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SUMMARY 

The general objective of the research was to evaluate the main factors affecting the 

energy performance of buildings by considering both physical and occupancy 

variables. The research had two different approaches, one of them was regarding 

occupant behavior related to energy consumption in residential buildings and the 

other focused on the office buildings.  

The investigations were conducted by means of data collection and statistical 

analyses in existing residential buildings. Furthermore, different procedures for 

obtaining occupancy profiles were applied. Finally, a case of design and modeling 

of Nearly Zero Energy Buildings was developed in order to study the influence of 

occupancy in high efficient energy buildings. The results showed that different 

approaches of modeling occupancy can lead to considerable variations in building 

energy performance. 

In office buildings, the detection of occupancy was obtained by an experimental 

approach. First of all, the state of the art regarding the sensors and devices used for 

measuring and monitoring indoor parameters was defined. Successively, an 

experimental setup was created in an office of the University of Calabria in order 

to collect data on occupancy and energy consumption by means of sensors and 

manual observations. The criterion of sensor fusion was adopted. Data were 

processed by using different statistical techniques: clustering analysis, descriptive 

and stochastic elaborations. The results were models that can be used either to 

describe or predict occupancy profiles. 

Structure of this work  

The thesis is divided into six chapters. The first chapter is a general introduction 

titled Occupant behavior in buildings, regarding occupant behavior and its 

relationship to the energy consumption in residential buildings, office buildings, 

and low energy buildings. At the end of this chapter a brief description of occupant 

behavior and energy simulation in buildings is presented.  

In the second chapter, Building occupancy is presented with a description 

concerning the occupancy sensing techniques used and general classification 

following different approaches.  
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Residential buildings is the title of the third chapter in which we attempt to describe 

the objectives and main findings of three investigations regarding residential 

buildings and occupancy profiles definition by means of the development of cases 

of study.  

The title of the fourth chapter is Office buildings: the experimental study. It consists 

of the description of the experimental study realized at the University of Calabria 

in an office building. A description of the sensors and the monitored data were 

presented.  

The Office buildings: data analysis is the fifth chapter of the thesis, with the 

different approaches used to analyze experimental data. It begins with the statistical 

analysis and ends with the results of the modeling based on indoor environment 

measurements. 

The General conclusions is the last chapter of the thesis, with a review and 
discussion of the key contributions of this research work. 

  



Summary 
 

VIII 
 

SOMMARIO 

L'obiettivo generale della ricerca è stato quello di valutare i principali fattori che 

influenzano l'efficienza energetica degli edifici, considerando sia le variabili fisiche 

che quelle di utilizzo. La ricerca ha avuto due approcci diversi: il primo riferito al 

comportamento degli occupanti correlato al consumo di energia negli edifici 

residenziali, e l'altro incentrato sugli edifici ad uso ufficio. 

In edifici residenziali esistenti, le indagini sono state effettuate per mezzo della 

raccolta di dati e  analisi statistiche. Inoltre, sono state applicate diverse procedure 

per creare profili di occupazione. Infine, è stato sviluppato un caso esempio di 

progettazione e modellazione di edifici nZEB, utile a mettere in evidenza l'influenza 

dell'occupazione in edifici ad alta efficienza energetica. I risultati hanno mostrato 

che diversi tipi di utilizzo, ovvero di occupazione, possono portare a notevoli 

variazioni nel rendimento energetico dell’edificio. 

Negli edifici per uffici, l'individuazione dell'occupazione è stata ottenuta con un 

approccio sperimentale. Innanzitutto, è stato definito lo stato dell'arte per quanto 

riguarda i sensori e i dispositivi utilizzati per misurare e monitorare i parametri 

interni. Successivamente è stata creata un'installazione sperimentale in un ufficio 

dell'Università della Calabria per raccogliere dati sull'occupazione e il consumo di 

energia tramite sensori e osservazioni manuali. È stato adottato il criterio della 

“sensor fusion”. I dati sono stati elaborati utilizzando diverse tecniche statistiche: 

clustering analysis, elaborazioni descrittive e stocastiche. I risultati offrono modelli 

che possono essere utilizzati sia per descrivere che per prevedere l’occupazione. 

Struttura del lavoro 

La tesi è suddivisa in sei capitoli. Il primo capitolo è un'introduzione generale 

intitolata Comportamento degli occupanti negli edifici, riguardante appunto il 

comportamento degli occupanti e la sua relazione con il consumo di energia negli 

edifici residenziali, negli edifici per uffici e negli edifici a basso consumo 

energetico. Alla fine di questo capitolo viene presentata una breve descrizione del 

comportamento degli occupanti e di come questo aspetto viene considerato nella 

simulazione energetica. 
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Nel secondo capitolo, L’occupazione dell’edificio, è presentata una descrizione 

relativa alle tecniche di rilevamento e alla classificazione generale secondo 

approcci diversi. 

Edifici residenziali è il titolo del terzo capitolo nel quale si descrivono gli obiettivi 

e le principali conclusioni di tre indagini riguardanti gli edifici residenziali. Le 

indagini sono state sviluppate mediante casi studio in cui sono stati considerati 

diversi scenari occupazionali 

Il titolo del quarto capitolo è Edifici per uffici: lo studio sperimentale. Consiste nella 

descrizione dello studio sperimentale realizzato presso l'Università della Calabria 

in un edificio per uffici. Viene presentata una descrizione dei sensori e dei dati 

monitorati. 

Gli edifici per uffici: l'analisi dei dati è il quinto capitolo della tesi che illustra i 

diversi approcci utilizzati per analizzare i dati sperimentali. Comincia con l'analisi 

statistica e termina con i risultati della modellazione basata sulle misurazioni 

dell'ambiente interno. 

Le Conclusioni generali rappresentano l'ultimo capitolo della tesi e contengono la 

revisione e discussione dei principali risultati ottenuti  dal lavoro di ricerca. 
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1. CHAPTER  

OCCUPANT BEHAVIOR IN BUILDINGS  

1.1. General context  

The existing building stock in European countries accounts for over 40% of the 

final energy consumption in European Union (EU) member states of which 63% 

represents use in residential buildings (25% of the total). Therefore, an increase of 

building energy performance can constitute a valuable instrument in the efforts to 

mitigate the EU energy import dependency (currently at about 48%) and comply 

with the Kyoto Protocol to reduce carbon dioxide emissions. Italy is one of the four 

member state countries with a higher final energy consumption in residential and 

tertiary buildings [1].  

In terms of final energy uses, the amount of energy used by residential buildings is 

dedicated to electrical uses such as lighting, appliances, and air conditioning, while 

thermal uses are mainly satisfied by fossil sources such as space heating (higher 

percentage), domestic hot water (DHW) and cooking [2]. Now with the 

implementation of new technologies oriented to energy saving and green building 

certifications, a new approach related to how they affect the use of energy due to 

occupant behavior has emerged [3]. 

For many years, the occupant behavior in buildings compared to energy 

consumption has been studied regarding structures with similar characteristics 

(size, appliances, number of occupants, orientation, windows, curtains); however, 

a considerable variation in the energy consumption has been reported.  This has led 

to the conclusion that beyond new technology energy saving and renewable energy 

applications used, it is necessary to approach occupant behavior in building energy 

consumption; consequently, knowledge about occupancy and occupant behavior is 

needed. Around the world, this topic is the research object of different research 

groups with diverse methodologies and specific contexts. The researchers have 

concluded that is necessary to work together and share advancements, to provide a 

scientific description and clear understanding of energy related to occupant 

behavior in buildings, as well as research methodologies and simulation tools to 

bridge the gap between occupant behavior and the built environment [3]. 
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The International Energy Agency (IEA), Energy in the Buildings and Communities 

Program (EBC), Annex 53 [4]: Total Energy Use in Buildings, identified six driving 

factors of energy use in buildings: (1) climate, (2) building envelope, (3) building 

energy and services systems, (4) indoor design criteria, (5) building operation and 

maintenance, and (6) occupant behavior. The first five areas were developed with 

significant progress, meanwhile regarding the latter, there are current scientific 

lacks  in the  energy model related to occupant behavior in buildings (Figure 1.1). 

 

Figure 1.1 Factors determining the real energy us e of buildings 

1.2. Occupant behavior definition 

The term “behavior” can be defined as the observable actions or reactions of a 

person in response to external or internal stimuli, or the actions or reactions of a 

person to adapt to ambient environmental conditions such as temperature or indoor 

air quality or sunlight [5]. The term ‘objects of the behavior’ refer to the building 

elements, such as windows, curtains, and the appliances related to energy use which 

can be controlled by the occupants. Behavior has been defined as all the activities 

that people perform in the building, while use refers to the direct interaction 

between an occupant and an action to achieve a goal.  

Behavior can be considered from two points of views, one is how people occupy 

the building, known as “occupancy”, which could be seen as the primary level of 

occupant behavior modeling. The other is how they interact with devices such as 

mentioned before (windows, doors, blinds, air conditioning, lights, and equipment). 

Occupant behavior modeling is much more detailed and complex than occupancy 
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detection. In terms of behavior, occupants in buildings behave in two ways: 

adaptation to the indoor environment and occupants themselves. Environment-

related behaviors may include lighting switch on/off, window opening/closing, or 

thermostat adjustment, whereas personal behaviors consist of changing the level of 

clothing, positions or gestures, etc. [6].  

1.3. Occupant behavior and energy consumption  

To evidence the impact that occupant behavior has on energy use, some studies 

have been carried out in different geographic areas. Figure 1.2 shows some results 

obtained in the Chinese city of Beijing.  The  graph shows  the measured split-type 

air conditioner (AC) electricity consumption in 25 apartments, with an identical 

building envelope in the same climate, where the energy consumption varies in a 

wide range, between 0 to 14 kWh/m2 with an average of 2.3 kWh/m2 [7]. Thus, the 

occupant is the driver of energy use, rather than the design of the apartments. 

 

Figure 1.2 Measured air conditioning electricity consumption per unit floor area in 

the summer in a residential building in Beijing  [7]  

To compare cultural differences between Japan and Norway regarding energy use, 

aspects such as infrastructure, climate, prices and income, dwelling size, work 

patterns, and gender roles were considered. The results indicate that the use of 

energy is related to the cultural patterns and customs of each region, so that one 

option to reduce energy consumption is to promote technologies that provide the 

same cultural service with less energy. Thus, energy savings can be integrated into 

every lifestyle while cultural patterns are maintained. In addition, it is important to 

raise awareness among users about energy flow in the home through better billing 

practices and the use of energy audits [8]. 
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Furthermore, a study in Norway allows for explanation of how the consumer is 

influenced by a combination of activities, preferences, values, technologies and 

material structures, and the concept of “home” have been developed. Households 

were classified as: the home as haven, the home as project and the home as arena 

for activities, where the concept that a person has about their home is related to the 

energy consumption, rather than seeing the consumer as a static picture [9]. 

Following the idea of the comparison between different cultures, a study was 

conducted comparing Denmark and Belgium, including aspects such as energy 

policies in each region and individual variables were also compared. Related data 

were collected regarding building characteristics (dwelling type, floor area, and 

household variables), ownership and use of appliances, washing and drying 

practices, lighting, PC and TV. The researchers concluded that despite having 

similar cultures, there are considerable differences in patterns and lifestyles so that 

differences in the energetic consumption are important [10]. 

Hetus (Harmonised European Time Use Survey) [11] gives statistical data of 

people’s use of time in different European countries. The data analysis shows that 

there are the differences in time spent for different activities are culture dependent. 

Moreover, there is also a dependency on the climate zone. For example, in the 

Southern part of Europe people spend more time for eating and leisure compared to 

the North. In different countries, inhabitants behave differently, and this aspect has 

to be taken into account when predicting the building energy demand using 

simulation tools. In [12] the influence of family size, control of the heating system 

and management of the heated area on the heating loads of a standard dwelling in 

Belgium is investigated. Simulations of the building with different insulation levels 

showed that the impact of internal gains (occupant’s lifestyle) on energy 

consumption is more significant for the case with better thermal insulation. In [13] 

the effect of building retrofit taking into account different occupancy patterns is 

analyzed, and the gap between the predicted and actually achieved energy saving is 

correlated to the indoor temperature takeback. 

The occupant behavior studies present differences between residential and office 

buildings for example (a) different activities performed and who pays the energy 

bills, (b) the system controls are usually different and, (c) group behavior can be 
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different between commercial setting and domestic conditions [14]. Regarding 

residential buildings, these contextual differences can be explained with the 

responsibility of energy bills, need for privacy, social factors, type of activities and 

others [15]. These differences must be taken into consideration during the data 

collection and selection of the methodology to follow. For this reason, the thesis 

was structured by considering these aspects.  

1.3.1. In residential buildings 

In terms of final energy uses, the amount of energy used by residential buildings is 

dedicated to electrical uses such as lighting, appliances, and air conditioning, and 

thermal uses mainly satisfied by fossil sources for space heating (higher 

percentage), domestic hot water (DHW) and cooking [2].  

Residential buildings have continuously improved in efficiency. As mentioned 

earlier, occupant behavior is related to observable actions or reactions of a person 

to adapt to ambient environmental conditions. These influencing factors can be 

internal and external and usually are called “Drivers”. Figure 1.3 shows a scheme 

of driving forces of energy-related occupant behavior identified in Annex 53 [4]. 

These drivers include occupant internal driving forces including biology, 

psychology and social factors as shown on the left side of Figure 1.3. On the other 

hand, building equipment, physical environment and time are depicted at the right-

had side of Figure 1.3. 

 

Figure 1.3 Driving forces of energy-related occupant behavior [4] 

The relationship between residential energy consumption can be categorized into 

four major groups: external conditions (e.g., weather and location), physical 
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characteristics of the building, appliance and electronic stock, occupancy and 

occupant according to [16].  

Nemry and Uihlein [17],  identified the most important options in order to improve 

the energy efficiency of existing buildings: replacement of windows, additional 

facade insulation, additional roof insulation and new sealing to reduce ventilation 

losses, but now occupant behavior represents a critical role as it has been shown 

that the energy consumption in buildings with identical enclosure and equipment 

have results very different due to this [3], [18]. This fact has been verified in [19], 

where the results of projections of energy demand show that technology can 

overweight behavioral practices and lifestyle changes for some end-uses such as in 

space heating and lighting. However, the focal point should be given to parameters 

related to occupant behavior.  

Wei et al. [20], have evaluated the actual literature on the occupant space-heating 

in residential buildings according to simulation studies and monitoring. At least 27 

possible factors (Table 1.1) have been assessed as drivers for space-heating 

behavior, and only five of those 27 factors have been used to model space-heating 

behavior in building performance simulation (BPS): room type, occupancy, indoor 

relative humidity, outdoor climate and time of day by typical operational schedules. 

Ten factors are regularly ignored in the BPS: Social grade, occupant education 

level, family income, previous dwelling type, health, house ownership, heating 

price, perceived indoor air quality (IAQ) and noise, energy use awareness and 

thermal sensation. 

Table 1.1 Factors and their influence on the occupant space-heating behavior [20] 

Categories of influence Potential drivers 
Assumed to be influential on 
space-heating behavior 

Outdoor climate, dwelling type, room type, house 
insulation, type of temperature control, occupant age, 
time of day, occupancy 

Small number of existing 
studies and no papers reject its 
influence 

Indoor relative humidity, type of heating system, 
occupant gender, occupant culture/race, social grade, 
previous dwelling type, perceived IAQ and noise, 
health 

Has both been confirmed and 
rejected in nearly equal 
numbers of existing studies 

Dwelling age, type of heating fuel, occupant 
education level, household size, family income, 
house ownership, thermal sensation, time of week, 
heating price, energy use awareness 
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Has been rejected in a small 
number of existing studies and 
no papers confirm the 
influence 

Dwelling size 

 

According to the literature survey by Frontczak and Wargocki [21], it is necessary 

to understand how people behave indoors and how they operate the systems for 

controlling the indoor environment (thermal, visual, acoustic and air quality) and 

comfort conditions.  

Occupant behavior in residential buildings includes three main categories: the 

occupancy, the operation of building service and energy systems, and opening 

windows, curtains, and blinds [5]. 

In many studies the behavior of people in residential buildings has been 

investigated, considering the interaction with a single appliance or building 

component (window, ventilation, lighting, carpets and thermostat) [22]–[24], using 

measurements or field surveys to obtain data. 

Analyses of questionnaires (with multiple choice questions) have been achieved in 

recent researches. In China, Chen et al. [25], found a negative correlation between 

occupant age and heating/cooling energy consumption, to explain this relationship 

it is necessary to look at the thermal comfort perception and distinctive 

development history of this country. In contrast, investigations developed in 

countries such as Australia, Denmark, Brazil and China [26], found that age has a 

positive correlation with residential energy consumption, while Steemers and Yun 

[27], found that the most significant parameter that determines energy use is the 

climate and the second most important is the use of heating and cooling systems 

and their control. Guerra Santín [28], established that occupant characteristics and 

behavior affect 4.2%, and building characteristics affect 42% of the variation in 

energy use for heating in the Netherlands.  

It is important to understand that people can know of government policies and 

information about the roles that they can play in energy saving, but sacrificing 

comfort levels to achieve energy savings is not a believable option, especially for 

younger people [29]. 
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Kashif et al. [30], stated that dynamic behavior is critical for an accurate energy 

simulation, to predict energy trends, and reduce waste energy consumption.  

Categorical classification of energy consumption by any end use such as heating, 

cooling, cooking, etc. for residential buildings (in U.S.) is shown in Figure 1.4 

[31]. 

 

Figure 1.4 End use energy consumption in residential buildings [31]  

1.3.2 In office buildings 

National standards and agencies classify commercial buildings according to 

different criteria. The Commercial Buildings Energy Consumption Survey 

(CBECS) provides an important Classification: Offices, education, health care, 

lodging, food service, food sales, mercantile and services, public assembly and 

warehouse and storage. On the other way, The ASHRAE 1093-RP project focused 

on the Office buildings category only, divided into three subcategories, based on 

CBECS: Small (1,001-10,000 ft2), medium (10,001-100,000 ft2) and large (> 

100,000 ft2) [32]. 

Energy consumption in a non-domestic building is a complex problem due to a wide 

variety of uses and energy services, and consequently, the energy demand of 

individual buildings needs to be understood. 

According to the International Energy Agency, the building sector can reduce 

energy consumption with an estimated energy savings of 1509 Mtoe (million tonnes 

of oil equivalent) by 2050. Moreover, through energy-efficient building design, 

45%
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carbon dioxide (CO2) emissions can be reduced, which can possibly mitigate 12.6 

Gt (gigatonnes) CO2 emissions from the Baseline scenario level in  2050 [33]. 

In commercial buildings, the energy consumption can be divided into two 

categories: the first is the building consumption caused directly by work demands, 

mostly the energy consumption of equipment, the other one is the energy consumed 

to provide indoor thermal comfort for occupants, such as building energy 

consumption of the HVAC and lighting systems. Occupant behavior influences the 

building energy use both directly and indirectly by the opening/closing of windows, 

turning on/off or dimming lights, turning on/off office equipment, turning on/off 

heating, ventilation, and air conditioning (HVAC) systems, and the setting of  

indoor thermal, acoustic, and visual comfort criteria [34].  

In commercial buildings, lighting, heating, ventilation and air-conditioning systems 

are the main energy consumers, together accounting for about 70% of the total 

energy consumed in a typical office building [35].  

The authors in [36], studied the energy wasted during non-occupied hours in 

commercial buildings and they found that more energy is used during non-working 

hours (56%) than during working hours (44%). Despite energy reduction efforts 

such as the use of more efficient lighting and equipment, insulation, passive 

architecture, night-time ventilation, phase change materials (PCM), and so forth, all 

these measures are mostly technological in contrast to behavioral and failure of the 

human component can fail the whole mission of improving energy efficiency.   

With reference to the Building energy data book, commercial buildings include 

offices, stores, restaurants, warehouses, other buildings used for commercial 

purposes, and government buildings. In the U.S., space heating consumed 27% of 

site energy in the commercial sector in 2010, more than any other end use [31]. 

Figure 1.5 shows the results for commercial buildings. 
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Figure 1.5 End use energy consumption in commercial buildings [31] 

1.3.3 The role of occupant behavior in low energy buildings and nZEB 

To reach his comfort condition, the occupant can modify control parameters 

(thermostat set point, ventilation rate, lighting level and equipment use) invalidating 

the ideal designed efficient model. For this reason, it is essential to establish the 

right hypotheses on the air conditioning schedule, utilization of appliances, and 

comfort level of the building in order to obtain a proper evaluation of the energy 

consumed in the actual building operation. In nZEB, indoor comfort (thermal and 

visual) should be achieved mainly thanks to free resources of energy such as solar 

radiation and natural ventilation. Consequently, the users’ behavior has a high 

impact on the final energy use depending on the correct utilization of passive 

systems and the operating of active technologies. In low energy buildings, a 

significant contribution is also represented by the internal gains, and these have a 

direct relation with the users’ behavior and occupancy. The role of the occupant in 

the building performance and in the resident’s perception of low energy homes is 

not yet known [37], [38].  

Brandemuehl and Field [39], studied the effect of occupant behavior in residential 

nZEB located in different states of the United States to evaluate the effect of house 

type and climate in the ability to achieve a zero energy goal. The comparison 

between a conventional single-family residence and a very energy efficient single-

family residence confirmed that random fluctuations in the schedules and the level 

of miscellaneous electrical loads have the highest influence on the second group. 

Murano et al. [40], demonstrated that the effect of the outdoor climatic data is an 
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important factor in the evaluation of the energy performance of building and is 

crucial for nZEB.  

Some studies on the effect of occupant behavior in nZEB have been specifically 

developed. Barthelmes et al. [41], investigated a residential nZEB located in 

Northern Italy by means of energy simulations. The authors took into consideration 

different occupant behavior lifestyles (low consumer, standard consumer and high 

consumer) and household composition (family of 4 people, old couple and young 

couple) to evaluate their effect on energy performance and thermal comfort 

conditions. The high impact of these two variables was demonstrated. Also, it was 

concluded that the variation of different types of households increases the 

discrepancy of the final energy consumption in the several scenarios (~240%). 

Brahme et al. [42], compared the impact of occupant behavior of a typical and high 

efficiency residence. They considered three profiles of users (conservation 

behavior, design point, and wasteful behavior) and concluded that conservation 

oriented behavior could reduce energy consumption by nearly half in a high 

efficiency residence. Love (2012) [43], examined the impact of different occupant 

heating behaviors on a typical semi-detached UK dwelling. The researchers 

evaluated three different behaviors scenarios (low, middle and high) and three 

aspects were defined: set point temperature, number of heated rooms, and daily 

heating periods. They found applicable results about policy regarding the occupant 

effect in inefficient dwellings and the necessity of selecting the right policies and 

behavioral change programs. 

Becchio et al. [44], evaluated the energy performance of a high-performance 

building in the Italian context and identified a significant difference between the 

energy consumptions calculated during the design phase and the monitored phase: 

+50% for space heating, +19% for DHW and +16% for electricity uses. The authors 

concluded that these differences were not related to the building features, but, 

instead, to the occupant behaviors.  

