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A B S T R A C T

Over the last two decades, a lot has changed regarding the way modern scientific applica-
tions are designed, written and executed, especially in the field of data-analytics, scientific
computing and visualization. Dedicated computing machines are nowadays large, power-
ful agglomerates of hundreds or thousands of multi-core computing nodes interconnected
via network each coupled with multiple accelerators. Those kinds of parallel machines are
very complex and their efficient programming is hard, bug-prone and time-consuming. In
the field of scientific computing, and of modeling and simulation especially, parallel ma-
chines are used to obtain approximate numerical solutions to differential equations for
which the classical approach often fails to solve them analytically making a numerical
computer-based approach absolutely necessary. An approximate numerical solution of a
partial differential equation can be obtained by applying a number of methods, as the fi-
nite element or finite difference method which yields approximate values of the unknowns
at a discrete number of points over the domain. When large domains are considered, big
parallel machines are required in order to process the resulting huge amount of mesh nodes.
Parallel programming is notoriously complex, often requiring great programming efforts
in order to obtain efficient solvers targeting large computing cluster. This is especially true
since heterogeneous hardware and GPGPU has become mainstream. The main thrust of
this work is the creation of a programming abstraction and a runtime library for seamless
implementation of numerical methods on regular grids targeting different computer archi-
tecture: from commodity single-core laptops to large clusters of heterogeneous accelerators.
A framework, OpenCAL had been developed, which exposes a domain specific language for
the definition of a large class of numerical models and their subsequent deployment on the
targeted machines. Architecture programming details are abstracted from the programmer
that with little or no intervention at all can obtain a serial, multi-core, single-GPU, multi-
GPUs and cluster of GPUs OpenCAL application. Results show that the framework is effective
in reducing programmer effort in producing efficient parallel numerical solvers.
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S O M M A R I O

Durante l’ultimo ventennio il modo in cui le moderne applicazioni scientifiche sono scritte e
progettate è cambiato radicalmente, specialmente in campi come la data-analytics, il calcolo
scientifico e la visualizzazione. Systemi di calcolo dedicate sono oggigiorno grandi e potenti
agglomerati di centinaia o migliaia di nodi di calcolo interconnessi l’uno all’altro tramite
reti ad alta velocità ed ognuno dotato di uno o più acceleratori. Questa macchine paral-
lela sono complesse e la loro programmazione efficiente è difficile, bug-prone e richiede
tempo e denaro. Nel campo del calcolo scientifico e della modellazione e simulazione spe-
cialmente, macchine parallele sono usate per ottenere soluzioni numeriche approssimate
a equazioni differenziali per cui gli approcci classici, basati sul calcolo differenziale, fallis-
cono nel risolverle analiticamente rendendo le soluzioni numeriche calcolate tramite sis-
temi computerizzati assolutamente indispensabili. Le soluzioni numeriche per equazioni
differenziali possono essere ottenute attraverso l’utilizzo di una serie di metodi, tra cui
il metodo degli elementi o delle differenze finite, quest’ultimo ad esempio, fornisce val-
ori approssimati della incognite in un numero discreto e finito di punti nel dominio. Al
crescere delle dimensioni dei domini, crescono le dimensioni delle macchine parallele che
sono necessarie a processare l’incredibile numero di punti che costituisce la griglia di
nodi che discretizza il dominio. La programmazione parallela è notoriamente difficile, e
richiede uno sforzo da parte del programmatore per ottenere solvers efficienti e che siano
in grado di essere eseguiti su grandi cluster di calcolo. Questo è diventato un problema
ancora più centrale da quando la GPGPU è diventata mainstream. Il contributo princi-
pale di questa tesi è la creazione di una programming abstraction e una libreria runtime
per l’implementazione seamless di modelli numerici su griglia regolare che possano es-
sere eseguiti su svariate architetture, a partire da personal computers o laptops fino a
grandi cluster di calcolo eterogenei dotati di acceleratori. Il framework OpenCAL è il risul-
tato di questo lavoro, ed è sostanzialmente composto da un domain specific language per
la definizione e l’implementazione di una famiglia di modelli numerici e il loro succes-
sivo deployment sulla macchina target. Dettagli architetturali sono totalmente astratti dal
programmatore che con pochissimo sforzo di programmazione può ottenere diverse ver-
sioni della stessa applicazione OpenCAL: seriale, multi-core, single-GPU, multi-GPU, distributed
memory-multi-GPU. I risultati mostrano che il framework è realmente in grado di ridurre lo
sforzo di programmazione per lo sviluppo di solvers numerici paralleli efficienti.
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1
I N T R O D U C T I O N

Over the last two decades, a lot has changed regarding the way modern scientific applica-
tions are designed, written and executed, especially in the field of data-analytics, scientific
computing and visualization. The main reasons behind these changes are that the size of
the problems that scientists try to tackle is nowadays much bigger and the amount of avail-
able raw data that can be analyzed has widened the spectrum of computing applications.
Data analytics and big-data techniques are applied in pretty much every field of science
and have been exploited effectively also by governments and corporate organizations.

Traditionally, performance improvements in computer architecture have come from cram-
ming more functional units onto silicon, increasing clock speeds and transistors number.
Coupled with increasing clock speeds, CPU performance has until recently doubled every
two years. But it is important to acknowledge that this trend cannot be sustained indef-
initely or forever. Increased clock speed and transistor number require more power and
consequently generate more heat, at the point that the heat emitted from a modern proces-
sor, measured in power density, rivals the heat emitted by a nuclear reactor core! But the
demand of speed did not stop in over the years and is not going to stop in the near future,
and thus, from these reasons comes the necessity of relying heavily on parallel architectures.
Multi-core CPUs (2, 4, 8, 12, up to 40) are ubiquitous at the point that even smart-phones are
proper multi-core machines. Dedicated computing machines are nowadays large, powerful
agglomerates of hundreds or thousands of multi-core computing nodes interconnected via
network each coupled with multiple accelerators. Those kinds of parallel machines are very
complex and their efficient programming is hard, bug-prone and time-consuming.

In the field of scientific computing, and of modeling and simulation especially, paral-
lel machines are used to obtain approximate numerical solutions to differential equations
which describe a physical system rigorously, as for example for the Maxwell’s equations at
the foundation of classical electromagnetism or the Navier-Stokes for fluid dynamics. The
classical approach, based on calculus, often fails to solve these kinds of equations analyti-
cally, making a numerical computer-based approach absolutely necessary. An approximate
numerical solution of a partial differential equation can be obtained by applying a number
of methods, as the finite element or finite difference method which yields approximate val-
ues of the unknowns at a discrete number of points over the domain. When large domains
are considered, large parallel machines are required in order to process the resulting huge
amount of mesh nodes. Parallel programming is notoriously complex, often requiring great
programming efforts in order to obtain efficient solvers targeting large computing cluster.
This is especially true since heterogeneous hardware and GPGPU has become mainstream.

