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Abstract (English)

Modeling and Simulation (M&S) is gaining a central role in several industrial
domains such as automotive, e-science and aerospace, due to the increasing
complexity of system requirements and thus of the related engineering prob-
lems. Specifically, M&S methods, tools, and techniques can e↵ectively sup-
port the analysis and design of modern systems by enabling the evaluation
and comparison of di↵erent design choices against requirements through vir-
tual testing; this opportunity becomes even crucial when complete and actual
tests are too expensive to be performed in terms of cost, time and other re-
sources. Moreover, as systems result from the integration of components which
are often designed and manufactured by di↵erent organizations belonging to
di↵erent engineering domains (including mechanical, electrical, control, and
software), great benefits can derive from the possibility to perform simulations
which involve components independently developed and running on di↵erent
and possibly geographically distributed machines. Indeed, distributed simu-
lation promotes an e↵ective cooperative, integrated and concurrent approach
to complex systems analysis and design.

Although M&S o↵ers many advantages related to the possibility of doing
controlled experiments on an artificial representation of a system, its practical
use requires to face with important issues such as, (i) di�culties to reuse
simulation models already made; (ii) lack of rules and procedures by which
to make interoperable models created with di↵erent simulation environments;
and, (iii) lack of mechanisms for executing simulation models in distributed
and heterogeneous environments.

Indeed, there are di↵erent simulation environments both commercial and
noncommercial highly specialized that allow the design and implementation of
simulation models in specific domains. However, a single simulation environ-
ment is not able to manage all the necessary aspects to model a system when
it is composed of several components. Typically, the modeling and simulation
of such systems, whose behavior cannot be straightforwardly defined, derived
and easily analyzed starting from the behavior of their components, require
to identify and face with some important research issues.
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In this context, the Co-Simulation may be a viable solution, but currently
there are some limitations to its applicability, that is why di↵erent research
activities are focusing on the definitions of methods, models and architectures
to enable the distribution, reuse and interoperability of simulation models
made with di↵erent simulation environments. Although there are di↵erent
approaches that di↵er in technology and application domain, they are not
able to overcome in an integrated way the three issues mentioned above, but
they o↵er solutions to a subset of them.

Two of the most mature and widely used solutions are the IEEE 1516 -
High Level Architecture (HLA) standard, which allows the reuse of simulation
modules and their execution in distributed environment, and the Functional
Mockup Interface (FMI) standard, which permits to overcome the problem
of interoperability among simulation models defined with di↵erent simula-
tion environments. Moreover, great benefits can derive from the adoption of
Model-Driven Engineering (MDE) approaches that allow to define and extend
system models at di↵erent levels of abstraction, from the conceptual to the
architectural level, up to their concrete realization.

From the analysis of these research and standardization e↵orts, emerges
a scenario in which there are not any mature solutions able to address, in
an integrated way, the above presented issues. The research presented in this
Thesis aims to:

- define methods, models and techniques to address, in an integrated way,
the issues of distribution, reuse and interoperability of heterogeneous simu-
lation models through the integration of the international standards IEEE
1516 - High Level Architecture (HLA) and Functional Mockup Interface
(FMI).

- define a software framework capable of facilitating the development of
distributed simulations whose modules are built with di↵erent simulation
environments.

- define a Model-Driven method that allows to simulate system models on
heterogeneous distributed simulation environments without dealing with
platform specific issues.

The research activity has been carried out in collaboration with universi-
ties and international organizations such as the Simulation Interoperability
Standards Organization (SISO) and the National Aeronautics and Space Ad-
ministration (NASA).

Arcavacata di Rende (CS), July 2017 Alberto Falcone



Abstract (Italian)

La Modellazione e Simulazione (M&S) sta acquisendo un ruolo centrale in
diversi settori industriali come quello automobilistico, aerospaziale, medico
e farmaceutico, sotto la spinta della crescente complessità dei sistemi e dei
relativi problemi ingegneristici. Gli attuali metodi, strumenti e tecniche di
M&S consentono, attraverso l’applicazione di tecniche matematiche, statis-
tiche ed informatiche, di riprodurre artificialmente un sistema sia esso es-
istente o in fase di realizzazione e di valutarne il comportamento qualitativo
e quantitativo. Inoltre, è possibile condurre valutazioni e confronti tra le di-
verse scelte progettuali, sulla base dei requisiti che il sistema deve garantire,
al fine di individuare la migliore soluzione. Questa opportunità diventa cru-
ciale quando test completi sul sistema reale sono troppo costosi per essere
eseguiti in termini di costi, tempo e/o altre risorse. Poichè gli attuali sistemi
derivano dall’integrazione di componenti eterogenei spesso progettati e re-
alizzati da diverse organizzazioni appartenenti a diversi domini come quello
dell’ingegneria meccanica, energetica e del software, grandi benefici possono
derivare dalla possibilità di e↵ettuare simulazioni che coinvolgono componenti
indipendenti in esecuzione su macchine distinte e, eventualmente, geografica-
mente distribuite. In e↵etti, la simulazione distribuita promuove un approc-
cio cooperativo, integrato ed e�cace per la progettazione e l’analisi di sis-
temi complessi. Sebbene la Modellazione e Simulazione (M&S) o↵ra numerosi
vantaggi legati alla possibilità di svolgere sperimentazioni controllate su una
rappresentazione artificiale del sistema, il suo concreto utilizzo richiede la
risoluzione di importanti problemi di ricerca quali, ad esempio: (i) di�coltà
nel riutilizzo di modelli di simulazione; (ii) mancanza di regole e procedure
attraverso il quale è possibile far interoperare modelli realizzati con di↵erenti
ambienti di simulazione; e, (iii) mancanza di meccanismi per l’esecuzione dei
modelli di simulazione in ambienti di calcolo distribuiti ed eterogenei.

Oggigiorno, esistono diversi ambienti di simulazione sia commerciali che
non commerciali altamente specializzati che consentono di progettare, real-
izzare ed eseguire modelli di simulazione in specifici domini applicativi. Tut-
tavia, un singolo ambiente di simulazione non consente di gestire tutti gli
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aspetti necessari per definire un sistema quando esso è composto da diverse
parti che coinvolgono domini di↵erenti. Generalmente, la Modellazione e Sim-
ulazione di tali sistemi, il cui comportamento non può essere linearmente
definito, derivato e facilmente analizzato partendo dal comportamento dei
singoli componenti che lo definiscono, richiede l’identificazione e la risoluzione
di alcuni importanti problemi di ricerca. In tale ambito, la Co-Simulation può
essere una soluzione praticabile, ma attualmente esistono dei limiti nella sua
applicabilità ed è per questo che uno dei principali aspetti su cui si stanno
concentrando diverse attività di ricerca è quello riguardante la disponibilità
di modelli e architetture in grado di consentire la distribuzione, il riuso e
l’interoperabilità di modelli di simulazione realizzati con di↵erenti ambienti
di simulazione. Nonostante esistano diversi approcci che si di↵erenziano per
tecnologia e settore d’impiego, nessuno di essi è in grado di a↵rontare in modo
integrato le tre problematiche sopra citate, ma o↵re soluzioni ad un loro sot-
toinsieme.

Tra le soluzioni più mature e di↵use troviamo lo standard IEEE 1516 -
High Level Architecture (HLA), che consente il riuso dei componenti/modelli
e l’esecuzione in ambiente distribuito di scenari di simulazione, e lo stan-
dard Functional Mockup Interface (FMI) che permette di superare il prob-
lema dell’interoperabilità tra moduli realizzati con diversi ambienti di simu-
lazione. Inoltre, grandi benefici possono derivare dell’adozione di formalismi
e strumenti proposti nell’ambito dell’ingegneria del software e, in particolare,
dell’ingegneria del software guidata dai modelli (MDE, Model-Driven Engi-
neering). L’approccio Model-Driven consente di definire e/o estendere modelli
del sistema a diversi livelli di astrazione, dal livello concettuale a quello ar-
chitetturale, fino alla realizzazione concreta.

Dall’analisi dei suddetti sforzi di ricerca e standardizzazione, emerge uno
scenario in cui non vi sono, di fatto, soluzioni mature in grado di risolvere
in modo integrato le problematiche descritte. La ricerca presentata in questa
tesi si propone di:

- Definire metodi, modelli e tecniche che consentano di a↵rontare in maniera
integrata le problematiche di distribuzione, riuso ed interoperabilità tra
ambienti di simulazione eterogenei attraverso l’integrazione delle soluzioni
o↵erte dagli standard internazionali High Level Architecture (HLA) e
Functional Mockup Interface (FMI).

- Definire un software framework in grado di facilitare lo sviluppo di sim-
ulazioni distribuite i cui moduli sono realizzati con diversi ambienti di
simulazione.

- Definire un metodo Model-Driven che consente di definire e simulare mod-
elli di simulazione in ambienti di calcolo distribuiti ed eterogenei. In tal
modo, lo specialista che realizza il modello di simulazione non dovrà es-
plicitamente occuparsi dai dettagli inerenti l’architettura di calcolo su cui
il modello sarà eseguito.
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L’attività di ricerca è stata condotta in collaborazione con importanti
università e organizzazioni internazionali come la Simulation Interoperability
Standards Organization (SISO) e la National Aeronautics and Space Admin-
istration (NASA).

Arcavacata di Rende (CS), luglio 2017 Alberto Falcone
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Introduction

1.1 Reference Context, Motivation and Objectives

Modeling and Simulation (M&S) is gaining a central role in many application
domains, ranging from energy to aerospace, due to the increasing complexity
of system requirements and thus of the related engineering problems [12]. It
represents one of the most important and e↵ective methods for designing and
studying both Large-Scale System and System of Systems (SoS).

A Large-Scale System is defined in [70] as:

“A group of subsystems that are interconnected and organized so to form a
whole system with clearly defined boundaries. Each subsystem is self-contained
and independent from the other ones but it cannot work individually.”

Whereas a SoS is defined in [62] as:

“A complex purposeful whole that is composed of complex, independent,
self-organizing, component parts whose high levels of interoperability enable
them to be recomposed into di↵erent configurations and even di↵erent systems
of systems; is characterized by poorly-defined issues that significantly a↵ect
its behavior and make it di�cult to understand; has ambiguous boundaries
with critical contextual influences involving a mix of technical/non-technical
factors; and exhibits emergent nonlinear properties. The complexity of a sys-
tem of systems is a function of the number and diversity of its components
and their linkages. System of systems linkages range from loosely to closely
connected, but all systems of systems exhibit non-deterministic evolution and
behavior and are cybernetically self-organizing.”

In both the cases (Large-Scale System and SoSs), each component con-
tributes to the functioning of the entire system but, in general, the behavior
of the whole system cannot be straightforwardly derived from the behavior of
its components [9].
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By using M&S methods, tools and techniques, it is possible to reproduce
the structure and behavior of systems over the time so as to observe and ana-
lyze them [7]. The use of M&S techniques o↵er many advantages, such as the
possibility to study the behavior of a system without physically building it,
and the evaluation and comparison of di↵erent design choices, policies, and
operating procedures through experiments in a controlled (virtual) environ-
ment [35]. Despite the above sketched advantages, M&S has important chal-
lenges many of those related to the significant e↵orts required for producing
a full-fledged simulation model and analyzing simulation results. Moreover, it
is often hard to reuse already available simulation models; indeed, there is a
lack of mechanisms to make interoperable simulation models built on di↵er-
ent simulation platforms and a scarce support to enable their execution on
distributed infrastructures.

To overcome these challenges, many research e↵orts are focusing on the
definition of methods, models and techniques to support the reuse and inter-
operability of simulation models and their execution on distributed computing
environment. Two of the most popular e↵orts going in these directions are
FMI (Functional Mock-up Interface) [39] and HLA (High Level Architecture)
[53]. However, each of the two mentioned proposals addresses part of the above
issues and great benefits could derive from their combined exploitation [5, 6].

In this context, the research presented in this thesis has been focused on
the definition of models, methods and techniques to address, in an integrated
way, the issues of reuse, distribution, and interoperability among heterogeneous
simulation models.

The research activity has been conducted in cooperation with the Software,
Robotics, and Simulation Division (ER) - Simulation and Graphics Branch
(ER7) of the NASA’s Lyndon B. Johnson Space Center (JSC) in Houston
(Texas, USA) [71] where I spent nine months of my Ph.D. program.

1.2 Main Results

Starting from the research objectives above described, the main contributions
resulting from the research activity presented in this Thesis concern the defi-
nition of:

1. A software framework, which is called HLA Development Kit, that aims
at facilitating the design and develop of distributed simulators compliant
with the IEEE 1516.2010 - High Level Architecture (HLA) standard [53].

2. A Model-Driven method, which is called MONADS, that makes easier for
Systems Engineers to design a Complex System and simulate it on a dis-
tributed simulation environment, without asking them to explicitly deal
with the intricacies and di�culties of currently available standards and
technologies.
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3. Two methods, HLA for FMI and FMI for HLA, to address in an in-
tegrated way the issues of reuse, distribution and interoperability among
heterogeneous simulation components through the integration of the func-
tionalities o↵ered by the HLA [53] and FMI [39] standards.

Concerning the first contribution, the HLA Development Kit software
Framework (DKF) is a general-purpose, domain-independent framework, fully
implemented in the Java language and released under the open source pol-
icy Lesser GNU Public License (LGPL), which facilitates the development of
HLA Federates [53, 99]. The DKF allows developers to focus on the specific
aspects of their own Federates rather than dealing with the common HLA
aspects such as the management of the simulation time; the connection/dis-
connection to/from the HLA RTI; the publish, subscribe and updating of
ObjectClass and InteractionClass elements [42, 30, 53]. The DKF has been
designed and developed in the context of the research activities carried out
within the SMASH-Lab (System Modeling And Simulation Hub - Laboratory)
of the University of Calabria (Italy) working in cooperation with the Software,
Robotics, and Simulation Division (ER) of the NASA’s Lyndon B. Johnson
Space Center (JSC) in Houston (Texas, USA) [71]. It has been successfully ex-
perimented in the SEE project since the 2015 edition [90]. In the 2016 edition,
the Universities of Calabria (Italy), Bordeaux (France), Brunel (London, UK)
and the Faculdade de Engenharia de Sorocaba, FACENS (Brazil) developed
their SEE-Federates by using the Kit [29, 30, 94].

Concerning the second contribution, the result is a Model-Driven method
called MONADS (MOdel-driveN Architecture for Distributed Simulation).
The MONADS method aims at facilitating the distributed simulation of com-
plex systems, specified by using SysML [74], according to the Model-Driven
Systems Engineering (MDSE) paradigm. Moreover, the HLA simulation code,
generated starting from SysML models by a chain of model-to-model and
model-to-text transformations, is based on the HLA Development Kit software
Framework (DKF). This research activity is carried out working in coopera-
tion with the Laboratory of Software Engineering, Department of Enterprise
Engineering of the University of Tor Vergata (Rome).

In the end, regarding the third contribution. Although the HLA and FMI
standards start from di↵erent objectives and are based on di↵erent techniques
(see [39, 53, 56, 59]), they have several common features that can be jointly
exploited so as to create a full-fledged solution to enable reuse, interoperability
and distributed execution of simulation models. In this context, two approaches
on how to fruitfully combine the HLA and FMI standards have been defined:
(i) HLA for FMI, in which a FMU is enriched with HLA features and services;
and, (ii) FMI for HLA, in which simulation modules that are available as
FMUs are reused in a HLA simulation environment without modifying them.
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This research activity has been experimented in the MODRIO (Model-Driven
Physical Systems Operation) ITEA3 project [57].

1.3 Thesis Overview

This thesis is organized as follows. In Chapter 2 an introduction to the essen-
tial concepts of Modeling and Simulation (M&S) is provided. In particular,
the classical methods and techniques for simulation are presented in Section
2.1. The basic concepts from the theory of M&S and an historical perspective
on Distributed Simulation (DS) with its related standards are presented in
Section 2.2. Section 2.3 presents the IEEE 1516 - High Level Architecture
(HLA) standard for DS, whereas the Functional Mock-up Interface (FMI)
standard is described in Section 2.4. The chapter concludes, in Section 2.5,
with some considerations.

Chapter 3 presents the HLA Development Kit Framework (DKF), a
general-purpose, domain independent software framework that aims to ease
the development of HLA-based simulations by letting the developers to fo-
cus on the specific aspects of their simulation rather than dealing with the
common HLA functionalities. Specifically, an introduction to the framework
is provided in Section 3.1. Some related works are discussed in Section 3.2.
Section 3.3 presents the framework with particular focus on its architecture
and main services. In Section 3.4, the development of a HLA Federate from
scratch based on the DKF is exemplified in the context of the Simulation
Exploration Experience (SEE) project and compared with its development
without using the DKF. Quantitative analysis of the benefits provided by the
DKF is presented in Section 3.5. Finally, conclusions are drawn and future
research directions are delineated in Section 3.6.

In Chapter 4, MONADS (MOdel-driveN Architecture for Distributed Sim-
ulation), a Model-Driven method that allows the automated generation of
a HLA distributed simulation starting from the definition of a complex sys-
tem specified in UML/SysML is presented in terms of its steps and trans-
formations. In particular, a brief introduction to the method is provided in
Section 4.1. Section 4.2 presents the fundamental methods and techniques
behind MONADS, whereas Section 4.3 describes the steps and transforma-
tions. MONADS is exemplified in Section 4.4 through a simulation scenario.
Related proposals are discussed in Section 4.5 and in Section 4.6, conclusions
are drawn and future works delineated.

Chapter 5 presents in detail two methods to address, in an integrated way,
the issues of reuse, distribution and interoperability among heterogeneous sim-
ulation components through the integration of the functionalities o↵ered by
the HLA [53] and FMI [39] standards. Specifically, in Section 5.1 the main
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opportunities from the integration of these standards are described. Sections
5.2 describes the principles behind a joint exploitation of the two standards
by focusing on the benefits that HLA could o↵er to FMI and vice versa (HLA
for FMI and FMI for HLA respectively). Section 5.3 presents two concrete
approaches for realizing the FMI for HLA integration perspective. Finally,
some considerations are introduced and discussed in Section 5.4.

In Chapter 6 further research contributions on interoperability in dis-
tributed simulation are presented. In particular, Section 6.2 presents the SISO
Space Reference FOM ongoing standard that aims at supporting the devel-
opment of interoperable simulations of complex space systems and missions.
Section 6.3 presents the Java Space Dynamics Library (JSDL) project, a low
level space dynamics library that provides high fidelity models and algorithms
needed for defining space systems, such as space vehicles and satellites.

In Chapter 7 the contributions of this thesis are summarized and ongoing
and future works delineated.

1.4 Selected and Relevant Publications

Contents of this thesis were published and presented in international Work-
shops and Conferences as well as in research Journals; some selected and
relevant publications are the following:

- Falcone, A., Garro, A., Taylor, S.J.E., Anagnostou, A., Chaudhry, N.R.,
Salah, O.: Experiences in simplifying distributed simulation: The HLA
Development Kit framework. Journal of Simulation, 10(37), pp. 1-20, Pal-
grave Macmillan UK (2016). ISSN: 1747-7786, DOI: 10.1057/s41273-016-
0039-4.

- Falcone, A., Garro, A.: Using the HLA Standard in the context of an
international simulation project: The experience of the “SMASHTeam”.
In Proceedings of the 15th International Conference on Modeling and Ap-
plied Simulation, MAS ’16, Larnaca, Cyprus, September 26-28, 2016, pp.
121-129, Dime University of Genoa (2016). ISBN: 978-889799970-6.

- Möller, B., Garro, A., Falcone, A., Edwin, Z.C., Dexter, D.E.: Promoting
a-priori interoperability of HLA-based Simulations in the Space domain:
the SISO Space Reference FOM initiative. In Proceedings of the 20th
International Symposium on Distributed Simulation and Real Time Ap-
plications, ACM/IEEE DS-RT ’16, London, United Kingdom, September
21-23, 2016, pp. 100-107, IEEE Computer Society (2016). ISBN: 978-1-
5090-3505-2, DOI: 10.1109/DS-RT.2016.15.
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- Falcone, A., Garro, A.: The SEE HLA Starter Kit: enabling the rapid
prototyping of HLA-based simulations for space exploration. In Proceed-
ings of the Modeling and Simulation of Complexity in Intelligent, Adaptive
and Autonomous Systems 2016 (MSCIAAS 2016) and Space Simulation
for Planetary Space Exploration (SPACE 2016), part of the 2016 Spring
Simulation Multiconference, SpringSim ’16, Pasadena, California, United
States, April 3-6, 2016, pp. 1-8, Society for Computer Simulation Interna-
tional (2016). ISBN: 978-1-5108-2319-8.

- Garro, A., Falcone, A.: Enabling the rapid prototyping of distributed
simulations in the space domain. In Proceedings of the 11th Conference of
Italian Researchers in the World, Houston, Texas, USA, February 26-27,
2016.

- Bocciarelli, P., D’Ambrogio, A., Falcone, A., Garro, A., Giglio, A.: A
model-driven approach to enable the distributed simulation of complex
systems. In Proceedings of the 6th Complex Systems Design & Manage-
ment, CSD&M ’15, Paris, France, November 23-25, 2015, pp. 171-183,
Springer International Publishing (2016). ISBN: 978-3-319-26109-6, DOI:
10.1007/978-3-319-26109-6 13.

- Anagnostou, A., Chaudhry, N.R., Falcone, A., Garro, A., Salah, O., Tay-
lor, S.J.E.: Easing the development of HLA Federates: the HLA Develop-
ment Kit and its exploitation in the SEE Project. In Proceedings of the
19th the International Symposium on Distributed Simulation and Real
Time Applications, ACM/IEEE DS-RT ’15, Chengdu, China, October 14-
16, 2015, pp. 50-57, IEEE Computer Society (2015). ISBN: 978-1-4673-
7822-2, DOI: 10.1109/DS-RT.2015.18.

- Anagnostou, A., Chaudhry, N.R., Falcone, A., Garro, A., Salah, O., Tay-
lor, S.J.E.: A Prototype HLA Development Kit: Results from the 2015
Simulation Exploration Experience. In Proceedings of the 3rd ACM Con-
ference Principles of Advanced Discrete Simulation, ACM/SIGSIM-PADS
’15, London, United Kingdom, June 10-12, 2015, pp. 45-46, Association
for Computing Machinery, Inc (2015). ISBN: 978-1-4503-3583-6, DOI:
10.1145/2769458.2769489.

- Falcone, A., Garro, A.: On the integration of HLA and FMI for sup-
porting interoperability and reusability in distributed simulation. In Pro-
ceedings of the Symposium on Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium, DEVS 2015, part of the 2015 Spring Simula-
tion Multi-Conference, SpringSim ’15, Alexandria, Virginia, United States,
April 12-15, 2015, pp. 9-16, Society for Computer Simulation International
(2015). ISBN: 978-1-5108-0105-9.
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- Falcone, A., Garro, A., Longo, F., Spadafora, F.: Simulation Exploration
Experience: A Communication System and a 3D Real Time Visualization
for a Moon base simulated scenario. In Proceedings of the 18th Inter-
national Symposium on Distributed Simulation and Real Time Applica-
tions, ACM/IEEE DS-RT ’14, Toulouse, France, October 1-3, 2014, pp.
113-120, IEEE Computer Society (2014). ISBN: 978-1-4799-6143-6, DOI:
10.1109/DS-RT.2014.22.

- Falcone, A., Garro, A., Tundis, A.: System Dependability Analysis
through Platform-independent Simulation Models. In Proceedings of the
International Workshop on Applied Modeling and Simulation, WAMS ’14,
jointly held with the NATO CAX FORUM, Istanbul, Turkey, September
16-19, 2014, pp. 27-36, Dime University of Genoa (2014). ISBN: 978-88-
97999-46-1.

- Falcone, A., Garro, A., Tundis, A.: Modeling and Simulation for the
performance evaluation of the on-board communication system of a metro
train. In Proceedings of the 13th International Conference on Modeling
and Applied Simulation, MAS ’14, Bordeaux, France, September 10-12,
2014, pp. 20-29, Dime University of Genoa (2014). ISBN: 978-889799934-
8.

Publications accepted but not published yet :

- Falcone, A., Garro, A., Anagnostou, A., Taylor, S.J.E.: An Introduc-
tion to Developing Federations with the High Level Architecture (HLA).
Accepted at the 2017 Winter Simulation Conference, WSC ’17, Las Ve-
gas, Nevada, United States, December 3-6, 2017, IEEE Computer Society
(2017).

- Möller, B., Garro, A., Falcone, A., Edwin, Z.C., Dexter, D.E.: On the
Execution Control of HLA Federations using the SISO Space Reference
FOM. Accepted at the 21st International Symposium on Distributed Sim-
ulation and Real Time Applications, ACM/IEEE DS-RT ’17, Rome, Italy,
October 18-20, 2017, IEEE Computer Society (2017).

- Falcone, A., Garro, A.: A Java Library for Easing the Distributed Simu-
lation of Space Systems. Accepted at the 16th International Conference on
Modeling and Applied Simulation, MAS ’17, Barcelona, Spain, September
18-20, 2017, Dime University of Genoa (2017).
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Background and Challenges

This chapter provides an introduction to the essential concepts of Modeling
and Simulation (M&S) keeping Distributed Simulation (DS) in focus. The
purpose of this chapter is to familiarize the reader with the terminology and
concepts used frequently in subsequent chapters.

2.1 Classical Methods and Techniques for Simulation

In many areas in the sciences, in particular the natural and engineering sci-
ences, simulation represents a pillar supporting the acquisition of knowledge
so as to understand, predict and optimize the behavior of systems on which
to perform experiments and theoretical analyses.

The simulation term refers to [7]:

“The imitation of the operation of a real-world
process or system over the time.”

Simulation represents an indispensable problem-solving methodology for
the solution of many real-world problems. It can be considered as the ability
to artificially reproduce, essentially by using the computer, the characteristics
of a real process or system so as to describe, analyze and predict its behavior
in presence of events subsequent to the imposition of conditions by the user
[61]. It is a very powerful analysis technique, used in many scientific and tech-
nological domains in which it is di�cult or impossible to physically reproduce
in the laboratory the whole system and the conditions to be analyzed.

Simulation involves di↵erent core concepts. These include system and
model, state, entity and attribute, event, and resource [7].

A system is an organized collection of components that interact with each
other according to a pattern in order to achieve some purpose or functional-
ity. A component is any entity that is capable of exhibiting an input-output
behavior through a well-defined interface.
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A model is a representation of a system. The model must be enough com-
plex to cover the characteristics of the system under study, but not too com-
plex to be designed, implemented and simulated on computers.

The state of the system is a collection of variables needed to define and
describe what happening within it at a given point of time. The determination
of these variable values provides information about the system’s performance.

An entity can be either dynamic or static. The first one, is an object moving
through the system that request one of the services provided by the system
resources, whereas a static entity is an object that serves other entities (e.g.,
In a bank branch, customers are dynamic entities, whereas the bank teller
is a static entity) [7]. Each entity has a set of attributes that describe its
characteristic.

An event represents an instantaneous occurrence that may change the state
of the system. An endogenous event is an event that occurs within the system,
whereas an exogenous event is an event that occurs outside the system.

A resource is an entity that provides service to dynamic entities and can
serve one or more dynamic entity at the same time. A dynamic entity can
request one or more units of a resource. If denied, the requesting entity joins
a waiting queue; otherwise, the entity acquires the resource, use it for a period
of time and then releases it.

Simulation models can be classified along three di↵erent dimensions [61]:

- Static vs. Dynamic Simulation Models. A static simulation model is a
representation of a system at a particular time, or one that may be used
to represent a system in which time plays no role. A dynamic simulation
model represents a system as it evolves over time.

- Deterministic vs. Stochastic Simulation Models. If a simulation model does
not contain any probabilistic components, it is called deterministic. In de-
terministic models, the output is “determined” once the set of input quan-
tities and relationships in the model have been specified, even though it
might take a lot of computer time to evaluate what it is. Many systems,
however, must be modeled as having at least some random input com-
ponents, and these give rise to stochastic simulation models. Stochastic
simulation models produce output that is itself random, and must there-
fore be treated as only an estimate of the true characteristics of the model.

- Discrete vs. Continuous Simulation Models. The system state variables in
a discrete simulation model remain constant over intervals of time and
change value only at certain well-defined points called event times (e.g.,
a bank is an example of a discrete simulation model, since state variables
such as the number of customers in the bank change only when a customer
arrives or when a customer finishes begin served and departs). Continuous
simulation model have system state variables defined by di↵erential or
di↵erence equations giving rise to variables that may change continuously
over time (e.g., an airplane moving through the air is an example of a
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continuous simulation model, since state variables such as position an
velocity change continuously with respect to time).

The decision whether to use a discrete or a continuous model for a partic-
ular system depends on the specific objectives of the study [106].
Nowadays, the number of companies using simulation is increasing rapidly.
Many managers are realizing the advantages of using simulation techniques
in their daily operations. Some of these advantages are [7, 61]:

- Practical feedback and explore alternatives. One of the primary advantages
of simulation is to provide users with practical feedback when designing
real world systems. This allows the designer to explore di↵erent design
alternatives without actually physically building the system so as to de-
termine the correctness and e�ciency of a design before building it.

- Hierarchical decomposition. Simulation permits system designers to study
a problem at several di↵erent levels of abstraction. By approaching a sys-
tem at a higher level of abstraction, the designer is better able to un-
derstand the behaviors and interactions of all the high level components
within the system. The lower level components may then be designed and
subsequently simulated for verification and performance evaluation. More-
over, working at di↵erent levels of abstraction also facilitates rapid proto-
typing in which preliminary systems are designed quickly for the purpose
of studying the feasibility and practicality of the high-level design.

- Compress and expand time. By compressing or expanding time, simulation
allows developers to speed up or slow down phenomena so that they can
investigate them thoroughly.

- Training. Simulation models represent an e↵ective means for teaching or
demonstrating concepts to users. Such models dynamically show the be-
havior and relationship of all the simulated system’s components, thereby
providing the users with a meaningful understanding of the system’s na-
ture. This characteristic makes simulation less expensive and disruptive
than on-the-job learning.