A study developed in the UK [45] on a site of 26 ‘low energy’ dwellings evaluated 

the energy performance of the buildings in terms of water and electricity 

consumption, and the comfort of users.  The authors identified differences in 

consumption of similar homes by using behavioral surveys and statistical analysis. 
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The researchers found that energy-efficient behaviors account for 51%, 37%, and 

11% of the variance in heat, electricity, and water consumption, respectively. 

1.4. Occupant behavior and energy simulation of buildings 

Occupant interactions with building systems lead to the impact of the occupant on 

building system performance (e.g. indoor environment, energy consumption, etc.).  

Terms of energy balance influenced by occupant behaviors and user profiles are: 

Thermal losses through glazed ↔ Use of shutters 

Heat lost by natural ventilation ↔ Windows opening 

Solar gains    ↔ Use of sunshades 

Internal gains    ↔ Occupancy, equipment, lighting 

Building simulation tools are based on heat transfer and thermodynamic equations, 

and they typically model human actions (e.g., operation of lights, blinds, and 

windows) employing predefined fixed schedules or rules [46]. The influence of 

occupants’ profiles and preferences, for example family size, ventilation, set point 

temperatures, and management of the heated area, on the indoor conditions are 

relevant to the final energy usage. For this reason, suitable use profiles should be 

introduced in energy calculations to deliver a more accurate energy performance of 

buildings [12], [47], [48]. 

The heat and mass flow regimes in buildings depend on some aspects regarding 

physical and behavioral characteristics [49]. 

There is a wide range of building simulation software (BSS) tools available which 

analyze energy consumption in buildings (ESP-r, TRNSYS, DOE-2, Energy Plus, IDA ICE, 

etc). These tools can analyze and predict energy consumption patterns in buildings 

by specific datasets. Each of them has simplified static and deterministic occupant 

schedules and profiles used as direct inputs. For BSS, the occupant behavior is 

described as different schedules of occupancy, heating, cooling, ventilation and 

window opening, DHW, electrical appliances/lighting, cooking, and sun shading. 

In [50] a list of building energy simulation programs with their applications, 

simulation engine and limitations was presented. To include occupant behavior in 

BSS four main approaches have been used: 1) User defined profiles and rules 
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(include specific deterministic rules), 2) User customized code (the user can write 

it to implement new or overwrite existing), 3) User customized tools (for open 

source, users can add new code and changing existing code) and 4) co-simulation 

(through modules developed by different programming languages can be executed 

in an integrated manner). ESP-r used approaches 1 and 3, and it has an embedded 

behavior module, TRNSYS allows approaches 1 and 3, DOE-2 allows approaches 

1 and 2, Energy Plus allows all four integration approaches and IDA ICE allows 

approach 1 through 3 [7] . 

Occupant interactions with building systems lead to the impact of the occupant on 

building system performance (e.g. indoor environment, energy consumption, etc.). 

These occupant-building interactions are divided into passive and active 

interactions. Passive effect regards the metabolic heat gain produced by occupants, 

and the active effect regards the use or operation of building device objects (blinds, 

windows, lights, air-conditioning, appliances, etc.).  

 

Figure 1.6 Interaction between occupant s and the building system 

Models of human behavior are based on statistical and probabilistic algorithms that 

predict the probability of an action or event. 

The models of user behavior and energy simulations are based on two different 

approaches, deterministic and probabilistic. In the deterministic approach, human 

behavior is treated as a fixed schedule or is built on the assumption of purely 

rational behavior. On the other hand, probabilistic models typically use statistical 

data to predict the probability that certain activity occurs. 
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Building energy systems (BES) can be defined as those which are responsible for 

consumption of energy in buildings (building space, HVAC systems, lighting 

systems and occupancy and comfort). These can be any physical equipment or 

machinery or can be a process or a combination of them [50]
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2. CHAPTER  

BUILDING OCCUPANCY  

2.1.  Approaches for occupancy monitoring 

Occupant movements and presence are fundamental to occupant behavior 

simulation by providing information about whether a room is occupied, the number 

of occupants, or the specific individual in the room. The real occupancy patterns in 

buildings may differ significantly from each other. 

Existing research includes numerous data collection approaches including non-

invasive occupant observations, observing occupants that have had perturbations 

applied, surveys, and laboratory studies [1]. Therefore, the occupant monitoring 

approaches were first divided in three main categories:  

(a) Observational studies, the occupant behavior and presence and indoor 

environmental variables are passively monitored. The monitoring can be divided 

into two groups: occupancy and equipment use monitoring and adaptive behavior 

monitoring.  

(b) Occupant surveys and interviews, should be developed by using established 

methodologies and the complete survey should be published with the results.  

(c) Laboratory studies, controlled laboratory-based studies in the field of occupant 

behavior modeling play an important role in assessing occupant comfort conditions 

and establishing measurements.  

Gathering data on human building interaction is a new horizon for achieving energy 

efficiency in the building sector. Measurements of energy-related behavior are 

collected using a) physical sensing, and b) non-physical sensing methods [2]. Figure 

2.1 shows a scheme of these methods, on the left side objective measurements 

concern smart metering and building data as well as indoor and outdoor 

environmental data (details of these tools and techniques are in section 2.2.1) and 

on the right side the subjective measurements referred to gathered data using 

surveys or interviews techniques are in section 2.2.2.  
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In this investigation, the second and third categories were used for data collection.  

Chapters three and four explain in detail the methodology employed for residential 

and office buildings. 

 

Figure 2.1 Sensing methodology approach of energy -related occupant behavior in 

buildings [2]  

Regarding the parameters that must be considered to obtain the information 

necessary to analyze the behavioral actions in office buildings, the authors in [3] 

classified it as shown in Table 2.1. 

Outdoor parameters Indoor parameters Energy data Occupants data 
Air temperature Air temperature Total energy use Age 
Air humidity Air humidity Submetering Gender 
Wind speed CO2 Energy production 

(renewable) 
Working profiles 

Wind direction Occupancy   
Solar irradiance Light level   
Illuminance Window state   
Rain Shading state   
CO2 Door state   
 Plug loads   
 Thermostat settings   
 Heating /cooling state   
 VOC (volatile organic 

compounds) 
  

Table 2.1 Data gathering to investigate occupant behavior studies in thermal 

comfort,  occupancy, windows, shades and blind, and lighting and electrical 

equipment [3]  

Sensor fusion approaches build upon the use of multiple sensors or sensing 

modalities in an attempt to combine their advantages while cancelling out their 

disadvantages as much as possible [4], [5]. In general, to overcome the disadvantage 

of an individual detection system, a fusion of multiple sensors is encouraged in 

occupancy detection. On the other hand, sensor fusion requires more computing 

and processing power and often the installation and maintenance costs are 

significant [6]. 
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2.2.  Occupancy detection 

Occupancy detection is defined as the real time detection of occupancy presence 

status; it has two values: “occupied” and “unoccupied” [7]. The methods used for 

occupancy detection can be grouped into three categories [8]: 

Direct sensing method, the direct sensing method of occupancy detection relates to 

the deployment of sensors or sensor networks for directly sensing or tracking the 

presence of occupants by the use of motion detectors or mobile unit tracking.  

Modeling method uses statistical data analysis. 

Combined method, is a combination of advanced analysis methods, such as 

statistical methods, with physical measurements, which includes direct or other 

types of measurements. 

Another classification of the occupancy detection system for obtaining spatial-

temporal properties and the specific sensor that can be applied was proposed by [9]. 

It is based on:  

• Method, regarding the need for a terminal (mobile phone, radio frequency 

identification tag (RFID) or other); 

• Function, individualized or non-individualized, depending on the ability to 

detect, identify and determine the track of an individual occupant; 

• Infrastructure, implicit or explicit, depending on whether it was installed for the 

purpose of measuring the occupation or as a secondary function. Melfi et al. 

[10], measured building occupancy by using existing network infrastructure. 

In Table 2.2 different sensors were classified with reference to the previous criteria. 

  Sensors 

  
CO2 PIR Ultrasonic Image Sound 

EM 
Signals 

Power 
meters 

Computer 
App. 

Sensor 
fusion 

Method 
Terminal      x   x 

Non-terminal x x x x x  x x x 

Function 

Individualized         x 

Non-

Individualized 
x x x x x x x x x 

Infrastructure 
Implicit    x  x  x x 

Explicit x x x x x x x  x 

Table 2.2 Classification of occupancy detection systems [9]  
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According to spatial-temporal properties of occupancy measurement, Table 2.3 

shows which sensors can measure different properties. In the next section, details 

of the spatial-temporal properties will be presented.  

 Sensors 

 
CO2 PIR Ultrasonic Image Sound 

EM 
Signals 

Power 
meters 

Computer 
App. 

Sensor 
fusion 

Location x x x x x x x x x 

Presence x x x x x x x x x 

Count x   x  x  x x 

Activity x   x  x x x x 

Identity    x  x  x x 

Track    x  x   x 

Table 2.3 Sensors classified by granularity  [9]  

2.2.1.  Sensing technologies 

Technologies of occupant sensing can be organized into six categories: image-

based, threshold and mechanical, motion sensing, electromagnetic signal,  

environmental, person interactive, and consumption sensing [11].  

Imaged-based Sensing, image-based occupant detection technologies detect 

electromagnetic information and convey it in the form of a matrix. The technologies 

in this category consist of visible light cameras, luminance cameras, IR cameras, 

light level sensors and stereo cameras. There are high detection accuracies with 

good quality camera sensors [12]. Image detection systems are non-terminal based 

and can be used to provide individualized functions [9]. 

Threshold and mechanical, both detect the change in state of a building component 

with which occupants frequently interact such as a door, window or air 

conditioning. The examples in this category are reed contacts, door badges, 

piezoelectric mats, and IR beams. Reed contacts are cheap sensors and low power 

sensors that are easy to mount on doors or windows.  

Motion sensing, these sensors detect the presence or absence of an occupant through 

occupants movements. The most common is the passive infrared (PIR) sensor. All 

objects including humans with a temperature above absolute zero emit heat energy 

in form of radiation. The emitted infrared radiation is invisible to the human eye 

but can be detected by electronic devices such as a PIR sensor [9]. Other types are 

ultrasonic Doppler, microwave Doppler and ultrasonic ranging.  
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Electromagnetic signals, relevant technologies for occupancy detection include: 

wireless fidelity (WIFI), Bluetooth, Ultra-wideband (UWB), radio frequency 

identifications tags (RFID) and the global positioning system (GPS). The system 

usually consists of a transmitting and a receiving node. The transmitted signal may 

consist of a short series of pulses or modulated radio signal [9]. It is important to 

consider that the high frequency signals that are transmitted through the air are 

affected by humidity, presence of other signals and many other environmental 

factors.  

Environmental sensors are a diverse set of sensors. They primarily consist of CO2, 

temperature, relative humidity, acoustic and volatile organic compounds. Of these, 

CO2 and acoustic sensors are considered the most effective at detecting occupant 

presence [13], [14]. For every sensor in this category except acoustic sensors, there 

is a delay between occupants entering a space and occupant presence detection. 

With these sensors, it is also possible to achieve mapping of occupant comfort .  

Human in the loop, the most basic and straightforward methodology used for 

occupancy information collection is that of the questionnaire and interviews [15]. 

Human in-the-loop methods are defined by cases where occupancy is measured 

with a human being involved. Manual observation covers the logging of data 

performed by a person directly by sensing the information being relayed. The 

methods in this category are manual observation, internet-based occupant data, and 

device interactions.  

Consumption sensing, covers methods that use the correlation between occupancy 

and occupant actions and the water and energy consumption in buildings. The 

change in energy consumption when the device changes state from idle to active 

provides information from which users location and presence could be inferred [9].  

Based on the technologies described in the previous section, nine performance 

metrics can be individuated: cost, deployment area, collection style, power type, 

sensing range, accuracy, data store, data sensed, and deployment level [11]. 

Equipment cost is identified as the primary driver in deciding on investing in 

metering and sensing equipment [16]. The cost consists of some individual costs, 

such as the cost of the hardware, cost of installing and integrating the hardware and 

the cost of operating and technology.  
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In order to set up an experimental setup, it is necessary to evaluate each one of these 

parameters to identify the combination that allows obtainment of the expected 

results. 

2.2.2.  Surveys and interviews 

As mentioned before, one of the most used methods to collect information is by 

occupant surveys and interviews. The use of survey questionnaires is widely 

utilized to identify different variables related to energy consumption [17]–[20]. 

Some studies were focused on the comfort evaluation [20]–[23], energy 

consumption [18], [24]–[26], energy policies and energy saving [27]–[30] or  

occupant behavior aspects [31]–[34].  

In a survey research by D’Oca et al. [35], the authors propose a structure of the 

occupant behavior framework shaped by geographical and climatic contexts, 

culture and norms for office buildings. The questionnaire explores aspects as: 

comfort, habits, intentions and control (see Figure 2.2). In fact, different kinds of 

occupant behaviors can be identified through surveys conducted in various 

countries, cultures and climates. 

 

Figure 2.2 Structure of the occupant behavior motivation survey framework  [35]  

One of the key limitations of the survey methodology is the low response rate. In 

some cases, due to the length and detail of the questionnaire and to the fact that 

respondents felt uncomfortable with providing personal information about their 

lifestyle and personal belongings [36]. In some cases to increase the response rate, 

some incentives can be offered [22], [37].  

2.2.3.  Categories and classification  

The impact of occupants’ behavior on their daily environment can be divided into 

various methods of interactions and can be represented as in Figure 2.3. 
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Figure 2.3 Interaction between occupancy and indoor environment  [38]  

Each interaction can be described or defined as a stochastic process. Occupants emit 

heat, pollutants and odor, and generate sound to the space. These interactions and 

their effect on the indoor environment can be measured via pertinent environmental 

sensors [38]. As the human presence emits heat and pollutants, it is related to the 

indoor environment [39]. Zhang et al. [40], concluded significant correlations 

between the occupancy and the environmental variables with values of 35.70% for 

CO2, 32.49% for relative humidity and 11.98% for temperature.  On the other hand, 

information regarding the occupancy level can be found through sensor networks. 

Dong et al. [38], investigated the use of ambient sensors for detecting the number 

of occupants in an office building. The experimental setup was divided into three 

separate sensor network systems: the wired sensor gas detection sensor network, 

which measures carbon dioxide (CO2), carbon monoxide (CO), total volatile 

organic compounds (TVOC), outside temperature, dew point, small particulates 

(PM2.5); a wireless ambient-sensing network, which measures lighting, 

temperature, relative humidity (RH), motion detection and acoustics; and an 

independent CO2 sensor network. The authors concluded that there are significant 

correlations between measured environmental conditions and occupancy status, in 

particular with humidity, acoustics, and CO2, while insignificant correlation with 

temperature data has been reported. 

The results in [13] indicate that there are significant correlations between measured 

environmental conditions and occupancy status, specially acoustics and CO2 

measurements. Also, the presence of occupants has a direct effect on the air quality 

indexes (temperature, CO2, and humidity levels) [14].  

The authors in [9] used the chair sensor for occupancy measurement and compared 

it with CO2 concentration measures; furthermore, values of airflow rate, door state, 
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air volume, thermal comfort conditions (air temperature, mean radiant temperature, 

relative humidity) were recorded. In this study, the comparisons between chair 

sensors with CO2 sensors were analyzed, and they concluded that chair sensors 

provided fine-grained occupancy information for the control of building systems at 

a low-cost. 

Energy monitoring is necessary to understand the sources of consumption inside 

the building and to take appropriate measures to save energy. To perform energy 

monitoring, dedicated hardware needs to be situated in the main electric distribution 

board, in specific branches/circuits or even on wall sockets to measure the 

consumption of individual electric appliances [41]. The quality of information 

provided by different types of sensors varies widely and can be thought of like the 

resolution of the sensor. The notion of occupancy measurement should include 

information about the space, occupants, and time span [10]. Figure 2.4 shows 

different levels of occupancy resolution regarding these three parameters.  

 

Figure 2.4 Occupancy resolution [10]  

Kjærgaard and Sangogboye [12] described a categorization for sensor technology 

with the approach of knowing better sensing systems and their properties and in this 

way improved the building occupancy sensing systems. In this framework, nine 

categories were defined (Figure 2.5). 
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Figure 2.5 Nine categories for sensor technology proposed by [12]  

It is necessary to know each of these nine categories to develop an experimental 

setup for the study of occupant behavior and occupancy sensing systems. 

Activities drive occupants’ movement among rooms and in and out of a building. 

Occupancy  is defined as an occupied status or number of occupants at four levels 

varied with time: the number of occupants in a building, a space is occupied or not, 

the number of occupants in a space and in which space and occupant are located 

[42]. 

Depending on the type of occupancy measurements systems used, it is necessary to 

define which information can be obtained concerning occupants’ presence and 

movement. Occupancy information can be classified into three observable 

categories (Figure 2.6): spatio-temporal properties, behavioral properties, and 

physiological properties [5].  
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Figure 2.6 Spatial-temporal, behavioral and physiological properties of occupancy 

measurement [5]  

Definition of the spatial-temporal properties relating to building energy 

consumption are:  

• Presence, the frequency of an occupant leaving his/her office and the 
corresponding duration of the absence.  

• Location, where the occupant is in the office. 

• Count, this property provides information on the ‘numbers’ of occupants in a 
particular thermal zone within the building. 

• Activity, use of appliances and heating/cooling system in the office. 

• Identity, this property relates to information on ‘who’ is in a particular thermal 
zone or space in the building. 

• Track, this property provides information about the particular occupant’s 
movement history across different thermal zones in the building. 

The six properties described above provide an insight into what constitutes 

comprehensive, fine grained occupancy information [9]. 

Another aspect to take into consideration for the occupancy sensing system is the 

granularity related to the characterization of the resolution of occupancy 

information. Kjærgaard and Sangogboye [12], categorized the granularity 

according to the criteria of the Industry Foundation Classes (IFC).  According  to 

the IFC data model (Figure 2.7), a Site is a physical area, a Building is a physical 

structure placed on a site, a Building Story is a single story of a building, a Space 

is a subpart of a story which might correspond to several rooms in the same HVAC 

zone, a room or a subpart of a room. An object is a physical element placed in a 

Spatio-temporal
• Presence
• Location
• Count
• Identity
• Track

Behavioral
• Group behavior
• Behavior
• Activity
• Action
• Pose

Physiological
• Blood pressure
• Temperature
• Weight
• Skin color
• Heart rate, etc..
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space. The temporal granularity periodic denotes that the sampling and processing 

of occupancy information is executed at regular periodic intervals and the event-

based scheme where new occupancy information is available when an event occurs.  

 

Figure 2.7 Spatial and temporal granularity [12]  

On the other hand, the temporal and spatial coverage of an occupancy sensing 

system, for spatial coverage the classification is the same as that of granularity and 

for temporal coverage it takes into account three times, for the past, present and 

future. 

Another important category is the modeling strategy that characterizes the modeling 

of occupancy behavior (see Figure 2.8). 

 

Figure 2.8 Sensing Modeling [12]  

Conditional rules, model the relationship between sensor input as conditional rules; 

for instance, that a door opening event indicates that the occupancy of a room 

changes. 

Agent-based Models, model occupants as agents whose behavior is defined among 

others by modeling their itinerary, path choices, and walking behavior. 

Stochastic Models, model the probability and correlation among occupancy 

behavior events amount others the likelihood of changes in occupant presence. 
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Machine learning, learns models of occupancy information from data including 

learning the mapping between sensor input and occupancy levels. 

Prediction algorithms, enable the prediction of future states, e.g., from GPS 

tracking predict the earliest point in time when an occupant can arrive back home. 

Signal analysis, covers the use of signal analysis methods including methods for 

signal decomposition and image processing. 

Heuristics, cover a broad range of simple algorithm steps that does not fall under 

any of the other categories. For instance, simple thresholding on values. 

Improving the energy performance of buildings is an important goal towards 

realizing a more sustainable society. A significant challenge for improving the 

energy performance is the impact of occupancy behavior [43].  

The last category regards sensor modality, associated with the modalities for 

collecting occupancy behavior data is shown in Figure 2.9. 

 

Figure 2.9 Sensing Modality [12]  

In this work, sensors such as air, magnetic fields and electricity were considered for 

office buildings in order to do the experimental setup (see details in chapter 4).  

Before deciding the configuration of the experimental setup, it is necessary to 

understand what kind of results we want to know and what type of sensor strategies 

will be applied, then what types of modeling strategies will be utilized. 

Occupant data •Social networking, calendar, computer networks

Force •Device input, pressure, switch

Visible light •Light level, video camera

Infrared light •PIR, thermal camera

Sound •Microphone, transmission

Ultrasound •Sonar, transmission

EW Waves •Radar, radio-based communication

Air •CO2, temperature, humidity

Magnetic fields •Reed switch, compass, access cards

Electricity •Meter

HVAC Data •Heating actuation level, cooling actuation level

Water •Flow meter
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2.3.  Occupancy patterns 

Regarding studies to determine occupancy profiles in office buildings or residential 

buildings, two types can be identified: 1) determination of deterministic occupancy 

patterns, and 2) development of predictive models of occupancy [34].  

For the identification of deterministic occupancy patterns (non-predictive), various 

sources of information can be used. Occupancy profiles are defined through Time-

Use survey (TUS) data. Aerts et al. [44], described a methodology to obtain 

occupancy profiles based on the 2005 Belgian time-use survey with the aim of using 

it for user behavior modeling in building energy simulation. The authors of the 

study developed seven user profiles reflecting realistic user behavior in homes. 

Similarly, Richardson et al. [45], defined occupancy profiles for UK households by 

using TUS data describing people habits. The developed models indicate the 

number of occupants in the house at a given time to have the indication on the 

sharing of energy use. Wilke et al. [46], used French time-use survey data to 

calibrate the stochastic model and to predict activity chains. Widén et al. [47], 

developed for residential buildings, the daily electricity and hot-water demand 

profiles using a large dataset of time use in Sweden. This model shows more 

similarity between modeled and measured electricity demand and less for hot water. 

The Centre for Time Use Research [48] has a list of external links enable to access 

to some original time use survey data directly. 

Guerra-Santin [49], used a survey to identify behavioral patterns through statistical 

procedures and build user profiles based on the household and building 

characteristics related to these behavioral patterns. 

The studies of development of predictive models of occupancy focus on the 

development of stochastic occupancy profile. For office buildings, stochastic 

models capable of simulation occupancy patterns have been presented in various 

studies [39], [50]. 

Occupancy profiles in the occupant behavior studies are related to the use of cooling 

and heating, equipment and lighting, and occupancy. An amply used method in 

energy simulation is to model the influence of occupants through diversity factors. 

Diversity profiles for different categories of internal gains and kinds of buildings to 
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estimate the impact of internal heat gains on energy and cooling load calculations 

[51]. The profiles depend on the type of building and on  the type of occupants [52]. 

Diversity factors are numbers between zero and one, and are used as multipliers of 

some user-defined maximum load, e.g. occupants, lighting, and equipment. Load 

variability due to absenteeism or power management features of IT equipment, is 

ordinarily defined by associating different sets of 24-h diversity factors, or diversity 

profiles, for weekdays, weekends, holidays, etc. The goal of the ASHRAE Research 

Project 1093 [51] was to compile a library of schedules and diversity factors based 

on measured electricity used data for energy simulations and peak cooling load 

calculations in office buildings [53].  