The main thrust of this work is the creation of a programming abstraction and a run-
time library for seamless implementation of numerical methods on regular grids targeting
different computer architecture: from commodity single-core laptops to large clusters of
heterogeneous accelerators. A framework, OpenCAL had been developed, which exposes a
domain specific language for the definition of a large class of numerical models and their
subsequent deployment on the targeted machines. Architecture programming details are
abstracted from the programmer that with little or no intervention at all can obtain a serial,
multi-core, single-GPU, multi-GPUs and cluster of GPUs OpenCAL application. Results show

1
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that the framework is effective in reducing programmer effort in producing efficient paral-
lel numerical solvers.

The rest of the thesis is organized as follows: Chapters 3 and 4 introduce the main
targeted numerical models and parallel architectures, respectively. Chapters 5 describes
OpenCAL, its implementation and different versions, usage and performance on a number
of benchmarks, while Chapter 6 introduces the multi-GPU and distributed memory ver-
sion of OpenCAL and evaluates its performance on three kinds of applications, each with
different computational and memory requirements. Eventually, Chapters 7 and 8 introduce
other HPC numerical modeling and simulation applications that have been investigated.
In particular, Chapter 7 introduces a specialized framework based on OpenCAL for tracking
particle-like objects from a time-lapse video which has been applied to analyze the motility
of the B. subtilis bacterium, while Chapter 8 investigates multi-agent collective system accel-
eration on GPU. Appendix A refers to an ad-hoc stream-compaction algorithm specifically
targeting NVIDIA newest hardware that was investigated during the work on OpenCAL.



Part I

Uniform Grid Numerical Methods and
Parallel Computing
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C E L L U L A R A U T O M ATA

There are many interesting phenomena . . . which involve a
mixture of physical phenomena and physiological processes, and
the full appreciation of natural phenomena, as we see them, must
go beyond physics in the usual sense. We make no apologies for
making these excursions into other fields, because the separation
of fields, as we have emphasized, is merely a human convenience,
and an unnatural thing. Nature is not interested in our
separations, and many of the interesting phenomena bridge the
gaps between fields.

— Richard Feynman

P
hysical system are usually composed by many components that interact in a com-
plex net of causes and consequences that is often hard or impossible to describe in
its entirety analytically. Even if each single components is simple, extremely com-
plex behaviors emerge naturally due to the resulting effect of their cooperative in-

teraction. Much has been discovered about the nature of the components in natural systems,
but little is known about the way those components interact as the overall complexity is ob-
served. Such systems are often described by partial differential equations, which are hard
to solve analytically especially when they are non-linear and consequently require alterna-
tive, or approximate solutions (see Chapter 3). This Chapter introduces Cellular Automata,
CA, that have been proved to be suitable for the modellation and simulation of a wide class
of complex physical systems, in particular those ones constructed from many identical
components, each (ideally and relatively) simple, but when together, capable of complex
behaviour [1, 2]. As can be seen from the number of the published papers on the topic,
cellular automata have been applied in a wide range of classes of problems from gas [3]
and fluid turbulence [4] simulation to macroscopic phenomena [5] like epidemic spread [6],
snowflakes and lava flow [7–9]. Cellular Automata were first investigated by S. Ulam when
he was trying to understand the growth of crystals using a lattice network and at the same
time by John von Neumann who adopted CA in order to study self-reproduction [10]; CA
were pretty much unknown until the 1970 when the famous Conway’s game of life [11]
appeared, and since then they have been widely studied from a theoretical view point un-
til they were proved capable of computational universality1 [12]. They have been mainly
adopted, after 1980’s, as a computational parallel model due to their intrinsically parallel
nature [13].

2.1 informal definition

A cellular automata (CA) is a mathematical model that consists of a discrete lattice of sites
and a value, the state, that is updated in a sequence of subsequents discrete timestamps
(steps) according to some rules that depend on a neighbor sites of the cell. Hence CA
describe systems whose the overall behavior and evolution may be exclusively described

1 Logical gates can be simulated using the simple rules of the Game of Life combining special patterns as gliders
and guns that appears naturally and frequently in the Conway’s CA.
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6 cellular automata

Figure 2.1: 3D cellular automaton with toroidal cellular space.

on the basis of local interactions [14], property also called centrism. The most stringent and
typical characteristic of the CA model is the restriction that the local function does not
depend on the time t or the cell site i: a cellular automaton has homogeneous space and
time behavior. It is for this reason that CA are sometimes referred to as shift-dynamical or
translation invariant systems. From another point of view we can say that in each lattice site
resides a deterministic finite (state) automaton (DFA) [15] that takes as input only the states
of the cells in its neighborhood (see Figure 2.4 and Section 2.2.1).

2.1.1 Cellular space dimension and geometry

The cellular space is a discrete d-dimensional lattice of sites (see figure 2.2). For 1D au-
tomaton the only way to discretize the space is in a one-dimensional grid. For automaton
with dimensionality higher than 1 the shape of each cell can be different than squared. In
2D tessellation for example, each cell can be hexagonal or triangular, and each tessellation
presents its own advantages and disadvantages. For instance the squared can be easily vi-
sualized on a screen as each cell is easily mapped onto a pixel, but may present problems of
anisotropy for some kind of fluid simulations as in the case of the HPP model for fluid sim-
ulation [3]. An Hexagonal tessellation can solve the anisotropy problem [16] but presents
obvious graphical challenges. Often, to avoid complications, periodic boundary conditions
are used, so that for instance, a two-dimensional grid is the surface of a torus as shown in
Figure 2.1.

2.1.2 Neighborhood

The evolution of a cell’s state is function of the states of the neighborhood’s cells. The geom-
etry and the number of cells that are part of the neighborhood depends on the tessellation
type, but it has to have three fundamental properties:

1. Locality: it should involve only a limited or finite finite number of cells.

2. Invariance: it should not be changed during the evolution.
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Figure 2.2: Examples of cellular spaces. (a) 1-D, (b) 2-D squared cells, (c) 2-D hexagonal cells, (d)
3-D cubic cells.

Figure 2.3: Examples of different kinds of neighborhood with different radius values.

3. Homogeneity: it has to be the same for each cell of the automaton.

Typically, the neighborhood of a cell “surrounds” the cell itself. For 1D cellular automata the
neighborhood is identified by a number r called radius [17]. A r = 2 identifies n = 2r + 1
cells in a 1D lattice: the central cell plus the right and left cells. Typical 2D cellular space
neighborhood are the those of Moore and von Neumann. The number of cells in the Moore
neighborhood of range r is the odd squares (2r + 1)2, the first few of which are 1, 9, 25, 49,
81, and so on as r is increased. von Neumann’s one consists of the central cell plus the cell
at north, south, east, and west of the central cell itself. Moore’s (r = 1) one add the farther
cells at north-east, south-east, south-west and north-west (see figure 2.3).

