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Sommario

L'Answer Set Programming (ASP) è un paradigma di programmazione dichiar-
ativa proposto nell'ambito del ragionamento non monotono e della program-
mazione logica tra la �ne degli anni '80 e l'inizio del '90. Grazie al suo potere
espressivo ed alla sua capacità di trattare conoscenza incompleta, ASP è stato
ampiamente utilizzato nel campo dell'Intelligenza Arti�ciale e riconosciuto come
un potente strumento per la rappresentazione della conoscenza e del ragiona-
mento. D'altra parte, la sua alta espressività comporta un alto costo com-
putazionale che richiede implementazioni a�dabili e ad alte prestazioni. Nel
corso degli anni, uno sforzo notevole è stato fatto per de�nire tecniche che
garantiscano un calcolo e�ciente della semantica ASP. In cambio, la disponi-
bilità di sistemi e�cienti ha reso ASP un potente strumento per lo sviluppo di
applicazioni avanzate in molte aree di ricerca e in contesti industriali. Inoltre,
la comunità scienti�ca ha signi�cativamente contribuito all'estensione del lin-
guaggio �base� per facilitare ulteriormente la rappresentazione della conoscenza
attraverso ASP ed è stata de�nita una sintassi di input standard, ASP-Core-2,
allo scopo di favorire l'interoperabilità tra sistemi ASP.

Sebbene siano stati proposti diversi approcci per la valutazione dei pro-
grammi di logica ASP, l'approccio canonico, adottato nei sistemi ASP tradizion-
ali, imita la de�nizione della semantica �answer sets� basandosi su un modulo di
instanziazione (instantiatore), che genera una teoria proposizionale semantica-
mente equivalente al programma in input, ed un successivo modulo (risolutore),
il quale applica tecniche proposizionali per generare gli answer sets.

La prima fase, anche nota come grounding, svolge un ruolo chiave per l'uso
e�ettivo di ASP in contesti reali, dal momento che, in generale, il programma
proposizionale prodotto durante la fase di instanziazione è potenzialmente di di-
mensioni esponenziali rispetto al programma in input, e di conseguenza la fase
successiva di risoluzione richiede, nel caso peggiore, tempi esponenziali nella
dimensione dell'input. Per mitigare tale problematica, i sistemi ASP moderni
impiegano procedure �intelligenti� per ottenere programmi proposizionali di di-
mensioni signi�cativamente ridotte rispetto all'instanziazione teorica.

Questa tesi si concentra sulla progettazione e sull'implementazione ex-novo
di un moderno ed e�ciente instantiatore. A tal �ne, studiamo una serie di tec-
niche orientate verso l'ottimizzazione del processo di instanziazione, mettendo in
discussione le tecniche utilizzate dai moderni instanziatori allo scopo di miglio-
rare lo stato dell'arte introducendo ulteriori strategie di ottimizzazione, che si
prestano all'integrazione in un instanziatore generico di un sistema ASP che
segue l'approccio canonico. In particolare, qui presentiamo il nuovo sistema
I-DLV che incorpora queste tecniche, e fa leva sulla loro sinergia per eseguire
un'istanziazione e�ciente. Il sistema o�re il pieno supporto al linguaggio stan-
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dard ASP-Core-2, è basato su un'architettura �essibile che facilita l'integrazione
di aggiornamenti linguistici e tecniche di ottimizzazione ed è dotato di mecca-
nismi avanzati per la personalizzazione della sua procedura di instanziazione.
Inoltre, il suo utilizzo è duplice: oltre ad essere un instanziatore autonomo, esso
è anche un sistema di database deduttivo. In�ne, insieme al risolutore wasp,
I-DLV è stato integrato nella nuova versione del di�uso sistema DLV recente-
mente rilasciato.



Abstract

Answer Set Programming (ASP) is a declarative programming paradigm pro-
posed in the area of non-monotonic reasoning and logic programming in the
late '80 and early '90. Thanks to its expressivity and capability of dealing with
incomplete knowledge, ASP that became widely used in AI and recognized as
a powerful tool for Knowledge Representation and Reasoning (KRR). On the
other hand, its high expressivity comes at the price of a high computational
cost, thus requiring reliable and high-performance implementations. Through-
out the years, a signi�cant e�ort has been spent in order to de�ne techniques
for an e�cient computation of its semantics. In turn, the availability of e�cient
ASP systems made ASP a powerful tool for developing advanced applications in
many research areas as well as in industrial contexts. Furthermore, a signi�cant
amount of work has been carried out in order to extend the �basic� language and
ease knowledge representation tasks with ASP, and recently a standard input
language, namely ASP-Core-2, has been de�ned, also with the aim of fostering
interoperability among ASP systems.

Although di�erent approaches for the evaluation of ASP logic programs have
been proposed, the canonical approach, which is adopted in mainstream ASP
systems, mimics the de�nition of answer set semantics by relying on a grounding
module (grounder), that generates a propositional theory semantically equiv-
alent to the input program, coupled with a subsequent module (solver) that
applies propositional techniques for generating its answer sets.

The former phase, called grounding or instantiation, plays a key role for
the successful deployment in real-world contexts, as in general the produced
ground program is potentially of exponential size with respect to the input
program, and therefore the subsequent solving step, in the worst case, takes
exponential time in the size of the input. To mitigate these issues, modern
grounders employ smart procedures to obtain ground programs signi�cantly
smaller than the theoretical instantiation, in general.

This thesis focuses on the ex-novo design and implementation of a new mod-
ern and e�cient ASP instantiator. To this end, we study a series of techniques
geared towards the optimization of the grounding process, questioning the tech-
niques employed by modern grounders with the aim of improving them and
introducing further optimization strategies, which lend themselves to the inte-
gration into a generic grounder module of a traditional ASP system following
a ground & solve approach. In particular, we herein present the novel system
I-DLV that incorporates all these techniques leveraging on their synergy to per-
form an e�cient instantiation. The system features full support to ASP-Core-2
standard language, advanced �exibility and customizability mechanisms, and
is endowed with extensible design that eases the incorporation of language up-
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dates and optimization techniques. Moreover, its usage is twofold: besides being
a stand-alone grounder, it is also a full-�edged deductive database engine. In
addition, along with the solver wasp it has been integrated in the new version
of the widespread ASP system DLV recently released.
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Chapter 1

Introduction

1.1 Answer Set Programming

The primary intent of Computer Science is problem solving by means of ma-
chines. In this context, programming languages permit to obtain the solution(s)
of a given problem, enabling the �communication� between humans and ma-
chines. Such communication might follow two radically di�erent approaches:
imperative or declarative. Imperative languages are machine-oriented : they re-
quire to model in a formal, machine-oriented wording how a problem should be
solved. Determining e�cient algorithms to solve complex (yet, tractable) prob-
lems often, requires advanced knowledge and quite good programming skills. In
addition, since the conceptualization of a problem and its solution(s) are im-
plicitly wired in the code, the imperative approach demonstrates, in general, a
low elaboration tolerance, that is slight updates to the problem speci�cations,
often, require a signi�cant e�ort to modify the code accordingly.

An opposite approach is provided by declarative languages, which, instead,
are more human-oriented, as they permit programmers to concentrate on prob-
lem de�nitions. Consequently, variations in speci�cations tend to have a much
smaller impact on the code, since it explicitly re�ects problem speci�cations.

Around the 1950s, John McCarthy [102] discussed how logic is particularly
suited to be a full-�edged declarative programming paradigm, allowing to model
problems in a natural and human-oriented fashion, and e�ectively represent
knowledge representation and rational human reasoning. In the same years, a
new computer science �eld was born: Arti�cial Intelligence or AI, and logic-
based languages gained more and more importance and popularity. A break-
through happens when Alain Colmerauer and its research group introduced
Prolog [42] (from the French, PROgramming en LOGic), the �rst logic program-
ming language. However, it emerged that the �rst-order logic on which Prolog
is based is not capable of modelling the commonsense human reasoning, which
is non-monotonic: we as humans, starting from some premises, may rationally
regret them whenever new information become available, while in �rst-order
logic, logical consequences cannot be invalidated since the underlying reasoning
is monotonic.

Subsequently, new logic formalisms devoted to represent non-monotonic rea-
soning were introduced, such as Default Logic [115], Autoepistemic Logic [104]
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2 CHAPTER 1. INTRODUCTION

and Circumscription [103]. In the late '80s and early '90s, Michael Gelfond
e Vladimir Lifschitz presented the logic formalism Answer Set Programming
(ASP) [73, 74] allowing to express non-monotonic reasoning in purely declara-
tive fashion [21, 51, 54, 74, 101, 105].

ASP became widely used in AI and recognized as a powerful tool for Knowl-
edge Representation and Reasoning. The basic construct of ASP is a rule, that
has formHead← Body, where the Body is a logic conjunction in which negation
may appear, and Head can be either an atomic formula or a logic disjunction. A
rule is interpreted according to common sense principles: roughly, its intuitive
semantics corresponds to an implication. More precisely, the semantics of ASP
is called answer set semantics. In ASP a problem is modeled via a logic program
composed by a collection of rules. An ASP system is in charge of determining
its solutions by computing its answer sets, which correspond one-to-one to a
solution of the modeled problem. In case the input program has no answer sets,
the encoded problem has no solutions.

Its roots stem from Datalog [40], a popular declarative logic programming
language also based on rules. However, di�erently from Datalog, ASP may ad-
mit disjunctive heads and non-strati�ed negation. These distinguishing features
make ASP suitable for modelling non-monotonic reasoning. Theoretically, the
introduction of disjunction in rule heads yields to a more expressive paradigm
allowing to capture the complexity class ΣP

2 = NPNP.
Throughout the years a signi�cant e�ort has been spent in order to ex-

tend the �basic� language and ease knowledge representation tasks with ASP;
it has been proven to be highly versatile, o�ering several language constructs
and reasoning modes. Recently, the community agreed on a standard input
language for ASP systems: ASP-Core-2, the o�cial language of the ASP Com-
petition series [34, 68]. Furthermore, ASP has been successful adopted for
developing advanced applications in many research areas, ranging from Arti-
�cial Intelligence to Databases and Bioinformatics, as well as in industrial con-
texts [34, 94, 106, 116, 123].

The �traditional� approach to the evaluation of ASP programs relies on a
grounding module (grounder), that generates a propositional theory seman-
tically equivalent to the input program, coupled with a subsequent module
(solver) that applies propositional techniques for generating its answer sets [82].
There have been other attempts deviating from this customary approach [44,
88, 89]; nonetheless, the majority of the current solutions relies on the canonical
�ground & solve� strategy, as systems relying on such approach proved to be
more reliable and high-performance in the widest range of scenarios.

After more than twenty years of research the theoretical properties of ASP
are understood, while the linguistic extensions introduced with ASP-Core-2,
their e�ects on the expressive power of ASP, and the ASP-based applications
arising from a broader range of scenarios demand for increasingly high-per-
formance implementations. In addition, while the solving phase has been more
largely investigated in literature [96], less emphasis has been placed on the in-
stantiation phase. Nevertheless, grounders solve a complex problem since the
produced ground program is potentially of exponential size with respect to the
input program [45]. Grounding, hence, may be computationally expensive and
has a big impact on the performance of the whole system, as its output is the
input for the subsequent solving step, that, in the worst case, takes exponential
time in the size of the input [13, 14].
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1.2 The New Grounder I-DLV

In this context the objective of this thesis is twofold: we aim at questioning the
existing grounding techniques, improving them and introducing novel optimiza-
tions, and consequently designing and developing a new instantiator for ASP.
In particular, we herein present the system I-DLV , recently released [27, 28,
31, 33]; besides being a stand-alone grounder and deductive database engine, it
has been integrated as the grounder module of the new version of the popular
ASP system DLV , namely DLV2 [2]. Among the most widely used ASP sys-
tems, DLV has been one of the �rst solid and reliable; its project dates back a
few years after the �rst de�nition of answer set semantics [73, 74], and encom-
passed the development and the continuous enhancements of the system. It is
widely used in academy, and, importantly, it is still employed in many relevant
industrial applications, signi�cantly contributing in spreading the use of ASP
in real-world scenarios.

I-DLV has been redesigned and re-engineered from scratch. Di�erently from
DLV , I-DLV natively supports ASP-Core-2 and it is compatible with state-of-
the-art technologies. The foremost issue experienced is the high-in�uence of
grounding on solving; in general, simply improving the grounding times does
not necessary imply improvements on the solving side, since these heavily de-
pend on the structure and form of the produced instantiation. Thus, I-DLV
grounding process has been endowed with high �exibility and customizability,
thanks to a lightweight modular design that eases the incorporation of opti-
mization techniques and future updates. In particular, one of the novelty is
the customizable nature of the grounder, allowing to tailor its produced instan-
tiation to di�erent extents, such as to better conform to solvers needs and to
experiment with ASP and its applications for better adapting ASP-based solu-
tions to real-world applications. The novel possibility of annotating ASP code
with external directives to the grounder is a bold move in this direction, provid-
ing a new way for �ne-tuning both ASP programs and systems for any speci�c
scenario at hand [30, 32].

Despite being released recently, I-DLV performance is promising and com-
parable with mainstream systems: in the latest ASP Competition [69] I-DLV
ranked both the �rst and second positions when combined, respectively, with
an automatic solver selector [29] that inductively chooses the best solver de-
pending on some inherent features of the instantiation produced, and with the
state-of-the-art solver clasp [64]. Moreover, I-DLV is an open-source project:
its source and binaries are available from the o�cial repository [38].

Eventually, the system is envisioned as core part of a larger project com-
prising the extension of I-DLV towards mechanisms for interoperability with
other formalisms and tools [30, 32]. The intent is to foster the usage of ASP,
and in general, of logic programming in real-world and complex applications.
In order to pursue in this direction, the project has as a spin-o� the framework
EmbASP [25, 61, 26] aiming at easing the integration of arti�cial intelligence
tasks implemented via declarative logic formalisms into external applications,
especially into the promising mobile platform.
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1.3 Main Contribution

This thesis focuses on the study, formalization, design, implementation and
experimentation of e�cient grounding techniques in order to improve the state-
of-the-art in this �eld.

Firstly, we started by signi�cantly improving some already known techniques
having a high impact on the overall instantiation process [27, 28].

Furthermore, based on the long-lasting experience from the ASP competition
series [34, 68], given that the same computational problem can be encoded by
means of many di�erent ASP programs which are semantically equivalent, we
noticed as ASP systems may perform very di�erently when evaluating each one
of them. This issue, in a certain sense, con�icts with the declarative nature of
ASP that, as in our original intent, should free the users from the burden of the
computational aspects. Therefore, we de�ned a general algorithm, along with
proper heuristic criteria, to automatically transform an ASP program into an
equivalent one that can be evaluated more e�ciently [31, 33].

In addition, we designed a set of �ne-tuning optimizations acting to di�erent
extents on the instantiation process, with the general common aim of reducing
the search space and improving overall performance [27, 28].

The presented grounding strategies lend themselves to the integration in
a generic grounder module of a traditional ASP system following a ground &
solve approach. In particular, we herein present the novel system I-DLV that
incorporates all of them leveraging on their synergy to perform an e�cient in-
stantiation. In addition, I-DLV is devoted to e�cient query answering, and
can behave as a full-�edged deductive database system. Moreover, I-DLV con-
stitutes the new grounding module of the ASP system DLV [2].

The input language of I-DLV has been enriched with the support for special
comments expressing meta-data information that I-DLV can interpret in order
to �ne-tune its grounding process. Following a widespread term in program-
ming, we named these constructs annotations, as they do not change the seman-
tics of input programs, but their impact might be observed just on the perform-
ance. In particular, supported annotations belong to the following categories:
grounding annotations allowing for a �ne-grained customization on the ground-
ing process, and solving annotations that have been integrated into DLV2 , and
are geared to the customization of the whole computational process [30, 32, 2].

1.4 Organization of the Thesis

The present work is divided into four parts:

� The �rst part presents Answer Set Programming, formalizing its syntax
and semantics, providing some example of Knowledge Representation and
Reasoning via ASP and discussing the history of the development of ASP
systems.

� The second part focuses on the design of techniques for an e�cient in-
stantiation. More in detail, �rstly we illustrate the typical instantiation
work �ow, and then we formalize the studied techniques highlighting their
intended behaviour and e�ects.
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� The third part is devoted to I-DLV and its distinguishing features. Fur-
thermore, we discuss two sets of experiments. Firstly, we assess the per-
formance of the studied techniques and their variants; then, we evaluate
I-DLV overall performance as both ASP grounder and deductive data-
base engine; eventually, we analyze the quality of its instantiation and its
impact on solvers.

� Eventually, the fourth part compares related work and draws conclusions,
outlining future and on-going work.





Part I

Context and Foundations
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In this part we introduce Answer Set Programming, presenting its theoretical
properties and characteristic features. The part is structured as reported below:

� Chapter 2 provides a detailed description of the syntax and semantics of
Answer Set Programming complying with ASP-Core-2, the recent standard
input language.

� Chapter 3 illustrates the powerful modelling capabilities of Answer Set
Programming, describing its usage for Knowledge Representation and
Reasoning.

� Chapter 4 depicts the history of the development of ASP systems, focus-
ing on the computational process carried out by the majority of current
available solutions.

9





Chapter 2

Answer Set Programming

In this chapter we introduce Answer Set Programming (ASP). The core of the
language consists in Disjunctive Datalog with nonmonotonic negation under
the stable model semantics. Nevertheless, over the years a signi�cant amount
of work has been carried out by the scienti�c community in order to enrich
the basic language, and several extensions have been studied and proposed.
Recently, the community agreed on a standard input language for ASP systems:
ASP-Core-2 [24], the o�cial language of the ASP Competition series [34, 68, 69].

The chapter is structured as follows. Sections 2.1 and 2.2 present a formal
de�nition of the syntax and the semantics of ASP. Section 2.3 describes some
syntactic shortcuts. Section 2.4 introduces the concept of safety. The herein
reported de�nitions are compliant with ASP-Core-2 v.2.03c (the latest version
at the time of writing).

2.1 Syntax

Let I be a set of identi�ers. An identi�er is a not empty string starting with
some lowercase letter and containing only alphanumeric symbols and the symbol
�_� (underscore).

Example 2.1.1. Examples of identi�ers are: a, a1_B, a_ID, vertex

2.1.1 Terms

A term is either a constant, a variable, an arithmetic term or a functional
term. In particular, constants and variables can be considered as �basic terms�,
while arithmetic and functional terms are de�ned inductively as combinations
of terms.

De�nition 2.1.1 (Constant Term). A constant is either a symbolic constant,
if it is an identi�er, a string constant, if it is a quoted string, or an integer.

De�nition 2.1.2 (Variable Term). A variable is a not empty string starting
with some uppercase letter and containing only alphanumeric symbols and the
symbol �_� (underscore).

11
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Furthermore a special variable, namely anonymous variable, is represented by
the symbol �_� (underscore). This syntactic shortcut is intended to indicate
a fresh variable, that does not appear elsewhere in the context in which it is
located.

De�nition 2.1.3 (Arithmetic Term). An arithmetic term has form -(t) or
(t1♦t2) for terms t1 and t2 with ♦ ∈ {+,−, ∗, /}. Parentheses can optionally be
omitted, and standard operator precedences apply.

De�nition 2.1.4 (Functional Term). A functional term has form f(t1, . . . , tn),
where f is an identi�er, known as functor, t1, . . . , tn are terms and n > 0.

Example 2.1.2. Examples of terms are:

� Constants: a, x, �http://google.com�, 0, 123

� Variables: X, X_134, X2, Color

� Arithmetic terms: -X, X + Y , 2 ∗ (-5), X + ab, X/3

� Functional terms: f(X), father(aristotle), g(2 ∗ 5,�abc�)

A term is ground (i.e. variable-free) if it does not contain any variable. For,
instance in Example 2.1.2 all the constants, the arithmetic term 2∗ (-5) and the
functional terms father(aristotle) and g(2 ∗ 5,�abc�) are ground.

2.1.2 Atoms and Literals

De�nition 2.1.5 (Predicate). Given an identi�er p and an integer n with n ≥ 0,
the expression p/n represents a predicate. p is said predicate symbol and n
represents the associated arity.

Example 2.1.3. Examples of predicates are: a/2, p/3, predicate_3/1, true/0.

In the following, when no ambiguities arise we denote simply as p a predicate
p/n.

De�nition 2.1.6 (Predicate Atom). A predicate atom has form p(t1, . . . , tn),
where n ≥ 0, p/n is a predicate with predicate name p and arity n and t1, . . . , tn
are terms; if n = 0, parenthesis are omitted and the notation p is used.

De�nition 2.1.7 (Classical Atom). A classical atom is either -a or a where a
is a predicate atom and − denotes the strong negation symbol.

De�nition 2.1.8 (Built-in Atom). A built-in atom has form t1 B t2 where
t1, t2 are terms and B∈ {<,<=,=, <>, !=, >,>=}.

De�nition 2.1.9 (Naf-Literal). A naf-literal can either be a built-in atom or
have form a or not a where a is a classical atom, and not is the negation as
failure symbol.

Example 2.1.4. Some examples are shown below.

� Predicate Atoms: edge(X,Y ), atom(f(a, b), c), true

� Classical Atoms: edge(X,Y ), atom(f(a, b), c), true, -true
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� Built-in Atoms: father(aristotle) = nicomachus, X! = Y , X ∗ 2 = Y

� Naf-Literals: father(aristotle) = nicomachus, X! = Y , X ∗ 2 = Y ,
edge(X,Y ), -atom(f(a, b), c), true, -true, not -true, not true

In addition to the type of atoms above illustrated, aggregate atoms have been
introduced to permit aggregation operations on multi-sets of terms by means of
concise expressions.

De�nition 2.1.10 (Aggregate Element). An aggregate element is composed
as: t1, . . . , tm : l1, . . . , ln, where t1, . . . , tm are terms l1, . . . , ln are naf-literals for
n ≥ 0, m ≥ 0.

De�nition 2.1.11 (Aggregate Atom). An aggregate atom has form:

af{e1, . . . , en} B t

where:

� af ∈ {#count,#sum,#max,#min}

� e1, . . . , en are aggregate elements for n ≥ 0

� B∈ {<,<=,=, <>, !=, >,>=}

� t is a term

De�nition 2.1.12 (Aggregate Literal). An aggregate literal is either a or not a
where a is an aggregate atom.

Example 2.1.5. For instance, the following are aggregate literals: not #max{
X,Y : age(X,Y )} < 20, #sum{X,Y : age(X,Y )} = s(S), #count{1 : a(1)} >
3. Moreover, the latter two literals are also aggregate atoms.

An atom is ground if it does not contain any variable. A literal is ground if its
atom is ground. In Examples 2.1.4 and 2.1.5 father(aristotle) = nicomachus,
-atom(f(a, b), c), true, -true, not -true, not true, #count{1 : a(1)} > 3 are
ground.

In the following we will refer to classical, built-in and aggregate atoms as
atoms. Similarly, we will indicate naf and aggregate literals as literals. A literal
is negative if the not symbol is present, otherwise it is positive.

2.1.3 Rules, Constraints, Queries and Programs

After de�ning the basic constructs, we now describe the main components of an
ASP logic program.

De�nition 2.1.13 (Rule). A rule r has the following form:

a1 | . . . | an :- b1, . . . , bm.

where:

� a1, . . . , an are classical atoms

� b1, . . . , bm are literals
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� n ≥ 0,m ≥ 0

The disjunction a1 | . . . | an is the head of r, while the conjunction b1, . . . , bm
is the body of r. We denote by H(r) the set {a1, . . . , an} of the head atoms,
and by B(r) the set {b1, . . . , bm} of the body literals. B+(r) denotes the set of
literals occurring positively in B(r); while B−(r) is the set of negative literals
in B(r). A rule having precisely one head literal (i.e. n = 1) is said to be a
normal rule; if n > 1 the rule is disjunctive.

Example 2.1.6. Examples of rules are:

hasUmbrella(X) | doesNotHaveUmbrella(X) :- person(X).

isRaining | -isRaining :- cloudyWeather.

De�nition 2.1.14 (Fact). A rule r is a fact with B(r) = ∅, |H(r)| = 1 and
H(r) = {a} where a is a classical ground atom.

Example 2.1.7. Examples of facts are:

cloudyWeather. -isRaining. person(alice). person(bob).

the :- sign is usually omitted.

In the following, as it is common, we will adopt the notation reported next
to represent in a compact way a set of facts: p(m11 ..m12 , . . . ,mn1 ..mn2). where
p/n is a predicate of arity n, andmij with i ∈ {1, . . . n} and j ∈ {1, 2} are terms.
For instance, a(1..2, f(3..4)). de�nes the facts: a(1, f(3)). a(2, f(3)). a(1, f(4)).
a(2, f(4)).

A predicate p/n is referred to as an EDB predicate if, for each rule r in which
p/n appears in H(r), r is a fact; all others predicates are referred to as IDB
predicates. The set of facts in which EDB predicates occur, is called Extensional
Database (EDB), the set of all other rules is the Intensional Database (IDB).

De�nition 2.1.15 (Strong (or Integrity) Constraint). A strong constraint s is
a rule with |H(s)| = ∅.

De�nition 2.1.16 (Weak Constraint). A weak constraint c is a special type of
rule, having form:

:∼ b1, . . . , bm. [w@l, t1, . . . , tn]

where:

� n ≥ 0, m ≥ 0

� b1, . . . , bm are literals

� w, l, t1, . . . , tn are terms; w and l are referred to, respectively, as weight
and level for c; if l = 0, the expression @0 can be omitted.

Basically, a weak constraint is like a strong one, where the implication symbol
:- is replaced by :∼. The informal meaning of a weak constraint :∼ B. is �try
to falsify B,� or �B should preferably be false�.

For a weak constraint c we will indicate as weak speci�cation, denoted W (c),
the part within the square brackets.



2.1. SYNTAX 15

Example 2.1.8. Examples of constraints are:

:- isRaining, not isWetStreet.
:∼ isRaining, person(X), not hasUmbrella(X). [1]

A rule r is ground if all the atoms in H(r) are ground and all the literals in
B(r) are ground. A strong constraint s is ground if all the literals in B(s) are
ground. A weak constraint c is ground if all the literals in B(c) are ground, and
all the terms in its weak speci�cation W (c) are ground. In Example 2.1.6 the
rule isRaining | -isRaining :- cloudyWeather. is ground, as well as the two
constraints in Example 2.1.8.

For a literal l, let var(l) be the set of variables appearing in l; if l is ground
var(l) = ∅. For a conjunction of literals C, var(C) denotes the set of variables
occurring in the literals in C; similarly, for a disjunction of atoms D, var(D)
denotes the set of variables in the atoms in D. Inductively, for a rule r, var(r) =
var(H(r))∪var(B(r)); for a strong constraint s, var(r) = var(B(s)); for a weak
constraint c, var(c) = var(B(c)) ∪ var(W (c)).

Given a rule or weak constraint r, a variable X is global if it appears outside
of an aggregate element in r; we denote as varg(r) the set of global variables in r.
Given an aggregate element e in a rule or weak constraint r, varl(e) = var(e) \
var(r) denotes the set of local variables of e, i.e. the set of variables appearing
only in e, while the set of global variables of e contains variables appearing
in both r and e, i.e. varg(e) = var(r) ∩ var(e). Suppose that r contains
the aggregate elements E = {e1, . . . , en}, then var(r) can be also de�ned as
var(r) = varg(r) ∪

⋃n
i=1{varl(ei)|ei ∈ E}; if n = 0 and thus E = ∅, i.e. r does

not contain any aggregate element, then var(r) = varg(r).

Example 2.1.9. As an example, given the following rule r:

a(X) :- b(X), not c(X),#sum{Y : d(X,Y );Z : f(Z)}.

we can observe that var(r) = {X,Y, Z}, varg(r) = {X}, varl(Y : d(X,Y )) =
{Y }, varl(Z : f(Z)) = {Z}.

In the following, we will denote rules and constraints (weak or strong) simply
as rules.

De�nition 2.1.17 (Query). A query has form: a? where a is a classical atom.

Example 2.1.10. Examples of queries are: -isRaining?, hasUmbrella(X)?.

A query is ground if its atom is ground. In Example 2.1.10 -isRaining? is
ground.

De�nition 2.1.18 (Program). A program is a �nite set of rules, possibly ac-
companied by a single query.

A program is ground if all its rule, constraints, and the possible query are
ground. A program containing disjunctive rules is disjunctive, otherwise it is
non disjunctive.
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Example 2.1.11. The following constitutes a disjunctive program:

hasUmbrella(X) | doesNotHaveUmbrella(X) :- person(X).
isRaining | -isRaining :- cloudyWeather.
:- isRaining, not isWetStreet.
:∼ isRaining, person(X), not hasUmbrella(X). [1]
cloudyWeather. -isRaining.
person(alice). person(bob).
hasUmbrella(bob)?

Programs are also classi�ed according to their structural properties, such as
dependencies among predicates.

De�nition 2.1.19. (Dependency Graph) The Dependency Graph of P is a
directed graph GP = 〈N,E〉, where N is the set of IDB predicates of P , and E
contains an edge (p/n, q/m) if there is a rule r in P such that q/m occurs in
the head of r and p/n occurs in a classical atom of B(r) or in a classical atom
within an aggregate literal of B(r).

The graph GP induces a partition of P into subprograms (also called mod-
ules). For each strongly connected component (SCC)1 C of GP (a set of predi-
cates), the set of rules de�ning the predicates in C is called module of C and is
denoted by MC . A rule r occurring in a module MC (i.e. containing in its head
some predicate q/m ∈ C) is said to be recursive if there is a predicate p/n ∈ C
in the positive body of r; otherwise, r is said to be an exit rule. Moreover, we
say that p/n and q/m are recursive predicates. A program containing at least
a recursive rule is said recursive.

Currently, ASP-Core-2 forbids the usage of recursion inside aggregates, re-
quiring that recursive predicates do not appear within aggregates; nonetheless,
the problem has been investigated in literature and several semantics have been
proposed for them [83, 72, 47, 107, 109, 108, 118, 119, 59, 58]. However, while
previous semantic de�nitions typically agree in the non-recursive case, the pic-
ture is not so clear for recursion. Complying with ASP-Core-2, in this thesis we
restrict our attention to non-recursive aggregates.

De�nition 2.1.20. (Component Graph) The Component Graph of a program
P is a directed labelled graph Gc

P = 〈N,E, lab〉, where N is the set of strongly
connected components of GP , and E contains:

� an edge (B,A) with lab((B,A)) =�+�, if there is a rule r in P such that
a ∈ A occurs in the head of r and b ∈ B occurs in a classical atom of B(r)
or in a classical atom within an aggregate literal of B(r);

� an edge (B,A), with lab((B,A)) =�-�, if there is a rule r in P such that
a ∈ A occurs in the head of r and b ∈ B occurs in a negative naf-literal of
B(r) or in a negative naf-literal within an aggregate literal of B(r), and
there is no edge e′ in E, with lab(e′) =�+�.

A predicate p/n is strati�ed [5] with respect to negation if it does not occur
in cycles in Gc

P involving negative dependencies (i.e. edges labelled with �-�),

1We brie�y recall that a strongly connected component of a directed graph is a maximal

subset of the vertices, such that every vertex is reachable from every other vertex.
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otherwise p/n is said unstrati�ed. Consequently, a program P is strati�ed with
respect to negation if every predicate appearing in it is strati�ed, or equivalently,
if no cycles in Gc

P involve negative dependencies, otherwise P is said unstrati�ed.
A predicate is solved if: (i) p/n is de�ned solely by non-disjunctive rules (i.e.
all rules with p/n in the head are non-disjunctive), and (ii) q does not depend
(even transitively) on any unstrati�ed predicate or disjunctive predicate (i.e. a
predicate de�ned by a disjunctive rule).

Example 2.1.12. As an example let us consider the following program P1:

r1 : a(X) :- b(X), not c(X).
r2 : b(Y ) :- a(Y ), Y = X + 1, f(X).
r3 : c(X) :- d(X), not a(X).
r4 : d(X) :- f(X), not g(X).

The dependency and component graphs are illustrated in Figure 2.1. In the
dependency graph GP1

, there are three components: (1) a �rst component C1 is
formed by predicate a/1 and b/1, (2) the predicate c/1 forms another component
C2, and (3) a third component C3 is composed by the predicate d/1. Hence,
MC1 = {r1, r2}, MC2 = {r3}, MC3 = {r4}. Moreover, the rules r1 and r2 are
recursive, thus P1 is recursive. Finally, in the component graph Gc

P1
there is

a cycle involving components {a/1, b/1} and {c/1}, and so P1 is unstrati�ed
under negation.

a/1 b/1

c/1 d/1

{a/1,
b/1}

{c/1} {d/1}

 + 

GP1 Gc
P1

Figure 2.1: Dependency and Component Graphs.

2.2 Semantics

The semantics of an ASP program is given by the set of its answer sets. Each
answer set corresponds to a solution for the encoded problem. Notably, ASP is
a fully declarative paradigm: the order in which the program is composed by
rules, constraints and query, as well as the order of literals and atoms in the
rules bodies and heads, have no e�ect on the semantics.

Furthermore, answer sets are de�ned for ground programs only. However,
for every non-ground program, a semantically equivalent ground program can
be de�ned. The process of producing such a ground program is referred to as
instantiation or grounding. Essentially, for each rule of a non�ground program
its variables are considered universally quanti�ed and ranging over the set of
ground terms de�ned by the program Herbrand Universe. Intuitively, variables
are just an abstraction to represent ground terms.
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In the following, we formalize the semantics of ASP-Core-2, obtained by
inheriting the semantics proposed in [74] as a generalization of stable models
semantics [73], extended to aggregates according to [56, 57].

2.2.1 Theoretical Instantiation

Let P an ASP program.

De�nition 2.2.1 (Herbrand Universe). The Universe of Herbrand of P , UP ,
is the set of all integers and ground terms constructible from constants and
functors appearing in P . In case no constant appears in P an arbitrary constant
c is added to UP .

De�nition 2.2.2 (Herbrand Base). The Base of Herbrand of P , BP , is the set
of all ground classical atoms obtainable by combining predicate names appearing
in P with terms from UP as arguments.

Example 2.2.1. As running example, let us consider the program P1:

b(1). b(2). c(1).
a(X) :- b(X), not c(X ∗ 1).
d(Y ) :- #count{X : a(X)} = Y.

then UP1
= {1, 2} and BP1

= {a(1), a(2), b(1), b(2), c(1), c(2), d(1), d(2)}.

De�nition 2.2.3 (Substitution). Given a Herbrand Universe UP of a program
P and a set of variables V , a substitution is total function σ : V 7→ UP that maps
each variable in V to an element in UP . For some object O occurring in P (term,
atom, aggregate atom, literal, rule, weak constraint, query, etc.), we denote by
Oσ the object obtained by replacing each occurrence of a variable v ∈ var(O)
by σ(v) in O. σ is well-formed if the arithmetic evaluation, performed in the
standard way, of each arithmetic sub-term t in Oσ is well-de�ned.

In the following, we will denote a substitution σ also as the set {X =
c |σ(X) = c}.

De�nition 2.2.4 (Global and Local Substitutions). Given a rule or weak con-
straint r in P a substitution is global if it involves variables in varg(r); for an
aggregate element e in r, a substitution is local if it involves variables in varl(e).

We remark that for terms, classical atoms, naf-literals and queries a sub-
stitution is implicitly global, due to the absence of aggregate elements. In the
following for the above mentioned constructs we will indicate substitutions for
them as global substitutions.

Example 2.2.2. Consider the rule r1 from P1 and the (global) substitution
σ1 = {X = 1}, then r1σ1 = a(1) :- b(1), not c(1 ∗ 1). Note that σ1 is well-
formed, while for instance, supposing that UP contained also the symbolic con-
stant abc, then a substitution σ2 = {X = abc} would not be well-formed.

Now, consider the rule r2 from P1 and the global substitution σ3 = {Y = 1},
then r2σ3 = d(1) :- #count{X : a(X)} = 1. If instead, we consider the local
substitution σ4 = {X = 1}, then r2σ4 = d(Y ) :- #count{1 : a(1)} = Y .
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The instantiation of an aggregate element e is obtained by considering well-
formed local substitutions for e; formally, the instantiation of e consists in the
following set of ground aggregate elements:

inst(e) = {eσ|σ is a well-formed local substitution for e}

Inductively, the instantiation of a series of aggregate elements {e1, . . . , en} is
provided by the set of aggregate elements reported below:

inst({e1, . . . , en}) =

n⋃
i=1

{eiσ|σ is a well-formed local substitution for ei}

A ground instance of a term, classical atom, naf-literal, a rule, weak con-
straint, or query o is obtained in two steps: (i), a well-formed global substitution
σ for o is applied to o; (ii), for every aggregate atom af{e1, . . . , en} B t in rσ
its aggregate elements {e1, . . . , en} are replaced by inst({e1, . . . , en}).

Example 2.2.3. Consider the aggregate element e = {X : a(X)} of rule r2
from P1, then the instantiation inst(e) of e consists in inst(e) = {1 : a(1); 2 :
a(2)}.

At this point, a ground instance of r2 is obtained by applying the substitution
σ3 = {Y = 1}, and replacing e with inst(e): d(1) :- #count{1 : a(1); 2 :
a(2)} = 1.

The arithmetic evaluation of a ground instance g of some term, classical
atom, naf-literal, rule, weak constraint or query is obtained by replacing any
maximal arithmetic subterm appearing in g by its integer value, which is calcu-
lated in the standard way.

The ground instantiation of a program P , denoted by grnd(P ), is the set of
arithmetically evaluated ground instances of rules, strong and weak constraints
in P .

Example 2.2.4. Eventually, let us consider P1, grnd(P1) consists in:

b(1). b(2). c(1).
a(1) :- b(1), not c(1).
a(2) :- b(2), not c(2).
d(1) :- #count{1 : a(1); 2 : a(2)} = 1.
d(2) :- #count{1 : a(1); 2 : a(2)} = 2.

Note that the substitution {X = 1, X = 2} has been applied to r1, and the
arithmetic terms (1 ∗ 1) and (2 ∗ 1) have been evaluated respectively to 1 and 2.

Remark 2.2.1. The instantiation of a program is idempotent: for each program
P , ground(P ) = ground(ground(P )).

2.2.2 Interpretations

Once that a ground program is obtained, the truth values of atoms, literals,
rules, constraints etc. is properly de�ned according to interpretations.

De�nition 2.2.5 (Herbrand Interpretation). A (Herbrand) interpretation I for
P is a consistent subset of BP ; to this end, for each predicate atom a ∈ BP ,
{a,−a} * I must hold.
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Literals can be either true or false w.r.t. an interpretation. To illustrate
how their truth values are determined, as a preliminary step, we need to de�ne
a proper total order � on terms in UP . Several orderings may be de�ned, in
ASP-Core-2 has been adopted the one reported next.

Let t and u be two arithmetically evaluated ground terms, then:

� t � u for integers t and u if t ≤ u,

� t � u if t is an integer and u is a symbolic constant,

� t � u for symbolic constants t and u with t lexicographically smaller or
equal to u,

� t � u if t is a symbolic constant and u is a string constant,

� t � u for string constants t and u with t lexicographically smaller or equal
to u,

� t � u if t is a string constant and u is a functional term,

� t � u for functional terms t = f(t1, . . . , tn) and u = g(u1, . . . , un) if either:

� m < n or,

� m = n and g � f (f is lexicographically smaller than g) or,

� m = n, f � g and, for any 1 ≤ j ≤ m such that tj � uj , there
is some 1 ≤ i < j such that ti � ui (i.e. the tuple of terms of t is
smaller than or equal to the arguments of u).

At this point, we are ready to properly de�ne literals satisfaction. Let I
I ⊆ BP be a consistent interpretation for P .

The satisfaction of built-in atoms can be easily de�ned according to the total
order �, in the intuitive way, as they represent comparisons among terms. A
ground classical atom a ∈ BP is true w.r.t. I if a ∈ I. A positive ground
naf-literal a is true w.r.t. I if a is a classical or built-in atom that is true w.r.t.
I; otherwise, a is false w.r.t. I. A negative ground naf-literal not a is true (or
false) w.r.t. I if a is false (or true) w.r.t. I.

Given a ground aggregate atom af{e1, . . . , en} B t, in order to correctly eval-
uate its semantics according to its aggregate function, the expression af{e1, . . . ,
en} has to be mapped to a term, say u. Indeed, aggregate functions can be
seen as mappings from set of terms to a term. Let T be the set of terms in
{e1, . . . , en}, then:

� if ag = #count, then u = |T |;

� if ag = #sum, then u =
∑

ti∈T ti is an integer;

� if ag = #max, then u = max{ti|ti ∈ T}

� if ag = #min, then u = min{ti|ti ∈ T}

Essentially, #count depends on the cardinality of the set of terms T , #sum
is evaluated as the sum of the integers in T , while #max and #min functions
strictly rely on the total order � on terms in UP . In case T = ∅, the following
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convention is adopted: #max{∅} � u and u � #min{∅} for every term u ∈ UP

.

Fixed an interpretation some aggregate elements may not contribute to the
semantics of an aggregate atom. Intuitively, an interpretation can �lter out some
aggregate elements according to their truth values w.r.t. the interpretation itself.
More formally, the interpretation I maps a collection E of aggregate elements
to the following set of tuples of ground terms:

eval(E, I) ={(t1, . . . , tn)|{t1, . . . , tn : l1, . . . , lm} occurs in E and

{l1, . . . , lm} are true w.r.t. I}

Let a = af{e1, . . . , en} B t be an aggregate atom, a is true (or false) w.r.t.
I if af{eval(e1, . . . , en, I)} B t. A positive aggregate literal a is true (or false)
w.r.t. I if a is an aggregate atom that is true (or false) w.r.t. I. A negative
aggregate literal not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Let r be a ground rule in grnd(P ). The head of r is true w.r.t. I ifH(r)∩I 6=
∅. The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e.
B+(r) ⊆ I and B−(r) ∩ I = ∅) and is false w.r.t. I otherwise. The rule r is
satis�ed (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

Example 2.2.5. Let

I1 = {b(1), b(2), c(1), a(1), d(1), d(2)}

be an interpretation for grnd(P1), then:

b(1). b(2). c(1). are satis�ed w.r.t. I1.
a(1) :- b(1), not c(1). is not satis�ed because not c(1) is

false w.r.t. I1.
a(2) :- b(2), not c(2). is not satis�ed because a(2) is

false w.r.t. I1.
d(1) :- #count{1 : a(1); 2 : a(2)} = 1. is satis�ed w.r.t. I1 since eval({1 :

a(1); 2 : a(2)}, I1) = {1 : a(1)},
and #count{1 : a(1)} = 1.

d(2) :- #count{1 : a(1); 2 : a(2)} = 2 is not satis�ed w.r.t. I1 because
of the evaluation reported above.

2.2.3 Answer Sets

De�nition 2.2.6 (Model). A model for P is an interpretation M for P such
that every rule r ∈ grnd(P ) is true w.r.t. M .

De�nition 2.2.7 (Minimal Model). A model M for P is minimal if no model
N for P exists such that N is a proper subset of M . The set of all minimal
models for P is denoted by MM(P ).
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Example 2.2.6. The interpretation I1 is not a model for P1, while the inter-
pretation

I2 = {b(1), b(2), c(1), a(2), d(1)}

is a model for P1:

b(1). b(2). c(1). are satis�ed w.r.t. I2.
a(1) :- b(1), not c(1). is satis�ed w.r.t. I2 because both

the body and the head are false.
a(2) :- b(2), not c(2). is satis�ed w.r.t. I2.
d(1) :- #count{1 : a(1); 2 : a(2)} = 1. is satis�ed w.r.t. I2 since eval({1 :

a(1); 2 : a(2)}, I2) = {2 : a(2)},
and #count{2 : a(2)} = 1.

d(2) :- #count{1 : a(1); 2 : a(2)} = 2 is satis�ed w.r.t. I2 because of the
evaluation reported above, thus
both the body and the head are
false.