The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) Standard 90.1-2004 includes standardized occupancy diversity factors 

for different building types which can be used to design occupancy when actual 

schedules are unknown. These schedules take the form of a daily profile, applied 

differently to weekends and weekdays, and composed of hourly values, each of 

which corresponds to a fraction of the occupancy or the energy use [2]. These 

diversity factors are in tables for different building types and zones by hour of day. 

Energy modelers account for the variability in occupancy throughout the day and 

other simulation inputs that vary with time using diversity factors or profiles [54].  

Duarte et al. [54], showed occupancy patterns in an 11-story office building by 

means of the use of 629 pre-existing ceiling-mounted passive infrared occupancy 

sensors, these sensors are designed to control light fixtures based on a 

predetermined time delay for this building and only report change of state, it does 

not count people. An analysis of occupancy sensor data showed variations of 

occupancy diversity factors for time of day, day of the week and month. It has been 

demonstrated that measured occupancy data have a lower diversity factor than the 

ASHRAE 90.1 2004 energy cost method guidelines, the document used by energy 

modelers for simulations. 

The authors in [55] proposed a framework for occupancy schedule learning and 

prediction, based on a data mining approach, which takes into account six steps: (1) 

problem framing, (2) acquire and prepare data, (3) methodology selection, (4) 

learning, (5) prediction and (6) validation. The cluster analysis and decision tree 
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method were used. Moreover, a case study was developed for an office building in 

Philadelphia (U.S.) based on one-year observed data. The building has a surface of 

6410 m2 over three floors and was constructed in 1911. Four sensors are installed 

at the gates of the building to record the number of occupants entering and exiting. 

Different patterns of occupant presence were developed with this data. Four clusters 

of occupant presence were identified: Pattern 1 with the lowest occupancy rate and 

the shortest working time, Pattern 2 with the highest occupancy rate and the longest 

working time, Pattern 3 with medium occupancy rate, medium working time, 

going-to-work later and going-home later and Pattern 4 which is similar to Pattern 

3 with a medium occupancy rate and medium working time. 

D’Oca and Hong [56] evaluated another data mining framework, using three steps: 

(1) Decision Tree model, (2) Rule Induction and (3) Cluster Analysis. An office 

building located in Frankfurt, Germany was used as a case study. Occupancy 

measurements in 16 private offices with a surface of 20 m2 each built in 2002, with 

single or dual occupancy, were considered as a dataset. The proposed methods in 

this study identified rules of occupancy and archetypal user profiles, that can be 

used as input to current building energy modeling programs, to investigate the 

impact of occupant presence on design, operation, and energy consumption in office 

buildings. 

Mahdavi et al. [57], realized an experimental setup taking into account 

measurements of indoor parameters such as temperature, relative humidity and 

illuminance, and outdoor parameters like air temperature, relative humidity, wind 

speed and global horizontal irradiance. The state of occupancy and ambient light 

fixtures were captured using a sensor mounted under the luminaire and state of 

windows, and shades/curtains were monitored taken digital photographs on the 

facade
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3. CHAPTER  

RESIDENTIAL BUILDINGS 

3.1. Objectives 

The purpose of this part of the investigation is to evaluate which factors affect the 

energy performance of a housing stock representative of Mediterranean climatic 

conditions. The residential sector is used to test the relative roles of socioeconomic 

and behavioral aspects of occupants, as compared with climatic and physical 

building characteristics. The main parts of the investigation are summarized in 

Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1 Residential buildings f ramework 

Information was collected through questionnaires, interviews and energy bills; 

subsequently, two analyses were conducted with the information from the 

aforementioned sources. One of them was a statistical analysis and the other 

involved the definition of occupancy profiles and a case study. The aim of these 

two analyses was to evaluate the influence of physical and occupancy variables on 

the prediction of energy needs. 

Residential Buildings 

Sources of information: questionnaires, 
interviews, and energy bills 

Statistical/correlation 
analysis 

Occupancy profiles 
and case study 

Evaluation of the influence of physical 
and occupancy variables on the 

prediction of energy needs 

Data collection and processing  
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3.2. Data Collection 

Data collection started in 2012, and the participants were the families of engineering 

students of the University of Calabria. The investigated area is a region located in 

Southern Italy typical of Mediterranean climatic conditions. The region has a 

population of 2 million people and a total of 111 households were interviewed in 

this study. 

Six typologies of parameters are considered to identify and set up a combination of 

them that allows for the obtainment of high-quality data and get more reliable 

information how occupant behavior influences energy consumptions. The 

questionnaire consists of 63 questions divided into six groups of parameters as 

shown in Figure 3.2.  

 

Figure 3.2 Sections of the  questionnaire  

In detail, the survey is structured as follows: 

1. General Information: 
Containing the key features of the building and family information questions 

regarding the type of building, size, structure, windows, as well as demographic 

information relating to the age and gender of the family members and the total 

household income.  

2. Household energy consumption information: 
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Questions regarding energy consumption addressed the following: real energy 

consumptions based on data from bills and electricity use of domestic appliances, 

conditioning, domestic hot water (DHW), and equipment.  

3. Conditioning and DHW equipment: 

Questions regarding heating system plant typology, air conditioning, DHW and the 

main control strategies. 

4. Domestic appliances and their use: 

Questions regarding type, capacity, and energy label of each appliance.  

5. Occupant behaviors: 

Questions regarding daily routine about the use of heating system, cooling system, 

DHW. Questions about behavior in relation to window opening, adjusting heating 

and turning the lights on. 

6. Renewable energy system: 

Comprising thermal and PV panels. For this sample, none of the participants has an 

alternative generation system installed.  

Additionally, for each dwelling, the energy certification according to the Italian 

legislation UNI/TS 11300-1 [1] has been realized, and complete data about 

electricity bills and gas consumption, building features, stratigraphy and 

transmittance of the walls and features of the system were obtained.  

3.3. Descriptive analysis of data  

Each section of the questionnaire was analyzed to know and understand the main 

characteristics of the sample. A statistical analysis of the parameters was carried 

out using the Software R [2]. The survey responses are presented as categorical and 

continuous variables. All the parameters were checked for normality and outliers. 

Normality was verified by the analysis of skewness and kurtosis. Skewness is a 

measure of symmetry and kurtosis is a measure of whether the data are peaked or 

flat relative to the normal distribution; a value of zero represents a Gaussian 

distribution. Variables with a value larger than 1 for these parameters were 

transformed to improve the normality. 

The majority of data were categorical. Table 3.1 reports the descriptive statistics for 

continuous parameters. Three variables did not meet the criteria for normality and, 

for statistical elaborations, electricity consumption was transformed into its square 
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root and heating degree days and floor area were converted into logarithm 10 [3], 

[4]. 

Table 3.1 Descriptive statistics of continuous variables 

 

Figure 3.3 shows a graphical representation of the mentioned parameters and the 

average age of families. 

 

 
Variables Mean 

Standard 

Deviation 

Number 

of cases 
Skewness Kurtosis 

Energy 

Electricity 
consumption 
(kWh) 

2719 1325 103 0.777 0.996 

Energy for 
heating and 
DHW (kWh) 

7668 3299 70 0.189 -0.022 

Household 

Average age 
of the family 

35.8 8.2 95 0.202 0.462 

Age of the 
household 
head 

51.9 14.0 95 -0.892 0.491 

Number of 
household 
members 

3.7 1.0 98 -0.332 -0.390 

Building 
Floor area 
(m2 ) 

141.3 75.6 98 2.062 5.780 

Weather 
Heating 
degree-days 

1551.2 487.4 84 0.885 1.073 

a) b) 
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Figure 3.3 Histogram of (a) electricity consumption, (b) energy for heating and 

DHW, (c) floor area and (d) average age of the family.  

3.3.1. General information 

The aim of this section is to examine general information about householders and 

building constructions. Table 3.2 provides the results about the profile of the 

respondents. Building parameters describe the physical characteristics of the 

dwellings, including date of built, floor area, floor number, type of windows and 

others. The occupant data regard the size of household, the total annual household 

income, and the age of the householder. 

Table 3.2 Descriptive statistics of categorical variables. Section 1: general 

information 

Variables 
Responses 

N Percent 

(%) 

Building 

Type of house 

(a) Single house   
(b) Double house 
(c) Apartment      
(d) Other 
(e) Not answered 

27 
8 
63 
1 
13 

24 
7 
56 
1 
12 

Year of construction  

(a) Before 1980 
(b) 1980 - 1990 
(c) After 1990     
(d) Don’t know 
(e) Not answered 

32 
18 
49 
0 
13 

29 
16 
44 
0 
11 

Floor area (m2) 

(a) Less than 70 
(b) 70-150 
(c) More than 150 
(d) No answer 

9 
62 
27 
14 

8 
55 
24 
13 

Floors number 

(a) 1 
(b) 2 
(c) 3 
(d) 4 
(e) Not answered 

64 
17 
11 
6 
14 

57 
15 
10 
5 
13 

Structure 

(a) Reinforced concrete  
(b) Stone               
(c) Wood                      
(d) Other 

87 
7 
0 
4 

78 
6 
0 
4 

c) d) 
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(e) Not answered 14 12 

Type of windows 

(a) Double glass           
(b) Single glass 
(c) Other                     
(d) Don’t know 
(e) Not answered 

67 
28 
3 
0 
14 

60 
25 
3 
0 
12 

Type windows’ 
frame 

(a) Aluminum 
(b) Wood 
(c) Other 
(d) Alloy 
(e) Thermal break 
(f) Don’t know 
(e) Not answered 

46 
39 
8 
1 
4 
0 
14 

41 
35 
7 
1 
4 
0 
12 

Type of glass 

(a) Double deck vacuum 
glass  
(b) Low-e glass  
(c) Clear glass  
(d) Other  
(e) Don’t know 
(e) Reflective glass 
(f) Not answered 

44 
 

3 
34 
3 
14 
0 
14 

39 
 

3 
30 
3 
12 
0 
13 

Type of external 
walls 

(a) With thermal insulation     
(b) Without thermal 
insulation 
(c) Not answered 

45 
50 
 

17 

40 
45 
 

15 

Type of slabs 

(a) With thermal insulation     
(b) Without thermal 
insulation 
(c) Not answered 

34 
62 
 

16 

30 
55 
 

15 

Family 
information 

Age of household 
members 

(a) Less than 19 
(b) 19-30 
(c) 30-50 
(d) 50-65 
(d) More than 65 
(e) Not answered 

22 
167 
33 

117 
7 
15 

6 
46 
9 
32 
2 
5 

Gender  
(a) Female 
(b) Male 
(c) Not answered 

181 
156 
24 

50 
43 
7 

Prevalence of gender 

(a) Male 
(b) Female 
(c) Equality 
(d) Not answered 

24 
43 
25 
20 

21 
38 
22 
19 

Total annual income 
(€) 

(a) Less than 30000 € 
(b) 30000-70000 € 
(c) 70000-100000 € 
(d) More than 100000 € 
(e) Not answered 

43 
33 
2 
1 
33 

38 
30 
2 
1 
29 

Weather Heating degree day 

(a) A (less than 600)  
(b) B (601-900) 
(c) C (901-1400) 
(d) D (1401-2100) 
(e) E (2101-3000) 
(f) F (more than 3000) 
(g) Not answered 

0 
8 
28 
39 
10 
0 
27 

0 
7 
25 
35 
9 
0 
24 
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3.3.2. Household energy consumption information 

In order to know household consumption information for each dwelling, Table 3.3 

shows the survey responses as continuous variables. It also presents information 

about DHW consumption. 

Table 3.3 Descriptive statistics. Section 2: energy consumption  

 

 

 

 

3.3.3. Conditioning and domestic hot water equipment 

The survey questions shown in Table 3.4 were used to obtain more information 

about the typology of conditioning and DHW equipment,. 

Table 3.4 Descriptive statistics of categorical variables. Section 3: conditioning and 

DHW equipment  

Equipment Variables Responses N Percent (%) 

Heating 
system 

Typology 

(a) District heating 
(b) Building centralized system 
(c) Autonomous system 
(d) Not answered 

3 
0 
93 
16 

3 
0 

83 
14 

Generation 
system 

(a) Air source heat pump    
(b) Electricity 
(c) Wall mounted gas boiler   
(d) Fireplace 
(e) Pellet  
(f) Other 
(g) Not answered 

2 
8 
62 
15 
0 
11 
14 

2 
7 

55 
13 
0 

10 
13 

Distribution 
system 

(a) Radiator 
(b) Fan Coil 
(c) Radiant floor 
(d) Radiant ceiling 
(e) Other 
(f) Not answered 

91 
1 
3 
0 
3 
14 

81 
1 
3 
0 
3 

12 

Type of 
local 
heating 
equipment 

(a) Oil heater   
(b) Gas heater  
(c) Electric heater 
(d) Warm air blower  
(e) Electric foot warmer 
(f) Electric warm pack  
(g) Electric blanket 
(h) Other equipment 
(i) Not answered 

1 
25 
24 
4 
5 
1 
1 
10 
41 

1 
22 
21 
4 
4 
1 
1 
9 

37 

Air 
conditioning 

Presence of 
wall 
mounted or 
package air 
conditioner 

(a) Yes 
(b) No 
(c) Not answered 

23 
20 
69 

20 
18 
62 

 Variables Mean 

Energy 

Electricity 
consumption 
(kWh) 

2719 

Energy for 
heating and 
DHW (kWh) 

7668 
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DHW 

Typology 
(a) Centralized system 
(b) Decentralized system 
(c) Not answered 

37 
56 
19 

33 
50 
17 

Energy 
Source  

(a) Gas   
(b) LPG  
(c) Gas +solar 
(d) LPG + solar 
(e) Electricity 
(f) Pellet  
(g) Electricity + solar 
(h) Other  
(i) Not answered 

68 
4 
0 
0 
7 
0 
0 
16 
17 

61 
4 
0 
0 
6 
0 
0 

14 
15 

3.3.4. Appliances 

Information about electricity use of domestic appliances, quantity, capacity, and 

energy label for twenty-one of the most common appliances in each household was 

collected (see Table 3.5). 

Table 3.5 Descriptive statistics of categorical variables. Section 4: information of 

domestic appliances  

Appliances Yes No Not answered Mean capacity (w) 

Small TV ( < 40 cm ) 65% 17% 18% 111 
Big TV 60% 22% 18% 163 
Fridge with freezer 81% 1% 18% 300 
Dishwasher 41% 41% 18% 1950 
Washing Machine 77% 5% 18% 1974 
Coffee Machine 14% 68% 18% 850 
Oven 63% 20% 18% 1901 
Micro Oven 35% 47% 18% 927 
Desktop PC 54% 29% 18% 175 
Laptop 63% 20% 18% 100 
Fan 29% 53% 18% 436 
Dryer 5% 77% 18% 2000 
Mixer 26% 56% 18%  
Cooking Robot 14% 68% 18%  
Minipimer 19% 63% 18%  
Hi Fi 25% 57% 18%  
Home Theater 8% 74% 18%  
Hair Dryer 71% 12% 18% 1721 
Straightener 25% 57% 18%  
Only Freezer 25% 57% 18%  
Only Fridge 5% 77% 18%  

3.3.5. Occupant behavior 

Individual occupant behavior was studied through the questions reported in Table 

3.6. Behavior, habits and preferences related to the use of heating and cooling 

system, DHW, windows, lighting, curtains, sunshades and renewable system 

production were collected. 
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Table 3.6 Descriptive statistics of categorical variables. Section 5: occupant 

behavior  

Equipment Variables Responses N Percent (%) 

Heating 
system 

Thermal 
sensation 

(a) Very satisfied 
(b) It doesn’t 

matter 
(c) Satisfied 
(d) Not satisfied. 
(e) Not answered 

22 
11 
 

44 
19 
16 

20 
10 

 
39 
17 
14 

Cooling 
system 

Thermal 
sensation 

(a) Very satisfied 
(b) It doesn’t 

matter 
(c) Satisfied 
(d) Not satisfied 
(e) Not answered 

18 
5 
 

36 
2 
51 

16 
5 
 

32 
2 

45 

DHW 

Use of hot 
water 

(a) Shower 
(b) Wash foods 
(c) Wash clothes 
(d) Wash dishes 
(e) Other 
(f) Not answered 

92 
29 
53 
58 
4 
17 

36 
11 
21 
23 
2 
7 

Kind of 
shower 

(a) Only shower 
(b) Shower + bath 

in a tub 
(c) Bath in a tub 
(d) Other 
(e) Not answered 

67 
31 
 

0 
0 
14 

60 
28 

 
0 
0 

12 

Frequency 
of shower 
during 
summer  

(a) Almost every 
day 

(b) 3-5 times/ 
week 

(c) 1-2 times 
/week 

(d) Other 
(e) Not answered 

80 
 

9 
0 
9 
14 

71 
 

8 
0 
8 

13 

Frequency 
of shower 
during 
winter 

(a) almost every 
day 

(b) 3-5 times/ 
week 

(c) 1-2 times 
/week 

(d) Other 
(e) Not answered 

32 
 

43 
15 
7 
15 

29 
 

38 
13 
7 

13 

Shower 
time 

(a) More than 2 
hours 

(b) 1 hour 
(c) Half an hour 
(d) 10-20 minutes 
(e) Less than 10 

minutes 
(f) Other 
(g) Not answered 

0 
 

6 
11 
64 
14 
 

3 
14 

0 
 

5 
10 
57 
13 

 
2 

13 

Windows 
Opening 
living room 

(a) Always open 
(b) Always closed 
(c) Open at fixed 

time 
(d) Other 
(e) Not answered 

18 
7 
31 
 

35 
21 

16 
6 

28 
 

31 
19 
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Opening 
bedroom 

(a) Always open 
(b) Always closed 
(c) Open at fixed 

time 
(d) Other 
(e) Not answered 

11 
2 
41 
 

36 
22 

10 
2 

37 
 

32 
19 

Lighting 

Type of 
lighting 

(a) All are energy 
saving 

(b) Some are 
energy saving 

(c) No energy 
saving lamps 

(d) Not answered 

29 
 

61 
 

8 
 

14 

26 
 

54 
 

7 
 

13 

Switch 
lamp- 
Living 
Room 

(a) Always switch 
on as long as 
entering room 

(b) When too dark 
(c) Other 
(d) Not answered 

9 
 
 

82 
4 
17 

8 
 
 

73 
4 

15 

Switch 
lamp- 
Bedroom 

(a) Always switch 
on as long as 
entering room 

(b) When too dark 
(c) Other 
(d) Not answered 

8 
 
 

82 
5 
17 

7 
 
 

73 
5 

15 

Curtain  
(a) Yes 
(b) No 
(c) Not answered 

71 
26 
15 

64 
23 
13 

Sunshade  
(a) Yes 
(b) No 
(c) Not answered 

24 
41 
47 

21 
37 
42 

 

3.4. Survey limitations and representativeness 

To collect meaningful information from a population sample investigated by 

questionnaire, the respondents must be somewhat representative of the general 

population. The data set was compared with data provided by the National Institute 

of Statistics [5], to ascertain if it was representative of the population. The average 

age of interviewees was 36 years, which is consistent with the median age of the 

population of 43 years. In particular, 43% of the respondents were males and 50% 

females (7% not answered), in agreement with the regional gender distribution 

(49% males and 51% females). The average annual household electricity 

consumption was 2719 kWh and consistent with the average regional value of 2509 

kWh.  

The most common type of dwelling in the sample was the apartment (56.3%) 

followed by the single house (24%). The majority of the constructions were built 

after 1990 (44%). The average area of dwellings was 141 m2, a large percentage of 
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buildings had a reinforced concrete structure (78%), exhibit uninsulated external 

walls (45 %) and had double-glazed windows (59.8%). With regard to the heating 

system, 83% of the houses were equipped with an autonomous generator, 55% of 

the respondents had a wall mounted gas boiler and natural gas was the most 

commonly used fuel both for heating and domestic hot water production; 13 % of 

houses were heated by fireplaces, and minor percentages were heated by air source 

heat pump (2%) and electric heater (7%). 

Climatic conditions were considered by means of climatic zones defined according 

to heating degree days (HDD) as established by the national regulation [6]. Most 

buildings were located in C and D climatic zones (25% and 35% respectively). 

Information about the quantity per household of 21 appliances was asked. The most 

used appliances were fridge with freezer and washing machine (81% and 77%, 

respectively). Data reveal that 80% of the houses used energy saving lightbulbs. 

Regarding occupants, on average families consisted of 3.7 members. Most of the 

interviewed subjects (46%) were in the age class of 19 - 30 years. The regional data 

show a contrast from the sample because the majority age is between 30-50 with 

29% of the total population. This result is explained because the surveys were 

conducted by students enrolled on a bachelor’s degree programme at the University 

of Calabria, and their family structure is restricted by the existence in every 

household of a member aged 19-30 and thus other relatives between 50-65 years. 

39% of occupants were satisfied with the internal comfort, and the majority of them 

have a shower with an average duration of 10-20 minutes with a higher shower 

frequency during summer. Occupants switch lamps on when it is too dark, and 

generally they open windows at a fixed time. 

Electricity consumption refers to the equipment and lighting, and 21% of the cases 

included air conditioning. Figure 3.4 illustrates the distribution of fuels for heating 

and DHW production resulting from the surveys compared with national data [7]. 

Comparable percentages of natural gas and liquefied petroleum gas (LPG) are 

found, differences emerge for diesel and biomass: in the sample diesel consumption 

is lower than the national value while biomass seems clearly higher in agreement 

with the local tradition that adopts firewood for domestic use. The percentage of 

other fuels is negligible. Renewable energy systems are not in the selected sample. 
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Figure 3.4 Fuel types for heating and DHW resulting from the surveys compared 

with National data for the civil sector  [7]  

3.5. Data processing  

Different analyses were developed by using the survey results. One of them was 

through statistical analysis and the other to define case studies and occupancy 

profiles. The influence of occupant behavior on energy performances was 

investigated by simulations using DesignBuilder, which is an interface of the 

simulation engine EnergyPlus [8]. Both studies were used with the aim to evaluate 

the influence of physical and occupancy variables on the prediction of energy needs. 

3.5.1. Correlation analysis 

The purpose of this part of the thesis is to evaluate the main factors affecting the 

energy performance of a housing stock in Mediterranean climatic conditions 

through correlation analysis [9]. The investigation is carried out to test the 

importance of physical and occupancy variables by means of a statistical approach. 

The questions of the questionnaire relating to physical characteristics, occupants, 

and energy were considered. 

To describe the relations between household energy consumptions and the physical 

and behavioral variables the General Linear Model was used. Regression analyses 

are used for continuous variables, a one-way analysis of variance (ANOVA) is 

applied for categorical variables, and independent-samples t-tests were performed 

for dichotomous variables. Statistics of electricity consumption are shown in Table 

3.7. The F-statistic provides a measure of the probability that energy consumption 

and the variable have the same variance, where its value is near 1 the null hypothesis 
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is correct. The p-value is a measure of the probability of obtaining a result at least 

as extreme as the one that is actually observed, so the lower the value (usually below 

0.05 or 0.01), the more significant the result. The coefficient of determination (R2) 

represents the proportion of variability in one variable that is accounted by another 

variable; it indicates how well data fit a statistical model. The Pearson correlation 

coefficient (r) is a measure of linear dependence between two variables with a value 

between -1 and +1 inclusive. The t-statistic aims to analyze the differences between 

the means of two groups, if the t-statistic is less than the significance level (or error), 

the null hypothesis is rejected. 