2.1.3 Transition Function

The evolution of the cell’s state is specified in the so called transition function that is applied
at the same time and on each cell. Usually the transition function is deterministic and usually
defined by a look-up table only when the total number of state for each cell is small,
otherwise the resulting table would have enormous size because the number of possible
state transition is exponential in the number of states. Alternatively, a transition function
is defined by an algorithmic procedure that may be probabilistic, in the case of stochastic
cellular automata [18].
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δ a b c d e

q0 q0 q0 q2 q1 q1

q1 q1 q3 q1 q1 q1

q2 q3 q2 q2 q0 q1

q3 q0 q1 q1 q0 q1

Table 2.1: An example of tabular representation of DFM transition function.

2.2 formal definition

Cellular automata are dynamic discrete in time, space and state models, defined by a lattice
of cells each containing a finite state automaton.

2.2.1 Finite State Automaton

Also known as deterministic finite automata (DFAs) or as deterministic finite state ma-
chines, DFAs are among the simplest and better studied computational models. A DFA is
a theoretical model of computation with limited capability. It can only recognize regular
languages (the family of languages in the third category of the Chomsky classification and
that can be obtained by regular expressions) and can only be in one of the finite number
of states at a time, namely the current state. Its state can change in response of the input
taken by a transition function, describe all possible state changes, and of the current state.
It is a much more restrictive model in its computational capabilities than the one of the
Turing machines and, for example, it is possible to prove that it is impossible for a DFA
to determine whether its input consists of a prime number of symbols, but, they are still
powerful enough to solve simpler problems, and hence to recognize simpler languages, as
for example the following: L = {w ∈ {0, 1}∗}, the language composed by strings with an
even number of 0 and 1; they are only capable to recognize languages in the class 3 of the
Chomsky classification [19]. In fact it can be proven that for each language L accepted by
a DFA exists a grammar LG s.t. L = LG i.e. LG generates L, but they fail for example, in
accepting context-free languages.

Formally, a DFA is defined as a 5-tuple:

M =< Q, Σ, δ, q0, F >

where:

• Q is a finite, nonempty, set of states.

• Σ is the alphabet

• δ : Q× Σ 7−→ Q is the transition function, also called next-state function, and can be
represented in tabular form as in 2.1

• q0 is the initial (or starting) state : q0 ∈ Q

• F is the set, possibly empty, of final states: F ⊆ Q
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Figure 2.4: Graph representation of a DFA that accepts the following language: {b∗ab∗ab∗a}.

Note that we can also assume that F is composed by a single state i.e. |F| = 1 because a
DFA can always transformed into another one that accepts exactly the same set of strings
and has only one final state. The transformation consists in adding an additional state q f ,
and for each of the previous final states qi ∈ F a new rule of the type δ(qi, ∗) = q f , ∗ ∈ I is
added to the transition function.

A run of DFA on a input string u = a0, a1, . . . , an is a sequence of states q0, q1, . . . , qn

s.t. qi
ai7−→ qi+1, 0 ≤ i < n. For each pair of two states and a input the transition function

deterministically returns the next DFA’s state i.e. qi = δ(qi−1, ai). For a given string w ∈ Σ∗,
the DFA has a unique run (because of its deterministic nature), and is it said that it accepts
w if the last state qn ∈ F. A DFA recognizes the language L(M) consisting of all strings it
accepts.

Figure 2.4 shows an example of a DFA represented graphically as a graph where nodes
are the states and the labeled edges are the possible state transitions from a state u to a state
v. Note that, because the automaton is deterministic, it is not possible for two edges with
the same label to point to two different nodes. In this example, Σ = {a, b} is the alphabet,
Q = {t0, t1, t2} is the set of states, q0 = t0 is the initial state and F = {t0}, is the set of final
or accepting states and the transition function is s.t. accepts the language generated by
regular expression E = {b∗ab∗ab∗a}. When the automaton is executed on the input string
s = {aaabba} at the beginning of the execution, at time t = 0 the DFA is in the initial state t0

and the first symbol of s, a is read. The transition function is applied once per each symbol
of s i.e. |s| times. The only rule that matches the current state t0 and the current input a
is δ = (t0, a) = t1 hence the new state of the DFA becomes t1. The DFA accepts the string
only if the current state is in the set of final states F when it has consumed the input in
its entirety. s is not accepted by the DFA described in the Figure2.4 because at the end of
the computation the reached state is t1 that is not a final state, as shown in the following
execution trace:

t0
δ(t0,a)7−→ t1

δ(t1,a)7−→ t2
δ(t2,a)7−→ t0

δ(t0,b)7−→ t0
δ(t0,b)7−→ t0

δ(t0,a)7−→ t1

On the input S1 = {abababb}, instead, the DFA accepts as shows the following execution
trace (see Equation 2.1):

t0
δ(t0,a)7−→ t1

δ(t1,b)7−→ t1
δ(t1,a)7−→ t2

δ(t2,b)7−→ t2
δ(t2,a)7−→ t0

δ(t0,b)7−→ t0
δ(t0,b)7−→ t0 (2.1)
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2.3 homogeneous cellular automata

Formally a CA A, is defined as quadruple A =< Zd, X, Q, σ > where:

• Zd = {i = (i1, i1, . . . , id) | ik ∈ Z, ∀k = 1, 2, . . . , d} is the set of cells of the d-
dimensional Euclidean space.

• X is the neighborhood, or neighborhood template; a set of m d-dimensional vectors
(one for each neighbor)

ξ j = {ξ j1, ξ j2, . . . , ξ jd} , 1 ≤ j ≤ m

that defines the set of the neighbors cells of a generic cell i = (i1, i1, . . . , id)

N(X, i) = {i + ξ0, i + ξ2, . . . , i + ξd}

where ξ0 is the null vector. ξ0 ensures that the cell i is always in its own neighborhood.
Cell i is referred as to central cell.

• Q is the finite set of states of the elementary automaton EA.

• σ = Qm → Q is the transition function of the EA. σ must specify qk ∈ Q as successor
state of the central cell. If there are m cells in the neighborhood of the central cell
including itself, then there are |Q|m possible neighborhood’s state configurations. It
means that there are |Q||Q|

m
possible transition functions. Plus we can see that the

tabular definition of the next-state function is unsuitable for practical purpose. It
should have |σ| = |Q|m entries, an exceedingly large number.

• τ = C −→ C 7−→ σ(c(N(X, i))) where C = {c : Zd → Q} is called the set of the
possible configurations and C(N(X, i))) is the set of states of the neighborhood of i.

