext(Red(ground(IC))).

It is easy to see that the database update Rk makes D consistent. If Rk is
minimal, then it is a repair and, moreover, it holds that Rk v Ri and Rk v Rj

by construction. If Rk is not minimal, there exists a repair R′k s.t. R′k ⊂ Rk;
in this case it holds that R′k v Ri and R′k v Rj . 2

Theorem 6.1. Given a database D and a set IC of integrity constraints over
D, then 〈repairsPS(D, IC),v 〉 is a lower semi-lattice.

Proof. Obviously, 〈repairsPS(D, IC),v 〉 is a partial order. From Lemma 6.1
we have that for each two repairs Ri and Rj there must be a repair Rk such
that Rk v Ri and Rk v Rj . Therefore, the set of partial repairs defines a
lower semi-lattice. 2

It is easy to see that the set of top elements of the semi-lattice
〈repairsPS(D, IC),v 〉 coincides with the set of total repairs repairs(D, IC);
the repair defining the bottom element will be said to be deterministic and
will be denoted as Rdet(D, IC). The database obtained by applying the de-
terministic repair to D will be called deterministic repaired database and will
be denoted as Ddet(D, IC). In the following, whenever D and IC are under-
stood, we will write Rdet instead of Rdet(D, IC), as well as Ddet instead of
Ddet(D, IC).

Example 6.5. Consider the integrity constraints of Example 6.4 and the (two-
valued) database D = {a, b}. There are five partial repairs for 〈D, IC〉:
R1 = {b−}, R2 = {a−, c+}, R3 = {a−, bu, cu}, R4 = {c+, bu, au} and
R5 = {au, bu, cu}. R1 and R2 are total repairs, whereas R5 is the deterministic
repair.

Corollary 6.1. Given a database D and a set IC of integrity constraints over
D, then 〈repairedPS(D, IC),v 〉 is a lower semi-lattice whose top elements
are two-valued databases and whose bottom element is the deterministic re-
paired database.

Proof. Straightforward from Theorem 6.1. 2

The following theorem gives an insight on how the deterministic repaired
database summarizes all the two-valued repaired databases.

Theorem 6.2. Given a database D and a set IC of integrity constraints over
D, an atom A is true (resp. false) with respect to 〈D, IC〉 if A is true (resp.
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false) w.r.t. the deterministic repaired database.

Proof. The two-valued repaired databases define the top elements of the
semi-lattice. Therefore, for every two-valued repaired database D, it holds
that Ddet

+ ⊆ D+ and Ddet
− ⊆ D− (Corollary 6.1). Hence, all true and

false atoms in Ddet are also true and false, respectively, in all the two-valued
repaired databases. 2

It is worth noting that the implication of Theorem 6.2 does not hold in
the opposite direction. In fact, if an atom A is either true or false in all the
two-valued repaired databases, it can be the case that A is undefined in the
deterministic repaired database, as shown in the following example.

Example 6.6. Consider the database D consisting of D+ = {a, b} and the set
IC consisting of the following integrity constraints:

a, b ⊃
a,¬b ⊃
¬a, b ⊃

It is easy to see that the set of two-valued repaired databases for 〈D, IC〉 con-
sists of D1 = ∅ only, while the deterministic repaired database Ddet consists
of: D+

det = ∅; D−
det = ∅; Du

det = {a, b}. Therefore, a and b are false in all the
two-valued repaired databases, but undefined in the deterministic repaired
database.

6.4 Query Answering

The computation of a query q = (g, P ) over a three-valued database D can
be obtained by considering the well-founded semantics of the program P ∪
Pu ∪D+, where Pu is the set of rules {a(w) ← ¬a(w) | a(w) ∈ Du}, which
are used to derive the atoms in Du as undefined .

Thus, given a Datalog query q = (g, P ) and a database D, the answer
of q over D, denoted by q(D), gives three sets denoted as q(D)+, q(D)u

and q(D)−. These sets contain, respectively, the g-tuples which are derived
as true, undefined and false by applying P ∪ Pu over D+, i.e., q(D)+ =
WFM(P ∪ Pu ∪D+)+[g], q(D)u = WFM(P ∪ Pu ∪D+)u[g], and q(D)− =
BP∪D[g]− q(D)+ − q(D)u.

We introduce an extension of the notion of classical consistent query an-
swer (Definition 6.2) to our framework, where the consistent information is
determined by taking into account partial repairs (rather than total repairs
only).

Definition 6.8. Given a database D, a set IC of integrity constraints and a
query q = (g, P ), the consistent answer to q on 〈D, IC〉 under partial seman-
tics, denoted as qPS(D, IC), is the triplet
qPS = 〈qPS(D, IC)+, qPS(D, IC)−, qPS(D, IC)u〉, where:
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qPS(D, IC)+ =
⋂

R∈repairsPS(D,IC)

q(R ◦D)+

qPS(D, IC)− =
⋂

R∈repairsPS(D,IC)

q(R ◦D)−

qPS(D, IC)u = BP∪D − qPS(D, IC)+ − qPS(D, IC)−

2

The following theorem states that computing the consistent answer of a
query q under partial semantics is equivalent to evaluating q on the determin-
istic repaired database.

Theorem 6.3. Let D be a database, IC a set of integrity constraints, q =
(g, P ) a Datalog query, and Ddet the deterministic repaired database for
〈D, IC〉. Then, qPS(D, IC) = q(Ddet).

Proof. As the repaired databases form a lower semi-lattice under relation v
(Theorem 6.1) whose bottom element is the deterministic repaired database,
for every repaired database D it holds that Ddet

+ ⊆ D+ and Ddet
− ⊆ D−.

Since Datalog queries are monotonic under three-valued logic, Ddet
+ ⊆ D+

implies q(Ddet)+ ⊆ q(D)+, and Ddet
− ⊆ D− implies q(Ddet)− ⊆ q(D)−, for

any repaired database D. Therefore,
⋂

R∈repairsPS (D,IC) q(R◦D)+ = q(Rdet ◦
D)+ and

⋂
R∈repairsPS (D,IC) q(R ◦D)− = q(Rdet ◦D)−. Finally, it is easy to

see that qPS(D, IC)u = q(Rdet ◦D)u. 2

In the rest of this work, the answer of a query evaluated on the deter-
ministic repaired database only will be referred to as deterministic answer,
and will be denoted as qdet(D, IC). The following theorem states that the
deterministic answer to a query q provides a “sound” evaluation of the classi-
cal consistent answer to q (which takes into account the two-valued repaired
databases only): atoms which are true (resp., false) in qdet(D, IC) are true
(resp., false) in the classical consistent answer to q on 〈D, IC〉 too.

Theorem 6.4. [Soundness] Let D be a two-valued database, IC a set of in-
tegrity constraints over D, and q = (g, P ) a Datalog query. Then, qdet(D, IC) v
q(D, IC).

Proof. As qdet(D, IC)+ =
⋂

R∈repairsPS(D,IC) q(R ◦ D)+, q(D, IC)+ =⋂
R∈repairs(D,IC) q(R◦D)+, and repairs(D, IC) ⊆ repairsPS(D, IC), it holds

that qdet(D, IC)+ ⊆ q(D, IC)+.
Analogously, as qdet(D, IC)− =

⋂
R∈repairsPS(D,IC) q(R ◦D)−, q(D, IC)− =⋂

R∈repairs(D,IC) q(R ◦D)−, and repairs(D, IC) ⊆ repairsPS(D, IC), it also
holds that qdet(D, IC)− ⊆ q(D, IC)−. Therefore, qdet(D, IC) v q(D, IC). 2
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Observe that Theorem 6.4 can be viewed as a generalization of Theorem 6.2
to the case that the query goal is not a base predicate. Hence, it is easy to see
that, in general, the implication of Theorem 6.4 does not hold in the opposite
direction (as shown for Theorem 6.2 – see Example 6.6). That is, evaluating a
query on Ddet is not a complete strategy for computing its consistent answer
(in the classical sense), as there may be atoms which are true or false in the
classical consistent answer, but undefined in the answer computed on Ddet

only. This explains in what sense evaluating a query on Ddet provides, in
the general case, an “approximate” evaluation of the classical CQA. Thus,
it is worth investigating whether there are classes of constraints and queries
for which the classical consistent answer and the answer evaluated on Ddet

coincide. In this regard, in the following we define two classes of full constraints
for which the deterministic answer is complete.

Definition 6.9. A set IC of universal constraints is said to be positive if
every constraint ic in IC contains positive literals only.

Definition 6.10. A set IC of full constraints is said to be semi-positive if
every constraint in IC contains exactly one negative literal.

It is worth noting that both positive and semi-positive constraints are
relevant in practice, as they enable significant classes of constraints to be
expressed. For instance, functional dependencies are positive constraints, as
well as inclusion dependencies with no existentially quantified variables can
be expressed as semi-positive constraints.