Despite the advantages of simulation presented above, it has important
challenges. Some of these are [7, 61]:

- Model building may take a long time. Building complex simulation models
is a challenging task and requires considerable development e↵orts. Indeed,
it requires expert engineers with deep knowledge and experience in systems
theory, mathematical modeling and software development.

- Simulation results may be di�cult to analyze. Since many simulations use
probability distribution functions to describe a phenomenon or the behav-
ior of a system, sometimes may be hard to determine whether an observa-
tion is a valid result of the system/phenomenon under study or not. As a
consequence, the analysis of the simulation results may be expensive and
time consuming.
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- Simulation may be used inappropriately. Simulation is used in some cases
when an analytical solution is possible or preferable.

2.2 Distributed Simulation

This section presents existing solutions for distributed simulation and the
theory behind it. In the first part, the distributed simulation theory along with
the principal approaches and techniques are presented, whereas the second one
gives an overview of the currently available standards.

2.2.1 Distributed Simulation Theory

Distributed simulation refers to technologies that enable the execution of a
simulation program on distributed computer systems containing multiple re-
sources such as processors that are linked together through a communication
network [37].

Initial research on distributed simulation has been conducted in the mil-
itary domain where the main objective was on how to achieve model reuse
via interoperation of heterogeneous simulation components. Interoperability
is a key concept within distributed simulation, defined as “the ability of two or
more software components to act and cooperate together regardless of their pro-
gramming languages, interfaces, operating systems and execution platforms”
[46]. There are di↵erent levels of interoperability between two components
ranging from no interoperability to full interoperability. Concerning the tech-
nical point of view, many models for levels of interoperability have been suc-
cessfully defined to find out the degree of interoperability between components
[22]. Besides interoperability and reusability there are other benefits of dis-
tributed simulation, such as [37]:

- Reduced execution time. By splitting a large simulation computation into
many sub-computations, and executing these concurrently across di↵erent
computers can reduce the execution time.

- Geographical distribution. Executing the simulation program on a set of
geographically distributed computers enables one to create virtual worlds
with multiple participants that are physically located at di↵erent sites.
Participants involved in the simulation scenario can interact with each
other as they were located together at the same site.

- Integrating simulators from di↵erent vendors. Rather then porting hetero-
geneous programs from di↵erent vendors to a single computer, it may be
more cost e↵ective to connect them together, each one executing its task
on a di↵erent computer.

- Fault tolerance. Utilizing multiple computers increase tolerance to failures,
accordingly if a computer goes down, it may be possible for another one
to pick up the work of the failing machine, allowing the simulation com-
putation to proceed despite the failure.
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Distributed simulations are composed of a number of member applications
operating on di↵erent processors where each is responsible of a part of the
whole model [110]. Typically, all interactions among member applications are
based on time stamp order event messages and each Member Application
(MA) contains input and output channels with associated FIFO (First in,
First out) queues. These queues have functionally for sending messages by a
MA and bu↵ering messages received from other ones.

Each MA has a local simulation clock, called Local Virtual Time (LVT),
that controls the simulation time during the simulation execution only for
that. In addition, the theory of distributed simulation defines the concept of
Channel Clock (CC) that represents the time of the last message received
along a given channel. CC with value 0 means that no message has been
received by means of that channel [110].

Two types of interdependencies between MAs can now be easily distin-
guished: unidirectional and bidirectional. In the unidirectional interdepen-
dency (see Figure 2.1a), the first MA produces and provides data to the second
one that receives and consumes it. Since the second MA does not provide any
data to the first one, it only have an in-coming channel, whereas the fist one
only have an out-coming channel. There is no feedback between these two
member applications and due to the absence of it they can be executed inde-
pendently as a sequential process. In the bidirectional interdependency (see
Figure 2.1b), MAs have an in-coming and out-coming channel for managing
data because both produce and consume data to/from each other. In this
case, MAs cannot be executed independently as a sequential process, because
future events of each of them might depend on events generated by the an-
other one. A feedback at any simulation time between MAs is required so as
to avoid errors in the simulation.
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out-coming
channel

LVT = 3

in-coming
channel

LVT = 4

MA1 MA2

(a) Unidirectional.

Communication Network

out-coming
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MA1 MA2
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out-coming
channel
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in-coming
channel

(b) Bidirectional.

Fig. 2.1: Types of interdependencies between member applications.

Since events might occur at any time, it is necessary that a MA always
selects and processes the most imminent event from the event queue (i.e.,
the event with the smallest timestamp) so as to avoid that the event under
processing modifies state variables used by previous events leading in turn to
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the situation in which a future event a↵ects a past one [37]. An error resulting
from out of order event processing is called causality error. Figure 2.2 presents
a causality error scenario in which three MAs are processing events not in
correct order.

Sim
ulation tim

e

MA1 MA2 MA3

100

200

300

400

Processed Event

Unprocessed Event

e1,1

e1,2

e2,2

e2,1

e3,1
e3,2

Fig. 2.2: Causality error scenario.

The scenario in Figure 2.2 shows several events processed and transmitted
among the MAs during a distributed simulation. The member application
MA1 receives an event with timestamp 50 (e1,1). When MA1 executes e1,1, it
generates two new events: e1,2 with timestamp 150 and e2,2 with timestamp
450 that will be processed by MA1 and MA2, respectively. Upon receiving
the event e2,2, since MA2 doesn’t have events before simulation time 450, it
processes the event so as to reduce the execution times of the whole simulation.
The execution of the event e1,2 by MA1 generates another new event e3,1

with timestamp 250 that will be processed by MA3. When MA3 receives
and processes e3,1, the event e3,2 with timestamp 300 is generated, which in
turn gives rise to a new event e2,1 with timestamp 350 for MA2. When MA2

receives the event e2,1, it has already processed the event e2,2, this means
that MA2 received an event from the past in the future that might a↵ect the
results of the whole simulation.

To avoid causality errors, each MA must respect the Local Causality Con-
straint that guarantees no causality errors occur if each MA involved in the
distributed simulation handles events and messages in nondecreasing times-
tamp order [110]. The general problem of ensuring that events are processed
in the right order is referred in the distributed simulation theory to as the
Synchronization Problem [37].
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In order to execute the simulation on distributed computers in the right
way, it is necessary that this kind of problem never happens. The simulation
mechanisms must decide whether or not a given event or sequence of events
can be executed concurrently with another event or events. To handle this
dilemma two main synchronization approaches has been defined, conservative
and optimistic.

Conservative approaches were introduced in the late 1970s by Chandy
and Misra and Bryant [16, 18]. This approach satisfies the Local Causality
Constraint through ensuring safe time stamp-ordered processing of simulation
events within each MA. This means that the LVT of a MA can never exceed
the CC of its incoming channel insuring that no causality errors occur. This
approach requires that outgoing messages created by producers be transmitted
in chronological order according to their timestamps. Then, If a MA contains
at least one event message in each input channel, it can update its LVT to
the minimum of all the timestamps and processes all the event messages with
timestamp equal to LVT’s value. Otherwise, if there is a channel that does
not contain any event messages, the MA is blocked because it may receive an
event message along that particular channel with timestamp smaller than its
LVT. In this context, deadlock can occur when each MA is blocked. A solution
to break the deadlock is to use null event messages. In particular, a null event
message with timestamp t1 from a MA

sender

to a MA

receiver

guarantees that
there will be no more messages from the sender with timestamp less than t1

[110].
The optimistic approach doesn’t avoid causality errors to occur, but fix

them when detected. The LVT of a MA may run ahead of the CC of its
incoming channel but if the MA receives an event with timestamp smaller
than its LVC, a causality error is detected and the MA rolls back in simulated
time and redoes its simulation to take into account the new event [110].

To integrate di↵erent simulation models in a distributed simulation exe-
cution it is necessary a common standard that defines distribution services.
In the next Section the main standards are described in deep with particular
focus on the IEEE 1516 - HLA standard [53].

2.2.2 Distributed Simulation Standards

The U.S. Department of Defence (DoD) made huge investments in the dis-
tributed simulation domain and played a key role in the developing of stan-
dards to facilitate interoperability of distributed simulation modules over a
computer network, such as Distributed Interactive Simulation (DIS) [109],
Aggregate Level Simulation Protocol (ALSP) [111] and High Level Architec-
ture (HLA) [53].

Distributed Interactive Simulation (DIS) is a standard for conducting Live,
Virtual and Constructive (LVC) simulations across multiple computers [50].
It is used worldwide, especially by military organizations but also by other
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agencies such as those involved in space exploration and medicine. DIS rep-
resents a message passing protocol that defines the messages and procedures
for communication among the simulators. It defines a set of standard message
packets, called Protocol Data Units (PDUs), for publishing Entity State infor-
mation, Fire and Detonate events, Emissions and Communications data, and
Logistics information [110]. The development of DIS started in 1989 by the
DoD with the aim to implement a system for military training, and became
an IEEE Standard in 1993, under the o�cial name IEEE 1278 [104]. The
standard consists of five documents summarized in Table 2.1.

Table 2.1: The IEEE 1278 standards.

Standard Description

IEEE 1278-1993
IEEE Standard for Distributed Interactive Simulation - Application Protocols,
approved by IEEE on March, 18th 1993.

IEEE 1278.1-1995
IEEE Standard for Distributed Interactive Simulation – Application Protocols,
approved by IEEE on September, 21st 1995.

IEEE 1278.1a-1998
IEEE Standard for Distributed Interactive Simulation – Application Protocols.
Supplement to IEEE Std 1278.1-1995, approved by IEEE on March, 19th 1998.

IEEE 1278.1-2012
IEEE Standard for Distributed Interactive Simulation – Application Protocols.
Revision of IEEE Std 1278.1-1995, approved by IEEE on December, 19th 2012.

IEEE-1278.2-1995
IEEE Standard for Distributed Interactive Simulation – Communication Services
and Profiles, approved by IEEE on September 21st, 1995.

IEEE-1278.2-2015
IEEE Standard for Distributed Interactive Simulation – Communication Services
and Profiles. Revision of IEEE Std 1278.2-1995, approved by IEEE on September 3rd, 2015.

IEEE 1278.3-1996
IEEE Recommended Practice for Distributed Interactive Simulation –
Exercise Management and Feedback, approved by IEEE on December 10th, 1996

IEEE 1278.4-1997
IEEE Trial-Use Recommended Practice for Distributed Interactive Simulation –
Verification, Validation, and Accreditation, approved by IEEE on July 20th, 1998

These documents contain all of the information about the structure of the
various PDUs, whereas the values for the DIS Enumerations, which are too
dynamic and fast-changing to include in a slow-changing IEEE Standard, are
maintained by the Simulation Interoperability Standards Organization (SISO)
in a separate document called Enumeration and Bit Encoded Values for Use
with Protocols for Distributed Interactive Simulation Applications [15, 104].
The main characteristics of DIS are [110]:

- No central management. The DIS standard doesn’t define any central com-
puter that controls the entire simulation execution.

- Autonomous simulation modules. Simulation modules that participate to
the simulation execution remain autonomous and are interconnected by
information exchange via PDUs.

- No time management. The DIS standard doesn’t define any time man-
agement mechanism. A simulation module advances its local simulation
time according to a real-time clock and can join or leave the simulation
execution without disturbing the other modules.

- No data distribution management. In order to reduce network tra�c, the
simulation models only transmit changes in behavior via PDUs. PDUs are
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transmitted in a ring or on a bus and each simulation module uses PDUs
that are directed at one of his entities.

Although DIS has several advantages, it is mainly applicable for developing
simulators in the military domain [110]. Starting from DIS, the Aggregate Level
Simulation Protocol (ALSP) has been defined. ALSP is a protocol designed
to allow multiple, pre-existing war game simulation models to interact with
each other over LAN and WAN networks [110]. The ALSP project started in
early 1990 when the Defence Advanced Research Projects Agency (DARPA)
sponsored the Massachusetts Institute of Technology Research Establishment
(MITRE) to investigate the design of a general interface between large, exist-
ing, aggregate level combat simulation models to be used for military training
simulations. Unlike DIS, where the focus was on linking individual weapon
simulators for military training not considering the aggregate-level combat
simulations, ALSP manages this aspect defined as collections of military as-
sets such as tank battalions and troops [112].

In the ALSP protocol a distributed simulation is called a Confederation
and it is composed of several simulation models, each called a Confederate
[112]. In contrast with DIS, ALSP provides: (i) a time management service,
which provides time management services to confederation members. It han-
dles the connection/disconnection of Confederates to/from the Confederation
and manages the synchronization between the local simulation time of a con-
federate with confederation time; and (ii) a data management service, which
allows confederations to share information in a commonly understood manner.
It provides a mechanism for filtering incoming messages so that only those of
interest are received by a confederate [104, 112].

As described above, DIS was designed to support the interoperability of
entity level combat simulation models, whereas ALSP was developed to over-
come the limitations of DIS and support the interoperability of aggregate
level combat simulation models. Both DIS and ALSP are designed to develop
simulators in the military domain.

In 1993, the DoD started the developing of a general purpose architecture
for distributed computer simulation systems. The design and development of
this general solution was conducted by the U.S. Modeling and Simulation
Coordination O�ce (M&S CO) that ended in the 1995 with the definition of
the High Level Architecture (HLA) standard [37].

Because of the huge diversity among the needs of the distributed simula-
tion user community, there was necessary to avoid superfluous constraints on
how distributed simulation environments were developed and executed, and
generally to provide a high degree of flexibility with regard to how supporting
processes are structured. During the years, several engineering processes for
distributed simulations have been defined such as the Recommended Practice
for Distributed Interactive Simulation - Exercise Management and Feedback
defined in the DIS standard [52] and the Recommended Practice for High
Level Architecture (HLA) - Federation Development and Execution Process
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(FEDEP) defined in the HLA standard [54]. In contrast to these approaches,
which are based to a specific simulation architecture, SISO decided to ex-
tend FEDEP so as to support the development and execution not only of
HLA simulations but also other distributed simulation independently of the
distributed simulation architecture, and in 2010 the IEEE 1730-2010 - Recom-
mended Practice for Distributed Simulation Engineering and Execution Pro-
cess (DSEEP) was published [55, 104] (see Table 2.2).

Table 2.2: Other Distributed Simulation Standards.

Standard Description

IEEE 1730-2010
IEEE Recommended Practice for Distributed Simulation Engineering
and Execution Process (DSEEP), approved by IEEE on September 30th, 2010.

IEEE 1730.1-2013
IEEE Recommended Practice for Distributed Simulation Engineering and
Execution Process Multi-Architecture Overlay (DMAO),
approved by IEEE on August 23rd, 2013

DSEEP revised the seven steps of the IEEE 1516.3-2003 standard and
defines an higher level framework for the development and execution of dis-
tributed simulations [55]. DSEEP specifies a set of process and procedure that
should be followed by users for the definition, development and execution of
distributed simulations (see [55] for more details).

Next Section presents and describes more accurately the High Level Ar-
chitecture (HLA) standard.

2.3 High Level Architecture (HLA)

HLA is an IEEE standard, defined under the o�cial name IEEE 1516, for
distributed simulation systems [53]. It was developed by the M&S CO in the
period 1995-1996 [66], as a general architecture to facilitate the integration
of distributed simulation models within a common simulation environment.
Although it was initially developed for purely military applications, it has
been widely used in non-military industries for its many advantages related
to the interoperability and reusability of distributed simulation components.

In the HLA standard, a distributed simulation is called Federation. A
Federation is composed of several HLA simulation applications, each called a
Federate. A Federate is defined as an application that conforms to the HLA
standard and interacts with other Federates using the services provided by
the Run-Time Infrastructure (RTI), which implements the HLA standards
[32, 104].

Figure 2.3 shows a generic HLA Federation with the services provide by
the RTI.

Federates use the methods provided by the RTIAmbassador to invoke RTI
services, while the RTI uses the FederateAmbassador methods to deliver in-
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Fig. 2.3: A generic HLA Federation.

formation to a federate in a callback function mode. The IEEE 1516 standard
is composed of five documents summarized in Table 2.3.

Table 2.3: The IEEE 1516 standards.

Standard Description

IEEE 1516-2010
IEEE Standard for Modeling and Simulation (M&S) HLA
Framework and Rules, approved by IEEE on August 18th, 2010.

IEEE 1516.1-2010
IEEE Standard for M&S HLA Federate Interface Specification,
approved by IEEE on August 18th, 2010.

IEEE 1516.2-2010
IEEE Standard for M&S HLA Object Model Template (OMT)
Specification, approved by IEEE on August 18th, 2010.

IEEE 1516.3-2003
IEEE Recommended Practice for HLA Federation Development
and Execution Process, approved by IEEE on April 23rd, 2003.

IEEE 1516.4-2007

IEEE Recommended Practice for Verification, Validation, and
Accreditation of a Federation: An Overlay to the High Level
Architecture Federation, Development and Execution Process
(HLA FEDEP), approved by IEEE on December 20th, 2007.

HLA standard is defined in three volumes [53, 104]:

- HLA Framework and Rules Specification (IEEE Std. 1516-2010). It out-
lines the elements of systems design and introduces rules that a Federate
must follow in order to be compliant to the standard.

- HLA Federate Interface Specification (IEEE Std. 1516.1-2010). It intro-
duces the functional interfaces that enable distributed simulation execu-
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tion. This specification outlines the capabilities of the software infrastruc-
ture of HLA (i.e. RTI) and defines an interface specification between the
RTI and Federates, which they use to exchange information to each other.

- HLA Object Model Template (OMT) (IEEE Std. 1516.2-2010). It presents
the mechanism to specify the data model and defines the format of simula-
tion data in terms of a hierarchy of object classes and interactions among
the Federates running in a Federation execution.

Each Federate defines a so called Simulation Object Model (SOM) that is
created in accordance with the Object Model Template (OMT). The SOM
describes the shared information that a Federate can either provide or expect
to/from other federates. The SOM is defined in terms of Objects (ObjectClass)
and Interactions (InteractionClass) [53]. An ObjectClass is composed of a set
of attributes whose values define the state of the object at any point during
the simulation execution; whereas an InteractionClass defines an event that a
Federate can generate or react to during the simulation. It is composed of a set
of parameters that define its characteristics. These two kinds of information
are exchanged through a publish/subscribe model by using the services pro-
vided by the RTI. A Federate can register an Object, which is an instance of
an ObjectClass, and then change the values of its attributes. Other Federates
that are subscribed to that ObjectClass can discover the related instances and
then receive attribute value updates. The Interactions work in a similar way,
except that them have associated a set of parameters and are not persistent
(an interaction is “destroyed” after being consumed).

Furthermore, each Federation defines a so called Federation Object Model
(FOM), which describes the shared object, attributes, interactions and pa-
rameters for the whole federation. It represents a collection of Objects and
Interactions coming from the individual SOMs of the federates that partici-
pate to the simulation execution.

The RTI represents a backbone of a Federation execution that provides
a set of services to manage the inter-Federates communication and data ex-
change. They interact with RTI through the standard services and interfaces
to participate in the distributed simulation execution. It supports the HLA
rules and provides a set of services over the interfaces specified in the Interface
Specification. More in details, the RTI services are grouped as follows:

- Federation Management. To this group belongs services to create and de-
stroy a federation executions, and to keep track of the execution state of
both Federation and the joined Federates that are running on an RTI.

- Object Management. This group provides services to manage how the run-
ning Federates can register, modify and delete object instances and to send
and receive interactions once they have ownership of them.

- Time Management. This group includes services to manage the logical time
of a Federation including delivery of time stamped data and advancing of
the Federates time.
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- Ownership Management. This group incorporates services useful to regu-
late acquiring and divesting ownership of registered objects;

- Data Distribution Management. To this group belongs services to manage
the distribution of state updates and interaction information in a simula-
tion executions. It limits and controls the volume of data exchanged during
the simulation among Federates so as to relay data only to those requiring
them.

- Declaration Management. This group gives services to manage data ex-
change among Federates according to a FOM by using a publish/subscribe
scheme. For each Federate, this service keeps track of types of objects and
interactions that it has both published and subscribed. In this way, the
RTI is able to deliver data from publishers to subscribers.

2.4 Functional Mock-up Interface (FMI)

Functional Mock-up Interface (FMI) is a tool independent standard to sup-
port both Model Exchange (ME) and Co-Simulation (CO) of dynamic models
using a combination of XML-files and compiled C-code (either compiled in
DLL/shared libraries or in source code). The FMI development was initiated
by Daimler AG within the MODELISAR ITEA2 project [56], with the goal
to improve the exchange of simulation models between suppliers and OEMs
(Original Equipment Manufacturers). The FMI standard defines two inter-
faces: FMI for Model Exchange and FMI for Co-Simulation [39].

The executable that implements the FMI interface is called a Functional
Mock-up Unit (FMU). The interface consists of 25 C-functions and type defi-
nitions (see [39] for more details) that are needed to instantiate, initialize and
run the simulation of a FMU in a target simulator software such as Matlab
Simulink [65] and OpenModellica [78].

The goal of the FMI for Model Exchange interface is to allow any modeling
tool to generate C code or binaries representing a model in order to reuse/in-
tegrate it into another simulation environment. A model is described by dif-
ferential, algebraic and discrete equations with time-, state- and step-events;
these equations are specified in the C code and solved with the integrators of
the environment where it is used.

                     Tool

Solver

FMU

Model

Fig. 2.4: The FMI for Model Exchange modality.
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Figure 2.4 shows a diagram that exemplifies the FMI for Model Exchange
modality.

The FMI for Co-Simulation is a standard interface for coupling two or
more simulation tools in a Co-Simulation environment. It allows the solution
of both time-continuous (models described by di↵erential equations) and time-
discrete (models described by discrete-time equations) systems.

Figure 2.5 shows a diagram that exemplifies the FMI for Co-Simulation
modality.

                     Tool

FMU

Model

Solver

Fig. 2.5: The FMI for Co-Simulation modality.

The two interfaces are independent of the target environment, and have
many parts in common with each other, this allows for the utilization of
several instances of a Model and/or a Co-Simulation slave independently of
the hosting environment.

Independently of the modality, a FMU is distributed in a compressed file
with file name extension *.fmu that contains:

- a Model Description File, which is an XML file containing the definition
of all the exposed variables and other static information (see Figure 2.6).

- a Dynamic Linked Library, which is a shared library developed in C that
implements the logic of the model. It represents a platform dependent ex-
ecutable binary file defined as a *.dll file for Microsoft Windows operating
systems; as a *.so file for Linux operating systems and as a *.dylib file for
Mac OsX operating systems.

- Further data, such as icons, documentation files, source code, maps and
tables, object libraries and dynamic link libraries that are used by the
FMU during its execution.

The Model Description file defines both the input and output scalar vari-
ables with their attributes such as name, unit, type and initial value [39].
This information is used to set up and manage the structure and behavior of
a FMU during a simulation execution. Its structure is shown in Figure 2.6.

If present the ModelExchange element, the FMU is based on FMI for
Model Exchange and it includes the model or the communication to a tool
that provides the simulation engine. Otherwise, the element CoSimulation is
present and the FMU is based on FMI for Co-Simulation. In this case, the
model and the simulation engine is included within it. At least one element
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Fig. 2.6: The FMI Model Description file [39].

of ModelExchange or CoSimulation must be present to identify the type of
the FMU. In the version 2.0 of the standard both elements may be defined;
in this case, di↵erent types of models are included in the FMU.

The UnitDefinitions tag defines a global list of unit definitions and the
TypeDefinitions attribute contains a list of type definitions.

The LogCategories tag, specifies a global list of log categories that can be
set to define the level of the log information. In this way, a developer can check
and track down both problems and errors occurred during the simulation of
a FMU.

The DefaultExperiment element provides some default settings for the in-
tegrator, such as the stop time, step size and relative tolerance.

The VendorAnnotations tag defines vendor specific data but they can be
ignored by other tools.

The ModelVariables element contains all the input/output variables of the
model.

Finally, the ModelStructure attribute defines the structure of the model.
Especially, the ordered lists of outputs, continuous-time states and initial un-
knowns.



24 2 Background and Challenges

2.4.1 FMI for Model Exchange

The main goal of the Model Exchange interface is to solve a system of hybrid
Ordinary Di↵erential Equations (ODEs) numerically. This kind of system is
defined as a piecewise continuous system, which means that discontinuities
can occur at di↵erent time instants E = {t0, t1, ..., tn} where t

i

< t

i+1 and
i 2 [0�|E|]. These time instants are called events [39, 41]. If an event is known
before hand, it is called a time event, otherwise if it is defined implicitly, it is
called a step event or state event [39].

The “state” of a hybrid ODE is represented by:

- x(t), which is a vector of time-continuous states defined as a continuous
function inside every interval t

i

 t < t

i+1;
- m(t), which is a vector of time-discrete states that is constant inside each

interval t
i

 t < t

i+1 and only changes at events.

At every event instant t
i

, variables might be discontinuous, and therefore
two values at this time instant are defined, the “right” (x(t

i

), m(t
i

)) and “left”
(x�(t

i

), m�(t
i

)) limit, see Figure 2.7.

time (t)t2m-(t1)t0

m(t)

x(t)

t1 m(t1)

Fig. 2.7: Piecewise-continuous variables of a FMU: continuous-time x(t) and
discrete-time m(t).

Events are defined by one of the following conditions:

- External event. The environment of the FMU triggers an event t
i

because
at least one discrete-time input changes its value, a continuous-time input
has a discontinuous change, or a tunable parameter changes its value.

- Time event. t
i

is defined in the previous event t
i�1 either by the FMU or

by the environment.
- State event. t

i

occurs when an event indicator changes its domain from
z

i

> 0 to z

i

 0 or vice versa. All event indicators are piecewise continuous
and are real numbers collected in a vector z(t) (see Figure 2.8).
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- Step event. t
i

occurs when the fmi2CompletedIntegratorStep function re-
turns nextMode = EventMode.

time (t)

t2t0

z(t)

t1

Fig. 2.8: An FMI event indicator that changes its domain.

An event is always triggered from the environment in which the FMU is
running [39].

2.4.2 FMI for Co-Simulation

Co-simulation is a simulation approach for coupling time-continuous and time-
discrete systems in a common simulation environment. These systems are
generally developed by di↵erent organizations with di↵erent simulation tools
and each subsystem manages a part of the whole system [39].

Simulation 
Tool (A) 

Simulation 
Tool (B) 

Simulation 
Tool (C) 

Simulation 
Tool (D) 

Master

Fig. 2.9: An FMI Co-Simulation execution with one master that manages four
simulation tools.
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The FMI for Co-Simulation defines routines that manage communications
between a master and slaves, each corresponding to one model or subsystem
(see Figure 2.9). Each slave has a pre-defined set of inputs and outputs that
are known by the master. The master is responsible for setting up, coordi-
nating, and handling the slaves during their execution. The data exchange
is limited to discrete communication points in time and the subsystems are
solved independently between these communication points.

The FMI for Co-Simulation standard does not specify any FMI master
algorithm, and thus its definition is in charge of the user.

2.5 Conclusion

This chapter provided an introduction to the essential concepts of Modeling
and Simulation (M&S) keeping Distributed Simulation (DS) in focus. The
classical methods and techniques for simulation have been described along
with some core concepts, such as systems, models and simulation strategies.

After that, the chapter presented the notion of DS as an approach to
solve integration of simulation models that are geographically distributed and
connected to each other by a communication network [38]. In this context,
it introduced the evolution of methods and techniques in the DS domain
and described three advanced standards: Distributed Interactive Simulation
(DIS) [109], Aggregate Level Simulation Protocol (ALSP) [111] and High Level
Architecture (HLA) [53].

The Functional Mock-up Interface (FMI) as a tool independent standard
to support both Model Exchange (ME) and Co-Simulation (CO) of dynamic
models has been delineated along with its functionalities.

Nowadays, the increasing complexity and sophistication of modern sys-
tems makes their design, development and operation extremely challenging
and therefore their analysis goes beyond the capabilities of the presented clas-
sical M&S methods, techniques and standards. So, the need of emerging M&S
methods, models and techniques so to benefit from the available standards are
nowadays even more required. In particular, many research e↵orts are focusing
on the definition of new M&S methods, models and techniques to handle in an
integrated way the reuse, interoperability and execution on distributed comput-
ing environment of heterogeneous simulation models. As a consequence, the
present Thesis work has been conceived by starting from these considerations.
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Easing the Development of HLA-based
Simulations

Distributed simulation represents a solid discipline and an e↵ective approach
for handling the increasing complexity in the analysis and design of mod-
ern Systems and Systems of Systems (SoSs). The IEEE 1516 - High Level
Architecture (HLA) is one of the most mature and popular standards for
distributed simulation and it is increasingly exploited in a great variety of
application domains due to its capabilities to enable the interoperability and
reusability of distributed simulation components (see Section 2.3). However,
the development of fully fledged simulation models, based on the HLA stan-
dard, is still a challenging task and requires considerable development e↵ort
that often results not only in an increase in development time but also in low
reliability.

This chapter presents the HLA Development Kit Framework, a general-
purpose, domain independent software framework that aims to ease the de-
velopment of HLA-based simulations by letting the developers to focus on the
specific aspects of their simulation rather than dealing with the common HLA
functionalities.

The e↵ectiveness of the proposed framework is shown in the context of
the Simulation Exploration Experience (SEE), a project organized by SISO
(Simulation Interoperability Standards Organization) and led by NASA that
involves several U.S. and European Institutions.

3.1 Introduction

Over the years, large-scale systems have increased in complexity and sophis-
tication since, in general, they are composed of several components, which
are often designed and developed by organizations belonging to di↵erent en-
gineering domains, including mechanical, electrical, and software. As systems
get increasingly complex, their design and development become more di�cult
and therefore new Modeling and Simulation (M&S) techniques, methods and
tools are emerging also to benefit from distributed simulation environments
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[8, 41, 67, 1]. In this context, the HLA standard [53] attempts to handle this
complexity by providing a specification of a distributed infrastructure in which
simulation units can run on standalone computers and communicate with one
another in a common simulation scenario.

Building complex and large distributed simulations systems using HLA is
a challenging task and requires considerable development experience. Indeed,
it requires expert engineers with knowledge and experience in distributed sys-
tems, simulation, middleware and software programming [32, 105]. The main
problem is that the development and testing of HLA Federates are generally
di�cult, complex, and resource-intensive not only because of the complexity
of the IEEE 1516 family standards but also due to the lack of proper docu-
mentations and ready-to-use examples. Moreover, developers have to spend a
considerable e↵ort to handle common HLA functionalities, such as the man-
agement of the simulation time, the connection on the RTI, and the manage-
ment of common RTI exceptions. As a result, they cannot fully focus on the
behavioral aspects of their own simulations.