As an example, consider a 2D cellular automaton, a generic cell c = (10, 10) in its cellular
space Z2, 5 cell states |Q| = 5 with Moore’s neighborhood X defined as follows:

X = {ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8} =
{(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1), (−1,−1), (1,−1), (1, 1), (−1, 1)}

The set of cells belonging to the neighborhood of c = (10, 10) is:

V(X, c) = {(0, 0) + c, (−1, 0) + c, (0,−1) + c, (1, 0) + c, (0, 1) + c, (−1,−1) + c, (1,−1)

+c, (1, 1) + c, (−1, 1) + c = {(10, 10), (9, 10), (10, 9), (11, 10), (10, 11), (9, 9), (11, 9), (11, 11), (9, 11)}

The total number of entries of a tabular definition of a transition function, taken from the
set of all the |Q||Q|

|X|
= 559

= 51953125 possible transition functions, is |Q||X| = 59 = 1953125.

2.4 elementary cellular automata

The simplest kind of CA are the so called elementary cellular automata, widely studied
by Wolfram in [17]. They are defined as a 1-dimensional periodic array {Ci | 1 ≤ i ≤
N, Ci ∈ {0, 1}} where N is the size of the automata. Each cell can only take one of two
possible states, i.e. zero (0) or one (1). The transition function depends on the nearest
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F(1, 1, 1) = {0, 1}
F(1, 1, 0) = {0, 1}
F(1, 0, 1) = {0, 1}
F(1, 0, 0) = {0, 1}
F(0, 1, 1) = {0, 1}
F(0, 1, 0) = {0, 1}
F(0, 0, 1) = {0, 1}
F(0, 0, 0) = {0, 1}

instance−→

F(1, 1, 1) = 0

F(1, 1, 0) = 1

F(1, 0, 1) = 1

F(1, 0, 0) = 0

F(0, 1, 1) = 1

F(0, 1, 0) = 1

F(0, 0, 1) = 1

F(0, 0, 0) = 0

Table 2.2: Encoding of a transition function for a generic elementary CA to a 8-bit binary number.
The transition function rules are firstly ordered according to the neighborhood pattern.
Then each value of the right hand side of the i-th rule is interpreted as the i-bit of a
binary number. The instance 110 of the Wolfram’s elementary CA is shown in the right
side of the table.

neighbors of, i.e. on cells within a radius r = 1 from, the central cell, thus involving a total
of 2r+ 1 = 2× 1+ 1 = 3 cells (central, right and left ones). Since there are only 2× 2× 2× =

22r+1 = 23 = 8 possible state configurations for the aforementioned neighborhood, there
can only be a total of 223

= 28 = 256 possible elementary automata, each of which may
be uniquely mapped and to a 8-bit binary number [20], as shown in Table 2.2 and Section
2.4.1.

2.4.1 Wolfram’s code

The generic transition function F(Ci−1, Ci, Ci+1) is defined by a look-up table of the form
stated in Table 2.2 which also shows an example of an instance of a particular function the
rule 110 which is the most important one. Cook proved universal computational power of
the 110-th elementary CA, as conjuctured in 1985 by Wolfram himself, which is arguably
the simplest Turing complete system [20].

Wolfram’s code [17, 20] is easy to determine given that it is possible to sort neigh-
borhoods patters in non-decreasing order (if interpreted as 3-bits) i.e. (111 = 7), (110 =

6), (101 = 5) etc. using the following procedure:

1. Rules are sorted according to the neighborohood

2. For each configuration, the state which the given cell will take in the subsequent
iteration, is specified

3. The next-iteration state of the i-th rule is interpreted as the i-th bit of a binary number,
which is then converted in base 10.

2.4.2 Wolfram’s classification

Despite their simple definition the mathematical analysis of elementary CA is not straight-
forward. A first attempt to classify CA was attempted by Wolfram [20]. He proposed a set of
four classes for their classification that is still the most popular method of CA classification
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even if they suffer from a degree of subjectivity. Classification is based only on visual valu-
ations, which are obviously subjective. A more rigorous definition of these classes is given
in [22] where Karel Culik proves that deciding whether an automaton lies in a specific one
out of four Wolfram’s classes is an undecidable problem.

Wolfram’s classes are defined as follows:

I these CA have the simplest behavior; almost all initial conditions result in the same
uniform initial state (homogeneous state).

II different initial conditions yield different final patterns, but these different patterns
consist of an arrangement of a certain set of structures, which stay the same forever or
repeat themselves within a few steps (periodic structures).

III the observed behavior is more complicated and appears random, but patterns are still
present (often in the form of triangles)(chaotic pattern).

IV in some respects these are the most complicated class; these behave in a manner some-
where in between class II and III, exhibiting sections of both predictable patterns and
randomness (complex structures).

Wolfram observed that the behavior of a meaningful class of Cellular Automata by per-
forming computer simulations of the evolution of the automata starting from random con-
figurations. He suggested that the different behaviors of automata in his classes seems to
be related to the presence of different types of attractors. In Figure 2.5 some elementary
automata are divided in their respective classes. It is clear from these examples that au-
tomata from class 1 end up very quickly having the same value i.e. in a homogeneous state
while automata from class 2 in a simple final periodic patterns. Class 3 appear to be com-
pletly chaotic and non-periodic while automata from class 4 have a mixed behaviour where
complex-chaotic structures are locally propagated.

2.4.3 At the edge of Chaos

Class 4 automata are at the edge of chaos and give a good metaphor for the idea that the
interesting complexity like the one exhibit by biological entities and their interactions or
analogous to the phase transition between solid and fluid state of the matter, is in equilib-
rium between stability and chaos [23].

Perhaps the most exciting implication (of CA representation of biological phenomena)
is the possibility that life had its origin in the vicinity of a phase transition and that
evolution reflects the process by which life has gained local control over a successively
greater number of environmental parameters affecting its ability to maintain itself at a
critical balance point between order and chaos.
(Chris Langton - Computation at the edge of chaos. Phase transition and emergent
computation - pag.13).

Langton in his famous paper, Computation at the edge of chaos: phase transition and emergent
computation [23], was able to identify, simply parameterizing the rule space, the various
CA classes, the relation between them and to “couple” them with the classical complexity
classes. He introduced the parameter λ [24] that, informally, is simply the fraction of the
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(a) Rule 250 (b) Rule 254 (c) Rule 4 (d) Rule 108

(e) Rule 30 (f) Rule 90 (g) Rule 54 (h) Rule 110

Figure 2.5: Examples of Wolfram’s class 1 (a,b), 2 (c,d), 3 (e,f) and 4 (g,h) elementary cellular
automata

entries in the transition rule table that are mapped to the not-quiescent state. The definition
of the λ parameter is as follows:

λ =
KN − nq

KN

where:

• K is the number of the cell states

• N the arity of the neighborhood

• nq the number of rules mapped to the quiescent state qq

Langton’s major finding was that a simple measure such as it correlates with the system
behavior: as it goes from 0 to 1− 1

K , the most homogeneous and the most heterogeneous
rules table scenario, respectively, the average behavior of the system goes from freezing
to periodic patterns to chaos and functions with an average value of λ are being on the
edge [23](see Figure 2.7). Langton studied a entire family of totalistic CA with k = 4 and
N = 5 and having λ varying in [0, 0.75]. He was able to determine that values of λ ≈ 0.45
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Figure 2.7: Relation between lambda parameter and the CA behaviors-Wolfram’s classes.

raise up to class 4 cellular automata. Computational system must to provide fundamental
properties if it is to support computation. Only CA on the edge show these properties on
manipulating and store information data. The properties that a computational system must
provide are:

storage

the ability of the system of preserving information for arbitrarily long times

transmission

the propagation of the information in the form of signals over arbitrarily long distance

modification

the modification of one or more signals.