Moreover, I2 is also a minimal model for P1.

De�nition 2.2.8 (Reduct). Given a ground program P and an interpretation
I, the reduct of P w.r.t. I is the subset P I of P , which is obtained from P by
deleting rules in which a body literal is false w.r.t. I.

It is worthwhile noting that the above de�nition of reduct, proposed in [56],
simpli�es the original de�nition of Gelfond-Lifschitz (GL) transform [74], but
is fully equivalent to the GL transform for the de�nition of answer sets [56].

De�nition 2.2.9 (Answer Set). [112, 74] Let I be an interpretation for a
program P . I is an answer set for P if I ∈MM(P I) (i.e. I is a minimal model
for the program P I). The set of all answer sets for P is denoted by AS(P ).

Example 2.2.7. Let us consider grnd(P1) and I2, then the reduct grnd(P )I2

is:
b(1). b(2). c(1).
a(2) :- b(2), not c(2).
d(1) :- #count{2 : a(2)} = 1.

I2 is a minimal model for grnd(P1)I2 since no proper subset of I2 exists such
that is a model for it, and thus I2 an answer set for P1.

In particular, since P1 is a not disjunctive and strati�ed program, I2 is the
unique answer set for P1, i.e. AS(P1) = {I2}. This type of program admits a
unique answer set, which corresponds to its perfect model [54].

Furthermore, we distinguish coherent and incoherent programs: coherent
programs admit at least one answer set, while incoherent programs have no
answer sets.

In case of weak constraints, answer sets need to be further examined, and
classi�ed as optimal or not. Intuitively, strong constraints represent conditions
that must be satis�ed, while weak constraints, introduced originally in [93, 22],
indicate conditions that should be satis�ed; their semantics involves minimizing
the number of violations, thus allowing to easily encode optimization problems.
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Optimal answer sets of P are selected among AS(P ), according to the fol-
lowing schema. Let I be an interpretation, then:

weak(P, I) ={(w@l, t1, . . . , tm)

:∼ b1, . . . , bn[w@l, t1, . . . , tm] occurs in grnd(P )

and b1, . . . , bn are true w.r.t. I}
For any integer l, let

P I
l =

∑
(w@l,t1,...,tm)∈weak(P,I),w is an integer

w

denotes the sum of integers w over tuples with w@l in weak(P, I).
In other words, for each weak constraints satis�ed by I in grnd(P ) we sum

the weights per level: these numbers represent a sort of penalty paid by I: the
lower they are, the higher is the possibility for I, if it represents an answer set,
to be optimal.

More formally, we de�ne the notion of domination among answer sets as
follows. Given an answer set A ∈ AS(P ), it is said dominated by another
answer set A′ if there is some integer l such that PA′

l < PA
l and PA′

l′ < PA
l′

for all integers l′ > l. An answer set A ∈ AS(P ) is optimal if there is no
A′ ∈ AS(P ) such that A is dominated by A′. In general, a coherent program
may have one or more optimal answer sets.

Example 2.2.8. Let us consider the following ground program P2:

c(1). c(2).
a(1) | b(1) :- c(1).
a(2) | b(2) :- c(2).
:∼ a(1). [1@1]
:∼ b(1). [1@2]
:∼ a(2). [2@1]
:∼ b(2). [2@2]

The set AS(P2) consists in:

as1 : c(1). c(2). a(1). b(2)
as2 : c(1). c(2). a(1). a(2)
as3 : c(1). c(2). b(1). b(2)
as4 : c(1). c(2). b(1). a(2)

For an answer set a, we will represent as < {w1, l1}, . . . , {wn, ln} > the sum
of weights w1, . . . , wn for l1, . . . , ln, n ≥ 0. Now, for as1 we obtain < {1, 1},
{2, 2} >, for as2 < {3, 1}, {0, 2} >, for as3 < {0, 1}, {3, 2} > and �nally for as4
< {2, 1}, {1, 2} >. Hence, P2 admit a unique optimal answer set, namely as2,
since it is not dominated by any other answer sets.

2.3 Advanced Constructs

Choice Rules

ASP-Core-2 introduces another type of rule, namely choice rules; they represent
a syntactic shortcut that can be simulated by the rule types previously intro-
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duced. However, choice rules, originally proposed in the system lparse [122],
can greatly ease the task of encoding a computational problem into ASP.

De�nition 2.3.1 (Choice Element). A choice element has form: a : l1, . . . , lm,
where a is a classical atom and li for i ∈ {1, . . . ,m} is a naf-literal and m ≥ 0.

De�nition 2.3.2 (Choice Atom). A choice atom has form:

{e1; . . . ; en} B u

where,

� n ≥ 0,

� ei for i ∈ {1, . . . , n} is a choice element,

� B∈= {<,<=,=, <>, !=, >,>=},

� u is a term.

The operator B and the term u can be omitted whenever u = 0 and B corre-
sponds to >=.

De�nition 2.3.3 (Choice Rule). A choice rule consists in a rule with a single
choice atom a in its head, and literals b1, . . . , bn for n ≥ 0 in its body:

a :- b1, . . . , bn.

Example 2.3.1. An example of choice rule is {a; b; c} <= 3. Intuitively, �xed
an interpretation I if the body is satis�ed w.r.t. I, as in this case since it is
empty, it is su�cient that a possibly empty subset of the choice elements is true
w.r.t. I to satisfy the choice atom. Hence, by selecting arbitrarily a, b, c as
true or false to satisfy the rule. Thus, the rule can be rewritten in the following
rules:

a | -a.
b | -b.
c | -c.

Formally, a choice rule corresponds to the rules, for i ∈ {1, . . . , n}:

ai|ai :- l1, . . . , lm, b1, . . . , bk

and to the constraints:

:- b1, . . . , bk,not #count{a1 : a1, l11, . . . , lm1; . . . ;αn : an, l11, . . . , lmn} B u

where, for each classical atom s = p(t1, . . . , tn), s = p′(1, t1, . . . , tn) and -s =
p′(0, t1, . . . , tn), with p′ an arbitrary predicate associated to p.
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2.4 Safety Restriction

In order to instantiate a (non-ground) rule r, all its variables are considered
universally quanti�ed and ranging over the set of all ground terms of the pro-
gram of which r is part. However, to ensure the semantics not all ground terms
need to be considered, but we can restrict the actual domain for variable sub-
stitutions, and in turn to limit the size of the produced instantiation. To this
end, as we will mention in Chapter 4, typically, ASP grounders imposed some
conditions on the accepted input, such as lparse ω-restrictedness [121, 122], the
λ-restrictedness [70] of the �rst gringo releases (up to version 3.0), and DLV
safety restriction. In the latest years, ASP-Core-2 established safety as the stan-
dard restriction for modern ASP systems. Essentially, this is a restriction on
variables that guarantees that a rule is logically equivalent to the set of its Her-
brand instances. Originally, safety has been introduced in the �eld of databases,
in order to ensure that queries over databases are independent from the set of
constants considered; similarly, in ASP, safety ensures that programs do not
depend on the Universe considered.

Let L = {l1, . . . , ln} for n ≥ 0 be a set of literals. For a term, literal, rule
e we denote as var′(e) ⊆ var(e) the set of variables in e occurring outside of
arithmetic terms. The set of safe variables, denoted Safe(L) ⊆ var(L), initially
corresponding to ∅, is computed inductively according to the following schema:

1. for each classical atom a ∈ L, Safe(L) = Safe(L) ∪ var′(l);

2. for each built-in atom a ∈ L of form v = t or t = v, where t is a term with
var(t) ⊆ Safe(L) and v is a variable, Safe(L) = Safe(L) ∪ v;

3. for each aggregate atom a ∈ L of form af{e1, . . . , ek} = v, where v is a
variable, Safe(L) = Safe(L) ∪ v.

We will denote aggregate and built-in atoms of types 2 and 3 as assignment
atoms. Moreover, let V be the set of variables that an atom a adds to Safe(L)
we say that a binds V in L, or equivalently that a is a binder for V in L.

A naf-literal l ∈ L is safe if var(l) ⊆ Safe(L). An aggregate element
t1, . . . , tp : b1, . . . , bq appearing in the set E of aggregate elements of an ag-
gregate literal l ∈ L of form af{E} B t is safe if varg(b1, . . . , bq) ⊆ Safe(L)
and varl(b1, . . . , bq) ⊆ Safe(b1, . . . , bq); consequently, af{E} B t is safe if all
its aggregate elements are safe, and var(t) ⊆ Safe(L). For a literal l ∈ L, let
V arToSafe(l) = varg(l) \ Safe(l). If V arToSafe 6= ∅ we refers to a set of
literals {l′1, . . . , l′m} ⊆ L (m ≤ n) binding the set of variables V arToSafe(l, l′1,
. . . , l′m) as saviours for l. In general, for the same literal several set of saviours
might exist.

A non-choice rule r is safe if every literal in its body is safe and var(H(r)) ⊆
Safe(B(r)). A choice rule r is safe if every literal in its body is safe and for
every choice element of form a : N , where a is a classical atom and N is a set
of naf-literals, var(a) ⊆ Safe(N) ∪ Safe(B(r)). A weak constraint w is safe if
every literal in its body is safe and var(W (w)) ⊆ Safe(B(w)). A query a? is
safe if var(a) ⊆ Safe(a). A program P is safe if every rule and query composing
P is safe.
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Example 2.4.1. For instance, the following rules are safe:

a(X) :- b(X), c(X + 1).
a(Y ) :- b(X), Y = X + 1.
a(X,Y ) :- b(X,Y ), not c(X,Y ).
a(Z) :-h(Y ), Z = #count{X : g(X), not f(X,Y )}.
a(X,Y ) :-Y = #sum{W : g(W )}, X = #count{Z : g(Z),

not f(Z, Y )}, not b(X,Y ).
:-#min{X,S : b(T,X), S = (2 ∗ T )−X} = Y.
:∼ #max{X : b(X,X + 1)} = Y. [1@1, f(Y ∗ Y )]
{a(X,Y ) : b(Y ); b(X) : c(X ∗ 3)} :- d(X).

These other rules are not safe:

a(X) :- c(X + 1).
a(Y ) :-Y = X + 1.
a(X,Y ) :-not c(X,Y ).
a(Z) :-Z = #count{X : g(X), not f(X,Y )}.
a(X,Y ) :-X = #count{Z : g(Z), not f(Z, Y )}, not b(X,Y ).
:-#min{X,S : b(T,X), S +X = (2 ∗ T )} = Y.
:∼ #max{X : b(X,X + 1)} = Y. [1@1, f(Y ∗ Z)]
{a(X,Y ) : b(Y ); b(X) : c(X ∗ 3)} :-not d(X).

Now, let us consider the following rule r1:

a(X,Y, Z) :- b(X,Y ), c(Y,Z), Z = Y + 1, d(Z + 1),#count{T : e(T,X)} < Y.

It is easy to see that r1 is safe. In addition:

� b(X,Y ) binds the variables X and Y ;

� c(Y,Z) binds the variables Y and Z;

� Z = Y + 1 binds the variable Z;

� d(Z + 1) and #count{T : e(T,X)} < Y do not bind any variable.

For the literals b(X,Y ) and c(Y,Z) V arToSafe = ∅, while for Z = Y + 1
V arToSafe = Y , hence b(X,Y ) is a saviour for it, as well as c(Y, Z), because
both atoms bind Y . For d(Z + 1), V arToSafe = Z, and so there are three
possible sets of saviours: {Z = Y + 1, b(X,Y )}, {Z = Y + 1, c(Y, Z)}, or simply
{c(Y, Z)}. Note that even if Z = Y + 1 binds Z the built-in alone is not a
saviour, because it needs a saviour for Y . Finally, for #count{T : e(T,X)} < Y
possible saviours are: {b(X,Y )}, {b(X,Y ), c(Y,Z)}.



Chapter 3

Knowledge Representation

and Reasoning

The high knowledge-modeling power of ASP as well as the availability of reliable,
high-performance implementations [34, 68] made ASP suitable for solving a
variety of complex problems arising in scienti�c applications [36] from several
areas ranging from Arti�cial Intelligence [6, 10, 11, 60, 106, 20, 62], to Knowledge
Management [9, 12] and Databases [98, 19, 90, 15].

As previously anticipated, the ordering of literals and rules is immaterial,
thus ASP is intended as a fully declarative language. Moreover, the concept
of negation as failure and the closed world assumption make it particularly
suitable for representing incomplete knowledge and nonmonotonic reasoning.
The expressive power is a further key property: the only restriction of ASP to
disjunction and negation as failure captures the complexity class ΣP

2 = NPNP.
More precisely, ASP programs may express, in a precise mathematical sense,
every property of �nite structures over a function-free �rst-order structure that
is decidable in nondeterministic polynomial time with an oracle in NP [53, 45].

This chapter provides, by means of proper examples, some insights about the
capabilities of ASP as a tool for Knowledge Representation and Reasoning fo-
cusing on the GCO programming methodology, then illustrates some Deductive
Databases applications.

3.1 The GCO Technique

To grasp the power behind ASP properties in this section we introduce one of
the most common programming paradigm in ASP, namely the Guess & Check
& Optimize (GCO) technique.

The key idea of GCO is the following: a computational problem is encoded
by an ASP program composed by (i) a set of (usually disjunctive or choice) rules,
called �guessing part�, used to de�ne the search space; (ii) another (optional)
set of rules, called �checking part�, which impose some admissibility constraint;
(iii) a further (optional) set of weak constraints to specify preferences over found
solutions. Once the program has been expressed in a (non-ground) program,
typically referred to as encoding, it can be then paired with a set of facts speci-
fying an instance of the problem; this separation allows to encode problems in

27
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a uniform way over varying instances.

More in detail, given a set FI of facts that specify an instance I of some
problem P , a GCO program P for P consists of the following two main parts:

� Guessing Part. The guessing part G ⊆ P of the program de�nes the search
space, such that answer sets of G ∪ FI represent �solution candidates� for
I.

� Checking Part. The (optional) checking part C ⊆ P of the program �lters
the solution candidates in such a way that the answer sets of G ∪ C ∪ FI

represent the admissible solutions for the problem instance I.

� Optimization Part. The (optional) optimization part O ⊆ P of the pro-
gram allows to express a quantitative cost evaluation of solutions by
using weak constraints. It implicitly de�nes an objective function f :
AS(G ∪ C ∪ FI) → N mapping the answer sets of G ∪ C ∪ FI to natural
numbers. The semantics of G ∪ C ∪ FI ∪O optimizes f by �ltering those
answer sets having the minimum value; this way, the optimal (least cost)
solutions are computed.

The GCO programming methodology has also positive implications from the
�Software Engineering� point of view. Indeed, the modular program structure
typical of GCO allows to develop programs in an incremental fashion, which
is helpful to simplify testing and debugging. In particular, this methodology
allows to separate the speci�cation the guessing part G, so that it can be tested
that G ∪ FI correctly de�nes the search space; then, by means of the checking
part it is possible to ensure that the answer sets of G ∪ C ∪ FI actually encode
the admissible solutions and via G ∪ C ∪ FI ∪O solutions can be classi�ed.

Three-colorability

As �rst example, consider the well-known NP-complete problem Three-colorabil-
ity :

Given an undirected graph G = (V,E), assign to each vertex one of
three colors such that adjacent vertices always have distinct colors.

Firstly, we can start de�ning a problem instance via facts. In this case, we
need to model an undirected graph G = (V,E):

� vertices can be encoded as facts of the form vertex(x);

� for edges, facts of type edge(x, y) can be used to encode that is there an
edge between the vertices x and y.

The next step consists in encoding the actual problem into an ASP GCO pro-
gram P3col. In the guessing part we de�ne the search space, thus we assign to
each vertex exactly one color among the three available, say red, green and blue.
In the checking part we ensure that no two connected vertices are associated
with the same color. For this problem, we do not need an optimize part, indeed,
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there are not preferences among solutions to be expressed.

% Guessing Part (1 rule)

color(X, red) | color(X, green) | color(X, blue) :- vertex(X).

% Checking Part (1 rule)

:- edge(X,Y ), color(X,C), color(Y,C).

Notably, thanks to the declarative capability of ASP, when designing the en-
coding the focus is on how to model the problem at hand, rather than on how
to actually solve it.

By coupling P3col with a set of facts F for vertex and edge, if the program
P3col ∪ F is coherent, than each answer set represents an admissible solution.
For instance, suppose that

F = {vertex(1), vertex(2), vertex(3), edge(1, 2), edge(1, 3), edge(2, 3)}

then the input graph is complete (i.e. every pair of distinct vertices is connected
by an edge) and the answer set of P3col ∪ F are:

as1 : color(1, blue). color(2, red). color(3, green).
as2 : color(1, blue). color(2, green). color(3, red).
as3 : color(1, red). color(2, blue). color(3, green).
as4 : color(1, red). color(2, green). color(3, blue).
as5 : color(1, green). color(2, red). color(3, blue).
as6 : color(1, green). color(2, blue). color(3, red).

Hamiltonian Path

As next example, let us consider a classical NP-complete problem in graph
theory, namely Hamiltonian Path:

Given a directed graph G = (V,E) and a vertex v ∈ V of this graph,
does there exist a path in G starting from v and passing through
each vertex in V exactly once?

Similarly to Example 3.1 the graph G = (V,E) can be speci�ed by means
of facts over predicates vertex/1 and edge/2. Moreover, we need to de�ne the
starting vertex v: it can be speci�ed by the predicate start/1. Consequently,
the following program Php encodes a solution to the problem:

% Guessing Part (3 rules)

{inPath(X,Y )} :- start(X), edge(X,Y ).
{inPath(X,Y )} :- reached(X), edge(X,Y ).
reached(X) :- inPath(Y,X).

% Checking Part (3 rules)

:- inPath(X,Y ), inPath(X,Y 1), Y <> Y 1.
:- inPath(X,Y ), inPath(X1, Y ), X <> X1.
:- vertex(X), not reached(X), not start(X).
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In the guessing part, the two choice rules guess a subset S of the edges to
be in the path, while the rest of the program checks whether S constitutes a
Hamiltonian Path. Here, an auxiliary predicate reached is used, which is associ-
ated with the guessed predicate inPath using the third rule. Note that reached
is completely determined by the guess for inPath, and no further guessing is
needed. In turn, through the second rule, the predicate reached in�uences
the guess of inPath, which is made somehow inductively: initially, a guess on
an edge leaving the starting vertex is made by the �rst rule, followed by re-
peated guesses of edges leaving from reached vertices by the second rule, until
all reached vertices have been handled.

In the checking part, the �rst two constraints ensure that the set of edges S
selected by inPath meets the following requirements, which every Hamiltonian
Path must satisfy: (i) there must not be two edges starting at the same vertex,
and (ii) there must not be two edges ending in the same vertex. The third
constraint enforces that all vertices in the graph are reached from the starting
vertex in the subgraph induced by S.

It is easy to see that any set of edges S which satis�es all three constraints
must contain the edges of a path v0, v1, . . . , vk in G that starts at vertex v0 = a,
and passes through distinct vertices until no further vertex is left, or it arrives
at the starting vertex a again. In the latter case, this means that the path is in
fact a Hamiltonian Cycle (from which a Hamiltonian path can be immediately
computed, by dropping the last edge).

Thus, given a set of facts F for vertex, edge, and start, the program Php∪F
has an answer set if and only if the corresponding graph has a Hamiltonian Path.

Ramsey Numbers

We show next another use of the GCO programming technique: we build an
ASP program whose answer sets witness that a property does not hold, i.e. the
property at hand holds if and only if the ASP program has no answer set at all.
We next apply the above programming scheme to a problem from the number
and graph theories, namely Ramsey Numbers.

The Ramsey number R(k,m) is the least integer n such that, no
matter how we color the edges of the complete undirected graph
(clique) with n vertices using two colors, say red and blue, there is
a red clique with k vertices (a red k-clique) or a blue clique with m
vertices (a blue m-clique) [113].

We next show a program Pramsey that allows us to decide whether a given
integer n is not the Ramsey Number R(3, 4). By varying the input number n,
we can determine R(3, 4), as described below. Let F be the collection of facts
for input predicates vertex and edge encoding a complete graph with n vertices.
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Pramsey is the following program:

% Guessing Part (1 rule)

blue(X,Y ) | red(X,Y ) :- edge(X,Y ).

% Checking Part (2 rules)

:- red(X,Y ), red(X,Z), red(Y,Z).
:- blue(X,Y ), blue(X,Z), blue(Y,Z),

blue(X,W ), blue(Y,W ), blue(Z,W ).

Intuitively, the disjunctive rule guesses a color for each edge. The �rst constraint
eliminates the colorings containing a red clique (i.e. a complete graph) with 3
vertices, and the second constraint eliminates the colorings containing a blue
clique with 4 vertices. The program Pramsey ∪ F has an answer set if and only
if there is a coloring of the edges of the complete graph on n vertices containing
no red clique of size 3 and no blue clique of size 4. Thus, if there is an answer
set for a particular n, then n is not R(3, 4), that is, n < R(3, 4). On the other
hand, if Pramsey ∪ F has no answer set, then n ≥ R(3, 4). Thus, the smallest n
such that no answer set is found is the Ramsey number R(3, 4).

k-Clique

In this example we focus on the relation between strati�cation negation and
disjunction. To this end, let us consider the following NP �complete problem in
graph theory, referred to as k�Clique:

Given an undirected graph G = (V,E) and an integer k, a k−clique
of G is a complete subgraph of G with k vertices.

As in previous examples, a graph can be encoded by means of facts repre-
senting vertices and edges and a fact of form k(n) can be used to represent the
integer k, while the problem can be encoded in the following Pk−clique program:

% Guessing Part (2 rules)

clique(X) :- vertex(X), not nonClique(X).
nonClique(X) :- vertex(X), not clique(X).

% Checking Part (2 rules)

:- #count{X : clique(X)}! = N, k(N).
:- clique(X), clique(Y ), X! = Y, not edge(X,Y ), not edge(Y,X).

The guessing part generates potential cliques. Notably, in these two guess-
ing rules there is a negative dependency between the predicates clique/1 and
nonClique/1, thus Pk−clique is unstrati�ed under negation. Interestingly, we
are using unstrati�ed negation to simulate disjunction: by replacing the two
rules with the rule

clique(X) | nonClique(X) :- vertex(X).

we obtain a semantically equivalent program. Indeed, even if only in some cases,
unstrati�ed negation can, somehow, model disjunction. More in detail, unless
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the polynomial hierarchy collapses, this correspondence holds for NP problems,
as in general disjunction allows to express problems up to ΣP

2 = NPNP. In the
checking part, the �rst constraint veri�es that only k-cliques are considered and
the second one ensures that vertices belonging to a clique are connected. Given
an instance I �xing k to k1, if Pk−clique∪I has no answer set, then no k1−clique
exists, otherwise each returned answer set will represent a clique of the desired
size k1.

As �nal remark, for the guessing part we could instead use a choice rule as
in the following Qk−clique program:

% Guessing Part (1 rule)

N = {clique(X) : vertex(X)} :- k(N).

% Checking Part (1 rule)

:- clique(X), clique(Y ), X! = Y, not edge(X,Y ), not edge(Y,X).

By doing so, the �rst constraint can be removed, since the requirement on
the clique size can be directly speci�ed in the choice rule.

Maximal Clique

So far, we considered problems without an optimizing part. As example of
complete GCO program let us consider a NP-hard problem, namely Maximal
Clique. It can be considered as a variant of the k-clique problem:

Given an undirected graph G = (V,E) and an integer k, determine a
clique C of maximal size in G, i.e. for each other clique C ′ in G, the
number of vertices in C must be larger than or equal to the number
of nodes in C ′.

Readopting the same instance representation of Example 3.1, with few modi-
�cations to the program Pk−clique we obtain the following encoding Pmax−clique:

% Guessing Part (2 rules)

clique(X) :- vertex(X), not nonClique(X).
nonClique(X) :- vertex(X), not clique(X).

% Checking Part (1 rule)

:- clique(X), clique(Y ), X! = Y, not edge(X,Y ), not edge(Y,X).

% Optimizing Part (1 weak constraint)

:∼ nonClique(X). [1, X]

The guessing part remains unchanged, while in the checking part we removed
the constraint on the cliques size. Indeed, in this case we want to �nd cliques
with the maximal size, which is unknown, thus a weak constraint allows us to
express this requirement. Each answer set will pay a penalty at level 0 according
to how many vertices are not included in the clique it represents, hence the
optimal answer set(s) will be the ones with the cliques of the biggest possible
size.
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3.2 Deductive Database Applications

In the following, we present two classical problems from the deductive database
�eld. Notably, both can be encoded by using only positive rules.

Same Generation

Given a parent-child relationship, represented by acyclic directed graph, we want
to �nd all pairs of persons belonging to the same generation. Two persons are of
the same generation if either they are siblings, or they are children of two persons
of the same generation. If input is encoded by a relation parent(X,Y ), where a
fact parent(a, b) states that a is a parent of b, the solution can be encoded by the
following recursive program, which computes a relation samegeneration(X,Y )
containing all facts such that X is of the same generation as Y :

samegeneration(X,Y )
:- parent(P,X), parent(P, Y ).

samegeneration(X,Y ) :- parent(P1, X),
parent(P2, Y ), samegeneration(P1, P2).

Reachability

Given a �nite directed graph G = (V,E), we want to compute all pairs of nodes
(a, b) ∈ V × V such that b is reachable from a through a nonempty sequence of
edges in E. In other words, the problem amounts to computing the transitive
closure of the relation E.

In the following ASP encoding, we assume that E is represented by the
binary relation edge(X,Y ), where a fact edge(a, b) means that G contains an
edge from a to b, i.e. (a, b) ∈ E; the set of nodes V is not explicitly represented,
since the nodes appearing in the transitive closure are implicitly given by these
facts. Hence, the following program Preachcomputes a relation reachable(X,Y )
containing all facts reachable(a, b) such that b is reachable from a through the
edges of the input graph G:

reachable(X,Y ) :- edge(X,Y ).
reachable(X,Y ) :- edge(X,U), reachable(U, Y ).





Chapter 4

ASP Computation And

Implementations

Answer Set Programming has been introduced more than twenty years ago.
Throughout the years, a signi�cant e�ort has been spent in de�ning techniques
for an e�cient computation of the answer set semantics, and therefore reliable
and high-performance implementations [34, 68] have been released.

This chapter recalls the history of the development of ASP systems. Sec-
tion 4.2 outlines the main ASP systems developed over the years, while Sec-
tion 4.2.2 traces the history of the research carried out on the grounding and
solving phases.

4.1 ASP Systems

The �ground & solve� strategy [82] is currently the commonly adopted strategy
in state-of-the-art-systems. This approach mimics the de�nition of the seman-
tics as given in Section 2.2 by relying on a grounding module (grounder or
instantiator), that generates a propositional theory semantically equivalent to
the input program, coupled with a subsequent module (solver) that applies
proper propositional techniques for generating its answer sets. These phases
are usually referred to as instantiation or grounding, and solving or answer sets
search, respectively.

Throughout the years, systems based on this approach have been released
either as monolithic, i.e. internally embedding grounding and solving modules,
or as combinations of stand-alone grounders and solvers.

Initially, ASP systems were not able to handle disjunctive heads. In this
context, the grounder lparse [121] in combination with the solver smodels [117]
represented one of the �rst reliable implementation. Later on, smodelscc [128]
was released as an improved version of smodels.

The �rst systems capable of dealing with disjunctive programs have been
the monolithic DLV [92], and the combinations of the solvers GnT [81] and
cmodels [75] with an enhanced version of lparse supporting disjunction.

The system DLV has been fruitfully exploited many relevant industrial ap-
plications signi�cantly contributing in fostering the use of ASP in real-world
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scenarios. Besides the core system, several extensions have been developed
geared, to di�erent extents, towards easing the interoperability of ASP [94].

In the following years, clingo [63] represented a novel and e�cient ASP sys-
tem. It combines in a monolithic system the grounder gringo [66] and the solver
clasp [64], which have also been released as stand-alone systems. The recent
releases o�er advanced capabilities: the series 4 introduces high-level constructs
for realizing complex reasoning processes, such as incremental reasoning and
much more, while starting from version 5 clingo allows to integrate ASP with
theory-speci�c reasoning.

Recently, a new e�cient solver have been released, namely wasp [3], which
is compatible with gringo.

A di�erent approach is pursued by the system LP2SAT [80] that represents
a family of sub-systems relying on a translation of propositional logic programs
into logic formulas so that models of the resulting formula are in one-to-one
correspondence with the answer sets of the input program.

Eventually, in contraposition with the traditional approach, systems such
as Gasp [44], Asperix [89, 87], Omiga [46] and Alpha [129] are instead tailored
on lazy grounding, a technique in which the grounding and solving steps are
interleaved, and rules are grounded on-demand during solving. These systems
try to overcome the so called grounding bottle-neck, that occurs on problems for
which the instantiation is inherently so huge that the traditional approach is
not suitable. Indeed, grounders accomplish an intrinsically tough task, which is
in general EXPTIME-hard [45] (see Chapter 5).

4.2 Ground & Solve Approach

Hereafter, we spotlight the traditional approach for computing the answer set(s)
of an ASP program. In particular, in the following subsections we recall the
major grounders and solvers, highlighting the di�erences in the techniques they
adopt.

4.2.1 Grounding Phase

The grounding phase acts like a bridge between the logic programming paradigm
with variables that ease modelling in ASP and propositional programs which
are crucial to devise e�cient solving procedures. Instantiators perform a very
delicate task, as their grounding process highly in�uences the subsequent solving
phase.

As already mentioned, there are three stable grounders for ASP: lparse, the
DLV instantiator [55], and gringo.

lparse has been released as a front-end grounder system, whose output en-
coded in a suitable numeric format, was intended to be given as input to a
separated solver. Moreover, lparse accepts logic programs respecting its ω-
restrictedness constraint. This condition enforces each variable in a rule to
occur in a positive body literal, called domain literal, whose predicate (i) is not
mutually recursive with the head, and (ii) is neither unstrati�ed nor dependent
(also transitively) on an unstrati�ed predicate. To instantiate a rule r, lparse
leverages this restriction, employing a nested loop that iterates on the exten-
sions of the domain predicates occurring in the body of r, and generates ground
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instances accordingly. Notably, lparse originally proposed choice rules, and the
aforementioned codi�cation of the computed ground program into a numeric
format.

On the other hand, DLV was originally intended as a monolithic system,
with a tight internal integration of grounding and solving modules. Its distin-
guishing feature was its ability to handle disjunctive rules. DLV imposes the
less restrictive condition of safety, requiring that each variable in a rule appears
in some positive body literal. Furthermore, the DLV instantiator introduced
the notion of intelligent grounding, contributing to the de�nition of advanced
techniques nowadays employed in modern grounders.

Similarly to lparse, the �rst versions of gringo were based on the concept of
λ-restrictedness [70], consisting of an extension of the lparse ω-restrictedness.
Starting form version 3.0, gringo removed domain-based restrictions and in-
stead requires safety. Notably, currently gringo represents the mainstream ASP
grounder thanks to its e�ciency and the compliance with ASP-Core-2. DLV and
lparse have been released before the introduction of ASP-Core-2, and their in-
put languages are slightly di�erent; for instance, DLV does not handle relevant
constructs such as choice rules. Moreover, like lparse, gringo encodes its output
in a numeric format representing the de-facto standard format that mainstream
solvers are able to interpret.

4.2.2 Solving Phase

The solving algorithms are strictly correlated to satis�ability (SAT) algorithms.
The solvers smodels, smodelscc and the solving module of DLV employ for their
answer set search procedures variations of the classic backtrack-search Davis-
Putnam-Logemann-Loveland (DPLL) algorithm, on which many modern SAT
solvers rely. The essential steps of the DPLL algorithm are: decision, unit prop-
agation, and backtracking. Essentially, during the decision operation solvers
select an unde�ned atom, that is an atom which its truth value is currently
unknown, and assume its truth or falsity. The unit propagation step consists
in propagating this assumption and deriving logic consequences by checking
whether other unde�ned atoms become true or false. Whenever, an inconsis-
tency is derived a backtracking step is performed. Starting from this basic
algorithm, answer set solvers perform specialized operations tailored on answer
set search. Notably, smodels implements �ve di�erent propagators, and the
solver smodelscc enhances the smodels solving process with con�ict-driven back-
jumping and clause learning. In DLV the backtracking step is instead improved
by a backjumping machinery empowered with look-back heuristics [100]; in ad-
dition, DLV di�ers from the other two solvers, for its capability of dealing with
disjunction.

An even stricter correlation with SAT emerged with the solver cmodels,
which carries out its answer set search by distinguishing between �tight� and
�non-tight� programs. In this context, a predicate appearing in the head of a
rule is said to positively depends on the predicates featured by positive literals in
the body. A program is tight if there are no cyclic positive dependencies among
predicates. For tight programs, it leverages on the observation that this class
of programs, answer sets can be found by running a SAT solver on clausi�ed
programs' completion, stemming from the theoretical results provided in [41];
while for non-tight programs, the concept of a loop formula has been introduced
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in [97, 86], and employed in order to compute answer sets of such programs, in
both solvers cmodels and assat [97].

The solver clasp combines both the two aforementioned approaches. Given
an input program, similarly to cmodels and assat , clasp initially computes the
clausi�ed completion; then, it is endowed with a search procedure that relies on a
unit propagator stemming from SAT on the program's completion and a further
unfounded propagator stemming from the former class of solvers. Moreover, it
relies on advanced techniques such as con�ict-driven backjumping and clause
learning.

Similar techniques are adopted also in the more recent solver wasp, properly
extended with custom propagation functions to handle the speci�c properties
of ASP programs.

Further insights about ASP solvers found in [96]. Nowadays, these two latter
systems represent the mainstream solvers. As already anticipated, they require
that the input program is encoded into a numeric format, allowing them an
e�cient and faster parsing.



Part II

Designing an E�cient ASP

Grounder
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This part focuses on the �rst purpose of this thesis, the design of an e�cient
ASP-Core-2 instantiator. In particular, after outlining the basic instantiation
process, we present a series of optimization techniques studied and de�ned with
the aim of reducing both the time and the size of the instantiation. The part is
divided as follows:

� in Chapter 5 we present the theoretical aspects and practical issues behind
the grounding phase, and then abstract a general and basic instantiation
process, for which in the following chapters a broad range of optimizations
are introduced.

� Chapter 6 discusses some di�erent indexing strategies, pondering the ad-
vantages and disadvantages of each alternative.

� Chapter 7 illustrates di�erent body ordering strategies, outlining the dif-
ferences among them.

� Chapter 8 presents a decomposition rewriting geared towards automati-
cally determining according to suitable heuristics whether splitting long
body rules into multiple smaller ones is a convenient choice. After the
de�nition of an abstract decomposition algorithm, we illustrate a speci�c
version aiming at optimizing the grounding process.

� Finally, in Chapter 9 we de�ne a variegated set of optimizations acting in
diverse situations and allowing to further �ne-tune performance.

The techniques illustrated in Chapter 6, Chapter 7 and Chapter 9 have been
partially reported in [28], which was selected as �best paper� at the conference
AI*IA 2016, the 15th International Conference of the Italian Association for
Arti�cial Intelligence. In addition, the decomposition rewriting presented in
Chapter 8 has been reported in [33], and nominated as �student best paper� at
PADL 2018, the 20th International Symposium on Practical Aspects of Declar-
ative Languages.
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Chapter 5

Grounding Process

The chapter is organized as follows. In Section 5.1 we illustrate the major
issues of instantiation from a theoretical side. In Section 5.2 we abstract the
basic instantiation process. Section 5.3 recalls the major optimization means
employed by mainstream grounders.

5.1 Computational Complexity

Theoretically, the instantiation of an ASP program P , grnd(P ), can be obtained
by systematically replacing variables by all possible ground terms in UP . Prac-
tically, grounding is much more than a naive replacement of variables: modern
ASP grounders are empowered with smart procedures for an e�cient and as
small as possible instantiation. The need for e�cient approaches arises from
the intrinsic complexity of the instantiation which has a big impact on the per-
formance of the whole computational process, as its output is the input for a
solver module, that, in the worst case, takes exponential time in the size of the
input ground program [13, 14]. Indeed, the grounding step may lead a bot-
tleneck and an e�cient instantiation is often crucial in real-world applications
involving large input data.

In order to understand the challenges of grounding from a theoretical point
of view, we provide next some complexity results relevant to this purpose. For
more details the reader may refer to [125, 53, 45, 93, 50, 58]. For the sake of
simplicity, let us restrict our attention to ASP programs which are strati�ed
under negation, non-disjunctive, constraint-free, function-free, and containing
in their rules just positive classical literals. More speci�cally, we will consider
plain Datalog programs.

Recall that a program P may be split into an encoding E and into an instance
I (cf. Chapter 3). As Datalog has its roots in relational databases, the concepts
of program and database are more commonly used in place of, respectively,
encoding and instance. Indeed, a database is identi�ed with sets of facts, and
all facts with the same predicate symbol p represent a data relation. The set
of all predicate symbols occurring in the database together with a possibly
in�nite domain for the argument constants is called the schema of the database.
With each database D, we associate a �nite universe UD of constants which
encompasses at least all constants appearing in D, but possibly more.
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Let P be a Datalog program, D a database and A a set of ground atoms;
there are three main kinds of complexity connected to plain Datalog and its
various extensions [125]:

� The data complexity is the complexity of checking whether D∪P |= A for
a �xed Datalog program P and variable D and A.

� The program complexity (also called expression complexity) is the complex-
ity of checking whether D ∪P |= A for a �xed database D and variable P
and A.

� The combined complexity is the complexity of checking whetherD∪P |= A
when D, P and A are variable.

To accomplish such decision problems, we need to perform the following
steps: (i) compute grnd(P∪D), (ii) determine the unique model of grnd(P∪D),
say M , (iii) check whether A ⊆ M . Indeed, in the restricted setting of plain
Datalog P ∪ D admits a unique model that coincides with the unique least
Herbrand model [45]; moreover, the step (ii) can be computed in linear time
w.r.t. the size of grnd(P ∪D) [49]. Hence, the most computational expensive
step consists in computing the grounding.

Let us analyze �rstly data complexity. Grounding a �xed program P on an
input database D yields polynomially many rules in the size of D: let |P | be
the number of rules in P , c denotes the number of constants appearing in UD

and v denotes the maximum number of variables appearing in any rule of P ;
grnd(P ∪U) consists in at most |P | · cv. When P is �xed |P | and v are known,
grnd(P ∪D) is polynomial in the size of D. More precisely, it has been proved
that:

Theorem 1 ( [45]). Datalog is data complete for P.

Regarding program complexity, when P and A are variable while D is �xed,
by applying a similar reasoning we obtain that grounding P ∪D might generate
up to |P | · cv ground rules. Since c is �xed while |P | and v are not, we obtain:

|P | · cv = 2log2|P |·cv = 2log2|P |+log2c
v

= 2log2|P |+v·log2c

Therefore, grnd(P ∪ U) might consist in an exponential number of rules w.r.t.
the size of P ; indeed, it has been proved that:

Theorem 2 ( [45]). Datalog is program complete for EXPTIME.

Eventually, concerning the combined complexity, for plain Datalog (as well
as for some other relevant Datalog extensions) it is equivalent to the program
complexity w.r.t. polynomial-time reductions [45].

Example 5.1.1. Let us consider the following program, P1:

disp(X1, . . . , Xn) :- obj(X1), . . . , obj(Xn).

along with the database D1:

obj(0). obj(1).
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Essentially, D1 is �xed and contains only two facts while P1 contains one non-
ground rule with a non-�xed number of variables. The instantiation ground(P1∪
D1) contains 2n + 2 rules: 2n ground instances for the input rule, and the two
input facts. For instance, for n = 3, we obtain 8 ground instances:

disp(0, 0, 0) :- obj(0), obj(0), obj(0).
disp(1, 0, 0) :- obj(1), obj(0), obj(0).
disp(0, 1, 0) :- obj(0), obj(1), obj(0).
disp(0, 0, 1) :- obj(0), obj(0), obj(1).
disp(1, 1, 0) :- obj(1), obj(1), obj(0).
disp(1, 0, 1) :- obj(1), obj(0), obj(1).
disp(0, 1, 1) :- obj(0), obj(1), obj(1).
disp(1, 1, 1) :- obj(1), obj(1), obj(1).

Intuitively, P1 consists the combinatorial problem of computing the disposi-
tions with repetition of 2 objects in groups of n corresponding exactly to 2n.

The above reported results prove that even when the ASP language is re-
stricted to plain Datalog, grounding is a quite complex task. In the general
case where an ASP program P is given in the input, grounders solve a problem
which is in general EXPTIME-hard: the size of the grounding grnd(P ) can be
up to single exponential in the size of P . Optimizations intervening in their
instantiation process therefore often have a big impact and aim at avoiding the
exponential blowup, when possible. In addition, there are classes of programs
for which the grounding size can be dramatically reduced, such as programs for
which we can assume that the arity of input predicates is bounded [50] or the
maximum number of variables allowed in input rules is bounded [126]. More-
over the magic-sets technique [4] may sometimes avoid the exponential space
requirements if the input program contains a query by emulating a top�down
derivation (we will come back to this technique in Chapter 10).

5.2 Grounding an ASP Program

In this section, we outline the basic grounding process consisting in a bottom-up
evaluation based on a semi-naive approach of the input program. Over time this
approach proved to be particularly reliable and e�cient over a huge number of
scenarios, especially when domain extensions are very large.

To instantiate a program, according to this strategy, it is �rstly divided it
into sub-programs as illustrated in Section 5.2.1, next each sub-program is in-
stantiated as described in Section 5.2.2. In Section 5.2.3 we provide a description
of the core of the whole process, the instantiation of a single rule. For the sake of
readability, in Sections 5.2.2 and 5.2.3 we restrict our attention to the basic ASP
syntax, and do not take into account linguistic extensions such as choice rules,
aggregate literals and built-in atoms; their instantiation is separately outlined
in Section 5.2.4.

5.2.1 Dependency Analysis

Given a program P , the Dependency Graph of P , denoted GP , de�ned in Sec-
tion 2.1 induces a partition of P into subprograms (or modules) allowing for a
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modular evaluation of P , then the Component Graph of P , denoted Gc
P , induces

a partial ordering among the SCCs of the Dependency Graph as follows.

De�nition 5.2.1 (Positive and Negative Precedences). For any pair of nodes
A,B of Gc

P , A positively precedes B in Gc
P (denoted A≺+B) if there is a path in

Gc
P from A to B in which all edges are labeled with �+�; A negatively precedes

B (denoted A≺−B), if there is a path in Gc
P from A to B in which at least one

edge is labeled with �-�.

This ordering induces admissible component sequences C1, . . . , Cn of SCCs
of GP such that for each i < j:

� Cj⊀+Ci

� if Cj≺−Ci then there is a cycle in Gc
P from Ci to Cj(i.e. either Ci≺+Cj

or Ci≺−Cj)

Essentially, it is required that if a module A positively precedes a module
B then A must be evaluated before B, while if A negatively precedes B then
A should be possibly evaluated before B. In general, for a program P several
admissible component sequences may exist.

Example 5.2.1. Given the program P1 of Example 2.1.12 its Dependency and
Component graphs are depicted in Figure 2.1. It can be observed that {c/1}≺+

{d/1}, {c/1}≺−{a/1, b/1}, and {a/1, b/1}≺−{c/1}. Two di�erent admissible
component sequences would be {c/1}, {d/1}, {a/1, b/1}, and {a/1, b/1}, {c/1},
{d/1}.

An admissible component sequence C1, . . . , Cn permits an incremental in-
stantiation of P , one module at a time, preserving the semantics: the instanti-
ation of P is performed by iteratively instantiating the modules MC1

, . . . ,MCn
.

Furthermore, strong and weak constraints are not represented in the aforemen-
tioned graphs due to the missing heads, thus we assume that a further module
M containing these rules is added at the end of the sequence MC1 , . . . ,MCn .