This chapter describes an e↵ective solution to enable the agile develop-
ment of HLA-based simulation in which the common HLA aspects are clearly
separated from the specific aspect of the Federates under development. Specif-
ically, it presents a general-purpose and domain independent toolkit that con-
sists of a Java-based development framework, called DKF, and an accompa-
nying documentation comprehensive of a user guide and reference examples.
Indeed, the DKF allows developers to focus on the specific aspects of their
own HLA Federates rather than dealing with the common HLA functionalities
that are managed by the DKF core components. Moreover, the DKF-based
simulation code is independent of any specific RTI implementation and thus
it can be executed on a desired RTI implementation, such as PITCH [82],
VT/MÄK [64], PoRTIco [102], CeRTI [17]. The above outlined capabilities
demonstrated their benefits not only for expert HLA developers but also for
HLA novice practitioners (e.g., undergraduates students) involved in the Sim-
ulation Exploration Experience (SEE), an educational distributed simulation
project organized by SISO (Simulation Interoperability Standards Organiza-
tion) and led by NASA that involves several U.S. and European Institutions
[90].

3.2 Related work

Several research e↵orts focused their attention on the creation of HLA simula-
tion and development environments, mainly aiming at providing an integrated
toolchain for creating and simulating complex systems by using specialized
modeling tools and methodologies.

For Matlab/Simulink users di↵erent packages and toolboxes are available
for implementing HLA simulators such as the Forwardsim HLA Toolbox for
Matlab [98], which provides a user interface that allows developers to fully
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design and customize their HLA Federates. Another tool is the HLA/DIS
Toolbox for Matlab and Simulink [64] that is based on the Forwardsim HLA
Toolbox for Matlab and it provides a library of Simulink blocks specifically
designed for the integration of HLA services into Simulink models. It greatly
simplifies Federation development and model reuse, as well as enabling orga-
nizations to more e�ciently participate in multinational simulations or imple-
ment distributed simulation models locally.

Another tool that enables developers to e↵ectively manage the structure
and assets of an HLA Federate starting from a FOM file is the PITCH Devel-
oper Studio [67]. This software allows developers to reduce the HLA learning
curve by providing functionalities for creating and exporting auto-generate
C++/Java code classes based on the structure of the HLA Federate.

A domain specific HLA software framework was created by the Danish
Maritime Institute (DMI) [108]. This framework defines a range of real-time
simulation concepts to support the more informal concepts available at DMI
with an HLA environment. The simulation framework provides mechanisms to
simplify the development of real-time simulators. FEDEF is another domain
specific framework developed by the Defence R&D Canada-Atlantic that de-
fines a set of APIs to support both the DMSO 1.3 and IEEE HLA 1516-2000
standards. It also provides di↵erent capabilities to simplify many program-
ming tasks that are normally required when developing a Federate in the
military domain [107].

Other HLA frameworks are based on GRID and Cloud computing in-
frastructures thus providing a way to model and study complex multi-actor
systems by using the typical characteristics and capabilities provided by those
infrastructures [82, 95, 113]. Moreover, both GRID and Cloud computing in-
frastructures o↵er to the users the possibility to access in a transparent way
to the computing services remotely through the Internet, freeing them of the
burdens associated with managing computing resources and facilities. These
characteristics make HLA-based distributed simulations much more powerful
and widely accessible to users who do not have ready access to high perfor-
mance computing platforms [38, 96].

The HLA DKF di↵ers from the above mentioned approaches in several
aspects. In particular, di↵erently from a proprietary and commercial solution
that requires tool-specific knowledge and training, the HLA Development Kit
is an open source project released under the open source policy Lesser GNU
Public License (LGPL) and can be freely and easily customized and/or ex-
tended to cover and deal with both domain independent and domain specific
aspects (as was the case with the SEE-specific extension presented in Section
3.4). In addition, the DKF provides advanced facilities that allow keeping the
code compact, readable and reliable (see Sections 3.3 and 3.5).

Table 3.1 contains a comparison of some general aspects of the above
mentioned HLA frameworks. Only Forwardsim HLA Toolbox for Matlab and
PITCH Developer Studio supports all the versions of the HLA standard. The
version 1.2.0 of the HLA Development Kit (DKF) currently supports both
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the IEEE HLA 1516.1-2000 and IEEE HLA 1516.1-2010 whereas, it does not
provide compatibility with the oldest version of the standard, which is the
HLA 1.3. The Danish Maritime Institute (DMI) HLA framework and FEDEF
support both the HLA 1.3 and IEEE HLA 1516.1-2000 versions.

Table 3.1: Comparison among HLA frameworks: General aspects.

.
Danish Maritime
Institute (DMI)
HLA framework

Forwardsim HLA
Toolbox for Matlab

HLA Development Kit
(DKF)

PITCH Developer
Studio

FEDEF

Version - - 1.2.0 5.2.0.1 -

HLA Standard
HLA 1.3/

IEEE HLA 1516-2000

HLA 1.3/
IEEE HLA 1516-2000/
IEEE HLA 1516-2010

IEEE HLA 1516-2000/
IEEE HLA 1516-2010

HLA 1.3/
IEEE HLA 1516-2000/
IEEE HLA 1516-2010

HLA 1.3/
IEEE HLA 1516-2000

HLA/RTI Supported
Platform Programming

PitchRTI, VT MÄK,
poRTIco

PitchRTI, VT MÄK,
poRTIco

PitchRTI, VT MÄK,
poRTIco

PitchRTI
PitchRTI, VT MÄK,

poRTIco
Programming Language Java Simulink Java Java/C++ C++
License - Commercial LGPL Commercial -
Application domain Military General General General Military

Documentation Technical documents Technical documents
Technical documents/

Ready-to-run examples/
Video Tutorials

Technical documents/
Ready-to-run examples

Technical documents

Open Community Support NO NO YES NO NO

O�cial website - http://www.forwardsim.com/
https://smash-lab.github.io
/HLA-Development-Kit/

http://www.pitch.se/ -

The code generated by all the frameworks with the exception of the PITCH
Developer Studio can be executed on the main HLA/RTI platform implemen-
tation such as PITCH [82], VT/MÄK [64], CeRTI [17] and PoRTIco [102].
Moreover, the code is in the Java language for the Danish Maritime Institute
(DMI) HLA framework and the HLA Development Kit (DKF); whereas it is
in C++ for FEDEF. The PITCH Developer Studio, unlike the others, is able
to generate the code both in Java and C++.

Concerning the user license, the HLA Development Kit (DKF) is the only
framework to be released under the Open Source GNU Lesser General Pub-
lic License (LGPL) license; whereas the Forwardsim HLA Toolbox for Matlab
and PITCH Developer Studio are commercial. The technical documentations
of both the Danish Maritime Institute (DMI) HLA framework and FEDEF
do not give information about their user licenses and terms of use. More-
over, these two frameworks are domain specific and can be used to ease the
development of HLA Federates only in the military domain. The other ones
are general-purpose and domain independent; this means that they can be
exploited to create and manage HLA simulation components in di↵erent ap-
plication domains.

All the frameworks provide technical documents in which all the details
concerning its architecture and how to install and use it are well-explained.
In addition, the HLA Development Kit (DKF) o↵ers to developers a set of
reference examples of HLA Federates created by using the DKF and some
video tutorials, which show how to create both the structure and the behavior
of a HLA Federate by using the Kit. Finally, the PITCH Developer Studio
provides some ready-to-run examples through its website.

Since the HLA Development Kit (DKF) is an open source project it has
a community of users that o↵er support to developers in using the DKF



3.2 Related work 31

framework. Developers can post problems, concerns and solutions by using the
o�cial forum [99]. Some of the others framework such as the Danish Maritime
Institute (DMI) HLA framework and FEDEF do not provide support because
these are specific for military applications and thus arguably less popular in
the scientific community; whereas the PITCH Developer Studio gives support
to programmers through its customer support service [82].

A comparison of some main aspects related to the HLA standard of the
introduced HLA frameworks are described in Table 3.2. The here presented
HLA DKF, unlike the others, is the only one that provides and manages
the life cycle of a HLA Federate. As a consequence, a developer has only
to define the specific behavior of its HLA Federate without worrying about
low-level implementation details since the DKF manages them. Concerning
the Simulation model, the Danish Maritime Institute (DMI) HLA framework,
FEDEF and HLA Development Kit (DKF) provide functionalities to man-
age only time-stepped Federate; whereas the two commercial frameworks also
support the event-driven model. Moving to the time management aspect, the
two commercial HLA/RTI frameworks, which are the Forwardsim HLA Tool-
box for Matlab and PITCH Developer Studio, are able to manage Federates
with and without HLA Time Management; whereas the HLA Development
Kit (DKF), Danish Maritime Institute (DMI) HLA framework and FEDEF
provide support only to HLA Time Management mechanisms based on Time
Advance Grant (TAG) and Time Advance Request (TAR) [53].

Table 3.2: Comparison among HLA frameworks: HLA standard aspects.

.
Danish Maritime
Institute (DMI)
HLA framework

Forwardsim HLA
Toolbox for Matlab

HLA Development Kit
(DKF)

PITCH Developer
Studio

FEDEF

Federate lifecycle NO NO YES NO NO

Simulation model time-stepped
time-stepped/
event-driven

time-stepped
time-stepped/
event-driven

time-stepped

Federate execution
model

Single-thread Multi-threads Multi-threads Multi-threads Single-thread

Time management
Based on Time Advance
Grant (TAG) and Time
Advance Request (TAR)

With and Without
HLA TimeManagement

Based on Time Advance
Grant (TAG) and Time
Advance Request (TAR)

With and Without
HLA TimeManagement

Based on Time Advance
Grant (TAG) and Time
Advance Request (TAR)

Communication
pattern

Publish/Subscribe Publish/Subscribe Publish/Subscribe Publish/Subscribe Publish/Subscribe

The HLA components created by using the capabilities provided by the
Danish Maritime Institute (DMI) HLA framework and FEDEF are executed
in a single-threaded mode because these frameworks do not handle multi-
threading mechanisms; this means that there may be performance issues as
the Federation execution gets bigger. These multithreading aspects do not
a↵ect the others because they create Federate taking into account these char-
acteristics during the generation of the source code.

Concerning the communication pattern, all the frameworks do not provide
complex protocols over the basic Publish/Subscribe mechanism as defined in
the HLA standard; but according to the roadmap of the HLA Development
Kit (DKF) [99], di↵erent communication patterns over Publish/Subscribe are
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under development and planned to be released in the future version of the
DKF.

In Table 3.3 the functionalities o↵ered by the above considered HLA frame-
works are delineated and compared. All the frameworks provide functionalities
to manage the simulation time, mechanisms to handle the connection (set-up,
hold-up and close-up) of an HLA Federate to the RTI and features to facilitate
publishing and updating of ObjectClasses and InteractionClasses on the RTI.

However, concerning the latest point, it is worth noting that the HLA De-
velopment Kit (DKF) is the only framework that uses the Java annotation
mechanism to directly inject the structure of an HLA Federate in the Java
code. These metadata are also used by the DKF core components at run-time
to inspect and check if an HLA Federate is compliant with the related def-
inition in the FOM (see Section 3.3). Moreover, the HLA Development Kit
(DKF) o↵ers support in managing time standard conversions between the
wall-clock and simulation time [30], and some functions to check the status
of the MS Windows Firewall because in some distributed simulations it is
necessary that all the computers that are participating in the simulation sce-
nario have the firewall disabled (e.g., the Simulation Exploration Experience
(SEE) project). In addition, the HLA Development Kit (DKF) provides a log-
ging service useful to track down any problems or errors occurred during the
execution of an HLA Federate; this information is stored into the dkf.log file.

Both the Forwardsim HLA Toolbox for Matlab and PITCH Developer Stu-
dio are able to manage synchronization points, data distribution management
(DDM) with logical regions services, and functionalities to transfer the own-
ership of an ObjectClass among Federates.

Table 3.3: Comparison among HLA frameworks: Functionalities.

Feature
Danish Maritime
Institute (DMI)
HLA framework

Forwardsim HLA
Toolbox for Matlab

HLA Development Kit
(DKF)

PITCH Developer
Studio

FEDEF

Mechanisms to manage the connection
(set-up, hold-up and close-up) of a HLA
Federate to the RTI.

YES YES YES YES YES

Mechanisms to facilitate the
management and the publication
of FOM modules.

NO YES YES YES NO

Mechanisms to facilitate the management
of the configuration parameters.

NO YES YES YES NO

Mechanisms to facilitate publishing and
updating of ObjectClasses and
InteractionClasses on the RTI.

YES YES
YES

(Through Java annotations)
YES YES

Mechanisms to manage
the simulation time.

YES YES YES YES YES

Mechanisms for time
standard conversions.

NO NO YES NO NO

Synch Points support. NO YES NO YES NO
IP Configuration checker. NO YES YES YES NO
MS Windows Firewall state checker. NO NO YES NO NO
Logging NO NO YES NO NO
Ownership transfer and data distribution
management with regions.

NO YES NO YES NO
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3.3 The HLA Development Kit Framework

The HLA Development Kit Framework aims at easing the development of
HLA Federates by providing the following resources: (i) a software framework
(the DKF) for the development in Java of HLA Federates; (ii) a technical doc-
umentation that describes the DKF; (iii) a user guide to support developers
in the use of the DKF; (iv) a set of reference examples of HLA Federates
created by using the DKF; and, (v) video-tutorials, which show how to create
both the structure and the behavior of a HLA Federate by using the DKF.
In the following, the attention is focused on the DKF and, specifically, on its
architecture and underlying Federate model-behavior.

3.3.1 The HLA Development Kit Framework

The DKF is a general-purpose, domain independent framework, released un-
der LGPL, which facilitates the development of HLA Federates [53]. Indeed,
the DKF allows developers to focus on the specific aspects of their own Fed-
erates rather than dealing with the common HLA functionalities, such as the
management of the simulation time; the connection/disconnection to/from
the HLA RTI; the publishing, subscribing and updating of ObjectClass and
InteractionClass elements. The DKF has been designed and developed in the
context of the research activities carried out within the SMASH-Lab (System
Modeling And Simulation Hub - Laboratory) of the University of Calabria
(Italy) working in cooperation with the Software, Robotics, and Simulation
Division (ER) of the NASA’s Lyndon B. Johnson Space Center (JSC) in
Houston (Texas, USA) [71]. It is fully implemented in the Java language and
is based on the following three principles:

1. Interoperability, DKF is fully compliant with the IEEE 1516-2010 specifi-
cations; as a consequence, it is platform-independent and can interoperate
with di↵erent HLA RTI implementations (e.g., PITCH [82], VT/MÄK
[64], PoRTIco [102], CeRTI [17]).

2. Portability, DKF provides a homogeneous set of APIs that are indepen-
dent from the underlying HLA RTI and Java version. In this way, devel-
opers could decide the HLA RTI and the Java run-time environment at
development-time.

3. Usability, the complexity of the features provided by the DKF framework
are hidden behind an intuitive set of APIs.

The DKF has been developed according to the concept of Object HLA, in this
way, the development of HLA Federates could benefit also from the Object
HLA features and functionalities provided by the Pitch Developer Studio [67]
or similar IDEs.

Despite the availability of di↵erent HLA frameworks and IDEs; there are
few training initiatives worldwide to promote their adoption. One of the most
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important is an annual event, formerly named “Smackdown” and now re-
named Simulation Exploration Experience (SEE) that has been organized,
since 2011, by SISO in collaboration with NASA and other research and in-
dustrial partners [90]. The main objective of SEE is to provide undergraduate
and postgraduate students with practical experience of participation in inter-
national projects related to M&S and, especially, to the HLA standard and
compliant tools. The reference simulation scenario of the SEE Project concerns
a human settlement called “Moonbase” composed of scientific equipment, stor-
age buildings, rovers and other elements to allow astronauts to live and work
on the Moon. The Modeling & Simulation Group (MSG) at Brunel University
London has participated in the SEE Project since 2013. The group has inves-
tigated issues concerning the development and standardization of distributed
simulation for industry and healthcare [93, 94], as well as hybrid Federations
consisting of real-time, discrete-event and agent-based simulations [96].

The main issue that arose from the SEE 2014 event was the complexity
of the development. The students based their work on previous code devel-
oped by the group. However, the broad knowledge base of domain specific
knowledge, distributed simulation (both Federate development and RTI in-
terfacing) and the SEE event scenario still presented a major challenge due to
the range of possible implementation approaches and the lack of clear develop-
ment guidelines and tutorials. For these reasons the SEE project represented
an excellent testbed for proving the e↵ectiveness of the DKF.

To promote the adoption and experimentation of the HLA Development
Kit and its DKF, it has been specialized in the SEE HLA Development Kit
with the aim to ease the development of HLA Federates in the context of the
SEE project [90]. The SEE-specific features (as an example, the possibility
to easily implementation SEE Dummy and Tester Federates) aim not only at
reducing the development e↵orts but also at improving the reliability of SEE
Federates and thus reducing the problems arising during the final integration
and testing phases of the SEE project [90]. Moreover, this SEE extension
allows to prove how, starting from a domain independent core of the DKF,
conceived for supporting the development of general-purpose HLA Federate,
it is possible to easily add and integrate application-specific extensions for
supporting the development of domain specific Federates [30, 42, 13].

The following subsections are devoted to present both the architectural
and behavioral aspects of the DKF also with reference to its SEE-specific
extension (the SEE-DKF).

3.3.2 Architecture of the DKF

The architecture of a DKF-based Federation is composed of three main layers
(see Figure 3.1): (i) Application Layer, which contains the Federates that
can interact with both the DKF and the HLA RTI by using their APIs; (ii)
DKF Layer, which represents the core of the architecture and provides a set
of domain independent APIs that are used to access the DKF capabilities;
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and (iii) HLA RTI Infrastructure, which represents the RTI that host the
Federation (e.g., PITCH [82], VT/MÄK [64], PoRTIco [102], CeRTI [17]).
Some application-specific extensions of the DKF can be also introduced (e.g.,
the SEE-specific ones).

HLA/RTI Infrastructure 
(Pitch, MÄK, etc)

DKF

DKF
 Application Programming Interface (API)

HLA Federate Application Layer

DKF Layer

HLA/RTI 
Infrastructure Layer

HLA FederateHLA Federate
Application specific 

extension

SEE-DKF

Fig. 3.1: The architecture of a DKF-based Federation.

The DKF provides a set of services that are independent both of applica-
tion domains and HLA RTI implementations. Each service defines some Java
classes and interfaces that implement specific functionalities. The DKF archi-
tecture is shown in Figure 3.2. The Core Services layer, represents the kernel
of the DKF and provides a set of low level services to manage a DKF-based
application. It is composed of eight services.

The Data Management Service (DMS) manages publishing, subscribing
and the data updating of both an ObjectClass and an InteractionClass [53].
The DKF framework introduces a set of annotations to manage an Object-
Model (ObjectClass and InteractionClass), each of which covers a specific core
concept involved in the HLA Object Model specification, and it is applicable
to a piece of the program code so as to guide the core components of the
DKF in managing ObjectModels. Annotations represent a form of metadata
that provide data about a program that is not part of the program itself,
thus they do not have direct e↵ect on the operation of the code that they
annotate [30, 42, 13]. Annotations have a number of uses, among them: (i)
Information for the compiler, which can be used by the compiler to detect er-
rors or suppress warnings; (ii) Compile-time and deployment-time processing,
in which software tools can process annotation information to generate code,
XML files, and so forth; and (iii) Runtime processing, which can be used to
examine the structure of objects/classes at runtime.

In the DKF framework, two Java annotation classes, which have to be
used by programmers so as to create an instance of an ObjectModel compat-
ible with the DKF, have been defined: @ObjectClass and @InteractionClass.
The first one provides annotations for the definition of ObjectClass instances;
whereas the second annotation class specifies concepts to define and handle
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Table 3.4: The @ObjectClass annotation.

HLA Object Model
Specification

Annotation class
name

Target Field in
the code

Annotation field
name

Description

Object Class @ObjectClass Class, Interface
name

Manages the namespace of the object
class and handles their relationships.

sharing Manages the sharing of the object class.
semantic Define the semantic of the object class.

Attribute @Attribute Class Attribute

name
Manages the attributes defined for
the object class.

coder
Defines the coder to be used to code
and decode the attribute.

sharing Manages the sharing of the attribute.
ownership Handles the ownership of the attribute.
updateType Manages the update of the attribute.

updateCondition
Stores the condition that defines
how and when the attribute has to be
updated on the RTI.

order Handles the order type of the attribute.

transportation
Defines the transportation type
for the attribute.

semantic Define the semantic of the attribute.

InteractionClass instances. These two classes are used by the DKF core com-
ponents at runtime to examine the structure of an ObjectModel instance. The
structures of the above introduced annotation classes are summarized in Table
3.4 and Table 3.5, respectively.

Table 3.5: The @InteractionClass annotation.

HLA Object Model
Specification

Annotation class
name

Target Field in
the code

Annotation field
name

Description

Interaction Class @InteractionClass Class, Interface

name
Manages the namespace of the interaction
class and handles their relationships.

transportation
Defines the transportation type for the
interaction class.

sharing
Manages the sharing of the
interaction class.

order
Handles the order type of the
interaction class.

semantic
Define the semantic of the
interaction class.

Parameter @Parameter Class Attribute
name

Manages the attributes defined for
the interaction class.

coder
Defines the coder to be used to code
and decode the parameter.

semantic Define the semantic of the parameter.

The Logging Service (LS) allows data on the activity carried out by a
simulation to be stored into the dkf.log file. It is very useful for finding out
problems or errors occurred during the execution of a simulation, and for
understanding how the DKF core services work.

The Simulation Time Service (STS) provides to developers some factory
method that can be used to handle the two standard HLA logical time repre-
sentations: HLAinteger64Time and HLAfloat64Time [53], and defines mech-
anisms for controlling the advancement of the time during the execution of
a simulation. These mechanisms are coordinated with other components re-
sponsible for delivering information.
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Fig. 3.2: The architecture of the DKF.

The FOMs Management Service (FMS) o↵ers functionalities for retrieving
and processing FOM files. More in detail, a set of components allow a DKF-
based Federate to navigate the FOM tree and get the needed data by using a
XPath expression [114].

The Caching Service (CS) represents a caching system used during the
execution of a DKF-based application for optimizing access to data.

The Data Access Service (DAS) defines some low level services to retrieve
resources in a file system.

The Coding/Decoding Service (CDS) defines all the standard HLA func-
tionalities for coding and decoding both ObjectClass and InteractionClass
instances [53].

Finally, the Configuration Service (CfS) defines a collection of services
that manage the configuration parameters provided by a *.json file. These
parameters include the name of the Federation Execution, the RTI connection
details (e.g., IP address, port, etc.), and details about the simulation time.

Figure 3.3 shows the architecture of the SEE-DKF, a specific domain
dependent extension of the DKF that provides some SEE domain specific
services, which are used by the core components of the DKF to handle the
main aspects related to a SEE Federation [90], such as transformations among
SEE Coordinate Reference Frames, the publishing and subscribing of Physi-
calEntities, and the management of Space FOMs [30, 31, 94]. The SEE-DKF
architecture is organized in two main services sections.

The Frame section provides a set of services to manage basic space systems,
and defines features for representing the position, geometry and characteristics
of space objects such as planets and stars. Moreover, various algorithms to
handle them are provided (conversions, propagations, etc.). It also defines data
on the International Celestial Reference Frames [100] and includes algorithms
and functionalities to manage them. Moreover, the Frame section has a factory
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SEE Services

DKF framework

SEE—DKF Applications

SpaceTime

Space Time 
Service (STS)
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Service (US)
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Service (RFS)
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Math (ver. 3.4.0)

use

use
use

Fig. 3.3: The architecture of the SEE-DKF specific extension.

module that provides several predefined planet instances (e.g., Sun, Earth,
Moon, etc.) with their specific characteristics (e.g., mass, volume, velocity,
etc.) that developers can easily instantiate and use.

The SpaceTime section, defines mechanisms to handle epochs and dates
that are commonly defined by specifying a point in a specific time scale. This
section also provides many time standards such as Terrestrial Time (TT)
and Universal Time Coordinate (UTC), and defines some epochs (e.g., Julian
Epoch (JE), Modified Julian Epoch (MJE) and J2000 Epoch).

The Utility Service (US) provides several miscellaneous functions to man-
age both space systems and the space simulation time.

The Apache Common Math library, is a standard library of lightweight,
self-contained mathematics and statistics components addressing the most
common practical problems not immediately available in the Java program-
ming language or commons-lang [97]. It is used by the Frame services to
perform mathematics operations on arrays and matrices.

3.3.3 Federate Behavioral Model

The example architecture of a Federate created by using the capabilities of
both the DKF and its SEE-specific extensions is shown in Figure 3.4 by using
a UML Class Diagram; in the following its main classes are briefly described.

The classes SEEAbstractFederate and SEEAbstractAmbassador, which are
in grey, define the behavior of a SEE Federate, while the classes in yellow
belong to the DKF application independent part.

The SEEAbstractFederate class implements the methods of the DKFAb-
stractFederate class. This latter class provides functionalities to configure and
connect/disconnect a Federate to/from a Federation Execution. Moreover, it
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SEE application domain extension    

Application domain-independent

«interface»
DKFFederateInterface

«abstract»
DKFAbstractFederate
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Runnable
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DKFAbstractFederateAmbassador
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1

«abstract»
SEEAbstractFederateAmbassador

«abstract»
SEEAbstractFederate

Fig. 3.4: The architecture of a DKF-based Federate with the SEE Domain
Extension.

is worth noting that, in the SEE context, all the Federates are exclusively
time constrained (can receive Time Stamp Order (TSO) messages) except the
Environment Federate, provided by NASA and which leads the Federation
execution, that is also time regulating (can send TSO messages) and acts as
a Pacing/Clock Federate [37]; the DKF has been thus adapted to handle this
situation.

The SEEAbstractAmbassador class implements the DKFAbstractFeder-
ateAmbassador class in order to interact with the RTI services.

Finally, the ExecutionThread class handles the execution of a HLA Feder-
ate in the simulation environment.

The DKFAbstractFederate class also provides and manages the life cycle of
a SEE Federate according to the behavioral model that is shown in Figure 3.5
through a UML Statechart diagram. As a consequence, a SEE working team
has only to define the specific behavior of its SEE Federate without worrying
about low-level implementation details since the DKF manages them. Specif-
ically, the pro-active part of the behavior of a Federate is specified in the
proactive composite state, which is accessed between a TAG (Time Advance
Grant) and a TAR (Time Advance Request); whereas the re-active part of the
behavior of a Federate is specified in the reactive composite state so as to indi-
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cate how to handle the RTI callbacks about the interactions/objects that the
Federate has subscribed. Please note that the current version of the DKF and
its SEE specific extension only support the implementation of time-stepped
Federates as this is the reference simulation model in the SEE project; how-
ever, ongoing e↵orts are geared to also supporting event-driven simulations
[28].

With reference to the Federate life cycle depicted in Figure 3.5, in the
load configuration state, the DKF loads the configuration parameters from
a *.json file. A transition to the startup state happens if the configuration
parameters are valid and during the state transition a connection to the SEE
Federation execution is performed. Otherwise, if the configuration parameters
are invalid a state transition to the shutdown state is performed. In this lat-
ter state, all the resources engaged by the SEE-DKF classes are de-allocated
through the dealloc resource operation, and then the life cycle terminates. In
the startup state, the connection status is checked. If the connection is not
established the lifecycle ends with a transition to the shutdown state, other-
wise, three operations are done: (i) locateRTI, the parameters of the specific
HLA/RTI implementation (e.g., PITCH [82], VT/MÄK [64], PoRTIco [102],
CeRTI [17]) are located and loaded; (ii) setRTIParameters, the parameters
loaded in the previous operation are set up according to the configuration
parameters defined in a *.json; and (iii) connectOnRTI, a connection to the
Federation execution is performed.

A transition to the initialization state is performed if the connection has
been properly established; in this state, the SEE Federate could perform addi-
tional operation for exchanging initialization objects before entering the run-
ning state (and thus the time advancement loop: waiting for a TAG ! proac-
tive state ! make a TAR), as an example, the Federate could publish and
subscribe some SEE information (e.g., ReferenceFrames, InteractionClasses,
etc.). After that, the time management thread is activated and a transition
to the running state is performed.

The running state is composed of two sub-states operating in an AND-
decomposition fashion. The proactive behavior sub-state deals with the pro-
active part of the Federate behavior through three states: (i)Waiting for TAG :
the DKF waits for the “TAG (Time Advance Grant) Callback” from the RTI.
When the callback is received a transition to the proactive state is performed;
(ii) proactive state: the “logical time” is updated, the pro-active behavior of
the specific SEE Federate defined in the proactive composite state by the SEE
working team is executed, and then a transition to the make TAR request state
is performed; (iii) make TAR request : the DKF requests to the RTI the grant
for the next “logical time”. The reactive behavior sub-state deals with the re-
active part of the behavior of the Federate: upon reception of RTI callbacks
related to subscribed elements in the Callback listener, a transition to the
reactive state is performed where the received information is handled through
the execution of the reactive behavior of the specific SEE Federate defined
in the reactive composite state. Note that, due to the AND decomposition
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Fig. 3.5: The life cycle of a SEE Federate.

in the running state, its child states are parallel states; this implies that the
proactive behavior and reactive behavior are concurrently executed. Since the
current version of the DKF/SEE-DKF does not provide specific mechanisms
to automatically handle the concurrency between the reactive and proactive
tasks, it is in charge of developers manage this aspect through the use of the
standard synchronization and concurrent mechanisms provided by the Java
language and related JDK.

When the simulation ends a transition from the running state to the shut-
down state is performed and, during the state transition, the HLA Federate
is disconnected from the RTI.