We now introduce three lemmas stating properties of repairs in the pres-
ence of positive and semi-positive constraints which will be exploited in the
following.

Lemma 6.2. Let D be a two-valued database and IC a set of positive in-
tegrity constraints over D. If an atom a is false in D, then there is no repair
R ∈ repairsPS(D, IC) such that either a+ ∈ R or au ∈ R.

Proof. Assume by contradiction that there is a repair R ∈ repairsPS(D, IC)
such that a+ ∈ R (resp., au ∈ R), and let R′ = R\{a+} (resp., R′ = R\{au}).
Since no ic ∈ IC contains negative literals, it must be the case that R′ ◦ D
satisfies IC: the constraints containing a are satisfied since a is false in R′ ◦D,
while the other constraints are satisfied since R′ coincides with R on the
updates performed on the other atoms. This contradicts the minimality of
R. 2

Lemma 6.3. Let D be a two-valued database, a an atom in BD, and IC
a set of positive integrity constraints over D. If there is a repair R ∈
repairsPS(D, IC) such that au ∈ R, then there is a constraint ic ∈ IC con-
taining an occurrence of a such that D 6|=PS ic.
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Proof. We denote the subset of IC consisting of the constraints containing
an occurrence of a as ICa. Assume by contradiction that, for each ic ∈ ICa,
it holds that D |=PS ic. This means that, for each ic ∈ ICa, at least one
atom lic occurring in ic is false in D. Hence, Lemma 6.2 entails that, for each
ic ∈ ICa, no repair contains an update operation on lic. This implies that
R′ = R \ {au} is such that R′ ◦ D |=PS IC: every ic ∈ ICa is satisfied on
R′◦D, as ic contains an atom which is false in R′◦D; moreover, the constraints
in IC \ ICa are satisfied on R′ ◦D, since R′ coincides with R on the updates
performed on the atoms different from a. This contradicts the minimality of
R. 2

Lemma 6.4. Let D be a two-valued database, IC a set of semi-positive con-
straints over D, q = (g, ∅) a query over D, and a an atom in BD. If a is true
(resp., false) in q(D, IC), then a is true (resp., false) in D.

Proof. We provide the proof for the implication a ∈ q(D, IC)+ ⇒ a ∈ D+

only (the other implication can be proved reasoning analogously). Reason-
ing by contradiction, assume that a ∈ q(D, IC)+ and a ∈ D−. Let Up be the
database update Up removing from D every true atom. Since every constraint
in IC contains a positive literal, it is easy to see that Up ◦D |=PS IC holds.
This implies that there exists a total repair R for 〈D, IC〉 consisting of dele-
tions only (R can be found among the subsets of Up). As a ∈ D−, it follows
that a ∈ (R ◦D)−, which contradicts that a ∈ q(D, IC)+. 2

The following theorem states that evaluating the deterministic answer of a
query whose goal is an extensional predicate is a complete strategy for evalu-
ating its consistent answer (in the classical sense).

Theorem 6.5. Let D be a two-valued database, IC a set of integrity con-
straints over D, and q = (g, ∅) a Datalog query. Then, qPS(D, IC) =
qdet(D, IC) in each of the following cases: (1) IC is positive; (2) IC is semi-
positive.

Proof. Since qdet(D, IC)+ ⊆ q(D, IC)+ and qdet(D, IC)− ⊆ q(D, IC)−

hold (Theorem 6.4), in order to prove the statement it suffices to show that
qdet(D, IC)+ ⊇ q(D, IC)+ and qdet(D, IC)− ⊇ q(D, IC)− hold for both cases
(1) and (2). These two properties can be proved analogously, thus we will focus
on proving the former for each of the two cases.

It is easy to see that qdet(D, IC)+ ⊇ q(D, IC)+ holds iff there is no
atom which is true in q(D, IC) but undefined in Ddet (no atom in q(D, IC)+

can belong to qdet(D, IC)−, as qdet(D, IC)− ⊆ q(D, IC)− and q(D, IC)+ ∩
q(D, IC)− = ∅). Hence, we will prove that qdet(D, IC)+ ⊇ q(D, IC)+ reason-
ing by contradiction, that is, we assume that there is an atom a which is true
in every database resulting from applying a total repair on D and which is un-
defined in Ddet (that is, au ∈ Rdet). We consider cases (1) and (2) separately,
and show that the existence of a yields a contradiction for both of them.
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(1) Lemma 6.3 entails that there is a constraint ic ∈ ground(IC) containing
an occurrence of a such that D 6|=PS ic. We show that there is a total repair
for 〈D, IC〉 containing a−. Let S be the set of atoms appearing in ic except
a. We build a database update Up as follows:

• Up := {a−};
• for each ic′ ∈ ground(IC) such that ic′ 6= ic and D 6|=PS ic′, we augment

Up as follows: Up := Up ∪ {β−}, where β is an atom occurring in ic′ s.t.
β 6∈ S (the existence of β derives from the fact that ground(IC) contains
no pair of constraints ic1, ic2 such that the set of literals occurring in ic1

is a subset of that of ic2: hence, ic′ 6= ic implies that ic′ contains at least
one atom not belonging to S).

That is, Up deletes a and, for each violated constraint ic′ different from
ic, it makes ic′ satisfied by deleting an atom occurring in ic′ but not in ic.
As Up performs tuple deletions only and IC is positive, applying Up on D
cannot result in a database violating some constraint which was satisfied by
D. Hence, Up makes D consistent. This implies the existence of a repair R′

for 〈D, IC〉 containing a− (R′ can be found among the subsets of Up, and it
must contain a− as no other atom deletion in Up suffices to make ic satis-
fied). As R′ contains a− and is total, we obtain that a 6∈ q(D, IC)+, which is
a contradiction.

(2) Without loss of generality, we assume that each constraint in IC contains
two literals only (one negative, the other positive). The generalization to the
case that constraints contain more than one positive literal is trivial.

Since a ∈ q(D, IC)+, Lemma 6.4 implies that a ∈ D+. Consider the
database update R′ = Rdet \ {au}. Since au ∈ Rdet, it holds that R′ ◦D 6|=PS
IC (otherwise, the minimality of Rdet would be contradicted). Let IC ′ be the
subset of constraints in ground(IC) violated by R′ ◦D. It is easy to see that
every constraint in IC ′ is of the form a,¬b ⊃ (constraints of the form ¬a, b ⊃
are satisfied by R′ ◦D, as a ∈ D+ and R′ does not update a). Specifically, for
each ic : a,¬b ⊃ in IC ′, the facts R′ ◦ D 6|=PS ic and a ∈ (R′ ◦ D)+ imply
that b is either false or undefined in R′ ◦D. We show that the former cannot
hold. Since a ∈ q(D, IC)+, it must be the case that b ∈ q(D, IC)+ holds too
(ic imposes that a and ¬b cannot be both true). The latter implies that there
is no total repair containing b−, which in turn implies that no partial repair
exists in repairsPS(D, IC) deleting b (Theorem 6.1). Moreover, the fact that
b ∈ q(D, IC)+ entails also that b ∈ D+ (Lemma 6.4). Hence, b cannot be false
in R′◦D, thus it must be the case that b is made undefined by R′. Therefore, b
is an atom in q(D, IC)+ which is made undefined by Rdet. Thus, we can apply
on b the same reasoning applied on a, and expand IC ′ with the constraints of
ground(IC) which are violated by Rdet \ {bu}.

This reasoning can be iterated, until IC ′ can be expanded no more. That
is, at each iteration, a new atom α occurring in constraints of IC ′ is considered,
and IC ′ is augmented with the constraints in ground(IC) which are violated
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by Rdet \ {αu} ◦D. This process ends, as BD is finite. We denote as A the set
of atoms occurring in the constraints of IC ′ at the end of this process.

Consider the database update Up = Rdet \ {αu | α ∈ A}. We show that
every ic : α1,¬α2 ⊃ in ground(IC) is satisfied in Up ◦D, reasoning by cases:

- both α1 and α2 belong to A: for each atom α ∈ A it holds that α ∈ D+

(by construction), thus α ∈ (Up ◦D)+ holds too (as Up does not update
atoms in A). Hence, we obtain that Up ◦D |=PS ic, as α2 ∈ A and is true
in Up ◦D

- neither α1 nor α2 belong to A: Up ◦ D |=PS ic holds since Up coincides
with Rdet on both α1 and α2.

- exactly one atom among α1 and α2 belongs to A: in this case, it must
hold that ic 6∈ IC ′ (otherwise, both α1 and α2 would belong to A, by
construction). We denote the atom among α1 and α2 which belongs (resp.,
does not belong) to A as β (resp., β). The fact that ic 6∈ IC ′ and the
construction of IC ′ imply that (Rdet \ {βu}) ◦ D |=PS ic. As β ∈ A and
β 6∈ A, Up coincides with Rdet \ {βu} on both β and β, which implies that
(Up ◦D) |=PS ic holds too.