5.2.2 Program Instantiation

Given as input a safe program P , a ground program grnd(P ) such that AS(P ) =
AS(grnd(P )) is produced. In detail, the process of instantiating P consists in
the following steps: i) it is determined GP of P obtaining a division of P
into modules, ii) it is computed Gc

P on the basis of GP , iii) analysing GP it
is selected an admissible component sequence (C1, . . . , Cn), iv) these modules
are iteratively instantiated one at a time following the ordering (C1, . . . , Cn).
During this process, the procedure stores the ground atoms generated into a set
S ⊆ BP , i.e a subset of the Herbrand Base of P , initialized to the set of facts
in P , EDB(P ). We refer to S also as the set of signi�cant atoms.

In order to ground one module, MCi of P for i ∈ {1, . . . , n} we distinguish
between exit and recursive rules. In particular, each exit rule is instantiated just
one time, while recursive rules are grounded multiple times. For each exit rule
r, the ground instances generated of r, are added to grnd(P ), whereas their
head atoms are added to S. Then, recursive rules are repeatedly processed
on the basis of a semi-naïve evaluation schema [124]. In order to avoid the
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generation of the same ground instances multiple times, at each iteration n only
the signi�cant information derived during iteration n− 1 is used.

More in detail, let i be the current iteration: S contains atoms produced
up to iterations i− 2, while two additional sets, ∆S and NS, consist of atoms
computed during the iterations i − 1 and i, respectively. The underlying idea
is that the information derived during iteration i are taken into account for
iteration i + 1. Initially, ∆S and NS are set to ∅. At each iteration: i) ∆S is
set to NS, and NS is assigned to ∅, ii) each recursive rule r inMCi

is grounded
by employing the new information in ∆S to generate new ground instances,
while the head atoms of such instances are added into NS, iii) ∆S is added
to S, since we already dealt with it and so that in the next iteration we will
consider the current NS as the new ∆S. The iterations are stopped as soon as
NS = ∅, thus no new information has been derived.

Intuitively, this instantiation procedure allows to dynamically compute ex-
tensions of predicates; head atoms resulting from a rule instantiation immedi-
ately become members of the domains for the next iteration, even during the
instantiation of the same recursive component.

Example 5.2.2. To illustrate how the procedure works, consider the problem
Reachability, shown is Section 3.2. In particular, the encoding is composed by an
exit rule: reachable(X,Y ) :- edge(X,Y ). that states that a vertex b is directly
reachable from a vertex a, if there is an edge from a to b, and a second recursive
rule: reachable(X,Y ) :- edge(X,U), reachable(U, Y ). that states that a vertex
b is transitively reachable from a vertex a, if there is a path from a to b.

The program is composed by one component C containing the only IDB
predicate reachable/2, and MC contains both rules. The instantiation of MC is
performed by �rst evaluating the exit rule on the set S, initially containing the
input edges. Assuming that S = {edge(1, 2), edge(2, 3), edge(3, 4), edge(3, 5).}
three ground instances are produced:

reachable(1, 2) :- edge(1, 2).
reachable(2, 3) :- edge(2, 3).
reachable(3, 4) :- edge(3, 4).
reachable(3, 5) :- edge(3, 5).

The ground atoms reachable(1, 2), reachable(2, 3), reachable(3, 4) and reach−
able(3, 5) are added to S and the evaluation of the recursive rule starts with
∆S = NS = ∅. The �rst iteration is performed, using the atoms in S, and the
following rules are produced:

reachable(1, 3) :- edge(1, 2), reachable(2, 3).
reachable(2, 4) :- edge(2, 3), reachable(3, 4).
reachable(2, 5) :- edge(2, 3), reachable(3, 5).

Then, reachable(1, 3), reachable(2, 4) and reachable(2, 5) are added to NS,
and S remains the same since ∆S is still ∅. Another iteration starts, ∆S = NS
and NS = ∅. To avoid duplicate rules, for the recursive predicate reachable/2,
only the ground atoms in ∆S are used, producing:

reachable(1, 4) :- edge(1, 2), reachable(2, 4).
reachable(1, 5) :- edge(1, 2), reachable(2, 5).
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Now, NS = {reachable(1, 4), reachable(1, 5)} and S = S ∪ ∆S. Another
iteration is performed, again ∆S = NS and NS = ∅. This time nothing new
can be produced, and S = S ∪ ∆S. The instantiation of the recursive rule
terminates as well as the instantiation of the problem, because there are no
further components to be examined.

5.2.3 Rule Instantiation

The process of determining the ground instances of a rule represents the key
point of the whole instantiation. The function InstantiateRule of Figure 1
exempli�es the essential steps to be performed to accomplish this process.

Let p/n be a predicate, we denote as Ipn
the (ground) extension of p/n,

containing all its ground instances. Let l be a literal over the predicate p/n,
with a slight abuse of notation we denoted as Il, the (ground) extension of l as
the extension of p/n, i.e Il = Ipn .

Given a rule r, a substitution θ : var(r) 7→ UP is valid for r if for every posi-
tive literal l occurring in B+(r), lθ ∈ Il holds. The set of all valid substitutions
for each rule r is logically equivalent to the set of its Herbrand instances [55].
Thus, it is possible to discard a priori any substitution mapping a positive body
literal l to a ground instance of l which is not in Il. Furthermore, since the
rule is safe, in our restricted syntax, each variable occurring either in a nega-
tive literal or in the head of the rule appears also in some positive body literal.
Consequently, the literals in B+(r) bind all the variables in var(r). Intuitively,
the safety condition restricts the set of possible values for variable substitutions
in a semantically �valid� way.

The function InstantiateRule takes as input a safe rule r to be instanti-
ated, and the extension of each literal l ∈ B(r), as a set Il, and outputs a set
of total and valid substitutions, S, for r. Since positive literals are in charge
of binding variables, we assume that B(r) is ordered in a way that any neg-
ative literal always follows the positive literals binding its variables by means
of the sub-procedure OrderBody. Next, InstantiateRule stores the body
literals l1, . . . , lm into an ordered list B = (null, l1, . . . , ln, last) and starts the
computation of the substitutions for r. To this end, it maintains a variable θ,
initially set to ∅, representing, at each step, a partial substitution for var(r).
For each literal li ∈ B(r), after that its body has been reordered, we denote
as BoundVar(li) the set of variables occurring in any literal that precedes li in
B(r) (if i = 1, BoundVar(li) = ∅), and by BindVar(li) the set of variables that
occurs for the �rst time in li, i.e. BindVar(li) = var(li) \ BoundVar(li).

At each iteration of the while loop, by using function Match, we try to �nd
a match for a literal li with respect to θ, in other words, we apply θ to li and
look for an instantiation of Liθ that matches an atom in Ili . More precisely,
we look in Ili for a ground instance g which is consistent with the assignments
for the variables in BoundVar(li), and then use g in order to extend θ to the
variables in BindVar(li); note that, if BindVar(li) = ∅, this task simply consists
in checking whether θ is a valid substitution for li. If no ground atom matches,
then we backtrack to the previous literal in the list, otherwise we consider two
cases: if there are further literals to be evaluated, then we continue with the
next literal in the list; otherwise, θ encodes a (total) valid substitution and is
thus added to the output set S. Even in this case, we backtrack to �nd another
solution.
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The function InstantiateRule

function InstantiateRule(r : Rule, Il1 , . . . , Iln : SetOfInstances) : SetOf-
VariableSubstitutions

var θ : VariableSubstitution, B : ListOfLiterals, l : Literal,
S : SetOfVariableSubstitutions
θ = ∅
/* reorder literals in the body */
OrderBody(r)
/* return an ordered list of the body literals (null, l1,. . .,ln, last) */
B ← BodyToList(r)
l← l1
S ← ∅
while l 6= null do

if Match(l, Il, θ) then
if l 6= last then

l← NextLiteral(l)
else

/* θ is a total substitution for the variables of r */
S ← S ∪ {θ}
/* look for another solution */
l← PreviousLiteral(l)
θ ← θ |BindVar(l)

end if
else

l← PreviousLiteral(l)
θ ← θ |BindVar(l)

end if
end while
return S

end function

The function Match

function Match(l : Literal, Il : SetOfInstances, var θ : VariableSubstitu-
tion) : Boolean

var g : GroundLiteral
if BindV ar(l) = ∅ then

return IsValid(θ,l,Il)
else
/* take a ground instance g from Il, if any */

while GetInstance(Il,g) do
if Extend(g,θ) then

return true
end if
return false

end while
end if

end function
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Furthermore, typically in modern grounders the set of generated ground
instances undergoes to a further simpli�cation step, in which each instance is
examined and possibly simpli�ed or even eliminated. In particular, body literals
over solved predicates are already known to be true in any answer set, and thus
can be safely dropped. Moreover, instance containing in their ground body some
negative literal over a solved predicate already known to be false are removed.
Intuitively, in this case the rule is trivially satis�ed because the conjunction of
body literals is always false in any answer set, and thus it does not contribute
to the semantics of the ground program.

Example 5.2.3. To clarify this process, consider the following rule, r1:

a(X) | b(Z) :- c(X,Z), d(Z, Y ), not e(Y,Z).

Assume that the set of extensions are the following:

c(1, 2). d(2, 1). d(2, 3). e(1, 1).

Initially, θ = ∅. Suppose that the order of literals in the body is not changed,
and thus BodyToList returns this list: (null, c(X,Z), d(Z, Y ), not e(Y,Z),
last). Clearly, another correct order would be: d(Z, Y ), c(X,Z), not e(Y,Z),
while any order in which not e(Y,Z) does not appears after c(X,Z) and d(Z, Y )
would not be correct.

Next, the function starts by looking for a ground atom matching with
c(X,Z). Therefore c(X,Z) is matched with c(1, 2) and θ = {X = 1, Z = 2}.
Then, d(Z, Y ) is taken into account, so we look for an instance in its exten-
sion matching with the partial substitution θ, i.e such that Z corresponds to
2. There are two instances complying with this mapping, suppose we �rstly
retrieve d(2, 1), thus θ = {X = 1, Z = 2, Y = 1}. We proceed to the next literal
not e(Y, Z). Note that since it is negative, because of the processing ordering
imposed and because of safety, BindV ar(not e(Y,Z)) = ∅, moreover by de�ni-
tion, θ remains valid (recall that the validity of a substitution depends just on
positive literals). At this point, we go to the next literal, reaching last, thus θ
encodes a total valid substitution for r1, so it is saved into the set S. Essentially,
we produced the ground rule:

a(1) | b(2) :- c(1, 2), d(2, 1), not e(1, 2).

Then, we backtrack to d(Z, Y ) and from θ we remove Y which is in BindV ar(
d(Z, Y )), so θ becomes {X = 1, Z = 2}. Now, we retrieve the other instance
satisfying θ, which is d(2, 3), θ = {X = 1, Z = 2, Y = 3} and once again we
jump to not e(Y, Z). Applying the same reasoning above, θ is again valid and
total, thus we obtained the ground rule:

a(1) | b(3) :- c(1, 2), d(2, 3), not e(3, 2).

The process goes on, by backtracking again to d(2, Y ), and then to c(X,Z),
because there are no more matches for d(2, Y ). Given that also no further
matches are possible for c(X,Z), the instantiation of r1 terminates.

Eventually, supposing that r1 together with the input facts constitutes a
program P1, the two instances obtained can be simpli�ed as follows:

a(1) | b(2).
a(1) | b(3).
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Indeed, c(1, 2), d(2, 1) and d(2, 3) are facts, and so by de�nition they are always
true in every answer set; while not e(1, 2) and not e(3, 2) are literals over the
solved predicate e/2 which are always true. Intuitively, since there is no rule
allowing to derive instances for e/2, i.e with e/2 in head, there is no chance that
e(1, 2) and e(3, 2) are derived, thus they are always false while their negation is
always true.

5.2.4 Dealing with Linguistic Extensions

The instantiation process described so far can be adapted to handle the ground-
ing of linguistic extensions.

In particular, it is needed to rede�ne the behaviour of the sub-functions
OrderBody and Match. Concerning, the function OrderBody, given as
input rule r, we require that its body reordered complying with a stronger
condition: each literal l in B(r) always follows a possible set of saviours for it
selected among the literals in B(r). Furthermore, the function has to rearrange
literals within choice and aggregate elements in r, if any, by applying the same
criterion. More in detail, suppose that C is a conjunction of literals featured
in an aggregate or choice element: each literal l′ in C is placed after a set of
possible saviours for l′ in C. On the other hand, the function Match has to
perform speci�c operations that depend on kind of literal at hand.

Arithmetic Terms

Let t1♦t2 be an arithmetic term, appearing in a literal l of a rule r. Because
of the way in which literals are rearranged in the body by the function Or-

derBody, we know that when we have to ground t1♦t2, a mapping for var(t1)
and var(t2) has already been added to θ. Thus, we simply instantiate them by
applying the current partial substitution θ to t1 and t2. Next, as in Section 2.2.1
the arithmetic term is arithmetically evaluated in the standard way.

Example 5.2.4. Consider the rule r1:

a(X) | b(Y ) :- c(X,Y ), d(X + Y, Z), e(Z + 1).

Suppose that the input facts are:

c(1, 1). d(1, 1). d(2, 1). e(2).

There is just one correct ordering for body literals: c(X,Y ), d(X+Y ), e(Z+ 1).
The instantiation of r1 starts with θ = ∅. Then, c(X,Y ) is matched with c(1, 1),
thus θ = {X = 1, Y = 1}. At this point, the function jumps to d(X + Y,Z):
�rstly θ(d(X + Y, Z)) yields to d(2, Z), then we look for matching instances in
Id2 . The only instance we can pick is d(2, 1), thus θ = {X = 1, Y = 1, Z = 1}.
The function goes to e(Z + 1), θ(e(Z + 1)) yields to e(2). Consequently, we
obtained the following ground instance for r1:

a(1) | b(1) :- c(1, 1), d(2, 1), e(2).

No further instance can be derived: we �rst backtrack to d(X + Y,Z), then to
c(X,Y ) and the instantiation terminates.
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Built-in Atoms

Let a be a built-in atom of form t1 B t2, occurring in a rule r. Similarly to
the case of arithmetic terms, because of the required ordering, its instantiation
is obtained as aθ. Moreover, if it is an assignment built-in and var(t1) ⊆
BoundV ar(var(a)), then a binds t2, thus after that θ has been applied to t1,
θ is updated by mapping t2 to t1θ. Similarly, if var(t2) ⊆ BoundV ar(var(a)),
then t1 is mapped to t2θ.

Example 5.2.5. Consider the rule r1:

a(X,Z) :- b(X,Y ), X < Y,Z = X + 1.

where, in particular Z = X+1 is an assignment built-in. Assume that the input
facts are:

b(1, 1). b(1, 2).

Here, for the body there are two possible orderings: b(X,Y ), X < Y,Z = X + 1
or b(X,Y ), Z = X + 1, X < Y . Suppose it is selected the �rst one. The
instantiation of r1 starts with θ = ∅. Then, b(X,Y ) is matched, and we assume
that it is �rstly retrieved the instance c(1, 1), thus θ = {X = 1, Y = 1}. At this
point, the function jumps toX < Y obtaining 1 < 1, θ remains the same as there
are no bind variables. Next, the function goes to Z = X + 1, θ(X + 1) yields to
1 + 1, which is arithmetically evaluated to 2, hence θ = {X = 1, Y = 1, Z = 2},
and the following ground instance is obtained:

a(1, 2) :- b(1, 1), 1 < 1, Z = 2.

Then, the function goes back to X < Y , and then to b(X,Y ). It is retrieved the
instance b(1, 2), and propagating it as previously showed we obtain the ground
instance:

a(1, 2) :- b(1, 2), 1 < 2, Z = 2.

Going bak again, no further instance is produced and the instantiation of r1
stops. Moreover, some simpli�cations may be applied as follows: (i) if a ground
rule features a built-in which is trivially not satis�ed (like 1 < 1 in the �rst
ground rule reported above) the rule can be dropped; (ii) on the other hand,
whenever a ground rule contains a built-in always satis�ed (like 1 < 2 in the
second ground rule generated in our example) it can be safely removed from the
body.

Aggregate Literals

Regarding aggregates, the instantiation of a rule containing aggregate literals
can be performed by �rst computing a global substitution, applying it to aggre-
gates and then properly grounding them. More formally, let r be a rule of form
H :-B, ag., where H represents the head of r, B is a possibly empty conjunc-
tion of non-aggregate literals, and ag is an aggregate atom of form #af{e} B t,
containing an aggregate element e of form {T : C}, where T is a sequence of
terms and C is a sequence of naf-literals. The instantiation of r consists in
evaluating the instantiation of the literals in B, thus in computing a partial and
valid substitution θ that assigns values to global variables in varg(r). Then, the
conjunction Cθ is instantiated by using the extensions of predicates appearing
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in C. Under the assumption that aggregates are not recursive, all extensions
of these predicates are de�nitely available. Thus, the following ground aggre-
gate elements are generated: {V θ1 : Cθ1θ; . . . , V θn : Cθnθ}, where each θi for
i ∈ {1, . . . , n} is a possible local substitution for the local variables in varl(e).

Let us now extend the case above, supposing that instead ag contains more
than one aggregate element. Essentially, the process illustrated is applied to
each of them separately. In detail, suppose that ag contains the aggregate
elements {T1 : C1; . . . ;Tm : Cm}, then we obtain {V1θ11 : C1θ11θ; . . . , V1θn1

:
V1θn1θ; . . . ;Vmθ1m : Cmθ1mθ; . . . , Vmθnm : Cmθnmθ}. Consequently, a ground
instance gag of ag is obtained as #af{V θ1 : Cθ1θ; . . . , V θn : Cθnθ} B tθ. In
case ag is a negative literal, the process is the same and gag will be negative as
well.

Furthermore, if ag is an assignment atom (see Section 2.4), t is a variable
term and ag is a binder for t, thus when grounding ag, θ does not contain a
mapping for t. At this point, the aggregate function #af is computed over each
possible subset of the set {V1θ11 , . . . , V1θn1 , . . . , Vmθ1m , . . . , Vmθnm}. Let min
and max be the minimum and maximum values, respectively, obtained from
this computation. We generate an instance for ag for each possible value i, for
i ∈ [min,max], updating θ by assigning to t the value i. Eventually, in case r
contains more aggregates, each of them is instantiated as done for ag.

Example 5.2.6. As an example, consider the rule r1:

a(Z) :- b(X),#sum{Y : c(X,Y ), d(Y )} = Z, e(Z).

Suppose that the input facts are:

b(1). c(1, 1). d(1). c(1, 2). d(2). e(1).e(2).

Firstly, we observe that varg(r1) = {X,Z}. The only valid processing order-
ing is (null, b(X),#sum{Y : c(X,Y ), d(Y )} = Z, e(Z), last). After matching
b(X), θ = {X = 1}, then the procedure instantiates the aggregate, θ(#sum{Y :
c(X,Y ), d(Y )} = Z) leads to #sum{Y : c(1, Y ), d(Y )} = Z, while, the instan-
tiation of the aggregate element is {1 : c(1, 1), d(1); 2 : c(1, 2), d(2)}. Moreover,
the aggregate is an assignment: Z is bounded by it, so the function generates
every possible subset of {1, 2}: ∅,{1},{2},{1, 2}, and for each of them computes
the sum of its elements. The minimum value is 0 obtained with ∅, while the
maximum sum is 3 computed over the elements of the set {1, 2}. So, Z can
assume four values: 0, 1, 2, 3. Each one corresponds to an instance of the
aggregate. In particular, the function performs a �rst match on the aggregate
updating θ as {X = 1, Z = 0}, then proceeds to e(Z), but e(0) does not exist,
thus it jumps back to the aggregate. θ is updated as {X = 1, Z = 1}, and this
time the function tries to match e(1), that exists, so it is generated the instance:

a(1) :- b(1),#sum{1 : c(1, 1), d(1); 2 : c(1, 2), d(2)} = 1.

Once again, it goes back to the aggregate assigning Z to 2, and returns to e(Z)
matching the atom with e(2), and obtaining:

a(1) :- b(1),#sum{1 : c(1, 1), d(1); 2 : c(1, 2), d(2)} = 1.

Then, it goes again back to the aggregate, Z is assigned to 3, but e(3) does not
exist. The function backtracks to the aggregate, and since all possible matches
have been performed, it goes back to b(X). Also for this atom no further match
is possible, and the function stops.
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Choice Atoms

As far as concerns choice atoms, they are instantiated after that the body is
grounded. More in detail, let r be a rule {a : C} :-B, where C is a conjunction
of naf-literals, {a : C} is a choice atom composed by a single choice element, and
B representing the body of r is a conjunction of literals. Firstly, B is processed
obtaining a partial valid substitution θ mapping the variables in B(r). Then, the
conjunction Cθ is grounded by using the extensions of predicates appearing in
C. Thus, the head choice atom is grounded as: {aθ1θ : Cθ1θ; . . . , aθnθ : Cθnθ},
where each θi for i ∈ {1, . . . , n} is a possible substitution for the variables in
var(C). In case, the head choice atom of r be composed of multiple choice
elements, each one is grounded exactly as illustrate above.

Example 5.2.7. As an example, consider the rule r1:

{a(X,Y ) : b(Y )} :- c(X).

Suppose that the input facts are:

b(1). b(2). c(1). c(2).

For the body of r1 there are two possible valid substitutions: θ1 = {X = 1} and
θ2 = {X = 1}. Each of them leads to an instance for r1. Let us �rstly consider
θ1: θ1({a(X,Y ) : b(Y )}) yields to {a(1, Y ) : b(Y )}. Then, b(Y ) is expanded
with matching instances retrieved from Ib1 , obtaining: {a(1, 1) : b(1); a(1, 2) :
b(2)} :- c(1). Thus, an instance for r1 is:

{a(1, 1) : b(1); a(1, 2) : b(2)} :- c(1).

With a very similar reasoning, with θ2 it is generated the other instance:

{a(2, 1) : b(1); a(2, 2) : b(2)} :- c(2).

Constraints

Concerning strong and weak constraints, as anticipated, their instantiation can
be performed after the evaluation of all rules. In addition, instantiating a
weak constraints w, requires that the terms in its weak speci�cation W (w)
are grounded. Since the safety condition imposes that var(W (w)) ⊆ Safe(w),
the instantiation of the body literals also provides a substitution for var(W (w)).

Example 5.2.8. The instantiation of strong constraint is quite straightforward,
so let us illustrate the instantiation of the weak constraint r1:

:∼ a(X,Y ), b(Y,Z).[X@1, Y, Z]

Suppose that the input facts are:

a(1, 1). a(1, 2). b(1, 2). b(2, 2).

The body of r1 can be instantiated via two di�erent valid substitutions:

� θ1 = {X = 1, Y = 1, Z = 2}, obtaining: a(1, 1), b(1, 2);

� θ2 = {X = 1, Y = 2, Z = 2}, obtaining: a(1, 2), b(2, 2).
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By applying θ1 to W (r1) we obtain the ground rule:

:∼ a(1, 1), b(1, 2).[1@1, 1, 2]

whereas, with θ2, we generate the instance:

:∼ a(1, 2), b(2, 2).[1@1, 2, 2]

5.3 Optimizations

Over time, the ASP grounders released have introduced e�ective techniques
to improve their performance. Notably, many of them are inherited from the
database �eld.

The dynamic magic sets [4] is geared towards the optimization of query
answering over logic programs. The aim is to rewrite the input program for
identifying a subset of the program instantiation which is su�cient for answer-
ing the query. The restriction of the instantiation is obtained by means of
additional fresh �magic� predicates, whose extensions represent relevant atoms
w.r.t. the query. Extending the original Magic Sets de�ned for Datalog, the
Dynamic Magic Sets technique, speci�cally conceived for disjunctive programs,
inherits the bene�ts provided by standard magic sets and permits to leverage the
information provided by the magic predicates also during the nondeterministic
answer set search.

Further techniques have been introduced to speci�cally optimize the rule
instantiation. As we already observed, essentially it requires to evaluate the
relational join of the positive body literals, thus the processing ordering of lit-
erals in the body is a key issue for the e�ciency of the instantiation procedure,
just like for join computation in the database �eld. For instance, the DLV in-
stantiator implements a body reordering criterion [91]. A thorough discussion
of the impact of body ordering on rule instantiation is reported in Chapter 7,
where we present a series of body ordering strategies designed on the basis of
di�erent heuristics with the intent of maximizing the bene�ts stemming from
optimizations intervening in the rule instantiation task.

Taking inspiration from indexing strategies of databases, indexed data struc-
tures have been introduced to optimize the retrieval of ground instances from
extensions. In [39] it is illustrated a main-memory indexing technique adopted
in the DLV instantiator. In particular, this technique relies on indexed data
structures, computed during the evaluation and only if they can really be ex-
ploited, and such that extensions are indexed on a single argument. In this
work, we introduce novel indexing strategies, reported in Chapter 6; which re-
sulted to be more general and powerful than the one adopted in DLV , as we
will discuss in Chapter 13.

Furthermore, grounders typically do not employ a classical chronological
backtracking schema during rule instantiation, but rather they leverage on a
backjumping algorithm [111]. In particular, given a rule r to be grounded, this
algorithm exploits both the semantical and the structural information about
r to compute the �relevant� ground instances of r, avoiding the generation of
�useless� instances, but fully preserving the semantic of the program. To this
end, the algorithm relies on the set of relevant variables of r, consisting of
all the variables occurring in literals over unsolved predicates together with the
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variables occurring in the head of r. In this thesis, we studied a set of techniques
to fully leverage the bene�ts deriving from the backjumping strategy, including
a body ordering strategy speci�cally designed for the backjumping strategy (cf.
Chapter 7), and ad-hoc further mechanisms (cf. Chapters 9).



Chapter 6

E�cient Retrieval of Ground

Instances

Optimizing the retrieval of ground instances from predicate extensions is a key
point for improving the performance of rule instantiation. In this chapter, we
deeply analyze the issues behind the design of an indexing strategy. In detail,
in Section 6.1 we formalize two di�erent data structures that can be adopted
to boost the retrieval of instances, while in Section 6.2 we describe two diverse
indexing strategies based on opposite principles. In Section 6.3 we draw our con-
clusions and de�ne an indexing strategy that tries to comply with the outlined
pros and cons.

6.1 Deciding Data Structures

Let l be a classical atom over a predicate p/n for n > 0, Ipn is the (ground)
extension of p/n and the set {1, . . . , n} denotes the arguments of p/n. As shown
in Section 5.2.3, the functionMatch is in charge of retrieving instances from Ipn

according to a partial substitution θ. In absence of techniques for boosting this
task, a naive approach based on a linear search through Ipn

should be employed.
Intuitively, the bigger Ipn

is, the more expensive it may be. Moreover, this
is even more emphasized because of the high frequency with which this task
is performed when backtracking (or backjumping) on literals to instantiate a
rule body. Thus, indexing strategies heavily rely on the design of proper data
structures stored in main memory and employed to speed up the retrieval task.
In the following sections, we de�ne two types of indexing structures relying on
hash maps in di�erent modalities.

We brie�y recall that a hash map is a data structure implemented as an
associative array, that is a structure that maps keys to values. Indeed, a hash
map associates to each stored object a key, which can be computed by means of
a proper hash function directly from the object itself. Elements with the same
key are stored in internal data structures, usually referred to as buckets or slots.
If the hash function associate to each element a univocal key (situation known
as perfect hashing) each bucket contains only one element and thus accessing an
object via its key in the worst case is O(1). If multiple elements are associated to
the same key, then in the average case looking-up for an element is O(1); clearly,
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in the worst case all elements are in the same bucket and so the complexity of
the look-up is O(n), where n is the total number of elements in the map.

6.1.1 Generalized Indices

As �rst proposal, we present a general and �exible type of data structure.
Initially, the extension of Ipn

is stored in a linear one-dimensional array-based
structure. An array is an elementary data structure, where objects are stored
in continuous memory locations. This choice is motivated by the consideration
that this disposition in memory makes the task of iterating through elements
faster than in other linear data structure where data might be sparse in memory,
such as for instance linked list [43].

Then, sparse secondary indices implemented as hash maps are associated to
Ipn

and e�ectively employed to gather matching instances. Let 〈1, . . . , k〉 with
k ≤ n be an ordered tuple of arguments, that is a tuple such that for each
a ∈ {1, . . . , k} and b ∈ {1, . . . , k} if a < b, then b follows a in the tuple. Let C
be the set of all the distinct tuples appearing as 〈1, . . . , k〉 arguments of some
instance in Ipn

. A generalized index for p/n is a hash map Mpn
that associates

to each 〈c1, . . . , ck〉 ∈ C (the key of the map) to a collection of instances A ⊆ Ipn

having as 〈1, . . . , k〉 arguments 〈c1, . . . , ck〉.

Example 6.1.1. As a running example, let us consider the predicate a/3, whose
extensions is composed of the following ground atoms:

a(1, 2, 3). a(2, 2, 3). a(1, 2, 4). a(1, 3, 1). a(2, 3, 1). a(3, 4, 5).

A generalized index for a/3 on its second and third argument can be graphically
represented as in Figure 6.1.

a(1,2,4)

a(3,4,5)

a(2,2,3)

a(1,2,3)

a(1,3,1)

a(2,3,1)

<2,3>

<2,4>

<3,1>

<4,5>

a(1,2,4)

a(3,4,5)

a(2,2,3)

a(1,2,3)

a(1,3,1)

a(2,3,1)

a/3

Figure 6.1: An example of generalized index

By means of indices, we are now able to e�ciently determine matching in-
stances. Let r be a rule, whose body consists of the literals {l1, . . . , lm} with
m > 0. Suppose that the procedure OrderBody orders the body as l1, . . . , lm.
Recall that for each literal li, we denote by BoundVar(li) the set of variables oc-
curring in any literal that precedes li in the ordered body, that essentially repre-
sents the set of variables in l for which is present a mapping in the current partial
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substitution θ. An argument i of l for i ∈ {1, . . . , n} is said to be indexable if it is
either a ground term or a non-ground term t such that var(t) ⊆ BoundV ar(l).
Therefore after the arithmetical evaluation of the indexable arguments of l, it is
selected according to a proper heuristic a tuple of indexable arguments, and an
index on such arguments is employed to retrieve matching instances. A basic
heuristic consists in selecting all the indexable arguments; more sophisticated
heuristics might determine a subset of them considering several factors (cf. Sec-
tion 6.3). Importantly, since the index is implemented by means of a hash map,
the average complexity of the look up operation for a �xed key is constant time.

Moreover, in case that there are no indexable arguments we need to retrieve
the whole extension Ipn , thus we can simply iterate through the array-based
structure containing all instances; essentially, this is the reason why we selected
a structure on which iteration is fast.

Example 6.1.2. As an example, let us consider the following rule r1:

a(X,Y, Z,W ) :- b(X,Y ), c(X,Z), d(X,Y, Z + Y,W ).

To e�ciently instantiate r1, suppose that the body is processed according to the
ordering: b(X,Y ), c(X,Z), d(X,Y, Z+Y,W ) we can employ indices according to
available indexable arguments. Thus, for the atom b(X,Y ) it is not possible to
use any index, because there are no indexable arguments; for the atom c(X,Z),
the only indexable argument is the �rst; eventually, the atom d(X,Y, Z+Y,W )
features three indexable arguments, namely the �rst, the second and the third,
and so every combination of these three arguments might be chosen.

6.1.2 Single-Double Indices

As a more speci�c variant of the general index type reported above, we herein
propose a further type of index that allows to retrieve matching instances in a
twofold modality, according to one indexable argument or two.

More in detail, initially to each ground term t it is associated a unique integer
identi�er id(t); these mappings are stored into a hash map. Let 〈i, j〉 with i ≤ n
and j ≤ n be a pair of distinct arguments of p/n, i.e. such that i ∈ {1, . . . , n},
j ∈ {1, . . . , n} and i 6= j. Let Ci (and Cj) be the set of all distinct identi�ers
of the ground terms appearing as i-th (resp. j-th) argument of some instance
in Ipn

. A single-double index for p/n is a hash map SDMpn
that associates

each a ∈ Ci to an another hash map mapping each b ∈ Cj to the collection of
instances A ⊆ Ipn

having as i-th argument a and as j-th argument b.
The underlying data structure is based on nested hash maps: the intent is to

permit the usage of such an index to retrieve instances on the basis of the �rst
argument i or by considering both arguments i and j. In particular, suppose
that during the instantiation it is needed to retrieve matching instances for the
atom l, and assume to have at disposal a single-double index on the arguments
〈i, j〉. If only the argument i is indexable, let t be ground term featuring as
i-th after that the current partial substitution θ has been applied to l, then
by entering in the hash map with the key id(t), and iterating through all the
instances in the nested map we retrieve all instances having t as i-th argument.
In case both arguments i and j are indexable, in addition let u be ground term
featuring as j-th argument after that the current partial substitution θ has been
applied to l, then by accessing in the external hash map with the key id(t) and
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in the nested hash map with the key id(u), we retrieve all instances having as
i-th argument t and as j-th argument u. Notably, by using identi�ers as keys,
we enable perfect hashing, hence each look-up operation for a �xed key is O(1)
also in the worst case.

We remark that also in this case whenever there are no indexable arguments
we iterate through the array-based structure containing all instances without
using an index.

Example 6.1.3. Recall the extension of the predicate a/3 of Example 6.1.1. A
single-double index for a/3 on the arguments 〈3, 2〉 can be seen as depicted in
Figure 6.2.

a(1,2,4)

a(3,4,5)

a(2,2,3)

a(1,2,3)

a(1,3,1)

a(2,3,1)

<3>

<4>

<1>

<5>

a(1,2,4)

a(3,4,5)

a(2,2,3)

a(1,2,3)

a(1,3,1)

a(2,3,1)

a/3

<2>

<2>

<3>

<4>

Figure 6.2: An example of single-double index

Intuitively, the perfect hashing of this type of index yields to better per-
formance with respect to a generalized index created also on two arguments,
and sometimes, may also be better than generalized indices created on more
than two arguments, as our experiments will evidence in Section 11.1.

In addition, some consideration that may arise are why two arguments and
not just one, i.e. a similar version but without a nested map, or conversely
why not enabling further nesting levels, obtaining single-double-triple indices,
for instance. We designed single-double indices as e�cient data structures to
be employed in the majority of practical situations, motivated by the consider-
ation that, typically, predicates with arity greater than three are less frequently
employed, and one nesting level is a su�cient compromise.The evaluation of the
aforementioned possibilities has been done experimentally, and we evicted that
single indices are not enough in several situations, while single-double indices
improves performance without particular drawbacks, thanks also to the twofold
modality in which they can be used. On the other hand, enabling indices with
more nested maps, showed limited advantages and a proportional increase in
memory usage w.r.t. the number of arguments employed, and thus the nest-
ing level. Therefore, we suggest a hybrid strategy that relies on single-double
indices for the majority of situations and enables generalized indices whenever
indices over more than two arguments may be preferable.
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6.2 Deciding an Indexing Strategy

After the decision of data structures to be employed, a further aspect to consider
is when indices have to be created, and on which arguments. In this section, we
outline two indexing strategies that create indices at di�erent times during the
instantiation process, describing the arising advantages and disadvantages.

6.2.1 Over-Generation Indexing Strategy

The over-generation indexing strategy is based on the generation of all dis-
tinct indices that could be obtained according to the underlying data structure
adopted.

In particular, assuming to use the generalized indices of Section 6.1.1, then
for each predicate p/n it is created an index on every possible ordered tuple of
arguments 〈1, . . . , k〉 with 1 ≤ k ≤ n, hence ((n− 1) · n) + 1 indices.

On the other hand, supposing to employ the single-double-argument indices
described in Section 6.1.2, for each predicate p/n it is required the creation
of n!/(n − 2)! indices, since it is created an index on every distinct couple of
arguments.

Example 6.2.1. For instance, let us come back to the predicate a/3 of Example
6.1.1. According to this approach, when generalized indices are employed we
would generate a di�erent index for each of the following tuple of arguments:
〈1〉, 〈2〉, 〈3〉, 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈1, 2, 3〉; for a total of 7 indices. On the other
hand, when single-double indices are adopted as underlying data structures,
then we would have 6 di�erent indices, one for each of the following pair of
arguments: 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉.

The generation of these indices could be done before that the actual instanti-
ation starts, initially on the basis of EDB. Then, as soon as predicate extensions
are computed during the instantiation, indices are updated and �lled up with
newly generated instances. Intuitively, we can avoid the creation of indices for
predicates that do not appear in rule bodies, since this means that it is not
required to retrieve instances for them. The major disadvantages is that this
strategy might lead to the creation of unnecessary indices, since the instanti-
ation can exploit solely indices on indexable arguments. Moreover, the larger
an extension is, the more expensive it will be the cost of creating an index on
it; hence, creating a useless index might lead to a not negligible overhead; in
addition, for medium/large extension sizes, the risk of running out of memory is
quite high. However, by creating all possible indices, the selection of the index
to be employed in each situation is eased. Intuitively, when there are several
indexable arguments, we may design heuristic criteria that decide the best index
to be employed by actively analysing all possible indices and measuring their
quality.

6.2.2 On-Demand Indexing Strategy

The on-demand indexing strategy consists in creating �useful� indices on-the-�y
directly during the instantiation.

More in detail, let r be a rule be grounded, and {l1, . . . , lm} be the literals in
its body with m > 0. Suppose that the procedure OrderBody orders the body



62 CHAPTER 6. EFFICIENT RETRIEVAL OF GROUND INSTANCES

as l1, . . . , lm. At the time in which the function InstantiateRule looks for a
match on a classical atom li for i ∈ {1, . . . ,m}, if there is at least an indexable
argument, it is on-demand created an index. In particular, if it is adopted a
generalized index, such index is created over a subset of the indexable arguments
of li. In case it is employed a single-double index, such index has to be created
on a pair of arguments such that the �rst argument in the pair is indexable, and
the second one might be arbitrary selected even if not indexable.

Example 6.2.2. Coming back to Example 6.2.1, instead of building all those
indices, adopting an on-demand strategy we would generate just the indices
actually employed during the instantiation process to retrieve instances. For
instance, suppose to have the following rules:

r1 : b(X,Z,W ) :- c(X,Y ), a(Y,X,W ).
r2 : d(Z,W ) :- e(X), a(Z,X,W ).

Suppose that the procedure OrderBody preserves the order of body literals
reported above. In this situation, if generalized indices are employed, in order to
retrieve instances for the predicate a/3 during the instantiation of r1, it may be
either created an index on the arguments 〈1, 2〉, or on the �rst argument only, or
on the second argument only, depending on the heuristic criterion adopted. For
r2 there is no choice, only the second argument is indexable, thus it is created
an index on it. Instead, when single-double indices are used, when the rule r1 is
instantiated it may be created an index on the pairs of arguments 〈1, 2〉, 〈2, 1〉,
〈1, 3〉 or 〈2, 3〉. When grounding r2 it may be created an index the pairs 〈2, 3〉
or 〈2, 1〉. Notably, if for r1 it is adopted an index on the arguments 〈2, 1〉, it can
be reused also when grounding r2.

Intuitively, the main advantage of this on-demand strategy is that indices are
created only if needed, in contraposition with the over-generating strategy that
builds all possible indices. Nevertheless, whenever there are several indexable
arguments, the heuristics that select the best index have to be designed in a
more blind way by comparing possible employable indices on estimations of
their quality.

6.3 Balanced On-Demand Indexing Strategy

Summing up all pros and cons that arose we propose an indexing strategy, that
tries to optimize all factors considered so far. As anticipated, when multiple
arguments are indexable several indices might be employed, designed according
to di�erent heuristic criteria. For this choice, we should consider both the e�ects
and the causes. In particular, we have to �nd a balance between the cost of
creating a new index and the bene�ts deriving from its creation, as creating an
index on a large extension might be expensive especially if such an index cannot
be e�ectively exploited. Thus, in such a condition the possibility of creating
only exploitable indices and reusing an index more than one time, in case the
involved predicate occurs within multiple rules, might be preferable, while using
a custom index for each of its occurrence might be unfeasible in practice.

A further important aspect to consider is the strict correlation between the
ordering of body literals and indexing strategies. Firstly, body ordering in�u-
ences the choice of indexing arguments, since only arguments containing bound
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variables are actually indexable. Consequently, selecting indices on-demand
after body ordering and during the rule instantiation might lead to a greedy
creation of indices, and whenever their creation costs are not negligible it can
be paid a signi�cant overhead. Hence, the greedy nature of on-demand strate-
gies has to be taken into account by considering the cost of creating an index
before to proceed at its creation.

Following an over-generation strategy, an opposed approach might consist
in deciding the indices to be employed before the actual instantiation process
starts, so that it is possible to minimize the creation of new indices. Hence,
with respect to a pure over-generation strategy, here instead of generating all
possible indices, we restrict the creation to a subset of them which can be
e�ectively employed. Consequently, during the rule instantiation bodies should
be reordered by ensuring the usage of indices previously decided. In other words,
the body ordering strategy has to be aware of these constraints, which in turn
may not lead to a good ordering, because we are now deciding the indexing
strategy without considering the correlation with body ordering. In addition,
at the time in which indices are decided, the extensions of IDB predicates are
not de�nitely available. Hence, these decisions have to be made according to a
heuristical estimation of what the extensions will actually be.

Essentially, while the former approach gives priority to the body ordering
strategy and creates indices greedily, the latter focuses on the indexing strategy
and adapts the body ordering strategy accordingly, but has the not avoidable
drawback of requiring a precise estimation of predicate extensions to be e�ective.

To comply with these points, preferring an on-demand approach, hereafter
it is proposed an approach that we called balanced on-demand indexing strat-
egy, that limits the greedy nature of a pure on-demand strategy by adopting
single-double-argument indices as underlying data structures build over a well-
motivated subset of indexable arguments.

To this end, for each predicate p/n and for each argument i ∈ {1, . . . , n} this
strategy stores the set of di�erent values that appear as i-th argument of some
instance in Ipn

, a measure which is also known as selectivity of the argument
i. We refer to these sets as dictionary of p/n. The dictionary is dynamically
computed during the instantiation process: before that the instantiation starts
it is initialized with the values appearing in the EDB, then, as soon as a new
ground atom is derived, the dictionary is updated.

Consequently, when multiple arguments are indexable for a predicate p/n,
this strategy selects the two indexable arguments that feature the highest num-
ber of di�erent values in Ipn

. If just an argument is indexable, it is selected as
�rst indexing argument, and as second argument it is selected the one with the
highest selectivity among all other arguments. In a database oriented wording,
these are more likely to represent a primary key for Ipn , i.e. nearer to designate
a small group of instances, ideally just one.

This choice is motivated by the consideration that in general indices created
on a smaller number of arguments, are less speci�c and more versatile, hence
reusable multiple times. In addition, in practice bene�ts stemming from an
index created on a larger number of arguments become evident in extreme situ-
ations, for instance in case of huge extensions, when grouping them on two argu-
ments leads to large collections, and thus adding further arguments is preferable
even if expensive, as we will later on show in Section 11.1.
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Example 6.3.1. Let us consider the following program P1:

a(W ) :- b(X,Y ), c(Z), d(X,Y, Z,W ).
c(1..10).
b(1..10, 1..10).
d(1..300, 1..200, 1..100, 1..10).

with a total of 60, 000, 000 instances. Let us discuss how the dictionary of d/4
is composed. For the �rst argument, admissible values ranges from 1 to 300;
for the second argument, from 1 to 200; for the third argument, from 1 to 100;
and, for the fourth argument, from 1 to 10.