Table 3.7 Correlation between physical and occupant's variables and electricity 

energy consumption (kWh)  

 

 

Figure 3.5 Scatter plot of electricity energy consumption (square rooted) and (a) 

Log10 of area, (b) family size.  

With regard to the variables that have significant relations with electricity 

consumption (p<0.05 based on F-tests of all variables), four of them can be 

mentioned concerning the occupants: average age, age of the household head, 

number of family members and annual income. Two parameters are related to 

physical characteristics, the floor area, and the heating degree-days. The relation 

Variables Statistic p-value R2 Pearson(r) 
Type of house F(3,83)=1.18 >.05 0.040  
Year of construction F(2,84)=0.647 >.05 0.015  
Log10 floor area (m2) F(1,86)=13.19 <.05 0.133 0.365 
Structure F(2,84)=0.299 >.05 0.007  
Type of windows F(2,84)=2.386 >.05 0.053  
Prevalence of gender F(2,78)=1.012 >.05 0.025  
Income (€) F(3,66)=2.916 <.05 0.117  
Average Age F(1,82)=9.864 <.05 0.107 0.328 
Age of the household head F(1,82)=8.251 <.05 0.091 0.302 
Number of household members F(1,85)=5.944 <.05 0.065 0.256 
Heating degree-days F(3,74)=3.194 <.05 0.115  
Energy saving lamps F(2,83)=0.787 >.05 .018  
Type of external wall t(78.60)=0.427 >.05   
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with the climatic variable can be explained because the use of electricity is also 

associated with air conditioning. Besides, Log10 floor area is the most significant 

variable influencing electricity energy consumption (r=0.37 and p<0.05). The 

square root of electricity consumption has a direct connection with the Log10 floor 

area, average age, age of household head and number of family members, with a 

positive Pearson correlation coefficient positive. Figure 3.5 shows the dependence 

of the floor area and family size. 

The correlation analysis between physical and occupant variables and the heating 

and DHW energy consumption demonstrated that individual predictors are not 

significant. This study in the investigated region presents complexity due to the 

double use of the fuel. The results suggest that the formulation of the questions in 

the survey has to be improved to better describe both lifestyle and types of heating 

system. 

A multiple linear regression analysis was employed to determine the effect of 

physical characteristics and occupant variables on electricity energy consumption, 

taking into consideration the six variables described above (all with p<0.05), see 

Table 3.8, and introducing only physical characteristics as reported in Table 3.9. 

The first model determines that the selected physical factors and occupant variables 

explain 48.7% of variation in the square root of electricity energy consumption and 

the second model shows that physical characteristics can explain 32.7% of 

variation. Even if both the models are significant overall (p<0.001), most of the 

individual predictors do not seem to be significant. The insufficient number of 

samples in some categories could also cause the non-significance of the 

independent variables. To evaluate multicollinearity, the variance inflation factor 

(VIF) was calculated, leading to a value lower than 10 for both the models (1.94 

and 1.49 respectively). Significant predictors are floor area and number of members 

per household. The families with an income in the €70000-100000 range do not 

consume more energy than families with an income between €30000-70000, 

indicating that the relation between income and energy consumption is not linear. 
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Table 3.8 Regression model for the electricity energy consumption (sqrt of kWh)  

 

Table 3.9 Regression model for the electricity energy consumption (sqrt of kWh) and 

physical variables  

 

 

 

 
 

 

The results reveal that floor area and climate are the most significant physical 

parameters for electricity consumption; age, number of household members and 

income can be mentioned concerning the occupants. Physical factors and occupant 

parameters explain 48.7% of variation in electricity energy consumption, only 

physical factors can explain 32.7% of the variation. Otherwise, the analysis on 

heating and DHW energy consumption show critical aspects because it is related to 

a specific use by the consumers. As a consequence,  more detailed investigation 

methodologies should be applied in future investigations. 

Coefficient bi 
Standard 

error 
p-value 

t-
value 

 

R2= 0.4865, p<0.001        
Constant -9.205 14.501 0.529 -0.635  
Log 10 of floor area -

23.846 
7.351 

0.002 3.244  

Heating degree days- C vs B -4.505 5.114 0.383 -0.881  
Heating degree days-D vs B -7.213 4.985 0.155 -1.447  
Heating degree days-E vs B -9.461 6.585 0.158 -1.437  
Average age 0.504 0.418 0.134 1.207  
Age of the household head -0.285 0.264 0.287 -1.079  
Number of household members 3.661 1.896 0.060 1.931  
Income- 30000€-70000€ vs Income < 30000€ -3.643 2.647 0.176 -1.376  
Income- 70000€-100000€ vs Income < 
30000€ 

5.363 
7.474 

0.477 0.718  

Income- more than 100000€ vs Income < 
30000€ 

-
28.150 

9.192 
0.004 -3.062  

Coefficient bi Standard error p-value t-value 

R2= 0.3268, p<0.001       

Constant -4.804 12.525 0.703 -0.384 

Log 10 of floor area 28.287 5.906 0.000 4.790 

Heating degree days-C vs B -2.301 4.991 0.646 -0.461 

Heating degree days-D vs B -7.64 4.777 0.115 -1.599 

Heating degree days-E  vs B -1.335 5.806 0.819 -0.230 
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3.5.2. Occupancy profiles and  cases of study 

3.5.2.1. Case of study I: Preliminary investigation in existing 

buildings 

To analyze the importance of the use of real occupancy profiles in determining 

energy needs by simulation, two case studies of residential buildings in 

Mediterranean climatic conditions have been chosen according to the results of the 

questionnaire data analysis [10].  

Data processing was used to individuate reference construction types, family 

composition, and occupancy profiles. Also, representative occupant behaviors in 

managing windows and lighting are evidenced. 

The study was carried out by comparison of the results obtained adopting the 

Standard procedure [1] and those based on real occupancy profiles achieved by 

interview. The considered houses are situated in the climate zone C, the heating 

period is from 15 November to 31 March. The climate file used for dynamic 

simulations was created from the data reported in the Standard UNI 10349 for the 

city of Cosenza [11]. 

For both the cases, dynamic calculations of heating energy need are carried out 

considering inputs data provided by the Standard UNI/TS 11300-1 [1], with 

reference to the most common situation in which occupant behavior is not available, 

and introducing successively as inputs real modalities about occupancy, ventilation, 

appliances, lighting, windows components. In particular, a single family house and 

an apartment were analyzed.  

 

Figure 3.6 The cases study views: (a) of the single family house and (b) of the 

apartment in condominium in the local context  

a) b) 
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Figure 3.7 (a) Map of the single-family house and (b) of the apartment in 

condominium 

The single-family household was built in 1978 (Figure 3.6a), the external walls are 

in masonry without thermal insulation, and the thermal transmittance is equal to 1 

W/m2K. The building consists of two floors with a net area of 134 m2. Transparent 

surfaces have single glazing, the frames are made of wood. The family is constituted 

by three people and inhabited zones are located on the first floor. The house has 

seven rooms, five of which are heated (living room, two bedrooms, bathroom and 

utility room); in the kitchen and hallway, there is no control of the internal 

conditions (see Figure 3.7a). The generator system is a wood-burning boiler 

fireplace; the internal air temperature is controlled by a thermostat.  

The second case study is an apartment of 80 m2, built in 2008 in reinforced concrete 

(Figure 3.6b). The insulated walls have a thermal transmittance of 0.6 W/m2K. The 

windows consist of double glazing and frame with thermal break. The apartment is 

located on the second floor, and there is one inhabitant, the heated zones are shown 

in Figure 3.7b. The generation system, used both for heating and DHW production, 

is an autonomous wall mounted gas boiler, natural gas is the fuel, and the efficiency 

of the system is 88%. A zone thermostat regulates the operating of the heating 

system, and the emission terminals are aluminum radiators. 

a. Occupancy profile according to UNI/TS 11300-1 

The operation of the heating system is in continuous regime with a fixed set point 

temperature of 20°C. The internal heat loads are evaluated by using the relation: 

int = ͹.ͻͺ͹Af − Ͳ.Ͳ͵ͷ͵Afଶ   (1) 

where ܣ௙ is the usable floor area of the house [m2].  

a) b) 
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The internal heat loads are obtained by the sum of sensible contribution, calculated 

in relation of the floor area or equal to 450 W/m2 for dwellings with a floor area 

greater than 120 m2, and latent contribution evaluated using the relation: 

ܳ௪௩,௜௡௧ =  ℎೢೡ×(�ೢೡ,��+�ೢೡ,�)×௧ଷ6଴଴    (2) 

where ℎ௪௩ is the specific enthalpy of water vapor, conventionally set equal to 2544 

J/gr; (ܩ௪௩,�௖ +  ௪௩,஺) is the flow rate of water vapor due to the presence of peopleܩ

and equipment, mediated on time, set equal to 250 gr/h for dwellings. The total 

value of internal loads amounts to 4.7 W/m2 for the single house and 8.1 W/m2 for 

the apartment. 

Following the indications of the Standard, in DesignBuilder internal loads were 

entered through a single value, grouping all contributions of occupancy, 

miscellaneous equipment, catering process, and lighting.  

Regarding natural ventilation, the Standard assumes a constant air change that 

includes both the effect of infiltrations, due to air permeability of the envelope, and 

external flow rate provided for environmental comfort.  

The air flow rate ݍ௩௘,௞,௠௡ is calculated according to the procedure of the 

"Ventilation flow in reference conditions": ݍ௩௘,௞,௠௡ = ௩௘,�,௞ݍ × ௩݂௘,௧,௞    (3) 

where ݍ௩௘,�,௞ is the minimum amount of outdoor air [m3/s]; ௩݂௘,௧,௞ is a correction 

factor representing the fraction of time in which takes place the k-th air flow and 

considers the use profile and infiltrations that occur even when the ventilation is not 

operating, its value is set at 0.60, ݍ௩௘,�,௞ is evaluated using the relation: ݍ௩௘,଴,௞ = ݊ × ܸ ͵͸ͲͲ⁄      (4) 

where n is the air change for hour and V is the net volume of the thermal zone, 

including kitchens, bathrooms, hallways, and utility rooms. The flow rate obtained 

is equal to 0.3 ach. 

In DesignBuilder the ventilation mode which permits the setting of air changes per 

hour for each zone was adopted. Table 3.10 summarizes the terms of the energy 
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balance influenced by occupant behaviors and the heating energy need obtained by 

simulation. 

In particular, thermal losses through glazed surfaces, the heat lost by natural 

ventilation, solar and internal gains are considered in order to quantify in a detailed 

way the effects of user profiles. 

Table 3.10 Standard procedure application. Seasonal energy contributions and 

heating need 

 Glazing 

[kWh/m2] 
Natural 

Ventilation 

[kWh/m2] 

Solar gains 

[kWh/m2] 
Internal loads 

[kWh/m2] 
Heating 

[kWh/m2] 

Single 

house 

-13.4 -9.2 10.3 14.2 48.4 

Apartment -8.0 -9.7 7.0 26.6 16.5 

 

For the single house the thermal losses through the windows represent the prevalent 

negative contribution, solar gains and internal loads are comparable. The heating 

energy need is 48.4 kWh/m2.  

For the apartment, the evaluated energy performance is 16.5 kWh/m2 and it results 

as being significantly influenced by the internal loads that are about triple if 

compared with the other energy inputs. 

b. Real use profile 

In the single house the heating system is switched on from 8:00 to 23:00 during all 

the days and the set point temperature is 20°C. 

Internal gains of occupants, equipment and lighting were defined by schedules in 

order to specify in each zone use time-profiles. 

The presence of occupants was detailed considering the sensible and latent thermal 

loads related to the specific activity [12]. Also for lighting, operating schedules 

were created and its thermal input was calculated taking into account that 75% of 

the electric power is converted into thermal power. 

Air changes were treated by adopting the mode which allows for determination of 

the airflow between the internal and external environment, according to the building 

orientation and wind exposure, envelope air permeability and window openings.  
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Generally, windows are opened every morning from 8:00 to 9:00 and one hour after 

midday. External shutters operate during the night in order to reduce heat losses. A 

similar approach was used in order to create user profiles for the apartment.  

c. Results and discussion 

In Table 3.11, the results obtained by energy simulation of both the case studies are 

summarized. 

Table 3.11 Real occupancy profile application. Seasonal energy contributions and 

heating need 

 Glazing 

[kWh/m2

] 

Natural 

Ventilation 

[kWh/m2] 

Solar gains 

[kWh/m2] 

Internal loads [kWh/m2] 

Lighting Equipment Occupancy 

Single 

house 

-11.4 -46.3 10.3 0.8 5.9 6.8 

Apartment -6.2 -8.0 5.7 1.5 6.2 3.1 

Heating 

[kWh/m2] 

Single 

house 
77.8 

Apartment 20.9 

 

The use of real occupancy profiles for the single house determines a substantial 

increase of the energy need, equal to 61%, compared to the value obtained by 

application of the Standard calculation. Fundamentally this result is a consequence 

of the considerable increment of the thermal losses by natural ventilation. In fact, 

the adoption of real scenarios in window opening increases the air changes from 

0.3 ach to 1.28 ach.  

The results of energy simulation highlight the importance of occupancy 

contribution on the final thermal performance of dwellings.  

For the single-family house, window opening has the most important role and 

determines an increase of 61% in energy demand when real profiles are applied.  

The application of the standard procedure for the apartment causes the 

overestimation of internal loads and the energy need increases by 27% in actual 

usage conditions. 

The main findings of this preliminary analysis were used as starting point for more 

detailed investigations, as reported in the following section. 
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3.5.2.2. Case of study II: Procedures for obtaining occupancy 

profiles and energy consumption evaluation  

In this second step of the study, different procedures for obtaining occupancy 

profiles were applied considering a residential building stock located in 

Mediterranean climatic conditions (Southern Italy) [13]. In this case study was 

include information about representative use profile with information collected at 

the local level with the data available for the specific context.  

The analysis is focused on the prediction of heating and domestic hot water (DHW) 

energy consumption by simulation, introducing occupancy profiles created through 

three approaches: using surveys and interviews, application of the National 

Standards, and elaboration of statistical data available from diverse sources. 

Furthermore, the energy demand was studied at variation of the set point 

temperature and ventilation to evaluate the effect of occupants’ preferences. 

The energy simulations are carried out using the following occupancy profiles: 

i. STANDARD-USE PROFILE obtained by using the inputs provided by the 

National Standard UNI/TS 11300 part 1 and 2 [1], [14]. The Standard 

provides a simplified procedure which allows for the calculation of internal 

gains due to occupants, lighting, and equipment in relation to the net surface 

area of the dwelling (m2), without considering the family composition and 

occupants’ habits. 

ii. REAL-USE PROFILE defined by direct interview of the resident. The 

simulation results were compared with the actual consumption acquired by 

bills. 

iii. REPRESENTATIVE-USE PROFILE built by combining information 

collected at the local level with the data of Hetus (Harmonised European 

Time Use Survey) for Italy [15].  

The different occupancy, cooling and heating, equipment and lighting profiles are 

scheduled by means of DesignBuilder [8], and heating and DHW energy 

consumptions were calculated. 

The most frequent physical parameters and characteristics of residents were 

identified from the questionnaire and are shown in Table 3.12. 
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Table 3.12 Summary of the data obtained by analyzing the sample buildings  

B U I L D I N G 
Type of house Apartment 56 % 

Year of construction After 1990 44 % 

Floor area (m2) 70 – 150  55 % 

Structure Reinforced concrete 78 % 

Type of windows Double glass 60 % 

Type of external walls With thermal insulation 40 % 

H E A T I N G 
Typology Autonomous system 83 % 

Generation System Wall mounted gas boiler 55 % 

Fuel Natural gas 69 % 

D H W     
Typology Decentralized  50 % 

Fuel Natural gas 61 % 

H O U S E H O L D 

Age of household members 
19  -  30  46 % 

50 - 65  32 % 

Number of household members 4 37 % 

B E H A V I O R 
Thermal sensation Satisfied 39 % 
Bath or shower Shower 60 % 
Frequency of shower during summer Almost every day 71 % 

Frequency of shower during winter 3 – 5 times/week 38 % 
Average shower type (minutes) 10 – 20  57 % 

 

These results allowed to identify in the sample a representative building that has 

been considered by the authors for the successive study regarding the creation of 

occupancy profiles and energy simulation. The representative dwelling is the 

apartment described in section 3.5.2.1. 

Energy consumption from bills 

Bills concerning gas and water consumption of the last three years were provided 

by the owner.  

In order to determine the gas consumption for DHW production, an average 

monthly value was estimated by considering the bills of the period when the heating 

system does not operate. Thus, the DHW annual primary energy was determined 

and is equal to 1813 kWh; subsequently, using the difference from the total energy 

consumption (4473 kWh), the heating energy consumption was calculated resulting 

in an average value of 2660 kWh. 
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The hot water consumption rate in l/m2day is required in DesignBuilder. By means 

of the water consumption from bills equal to 2.94 l/m2day and the primary energy 

for DHW production, the rate of consumed hot water is calculated in proportion 

equal to 1.23 l/m2day. 

Occupancy profiles and calculation methods 

The dynamic simulations were performed by using the occupancy profiles 

illustrated in Table 3.13. Each of these occupancy typologies will be described in 

the next sections. 

Table 3.13 Description of occupancy profiles   

Occupancy profile Information source 
Family 

composition 
Operation of heating system 

Standard Use  

Inputs by  
National Standard 

UNI/TS 11300 [1], [14] 
Not specified 

Continuous operation 
Tset point = 20°C 

Real Use  
Questionnaire, 

interview, and bills 
1 person 

Operation schedule: 
18:30-23:00 weekdays 
15:00-24:00 Saturday 

9:00-24:00 Sunday 
Tset point = 23°C 

Representative Use  
Questionnaires and 

Hetus 
4 people, parents, 

and two sons 

Operation schedule: 
6:30-8:00/16:00-22:00 weekdays 
7:30-10:30/15:00-23:00 Saturday 

8:00-23:00 Sunday 
Tset point = 23°C 

a. Standard use: Occupancy profile according to UNI/TS 11300-1  

This profile was built with reference to UNI/TS 11300-1 [1] and the procedure is 

described in section a. 

The operation of the heating system is in a continuous regime with a fixed set point 

temperature of 20°C. The internal heat loads are evaluated by using the relation: 

௜௡௧ = ͹.ͻͺ͹ܣ௙ − Ͳ.Ͳ͵ͷ͵ܣ௙ଶ    (5) 

where ܣ௙ is the usable floor area of the house [m2].  

The calculated value amounts to 5.56 W/m2. 

Primary energy for domestic hot water is calculated as a function of the water flow 

rate needed for different uses and the difference between outlet and inlet water 

temperature [14]. For residential buildings, the volume of water required for 

domestic uses does not take into account the number of users, it is estimated 

considering the area of the dwelling by means of the equation: 
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௪ܸ = ܽ × ܵ௨ + ܾ [l/day]   (6) 

where a and b are parameters tabulated as a function of the housing surface Su [m2]. 

The value to be entered in DesignBuilder is related to the net area of the apartment 

and it is equal to 1.6 [l/m2day]. The supply temperature of cold water is set to 15°C 

while the delivery temperature is set to 60°C.  

b. Real use profile 

The apartment is occupied by one person, a woman working from Monday to Friday 

and at home at weekends. Through the questionnaire and interview it was possible 

to characterize her specific habits; the more detailed information collected was used 

to create a more detailed simulation model.  

Internal gains are defined in DesignBuilder by separating the contribution of 

occupancy, equipment, and lighting. Dedicated schedules specify the use-profile 

for each zone. The presence of occupants is detailed considering the sensible and 

latent heat load related to the specific activity [12]. Figure 3.8 depicts hourly 

occupancy density in a day.  

 

Figure 3.8 Daily occupancy profile for the real use  

Knowing the electrical power and the hourly usage of each appliance, the 

corresponding thermal power per unit area was obtained. An hourly average value 

of internal thermal contribution due to equipment was calculated for each room. 

Also, lighting operating schedules were created and the thermal input was 

calculated taking into account that 75% of the electric power is converted into 

thermal power. 
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Air changes were treated by adopting a calculation mode in the simulation software, 

which allows determining the airflow between internal and external environment, 

according to the building orientation and wind exposure, envelope air permeability, 

and windows opening. The occupant stated that living room and bedroom windows 

were opened every morning from 8 am to 9 am. This ventilation schedule was 

applied for the whole year, both for weekdays and weekends.  

c. Representative occupancy profile 

The representative occupancy profile was built by using data collected by 

questionnaires and statistical elaborations. By combining the data collected at the 

local level with the more extensive Hetus data for Italy, a family-model was created. 

The family consisted of four people: two parents aged between 50 and 65, one of 

whom works full-time and the other part-time, two sons aged between 19 and 30, a 

student and a full-time worker. 

The inputs of occupancy for both the real and representative use are compared in 

Figure 3.9. 

 

Figure 3.9 Use of the dwelling in the real and in the repr esentative occupancy 

profile. Details of the maximum value of occupancy density for each room 

[person/m2]  

With respect to the real-use profile, in the representative profile the occupancy 

mode varies in terms of number of occupants and occupancy hours. The family 

spends more hours at home, and the representative occupancy profile was defined 

detailing the activities in the different rooms of the apartment. Table 3.14 describes 

some Hetus data used for the investigation. Figure 3.10 depicts the daily occupancy 

density and Figure 3.11 reports, as an example, the specific occupancy schedule for 

the living room in DesignBuilder, where occupancy density is entered as a fraction 

of the maximum occupancy.  
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Table 3.14 Data on time use for Italy from Hetus survey  [15]  

Room Activity 
Time per activity 

(hh:mm) 

Time in the 

room (hh:mm) 

Living room 

TV and video 01:40 

07:33 

Reading, except books 00:13 
Leisure, social, and associative life 04:35 
Household upkeep except cleaning 
dwelling 00:06 
Cleaning dwelling 00:47 
Study 00:12 

Kitchen 
Eating 01:54 

03:00 Food management except dish washing 00:46 
Dish washing 00:20 

Bedroom 

Sleep 08:18 

09:15 

Homework 00:08 
Resting 00:32 
Computer games 00:01 
Hobbies and games except computing 
and computer games 00:08 
Reading books 00:05 
Radio and music 00:03 

Bathroom Other and/or unspecified personal care 01:01 01:01 

Unoccupied 
dwelling 

Activities taking place outside 03:11 03:11 

Total   24:00 

 

 

Figure 3.10 Daily occupancy profile for the representative use  
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Figure 3.11 Daily occupancy pattern for the living zone (maximum occupancy rate 

equal to 0.15 person/m 2) 

With regard to the DHW demand, considering an average consumption of 60 l/day 

per person [16], the DHW rate results equal to 3.53 l/m2day. 