3.4 Developing a Federate: Before and After

The previous section has shown that the DKF and its domain specific exten-
sions can hide a significant amount of complexity related to the development
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of HLA Federates. Based on this, to demonstrate that the DKF can be used
to simplify Federate development a short case study is presented. The Brunel
University team focused on the Excavator agent-based simulation, which was
developed in REPAST SIMPHONY [72], as part of the SEE event in 2015 to
show students how to create an agent-based simulation that can interoperate
with other simulations in the lunar scenario. Students could explore how ex-
cavator “robots” could self-organize in the coordination of the extraction of
lunar regolith materials and the degree to which REPAST could facilitate the
study of these algorithms.

In this short case study, in order to focus on distributed simulation issues
a single agent, with simplified input/output requirements, is presented. In
particular, the simplified version of the Excavator simulation along with a
discussion on how it could be implemented with and without the DKF are
presented in the following Subsection.

3.4.1 The Excavator Agent-based Simulation

REPAST SIMPHONY is a free and open-source agent-based simulation en-
vironment [34, 72]. A REPAST agent-based simulation is created by using
the ContextBuilder interface. In this class, the environment (i.e. the coor-
dinate system that “places” the agents), the initial number of agents (and
types/classes) that are located in the environment, and other basic settings
are specified.

The attributes and methods of each agent are specified in an agents class.
Each agent interacts with other agents and the environment via their methods.
Time is managed in a REPAST simulation by the scheduler. A method can
be annotated as being scheduled and will therefore include the frequency
and priority that the method occurs. When a REPAST simulation runs, the
simulation environment enters a cycle that calls the scheduler, the scheduler
then runs the methods in priority order according to their frequency, and
advances time at a specified time step until some terminating condition is
met. In terms of distributed simulation, this REPAST simulation needs to be
“plugged” into a Federate and synchronized with time advancement between
the Federate and Federation.

A (simplified) single excavator agent explores its environment by coordi-
nating with an Unmanned Aerial Vehicle (UAV). The UAV simulation was
developed by Liverpool University [90]. The UAV slowly “flies” over the lu-
nar surface detecting potentially interesting minerals. The UAV periodically
broadcasts the results of its on-going survey to the excavator (in this case a
single reading with the target coordinates), the excavator updates its local
map and heads towards the target site. When the excavator reaches the site,
it “mines” the mineral and adds it to its hopper that carries the excavated
regolith. Once the hopper is full the excavator returns to its origin point and
deposits the regolith material in a pile. The now empty excavator returns to
where it left o↵ and continues mining.
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The agent-based simulation consists of three main classes: the JExca-
vatorsBuilder, Excavator and Mineral. JExcavatorsBuilder implements the
REPAST ContextBuilder interface to create the simulation environment; a
continuous space with a superimposed grid in which the excavator(s) move
around. An Excavator has several internal variables that specify where it is
currently located on the grid, its origin point, the amount of cargo it car-
ries, and a map with the current target coordinate from the UAV. For the
distributed simulation, the agent-based simulation needs to be able to re-
ceive the Cartesian coordinates of the target location from the UAV (UAVx,
UAVy) and to send the Cartesian coordinates of its own current location to
other Federates that need to coordinate with it (EXCx, EXCy) (including the
visualization Federate that shows the entire scenario during the execution of
the SEE distributed simulation).

When the REPAST agent-based simulation starts, the initialization of the
environment happens in the JExcavatorBuilder class. At this stage, the grid
is populated with an Excavator agent at location (0,0). At the first simula-
tion time unit, the model calls the scheduler and executes all the scheduled
methods with the modeler-defined frequency and priority configurations (if
not defined by the modeler the schedule would follow the REPAST default
configurations). In the case study, each agent has a step() method where all
agent actions are implemented. This method is annotated as scheduled and
therefore it is added to the scheduler. In this example, the Excavators step()
method is called. The first action in the step method reflects the communica-
tion with the UAV by receiving the next location (if any) and updating the
map by calling updateMap().

The excavator then checks to see if it is full and needs to return to origin.
If it does, it moves towards the origin. If not, it moves towards the target
location. Arriving at the origin point it will unload its cargo and then move
towards the next target location. Arriving at a target location it will “mine”
for a period of time and update its load. In this simplified scenario the agent
therefore needs to receive a target location from the UAV and to send its
current location to the other simulations (Federates) in the distributed sim-
ulation. The scheduled step() method in REPAST is reported in Appendix
A.1.

3.4.2 Implementing a Federate without using the SEE-DKF

To create a Federate of this agent-based simulation, the incoming and outgo-
ing communication of the Excavator Federate (i.e., the information that the
Federate will receive and send from/to other Federates) needs to be identified
and specified in the Federate Object Model (FOM).

In the “normal” Federate implementation, the middleware was developed
using poRTIco RTI implementation [102]. Generally, to create an HLA Fed-
erate from scratch, two classes need to be added to a model: (i) a concrete
Federate class, here referred as Federate, that manages the life-cycle of the
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Federate and defines the behavior of the model to be simulated. This class uses
the mechanisms provided by the RTI Ambassador for sending information to
the other Federates through the RTI [53]; and (ii) its Federate Ambassador
class by implementing the NullFederateAmbassador interface, which defines a
set of methods that define how the RTI sends information to the Federate in
response to the changes in the state of the Federation execution [53]. A FOM
XML schema needs also to be created. For our Excavator implementation,
these two classes and the FOM file were based on the examples of the Feder-
ate and Federate Ambassador classes and modular FOMs that come with the
poRTIco RTI [102].

The HLA specification supports several forms of communication. For ex-
ample, every Object and its attributes and every Interaction and its parame-
ters can be published by a Federate. Other Federates subscribe to these. Both
publish and subscribe mechanisms are declared manually in the Federate class.
Data exchange in poRTIco is achieved by calling ObjectClassHandle and In-
teractionClassHandle for every instance that requires data exchange. In the
Federate class, handle variables for all Object attributes and all Interaction
parameters that need to be communicated must be declared. To do this, the
modeler must create these handle variables. Then these handle variables must
be added to the respective Collections, di↵erent for Objects and Interactions.
These Collections must be then registered for updates, publish and/or sub-
scribe. The method that does that is the publishAndSubscribe() method in
the Federate class (see Appendix A.2).

The final step is to do the actual updates. This involves updating the
handle variables values and encode them. An example of the update method
for updating the Excavator Cartesian coordinates is shown in Appendix A.3.

The Federate Ambassador is responsible for receiving attribute values and
decoding them (the Object attributes that Federate has subscribed). An ex-
ample code for receiving updates from the UAV Object is shown in Appendix
A.4 along with the implemented decode method.

As mentioned earlier, together with the Federate and its Federate Ambas-
sador classes, the FOM XML schema needs to be created too. A portion of
the FOM module is reported in Appendix A.5.

Generally, the FOM in both the “normal” and DKF implementations is
the same for specifying the publish/subscribe ObjectClasses and Interaction-
Classes. However, in the “normal” implementation all data types must be
explicitly stated in the FOM. If the Federation exchanges many di↵erent data
types, this part of FOM can be substantial (see Appendix A.6).

Time synchronization is achieved by using HLA time services and REPAST
scheduler. REPAST is a time-driven simulator, therefore the time strategy
that is implemented in the Excavator Federate is based on Time Advance
Requests (TARs). The Excavator Federate after updating EXCx and EXCy
attributes requests time advancement through the RTI Ambassador. Then,
the Federate Ambassador, after receiving the updated UAVx and UAVy at-
tributes from the UAV Federate, grants time advancement to the Excavator
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Federate using the Time Advance Grant (TAG) method. The snapshot code
in Appendix A.7 shows the above described methods.

An instance of the Excavator Federate, and subsequently an instance of
Federate Ambassador too, is created when initializing the simulation in the
REPAST Context Builder and is added in the same context as the agents. In
this implementation, the update attributes method of the Federate must be
modified to reflect the subscribed attributes. This method then can be called
manually from the scheduled methods in the agent-based simulation (i.e. an
update attribute method is called from the moveExcavator() method within
the scheduled step() method in the Excavator class).

3.4.3 The Development Process based on SEE-DKF

As noted above, the SEE-DKF was developed as the space domain exten-
sion for the DKF. Rather than trying to follow examples from various RTI
implementation, the DKF has a development process composed of four main
steps that have a direct connection with the seven phases defined by the IEEE
1730-2010 (DSEEP) standard (see Figure 3.6) [55, 103]:

1. Build a model of the Federate that specifies: the objects that the Federate
manages (as specified in the FOM), the attributes of these objects and
the coders to handle such attributes. It is possible to use the basic coder
set provided in the SEE-DKF or to implement new coders based on the
SEE-DKF classes. This step can be traced back to the phases 1, 2 and 3
of the DSEEP standard.

2. Build a concrete Federate that specifies the behavior of the model defined
at (1). It is required to extend the SEEAbstractFederate abstract class
provided by the SEE-DKF and implement three methods according to
the Federate life-cycle that is provided and completely managed by the
SEE-DKF (see Figure 3.5). This step is linked to the fourth phase of
DSEEP, specifically:
(a) a method for initializing operations before entering the “running

state” (the configureAndStart() method).
(b) a method for specifying the active part of the behavior of the Federate

(the doAction() method) executed between a TAR and a TAG.
(c) a method (the update() method) that specifies the re-active part of

the behavior of the Federate, i.e. how to handle the RTI callbacks
about the interactions/objects that the Federate has subscribed.

3. Implement the Federate Ambassador. This step requires extending the
SEEAbstractFederateAmbassador ; typically, since no specific implementa-
tion is required, the child class has only to define its constructor which in
turn calls the parent one: all the typical Ambassadors features are pro-
vided and managed by the SEE-DKF. The fifth phase of DSEEP covers
this SEE-DKF step.
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4. Implement a main class so as to instantiate and run the developed Fed-
erate. This last DKF-SKF step is associated with the phases 6 and 7 of
the DSEEP standard.

Fig. 3.6: The phases of the IEEE 1730-2010 standard [55].

In the following, after presenting the reference simulation scenario, the
above sketched process will be exemplified with respect to the development
of a Federate in the context of the SEE Project [90].

3.4.4 Using the DKF to Develop the Excavator Federate

The above description of the simple excavator focuses on a single excavator
agent. The mining operation may be also of interest to other simulations
(e.g., an astronaut who takes away mined materials for processing). To create
a Federate based on the above introduced agent-based simulation, the SEE-
DKF main steps have been followed.

In step (1) a FOM that describes the input and output of the simulation
was exploited. In this case the FOM represents the single Excavator object
with UAVx, UAVy, EXCx and EXCy as noted above. All are HLAinteger32BE
datatype. To begin the creation of the Federate, the Excavator class has been
annotated to match the FOM as follows (see Section 3.3.2):

1 @ObjectClass(name = "PhysicalEntity.Excavator")
2 public class Excavator {
3     ...
4 }

To create the I/O from the simulation to the rest of the Federation, the
Excavator class was augmented with attributes and coders. For example, to
enable the sharing of the X, Y coordinates of the excavator the following
attributes and coders have been added to the declarations:

1 @Attribute(name = "EXCx", coder = HLAinteger32BECoder.class)
2 private Integer EXCx;
3

4 @Attribute(name = "EXCy", coder = HLAinteger32BECoder.class)
5 private Integer EXCy;
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At the end of the step() method, the two calls

1 setEXCx(getPointX());
2 setEXCy(getPointY());

have been added to update the current position of the excavator. Similar
attributes and coders for the other attributes described in the FOM have been
added.

In step (2), the SEEAbstractFederate class has been extended to create
the ExcavatorFederate class. Within the ExcavatorFederate class the config-
ureAndStart() method remained unchanged (i.e. it reaches the JSON config
file and starts the Federation). The doAction() method is shown below. This
method advances the agent-based simulation by first obtaining the current
state (context) of the simulation, finding all agents (objects) and then “man-
ually” running the step() method in the agents. In this example, the single
excavator agent’s step() method is executed. It then calls updateElement(obj)
to output the new state of the excavator Federate’s attributes.

1 protected void doAction() {
2     for (Object obj : RunState.getInstance().getMasterContext()) {
3         // update the excavator on RTI
4         if(obj instanceof Excavator)
5             ((Excavator) obj).step();
6         super.updateElement(obj);
7     }
8 }

Step (3) simply extended the SEEAbstractFederateAmbassador class with
the ExcavatorFederateAmbassador. Step (4) was unnecessary, as the simula-
tion had already been developed. The only addition to these steps was that
of the ExcavatorFederate and ExcavatorFederateAmbassador to the context
(JExcavatorsBuilder) to include them in the scope of the agent-based simu-
lation.

The overall class diagram is shown in Figure 3.7.
Table 3.6 summarizes the main di↵erences in implementing HLA Feder-

ations with and without the DKF. In SEE 2015, under guidance from the
Brunel team, an undergraduate Computer Science student created the “dis-
tributed” side of the Excavator agent moderately quickly. This left more time
for him to concentrate on the “simulation” aspects of the Excavator and its
interactions with other simulations in the SEE event.

3.5 DKF Quantitative Assessment

This section presents a quantitative analysis of the quality of the code pro-
duced by using the DKF and aims at highlighting the benefits provided by its
exploitation in the SEE project.
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Fig. 3.7: The architecture of the Excavator Federate.

Table 3.6: Comparison in building DKF and no-DKF based Federate.

Without DKF With DFK
Object/Attribute declaration Manually declared in Federate Class Annotated in Object Class
Interaction/Parameter declaration Manually declared in Federate Class Annotated in Interaction Class
Attribute/Parameter update Manually for each element Collectively for each Object/Interaction
Data Types Coders Explicitly stated in FOM Using DKF coder package
Time advance Scheduled and managed in REPAST Managed by HLA/RTI via DKF

Software complexity is a primary topic in Software Engineering and has
involved many researchers over the years. To analyze the quality of a software,
it is necessary to measure the software source code in quantized form. Software
metrics is one of the most traditional and e↵ective way to measure the software
system and they are related to various constructs like class, coupling, cohesion
and inheritance. To evaluate the complexity of the source code of an SEE-DKF
based HLA Federate, five standard metrics, which are proposed by various
researchers, have been considered [116].
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SLOC (Source Line of Code) is the most widely used metric for measuring
the size of a software program. It is used to count the number of any line that
is not a comment or blank line irrespective of the number of statements per
line (also called executable statements). SLOC is easy to understand, fast to
count, independent of the program language and it is a good metric to measure
and evaluate the quantitative characteristics of a source code via the physics
length. Typically, a method should be broken up if it has more than 50 lines
of code; whereas a class should be split up and its functionalities delegates to
other classes or sub-classes if it has over 750 lines of code. In this way, it is
possible to increase both readability and maintainability of the software [116].

CCM (Cyclomatic Complexity Metric) is one of the most commonly used
metric in many commercial and non-commercial tools for code complexity
measurement. The CCM is based on graph theory and measures the complex-
ity of a software module by analyzing its control flow structure. In particular,
the control flow structure is represented as a graph G(V, E), in which nodes
(V ) are used to represent decision or control statements; whereas edges (E )
represent the control paths which define the program flow. The value of the
CCM is the number of linearly independent paths and therefore, the minimum
count of paths that should be tested, because any path can be expressed as a
linear combination of some linearly independent paths. The CCM value gets
an assessment of the complexity and indirectly of the maintainability of a
software (see Table 3.7).

Table 3.7: Cyclomatic complexity value ranges.

Cyclomatic
Complexity

Code Evaluation
Risk

Evaluation

1-10
The software code is considered simple
and easy to understand and test.

No much risk

11-20

The software code is quite complex but
still be comprehensible; however testing
becomes more di�cult due to the greater
number of possible branches.

Moderate risk

21-50

The software code is complex and has got
a very large number of potential execution
paths that and can only be fully
understandable and tested with di�culty
and e↵ort.

High risk

>50
The software code is extremely complex
and unmaintainable.

Very high risk

HCM (Halstead Complexity Metric) measures the complexity of a software
directly from source code analyzing its operators and operands. The operators
are symbols used in expressions to specify the manipulations to be performed,
whereas the operands are the basic logic unit to be operated. In particular,
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HCM measures the logic volume of a software by using four numeric values: (i)
the number of non-repetitive operators (n1); (ii) the number of non-repetitive
operands (n2); (iii) the total number of operators (N1); and, (iv) the total
number of operands (N2). This metric represents a strong indicator of code
complexity and it is often used as maintenance metric and to evaluate devel-
opment risk: higher values imply lower maintainability [116].

NF (number of function) represents the total number of functionalities
that are present in a software. This metric can be used to estimate the limits
of code readability. In this context, a function that has a large number of
code lines (e.g., greater than 800) should be decomposed, thus ensuring better
clarity of individual code segments.

Finally, NC (number of classes) represents the number of concrete, ab-
stract and interface classes. It provides an indicator of the extensibility of the
software. Typically, the lower are the values of these metrics the lower is the
complexity of the source code and thus higher should be the code compactness,
readability and reliability [10, 116].

These six metrics are evaluated by considering the source codes of the
UNICOM Federate [31].

Table 3.8: Metrics at package level.

Metric
UNICOM Federate

SEE-DKF Pitch Developer Studio
NC 17 72
NF 94 784
SLOC 774 6186
CCM (average) 1,20 1,63

HCM

Number of distinct operators (n1) 22 38
Number of distinct operands (n2) 312 1454
Total number of operators (N1) 1337 4150
Total number of operands (N2) 513 13217
Software length (N) 1850 17367
Software vocabulary (n) 334 1492
Volume (V) 1,584·104 1,831·105
Level (L) 0,1495 0,4784
Di�culty (D) 47,13 172,71
Programming E↵ort (E) 7,469·105 3,162·107
Error Estimate (B) 5,28 61,03
Programming Time (T) 4,149·104 1,756·106

More in detail, one source code is based on the SEE-DKF whereas the
other one is that produced by the Pitch Developer Studio [67], which is a high
quality IDE for HLA programming. The metrics have been calculated by us-
ing the Google CodePro AnalytiX tool, which is an application, developed by
Google Inc., that allows developers to perform code measurement and com-
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parison with user-defined programming standards and that is used by several
large organizations, ranging from aerospace/defense to automotive/transport
companies, to control their programming process [45].

Although the DKF framework, and its domain dependent extension SEE-
DKF, does not cover all the IEEE 1516-2010 functionalities that are instead
covered by the Pitch Developer Studio, the results reported in Table 3.8 show
that the source code of an HLA Federate created by using the DKF/SEE-
DKF is easy to manage and maintain even when compared to the same code
produced by the Pitch Developer Studio.

Moreover, all the classes produced by using the SEE-DKF have CCN value
less than twenty (see Table 3.8); as a consequence, these classes are easy to
manage/extend by programmers (see [116] for a discussion).

3.6 Conclusion

HLA is undoubtedly one of the most mature and popular standard for dis-
tributed simulation. Due to its capabilities to enable the interoperability and
reusability of distributed simulation components, it is increasingly exploited
in a great variety of applications in both military and civil domains. However,
the development of full-fledged simulation models, based on HLA, is still a
challenging task.

In this context, the chapter has discussed an e↵ective solution to enable the
agile development of HLA-based simulations based on the HLA Development
Kit, a general-purpose, domain independent toolkit that provides a software
framework (the DKF ), with related documentation, user guide and reference
examples. The e↵ectiveness of the DKF has been exemplified in the context
of the Simulation Exploration Experience (SEE), an international project or-
ganized by SISO and led by NASA that involves several U.S. and European
Institutions in the distributed simulation of a “Moonbase”. In terms of devel-
oping educational resources for HLA development, the DKF presents a solid
foundation for future expansion. The SEE event is exciting in that students
can create a wide variety of simulations and take part in an international
project.
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A model-driven approach to enable the
simulation of complex systems on distributed
architectures

The increasing complexity of modern systems makes their design, develop-
ment and operation extremely challenging and therefore new Systems Engi-
neering and Modeling and Simulation (M&S) methods, techniques and tools
are emerging, also to benefit from distributed simulation environments. In
this context, building and maintaining distributed simulations components,
based on the IEEE 1516-2010 standard [53], is still a challenging and e↵ort-
consuming task.

To ease the development of full-fledged HLA-based simulations, the chap-
ter proposes the MONADS method that, according to the Model-Driven Sys-
tems Engineering (MDSE) paradigm, allows system designers to generate the
HLA-based simulation code starting from SysML models through a chain of
model-to-model and model-to-text transformations. More in detail, the gen-
erated code is based on the HLA Development Kit software Framework (see
Chapter 3). The e↵ectiveness of the method is shown through a case study
that concerns a military patrol operation, in which a set of drones are engaged
to patrol the border of a military area, in order to prevent both ground and
flight attacks from entering the area.

4.1 Introduction

Systems are constantly increasing in complexity and sophistication involv-
ing several heterogeneous components that are often designed and developed
by organizations belonging to di↵erent engineering domains, including me-
chanical, electrical, and software. Moreover, moving from large-scale systems
to Systems of Systems (SoSs), the involved several components that can be
regarded as systems themselves. In particular a SoS is identified by five prop-
erties [63]: (i) Independent components, a SoS is composed of components that
are independent and able to perform operations independently of one another;
(ii) Operational independence of the individual components, components are
typically individually gathered and integrated so as to create the whole SoS.
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Each component preserves its characteristics and operates independently to
achieve their own aims as well as the purpose of the whole SoS; (iii) Geographic
distribution, the involved components are often geographically distributed and
interact with each other so as to exchange information and knowledge by us-
ing a common network; (iv) Emergent behavior, each component contributes
to the functioning of the entire SoS but, in general, the behavior of the whole
SoS cannot be straightforwardly derived from the behavior of its components;
(v) A SoS is continuously growing, changing and evolving. The development
of this kind of systems is evolutionary over the time, and then its structure,
functionalities, and objectives can be modified. In addition, during the life of a
SoS, as new systems may join the SoS and other dynamically may leave it, its
components and their relationships typically change. This increasing level of
complexity makes the design, development and operation of modern systems
extremely challenging. As a consequence, new Systems Engineering methods
and techniques are emerging also to benefit from Modeling and Simulation
(M&S) distributed simulation environments [37].

Building complex and large distributed simulations components, based on
the IEEE 1516 standard, is usually a challenging task and requires consider-
able e↵ort, not only in their development, but also for the cost of maintaining
such components. On the development side, the building and testing of HLA
Federates, is generally di�cult, complex, and resource-intensive because of the
complexity of the IEEE 1516 standard [53, 59], the lack of proper documen-
tation, and the unavailability of ready-to-use examples. Moreover, developers
have to spend a considerable e↵ort to face with common HLA aspects, such
as the management of the simulation time, the connection on the HLA/RTI,
and the management of common RTI exceptions.

To ease the development of full-fledged HLA-based simulations, Model-
Driven Software Engineering approaches, tools and techniques could be e↵ec-
tively exploited. It represents an approach to software design and implemen-
tation that addresses the rising complexity of execution platforms by focusing
on the use of formal models [3, 49]. According to this paradigm, a software
system is initially specified by the use of high-level models. Such models are
then used to generate other models at a lower level of abstraction, which in
turn are used to generate other models, until stepwise refined models can be
made executable. One of the most important initiatives in implementing the
Model-Driven Software Engineering principles is the Model-Driven Architec-
ture (MDA) [75].

This chapter presents the fundamental methods and techniques behind the
MONADS (MOdel-driveN Architecture for Distributed Simulation) method
and introduces a Model-Driven approach to support the automated generation
of a DKF-based HLA distributed simulation (see Chapter 3) starting from the
definition of a complex system specified in UML/SysML [13].

MONADS aims at facilitating the distributed simulation of complex sys-
tems, which are specified by using SysML, according to the Model-Driven Soft-
ware Engineering paradigm. Moreover, the HLA simulation code, generated
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starting from SysML models by a chain of model-to-model and model-to-text
transformations, is based on the HLA Development Kit software Framework
(DKF) [30, 42]. The method is exemplified by considering the reference sce-
nario that concerns a situation in which a set of drones are engaged to patrol
the border of a military area, in order to prevent both ground and flight
attacks from entering the area.

4.2 Model Driven Systems Engineering

For a long time, the design of a complex system has been based on systems
engineering processes that exploited engineering data and text documents in
di↵erent formats. Such document-based manual approach presents natural
limitations, which have been addressed by the Model Based Systems Engi-
neering (MBSE) approach, endorsed by the International Council on Systems
Engineering (INCOSE), which defines MBSE as “the formalized application
of modeling to support system requirements, design, analysis, verification, and
validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle” [49].

In this context, the need for a language that provides the modeling capa-
bility required in the systems engineering domain emerges. To this purpose,
SysML (Systems Modeling Language) is a UML-based language that is now
considered the standard modeling notation adopted in the MBSE context [74].

The fundamental concept behind MBSE is that a model evolves over the
system development lifecycle, until it becomes the build-to baseline. In the
early phases of the lifecycle, the models have high levels of abstraction and
are mainly used for decision making. As the system is developed, the level of
detail increases until the models can be used for design. Finally, models are
transformed yet again into the build-to baseline.

Therefore, the adoption of the MBSE approach results in many signif-
icant advantages, in terms of improved quality, enhanced communications,
increased productivity, enhanced knowledge transfer, and reduced develop-
ment risks. These improvements can be further enhanced by the use of novel
approaches that increase the level of automation throughout the system lifecy-
cle by focusing on models as the primary artifacts of development. The use of
such an approach, which is denoted hereafter as Model-Driven Systems Engi-
neering (MDSE), enables a radical shift in terms of modeling activities, from a
strictly contemplative use of models to a more productive and powerful model
use. Metamodeling techniques and automated model transformations are key
enabling principles introduced in the broader field of Model-Driven Engineer-
ing [3, 89]. MDSE includes these principles into the systems engineering do-
main, thus enhancing the aforementioned advantages of the MBSE approach.
Various incarnations of Model-Driven Engineering principles have proposed
di↵erent standards and tools claiming to support MDE. Among these, the
MDA (Model-Driven Architecture) e↵ort of the Object Management Group
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has gained a special consideration in the software engineering community [75].
MDA-based software development is founded on the principle that a software
system can be built by specifying a set of model transformations, which allow
to obtain models at lower abstraction levels starting from models at higher
abstraction levels.

To achieve such an objective, MDA has introduced a language for specify-
ing technology neutral metamodels (or models that define modeling languages,
i.e., models that describe other models), referred to as the Meta Object Facil-
ity (MOF) [76], and a standard for specifying model transformations, i.e., the
Query/View/Transformation (QVT) standard [77]. A model transformation
specified in QVT allows to automatically generate a target model, instance of
a given MOF-based metamodel, from a source model, instance of the same or
of a di↵erent MOF-based metamodel. In case the target model is of text type
(e.g., code written in a given programming language), the MOFM2T (MOF
Model To Text) standard [73] can be used to specify the relevant transforma-
tion.

4.3 MONADS: a model-driven method for distributed
simulation

According to the context outlined in Section 4.2, the system development pro-
cess is concerned with two di↵erent engineering domains. On the one hand, it
is related to the system development domain, in which systems engineers deal
with design and implementation issues. On the other hand, it addresses the
simulation development domain, in which simulation engineers deal with sys-
tem verification and validation issues by introducing distributed simulation-
based analysis techniques. In this respect, the proposed method supports both
system and simulation engineers, as depicted in Figure 4.1.

At the beginning, the system under study is specified in terms of a SysML
model (e.g., block definition diagrams, sequence diagrams, etc.). According
to the MDA terminology [75], such a model is referred to as the platform-
independent model (PIM) of the system. At the system development level,
the system engineer in charge of producing the system model is not concerned
with any details regarding the simulation model and is strictly focused on the
specification of a SysML-based system design model, starting from the system
requirements.

The SysML model identifies the input of the sub-process that is related
to the development of the distributed simulation. In this respect, according
to the DSEEP (Distributed Simulation Engineering and Execution Process)
standard [55], simulation engineers carry out a conceptual analysis of the
required simulation and use the defined SysML4HLA profile to annotate the
PIM in order to enrich such a model with the information required to derive
the HLA-based simulation model (see Table 4.1). Specifically, the SysML4HLA
profile allows to specify both how the system has to be partitioned in terms
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Fig. 4.1: Overview of the MONADS method.

of Federation/Federates and how system model elements have to be mapped
to HLA model elements such as Object classes and Interaction classes.

Then, the design simulation environment step is executed. This step takes
as input the marked PIM and executes the SysML-to-HLA model-to-model
transformation in order to automatically obtain a UML model that repre-
sents the HLA application model. Such a model is annotated with the stereo-
types provided by the HLA profile and, according to the MDA terminology,
is referred to as the platform specific model (PSM). The design simulation
environment step also concerns with the discovery of existing Federates to be
integrated in the distributed simulation.

The develop and integrate simulation environment step is then performed
to execute the distributed simulation. The simulation code, specified by the
use of the HLA Development Kit software Framework (DKF) (see Section
3.3), is generated through the execution of the HLA-to-Code model-to-text
transformation [30]. This step also includes the coding activities needed to
integrate the existing Federates identified in the previous step.
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Finally, the distributed simulation is executed and the results are evalu-
ated to check whether or not the predicted system behavior satisfies the user
requirements and constraints. In the positive case, the validated SysML-based
system specification can be used to drive the possible design and implemen-
tation of the system. Alternatively, the system specification has to be revised.

The next section introduces a running example that is used hereinafter
to illustrate the details of the method steps. It shows the steps that go from
the initial system specification down to the development of the distributed
simulation code.

4.4 MONADS: a running example

This section describes the various steps needed to carry out the proposed
Model-Driven method and thus generate the distributed simulation code with
reference to a border patrol system.

The following subsections describe the di↵erent steps in more detail, ac-
cording to the method overview illustrated in Section 4.3.

4.4.1 Reference scenario

The simulation scenario deals with a border patrol system and concerns a
situation in which a set of drones are engaged to patrol the border of a military
area, in order to prevent both ground and flight attacks from entering the area.

Military Area

Fig. 4.2: Border patrol simulation scenario.

The border patrol simulation scenario (see Figure 4.2) is composed of (i)
drones, which represent flying robots that can be remotely controlled or can
fly autonomously through software-controlled flight plans in their embedded
systems working in conjunction with a GSP receiver. Each drone is equipped
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with a number of di↵erent sensors such as: way-point sensors, which indicates
the orientation and distance of a selected GPS way-point; patrol boundary
sensors with a range of 50 m; Boolean boundary sensors, which indicates
whether the drone is inside the patrol zone or not; and intruder sensors, which
detects intruders by using a high-resolution camera; (ii) satellites, which are
organized as a constellation and provide communication services to the drones;
(iii) ground station, which is provided with an omnidirectional and a parabolic
antenna that are used to communicate with drones and satellites. More in
details, the first one is an all-purpose antenna that is used to communicate
with drones; whereas the second one uses a parabolic reflector to send/receive
radio waves to/from satellites. The ground station collects and displays real-
time data about the performance of both satellites and drones (e.g., velocity,
position, status, etc.), as well as ground/flight attacks.