Suppose to build a single-double index on the �rst and second arguments,
then for each tuple 〈a1, a2〉, for a1 ∈ {1, . . . , 300} and a2 ∈ {1, . . . , 200} there
are 1, 000 corresponding instances in Id4

. Similarly, by selecting the �rst and
the third arguments, we get 2, 000 instances for each tuple 〈b1, b2〉 with b1 ∈
{1, . . . , 300} and b2 ∈ {1, . . . , 100}, and with the second and the third arguments
there are 3, 000 instances for each tuple 〈c1, c2〉 for c1 ∈ {1, . . . , 200} and c2 ∈
{1, . . . , 100}. Intuitively, by means of the former combination a smaller number
of instances is considered each time a match is performed on d(X,Y, Z + Y,W )
and thus according to our criterion, this is the best combination to be chosen.
If instead we assume to use a single argument index, the �rst one should be
preferred. Indeed, for each distinct key k for k ∈ {1, . . . , 300} there are 200, 000
instances in Id4

.
Eventually, with a generalized index on all the three arguments, we have

10 corresponding instance for each tuple 〈e1, e2, e3〉 with e1 ∈ {1, . . . , 300},
e2 ∈ {1, . . . , 200} and e3 ∈ {1, . . . , 100}: this set of arguments is nearer to
represent a primary key for Id4 .

In Section 11.1 we will come back to this example, and show an experimental
analysis of all possibilities.



Chapter 7

Body Ordering

As discussed in Section 5.2.3, the procedure OrderBody invoked by the In-
stantiateRule function is intended to guarantee the correct instantiation of
rule bodies: it rearranges literals according to a basic strategy so that each
literal is placed in a �safe� position.

However, more importantly, the procedure OrderBody may aim at rear-
ranging literals in the rule bodies in order to �nd an optimal execution ordering
for the join operations. Indeed, a good ordering dramatically a�ects the overall
computation time, as will show in Section 11.

In practice, determining all possible ordering and then choosing the optimal
one is not feasible, since there may be several possibilities. Therefore, typically,
grounders rely on greedy algorithms. Taking inspiration from techniques devel-
oped in the database setting, this problem has been originally studied in the DLV
grounder [91], with the de�nition of the Combined criterion, the body ordering
strategy implemented in the �rst version of DLV . Starting from this criterion,
we studied di�erent variants to enhance its e�ectiveness. A �rst problematic ad-
dressed consists in adapting the criterion to ASP-Core-2, since the criterion was
mainly focused on classical atoms. Secondly, we studied the interaction among
body orderings and strictly related optimizations, such as indexing strategies
and the backjumping technique. Consequently, by considering these aspects we
de�ned a set of ordering strategies designed on the basis of di�erent heuristics.

In the remainder of the Chapter, after recalling the basic ideas behind the
Combined criterion (Section 7.1), we describe the new developed criteria. In
particular, Section 7.2 presents how the Combined criterion has been extended
to ASP-Core-2 describing the Combined+ strategy, while Section 7.3 illustrates
some of its variants tailored on the interaction of body ordering strategies with
crucial optimizations such as indexing strategies and backjumping techniques.

7.1 The Basic Strategy

Given a rule r, the Combined criterion processes B(r) generating a new version
of it, namely B′(r), where the literals have been rearranged according to a
greedy algorithm.

Essentially, at each step, the �best� literal, which is determined relying on
statistics over the involved predicates, is placed, and then the employed statistics
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are updated. The �best� literal is the one that minimizes a formula based on
two factors: one is a measure of how much the choice of a literal reduces the
search space for possible substitutions, and the other takes into account the
variables for which the literal is a binder. The intuition behind this choice
is that preferring literals with already bound variables might lead to detect
possible inconsistencies quickly.

This mechanism is formalized below. Given a classical atom l over a predi-
cate p, for each variable X ∈ var(l), the selectivity of X in l (i.e. the number
of distinct values), denoted V (X, l), corresponds to the number of tuples in
the projection of X over the ground extension of the predicate p. Moreover,
for each variable X appearing in B+(r), the active domain of X is de�ned as
dom(X) = maxl∈B+(r)V (X, l). Suppose that B′i is the reordered (partial) body
at step i, and var(B′i) is the set of variables within B

′
i, which is also denoted as

the set of bound variables in B′i. For each classical atom l ∈ (B+(r) \B′i−1), its
score at step i, denoted si(l) is estimated as:

si(l) =
T (B′i−1 on l)∏
X∈Z dom(X)

·
∏

Y ∈(var(B′i−1)∩var(l))

V (Y, l)

dom(Y )2

where Z is the set of variables that l has in common with some other classical
atom occurring in B+(r), and the value T (Bi−1 on l) indicates the estimated
size of the intermediate join between the literals in Bi−1 and l and is inductively
de�ned under the assumption that values are distributed uniformly over their
domains.

In detail, for a classical atom c composed by a predicate q/m, T (c) denotes
the size of the extension of q, i.e. T (c) = |Iqm |. Let a and b be two classical
atoms, then T (a on b) represents the size of the join between a and b and is
de�ned as:

T (a on b) = T (b) ·
∏

X∈(var(a)∩var(b))

V (X, a)

dom(X)

Consequently, the join Bi−1 on l, T (Bi−1 on l) is estimated as:

T (B′i−1 on l) = T (l) ·
∏

X∈(var(B′i−1)∩var(l))

V (X,B′i−1)

dom(X)
(7.1)

Let li the atom chosen at step i then, for each variable X ∈ var(B′i), the
selectivity of X in B′i is de�ned as:

V (X,B′i) = V (X,B′i−1) · V (X, li)

dom(X)

if X ∈ var(B′i−1); otherwise when X /∈ var(B′i−1), then V (X,B′i) = V (X, li).
Once that all classical atoms in B+(r) are inserted in B′(r), the other kind

of literals present in B(r) can be arbitrary placed as well in positions that ensure
the correct instantiation. Eventually, B(r) is set to B′(r).

Example 7.1.1. Given the following rule r1:

a(X,Y, Z, T ) :- b(X,Y ), c(X,Z), d(X,Y, Z, T ), X < Z + 1.
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let us assume that the extensions of the involved predicates are composed as
follows:

b(1..5, 1..50).
c(1..10, 1..10).
d(1..5, 1..5, 1..2, 1..2).

Hence, T (b(X,Y )) = 250, T (c(X,Z)) = 100, T (d(X,Y, Z, T )) = 100, dom(X) =
10, dom(Y ) = 50, dom(Z) = 10, dom(T ) = 2. At step 0, the �rst atom is se-
lected mainly according to the �rst factor of the formula reported above because
B′(r1) is empty and var(B′0) = ∅, therefore:

s0(b(X,Y )) = 250/(10 · 50) = 0.5
s0(c(X,Z)) = 100/(10 · 10) = 1
s0(d(X,Y, Z, T )) = 100/(10 · 50 · 10 · 2) = 0.004

The smallest score is obtained by the atom d(X,Y, Z, T ), which is inserted
as �rst atom: B′1 = d(X,Y, Z, T ). Moreover, T (B′1) = T (d(X,Y, Z, T )) =
100, V (X,B′1) = V (X, d(X,Y, Z, T )) = 5, V (Y,B′1) = V (Y, d(X,Y, Z, T )) = 5,
V (Z,B′1) = V (Z, d(X,Y, Z, T )) = 2 and V (T,B′1) = V (T, d(X,Y, Z, T )) = 2.
Then,

s1(b(X,Y )) =
250 · 5·5

10·50
10 · 50

· 5 · 50

(10 · 50)2
= 0.000025

s1(c(X,Z)) =
100 · 5·2

10·10
10 · 10

· 10 · 10

(10 · 10)2
= 0.01

Thus, B′2 = d(X,Y, Z, T ), b(X,Y ) and eventually the last remaining atom is
placed at the end, obtaining B′3 = d(X,Y, Z, T ), b(X,Y ), c(X,Z). At this point,
the built-in X < Z+1 may be arbitrary placed. In particular, it can be inserted
after that the variables appearing in it are bound, since var(X < Z + 1) =
{X,Z} the built-in can be in every position after d(X,Y, Z, T ).

7.2 Enhancing the Basic Strategy for ASP-Core-

2

Herein we present the Combined+ criterion, aiming at de�ning more precise
statistics to properly place in the ordered body other kinds of literal, such as
negative naf-literals, aggregate literals, choice atoms, and built-in atoms.

In particular, negative classical naf-literals are added as soon as their vari-
ables are bound: at each step i, after that the best classical atom is placed,
each remaining negative naf-literal nl ∈ (B(r) \B′i) is analyzed, and if var(l) ⊆
var(B′i), then nl is added to B′i. Indeed, negative naf-literals do not increase
the set of bound variables, hence placing them as soon as possible permits to
faster recover inconsistencies.

As far as regards aggregate literals, contrarily they are placed as late as
possible. Indeed, as discussed in Section 5.2.4, their instantiation is, in general,
more involved than the instantiation of other types of literal, since it requires the
instantiation of the conjunctions of literals inside its aggregate elements. Thus,
after that all other literals are placed, each aggregate literal al ∈ (B(r)\B′(r)) is
iteratively examined and added to B′(r). In detail, let al = af{e1, . . . , en} B t
be a positive aggregate literal: if B corresponds to = and t is a variable term,
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al can be placed as soon as (varg(al) \ var(t)) ⊆ var(B′); otherwise, al can
be added as soon as varg(al) ⊆ var(B′). Intuitively, in the former case the
aggregate represents an assignment, thus the variable t is a safe variable. In
case al = not af{e1, . . . , en} B t, i.e. it is a negative aggregate literal, it is
added as soon as varg(al) ⊆ var(B′).

In addition, after that the rule body has been ordered, the criterion is ap-
plied also to literals within choice and aggregate elements in r, if any. Let C be
a conjunction of literals featured in an aggregate or choice element, the literals
in C are properly reordered in order to optimize the evaluation of the join oper-
ations among the literals in C by inductively applying the Combined+ strategy
to the conjunction C.

7.2.1 Handling Built-in Atoms

After de�ning how to deal with the other type of literals, we need to decide
how to deal with built-in atoms, since they requires a more thorough attention:
similarly to aggregate literals they might bind variables (i.e. be assignments)
or represent comparison operations, however, in general, their instantiation is
simpler and so, it is performed faster. Thus, their ordering assumes a more
strategic meaning.

Example 7.2.1. As a running example, let us consider the rule:

a(X,Y, Z) :- b(X), b(Y ), b(Z), Z < X, Z < Y.

Here the Combined criterion has no useful information for the selection of a
proper order for literals b(X), b(Y ), b(Z). Indeed, given that they all have
the same predicate and that the considered measures do not take into account
the comparisons built-in, each possible permutation of these atoms may be
indiscriminately chosen.

However, their ordering can signi�cantly a�ect performance, since their vari-
ables are involved in the comparisons Z < X, and Z < Y . In particular, Z is
involved in two comparisons whose meaning is that it should be less than both
X and Y , hence during the instantiation when substituting Z with a ground
term, it is su�cient to consider just terms satisfying these comparisons.

To overcome such situations, the Combined+ criterion tries to insert built-in
atoms as soon as possible, and improves the statistics employed in the Combined
criterion relying on linear interpolation techniques to determine how much the
actual search space for variable substitutions is in�uenced by the presence of
built-in atoms. Remarkably, to be compliant with the original criterion, the
new criterion preserves the assumption of uniform distribution.

Given a positive literal l over the predicate p, and a variable X ∈ var(l)
which features a domain consisting of integer numbers, we de�ne min(X,L) as
the minimum value, max(X, l) as the maximum value over such domain. Please
notice that the assumption over integer domains is not restrictive, as it is always
possible to de�ne a proper mapping from a generic term to a number, according
to the total order of terms de�ned in the ASP-Core-2 standard (cf. Section 2.2).

Let us now describe how the Combined+ criterion estimates and updates the
measures at each step i.

For each candidate literal l, for each variable X ∈ l, the criterion makes
a pre-estimation Ve(X,Bi) of V (X,Bi) if X is an evaluable variable, that is
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if the following conditions hold: (i) X is not bound (i.e. X /∈ var(B′i−1)),
and (ii) X appears in B(r) in some comparisons of the form X ≺ Y , where
≺∈ {<,<=, >,>=,=, <>} and Y is either a ground term or a bound variable
such that Y ∈ var(B′i−1).

Initially, Ve(X,B
′
i) = V (X, l); then, it is recursively updated taking into

account each comparison involving X and satisfying the last condition, as de-
scribed next.

If X is involved in a comparison in the form X < C or X <= C where C is
a ground term and Cnum is the reduction of C to a numeric value, then:

Ve(X,B
′
i) = (Ve(X,B

′
i)− 1) ·(

(Cnum −min(X, l))

(max(X, l)−min(X, l))

)
.

If the comparison is of the form X > C or X >= C, then it is equivalent to
C < X or C <= X, respectively; hence:

Ve(X,B
′
i) = Ve(X,B

′
i) −(

(Ve(X,B
′
i)− 1) · (Cnum −min(X, l))

(max(X, l)−min(X, l))

)
.

On the other hand, when the X is compared to a variable, such as in X ≺ Y ,
where ≺∈ {<,<=, >,>=}, then a constant value Ynum for Y is �rst estimated,
and then the formulae above are applied; in particular, if ≺ in{<,<=} then
Ynum = max(Y, l1), while if ≺ in{>,>=} then Ynum = min(Y, l1), where l1 is
the literal binding Y in Bi−1.

Finally, if X appears in a comparison in the form X = Z, where Z is either
a ground term or a variable, then:

Ve(X,B
′
i) =

1

Ve(X,B′i)

while if the comparison is like X! = Z then:

Ve(X,B
′
i) = Ve(X,B

′
i)−

(
1

Ve(X,B′i)

)
.

In these last two cases, indeed, the algorithm tries to estimate the probability
that the value that will bound the variable X will actually be equal (or di�erent)
to the one estimated. In addition, if Z is a constant, say C, it is possible to
determine with certainty if the value C is admissible or not for X, by computing
if C belongs to the domain of X; otherwise, if Z is a variable, it is still possible
to estimate the probability that the values assignable to Z are admissible by
estimating a ground value Znum as 1/V (Z,B′i−1).

After computing these pre-estimations, the criterion has a better measure of
how much the comparisons can in�uence the variables selectivities, and thus it
can properly select the next literal to add in B′i−1, say l

′, so that B′i = B′i−1∪L′.
Eventually, for each variable X ∈ l′, V (X,B′i) is updated in an unchanged way
with respect to the old criterion, unless X is evaluable: in this case V (X,B′i) =
Ve(X,B

′
i).
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Example 7.2.2. Coming back to the running example, let us assume that the
available instances for predicate b currently consists of the set b(1..100); then,
the Combined+ algorithm arranges the rule as follows:

a(X,Y, Z) :- b(X), b(Z), Z < X, b(Y ), Z < Y.

Initially, B′0 = b(X), and the next chosen literal is then b(Z): the algorithm
prefers b(Z) over b(Y ), as it computes that V (Z,B′1) = 99 and V (Y,B′1) = 100.
Intuitively, b(X) and b(Z) are here involved in a cross-product operation, thus
the algorithm estimates that, in general, Z ranges over values that are smaller
than the ones assigned to X in 99/100 cases, except for when they have assigned
the same value. At this point, we have B′1 = b(X), b(Z), and the comparison
built-in Z < X can be safely selected: indeed, when adding a comparison literal
its variables have to be bound in order to correctly evaluate them. Subsequently,
b(Y ), and �nally Z < Y , can be chosen. It is worth noticing that an equally
preferable ordering would be, in this case:

a(X,Y, Z) :- b(Y ), b(Z), Z < Y, b(X), Z < X.

Indeed, both Z < X and Z < Y have the same in�uence on the selectivity of
Z.

7.3 Extensions

Hereafter, we present three extensions of the Combined+ criterion. Firstly, we
de�ne two di�erent criteria based on indexing strategies and the backjumping
machinery, then we provide a description of criterion driven by both optimiza-
tions that combines these two variants.

7.3.1 Indexing-driven Ordering

As anticipated in Section 6, body ordering and indexing strategies are strictly
related. To grasp the intuition behind this correlation, let us consider the fol-
lowing example.

Example 7.3.1. Consider the rule r1:

a(X,Y, Z) :- b(X,Y ), c(X,Z).

Let us assume that the extensions of involved predicates are the following:

b(1..5, 1..40, 000).
c(1..2, 500, 1..80).

thus, the extensions of Ib2 and Ic2 consist of 200, 000 ground instances each.
Moreover, for each tuple (i) with i ∈ {1, . . . , 5} there are 40, 000 corresponding
instances in Ib2 ; while for each tuple (j) with j ∈ {1, . . . , 2500} there are 80
instances in Ic2 . Evidently, there are two possible orderings for the rule body:
i) b(X,Y ), c(X,Z); ii) c(X,Z), b(X,Y ). Selecting the ordering i) no index can
be used on b(X,Y ), while an index on the �rst argument can be used on c(X,Z);
whereas the situation is opposed for the ordering ii). Analyzing the number of



7.3. EXTENSIONS 71

performed matches: in case i) is 400, 000 · 5 · 80, while in case ii), it increases to
400, 000·5·40, 000. Therefore, the ordering i) is more advantageous. Indeed, even
if the size of the extensions coincides, data are more uniformly distributed in Ic2 ,
thus indexing on the �rst argument c/2 is preferable than indexing on the same
argument b/2. Notably, by construction, the Combined and the Combined+

criteria are completely unaware of the di�erences between the two orderings.

To comply with these situations, we extended the Combined+ strategy, ob-
taining an ordering strategy, namely Combined+

I , that takes into account the
in�uences of body ordering on indexing strategies.

Given a rule r, at step i for each literal l ∈ B(r) \ B′i−1 we estimate the
e�ect of adding l as next literal by considering the qualify of indices that might
be used for the other remaining literals {l1, . . . , ln} ∈ B(r) \B′i−1.

Formally, let V be the set of variables in var(l) ∪ var(B′i). For each literal
l′ ∈ {l1, . . . , ln}, for which there is at least an indexable argument, we estimate
the quality of the best index available for l′ in case l is added as next literal,
denoted qi(l

′, l), according to the indexing strategy employed, as:

qi(l, l
′) = 1−

∏
X∈idx(l′) V (X, l′)

T (l′)

where idx(l′) are the indexing arguments for l′ selected among the arguments
featuring ground terms or variables contained in V .

Essentially, qi(l, l
′) is a value ranging from 0 to 1: the nearer it is to 0, the

higher is the quality of the index employable for l′. Indeed, in case the indexing
arguments represent a key,

∏
X∈idx(l′) V (X, l′) = T (l′), therefore qi(l, l

′) = 0.
For instance, assuming that each involved predicate is indexed according to

the balanced on-demand indexing strategy (cf. Chapter 6), supposing that a1
and a2 are the two arguments selected, then:

qi(l, l
′) = 1− V (a1, l

′) · V (a2, l
′)

T (l)

Let qi(l) =
∏

l′∈{l1,...,ln} qi(l, l
′). The score for l at step i is computed as the

si(l) · qi(l), where si(l) is the score for l at step i computed via the Combined+

criterion.

Example 7.3.2. Returning to the example 7.3.1, suppose to be at step 0 and we
are choosing to add b(X,Y ) or c(X,Z) as �rst literal in a newly reordered body
B′(r1). Then q0(b(X,Y )) = q0(b(X,Y ), c(X,Z)) = 1−2, 500/200, 000 = 0.9875,
while q0(c(X,Z)) = q0(c(X,Z), b(X,Y )) = 1 − 5/200, 000 = 0.999975. More-
over, s0(b(X,Y )) = s0(c(X,Z)) = 200, 000. Thus, the Combined+

I criterion
decides to insert �rstly b(X,Y ).

7.3.2 Backjumping-driven Ordering

The strategy described next has been designed for the backjumping mecha-
nism [111] reported in Section 5.3. As already mentioned, given a (non-ground)
rule r, this technique restricts its instantiation to the set of relevant instances.
To this end, it relies on the set of relevant variables, denoted RelV ar(r), com-
posed by variables occurring in literals over unsolved predicates together with
the variables occurring in the head of r.
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Example 7.3.3. Suppose we are going to instantiate the rule r1:

a(X,Z) :- b(X,Z), c(X,Y ).

where b/2 and c/2 are solved predicates, thusRelV ar(r) = var(H(r)) = {X,Z}.
Before grounding r1, we can reorder its body as: i) b(X,Z), c(X,Y ) or ii)
c(X,Y ), b(X,Z). Notably, var(b(X,Z)) ⊆ RelV ar(r), while c(X,Y ) contains
the variable Y which is not relevant.

Selecting the order i), initially we look for a successful match on b(X,Z), next
we jump to c(X,Y ) and if the match on it succeed as well, we obtained a valid
and relevant substitution for r. At this point, it is useless to perform further
matches on c(X,Y ) since the ground terms mapped to relevant variables in the
current substitution will not change: we would just update the mapping for Y .
Rather, as the backjumping technique suggests, we can safely and immediately
jump back to b(X,Z), to produce a di�erent relevant substitution. Thus, for
each instance of b(X,Z) we need to consider just an instance for c(X,Y ).

To grasp the intuition behind this decision of the backjumping algorithm,
suppose that as input facts we have b(1, 1). c(1, 2). c(1, 3). c(1, 4)., then according
to a classical backtracking algorithm, we would produce:

a(1, 1) :- b(1, 1), c(1, 2).
a(1, 1) :- b(1, 1), c(1, 3).
a(1, 1) :- b(1, 1), c(1, 4).

However, after the simpli�cation step, we obtain that these rules are semanti-
cally equivalent to the rule:

a(1, 1) :- b(1, 1).

This happens because Y is not relevant: essentially, by discerning between rel-
evant and non-relevant variables, the backjumping algorithm is geared towards
avoiding to produce the same relevant instance multiple times [111].

On the other hand, adopting the ordering ii), initially we look for a suc-
cessful match on c(X,Y ), next we jump to b(X,Z): at this point after the �rst
successful match, we cannot jump immediately back, because b(X,Z) binds the
relevant variable Z, thus we need to perform every possible further match. Af-
ter processing all matching instances for b(X,Z) we can jump back to c(X,Y )
and consider the next instance for it. Essentially, in this way for each instance
of c(X,Y ) we iterate through over all the instances of b(X,Z); therefore, the
power of the backjumping algorithm cannot be completely exploited.

Consequently, body ordering might maximize the bene�ts stemming from
the adoption of a backjumping technique. To this end, the Combined+

B crite-
rion enhances the Combined+ with a heuristic allowing to place literals binding
relevant variables as soon as possible.

Assume to be at step i for each literal l ∈ B(r) \ B′i−1, we associate to l a
score, denoted s′i(l), computed with the following formula:∏

X∈var(l)∩RelV ar(X) V (X, l)∏
X∈var(l) dom(X)2

Basically, the score belongs to the range [0, 1] and the smaller is the score
the larger is the number of relevant variables that l binds. However, in general
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di�erent literals may bind the same variable, thus the formula tends to prefer
literals featuring a smaller selectivity for it.

Eventually, the �nal score for l at step i is computed as the product of s′i(l)
and si(l) assigned to l at step i by the Combined+ criterion.

Example 7.3.4. Let us come back to the example 7.3.3, suppose that as ground
extensions for the body predicates, we have:

b(1..5, 000, 1..100).
c(1..5, 000, 1..100).

Hence, dom(X) = 5, 000, dom(Y ) = 100 and dom(Z) = 100; in addition
T (b(X,Z)) = T (c(X,Y )) = 500, 000. Assume to be at step 0: s′0(b(X,Z)) =
(5, 000 · 100)/(5, 000 · 100)2 = 0.000002, while s′0(c(X,Y )) = 5, 000/(5, 000)2 =
0.0002. Moreover, s0(b(X,Z)) = s0(c(X,Y )) = 500, 000. Thus, from the point
of view of the Combined, Combined+, as well as the Combined+

I criteria there no
evident advantages in preferring the ordering i), while the Combined+

B criterion
correctly prefers to add b(X,Y ) as �rst literal in B′(r1).

7.3.3 Indexing- and Backjumping-driven Ordering

To consider the impact of both involved indices and backjumping technique,
the Combined+

IB criterion has been developed. Essentially, it extends the Com-
bined+ criterion by adding heuristics coming from both the Combined+

I and the
Combined+

B strategies.
More in detail, given a rule r, at each step i for each literal l ∈ B(r) \B′i−1,

the score assigned to it is: si(l) · q(il) · s′i(l), where si(l) is the score for l at
step i computed via the Combined+ criterion, qi(l) is the estimation of the
quality of available indices in case l is added at step i and is calculated as in
the Combined+

I criterion, while s′i(l) is the score assigned as in the Combined+
B

criterion referring to the binding of relevant variables.

Example 7.3.5. It is easy to see that in Example 7.3.1 the Combined+
B strategy

has no means to select the best ordering between the possible two. The same
holds if the Combined+

I criterion is applied on the rule showed in Example 7.3.3.
Therefore, by combining them the Combined+

IB strategy is able to make the best
choice in both cases.





Chapter 8

Decomposition Rewriting

Typically, the same computational problem can be encoded by means of many
di�erent ASP programs which are semantically equivalent; however, real ASP
systems may perform very di�erently when evaluating each one of them. This
behavior is due, in part, to speci�c aspects, that strictly depend on the ASP
system e�ectively employed, and, in part, to general �intrinsic� aspects, depend-
ing on the program at hand which could feature some characteristics that can
make computation easier or harder. Thus, often, to have satisfying perform-
ance, expert knowledge may be required in order to select the best encoding.
This issue, in a certain sense, con�icts with the declarative nature of ASP that,
ideally, should free the users from the burden of the computational aspects. For
this reason, ASP systems tend to be endowed with proper pre-processing means
aiming at making performance less encoding-dependent; intuitively, such means
are of great importance for fostering and easing the usage of ASP in practice.

A proposal in this direction is lpopt [16], a pre-processing tool for ASP
systems that rewrites rules in input programs by means of tree decomposition
algorithms. The rationale comes from the fact that, when programs contain rules
featuring long bodies, ASP systems performance might bene�t from a careful
split of such rules into multiple, smaller ones. However, it is worth noting that,
while in some cases such decomposition is convenient, in other cases keeping the
original rule is preferable; hence, a black-box decomposition like the one of lpopt ,
makes it di�cult to predict whether it will lead to bene�ts or disadvantages.

In this chapter, we start from the lpopt idea and propose a method, namely
SmartDecomposition, that aims at taking full advantage from decomposi-
tions, still avoiding performance drawbacks by trying to predict the e�ects of
rewritings. Such method is rather general, as it is intended to be embedded into
di�erent ASP systems, and customized accordingly. It analyzes each input rule
before the evaluation, and decides whether it could be convenient to decompose
it into an equivalent set of smaller rules, or not. Furthermore, as many decom-
positions may be possible for each rule, further criteria can be de�ned in order
to select a preferred one.

In addition, we de�ne a speci�c version to be embedded within the grounder
we are designing, and in general, adoptable by the grounding module of an
ASP system following a traditional �ground & solve� approach. The aim is
to improve grounding performance: to this end, heuristic criteria have been
tailored to take advantage from information that are available from within the
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instantiation process. In particular, we studied a heuristic estimation based on
the intrinsic cost of grounding a rule, and propose its usage to estimate the cost
of applying a decomposition. Consequently, decompositions can be selected not
only considering the non-ground structure of the encoding at hand, but also
on the bases of the instance with which it is coupled, so that, combining an
encoding E with an instance I might not produce the same decompositions if
E is instead paired with a di�erent instance I ′.

The chapter is organized as follows. In Section 8.1 we �rst recall the notions
of hypergraph and tree decomposition. Section 8.2 outline some motivations
behind the introduction of our decomposition approach. Next, in Section 8.3
we provide an abstract description of the SmartDecomposition technique,
while in Section 8.4 we describe a speci�c version of SmartDecomposition
tailored on the instantiation process.

8.1 Hypergraphs and Tree Decompositions

The structure of many problems can be described by graphs or hypergraphs, and
tree decompositions as well as hypertree decompositions are adopted to divide
these (hyper)graphs into di�erent parts so that the solution(s) of such problems
can be obtained by a polynomial divide-and-conquer algorithm that properly
exploits this division [78, 77].

De�nition 8.1.1 (Hypergraph and Graph). A hypergraph is a pairH = (V (H),
E(H)), where V (H) denotes a set of vertices (or nodes) and E(H) a set of
hyperedges. A hyperedge e ∈ E(H) is itself a set of vertices, with e ⊆ V (H). A
graph is a hypergraph in which all hyperedges consist of two vertices.

De�nition 8.1.2 (Tree Decomposition). A tree decomposition of a hypergraph
H = (V (H), E(H)) is a tuple TD = (T, χ), where T = (V (T ), E(T )) is a
tree and χ : V (T ) 7→ 2V (H) is a function associating to each vertex (or node)
t ∈ V (T ) a set of vertices χ(t) ∈ V (H), and the following conditions hold:

� for every e ∈ E(H) there exists a vertex t ∈ V (T ) such that e ⊆ χ(t),

� for every h ∈ V (H) the set {t ∈ V (T )|h ∈ χ(t)} induces a connected
subtree of T .

The width of a tree decomposition (T, χ) is max{|χ(t)| − 1|t ∈ V (T )}, i.e.
the maximum χ-set cardinality over all its vertices, while the tree-width of a
hypergraph H is the minimum of the widths of all possible tree decompositions
of H. In the following, w.l.o.g. we assume the tree T in a tree decomposition
to be rooted.

The problem of determining the tree-width of a graph G is NP-hard. How-
ever, for each �xed natural number k, checking whether the tree-width of G is
less or equal than k, can be done in logarithmic space [76].

8.2 Motivations

In order to analyse the impact of back-box decompositions on modern ASP sys-
tems, we considered two di�erent con�gurations of the state-of-the-art grounder
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gringo: (i) gringo in its default version, (ii) lpopt executed in pipeline gringo.
These con�gurations have been paired with the mainstream solvers clasp and
wasp. The latest available versions at the time of writing were launched: gringo
and clasp 5.2.1, and wasp 2.1. As benchmarks, we relied the Sixth ASP Com-
petition suite [67], which features 28 problems and 20 di�erent instances per
each. Experiments have been performed the same hardware of Chapter 11, and
for memory and time limits, we allotted 15 GiB and 600 seconds for each sys-
tem, per each single run. Table 8.1 reports the number of solved instances and
the average running times over solved instances, per problem; �TO� stands for
timeouts. The last two lines report the total number of solved instances and
the average solving times over them. As for the problems Consistent Query An-
swering, Reachability, Strategic Companies and System Synthesis none of the
executed con�gurations were able to solve any instance because of unsupported
syntax or timeouts, we omitted these four problems in Table 8.1.

Table 8.1: Sixth ASP Competition Benchmarks � impact of lpopt on solving

Problems
gringo|clasp lpopt|gringo|clasp gringo|wasp lpopt|gringo|wasp

#solved time #solved time #solved time #solved time
Abstract Dialectical Frameworks 20 8.80 20 8.19 12 37.96 12 51.64
Combined Con�guration 10 280.62 9 138.02 1 1.18 1 231.42
Complex Optimization 17 137.03 17 122.04 4 104.50 6 111.24
Connected Still Life 6 238.91 6 245.59 12 47.14 12 81.66
Crossing Minimization 6 63.06 6 63.48 19 4.09 19 5.21
Graceful Graphs 9 68.09 9 68.44 4 44.73 6 154.26
Graph Coloring 15 137.57 15 167.20 7 68.77 8 131.21
Incremental Scheduling 13 116.77 14 139.70 5 114.58 8 179.01
Knight Tour With Holes 10 15.05 10 43.58 10 113.87 10 145.06
Labyrinth 13 103.86 11 139.09 10 138.07 10 127.79
Maximal Clique 0 TO 0 TO 8 293.63 8 288.65
MaxSAT 7 43.70 7 50.05 19 100.41 19 104.59
Minimal Diagnosis 20 8.41 20 9.53 20 36.95 20 33.76
Nomistery 7 91.73 9 53.86 8 57.10 10 153.80
Partner Units 14 35.14 14 35.21 10 236.87 8 123.75
Permutation Pattern Matching 11 167.83 17 124.50 20 173.43 6 109.56
Qualitative Spatial Reasoning 19 140.97 19 141.60 16 194.72 16 195.06
Ricochet Robots 8 119.41 10 123.83 6 87.76 8 201.20
Sokoban 9 123.15 9 123.33 9 136.62 10 122.61
Stable Marriage 4 397.52 4 405.56 7 369.93 7 421.11
Steiner Tree 2 52.06 2 52.37 1 249.02 1 249.34
Valves Location Problem 16 22.18 16 40.02 16 68.68 15 41.32
Video Streaming 13 56.89 15 104.66 0 TO 0 -
Visit-all 8 17.21 8 16.98 8 60.97 8 58.44
Total Solved Instances 257/560 267/560 232/560 228/560
Average Time 93.16 94.11 111.45 119.00

The experimental results evidence that, in general, decomposing rules is
not always convenient in terms of performance, and a black-box decomposition
mechanisms by means of lpopt , makes it di�cult to predict bene�ts or disadvan-
tages. For instance, completely di�erent outcomes are observed if we consider
the two problems Labyrinth and Permutation Pattern Matching when lpopt pre-
processes the encodings. Concerning clasp, enabling lpopt leads to a gain of 6
solved instances with Permutation Pattern Matching, while it costs a loss of 2
instances with Labyrinth. An opposed situation can be observed for wasp. For
Permutation Pattern Matching without decompositions it is able to solve all the
20 instance, while with lpopt it solves just 6 instances. Contrarily, for Labyrinth
wasp solves 10 instances in about the same time independently from the usage
of lpopt .

Table 8.2 illustrates the impact on the grounding time, reporting grounding
times and the number of grounded instances within the same time and memory
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limits of gringo in its default version, and lpopt executed in pipeline gringo.
Analogously, even if looking at the average grounding times gringo seems to
bene�t from the usage of lpopt , in general, the black box decomposition mecha-
nism demonstrates a con�icting impact also on grounding performance: in some
cases splitting rules is preferable, in others a notable slowdown emerges. The al-
gorithm presented herein aims at overcoming this uncertainty. It is designed to
be integrated into an ASP system, and to smartly exploit information available
during the computation to predict, according to proper criteria, whether de-
composing will be convenient or not; moreover, while lpopt randomly generates
for each input rule an admissible decomposition, SmartDecomposition can
choose the most promising decomposition, among the several possible ones. The
algorithm has been designed as abstract and general to allow its customization
according to di�erent purposes. In particular, since in our experimental activity
con�icting behaviours emerged, suggesting that decompositions possibly should
be performed di�erently from system to system, the aim is to allow such cus-
tomizations according to the distinguishing modalities in which ASP systems
carry out their computational evaluations of input programs.

Table 8.2: Sixth ASP Competition Benchmarks � impact of lpopt on grounding

Problem
gringo lpopt|gringo

solved time solved time
Abstract Dialectical Frameworks 20 2.22 20 1.63
Combined Con�guration 20 14.66 20 14.78
Complex Optimization 20 8.52 20 12.27
Connected Still Life 20 0.10 20 0.10
Crossing Minimization 20 0.10 20 0.10
Graceful Graphs 20 0.21 20 0.22
Graph Coloring 20 0.10 20 0.10
Incremental Scheduling 20 28.93 20 28.91
Knight Tour With Holes 20 12.78 20 17.79
Labyrinth 20 0.55 20 0.64
Maximal Clique 20 14.23 20 32.64
MaxSAT 20 6.80 20 11.37
Minimal Diagnosis 20 2.99 20 3.35
Nomistery 20 2.41 20 1.16
Partner Units 20 0.39 20 0.41
Permutation Pattern Matching 20 124.49 20 4.67
Qualitative Spatial Reasoning 20 6.07 20 6.06
Ricochet Robots 20 0.19 20 0.21
Sokoban 20 1.17 20 1.18
Stable Marriage 20 116.43 20 119.93
Steiner Tree 20 31.57 20 31.40
System Synthesis 20 1.35 20 1.40
Valves Location Problem 20 3.78 20 3.65
Video Streaming 20 0.10 20 0.10
Visit-all 20 1.04 20 0.39
Total Solved Instances 500/500 500/500
Average Time 15.25 11.78

8.3 A Heuristic-driven Decomposition Approach

In this section we introduce SmartDecomposition, designed to be integrated
into an ASP system. In order to decompose input rules we make use of hyper-
graphs and tree decompositions in order optimize the evaluation of the program
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The algorithm SmartDecomposition and the GenerateRuleDecomposi-
tons function
function SmartDecomposition(r : Rule) : RuleDecomposition

var er : number, S : SetOfRuleDecompositions, eS : Number,
RD: RuleDecomposition
er ← Estimate(r)
S ← GenerateRuleDecompositions(r)
if S 6= ∅ then /* r is decomposable */

RD ← ChooseBestDecomposition(S,er)
eRD ← EstimateDecomposition(RD)
if DecompositionIsPreferable(er,eRD) then

return RD
end if

end if
return ∅

end function

function GenerateRuleDecompositons(r : Rule) : SetOfRuleDecompo-
sitions

var HG : Hypergraph, S : SetOfRuleDecompositions,
RD : RuleDecomposition, TD : TreeDecomposition
TDS : SetOfTreeDecompositions
HG← ToHypergraph(r)
TDS ← GenerateTreeDecompositions(HG)
for each TD ∈ TDS do

RD ← ToRules(TD,r)
S = S ∪RD

end for
return S

end function

at hand.

The abstract algorithm SmartDecomposition is shown in Figure 3. In
the following, we indicate as tree decomposition an actual tree-decomposition
of a hypergraph, while with rule decomposition we denote the conversion of
a tree-decomposition into a set of ASP rules. Given as input a (non-ground)
rule r, the algorithm �rst heuristically computes the impact er of r on the
computation by means of the Estimate function; then, the function Gener-
ateRuleDecompositons computes a set of of possible decompositions S, from
which ChooseBestDecomposition selects the best decomposition RD ∈ S
according to a criterion to be de�ned; hence, the impact of RD is estimated by
EstimateDecomposition, by means of an additional criterion to be de�ned,
and it is compared to er in order to decide if decomposing is convenient.

The de�nition of the functions Estimate, ChooseBestDecomposition,
EstimateDecomposition and DecompositionIsPreferable are left unim-
plemented, as they are completely customizable and must be de�ned by properly
taking into account features and information available within the speci�c eval-
uation procedure of the actual ASP system in which the algorithm is being
integrated into.
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The function GenerateRuleDecompositons is reported in Figure 3. The
function ToHypergraph converts the input rule into a hypergraph: such con-
version can be carried out in several ways and thus should be customized in the
actual implementation in order to met the computation strategies of the system
at hand.

Then, HG is iteratively analysed in order to produce possible tree decom-
positions, by means of the function GenerateTreeDecompositions. This
function might be de�ned according to di�erent heuristics; since it might take
too long and also be useless to enumerate all decompositions in practice, it could
be de�ned in order to compute only a �xed number.

Figure 4 illustrates the function ToRules, that, given a tree decomposition
TD and a rule r, converts TD into a rule decomposition for r. At �rst, it iterates
on the nodes of TD by means of the functionVisitDFS, which performs a depth-
�rst search and returns a list of nodes, v1, . . . , vn such that for i ∈ {1, . . . , n} and
j ∈ {1, . . . , i}, vj is never a child of vi. Each node in the list is analyzed, and a
corresponding rule r′ for it is generated via the function GenerateRule. The
process is, again, customizable, and should be de�ned according to the function
ToHypergraph.

Eventually, to ensure that the generated rules can be grounded, safety is
checked1. If r′ is unsafe, a new rule r′′ is generated by function EnsureSafety.
If UV is the set of unsafe variables, an atom a over a fresh predicate p containing
as terms the variables in UV is added to both H(r′′) and B(r′). A set of literals
L binding the variables in UV is extracted from B(r) and added to B(r′′). The
choice of the literals to be inserted in L is also customizable, as, in general,
di�erent combinations of literals might bind the same set of variables. It is
worthwhile considering that, in principle, one could directly add L to B(r′)
without generating r′′; however, this might introduce further variables in B(r′),
and alter the original join operations in B(r′). Eventually, both the rule r′

and the potential rule r′′ are added to the rule decomposition representing the
output.

8.4 Grounding-based Decomposition Rewriting

In this section we present an adaptation of the algorithm to be laid in the new
grounder we are designing. The aim is to improve its grounding process, thus
the heuristics and all other customizable steps will be de�ned in order to comply
with this purpose.

Let r be the input rule to be decomposed. We assume that whenever r
contains some aggregate literals or a choice atom, a rewriting process has been
previously applied to it, so that these constructs are in a standardized form,
in which each internal aggregate or choice element contains at most a literal.
The process is better formalized in Section 9.5 and essentially consists in an
adaptation of the input rule and in the introduction auxiliary rules. The rea-
sons behind the introduction of this standardization process are summarized

1In general, due to the abstract nature of SmartDecomposition we cannot assume the

safety of rules generated by GenerateRule, since this depends on the schemas selected for

converting a rule into a hypergraph, and a tree decomposition into a set of rules. For instance,

following lpopt schemas, at a �rst stage rules are generated as unsafe, and later it is applied

a process to ensure their safety.
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Converting a tree decomposition into a rule decomposition

function ToRules(TD : TreeDecomposition, r : Rule) : RuleDecomposi-
tion

var RD : RuleDecomposition
(v1, . . . , vn)← VisitDFS(TD)
for i = 1 . . . n do

r′ ←GenerateRule(vi,r)
if isUnsafe(r′) then

r′′ ← EnsureSafety(r′,B(r))
RD = RD ∪ r′′

end if
RD = RD ∪ r′

end for
return RD

end function

next. Firstly, from the software engineering point of view, the assumption that
these constructs are in a standard form eases the design, and in turn the im-
plementation, of their instantiation mechanisms. In addition, the grounding
performance is less in�uenced by the form in which rules are given in input and
we can transform them into format which is more e�cient to handle. Lastly, as
we will better outline in Section 9.5, by means of these rewriting processes we
can almost �freely� apply all optimizations intervening in the rule instantiation
function to the instantiation of these constructs. In this context, we do not have
to speci�cally take care of how to split literals inside an aggregate element, and
we can directly execute SmartDecomposition on the auxiliary rules obtained
from this rewriting process to determine whether the internal literals should be
split up into multiple rules.

Let us start from the functions ToHypergraph and GenerateRule. One
of the requirement of our grounder is the support of the ASP-Core-2 language.
Thus, these functions must carefully take this into account. For their de�nition,
we rely on a schema analogous to the one adopted in lpopt , that we recall next.

The function ToHypergraph converts the input rule into a hypergraph as
speci�ed by the following schema. In detail, a hypergraph of r consists in a pair
HG = (V (HG), E(HG)) such that:

� for each variable X ∈ var(r), there exists a vertex in V (HG);

� for each literal l ∈ B(r),

� if l is a naf-literal, there exists a hyperedge e ∈ E(HG) with e =
var(l);

� if l is an aggregate literal, there exists a hyperedge e ∈ E(HG) with
e = varg(l);

� if H(r) 6= ∅ (r is not a constraint), a hyperedge h ∈ E(HG) is constituted
by the set var(H(r));

� if r is a weak constraint, a hyperedge h ∈ E(HG) is composed by the set
var(W (r)).
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Customized versions of the functions Estimate and EstimateDecomposition
function Estimate(r : Rule) : Number

/* Estimate the cost of grounding a rule according to the formula of
Section 8.4.1 */
end function

function EstimateDecomposition(RD : RuleDecomposition) : Number
var eRD : number
PreProcess(RD)
eRD ← 0
for each r′ ∈ RD do

eRD = eRD+ Estimate(r′)
end for
return eRD

end function

The function GenerateRule is de�ned as follows. Let vi be the input node
of a tree decomposition, and r the input rule to be decomposed. The function
outputs a rule r′ such that for the head, H(r′):

� if vi is not the root node, then let parent(vi) be the parent node of vi;
H(r′) consists in a single predicate atom ha composed by a fresh predicate
hp and by the set of variables (χ(vi) ∪ χ(parent(vi))) as terms;

� if vi is the root node, then if r is rule and is not a strong constraint,
H(r′) = H(r), i.e. r′ contains in its head the head atoms of the original
rule to be decomposed r; if r is a weak constraint W (r′) = W (r), i.e. the
weak speci�cation of r are added to r′;

For the body, B(r′):

� let l1, . . . , lh be the literals in B(r), and vars = χ(vi); for every li, i ∈
{1, . . . , h} if var(li) ⊆ χ(vi), then li is added to B(r′);

� let c1, . . . , cm be the child nodes of vi, and ac1 , . . . , acm be the head atoms
of rules obtained by the processing of c1, . . . , cm, then ac1 , . . . , acm are
added to B(r′).