Storage is coupled with less entropy of the system, but transmission and modification are
not. A little entropy is associated with CA of class 1 and 2 while higher entropy with class
3. Class 4 is something in between, the cells cooperate and are correlated to each other, but
not too much otherwise they would be overly dependent with one mimicking the other.
Moreover they are very dependent to the initial configuration opening to the possibility to
encode programs in it.

2.5 game of life

CA are suitable for representing many physical, biological, social and other natural phe-
nomena. But they have proved to be a good tool to study under which condition a physical
system expose the basic operations to support computation in all its aspects and require-
ments. Game of life is a famous 2D cellular automaton of the ’70s well studied for its
universal computation capacity, which has been proved indeed.

2.5.1 Definition

The Game of Life (GOL) is totalistic CA. A totalistic cellular automaton is a one in which
the rules depend only on the total, or equivalently, the average, of the values of cells in the
neighborhood. GOL can be thought as an infinite two-dimensional orthogonal and regular
grid of square cells, each taking one of two possible states, dead or alive. Every cell interacts
with the nine adjacent neighbors belonging to the Moore neighborhood. At each time step,
one of the following transitions occur:



2.5 game of life 15

• Birth: if the cell is in the state dead and the number of alive neighbors is 3, then the
cell state becomes alive (1) .

• Survival: if the cell is in the state alive and the number of alive neighbors is 2 or 3,
then the cell state is still alive (1) .

• Death: If the cell is in the state alive and the number of alive neighbors is less than 2
or higher than 3, then the cell state becomes dead (0).

The initial configuration of the system specifies the state (dead or alive) of each cell in the
cellular space. The evolution of the system is thus obtained by applying the aforementioned
transition function rules simultaneously to every cell in the cellular space, so that each
new configuration depends on the one at the current step. The rules continue to be applied
repeatedly to create further generations.

Formally the Game of Life automaton is defined as follows:

Li f e =< R, X, Q, σ >

where:

• R is the set of cells, forming a two-dimensional toroidal cellular space. A generic cell
in R is individuated by means of a pair of integer coordinates (i, j) s.t. 0 ≤ i < imax

and 0 ≤ j < jmax where imax, jmax are the sizes of R in the horizontal and vertical
directions, respectively. The first coordinate, i, represents the row, while the second,
j, the column. The cell at coordinates (0, 0) is located at the top-left corner of the
computational grid (cf. Figure 2.2).

• X = {(0, 0), (−1, 0), (0,−1), (0, 1), (1, 0), (−1,−1), (1,−1), (1, 1), (−1, 1)} is the Moore
neighborhood pattern. The coordinates of neighbors of (i, j) are given by:

N(X, (i, j)) =

= {(i, j) + (0, 0), (i, j) + (−1, 0), . . . , (i, j) + (−1, 1)} =
= {(i, j), (i− 1, j), . . . , (i− 1, j + 1)}

A subscript can be used to index cells belonging to the neighborhood. Let |X| be the
number of elements in X, and n ∈N, 0 ≤ n < |X|; the notation

N(X, (i, j), n)

represents the coordinates of the n-th neighbor of (i, j). Thereby, N(X, (i, j), 0) = (i, j),
i.e. the central cell, N(X, (i, j), 1) = (i − 1, j), i.e. the first neighbor, and so on (cf.
Figure 2.3b).

• Q = {0, 1} is the set of cell states, 0 representing the dead state, 1 the alive one.

• σ : Q9 → Q is the deterministic cell transition function. It is composed by a single
elementary process, which implements the aforementioned evolution rules.

The Game of Life belongs to the class 4 of the Wolfram’s taxonomy, because (quoting
the words of Wolfram) “rich and complex structures, stable blocks and moving patterns
come into existence even starting from a completely random configuration”. Among many
patterns and blocks appearing in the GOL, one of the most common is the so called glider
(see Figure 2.9) that is a periodic pattern with a period of 5 steps that is capable of moving
into the cellular space and thus of transmitting information.
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Figure 2.8: An execution of the Game of Life. Many common patterns are visible as blikers, glid-
ers and beacons.

Figure 2.9: Glider in Conway’s Game of Life.

2.5.1.1 Game of life as Turing machine

Every CA can be considered as a device capable of supporting computation where the ini-
tial configuration encodes an input string (the source code of a program). At some point
in time, the current configuration can be interpreted as the result of the computation and
decoded into an output string. As mentioned in Section 2.2.1, not all the computational
devices have the same (computational) power. So which is the one of the Game of Life? GOL
is proved to be capable of universal computation. Therefore the Game of life is computa-
tionally equivalent to a Turing machine [25]. This result raises a interesting issue; since the
Halting Theorem is undecidable i.e. no algorithm can ever decide whether a Turing Machine
will accept a certain input or not, the evolution of the GOL is unpredictable (as all the
universal computational systems) practically meaning that is not possible to use any algo-
rithmic shortcuts to anticipate the resulting configuration given an initial input. The most
efficient way to know the outcome of an execution of GOL, is to let the system run.

Life, like all computationally universal systems, defines the most efficient simulation
of its own behavior [26]
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2.6 extended cellular automata model (xca)

The Extended Cellular Model (XCA) was introduced by G.M. Crisci et al. in order to over-
come the limitation of the classical CA method (monolithic cell state and transition function
as a look-up table) regarding the simulation of macroscopic natural systems and processes
as for instance debris and lava flow, [27, 28], forest fire [29], soil erosion/degradation by
rainfall [30] and water flux in unsaturated soils [31]. The main difference of XCA compared
to CA are:

• the state of the cell Q is subdivided in r smaller components, the substates, each
representing a particular feature of the phenomenon to be modeled (e.g. for lava
flow models, cell temperature and lava quantity) and relevant to the evolution of the
system. The overall global state of the cell is then defined as the Cartesian product of
all substates Q = Q1 ×Q2 × . . .×Qr.