Regarding natural ventilation, such as in the real case, the air changes were 

determined by considering the windows opening and the percentage of open 

windows.  

It was assumed that occupants open the windows every morning for one hour (from 

8:00 to 9:00) in the living zone and in the bedrooms, and for a half hour (from 8:00 

to 8:30) in the two bathrooms. In the afternoon windows are opened from 14:30 to 

15:00 in the living zone and in the bedrooms. The percentage of open windows was 

set equal to 70%. 

d. Results and discussion 

The three occupancy profiles were simulated considering the selected building. The 

aim was to highlight how different occupancy scenarios lead to substantial 

differences in energy consumption. The energy really consumed, obtained from 

bills, allowed verification of the reliability of the model. It was proved that 

simulation results for the real use of the apartment and energy derived from bills 

differ by less than 5%. The validated model was used to simulate the representative 

occupancy profile.  
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Figure 3.12 shows the values of primary energy for heating obtained for the three 

analyzed use profiles.  

 

Figure 3.12 Primary energy for heating obtained for the three occupanc y scenarios 

and consumption from bills  

Compared with the real use, the standard occupancy profile produces a significant 

underestimation, while considering the family representative profile the 

consumption for heating increases by 19%.  

 

Figure 3.13 Primary energy for DHW obtained for the three occupancy scenarios 

and consumption from bills  

Considering the DHW consumption obtained by the standard and determined as a 

function of the area of the apartment, the primary energy turns out to be higher than 

the ones calculated for the real use by an amount of 23%. For the representative 

profile the energy requirement considerably increases.  

Figure 3.14 represents the total primary energy consumption for the analyzed 

occupancy profiles. The figure highlights that the modeling proposed by the 
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regulations can produce misleading results and is not suitable to correctly represent 

all the occupancy scenarios. 

 

Figure 3.14 Total primary energy obtained for the three occupancy scenarios and 

consumption from bills  

The differences resulting in energy consumption are due to the ways of using the 

dwelling that determine variations in heat losses and gains. With reference to 

ventilation strategies some detailed results were analyzed. Figure 3.15 and Figure 

3.16 report the ventilation rate and heat losses due to ventilation, respectively. 

 

Figure 3.15 Natural ventilation rate obtained for the three occupancy scenarios  
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Figure 3.16 Thermal energy losses due to ventilation obtained for the three 

occupancy scenarios  

The thermal gains differ with a variation in the number of occupants. 

Figure 3.17 details the internal gains for occupancy in both real and representative 

profiles. For the standard profile the contribution of occupancy is not specified 

separately. 

 

Figure 3.17 Thermal energy contribution due to the occupants for the real and 

representative profiles  

It can be noted that as the number of family members increases, sensible and latent 

thermal loads due to the occupants proportionally enlarge. 

Figure 3.18 presents the percentage increase in heating primary energy if the set 

point temperature is modified. 
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Figure 3.18 Heating primary energy for different values of the set point temperature  

Figure 3.19 shows the primary energy required for DHW for the two different 

occupancy profiles increasing the production temperature of 5°C progressively. 

This increment determines constant absolute increases of the DHW primary energy 

and different relative percentages of increase. The results are equivalent for the two 

analyzed profiles. 

 

 

Figure 3.19 Primary energy for DHW on variation of temperature production  

The occupant can decide to adjust the temperature to a higher or lower value 

according to their intended use. 

Heating the water to 60°C instead of 45°C will lead to a consumption of 50% more 

energy. 

The effect of ventilation on energy consumption was analyzed through the variation 

of two parameters: the percentage of the open glazed surface and the time that the 

windows are open. By varying the percentage of open windows between 50% and 

100%, not significant variations on primary energy for heating were registered. 

+ 30% 

+ 25% 

+ 22% 

+ 19% 

+ 17% 

+ 14% 

+ 13% 
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More interesting results were obtained with regard to the duration of ventilation, as 

reported in Figure 3.20. 

 

Figure 3.20 Heating energy consumption as a function of the time of window opening 

in  a) real profile and b) representative profile  

In particular, the effect of an increase and of a reduction of half an hour of 

ventilation in the morning was analyzed because in the investigated area it is 

customary to open the windows at this time of the day. In the case of real profile, 

when only two rooms are ventilated, this change leads to a variation in the energy 

consumption for heating by 6%. Considering the representative profile, where more 

spaces are occupied and simultaneously ventilated, an increase of half an hour of 

opening windows in all rooms could increase heating primary energy by 21%. 

As final considerations, we can mention that Standard occupancy profile produces 

a significant underestimation of heating energy consumption if compared to the real 

scenario. For the representative family, the consumption for heating increases by 

19%.  

Considering the DHW, the primary energy obtained for standard occupancy is 

higher than the one calculated for the real use by 23%. For the representative profile 

this energy requirement considerably increases.  

Occupant preferences are investigated in terms of internal set point temperature, 

DHW temperature production, and windows opening. 

Changing from a temperature of 20°C, that is the value indicated by the standard, 

to 23°C in the real use, the gas consumption for heating increases by 81%. Heating 

the water to 60°C instead of 45°C requires 50% more primary energy. 

+6.4 % 

-6.4 % 

+21 % 

-12% 
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The change in the percentage of open windows does not result in significant 

variations in primary energy. By contrast, the extension of the duration of 

ventilation can increase primary energy for heating by 21% if the representative 

profile is considered.  

3.5.2.3. Case of study III: Effect of different users profiles on 

energy performance of  Nearly Zero Energy buildings 

In this third step of the investigation, the aim is to evaluate the influence of user 

patterns on the energy consumption of a residential nZEB in Mediterranean climatic 

conditions [17]. Furthermore, the investigation takes into account the socio-

demographic context by means of the collection and accurate analysis of National 

and local statistical data. The study considers the variability of the family 

composition and the occupancy scenarios. Also, the needs and preferences of 

occupants in using energy systems and equipment are included in the energy 

performance assessment. 

The investigation was conducted by considering important aspects 

contemporaneously: nZEB definition and technical issues, application of Standards 

and Regulations that do not consider the “occupancy” variable in their formulation, 

adaptability of renewable energy systems in relation with the occupancy profiles, 

identification of a simple method for creating housing occupancy patterns by using 

free available data. 

An energy efficient building was designed according to the Italian Standard [18]. 

The building is a two storey detached house with a total net area of 110 m2. The 

ground floor consists of the living zone while bedrooms are on the first floor. The 

construction was intended to consume low energy: the ratio between dispersing 

surface and air conditioning volume is set to minimize losses, all the housing 

components are well insulated, the air conditioning system has high efficiency and 

uses energy from renewable sources available on site. However, the actual 

consumption for the management of the house depends on the type of family 

occupying the dwelling and on the interaction of the occupants with it. Two 

different occupancy scenarios, defined according to statistical data [5], were 

proposed in order to understand how the occupancy typology and the various modes 

of use of the house and its facilities can affect energy consumption. For each 
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occupancy scenario and mode of use, the annual energy balance in terms of primary 

energy (kWh/m2year) was considered with the aim of verifying the achievement of 

the nZEB objective.  

Regarding climatic conditions [19], file for the City of Cosenza, Calabria Region 

(South Italy) was adopted. The site, classified as “Csa” according to the Köppen 

climate classification [20] is characterized by a typically Mediterranean climate, 

with hot and dry summers and mild, wet winters, resulting in a dominant cooling 

demand. The mean annual value of the outdoor dry bulb temperature is equal to 

16.3 °C; the direct normal solar radiation is 1564.8 kWh/year and the diffuse solar 

radiation on the horizontal plane is 613.8 kWh/year. The heating system functions 

from 15th November to 31st March, according to Italian Regulations for climatic 

zone C (HDD=1317), in which Cosenza is located [6]. The remaining months are 

considered for the cooling season.  

a. Occupancy scenarios and house management 

The building is now defined by its physical characteristics and it is classified as 

nZEB according to the Italian Standard. However, different types of households 

could occupy the house. Moreover, the family members, following their typical 

habits and needs, may decide to use the amenities of the dwelling differently. 

Therefore, the actual consumption of the building may differ from that estimated, 

thus negating the “zero” balance. In order to analyze the variability of consumption 

under different types of occupancy, the use of the house by different family 

typologies has been supposed. Two occupancy scenarios have been created from 

statistical data, describing the socio-demographic situation of the concerned area.  

Data regarding the “family structure” provided by the National Institute of Statistics 

[5] report that in the region of Calabria, four component households account for the 

majority in families with children, representing 46% of the total in the last two 

years. Table 3.15 presents two scenarios considered.  

Table 3.15 Occupancy profiles  

Occupancy 

profile 

Use of the dwelling 

Four member 

family (F4) 

All room of the house are 
generally occupied 

Two member 

family (F2) 

Only a few rooms in the 
house are occupied 
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Occupancy density (person/m2) is calculated for each room and varies according to 

the number of components. To define how much time people spend at home, data 

on time use provided by ISTAT [5] have been examined. The respondents reported 

the daily time dedicated to different activities for each interval of 10 minutes. In 

particular, investigations on the activities were carried out and allowed for 

identification of the total number of hours that a person spends on average at home, 

in relation to the size of the family. With reference to a “weekly average day”, a 

person spends on average 16 hours per day at home for a family of four, while 17 

hours per day are spent at home in the case of a two-member household. Data 

showing the frequency of people participation in the frequented places have been 

considered to identify the periods of time during the day when people are at home 

(see Figure 3.21). 

 

Figure 3.21 Frequency of participation of people to the places frequented in a weekly 

average day [5]  

The time ranges reveal that the greatest percentage of people at home is overnight 

and in the early morning, in two hours at lunch, and in the evening after 7 p.m. 

Combining the information about the number of hours of presence at home and the 

most populated time bands, occupancy profiles for the average weekly day have 

been constructed for both F4 and F2 scenarios, as shown in Figure 3.22 
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Figure 3.22 Occupancy profiles for the F4 (a) and F2 (b) occupancy scenarios for an average weekly day

(a) 

(b) 
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Lighting 

Statistical data [21] show that for the considered geographic area, artificial lighting 

is used on average less than four hours per day (about 75%). 22% of people use 

artificial lights from 4 to 12 hours per day and only a very small fraction (3%) turns 

on the lights for more than 12 hours per day. Consistently, in the designed building 

the use of artificial lighting has been set at less than four hours in each room. 

Furthermore, two types of lighting have been analyzed in the study: traditional light 

bulbs, for example halogen bulbs, with a lighting power density (LPD) equal to 

10.2 W/m2, and energy saving light bulbs, such as compact fluorescent lights 

(LPD=7.5 W/m2).  

Equipment 

The provision of dwelling appliances is typical of a contemporary house [21]. The 

frequency and hours of use were defined by considering available statistical data. 

In particular, the ISTAT survey reveals the use of the washing machine and the 

dishwasher on variation of the family size. 

Generally, a family of four components, on average, does about six washing 

machine loads and dishwasher washings per week, while a two member family uses 

the washing machine three times per week, and the dishwasher four times per week.  

Since the building is expected to be zero energy, the installation of low energy 

appliances is suggested. However, in order to evaluate the influence of the energy 

efficiency of the equipment on the annual consumption of the house, the use of 

different energy labeled household appliances have been analyzed, considering 

different levels of energy efficiency for appliances for which energy labelling is 

mandatory [22], [23]. 

Heating and cooling system 

Settings on the operation of the heating and cooling systems have been made 

according to statistical information for the considered climatic conditions [21].  

The heating system, on average, is switched on for about seven hours per day, while 

the cooling system operates four hours per day.  

DHW production 
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The demand of domestic hot water has been fixed at 60 l/day per person [16], with 

55 °C hot-water temperature production. The solar system is prioritized for the 

production of DHW. However, an integration system is provided to satisfy the 

DHW demand when the solar source is not sufficient, consisting of an electrical 

resistance with a maximum heater capacity of 1.5 kW installed in the 300 liter 

storage tank. 

a. Behavioral variables 

The use of the house by families with diverse sizes implicates differences in the 

number of rooms generally used and in the occupancy density of each room. Also, 

the utilization of heating and cooling systems, DHW, lighting, and household 

appliances has been defined.  

However, variables related to the users’ choices regarding heating and cooling set 

point temperature, and ventilation control strategies are not provided by the 

statistical survey. With reference to these variables, occupants can behave 

differently in the house management. In particular, a category of users could have 

a more aware behavior aimed at saving energy. On the other hand, users could also 

have a wasteful behavior, without caring about the amount of energy spent and 

often persisting in squandering habits. In many studies considering different 

occupancy profiles in energy consumption investigations, differences in baseline 

temperature assumptions were considered to assess their impact. Set-point 

temperatures have been chosen by individual approaches, such as starting from 

values of local Standards [24], in other cases the set point values were estimated by 

means of contextual data [25], [26].  

In order to analyze the impact of occupant preference on final energy consumption, 

and therefore, on actual nZEB building performance, different behaviors have been 

analyzed for both F4 and F2 family models. The set point temperatures were 

established by assuming the reference values indicated in the Standards and 

Regulations [1] in order to define the medium profile. Saver and Waster behaviors 

were obtained by considering lower and higher set point temperature values, 

respectively.  

- Saver – “S”: set point temperature is 19 °C for heating and 27 °C for cooling. 

Ventilation takes place when the plant is switched off: half an hour before 
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turning on the system in the morning in the bedroom area and half an hour 

before turning on the system in the afternoon in the living area.  

- Medium – “M”: heating set point temperature is 20 °C, while cooling set 

point temperature is 26 °C. Ventilation is the same for all areas, from 7:00 

to 8:00 in the morning and in all the rooms, and it overlaps in part with the 

period when the plant is switched on. 

- Waster – “W”: the user who does not care about energy saving sets the 

heating temperature at 23 °C and the cooling temperature at 24 °C. He opens 

the windows when the system is operating.  

Both family compositions have been simulated with the three occupants’ behaviors 

typologies and considering, alternatively, the installation of traditional or low 

energy consumption appliances and lights. 

b. Results and discussion 

Figure 3.23 shows the annual energy balance carried out for all the analyzed 

scenarios. 

 

Figure 3.23 Net annual energy balance of the building for the F4 and F2 occupancy 

profiles, in presence or absence of low energy consumption lighting and household 

appliances, and for three different occupants’ behaviors (Waster, Medium, Saver)  

The results demonstrated that in the case of using no energy saving appliances and 

traditional lightings the annual energy balance is always negative. A positive 

balance is achieved only in the case of a two-member family who uses the house 

partially, and by equipping the rooms with energy efficient appliances and lights. 

Moreover, it is noteworthy that even in this configuration, if the users belong to the 

category of “Wasters”, the annual energy balance is negative. 
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Consequently, the house that is classified as a nearly zero energy building according 

to the calculation procedure proposed in the National Regulations cannot satisfy 

this qualification as it consumes more energy than it produces throughout a year.  

Further processing of the results has been conducted in order to more thoroughly 

investigate the reasons for this inconsistency. 

First of all, the incidence of the different energy uses on the total annual 

consumption has been determined.  

In particular, the percentages of the annual total energy consumption for the 

different family scenarios, occupant behaviors, and both the equipment and lighting 

typologies are represented in Figure 3.24. 

 

 

Figure 3.24 Influence of separated energy uses on final energy consumption upon 

variation of family size, occupants’ behavior, and equipment typology  

The incidence of various electric uses on the total consumption of the house seems 

to be the same for both the cases “NO-energy saving lights and equipment” and 

“Energy saving lights and equipment.” In particular, it is worth highlighting that in 

all the analyzed cases, the household appliances are responsible for the major 

NO Energy saving 

lights and 

Energy saving lights 

and equipment 

EQUIPMENT 

LIGHTING 

AUXILIARY ENERGY 

HEATING 

COOLING 

DHW 
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fraction of electrical consumption of the dwelling. Moreover, it is interesting to note 

that moving from the Waster profile to the Saver one, the percentage of 

consumption attributable to household appliances, artificial lighting, and domestic 

hot water production tends to have an increasing impact on the total consumption, 

while the energy for heating, cooling and plant auxiliary decreases with the 

improvement of occupant behavior. In the case of the use of traditional household 

appliances, the equipment consumption reaches 65% while using energy efficient 

equipment their consumption weights up to a maximum of 50% and more influence 

is associated with heating, cooling and DHW. The fraction of consumption due to 

artificial lighting varies from 7% to 10%.  

The energy produced on site is not enough to cover all the energy uses of the house. 

Thus, the building classified as nZEB according to the Italian Regulations is not 

zero energy. The reason is that Italian Legislation does not consider electrical 

purposes (lighting and appliances) in the calculation of the energy performance of 

buildings, and consumptions associated with these uses tend to have an increasing 

importance upon the decrease of consumption for air conditioning. This means that 

the more the building is carefully designed to contain the energy demand for winter 

heating and summer cooling, the more electricity consumption for lighting and 

appliances has a higher weight in the final energy balance. 

The building designed according to the reference calculation model certainly offers 

good performances in terms of air conditioning energy requirements and hot water 

production. In fact, considering only the consumption for heating, cooling, DHW, 

and auxiliary systems, the annual energy balance is positive for all the occupancy 

profiles and utilization modalities, as reported in Figure 3.25. 
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Figure 3.25 Net annual energy balance considering  only consumption for heating, 

cooling, DHW and auxiliary energy  

The analysis leads to conclude that the assertion of a “nearly” zero energy building 

is justified, as the fact of being zero energy is not linked exclusively to construction 

and plant solutions, but is also dependent on occupant related factors. In fact, 

minimizing the energy consumption for heating and cooling by adopting a high-

efficiency envelope and plants, the consumption of lighting and appliances 

depending on user behavior becomes prevalent.  

Therefore, to facilitate the achievement of a balance as close as possible to zero, the 

adoption of energy saving appliances and lights should be forced, because it permits 

obtainment of a reduction of the energy consumption independently of the use. In 

fact, the results show that also the wasteful family, who does not care about the use 

of air conditioning and ventilation, could almost double the surplus energy to be 

allocated to electrical needs. Indeed, the percentage of consumption that can be 

covered by renewable sources passes from 18% to 33% using low-power electrical 

appliances and lights. 

However, to obtain buildings that are concretely nearly zero energy, technical 

parameters associated with the energy consumption for electricity uses inside the 

dwelling (equipment and lights), should also be included among the requirements 

to be complied with for classification as an nZEB. In fact, the total energy consumed 

by the building also includes these uses, which are closely linked to the behavior of 

occupants, and which tend to have an increasing impact on the final energy balance, 

at a decrease of consumption for conditioning, as happens in nZEBs. 

Moreover, in the evaluation of energy performance of buildings, not only a 

reference building should be considered, but also a reference occupancy and a 

reference users behavior. Otherwise, the designed building is likely to move away 

from the theoretical formulation of nZEB; the real consumption could be very 

different from predicted consumption, and the final balance may mismatch the 

estimated zero goal. 
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4.  CHAPTER  

OFFICE BUILDINGS: EXPERIMENTAL STUDY 

4.1.  Experimental Setup 

The experimental setup was built with the intention to observe occupancy patterns 

and control actions relating to window, door, and office equipment use, including 

monitoring indoor and outdoor conditions under which such actions take place. 

To obtain information regarding user presence and absence intervals, occupancy 

sensors were installed. Measurements of occupancy with indoor and outdoor 

environmental variables were conducted in one office located at the University of 

Calabria, Italy. The study used data collected for weekdays, weekends, and holidays 

from February 2016 to January 2017.  

The scale of occupancy measurements was the presence (the frequency of an 

occupant leaving his/her office and the corresponding duration of the absence). The 

collected data were primarily analyzed to compare different techniques for 

occupancy monitoring. The data were then analyzed to explore relationships 

between the occupancy and the magnitude of indoor and outdoor environmental 

changes and energy consumption through different statistical analyses. The 

collected data were stored and processed in a database.  

According to the categorization survey [1], the experimental setup can be classified 

as  reported in Table 4.1. 

Table 4.1 Classification of the experimental setup 

Category  

Information type Presence-Boolean 

Occupant relation Anonymous 

Spatial granularity Space (Room) 

Temporal granularity Periodic 

Spatial coverage Space (Room) 

Temporal coverage Present 

Sensor modality Air, Magnetic Fields-Reed Switch, 
power 

Sensing strategy Augment the environment 

Infrastructure Requirements Wireless sensor nodes and base 
stations 

Installation complexity Install infrastructure and 
configuration equipment 
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The presence and habits of occupants influence the use of equipment and indoor 

conditions. To study this correlation, the experimental setup consists of instruments 

to measure environmental quantities, electricity consumption and sensors for 

occupancy detection positioned following the criterion of sensors fusion. 

4.1.1. Description of the office and occupants 

Data was collected  in one office at the University of Calabria, Italy. Figure 4.1 

illustrates an external view of the university buildings known as “Cubes,” and 

Figure 4.2 shows the location of the office considered for the analysis. 

 

Figure 4.1 General plan of the University of Calabria and display of the cube containing the office 

 

Figure 4.2 External view of cube 44 C 

The office is located on the third floor of Cube 44 C. It has an area equal to 19 m2 

and a height of 2.50 m. The room presents a single wall facing outside  Westwards 

and a two-wing window of 68x76 cm. The office is regularly occupied by one 

person. In Figure 4.3 a more detailed description of the office is reported. 
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Figure 4.3 Layout and internal views of the office 

The office is equipped with desktop computers and printers. 

Table 4.2 and Table 4.3 summarize, respectively, the physical features of the office 

and how it is utilized by the occupants. This information was collected by 

interviewing the occupant. 

Table 4.2 Physical characteristic of the investigated office 

PHYSYCAL 

CHARACTERISTICS OFFICE 

S
 T

 R
 U

 C
 T

 U
 R

 E
 

Area [m2] 19.0 

Height floor [m] 2.50 

External wall [N°] 1 

Orientation of glazed surfaces West 

H
  V

  A
  C

 

Heating system typology Autonomous 

Heating period November - March 
Heating generation system Multisplit Heat Pump 

Heating terminal unit Fan coil 

Cooling system typology Autonomous 

Cooling period June - September 
Cooling generation system Multisplit Heat Pump 

Cooling terminal unit Fan coil 

L
IG

H
T

IN
G

 A
N

D
 

E
Q

U
IP

M
E

N
T

 Lighting (typology, N°) Neon (n°2) 

Number of computers  2 
Number of printers 1 

Additional equipment - 

Type of solar shading Internal blinds with dark 
coloured horizontal slats 
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Table 4.3 Occupant information and habits 

O C C U P A N T 

B E H A V I O R OFFICE 

P
 R

 E
 S

 E
 N

 C
 E

 Working day per week Monday - Friday 
Work starting time  9:00 
Work ending time 19:00 

Lunch break time 13:00 – 14:00 
Meeting days per week Everyday 

Meeting time Afternoon 

P
 R

 E
 F

 E
 R

 E
 N

 C
 E

 S
 

Heating set point temperature 22 °C 

Hours of heating 9:00 – 19:00 
Cooling set point temperature 26 °C 

Hours of cooling 13:00 – 19:00 

Hours of light ON 15:00 – 19:00 

Hours of computer use  PC1: 9:00-19:00 
PC2: 50% 

Printer use ≈ 4 times per day 
Equipment use - 

Windows opening SUMMER: 9:00 – 9:30 
WINTER: 9:00 – 9:30 

Percentage of windows 
opening  

50 % 

Use of solar shading Afternoon (50% shading) 

Satisfaction comfort Not satisfied due to overheating in 
summer 

 

4.1.2. Monitored parameters 

Occupancy sensors were installed/used to obtain information regarding user 

presence and absence intervals. Data are automatically queried every one-minute 

and stored in central embedded MySQL database. The number of observations in 

the dataset was 1440 per day for each parameter, and the experiment has nine 

parameters monitored inside.  