The policy implemented by the EnsureSafety function consists in prefer-
ring a small number of literals from B(r) and classical atoms with small ground
extensions. This is a di�erence w.r.t. the black-box usage of lpopt where the
choice of saviour literals is less informed, since it is performed before the actual
ASP computation process is started.

Figure 5 illustrates an implementation of Estimate and EstimateDecom-
position functions. The �rst heuristically measures the cost of instantiating
a rule, and relies on the formula illustrated in Section 8.4.1; the latter, after
some pre-processing steps described in Section 8.4.2, computes the cost of the
decomposition as the sum of the cost of each rule in a rule decomposition.

The functions DecompositionIsPreferable and ChooseBestDecom-

position are depicted in Figure 6. The function DecompositionIsPrefer-
able is in charge of deciding whether the best estimated rule decomposition RD
can be supposed to be preferable with respect to the original rule r by relying on
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Customized versions of the functions DecompositionIsPreferable and
ChooseBestDecomposition

function DecompositionIsPreferable(er: number, eRD: number) :
boolean

var threshold: number
threshold← GetThreshold()
if (er/eRD) ≥ threshold then

return true
end if
return false

end function

function ChooseBestDecomposition(S: SetOfRuleDecompositions, er:
number) : RuleDecomposition

var BD: RuleDecomposition, eBD: number, eRD: number,
BD ← ∅, eBD ← er
for each RD ∈ S do

eRD ←EstimateDecomposition(RD)
if eBD > eRD then

eBD ← eRD

BD ← RD
end if

end for
return BD

end function

er and eRD, that are the estimated costs associated to r and RD, respectively.
In particular, it computes the ratio er/eRD: if er/eRD ≥ threshold, the decom-
position is applied. Intuitively, when er < eRD one might think that grounding
r is preferable; nevertheless, when er and eRD are slightly di�erent it may be
the case to prefer RD over r. Moreover, it is worth remembering that the costs
are estimated, and, in particular, as it will be better discussed in Section 8.4.2,
the estimate of the cost of a rule decomposition requires to estimate also the ex-
tension of some additional predicates introduced by the rewriting, thus possibly
making the estimate less accurate. This leads sometimes to cases in which the
decomposition is preferable even when eRD > er. One can try to improve the
estimations, in the �rst place; however, an error margin will always be present.
For this reason, in order to reduce the impact of such issue, to obtain a more
�exible method, their ratio is compared with a threshold value.

The function ChooseBestDecomposition estimates the costs of all input
decompositions, via the function EstimateDecomposition, and returns the
one with the smallest cost.

Example 8.4.1. To better clarify the process of converting a rule into a hy-
pergraph, and the subsequent conversion of a tree decomposition into a set of
rules, let us consider as an example the following rule r1, which is part of the
encoding of the problem Permutation Pattern Matching, belonging to the set of
benchmarks of the Sixth ASP Competition [67]:

:- pair(K1,K2), solution(K1, E1), solution(K2, E2), E2 < E1.
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Figure 8.1 depicts the hypergraph associated, HG(r1) and a possible tree de-
composition of it, TD(r1).

E1

E2

K1

K2

{E1,E2,K2}

{E1,K1,K2}

HG(r1) TD(r1)

Figure 8.1: Decomposing a rule of Permutation Pattern Matching : the associ-
ated Hypergraph and a possible tree decomposition

The conversion of TD(r1) via the procedure ToRules yields the following rules:

fresh_pred_1(E2,K1) :- pair(K1,K2), solution(K2, E2).
:- solution(K1, E1), fresh_pred_1(E2,K1), E2 < E1.

Note that in this case the two rules are immediately obtained as safe after setting
their heads and bodies, hence no auxiliary rule has been introduced for safety
purposes.

Example 8.4.2. To illustrate the mechanism that ensure safety of rules deriving
from a decomposition, let us consider the following rule, r2:

preconditionsd(T, L1, L2, S) :- step(S), at(T, L1, S − 1),
fuelcost(Fueldelta, L1, L2),
fuel(T, Fuelpre, S − 1),
Fuelpre >= Fueldelta.

r2 has been extracted from the encoding of the problem Nomystery, part of the
Sixth ASP Competition [67].

The conversion of r2 into a hypergraph, HG(r2) leads to the one reported
in Figure 8.2. The vertices consist in the variables in var(r2): Fueldelta,
Fuelpre, L1, L2, S, T . As edges, from the body literals we have: {S},
{T, L1, S}, {T, Fuelpre, S}, {Fueldelta, L1, L2}, {Fuelpre, Fueldelta}; while
{T, L1, L2, S} is the vertex stemming from var(H(r)).
Figure 8.3 depicts two distinct tree decompositions for r2, TD1(r2) and TD2(r2).
From TD1(r2) we obtain the following set of rules:

s1 : fresh_pred_1(Fuelpre) :- step(S), fuel(_, Fuelpre, S − 1).
s2 : fresh_pred_2(Fuelpre, L1, L2) :- fuelcost(Fueldelta, L1, L2),

Fuelpre >= Fueldelta,
fresh_pred_1(Fuelpre).

s3 : preconditionsd(T, L1, L2, S) :- step(S), at(T, L1, S − 1),
fuel(T, Fuelpre, S − 1),
fresh_pred_2(Fuelpre, L1, L2).
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L1

L2

T

FueldeltaFuelpre

S

HG(r2)

Figure 8.2: Decomposing a rule of Nomystery : the associated Hypergraph

{Fuelpre,L1,L2,S,T}

{Fueldelta,Fuelpre,L1,L2}

{Fueldelta,L1,L2,S,T}

{Fueldelta,Fuelpre,S,T}

TD1(r2) TD2(r2)

Figure 8.3: Decomposing a rule of Nomystery : two possible tree decompositions

Notably, to ensure the safety of s2, the rule s1 has been generated. Indeed,
the literal fresh_pred_1(Fuelpre) has been added to s2 to save the variable
Fuelpre appearing in the built-in Fuelpre >= Fueldelta. The body of s1
contains the literal fuel(_, Fuelpre, S − 1) binding Fuelpre, and the literal
step(S) needed to save the arithmetic term S − 1.

On the other hand, converting TD2(r2) yields the following set of rules:

s4 : fresh_pred_1(Fueldelta) :- fuelcost(Fueldelta,_,_).
s5 : fresh_pred_2(Fueldelta, S, T ) :- step(S), fuel(T, Fuelpre, S − 1),

Fuelpre >= Fueldelta,
fresh_pred_1(Fueldelta).

s6 : preconditionsd(T, L1, L2, S) :- at(T, L1, S − 1),
fuelcost(Fueldelta, L1, L2),
fresh_pred_2(Fueldelta, S, T ).

In this case, the rule s4 is added to guarantee the safety of s5. In particular,
here the variable Fueldelta has to be saved, and in the body of s4 is su�cient
to add fuelcost(Fueldelta,_,_).
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8.4.1 Estimating the Cost of Grounding a Rule

Estimating the cost of grounding a rule can help to get an intuition of its intrinsic
complexity before actually grounding it. In our case, it will be adopted to
determine if decomposing a rule could be advantageous.

We present an estimation that relies on statistics over predicates involved in
the body, such as their extensions size and their argument selectivities. Before
de�ning the formula described next, we considered several variants, and exper-
imented with di�erent formulae. Some techniques for parallel grounding are
studied in [110]; in particular, body literals are distributed to di�erent threads
and it is de�ned a formula employed to decide how to split them. The formula
is based on an estimation of the size of the joins of the body literals; similarly,
it is introduced a formula to estimate the size of the joins of the body literals
in [91], the one adopted for the Combined criterion (cf. Chapter 7). In our
context, the two estimations resulted to be non suitable, as rather than the
size of the join, we need to estimate the cost of instantiating a rule. Therefore,
starting from these formulae, we de�ned a formula better �tting our purposes.

Let a = p(t1, . . . , tn) be a classical atom. As already stated, we denote with
var(a) the set of variables occurring in a, while T (a) represents the number of
di�erent tuples for a in the ground extension of p. Moreover, for each variable
X ∈ var(a), we consider as the selectivity of X in a, denoted as V (X, a), the
number of distinct values in the projection of X over the ground extension of
the predicate p.

Given two classical atoms b and c, the cost of evaluating the join between
them is estimated as:

ebonc =
T (c)∏

X∈idx(var(b)∩var(c))

V (X, c)
·

∏
X∈var(b)∩var(c)

V (X, b))

max{V (X, b), V (X, c)}

where idx(var(b) ∩ var(c)) is the set of the indexing arguments of c.
Intuitively, the cost of a join is in�uenced by the actual number of tuples

that have to be taken into account when performing the join operation. Since
grounders typically employ indexing techniques to retrieve matching instances,
the number of tuples for c e�ectively considered when performing the join are
just the ones matching with the partial substitution of the indexing variables
that are in common with b. In addition, as expectable, this implies that the
join b on c might not have the same cost of the c on b. As a consequence, the
cost of grounding a rule tends to be highly in�uenced from the order of literals
in B(r).

Let r be a rule: by repeatedly applying the formula to atoms in the body of
r we obtain an estimate of the cost of grounding r. Essentially, starting from
the �rst two atoms in the body of r, and computing their join cost, we iterate
the procedure estimating the cost of the join between the relation obtained so
far (i.e. the one containing the contribution of the previous considered atoms),
and the following atom in the body. The last step eventually gives the �nal cost
of the join.

More in detail, given a rule r, let 〈a1, . . . , am〉 be the ordered list of atoms
appearing in B(r), form > 1. Initially, the cost of grounding r, denoted by er, is
set to T (a1), then the following formula is iteratively applied up to the last atom
in the body in order to obtain the total estimated cost for r. Let us suppose
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that we estimated the cost of joining the atoms 〈a1, . . . , aj〉 for j ∈ {1, . . . ,m},
and consequently we want to estimate the cost of joining the next atom aj+1;
if we denote by Aj the relation obtained by joining all j atoms in 〈a1, . . . , aj〉,
then:

eAjonaj+1 =
T (aj+1)∏

X∈idx(var(Aj)∩var(aj+1))

V (X, aj+1)
·

·
∏

X∈(var(Aj)∩var(aj+1))

V (X,Aj)

dom(X)

(8.1)

where dom(X) is the maximum selectivity of X computed among the atoms in
B(r) containing X as variable, and idx(var(Aj) ∩ var(aj+1)) is the set of the
indexing arguments of aj+1. We note that, at each step, once the atom aj+1

has been considered, V (X,Aj+1), representing the selectivity of X in the virtual
relation obtained at step j + 1, has to be estimated in order to be used at next
steps: if X ∈ var(Aj), then V (X,Aj+1) = V (X,Aj) · (V (X, aj+1)/dom(X)),
otherwise V (X,Aj+1) = V (X, aj+1). Therefore, the cost of grounding r, de-
noted er, corresponds to e〈a1,...,am−1〉onam

.

8.4.2 Estimating the Cost of Grounding a Decomposition

Let r be a rule and RD = {r1, . . . , rn} be a decomposition for r. In order to
estimate the cost of grounding RD, one must estimate the cost of all rules in RD.
For each ri the estimation is performed by means of the formula discussed above.
Nevertheless, it is worth noting that each ri contains, in general, both predicates
originally appearing in r, denoted as known predicates, and fresh predicates, that
are generated during the decomposition. As for known predicates, thanks to the
instantiation order of rules (cf. Section 5.2.2), actual data needed for computing
the formula directly come from the instantiation of the previous rules. As for the
fresh predicates, since they have been �locally� introduced and do not appear in
any of the rules originally in the input program, such data must be estimated.

For such an estimation, the dependencies among the rules in RD are anal-
ysed, and an ordering that guarantees a correct instantiation is determined.
This ordering can be determined by means of the same concepts of Section 5.2.1
, thus by analysing the dependencies among involved predicates. Intuitively,
rules depending only on known predicates can be grounded �rstly, while rules
depending on fresh predicates can be grounded only once the rules that de�ne
them have been instantiated.

Assuming that for the set RD a correct instantiation order is represented by
〈r1, . . . , rn〉, for each r′ in this ordered list, if H(r′) = p′(t1, . . . , tk) for k ≥ 1
and p′ is a fresh predicate, we estimate the size of the ground extension of p′,
denoted IEpk

, as the size of the join of the classical atoms in B(r′) by means
of the Formula 7.1 described in Section 7.1. In particular, starting from the
�rst two atoms in the body of r′, and computing their join size, we repeatedly
apply the formula to estimate the size of the join between the already considered
atoms and the next atom in the body. The last step eventually gives the �nal
size of the join and hence, IEpk

. In addition, the selectivity of each argument
is estimated by assuming a uniform distribution as k

√
IEpk

.
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Therefore, the procedure PreProcess consists in a preprocessing of the
rules in RD according to a valid grounding order 〈r1, . . . , rn〉 by means of the
aforementioned formula in order to obtain the extensions size and the argument
selectivities also for involved fresh predicates. Next, a further preprocessing
step consists in reordering rule bodies as they will actually be evaluated, i.e.
according to the body ordering strategy employed. Consequently, the Estimat-
eDecomposition function can e�ectively estimate the costs of RD, denoted
eRD, by means of the Estimate function.

Example 8.4.3. Let us consider again the rule of Example 8.4.2. These slight
di�erences in the two decompositions RD1(r2) and RD2(r2) might have di�erent
in�uences on the ASP computation. Basically, depending on the instance at end,
with our approach we estimate the costs of the three possible alternatives: (i)
leave the rule as it is, (ii) choose RD1(r2) or (iii) RD2(r2).

Let us assume that the ground extensions of involved predicates are the
following:

step(1..5).
fuelcost(1..5, 1..5, 1..5).
fuel(1..5, 1..5, 1..5).

the cost of grounding r2 is estimated according to Formula (8.1); without re-
porting all intermediate calculations, er2 amounts to 390, 625. In order to com-
pute eRD1(r2) we �rst need to determine a correct evaluation order of the rules
in RD1(r2); the only valid one is 〈s1, s2, s3〉. Intuitively, s1 has only known
predicates in its body, thus can be evaluated �rst; the body of s2 contains,
besides to known predicates, fresh_pred_1, whose estimates will be avail-
able just after the evaluation of s1; eventually, s3 depends on fresh_pred_2,
whose estimates will be available right after the evaluation of s2. Once the
estimates for the fresh predicates fresh_pred_1 and fresh_pred_2 are ob-
tained by means of the Formula 7.1, they are used for computing es1 , es2 and
es3 with Formula (8.1), and thus eRD1(r2) = es1 + es2 + es3 . Again, without
reporting all intermediate calculations, eRD1(r2) amounts to 122, 945. Concern-
ing RD2(r2), the only valid ordering is 〈s4, s5, s6〉 and analogously as done for
eRD1(r2), eRD2(r2) is computed as 53, 075. In this case, it is easy to see that
the chosen decomposition is RD2(r2). Interestingly, with a di�erent input in-
stance, things might change. For instance, if the set of input facts for fuelcost
is changed to fuelcost(1..20, 1..20, 1..5)., the decomposition RD1(r2) is chosen.
Eventually, according to the �xed threshold the decomposition may preferred
over the original rule or not.



Chapter 9

Additional Techniques for

Fine-Tuning the Grounding

Process

The optimizations presented so far have a broad impact on whole the grounding
process; hereafter, we illustrate further optimizations acting in particular sce-
narios, which can be handled in a more speci�c and e�cient mode. In particular,
this chapter presents a series of optimizations acting to di�erent extent on the
instantiation process. They have diverse aims such as decreasing the number
of matches performed by the rule instantiation function, recovering as fast as
possible inconsistencies in the input program, or syntactically rewriting the in-
put program with the twofold intent of easing the instantiation and improving
performance.

This chapter is organized as follows. Section 9.1 presents a technique that
anticipates the evaluation of built-in atoms as soon as possible. Section 9.2
describes two techniques oriented to variables not involved in join operations.
Section 9.3.1 provides a description of a technique designed to leverage di�er-
ences in data distributions. In Section 9.4 we illustrate a technique intended
to faster determine whether an input program is incoherent. Eventually, Sec-
tion 9.5 discusses some manipulations of ASP-Core-2 syntactic features.

9.1 Pushing Down Selections

The �rst optimization presented is inspired by the classic relational algebra op-
eration of pushing selections down the execution tree. Similarly to the above
technique the aim is to reduce the search space and prevent failings when per-
forming matches, but conversely it is directly embedded in the rule instantiation
function.

Let r be a (non-ground) rule undergoing to the InstantiateRule function.
Suppose that the function is retrieving ground instances for a classical atom
l ∈ B+(r), possibly by means of an index. Recall that let BoundV ar(l) is
the set of variables occurring in l and in the literals preceding l within B(r).
For each built-in atom l′ in B(r) if var(l′) ⊆ BoundV ar(l), then the selection
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operation represented by l′ is directly evaluated and instances not matching
with it are skipped.

Example 9.1.1. Let us consider, for instance, the following rule r1:

p(X,Y, V, S) :- t(X,Y, Z), q(Z, V, S), V < S.

It is easy to see that, instead of �rst joining t(X,Y, Z) with q(Z, V, S) and then
selecting what complies with the comparison V < S, it is more convenient, in
general, to �rst select, in the extension of q(Z, V, S), the instances complying
with the comparison, and then to join them with the ones of t(X,Y, Z). Notably,
this can be obtained by applying a rewriting process before instantiating r1, that
produces an auxiliary rule intended to �lter instances in the extension of q/3
satisfying the selection operation and thus properly rewrite r1:

p_(Z, V, S) :- q(Z, V, S), V < S.
p(X,Y, V, S) :- t(X,Y, Z), p_(Z, V, S).

However, this technique avoids the possible overhead deriving from the intro-
duction of a new rule, and without actually performing the rewriting, simulates
it during the instantiation of r1: while retrieving the instances of q, only those
complying with the comparison are actually taken into account.

9.2 Managing Isolated Variables

Let us consider a non-ground rule r containing a body atom p(X1, . . . , Xn),
with a variable Xi that does not appear anywhere else in r. Essentially, Xi

is not involved in any join operation, and we say that Xi is isolated. While
instantiating r, substitutions for Xi will not a�ect any failed match for the other
body literals, nor the instances obtained for the head literals. However, in order
to not lose solutions, in our context where we have to compute all �relevant�
solutions, it is needed to distinguish whether p/n is a solved predicate or not.

The techniques illustrated herein avoid to perform useless matches on these
variables in both cases. In particular, in Section 9.2.1 we present a technique
studied for isolated variables occurring within solved predicates; while in Sec-
tion 9.2.2 we propose a more general mechanism to �lter out also relevant iso-
lated variables based on a rewriting technique, safely applicable to all predicates,
with no distinction between solved and unsolved.

9.2.1 Filtering

Coming back to the situation reported above, in case p/n is a solved predicate,
Xi is also not relevant, and when looking for next matches for p/n, all instances
that di�er just because of the substitution of Xi can be safely ignored. Indeed,
according to the backjumping algorithm relevant instances of r are obtainable
by considering substitutions for relevant variables, therefore by ignoring substi-
tutions varying just because of Xi we are sure to not miss solutions.

To this end, the retrieval of matching instances for p/n can be empowered
with a �lter mechanism that suggests only the �relevant� instances. On the
other hand, if p/n is unsolved, instead, all its instances must be considered in
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order to preserve semantics of the produced ground program; thus, the use of
the described �lter mechanism must be prevented.

Example 9.2.1. Let us consider the rule r1 of the examples 7.3.3 and 7.3.4 on
which we have focused in the context of the Combined+

B criterion:

a(X,Z) :- b(X,Z), c(X,Y ).

where, Y is an isolated and not relevant variable. By means of this �ltering
technique even if the rule body is ordered as c(X,Y ), b(X,Z) we iterate through
all the instances of b(X,Z) not for each instance of c(X,Y ), but we can just
consider instances featuring distinct values for X, ignoring the values for Y .

Essentially, this �ltering mechanism maintains the emphasis on relevant vari-
ables working in synergy with the backjumping machinery.

9.2.2 Rewriting

Just like the process of pushing down selections, it is possible to deal with
isolated variables by means of a rewriting process. However, while in that
situation it is preferable to simulate virtually an operation that can be performed
as well by means of a rewriting, in this case an approach based on rewriting
might be preferable, since it allows to avoid the distinction between solved and
not solved predicates.

Let us consider again a non-ground rule r containing a body atom p(X1, . . .
, Xn), with an isolated variable Xi. We can safely eliminate Xi by projecting all
variables Xk, k 6= i of p to an auxiliary predicate p′. That is, a new (non-ground)
rule is added:

p′(X1, . . . , Xi−1, Xi+1, . . . , Xn) :- p(X1, . . . , Xn).

and p(X1, . . . , Xn) is substituted by p′(X1, . . . , Xi−1, Xi+1, . . . , Xn) in the body
of r. By doing so, the generation of ground instances of r which di�er only
on the binding of Xi is avoided. Notably, this rewriting preserves the original
semantics of r if either p/n is solved or not.

Example 9.2.2. As an example let us consider the program, P1:

a(X,Y ) :- b(X), c(Y, Z), not d(Y ).
b(1) | b(2) | b(3).
c(1, 1) | c(1, 2) | c(1, 3).

The variable Z is isolated because it appears only in c(Y, Z); moreover the
predicates b/1 and c/2 are unsolved. By applying to the only non-ground rule
in P1 the above mentioned rewriting we obtain:

a(X,Y ) :- b(X), c_(Y ), not d(Y ).
c_(Y ) :- c(Y,Z).

where the fresh predicate c_ has been introduced.
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Now, let focus on the impact on the instantiation. By grounding P1 in this
original form we obtain:

a(1, 1) :- b(1), c(1, 1), not d(1).
a(1, 1) :- b(1), c(1, 2), not d(1).
a(1, 1) :- b(1), c(1, 3), not d(1).
a(2, 1) :- b(2), c(1, 1), not d(1).
a(2, 1) :- b(2), c(1, 2), not d(1).
a(2, 1) :- b(2), c(1, 3), not d(1).
a(3, 1) :- b(3), c(1, 1), not d(1).
a(3, 1) :- b(3), c(1, 2), not d(1).
a(3, 1) :- b(3), c(1, 3), not d(1).

Thus, the atoms a(1, 1), a(2, 1) and a(3, 1) are derived three times each, because
of the three instances of the predicate c matching the pattern c(1, x), where x
is an arbitrary constant term. On the other hand, by grounding P1 after that
the rewriting has been applied, we have:

a(1, 1) :- b(1), c_(1), not d(1).
a(2, 1) :- b(2), c_(1), not d(1).
a(3, 1) :- b(2), c_(1), not d(1).
c_(1) :- c(1, 1).
c_(1) :- c(1, 2).
c_(1) :- c(1, 3).

Supposing that we execute the two versions of P1 by increasingly adding more
facts having 1 as �rst argument and more facts the predicate for b/1, while the
rest remains the same. Let m be the number of facts for b/1 and n be the
number of facts of form c(1, x), where x is an arbitrary constant term. Then,
with the original version of P1 we obtain each time m · n rules, whereas with
the rewritten version we generate just m+ n rules.

Indeed, in many cases this rewriting allows to reduce the size of the ground
program, and consequently the instantiation time; nevertheless, an overhead is
paid, due to the need for copying the projected instances of p in the extension of
p′; such overhead, even if negligible in general, might become signi�cant when
the bene�ts of the projection are limited, as will be evidenced in Section 11.5.

9.3 Determining the Admissibility of Substitu-

tions

During the rule instantiation function, we intrinsically look for an �agreement�
between body literals on variable substitutions, since literals should agree on
mappings for each common variable. To further ease this search we developed
two di�erent techniques: an ad-hoc mechanism that is geared towards the �align-
ment� of variable substitutions, presented in Section 9.3.1, and a more �exible
look-ahead technique that aims at determining as soon as possible whether dur-
ing the rule instantiation a partial substitution is not admissible, illustrated in
Section 9.3.2.
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9.3.1 Aligning Substitutions

Given a predicate p of arity n, for each argument i with i ∈ {0, . . . , n}, set(pn, i)
represents the set of possible (distinct) values for the argument i of p. Given a
rule r, a variable X ∈ var(B(r)) is said to be a join variable if it occurs in at
least two di�erent classical atoms in B+(r). In this context, two classical atoms
l1 and l2 are considered di�erent if:

� l1 and l2 contains the predicate p/n, n > 0, and a term t is the i-th
argument of l1 and the j-th argument for l2 with i ≤ n, j ≤ n and i 6= j;

� l1 and l2 are de�ned over two di�erent predicates p/n and p/m, with
n ≥ 0, m ≥ 0 and n 6= m;

� l1 and l2 are de�ned over two di�erent predicates p/n and q/m, with n ≥ 0
and m ≥ 0.

Subsequently, before the grounding of r actually starts, for each join variable
X in B+(r) it is computed the intersection, denoted I(X), of the sets set(qm, j),
where X is featured by the j-th argument of the predicate q/m with j ≤ m in
B+(r). At this point, r can undergo to the instantiation procedure. Let θ be
a partial variable substitution. Each time is performed a match on a literal
l ∈ B+(r) such that X ∈ var(l) is a join variable:

� if l is a classical atom over a predicate q/m and X corresponds to its k-th
argument, then it is possible to skip those instances in Iqm such that as
their k-th argument feature a ground term t and t /∈ I(X);

� if l is a built-in atom of form X = u, let u′ be the term obtained after the
arithmetical evaluation of uθ, then the match fails if u′ /∈ I(X);

� if l is an aggregate atom of form af{e1, . . . , en} = X representing an
assignment, thus generating suitable mappings for X, it is possible to skip
the matches in which to X is mapped a ground term w and w /∈ I(X).

Essentially, the intent is to faster determine inconsistences and reduce, in
general, the number of possible values for join variables, by skipping those that
would not match among distinct variable occurrences. Intuitively, such tech-
nique �ts best when the involved sets of possible values di�er signi�cantly. In
particular, in situations in which among the computed intersections, at least one
of them is empty, the instantiation of the rule at hand can be safely aborted, as
no successful match can be performed.

Example 9.3.1. As a �rst example, let us consider the rule r1:

a(X,Y, Z) :- b(X,Y ), c(Y,X,Z), d(Y,Z), e(X).

The variable X occurring three times in the body of r1 within literals over
di�erent predicates. Let us suppose that |set(b2, 0)| = 300, |set(c3, 1)| = 500
and |set(e1, 0)| = 10. The computed intersection for X consists here in I(X) =
set(b2, 0) ∩ set(c3, 1) ∩ set(e1, 0). Hence, the intersection will just contain the
values on which predicates b/2, c/3 and e/1 �agree�. Intuitively, due to the
presence of e(X), at most 10 values can be substituted to X in order to generate
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a signi�cant substitution (i.e. a substitution that allows to obtain a relevant
ground instance of r1).

Consequently, when substituting X with a ground value during the instan-
tiation of r, each value that is not present in the computed intersection can be
safely skipped.

Example 9.3.2. Let us now consider the rule r2:

a(X) :- b(Y ),#count{Z : c(Z, Y )} = X, d(J),W = J + 1, e(Y,W ), f(W,Y ).

There are two join variables: Y and W ; since they appear in two di�erent
classical atoms. Let us assume that c/2 is an unsolved predicate, and that as
input facts we have:

b(1..500).
c(1..500, 1..500).
d(1..100).
e(1..200, 1..5).
f(1..300, 1..10).

Hence, the intersections are I(Y ) = {1, . . . , 10} and I(W ) = {1, . . . , 5}. Let
us assume also that the body is not reordered and so r2 goes through the
rule instantiation function as it is above. In case the aligning technique is
not enabled, during the instantiation of r2 the number of matches performed
on #count{Z : c(Z, Y )} is 500 because of the 500 instances of b/1, and for the
built-in W = J + 1, the matches are 100 because of d/1. However, so far we
are considering also not relevant substitutions, and it will evident only when
the procedure jumps on the literals e(X,W ) and f(W,X), since they reduce the
search space for X and W ; hence, at this point the procedure has to jump back
to recover failing matches.

Conversely, via the technique information about the e�ective search space
for join variables is pre-computed, thus the number of matches performed on
the �rst two literals is reduced to 10, and to 5 for the subsequent two. It is
worthwhile noting that a good body ordering might avoid the �rst scenario
showed above, by �rst placing the literals e(X,W ) and f(W,X). However, the
alignment technique allows to reduce the search space immediately as soon as
a join variable is bounded, independently from the way in which the body is
ordered.

9.3.2 Look-Ahead Technique

The above presented technique about aligning variable substitutions may cause
some slowdown in performance arising from the computation of the involved
domain intersections, that might lead also to a signi�cant larger memory con-
sumption in case of particulary large extensions.

To overcome these limitations, we de�ned a more �exible and light-weight
technique having a similar purpose. Recall that for a literal l, we denote as
BindV ar(l) the set of variables in var(l) for which l is a binder and that for
a predicate p of arity n, for each argument i with i ∈ {0, . . . , n}, set(pn, i) we
denote the set of possible (distinct) values for the argument i of p.

Let r be a rule which is undergoing to the rule instantiation function. Let
l1, . . . , lm be the classical atoms appearing in its body. Suppose that the body
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ordering strategy order them as l1, . . . , lm. During the instantiation, when a
match on a literal li ∈ {l1, . . . , lm} is performed, a look-ahead step is achieved
to verify whether for the other literals featuring some variables in BindV ar(li)
the mappings assigned to such variables are admissible. More formally, let θ be
the current partial substitution. For each literal lj over a predicate p/n with
j ∈ {i+ 1, . . . ,m} and for each variable X ∈ BindV ar(li) such that X appears
as k-th argument in the literal lj with k ≤ n, if Xθ /∈ set(pn, k) then the match
on li fails, and another match is performed with a fresh instance for li.

Example 9.3.3. Let us consider again the rule r1 of Example 9.3.1: a(X,Y, Z)
:- b(X,Y ), c(Y,X,Z), d(Y,Z), e(X). Assume to have the following input facts:

b(1, 2). b(1, 3). b(1, 4). c(4, 1, 3).
c(2, 2, 1). d(2, 1). d(4, 1). e(2). e(3).

and that the original body order is maintained. Let θ be the current partial
substitution. Initially, a match is performed on b(X,Y ). Suppose that the
instance b(1, 2) is selected, thus θ = {X = 1, Y = 2}, a look-ahead step is
performed by checking whether:

� in set(c3, 1) there is the ground term 2, and in set(c3, 2) the ground term
1;

� in set(d2, 1) there is the ground term 2;

� in set(e1, 1) there is the ground term 1.

It is easy to check that the �rst two conditions holds, while the third one does
not. Therefore, another instance is selected, say b(1, 3); θ is updated as {X =
1, Y = 3} and since 3 /∈ set(c3, 1) the match fails again. Finally, the last instance
is b(1, 4), this time the mapping {X = 1, Y = 4} is admissible for all the other
literals, as they �agree� on the assigned ground terms to common variables. In
absence of such a technique all the three partial substitutions are propagated
and the fails are recovered only when the function jumps to a non-matching
literal.

Intuitively, we are achieving a similar e�ect as with the technique illustrated
in Section 9.3.1: partial substitutions for which literals do not agree are not
propagated, and thus these failing matches are immediately recovered. Fur-
thermore, in general, this technique has a more negligible impact on the per-
formance, mitigating the overhead even in situations in which extensions do not
di�er signi�cantly, as we will show in Section 11.6. On the other hand, in case
involved extensions di�er at the point that no instance can be derived, the align-
ment variable substitutions technique is preferable, since it allow to completely
prevent the instantiation.

9.4 Anticipating Strong Constraints Evaluation

Due to the missing heads, the instantiation of strong constraints does not a�ect
the creation of predicate extensions: thus, they could be safely processed at
the very end, once the instantiation of all program modules is completed, as
discussed in Section 5.2.1.
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However, due to the simpli�cation mechanism, literals appearing in the body
of a ground constraint can be removed, possibly leading to an empty-body
constraint. By de�nition, such constraints are always violated; thus, the input
program is incoherent, and the grounding process can be safely aborted. For this
reason, their grounding can be anticipated. In particular, a strong constraint
can undergoes the rule instantiation function as soon as the extensions of its
body predicates are available.

Let P be an ASP program, and C1, . . . , Cn be an admissible component
sequence for the strongly connected components of its dependency graph GP ,
and let S be the set of strong constraints in P . Given a rule r we denote as
BPr and HPr the set of body and head predicates in r, respectively. For a
component C ∈ {C1, . . . , Cn} we denote as PC the set of predicates de�ned by
C, i.e. the union of the set HP ′r for each rule r′ ∈ C. After the instantiation of a
component Ci for i ∈ {1, . . . , n}, each strong constraint s ∈ S if BPs ⊆ ∪ij=1PCj

can be grounded since the extensions of its body predicates have been de�nitely
computed.

We remark that a similar mechanism may be applied to weak constraints,
however, even if after the simpli�cation step it is obtained an empty body weak
constraint, the instantiation cannot be aborted. Indeed, di�erently from strong
constraints representing integrity conditions, as suggested by their name, weak
constraints are �weaker� conditions that should be preferably satis�ed (cf. Sec-
tion 2.2).

This optimization is particularly useful in all that situations in which ASP
is used for checking whether some strict conditions hold, allowing to determine
as fast as possible the presence of incoherence.

Example 9.4.1. As an example, let us consider the following program P1, a
variant of the program P3col of the example 3.1:

r1 : color(X, red) | color(X, green) | color(X, blue) :- vertex(X).
r2 : :- edge(X,Y ), color(X,C), color(Y,C).
r3 : used_color(C) :- color(X,C).

Essentially, as in the Three-colorability problem, the aim is to assign to each
vertex one of three colors such that adjacent vertices always have distinct col-
ors. Moreover, here we want to determine which colors have been e�ectively
employed. To this end, in addition to P3col, P1 features the additional rule
used_color(C) :- color(X,C).

Computing the dependency and component graphs of P1 we obtain that
there are two components: a �rst component formed by the predicate color/2
and a further one composed by used_color/1, and there are no negative depen-
dencies. Hence, we can easily conclude that an admissible component sequence
is: color/2, used_color/1. Let us assume that P1 is coupled with the following
input facts, I:

vertex(1). vertex(2). edge(1, 2). color(1, red). color(2, red).

The instantiation of P1 ∪ I comprises the constraint:

:- edge(1, 2), color(1, red), color(2, red).

which is always violated because the input facts color(1, red) and color(2, red)
constrain the assigned color to both vertices 1 and 2 to red. Consequently,
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P1 ∪ I has no answer set. Employing a component-wise instantiation of strong
constraints, r2 can be grounded right after the component formed by color/2
has been processed, and the incoherence of P1∪I becomes immediately evident,
hence there is no need to proceed in the instantiation of the next component.

Remarkably, in this speci�c case the incoherence can be detected without
actually grounding the component relative to color/2, because the ground con-
straint showed above is obtained directly from input facts. However, in general,
grounding a constraint before that the rules de�ning its body predicates have
been processed do not ensure that relevant ground instances for it are missed.
For instance, in our example, we would have lost the constraints:

:- edge(1, 2), color(1, blue), color(2, blue).
:- edge(1, 2), color(1, green), color(2, green).

9.5 Rewriting Techniques for Handling Di�erent

Language Features

In this section we describe some semantically equivalent alternatives to write
rules containing particular constructs of ASP-Core-2 syntax such as arithmetic
terms (Section 9.5.1), functional terms (Section 9.5.2), aggregate literals (Sec-
tion 9.5.3) and choice atoms (Section 9.5.4). Each rewriting technique guaran-
tees that the semantics of the original rules is preserved, and has been designed
to bring bene�ts from both the software engineering and the performance sides.

9.5.1 Arithmetic Terms

Given a literal l containing an arithmetic term u, we denote as l̄ the literal
obtained by replacing in l the term u with a fresh variable X. Let r be a (non-
ground) rule containing in its body the literals l1, . . . , ln. Let li for i ≤ n be a
literal in which it occurs an arithmetic term t. The body of r can be rewritten
as l1, . . . , li−1, l̄i, li+1, . . . , ln, X = t, where X is a fresh variable, i.e. a variable
that does not appear in var(r) before that the rewriting is applied, and X = t
is an additional built-in atom.

Example 9.5.1. Let us consider the rule r1:

a(X,Y ) :- c(X,Y, Z), c(X + Y ∗ Z).

Then, r1 is rewritten as:

a(X,Y ) :- c(X,Y, Z), c(FV ), FV = X + Y ∗ Z.

where FV is a fresh variable.

The same rewriting can be applied also in case an arithmetic term appears
in a classical atom in the head or in a choice atom. Let r be a (non-ground)
rule containing in its head the literals l1 | . . . | ln. Let li for i ≤ n be a literal
in which it occurs an arithmetic term t. The head of r can be rewritten as
l1 | . . . | li−1 | l̄i | li+1 | . . . | ln, where X is a fresh variable and in the body
of r is added the built-in atom X = t.
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Eventually, let r be a choice rule containing in its head a choice element a :
l1, . . . , ln. In case the atom a contains an arithmetic term t, the choice element
can be rewritten as: ā : l1, . . . , ln, X = t. On the other hand, supposing that
instead an arithmetic term t appears in a literal li among the literals l1, . . . , ln,
the choice element can be rewritten as: a : l1, . . . , li−1, l̄i, li+1, . . . , ln, X = t.

Example 9.5.2. Let us consider the rules:

r1 : a(X,Y ) | b(X + Y ) :- c(X,Y ).
r2 : {a(X + Y ) : b(X), b(Z)} :- c(Y, Z).
r3 : {a(X,Y ) : b(X), b(X + Y ∗ Z)} :- c(Y,Z).

Then, according to the rewriting described herein we obtain:

r1 : a(X,Y ) | b(FV ) :- c(X,Y ), FV = X + Y.
r2 : {a(FV ) : b(X), b(Z), FV = X + Y } :- c(Y,Z).
r3 : {a(X,Y ) : b(X), b(FV ), FV = X ∗ Z} :- c(Y, Z).

Intuitively, in every situation we are introducing a new built-in atom rep-
resenting as assignment, since it is the binder of the newly introduced fresh
variable. This simple rewriting may bring bene�ts or not; mostly, its e�ects
depend on the way this rewriting interacts with the optimizations intervening
in the instantiation process. In particular, the major in�uence is observable on
the body ordering strategy. To grasp the intuition, let us consider the following
example.

Example 9.5.3. Let us consider the program P1:

a(Y ) :- b(Y ), c(Y − 1).
b(1..10, 000, 000).
c(1..100).

As already discussed in Chapter 7, the �rst requirement of body ordering
strategies is to guarantee the correct instantiation. This implies that the only
possible ordering for the body of the rule reported above is: b(Y ), c(Y + 1),
because to evaluate c(Y + 1) it is needed that the literal b(Y ) binding Y occurs
before c(Y + 1). The number of matches performed to ground r1 as it is can
be roughly estimated as: 10, 000, 000: for each instance of b/1 we look for a
matching instance in the extension of c/1.

By enabling the aforementioned rewriting the rule is rewritten as:

a(X,Y ) :- b(Y ), c(Z), Z = Y + 1.

Consequently, now there are three possible orderings: i) b(Y ), c(Z), Z = Y + 1,
ii) c(Z), b(Y ), Z = Y + 1 or iii) c(Z), Z = Y + 1, b(Y ). Selecting the former two
orderings we would perform around 10, 000, 000 · 100 = 1, 000, 000, 000 matches,
100 times more than the number of matches performed if the rewriting is not
applied. With the latter ordering, the number of matches performed can be
reduced to 100. Indeed, in order to ground the rule in this last case, �rstly it is
needed to iterate through the 100 instances of c/1, next the built-in Z = Y + 1
can be seen as an assignment for the variable Y and thus can be evaluated
as Y = Z − 1, so just one match is performed on b(Y ) to check whether the
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value assigned to Y is valid. Notably, the bene�t deriving from this ordering
arises from the capability of transforming the built-in as an assignment. All the
strategies deriving from the Combined+ tries to estimates how much the search
space is reduced by built-in atoms, thus they would correctly select the third
ordering.

Hence, depending on the body ordering strategy adopted the introduction
of built-in atoms in the rule bodies may lead to new possible orderings bringing
signi�cant advantages or have a negative in�uence on performance.

9.5.2 Functional Terms

Let us consider a non-ground rule r containing in the body a literal l in which a
functional term, say t, occurs. Let var(l) = {X1, . . . Xn}, we can introduce an
auxiliary rule composed as follows:

p′(X1, . . . , Xn) :- l.

where p′ is a fresh predicate, and then replace l with p′(X1, . . . , Xn) in r.

Example 9.5.4. Let us consider the rule r1:

a(X,Y ) :- b(f(X,Y ), X, g(h(1, X)), 3), c(X,Y ).

Then, according to the rewriting described herein we obtain:

b_(X,Y ) :- b(f(X,Y ), X, g(h(1, X)), 3).
a(X,Y ) :- b_(X,Y ), c(X,Y ).

Even if, similarly to the rewriting of isolated variables illustrated in Sec-
tion 9.2.2 an overhead is paid, due to the need for copying a part of the in-
stances in the extension of p′, in general, the bene�t of the rewriting overcomes
this drawback allowing an e�cient retrieval of ground instances independently
from the presence of functional terms.

Example 9.5.5. Let us consider the program P1:

a(X,Y ) :- b(X,Y ), c(f(X,Z)).
b(1..100, 100).
c(f(1..1000, 1..1000)).

Supposing that the rewriting is not applied, the number of matches performed
when grounding the only rule of P1, if the body order reported above is not
changed, is around 10, 000 · 1, 000, 000 = 10, 000, 000, 000. Indeed, even if when
grounding c(f(X,Z)) the variable X is bound, the �rst argument of c/1 is not
indexable, and thus we need to iterate through all the extension of c/1.

To overcome such situations, we may design indexing techniques speci�cally
de�ned for functional terms, or rewrite the functional term and simply reuse
the indexing strategies discussed in Chapter 6.

By means of the rewriting illustrated herein the rule is rewritten as:

a(X,Y ) :- b(X,Y ), c_(X,Z).
c_(X,Z) :- c(f(X,Z))

Therefore, by replacing c(f(X,Z)) with c_(X,Z), the number of matches per-
formed can be reduced to 10, 000 · 1, 000 = 10, 000, 000, because we can employ
an index on the �rst argument of c_(X,Z).
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9.5.3 Aggregate Literals

Let r be a (non-ground) rule containing in its body an aggregate literal composed
by an aggregate element e of form t1, . . . , tn : l1, . . . , lm for n > 0 and m >
1. We will refer to l1, . . . , lm as aggregate body of e. Let {X1, . . . , Xk} =
var(t1, . . . , tn) ∪ varg(l1, . . . , lm) for k > 0 be the set of variables composed
by the variables in the terms t1, . . . , tn and the global variables of l1, . . . , lm.
Moreover, let s1, . . . , sj for j ≥ 0 be a set of literals in B(r) corresponding to
saviours for the literals l1, . . . , lm, then a rule r′ is obtained as:

p′(X1, . . . , Xk) :- l1, . . . , lm, s1, . . . , sj .

where p′ is a fresh predicate and, we rewrite e in r as t1, . . . , tn : p′(X1, . . . , Xk).

Example 9.5.6. Consider the following rule:

a(X) :- g(X,Z),#max{Y : b(X,Y + Z), c(Y ), not f(Z);W : f(W )} >= 3.

When applying the rewriting to its aggregate elements we obtain:

a(X) :- g(X,Z),#max{Y : p_(Y,X,Z);W : f(W )} >= 3.
p_(Y,X,Z) :- b(X,Y + Z), c(Y ), not f(Z), g(X,Z).