• the transition function τ = {τ1, . . . , τs} is also decomposed into elementary processes,
in turn further splitted into local interaction which accounts for the interactions with
neighboring cells and internal transformation which model the changes in cell state
that are not consequence of any external interaction with neighboring cells.

• A set of parameters, P = {p1, p2, . . . , pp} is furthemore considere, which allow to
tune the the CA for reproducing different dynamical behaviors of the phenomenon
of interest (e.g. lava solidification threshold and density, or the Stephen-Boltzmann
constant).

• a subset E = E1 ∪ E2 ∪ . . .∪ El ⊆ R of the cellular space R that is subject to external in-
fluences (e.g. lava craters) is specified by a supplementary function γ = {γ1, γ2, . . . , γt}
External influences model those kind of features that are not easily described in term
of internal transformation or local interactions.

2.7 probabilistic ca

If some of the assumptions of the ordinary CA characterization are relaxed interesting
results are obtained. As an example, the following are extensions that have proved to be
useful in many cases: asynchronous update, non-homogenous cellular space and neighborhood or
transition function that depends on the coordinates of a cell. An interesting class of CA
is obtained when the transition function is based on some stocastic process. Probabilistic
CA [32] have a single key difference w.t.r. to ordinary CA i.e. the transition function σ is a
stochastic-function that decides the next-state according to some probability distributions.
They are used in a wide class of problems like in modelling ferromagnetism, statistical
mechanics [33] or the cellular Potts model2 [34]

Probabilistic CA (PCA) evolution can be studied if interpreted as of Markov processes. A
Markov process, is a stochastic process that exhibits memorylessness, also called Markov
property, which means that the future state of a system is conditionally independent from
the past. Two events A and B are independent if P(AB) = P(A)P(B) or in other words,
that the probability of the event A to occurs does not depends on the event B i.e. P(A|B) =
P(A). The property of this kind of processes allows future probabilities of an event to

2 Lattice-based model adopted for the simulation of the collective behavior of cellular structures.
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be determined from the probabilities of events at the current time only. In PCA analysis,
homogeneous Markov chains are adopted because each cell has a discrete set of possible
values for the status variable. In terms of such type of chain a CA is a process that starts
in one of these states and moves successively from one state to another. If the chain is
currently in state si, than it evolve to state sj at the next step with probability pij.The
changes of state of the system are called transitions, and the probabilities associated with
various state changes are named transition probabilities and are usually represented in the
Markov chain transition matrix of the form shown below:

M =


p11 p12 p13 · · ·
p21 p12 p23 · · ·
p31 p32 p33 · · ·
...

...
...

. . .


Markov chain transition matrix are useful in analyzing very small PCA but they prove to be
impractical for larger sizes as for instance, a CA on a small celular space of size 10× 10 has
210×10 possible states and the resulting chain transition matrix has size of 210×10 × 210×10

that is a huge number!
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T H E F I N I T E D I F F E R E N C E M E T H O D

All exact science is dominated by the idea of approximation.
When a man tells you that he knows the exact truth about
anything, you are safe in infering that he is an inexact man.

— Bertrand Russel

Truth . . . is much too complicated to allow anything but
approximations.

— John von Neumann

M
ost of the Partial Differential Equations (PDE) arising from the mathemati-
cal formulation of physical systems are often very hard if not impossible to
solve analytically, thus requiring approximate numerical solutions. An im-
portant part of handling and solving PDEs is to be able to use local, accurate

and stable algebraic expressions as an approximation of the derivatives appearing in the
equations while retaining, at the same time, most of the global and continuous information
of the original formulation. During the last half century several approximation methods
have been developed and studied, such as the finite volume (FV), finite element (FE), and
finite difference (FD) methods (FDM), each with its specific approach to discretization and
strength.

This chapter briefly describes the concept of differential equations and introduces their
numerical solution using the finite difference method. For a rigorous and complete descrip-
tion of the topic of this chapter please refer to [35–37].

3.1 differential equation

A differential equation [38, 39] is an equation where the unknown is a function itself and
where derivatives ot the unknown appears in the equation. Differential Equations can be
divided into two main classes:

ordinary differential equation (ode):
where the unknown function contains only derivatives with the respect of a single
variable. As example of ODE is the following equation,

dT
dx

= αT(x) + b

where a and b are real constants.

partial differential equations (pde):
a class that is extremely large and rich in functions, each of them with different
behaviors and properties. Examples of classes of this kind of differential equations
are parabolic, elliptic and hyperbolic equations. PDEs search for a multidimensional
function of several variables, and this means that partial derivatives may now appear
in the equation. The following equations are among the most famous and popular
PDEs:

19
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1d transport equation :

∂T
∂t

+
∂T
∂x

= 0 (3.1)

1d diffusion equation :

∂T
∂t
− ∂2T

∂x2 = 0 (3.2)

1d wave equation :

1
c2

∂2T
∂t2 −

∂2T
∂x2 = 0 (3.3)

where c is the speed of propagation. It can be applied to solve

• transverse string vibration problem with T representing the transverse dis-

placement of the string, c =
√

K
ρA where K, ρ and A are the tension, density

of the material and the cross area of the string.

• acoustic with T representing the pressure or the velocity of the considered
fluid where c is the speed of sound in the medium.

• mambrane vibration with T representing the transverse displacement of a

membrane e.g. a drum head, c =
√

K
m where K, m are the tension and the

mass per unit of area.

laplace’s equation :

∇2T =
∂2T
∂x2 +

∂2T
∂y2 +

∂2

∂z2 = 0 (3.4)

where ∇2 is refeered to as the Laplacian operator and given by

∇2 = ∇ · ∇ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

It often arises in fluid flow (where T is the velocity potential), gravitational and
bar torsion problems.

heat equation :

ρc
∂T
∂t
− κ∇2T + Q = 0 (3.5)

where k is the thermal conductivity (following from Fourier’s law of heat con-
duction qx = −k dT

dx measured in J
s m2 , Q is the internal heat, c, rho are the material

specific heat conduction parameter and density.

Note that there is a missing piece that would allow all these equations to be solved
unequivocally, namely the initial condition and/or boundary. For example, regarding the
1D wave equation (Equation 3.3), it is not clear what the reflection coefficient at the ends of
the string is, or with regards to the heat equation (Equation 3.5) what the initial temperature
at time t = 0 is. Initial conditions must be provided whenever the differential equation is
time dependent and, boundary conditions must be specified whenever spacial dependency
occurs. The latter, in particular specifies the behavior of the equation at the boundary of
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Figure 3.1: Heat Equation (see Equation 3.5) Dirichlet Boundary Conditions. The perimeter of
the square domain (highlighted in red) has fixed temperature, i.e. the solution T is
known at the boundary. In this particular case, T(x, 0) = T(0, y) = 0, T(1, x) = 3 and
T(1, y) = 2 where 0 ≤ x, y ≤ 1.

the domain ∂Γ (which has to be compact). The most commonly used boundary conditions
defining a PDE are of two kinds:

dirichlet :
in which the values of the functions at ∂Γ are hard-coded, i.e. T(∂Γ) is known.

neumann :
specifies values of the derivatives at ∂Γ.