Hence, we have that (Up ◦D) |=PS IC and Up ⊂ Rdet (the latter contain-
ment is proper as A contains at least a and b), which is in contradiction with
the minimality of Rdet. 2

6.5 Computing the Deterministic Repair

In this section we present how the deterministic repair for a database D
inconsistent w.r.t. a given set IC of ground constraints can be computed
by evaluating a logic program derived from D and IC. Specifically, we de-
rive a (stratified) logic program Rew(IC) such that the (stratified) model of
Rew(IC) ∪D defines the deterministic repair for D w.r.t. IC (as a matter of
fact, Rew stands for “rewriting”, as it defines a logic program where integrity
constraints are suitably re-written into logic rules).

The formal definition of Rew(IC) is given in the following (Definition 6.11).
The update atoms which can be derived by the logic program are denoted
as Up(L) and Und(L): specifically, given a ground literal L = a(w) (resp.,
L = ¬a(w)), Up(L) will denote the update atom a(w)+ (resp. a(w)−), while
Und(L) will denote the update atom a(w)u. The semantics of the other pred-
icates defined by the set of rules of Rew(IC) (such as MustBeTrue(L) and
NotFalse(L)) will be made clearer in the following.

Definition 6.11. Let IC be a set of ground constraints and ic a (ground)
constraint in sh-ext(IC), that is ic is of the form

∧
1≤i≤n Li ⊃ L. We define

rew1(ic) as the following pair of Datalog rules:

MustBeTrue(L) ←
n∧

i=1

MustBeTrue(Li)
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Up(L) ← MustBeTrue(L),¬L

whereas Rew1(IC) is equal to
⋃

ic∈sh-ext(IC) rew1(ic). Moreover rew2(ic) de-
notes the following set of Datalog rules:

Und(L) ←
n∧

i=1

NotFalse(Li),¬L,¬MustBeTrue(L),¬MustBeTrue(¬L)

NotFalse(Li) ← (Li ∧ ¬Up(¬Li)) ∨ Up(Li) ∨ Und(Li) i = 1..n

whereas Rew2(IC) =
⋃

ic∈sh-ext(IC) rew2(ic). Finally, we define

Rew(IC) = Rew1(IC) ∪ Rew2(IC)

The semantics of the predicates and rules introduced in Definition 6.11
can be explained as follows. Intuitively enough, Rew1(IC) is a program
which computes ΨIC (in the sense that ΨIC = {L | MustBeTrue(L) ∈
MM(Rew1(IC))}), along with the set of insertion/deletion updates making
the source database contain the literals in ΨIC . Specifically, given a ground
literal L, the atom MustBeTrue(L) means that L is true in every database
which satisfies the constraints. Thus, given a ground integrity constraint ic in
sh-ext(IC), the first rule in rew1(ic) states that if all the literals in the body
of ic are true in every database consistent w.r.t. IC, then, in order to satisfy
ic, the head literal must be true too. The second rule properly defines (in-
sertion/deletion) update actions which should be accomplished on the source
database, as it states that if a literal L is false in the source database while
it should be true to satisfy the constraints, then an update action making L
true must be performed.

As regards Rew2(IC), it computes the set of update operations assigning
undefined to database atoms. Specifically, given a ground literal L, the atom
NotFalse(L) means that applying the set of update operations computed by
the program does not result in a database where L is false. Hence, given
a ground integrity constraint ic, the first rule in rew2(ic) has the following
meaning: if performing the set of update operations computed by the program
makes no body literal of ic false, but its head literal L is false in the source
database, then an update action making L undefined must be performed,
provided that it has not been derived that L must be either true or false by
Rew1(IC).

In the following, given a ground literal L = a(w) (resp., L = ¬a(w)),
we denote the atom MustBeTrue(L) as a(w)t (resp. a(w)f ), and the atom
NotFalse(L) as a(w)tu (resp. a(w)fu), where the superscripts tu and fu stand
for “true or undefined”, and false or undefined”, respectively.

Example 6.7. Consider the following set IC of (ground) integrity constraints

a ⊃
¬a ∧ b ∧ c ⊃
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The set sh-ext(IC) of constraints is as follows

ic1 : ⊃ ¬a
ic2 : ¬a ∧ b ⊃ ¬c
ic3 : ¬a ∧ c ⊃ ¬b
ic4 : b ∧ c ⊃ a

The program Rew1(IC) is

rew1(ic1) : { af ← , a− ← af, a }
rew1(ic2) : { cf ← af ∧ bt , c− ← cf, c }
rew1(ic3) : { bf ← af ∧ ct , b− ← bf, b }
rew1(ic4) : { at ← bt ∧ ct , a+ ← at,¬a }

whereas Rew2(IC) is

au ← a, ¬at,¬af
cu ← afu, btu, c, ¬ct,¬cf
bu ← afu, ctu, b, ¬bt,¬bf
au ← btu, ctu, ¬a, ¬at,¬af

afu ← (¬a ∧ ¬at) ∨ af ∨ au

btu ← (b ∧ ¬bf) ∨ bt ∨ bu

ctu ← (c ∧ ¬cf) ∨ ct ∨ cu

The program Rew(IC) contains standard rules with negation and denial
rules (rules with empty heads). The set of stable models for Rew(IC) ∪ DB
consists of all the stable models of Rew1(IC) ∪ Rew2(IC) ∪ D. As regards
the rules in Rew1(IC)∪Rew2(IC), observe that rules in Rew1(IC) are semi-
positive (they depend through negation only on database atoms), whereas
atoms defined in Rew2(IC) depend through negation only on atoms defined
in Rew1(IC). Therefore, the program Rew1(IC)∪Rew2(IC) is stratified and,
consequently, Rew(IC)∪DB has a unique stable model which is the stratified
model of Rew1(IC) ∪Rew2(IC) ∪D.

Let D be a two-valued database, IC be a set of integrity constraints on
D and M the stratified model for Rew(ground(IC)) ∪ D. Then, S(M) =
〈{a(t) | a(t)+ ∈ M}, {a(t) | a(t)u ∈ M}{a(t) | a(t)− ∈ M}〉 denotes the
database update derived from M .

Theorem 6.6. Let D be a two-valued database and IC a set of full constraints
on D. Let M be the unique model in SM(Rew(ground(IC))∪D). Then, the
database update S(M) is the deterministic repair for 〈D, IC〉.
Proof. Let P 1 = Rew1(ground(IC)). We denote the subset of rules of P 1

whose heads consist of update atoms as P 1,2, and the complementary subset
of rules as P 1,1. Let N1 = TP1,2(T

∞
P1,1

(∅) ∪ D). By construction, it follows
that N1 = { Up(A) | A ∈ ΨIC }. Let P 2 = Rew2(ground(IC)). We denote as
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P2,1 the subset of P 2 defining update atoms (i.e., atoms with adornment u),
whereas P 2,2 = P 2−P 2,1 denotes the set of remaining rules (i.e., rules defining
atoms with adornment tu or fu). Let N2 = TP2,1(T

∞
(P2∪DB∪N1)

(∅)), i.e., N2 is
S(M)u. To prove the statement, it suffices to show that N2 = { Au | Au ∈
Rdet} (in fact, it is easy to see that Rdet and S(M) contain the same set of
update atoms assigning true or false, as this set must be equal to Ψground(IC)).

For each au ∈ Rdet, there is at least a ground constraint r in
Red(ground(IC)) of the form r = α ∧ a ∧ b ⊃, where α is a conjunction
of ground literals, such that bu ∈ Rdet (without loss of generality, we assume
that both a and b are positive literals in r). We now show that the program
P 2 derives the atoms au and bu, exploiting the fact that Up(¬a) and Up(¬b)
have not been derived in the previous phase. In fact, considering the rules in
P 2 obtained from constraint r, we have that, since the extended version con-
tains both constraints α∧a ⊃ ¬b and α∧ b ⊃ ¬a, the following dependencies1

au ← btu ← (b ∧ ¬bf ) and bu ← atu ← (a ∧ ¬af ) must hold. Since D |= a ∧ b
and N1 6|= af ∧ bf , both au and bu are derived. The same reasoning can be
applied for the cases where one or both literals literals appear negated in r.
Therefore all atoms which are undefined in Rdet are also derived undefined in
M .

Vice versa, it cannot be the case that S(M) contains an update atom
which is not in Ru

det. In fact, it is easy to see that Rdet corresponds to a
model of Rew(ground(IC))∪D, thus Ru

det−S(M)u 6= ∅ would contradict the
minimality of M , since R+

det = S(M)+ and R−det = S(M)−. 2

Example 6.8. Consider the database D which consists of D+ = {a, b, c} and
the set IC of integrity constraints of Example 6.7. Then, S(SM(Rew(IC) ∪
D)) = 〈{}, {b, c}, {a}〉 which is the deterministic repair for 〈D, IC〉.
Corollary 6.2. Let D be a two-valued database and IC a set of integrity
constraints on D. The deterministic repair for 〈D, IC〉 can be computed in
polynomial time in the size of D.