When a drone detects a target moving in its patrol area, it makes a tactical
decision based on the type of the target. It determines whether it should gain
altitude, in order to use a larger field of vision to track multiple targets that
are moving in di↵erent directions, or to lose attitude so to follow a single
target. After detecting a target, the drone sends a Target Detect message to
the base station by using either its communication module or a satellite, which
operating as a bridge, delivers the drone’s message to the base station.

4.4.2 Specify System Model

The proposed method is carried out through several steps, the first of which
includes the definition of the system model by using the the SysML notation.
For the purposes of this discussion, the study is limited to those diagrams that
are necessary to obtain the simulation model and the code of the distributed
simulation. Specifically, the SysML model of the border patrol system is com-
posed of the following diagrams: (i) a block definition diagram (BDD), which
specifies the structure of the system; (ii) a set of sequence diagrams (SDs),
which specify the behavioral view of the system. Such diagrams depict the
ordered set of interactions between di↵erent system components.

Figure 4.3 shows the complex system under study, called Border Patrol
System, through a SysML BDD diagram that highlights the main subsystems
(i.e., Satellite, Drone and Base Station).

A satellite is composed of seven main blocks: (i) Engine, which provides
continuous finite thrust; (ii) Flight Computer, which represents the on-board
computer that manages the data flow from both subsystems and navigation
sensors, so as to handle the satellites activities; (iii) Communication and Data
Handling System, which provides the services that handle the satellite-drones
and satellite-base station communication; (iv) Environmental Control System,
which is composed of a set of sensors that are used to monitor environmen-
tal factors; (v) Orbit Control System, which is a system that manages the
orbit trajectory of the satellite; (vi) Attitude Control System, which controls
the orientation of the satellite with respect to an inertial frame of reference
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or another entity such as the celestial sphere or nearby objects. It is com-
posed of sensors to measure the satellite orientation, actuators to apply the
torques needed to re-orient the satellite to a desired attitude, and algorithms
to command the actuators based on sensor measurements of the current at-
titude and the target attitude; (vii) Electrical Power System, which provides
electrical power to the satellite’s components.

A base station, is a terrestrial radio station designed for handling radio
communication with spacecraft, satellite or aircraft. The Base station is lo-
cated on the surface of the Earth and communicate with spacecraft, satellite
or aircraft by transmitting and receiving radio waves in the super high fre-
quency or extremely high frequency bands (e.g., microwaves). When the base
station successfully transmits radio waves to a spacecraft, satellite or aircraft
(or vice versa), it establishes a telecommunications link. More in detail, a base
station is composed of four main blocks: (i) Engine, which allows to change
the position and orientation of the parabolic antenna; (ii) Computer, which
represents the computer that manages the data flow from both satellites and
drones; (iii) Communication and Data Handling System, which provides the
services that handle the satellite-drones and satellite-base station communi-
cation; (iv) Electrical Power System, which provides electrical power to the
base station’s components.

A drone is an aircraft without a human pilot aboard. The flight of drones
may be controlled either autonomously by on-board computers or by the re-
mote control of a pilot on the ground or in another vehicle. In this context,
drones work in cooperation under a shared control so that they overlap well
to provide a full coverage of the patrol area. A drone is composed of six main
blocks: (i) Engine, which o↵ers continuous finite thrust; (ii) Fight Computer,
which represents the on-board computer that manages the data flow from
both subsystems and navigation sensors so to handle the drones activities;
(iii) Communication and Data Handling System, which provides the services
that handle the satellite-drones and satellite-base station communication; (iv)
Environmental Control System, which is composed by a set of sensors that are
used to monitor environmental factors; it is also responsible for monitoring
the surrounding area; (v) Control System, which is a system that manages
both the trajectory and the orientation of the drone. It is composed of sensors
to measure the drone orientation, actuators to apply the torque needed to
re-orient the drone, and algorithms to command the actuators based on sen-
sor measurements of the current position and the target position; (vi) Power
System, which is the component used to supply and transfer the electricity to
power both the radio and controllers.

The three aforementioned subsystems (Drone, Satellite and Base Station),
constitute the Border Patrol System under study, as shown in Figure 4.3,
which illustrates the structural view of the PIM in terms of a SySML Block
Definition Diagram.

The behavioral definition of the system is represented by a set of Sequence
Diagrams describing the interactions between the di↵erent components of the
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Fig. 4.3: SysML BDD diagram of the Border Patrol System.
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system. The sequence diagrams will subsequently be taken as input by the
model-to-model transformation without being further annotated.

sd Interaction1.reactiveBehavior

alt
[out field]

[in field]

dr1:Drone stInt:SatelliteInteraction bsInt:BaseStationInteractionsat1:Satellite bs:BaseStation

create

setSender

setPayload

SatelliteInteraction(sender, receiver, payload)

create

setSender

setPayload

BaseStationInteraction(sender, payload)

Interaction2.reactiveBehavior
ref

Interaction3.reactiveBehavior
ref

Fig. 4.4: SysML SD diagram of the border patrol simulation scenario.

Figure 4.4, describes the main SD, which illustrates the behavior of a drone
during its patrol activity. According to this behavior, if the base station is out
of range and not able to receive a signal from the drone, the latter composes
a signal of type SatelliteInteraction, (i.e., setting sender and payload), and
sends it to a satellite. Otherwise, the drone sets the sender and the payload
of a signal of type BaseStationInteraction, and sends it directly to the Base
Station.

sd Interaction2.reactiveBehavior

bsInt:BaseStationInteractionsat1:Satellite bs:BaseStation
create

setSender

setPayload

BaseStationInteraction(sender, payload)

Interaction3.reactiveBehavior

ref

Fig. 4.5: SysML SD Interaction2.reactiveBehavior.

The aforementioned signals, SatelliteInteraction and BaseStationInterac-
tion, are also defined in the BDD depicted in Figure 4.3. The Ref box labeled
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as Interaction2.reactiveBehavior is a SysML InteractionUse, i.e., a placeholder
that refers to the SD illustrating the behavior of a satellite receiving a message
from a drone, which is shown in Figure 4.5.

As represented in the diagram, once received a message from a drone,
the satellite sends a message to the Base Station after setting a sender field
and an appropriate payload. The InteractionUse in Figure 4.5, i.e., the Ref
box labeled as Interaction3.reactiveBehavior, refers to the SD in Figure 4.6,
which describes the behavior of the Base Station when receiving a message.
As represented in the diagram, after receiving a message, the Base Station
extracts the sender and the payload, and finally stores the content.

sd Interaction3.reactiveBehavior

bs:BaseStation

getSender()

getPayload()

store()

Fig. 4.6: SysML SD Interaction3.reactiveBehavior.

The full set of SDs provides the behavioral view of the PIM.

4.4.3 Define simulation environmental objectives and perform
conceptual analysis

At the second step of the method, the objectives for the simulation environ-
ment are defined and transformed into a set of specific choices that will be
used during the subsequent steps.

As aforementioned, the intrinsic complexity, heterogeneity and distribu-
tion properties of the system under study naturally lead to the choice of a
distributed simulation based on the HLA standard. The simulation execu-
tion allows system designers to experiment with various execution scenarios
and evaluate the e↵ectiveness of the corresponding solutions in terms of a
set of key performance measures (e.g., coverage of the patrol area, detection
e�ciency and accuracy, power consumption, etc.), as well as to analyze the
operational impact of various design choices (e.g., autonomous or remotely
controlled management of drones, characteristics of the drone and satellite
constellations, etc.). Once the objectives have been defined, the relevant en-
tities within the domain of interest are to identified, in order to provide the
implementation level guidance needed to design and develop the HLA-based
distributed simulation.
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Table 4.1: Stereotypes of the SysML4HLA profile.

Stereotype Extension
<<federation>> Block (UML Class)
<<federate>> Block (UML Class)
<<objectClass>> Block (UML Class)
<<interactionClass>> Block (UML Class)

In this respect, the SysML4HLA is used to annotate the SysML model
built at the first step, so as to drive the mapping of SysML domain elements
into the corresponding HLA-based UML domain elements.

The SysML4HLA profile provides a set of stereotypes (or metaclass exten-
sions) that extend the Block element of SysML, which in turn is an extension
of UML Class metaclass. The introduced stereotypes model the basic elements
of an HLA simulation: Federation, Federates, object classes and interaction
classes [53, 67], as shown in Table 4.1.

Specifically, the stereotypes of the SysML4HLA profile allow to specify
both how the system has to be partitioned in terms of Federation/Federates
and how system model elements have to be mapped to HLA model elements
such as object classes and interaction classes.

Figure 4.7 shows, as an example, how the structural definition of the sys-
tem under study (i.e., the BDD in Figure 4.3), is annotated applying the
SysML4HLA profile. The so-annotated model is referred to as the Marked
PIM in Figure 4.1.

4.4.4 Design simulation environment

The resulting SysML4HLA annotated models defined in the previous step of
the MONADS method (marked PIM) are taken as input by the automated
SysML-to-HLA model-to-model transformation, which yields as output the
UML model of the corresponding HLA-based distributed simulation.

The SysML-to-HLA model-to-model transformation has been specified by
use of the QVT/Operational Mappings language [77], the standard language
for defining operational transformations consisting of a set of mapping func-
tions, which specify the mapping rules by use of conventional imperative prim-
itives.

The resulting UML model is composed of the following diagrams: (i) a set
of class diagrams, which describes the structural view of the model with the
publish/subscribe associations between Federates, ObjectClass and Interac-
tionClass; and (ii) a set of sequence diagrams, which specify the behavioral
view of the HLA simulation application.

A more detailed vision of the inputs and outputs of the model-to-model
transformation is given in Figure 4.8.

For each block stereotyped as Federate, a sequence diagram describing
the DKF corresponding class is created. This class is responsible for creating
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Fig. 4.7: SysML-HLA annotated BDD diagram of the Border Patrol System.
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Fig. 4.8: Model-to-Model transformation inputs and outputs.

the Federate which carries out the publish and subscribe operations with the
RTI, and the corresponding Federate ambassador. In addition, the SysML
Sequence Diagrams named with the .reactiveBehavior extension, are trans-
formed as they represent the reactive part of the Federate. Themodel-to-model
transformation takes as input the SysML model denoted as Marked PIM and
produces as output the UML model denoted as PSM. The obtained UML is
extended by use of the HLAProfile, which has been defined to model concepts,
elements and relationship of an HLA Federation.

The HLA profile includes several stereotypes organized in two packages,
namely the HLADatatypes package and the OMTKernel package. The former
specifies the datatypes of the various attributes used to define the stereotypes
of the latter, which has been defined according to the HLA Object Model
Template Specification [53] and includes the following stereotypes:

- <<federation>> and <<federate>>: the UML elements representing the
whole Federation and associated Federates, respectively (both extensions
of the UML Class metaclass).

- <<objectClass>>: an object class (extension of the UML Class meta-
class).

- <<interactionClass>>: an interaction class (extension of the UML Class

metaclass).
- <<objectAttribute>>: an object class attribute (extension of the UML

Property metaclass).
- <<interactionParameter>>: an interaction class attribute (extension of

the UML Property metaclass).
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- <<publish>>: the association between a Federate and a published element
(extension of the UML Association metaclass).

- <<subscribe>>: the association between a Federate and a subscribed ele-
ment (extension of the UML Association metaclass).

The following listing gives a concrete example of a transformation rule
that is applied to generate the UML class diagram from an annotated SysML
BDD. Specifically the rule is applied to blocks stereotyped as <<Federate>>.

1 case(self.getAppliedStereotypes()->exists(g|g.name=’Federate’)) {
2     // Federate class construction
3     name := self.name;
4     package := p;
5

6     // stereotype <<Federate>> application
7     result.applyStereotype(omtKernel.ownedStereotype->any(name = ’

Federate’));
8

9     // federateAmbassador class construction
10     var amb:UML::Class:=null;
11         object amb:UML::Class {
12         name:=self.name + ’Ambassador’;
13         package:=p;
14         };
15

16     amb.applyStereotype(omtKernel.ownedStereotype->any(name = ’
FederateAmbassador’));

17

18     var as:UML::Association:=null;
19     object as:UML::Association{
20     name:=result.name +’_’+ amb.name;
21     package:=p;
22     };
23

24     var fedpr:uml::Property:=null;
25     result.ownedAttribute:=object fedpr:UML::Property{
26         fedpr.type:=amb;
27         fedpr.association:=as;
28         fedpr.aggregation:=uml::AggregationKind::composite;
29         };
30

31     var ambpr:uml::Property:=null;
32     amb.ownedAttribute:=object ambpr:UML::Property{
33         ambpr.type:=result;
34         ambpr.association:=as;
35     };
36 as.memberEnd:=fedpr;
37 as.memberEnd+=ambpr;
38 }
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The rule scans all blocks contained within the BDD and for each block
stereotyped as Federate applies the following rules:

- create a UML class with the same name of the SysML block and apply
the stereotype <<Federate>> of the HLAProfile;

- create a UML class for the Federate ambassador with a name that results
from the concatenation of the block name and the Ambassador string, and
apply the stereotype <<FederateAmbassador>> of the HLAProfile;

- create an association of type composition between the classes that repre-
sent a Federate and its ambassador, respectively.

«federate»
BaseStation

properties
«objectAttribute» + id: EShort
«objectAttribute» + name: EString
«objectAttribute» + position: Vector
«objectAttribute» + power_antenna: EDouble
«objectAttribute» + signal_strengh_antenna: EDouble
«objectAttribute» + power_parabolic_antenna: EDouble
«objectAttribute» + signal_strengh_parabolic_antenna: EDouble

«objectClass»
ConcreteBaseStation

«federate»
Satellite

«federation»
BorderPatrol

«objectClass»
ConcreteSatellite

properties
«objectAttribute» + id: EShort
«objectAttribute»  + name: EString
«objectAttribute» + position: Vector
«objectAttribute» + velocity: Vector
«objectAttribute» + signal_strengh: EDouble
«objectAttribute» + power: EDouble

«federate»
Drone

properties
«objectAttribute» + id: EShort
«objectAttribute» + name: EString
«objectAttribute» + position: Vector
«objectAttribute» + velocity: Vector
«objectAttribute» + signal_strengh: EDouble
«objectAttribute» + power: EDouble
«objectAttribute» + battery_level: EDouble

«objectClass»
ConcreteDrone

properties
«interactionParameter» + sender: EString
«interactionParameter» + receiver: EString
«interactionParameter» + payload: EString

«interactionClass»
DroneInteraction

properties
«interactionParameter» + sender: EString
«interactionParameter» + receiver: EString
«interactionParameter» + payload: EString

«interactionClass»
SatelliteInteraction

properties
«interactionParameter» + sender: EString
«interactionParameter» + payload: EString

«interactionClass»
BaseStationInteraction

properties
x: EDouble
y: EDouble
z: EDouble

«datatype»
Vector

«federateAmbassador»
BaseStationAmbassador

«publish»

«publish»

«federateAmbassador»
SatelliteAmbassador

«federateAmbassador»
DroneAmbassador

«subscribe»

«publish»

«publish»
«subscribe»

«publish»

«publish»
«subscribe»

«publish»

Fig. 4.9: Model-to-Model transformation output: UML Class Diagram.

Figure 4.9 illustrates the UML Class Diagram that results from the exe-
cution of the aforementioned transformation rules. Such a diagram gives the
structural view of the PSM.

The SysML-to-HLA model-to-model transformation also generates the be-
havioral view of the PSM. Specifically, for each Federate in the SysML BDD
(i.e., the marked PIM ), a sequence diagram is created, describing the behavior
of the relevant DKF main class, responsible for managing the simulation of
that Federate.
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As an example, Figure 4.10 gives the UML Sequence Diagram obtained
by use of the model-to-model transformation for the Satellite Federate.

The sequence diagram in Figure 4.10 represents the behavior to be coded
in the corresponding class of the Satellite Federate.

Similarly for the SDs that describe the reactive behavior of the Federate,
obtained from the corresponding SysML diagrams. The exchanged messages
are defined according to the DKF framework, which provides an intuitive
set of APIs to deal with both the initialization and the Federate execution
starting.

The complete model-to-model transformation produces as output a set of
UML Sequence Diagrams for each Federate, plus a generic one that is obtained
from the SD reported in Figure 4.4, thus gathering the behavioral part of the
PSM.

The so obtained UML model, denoted as the PSM in Figure 4.1, is ready
to be taken as input by the next step of the MONADS method, as described
in the next section.

sd Satellite.MainSatellite

main:MainSatellite

alt [Simulation Terminated = false]

[Simulation Terminated = true]

fac:ConfigurationFactory fed:SatelliteFederateamb:SatelliteFederateAmbassador
new

fac.importConfiguration()

new

new

createConcreteSatellite()

super()

super()

publishInteraction()

subscribeInteraction()

startExecution()

fed.configureAndStart()

disconnectFromRTI()

Fig. 4.10: Model-to-Model transformation output: UML Sequence Diagram.

4.4.5 Develop and integrate simulation environment

In this step, the HLA-based UML model produced in the previous step is
taken as input by the automated HLA-to-Code model-to-text transformation,
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which yields as output (a considerable part of) the distributed simulation
code.

The HLA-to-Code transformation has been specified in the MOFM2T lan-
guage, which adopts a template-based approach, wherein a code template
specifies placeholders for data to be extracted from models [76].

Specifically, the HLA-to-code transformation generates a Java class tem-
plate that contains the class structure, including constructors, methods and
attributes, declarations and exception management, and most of the required
HLA-related code, such as data type definitions and RTI interaction methods.
The only code that has to be manually added is the one implementing the
Federate simulation logic.

The following listening shows a portion of the model-to-text transforma-
tion, as implemented by the use of the Eclipse Acceleo plugin.

1 [comment ObjectClass definition /]
2

3 [template public genetareFederateObjectClass(aClass : Class,aModel:
Model)]

4     [if (aClass.getAppliedStereotypes()->exists(stereotype|stereotype.
name = ’ObjectClass’))]

5

6     [file (detectFederateOfObjectClass(aClass, aModel).toString().
toLower()

7     +’.model/’+aClass.name.toUpperFirst()+’.java’, false, ’UTF-8’)]
8 package [detectFederateOfObjectClass(aClass, aModel).toString().toLower

()/].model;
9

10 import dkf.coder.HLAfloat64LECoder;
11 import dkf.coder.HLAinteger16BECoder;
12 import dkf.coder.HLAunicodeStringCoder;
13 import dkf.model.object.annotations.Attribute;
14 import dkf.model.object.annotations.ObjectClass;
15

16 @ObjectClass(name = "[aClass.name/]")
17

18 public class [aClass.name.toUpperFirst()/]{
19 [for (pr : Property | aClass.attribute)]
20     [if (pr.name<>null)]
21     @Attribute(name = "[pr.name/]", coder=[mappingType(pr.type)/].class

)
22     private [detectType(pr.type)/] [pr.name/]= null;
23     [/if]
24

25 [/for]
26

27 [comment getter and setter methods/]
28 [for (pr : Property | aClass.attribute)]
29     [if (pr.name<>null)]
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30     public [detectType(pr.type)/] get[pr.name.toUpperFirst()/](){
31     return [pr.name/];
32     }
33

34     public void set[pr.name.toUpperFirst()/]([pr.type.name/] [pr.name
/]){

35     this.[pr.name/]=[pr.name/];
36     }
37

38     [/if]
39 [/for]
40

41 public [aClass.name.toUpperFirst()/](){}
42 }
43         [/file]
44     [/if]
45 [/template]

This code scans all the classes of the model and, for each class stereotyped
as <<objectClass>>, creates a package with the same name and extension
.model. Within this package, a Java file is also created with the name of
the class and the .java extension. Then, for each attribute of the class, an
annotation and an attribute qualified as private are created.

Finally, for each attribute, the getter and setter methods are created.
As an example, the following listing gives the output of the aforementioned
transformation as applied to the ConcreteBaseStation class.

1 package basestation.model;
2

3 import dkf.coder.HLAfloat64LECoder;
4 import dkf.coder.HLAinteger16BECoder;
5 import dkf.coder.HLAunicodeStringCoder;
6 import dkf.model.object.annotations.Attribute;
7 import dkf.model.object.annotations.ObjectClass;
8

9 // class definition
10 @ObjectClass(name = "ConcreteBaseStation")
11 public class ConcreteBaseStation {
12

13  // class attributes
14  @Attribute(name = "position", coder = VectorCoder.class)
15  private Vector position = null;
16

17  @Attribute(name = "power_parabolic_antenna", coder = HLAfloat64LE.
class)

18  private Double power_parabolic_antenna = null;
19

20  @Attribute(name = "signal_stenght_parabolic_antenna", coder = 
HLAfloat64LE.class)
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21  private Double signal_stenght_parabolic_antenna = null;
22

23  @Attribute(name = "name", coder = HLAUnicodeString.class)
24  private String name = null;
25

26  @Attribute(name = "id", coder = HLAinteger16LE.class)
27  private Short id = null;
28

29  @Attribute(name = "signal_stengh_antenna", coder = HLAfloat64LE.class)
30  private Double signal_stengh_antenna = null;
31

32  @Attribute(name = "power_antenna", coder = HLAfloat64LE.class)
33  private Double power_antenna = null;
34

35 // costructor
36 public ConcreteBaseStation() {}
37

38  public Vector getPosition() {
39   return position;
40  }
41

42 // class methods
43  public void setPosition(Vector position) {
44   this.position = position;
45  }
46

47  public Double getPower_parabolic_antenna() {
48   return power_parabolic_antenna;
49  }
50

51 // additional methods (not shown)
52

53 }

Figure 4.11 illustrates the UML Class Diagram that gives an overall view of
the set of main DKF classes that are generated for the border patrol scenario.

The so obtained distributed simulation code is ready to be executed, in
order to address the main objectives of the simulation e↵ort, as mentioned in
Subsection 4.4.3.

The simulation execution and results evaluation steps, shown in Figure
4.1, are out of this chapter scope and thus are not further detailed.

4.4.6 Integrated Tool-Chain

An integrated tool-chain has been set up to enact the MONADS method for
distributed simulation of complex systems. The model definitions and trans-
formations introduced in previous sections have been implemented by use of
the various tools integrated into the Eclipse platform [24]. Specifically, the
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TemplatePar

- sender:String
- receiver:String
- payload:String

InteractionClass
SatelliteInteraction

- sender:String
- receiver:String
- payload:String

InteractionClass
DroneInteraction - sender:String

- payload:String

InteractionClass
BaseStationInteraction

- id:Short
- name:String
- position:double[]
- velocity:double[]
- power:double
- battery_level:double
- signal_strenght:double

ObjectClass 
ConcreteDrone

- id:Short
- name:String
- position:double[]
- power_antenna:double
- signal_strenght_antenna:double
- power_parabolic_antenna:double
- signal_strenght_parabolic_antenna:double

ObjectClass
ConcreteBaseStation

- id:Short
- name:String
- position:double[]
- velocity:double[]
- power:double
- signal_strenght:double

ObjectClass
ConcreteSatellite

«publish»«subscribe»

«publish»
«subscribe» «publish» «subscribe»«publish»

DKFAbstractFederateAmbassador
SatelliteFederateAmbassador

 

 

DKFAbstractFederate
SatelliteFederate

«publish»

 

DKFAbstractFederateAmbassador
DroneFederateAmbassador

 

DKFAbstractFederate
DroneFederate

«publish»

 

DKFAbstractFederateAmbassador
BaseStationFederateAmbassador

 

DKFAbstractFederate
BaseStationFederate

«publish»

Border Patrol System

«abstract»
DKFAbstractFederateAmbassador

 

 

Runnable
ExecutionThread

 

DKFHLAModule

DKF - core

«abstract»
DKFAbstractFederate

 

«interface»
DKFFederateInterface

 

Fig. 4.11: The architecture of the Border Patrol System simulation scenario
based on the DKF framework.

Papyrus Modeling Environment project has been adopted as the reference
modeling tool [25].

Papyrus provides a full-fledged graphical modeling tool that allows cre-
ation and editing of SysML and UML diagrams. The SysML4HLA profile and
the HLA profile have been implemented into Papyrus, as well.

The QVT Operational component [26], a partial implementation of the
Operational Mappings Language defined by the OMG [77] and the Acceleo



74 4 A model-driven approach to enable the simulation of complex systems on distributed architectures

Papyrus

Specification and Annotation

QVT Operational

Model-to-Model Transformation

Acceleo

Model-to-Text Transformation

IEEE 1516

HLA Simulation Execution

DKF

Fig. 4.12: The MONADS integrated tool-chain.

component [23], an open source code generator implementing the OMGs MOF
Model to Text Language (MOFM2T) standard [73], have been used as the
tools that execute model-to-model and model-to-text transformations, respec-
tively.

Figure 4.12 illustrates the aforementioned integrated tool-chain. Papyrus
is initially used to specify a SysML model and annotate it by use of the
SysML4HLA profile.
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Next, themodel-to-model transformation from the annotated SysMLmodel
to the HLA-based UML model (i.e., the UML model annotated by use of the
HLA profile) is carried out by use of the QVT Operational component.

Finally, the model-to-text transformation that yields as output the DKF-
based distributed simulation code is performed by the use of the Acceleo
component. The resulting code, after a refinement process, is then executed
on a specific HLA RTI.

The fully integrated tool-chain provides a flexible and easy-to-use imple-
mentation platform for the proposed method, thus bridging the gap between
the SysML-based system specification and the HLA-based distributed simu-
lation implementation.

4.5 Discussion and Related Work

This section reviews the existing literature dealing with both the use of SysML
in the Modeling & Simulation (M&S) domain and the modeling/development
of HLA-based distributed simulation systems.

As regards the use of SysML in the M&S context, significant contributions
that specifically address the generation of Java/HLA code from SysML spec-
ifications can be found in [13, 14, 20]. This work extends and improves such
contributions both on the method side, which is now designed according to
the DSEEP, and on the model transformation side, which now exploits the
advantages of using the HLA Development Kit software Framework (DKF)
rather than a conventional HLA implementation.

More generally, several contributions are available that propose the use
of SysML as a notation suitable not only for defining systems specification
but also for supporting system simulation activities, such as [80] and [79] in
which SysML is used as a notation to support the simulation-based design
of systems, in order to derive executable parametric models and simulation-
specific languages, respectively.

Di↵erently from the aforementioned contributions, this chapter describes
a Model-Driven method to automate the generation of an HLA-based im-
plementation of a distributed simulation software, starting from a SysML
specification.

As regards the issue of supporting the implementation of simulation sys-
tems, contributions that apply a Model-Driven paradigm in the M&S do-
main can be found in [20] and [48], which propose a method to generate a
Java/HLA-based implementation of a distributed simulation software from a
UML system model and the main theoretical concepts behind the application
of MDA to HLA, respectively.

Di↵erently, this chapter illustrates the design and implementation of a
model driven method to reduce the gap between the SysML-based system
specification and the HLA-based distributed simulation implementation.
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As regards the modeling/development of HLA-based distributed simula-
tion systems, several commercial and research e↵orts aim at providing inte-
grated toolchains for creating and simulating complex systems by using spe-
cialized modeling tools and methodologies. Packages and toolboxes have been
developed for implementing HLA simulators in Matlab/Simulink, such as the
Forwardsim HLA Toolbox for Matlab [98].

Another tool that enables developers to e↵ectively manage the structure
and assets of a HLA Federate starting from a FOM (Federation Object Model)
file is the PITCH Developer Studio [82]. A domain-specific HLA software
framework was created by the Danish Maritime Institute (DMI) [108] to pro-
vide mechanisms that simplify the development of real-time simulators. Other
HLA frameworks are based on GRID-computing infrastructure [113].

The HLA Development Kit and its software framework (DKF), used in the
proposed MONADS method for generating the HLA-based simulation code,
di↵er from the above mentioned solutions in several aspects. In particular, dif-
ferently from a proprietary and commercial solution that requires tool-specific
knowledge and training, the HLA Development Kit is an open source project
released under the open source LGPL license and can be freely and easily
customized and/or extended to cover and deal with both domain independent
and domain-specific aspects. In addition, the DKF provides advanced facilities
that allow keeping the code compact, readable and reliable. As an example,
Java annotations are used to directly inject the structure of a HLA Federate
in the Java code. These metadata are used by the core components of the
DKF at run-time to inspect and check HLA objects according to its definition
in the FOM. The above-sketched capabilities showed a great benefit not only
for expert HLA developers but also for HLA novice practitioners as were the
undergraduate students involved in the Simulation Exploration Experience
(SEE) project led by NASA and which involves several U.S. and European
Institutions [30].

The current DKF implementation targets HLA Federation executions
based on Federates using a specific time flow mechanism, namely timestepped
[38], in which each time advance of the Federate is of a fixed simulation time
duration and time does not advance to next time step until all simulation
activities for current time step are completed. This choice does not limit the
validity of the MONADS method, which can be easily extended to address
other mechanisms, such as the event-driven one, in which each Federate pro-
cesses local and external events in time stamp order and the time typically
advances to the time stamp of the event currently being processed.

4.6 Conclusion

Modern large-scale systems or systems of systems require the adoption of dis-
tributed simulation approaches to properly take into account inherent com-
plexity.
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This chapter discussed an innovative and automated method (denoted as
MONADS) that makes easier for systems engineers the use of distributed sim-
ulation techniques, without asking them to explicitly deal with the intricacies
and di�culties of currently available standards and technologies.

It introduces a Model-Driven method based on the execution of model
transformations that automatically map the abstract representation of a sys-
tem, specified in SysML, into an intermediate HLA-based software model,
specified in UML, down to the final code of the HLA-based distributed simu-
lation. Specifically, the generated code is based on the HLA Development Kit
software Framework (see Chapter 3) that allows a developer to appropriately
handle common HLA issues thus making it easier to develop a distributed
simulation.