The only aggregate element that has been rewritten is Y : b(X,Y + Z), c(Y ),
not f(Z) because it contains more than one literal. In the body of the auxiliary
rule generated, besides its aggregate body, the atom g(X,Z) has been added
because of the atom b(X,Y + Z).

Notably, by means of this rewriting, aggregate elements are put in a �stan-
dard� form ensuring that each one contains at most a literal. In turn, this
standardization eases the instantiation and from the software engineering side
the possibility to treat the body of an aggregate element as the body of a rule
permits to automatically apply to the instantiation of its aggregate body all the
optimizations intervening in the instantiation of the body of a rule.

Example 9.5.7. Consider the following program P1:

a(Z) :- f(Z),#count{Y,W, T : b(Y ), c(W ), d(T );U : e(U,Z)} = Z.
b(1) | c(1) | d(1).
b(2) | c(2) | d(2).
f(1) | f(2) | f(3).
e(1, 1) | e(1, 2) | e(1, 3).

The instantiation of P1 yields to the following ground program:

a(9) :- f(1),#count{1, 1, 1 : b(1), c(1), d(1); 1, 2, 1 : b(1), c(2), d(1);
1, 1, 2 : b(1), c(1), d(2); 1, 2, 2 : b(1), c(2), d(2);
2, 1, 1 : b(2), c(1), d(1); 2, 2, 1 : b(2), c(2), d(1);
2, 1, 2 : b(2), c(1), d(2); 2, 2, 2 : b(2), c(2), d(2);
1 : e(1, 1)} = 1.
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a(9) :- f(2),#count{1, 1, 1 : b(1), c(1), d(1); 1, 2, 1 : b(1), c(2), d(1);
1, 1, 2 : b(1), c(1), d(2); 1, 2, 2 : b(1), c(2), d(2);
2, 1, 1 : b(2), c(1), d(1); 2, 2, 1 : b(2), c(2), d(1);
2, 1, 2 : b(2), c(1), d(2); 2, 2, 2 : b(2), c(2), d(2);
1 : e(1, 2)} = 2.

a(9) :- f(3),#count{1, 1, 1 : b(1), c(1), d(1); 1, 2, 1 : b(1), c(2), d(1);
1, 1, 2 : b(1), c(1), d(2); 1, 2, 2 : b(1), c(2), d(2);
2, 1, 1 : b(2), c(1), d(1); 2, 2, 1 : b(2), c(2), d(1);
2, 1, 2 : b(2), c(1), d(2); 2, 2, 2 : b(2), c(2), d(2);
1 : e(1, 3)} = 3.

As it might be observed, the Cartesian product de�ned by b(Y ), c(W ), d(T )
is computed three times, each time a new value for Z is considered. In our
example, for the sake of readability, we considered few input facts, and the
result of this product is limited to 8 tuples. However, performance tends to
get worse as long as a larger number of tuples is produced due to its repeated
instantiation. By applying the rewriting to aggregate elements, we can avoid
this drawback, obtaining:

a(X) :-#count{Y,W, T : p_(Y,W, T );U : e(U,Z)} = X, f(Z).
p_(Y,W, T ) :- b(Y ), c(W ), d(T ).

that leads to the following instantiation:

p_(1, 1, 1) :- b(1), c(1), d(1).
p_(1, 2, 1) :- b(1), c(2), d(1).
p_(1, 1, 2) :- b(1), c(1), d(2).
p_(1, 2, 2) :- b(1), c(2), d(2).
p_(2, 1, 1) :- b(2), c(1), d(1).
p_(2, 2, 1) :- b(2), c(2), d(1).
p_(2, 1, 2) :- b(2), c(1), d(2).
p_(2, 2, 2) :- b(2), c(2), d(2).

a(9) :- f(1),#count{1, 1, 1 : p_(1, 1, 1); 1, 2, 1 : p_(1, 2, 1);
1, 1, 2 : p_(1, 1, 2); 1, 2, 2 : p_(1, 2, 2);
2, 1, 1 : p_(2, 1, 1); 2, 2, 1 : p_(2, 2, 1);
2, 1, 2 : p_(2, 1, 2); 2, 2, 2 : p_(2, 2, 2);
1 : e(1, 1)} = 1.

a(9) :- f(2),#count{1, 1, 1 : p_(1, 1, 1); 1, 2, 1 : p_(1, 2, 1);
1, 1, 2 : p_(1, 1, 2); 1, 2, 2 : p_(1, 2, 2);
2, 1, 1 : p_(2, 1, 1); 2, 2, 1 : p_(2, 2, 1);
2, 1, 2 : p_(2, 1, 2); 2, 2, 2 : p_(2, 2, 2);
1 : e(1, 2)} = 2.
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a(9) :- f(3),#count{1, 1, 1 : p_(1, 1, 1); 1, 2, 1 : p_(1, 2, 1);
1, 1, 2 : p_(1, 1, 2); 1, 2, 2 : p_(1, 2, 2);
2, 1, 1 : p_(2, 1, 1); 2, 2, 1 : p_(2, 2, 1);
2, 1, 2 : p_(2, 1, 2); 2, 2, 2 : p_(2, 2, 2);
1 : e(1, 3)} = 3.

Essentially, by means of the auxiliary rule we are able to compute the aforemen-
tioned product just once and store it. Thus, the instantiation of the correspond-
ing aggregate element amounts at enumerating the ground extension of the fresh
predicate p_/3. In addition, in this way the aggregate body is grounded as rule
body and undergoes to every optimization provided for the rule instantiation
process.

9.5.4 Choice Rules

As anticipated in Section 2.3 choice rules represent syntactic shortcuts. Intu-
itively, a choice rule means that, if the body of the rule is true, an arbitrary
subset of its choice elements can be chosen as true in order to comply with the
involved comparison relation. Herein we describe three alternative rewriting
techniques.

Let r be a (non-ground) rule containing in its head a choice atom:

{a1(X11 , . . . , Xk1) : l11 , . . . , lm1 ; . . . ; an(X1n , . . . , Xkn) : l1n , . . . , lmn} B u
:- b1, . . . , bp.

For each choice element ai(X1i , . . . , Xki
) : l1i , . . . , lmi

for i ∈ {1, . . . , n}, we
will refer to l1i , . . . , lmi as its body. In each rewriting, if p > 1, let varg(B(r))∩
var(H(r)) = {Y1, . . . , Yt}, then we generate the rule r′:

p′(Y1, . . . , Yt) :- b1, . . . , bp.

where p′ is a fresh predicate. In case p = 1, i.e. |B(r)| = 1, let b1 be the only
literal in B(r). In the following, we generically denote as b either the atom
p′(Y1, . . . , Yt) if p > 1, or b1 if p = 1.

First Rewriting

Firstly, we propose a rewriting consisting in the removal of the choice atom, and
the introduction of disjunctive rules. In Section 2.3 we already showed that this
kind of syntactic manipulation is possible. Next, we de�ne a re�ned version of
such rewriting leading to a more e�cient instantiation.

For each choice element, ai(X1i , . . . , Xki
) : l1i , . . . , lmi

for i ∈ {1, . . . , n}, let
{Z1i , . . . , Zqi} = varg(B(r)) ∩ var(l1i , . . . , lmi). Then a �rst auxiliary rule is
produced as follows:

ai(X1i , . . . , Xki
)| − ai(X1i , . . . , Xki

) :- l1i , . . . , lmi
, b.

In case mi > 1, a second auxiliary rule consists in:

a′i(Z1i , . . . , Zqi) :- ai(X1i , . . . , Xki), s1, . . . , sr.
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where a′i is a fresh predicate and {s1, . . . , sr} ⊆ {l1i , . . . , lmi
} is a possible

empty list of saviours for the variables Z1i , . . . , Zqi . Moreover, let ae be a
set of aggregate elements obtained by adding:

� an aggregate element Z1i , . . . , Zqi : a′i(Z1i , . . . , Zqi) for each choice element
ai(X1i , . . . , Xki) : l1i , . . . , lmi with mi > 1;

� an aggregate element X1i , . . . , Xki : ai(X1i , . . . , Xki) for each choice ele-
ment with mi ≤ 1.

Eventually, the following constraint is added:

:- b,#count{ae} B u.

If |B(r)| = 0 in every generated rule, if b is present it is omitted.

Essentially, by means of the auxiliary rule r′ we are readopting the same trick
of Section 9.5.3 of storing the result of a frequent join operation into the ground
extension of a fresh predicate. Moreover, the disjunctive rules stemming from
each choice elements, as well as the introduced constraint, permit to get rid of
the choice atom and ensure that the original comparison relation is respected.
Thus, we are able to completely remove choice rules from an input program,
with the advantage that, if this rewriting is applied before the instantiation
process starts, it has not to be aware of the presence of choice atoms. Hence no
speci�c arrangements have to be employed in the rule instantiation procedure.
Furthermore, it is possible to directly apply to the instantiation of a choice
element all the optimizations intervening in the instantiation of a rule, since its
body is actually moved into a rule.

Second Rewriting

Hereafter, we describe a second possibility, which is quite similar to the previous
rewriting, but instead of removing choice rules, they are split up into multiple
smaller choice rules. In particular, for each choice element in a choice atom, an
auxiliary choice rule is generated in place of a disjunctive rule.

Formally, for each choice element, ai(X1i , . . . , Xki
) : l1i , . . . , lmi

for i ∈
{1, . . . , n}, let {Z1i , . . . , Zqi} = varg(B(r)) ∩ var(l1i , . . . , lmi

). Then a �rst
auxiliary rule is produced as follows:

{ai(X1i , . . . , Xki
)} :- l1i , . . . , lmi

, b.

Next, in case mi > 1, a second auxiliary rule consists in:

a′i(Z1i , . . . , Zqi) :- ai(X1i , . . . , Xki), s1, . . . , sr.

where a′i is a fresh predicate and {s1, . . . , sr} ⊆ {l1i , . . . , lmi} is a possible empty
list of saviours for the variables Z1i , . . . , Zqi . Eventually, if u 6= 0 and B does
not correspond to >=, the following constraint is added:

:- b,#count{ae} B u.

where ae is a set of aggregate elements obtained as in the �rst rewriting reported
above. If |B(r)| = 0 in every generated rule, if b is present it is omitted.
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As it might be observed, the same constraint used in the �rst rewriting
guarantees the semantics of the comparison relation. Furthermore, similarly to
the rewriting of aggregate literals, we are applying a standardization process
to choice rules: each generated choice rule features at most a choice element.
Notably, we are keeping the advantages stemming from the introduction of the
rule r′ by caching the join among the literals in B(r), and from the generation
of auxiliary rules for choice element bodies.

Third Rewriting

Finally, we describe a more conservative rewriting, that still tends to standardize
the form of choice rules, but without introducing further choice or disjunctive
rules.

In detail, for each choice element ai(X1i , . . . , Xki
) : l1i , . . . , lmi

for i ∈
{1, . . . , n}, let {Z1i , . . . , Zqi} = varg(B(r)) ∩ var(l1i , . . . , lmi

), if mi > 1 two
auxiliary rules are obtained as follows:

a′i(Z1i , . . . , Zqi) :- l1i , . . . , lmi
, b.

a′′i (Z1i , . . . , Zqi) :- a
′
i(Z1i , . . . , Zqi), ai(X1i , . . . , Xki

).

where a′i and a
′′
i are fresh predicates. Next, we build a set of choice elements

ce by adding to it:

� a choice element ai(X1i , . . . , Xki) : a′i(Z1i , . . . , Zqi) for each choice element
ai(X1i , . . . , Xki

) : l1i , . . . , lmi
with mi > 1;

� a choice element ai(X1i , . . . , Xki
) : l1i for each choice element ai(X1i , . . . ,

Xki) : l1i with mi = 1;

� a choice element ai(X1i , . . . , Xki
) : l1i for each choice element ai(X1i , . . . ,

Xki
), i.e. mi = 0.

The set ce is then used to obtain the following choice rule:

{ce} B u :- b

Moreover, if u 6= 0 and B does not correspond to >=, let ae be a set of aggregate
elements obtained by adding:

� an aggregate element Z1i , . . . , Zqi : a′′i (Z1i , . . . , Zqi) for each choice ele-
ment ai(X1i , . . . , Xki

) : l1i , . . . , lmi
with mi > 1;

� an aggregate element X1i , . . . , Xki
: ai(X1i , . . . , Xki

) for each choice ele-
ment with mi ≤ 1.

This set of aggregate elements is used within the following constraint:

:- b,#count{ae} B u.

If |B(r)| = 0 in every generated rule, if b is present it is omitted.

Basically, this technique applies a di�erent standardization process where
each choice element in a choice atom is rewritten in order to contain at most a
literal in its body. Thus, additional bene�ts might derive from the fact that a
smaller number of rules is introduced.
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Example 9.5.8. Let us consider the rule r1:

{a(X,Y ) : b(X,Y ), c(Y,Z); d(W,T ) : e(T )} >= 1 :- f(Z,W ), g((Z +W ), X).

According to the �rst rewriting, we obtain:

fresh_pred_1(Z,W,X) :- f(Z,W ), g((Z +W ), X).
a(X,Y )| − a(X,Y ) :- b(X,Y ), fresh_pred_1(Z,W,X), c(Y, Z).
d(W,T )| − d(W,T ) :- e(T ), fresh_pred_1(Z,W,X).
fresh_pred_2(Z,X, Y ) :- c(Y,Z), a(X,Y ).
:- fresh_pred_1(Z,W,X),
not 1 <= #count{Y,X,Z : fresh_pred_2(Z,X, Y );W,T : d(W,T )}.

If instead we apply the second proposed rewriting, we have:

fresh_pred_1(Z,W,X) :- f(Z,W ), g((Z +W ), X).
{a(X,Y )} :- b(X,Y ), fresh_pred_1(Z,W,X), c(Y,Z).
{d(W,T )} :- e(T ), fresh_pred_1(Z,W,X).
fresh_pred_2(Z,X, Y ) :- c(Y,Z), a(X,Y ).
:- fresh_pred_1(Z,W,X),
not 1 <= #count{Y,X,Z : fresh_pred_2(Z,X, Y );W,T : d(W,T )}.

Finally, with the third rewriting:

fresh_pred_1(Z,W,X) :- f(Z,W ), g((Z +W ), X)).
fresh_pred_2(Z,X, Y ) :- b(X,Y ), c(Y,Z), fresh_pred_1(Z,W,X).
a(X,Y ) : fresh_pred_2(Z,X, Y ); d(W,T ) : e(T ) :-

fresh_pred_1(Z,W,X).
fresh_pred_3(X,Y, Z) :- a(X,Y ), fresh_pred_2(Z,X, Y ).
:- fresh_pred_1(Z,W,X),
not 1 <= #count{Z, Y,X : fresh_pred_3(X,Y, Z);T,W : d(W,T )}.





Part III

Implementing an E�cient

ASP Grounder
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In this part we illustrate the �nal purpose of this thesis, the development of an
e�cient ASP instantiatior. In particular, we present the new released system
I-DLV , and then we provide an experimental evaluation.

This part is composed of the following chapters:

� Chapter 10 presents I-DLV , describing its novel and characterizing fea-
tures.

� Chapter 11 focuses on an experimental evaluation of the studied and pro-
posed techniques on I-DLV performance.

� Eventually, Chapter 12 aims at assessing I-DLV overall performance as
ASP grounder and deductive database engine. Moreover, we analyze its
impact on solvers.

I-DLV has been presented in [28], and in the latest ASP Competition [69] I-
DLV ranked both the �rst and second positions when combined, respectively,
with an automatic solver selector [29] that inductively chooses the best solver
depending on some inherent features of the instantiation produced, and with
the state-of-the-art solver clasp [64].
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Chapter 10

The New Grounder I-DLV

The new released grounder I-DLV integrates all the techniques designed and
introduced in this thesis. The system, besides being a stand-alone grounder
and deductive database engine, along with the solver wasp [3] constitutes the
new version of DLV , namely DLV2 , recently released [2]. Moreover, I-DLV is
an open-source project: its source and binaries are available from the o�cial
repository [38].

As described in the previous chapters, the most popular grounding tech-
niques reported in literature have been questioned with the aim of improving
them, and new techniques have been introduced; to this end, I-DLV was ini-
tially born as a tool to experiment with grounding techniques. It has been
designed and engineered aiming at building a modern and e�cient ASP instan-
tiator, natively supporting the ASP-Core-2 standard language, and endowed
with a lightweight modular design for easing the incorporation of optimization
techniques and future updates. Notably, its grounding process is performed in a
highly �exible and customizable way, allowing users to set up directly from the
external how it has to be performed. For the actual implementation, we started
completely from scratches choosing the C++ language, as it is particularly suit-
able and commonly adopted in contexts in which e�ciency is crucial.

It is marked by dramatically improved performance with respect to the
old DLV grounder module, and di�erently from it, I-DLV interoperates with
solvers and other ASP systems and tools, thanks to the fully compliance to
the ASP-Core-2 standard and the capability to format the output in di�erent
ways, including the numeric format required by state-of-the-art solvers wasp [3]
and clasp [65]. Furthermore, I-DLV is also a full-�edged deductive database
system, maintaining one of the feature that made DLV distinguishing.

In this chapter I-DLV is presented highlighting its distinguishing features.
Section 10.1 provides a description of the I-DLV high-level architecture. Sec-
tion 10.2 focuses on I-DLV typical work �ow and on the integration of the
optimizations introduced in this thesis. Finally, in Section 10.3 we present some
characterizing features of I-DLV .
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10.1 Architecture

The core strategies rely on a bottom-up evaluation based on a semi-naive ap-
proach (cf. Section 5.2).

Parser Rewriter
Dependency 

Analyzer

Program 
Modules 

Instantiator

Rule 
Instantiator

Output 
Builder

EDBIDB

Ground
IDB Output

Simplificator

Input

Figure 10.1: I-DLV Architecture

Figure 10.1 depicts I-DLV high-level architecture. The Pre-processor

module parses the input program P and builds the extensional database EDB
from facts in appearing P ; then, the Rewriter produces the intensional database
IDB from the rules. The Dependency Analyzer examines IDB rules and predicates,
identifying program modules and a proper ordering for incrementally evaluating
them according to the de�nitions described in Section 5.2.1.

The Program Instantiator grounds the program; the process is managed
by the Program Modules Instantiator, that, applying a semi-naïve schema, evaluates
one module at a time according to the order provided by the Dependency Analyzer.

The core of the computation is performed by the Rule Instantiator: given a
(non-ground) rule r and a set of ground atoms S representing predicate exten-
sions, it generates the ground instances of r, �nding proper substitutions for
the variables. The set S is dynamically computed: initially, it contains only
EDB and from then on it is extended by the ground atoms occurring in the
head of the newly generated ground rules. Ground rules are also analysed by
the Simplificator, in order to check if some can be simpli�ed or even eliminated,
still guaranteeing semantics. Eventually, the output is gathered and properly
arranged by the Output Builder. In particular, the Output Builder is able to format
the output in di�erent ways, including the numeric format required by state-
of-the-art solvers wasp and clasp. The produced ground program will have the
same answer sets of the full theoretical instantiation, yet being possibly smaller.

10.2 Overall Instantiation Process

Hereafter, we provide a general overview of the instantiation process of I-DLV ,
focusing on how optimizations have been integrated in I-DLV and outlining the
order in which they intervene. Their synergy is the key of I-DLV e�ciency:
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each of them aim to di�erent extents at optimizing the instantiation process.
At the very beginning, if the input program contains a query, I-DLV em-

ploys a rewriting technique geared towards e�cient query answering, namely the
magic-sets technique. It has been originally de�ned in [8] for non-disjunctive
Datalog (i.e. with no function symbols) queries only, and afterwards many gen-
eralizations have been proposed. In particular, I-DLV integrates an adapted
version proposed in [4]. Essentially, the aim of this method is to simulate the
top-down evaluation of a query: the original program is modi�ed in order to
narrow the computation to what is relevant to answer the query. Intuitively,
the goal is to use the constants appearing in the query to reduce the size of the
instantiation by eliminating a priori a number of ground instances of the rules
which cannot contribute to the (possible) derivation of the query goal. Basi-
cally, given an input program, the binding information for IDB predicates which
would be propagated during a top-down computation are materialized by means
of proper adornments of the input predicates. Hence, the adorned program is
used to generate a set of magic rules, which single out the atoms potentially
relevant for the input query. The adorned rules are modi�ed by adding magic
atoms in the rule bodies: this limits the range of the head variables avoiding the
inference of facts which cannot contribute to deriving the query. Eventually, a
magic version of the query goal is produced, that will �trigger� the bottom-up
generation.

Example 10.2.1. To show the e�ectiveness of the technique, let us consider
the program Preach constituted by the encoding for the Reachability problem
reported in Section 3.2, along with the ground query reachable(1, 5)? and the
following facts encoding a graph:

edge(1, 2). edge(1, 3). edge(3, 4). edge(4, 5). edge(2, 6).
edge(6, 7). edge(3, 6). edge(7, 8). edge(8, 6). edge(2, 8).

In order to answer, without the Magic Sets technique, the system should �rst
complete the instantiation, and then check whether the query atom is actually
contained in the unique answer set Such answer set contains 25 instances of the
predicate reachable, while not all of them are (possibly) relevant in order to
answer the query.

The application of the magic-set technique would produce the following
rewritten program, instead:

magic_reachablebb(Z, Y ) :- edge(X,Z),
magic_reachablebb(X,Y ).

reachable(X,Y ) :- edge(X,Y ),
magic_reachablebb(X,Y ).

reachable(X,Y ) :- magic_reachablebb(X,Y ),
edge(X,Z), reachable(Z, Y ).

magic_reachablebb(1, 5).

In this rewriting, the extension of magic_reachablebb represents the set of
start- and end-nodes of all potential sub-paths of paths from 1 to 5. Therefore,
when answering the query via a bottom-up computation, only these sub-paths
will be actually considered: in this case, just 8 instances of magic_reachablebb,
leading to the generation of only 3 instances of reachable.
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Next, rules possibly undergo to the rewriting that removes isolated variables,
described in Section 9.2.2. In many cases this reduces the size of the ground
program, and consequently the instantiation time; nevertheless, to mitigate the
possible overhead that, even if negligible in general, might become signi�cant
when the bene�ts of the projection are limited, such projection rewriting can
be disabled on request.

In addition, rules containing aggregate literals are rewritten as discussed in
Section 9.5.3, while choice rules are rewritten by applying the second rewriting
de�ned in Section 9.5.4, by default.

As further strategy long-body rules are rewritten by splitting them up into
multiple smaller ones, according to the decomposition rewriting illustrated in
Chapter 8. In particular, I-DLV embeds the SmartDecomposition ver-
sion tailored on the improvement of grounding performance illustrated in Sec-
tion 11.3. For each input rule, I-DLV selects the best estimated decomposition
among multiple ones; by default I-DLV performs �ve iterations, and stops
the generation of tree decompositions after three iterations without improve-
ments. These limits, that can be customized by proper command-line options,
have been experimentally obtained by observing that no advantages arise for
the grounding performance if larger limits are used. Moreover, by default the
threshold value has been set to 0.5. In order to obtain this value, we decided
to experimentally test the e�ects of the choices under several values and found
that decomposition is preferable when the threshold is set to 0.5. We plan to
further improve the choice of the threshold by taking advantage from automatic
and more advanced methods, such as machine learning guided machineries. For
the actual implementation, we relied on the open-source C++ library htd [1]1, an
e�cient and �exible library allowing to obtain tree decompositions and, impor-
tantly to customize them via user-provided �tness function. Moreover, thanks
to the �tness-function mechanism we were able to associate to each computed
decomposition its cost estimation, and selects the best one accordingly.

The order of literals in the rule bodies is analysed and possibly changed.
I-DLV implements all the body ordering strategies presented in Chapter 7, as
long as a basic strategy ensuring the correct instantiation, and a variant of the
Combined+ that push literals with functional terms down in the body, which is
intended to be employed whenever the rewriting of functional terms is disabled.
By default, I-DLV employs the Combined+ criterion, the other strategies can
be enabled on request.

Once the non-ground rules have been �adapted�, they undergo the rule in-
stantiation, based on a backjumping search [111]. The process is further op-
timized by making use of indexing techniques for the retrieval of matching in-
stances from the predicate extensions. By default, I-DLV employs the balanced
on-demand indexing strategy illustrated in Chapter 6. However, this behaviour
can be updated by specifying for each atom the indexing structure to employ,
as we will see in the following sections.

The search for an �agreement� between body literals on variable substitu-
tions is further eased by means of the aligning substitutions and look ahead
techniques, described in Section 9.3. The bene�ts are maximized when the sets
of substitutions di�er signi�cantly, thus they can be enabled on demand.

In addition, during the rule instantiation, I-DLV makes use the pushing

1https://github.com/mabseher/htd

https://github.com/mabseher/htd
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down selections optimization in order to faster determine inconsistencies (cf,
Section 9.1).

Moreover, in case the projection rewriting involving isolated variables is dis-
abled, whenever isolated variables occurring in atoms over unsolved predicates,
its e�ects can be virtually simulated as well during the instantiation by means
of the isolated variables �ltering mechanism discussed in Section 9.2.1.

The output of the rule instantiation process is a set of ground instances of
the rule at hand. The size of the output is further reduced by examining the
produced ground rules and possibly simplifying, or even eliminating them. In-
deed, body literals which are already known to be true can be safely dropped.
Moreover, once the rule instance has been created, when some negative literal
already known to be false occurs in the body, the rule instance is already (triv-
ially) satis�ed: it does not contribute to the semantics of the ground program,
and it is removed. Notably during this simpli�cation process, I-DLV exam-
ines all type of literals, trying to reduce the size of the output ground program
as much as possible. In case the input program is non-disjunctive and strati-
�ed w.r.t. negation, the modular evaluation guided by the Program Modules

Instantiator along with the simpli�cation mechanism allows I-DLV to com-
pletely evaluate the input program: the output consists of a set of facts, that
correspond to the unique answer set of the program. In such cases, there is no
need to rely on a further solving module.

In addition, I-DLV anticipates strong constraints grounding according to
the anticipating strong constraints evaluation technique depicted in Section 9.4,
which coupled with the simpli�cation mechanism, whenever all literals appear-
ing into the body of a ground constraint can be removed may lead to an empty-
body constraint. By de�nition, such constraints are always violated; thus, the
input program is incoherent, and the grounding process can be safely aborted.

10.3 Customizability and Further Features

As already stated, one of the main goals of the I-DLV project is to obtain a
novel, �exible tool to experiment with ASP and its applications; to this end,
it has been designed in order to allow a �ne-grained control over the whole
computational process, both via command-line options and inline annotations.

10.3.1 Command-line Customization

In what follows, we describe the most relevant options that can be set via
command-line in order to customize the behaviour of I-DLV .

- - indexing

I-DLV allows to control the indexing strategy, thus providing the user with
a mean to handle situations where the default behaviour is not satisfactory. In
particular, the indexing module can set per each predicate in the program a
single- or multiple-index, on the desired arguments. To this end, when more
than two arguments are speci�ed, I-DLV employs generalized indices (cf. Sec-
tion 6.1.1). For instance with - - indexing=p/4=0,1,2;p/2=1 it is set up that
for the predicate p/4 I-DLV should use an index on the �rst three arguments,



116 CHAPTER 10. THE NEW GROUNDER I-DLV

while for p/2 an index on the �rst argument. Before applying the indexing
strategy de�ned by users, I-DLV checks if it can be applied, and whenever non
indexable arguments are speci�ed I-DLV adopts the default indexing strategy.

- - ordering

As for body ordering, the user can currently choose among the following
alternatives via - - ordering=n, where n can be:

0 : a basic ordering that aims at preserving the original literals positions
in the rule, possibly rearranging them in order to guarantee a correct
instantiation;

1 : a variant of the DLV Combined criterion [91], where classical atoms are
placed according to the criterion, while the other types of literal tend to
be placed down in the body;

2 : the Combined+ criterion (enabled by default);

3 : an enhanced version of the Combined+ criterion that pushes literals with
functional terms down in the body;

4 : the Combined+
I criterion that tries to improve the quality of available

indices;

5 : the Combined+
B criterion that works in synergy with backjumping in

order to facilitate it;

6 : the Combined+
IB criterion combining the latter two.

- - decomp and related options

The decomposition rewriting can be performed in several modes:

� - - decomp=0 speci�es that, for every rule, once that the best decomposi-
tion has been determined, it has to be applied even if not estimated as
convenient;

� - - decomp=1 is the default setting, thus enables the �smart� decomposition
mechanism described in Chapter 8;

� - - decomp=2 disable completely the decomposition rewriting.

As already discussed, in general, obtaining a tree decomposition with the
optimal tree-width, is intractable. The library htd, on which we relied to ac-
tual construct tree decompositions, implements several decomposition heuristic
approaches [1]. The option - - decomp-algorithm=n allows to set the decompo-
sition strategy to be used in order to produce tree decompositions, where the
permitted values for n are:

0 : min-degree (default);

1 : max-cardinality;

2 : min-�ll;
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3 : natural-ordering.

A detailed description of tree decomposition techniques is given in the sur-
vey [79]. The default threshold can be changed with - - decomp-threshold. The
�xed number of iterations performed by I-DLV can be customized with the op-
tion - - decomp-iterations; in addition as soon as are executed a number of
iterations without producing a �better� decomposition, the generation process is
also stopped: this non-improvement limit can be updated with - - decomp-limit.

- - no-projection

The projection rewriting of isolated variables and functional terms, both
enabled by default, can be disabled: with - - no-projection=0 they are both
disabled, with - - no-projection=1 it is disabled the rewriting of isolated vari-
ables and enabled solely the rewriting of functional terms, and viceversa - -
no-projection=2 it is disabled only the projection of functional terms.

- - no-isolated-filter

Furthermore, the �lter mechanism for isolated variables appearing within
literals over solved predicates, enabled by default, can be disabled, via the option
- - no-isolated-filter.

- - align-substitutions and - - look-ahead

Conversely, with - - align-substitutions the technique that aligns variable
substitutions can be enabled at will: it is disabled by default, given that its
bene�ts strictly depend from the distribution of the input data. Similarly, with
- - look-ahead the look-ahead mechanism can be enabled.

- - choice-rewriting

Concerning choice rules, the user can choose among all rewriting techniques
introduced in Section 9.5.4. In particular, one can ask for the rewriting approach
that makes use of disjunction and removes them from the program, with - -
choice- rewriting=0, or the other two more conservative approaches, with
- - choice-rewriting=1 or - - choice-rewriting=2.

- - no-magic-sets and - - query

I-DLV is able to process both ground and non-ground queries. By default, it
simply produces the instantiation; via the option - - query, for non-disjunctive
and strati�ed programs, that are completely evaluated by the system, it can
directly provide the query answer. The magic-set technique, enabled by default,
can be disabled with - - no-magic-sets.

- - gstats
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For advanced users, insights on the grounding process might be of great
interest: they are available via a number of statistics that can be produced on
demand. In particular, the following information are provided for each input
rule: total instantiation time, number of produced ground instances, number of
iterations required for instantiation (in case the rule is recursive); in addition,
size of extension and selectivity of all arguments are reported, for each predicate
in the rule.

10.3.2 Inline Annotations

Besides the command line, system customization and tuning is further eased
by a new special feature of I-DLV : annotations of ASP code. Annotations
and meta-data have been applied in di�erent programming paradigms and lan-
guages; Java annotations2, for instance, have no direct e�ect on the code they
annotate: a typical usage consists in analysing them at runtime in order to
change the code behaviour. Some sorts of annotations have been proposed also
for declarative paradigms, although to di�erent extents and purposes with re-
spect to our setting; a more detailed discussion is carried out in Chapter 13.

In I-DLV annotations allow to give explicit directions on the internal compu-
tational process. In particular, supported annotations belong to two categories:
grounding annotations allowing for a �ne-grained customization on the ground-
ing process, and solving annotations that have been integrated into DLV2 , and
are geared to the customization of the whole computational process.

Syntactically, all annotations start with the pre�x �%@� and end with a dot
(�.�). Annotations do not change the semantics of input programs, their impact
might be observed just on the performance. For this reason, their notation
starts with %, which is used for comments in ASP-Core-2, so that other systems
can simply ignore them.

Grounding Annotations

These annotations allow customize the I-DLV grounding process at a more
�ne-grained level with respect to the command-line options: they �annotate�
the ASP code in a Java-like fashion, while embedded in comments: hence, the
resulting programs can still be given as input to other ASP systems that do
not support them, without any modi�cation. In particular, our annotations can
have two di�erent scopes: at the global level, meaning that they are applied
to the whole program, or at the rule level, and hence annotations act just on
the rule they precede. In detail, the annotations currently supported are meant
for customizing two of the major aspects of the grounding process, such as body
ordering, indexing, as well as optimizations for which enabling or disabling them
at rule level might have signi�cant e�ects on the performance, such as projection
rewriting of isolated variables, functional terms rewriting, arithmetical terms
rewriting, aligning substitutions, and the look-ahead technique.

A speci�c body ordering strategy can be explicitly requested for any rule,
simply preceding it with the line:

%@rule_ordering(n).

2https://docs.oracle.com/javase/tutorial/java/annotations/

https://docs.oracle.com/javase/tutorial/java/annotations/
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where n is a number representing an ordering strategy (cf. Section 10.3.1). In
addition, it is possible to specify a particular partial order among body literals
of a rule r, no matter the employed ordering strategy, by means of before and
after directives and according to the following syntax:

%@rule_partial_order(@before = {l1, . . . , ln}},
@after = {l̄1, . . . , l̄m}).

where {l1, . . . , ln} ⊆ B(r) and {l̄1, . . . , l̄m} ⊆ B(r) for n,m ≥ 0 and {l1, . . . , ln}∩
{l̄1, . . . , l̄m} = ∅, i.e. are disjoint. As it might be expected, these partial order-
ings are respected only if valid. For instance, if for the rule

:- b(X,Y ), not a(X).

an annotation constraining that the literal not a(X) is placed before b(X,Y ),
cannot be applied.

Example 10.3.1. For instance, assume to have the following situation:

%@rule_partial_order(@before = {b(X,Y ), X = #count{Z : d(Z)}},
@after = {c(X,Y )}).

a(X) :- b(X,Y ), c(X,Y ), X = #count{Z : d(Z)}.

Then, the rule body is ordered as: b(X,Y ), X = #count{Z : d(Z), c(X,Y ).

As for indexing, directives on a per-atom basis can be given for a rule r as
shown next:

%@rule_atom_indexed(@atom = ā,@arguments = {a1, . . . , ak}).

where ā is a classical atom occurring in B(r), and {a1, . . . , ak} a set of argu-
ments. Clearly, supposing that ā is an atom over a predicate p/n, for each
argument ai ∈ {a1, . . . , ak} it should hold that 0 ≤ ai ≤ n − 1: we followed a
common notation in computer science, so that the �rst arguments corresponds
to the argument 0 and the others follows. In addition, as done for the command-
line indexing option (cf. Section 10.3.1), before applying the annotation, I-DLV
checks that the speci�ed arguments are actually indexable.

Example 10.3.2. For instance, assume to have the following situation:

%@rule_atom_indexed(@atom = c(X,Y, Z,W ),@arguments = {0, 1}).
a(W ) :- b(X), b(Y ), b(Z), c(X,Y, Z,W ).

Then, for the atom c(X,Y, Z,W ) I-DLV employs a single-double index created
on the �rst and second arguments.

The projection rewriting can be customized for any rule, by preceding it
with the line:

%@rule_projection(n).

where n can either 0, 1 or 2, as for the command-line projection option described
in Section 10.3.1.
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The rewriting of arithmetic terms, disabled by default, can be enabled for
any rule, by specifying before it the following annotation:

%@rule_rewrite_arith().

Similarly, the aligning substitutions technique disabled by default, can be
enabled for a speci�c rule by preceding it with:

%@rule_align_substitutions().

while, for enabling the look-ahead technique, the annotation to use is the fol-
lowing:

%@rule_look_ahead().

Multiple preferences can be expressed via di�erent annotations; in case of
con�icts, priority is given to the �rst appearing in the program. In addition,
preferences can also be speci�ed at a global scope, by replacing the rule directive
with the global one. Such kind of annotations are applied on the rules, if
possible. While a rule annotation must precede the intended rule, global

annotations can appear at any line in the input program. Both global and
rule annotations can be expressed in the same program; in case of overlap on
a particular rule/setting, priority is given to the more speci�c rule ones.

Solving Annotations

Concerning solving side, from industrial and real world applications of ASP it
emerged that the possibility to customize the internal computational process
of ASP systems by specifying domain-speci�c heuristics leads to solve hardest
instances of problems that are out of reach for state-of-the-art ASP solvers [48].
For this reason, originally, the solver wasp has been endowed with a Python
interface, allowing users to specify via python scripts domain heuristics acting
over sets of ground literals of interests, and thus to de�ne how the solver should
act on these literals.

The integration of I-DLV and wasp within DLV2 [2] yields to a simpler
and more e�ective speci�cation of such heuristics, since users are free from
the burden of specifying ground literals. Rather, in DLV2 , by means of an
annotation, users can simply specify a python �le de�ning a heuristic, along
with a non-ground set of literals of interests, where each literal is associated
with a tuple of terms, on which the heuristic is intended to act. Then, internally
and transparently from the user point of view, I-DLV is in charge of grounding
these sets and providing them to wasp. Further details are reported in [2, 48].

Example 10.3.3. For example, a heuristic saved in heuristic.py and acting on
literals p(X) can be linked to a program by the following global annotation:

%@global_heuristic(@file = �heuristic.py�,@elements = {X : p(X)}).
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10.3.3 Further Features

As additional features, I-DLV has been endowed with means to ease the inter-
operability with external sources of knowledge [30].

In particular, I-DLV can import relations from a RDBMS by means of
an #import_sql directive. For example, #import_sql(DB, "user", "pass",

"SELECT * FROM t", p) is used to access database DB and imports all tuples
from table t into facts with predicate name p. Similarly, #export_sql direc-
tives are used to populate speci�c tables with the extension of a predicate. In
addition, #import_local_sparql and #import_remote_sparql directives are
used to retrieve data from SPARQL data sources.

Furthermore, the input program can be enriched by external atoms of the
form:

&p(i1, . . . , in; o1, . . . , om)

where p is the name of a Python function, i1, . . . , in and o1, . . . , om (n,m ≥ 0)
are input and output terms, respectively. For each instantiation i′1, . . . , i

′
n of

the input terms, function p is called with arguments i′1, . . . , i
′
n, and returns a

set of instantiations for o1, . . . , om. For example, a single line of Python:

def rev(s): s[::-1]

is su�cient to de�ne a function rev that reverse strings, and which can be used
by a rule of the following form:

revWord(Y ) :-word(X),&rev(X; Y).





Chapter 11

Experimental Evaluations of

the Optimizations

In this chapter we report the results of an experimental activity carried out
to assess the e�ects on the performance of I-DLV of the grounding techniques
studied and introduced in this thesis. In particular, in order to highlight the
impact of the diverse techniques we considered two sets of benchmarks: we relied
on the whole Sixth and Fourth ASP Competition suites [67]. ASP Competitions
are o�cial events [34, 68] assessing ASP systems on challenging benchmarks, in
order to promote state of the art techniques and language standards. The latest
seventh competition was recently held at the 14th International Conference on
Logic Programming and Non-Monotonic Reasoning (LPNMR 2017), but the
benchmarks employed are not publicly available at the time of writing.

The Sixth Competition features 28 problems and 20 di�erent instances per
each. As reported in Table 11.1, each problem can be of one following types:
(i) decision, meaning that the encoding does not contain queries or weak con-
straints, (ii) optimization, i.e. weak constraints are present in the encoding (iii)
query, the encoding presents a query.

In addition, we selected the benchmarks of the Fourth Competition (see Ta-
ble 11.2), which features 26 problems and a number of instances varying from
10 to 30 per problem. As it might be observed in Table 11.1 many problems
(the ones reported in bold) appear in the both competitions. However, in the
latest competitions a large part of the encodings have been optimized; in par-
ticular, these problems are the ones marked with a ∗ symbol in Table 11.1. The
choice of this further suite permits to assess performance also on less optimized
encodings, on which obtaining good performance is even more challenging and
having an e�cient grounding process becomes even more crucial. The suites
cover the whole syntax of ASP-Core-2 v.2.01c [23]. Moreover, an additional set
of benchmarks, freely available and used in [17], has been selected to asses the
decomposition rewriting (cf. Chapter 8) on challenging ASP programs with
extremely long rules.

Experiments have been performed on a NUMA machine equipped with two
2.8GHz AMD Opteron 6320 processors and 128 GiB of main memory, running
Linux Ubuntu 14.04.4 (kernel v.3.19.0-25). Binaries were generated with
the GNU C++ compiler v.5.4.0. As for memory and time limits, we allotted 15
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Problem Type # instances
Abstract Dialectical Frameworks Optimization 20
Combined Con�guration Decision 20
Complex Optimization* Decision 20
Connected Still Life Optimization 20
Consistent Query Answering Query 20
Crossing Minimization* Optimization 20
Graceful Graphs Decision 20
Graph Coloring* Decision 20
Incremental Scheduling* Decision 20
Knight Tour with Holes* Decision 20
Labyrinth Decision 20
Maximal Clique* Optimization 20
MaxSAT Optimization 20
Minimal Diagnosis* Decision 20
Nomystery* Decision 20
Partner Units Decision 20
Permutation Pattern Matching* Decision 20
Qualitative Spatial Reasoning* Decision 20
Reachability Query 20
Ricochet Robots Decision 20
Sokoban* Decision 20
Stable Marriage* Decision 20
Steiner Tree Optimization 20
Strategic Companies Query 20
System Synthesis Optimization 20
Valves Location Optimization 20
Video Streaming Optimization 20
Visit-all* Decision 20

Table 11.1: Sixth Competition Suite: Problems Description

Problem Type # instances
Abstract Dialectical Frameworks Optimization 30
Bottle Filling Problem Decision 30
Chemical Classi�cation Decision 30
Complex Optimization Decision 29
Connected Still Life Optimization 10
Crossing Minimization Optimization 30
Graceful Graphs Decision 30
Graph Coloring Decision 30
Hanoi Tower Decision 30
Incremental Scheduling Decision 30
Knight Tour with Holes Decision 30
Labyrinth Decision 30
Maximal Clique Optimization 30
Minimal Diagnosis Decision 30
Nomystery Decision 30
Permutation Pattern Matching Decision 30
Qualitative Spatial Reasoning Decision 30
Reachability Query 30
Ricochet Robots Decision 30
Sokoban Decision 30
Solitaire Decision 27
Stable Marriage Decision 30
Strategic Companies Query 30
Valves Location Problem Optimization 30
Visit-all Decision 30
Weighted-Sequence Problem Decision 30

Table 11.2: Fourth Competition Suite: Problems Description
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GiB and 600 seconds for each tested version of I-DLV , per each single run.
The chapter is structured in several sections. In each section, the impact of

a di�erent optimization or a group of optimizations strictly related is analysed.
To this end, for each optimization we consider its impact on the perform-

ance of I-DLV �xing the setting for the other optimizations and varying the
con�guration of the technique at hand by enabling, disabling or performing it
in di�erent modalities.

11.1 Indexing Strategies

In this section we analyse the impact of indexing techniques (see Chapter 6),
comparing four di�erent versions of I-DLV . In the �rst version I-DLV-No-I the
grounder does not employ indices: instances are stored array-based structures
(C++ STL vectors) and to retrieve them a linear search is performed. The
second version I-DLV-GI is based on an on-demand strategy that employs
generalized indices created over all indexable arguments available implemented
via C++ STL undordered_maps. In the third tested version, denoted I-DLV-
SI, I-DLV employs an on-demand indexing strategy based on single indices,
i.e. indices over a single argument. In particular, for this version we readapted
the same mechanism adopted for single-double indices; thus, we enabled perfect
hashing and as underlying data structure we used a single map (without a nested
map), by using a C++ STL undordered_map. As last version we test the default
indexing strategy of I-DLV , I-DLV-SDI, i.e. the balanced on-demand indexing
strategy based on single-double indices; technically, we employed a C++ STL

undordered_map in which it is nested a C++ STL undordered_multimap.