Proof. The computation of the deterministic repair of 〈D, IC〉 can be
carried out by evaluating the stable model of Rew(ground(IC)) ∪ D. As
Rew(ground(IC)) is a stratified program and the computation of the sta-
ble model of stratified programs can be computed in polynomial time, we
have that the deterministic repair can be computed in polynomial time as
well. 2

Corollary 6.3. Let D be a two-valued database, IC a set of integrity con-
straints and q = (g, P ) a Datalog query. Then, qdet(D, IC) can be computed
in polynomial time.
1 A dependency from B to A, denoted by A ← B, means that there is rule with A

in the head and B in the body.
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Proof. The answer of q over Ddet can be obtained by considering the well-
founded semantics of the program P ∪Pu ∪D

+

det, where Pu is the set of rules
{a(w) ← ¬a(w) | a(w) ∈ D

u

det} (rules in Pu enable the atoms in D
u

det to
be derived as undefined). From Corollary 6.2 (which states that Ddet can be
computed in polynomial time) and the fact that evaluating the well-founded
model of a program can be accomplished in polynomial time, we obtain that
qdet(D, IC) can be computed in polynomial time too. 2

In the proof of Corollary 6.3, we proved that qdet(D, IC) is polynomial-
time computable exploiting the fact that it can be obtained from the well-
founded semantics of the program P on Ddet (where P is the program spec-
ified in q). Since it is well-known that the computation of the well-founded
model is generally more expensive than the computation of a stratified model
(although both of them can be accomplished in polynomial time), the eval-
uation of the deterministic answer of a query would be likely to be carried
out more efficiently if it were possible to evaluate it in terms of the strati-
fied model (rather than the well-founded model) of a logic program. In this
regard, given a query q = (g, P ) over a database D inconsistent w.r.t. a set
of integrity constraints IC, we now show how P can be rewritten into a set
of logic rules Rew(P ) such that the stratified model of the logic program
Rew(ground(IC)) ∪ Rew(P ) ∪ D defines the deterministic answer of q.

Let (g, P ) be a query (where P is a Datalog program and g a predicate
defined in P ), and r a rule in P of the form:

p0(X) ←
m∧

i=1

qi(Xi),
n∧

j=1

pj(Xj), Φ

where each pj (0 ≤ j ≤ n) is a derived predicate symbol, qi (1 ≤ i ≤ m) is a
base predicate symbol, and Φ is a conjunction of built-in atoms. We denote
as rewT (r) the rule:

pT
0
(X) ← ∧h

i=1

((
qi(Xi) ∧ ¬qi(Xi)− ∧ ¬qi(Xi)u

)
∨ qi(Xi)+

)
,

∧n
j=1 pT

j (Xj), Φ

which defines when p0(X) can be derived as true. Specifically, the definition
of pT

0
states that p0(X) can be derived as true if the body of r evaluates to

true on Ddet. In order to determine this, the value of each qi(Xi) w.r.t. Ddet

is evaluated by taking into account the effects of applying the updates of the
deterministic repair on D: qi(Xi) is true in Ddet if either it must be inserted
into the database according to Rdet (that is, Rdet contains qi(Xi)+), or it is
true in D and Rdet does not change its truth value (that is, both qi(Xi)− and
qi(Xi)u are false in Rdet).
Moreover, we denote as rewU (r) the rule:

pU
0

(X) ← ∧h
i=1

((
qi(Xi) ∧ ¬qi(Xi)−

)
∨ qi(Xi)+ ∨ qi(Xi)u

)
,

∧n
j=1

(
pU

j (Xj) ∨ pT
j (Xj)

)
, ¬pT

0
(X), Φ
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which defines when p0(X) can be derived as undefined , by taking into account
the update operations of Rdet.
Moreover, we define

RewT (P ) = {rew(r) | r ∈ P} and RewU (P ) = {rewU (r) | r ∈ P},

and

Rew(P) = RewT (P ) ∪RewU (P ).

The evaluation of the stratified model of Rew(ground(IC)) ∪ Rew(P )
over D is equivalent to evaluating Rew(P ) over SM(Rew(ground(IC))∪D),
as the predicates defined in Rew(P ) depend on the predicates of both
Rew(ground(IC)) and D. Basically, the stratified model of Rew(ground(IC))
defines the deterministic repair, thus evaluating the stratified model of Rew(P )
on SM(Rew(ground(IC))∪D) corresponds to taking into account the update
operations performed by the deterministic repair to evaluate the deterministic
answer.

It is easy to see that, given a query q = (g, P ), the semantics of Rew(P )
defines the deterministic answer of q in the following sense: a g-atom is
true (resp., undefined) iff gT (resp., gU ) belongs to the stratified model of
Rew(ground(IC)) ∪ Rew(P ) ∪D, and it is false iff the latter contains neither
gT nor gU .

6.6 Discussion

We have presented a logic framework for repairing and querying inconsistent
databases which allows us to compute “approximate” consistent answers in
polynomial time. We have considered three valued databases, i.e. databases
whose atoms can be either true or undefined (whereas missing atoms are
false). We have proposed a three-valued semantics for constraint satisfaction,
called partial, and presented the notions of repair and consistent query answer
under this semantics. We have shown that in querying possibly inconsistent
databases under the proposed semantics the answer is safe (true and false
atoms in the answers are, respectively, true and false in the classical CQA) and
can be computed in polynomial time. We have also shown that deterministic
repairs can be computed by means of logic programs derived from constraints,
which can be evaluated by means of standard systems, such as DLV , Smodels
and XSB [72, 59, 69].

The management of inconsistent databases has been investigated in several
works from a different standpoint, that is measuring the degree of inconsis-
tency of data. Most of these works exploit different forms of paraconsistent
reasoning. In [45], a framework for measuring the inconsistency of a knowl-
edgebase was presented, where knowledgebases are represented as first-order
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logic formulas and quasi-classical (QC) logic is used to support paraconsis-
tent reasoning. The latter work can be viewed as an extension of previous
QC-logic based approaches for measuring inconsistencies in propositional the-
ories [51, 52] to the first-order case. In the latter approaches, inconsistent
sets of formulae are analyzed in terms of their quasi-classical models, and the
degree of inconsistency is measured by suitably measuring the inconsistency
inside these models.

Measures of information and contradiction were reviewed in [53]. The pa-
per discusses some dimensions for measuring inconsistent information (that is,
different ways of describing inconsistency) and several approaches to measur-
ing inconsistent information. These approaches are based on different ways
of weighting conflicts: some of them assume that the importance of a con-
flict depends on the number of formulae of the knowledgebases implied in the
contradiction, while others measure the importance of a conflict in terms of
number of atoms on which we have contradictory information.

A general framework to resolve contradictions in first order logic systems
was proposed in [64], where the semantics of weighted mc-subsets was intro-
duced as a way of reasoning in inconsistent systems. This semantics enables
reconciling contradictions and deriving plausible beliefs about any statement
including ambiguous ones.

In [65], an axiomatic approach for measuring inconsistency in databases
was proposed, in the presence of functional dependencies. In this paper, sev-
eral properties were introduced (in terms of axioms) for deciding whether an
inconsistency metric is reasonable, and both old and new metrics were com-
pared with respect to these axioms.





7

Approximate Probabilistic Query Answering
over Inconsistent Databases

In this chapter we present a framework for querying inconsistent databases
in the presence of (particular sets of) functional dependencies. Both the no-
tions of repair and query answer differ from the classical ones. Specifically,
databases are repaired by means of tuple updates whereas query answers are
probabilistic answers, that is tuples associated with probabilities (the probabil-
ity associated with a tuple depends on the number of repaired databases from
which the tuple can be derived by evaluating the given query). In the classical
framework of consistent query answering, in the presence of functional depen-
dencies, tuple deletions are the only operations that can be performed in order
to restore the consistency of an inconsistent database. However, deleting a tu-
ple to remove an integrity violation potentially eliminates useful information
in that tuple. The proposed repairing strategy copes with this problem by
performing tuple updates, so that the information in the source database is
preserved better. A drawback of the notion of consistent query answer is that
it doesn’t allows us to discriminate among “undefined” tuples, namely tuples
which can be derived from a proper not empty subset of the repaired data-
bases. In order to cope with this problem and obtain more informative query
answers, we propose the notion of probabilistic query answers. We present a
technique for computing probabilistic query answers. Such a technique allows
us to compute approximate probabilistic query answers in polynomial time.