The proposed approach allows to automatically obtain a significant portion
of the final HLA-based code, by limiting the manual activity to the implemen-
tation of the Federate simulation logic, and can be e↵ectively used even by
systems engineers who are not familiar with the HLA standard.





5

On the integration of HLA and FMI for
supporting interoperability and reusability in
distributed simulation

Many research e↵orts are focusing on the definition of methods, models and
techniques to support the reuse and interoperability of simulation models and
their execution on distributed computing environments. In this context, great
benefits derive from the joint exploitation of two popular standards: FMI
(Functional Mock-up Interface) [39] and HLA (High Level Architecture) [53].

The chapter presents how to combine HLA and FMI from two di↵erent
perspectives: (i) HLA for FMI and (ii) FMI for HLA. With reference to the
HLA for FMI perspective, some possible extensions to the FMI standard to
include HLA features are proposed. With respect to the FMI for HLA per-
spective, two concrete approaches, based on well-known design patterns, for
integrating and (re)using FMUs (Functional Mock-up Unit) in HLA-based
simulations are described. Then, to demonstrate the e↵ectiveness of a pre-
sented solution, a case study concerning a Moon base simulated scenario is
presented.

5.1 Introduction

As described in Chapter 2, the use of M&S has many advantages, such as
the possibility to study the behavior of a system without physically building
it, and the evaluation and comparison of di↵erent design choices, policies,
and operating procedures through experiments in a controlled environment
[5, 35, 43, 92]. Despite the above sketched advantages, M&S has important
disadvantages many of those related to the significant e↵orts required for
producing a full-fledged simulation model and analyzing simulation results.
Moreover, it is often hard to reuse already available simulation models; indeed,
there is a lack of mechanisms to make interoperable simulation models built
on di↵erent simulation platforms and scarce support to enable their execution
on distributed infrastructures.

To overcome these disadvantages, many research e↵orts are focusing on
the definition of methods, models and techniques to support the reuse and
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interoperability of simulation models and their execution on distributed com-
puting environment. Two of the most popular e↵orts going in these directions
are FMI (Functional Mock-up Interface) [39] and HLA (High Level Architec-
ture) [53, 59]. However, each of the two mentioned proposals addresses part
of the above issues and great benefits derive from their combined exploitation
[4, 6].

The chapter discusses in detail the main issues and opportunities from the
integration of FMI and HLA and describes the principles behind their joint
exploitation by focusing on the benefits that HLA o↵ers to FMI and vice versa
(HLA for FMI and FMI for HLA respectively). Two concrete approaches for
realizing the FMI for HLA integration perspective are presented and one of
them is exemplified by a case study concerning the integration of a FMU
(Functional Mock-up Unit) in a HLA Federation.

5.2 Combining HLA and FMI

Although the HLA and FMI standards start from di↵erent objectives and are
based on di↵erent techniques (see [39, 53, 56, 59]), they have several common
features that can be jointly exploited so as to create a full-fledged solution to
enable reuse, interoperability and distributed execution of simulation models.

To investigate how to fruitfully combine HLA and FMI standards, two
di↵erent integration perspectives should be considered:

- HLA for FMI, i.e. how to support the definition of a FMU able to include
and exploit HLA features and services;

- FMI for HLA, i.e. how to include, in a HLA simulation, applications that
are available as FMUs so as to enable their reuse in a HLA context.

In the following, an extension of the model description XML file [39] that
could be used to support the first integration perspective (HLA for FMI ),
and two possible integration approaches to address the second one (FMI for
HLA) are described.

5.2.1 HLA for FMI

The FMI standard does not have mechanisms that allow a FMU to interact
with others heterogeneous components in a distributed simulation environ-
ment, such as those supported by HLA; indeed, currently, they can only be
used as external components in a stand-alone simulation tool.

To overcome this limitation, it is necessary to define concepts and mech-
anisms in order to enrich a FMU, during the modeling phase, with HLA
features.

As described in Section 2.4, a FMU contains both a model-description
XML file and a C code that implements the model. Starting from these two
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elements, the integration process can consist of two phases: (i) extend the
model description XML-Schema file by defining new tags that cover specific
HLA functionalities; and, (ii) create a C shared library that defines the related
HLA commands. A set of possible tags, which could be added to the XML file
that describes a FMU so as to make it compatible with HLA specifications,
are described in Table 5.1.

Table 5.1: HLA for FMI tags.

XML tag Description

HlaTime
Provides settings for managing the
federation time, synchronization points
and the timestamps of the events.

HlaDeclarationManagement
Defines functions to manage the operations
of publishing and subscribing of events and
attributes.

HlaFederation Defines functions to manage a HLA federation.

HlaOwnership
Provides settings for handling the ownership
of an object.

HlaAttribute
Provides settings for managing the attributes of
a HLA ElementObject.

HLAInteraction Provides settings for managing HLA interactions.
HLATypeDefinition A global list of the HLA type definitions.

Figure 5.1 shows the combined solution, defined according to the proposed
integration approach, in which the FMU model contains some HLA features
defined during the modeling phase. More in detail, the Model defines the
simulation logic of the FMU according to the FMI specification and uses the
HLA Core features component to integrate HLA characteristics in order to
make the FMU compatible with a HLA-based simulation environment. The
FMU/HLA Solver enriches the FMU solver with specific features to manage
the HLA commands.

                     Tool

FMU

Model

FMU/HLA Solver

HLA Core 
features

Fig. 5.1: A FMU enriched with HLA features.

The advantages arising from the proposed integration approach could be:
(i) greater integration and execution control of FMUs in a HLA Federation,
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since a FMU can natively support HLA services; (ii) reduction of develop-
ment costs and time, since a FMU can be reused in HLA context; and (iii)
better performances, since FMUs that share the same HLA simulation plat-
form can be executed on geographically distributed computers. Despite the
above sketched advantages that could derive from the native support of HLA
features, the proposed solution requires not only to extend the current FMI
standard, but also to add to the current FMU solvers the capabilities to in-
terpret and execute HLA-based operations.

5.2.2 FMI for HLA

The integration of a FMU in a HLA Federation is a highly challenging process
since it is necessary to solve di↵erent issues. In the last few years, several
research e↵orts have been devoted to support this integration perspectives
(FMI for HLA); some of them aim at providing an integration mechanism
based on a master algorithm for Co-Simulation using FMI [11], others are
based on using the HLA RTI as a master for FMUs [5, 6] or on the definition
of wrappers that allows to connect a FMU to a HLA Federation [115].

The key di↵erence between FMI and HLA is that HLA provides specific
mechanisms for data exchange and time management that enable the inte-
gration in a distributed computing environment of heterogeneous simulation
models created according to the HLA standard. As in the FMI for Model Ex-
change modality the solver module is not part of the FMU (see Section 2.4), it
is not practicable to integrate such a kind of FMU in a HLA simulation; as a
result, only FMU generated according to the FMI for Co-Simulation modality
can be taken into consideration for the inclusion in a HLA simulation.

To achieve this kind of integration, a HLA component has to act as a mas-
ter for the FMUs (that thus act as slaves) in order to manage their lifecycle
during the HLA simulation. In particular, the master has the responsibil-
ity to orchestrate the steps of Co-Simulation through the execution of two
tasks: (i) track and control the data exchange between the Federation and
the controlled FMUs; and, (ii) synchronize the simulation time between the
HLA Federation and the FMUs, so to control its advancement. This approach
allows combining in a HLA simulation both FMUs (controlled by HLA com-
ponents acting as masters) and standard HLA modules [5]; this integration
has many advantages:

- Heterogeneous FMUs can be reused in a HLA simulation environment
without making structural or behavioral changes on them;

- Greater interoperability among FMUs because they can interact with one
another in a distributed computing environment through HLA;

- FMUs can be created and tested independently through well-established
simulation environments compliant to the FMI standard;

- Better performances because the FMUs share only the RTI infrastructure,
while their execution takes place on di↵erent computers, which can be also
geographically distributed.
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Nevertheless, the integration of a FMU into a HLA simulator is a complex
process, since the FMI standard defines some features that make a FMU not
fully compatible with HLA. In particular, the FMI standard does not support
all the HLA DataTypes. It defines only five data types: fmiReal, fmiBoolean,
fmiInteger, fmiString, and fmiEnumeration [39]; furthermore, the FMI for Co-
Simulation modality does not support timestamps events, therefore it is hard
to execute event-driven simulations. Moreover, the FMI standard does not
define the concepts of publication and subscription of attributes and interac-
tions, and resources ownership.

In the following, two possible solutions to realize the above described in-
tegration perspective are presented.

5.3 FMI for HLA: Integration Approaches

In this section two approaches, Adapter-based and Mediator-based, that allow
integrating a FMU into a HLA simulation, are presented. Both the approaches,
which are related to the proposal presented in [115], use the concept of Hybrid
Federate to manage the lifecycle of a FMU and overcome the FMI for HLA
integration issues.

5.3.1 Adapter-based

In the Adapter-based approach the Hybrid Federate is composed by two ele-
ments: (i) a FMU, which contains the behavior of the component to simulate
and its solver; and (ii) the FMI-HLA Adapter that manages all the interactions
between the RTI infrastructure and the FMU (e.g., publish/subscribe of the
attributes that are produced/used by the FMU, Object discovery, Datatypes
mapping), as well as the lifecycle of the FMU. In the software engineering
practice, an adapter is a software design pattern that allows the interface of
an existing class to be used from another interface [3, 40]. It is often used to
make existing classes work with others without modifying their source code.

The FMI-HLA Adapter allows the two heterogeneous elements to work
together in a distributed simulation environment through a software layer
that interprets the application-specific services. The software layer is com-
posed of three distinct parts: (i) Communication; (ii) FMI-HLA Logic; (iii)
Monitoring. The first component, handles the two-way communication and
data exchange, as well as the connection to the RTI. The second one contains
the logic that allows the two standards (FMI and HLA) to work together.
Finally, the Monitoring component provides a set of services to monitor the
simulation execution of the FMU module and the status updates of the whole
Hybrid Federate. Figure 5.2 shows the Adapter-based approach.
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Hybrid Federate
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Fig. 5.2: The Adapter-based integration approach.

5.3.2 Mediator-based

In the Mediator-based approach, the structure of the Hybrid Federate changes
with respect to the previous approach. Indeed, it is composed of two elements:
(i) a set of FMUs, each of which defines a dynamic model according to the
FMI standard; and (ii) a HLA Federate, which is not a simple adapter, as in
the adapter-based approach, but contains its own simulation logic and uses
the FMUs to simulate specific components. For example, a HLA Federate that
simulates a car can use specific FMUs to handle the simulation of specific car
components (e.g., engine, transmission, driveline, external sensors, brakes).
During the simulation execution the HLA Federate uses the FMU modules by
using the mediator layer to coordinate/orchestrate the behavior of the whole
Hybrid Federate.

Hybrid Federate

Run-Time Infrastructure

Federate 1 . . .

HLA Federate

mediator

FMU 1 FMU n

Federate 2

. . .

Fig. 5.3: The Mediator-based integration approach.

The mediator is a software layer that encapsulates the modalities with
which the HLA Federate interacts with the FMUs. In particular, the HLA
Federate cannot communicate directly with the FMUs, but it has to use the
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mediator layer; this mechanism reduces the dependencies between communi-
cating parts, thereby lowering the coupling [40]. In Figure 5.3 the described
Mediator-based approach is exemplified.

5.3.3 A case study

This section presents a case study concerning the integration of a FMU mod-
ule into a HLA simulation. The simulation scenario, chosen to demonstrate
the proposed approaches, concerns a human settlement called “Moon base”
composed of scientific equipment, storage buildings, rovers and other elements
to allow astronauts to live and work on the moon. This scenario is based on
that adopted in the context of the 2014 edition of the Simulation Exploration
Experience (SEE) project (see Chapter 3).

Reference Scenario

The simulation scenario takes place on the lunar surface and concerns a situ-
ation in which a landing is taking place on the platform located in the Moon
base. To allow the lander to land safely, all the entities operating within the
Moon base have to be informed in order to face this situation. All the com-
munications are managed by the UNICOM radio communication system that
provides flexible communication functionalities to the other entities populat-
ing the “Moon base”. UNICOM works as a mediator and to provide its services
is equipped with an antenna mounted on a tower [31].

When the lander begins the landing operations, it sends a “Landing
started” message to UNICOM, which forwards the incoming message to be
broadcast to all the entities that populate the human settlement and which are
located within the coverage area of the UNICOM’s antenna. Each receiving
entity may react to the situation in di↵erent ways; e.g., the astronauts react
by moving away from the landing site. During the landing phase, the lander
constantly sends information about its acceleration, velocity and altitude to
UNICOM, which forwards this information by using a “Landing data” mes-
sage to all the subscribed entities. Finally, a “Landing completed” message
is sent from the lander to the UNICOM communication module, when the
lander touches down on the platform. UNICOM receives the “Landing com-
pleted” message and sends it to all the entities that operate in the Moon base,
so to notify that the landing operations has been completed.

Figure 5.4 shows the scenario with the three main elements that define
the simulation scenario: UNICOM, the Lunar Rover, and the Lander. The
first two elements (UNICOM and the Lunar Rover) are developed as HLA
Federates, whereas the Lander is developed as a FMU.

The Lander FMU

The Lander module is a spacecraft that descends and comes to rest on the
surface of an astronomical body. During the landing phase, the lander may
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Fig. 5.4: The reference Simulation Scenario.

use either parachutes to slow down and to maintain a low terminal velocity
(for planetary bodies with significant atmospheres) or landing rockets, which
are fired just before impact to reduce the impact velocity. The lander is sim-
ulated by a FMU developed by using Matlab Simulink [65] and generated by
using the Modelon FMI Toolbox for Matlab/Simulink [33]. This latter tool-
box provides functionalities for the import/export and simulation of FMUs,
compliant with both the FMI for Model Exchange and FMI for Co-Simulation
modalities, into/from Matlab/Simulink. Figure 5.5 shows the Simulink model
of the Lander module.

The equations that regulate the vertical motion of the lander during the
landing operation are [36]:

Acceleration =
G ·Mass

moon

(Altitude

lander

+Radius

moon

)2

Mass

0 = �MassLossRate · |Thrust|
Altitude

0 = V elocity

V elocity

0 = Acceleration

(5.1)

All the reported equations have been developed, by using Simulink com-
ponents, in the Lander block. In order to import and use the lander module
in a HLA Federation, it has been exported as a FMU (according to the FMI
for Co-Simulation modality) by using the Modelon FMI Toolbox for Mat-
lab/Simulink tool [33].

Integration of the Lander FMU in the HLA Federation

To integrate the Lander FMU into a HLA Federation, a HLA Hybrid Fed-
erate based on the Adapter-based approach has been developed by using the
functionalities o↵ered by the SEE HLA Development Kit (see Chapter 3).
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Fig. 5.5: Simulink model of the Lunar Lander.

Figure 5.6 shows the architecture of the Hybrid Federate by using a UML
Class Diagram.

The AbstractAdapter class manages the lifecycle of the Hybrid Federate;
it includes the management of the simulation time and the synchronization
among the objects connected to the RTI. This abstract class is extended by
the Adapter class that implements the functionalities to manage the FMU
during the simulation execution.

The AbstractFederateAmbassador class, which extends the SEEAbstractFed-
erateAmbassador class defined in the SEE HLA Development Kit, implements
the methods that are called by the RTI for interacting with the Federate (RTI
callback methods); along with the RTI Ambassador interface, which is used by
the Federate to access the RTI services. Moreover, it handles the interactions
with the other Federates through the use of the Observer package.

The SimulationConfig class is used to load the configuration parameters
of the Adapter class, which are stored in a property file. These parameters
include the name of the Federate, the IP address of the Federation and its
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Fig. 5.6: Architecture of the HLA Hybrid Federate.

port number, and other parameter concerning the simulation scenario (e.g.,
Moon gravity, radius and mass).

The LanderFMU class handles the lander module with its properties such
as: name, altitude and acceleration. The Loader class is used by the Lan-
derFMU class to load the .zip file and parse the XML model description of
the Lander FMU. The loading operations are managed through the javaFMI
library [58], which allows interfacing Java applications with FMUs for Co-
Simulation or Model Exchange.

The Toolkit class contains several miscellaneous methods, such as simula-
tion time standard conversions and Windows Firewall Check.

The lifecycle of the application consists of four phases as shown in Figure
5.7.

In the load FMU module state, the configuration parameters of the Hybrid
Federate and the Lander FMU are loaded, from a property file, by using
the SimulationConfig and Loader classes. A transition to the startup state
happens if the configuration parameters and the FMU are valid, and during
the state transition a connection to the federation execution platform (the
HLA RTI) is performed. If the configuration parameters or the FMU module
are invalid, a state transition to the shutdown state is performed. In this latter
state, all the resources engaged by the application are de-allocated and the
lifecycle terminates.

In the startup state, the Federate checks the connection status. If the con-
nection is not established the lifecycle ends with a transition to the shutdown
state. Otherwise, the parameters of the FMU are registered on the RTI plat-
form, and a transition to the running state is performed.The running state
contains three sub-states: (i) waiting for TAG : the Adapter module waits for
the TAG (Time Advance Grant) Callback from the RTI; (ii) processing and
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Fig. 5.7: Lifecycle of the HLA Hybrid Federate.

updating Lander FMU state: when the TAGcallback is received, the Adapter
calls the Lander FMU to make a simulation step; after that, the output values
(altitude, acceleration, force, etc.) of the Lander are returned to the Adapter,
which deals with their publication on the RTI; and (iii) make TAR request :
the Adapter requests to the RTI the grant for the next logical time.

The processing and updating Lander FMU state is a sub-state that contains
four states (see Figure 5.8): (i) initialize: if the parameters of the Lander
FMU are NULL (first simulation step) a transition to the set Input state is
performed; otherwise a transition to the make simulation step state is done;
(ii) set Input : the parameters of the Lander are set, and then a transition to
the make simulation step is performed; (iii) make simulation step: the Lander
module makes one simulation step ahead; and (iv) get values : the output
values of the simulated step are retrieved and sent back to the Adapter.

The Resulting HLA Federation

The reference simulation scenario has been developed and executed by using
the Pitch RTI [82] that provides a complete implementation of the IEEE 1516
interface specifications [53]. Figure 5.9 shows the HLA-FMI Federation with
the four elements that compose the scenario (Environment, Lander, Rover,
and UNICOM). The Federation FOM (Federation Object Model) file is com-
posed of six parts [53, 59]: (i) Core, which defines the DataTypes used during
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[parameters == null]initialize set Input
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Fig. 5.8: Processing and updating sub-state of the Lander.

a Federation execution; (ii) Environment, which specifies the structure of the
Reference Coordinate Frames (e.g., SolarSystemBarycentricInertial, Earth-
Centric Inertial); (iii) Entity, which defines the structure of a space entity
(e.g., space vehicles, lunar rovers); (iv) UNICOM, which defines data and in-
teractions of the UNICOM Communication module [31]; (v) Lander, which
defines the properties of the Lander as described below; and, (vi) Rover, that
contains the characteristics of a Rover. The first three parts of the FOM mod-
ule (Core, Environment, Entity) have been defined by the NASA team for
the SEE 2014 project [90] in order to provide a baseline for the simulation
scenario.

Fig. 5.9: The HLA-FMI Federation.

The FOM module of the Lander describes the Lander Hybrid Federate in
terms of the categories of ObjectClasses, Attributes, and InteractionClasses
that it can o↵er to the Federation [53]. Specifically, the Lander FOM is com-
posed of one ObjectClass called Lander that inherits from the PhysicalEn-
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tity class [31, 90], and one InteractionClass called LandingStatusInteraction
to interact with the UNICOM Federate during the landing operations. This
interaction provides a single parameter (called payload) containing the pay-
load of the message; specifically, it can be “Landing started” or “Landing
completed”. The Lander ObjectClass defines five attributes: Mass, Altitude,
Velocity, Acceleration, and Thrust, which are published and updated on the
RTI platform by the FMI-HLA Adapter component (see Figure 5.2). When-
ever the UNICOM Communication module receives the data from the Lander,
it forwards this information by using a “Landing data” message to all the
entities that populate the human settlement.

5.4 Conclusion

In the M&S domain many research e↵orts are focusing on the definition of
methods, models and techniques to support the reuse and interoperability of
simulation models and their execution on distributed computing environment.
Two of the most popular e↵orts going in these directions are FMI (Functional
Mock-up Interface) and HLA (High Level Architecture). However, each of the
two mentioned proposals addresses part of the above mentioned issues and
great benefits derive from their jointly exploitation.

The chapter presented how to combine HLA and FMI from two di↵erent
perspectives HLA for FMI and FMI for HLA. With reference to the HLA
for FMI perspective, the chapter has delineated some possible extensions to
the FMI standard to enrich, during the modeling phase, a FMU with HLA
features. In more detail, a set of XML tags that could be added in the model-
description XML file to natively integrate the HLA concepts in a FMU have
been outlined. With respect to the FMI for HLA perspective, the chapter
has presented two concrete approaches, Adapter-based and Mediator-based, for
reusing a FMU in a HLA Federation without modifying both the structure and
the behavior of the FMU. To demonstrate their e↵ectiveness, a case of study,
based on the exploitation of the Adapter-based approach has been presented.
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Further contribution on interoperability in
distributed simulation

6.1 Introduction

Distributed and Real-Time Simulation plays a key-role in the Space domain
for several purposes. It is exploited for analysis and engineering, from mission
level down to individual systems and subsystems, where simulation plays a
key tool through the whole lifecycle, from the concept exploration phase to
mission design and operation. Another example is training of flight crew and
flight controllers, where simulation plays a crucial role as the Space domain
is characterized by scarce training opportunities, high cost of real equipment,
dangerous scenarios and emergency operations. In particular, great benefits
derive from the exploitation of distributed simulation approaches as they al-
low for combining models from the same or di↵erent sources (within the same
organization or between di↵erent organizations), to run simulation between
di↵erent locations, and to promote scalability, modularization and usability
[37, 41]. Indeed, several distributed simulations have been developed for ex-
ample for docking vehicles with the ISS and for mission training, in many
cases with participants from several nations [2, 81, 85].

This chapter presents further contributions focused on the interoperability
of simulation models in the space domain. In particular, the experience gained
during the definition and development of the HLA Development Kit (DKF)
(see Chapter 3), the definition of the MONADS (MOdel-driveN Architecture
for Distributed Simulation) method (see Chapter 4), and the investigation on
how to combine the international standards IEEE 1516 - High Level Architec-
ture (HLA) and Functional Mock-up Interface (FMI) (see Chapter 5), along
with the research activities performed at NASA Lyndon B. Johnson Space
Center (JSC) and also within the SISO Space Reference FOM (SRFOM) Prod-
uct Development Group (PDG) [69], allowed to focus on the interoperability
of space systems in a distributed simulation.

The chapter is structured as follows. Section 6.2 presents a first set of
results achieved by the SISO Space Reference FOM (SRFOM) Product De-
velopment Group (PDG) that aims at providing a Space Reference FOM for
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international collaboration on Space systems simulations [69]. The Java Space
Dynamics Library (JSDL) project is presented in Section 6.3. It stems from
the SISO Space Reference FOM standardization initiative and aims at sup-
porting the development and simulation of complex space systems by pro-
viding high fidelity models and algorithms to manage them. Di↵erently from
proprietary and commercial solutions that require tool-specific knowledge and
training, JSDL is an open source project released under the open source policy
Lesser GNU Public License (LGPL) and can be freely and easily customized
and/or extended to cover specific domain aspects. The chapter concludes, in
Section 6.4, with some considerations.

6.2 SISO Space Reference FOM

Although HLA is increasingly used in the Space domain to meet the require-
ments for simulation interoperability in the US, Europe and Asia, so far dif-
ferent organizations and projects have developed incompatible FOMs (see
Chapter 2) to meet their specific needs but increasing the long-term cost
for interoperability. In this context, the availability of a reference FOM for
the Space domain will enable the development of interoperable HLA-based
simulators and related joint projects and collaborations among worldwide or-
ganizations involved in the Space domain (e.g., NASA, ESA, ASI, JAXA and
Roscosmos) [69].

However, there is currently no reference FOM that addresses Space explo-
ration, since, for example, the RPR FOM is restricted to defense operations
in a geocentric environment running in real time [68].

To fill this void, a Product Development Group (PDG) has been recently
activated in SISO with the aim to provide a Space Reference FOM for in-
ternational collaboration on Space systems simulations [91]. Members of the
PDG come from several countries and contribute experiences from projects
within NASA, ESA and other organizations. Participants represent govern-
ment, academia and industry. Moreover, the PDG benefit from the wide ex-
perience gained in the “Simulation Exploration Experience” (SEE) (formally
Smackdown) SISO’s university outreach program [31, 90] (see Section 3.3).
Indeed, competencies from NASA and other organizations have been reused
in the SEE project to create a core Space Reference FOM. Approximately
fifteen di↵erent university teams have successfully used this FOM for six con-
secutive integration projects during the last six years, thus providing a solid
base for the SISO standardization initiative.

The Space Reference FOM shall support interoperability for space simu-
lations [69]. This includes federations executing in real-time as well as feder-
ations executing in logical-time (including as-fast-as-possible). The primary
focus is on training, analysis, mission support and engineering although other
types of usage, like test and concept exploration may also be supported to
some degree. The standard consists of two parts: (i) the SISO Standard for
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the Space Reference FOM Federation Agreement. This is a natural language,
human readable overview, description and specification of the FOM; (ii) The
Space Reference FOM. This is a set of computer-interpretable HLA IEEE
1516-2010 FOM modules (XML files), intended for consumption by HLA run-
time infrastructure and other software tools. These outcomes are expected to
make collaboration politically, contractually and technically easier. It is also
expected to make collaboration easier to manage and extend. The Space Ref-
erence FOM provides for baseline interoperability. Project specific modules
that extend it can be added as needed and commonly used extensions can
be added to the standard as they mature. The first version of the standard
under release focuses on handling of time and space; in particular, the Space
Reference FOM provides the following: (i) a flexible positioning system us-
ing Coordinate Reference Frames for arbitrary bodies in space, (ii) a naming
conventions for well-known Reference Frames, (iii) definitions of common time
scales, (iv) federation agreements for common types of time management with
focus on time stepped simulation, and (v) support for physical entities, such
as space vehicles and astronauts [69].

6.2.1 The Space Reference FOM

The Space Reference FOM defines a hierarchy of object and interaction classes
for HLA that provides interoperability between simulations in the Space sys-
tems domain. It is designed to link simulations of discrete physical entities
into distributed collaborative simulations of complex Space related systems.
Its capabilities include representations of:

- Physical entities such as mobile surface systems, atmospheric flight sys-
tems, space flight systems, lifeforms, infrastructure elements, and interac-
tions between them.

- Collections of individual entities collected as a single aggregate entity.
- Environmental objects and processes.
- Communications between entities.
- Emissions generated by entities.
- Logistics, including repair and resupply.

The HLA Object and Interaction classes are grouped in separate FOM mod-
ules (XML files) so as to allow for a more flexible and e↵ective management
of the standard proposal as well as of its extension.

Figure 6.1 shows the architecture of the SISO Space Reference FOM along
with its modules.

In the following Subsections, the five modules of the SISO Space Reference
FOM with their UML Class diagrams are described in detail.

The SISO Space FOM switches module

The SISO SpaceFOM switches module provides configurations settings for the
Federation execution by way of global Federation execution wide switches for
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Fig. 6.1: Architecture of the SISO Space Reference FOM.

LRC (Local Run-Time Component) and RTI behavior [53]. Indeed, the 1516-
2010 HLA standard defined a set of switches that shall be set in the FOM.
These switches regulate the behavior of some of the optional actions the RTI
can perform on behalf of the Federate, such as automatically requesting up-
dates of an instance attribute when an object instance is discovered or advis-
ing the Federates when certain events occur. To facilitate easy replacement of
these settings, for the modular version of the HLA 1516-2010 Space FOM the
switches have been confined to the SISO SpaceFOM switches FOM module.
It is expected that federations might choose to update this module based on
their federation agreement.

Figure 6.2 shows the architecture of the SISO SpaceFOM switches module
through the use of an UML Class diagram.

- autoProvide: HLABoolean = false
- conveyRegionDesignatorSets: HLABoolean = false
- conveyProducingFederate: HLABoolean = true
- attributeScopeAdvisory: HLABoolean = false
- attributeRelevanceAdvisory: HLABoolean = false
- objectClassRelevanceAdvisory: HLABoolean = false
- interactionRelevanceAdvisory: HLABoolean = false
- serviceReporting: HLABoolean = false
- exceptionReporting: HLABoolean = false
- delaySubscriptionEvaluation: HLABoolean = false
- automaticResignAction: HLAunicodeString = “CancelThenDeleteThenDivest”

HLA switches

Fig. 6.2: UML Class diagram of the SISO SpaceFOM swithces module.

The SISO Space FOM datatypes module

Figure 6.3 shows the architecture of the SISO SpaceFOM datatypes module
through the use of an UML Class diagram.
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- Angle: HLAfloat64LE
- Mass: HLAfloat64LE
- MassRate: HLAfloat64LE
- MassMomentOfInertia: HLAfloat64LE
- Length: HLAfloat64LE
- Velocity: HLAfloat64LE
- Acceleration: HLAfloat64LE
- Scalar: HLAfloat64LE
- AngularRate: HLAfloat64LE
- AngularAcceleration: HLAfloat64LE
- Time: HLAfloat64LE
- Energy: HLAfloat64LE
- Power: HLAfloat64LE
- SignalStrength: HLAfloat64LE
- Temperature: HLAfloat64LE
- TemperatureRate: HLAfloat64LE
- Force: HLAfloat64LE
- Torque: HLAfloat64LE
- Density: HLAfloat64LE
- MassMomentOfInertiaRate: HLAfloat64LE

HLA simpleDataType
- PositionVector: Length
- VelocityVector: Velocity
- AccelerationVector: Acceleration
- AngularVelocityVector: AngularRate
- AngularAccelerationVector: AngularAcceleration
- InertiaMatrix: MassMomentOfInertia
- Vector: Scalar
- Matrix: Scalar
- ForceVector: Force
- TorqueVector: Torque
- InertiaRateMatrix: MassMomentOfInertiaRate

HLA arrayDataType

- ReferenceFrameTranslation: HLAfixedRecord
- ReferenceFrameRotation: HLAfixedRecord
- AttitudeQuaternion: HLAfixedRecord
- SpaceTimeCoordinateState: HLAfixedRecord

HLA fixedRecordDataType

Fig. 6.3: UML Class diagram of the SISO SpaceFOM datatypes module.