Other kinds of boundary conditions are possible, such as, for instance, the Robin’s bound-
ary conditions [40] which is a mix of Dirichlet and Neumann ones. See Figure 3.1 for an
example of Dirichlet boundary conditions for the equation 3.5.

3.2 finite difference method

The finite difference approximation for derivatives is one of the simplest oldest methods
adopted in solving differential equations numerically. It is used since 1768, when L. Euler
discovered it while he was trying to solve one dimensional problems and subsequently
extended by C. Runge to two dimensions in 1910. Since the advent of computers in 1950,
FDM popularity skyrocketed also thanks to the theoretical results that have been obtained
regarding stability, convergence and other of its properties.
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(a) Discretization of a curvilinear do-
main.

(b) Interpolation of boundary values on a non rect-
angular geometry domain.

Figure 3.2: Approximation of curvilinear geometries on a square uniform computational grid.

The general idea behind FDM is that the differential operator is approximated by replac-
ing the derivatives using difference quotients. The differential operator is approximated
constituting the field equation locally, among a number of finite function values. Therefore,
the space and time domain are partitioned in a grid-like fashion in order to store the lo-
cal field quantities, and approximated solutions are computed only for those discrete grid
points. The numerical solution is known only at a finite number of points in the physical
domain. A difference quotient is a linear combination of function values at neighboring
grid points. The number of different points appearing in the quotient directly dictates the
order of the differential operator. We can always assume that the domain is discretized
via a rectangular grid since we can always specify boundary conditions for the grid points
such that they mimic the real shape of the boundary at hand as depicted in Figure 3.2a.
Complex geometries and curvilinear boundaries can be treated by computing the value of
such points that lie on the boundary as a linear interpolation of neighboring boundary grid
points as shown in Figures 3.2 and 3.2b and, Equation 3.6,

T(R) =
T4(h− δ) + T0δ

h
= g0(R) (3.6)

where g0 specifies the values at the boundaries.
Figure 3.3 is a schematic representation of how FDM is used to obtain a numerical so-

lution. First thing, the continuous differential operators and the domain are discretized
and then the approximation is computed by solving the difference formulas on grid points
using. The error between the numerical and the exact solution is determined by the em-
ployed difference formula and it is commonly refereed to as truncation1 or discretization

1 The term truncation comes from the fact that a finite difference quotient is a truncation of the Taylor expansion.

Continuous
PDE

Discrete
Difference
Equation

Tn
j , approximationFinite Difference Solve

Figure 3.3: Relationship between continuous and discrete problems.
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error. Increasing the resolution of the grid, in turn, increases the accuracy of the numerical
solution since the error associated with the finite difference formulas directly depends on
the distance between grid points.

Depending on how the derivatives are approximated, explicit or implicit FDM schemes
are obtained. When forward difference formulas are considered, the resulting difference
equation is generally expressed in terms of an explicit recurrence formula, while backward
difference formulas generally lead to implicit recurrence formulas involving unknown val-
ues, and therefore require the solution of a linear system of equations to obtain the new
state of the physical system (i.e. values of the unknown variables in the PDEs) at each grid
point.

3.2.1 Finite Difference Formulas

The differential operators appearing in a PDE problem can be approximated at a given
point by a difference formula which is a linear function of its neighboring grid points.
Finite difference formula can be defined and derived in a number of ways but some of
them are more widely and commonly used then others. The rest of this Section shows how
these common formulas are derived along with their basic properties.

For the sake of simplicity the formulas are refereed to a one-dimensional space and time
domain since the generalization to several dimensions is obvious. Both space and time
domains are partitioned into a finite discrete mesh as follows:

tn = n∆t, n = 0, 1, . . . , L, ∆t =
1
L

(3.7)

xj = j∆x, j = 0, 1, . . . , M, ∆x =
1
M

(3.8)

For the rest of the chapter, it can be assumed that grid points are identified by two indices,
j, n, and Tn

j is the value the function at time n at grid point j (see Figure 3.5).

3.2.1.1 Forward Scheme

The forward scheme is probably the most common FD formula and can be derived from
Taylor’s expansion of Tn

j+1 in terms of Tn
j and its derivatives as:

Tn
j+1 = Tn

j +
∂T
∂x

∣∣∣∣n
j
∆x +

1
2!

∂2T
∂x2

∣∣∣∣
j
∆x2 + . . . +

1
k!

∂kT
∂xk

∣∣∣∣
j
∆xk + . . . (3.9)

If series is truncated after the second term (k = 1) and solving for ∂T
∂x the following is

obtained:
∂T(t, x)

∂x
=

Tn
j+1 − Tn

j

∆x
+O(∆x) (3.10)

Equation 3.10 is called first order forward finite difference approximation. Other approxi-
mations are possible and are easily obtainable by expanding different and/or more points
of the grids in the Taylor’s expression.
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Figure 3.4: Explicit FDM discretization for the 1D heat conduction problem

3.2.1.2 Backward Scheme

The Backward finite difference quotient can be obtained from the Taylor’s expansions of
Tn

j−1 in terms of Tn
j and its derivatives:

Tn
j−1 = Tn

j −
∂T
∂x

∣∣∣∣
j
∆x +

1
2!

∂2T
∂x2

∣∣∣∣
j
∆x2 + . . . +

1
k!

∂kT
∂xk

∣∣∣∣
j
∆xk + . . . (3.11)

which can be rearranged in the following manner

∂T
∂x

∣∣∣∣
j
=

Tn
j − Tn

j−1

∆x
+O(∆x) (3.12)

The same approach can be used to derive approximation for higher order derivatives. For
example equation 3.13, known as central difference formula, is an approximation for the
second order derivative and can be obtained retaining the first four terms in both equations
3.9 and 3.11 and adding the resulting expression:

∂2T
∂x2

∣∣∣∣
j
=

Tn
j+1 − 2Tn

j + Tn
j−1

∆x2 +O(∆x2) (3.13)

Figure 3.4 shows how finite difference formulas can be interpreted geometrically. Note that
this approach in deriving FD formulas can be generalized in order to obtain FD approxi-
mation for derivatives of any order.