7.1 Introduction

Most of the works on repairing inconsistent databases do not take into account
update operations as primitive for restoring consistency (they just consider
delete and insert operations). However, deleting a tuple to remove an integrity
violation potentially eliminates useful information in that tuple. For instance,
consider the following example.



102 7 Approximate Probabilistic Query Answering over Inconsistent Databases

Example 7.1. Consider the relation schema affiliation(Emp,Dept,City) with
the functional dependency fd : Dept → City, stating that a department
is located in a unique city. Consider now the following inconsistent relation
affiliation:

affiliation
Emp Dept City
john cs rome
bob cs milan

According to most of the approaches proposed so far, the above database can
be repaired by means of tuple deletions, thus the following repaired databases
can be obtained:

affiliation1 = { affiliation(john, cs, rome) }
affiliation2 = { affiliation(bob, cs, milan)}

Consider the query q = πEmp(σDept=‘cs′affiliation) asking for the employees
of the department cs. The consistent query answer gives the employees john
and bob as undefined, as john works for cs according to the first repaired
database only, whereas bob works for cs according to the second repaired
database only.

In the previous example, if we suppose that each tuple has an “unreliable”
value only on the attribute City and the remaining values are “reliable”, then
we would expect that the previous query gives both john and bob as certain,
as the query does not regard the attribute City. Indeed, repairing inconsistent
databases by means of tuple deletion eliminates useful information present in
deleted tuples, e.g. information which is not involved in a constraint violation.

In order to cope with this problem, we propose a framework wherein in-
consistent databases are repaired by means of tuple updates, as shown in the
following example.

Example 7.2. Consider the inconsistent database affiliation of Example 7.1.
It can be repaired by assigning the same value on the attribute City to each
tuple, that is we assign a unique city to the department cs. This value can be
either rome or milan, as these values come from the source database. Thus,
there exist two repaired databases, namely:

affiliation1 = { affiliation(john, cs, rome), affiliation(bob, cs, rome) }
affiliation2 = { affiliation(john, cs, milan), affiliation(bob, cs, milan) }

Consider the query q of Example 7.1. By assuming the above repaired data-
bases, q gives the employees john and bob as certain, as they are derivable
from all the repaired databases.

The technique we propose allows us to compute certain (i.e. tuples deriv-
able from all or from none of the repaired databases) and uncertain answers
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(i.e. tuples derivable from a proper not empty subset of the repaired data-
bases). Moreover, each tuple in the answer is associated with a probability,
which depends on the number of repaired databases from which the tuple
can be derived (although the framework can be easily adapted so that the
probabilities are determined by other criteria).

Example 7.3. Consider the following relation emp :

emp
Name Dept
john cs
john math
bob cs
bob physics

which is inconsistent w.r.t. the functional dependency fd : Name → Dept and
the query q = πDept(emp) asking for the departments of the employees. The
intuition suggests that cs should be the most probable department as each
employee could work for it, whereas math and physics should be less probable
as only john could work for the former and only bob could work for the
latter. The probabilistic answer gives {(cs, 3/4), (math, 2/4), (physics, 2/4)}
according to the previous consideration. Observe that, under the standard
notion of consistent query answer, the departments cs, math and physics are
undefined and there is no discrimination among them.

Thus, the proposed approach allow us to exploit better information in the
source inconsistent database in two main aspects: (i) repairing by means of
tuple updates, which is more fine-grained than the approaches based on tuple
deletions, allows us to preserve useful information in the source database; (ii)
probabilistic query answering allow us to discriminate among undefined tuples.

The chapter is organized as follows. In Section 7.2, the probabilistic rela-
tional model presented in [37] is introduced. Section 7.3 presents a definition of
repaired databases and a “condensed” form to represent the set of all repaired
databases. Section 7.4 presents the notion of probabilistic query answer and
shows how to compute an approximation of it in polynomial time. Finally, in
Section 7.5 related works are discussed and conclusions are drawn.

7.2 Probabilistic Relational Model

We recall the probabilistic relational model presented in [37] (see also [31,
33]). A probabilistic relation corresponds to an ordinary relation where the
membership of a single tuple in the relation is affected by a probabilistic event.
We distinguish between basic and complex events. Tuples of base relations are
associated with basic events. Special events are the certain event >, which is
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associated with deterministic tuples, and the impossible event ⊥, which is
associated with tuples that are not in the database. Each basic event e is
associated with a (fixed) probability value denoted by p(e); the probability of
> is 1, whereas the probability of ⊥ is 0. When new relations are derived by
means of Probabilistic Relational Algebra (PRA) operators, each tuple in a
derived relation depends on the tuples of the argument relation(s) from which
it was derived. In order to express this relationship, we use complex events,
which are Boolean combinations of events. Starting from the probabilities
for the basic events, the probabilities of complex events can be computed by
means of a function P. The probability associated with a general event e is
denoted by Pr(e) and is equal to p(e) if e is a basic event, whereas is equal to
P(e) if e is a complex event. Observe that the function P takes into account
the dependencies among basic events.
This model is based on an intensional semantics; this means that each tuple of
a relation is associated with an event expression and the PRA operators also
manipulate these expressions. The issue of associating probabilities with these
expressions is dealt with separately. A probabilistic relational model based on
an extensional semantics was proposed in [36]. In this model probabilities
are attached to tuples; when applying an operator of the relational algebra,
the probabilities of the result tuples are computed as a function of the tuple
probabilities in the argument relation(s). This approach doesn’t always work.

A probabilistic tuple tp on a relation schema R(W ) is a pair 〈t, e〉, where t
is a tuple over R(W ) and e is an event. A probabilistic relation on a relation
schema R(W ) is a set of probabilistic tuples tp = 〈t, e〉 such that t is defined
over R(W ). A probabilistic database Dp is a set of probabilistic relations plus
a probabilistic function Pr. In the following, for a given probabilistic tuple tp,
t denotes the corresponding standard tuple; analogously, r and D denote the
(standard) relation and database corresponding to the probabilistic relation
rp and the probabilistic database Dp, respectively.

The PRA operators are defined as follows.

• Selection. Let rp be a probabilistic relation

σθ(rp) = {〈t, e〉 | 〈t, e〉 ∈ rp ∧ t ∈ σθ(r)}
• Projection. Let rp be a probabilistic relation over R(W ) and A be a subset

of W
πA(rp) = {〈t, e〉 | t ∈ πAr ∧ e =

_
〈t′,e′〉∈rp∧ t′[A]=t

e′}

• Cartesian product. Let rp and sp be probabilistic relations

rp × sp = {〈tr.ts, er ∧ es〉 | 〈tr, er〉 ∈ rp ∧ 〈ts, es〉 ∈ sp}

• Union. Let rp be a probabilistic relation over R(W ) and sp be a proba-
bilistic relation over S(W )
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rp ∪ sp = {〈t, e〉 | t ∈ r ∪ s ∧ e =
_

〈t,e′〉∈rp∨〈t,e′〉∈sp

e′}

• Difference. Let rp be a probabilistic relation over R(W ) and sp be a prob-
abilistic relation over S(W )

rp − sp = {〈t, e〉 | 〈t, e〉 ∈ rp∧ 6 ∃〈t, e′〉 ∈ sp} ∪
{〈t, er ∧ ¬es〉 | 〈t, er〉 ∈ rp ∧ 〈t, es〉 ∈ sp}

Observe that the operators σ, π,×,∪ and − are overloaded as we have used
the same operators of standard relational algebra.

Example 7.4. Consider the probabilistic database Dp consisting of the follow-
ing probabilistic relations emp and dept:

emp
EName Dept
john cs e1

john math e2

dept
DName City

cs rome d1

math rome d2

Consider now the query:

q = πCity(σEName=‘john′∧Dept=DName(emp× dept))

asking for the cities where john works. In the evaluation of q, firstly the
cartesian products emp× dept is computed, giving the result below:

EName Dept DName City
john cs cs rome e1 ∧ d1

john cs math rome e1 ∧ d2

john math cs rome e2 ∧ d1

john math math rome e2 ∧ d2

Next, the selection operation σEName=‘john′∧Dept=DName(emp×dept) is com-
puted and the following result is obtained:

EName Dept DName City
john cs cs rome e1 ∧ d1

john math math rome e2 ∧ d2

Finally, the projection operation πCity(σEName=‘john′∧Dept=DName(emp ×
dept)) is computed, giving the result:

City
rome (e1 ∧ d1) ∨ (e2 ∧ d2)

Thus, the answer contains rome, whose associated event is (e1∧d1)∨(e2∧d2);
this means that john works in rome if either (i) he works for the department
cs (event e1) and cs is located in rome (event d1), or (ii) he works for the
department math (event e2) and math is located in rome (event d2).
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We point out that, given a probabilistic database Dp and a query q, the
probability associated with the tuples in q(Dp) is computed by means of the
function Pr which takes into account the relations among basic events.