The experimental apparatus is designed to monitor presence and movement of the 

occupants in the office as well as thermophysical properties of the internal 

environment and the electricity consumption connected to the use of computers.  

The main components of the system are: 

1. Data Acquisition (DAQ) and Control System; 

2. Sensors for environmental parameters and for human presence  

3. Smartphones for presence and localization. 
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In the following paragraphs, a description of the first and second component is 

presented, an illustration  of the third technique is reported in the next section. 

a. DAQ and control system 

A DAQ and control system is constituted by a combination of hardware and 

software that is able to measure and control physical quantities.  

The architecture of the DAQ and control system is based on: 

• a pc that loads a set of instructions of a specific program, which can acquire, 

manipulate and save data. 

• a data acquisition plug-in board (that fits in a pc expansion slot), a chassis 

external to the pc, an external USB or Ethernet device, a measurement 

instrument which connects to the pc through an RS232 port (serial port) or 

a GPIB (general purpose interface bus) port. 

In this case, the necessity to work with remote input/output led us to choose devices 

that transmit data over standard hardware technology, “Ethernet” (hardware 

protocol) and standard HTTP (Software protocol). Furthermore, the system has to 

be able to gather, monitor and archive analog and digital I/O values over the 

internet/intranet. In Figure 4.4 a schematization of the operating strategy is 

presented with reference to the collection of quantities such as current, voltage, 

temperature, humidity and air quality measurements. 

 
Figure 4.4 Analog I/O acquisition 

A motherbox is used to collect data from digital and analog Web-IOs in a central 

embedded database. For this component, low energy consumption products were 

chosen. 

b. Sensors for environmental parameters and human presence  

The presence and habits of occupants influence the use of equipment and indoor 

conditions. To study this correlation, the experimental setup consists of instruments 

’

’
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to measure environmental quantities, electricity consumptions and sensors for 

occupancy detection positioned following the criterion of sensors fusion. 

The following internal variables were regularly logged each minute. 

Comfort and Indoor environment factors: 

• Air temperature [°C] 
• Relative humidity [ %] 
• Air pressure [hPa] 

Presence Occupancy (present/absent) 

Indirect Sensors:  

• Indoor Carbon dioxide (CO2) concentration [ppm] 
• Air quality conditions, VOC concentration [ppm] 

Direct Sensors: 

• Beacons 
• Video camera for people presence 

Electricity consumption 

• Power meters (AC Devices), AC Transformers (AC current monitoring) 

Behavior 

• Window/Door position (open/closed) 
• Air conditioning (on/off) 

The external weather conditions were monitored using a weather station, mounted 

on the top of a building close to the office. 

Outdoor environmental factors measured every one minute. 

• Air temperature [°C] 
• Relative humidity [%] 
• Wind speed [ms-1] and wind direction  
• Solar radiation (beam and horizontal global irradiance [W m-2]) 

Table 4.4 gives the characteristics of sensors used for the experimental setup and in 

the following section, other details will be specified. 
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Table 4.4 Specification of sensors 

Sensor  Variable Measuring error 

Measuring 

range and 

resolution 

Wieseman & Theis 
57613 
Web-Thermo-
Hygrobarograph 

Air temperature [°C] 
typ. @ 25 °C ± 0.3 °C 
max. @ -40..85°C ± 
1.5°C 

-40°C..85°C 
1/10°C 

Relative humidity [%] 

typ. @ -20..60°C 
(normal range) ± 1.8% 
rH (10-90% rH) 
max. @ -20..60°C 
(normal range) ± 4% rH 
(0-100%rH) 

0..100% rF 
1/10% rH 
 

Air pressure [hPa] 

typ. @ 25°C ±0.8hPa 
(750..1100 hPa) 
max. @ 25°C ±2.5hPa 
(750..1100 hPa) 

10-1100 hPa 
0.1 hPa 

Wieseman & Theis 
57018 
CO2 sensor 

Carbon dioxide [ppm] 

Measuring range: 
0..2000ppm CO2 

±30ppm,±5% 

Analog  

Wieseman & Theis 
57618 
Web-Graph Air 
Quality  

Volatile organic 
compounds [ppm] 

Measuring range: 
450..2000ppm VOC as 
CO2 equivalent 

 
 
 

Air temperature [°C] 
typ. @ 25 °C ± 0.3 °C 
max. @ 0..50°C ± 
1.2°C 

1/10°C,  
 

Relative humidity [%] 
typ. @ 25°C ± 3% rH 
max. @ 0..50°C ± 7% 
rH (0-100% rH) 

1/10% rH 

Wieseman & Theis 
57645 
AC Device 

Electricity power  Range 0..50A AC, 30-
6000Hz (all 
waveforms) 

- 

ABUS FU7350W 
Abus rectangular, 
NC,0.2 A Reed 
Switch 

Window/door position 
(open/closed) 
Air conditioner (on/off) 

Contact sensor - 

 

c. Smartphones for presence and localization 

The first phase of the experiment consisted in changing one or more factors to 

observe the effect that modification has on the accuracy of the occupants’ indoor 

location. The study considers as factors the number of beacons and their position 

within the examined area, then we examined how well beacons and smartphone 

sensor positioning data matches a set of known location points. 

For the experiments, several beacons and a set of smartphones with a dedicated 

application that supports Bluetooth Low Energy technology to intercept beacons 

signals are used. Each smartphone identifies an occupant whose movements are 

constantly monitored and juxtaposed to the energy consumption values using time 

as a common factor. 
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The smartphone and energy consumption sensors data overlay requires 

synchronization of all devices. A significant number of studies from the scientific 

community has focused on time synchronization [2]–[5]. 

The approach that has most commonly been adopted is the Network Time Protocol 

(NTP) that uses round-trip message delay averaging to set times. To benchmark the 

performance of NTP running on the phone the OS Timestamping bounds, that in 

this case is Unix Timestamp, can be employed. In this way, through NTP and time 

provided by a server, it is possible to adjust the clock rate and synchronize data 

from different sources. 

During the localization algorithms calibration phase, the occupants walk on pre-

sets known as indoor paths with stops decided in advance. In addition to this, the 

algorithms calibration requires several configurations of the beacons number and 

their position within each room (Figure 4.5). 

In particular, two different scenarios have been defined. The first scenario is 

characterized by the presence of only one device, while the second scenario reckons 

on two or more beacons within the room, in order to evaluate the best trade-off 

based on number of devices and accuracy of the surveys. 

 

Figure 4.5 Configurations of beacon location 

Regarding the use of smartphones as a tool to detect the presence of a person or 

several people in a room, at an early stage an Android Application has been 

developed, specifically for Operating System 4.3 or higher, as this is the minimum 

version supporting the BLE protocol adopted by the beacons. 

The smartphone application works in the background and is in a constant listening 

state, allowing the detection of beacons at each instant. In this way, the application 

is able to send the exact position of the occupant, calculated using specific 
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algorithms based on the information received from beacons at a specific time, to 

the central embedded database. 

The centralized platform receives occupancy data from smartphones and 

environmental parameters from sensors. By synchronizing data through the use of 

NTP servers, all data are combined in order to identify the possible correlation 

between the presence of individuals and energy consumption in the studied 

environment. 

It is important to highlight that beacons were installed in the office. Due to time 

constraints, the data analysis remains for future work, but the data are being 

recorded.  

4.2. Measurements 

Figure 4.6 depicts the office layout as well as the general configuration of the 

sensors. 

The traditional integrated sensors are divided into three parts: (a) the sensing 

element (e.g. resistors, capacitor, transistor, piezo-electric materials, photodiode, 

etc.), (b) signal conditioning and preprocessing (e.g., amplifications, linearization, 

compensation, and filtering), and (c) sensor interface (e.g. the wires, plugs and 

sockets to communicate with other electronic components) [6]. 

In the successive section, all of these three parts will be described.  

4.2.1. Descriptions of the sensors 

In order to managing and inventory data we used the W&T Network Device Utility 

Version 4.30 [7], which automatically generated an inventory list with device data 

and status. WuTility is the free central management tool for all W&T network 

components. It does not only provide support in initial startup and configuration of 

the devices, but its archiving and inventory functions are also an administration 

level aid during operation [7].  

The data can be downloaded at intervals of 1, 5, 15 or 60 minutes, and the value it 

takes is the value measured by the sensor in the corresponding minute. 
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Figure 4.6 Test bed layout 

All sensors have been connected to the Web-IO Analog-In 0.20mA/0.10V #57641 

(Figure 4.7) to gather, monitor and archive analog measurement values over the 

internet/intranet. 

 

Figure 4.7 Web-IO Analog-In 0.0020mA/0..10V 

Each sensor has its own panel and DIN rail power supply Switching ELC 

ALE2401,30W, input 190 →253V ac, 24V DC output, 1.25 A (see Figure 4.8), in 

order to ensure continuity of measurements. 
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Figure 4.8 DC Power supply switching ELC ALE2401 for each sensor 

Comfort and Indoor environment factors: 

Figure 4.9 shows the sensor layout for comfort and indoor environment factors. 

 

 
Figure 4.9 Sensor layout for comfort and indoor environment factors 

The indoor environment measurements were carried out with Web-Thermo-

Hygrobarograph #57613 as shown in Figure 4.10. 

Measuring range: -40°C…85°C,0..100% rF, 10-1100 hPa 
Resolution:  1/10 °C, 1/10% rF, 0.1 hPa 
Measuring error:  
Temperature:   typ. @ 25 °C ± 0.3 °C 
   max. @ -40..85°C ± 1.5°C 
Relative humidity: typ. @ -20..60°C (normal range) ± 1.8% rH (10-90% rH) 
   max. @ -20..60°C (normal range) ± 4% rH (0-100%rH) 

temporary @ -40..85°C (max range) +3% rHnach 60h 
Operation outside normal range 
Long-term stability typ. <0.5% rH/year 

Atmospheric pressure: typ. @ 25°C ±0.8hPa (750..1100 hPa) 

Web-graph 

Air quality 

Web-Thermo 

Hygrobarograph 

Digital ON/OFF 

sensor 

 

Power supplies 
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   max. @ 25°C ±2.5hPa (750..1100 hPa) 
   max. @ -40..85°C ±3.5hPa (300..1100 hPa) 

Long-term stability typ. -1hPa/year 
Measuring frequency: 4s 
Storage frequency: 1,5,15, 60 min 

 

Figure 4.10 Picture of the instrument used to detect the indoor environment measurements #57613 

Presence Occupancy (present/absent) 

Indirect Sensors 

The measured parameters were indoor carbon dioxide (CO2) concentration [ppm] 

and VOC concentration [ppm]. Figure 4.11 shows the CO2 sensor. 

 
Figure 4.11 Picture of the CO2 sensor #57018 

The measurement of CO2 is through a non-dispersive infrared sensor (NDIR) that 

takes 6 values per minute. The room CO2 sensor #57018 is connected to the Web-

IO Analog-In 0..20mA/0..10V #57641. 

Measuring range CO2:   0..2000ppm CO2 

Output CO2:    0-10V 
Measuring error:   ±30ppm,±5% 
Measuring frequency:   6 values/minute 
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Operating ambient temperature: 0..50ºC 
 
One sensor is installed near the desk at + nose level (when seated, 1.1 m) above the 

ground [8]. For this sensor, the CO2 output was in Volts, and conversion was 

necessary to obtain the measurements in ppm. 

Indoor air parameters were measured by using Web-Graph Air Quality #57618 

shown in Figure 4.12. 

Measuring range: 0°C..85°C, 5..95% RH, 450-2000ppm VOC as CO2 
equivalent 
Resolution:  1/10 °C, 1/10% rH 
Measuring error:  
Temperature:   typ. @ 25°C ± 0.3 °C 
   max. @ 0..50°C ± 1.2°C 
Relative humidity: typ. @ 25°C ± 3%rH 
   max. @ 0.050°C ± 7%rH (0-100%rH) 
   Long-term stability typ. <0.5% rH/year 
Air quality sensor: Measuring range 450..2000ppm VOC as CO2 equivalent 
Measuring frequency: 4s 
Storage frequency: 1, 5, 15, 60 min 
VOC sensor, detects substances: Aldehydes, Aliphatic hydrocarbons, 

Alcohols, Amines, Aromatic hydrocarbons, 
Ketones, organic acids, CO, CH4, LPG. 

 

Figure 4.12 Pictures of the instrument used to estimate air quality #57618 

Direct Sensor / Beacons 

Two types of beacon are used for the selected scenarios fully compliant with Apple 

IBeacon (TM) standard, and compatible with iPhone and Android devices: a low-

medium range beacon (Figure 4.13a), and a medium-high range beacon(Figure 

4.13b). Table 4.5 summarizes the features of the devices. 
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Figure 4.13 Low-medium range (a) and medium-high range (b) Beacons 

The graphical user interface for an Android app and the locations on the top corners 

of the office are shown in Figure 4.14. 

. 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 Locations of the beacons in the office and graphical user interface for an Android app 

 

Table 4.5 Beacon features 

TECHNICAL 

FEATURES 
LOW-MEDIUM RANGE MEDIUM-HIGH RANGE 

P
 O

 W
 E

 R
 

Operation voltage 2.0 – 3.6 V 2.0 – 3.6 V 

Battery model CR2450 CR2032 
Battery life Default 3 years 

(max 5+ years) 
Default 18 months 

(max 2+ years) 
Operation frequency 2400 – 2483.5 MHz 2400 – 2483.5 MHz 

Frequency error +/- 20 KHz +/- 20 KHz 
Modulation Q – QPSK Q – QPSK 

Standby current 12A 12 A 

S
 E

 N
 S

 I
 T

 

I 
V

 I
 T

 Y
 /

  

S
 I

 Z
 E

 Output power 4 to -40 dBm 
(programmable) 

4 to -40 dBm 
(programmable) 

Receiving 
sensitivity 

-93 dBm -93 dBm 

(a) (b) 
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Transmission 
distance 

Up to 70 meters Up to 25 meters 

Antenna 50 ohm 
(onboard) 

50 ohm 
(onboard) 

Size 4 x 4 x 1.3 cm 2.7 x 2.7 x 0.7 cm 

 

Electricity consumption 

For measuring electric power an AC transformer 0..50 A #57645 connected to the 

Web-IO Analog-In 0..20mA/0..10V #57641 as shown in Figure 4.15, was used. 

 

Figure 4.15 Instrument used to measure the electric power, AC transformer 0..50A  #57645 

Technical specifications 

Range 0..50A AC, 30-6000Hz (all waveforms) 

Isolation voltage 5000V 

Analog output 0..5V DC or 0..10V DC 

The output of this sensor was in ampere and we considered the phase angle equal 

to zero, so that only active power (ܲ = ܸ ∗ ܫ ∗ cos �ሻ for the conversion was 

assumed and the measurements were reported in watts.  

Behavior 

Figure 4.16 shows three threshold and mechanical sensors. Window position 

(open/closed), door position (open/closed), and switching of equipment (air 

conditioner - on/off) were measured using Web-IO 2x digital input, 2x digital 

output #57637 with and reed switch Abus rectangular with cable as shown in  

Figure 4.17. 
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.  

Figure 4.16 Reed switch to measure the window, door position and on/off air conditioner 

Technical specifications 

Storage temperature:  -25ºC – 70ºC 

Operating temperature: 0°-60°C 

 

 
 

Figure 4.17 Instrument used to measure the window position (open/closed) Digital ON/OFF sensor 

(a) #57637 and (b) Reed switch Abus, rectangular with cable 

As mentioned above, for the data acquisition (DAQ) and control system a suitable 

combination of hardware and software was used. 

A motherbox 3 #50504 is applied to collect data from digital and analog Web-IOs 

in the central embedded database as shown in Figure 4.18. 

(a) 
(b) 
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Figure 4.18 Motherbox 3 #50504 

Meteorological data were obtained from the weather station nearby to the building. 

The meteorological data were merged with the indoor environment observations 

and the occupancy observations to form one database. 

The occupants in the office recorded their presence, and this information was used 

to test the specific sensors by comparison their outputs with the real information of 

occupancy. Table 4.6 shows the format used by the occupant to record the presence 

each minute in the office. 

Table 4.6 Format to record the presence in the office   

  Monday Tuesday Wednesday 

Time In Out Time In Out Time In Out 
09:05 1        
09:20 2        
09:32  2       
10:18  1       
11:31 1        
11:51 1        
12:20  1       
14:05  1       
14:48 1        
17:57  1       

4.2.2. Installation, calibration and preliminary test 

The sensor’s location was carefully selected to ensure that the sensors are triggered 

when occupants are in the office. The indoor environment sensors were placed on 

internal walls at the height of roughly 1.8 above the floor [9], avoiding direct 

sunlight. One CO2 sensor is installed near the desk at nose level (when seated, 1.1 

m) above the ground [8]. All occupancy sensors were factory calibrated, and control 

systems were commissioned before data collection. For management and 

inventorying the WuTility Version 4.30 tool was used [7]. 
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Sensor installation began in order to set up all sensors together. The first sensor 

installed was the air quality, then indoor environment sensor and indoor carbon 

dioxide. With these three first sensors installed, the results were checked and clock 

synchronization was set up.. 

Successively, tests for window/door position sensors were carried out in order to 

decide the place and reference to install the W&T Network Device Utility Version 

4.30 [7], in this case for an open window we used 1 and 0 for a closed window. The 

same designation was used for  both the door and the air conditioning sensor. 

The person’s presence in the office is not absolutely given for the single value of 

the parameters, instead, it is given by the variation of the parameters. For example, 

for CO2, it is given by the variation of the CO2 concentration in the air. If a person 

leaves or enters the office, the value could decrease or increase. If the derivative is 

positive, it could mean that a person arrives, instead if it is negative then the person 

left the office. For the binary data such as the window, door and air conditioning 

status, the first variation of each value to a new status ON means that a person is in 

the office.  

Some preliminary tests were conducted with the CO2 sensor to assess differences 

in measurements with respect to the location of the sensor, of the person and his/her 

presence. The first sensor was installed near the desk at nose level (when sitting, 

1.1 m) above the ground and another sensor was positioned at three different heights 

compared to the first sensor. This second sensor, both when the office was 

unoccupied or occupied, records higher values than the first one. Furthermore, 

differences were reported regarding the long unoccupied period (weekends and 

holidays), probably   due to changes in indoor relative humidity. In fact, the sensor 

detects in the IR band emitted by the CO2 that is very similar to the IR emission of 

Oxygen in the water molecule. Then the moisture can have an effect on the 

measurements, especially when the room is unoccupied.  At the end of the tests, the 

first position of the installed sensor was chosen because such a location ensured 

more stable CO2 values during the unoccupied periods. 
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5. CHAPTER  

OFFICE BUILDINGS: DATA ANALYSIS 

5.1. Objectives 

In this part of the investigation, different analyses were done with the sensor data 

to answer some related research questions identifying typical occupancy profiles in 

the office building.  

First, data were analyzed to explore relationships between the occupancy and the 

magnitude of indoor environmental changes with the aim of identifying which 

sensor is more suitable to measure occupancy in an office. Another analysis was 

dedicated to estimate the office occupant profiles by the use of direct observations. 

Two different approaches were defined, a) a heuristic approach via clustering 

analysis, logical flow charts, and conditional stages and b) a stochastic approach 

using probabilities. The statistical software R [1] was used for the statistical analysis 

and modeling. The main parts of the investigation are presented in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Office building framework 

Office Buildings 

Sources of information: data by sensors 
and direct observation 

Statistical/ Clustering 
analysis 

Occupancy Modeling 

Prediction of the occupancy and its 
interaction with the use of equipment  

Data collection and processing  



Chapter 5 Office Buildings: Data Analysis 
 

103 
 

5.2. Clustering analysis application 

Clustering is the unsupervised classification of patterns (observations, data items, 

or feature vectors) into groups (clusters). A hierarchical algorithm yields a 

dendrogram representing the nested grouping of patterns and similarity levels at 

which groupings change. Most hierarchical clustering algorithms are variants of the 

single-link and complete-link. It differs in the way they characterize the similarity 

between a pair of clusters. A distance measure is a metric (or quasi-metric) on the 

feature space used to quantify the similarity of patterns. In the single link method, 

the distance between two clusters is the minimum of the distances between all pairs 

of patterns drawn from the two clusters, while in the complete-link algorithm, the 

distance between two clusters is the maximum of all pairwise distances between 

patterns in the two clusters [2]. 

In a hierarchical cluster tree, any two objects in the original data set are eventually 

linked together at some level. The height of the link represents the distance between 

the two clusters that contain those two objects. This height is known as the 

cophenetic distance between the two objects. One way to measure how well the 

cluster tree generated by the linkage function reflects your data is to compare the 

cophenetic distances with the original distance data generated by the pdist function. 

If the clustering is valid, the linking of objects in the cluster tree should have a 

strong correlation with the distances between objects in the distance vector. The 

cophenetix function compares these two sets of values and computes their 

correlation, returning a value called the cophenetic correlation coefficient. The 

closer the value of the cophenetic correlation coefficient is to 1, the more accurately 

the clustering solution reflects your data. The cophenetic correlation coefficient is 

used to compare the results of clustering obtained by using the same data set and 

by utilizing different distance calculation methods or clustering algorithms [3]. 

ܿ௖௢௣ℎ = ∑ ሺௗሺ௜,௝ሻ−ௗሻሺ௧ሺ௜,௝ሻ−௧ሻ೔<ೕ√[∑ ሺௗሺ௜,௝ሻ−ௗሻ2೔<ೕ ][∑ ሺ௧ሺ௜,௝ሻ−௧ሻ2೔<ೕ ]  (1) 

In single linkage clustering, the cophenetic distances are as long as or shorter than 

the observed distances: the distance between groups is the shortest possible distance 

between its members. In complete linkage clustering, the cophenetic distances are 

as long as or longer than observed distances: the distance between two groups is the 
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longest possible distance between groups. In average linkage clustering, the 

cophenetic distance is the average of observed distances [4]. 

5.2.1. Case of study 

To obtain information regarding user presence and absence intervals, occupancy 

sensors were applied. Furthermore, thermophysical properties of the internal 

environments and the electricity consumptions connected to the use of computer 

and printer were stored. 

Occupancy was recorded by manual observation and indoor parameters such as air 

temperature, relative humidity, carbon dioxide (CO2), volatile organic compounds 

(VOC) were monitored. Some occupant behaviors with regard to door/window 

(open/closed) and use of air conditioning were considered. With these data, the 

clustering analysis was utilized to identify similarities in the days or months and 

possible occupancy profiles. Similar clustering analysis was carried out with each 

parameter monitored and compared with the real occupancy profiles to identify 

which sensor is better to measure the occupancy in an office. The data were 

analyzed to explore relationships between the occupancy and the magnitude of 

indoor environmental changes with the aim to identify patterns in the days, weeks, 

or months. Different occupancy patterns were identified starting from the data 

collected through person interactive surveys. 