The SISO SpaceFOM datatypes module provides the definitions of: (i)
HLA simpleDataTypes, for handling the main scalars physical quantities
(Angle, Mass, MassRate, MassMomentOfInertia, Length, Velocity, Acceler-
ation, Scalar, AngularRate, AngularAcceleration, Time, Energy, Power, Sig-
nalStrength, Temperature, TemperatureRate, Force, Torque, Density, Mass-
MomentOfInertiaRate); (ii) HLA arrayDataTypes, for handling vectors phys-
ical quantities (PositionVector, VelocityVector, AccelerationVector, Angu-
larVelocityVector, AngularAccelerationVector, InertiaMatrix, Vector, Matrix,
ForceVector, TorqueVector, InertiaRateMatrix); (iii) HLA fixedrecordDataTypes,
for handling the spacetime coordinates and states of reference frames (see the
SISO Space FOM environment module subsection) . Moreover, the definition
of the HLA logical timestamp and lookahead time are also provided (both rep-
resented as 64 bits integers: HLAinteger64Time) [53]. The above introduced
data types are used for object attributes as well as interaction parameters and
adopt the International System of Units (SI) wherever possible.

The SISO Space FOM environment module

The SISO SpaceFOM environment module provides the fundamental data
types used to represent the basic physical environmental properties associated
with space-based simulations. In particular, it defines the ReferenceFrame ob-
ject class that represents a fundamental concept for representing when and
where any physical entity exists in time and space [69].

Figure 6.4 shows the architecture of the SISO Space FOM environment
module through the use of an UML Class diagram.

The ReferenceFrame object class is defined as an observational reference
frame along with a companion right-handed orthogonal set of coordinate axes
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that are fixed in the frame. It is characterized by the three attributes: (i)
name, a unique name for a reference frame instance; (ii) parent name, a
string that must correspond to the name attribute of some other Reference-
Frame object instance in the simulation or empty for a ’root’ reference frame;
and (iii) state, a four dimensional representation of the space-time coordi-
nate state of a reference frame with respect to its parent reference frame and
expressed by using a SpaceTimeCoordinateState fixed record data type (see
the SISO Space FOM datatypes module subsection). If the parent name is an
empty string, then only the time dimension has meaning.

- name: HLAunicodeString
- parent_name: HLAunicodeString
- state: SpaceTimeCoordinateState

ReferenceFrame

- translational_state: ReferenceFrameTranslation
- rotational_state: ReferenceFrameRotation
- time:Time

SpaceTimeCoordinateState

- position: PositionVector
- velocity: VelocityVector

ReferenceFrameTranslation

- attitude_quaternion: AttitudeQuaternion
- angular_velocity: AngularVelocityVector 

ReferenceFrameRotation

1

1 1

- x: AngularRate
- y: AngularRate
- z: AngularRate

AngularVelocityVector

- scalar: Scalar
- vector: Vector

AttitudeQuaternion

- x: Scalar
- y: Scalar
- z: Scalar

Vector

- value: HLAfloat64LE

Scalar

- value: HLAfloat64LE

AngularRate

- scalar
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Fig. 6.4: UML Class diagram of the SISO SpaceFOM environment module.

The time field in the SpaceTimeCoordinateState specifies the simulated
physical time, which represents the time dimension associated with a reference
frame state. The other fields in a SpaceTimeCoordinateState are the transla-
tional state and rotational state. Indeed, many applications require knowledge
of the relative attitude of one frame with respect to another. This results in
three dimensions of position (translational state), three dimensions of atti-
tude (rotational state) and one dimension of time. The translational state field
represents the reference frame’s translational state with respect to its parent
frame (if the frame has no parent, this attribute is meaningless) in terms of:
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(i) the position (a PositionVector) of the subject frame origin with respect to
the referent origin with components expressed in the referent coordinate axes;
(ii) the velocity (a VelocityVector) of the subject frame origin with respect to
its referent origin with components expressed in the referent coordinate axes.
The rotational state field represents the rotational state of a reference frame
with respect to a ’referent’ frame in terms of: (i) an attitude quaternion (an
AttitudeQuaternion) that specifies the orientation of the subject frame with
respect to the referent; (ii) the angular velocity (an AngularVelocityVector) of
the subject frame with respect to the referent with components resolved onto
the subject coordinate axes.

In a given simulation scenario (e.g., a mission to Mars), each reference
frame has a parent reference frame in which its position and attitude are
expressed (except for a root reference frame). Thus, it is possible to organize
the set of reference frames, useful to represent the coordinates of the involved
space entities, in a rooted tree structure (a rooted directed acyclic graph),
provided that there is only a root reference frame and the others have at least
that root as highest common ancestor (an example of reference frame tree is
shown in Figure 6.5).

SolarSystemBarycentricInertial

SunCentricInertial EarthMoonBarycentricInertial MarsCentricInertial

MarsCentricFixed

EarthMJ2000Eq

EarthMJ2000Ec

EarthICRF MoonCentricInertial

MoonCentricFixed

EarthMoonBarycentricRotating EarthMoonL2Rotating

Fig. 6.5: A Reference Frame Tree.

Given a reference frame rooted tree structure, it is possible to transform
a space-time coordinate expressed in a starting reference frame to those ex-
pressed in a target reference frame. The transformation is performed by fol-
lowing in the tree the path that goes from the source to the target reference
frame through the lowest common ancestor and by using the information
provided by the state of the ReferenceFrames along the path. Those trans-
formations are based on well-known formulas from quaternion algebra [60].
This capability is very important when the mission under consideration in-
volves entities operating in di↵erent and distant regions of space (e.g., on or
close to di↵erent celestial bodies in the solar system) and that can also travel
among them. Indeed, for expressing the space-time state of each entity with
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the adequate precision it is required to refer to the reference frame centered
in the closest point to that entity. As an example, if a spacecraft is orbiting
the Moon a good choice could be to represent its coordinate in the Moon-
CentricInertial reference frame (a reference frame centered in the Moon and
with fixed axes directions independent of the Moon’s rotation), then when the
spacecraft leaves the moon to travel to Mars the reference frame can change
to SolarSystemBarycentricInertial (a reference frame centered in the center
of mass of the solar system and with fixed axes directions); finally, when the
spacecraft reaches Mars, the right choice might be MarsCentricInertial (a
reference frame centered in Mars and with fixed axes directions). A similar
situation happens when considering a simulation involving entities operating
on all the above mentioned celestial bodies.

In order to be compliant with the Space Reference FOM the following rules
shall be respected: (i) all reference frames used in a Federation execution shall
be documented in the associated Federation Agreement; (ii) only one root ref-
erence frame shall exist within a Space FOM compliant federation execution;
(iii) all reference frame parent frames shall exist as owned published object
instances when the federation execution is running (e.g., advancing time).
Moreover, along with the Space FOM, a recommended set of standard refer-
ence frames is provided as well as naming conventions, defined using EBNF
(Extended Backus-Naur Form) notation, to correctly construct the name of
any non-standard reference frame according to the Space FOM recommenda-
tions. These guidelines should enable a-priori interoperability without limiting
the flexibility in the definition of Space FOM compliant Federations [69].

The SISO Space FOM management module

The SISO Space FOM management module provides the specifications for ex-
ecution control and management objects, interactions and synchronization
points. These are used to convey federation mode transition information and
to coordinate federation mode transition behavior [69].

The UML Class diagram in Figure 6.6 shows the architecture of the
SISO Space FOM management module.

The ExecutionConfiguration is a standard HLA ObjectClass which defines
the base set of parameters necessary to coordinate federation and federate
execution time lines and execution mode transitions in a Space Reference
FOM compliant federation execution. It is composed of six attributes: (i)
root reference frame, which specifies the name of the root reference frame in
the federation execution’s reference frame tree. This frame shall remain fixed
throughout the federation execution; (ii) scenario time epoch, which is the be-
ginning epoch of the federation execution expressed in Terrestrial Time (TT),
using the Truncated Julian Date (TJD) origin (1968 May 24, 00:00:00 UTC) as
the TT epoch; (iii) current execution mode, which represents the current run-
ning state of the federation execution in terms of a finite set of states expressed
as a ExecutionModeEnum enumeration value; (iv) next execution mode, which
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- root_frame_name: HLAunicodeString
- scenario_time_epoch: Time
- current_execution_mode: ExecutionMode
- next_execution_mode: ExecutionMode
- next_mode_scenario_time: Time
- next_mode_cte_time: Time

HLAObjectClass
ExecutionConfiguration

- ExecutionMode: ExecutionModeEnum
- MTRMode: MTRModeEnum

HLA dataType

 
HLA synchronizationPoint

- execution_mode: MTRMode

HLAInteractionClass
ModeTransitionRequest

EXEC_MODE_UNINITIALIZED
EXEC_MODE_INITIALIZING
EXEC_MODE_RUNNING
EXEC_MODE_FREEZE
EXEC_MODE_SHUTDOWN

<<enumeration>>
ExecutionModeEnum

MTR_GOTO_RUN
MTR_GOTO_FREEZE
MTR_GOTO_SHUTDOWN

<<enumeration>>
MTRModeEnum

 
initialization_started

 
initialization_completed

 
objects_discovered

 
mtr_run

 
mtr_freeze

 
mtr_shutdown

Fig. 6.6: UML Class diagram of the SISO SpaceFOM management module.

is the next running state of the federation execution in terms of a finite set of
states expressed in the ExecutionModeEnum enumeration value. This is used
in conjunction with synchronization point mechanisms to coordinate federa-
tion execution mode transitions; (v) next mode scenario time, which defines
the time for the next federation execution mode expressed as a simulation sce-
nario time [69]; and, (vi) next mode cte time, which is the time for the next
federation execution mode change expressed as a Central Timing Equipment
(CTE) time reference [69].

The SISO Space Reference FOM defines the concept of Master federate
that represents the principal control federate in the federation execution (see
Subsection Execution control of a compliant federation)[69]. It is responsi-
ble for coordinating and controlling the execution state of the federation
through the use of the ExecutionConfiguration ObjectClass and a collection
of synchronization points (initialization started, initialization completed, ob-
jects discovered, mtr run, mtr freeze and mtr shutdown) [69]. The ModeTran-
sitionRequest (MTR) InteractionClass is used by participating federates to
request a federation execution mode transition to the Master federate. The
MTR has one parameter: execution˙mode, which represents an execution mode
requested defined in terms of a finite set of states expressed in the MTRMod-
eEnum enumeration value.

The SISO Space FOM entity module

The SISO SpaceFOM entity module provides the definitions of vehicle related
object classes. In particular, it defines the PhysicalEntity object class that
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represents a man-made vehicle or a major sub-element of a man-made vehicle
[69]. Figure 6.7 shows the architecture of the SISO SpaceFOM entity module
through the use of a UML Class diagram.
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- attitude

- x: AngularAcceleration
- y: AngularAcceleration
- z: AngularAcceleration
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Fig. 6.7: UML Class diagram of the SISO SpaceFOM entity module.

Space vehicles have two reference frames intrinsically attached to them: a
’body frame’ and a ’structural frame’. The body frame origin is the vehicle
center of mass, whereas the structural frame is located at some well-defined
point on the vehicle, but this point is not specified in the FOM. The o↵set
of the body frame origin from the structural frame origin is captured as the
vehicle’s center of mass location attribute. The relative orientation of the
structural frame with respect to the body frame is assumed fixed (not time
varying), but it is not specified in the FOM. All dynamics of the vehicle are
calculated by propagating the body frame with respect to the vehicle’s ’parent
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reference frame’ which is an object instance in the ReferenceFrame hierarchy
and is named by the vehicle’s parent reference frame attribute.

The PhysicalEntity object class is designed to provide a basis for the indi-
vidual entities that are the principal participants in Space FOM federations.
The current definition of the PhysicalEntity object class is based on the pro-
totype that has been used in the SISO SEE project [90] and that is going
to be improved and extended during the standardization activity. The core
attributes shared by all entities include the entity’s state with respect to a
defined parent reference frame.

The DynamicalEntity object class extends the PhysicalEntity object class
to provide additional attributes associated with a maneuvering spacecraft.
Specifically, it provides additional force and torque attributes used to provide
additional information associated with vehicle e↵ectors and environmental
e↵ects. These can be used for both visualization and to improve state propa-
gation between updates. Other extensions of the PhysicalEntity object class,
as well as of the DynamicalEntity object class, can be defined on the basis of
the specific simulation needs.

6.2.2 Execution control of a compliant federation

The SISO Space Reference FOM does not define only the above described
modules but also sets guidelines on how to define, create and execute a com-
pliant federation.

Every HLA simulation has an executive that controls the execution of
the simulation as it starts up, goes through a defined initialization sequence,
transitions into various running states, and ultimately goes through a defined
shutdown sequence. Interoperability between federates in a federation execu-
tion requires not only the specification of the information exchange between
federates but also the specification of executive behavior. In this context, the
Space Reference FOM defines some specifics of the execution control required
for a Space FOM compliant federate. More in detail, the Space Reference
FOM designates the role of:

- Master Federate, which represents the principal federate for controlling
and coordinating the federation execution. It makes use of three princi-
pal HLA mechanisms to manage execution control: Execution Control Ob-
jects, Mode Transition Request (MTR) Interactions, and coordination syn-
chronization points (see the SISO Space FOM management module Sub-
section).

- Pacing Federate, which is a federate in the federation execution that man-
ages the advancement of HLA logical time during the simulation execution.
At the moment, the SISO Space Reference FOM provides functionalities
to manage only time-stepped federations [69].

- Root Reference Frame Publisher Federate, which is responsible for the reg-
istration and management of the reference frame tree (see the SISO Space
FOM environment module Subsection).
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- Early Joiner Federate, which is a federate that joins the federation exe-
cution during the initialization of the simulation execution (e.g. required
federates).

- Late Joiner Federate, which is a federate that joins into the federation
after initialization has been completed.

For each Federate role, the SISO Space Reference FOM standard defines
the schemes of initialization, execution with related life cycle and termination.
Thus, whatever the role played by a federated, it must respect the constraints
defined in the schemes to be compliant with the standard [69].

6.2.3 Supporting Software

The Space Reference FOM is a SISO e↵ort that will result in a published stan-
dard, not in software implementations; however, during the SEE Project [90]
and the standardization e↵ort, several pieces of software have been developed
to support and test the principles of the standard; in particular: NASA has
provided federates for the space environment (reference frames) as well as for
visualization; COTS providers, like Pitch, ForwardSim and VT MÄK, have
provided supporting software tools, both general (RTI, FOM development,
federate development, data logging) and Space FOM specific. A tailor version
of the HLA Development kit framework (see Chapter 3) that aims at easing
the development of Federates and Federations compliant with the SISO Space
Reference FOM is under developing.

By using these tools, the developers could focus on the specific aspects
and behaviors of their federates by delegating to the services provided by
the underlying software layers the management of the common aspects and
functionalities related to the standard.

6.2.4 Conclusion

The SISO Space Reference FOM standardization initiative presented in this
chapter aims at supporting the development of interoperable simulations of
complex space systems and missions, and enhance a priori interoperability
among Space FOM users. The principal intended areas of use are training,
analysis, mission support and engineering. However, other areas of use, like
test and concept exploration, are also supported. The benefits of the proposed
Reference Space FOM include: (i) Interoperability, the ability for several sim-
ulations, each focusing on particular tasks, to interoperate and jointly create
a collaborative simulation with wider and richer contexts; (ii) Composability,
the ability to build collaborative simulations from components that can be
combined in di↵erent ways, with new or existing simulations, to reach a par-
ticular goal; and, (iii) Reusability, the ability to use existing simulations in
new contexts. It will be possible to build generic and reusable simulations and
tools for the Space domain based on the Space FOM.
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The SISO Space Reference FOM initiative builds upon many years of
simulation experience by professionals in government organizations, industry
and academia. Early prototypes of the Space FOM have been tested in the
SISO/SCS programs called “Smackdown” and “Simulation Exploration Ex-
perience”. The SISO working group is going to promote and fully experiment
the first release of the standard in ongoing projects involving worldwide or-
ganizations active in the Space domain (e.g., NASA, ESA, Roscosmos, and
JAXA).

6.3 Java Space Dynamics Library (JSDL)

6.3.1 Introduction

The space flight dynamics domain is one of the many technology fields involv-
ing many actors from several organizations belonging to di↵erent scientific
domains such as mathematical, physical, aerospace and software engineering.

Due to the increasing complexity of space systems and thus of the related
engineering problems; new methods, tools and software libraries have been
developed in each of these organizations primarily for specific needs and later
generalized so as to make them modular, flexible and reusable [51, 87]. These
available, commercial and noncommercial, solutions support one or more of
the phases in the development of space systems such as flight mechanics,
propulsion, orbit controls and data analysis, however none of them seems
capable of providing complete coverage of the whole development process in
a flexible way [84].

In this context, there is an increasing need for e�cient and flexible solutions
capable of covering all the steps in the design and develop of space systems,
especially for supporting modeling and simulation systems where modularity,
flexibility and reusability are key features to provide [84].

In this Section the Java Space Dynamics Library (JSDL) project is de-
scribed, emphasizing its flexibility and showing the set of services provided
to define and build space systems such as satellites and vehicles. The rest of
the Section is structured as follows. Related works are discussed in Subsec-
tion 6.3.2. Subsection 6.3.3 presents the Java Space Dynamics Library (JSDL)
project with particular focus on the architecture and main services provided.
Finally, in Subsection 6.3.4 conclusions are drawn and future research direc-
tions are delineated.

6.3.2 Related works

There are several research e↵orts on the development of methods, tools and
libraries in the astrodynamics field, mainly aiming at providing a robust and
flexible way for defining, building and simulating complex elements in space.
The most applicable solutions have been developed after the mid-1960’s when



106 6 Further contribution on interoperability in distributed simulation

space missions were the attention of media and computers become prevalent
in academia and industry.

The Java Astrodynamics Toolkit (JAT) is an open source library of
reusable components, distributed under the GNU General Public License
(GLP). It is implemented in the Java language and helps developers to create
their own application programs and solve problems in astrodynamics, mission
design, spacecraft navigation, guidance and control. It provides functionalities
that allow the rapid development of spacecraft simulations including 2D and
3D visualization capabilities. Possible applications of JAT include: (i) Design
and analysis of space missions, including trajectory optimization; (ii) Simula-
tion of spacecraft navigation, guidance and control as well as its visualization
in a 3D environment; and, (iii) Simulation of the motion for basic rigid and
flexible spacecraft dynamics [44].

Another software library that enables developers to e↵ectively define and
manage elements in space is Orbits Extrapolation Kit (Orekit) [19]. Orekit
is implemented in the Java language and aims at providing accurate and
e�cient low level standard astrodynamical models (e.g., time, frames, orbital
parameters, orbit propagation, attitude and celestial bodies) and algorithms
(e.g., time conversions, propagations and pointing) for the development of
flight dynamics applications. It is designed to be easily used in very di↵erent
contexts, from quick studies up to critical operations. It was developed in 2002
at CS Systémes d’Information and was o�cially released as an open source
software, under the Apache License Version 2.0, in 2008 [83].

European Space Agency (ESA) engineers have been developing several
spacecraft simulation tools that form the Mission - Customer Furnished Item
(CFI) Software (Mission CFI). It includes the following products [27]:

- The Earth Observation CFI (EOCFI) software, which is a collection of
multiplatform precompiled C libraries for timing, coordinate conversions,
orbit propagation, satellite pointing calculations, and target visibility cal-
culations, specifically parametrized and configured for EO satellites.

- The EO Orbit and Attitude Adapter (EO Adapter), which is part of the
Earth Observation Mission Software Suite. It is a tool/library to generate
Orbit and Attitude files compliant with EOCFI format using data ex-
tracted from one or more binary files, for example files containing Teleme-
try packets including Orbit and Attitude information.

- The Envisat CFI software, which is a collection of multiplatform pre-
compiled C libraries for timing, coordinate conversions, orbit propagation,
satellite pointing calculations, and target visibility calculations, specifically
parametrized and configured for the Envisat satellite.

The JSDL project presented in this Section stems from the SISO Space
Reference FOM standardization initiative carried out by the SISO Space Ref-
erence FOM (SRFOM) Product Development Group (PDG) (see Section 6.2).
JSDL aims at supporting the development of complex space systems by pro-
viding high fidelity models and algorithms to manage them. Di↵erently from
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proprietary and commercial solutions that require tool-specific knowledge and
training, JSDL is an open source project released under the open source policy
Lesser GNU Public License (LGPL) and can be freely and easily customized
and/or extended to cover specific domain aspects. This license allows anybody
to build both commercial and noncommercial applications without restrictions
or limitations from the use of JSDL.

In the following Subsections, the JSDL project is described in details by
highlighting its architecture and functionalities.

6.3.3 The JSDL project

Java Space Dynamics Library (JSDL) is a low level space dynamics library
that facilitates the design and development of space systems, such as space
vehicles and satellites. The open source nature of the library allows developers
to investigate and customize the architecture and functionalities defined in the
source code to fit their own needs.

The JSDL has been designed and developed in the context of the research
activities carried out within the SMASH-Lab (System Modeling And Simula-
tion Hub - Laboratory) of the University of Calabria (Italy) working in coop-
eration with the SISO Space Reference FOM (SRFOM) Product Development
Group (PDG) (see Section 6.2). The primary goal of JSDL is to provide high
fidelity models and algorithms needed for defining space systems that are as
accurate and robust as those provided by existing commercial and government
software. It is fully implemented in the Java programming language and pro-
vides a consistent set of functionalities for developing and running complex
elements in space such as, time scales, reference frames, orbital parameters,
orbit propagation, and attitude.

The JSDL provides to developers the following resources: (i) a technical
documentation that describes the library with its philosophy and mission; (ii)
a user guide to support developers in the use of the library; and (iii) a set of
reference examples that show how to create space objects.

In the following, the attention is focused on the architecture and services
provided by the library.

Architecture of the JSDL

The JSDL library depends only on the Java Standard Edition version 7 (or
above), Apache Commons Math [97] version 3.6 and JDateTime [101] version
3.8 libraries at runtime. The JSDL provides a set of services, each of which
defines some Java classes and interfaces that enable specific functionalities.
The JSDL architecture is shown in Figure 6.8.

Space Applications. Contains the space applications that are built using
the functionalities provided by the JSDL. An application can interact with
the Apache Commons Math and JDateTime directly or through the JSDL
library.
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Fig. 6.8: The Architecture of the JSDL library.

Java Space Dynamics Library (JSDL). It is the core library for creating
Space applications. It provides a set of features useful for modeling objects in
space. The complexity of the features provided is hidden behind an intuitive
set of APIs.

Apache Commons Math library. It is a standard library of lightweight, self-
contained mathematics and statistics components addressing the most com-
mon practical problems not immediately available in the Java programming
language [97].

JDateTime library. It is a library that o↵ers a very precise way to track
dates and time. It uses well-defined and proven astronomical algorithms for
time manipulation [101].

In the following Subsections, the six JSDL services with their UML Class
diagrams are described in detail.

Data Structure Service

The Data Structure Service defines functionalities that ease working with
complex data structures. It provides a very useful set of data structures (tree
and queue) to build and manage Reference Frames and Physical Entities with
their transformations.

The structure of the Data Structure Service is shown in Figure 6.9 by using
a UML Class Diagram.

The LinkedNTree is a generic class that stores elements hierarchically
where each element has a parent element and zero or more children elements.
It implements the Tree interface that defines some functionalities to handle
a tree such as height(), depth(), root() and size(). Moreover, all the common
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traversal schemes for trees are provided: LevelOrderIterator, PreOrderIterator,
InOrderIterator and PostOrderIterator.

The Queue class provides a queue data structure that follows the First-
in First-out (FIFO) strategy. Elements can only be added to the end (en-
queue) and only be removed from the front (dequeue). The queue has been
implemented by using a Java standard LinkedList and provides two methods
enqueue() and dequeue() to perform each task respectively.

+ addRoot(T): TreeNode<T>
+ addChild(TreeNode<T>, T): TreeNode<T>
+ remove(TreeNode<T>): void
+ children(TreeNode<T>): Iterable<TreeNode<T>>
+ depth(TreeNode<T>): int
+ height(TreeNode<T>): int
+ isEmpty(): boolean
+ isExternal(TreeNode<T>): boolean
+ isInternal(TreeNode<T>): boolean
+ isRoot(TreeNode<T>): boolean
+ numberOfChildren(TreeNode<T>): int
+ parent(TreeNode<T>): TreeNode<T>
+ root(): TreeNode<T>
+ size(): int
+ lowestCommonAncestor(TreeNode<T>, 
    TreeNode<T>): TreeNode<T>
+ getAncestor(TreeNode<T>, int): TreeNode<T>
+ get(T): TreeNode<T>

<<interface>>
Tree

+ getPreOrderIterator(): Iterator<TreeNode<T>>
+ getPostOrderIterator(): Iterator<TreeNode<T>>
+ getInOrderIterator(): Iterator<TreeNode<T>>
+ getLevelOrderIterator(): Iterator<TreeNode<T>>

<<interface>>
TreeIterator

+ getContent(): T
+ setContent(T): void

<<interface>>              
TreeNode

<T> <T>

<T> - parent: Node<T>
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- children: List<Node<T>>

NChildTreeNode
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Fig. 6.9: The architecture of the Data Structure Service.

Frame Service

Reference frame is a fundamental concept for representing when and where a
physical entity exists in time and space [69]. This representation is referred
to as the state of the entity. In order to represent the state of something, it
is necessary to express that state with respect to some time scale and some
referent coordinate system. This combination of time and coordinate system
is referred as a Space-Time Coordinate or Reference Frame.

The structure of the Frame Service is shown in Figure 6.10 by using a
UML Class Diagram.

The Frame Service provides functionalities to handle Reference Frames.
It includes the fundamental ReferenceFrame class that represents a single
frame. Each Reference Frame, as defined in the SISO Space Reference FOM
(see Section 6.2), is composed of three attributes:

- name, which represents the unique name of the reference frame.
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- name: String
- parent: ReferenceFrame
- state: SpaceTimeCoordinateState

ReferenceFrame

- translational_state: ReferenceFrameTranslation
- rotational_state: ReferenceFrameRotation
- time: double

SpaceTimeCoordinateState

- position: double[]
- velocity: double[]

ReferenceFrameTranslation

- attitude_quaternion: Quaternion
- angular_velocity: double[] 

ReferenceFrameRotation

- parent

1

1 1

- tree: LinkedNTree<ReferenceFrame>
- map: Map<String, TreeNode<ReferenceFrame>>

ReferenceFrameManager

- lca

-  queue: Queue<ReferenceFrame>
-  lca: ReferenceFrame
-  time: double

Transform

Fig. 6.10: The architecture of the Frame Service.

- parent, which is the parent Reference Frame. If the parent attribute is
’null’, the Reference Frame is the root frame.

- space-time coordinate state, which defines through the SpaceTimeCoordi-
nateState class a four-dimensional representation of the space-time coor-
dinate state with respect to its parent reference frame [69]. It consists
of:
(a) Translational state information, which provides through the Reference-

FrameTranslation class a position vector #»
r from the origin of the par-

ent reference frame to the origin of the reference frame. It also provides
a velocity vector #»

v for the motion the reference frame with respect to
the parent frame. Both of these vectors are expressed with respect to
the parent reference frame. These vectors can be used to describe the
translational position and motion of a frame with respect to its parent.

(b) Rotational state information, which provides through the Reference-
FrameRotation class an attitude quaternion q̃ that describes the at-
titude of the reference frame with respect to its parent frame. It also
provides an angular velocity vector #»

! that describes the rotational mo-
tion of the reference frame with respect to the parent frame expressed
in the subject frame’s coordinates. q̃ and #»

! can be used to describe the
attitude and rotational motion of a frame with respect to its parent.

(c) Time, which contains information about the time t to which the space-
time coordinate state corresponds.

As shown in Figure 6.11, all Reference Frames are organized as a tree that
is formed from a single base root node with directed paths from an arbitrary
number of child nodes. These child nodes can then have directed paths from
other arbitrary sets of child nodes.

The translational and rotational information can be used to transform a
generic vector expressed in a given reference frame #»

r

child

into a vector ex-
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Root 
ReferenceFrame

ReferenceFrame 1 ReferenceFrame 2

ReferenceFrame 5

ReferenceFrame 3 ReferenceFrame 4

Fig. 6.11: Tree of ReferenceFrames.

pressed in its parent frame #»
r

parent

. In turn, the vector #»
r

parent

now expressed
in the parent frame can be expressed in the parent’s parent frame or in another
child frame of the parent frame. Chaining together sequences of transforma-
tions using the relationships established in the reference frame tree allows for
transformation between any pair of frames in the reference frame tree.

Transformations are defined and managed by the Transform and Refer-
enceFrameManager classes. In particular, a transformation is computed by
merging individual transforms while walking the shortest path between them.
The walking/merging operations are handled transparently by the library.
Developers only need to select the frames, provide the date and ask for the
transformation, without knowing how the frames are related to each other.
Transformations are defined as operators that when applied to the coordinates
of a vector expressed in the initial Reference Frame, provide the coordinates
of the same vector expressed in the final Reference Frame.

Equation 6.1 gives the transformation of a position vector expressed in a
child reference frame into a position vector expressed in the parent reference
frame [60].

#»
r

parent

= #»
r 0 parent

+ Q̃( #»
r

child

) (6.1)

where #»
r

child

is the position vector expressed in the child reference frame,
Q̃( #»

r

child

) is the quaternion rotation operator associated with the attitude
quaternion q̃ that defines the attitude of the child reference frame with respect
to the parent reference frame, #»

r 0 parent

is the vector giving the position of
child reference frame origin with respect to the parent reference frame origin
expressed in parent reference frame coordinates, and #»

r

parent

is the position
vector of the entity expressed in parent reference frame coordinates.