Example 7.5. Consider the probabilistic database Dp and the query q of Ex-
ample 7.4. Given the probabilities for the basic events e1, e2, d1, d2 and as-
suming that all events are mutually independent q(Dp) gives the tuple rome
along with its probability, namely Pr((e1∧d1)∨(e2∧d2)) = Pr(e1)×Pr(d1)+
Pr(e2)× Pr(d2)− Pr(e1)× Pr(d1)× Pr(e2)× Pr(d2).

7.3 Repairing

In this chapter, a minimal set of updates which leads a database to a consistent
state will be called repair (it will be precisely defined in the following); a
repaired database is the result of applying a repair over the original database.
In order to distinguish the proposed notion of repaired database from the
classical one, we will refer to the latter as id-repaired database1. Thus, given a
database D and a set of integrity constraints IC, D′ is an id-repaired database
derived from D if D′ |= IC and the pair (D′ −D, D −D′) is minimal under
set inclusion, i.e. there is no database D′′ 6= D′ such that D′′ |= IC and both
containments D′′−D ⊆ D′−D and D−D′′ ⊆ D−D′ hold. Given a database
D and a set IC of integrity constraints, repairedid(D, IC) denotes the set of
all the possible id-repaired databases for 〈D, IC〉.

We assume two disjoint, infinite sets dom and var of constants and vari-
ables respectively. A symbol is either a constant or a variable.

A condensed tuple ct over a relation schema R(W ), where W is a set of
attributes, is a total mapping from W to dom ∪ var; a condensed relation
over R(W ) is a set of condensed tuples over the same schema R(W ), whereas
a condensed database is a set of condensed relations. Each variable V in a
condensed database has a domain dom(V ) ⊆ dom of possible values. The
value of ct on an attribute A in W is denoted ct(A); this is extended so that
for Z ⊆ W , ct[Z] denotes the condensed tuple z over Z such that ct(A) = z(A)
for each A ∈ Z. The set of variables in ct is denoted by var(ct), whereas the
set of constants in ct is denoted by const(ct). Analogously, for a given relation
r (resp. database D), var(r) and const(r) (resp. var(D) and const(D)) denote
respectively the sets of variables and constants in r (resp. D). Moreover, ct
(resp. r, D) is said to be ground if var(ct) = ∅ (resp. var(r) = ∅, var(D) = ∅).
Ground condensed tuples (resp. relations, databases) are also called simply
tuples (resp. relations, databases).

A (ground) substitution for a set of variables {V1, . . . , Vk}, k ≥ 0, is a
set of pairs {V1/c1, . . . , Vk/ck} where c1, . . . , ck are constants such that ci ∈
dom(Vi) for i = 1..k. We also use the notation θ[1] = {V | V/c ∈ θ} and
1 id-repaired database stands for repaired database obtained by means of tuple

insertions and deletions.
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θ[2] = {c | V/c ∈ θ} to denote the sets of variables and constants in θ,
respectively. θ(V ) = c if there is a pair V/c ∈ θ, otherwise θ(V ) = V .

The application of a substitution θ to a condensed tuple ct = 〈p1, . . . , pn〉
is θ(ct) = 〈θ(p1), . . . , θ(pn)〉. Analogously, the application of a substitution θ
to a condensed relation cr is θ(cr) = {θ(ct) | ct ∈ cr}, whereas the application
of θ to a condensed database Dc is θ(Dc) = {θ(cr) | cr ∈ Dc}.

Given a condensed relation cr (resp. database Dc), G(cr) (resp. G(Dc))
denotes the set of all the (ground) relations (resp. databases) that can be
obtained from cr (resp. Dc) by replacing all the variables in cr (resp. Dc)
with constants belonging to the domains associated with variables.

Definition 7.1. Canonical functional dependencies. Let R(W ) be a relation
schema and FD be a set of functional dependencies in standard form2 over
R(W ). FD is said to be in canonical form if ∀X → A ∈ FD does not exist
a functional dependency Y → B ∈ FD such that A ∈ Y .

In the rest of the chapter, we consider sets of functional dependencies in
canonical form.

Let R(W ) be a relation schema, FD be a set of functional dependencies
over R(W ) and r be an instance of R(W ). An update operation for r is a pair
u = (t, t′) of tuples over R(W ) s.t. t ∈ r ∧ t 6= t′. The intuitive meaning of
u = (t, t′) is that t is replaced by t′, i.e. the updated relation obtained from r
by applying u is u(r) = r−{t}∪{t′}. Given a set of update operations Up, then
we define the sets Up− = {t | ∃(t, t′) ∈ Up} and Up+ = {t′ | ∃(t, t′) ∈ Up}. We
say that Up is coherent if it does not contain two distinct update operations
(t, t′) and (t1, t2) such that either t = t1 or t = t2, that is (i) the same tuple
t cannot be replaced by two distinct tuples t′ and t2, and (ii) a tuple t which
is replaced by a tuple t′ cannot be used to replace in turn a tuple t1.

Given a set Up of update operations for r, we denote by Up(r) the up-
dated relation obtained from r by applying all the update operations in Up,
i.e. Up(r) = r − Up− ∪ Up+. Moreover, we define the set update(Up) =
{(t, A) | ∃(t, t′) ∈ Up, A ∈ W s.t. t(A) 6= t′(A)}. If a pair (t, A) is in
update(Up), then we say that Up modifies the value of the tuple t on the
attribute A.

We say that the value of a tuple t ∈ r on an attribute A ∈ W is uncertain
if there exists a tuple t′ ∈ r and a functional dependency fd : X → A ∈ FD
such that {t, t′} 6|= fd, that is t[X] = t′[X] and t(A) 6= t′(A). A set Up of
update operations for r is said to be feasible (w.r.t. r) if it modifies only
uncertain values.

Definition 7.2. Repair and repaired database. Let R(W ) be a relation schema,
FD be a set of functional dependencies over R(W ) and r be an instance of

2 We consider functional dependencies of the form X → A, where X is a set of
attributes whereas A is an attribute.
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R(W ). A repair for 〈r, FD〉 is a coherent and feasible set Up of update opera-
tions for r such that (i) Up(r) |= FD and (ii) there is no set of update opera-
tions Up′ such that update(Up′) ⊂ update(Up)∧Up′(r) |= FD. The set of all
the possible repaired relations for 〈r, FD〉 is denoted as repairedU (r, FD).

Thus, a repair is a minimal set of attribute value modifications which
makes a database consistent by modifying only uncertain values. Repaired
relations are consistent relations derived from the source relation by means of
repairs.

Given an inconsistent database D and a set FD of functional dependencies,
a repaired database is obtained by repairing each inconsistent relation in D.
We denote by repairedU (D,FD) the set of all the repaired databases for
〈D, FD〉.
Example 7.6. Consider the relation schema emp(Name,Dept, City) with the
functional dependencies FD = {Name → City, Dept → City}. Consider now
the following inconsistent relation r:

emp
Name Dept City
john math milan
john cs rome
bob cs venice

mary physics naples

Intuitively, in order to make the relation consistent the first three tuples should
have the same value on the attribute City. There are three possible repairs
for 〈r, FD〉:

Up1 = { ( emp(john, cs, rome), emp(john, cs, milan) ),
( emp(bob, cs, venice), emp(bob, cs,milan) ) }

Up2 = { ( emp(john,math, milan), emp(john, math, rome) ),
( emp(bob, cs, venice), emp(bob, cs, rome) ) }

Up3 = { ( emp(john,math, milan), emp(john, math, venice) ),
( emp(john, cs, rome), emp(john, cs, venice) ) }

By applying the above repairs on r, the following repaired relations are ob-
tained:

r1 = { emp(john, math, milan), emp(john, cs,milan),
emp(bob, cs,milan), emp(mary, physics, naples) }

r2 = { emp(john, math, rome), emp(john, cs, rome),
emp(bob, cs, rome), emp(mary, physics, naples) }

r3 = { emp(john, math, venice), emp(john, cs, venice),
emp(bob, cs, venice), emp(mary, physics, naples) }

Therefore repairedU (r, FD) = {r1, r2, r3}.
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It is worth noting that, in the previous example, each repair updates the
value of the attribute City so that all conflicting tuples have the same value
for this attribute. The minimality guarantees that only values appearing in
conflicting tuples are used. For instance, the following set of update actions

U = { ( emp(john, math,milan), emp(john, math, naples) ),
( emp(john, cs, rome), emp(john, cs, naples) ),
( emp(bob, cs, venice), emp(bob, cs, naples) ) }

makes the database consistent, but as it is not minimal, it is not a repair.

Definition 7.3. Condensed representation. Let R(W ) be a relation schema,
FD be a set of functional dependencies over R(W ) and r be an instance of
R(W ). A condensed representation of all the repaired relations derivable from
〈r, FD〉, denoted rFD , is a condensed relation s.t. G(rFD ) = repairedU (r, FD)
and var(rFD ) is minimal modulo renaming of variables.