With the results of the correlation between variables, three parameters were 

identified and used in the clustering analysis to identify similarity in the days and 

possible occupancy profiles and determine the minimum quantity of sensors 

necessary to define the occupancy profiles. 

We applied single-linkage, complete linkage, and average linkage clustering of the 

dataset for occupancy, CO2, electric power consumption and door status. The 

cophenetic correlation coefficient was used to verify the quality of the results with 

each variable, and the complete linkage was selected to define the groups. 

5.2.1.1.  Occupancy manual observations 

Data collected for weekdays, holidays and weekends from May 13 through 

September 30, 2016 (excluding August) were used. The range of data considered 

was limited to working days (from Monday to Friday) between the hours 8:00 to 
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21:00. In addition to the sensor measurements, people recorded their presence each 

minute. 

Table 5.1 summarizes the days of each month envisaged for the data analysis. 

Furthermore, the analyzed days were divided into time slots. Table 5.2 shows the 

four-time intervals in which the occupancy can be considered. The days were 

identified with the first letter of the month, then the day of the week and the number 

of days (e.g. JF24 is Friday, June 24). 

Table 5.1 Days of each month considered for the data analysis 

 Occupied days Unoccupied days Total 

May 11 20 31 

June 12 18 30 

July 13 18 31 

September 16 14 30 

Total 52 70 122 

Table 5.2 Time slot for the data analysis 

 Interval Hours Minutes 

I Morning 08:00 - 13:00 300 
II Lunch time 13:00 - 15:00 120 
III Afternoon 15:00 - 21:00 360 
IV All day 08:00 -21:00 780 

Each sequence in turn is constructed by 780 characters, one for each 1-minute time 

step, with a value that corresponds to binary data (1 is Occupied and 0 is 

unoccupied).  

Descriptive statistics for monthly occupancy hours are provided in Table 5.3. The 

highest occupancy rate is in July, and the lowest value is in June. Mean occupancy 

hours per time slots are shown in Figure 5.2. For the morning hours, the mean 

occupancy does not vary significantly in the months of the measurement period, 

indicating that the person is present in the mornings on a regular basis. On the other 

hand, the occupancy patterns for lunch period are similar to May and September. 

In the afternoon period, similarities are recognized in May and July. 

Table 5.3 Descriptive statistics for occupancy hours by month. All day period  

  Daily hours 

Month Total hours Mean Median Max Min Standard deviation 

May 50.2 5.6 6.2 7.0 2.1 1.6 

June 34.7 5.0 5.4 7.2 1.8 1.7 

July 81.3 6.3 5.9 10.8 4.0 1.8 

September 82.1 5.1 5.9 7.3 1.4 1.8 
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Figure 5.2 Mean occupancy hours per time slots 

Daily occupancy hours from Monday to Friday are compared in Figure 5.3. It shows 

that the characteristics of each weekday are different. In particular, the results 

indicate that the maximum occupancy rate is on Friday and the lowest one is on 

Wednesday. 

 

Figure 5.3 Daily occupancy hours from Monday to Friday 

These data were used for clustering analysis to identify typical occupancy profiles 

and then to compare the measured parameters to select the one that is near to make 

an occupancy prediction. 

5.2.1.2.  Measured data and correlation with the occupancy 

Figure 5.4 shows hourly data of CO2, VOC, temperature, relative humidity, window 

state, electric power consumption and door opening for a typical summer day. The 

occupancy is illustrated in each curve by dashed line.  
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As is shown in the graphs, just after the first person arrives in the office, all the 

sensors indicate a change in their measurements. In the first typical day, the CO2 

sensor seems to have a morning maximum reading around 11:00 with the office 

occupancy of three people and window closed. When the room is not occupied 

around 13:00 to 13:40, all sensors register a decrease in their readings. When the 

office is left vacant after 17:00, the first sensor in drop is the CO2, although it returns 

to the CO2 values of the unoccupied office after about two or more hours; while the 

temperature and humidity sensors take more time to stabilize to the empty office 

values. The CO2 and electric consumption curves and occupancy show similar 

patterns. 

 

Figure 5.4 Measurements profiles for two typical summer day 

Furthermore, the outdoor CO2 concentration was measured for six weeks in the 

summer period and has a mean value of 356 ppm. 

A correlation analysis was realized to know the relationship between the occupancy 

and the measured parameters. Figure 5.5 shows the correlation plot with the 

corresponding correlation coefficients displayed positive correlations in blue and 

negative correlations in red color. The p-values are less than 2.2e-16 for all 

correlations. The p-value is a measure of the probability of obtaining a result at least 

as extreme as the one that is actually observed, so the lower the value (usually below 

0.05 or 0.01) the more significant the result. Correlations are significant for the 
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CO2, electric power consumption, and door status, in contrast with the other 

parameters in which the correlations are not significant. 

 

Figure 5.5 Correlation plot. Pearson’s correlation coefficients, by color and values 

5.2.1.3.  Results and discussion  

a. Occupancy 

Hierarchical clustering found different occupancy profiles for each time slot. The 

cophenetic correlation coefficients and the distance measured used for each method 

are listed in Table 5.4. The method that presents the highest value of the cophenetic 

correlation is the complete, and the results of this approach will be presented for 

each parameter and compared with clustering of real occupancy data. 

Table 5.4 The cophenetic correlation coefficients for all methods and time slots considered 

Distance measure Clustering method Morning Lunch Afternoon All day 

Euclidean Single 0.75 0.77 0.78 0.50 
Complete 0.80 0.71 0.81 0.70 

Squared Euclidean Average 0.78 0.79 0.80 0.66 

In addition to the cophenetic correlation, a visual inspection of each dendrogram 

was done, and the results confirm that the complete method provides specific 

clusters of each time slot. 

In the dendrogram for all day slot, three clusters were identified and defined as three 

occupancy levels: Low with a mean daily occupancy of 3.8 hours, Medium with 

mean occupancy of 5.9 hours and High with 6.4 of mean daily occupancy hours 

(see Table 5.5). Also, the minimum and maximum occupancy hours were shown. 

For the first cluster, 36% of cases are Monday, in the second cluster 27% are 
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Tuesday, and in the last cluster, 50% of cases are Friday. Figure 5.6 presents three 

dendrograms for each method used. Figure 5.6b shows three clusters found with 

different colors for each type of occupancy level respectively.   

Table 5.5 Values in hours for each cluster obtained by means of the complete method 

 Low Medium High 
 Cluster 1 (11 days) Cluster 2 (22 days) Cluster 3 (12 days) 
Mean 3.8 5.9 6.4 
Min 1.4 2.9 4.4 
Max 6.4 7.9 10.8 

 

 

 

Figure 5.6 Dendrograms from hierarchical cluster analysis with single a), complete b), and average 

c) linkage. 

Morning Hours: As shown in Table 5.6, two clusters were identified. The first 

with a mean morning occupancy of 0.9 hours (defined as Low occupancy) and the 

second with a mean morning occupancy of 2.5 hours (high occupancy). No 

similarities were found regarding hours of arrival or leaving the office, or total 

occupancy hours. 

Table 5.6 Descriptive statistics values in hours for each cluster for complete method 

 Low High  
 Cluster1 (23 days) Cluster 2 (22 days)  
Mean 0.9 2.5  
Min 0.0 1.2  
Max 2.6 3.8  

Low 

Medium 

High 

(a) (b) (c) 
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Lunch Hours: The two considered clusters are reported in Table 5.7, the first one 

with a mean lunch occupancy of 1.6 hours. The second one has a mean lunch 

occupancy of 0.50 hours. 

Table 5.7 Descriptive statistics values in hours for each cluster for complete method 

 High Low  
 Cluster 1 (14 days) Cluster 2 (31 days)  
Mean 1.6 0.5  
Min 1.1 0.0  
Max 2.0 1.4  

Afternoon Hours: Two clusters were identified for the afternoon hours, one with 

24 days and another with 21 days. The first cluster has mean occupancy of 3.9 hours 

and the second cluster of 1.9 hours. See Figure 5.8. 

Table 5.8 Descriptive statistics values in hours for each cluster for complete method 

 High Low  
 Cluster 1 (24 days) Cluster 2 (21 days)  
Mean 3.9 1.9  
Min 2.9 0.0  
Max 5.1 3.5  

 

b. Electricity power consumption 

In the same way as with occupancy data, with daily measurements of electric power 

consumption, clustering analysis was done. Visual inspection of the dendrograms 

showed similarities, reported in Table 5.9  For the all day period, similarities were 

found between the medium occupancy profile and cluster 1 (42%) and 3 (67%) of 

electric power and high occupancy profile with the second cluster (88%). For lunch 

time, non-similarities were found between different clustering. A possible 

explanation is that when the user leaves the office for lunch, equipment is not turned 

off. Also for morning and afternoon period were in accordance in approximately 

more than a half of cases.  

Figure 5.7a illustrates occupancy dendrogram, and Figure 5.7b electric power 

dendrogram for all day slot with the three clusters identified in different colors. 
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Table 5.9 Comparison between occupancy and electric power clusters for different time slots 

Time slot 
Clusters 

Occupancy Electric power 
All day 1- Low 1-29% 

2-42% 

3-29% 
 2- Medium 1-25% 

2-8%, 
3-67% 

 3- High 1-12% 
2-88% 

3-0% 
Morning 1- Low 1-44% 

2-56% 

 2- High 1-63% 

2-37% 
Lunch Non similarities were found 
Afternoon 1- High 1-95% 

2-5% 
 2- Low 1-23% 

2-77% 

 

Figure 5.7 (a) Occupancy and (b) Electric power dendrogram from hierarchical cluster analysis 

with complete linkage. Schedule All day 

c. CO2 data 

The Occupancy and CO2 clusters are compared in Table 5.10 and Figure 5.8. In the 

diverse time slots, correspondences were found, for all day the occupancy was 

Low 

Medium 

High 

Medium 

Medium 

High 

(a) (b) 
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registered with a medium and high occupancy, while in the other intervals the 

presence could be identified through this sensor. 

Table 5.10 Comparison between occupancy and CO2 clusters for different time slots 

Time slots 
Clusters 

Occupancy CO2 
All day 1- Low 1- 31% 

2- 62% 

3- 7% 
 2- Medium 1- 27% 

2- 18% 
3- 55% 

 3- High 1- 0% 
2- 50% 
3- 50% 

Morning 1- Low 1- 61% 

2- 39% 
 2- High 1- 0% 

2- 100% 

Lunch 1- High 1- 82% 

2- 18% 
 2- Low 1- 15% 

2- 85% 

Afternoon 1- High 1- 30% 
2- 70% 

 2- Low 1- 60% 

2- 40% 

 

Figure 5.8 (a) Occupancy and (b) CO2 dendrogram from hierarchical cluster analysis with complete 

linkage. Schedule All day hours: From 08:00 to 21:00 occupied days 

Low

Medium 

Medium 

High 

High 

Medium/
High 

(a) (b) 
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d. Door status 

With the open/closed door records, data transformation was done in order to do the 

cluster analysis. Each change in the door status was counted as a presence of a 

person until the last one when people left until the next working day. Figure 5.9 

summarizes the similarities between groups. 

Table 5.11 Comparison between occupancy and door status clusters for different time slots 

Time slots 
Clusters 

Occupancy Door status 
All day 1- Low 1- 12% 

2- 59% 

3- 29% 
 2- Medium 1- 37% 

2- 37% 
3- 26% 

 3- High 1- 22% 
2- 56% 

3- 22% 
Morning 1- Low 1- 63% 

2- 37% 
 2- High 1- 50% 

2- 50% 
Lunch 1-  High 1- 41% 

2- 59% 

 2- Low 1- 21% 
2- 79% 

Afternoon 1- High 1- 67% 

2- 33% 
 2- Low 1- 52% 

2- 48% 
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Figure 5.9 (a) Occupancy and (b) Door status dendrogram from hierarchical cluster analysis with 

complete linkage. Schedule All day hours: From 08:00 to 21:00 occupied days 

The comparison between occupancy real data clustering and VOC and open/closed 

window groups did not demonstrated similarities. The electricity consumption, 

carbon dioxide data, and door status transformed data showed some similarities, 

and this confirms that with the single installation of one of these sensors an 

occupancy profile can be estimated, with the limitations of lack of fine-grained 

granularity related to each typology of sensor.  

5.3. Occupancy profile modelling based on indoor environment 

measurements 

Given our experimental test design and results, one can be subjected to set out a 

mathematical formulation that could model the occupancy profile using indoor 

environment data. From the point of view of the process outcome, the occupancy 

state could be modelled using two approaches: 

i. A heuristic approach via logical flow charts and conditional stages 
ii. A stochastic approach using probabilities 

Low 

Medium

High 

Low/Medium 

Medium

Medium
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Now, the only resulting outcome of the process (the model variable) is �� , which 

represents the occupancy state of the office. Let us also consider that the model 

variable could evolve deterministically or randomly in time, from a point of view. 

The latter is to analyze the model variable as stochastic, and the former to analyze 

it as deterministic. Either way, the evolution of the model variable through time will 

be described using the index � ∈ ܶ. It will only takes discrete values so that {�� , � = Ͳ, ͳ}, where � = Ͳ indicates no occupancy or absence and � = ͳ 

represents presence. Indoor environment measurements are considered to be 

continuous through time: ܶ = [Ͳ, ∞ሻ. When discussing all the indoor environment 

measurements, we will refer to them as M = ,ଶܱܥ} ,ݎ݁ݓ݋ܲ ܹܵ, ,ܣܣ ܶ, ,ܪ  .{ܥܱܸ

Table 5.12 shows the indoor environment variables with their unit of measure.  

Table 5.12 Indoor environment variables measured: All variables are measured each minute (time 

step or sampling rate of 1 minute) 

Indoor environment variable Units 
Carbon dioxide (CO2) ppm 
Utilities power (Power) W 
Window state (WS) Boolean 
Air conditioner: on/off (AA) Boolean 
Indoor temperature (T) °C 
Indoor humidity (H) % 
Volatile organic compound (VOC) ppm 
Occupancy state (��) Boolean 

 

Here after, we will first announce the hypothesis made. Second, we will seek to 

isolate the variables that have the strongest correlation with the occupancy profile 

(��), which would allow us to reduce the parameters measured for the model’s 

input. Third, we will formulate the model with a heuristic approach as previously 

stated. Fourth, the model will be formulated again using a stochastic approach. 

Finally, the outcome �� from both approaches will be presented and simultaneously 

compared.  

The first 45 days or first measurement campaign  (13th May 2016-30th September) 

of the selected sample were used to develop the model and finally, for the validation 

of the method, a further 40 days or second measurement campaign (3rd October 

2016- 20th January 2017) were used. 

5.3.1. Hypotheses  

Hypotheses will be used only when mentioned: 
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1: Whenever the window is open, and the air conditioning is on, the office will be 

considered as being occupied (not accounting for the possibility that the occupant 

has arrived but is not currently in the office) or as occupied (the occupant is 

currently in the office). 

5.3.2.  Determination of the input variables for the model 

The variables which will be used as inputs to the model will be the most 

representative from a statistical and physical point of view. From experimentation, 

one can induct which variables react or change more rapidly and considerably when 

the office is occupied, and based on statistical methods one can evaluate their 

correlation strength in relation with the occupancy profile (��).  

The following image (see Figure 5.10) presents a brief view of the indoor 

parameters measured plotted along with the real occupancy of the room. The air 

conditioning usage is not presented.  

 

Figure 5.10 . Indoor environment parameters and power consumption for a typical summer day. The 

dashed black line represents the occupancy profile.  

One thing we can infer from examining at these 5 plots is that, there is a clearer 

correlation between the CO2 levels (first plot), the energy consumption (last plot) 

and the occupancy profile (dashed black line) than there is for the other three 

parameters.  

Now, we will perform a correlation plot; the resulting charts are presented in Figure 

5.11 for the first measurement campaign. 
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Figure 5.11 Correlation plot for the first measurement campaign. a) Pearson correlation 

coefficients, by color and values and b)  Pearson correlation coefficients represented by color and 

p-values 

On the Figure 5.11a, the Pearson correlation coefficients are presented in a 

correlation plot. The correlation strength of the variables with each other variable 

and with themselves are represented by color and by values. The stronger the 

correlation, the higher the value showed is, and the darker the color. On the Figure 

5.11b, the Pearson correlation (by color) and the p-value are shown. The null-

hypothesis test (testing the correlation between the variables) for each variable 

gives the p-values. It can be observed that all p-values are lower than 0.05 except 

for the test between the air conditioning and VOC variables (which gave 0.1). This 

indicates that the correlation between them, is statistically non-significant. Values 

showing zero, are actually, lower than 2.2 x10-16. 

One can see immediately which variables are strongly correlated with the model 

variable �� (see first column on Figure 5.11a). In Figure 5.11 it is called 

“Occupancy”. Listing these variables by the decreasing correlations coefficients, 

would be as: power (0,64), CO2 (0,61), window state (0,46), air conditioning (0,42) 

and VOC (0,23). If explanation is needed, about why they are correlated with �� in 

this order; the variable power represents the energy consumption of some electronic 

devices in the office and they are more likely to be used when the office is occupied, 

the variable CO2 represents the levels of this gas inside the office produced by the 

bodies and these levels are more likely to become higher when the office is 

occupied, the window state variable represents only whether the window is open or 

not and it is more likely to be open when the office is occupied, likewise for the air 

a) b) 
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conditioning state variable, and the variable VOC represents the levels of volatile 

organic compounds and they are also more likely to be higher when the office is 

occupied. This leads us to question why the CO2 levels are less strong correlated 

with the occupancy state. This can be explained by several facts: this gas is 

produced at a height of approximately 1.0 m (when the occupants are seated) and 

1.70 m (when standing up); the sensor is placed at 1.1 m height above the ground 

(near the occupant’s nose); this gas is produced at a specific temperature, which if 

higher than the indoor air could result in an ascending flow depending on their 

densities relation; the air-change-rate in the office would help the indoor air 

recirculate, moving the gas away from the sensor.  

Consequently, it led us to decide the input variables of the model which are the 

power, the CO2 levels, the window state and the air conditioning state. The variable 

VOC will not be used as an input variable to the model due to its weak correlation 

coefficient value, compared with the other four variables. Now, we can proceed to 

describe the first approach to model the office occupancy profile. 

5.3.3. A heuristic approach via logical flow charts and conditional 

stages  

Our first attempt to model the occupancy state has a simple approach. The basic 

idea is to take the four measured variables and set a conditional setpoint or level for 

each one, in order to determine (if the variable value reaches or exceeds this 

setpoint) whether the office is occupied or not. This will be done using a logical 

flow chart containing two conditional stages as presented in Figure 5.12. 
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Figure 5.12 Schema of the logical flow chart, the heuristic model 

Each stage of the logical chart in Figure 5.12, can be described as: 

i. Inputs. Here are the parameters measured and the conditional setpoints. 

ii. First condition stage. In this stage, the parameters are compared with their 

conditional setpoint value. The condition “greater than” was used for the 

parameters that evolves as T (the power and the CO2 levels), stating that if 

the parameter value lays above its conditional setpoint value, one will 

interpret this as: the office is occupied. The condition “equal to” was used 

for the variables that evolves discretely in time (the window and air 

conditioning state), stating that if the parameter value is equal to its 

conditional setpoint value, will be interpreted as: the office is occupied. 

iii. Second condition stage. This stage is basically to couple the resulting outputs 

from the first condition stage. Here, we have 4 logical entries to interpret. It 

is easy for the conditions “equal to”, because if its value results to be 1, one 

could be certain that the office is occupied (hypothesis n°1). Thus, an OR 

gate is used to state that, the occupancy state will be 1, if either one or both 

conditions give 1. The addition of an AND gate, is a little bit more difficult 

to explain. Based on previous attempts, the lower error of the model was 

achieved when adding this AND gate, to evaluate the continuous variables 

before the OR gate.  

iv. Output. The result of the model, a logical value for the occupancy state, is 
given. 

Conditional setpoint values 

The designation of the conditional setpoint value for each variable, was based on 

experimentation results. For the CO2 variable, the conditional setpoint was chose 

by calculating the mean of all CO2 measurements only when the occupancy state is 

equal to zero. Then, when the currently measurement is higher than the setpoint, 

the occupancy state will be considered as 1. Figure 5.13 shows results for the first 

and second measurement campaign. The resulting setpoint value for the CO2 

variable was 368 ppm. Doing the same for the power variable, its resulting setpoint 

value was 14.1 W. 



Chapter 5 Office Buildings: Data Analysis 
 

120 
 

 

Mean = 367.9     Mean= 14.1 

 

  Mean=361.5     Mean= 13.1 

Figure 5.13 Mean for CO2 and power a) , b) for the first measurement campaign and c), d) for the 

second measurement campaign 

The values measured for each of the four variables chosen to be the inputs of the 

model, compared to the occupancy state of the office, are presented in Figure 5.14. 

As presented before (the evolution of each variable in ℳ through ܶ, see Figure 

5.10), looking at Figure 5.14, one can observe that the occupancy state could take 

both values, 1 or 0, when the variables measured give the same value, i.e. a value 

of 519 ppm for the CO2 measurements was encountered, when the occupancy state 

was 1, but also, when it was 0. The same for the power measurements, and for the 

data collected for the window state and air conditioner state. Here, the issue of the 

position of the CO2 sensor returns again. 

 

 

a) b) 

c) d) 
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Figure 5.14 Occupancy state evolution with respect to the 4 variables chosen as inputs of the model. 

From left to right and up to down: CO2 levels, power, window state (WS) and air conditioner state 

(AA) 

We, therefore, revised our first approach and realized that a better way to model the 

occupancy state might be one that includes probabilities. The next section presents 

our second approach. 

5.3.4. A stochastic approach via conditional probability equations 

This time, on the attempt to model the occupancy state as a random process, it is 

necessary to use probabilities. The notion of a random process is based on, as 

previously stated, the fact that the same measured value in ℳ can be encountered 

twice: when the occupancy state equals 1 and 0; no variable in ℳ alone can 

perfectly predict the occupancy state value (see Figure 5.14). Thus, as for our first 

approach, we propose to use the four chosen variables and predict the occupancy 

state by including “classes” where there will be conditional setpoints along with a 

set of probabilities (probabilities based on the frequentist approach), where the 

values in ℳ indicate whether the occupancy state equals 1 or 0, and we will refer 

to this as the “parametric-classification-probability array”. We will also introduce 

another set of probabilities to represent the strength of each variable in ℳ with the 

occupancy state, and we will refer to this as the “ponderation-probability matrix”. 