Problem
I-DLV-No-I I-DLV-GI I-DLV-SI I-DLV-SDI

#grounded time #grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 0.19 20 0.11 20 0.11 20 0.11
Combined Con�guration 18 84.10 20 13.70 20 13.10 20 13.53
Complex Optimization 4 27.57 20 68.14 20 66.88 20 66.83
Connected Still Life 20 0.11 20 0.10 20 0.10 20 0.10
Consistent Query Answering 0 TO 20 79.96 20 82.46 20 76.31
Crossing Minimization 20 0.10 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 1.15 20 0.30 20 0.29 20 0.31
Graph Coloring 20 0.10 20 0.10 20 0.10 20 0.10
Incremental Scheduling 14 151.26 20 16.85 20 16.65 20 17.05
Knight Tour With Holes 19 188.96 20 3.23 20 4.02 20 2.36
Labyrinth 20 61.33 20 1.10 20 4.83 20 2.01
Maximal Clique 0 TO 20 5.23 20 5.23 20 4.39
MaxSAT 4 49.38 20 51.13 20 3.89 20 3.96
Minimal Diagnosis 6 304.65 20 4.27 20 5.07 20 5.19
Nomystery 19 41.85 20 3.71 20 4.29 20 4.16
Partner Units 20 2.57 20 0.43 20 0.42 20 0.43
Permutation Pattern Matching 12 141.88 20 138.82 20 139.14 20 135.04
Qualitative Spatial Reasoning 20 60.81 20 5.51 20 6.71 20 5.49
Reachability 0 TO 20 166.69 20 156.93 20 142.64
Ricochet Robots 20 1.73 20 0.33 20 0.39 20 0.37
Sokoban 19 36.25 20 1.49 20 1.29 20 1.23
Stable Marriage 0 TO 20 127.68 20 129.62 20 123.55
Steiner Tree 3 142.71 20 32.00 20 52.82 20 29.83
Strategic Companies 20 0.83 20 0.33 20 0.32 20 0.25
System Synthesis 20 68.49 20 37.58 20 1.29 20 1.12
Valves Location Problem 20 25.23 20 7.97 20 2.57 20 2.58
Video Streaming 20 0.10 20 0.10 20 0.10 20 0.10
Visit-all 20 3.68 20 1.25 20 1.24 20 1.22
Total Grounded Instances 398/560 560/560 560/560 560/560
Average Time 205.17 27.44 25 22.98

Table 11.3: Indexing � 6th Comp. Benchmarks

The results are reported in Tables 11.3 and 11.4: the �rst column reports
problem names, the next four pairs of columns show the number of grounded
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Problem
I-DLV-No-I I-DLV-GI I-DLV-SI I-DLV-SDI

#grounded time #grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 0.21 30 0.11 30 0.11 30 0.11
Bottle Filling Problem 17 31.20 30 9.39 30 4.01 30 4.15
Chemical Classi�cation 9 142.93 26 119.24 26 119.12 26 120.60
Complex Optimization 14 37.67 29 40.61 29 41.69 29 40.16
Connected Still Life 10 0.12 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.11 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 1.76 30 0.39 30 0.37 30 0.38
Graph Colouring 30 0.10 30 0.11 30 0.10 30 0.10
Hanoi Tower 30 0.38 30 0.24 30 0.24 30 0.24
Incremental Scheduling 1 439.81 12 307.58 12 301.63 12 296.01
Knight Tour with Holes 0 TO 20 177.75 16 168.41 20 173.50
Labyrinth 30 42.83 30 0.86 30 3.52 30 1.51
Maximal Clique 30 88.45 30 0.33 30 0.33 30 0.33
Minimal Diagnosis 22 213.63 30 2.09 30 2.56 30 2.53
Nomystery 24 67.28 30 36.02 30 41.92 30 43.68
Permutation Pattern Matching 25 36.83 28 59.27 28 59.33 28 58.17
Qualitative Spatial Reasoning 30 29.76 30 3.07 30 3.48 30 2.84
Reachability 0 TO 30 131.35 30 125.67 30 125.65
Ricochet Robots 30 1.05 30 0.24 30 0.28 30 0.25
Sokoban 26 84.26 30 3.77 30 2.85 30 2.66
Solitaire 27 0.44 27 0.12 27 0.21 27 0.13
Stable Marriage 17 480.30 30 29.18 30 28.98 30 27.98
Strategic Companies 30 0.75 30 0.32 30 0.30 30 0.30
Valves Location 30 48.94 30 13.99 30 4.12 30 4.02
Visit-all 30 0.26 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.90 30 2.87 30 2.82 30 2.84
Total Grounded Instances 582/756 722/756 718/756 722/756
Average Time 46.24 28.01 26.39 27.08

Table 11.4: Indexing � 4th Comp. Benchmarks

instances and the running time (in seconds) averaged over successfully grounded
instances for each of the three ordering criteria. The last lines report the to-
tal number of grounded instances and the average running time computed over
successfully grounded instances; �TO� stands for time outs. Some benchmarks
are reported in bold indicating cases where there is a noticeable di�erence of at
least 10% among the versions tested, and particulary bad results are highlighted
in red, while positive cases are reported in green. In the rest of the chapter,
we will adopt the same style for the other experimental results; moreover, we
will indicate with �MO� memory outs, and with �US� unsupported syntax. We
remark that since per each con�guration the average running time is computed
over successfully grounded instances a small average does not necessarily cor-
respond to good performance as it has to be contextualized w.r.t. the total
number of grounded instances.

As it might be expected, in both benchmarks it is evicted that disabling the
indexing strategy is not a good choice: I-DLV-No-I is systematically worse than
the other versions and solves a signi�cant smaller number of instances. Enabling
a single index results in a signi�cant improvement: I-DLV-SI is signi�cantly
better than I-DLV-No-I, however, its performance is generally not comparable
with the other two versions, especially in the Fourth Competition where I-DLV-
SI solves a smaller number of instances. I-DLV-SDI and I-DLV-GI grounded
the same number of instances, but I-DLV-SDI grounded them in a smaller
average time, as it performed the best in most of the problems.

To grasp the intuition behind the di�erences in performance between single-
double and indices, let us coming back to Example 6.1.2 experimenting the im-
pact of variations in the data structures adopted. As already stated, annotations
are intended to adapt the grounding process to user's desiderata. Figure 11.1
shows the results of multiple executions of the following program P1 :
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%@rule_ordering(0).
a(W ) :- b(X,Y ), c(Z), d(X,Y, Z,W ).
c(1..10).
b(1..10, 1..10).
d(1..300, 1..200, 1..100, 1..10).

The annotation about the body ordering has been added to ensure that the
rule body is not reordered, since the aim is to experiment with di�erent indexing
structures for d(X,Y, Z,W ). The labels of the horizontal axis represent the
indexing arguments employed for the respective execution. In particular, while
to the label def corresponds the execution of P1 as reported above, i.e. with the
default indexing strategy of I-DLV , in the other cases an annotation of form:

%@rule_atom_indexed(@atom = d(X,Y, Z,W ),@arguments = {Args})

has been added to P1. For instance, the label (0) represents that Args has
been set to 0, thus the atom has been indexed on the �rst argument only. In
particular, for the executions in which a single indexing argument is used, we
adopted the same strategy of the version I-DLV-SI ; whenever there are two
arguments, the strategy followed is the same of I-DLV-SDI ; eventually, for the
execution in which three arguments have been used, a generalized index has
been employed, as in I-DLV-GI.

d
ef 〈0
〉
〈1
〉
〈2
〉

〈0
,1
〉

〈0
,2
〉

〈1
,0
〉

〈1
,2
〉

〈2
,0
〉

〈2
,1
〉

〈0
,1
,2
〉

100

150

200

Indexing Arguments

T
im

e
(s
ec
o
n
d
s)

Figure 11.1: Variation of the indexing strategy via annotations

Notably, it emerges that, in general, indexing on three arguments, which
are more likely to represent a primary key, is not the best choice. The main
reason behind this behaviour is the intrinsic characteristic of the type of data
structures employed. While a generalized index is more �exible, the perfect
hashing mechanism employed for single and single-double indices tends to have
a more positive impact on performance. For this reason, I-DLV by default relies
on these perfect-hashing structures, and allows users the possibility to override
its default behaviour whenever its performance is not satisfactory.
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11.2 Body Ordering

The body ordering strategies introduced in Chapter 7 have di�erent impacts
on the performance of I-DLV . In this section, we compare all the implemented
strategies, described in Section 10.3.1: the version I-DLV-Ord-0 applies the
body strategy 0, the version I-DLV-Ord-1 applies the ordering 1, and so on, up
to the version I-DLV-Ord-6 that applies the strategy 6.

The results are shown in Tables 11.5 and 11.6. First of all, it is evident
that selecting a suitable ordering strategy has signi�cant bene�ts: the version
I-DLV-Ord-0 that employs a basic ordering with the only aim of ensuring the
correct instantiation has the worst performance and solves the smallest number
of instances, in general, in both benchmarks.

The Combined+ criterion (I-DLV-Ord-2 ) performs better or equal than
the Combined variant implemented (I-DLV-Ord-1 ), evidencing no situations
in which the Combined is better. The ordering that pushes down in the body
literals with functional terms, I-DLV-Ord-3, performs similarly to I-DLV-Ord-
2 ; this is because, in these executions the rewriting of functional terms has
been enabled, and therefore their behaviours coincide. In Section 11.8 we will
consider the impact of this strategy when the rewriting of functional terms is
disabled.

The remaining variants of the Combined+ strategy show interesting results
and variegated behaviours. We observe that among the three variants the ver-
sion I-DLV-Ord-5, that orders body by means of the Combined+

B criterion and
therefore tends to prefer literals binding relevant variables, shows some local im-
provements, but in both suites it does not ground all instances. Notably, in the
Sixth Competition, the version I-DLV-Ord-6 corresponding to the Combined+

IB

ordering, that combines the Combined+
I and Combined+

B strategies, mitigates
the drawbacks observed for I-DLV-Ord-5, while in the Fourth Competition
I-DLV-Ord-6 performed worse than I-DLV-Ord-5, in general. I-DLV-Ord-4,
that applies the Combined+

I ordering, performed very close to I-DLV-Ord-2, es-
pecially in the Fourth Competition, where apart from the problem Qualitative
Spatial Reasoning, I-DLV-Ord-4 performs generally better w.r.t. I-DLV-Ord-2.

In conclusion, we can observe that Combined+ tends to be more balanced,
performing the best in the majority of situations. As already stated, by default
in I-DLV the Combined+ is employed. Its variants and the other orderings
might be enabled on request to force that a particular aspect has to be consid-
ered, such as the correlation with indexing strategies or with the backjumping
machinery. Indeed, as benchmarks evidenced, in some speci�c situations their
ordering policies may be preferable. Thanks to annotations the strategies can
be activated at rule level, and custom orderings can also be de�ned. Indeed,
it is worth noting that acting at a global scope, as one could by setting via
command-line option, may not have the same e�ect and not bring the same
improvements, as the gain due to the change of strategy over some rules may be
overshadowed by corresponding losses over the rest of the program; the �exible
customization means featured by I-DLV , that allow to con�gure and �ne-tune
the grounder as needed, even at a rule level, are exactly aimed at better dealing
with such scenarios.
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11.3 Decomposition Rewriting

Hereafter, we assess the impact of the customized version of SmartDecompo-
sition de�ned in Chapter 8 on the grounding performance of I-DLV .

Three con�gurations have been compared: (i) I-DLV-No-D, I-DLV with-
out any decomposition, (ii) lpopt (version 2.2, the latest available at the time
of writing) combined in pipeline with I-DLV (i.e. a black-box usage of lpopt),
(iii) I-DLV-SD, i.e. I-DLV empowered with the customized version of Smart-
Decomposition. In order to produce replicable results, the random seed used
by lpopt for heuristics has been set to 0 for system (ii).

Table 11.7 shows the results on the benchmarks from the Sixth Competition;
the dashes indicate that corresponding con�gurations do not support syntax.

Problem
I-DLV-No-D lpopt | I-DLV-No-D I-DLV-SD

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11 20 0.13
Combined Con�guration 20 13.53 20 13.52 20 13.33
Complex Optimization 20 66.83 20 73.41 20 66.82
Connected Still Life 20 0.10 20 0.10 20 0.10
Consistent Query Answering 20 76.31 0 US 20 75.35
Crossing Minimization 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 0.31 20 0.32 20 0.32
Graph Coloring 20 0.10 20 0.10 20 0.10
Incremental Scheduling 20 17.05 20 16.77 20 16.55
Knight Tour With Holes 20 2.36 20 6.53 20 2.34
Labyrinth 20 2.01 20 1.83 20 2.02
Maximal Clique 20 4.39 20 20.70 20 4.31
MaxSAT 20 3.96 20 8.92 20 3.90
Minimal Diagnosis 20 5.19 20 4.36 20 4.79
Nomystery 20 4.16 20 2.50 20 3.46
Partner Units 20 0.43 20 0.44 20 0.44
Permutation Pattern Matching 20 135.04 20 4.35 20 4.31
Qualitative Spatial Reasoning 20 5.49 20 5.47 20 5.48
Reachability 20 142.64 0 US 20 134.91
Ricochet Robots 20 0.37 20 0.40 20 0.39
Sokoban 20 1.23 20 1.25 20 1.25
Stable Marriage 20 123.55 20 132.33 20 125.27
Steiner Tree 20 29.83 20 29.90 20 29.73
Strategic Companies 20 0.25 0 US 20 0.30
System Synthesis 20 1.12 20 1.13 20 1.11
Valves Location Problem 20 2.58 20 2.61 20 2.66
Video Streaming 20 0.10 20 0.10 20 0.10
Visit-all 20 1.22 20 0.45 20 0.44
Total Grounded Instances 560/560 500/560 560/560
Average Time 22.98 13.11 17.86

Table 11.7: Decomposition Rewriting � 6th Comp. Benchmarks

The results of the �blind usage� of lpopt (ii) are con�icting: for instance, it
enjoys a great gain w.r.t. the �plain� I-DLV while dealing with the Permuta-
tion Pattern Matching problem, and shows signi�cant losses in other cases. On
the other hand, in general, the �smart usage� of decomposition in I-DLV-SD
allows to avoid negative e�ects of the black-box decomposition mechanism, still
preserving the positive ones, apart for the problems Labyrinth and Nomystery.
The main reason is the interaction of the other rewriting techniques applied
in I-DLV with the decomposition rewriting. In particular, given a rule, the
rewriting technique of isolated variables is currently applied before than the de-
composition mechanism, and since these variables are removed from the body,
the set of variables appearing in the rule body is changed and di�erences in the
generated decompositions may be observed whenever the rewriting of isolated
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variable is enabled, as in these executions. Eventually, I-DLV-SD clearly out-
performs I-DLV-No-D and that the average grounding time of I-DLV-SD over
all instances is reduced up to 22%. A similar trend is observable in Table 11.8
about the Fourth Competition. In these benchmarks, the positive impact of
SmartDecomposition is even more evident, since I-DLV-SD grounds a larger
number of instances in a signi�cant smaller average time. Intuitively, the less an
encoding is �ne-tuned, the highest may be the bene�ts stemming from a careful
decomposition of input rules.

Problem
I-DLV-No-D lpopt | I-DLV-No-D I-DLV-SD

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11 30 0.12
Bottle Filling Problem 30 4.15 30 6.93 30 4.22
Chemical Classi�cation 26 120.60 24 431.64 26 123.21
Complex Optimization 29 40.16 29 43.27 29 41.25
Connected Still Life 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 0.38 30 0.41 30 0.40
Graph Colouring 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24 30 0.24
Incremental Scheduling 12 296.01 17 227.89 21 222.39
Knight Tour with Holes 20 173.50 20 183.68 20 180.36
Labyrinth 30 1.51 30 1.40 30 1.52
Maximal Clique 30 0.33 30 1.12 30 0.31
Minimal Diagnosis 30 2.53 30 2.21 30 2.33
Nomystery 30 43.68 21 102.76 30 41.96
Permutation Pattern Matching 28 58.17 30 3.65 30 3.80
Qualitative Spatial Reasoning 30 2.84 30 2.94 30 2.93
Reachability 30 125.65 0 US 30 109.12
Ricochet Robots 30 0.25 30 0.31 30 0.30
Sokoban 30 2.66 30 2.73 30 2.74
Solitaire 27 0.13 27 0.15 27 0.19
Stable Marriage 30 27.98 30 2.79 30 2.53
Strategic Companies 30 0.30 0 US 30 0.28
Valves Location 30 4.02 30 4.07 30 4.02
Visit-all 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.84 30 9.80 30 3.00
Total Grounded Instances 722/756 658/756 733/756
Average Time 27.08 34.19 24.57

Table 11.8: Decomposition Rewriting � 4th Comp. Benchmarks

Eventually, we consider here an additional set of benchmarks in which the de-
composition rewriting plays a key role. Such benchmarks have been used in [17]
in order to test the e�ciency of ASP-solvers paired with lpopt for QBF solving.
To this end, some publicly available QBF instances have been converted to ASP
and a novel conversion has been proposed in which the obtained ASP programs
feature complex structure and very long rules on which lpopt proved its e�ective-
ness. We selected the 2-QBF instances adopted in the above mentioned work
and converted according to their method with the aim of testing our decomposi-
tion rewriting on these challenging programs. Five di�erent con�gurations have
been compared: (i) I-DLV-No-D, (ii) lpopt | I-DLV-No-D, (iii) I-DLV-SD,
along with two additional versions (iv) I-DLV-SD-No-F-HTD-new and (v) I-
DLV-SD-No-F-HTD-old, in which the decomposition mechanism is enabled but
di�erently from I-DLV-SD the �tness mechanism has been disabled, therefore
one possible decomposition is computed and only if it is estimated as convenient
(as described in Chapter 8) it is applied. Moreover, these two versions are based
on two di�erent releases of the library HTD: I-DLV-SD-No-F-HTD-new uses
HTD 1.1.0 (the same release has been adopted in I-DLV-SD), while I-DLV-SD-
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No-F-HTD-old embeds an older release (HTD 1.1 rc1-bug�x), the same used
by the version of lpopt tested.

I-DLV-No-D lpopt | I-DLV-No-D I-DLV-SD I-DLV-SD-No-F-HTD-new I-DLV-SD-No-F-HTD-old
8 82 22 80 84

Table 11.9: Decomposition Rewriting � 2QBF Benchmarks � Total Grounded
Instances
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Figure 11.2: Decomposition Rewriting � 2QBF Benchmarks

The benchmarks consist of 200 ASP programs, each one corresponding to a
di�erent 2-QBF instance. The results are depicted in Figure 11.2: the number
of grounded instances is on the x-axis while running times (in seconds) are on
the y-axis. The total number of successfully grounded instances per each tested
con�guration is reported in Table 11.9. First of all, we observe that I-DLV-SD
performs better than I-DLV-No-D but signi�cantly worse than the other tested
versions. This behaviour is due to the �tness mechanism: by default, I-DLV
generates several possible decompositions for each input rule (cf. Section 10.3.1):
in situations in which rules have extremely long bodies performing such itera-
tions resulted to be expensive. Indeed, I-DLV-SD-No-F-HTD-new which is a
equivalent to I-DLV-SD but without the �tness mechanism performed signi�-
cantly better, but not as good as lpopt | I-DLV-No-D. The best version resulted
to be I-DLV-SD-No-F-HTD-old, which is equivalent to I-DLV-SD-No-F-HTD-
new a part from the version of HTD adopted. Therefore, it is also evicted that
the version of the library HTD employed may have a non-negligible impact.
In particular, the version of HTD employed in both I-DLV-SD-No-F-HTD-old
and lpopt resulted to be more e�ective on these benchmarks, in general.
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11.4 Pushing Down Selections

The technique presented in Section 9.1 aims at anticipating the selection oper-
ations as soon as the involved variables are bound, leveraging on these opera-
tions in order to suddenly recover failing matches. To assess its e�ectiveness,
we compared two versions of I-DLV : (i) I-DLV-No-PS, a version in which such
optimization is disabled, (ii) I-DLV-PS, a version that performs it.

The results are shown in Tables 11.10 and 11.11. This optimization is e�ec-
tive when selection operations are actually present in rule bodies: in the Sixth
Competition, its bene�t are mainly evident in the problems Permutation Pat-
tern Matching and Maximal Clique. On the less optimized encodings of the
Fourth Competition improvements in many problems; notably on Incremental
Scheduling this technique allows to ground a larger number of instances. No
particular drawbacks or bene�ts emerge in problems in which the technique
is not e�ective. Intuitively, this happens whenever no selection operations are
present or the anticipation of their evaluation implies a negligible reduction of
the search space.

Problem
I-DLV -No-PS I-DLV -PS

#grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11
Combined Con�guration 20 13.62 20 13.53
Complex Optimization 20 65.78 20 66.83
Connected Still Life 20 0.10 20 0.10
Consistent Query Answering 20 78.69 20 76.31
Crossing Minimization 20 0.10 20 0.10
Graceful Graphs 20 0.34 20 0.31
Graph Coloring 20 0.10 20 0.10
Incremental Scheduling 20 16.65 20 17.05
Knight Tour With Holes 20 2.32 20 2.36
Labyrinth 20 2.04 20 2.01
Maximal Clique 20 5.34 20 4.39
MaxSAT 20 4.31 20 3.96
Minimal Diagnosis 20 5.12 20 5.19
Nomystery 20 3.97 20 4.16
Partner Units 20 0.45 20 0.43
Permutation Pattern Matching 20 163.31 20 135.04
Qualitative Spatial Reasoning 20 5.46 20 5.49
Reachability 20 143.43 20 142.64
Ricochet Robots 20 0.36 20 0.37
Sokoban 20 1.20 20 1.23
Stable Marriage 20 116.42 20 123.55
Steiner Tree 20 29.06 20 29.83
Strategic Companies 20 0.32 20 0.25
System Synthesis 20 1.10 20 1.12
Valves Location Problem 20 2.54 20 2.58
Video Streaming 20 0.10 20 0.10
Visit-all 20 1.18 20 1.22
Total Grounded Instances 560/560 560/560
Average Time 24.2 22.98

Table 11.10: Pushing Down Selections � 6th Comp. Benchmarks
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Problem
I-DLV -No-PS I-DLV -PS

#grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11
Bottle Filling Problem 30 4.19 30 4.15
Chemical Classi�cation 26 120.83 26 120.60
Complex Optimization 29 40.92 29 40.16
Connected Still Life 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10
Graceful Graphs 30 0.42 30 0.38
Graph Colouring 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24
Incremental Scheduling 7 475.82 12 296.01
Knight Tour with Holes 20 179.78 20 173.50
Labyrinth 30 1.52 30 1.51
Maximal Clique 30 0.34 30 0.33
Minimal Diagnosis 30 2.53 30 2.53
Nomystery 30 48.29 30 43.68
Permutation Pattern Matching 28 66.00 28 58.17
Qualitative Spatial Reasoning 30 2.90 30 2.84
Reachability 30 126.66 30 125.65
Ricochet Robots 30 0.25 30 0.25
Sokoban 30 2.63 30 2.66
Solitaire 27 0.12 27 0.13
Stable Marriage 30 32.60 30 27.98
Strategic Companies 30 0.30 30 0.30
Valves Location 30 4.01 30 4.02
Visit-all 30 0.14 30 0.14
Weighted-Sequence Problem 30 3.13 30 2.84
Total Grounded Instances 717/756 722/756
Average Time 28.92 27.08

Table 11.11: Pushing Down Selections � 4th Comp. Benchmarks

11.5 Managing Isolated Variables

In this section we analyze the e�ects of the optimizations geared towards the
management of isolated variables. In particular, we compared three versions of
I-DLV : (i) I-DLV-No-IV, a version in which isolated variables are not managed
at all, (ii) I-DLV-FIV, a version that applies just the �ltering mechanism de-
scribed in Section 9.2.1; (iii) I-DLV-RIV, a version that performs the rewriting
process illustrated in Section 9.2.2.

Tables 11.12 and 11.13 depict the obtained results. In the Sixth Competition,
an overhead is observable in the Consistent Query Answering problem when the
rewriting process is applied, the worsening in performance is about 12%; while,
in other problems the version (iii) performs better than the other ones. Con-
cerning the Fourth Competition, we observe a worsening for I-DLV-FIV and
I-DLV-RIV in the problems Bottle Filling Problem and Chemical Classi�ca-
tion. Interestingly, the encoding of Chemical Classi�cation features rules with
lots of isolated variables: there are rules with around 80 isolated variables, and
it emerged that the additional operations involving either �ltering or projecting
out isolated variables yield an overhead. Moreover, apart the aforementioned
situations it can be evicted that I-DLV-RIV performed the best, in general. In
addition, since the rewriting is more general than the �ltering mechanism and
can be applied in a larger number of scenarios, by default we choose to enable
the projection rewriting. Nevertheless, whenever an overhead is observed, both
techniques can be disabled.
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Problem
I-DLV -No-IV I-DLV -FIV I-DLV -RIV

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11 20 0.11
Combined Con�guration 20 13.91 20 13.74 20 13.53
Complex Optimization 20 74.08 20 73.64 20 69.83
Connected Still Life 20 0.10 20 0.10 20 0.10
Consistent Query Answering 20 67.31 20 67.61 20 76.31
Crossing Minimization 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 0.29 20 0.29 20 0.31
Graph Coloring 20 0.10 20 0.10 20 0.10
Incremental Scheduling 20 17.24 20 17.26 20 17.05
Knight Tour With Holes 20 2.60 20 2.61 20 2.36
Labyrinth 20 1.99 20 2.00 20 2.01
Maximal Clique 20 5.22 20 5.24 20 4.39
MaxSAT 20 4.25 20 4.27 20 3.96
Minimal Diagnosis 20 5.13 20 5.14 20 5.19
Nomystery 20 4.85 20 4.91 20 4.16
Partner Units 20 0.42 20 0.41 20 0.43
Permutation Pattern Matching 20 131.11 20 130.95 20 135.04
Qualitative Spatial Reasoning 20 5.32 20 5.43 20 5.49
Reachability 20 156.12 20 156.01 20 142.64
Ricochet Robots 20 0.35 20 0.35 20 0.37
Sokoban 20 1.19 20 1.20 20 1.23
Stable Marriage 20 119.94 20 124.13 20 123.55
Steiner Tree 20 28.88 20 29.03 20 29.83
Strategic Companies 20 0.32 20 0.32 20 0.25
System Synthesis 20 1.11 20 1.10 20 1.12
Valves Location Problem 20 2.58 20 2.55 20 2.58
Video Streaming 20 0.10 20 0.10 20 0.10
Visit-all 20 1.20 20 1.19 20 1.22
Total Grounded Instances 560/560 560/560 560/560
Average Time 23.07 23.21 22.98

Table 11.12: Managing Isolated Variables � 6th Comp. Benchmarks

Problem
I-DLV -No-IV I-DLV -FIV I-DLV -RIV

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11 30 0.11
Bottle Filling Problem 30 3.85 30 4.70 30 4.15
Chemical Classi�cation 26 91.19 26 118.97 26 120.60
Complex Optimization 29 42.95 29 42.58 29 40.16
Connected Still Life 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 0.37 30 0.37 30 0.38
Graph Colouring 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 0.23 30 0.23 30 0.24
Incremental Scheduling 12 296.31 12 297.10 12 296.01
Knight Tour with Holes 20 171.69 20 172.85 20 173.50
Labyrinth 30 1.51 30 1.51 30 1.51
Maximal Clique 30 0.33 30 0.33 30 0.33
Minimal Diagnosis 30 2.52 30 2.53 30 2.53
Nomystery 29 46.37 29 46.37 30 43.68
Permutation Pattern Matching 28 59.09 28 58.37 28 58.17
Qualitative Spatial Reasoning 30 2.84 30 2.84 30 2.84
Reachability 30 125.71 30 125.38 30 125.65
Ricochet Robots 30 0.24 30 0.24 30 0.25
Sokoban 30 2.63 30 2.67 30 2.66
Solitaire 27 0.12 27 0.12 27 0.13
Stable Marriage 0 MO 30 28.25 30 27.98
Strategic Companies 30 0.30 30 0.30 30 0.30
Valves Location 30 4.04 30 4.04 30 4.02
Visit-all 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.80 30 2.83 30 2.84
Total Grounded Instances 691/756 721/756 722/756
Average Time 26.11 27.23 27.08

Table 11.13: Managing Isolated Variables � 4th Comp. Benchmarks
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11.6 Determining the Admissibility of Substitu-

tions

This section evaluates the impact of the techniques intended to avoid the prop-
agation of non-admissible variable substitutions through literals during the rule
instantiation process, such as the aligning substitutions mechanism and the
look-ahead technique. Therefore, we compared three di�erent versions of I-
DLV : (i) I-DLV-No-S in which none of the two optimizations is enabled, (ii)
I-DLV-AS in which only the aligning substitutions mechanism is performed,
(iii) I-DLV-LA enabling just the look-ahead.

Problem
I-DLV -No-S I-DLV -AS I-DLV -LA

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11 20 0.11
Combined Con�guration 20 13.53 20 13.26 20 13.54
Complex Optimization 20 69.83 20 67.96 20 91.47
Connected Still Life 20 0.10 20 0.10 20 0.10
Consistent Query Answering 20 76.31 20 82.07 20 95.52
Crossing Minimization 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 0.31 20 0.29 20 0.29
Graph Coloring 20 0.10 20 0.10 20 0.10
Incremental Scheduling 20 17.05 20 17.10 20 17.06
Knight Tour With Holes 20 2.36 20 2.35 20 2.33
Labyrinth 20 2.01 20 2.18 20 2.03
Maximal Clique 20 4.39 20 5.29 20 5.31
MaxSAT 20 3.96 20 4.33 20 4.36
Minimal Diagnosis 20 5.19 20 5.30 20 5.18
Nomystery 20 4.16 20 4.19 20 4.16
Partner Units 20 0.43 20 0.41 20 0.41
Permutation Pattern Matching 20 135.04 20 133.83 20 136.68
Qualitative Spatial Reasoning 20 5.49 20 5.48 20 5.48
Reachability 20 142.64 20 159.20 20 157.78
Ricochet Robots 20 0.37 20 0.36 20 0.35
Sokoban 20 1.23 20 1.30 20 1.22
Stable Marriage 20 123.55 20 121.26 20 120.86
Steiner Tree 20 29.83 20 29.33 20 29.33
Strategic Companies 20 0.25 20 0.32 20 0.33
System Synthesis 20 1.12 20 1.11 20 1.10
Valves Location Problem 20 2.58 20 2.58 20 2.55
Video Streaming 20 0.10 20 0.10 20 0.10
Visit-all 20 1.22 20 1.19 20 1.19
Total Grounded Instances 560/560 560/560 560/560
Average Time 22.98 24.97 23.61

Table 11.14: Admissibility of Substitutions � 6th Comp. Benchmarks

The results have been collected in Tables 11.14 and 11.15. In particular,
we can observe that the version I-DLV-AS pays an overhead in the problems
Complex Optimization and Consistent Query Answering. Moreover, even if I-
DLV-LA and I-DLV-No-S performed similarly, in general, it emerges that both
I-DLV-AS and I-DLV-LA experience a minor systematical overhead; as can be
easily evicted from the average time computed over all grounded instances. The
reason is mostly technical: to implement both techniques further checks have
been introduced in the code handling the matching of literals. Intuitively, this
piece of code is the one invoked the most during the whole instantiation, thus its
e�ciency is crucial, and in our case adding these checks implies a slowdown in
performance. In particular, the technique about aligning substitutions evidences
an additional slowdown due to the pre-computation of intersections. Thus, by



138 CHAPTER 11. EXPERIMENTS ON THE OPTIMIZATIONS

default, we keep these techniques disabled; via command-line options they can
be enabled on request, according to the particular situation at hand and the
distributions followed by input data.

Problem
I-DLV -No-S I-DLV -AS I-DLV -LA

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11 30 0.11
Bottle Filling Problem 30 4.15 30 4.33 30 4.48
Chemical Classi�cation 26 120.60 26 123.80 26 122.59
Complex Optimization 29 40.16 29 54.44 29 43.73
Connected Still Life 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 0.38 30 0.38 30 0.37
Graph Colouring 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24 30 0.24
Incremental Scheduling 12 296.01 12 307.84 12 307.00
Knight Tour with Holes 20 173.50 20 175.39 20 177.96
Labyrinth 30 1.51 30 1.58 30 1.61
Maximal Clique 30 0.33 30 0.34 30 0.33
Minimal Diagnosis 30 2.53 30 2.55 30 2.61
Nomystery 30 43.68 30 43.68 30 44.20
Permutation Pattern Matching 28 58.17 28 59.17 28 58.62
Qualitative Spatial Reasoning 30 2.84 30 2.91 30 2.90
Reachability 30 125.65 30 126.65 30 126.83
Ricochet Robots 30 0.25 30 0.25 30 0.25
Sokoban 30 2.66 30 2.71 30 2.88
Solitaire 27 0.13 27 0.12 27 0.12
Stable Marriage 30 27.98 30 29.75 30 31.63
Strategic Companies 30 0.30 30 0.32 30 0.31
Valves Location 30 4.02 30 4.09 30 4.11
Visit-all 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.84 30 2.79 30 2.86
Total Grounded Instances 722/756 722/756 722/756
Average Time 27.08 28.19 27.88

Table 11.15: Admissibility of Substitutions � 4th Comp. Benchmarks

11.7 Anticipating Strong Constraints Evaluation

The anticipation of evaluation of strong constraints, described is Section 9.4
permits to determine whether an input program is incoherent as soon as possible.
To assess its impact on the performance of I-DLV we considered two versions
the grounder: (i) I-DLV-No-SC, a version in which the optimization is not
performed, (ii) I-DLV-SC, a version in which it is enabled.

The results are shown in Tables 11.16 and 11.17. Since in both suites there
are no situations in which input programs are incoherent, no particular impact
emerged; therefore, we selected three further problems described next.

Food. The problem consists in the generation of plans for repairing faulty
work�ows. That is, starting from a faulty work�ow instance, the goal is to
provide a completion of the work�ow such that the output of the work�ow is
correct. Work�ows may comprise many activities. Repair actions are compensa-
tion, (re)do and replacement of activities. The encoding and the single instance
provided (related to a work�ow containing 63 predicates, 56 components and
116 rules) have been used in [110].

Hamiltonian Path. The problem has been introduced in Section 3. The
encoding used is the one already presented. The instances have been adapted
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from the ones of the problemMaxSAT of the Sixth Competition, obtaining both
coherent and incoherent instances.

Sudoku. Given a N × N tableau, where N is a square number N = n2,
this problem consists in �lling it with numbers between 1 and N so that each
row, each column, and each of the N n× n inner block in which the tableau is
divided, contains each of the integers from 1 to N exactly once. In this general-
ized setting, the Sudoku problem is known to be NP-complete. We considered
instances of varying sizes, with N ranging from 16 to 64. Both instances and
encoding have been retrieved from [35].

Grounding times and number of grounded instances are reported in Ta-
ble 11.18. In these situations in which input instance may lead to incoherences,
it is evident a signi�cant improvement in performance. Moreover, the compe-
tition suites evidence no drawbacks on coherent problems. Intuitively, this is
not surprising since we are just anticipating apart of job that should be done
anyway. For these reasons, in I-DLV this optimization is performed by default.

Problem
I-DLV -No-SC I-DLV -SC

#grounded time #grounded time
Sixth Competition

Abstract Dialectical Frameworks 20 0.11 20 0.11
Combined Con�guration 20 13.53 20 13.43
Complex Optimization 20 66.83 20 68.95
Connected Still Life 20 0.10 20 0.10
Consistent Query Answering 20 76.31 20 77.26
Crossing Minimization 20 0.10 20 0.10
Graceful Graphs 20 0.31 20 0.30
Graph Coloring 20 0.10 20 0.10
Incremental Scheduling 20 17.05 20 16.77
Knight Tour With Holes 20 2.36 20 2.31
Labyrinth 20 2.01 20 2.01
Maximal Clique 20 4.39 20 5.25
MaxSAT 20 3.96 20 4.24
Minimal Diagnosis 20 5.19 20 5.25
Nomystery 20 4.16 20 4.08
Partner Units 20 0.43 20 0.41
Permutation Pattern Matching 20 135.04 20 134.64
Qualitative Spatial Reasoning 20 5.49 20 5.45
Reachability 20 142.64 20 143.98
Ricochet Robots 20 0.37 20 0.36
Sokoban 20 1.23 20 1.21
Stable Marriage 20 123.55 20 124.25
Steiner Tree 20 29.83 20 29.18
Strategic Companies 20 0.25 20 0.32
System Synthesis 20 1.12 20 1.11
Valves Location Problem 20 2.58 20 2.55
Video Streaming 20 0.10 20 0.10
Visit-all 20 1.22 20 1.23
Total Grounded Instances 560/560 560/560
Average Time 23.47 23.23

Table 11.16: Anticipation of Strong Constraints Evaluation � 6th Comp. Bench-
marks
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Problem
I-DLV -No-SC I-DLV -SC

#grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11
Bottle Filling Problem 30 4.18 30 4.15
Chemical Classi�cation 26 124.32 26 120.60
Complex Optimization 29 41.62 29 40.16
Connected Still Life 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10
Graceful Graphs 30 0.37 30 0.38
Graph Colouring 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24
Incremental Scheduling 12 295.14 12 296.01
Knight Tour with Holes 20 176.96 20 173.50
Labyrinth 30 1.56 30 1.51
Maximal Clique 30 0.33 30 0.33
Minimal Diagnosis 30 2.61 30 2.53
Nomystery 30 43.30 30 43.68
Permutation Pattern Matching 28 58.64 28 58.17
Qualitative Spatial Reasoning 30 2.87 30 2.84
Reachability 30 125.85 30 125.65
Ricochet Robots 30 0.25 30 0.25
Sokoban 30 2.68 30 2.66
Solitaire 27 0.12 27 0.13
Stable Marriage 30 28.49 30 27.98
Strategic Companies 30 0.31 30 0.30
Valves Location 30 4.08 30 4.02
Visit-all 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.89 30 2.84
Total Grounded Instances 722/756 722/756
Average Time 27.15 27.08

Table 11.17: Anticipation of Strong Constraints Evaluation � 4th Comp. Bench-
marks

Problem
I-DLV -No-SC I-DLV -SC

#grounded time #grounded time
Food 1 29.35 1 0.10
Hamiltonian Path 17 266.61 40 10.52
Sudoku 70 31.44 70 15.69
Total Grounded Instances 88/111 111/111
Average Time 76.85 13.69

Table 11.18: Anticipation of Strong Constraints Evaluation � Further Bench-
marks

11.8 Syntactic Rewriting Techniques

In this section we consider the impact of syntactically rewriting the input pro-
gram by applying the techniques illustrated in Section 9.5. In particular, while
aggregate literals in I-DLV are automatically rewritten and their instantiation
has been designed under the assumption that the rewriting described in Sec-
tion 9.5.3 has been preliminarily applied, for the other syntactic constructs it is
possible to change the default adopted strategy.
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Choice Rules

Concerning choice rules, the three distinct rewriting techniques described have
been implemented in I-DLV (cf. Sections 10.3.1 and 9.5.4). We executed a
di�erent version of I-DLV per each distinct rewriting: I-DLV-C1 adopts the
strategy that replaces choice rules with disjunctive rules, I-DLV-C2 makes use
of the second rewriting process illustrated in Section 9.5.4, while I-DLV-C3 em-
ploys the third rewriting discussed in the same section. The results are reported
in Tables 11.19 and 11.20. The results about the Sixth Competition evidence
that native approaches are preferable: I-DLV-C2 and I-DLV-C3 perform the
best. In particular, a signi�cant advantage can be observed on the problem
Steiner Tree. However, apart from this problem, the performance of the ver-
sion I-DLV-C1 is quite similar to the ones of the other versions. On the other
hand, in the Fourth Competition no particular advantages or disadvantages are
observable: all the three versions performed similarly.

Functional Terms

Regarding functional terms, we experimented with three con�gurations: (i)
I-DLV-No-RFT, in which the rewriting of functional terms outlined in Sec-
tion 9.5.2 is disabled, (ii) I-DLV-No-RFT-Ord3, in which the rewriting is also
disabled but it is employed the body ordering strategy geared towards functional
terms, (iii) I-DLV-RFT in which the rewriting is enabled.

The results are illustrated in Tables 11.21 and 11.22, and demonstrate that
among all possibilities, enabling the rewriting is the best choice, especially on the
problems Abstract Dialectical Frameworks and Complex Optimization. Indeed,
in the considered benchmarks it emerged that pushing functional terms down
in the body is not a su�cient strategy for handling functional terms e�ciently.
In I-DLV the rewriting is enabled by default; however, since as emerged for the
rewriting of isolated variables the introduction of further auxiliary rules may
cause an overhead, it can be disabled.