DFD denotes the condensed database “representing” all the repaired
databases derivable from 〈D, FD〉, i.e. the condensed database such that
G(DFD ) = repairedU (D,FD).

Example 7.7. Consider the inconsistent database r and the functional depen-
dencies FD of Example 7.6. A condensed representation of all the possible
repaired relations derivable from 〈r, FD〉 is the following condensed relation
rFD :

emp
Name Dept City
john math Y
john cs Y
bob cs Y

mary physics naples

Y ∈ {rome, milan, venice}
as G(rFD ) = repairedU (r, FD) and the set of variables introduced in rFD is
minimal.

Theorem 7.1. Given a database schema DS, a set FD of functional depen-
dencies over DS and an instance D of DS, then DFD can be computed in
polynomial time. 2

7.4 Query Answering

In this section we present a definition of probabilistic answer to queries over
inconsistent databases. In particular, we first introduce the definition of proba-
bilistic answer, where each tuple in the answer is associated with a probability
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(e.g., the fraction of repaired databases from which the tuple can be derived).
Next, we show how to compute probabilistic query answer by querying a
probabilistic database obtained from the condensed representation of all the
repaired databases. Finally, we present how to compute an approximation of
such an answer in polynomial time.

Definition 7.4. Probabilistic query answer. Given a database D, a set FD of
functional dependencies and a relational query q, the probabilistic answer of
q over 〈D,FD〉, denoted as qp(D, FD), is defined as follows

qp(D, FD) = { (t, pt) | ∃Di ∈ repairedU (D, FD) s.t. t ∈ q(Di),

pt =
|{Di|Di∈repairedU (D,FD)∧t∈q(Di)}|

|repairedU (D,FD)| }

The probabilistic answer gives a set of tuples along with their probabilities,
where the probability of a tuple t is defined as the percentage of the repaired
databases which give t by applying q over them. It is worth noting that, unlike
standard consistent answers, probabilistic answers allow us to discriminate
among undefined tuples, giving them a measure of uncertainty. The tuples in
a probabilistic answer can be ranked according to their probabilities, e.g. by
decreasing probability.

Moreover, as the number of repaired databases can be exponential in the
size of the database, the complexity of computing probabilistic answers using
the formula of Definition 7.4 is also exponential. Next, we present a different
method for computing probabilistic query answers over inconsistent databases.

Given two condensed tuples ct1 and ct2 and a substitution θ, we say that
ct1 subsumes ct2 (or equivalently, ct2 is an instance of ct1) under θ, written
as ct1 wθ ct2, if ct2 = θ(ct1) and θ[1] ⊆ var(ct1). Moreover, we say that
ct1 Aθ ct2 if ct2 is ground. Observe that for any two distinct tuples ct1 and
ct2, ct1 wθ ct2 implies that ct2 6wθ ct1.

Lemma 7.1. Let rFD be a condensed relation derived from r and FD. For
each pair of distinct condensed tuples ct1, ct2 ∈ rFD there do not exist two
substitutions θ1 and θ2 and a ground tuple t such that ct1 Aθ1 t and ct2 Aθ2

t. 2

The above lemma states that a ground tuple t cannot be derived from two
distinct condensed tuples. The following definition introduces the concept of
probabilistic relation derived from a (possibly inconsistent) relation.

Definition 7.5. Derivation of probabilistic relations. Let r be a relation and
FD a set of functional dependencies over a relation schema R(W ). Let rFD be
the condensed representation for 〈r, FD〉, then rp

FD denotes the probabilistic
relation derived from rFD as follows:

rp
FD = {〈t, et〉 | ∃ct ∈ rFD ∧ ∃θ s.t. ct Aθ t ∧ et =

∧

X/c ∈θ

X/c}
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where p(et) = p(
∧

X/c ∈θ X/c) is computed by considering the standard prob-
abilistic function and assuming that

• two events X/c1 and X/c2, where c1 6= c2, are disjoint;
• two events X/c1 and Y/c2, with X 6= Y , are independent;
• Pr(X/c) = 1

|dom(X)| .

Observe that, as said before, for deterministic tuples (i.e. probabilistic tu-
ples 〈t, et〉 such that et is empty), it is assumed that et = > so that Pr(>) = 1.
We recall that a condensed representation rFD of a set of repaired relations
contains variables in place of uncertain values. In order to obtain a consistent
repaired relation from rFD , for each variable we have to replace every occur-
rence of it with the same value (taken from its domain). This consideration
is reflected by the first assumption in the previous definition. The second as-
sumption states that values assigned to different variables are independent.
As a variable V has n = |dom(V )| possible values, the probability of an event
V/c (i.e. the value c is assigned to the variable V ) is 1

n , as stated by the last
assumption in the above definition.

It is worth noting that the definition above does not take into account
the number of occurrences of a value. In order to also consider the number
of occurrences of values, the above probability function could be rewritten
as Pr(X/c) = #c

X
/#X, where #cX is the number of occurrences of c in the

source relation corresponding to X in the condensed relation and #X is the
number of occurrence of X in the condensed relation. Clearly, if each value
occurs once the probability function coincides with the one of Definition 7.5.

Example 7.8. Consider the database schema r(A,B, C) with the functional
dependency fd = A → B and the instance R = {r(a1, b1, c1), r(a1, b2, c2),
r(a1, b1, c3)}. The two repaired databases R1 = {r(a1, b1, c1), r(a1, b1, c2),
r(a1, b1, c3)} and R2 = {r(a1, b2, c1), r(a1, b2, c2), r(a1, b2, c3)} are obtained by
replacing, respectively, the unique occurrence of b2 with b1 and the two occur-
rences of b1 with b2. As the derived condensed relation is Rfd = {r(a1, X, c1),
r(a1, X, c2), r(a1, X, c3)} with X ∈ {b1, b2}, we have that Pr(X/b1) = 2/3
and Pr(X/b2) = 1/3.

Given a probabilistic relation rp
FD , rb

FD denotes the set of tuples {t|〈t, et〉 ∈
rp
FD}. Given a condensed representation DFD of all the repaired databases

for 〈D, FD〉, the probabilistic database derived from DFD will be denoted by
Dp
FD , whereas Db

FD denotes the set of relations {rb
FD |rp

FD ∈ Dp
FD}.

Corollary 7.1. Let rp
FD be a probabilistic relation derived from r and FD.

For each tuple 〈t, et〉 ∈ rp
FD there does not exist a tuple 〈t′, et′〉 ∈ rp

FD such
that t′ = t and et′ 6= et. 2

The above corollary, which is straightforwardly derived from Lemma 7.1,
states that in probabilistic relations (derived from inconsistent databases)
there do not exist two tuples which differ only in the event part.
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Example 7.9. Consider the inconsistent relation affiliation and the func-
tional dependencies fd of Example 7.1. A condensed representation of all
the repaired databases for 〈affiliation, {fd}〉 is as follows:

affiliationfd

Emp Dept City
john cs X
bob cs X

X ∈ {rome, milan}
The above condensed relation can be “expanded” into the following proba-
bilistic relation:

affiliationp
fd

Emp Dept City
john cs rome X/rome
john cs milan X/milan
bob cs rome X/rome
bob cs milan X/milan

where X/rome and X/milan are disjoint events and the probability of each
of them is 0.5. The relation affiliationb

fd is equal to the projection of
affiliationp

fd over the attributes Emp, Dept and City.

Theorem 7.2. Given a database D and a set of functional dependencies FD,
repairedU (D, FD) = repairedid(Db

FD , FD). 2

The previous theorem states that the repaired databases for 〈D,FD〉 ob-
tained by means of tuple updates, can be computed by repairing the database
Db
FD by means of insertion and deletion of tuples.

Theorem 7.3. Given a database D, a set FD of functional dependencies and
a relational query q, then

qp(D, FD) = q(Dp
FD ) 2

The previous theorem states that given a database D, a set FD of func-
tional dependencies and a relational query q, the probabilistic query answer
qp(D, FD) can be computed as follows:

• firstly, a condensed representation of all the repaired databases for 〈D,FD〉,
namely DFD , is derived;

• next, DFD is converted into a probabilistic database Dp
FD ;

• finally, the intensional evaluation of q over Dp
FD is computed and proba-

bilities to each tuple in the answer are assigned.

As computing the probability of an event e of an answer tuple is a #P-
complete problem, next we present an approach for computing approximate
probabilistic answers in polynomial time.
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Approximate Probabilistic Query Answering.

In this section we consider positive relational queries, that is queries using the
relational operators σ, π, × and ∪. Moreover, we assume that PRA operators
compute events written as DNF formulae, that is events are of the form C1 ∨
. . .∨Cn, where each Ci is a conjunction of events of the form X/cX and events
appearing more than one time in a conjunction are considered once.