Finally, once each input is evaluated, in the probability array, we will combine this 

with the ponderation values using conditional probability equations to calculate the 

probability of presence and absence (the model’s outputs); the resulting 

probabilities will be used to recreate the occupancy profile. All this, will be 

performed at each time step that ℳ is measured; each minute, in our case. A schema 

of the process described here before, is presented in Figure 5.15. 
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Figure 5.15 Schema of the stochastic model 

 

From left to right: first, there is the model input including the variables in ℳ chosen 

(all the variables are presented in Figure 5.15 to generalized). Second, there is the 

“stochastic evaluation” where the value measured from each variable will be 

evaluated, reviling first, the chances that each variable can tell whether the 

occupancy state equals 1 or 0, and second, the chances that the latter equals 1 or 0, 

when all variable first evaluations are combined. The following details this 

“stochastic evaluation”. 

5.3.4.1. Parametric-classification-probability array 

Here we propose to have two class levels (range of values), for convenience. 

Choosing two levels keeps the model time calculation short and simple. This, it will 

be two classes for each of the four variables chosen. Each class will include a 

subarray with probability values indicating the chance that the office could be 

occupied or not (base on the frequentist approach). Then, one is asked to read this 

as: “if the measured value lays within a specific class, the chance that the office is 

occupied is…”. Figure 5.16 presents this before for the first and second 

measurement campaigns.  
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Figure 5.16 Parametric-classification-probability matrix, from the first measurement campaign 

Taking the same conditional setpoint values used on the heuristic model, for the 

CO2 variable, the classes are chosen to be, first, [0, 368 ppm) and second, [368 ppm, +∞). The same for the power variable, which was [0, 14.1 W) and [14.1 W, +∞). 

On the contrary, for the window state and air conditioning state, the classes are, 

when the value is 0 and when it is 1. 

Each probability value “p” is calculated using the frequentist approach, which 

estimates the likelihood that a specific value will appear in any single trial by 

performing previously several trials and counting the times it is encountered in 

comparison with the total of trials.  

5.3.4.2. Ponderation probability matrix 

The ponderation matrix is based on the correlation between each variable measured 

and the occupancy state. This matrix is presented in Figure 5.17, the column named 

“correlation strength” contains the Pearson correlation coefficient values taken 

from the correlation plot (in Figure 5.11). Then, the ponderation of each variable is 

calculated by taking the relative correlation strength of each variable, so they sum 

up 1 as we want to use them as probability values. This before, was done by adding 

up all the correlation coefficient values of the variables (0.61 for CO2; 0.64 for 

power; 0.46 for WS; 0.42 for AA), which gives 2.13. The ponderation values are 

then: 0.61/2.13; 0.64/2.13; 0.46/2.13 and 0.42/2.13, respectively.  
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Figure 5.17 Ponderation-probability matrix, from the first and 

These ponderation values along with the Parametric-classification-probability-

matrix values, will be used to estimate the probability of presence and absence in 

the office, by calculating the total probability using conditional probability 

equations. 

5.3.4.3. Conditional probability equations 

The total probabilities were defined from the point of view of stochastic modeling, 

as conditional probabilities [5]. For any events A and B, the conditional probability 

of A given B is written as p{A|B} and defined by, {ܤ|ܣ}݌ = ௣{஺∩஻}௣{஻}       for {ܤ}݌ > Ͳ    (2) 

or in a stochastic way,  ܣ}݌ ∩ {ܤ =  (3)      {ܤ}݌ {ܤ|ܣ}݌ 

then, if there are various events B (denoted Bj), the probability of the event A would 

be calculated by using the law of total probability, as follows:  {ܣ}݌ =  ∑ ௝=ଵ∞{௝ܤ}݌{௝ܤ|ܣ}݌        (4) 

extrapolating this before to our case; the event A would be, for instants, the 

occupancy state being equal to 0 or 1, and the event B would be, the happening of ℳ (when indoor measurements take place): ݌{�� = ͳ} =  ∑ ��}݌ = ͳ|ℳ௝}݌{ℳ௝}∞௝=ଵ      (5) 
 

Here, is obvious that ݌{ℳ௝} = ͳ, since indoor measurements are always performed. 

Thus, equation 5 does not represent our stochastic process. A more suitable way to 

represent it, is as follows: 

��}݌ = ͳ} =  ∑ ݌ {�� = ͳ | ℳ௝ = [Ͳ, ௝݉ሻ ℳ௝ = [ ௝݉ , +∞ሻ} ௝=ଵ∞{ℳ௝}݌  (6)    {ℳ௝}ݓ

and, ݌{�� = Ͳ} = ͳ − ��}݌ = ͳ}        (7) 
 

where ݓ stands for weighting or ponderation, and ݉ represents the limit value of 

the range. To calculate the total probability using equation 6, we will define the 
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probability “ݓ{ℳ௝}” where ℳ௝  contain only CO2, power, WS or AA, as the 

ponderation values showed in Figure 5.17. The probability ݌ {�� = ͳ | [Ͳ, ℳ௝ሻ [ℳ௝ , +∞ሻ} 

will be defined as the probability that the occupancy state equals 1, given the value 

of ℳ௝  using the values from the Parametric-classification-probability matrix, 

showed in Figure 5.16. Then, equation 5 should be defined as: 

��}݌ = ͳ} = ݌  {�� = ͳ | ʹܱܥ = [Ͳ, ͵͸ͺ ݉݌݌ሻ ܱܥʹ = [͵͸ͺ ݉݌݌, +∞ሻ} +{ʹܱܥ}ݓ  ݌  {�� = ͳ | ݎ݁ݓ݋ܲ = [Ͳ, ͳͶ.ͳ ܹሻ ܲݎ݁ݓ݋ = [ͳͶ.ͳ ܹ, +∞ሻ} ݌ +     {ݎ݁ݓ݋ܲ}ݓ {�� = ͳ |ܹܵ = Ͳܹܵ = ͳ} ݌+ {ܹܵ}ݓ {�� = ͳ ܣܣ| = Ͳ ܣܣ = ͳ }  (8)   {ܣܣ}ݓ

 

5.3.4.4. Occupancy state reconstruction based on resulting 

probabilities 

The occupancy state, from the total probability results, given by equation 5, is 

proposed to be reconstructed by considering the office as occupied when the total 

probability value is higher than 0.5; when this happens, the reader is asked to 

interpret this as: there is a higher chance the office is occupied. On the contrary, if 

the total probability value lays below 0.5, this means that there is a higher chance 

that the office is not occupied. 

5.3.5. Error estimation 

The error (e), in estimating the occupancy state, of each model could be calculated 

using the following expressions. First, evaluate the occupancy profile model by 

comparing the model output with the measured or “real” occupancy as follows: �݊݋�ݐܽݑ݈ܽݒ݁ ݈݁݀݋: ݈݁݀݋݉ ݕܿ݊ܽ݌ݑܿܿ݋ ==  (9)   ?ݕܿ݊ܽ݌ݑܿܿ݋ ݈ܽ݁ݎ

This expression will give a logical value TRUE or 1 if the condition equal to “=” is 

verified and a logical value FALSE or 0, if not. In other words, expression (9) is 

asking: Is the occupancy model response equal to (or has the same value as) the real 

occupancy? Or, does the occupancy model output match the real occupancy? Then, 

the model’s error will be determined by the relative number of matches between 

these two, as follows: 
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݁ = ቀͳ −  ௢௖௖௨௣௔௡௖� ௠௢ௗ௘௟ ௠௔௧௖ℎ௘௦௥௘௔௟ ௢௖௖௨௣௔௡௖� ቁ  ͳͲͲ      (10)ݔ

This can express this before in a more statistic way:  

݁ = ቀͳ −  ௡௨௠௕௘௥ ௢௙ ௠௔௧௖ℎ௘௦ ௢௙ ௧ℎ௘ ௢௖௖௨௣௔௡௖� ௠௢ௗ௘௟௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௢௕௦௘௥௩௔௧௜௢௡௦ ቁ  ͳͲͲ    (11) ݔ

In our case, the “total number of observations” would be 45 days multiplied by the 

sample rate (1440 minutes in a day), giving 64800 observations. Note here that the 

real occupancy data is assumed to have not associated uncertainty or error in the 

collection process. 

5.3.6. Results and discussion 

For the stochastic model, the criterion used, for reconstruction the occupancy 

profile, as mentioned before in section 5.3.4.4, was as follows: 

If  ݌{�� = ͳ} > Ͳ,ͷ → �� = ͳ  (12) 
 

The error as previously said was calculated on the matches between the real 

occupancy and the occupancy models. The error of each model will be estimated 

using the method. The prediction of both models will be compared with the 

occupancy state whose data were collected during the experimental campaign.  

In Figure 5.18 and Figure 5.19, the real occupancy profile for two typical days, is 

presented by a tick dashed line to compare with the others two lines: the heuristic 

model output (in red) and the stochastic model output (in blue). It can be confirmed, 

at a glance, that the heuristic approach is, somewhat, better than the stochastic 

approach used. 

 

 

Figure 5.18 Real occupancy profile (dashed line) compared with both, a) heuristic (red line) and b) 

stochastic (blue line) model results, for day 19th of measurement campaign 

 

a) b) 

a) b) 
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Figure 5.19 Real occupancy profile (dashed line) compared with both, a) heuristic (red line) and b) 

stochastic (blue line) model results, for day 32th of the measurement campaign.  

Applying each model to the entire first measurement campaign (45 days) and 

comparing them with the real occupancy; the error, for the heuristic model, gave 

8.47%. However, for the stochastic model, gave 12.87%.  

Moreover, if we focus on a single day prediction, the errors are quite different than 

these presented before.  

Using all the 1440 observations (from 0:00 to 23:59): 

• For the 19th  day: 1.94% of error for the heuristic model and 2.43% of error for 

the stochastic model. 

• For the 32th  day: 0.21% of error for the heuristic model and 2.85% of error for 

the stochastic model. 

5.3.7. Validation of the method 

The same methodology described in the section 5.3.4 was applied. First of all, a 

correlation plot with the second measurement campaign was performed. The 

resulting charts are presented in Figure 5.22. 

 

Figure 5.20 Correlation plot for the second measurement campaign. a) Pearson correlation 

coefficients, by color and values and b)  Pearson correlation coefficients represented by color and 

p-values 

a) b) 
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For this second measurement campaign, the variables strongly correlated with the 

model variable ௦ܱ are quite different. See first column on Figure 5.20a, the 

decreasing correlations coefficients, would be as: Power (0.72), CO2 (0.66), VOC 

(0.49) , AA (0.42), T (0.35) and WS (0.33). 

Due to these results, the ponderation-probability matrix changes (see Figure 5.21). 

The WS parameter does not have a strong correlation with ௦ܱ and it did not take 

into consideration as input variable to the model due to its weak correlation 

coefficient value. This result could be explained because the second measurement 

campaign was in the winter season and the window opening decreases related to the 

spring-summer season (first measurement campaign). 

 

Figure 5.21 Ponderation-probability matrix, from the second measurement campaign 

The conditional setpoint designed for the first measurement campaign staying the 

same (368 ppm for CO2 and 14.1 W for power). However, some changes regarding 

the values for class levels in the parametric-classification-probability matrix were 

done, according to the collected data. Looking at Figure 5.22, one can observe that 

for the CO2 values greater than 1000 the office is always occupied. Also, the CO2 

values are higher than in the first measurement campaign (see Figure 5.14). 
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Figure 5.22 Occupancy state evolution with respect to the four variable for the second measurement 

campaign. From left to right and up to down: CO2 levels, power, AA  and VOC 

The parametric-classification-probability matrix, from the second measurement 

campaign was defined (see Figure 5.23). 

 

Figure 5.23 Parametric-classification-probability matrix, from the second measurement 

campaign. 

After to calculate the values of probability for each parameters the results showed 

that they are equal to those of the first measurement campaign as you can see in 

Figure 5.23. 

 

Figure 5.24 Ponderation-probability matrix, from the second measurement campaign 

 

The validation of the method had les us the conclusion that: the classification-

probability matrix values should be left as in Figure 5.16 and the ponderation-

probability matrix changes or depends on the season of the year. 

Later to validate the method with the data of the second measurement campaign the 

results are: 
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Error of the heuristic model for the whole second measurement campaign (or 

overall error): 7.73% 

Error of the stochastic model for the whole second measurement campaign (or 

overall error): 13.63% 

Figure 5.25 shows the real occupancy profile (dashed line) compared with a) 

heuristic model and, b) stochastic model. 

 

 

Figure 5.25 Real occupancy profile (dashed line) compared with both, a) heuristic (red line) and b) 

stochastic (blue line) model results, for day 32th of measurement campaign 

 

Using all the 1440 observations (from 0:00 to 23:59): 

Error of the stochastic model for the 32th day of the second measurement campaign: 

4.23% 

Error of the heuristic model for the 32th day of the second measurement campaign: 

3.89% 

The results suggest that the behavior of the measured variables with respect to the 

occupancy varies between summer and winter. 

Without considering that the real occupancy profile used for calibrating and 

comparing the models has an error associated with the collection technique 

employed. 

The methodology utilized for the development of both models based on parameter 

measurements that characterize the internal environment of the office consistently 

predicts the occupancy profile in the global field (for an experimental campaign) 

and local (for a specific day), with respect to the errors found. 

a) b) 



Chapter 5 Office Buildings: Data Analysis 
 

131 
 

5.3.7.1. Testing the heuristic model on data collected in further 

experiments 

Until this point, the data used to test the model were collected at a sampling rate of 

a minute. There is not always the possibility of measuring at this small sampling 

rate. Then, let us compare the model for data collected at different sampling rates: 

15 and 30 minutes, and on days that are not part of the 45 day sample used to build 

the model.  

Table 5.13 Model’s error with different sampling rate 

Sampling rate (minutes) Model’s error (%) 
1 8.12 
15 6.19 
30 8.16 

 

The following 3 figures (from Figure 5.26 to Figure 5.28) are presented to compare 

the occupancy model error at different sampling rates, for the measurements on 

June 27th:  

 

 

Figure 5.26 Test of the occupancy model for the data collected on June 27th at a sampling rate of a 

minute. At the left: CO2 levels and power with the real occupancy profile. At the right: with the 

occupancy model profile 

 

Figure 5.27 Test of the occupancy model for the data collected on June 27th at a sampling rate of 15 

minutes. At the left: CO2 levels and power with the real occupancy profile. At the right: with the 

occupancy model profile. 
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Figure 5.28 Test of the occupancy model for the data collected on June 27th at a sampling rate of 

30 minutes. At the left: CO2 levels and power with the real occupancy profile. At the right: with the 

occupancy model profile. 

5.3.8. Sources of error 

At this moment, only five parameters of the data collected were used to build the 

occupancy model: CO2 levels, power consumption from computers and printers, air 

conditioning usage, window status and the real occupancy.  

The first source of error that should modify our model the most is in the real 

occupancy data collected, as this parameter is used to calculate the model’s error. 

The error in the collection of the real occupancy might be caused by the fact that 

the experimenters could have forgotten to note or mark manually, each time they 

enter the office or, for some reason, left the office, which is normal to happen. Also, 

errors can occur in noticing the time. 

5.4. Energy consumption influenced by occupant’s behavior in the office 

 The office was instrumented to characterize the occupant’s behavior and the energy 

consumption. The behavior has been described  by window opening, by office 

occupancy profile and by the air conditioning usage. In respect to the office: the 

lights, the desktop computers and printers, the air conditioning and the occupancy 

profiles were used to estimate the energy consumption. This  is done each month as 

the experimental data are collected daily and can be represented in a plot, having 

the relation we want to establish (energy consumption as function of the occupant’s 

behavior). 

5.4.1. Energy consumption estimation: 

Assumptions:  

• Only the days of occupancy have been considered. 
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• Lights are turned on only in the afternoon: from 15:00 to 19:00 when the 
office is occupied. This occurrence was obtained by interview. 
 

1. Lights: 

In order to estimate the energy consumption, we followed the next steps: 

a. We took the occupancy profile, specifically the occupancy profile on the 
period from 15:00 to 19:00.  

b. We calculated the total hours of occupancy within this period. These are the 
hours that the lights were on. 

c. The lights power consumption is 75 W. 
 

2. Desktop computers and printers: 

As the power consumed by the computers and printers was measured in a sampling 

rate of a minute, we have calculated the integral of the power to estimate their total 

energy consumption per day. To calculate the integral, we used the trapezoidal 

method. 

3. Air conditioning: 

The air conditioning power consumption was estimated as 3500 W. This is the 

capacity of the air conditioning equipment in the office.  

To estimate the energy consumption, we followed the same steps as those for the 

lights, except of point a. Here, the air conditioning usage is recorded by sensors, 

thus the total usage time can be known. 

5.4.2. Occupant’s behavior characterization  
Assumptions:  

Window open, stands for any position of the window. The exact opening percentage 

is not considered here, as it was not recorded by the sensor. 

The occupancy profile collected manually is considered to have no uncertainty 

associated with the collection process. 

Time window opened: 

The state of the window was recorded  whenever it changed, thus to calculate the 

time the window was kept open, we only sum up the period it was open. 

Air conditioner usage: 
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Same as the window state, data were recorded by a sensor placed in the air 

conditioning slats with a sampling rate of a minute.  

5.4.3. Results and discussion  

For a very brief data analysis, the energy consumption was compared with the hours 

the window was kept open and separately with the hours of occupancy, in a plot. 

The hours of air conditioning usage were confronted with the days within the 

month, so this could give us information on its usage tendency. First we plotted the 

results for a month of recorded data. Finally, a regression line was included to show 

the energy consumption tendency. 

For example in September (16 working days), as can be observed in Figure 5.29,  

the energy consumption tends to increase when the hours of occupancy increase, as 

expected. On the contrary, it tends to decrease when increasing the time the window 

is open. The latter, have total sense if we consider that the outdoor temperature 

becomes lower as we approach autumn, refreshing the office indoor environment. 

 

 

Figure 5.29 Energy consumption tendency in respect to the hours of occupancy a) and to the hours 

in which the window was kept open b) 

As observed before, we can expect that the air conditioning usage will decrease 

over time, since opening the window was sufficient to consistently refresh the office 

indoor environment. Furthermore, Figure 5.30 shows the hours of air conditioning 

usage over the days of September.  We can observe and conclude that the air 

conditioning usage decreases over time as expected (also as the regression line 

suggests).   

a) b) 
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Figure 5.30 Air conditioning usage in hours as the day past in September 
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6. CHAPTER 

GENERAL CONCLUSIONS 

In this final chapter, we review and discuss the key contributions of this research 

work.  

6.1 Concluding remarks 

The  thesis was divided into two main parts regarding different typologies of 

building use, residential and office. For residential buildings, the main objective 

was to evaluate the effect of behavioral factors on  the energy performance of a 

housing stock representative of Mediterranean climatic conditions.  In particular, 

three alternative procedures for modeling occupancy in buildings were proposed 

and applied by energy simulation. The investigation highlighted the importance of 

how the modeling of the occupancy may produce  different results in the prediction 

of the energy performance. Also, a case study was developed, including a 

residential nZEB model, to evaluate the influence of users’ patterns on the energy 

consumption of this building type. The following can be deduced: 

• Regression models are used to determine the significance of selected parameters 

and their interrelations. Physical factor and occupant parameters explain 48.7% 

of the variation in electricity energy consumption; the only physical factors can 

explain 32.7% of the variation. These results are relevant in the specific context.  

• The analysis highlighted how the availability of data and information 

concerning occupancy is essential for the modeling of the profiles to be used in 

design or assessment phase. In fact, the prediction of energy consumption 

differs significantly according to a way through occupancy is modeled. 

• The modeling procedure depends on the level of detail of the available 

information. The study demonstrated that the calculated energy consumption by 

using the Standards prescriptions could be not representative of the real energy 

performances. 

• In the nZEB case study, the results show that even the wasteful family, who 

does not care about the use of air conditioning and ventilation, could almost 

double the surplus energy to be allocated to electrical needs. In fact, the 
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percentage of consumption that can be covered by renewable sources Passes 

from 18% to 33% using low-power electrical appliances and lights. 

 The analysis conducts the authors to conclude that the assertion of a “nearly” zero 

energy building is justified, as the fact of being zero energy is not linked exclusively 

to the construction and plant solutions, but is also dependent on occupant related 

factors. Indeed, minimizing the energy consumption for heating and cooling by 

adopting high-efficiency envelope and plants, the consumption of lighting and 

appliances depending on user behavior becomes prevalent. On the other hand, for 

office buildings, the first part of the analysis was dedicated to investigate the data 

collected by sensors to explore relationships between the occupancy and the 

magnitude of indoor environmental changes with the aim to identify what 

sensor or sensors fusion is more suitable to describe the occupancy. In the 

second part, a heuristic approach via logical flow charts and conditional stages, 

and a stochastic approach using probabilities were applied to estimate the office 

occupancy profiles by the use of direct observations and sensors network. The 

following can be concluded: 

• The comparison between occupancy real data clustering and VOC and 

open/closed window groups did not demonstrate similarities. Otherwise, 

electricity consumption, carbon dioxide, and door status showed some 

similarities, confirming that occupancy profiles could be estimated with a single 

sensor installation. On the other hand, the quality of the results is affected by 

the limitations of lack of fine-grained granularity related to the characterization 

of the spatial resolution of occupancy information which can be obtained. 

• The methodology utilized for the development of both models (descriptive and 

predictive) based on parameter measurements that characterize the internal 

environment of the office consistently predicts the occupancy profile in the 

global field (for an experimental campaign) and local (for a specific day), with 

respect to the errors found. 
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6.2 Future developments 

In this section, we will list several limitations with our current research and suggest 

ideas for  future works. Similarly, as before, the considerations are separated by 

residential and office buildings use.  

Take into account other sensors installed in the office, as proximity beacons and 

micro camera through raspberryPI, different scales of occupancy measurement can 

be considered in the future, not only the presence, but also  location, count, and 

activity (use of appliances and heating/cooling system in the office). 

 It can be made a comparison of traditional sensors such as CO2 and air quality with 

smartphones for presence and localization and video camera.  

Regarding sensors fusion for occupancy detection, we suggest an investigation on 

how to combine data from multiple sensors allow to obtain more information about 

occupancy and how new technology as beacons can be taken into account to 

generate accurate occupancy information with the advantage of  low-cost. 

The mobile application allows the indoor localization of any individual involved in 

the experiment. In other words, in a more realistic scenario, the occupancy detection 

process should consider the presence of other occupants (i.e. visitors) in each room, 

not only those who use the application. Future development of the present study 

will certainly cover this aspect, with the consideration of different technologies 

allowing the passive presence detection by integrating a tagging mechanism. 

Regarding residential building, this thesis analyzed just some of the possible 

solutions to address the problem of occupancy modeling in  buildings. The study 

considered two existing buildings, with the aim of not involving the variability of 

the physical aspects and the technical-constructive characteristics of the dwelling, 

rather focusing attention on the occupancy typologies and on how to describe 

occupancy in the model.  Being an existing building, the climatic conditions are 

those of the site, a typically Mediterranean location. Future studies could consider 

newly designed structures, to assess the influence of occupancy in buildings with 

specific design features, such as buildings designed according to high standards of 

energy efficiency. Besides, different climatic conditions could be simulated, to 

explore the interaction between the energy performances of the building, climatic 
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factors, and occupancy profiles. Moreover, additional occupancy scenarios could 

be explored with the aim of investigating further household composition, and mode 

of use of the house.   
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