With reference to the Q̃( #»
r

child

) operation, it is the canonical way of mul-
tiplying a quaternion q̃ by a vector #»

x as given by expression 6.2 [60],

Q̃( #»
x ) = q̃ · #»

x · q̃⇤ (6.2)

where q̃

⇤ is the conjugate of q̃.
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The relative motion between a child reference frame and a parent reference
frame is provided by the velocity #»

v and angular velocity #»
! vectors. Equation

6.3 gives the velocity of an entity expressed in the parent reference frame given
the velocity of the entity expressed in the child reference frame [60].

#»
v

parent

= #»
v 0 parent

+ Q̃( #»
v

child

+ ( #»
!

child

⇥ #»
r

child

)) (6.3)

where #»
v

child

is the velocity vector of an entity expressed in the child reference
frame, #»

!

child

is the angular velocity vector of the child frame with respect to
the parent frame and expressed in child frame coordinates, #»

v 0 parent

is the
velocity of the child frame with respect to the parent frame expressed in
parent frame coordinates, and #»

v

parent

is the velocity of an entity expressed
the parent reference frame.

In most cases, the position and velocity relationships above are su�cient.
However, acceleration is sometimes needed and is included here for complete-
ness. Equation 6.4 gives the acceleration of an entity expressed in the parent
reference frame given the acceleration of the entity expressed in the child
reference frame [60].

(6.4)
#»
a

parent

= #»
a 0 parent

+ Q̃( #»
a

child

+ ( #»
!

child

⇥ ( #»
!

child

⇥ #»
r

child

))

+ (2 #»
!

child

⇥ #»
v

child

) + ( #»
↵

child

⇥ #»
r

child

))

where #»
a

child

is the acceleration of an entity expressed in the child reference
frame, #»

↵

child

is the angular acceleration of the child frame with respect to the
parent frame and expressed in child frame coordinates, #»

a 0 parent

is the accel-
eration of the child frame with respect to the parent frame expressed in parent
frame coordinates, and #»

a

parent

is the acceleration of an entity expressed in
the parent reference frame.

Concerning reverse transformations; using the child to parent vector trans-
formation equations above defined along with some vector and quaternion al-
gebra, the resulting equation 6.5 gives the transformation of a position vector
expressed in a parent reference frame into a position vector expressed in the
child reference frame [60].

#»
r

child

= Q̃

⇤( #»
r

parent

� #»
r 0 parent

) = � #»
r 0 child

+ Q̃

⇤( #»
r

parent

) (6.5)

where Q̃

⇤( #»
r

parent

) is the conjugate quaternion rotation operator associated
with the attitude quaternion q̃ that defines the attitude of the child reference
frame with respect to the parent reference frame, and #»

r 0 child

is the vector
giving the position of child reference frame origin with respect to the parent
reference frame origin expressed in child reference frame coordinates [60].

Similar relationships can be derived for velocity (equation 6.6) and accel-
eration (equation 6.7) [60]:

(6.6)
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= � #»
v 0 child
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!
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⇤( #»
v

parent

)
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(6.7)
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Physical Entity Service

The structure of the Physical Entity Service is shown in Figure 6.12 by using
a UML Class Diagram.

PhysicalEntity is the highest-level object class in the JSDL entity hierar-
chy. This class provides attributes to describe an entity’s location in time and
space. It also contains attributes to uniquely identify it individually from all
other physical entities.

- status: String
- entity_name: String
- parent_reference_frame: ReferenceFrame
- position: Vector3D
- velocity: Vector3D
- acceleration: Vector3D
- attitude: Quaternion
- rotational_velocity: Vector3D
- rotational_acceleration: Vector3D
- mass: double
- mass_rate: double
- center_of_mass: Vector3D
- inertia: Matrix
- time: double
- entity_type: String

PhysicalEntity

- String: getName()
- : setName()
- ReferenceFrame: getReferenceFrame()
- : setReferenceFrame(ReferenceFrame rf)
- Vector3D: getPosition()
- : setPosition(Vector3D position)
- Quaternion: getAttitude()
- : setAttitude(Quaternion quaternion)

<<interface>>
PhysicalEntityInterface

<<use>>Util Service
- matrix

Fig. 6.12: The architecture of the Physical Entity Service.

Physical entities have two intrinsically associated reference frames: (i) a
structural frame; and (ii) a body frame. These are not registered in the ref-
erence frame tree but are used to place and orient the entity in space with
respect to a reference frame in the tree. The origin of the structural frame is
located at some arbitrary but known point on the entity [69]. The body frame
origin is at the entity’s center of mass and is located with respect to the en-
tity’s structural reference frame by a vector from the origin of the structural
reference frame to the center of mass of the entity. This vector is expressed
in the entity’s structural reference frame. The orientation of the entity’s body
frame with respect to the entity’s structural reference frame is defined by an
attitude quaternion [88].

The Physical Entity Service is designed to provide functionalities for space
objects such as satellites, asteroids and vehicles. The core attributes defined
in the PhysicalEntity class includes the position and orientation with respect
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to a defined parent reference frame, which must be a reference frame instance
in the reference frame tree, and a time tag in a defined time scale. This
information is su�cient to unambiguously represent an entity in time and
space.

Time Service

The Time Service allows to manage epochs, time scales, time units and to
compare time instants. The structure of the Time Service is shown in Figure
6.13 by using a UML Class Diagram.

- epoch: Epoch
- timescale: TimeScale
- unit: TimeUnit

Time

DAY
HOUR
MINUTE
SECOND
MILLISECOND

«enumeration»
TimeUnit

J2000_EPOCH
GPS_EPOCH
JULIAN_EPOCH
MODIFIED_JULIAN_EPOCH

«enumeration»
Epoch

 

«interface»
TimeScale- unit

- epoch

- timescale

 
TerrestrialTime

 

InternationalAtomicTime

 

CoordinatedUniversalTime

 

UniversalTime1

 

GPSTime

 

GeocentricCoordinatedTime

 

BarycentricCoordinatedTime

Fig. 6.13: The architecture of the Time Service.

The principal class is Time that represents a unique instant in time de-
fined by specifying a point in a specific epoch (e.g., J2000, GPS and Julian
epoch), time scale and time unit [69]. The TimeScale interface defines a set
of predefined time scales:

- Universal Time (UT). It is a time standard based on Earth’s rotation,
defined as the Mean Solar Time at the Royal Observatory in Greenwich,
England. There are three variations of Universal Time. UT0 is the observed
mean solar time. UT1 is UT0 corrected for polar motion, the motion of
the Earth’s rotational axis over the surface of the Earth, and UT2 that is
corrected for seasonal variations but today it is considered obsolete.

- International Atomic Time (TAI). It was introduced in 1972 and rep-
resents a high-precision atomic coordinate time standard based on the
notional passage of proper time on Earth’s geoid [47]. This time scale is
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accurate enough to observe relativistic e↵ects for clocks in motion or ac-
celerated by a local gravity field. One advantage of using TAI is that it is
a continuous uniform time scale. Specifically, the rate of time passage for
TAI is constant unlike the Earth rotation based scales. This means that
the Earth rotation based time scales diverge from TAI over time due to
the variations in the Earth’s rotation. TAI is exactly 36 seconds ahead of
UTC. The 36 seconds results from the initial di↵erence of 10 seconds at
the start of 1972, plus 26 leap seconds in UTC since 1972.

- Coordinated Universal Time (UTC). It is a 24-hour time standard that
is used to synchronize world clocks. UTC is defined by the Interna-
tional Telecommunications Union Recommendation (ITU-R TF.460-6),
Standard-frequency and time-signal emissions [86] and is based on Interna-
tional Atomic Time (TAI) with leap seconds added at irregular intervals to
compensate for the slowing of Earth’s rotation. Leap seconds are inserted
as necessary to keep UTC within 0.9 seconds of universal time, UT1 [21].

- Global Positioning System Time (GPS Time). GPS Time is the uniform
time scale with a starting epoch at midnight between Saturday January
5th and Sunday January 6th, 1980 (1980 January 6, 00:00:00 UTC). GPS
Time counts in weeks and seconds of a week from this instant. The GPS
week begins at the transition between Saturday and Sunday. The days
of the week are numbered sequentially, with Sunday being 0, Monday 1,
Tuesday 2, etc. The GPS time scale begins at the GPS starting epoch with
GPS week 0. Within each week, the time is usually denoted as the second
of the week (SOW). This is a number between 0 and 604,800 (60 x 60 x
24 x 7). Sometimes SOW is split into a day of week (DOW) between 0
and 6 and a second of day (SOD) between 0 and 86400. While GPST is a
uniform time scale, it does have rollover. To limit the size of the numbers
used in the data and calculations, the GPS Week Number is a ten-bit
count in the range 0-1023, repeating every 1024 weeks. As a result, the
week number ’rolled over’ from 1023 to 0 at 23:59:47 UTC on Saturday,
21st August 1999. This was before midnight UTC because every GPS week
contains exactly 604,800 seconds, to keep the calculations consistent. The
13 intervening leap seconds had put UTC behind GPS system time. The
next GPS week rollover occurs on April 6th, 2019.

- Terrestrial Time (TT). It is an astronomical time standard defined by
the International Astronomical Union (IAU) used widely for geocentric
and topocentric ephemerides. TT is defined to run at the same rate as
TAI seconds but with an o↵set of 32.184 seconds. This o↵set is based on
preserving continuity with other historical dynamic time scales.

- Geocentric Coordinated Time (TCG). It is a coordinate time standard
defined in 1991 by the International Astronomical Union (IAU). It is pri-
marily used for theoretical developments based on the Geocentric Celestial
Reference System (GCRS). TCG is a relativistic time scale and since the
reference frame for TCG is not rotating with the surface of the Earth
and not in the gravitational potential of the Earth, TCG ticks faster than
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clocks on the surface of the Earth by a factor of 6.97 ·10�10 seconds. TCG,
Barycentric Coordinated Time (TCB) and Terrestrial Time (TT) are de-
fined in a way that they have the same value on January 1st 1977, 00:00:00
TAI (JD 2443144.5 TAI).

- Barycentric Coordinated Time (TCB). It is a time scale, defined in 1991
by the International Astronomical Union (IAU), primarily used for theo-
retical developments based on the Barycentric Celestial Reference System
(BCRS). TCB is a relativistic time scale and since the reference frame
for TCB is not influenced by the gravitational potential caused by the
Solar system, TCB ticks faster than clocks on the surface of the Earth
by 1.55 · 10�8 seconds. TCB, Geocentric Coordinated Time (TCG) and
Terrestrial Time (TT) are defined in a way that they have the same value
on January 1st 1977, 00:00:00 TAI (JD 2443144.5 TAI).

Util Service

The Util Service defines a number of useful functionalities, primarily transfor-
mations ones that are useful for working with Physical Entities in space. This
service should not be considered merely a utility one that is separate from the
rest of JSDL; in fact, JSDL depends directly on several of the classes defined
in it. Indeed, it provides services needed to define both Reference Frame and
Time objects with their standard conversions.

The structure of the Util Service is shown in Figure 6.14 by using a UML
Class Diagram.

- year: int
- month: int
- day: int
- hour: int
- minute: int
- second: int
- millisecond: int
- integerPart: int
- fractionPart: double

JulianDate

 

TimeConverter

- timeUnits: TimeUnit[]
- conversionFactors: double[]

TimeUtility

- matrix: double[][]
- rows: int
- columns: int

Matrix

- w: double
- q1: double
- q2: double
- q3: double

QuaternionUtil

Fig. 6.14: The architecture of the Util Service.

The Matrix class represents a mathematical matrix. It provides methods
for creating matrices, operating on them arithmetically and algebraically, and
determining their mathematical properties such as trace, rank, inverse and



6.3 Java Space Dynamics Library (JSDL) 117

determinant. The QuaternionUtil class provides classical methods to manage
quaternions such as conjugate, inverse and norm. The JulianDate class repre-
sents a Julian Date, which is a universal time used by all astronomers to ensure
that observations are based on a universal astronomical time. It corresponds to
the day, hour and minute of the observation and is the interval of time in days
since noon at Greenwich on 1 January 4713 BC. Finally, the TimeConverter
and TimeUtility allow to perform time conversions. Moreover, it is possible
to easily convert a JulianDate to a standard Java Calendar object to have a
date/time representation of it through the use of the toCalendar(JulianDate
jd) method defined in the TimeConverter class. For example, the Truncate
Julian Date (TJD) 17131.83333333334 can be converted in a Calendar object
with value 2015 April 19, 20:00:00 UTC.

Logging Service

The Logging Service provides functionalities useful to both track down any
problems or errors occurred during its use, and understand how the JSDL
core services work. This information is stored into the jsdl trace.log file.

The structure of the Logging Service is shown in Figure 6.15 by using a
UML Class Diagram.

- name: String

Logger

- name: String

LoggerConfigurator

Fig. 6.15: The architecture of the Logging Service.

6.3.4 Discussion and Results

In the space flight dynamics domain many research e↵orts are focusing on the
definition of methods, tools and software libraries, mainly aiming at provid-
ing a robust and flexible way for defining, building and simulating complex
elements in space.

As discussed in the Section, due to the increasing complexity of space sys-
tems and thus of the related engineering problems; new methods, tools and
software libraries have been developed in each of these organizations primarily
for specific needs and later generalized so as to make them modular, flexible
and reusable. The available, commercial and noncommercial, solutions sup-
port one or more of the phases in the development of space systems such as
flight mechanics, propulsion, orbit controls and data analysis, however none of
them seems capable of providing complete coverage of the whole development
process of space simulations. To overcome this issue, the Java Space Dynamics
Library (JSDL) has been created.
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The Java Space Dynamics Library (JSDL) stems from the SISO Space
Reference FOM standardization initiative carried out by the SISO Space Ref-
erence FOM (SRFOM) Product Development Group (PDG) [69]. JSDL is still
evolving and aims at supporting the development of complex space systems
by providing high fidelity models and algorithms to manage them.

6.4 Conclusion

This chapter has described further contributions focused on the interoper-
ability of simulation models in the space domain. In particular, a first set of
results achieved by the SISO Space Reference FOM (SRFOM) Product Devel-
opment Group (PDG) concerning the Space Reference FOM for international
collaboration on space systems simulations has been described in detail [69].

Then, the Java Space Dynamics Library (JSDL) project has been pre-
sented, emphasizing its flexibility and showing the set of services provided to
define, develop and simulate complex space systems.
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Conclusions

7.1 Main contributions

The research presented in this Thesis aimed at contributing to fill the lack of
methods, models and techniques to support, in an integrated way, the reuse
and interoperability of simulation models and their execution on distributed
computing environment.

The research has been focused on the analysis of two of the most ma-
ture and widely used standards going in this direction: IEEE 1516 - High
Level Architecture (HLA) [53] and Functional Mock-up Interface (FMI) [39].
Although these standards start from di↵erent objectives and are based on
di↵erent techniques (see [39, 53, 56, 59]), they have several common features
that have been exploited so as to address the three issues above presented and
then create a full-fledged solution.

In this context, three main contributions have been provided:

- HLA Development Kit, a software framework that aims at facilitating the
design and develop of distributed simulators compliant with the IEEE
1516.2010 - High Level Architecture (HLA) standard [53] (see Chapter 3).

- MONADS, a Model-Driven method that makes easier for Systems Engi-
neers to design a complex system and simulate it on a distributed simula-
tion environment, without asking them to explicitly deal with the intrica-
cies and di�culties of currently available standards and technologies (see
Chapter 4).

- Two methods, HLA for FMI and FMI for HLA, to address in an inte-
grated way the issues of reuse, distribution and interoperability among
heterogeneous simulation components through the integration of the func-
tionalities o↵ered by the HLA [53] and FMI [39] standards (see Chapter
5).

The HLA Development Kit software Framework (DKF) is a general-
purpose, domain-independent framework, fully implemented in the Java lan-
guage and released under the open source policy Lesser GNU Public License
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(LGPL), which facilitates the development of HLA Federates [53, 99]. The
DKF allows developers to focus on the specific aspects of their own Federates
rather than dealing with the common HLA aspects such as the management
of the simulation time; the connection/disconnection to/from the HLA RTI;
the publish, subscribe and updating of ObjectClass and InteractionClass ele-
ments [42, 30, 53]. The DKF has been designed and developed in the context
of the research activities carried out within the SMASH-Lab (System Model-
ing And Simulation Hub - Laboratory) of the University of Calabria (Italy)
working in cooperation with the Software, Robotics, and Simulation Divi-
sion (ER) of the NASA’s Lyndon B. Johnson Space Center (JSC) in Houston
(Texas, USA) [71]. It has been successfully experimented in the Simulation
Exploration Experience (SEE) project since the 2015 edition [90].

The second contribution has concerned the definition of a Model-Driven
method called MONADS (MOdel-driveN Architecture for Distributed Sim-
ulation). The MONADS method aims at facilitating the distributed simu-
lation of complex systems, specified by using SysML [74], according to the
Model-Driven Systems Engineering (MDSE) paradigm. MONADS leverages
the strengths of both the capabilities provided by robust and well-known
OMG modeling languages (e.g., UML and SysML), appropriate to define the
architectural and behavioral aspects of complex systems, and the functionali-
ties given by the HLA Development Kit software Framework (DKF), suitable
for defining distributed simulations according to the IEEE 1516-2010 - High
Level Architecture (HLA) standard [53]. Indeed, the HLA simulation code,
generated starting from SysML/UML models by a chain of model-to-model
and model-to-text transformations, is based on the DKF. MONADS is the re-
sult of an intensive experimentation in several application domains (avionics,
aerospace, drones) carried out working in cooperation with the Laboratory of
Software Engineering, Department of Enterprise Engineering of the University
of Tor Vergata (Rome).

Concerning the third contribution, two methods to address, in an inte-
grated way, the issues of reuse, distribution and interoperability among hetero-
geneous simulation components through the integration of the functionalities
o↵ered by the HLA [53] and FMI [39] standards have been defined. These two
methods devoted to fruitfully combine the standards are: (i) HLA for FMI,
in which a FMU is enriched with HLA features and services. In more detail, a
set of XML tags have been defined and added in the model-description XML
file to natively integrate the HLA concepts; and, (ii) FMI for HLA, in which
simulation modules that are available as FMUs are reused in a HLA simula-
tion environment without modifying them. The e↵ectiveness of the FMI for
HLA method has been evaluated through a case study in the space domain
concerning the integration of a FMU module into a HLA simulation. The
simulation scenario took place on the lunar surface and concerned a situation
in which a lander, defined as a FMU, was landing on the platform located
in the Moon base. This research activity has been also experimented in the
MODRIO (Model-Driven Physical Systems Operation) ITEA3 project [57].
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The experience gained during the definition and development of the HLA
Development Kit (DKF), the definition of the MONADS (MOdel-driveN Ar-
chitecture for Distributed Simulation) method, and the investigation on how
to combine the international standards IEEE 1516 - High Level Architecture
(HLA) and Functional Mock-up Interface (FMI), along with the research ac-
tivities performed at NASA Lyndon B. Johnson Space Center (JSC) and the
contribution given to the SISO Space Reference FOM (SRFOM) Product De-
velopment Group (PDG) [69], allowed to focus on the interoperability of space
systems in a distributed simulation. In this context, the Java Space Dynam-
ics Library (JSDL) that facilitates the design, development and simulation
of space systems, such as space vehicles and satellites has been created (see
Chapter 6). It represents a low level space dynamics library and provides high
fidelity models and algorithms needed for defining space systems that are as
accurate and robust as those provided by existing commercial and government
software.

7.2 Ongoing and Future Work

The results presented in this Thesis constitute a starting point for ongoing
and future research activities.

One of these concerns how to extend the HLA Development Kit (DKF) to
provide support for event-driven simulations. The DKF framework has been
developed in the context of the “Simulation Exploration Experience (SEE)”
project [90] and the current version provides support only for the develop of
time-stepped simulations as it is the SEE reference simulation model. The
next release of the framework will include this support.

In addition, a tailor version of the DKF that aims at easing the develop-
ment of Federates and Federations compliant with the SISO Space Reference
FOM ongoing standard is under developing.

Another future work includes the improvements of the proposedMONADS
method, by introducing some approaches and possible patterns to define and
simulate complex systems based on the Modelica language [36] and Open-
Modelica simulation environment [78].

Concerning the integration of the functionalities o↵ered by the HLA [53]
and FMI [39] standards, future research e↵orts will be devoted to further
analyze and experiment the joint exploitation of FMI and HLA in di↵erent
simulation domains so to prove not only the benefits that derive from their
combinations but also the e↵ectiveness of the proposed solutions. Moreover,
the advantages in the generation of simulators that could derive from the ex-
ploitation of Model-Driven approaches that combine HLA and FMI features
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will be also investigated.

Regarding the Java Space Dynamics Library (JSDL), the current version
has been successfully tested in the 2017 edition of the “Simulation Exploration
Experience” project [90]. Future research activities will be devoted to further
analysis and experimentations of the e↵ectiveness of the library and to define
other models and algorithms so as to follow the evolution of the SISO Space
Reference FOM that is supported in the context of the related SISO SRFOM
PDG [69].
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Appendix

This appendix reports the code that has been developed for creating an HLA
Federate starting from a REPAST-based agent without using the functional-
ities provided by the SEE-DKF.

A.1 The Simulation step of the Excavator agent in
REPAST

1 @ScheduledMethod(start=1, interval=1)
2 public void step(){
3     //This updates its map with the next target from the UAV
4     updateMap(ExcavatorMap, UAVx, UAVy);
5     checkCargoLimit(returnOrigin);
6

7     //This moves the Excavator X,Y
8     moveExcavator(grid.getLocation(this), returnOrigin, ExcavatorMap, 

EXCx, EXCy);
9 }

A.2 The publishAndSubscribe() method of the
Excavator Federate

1 private void publishAndSubscribe() throws RTIexception {
2     // get all the handle information for the attributes of ObjectRoot.

Excavator
3     this.classHandle = rtiamb.getObjectClassHandle("HLAobjectRoot.

Excavator");
4     this.exHandle = rtiamb.getAttributeHandle(classHandle, "ex");
5     this.eyHandle = rtiamb.getAttributeHandle(classHandle, "ey");
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6     this.uxHandle = rtiamb.getAttributeHandle(classHandle, "ux");
7     this.uyHandle = rtiamb.getAttributeHandle(classHandle, "uy");
8     AttributeHandleSet attributes = rtiamb.getAttributeHandleSetFactory

().create();
9     attributes.add(exHandle);

10     attributes.add(eyHandle);
11     attributes.add(uxHandle);
12     attributes.add(uyHandle);
13     rtiamb.publishObjectClassAttributes(classHandle, attributes);
14     rtiamb.subscribeObjectClassAttributes(classHandle, attributes);
15     ...
16 }

A.3 The updateAttributeValues() method of the
Exavator Federate

The code reported below updates the handle variables with the encoded Ex-
cavator’s coordinates, put them in the attributes Collection, and send them
to the RTI with a timestamp.

1 public void updateAttributeValues(int EXCx, int EXCy) throws 
RTIexception {

2     // 2 is the initial capacity of the newly created map
3     AttributeHandleValueMap attributes = rtiamb.

getAttributeHandleValueMapFactory().create(2);
4     HLAinteger32BE exValue = encoderFactory.createHLAinteger32BE(EXCx);
5     HLAinteger32BE eyValue = encoderFactory.createHLAinteger32BE(EXCy);
6

7     attributes.put(exHandle, exValue.toByteArray());
8     attributes.put(eyHandle, eyValue.toByteArray());
9

10     HLAfloat64Time time = timeFactory.makeTime(fedamb.federateTime+
fedamb.federateLookahead);

11     rtiamb.updateAttributeValues(objectHandle, attributes,
12                                  generateTag(), time);
13 }

A.4 Receiving and decoding updates by the Excavator
Federate Ambassador

The following code is defined in the Excavator Federate Ambassador for re-
ceiving updates from the UAV Object:
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1 for(AttributeHandle attributeHandle : theAttributes.keySet()) {
2     // uxHandle and uyHandle hold the UAV Cartesian coordinates and are

 updated in the UAV Federate
3     if(attributeHandle.equals(federate.uxHandle)){
4         UAVx=decodeInt(theAttributes.get(attributeHandle));
5     }
6

7     if(attributeHandle.equals(federate.uyHandle)){
8         UAVy=decodeInt(theAttributes.get(attributeHandle));
9     }

10 }

The decoder for the above received data is reported below:

1 private int decodeInt(byte[] bytes) {
2     HLAinteger32BE value = federate.encoderFactory.createHLAinteger32BE

();
3     try {
4         value.decode(bytes);
5         }
6     catch(DecoderException de) {
7         log("DecoderException:"+de.getMessage());
8         }
9     return value.getValue();

10 }

A.5 The FOM module of the Excavator Federate

The snapshot of code that describes the published EXCx coordinate, which
is an attribute of the Excavator class, is shown below:

1 <objects>
2 <objectClass>
3 <name>HLAobjectRoot</name>
4 <sharing>Neither</sharing>
5 <objectClass>
6 <name>Excavator</name>
7 <sharing>PublishSubscribe</sharing>
8 <semantics>NA</semantics>
9 <attribute>

10 <name>ex</name>
11 <dataType>HLAinteger32BE</dataType>
12 <updateType>Conditional</updateType>
13 <updateCondition>NA</updateCondition>
14 <ownership>NoTransfer</ownership>
15 <sharing>PublishSubscribe</sharing>
16 <dimensions>NA</dimensions>
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17 <transportation>HLAreliable</transportation>
18 <order>TimeStamp</order>
19 <semantics>NA</semantics>
20 </attribute>
21 ...
22 </objectClass>
23 </objects>

A.6 DataTypes in the FOM module of the Excavator
Federate

In the Excavator FOM only an Integer data type has been defined. The snap-
shot of code in XML is shown below:

1 <dataTypes>
2 <basicDataRepresentations>
3 <basicData>
4 <name>HLAinteger32BE</name>
5 <size>32</size>
6 <interpretation>Integer within the range [-2^15, 2^15 - 1] <

/interpretation>
7 <endian>Big</endian>
8 <encoding>32-bit two s complement signed integer. The most 

significant bit contains the sign</encoding>
9 </basicData>

10 ...
11 </basicDataRepresentations>
12 </dataTypes>

A.7 Time synchronization

The method below implements TAR requests and belongs to the Excavator
Federate class. This method is annotated as scheduled and therefore it is
added to the REPAST scheduler.

1 @ScheduledMethod(start=1, interval=1, priority = ScheduleParameters.
LAST_PRIORITY)

2 public void advanceTime() throws RTIexception {
3     fedamb.isAdvancing = true;
4     HLAfloat64Time time = timeFactory.makeTime(fedamb.federateTime + 

timestep);
5     rtiamb.timeAdvanceRequest(time);
6

7     while(fedamb.isAdvancing) {
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8         rtiamb.evokeMultipleCallbacks(0.1, 0.2);
9     }

10 }

The method below handles TAGs and belongs to the Federate Ambassador
class.

1 @Override
2 public void timeAdvanceGrant(LogicalTime time) {
3     this.federateTime = ((HLAfloat64Time)time).getValue();
4     this.isAdvancing = false;
5 }
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67. Möller, B.: The HLA tutorial v1.0. Pitch Technologies, Sweden (2013). Ac-
cessed 30 Nov 2016
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69. Möller, B., Garro, A., Falcone, A., Crues, E.Z., Dexter, D.E.: Promoting a-
priori Interoperability of HLA-Based Simulations in the Space Domain: The
SISO Space Reference FOM Initiative. In: 20th IEEE/ACM International
Symposium on Distributed Simulation and Real Time Applications, DS-RT
2016, London, United Kingdom, September 21-23, 2016, pp. 100–107 (2016).
DOI 10.1109/DS-RT.2016.15. URL http://dx.doi.org/10.1109/DS-RT.2016.15

70. Mutambara, A.G.: Decentralized estimation and control for multisensor sys-
tems. CRC press (1998)

71. NASA (The National Aeronautics and Space Administration) Software,
Robotics, and Simulation Division (ER): The Simulation and Graphics Branch
(ER7) home page (2016). URL http://er.jsc.nasa.gov/ER7/. Accessed 30 Nov
2016

72. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with repast simphony. Com-
plex adaptive systems modeling 1(1), 1 (2013)

73. Object Management Group: MOF Model to Text Transformation Language,
version 1.0 (2008)



134 References

74. Object Management Group: Systems Modeling Language, version 1.3 (2012)
75. Object Management Group: MDA Guide, version 2.0 (2014)
76. Object Management Group: Meta Object Facility (MOF), version 2.5 (2015)
77. Object Management Group: MOF 2.0 Query/View/Transformation (QVT),

version 1.2 (2015)
78. OpenModellica project: The Open Source Modelica Consortium (OSMC) home

page (2016). URL https://www.openmodellica.org/. Accessed 30 Nov 2016
79. Paredis, C.J., Johnson, T.: Using omg’s sysml to support simulation. In: 2008

Winter Simulation Conference, pp. 2350–2352. IEEE (2008)
80. Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M., Kim,

I.: 9.3. 2 simulation-based design using sysml part 1: A parametrics primer.
In: INCOSE international symposium, vol. 17, pp. 1516–1535. Wiley Online
Library (2007)

81. Phillips, R., Crues, E.: Time management issues and approaches for real time
hla based simulations. In: Proceedings of the fall simulation interoperability
workshop, Orlando, FL (2005)

82. Pitch Technologies: The simulation toolkit home page (2016). URL
http://www.pitch.se. Accessed 30 Nov 2016

83. Pommier-Maurussane, V., Maisonobe, L.: Orekit: an open-source library for
operational flight dynamics applications. In: International Conference on As-
trodynamic Tools and Techniques (ICATT), ESA/ESAC, Madrid, Spain, pp.
3–6 (2010)

84. Pulecchi, T., Lovera, M.: A modelica library for space flight dynamics. In: In
Proceedings of the 5th International Modelica Conference (2006)

85. Rabelo, L., Sala-Diakanda, S., Pastrana, J., Marin, M., Bhide, S., Joledo, O.,
Bardina, J.: Simulation modeling of space missions using the high level archi-
tecture. Modelling and Simulation in Engineering 2013, 11 (2013)

86. Recommendation, I.: 460-6, standard-frequency and time-signal emissions
(question itu-r 102/7). ITU-R Recommendations: Time Signals and Frequency
Standards Emission, Geneva, International Telecommunications Union, Radio-
communication Bureau (2002)
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