Given an event e = C1 ∨ . . . ∨ Cn, its probability Pr(e) can be computed
by applying the well-known inclusion-exclusion formula, i.e.

Pr(e) =
n∑

k=1

(−1)k+1
∑

1≤i1<...<ik≤n

Pr(Ci1 ∧ . . . ∧ Cik
)

where the probability of a conjunction of events C = e1 ∧ . . . ∧ ek is equal to
Pr(e1) × . . .× Pr(ek) if C does not contain two events X/c1 and X/c2 with
c1 6= c2, otherwise it is equal to 0.

The issue of approximating an inclusion-exclusion formula has been dealt
with in [61, 57]. In particular, a method to approximate an inclusion-exclusion
formula in polynomial time has been proposed in [57]. Specifically, given an
event e = C1 ∨ . . .∨Cn and the probabilities of all the j-wise conjunctions of

Ci for j = 1..k, Pr(e) can be approximated with an error of e−Ω( k2
nlogn ). We

denote by Prk(e) the so obtained approximation of Pr(e).

Definition 7.6. Approximate probabilistic answer. Given a database D, a set
FD of functional dependencies and a relational query q, the k-approximate
probabilistic answer of q over 〈D, FD〉, denoted as AQk(D, FD), is defined as
follows

AQk(D, FD) = {〈t, at〉 |∃〈t, et〉 ∈ q(Dp
FD ) and at = Prk(et)} 2

Theorem 7.4. Given a database D, a set FD of functional dependencies and
a relational query q, the k-approximate probabilistic answer of q over 〈D, FD〉
can be computed in polynomial time. 2

7.5 Discussion

In this chapter we have presented a framework for querying inconsistent data-
bases where constraints consist of (particular sets of) functional dependencies.
Inconsistent databases are repaired by means of tuple updates, rather than
tuple deletions, in order to preserve better their information. Moreover, query
answers are “probabilistic”, that is they are tuples associated with probabili-
ties: the probability of an answer depends on the number of repaired databases
that allow us to obtain the answer. This semantics of query answering allows
us to discriminate among answers which are not consistent thus providing
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more informative query answers. We have proposed an algorithm to compute
probabilistic query answers. This algorithm allows us to compute approximate
probabilistic query answers in polynomial time.

Andritsos et al. [2] presented an approach for querying dirty databases
containing duplicate tuples (i.e. inconsistent databases that violates a set of
key constraints) where each duplicate is associated with a probability of be-
ing in the clean database. A technique for querying dirty databases is pro-
posed. It consists in rewriting a query into an SQL query that computes each
answer with the probability that the answer is in the clean database. The
rewriting cannot be obtained in general as it is applicable only to a special
class of select-project-join queries, called rewritable queries. The main differ-
ence between the approach presented in this chapter and the one introduced
in [2] is that we consider a more general framework, namely a special class of
functional dependencies and positive relational algebra queries, and compute
approximate probabilistic answers (i.e. answers whose associated probabilities
are approximated), whereas the technique proposed by Andritsos et al. com-
putes (exact) probabilistic answers for more restricted constraints and queries
(key constraints and a subset of SPJ queries).

In [30] it has been shown that for every conjunctive query, the complexity
of evaluating it on a probabilistic database is either PTIME or #P-complete,
and an algorithm for deciding whether a given conjunctive query is PTIME or
#P-complete is given. The problem of querying and managing probabilistic
databases has been dealt with also in [29, 31].

An approach for repairing inconsistent databases by means of tuple up-
dates has been proposed in [76, 14, 77]. Specifically, [76] presents a notion
of update-based repairing, and the construction of single databases, called
nuclei, that can replace all (possibly infinitely many) repaired databases for
the purpose of consistent query answering. The construction of nuclei for full
dependencies and conjunctive queries is shown. Consistent query answering
and constructing nuclei is generally intractable under update-based repair-
ing. In [14] an approach for repairing inconsistent databases is proposed. In
such a framework, a database which violates a set of functional and inclusion
dependencies is repaired by modifying attribute values and by inserting new
tuples. Each update operation has a cost. As finding a repaired database with
minimum cost in this model is NP-complete, a heuristic approach is proposed.



Conclusions

Although integrity constraints have long been used to maintain database con-
sistency, nowadays there are plenty of scenarios where inconsistency arises
because integrity constraints may not be enforced or satisfied. The problem
of extracting reliable information from inconsistent databases has been exten-
sively studied in the past years. Most of the works in the literature are based
on the consistent query answering (CQA) framework. This framework relies
on the notions of repair and consistent query answer. A repair for an incon-
sistent database is a consistent database which is as close as possible to the
original one. The consistent answers to a query over a possibly inconsistent
database are those answers that can be obtained from every repair.

In this thesis, we have addressed several issues regarding the problem of
repairing and querying inconsistent databases.

First, we have dealt with the problem of expressing preferences among
repairs. The motivation of this work stems from the observation that as an
inconsistent database can be repaired in different ways, it is natural to ex-
press preferences among the possible actions which restore consistency. In
this regard, we have proposed a logical framework based on prioritized active
integrity constraints (PAICs). A PAIC allows us to express a universal in-
tegrity constraints, the feasible updates which should be performed whenever
the constraint is violated and preferences among the feasible updates. These
preferences determine preferences also among repairs, so that preferred repairs
can be selected among all the possible repairs. The preferred repairs are the
only ones to be considered during query answering. We have studied some
desirable properties on the set of preferred repairs which hold in the proposed
framework. It has been shown that prioritized active integrity constraints can
be rewritten into disjunctive Datalog programs so that repairs correspond to
stable models.

Inconsistency leads to uncertainty as to the actual values of tuple at-
tributes. Thus, it is natural to study the possible use of incomplete data-
base frameworks in this context. The set of repairs for a possibly inconsistent
database could be represented by means of an incomplete database whose
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possible worlds are exactly the repairs of the inconsistent database. We have
studied this issue by considering a specific incomplete database framework:
disjunctive databases. Thus we have addressed the problem of representing
the set of repairs of a possibly inconsistent database by means of a disjunctive
database, i.e. a disjunctive database whose minimal models are the repairs.
We have shown that, given a database and a set of denial constraints, there
exists a (unique) disjunctive database, called canonical, which represents the
repairs of the database w.r.t. the constraints and is contained in any other
disjunctive database with the same set of minimal models. Moreover, we have
proposed an algorithm for computing the canonical disjunctive database. We
have also studied the size of the canonical disjunctive database in the presence
of functional dependencies for both set- and card-repairs.

We have proposed a framework for repairing and querying relational data-
bases which may be inconsistent with respect to functional dependencies and
foreign key constraints. In order to restore the consistency of inconsistent data-
bases, we have proposed a repairing strategy that performs tuple insertions
when foreign key constraints are violated and tuple updates when functional
dependency violations occur (tuple deletions are never performed). Since tuple
insertions and updates may introduce, respectively, null and unknown values
in the database, we have proposed a semantics of constraint satisfaction for
databases containing null and unknown values. Our approach always allows
us to obtain a unique (up to renaming of unknown and null values) repaired
database which can be computed in polynomial time. The result of the repair-
ing technique is an incomplete database (in particular, an OR-database). The
semantics of query answering over an inconsistent database consists in com-
puting the certain query answers on the repaired database. We have identified
a class of conjunctive queries whose answers can be computed in polynomial
time.

Computing consistent query answers is in general an intractable problem.
Different restricted classes of queries and constraints for which the problem is
tractable have been identified. In this thesis we tackled this problem by provid-
ing techniques which allows us to compute “approximate” query answers over
inconsistent databases in polynomial time in the presence of general classes
of queries and constraints.

Specifically, we have proposed a technique for computing a sound and in-
complete set of consistent query answers in polynomial time. The proposed
approach relies on a three-valued repairing strategy where update operations
make the truth value of database atoms true, false or undefined . Thus, in
this setting, three-valued databases are considered and a new semantics of
constraint satisfaction (for three-valued databases) has been proposed. We
have shown that the set of three-valued repairs defines a lower semi-lattice
whose top elements are standard repairs (performing tuple deletions and in-
sertions only) and whose bottom element is called deterministic repair. We
have shown that by evaluating a query over the deterministic repair we get
sound, but not complete, consistent answers. Moreover, we have studied some
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classes of queries and constraints for which the proposed technique is also
complete. It has been shown also that the deterministic repair and query an-
swers can be computed in polynomial time, by means of a stratified Datalog
program derived from the integrity constraints.

Finally, we have proposed a framework for querying inconsistent databases
which aims at preserving better the information in an inconsistent database
and providing more informative query answers. In order to achieve these goals,
we have adopted notions of repair and query answer which differ from the clas-
sical ones. Specifically, the repairing strategy relies on value-updates whereas
answers to queries are tuples associated with probabilities. We have proposed
a technique for computing approximate probabilistic query answers in poly-
nomial time.
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