Arithmetic Terms

Eventually, let us consider the e�ects of the rewriting of arithmetic terms de-
picted in Section 9.5.1. We compared two versions of I-DLV , I-DLV-No-RAT
and I-DLV-RAT, in which I-DLV does not apply or enable such rewriting. Ta-
bles 11.23 and Tables 11.24 report the results. Interestingly, some problems can
be grounded more e�ciently when the rewriting is enabled; for instance, in both
suites signi�cant bene�ts are observable in the problems Complex Optimization,
and Nomystery. On the other hand, some worsening emerges, for instance, in
Ricochet Robots and Sokoban. In general, the e�ects of such rewriting are not
predictable, but may bring bene�ts depending on the particular encoding at
hand; therefore, by default it is disabled.
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Problem
I-DLV -C1 I-DLV -C2 I-DLV -C3

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11 20 0.11
Combined Con�guration 20 13.95 20 13.77 20 13.60
Complex Optimization 20 67.10 20 67.48 20 67.99
Connected Still Life 20 0.10 20 0.10 20 0.10
Consistent Query Answering 20 76.72 20 76.65 20 76.64
Crossing Minimization 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 0.29 20 0.29 20 0.29
Graph Coloring 20 0.10 20 0.10 20 0.10
Incremental Scheduling 20 18.17 20 17.12 20 17.26
Knight Tour With Holes 20 2.30 20 2.31 20 2.31
Labyrinth 20 1.99 20 1.99 20 1.98
Maximal Clique 20 5.23 20 5.22 20 5.21
MaxSAT 20 4.30 20 4.29 20 4.29
Minimal Diagnosis 20 5.15 20 5.11 20 5.12
Nomystery 20 3.93 20 3.93 20 4.02
Partner Units 20 0.73 20 0.41 20 0.41
Permutation Pattern Matching 20 134.36 20 133.78 20 132.27
Qualitative Spatial Reasoning 20 5.43 20 5.44 20 5.39
Reachability 20 156.07 20 156.29 20 156.35
Ricochet Robots 20 0.36 20 0.35 20 0.35
Sokoban 20 1.26 20 1.21 20 1.20
Stable Marriage 20 120.80 20 120.94 20 119.41
Steiner Tree 20 492.17 20 29.09 20 29.34
Strategic Companies 20 0.32 20 0.32 20 0.32
System Synthesis 20 1.19 20 1.11 20 1.10
Valves Location Problem 20 2.58 20 2.58 20 2.55
Video Streaming 20 0.10 20 0.10 20 0.10
Visit-all 20 1.18 20 1.19 20 1.18
Total Grounded Instances 560/560 560/560 560/560
Average Time 39.86 23.26 23.18

Table 11.19: Choice Rewriting � 6th Comp. Benchmarks

Problem
I-DLV -C1 I-DLV -C2 I-DLV -C3

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11 30 0.11
Bottle Filling Problem 30 4.14 30 4.14 30 4.14
Chemical Classi�cation 26 120.64 26 120.58 26 120.53
Complex Optimization 29 40.61 29 40.53 29 40.52
Connected Still Life 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 0.37 30 0.38 30 0.38
Graph Colouring 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24 30 0.24
Incremental Scheduling 12 295.67 12 297.77 12 300.08
Knight Tour with Holes 20 173.10 20 173.21 20 174.40
Labyrinth 30 1.50 30 1.51 30 1.51
Maximal Clique 30 0.33 30 0.33 30 0.33
Minimal Diagnosis 30 2.52 30 2.52 30 2.53
Nomystery 30 43.63 30 43.66 30 43.68
Permutation Pattern Matching 28 57.93 28 58.06 28 58.05
Qualitative Spatial Reasoning 30 2.83 30 2.88 30 2.84
Reachability 30 125.70 30 125.63 30 125.45
Ricochet Robots 30 0.25 30 0.25 30 0.25
Sokoban 30 2.66 30 2.74 30 2.67
Solitaire 27 0.12 27 0.13 27 0.12
Stable Marriage 30 27.97 30 27.85 30 27.87
Strategic Companies 30 0.30 30 0.31 30 0.31
Valves Location 30 4.06 30 4.13 30 4.02
Visit-all 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.85 30 2.88 30 2.86
Total Grounded Instances 722/756 722/756 722/756
Average Time 27.07 27.11 27.17

Table 11.20: Choice Rewriting � 4th Comp. Benchmarks
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Problem
I-DLV-No-RFT I-DLV-No-RFT-Ord3 I-DLV-RFT

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 4.45 20 4.50 20 0.11
Combined Con�guration 20 14.22 20 28.27 20 13.53
Complex Optimization 20 483.67 20 483.75 20 69.83
Connected Still Life 20 0.10 20 0.10 20 0.10
Consistent Query Answering 20 76.22 20 76.54 20 76.31
Crossing Minimization 20 0.10 20 0.10 20 0.10
Graceful Graphs 20 0.29 20 0.29 20 0.31
Graph Coloring 20 0.10 20 0.10 20 0.10
Incremental Scheduling 20 17.10 20 17.10 20 17.05
Knight Tour With Holes 20 2.32 20 2.30 20 2.36
Labyrinth 20 2.01 20 1.99 20 2.01
Maximal Clique 20 5.21 20 5.22 20 4.39
MaxSAT 20 4.27 20 4.33 20 3.96
Minimal Diagnosis 20 5.13 20 5.15 20 5.19
Nomystery 20 4.00 20 4.03 20 4.16
Partner Units 20 0.41 20 0.41 20 0.43
Permutation Pattern Matching 20 134.07 20 133.41 20 135.04
Qualitative Spatial Reasoning 20 5.45 20 5.43 20 5.49
Reachability 20 155.92 20 156.60 20 142.64
Ricochet Robots 20 0.35 20 0.35 20 0.37
Sokoban 20 1.21 20 1.20 20 1.23
Stable Marriage 20 120.34 20 120.66 20 123.55
Steiner Tree 20 29.04 20 29.10 20 29.83
Strategic Companies 20 0.32 20 0.32 20 0.25
System Synthesis 20 1.10 20 1.12 20 1.12
Valves Location Problem 20 2.44 20 2.46 20 2.58
Video Streaming 20 0.10 20 0.10 20 0.10
Visit-all 20 1.18 20 1.21 20 1.22
Total Grounded Instances 560/560 560/560 560/560
Average Time 38.25 38.8 22.98

Table 11.21: Functional Terms Rewriting � 6th Comp. Benchmarks

Problem
I-DLV-No-RFT I-DLV-No-RFT-Ord3 I-DLV-RFT

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 30 5.13 30 5.07 30 0.11
Bottle Filling Problem 30 4.16 30 4.17 30 4.15
Chemical Classi�cation 26 120.65 26 121.80 26 120.60
Complex Optimization 14 17.49 14 17.38 29 40.16
Connected Still Life 10 0.12 10 0.12 10 0.12
Crossing Minimization 30 0.11 30 0.10 30 0.10
Graceful Graphs 30 0.38 30 0.37 30 0.38
Graph Colouring 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24 30 0.24
Incremental Scheduling 12 302.04 12 296.12 12 296.01
Knight Tour with Holes 20 177.61 20 173.26 20 173.50
Labyrinth 30 1.53 30 1.52 30 1.51
Maximal Clique 30 0.33 30 0.33 30 0.33
Minimal Diagnosis 30 2.53 30 2.55 30 2.53
Nomystery 30 43.85 30 43.46 30 43.68
Permutation Pattern Matching 28 60.04 28 58.38 28 58.17
Qualitative Spatial Reasoning 30 2.84 30 2.85 30 2.84
Reachability 30 125.11 30 125.65 30 125.65
Ricochet Robots 30 0.25 30 0.25 30 0.25
Sokoban 30 2.68 30 2.66 30 2.66
Solitaire 27 0.12 27 0.12 27 0.13
Stable Marriage 30 28.40 30 27.55 30 27.98
Strategic Companies 30 0.30 30 0.31 30 0.30
Valves Location 30 3.90 30 3.89 30 4.02
Visit-all 30 0.14 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.85 30 2.83 30 2.84
Total Grounded Instances 707/756 707/756 722/756
Average Time 26.86 26.58 27.08

Table 11.22: Functional Terms Rewriting � 4th Comp. Benchmarks
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Problem
I-DLV -No-RAT I-DLV -RAT

#grounded time #grounded time
Abstract Dialectical Frameworks 20 0.11 20 0.11
Combined Con�guration 20 13.53 20 13.89
Complex Optimization 20 69.83 20 49.12
Connected Still Life 20 0.10 20 0.10
Consistent Query Answering 20 76.31 20 76.28
Crossing Minimization 20 0.10 20 0.10
Graceful Graphs 20 0.31 20 0.30
Graph Coloring 20 0.10 20 0.10
Incremental Scheduling 20 17.05 20 16.97
Knight Tour With Holes 20 2.36 20 2.31
Labyrinth 20 2.01 20 1.99
Maximal Clique 20 4.39 20 5.26
MaxSAT 20 3.96 20 4.29
Minimal Diagnosis 20 5.19 20 5.12
Nomystery 20 4.16 20 2.30
Partner Units 20 0.43 20 0.41
Permutation Pattern Matching 20 135.04 20 131.97
Qualitative Spatial Reasoning 20 5.49 20 5.38
Reachability 20 142.64 20 156.93
Ricochet Robots 20 0.37 20 0.55
Sokoban 20 1.23 20 1.40
Stable Marriage 20 123.55 20 120.19
Steiner Tree 20 29.83 20 0.10
Strategic Companies 20 0.25 20 0.32
System Synthesis 20 1.12 20 0.10
Valves Location Problem 20 2.58 20 2.58
Video Streaming 20 0.10 20 0.10
Visit-all 20 1.22 20 1.22
Total Grounded Instances 560/560 560/560
Average Time 22.98 21.41

Table 11.23: Arithmetic Terms Rewriting � 6th Comp. Benchmarks

Problem
I-DLV -No-RAT I-DLV -RAT

#grounded time #grounded time
Abstract Dialectical Frameworks 30 0.11 30 0.11
Bottle Filling Problem 30 4.15 30 4.21
Chemical Classi�cation 26 120.60 26 120.63
Complex Optimization 29 40.16 29 23.32
Connected Still Life 10 0.12 10 0.12
Crossing Minimization 30 0.10 30 0.10
Graceful Graphs 30 0.38 30 0.38
Graph Colouring 30 0.10 30 0.10
Hanoi Tower 30 0.24 30 0.24
Incremental Scheduling 12 296.01 12 303.25
Knight Tour with Holes 20 173.50 20 176.03
Labyrinth 30 1.51 30 1.52
Maximal Clique 30 0.33 30 0.33
Minimal Diagnosis 30 2.53 30 2.53
Nomystery 30 43.68 30 39.50
Permutation Pattern Matching 28 58.17 28 58.80
Qualitative Spatial Reasoning 30 2.84 30 2.83
Reachability 30 125.65 30 125.12
Ricochet Robots 30 0.25 30 0.44
Sokoban 30 2.66 30 3.10
Solitaire 27 0.13 27 0.11
Stable Marriage 30 27.98 30 28.04
Strategic Companies 30 0.30 30 0.30
Valves Location 30 4.02 30 4.18
Visit-all 30 0.14 30 0.14
Weighted-Sequence Problem 30 2.84 30 2.54
Total Grounded Instances 722/756 722/756
Average Time 27.08 26.45

Table 11.24: Arithmetic Terms Rewriting � 4th Comp. Benchmarks



Chapter 12

Experimental Evaluation of

I-DLV

In this chapter we present a more thorough analysis of I-DLV performance
as both ASP grounder and deductive database system. In Section 12.1 we
�rstly compare I-DLV with current mainstream grounders; next, we assess
its deductive database capabilities. In Section 12.2 we report an experimental
study on I-DLV customization possibilities. Eventually, Section 12.3 examines
the impact of I-DLV on state-of-the-art solvers evaluating the �quality� of its
produced instantiation.

Experiments have been performed the same hardware of Chapter 11, and
again for memory and time limits, we allotted 15 GiB and 600 seconds for each
system, per each single run.

12.1 Comparison with the State-of-the-Art

In this section, we report the results of an experimental activity carried out
to assess I-DLV performance as both ASP grounder and deductive database
system. In order to obtain trustworthy results, we considered tests that have
already been largely used and are publicly available. In particular, we relied on:

� the whole Sixth ASP Competition suite [67];

� OpenRuleBench [95], an open (freely available) set of resources comprising
a suite of benchmarks for analysing performance and scalability of di�erent
rule engines;

� a suite of benchmarks employed in literature to test Consistent Query
Answering (CQA) systems on large inconsistent database [84, 99].

12.1.1 ASP Grounding Benchmarks

For this setting we tested I-DLV against the two mainstream grounders gringo
and the (old) intelligent grounder of DLV , and in particular the latest available
versions at the time of writing: 5.2.1 and 2012-12-17, respectively.
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The results about the Sixth ASP Competition suite are reported in Ta-
ble 12.1: �rst column shows the name of the problem, while the next three
report the average times. Some benchmarks are reported in bold indicating
cases where there is a noticeable di�erence of at least 10% among the systems
tested; in addition, bad results are highlighted in red, while good performance
in green. In the rest of the chapter, we will adopt the same style for the other
experimental results; moreover, we will indicate with �MO� memory outs, and
with �US� unsupported syntax.

Problem
gringo DLV I-DLV

#grounded time #grounded time #grounded time
Abstract Dialectical Frameworks 20 2.22 0 US 20 0.11
Combined Con�guration 20 14.76 0 US 20 13.37
Complex Optimization 20 8.56 0 US 20 70.09
Connected Still Life 20 0.10 0 US 20 0.10
Consistent Query Answering 0 US 20 196.99 20 77.50
Crossing Minimization 20 0.10 0 US 20 0.10
Graceful Graphs 20 0.21 0 US 20 0.31
Graph Coloring 20 0.10 0 US 20 0.10
Incremental Scheduling 20 29.21 0 US 20 17.20
Knight Tour With Holes 20 12.85 0 US 20 2.34
Labyrinth 20 0.54 20 15.73 20 2.03
Maximal Clique 20 14.23 0 US 20 4.37
MaxSAT 20 6.79 0 US 20 3.99
Minimal Diagnosis 20 3.00 20 57.92 20 4.74
Nomystery 20 2.37 0 US 20 4.15
Partner Units 20 0.41 0 US 20 0.43
Permutation Pattern Matching 20 124.11 0 US 20 4.31
Qualitative Spatial Reasoning 20 5.93 20 31.78 20 5.48
Reachability 0 US 0 TO 20 141.19
Ricochet Robots 20 0.19 0 US 20 0.38
Sokoban 20 1.17 0 US 20 1.25
Stable Marriage 20 114.75 0 US 20 124.09
Steiner Tree 20 31.44 0 US 20 29.73
Strategic Companies 0 US 20 236.57 20 0.26
System Synthesis 20 1.34 0 US 20 1.12
Valves Location Problem 20 13.02 0 US 20 2.59
Video Streaming 20 0.10 0 US 20 0.10
Visit-all 20 1.06 0 US 20 0.44
Total Grounded Instances 500/560 100/560 560/560
Average Time 15.25 101.02 17.86

Table 12.1: Sixth ASP Competition Benchmarks � number of grounded in-
stances and grounding times in seconds

When launched, all systems were able to ground all 20 instances in the
allotted time. It is evident, while comparing I-DLV against DLV , that the new
grounder systematically outperforms its predecessor, enjoying performance gains
up to 90%. This is immediately evident also in the cactus plot in Figure 12.1
that compares I-DLV and its predecessor displaying the grounded instances
on problems following DLV syntax, whose number increases along the x-axis,
while the runtime is reported on the y-axis. Also the comparison with gringo
is encouraging, despite I-DLV has been just recently released it proves to be
competitive. More in detail, excluding the 3 domains grounded only by I-DLV ,
times are substantially aligned (time di�erences below 10%) in 10 domains out
of 25; as for the remaining domains, gringo outperforms I-DLV in 6 domains,
while I-DLV performed better in 9 domains. To have another comparison
perspective, Figure 12.2 compares I-DLV and gringo on problems following
ASP-Core-2 syntax but without featuring queries; as done before, the �gure
plots the number of grounded instances indicated on the x-axis within running



12.1. COMPARISON WITH THE STATE-OF-THE-ART 147

times given on the y-axis. We observe that even though the two systems have a
very similar performance, I-DLV grounded all the instances earlier than gringo,
in less than 200 seconds.
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Figure 12.1: Sixth ASP Competition Benchmarks � comparison of the old DLV
grounder and I-DLV on DLV syntax
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Figure 12.2: Sixth ASP Competition Benchmarks � comparison of gringo and
I-DLV on ASP-Core-2 syntax minus queries

In order to �nd further comparison settings outside of the ASP Competition
series, we took into account the problems appearing in OpenRuleBench and in
CQA benchmarks. This is also motivated by the fact that the ASP Competition
mainly focuses on problems where solving task is more relevant with respect
to the grounding one (indeed, as Figure 12.1 shows, apart from unsupported
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syntax issues, all systems completed all instances), while OpenRuleBench and
the selected tests from CQA suite demand a more signi�cant work from the
grounders.

Regarding OpenRuleBench, since it consists essentially of a query-based set
of problems, that gringo would not accept �as-is�, we removed the query from
the encodings and measured just the grounding times. Obviously, we did the
same also for the DLV instantiator and I-DLV : otherwise, these might have
taken advantage from the magic-set technique, thus leading to an unfair test.
The results are reported in Table 12.2: after domains names and correspond-
ing number of instances, the next three pairs of columns show the number of
grounded instances and the running time averaged over grounded instances. The
last line reports the total running times for each system (600 seconds is added
for timeout/memout instances, as systems were stopped if unable to �nish be-
fore). It is evident that DLV is outperformed by both gringo and I-DLV . As
for gringo and I-DLV , both grounded 102 instances out of 108; however, in the
majority of domains I-DLV appears to enjoy better performance. This is also
evidenced in Figure 12.3 that provides another comparison perspective by plot-
ting the running times over grounded instances in a cactus plot, as previously
done. In particular, while in the previous benchmarks since not all systems
accept the same syntax we separately compared them on commonly supported
syntax, here there are no syntax issues, thus we compared all systems in the
same plot.

Problem # inst.
gringo DLV I-DLV

#grounded time #grounded time #grounded time
Join1 A 3 2 206.03 1 117.57 2 226.02
Join1 B1 3 3 90.38 3 172.92 3 73.61
Join1 B2 3 3 27.41 3 35.34 3 18.78
Join Dupl. A 3 1 171.39 0 TO 1 168.92
Join Dupl. B1 3 2 113.02 2 261.19 2 83.70
Join Dupl. B2 3 3 112.55 3 168.43 3 86.60
Join2 1 1 40.36 1 88.32 1 25.18
Mondial 1 1 2.52 1 2.05 1 1.40
DBLP 1 1 49.49 1 27.06 1 17.67
Lubm1 2 2 55.95 2 31.98 2 20.51
Lubm2 2 2 56.01 2 37.49 2 20.46
Lubm9 2 2 55.95 2 37.02 2 20.51
Same Gen. R. 10 10 65.82 9 146.92 10 54.84
Trans. Closure 10 8 166.92 6 232.74 8 176.47
Wordnet 15 15 7.96 15 12.18 15 5.82
Wine 1 1 13.13 1 28.95 1 11.07
Magic Set 5 5 5.66 5 6.29 5 1.94
Win 10 10 9.91 10 8.02 10 5.29
Same Gen. S.N. 5 5 88.27 4 160.77 5 70.44
Indexing 15 15 5.17 15 2.13 15 1.43
Queens 5 5 0.10 5 0.34 5 0.10
Sixteen Puzzle 5 5 0.10 5 0.37 5 0.10
Total Grounded Instances 102/108 96/108 102/108
Average Time 43.95 60.64 37.50
Total Running Time 8,303 13,021 7,613

Table 12.2: OpenRuleBench Benchmarks � number of grounded instances and
grounding times in seconds

As for the CQA benchmarks, we selected a single database among the four
available: indeed, they are randomly generated, and from a grounding perspec-
tive performance was very similar; moreover, among the available encoding we
chose the Pruning one introduced in [99], as it was shown to be the one on
which most of the execution time is spent on grounding. The executed part of
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Figure 12.3: OpenRuleBench Benchmarks � grounding comparison

Problem gringo I-DLV
Query 1 20.55 14.78
Query 2 25.13 23.18
Query 3 29.90 19.34
Query 4 30.32 18.81
Query 5 12.85 8.23
Query 6 23.57 17.89
Query 7 21.72 19.21
Query 8 21.84 18.02
Query 9 33.55 26.92
Query 10 30.54 24.52
Query 11 31.31 23.19
Query 12 33.93 23.83
Query 13 37.33 29.80
Query 14 20.66 20.75
Query 15 21.99 19.47
Query 16 24.14 19.15
Query 17 27.78 16.52
Query 18 27.42 14.63
Query 19 34.79 25.67
Query 20 37.55 31.08
Query 21 32.82 28.03
Total Grounded Instances 210/210 210/2010
Total Running Time 5,797 4,430
Average Time 27.60 21.09

Table 12.3: CQA Benchmarks � grounding times in seconds

the benchmark consists in 10 instances with increasing sizes, varying from 100k
to 1M tuples, and 21 encodings obtained by combining the Pruning encod-
ing with 21 di�erent extensions each one simulating a di�erent database query.
It is worth noticing that no encoding contains a query explicitly expressed in
ASP: queries are simulated via plain normal rules. Table 12.3 shows the aver-
age grounding times for each encoding on the 10 instances: gringo and I-DLV
were able to ground the whole suite within the given limits, while DLV was not
able to execute any problem due to the presence of choice rules, which are not
supported by the system. Also in this case, the results con�rm the reliability
of I-DLV , which obtained the best performance on each problem, even if the
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special optimization means for query answering could not be employed due to
the lack of explicitly expressed queries.

12.1.2 Deductive Database Benchmarks

For this setting, the natural choice was the query-based set of problems of the
OpenRuleBench initiative. Besides DLV , we tested I-DLV against XSB [120]
(the latest available version, 3.6) which was among the clear winners and is cur-
rently one of the most widespread Logic Programming and Deductive Database
systems. All systems support query answering, thus, di�erently from above,
queries have not been removed. Moreover, DLV and I-DLV where launched
with their default con�guration over all domains, and XSB has been launched
with the exact OpenRuleBench settings, where the best con�guration was set
manually per each problem. The results are reported in Table 12.4: after domain
names and corresponding number of instances, the next three pairs of columns
show the number of solved instances and the running time averaged over solved
instances. Similarly as above, the last line reports the total running times for
each system.

Problem # inst.
XSB DLV I-DLV

#solved time #solved time #solved time
Join1 A free-free 3 1 19.76 1 122.84 2 233.98
Join1 A bound-free 3 2 25.04 3 37.09 3 18.16
join1 A free-bound 3 1 8.00 3 178.00 3 94.52
Join1 B1 free-free 3 2 13.39 3 181.62 3 70.96
Join1 B1 bound-free 3 3 2.65 3 3.16 3 1.42
Join1 B1 free-bound 3 2 4.46 3 11.64 3 6.03
Join1 B2 free-free 3 3 8.78 3 38.32 3 18.71
Join1 B2 bound-free 3 3 1.44 3 2.89 3 1.27
Join1 B2 free-bound 3 3 4.14 3 2.90 3 1.28
Join Duplicate A 3 1 93.36 0 TO 1 155.12
Join Duplicate B1 3 2 54.40 2 261.63 2 76.79
Join Duplicate B2 3 3 39.79 3 169.82 3 83.60
Join2 1 1 2.12 1 80.09 1 12.42
DBLP 1 1 92.41 1 23.81 1 15.00
Mondial 1 1 3.29 1 0.77 1 0.51
Same Gen. Recursion free-free 10 10 21.86 9 150.67 10 56.69
Same Gen. Recursion bound-free 10 10 18.32 10 153.06 10 46.27
Same Gen. Recursion free-bound 10 10 26.55 9 150.41 10 53.09
Trans. Closure free-free 10 10 148.81 6 217.35 9 191.18
Trans. Closure bound-free 10 10 93.42 6 207.93 9 174.05
Trans. Closure free-bound 10 10 28.99 10 3.13 10 1.44
Wordnet 15 15 1.70 15 13.99 15 5.08
Wine 1 1 5.89 1 27.76 1 10.62
Indexing 15 10 14.76 15 3.85 15 1.95
Total Solved Instances 115/130 114/130 124/130
Total Running Time 13,142 19,345 10,204
Average Time 36.02 85.45 53.79

Table 12.4: OpenRuleBench Benchmarks � number of solved instances and
query answering times in seconds

Also in this setting, results are very encouraging: not only I-DLV behaves
better than DLV , but it is de�nitely competitive against XSB . Indeed, in spite
of a non-negligible variability from a problem to another, I-DLV times are, on
the overall, comparable with the ones of XSB ; in addition, it was able to solve
even more instances within the allotted time (123 for I-DLV , 115 for XSB).
The cactus plot in Figure 12.4 shows how I-DLV outperformed DLV also on
query answering tasks, and evidences a better scalability of I-DLV with respect
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Figure 12.4: OpenRuleBench Benchmarks � query answering comparison

to XSB .

12.2 Impact of Customizability

In this section we present an experimental analysis on ad-hoc I-DLV con�gura-
tions. Table 12.5 reports the comparison of the default version with a customized
versions of I-DLV over a set of benchmarks taken from the Third ASP Compe-
tition [36], and the already mentioned Forth and Sixth ASP Competitions. For
each benchmarking problem the custom con�guration has been de�ned either
via command-line options or via annotations. It is easy to see that signi�cant
improvements can be obtained by playing with grounding options.

Problem # inst.
I-DLV I-DLV -Custom

#grounded time #grounded time
3rd Comp. - Grammar Based 10 10 69.29 10 16.10
3rd Comp. - Hydraulic Leaking 10 10 175.20 10 109.88
3th Comp. - Labyrinth 10 10 1.33 10 0.72
4th Comp. - Chemical Classi�cation 30 26 120.60 26 97.43
4th Comp. - Complex Optimization 30 29 41.25 29 17.90
4th Comp. - Bottle Filling 30 30 4.22 30 3.85
4th Comp. - Labyrinth 30 30 1.51 30 0.76
6th Comp. - Complex Optimization 20 20 66.82 20 28.51
6th Comp. - Labyrinth 20 20 2.01 20 0.93
6th Comp. - Nomystery 20 20 3.46 20 2.36
6th Comp. - Steiner Tree 20 20 29.83 20 0.10

Table 12.5: Customizability � number of grounded instances and grounding
times in seconds

In order to give an intuition of why this happens, we illustrate an interesting
case, namely Labyrinth, where performance is signi�cantly a�ected by the pos-
sibility to choose di�erent strategies for the body orderings from rule to rule.
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The encoding of such problem has not be updated in the last competitions,
thus in all the three competitions the same encoding was employed and the
same con�guration has been adopted.

In particular, the custom con�guration for Labyrinth has been obtained by
considering this recursive rule:

reach(X,Y, T ) :- reach(XX,Y Y, T ), dneighbor(D,XX, Y Y,X, Y ),
conn(XX,Y Y,D, T ), conn(X,Y,E, T ), inverse(D,E), step(T ).

and by annotating it with:

%@rule_partial_order(@before={inverse(D,E)},

@after={reach(XX,YY,T), dneighbor(D,XX,YY,X,Y),

conn(XX,YY,D,T), conn(X,Y,E,T), step(T).}).

that corresponds to ask I-DLV to select as �rst literals inverse(D,E) in its
ordering strategy no matter how the other literals are positioned, and leads to
reduce the average grounding time over all instances of around 50%.

Let us give some insights about the reasons behind the performance improve-
ments. In Section 11.2 emerged that the best ordering strategy for Labyrinth
is the Combined+

I criterion. In particular, for recursive rules, I-DLV reorders
rule bodies at each iteration, and in the majority of the iterations and of the
instances, if the Combined+

I strategy is enabled, the rule body is ordered as
follows:

reach(X,Y, T ) :- reach(XX,Y Y, T ), step(T ), conn(XX,Y Y,D, T ),
inverse(D,E), conn(X,Y,E, T ), dneighbor(D,XX, Y Y,X, Y ).

While the default Combined+ criterion tends to choose this other ordering:

reach(X,Y, T ) :- reach(XX,Y Y, T ), step(T ), conn(XX,Y Y,D, T ),
conn(X,Y,E, T ), inverse(D,E), dneighbor(D,XX, Y Y,X, Y ).

The heuristics, on which the other strategies are based, concern not only the
size of the extensions of involved predicates but additional heuristics, as we have
already discussed; in particular, since these strategies have as common root the
Combined criterion, similarly to it, they may tend to prefer literals binding a
larger number of variables. Despite being an e�ective heuristic in general, in
this situation it emerged to not be the best choice. Indeed, the extension of the
predicate inverse is very small in almost all instances, and it is better to add
it as soon as possible, possibly at �rst. Notably, since this rule is recursive the
impact of selecting a not best performing ordering is even more emphasized,
since the rule is grounded multiple times.

12.3 Impact on Solvers

Except for strati�ed and non disjunctive programs for which, typically, instan-
tiators are directly able to �nd the unique answer set, for programs that do not
belong to this category, the ground program produced represents the input of
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solvers which are capable of �nding all their answer set(s). In this section, we
report the results of an experimental activity aiming at assessing the perform-
ance of state-of-the-art solvers clasp and wasp when coupled with I-DLV or
gringo.

To this end, we executed four di�erent combinations: (i) gringo paired with
clasp, (ii) gringo coupled with wasp, (iii) I-DLV combined with clasp, (iv)
I-DLV together with wasp. The latest available versions have been launched:
gringo and clasp 5.2.1, wasp 2.1. Table 12.6 shows the experimental results: in
red are reported the worst performing combinations, and in green the best ones.
In general, I-DLV improves the performance of both solvers allowing them to
solve a greater number of instances; in particular, the combination I-DLV and
clasp is the best in most of the cases (14 problems out of 28). Excluding the 57
and 31 instances that respectively clasp and wasp are able to solve only with
I-DLV due the presence of queries, in the other problems the total number of
instances solved by I-DLV and clasp is 274, while for I-DLV and wasp it is
243.

gringo | clasp gringo | wasp I-DLV | clasp I-DLV | wasp
Problem #solved time #solved time #solved time #solved time
Abstract Dialectical Frameworks 20 8.80 12 37.96 20 6.73 11 32.66
Combined Con�guration 10 280.62 1 1.18 10 177.53 0 TO
Complex Optimization 17 137.03 4 104.50 18 158.91 6 159.74
Connected Still Life 6 238.91 12 47.14 6 240.76 12 53.20
Consistent Query Answering 0 US 0 US 20 85.42 18 86.96
Crossing Minimization 6 63.06 19 4.09 7 56.74 19 5.78
Graceful Graphs 9 68.09 4 44.73 9 140.55 5 127.29
Graph Coloring 15 137.57 7 68.77 15 162.01 8 113.37
Incremental Scheduling 13 116.77 5 114.58 12 69.61 7 93.36
Knight Tour With Holes 10 15.05 10 113.87 11 59.06 10 35.28
Labyrinth 13 103.86 10 138.07 12 152.09 10 71.22
Maximal Clique 0 TO 8 293.63 0 TO 9 361.82
MaxSAT 7 43.70 19 100.41 7 39.59 19 92.53
Minimal Diagnosis 20 8.41 20 36.95 20 8.78 20 26.73
Nomistery 7 91.73 8 57.10 9 101.84 9 78.96
Partner Units 14 35.14 10 236.87 14 20.24 9 140.92
Permutation Pattern Matching 11 167.83 20 173.43 20 15.68 20 23.26
Qualitative Spatial Reasoning 19 140.97 16 194.72 20 125.29 13 144.27
Reachability 0 US 0 US 20 145.75 6 141.04
Ricochet Robots 8 119.41 6 87.76 11 158.58 9 135.68
Sokoban 9 123.15 9 136.62 8 76.71 8 79.22
Stable Marriage 4 397.52 7 369.93 5 389.40 6 415.48
Steiner Tree 2 52.06 1 249.02 2 69.68 1 122.69
Strategic Companies 0 US 0 US 17 124.88 7 76.78
System Synthesis 0 TO 0 TO 0 TO 0 TO
Valves Location Problem 16 22.18 16 68.68 16 45.33 15 39.60
Video Streaming 13 56.89 0 TO 13 62.22 9 8.68
Visit-all 8 17.21 8 60.97 8 15.14 8 63.74
Total Solved Instances 257/560 232/560 330/560 274/560
Average Time 93.16 111.45 93.74 86.85

Table 12.6: Sixth Competition Solving Benchmarks � number of solved instances
and solving times in seconds

Furthermore, we observe that there is no general and evident correlation
between grounding and solving performance. In some problems, such as Ab-
stract Dialectical Framework, Complex Optimization and Nomystery, a smaller
grounding time does not necessarily imply a bene�t on solving performance.
Moreover, slight variations in the performance of the grounders lead to signi�-
cant di�erences in the performance of the solvers. For instance, on the problem
Crossing Minimization clasp enjoys a better performance with I-DLV even if
the grounding performance of both grounders are very close; while wasp has a



154 CHAPTER 12. EXPERIMENTAL EVALUATION OF I-DLV

similar behaviour on Graph Coloring. Our conclusion is that solvers are mostly
in�uenced by the form in which the ground program is, rather than the ground-
ing performance.

Analysing the produced instantiation, it emerged a correlation between bod-
ies length and number of rules. In particular, di�erently from gringo, in general
I-DLV tends to produce a smaller number of rules and smaller bodies, as many
optimizations of I-DLV are geared towards the rewriting of bodies in order to
decrease their intrinsic complexity, such as the rewriting of syntactic features
and isolated variables, or the decomposition rewriting. This aspects it outlined
in the cactus plots reported next, in which restricting the comparison on prob-
lems whose syntax is accepted by both grounders we considered the number of
rules produced and the average body length over all the instances. In detail,
Figure 12.5 displays on the x-axis the number of instances solved and the re-
spective number of ground rules on the y-axis, similarly Figure 12.6 plots the
average body length on the y-axis.
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Figure 12.5: Instantiation: number of ground rules produced

Considering the solving performance, we can observe that solvers tend to
perform better in cases in which even if they receive in input a greater number of
rules, their bodies are signi�cantly smaller. In a sense, it emerges that grounders
should �nd a balance between the number of rules produced and their body
length: splitting rules bodies, thus producing a greater number of rule, without
su�ciently decreasing the lengths of bodies may not be preferable.

In order to get a more clear picture, we analysed the impact of the decompo-
sition rewriting on solvers, that among all optimizations is the one that mostly
acts on the lengths of bodies. We proved in Section 11.3 how a decomposition
tailored on grounding costs might signi�cantly increase grounding performance;
we combined the same three tested versions of with both clasp and wasp and
launched the resulting con�gurations over the same set of benchmarks.

Table 12.7 reports the average times and the number of solved instances;
the dashes stand for memory outs or time outs. First of all, we observe that
in many cases applying our heuristic-based decompositions corresponds to clear
improvements for both clasp and wasp; moreover, sometimes both solvers bene�t
from the decomposition rewriting even if there is no evidence of improvements
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Figure 12.6: Instantiation: average body length

on the grounding times. One can also note that the �blind usage� of lpopt
leads, in general, to a loss of performance for both solvers: in spite the gain in
some cases, the total number or solved instances within the suite is signi�cantly
lower. It can be observed also that there are some corner cases in which the
black-box approach eventually allows a solver to solve some instance more than
both the other two versions; however, the same do not hold for the other solver.
This suggests that a deeper analysis is needed, and that one should explicitly
tailor the heuristics guiding of the smart decomposition to the given solver
at hand; for instance, one can start from the results in [18], where emerged
that the performance of modern solvers is in�uenced by the tree-width of the
input program. We believe that tailoring SmartDecomposition also on the
solving step may yield to important improvements on the whole computational
process, even if currently this approach seems to not be easy, since it is not
clear whether we should try to �nd general heuristic criteria which may help all
solvers indiscriminately, or intrinsic aspects speci�c for the solver at hand. In
addition, we recently started to deploy an automatic solver selector, based on
some machine-learning techniques which are applied to inductively choose the
best solver, depending on some inherent features of the instantiation produced
by I-DLV , which has been preliminarily presented in [29]. Our intent is to
better understand how the output of I-DLV should be speci�cally produced to
further help the subsequent solving step.
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Related Work and Conclusion
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In this last part we discuss related work and draw our conclusions. In particular:

� Chapter 13 is devoted to related work.

� Chapter 14 reports conclusions highlighting future work.
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Chapter 13

Related Work

Some connections to our work can be found with other rule-based engines and
deductive database systems; an interesting overview can be found in [95]. Such
systems have common roots, even though di�er in several aspects, especially
with respect to supported languages and evaluation mechanisms; in particular,
XSB [120], among the most prominent, is indeed a Prolog system which relies
on a top-down evaluation. I-DLV , as already discussed in this work, is an ASP
grounder relying on a bottom-up approach.

As for grounding processes, di�erent approaches are pursued by lparse [121],
that supports ω-restricted [121] programs, and GidL [130], a grounder for FO+.
Furthermore, a radically di�erent approach is followed by systems such as
Gasp [44], Asperix [89, 87], Omiga [46] and Alpha [129] tailored on lazy ground-
ing, in which, contrarily to the classical ground and solve approach, grounding
and solving steps are interleaved, and rules are grounded on-demand during
solving.

Stronger connections can be found with other mainstream ASP grounders,
such as the grounder module of DLV [55], and gringo [66]: they all share the
basic evaluation approach.

With respect to the old DLV instantiator, I-DLV features many di�erences
and novelties. From the syntactic point of view, contrarily from its predecessor,
I-DLV fully supports the ASP-Core-2 standard language, and hence it can in-
teroperate with the state-of-the-art solver solvers. In addition, it is empowered
with advanced mechanisms for customizability and interoperability. Moreover,
I-DLV is the outcome of a completely renewed implementation started from
scratch: during both the design and the implementation processes the emphasis
has been kept on a lightweight modular architecture that eases the introduc-
tion of optimization techniques. Regarding the optimizations intervening in the
grounding process of I-DLV , apart from a similar backjumping [111] mechanism
to process rule instantiation and the magic sets technique for query answering,
it incorporates improved and novel optimizations that impact over all phases
of the computational machinery. An on-demand indexing strategy was present
also in the old DLV grounder [39]: it allowed to index each predicate on a
single argument, and was based on di�erent data structures which did not per-
mit perfect hashing. The indexing strategies presented herein are more general,
more �exible, and, as experiments con�rmed, more e�ective. Concerning body
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ordering, DLV employed the Combined criterion [91]. In its original form such
criterion was only geared towards improving the evaluation of join operations
in rule bodies. In I-DLV such strategy has been enhanced by taking into
consideration ASP-Core-2 syntax, and further variants have been introduced in
order to outline correlations between body ordering strategies and other cru-
cial optimizations. Concerning the rewriting of isolated variables, the old DLV
grounder was endowed with a dedicated rewriting module that implemented,
among others, also this functionality. Such a module was monolithic: either all
strategies were applied, or none at all. However, every rewriting shows its ben-
e�ts only in speci�c scenarios, and can worsen performance in others; thus, the
contemporary activation of many is not typically convenient. In addition, since
DLV supported a restricted syntax, linguistic extensions were handled in di�er-
ent modes. Lastly, as experiments con�rm, I-DLV enjoys signi�cantly better
performance both as instantiator and as deductive database system. Eventu-
ally, the decomposition rewriting, the techniques about pushing down selections,
managing isolated variables, pre-determining the admissibility of variable sub-
stitutions and anticipating strong constraints instantiation were not present in
the old DLV grounder.

The grounder gringo constituted, so far, the only ASP grounder support-
ing the ASP-Core-2 standard and hence able to interoperate with solvers, thus
becoming the most commonly used ASP grounder, as emerged from the last
ASP Competitions; it is also a long-lasting player, part of a larger family of An-
swer Set Programming tools that already optimize interoperation. Di�erently
from gringo, I-DLV features novel customization properties, such annotations
and special command-line options and I-DLV implements speci�c deductive-
database-oriented features, such as magic sets. Furthermore, gringo and I-DLV
incorporates di�erent optimization techniques in order to improve performance.
For instance, the rule instantiation process of gringo relies on a backjumping
algorithm enhanced with the binder splitting method, geared toward avoiding
the re-generation of some ground instances in situations in which a body literal
binds both relevant and non relevant variables [71].

Further correlations can be found with lpopt [16]. I-DLV inherits from lpopt
the way in which rules are converted to hypergraphs and decomposed. However,
thanks to the embedding of decomposition mechanisms into the grounder, the
decomposition rewriting can be better integrated with the other optimizations
featured by I-DLV , thus fully leveraging on the bene�ts stemming from their
synergic work. Moreover, thanks to this integration I-DLV aims at taking full
advantage from decompositions, still avoiding performance drawbacks by trying
to predict the e�ects of rewritings. Consequently, in I-DLV decompositions
can be selected not only considering the non-ground structure of the encoding
at hand, but also on the basis of the instance with which it is coupled, so that,
combining an encoding E with an instance I might not produce the same de-
compositions if E is instead paired with a di�erent instance I ′. In addition,
I-DLV generates multiple decompositions and automatically selects the best
one according to the studied heuristic estimation about the cost of grounding
a rule. The experiments evidenced the e�ectiveness of our approach, not only
on the grounding side, but also on the solving performance. In addition, we
preliminary de�ned an abstract heuristic-based decomposition algorithm, al-
lowing to customize decompositions according to di�erent desiderata, such as
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the improvement of solving performance.

The usage of annotations has already been proposed in the literature [127,
85, 114]. The work in [127] is one of the most related to our setting, as ap-
plies annotations to ASP programs. In particular, it introduces the language
LANA, that allows one to express meta-information that acts as an external tool
for development support (such as documentation, testing, veri�cation, or code
completion); therefore, annotations do not have a direct impact on program
evaluation. Similarly, the work in [85] refers to annotations as a tool for better
documenting Prolog programs, while the one in [114] is oriented towards seman-
tic annotations of ontologies. A di�erent approach is pursued in [52], where some
syntactic means for expressing (desirable) properties of ASP HEX programs are
introduced. However, the aim of the introduction of annotations in I-DLV is
di�erent from the mentioned mechanisms: as described in Section 10.3.2, they
allow an inline customization of the actual grounding machinery: it acts inter-
nally, by changing the behaviour of the system that can hence be �trained� in
order to follow speci�c user's desiderata related to the grounding process.





Chapter 14

Conclusions

This thesis focuses on the ex-novo realization of a new modern and e�cient ASP
instantiator. The initial questions we moved from are: How can we optimize
the state-of-the-art instantiation techniques? Which other techniques could help
modern grounders to enjoy better performance? In order to properly answer, we
studied a series of techniques geared towards the optimization of the grounding
process that led us to implement and release a new ASP grounder: I-DLV .

Many techniques employed by modern ASP grounders derive from the data-
base �eld, like indexing and body ordering strategies. We herein proposed dif-
ferent data structures and indexing strategies, comparing advantages and draw-
backs thanks to proper implementations into I-DLV , and eventually adopted
the balanced on-demand indexing strategy proposed herein. On the other hand,
we presented a set of ordering strategies modelled on ASP-Core-2 and designed
on the basis of di�erent heuristics.

Furthermore, we noticed that real ASP systems are highly in�uenced by the
adopted syntax of input programs and also by the form the programs are writ-
ten; hence, if one wants to optimize input programs has to tune encodings in a
way that con�icts with the intrinsic declarative nature of ASP. Hence, we de-
signed a general technique for �ne-tuning an encoding in a more suitable form
by automatically decomposing rules. Since systems may bene�t in di�erent
ways from decompositions, we de�ned an abstract algorithm, SmartDecom-
position, whose decisive steps are customizable according to di�erent policies
and heuristics. Consequently, we de�ned a speci�c version geared towards the
optimization of the instantiation, tailored on the cost of grounding a rule and
embedded into I-DLV . Experiments con�rmed that the de�ned version grants
signi�cant improvements to the instantiation process of I-DLV . In the future,
we plan to further improve the choice of the threshold by taking advantage
from automatic and more advanced methods, such as machine learning guided
machineries.

Moreover, interestingly, although our proposal was explicitly tailored to the
optimization of grounding times, our experiments evidenced positive e�ects also
on solvers, in general. We hence believe that tailoring SmartDecomposition
speci�cally on the solving phase may provide even more signi�cant bene�ts on
the whole computational process. Currently, this seems to be a quite hard task,
since di�erent solvers show di�erent behaviours. Therefore, we plan to study
both general aspects which may help all solvers indiscriminately, and intrinsic
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aspects speci�c for the solver at hand.
In addition, we proposed several �ne-tuning optimizations. Most of them are

designed for improving rule instantiation, as it represents the core of the com-
putation, while others relate to rewriting strategies for e�cient handling ASP
linguistic features; similarly to the decomposition rewriting, these optimizations
aim at automatically rewriting encodings in forms which can be handled more
e�ciently.

These techniques are intended to be pro�tably integrated into a classical
ASP grounder. In particular, I-DLV incorporates all the aforementioned opti-
mizations, leveraging on their synergy to perform an e�cient grounding process.
Some techniques are strictly related and deeply in�uence each other's e�ects.
Therefore, I-DLV has been endowed with a �exible design, that allows to cus-
tomize its default behaviour, and it features di�erent means for this purpose;
we mention here the annotations directives, a form of meta-data allowing, to
di�erent extents, to guide the grounding process at a �ne-grained level. Anno-
tations permit also to tailor I-DLV grounding process according to the speci�c
scenario at hand and to behaviours of solvers. The aim is fostering the use of
ASP on both real and scienti�c contexts, providing external means for experi-
menting with ASP systems. As future work, we plan to further widen the range
of aspects over which annotations can intervene.

The system features full support to the ASP-Core-2 standard as well as inter-
operability with current state-of-the-art ASP solvers, and is also a full-�edged
deductive database engine. Despite being released recently, I-DLV perform-
ance is promising and compatible with mainstream systems, as evicted in our
experiments, and in the wins at latest o�cial ASP Competition [69].

As future work, we plan to better study tight integrations with ASP solvers,
and equip I-DLV with a set of advanced mechanisms and tools for interoper-
ability and integration with other systems and formalisms. In addition to the
already de�ned rewriting techniques, we plan to endow I-DLV with further
pre-processing steps aiming at making performance less encoding-dependent:
we believe that such means are of great importance for fostering and easing the
usage of ASP in practice, fully complying with the declarative power of ASP.
I-DLV source and binaries are available from the o�cial repository [38].

Preliminary results presented in this thesis as well as complementary projects
have been published in [27, 28, 2, 31, 32, 30, 33, 25, 26, 61].
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