3.2.1.3 Mixed Derivatives

Mixed derivatives can also be approximated using FDM, e.g. for two dimensions by means
of the following property of mixed derivatives:

∂2T
∂x∂y

=
∂

∂x

(
∂T
∂y

)
=

∂

∂y

(
∂T
∂x

)
(3.14)

and considering the following approximations:
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∂2T
∂x∂y =

(
∂T
∂y

)
i+1,j
−
(

∂T
∂y

)
i−1,j

2∆x +O(∆x)2(
∂T
∂y

)
i+1,j =

Ti+1,j+1−Ti+1,j−1
2∆y +O(∆y)2(

∂T
∂y

)
i−1,j =

Ti−1,j+1−Ti−1,j−1
2∆y +O(∆y)2

(3.15)

A second order 2 variables finite difference approximation for the mixed derivative is the
following:(

∂2T
∂x∂y

)
i,j

=
Ti+1,j+1 − Ti+1,j−1 − Ti−1,j+1 − Ti−1,j−1

4∆xy
+O((∆x)2, (∆y)2) (3.16)

Extending the former method to higher dimensional mixed derivatives is straightforward.

3.3 heat equation

As an example, a simple FDM scheme for the heat conduction initial-boundary value prob-
lem shown in Equation 3.17 is derived.

∂T(t, x)
∂t

= κ
∂2T(t, x)

∂x2 (3.17)

where 0 ≤ t ≤ L and 0 ≤ x ≤ M.
In order to construct a FD approximation for equation 3.17 it is necessary to:

1. discretize the domain into a finite uniform and regular mesh where each point xj is
identified with a unique index j.

2. first and second order derivative appearing in Equation 3.17 are substituted by for-
ward and central difference formulas, respectively, leading to Equation 3.18

Tn+1
j − Tn

j

∆t
= κ

Tn
j+1 − 2Tn

j + Tn
j−1

∆x2 (3.18)

3. Equation 3.17 is evaluated at grid point (n∆t, j∆x)

Figure 3.5 depicts the set of points that play a role in the difference formula 3.18, commonly
refeered to as the stencil. Each point of the stencil is used at time m in order to compute
grid values at time m + 1 as shown in Figure 3.6. Solution to equation 3.17 using the
discretization 3.18 is called forward time, centered space or FTCS approximation and requires
the specification of initial conditions at t = 0 and boundary condition at x = 0 and x = M
(see Figure 3.1).

It can be shown that in order to the solution to be stable ∆t must not be too large and in
particular the following condition must hold to ensure a stable solution [41–43]:

r = k
∆t

∆x2 <
1
2
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This scheme is also called explicit because values at the subsequent time step are explicitly
computable from the values at the current time as it is shown in the equation 3.19.

Tn+1
j = Tn

j +
k∆t
∆x2 (T

n
j+1 + Tn

j−1 − 2Tn
j ) (3.19)

When the backward difference formula is used to approximate the time derivative the
following approximation is obtained:

Tn
j − Tn−1

∆x
= k

Tn
j+1 − 2Tn

j + Tn
j−1

∆x2 (3.20)

This stepping scheme is called implicit because values at time n are given implicitly as can
be seen if equation 3.20 is rearranged to obtain the following:

Tn
j −

k∆t
∆x2 (T

n
j+1 + Tn

j−1 − 2Tn
j ) = Tn−1

j (3.21)

In order to obtain values of T at time n a system of non trivial algebraic equations has
to be solved. It can be rewritten in matrix form yielding to a linear tridiagonal system as
shown in Figure 3.7. where λ = k∆t

∆x2 for which an efficient algorithm exists, the Thomas’s
algorithm [44, 45], which solves it in Θ(n) where n is the number of unknowns.

3.4 solving finite difference problems fdm with extended cellular au-
tomata

XCA can be employed to formally represent FDM models for both explicit and implicit
schemes. In fact, with reference to the definitions given in Chapter 2, in case of an explicit
scheme, the computational domain can be represented by means of the R cellular space and
the coordinates of the grid points involved in the recurrence formula defined by means of
the X neighborhood relationship. Moreover, the values of the involved variables can be
represented in terms of substates and the explicit recurrence formula easily expressed in
terms of elementary processes. On the other hand, when dealing with a linear system
resulting from an implicit FDM scheme, a steering function can be employed in association
with an external linear algebra solver e.g. BLAS [46] or other dedicated libraries [47].

It is worth to recall that physically-based models laying on a XCA direct discrete ap-
proach (i.e., not going through the discretization of differential equations) can lead to the
same discrete formulations achieved with the FDM, making these latter formulations a
specific case of the general XCA approach. As an example, the work of Mendicino et al.
proved that their direct discrete formulation applied to the Darcy’s equation for modeling

Figure 3.5: Explicit FDM stencil for the considered discretization of the 1D heat conduction prob-
lem.
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Figure 3.6: 1D-heat equation FDM space and time partitioning. The solution for grid point (i, m +
1) is explicitely computed by considering points (i, m), (i− 1, m), (i + 1, m)

(1 + 2λ) −λ

−λ (1 + 2λ) −λ

−λ (1 + 2λ) −λ

−λ (1 + 2λ)





Tn
1

Tn
2

Tn
M




=

Tn−1
1

Tn−1
2

Tn−1
M




Figure 3.7: Tridiagonal Matrix.

unsaturated flow in a three-dimensional cubic cell system is similar to the one achieved
using an explicit FDM or a finite volume scheme [31]. However, the same discrete govern-
ing equation system would allow a greater level of convergence with respect to traditional
methods if an irregular mesh were used and a not linear (e.g., quadratic) interpolation of
the hydraulic head on the cells were adopted (e.g., Tonti proved it for the Finite Element
Method [48]).
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4
PA R A L L E L C O M P U T I N G

Divide ut regnes.
— Julius Caesar

This chapter briefly introduces some of the main concepts and technologies of parallel
computing used thoughout this work. It also contains a description of the Flynn’s cat-
egorization of parallel architectures and a description of OpenMP, OpenCL together

with examples of their usage and applications.

4.1 introduction and motivations

Traditionally performance improvements in computer architectures have come from cram-
ming ever more functional units onto silicon, increasing clock speeds and transistors num-
ber. Moore’s law, shown in Figure 4.1, states that the number of transistors that can be
placed inexpensively on an integrated circuit will double approximately every two years.
Coupled with increasing clock speeds, CPU performance has until recently scaled likewise.
But it is important to acknowledge that this trend cannot be sustained indefinitely or for-
ever. Increased clock speed and transistors number require more power and consequently,
generate more heat. Although the trend for transistor densities has continued to increase
steadily, clock speeds began to slow circa 2003 at about 3GHz. If Moore’s law type of think-
ing is applied to clock-speed performance, it should be able to buy at least 10GHz CPUs.
However, the fastest CPU available at the time of writing is ≈ 4.0GHz. At same point the
gain in performance in terms of clock speeds fails to increase proportionally with the ad-
ditional efforts needed to overcome heat dissipation problems that in turn, become more
and more important and challenging. The heat emitted from the modern processor, mea-
sured in power density rivals the heat of a nuclear reactor core (see Figures 4.2 and 4.3)!
Additionally, the transistor resolution on the wafer is not far from from its physical limit (at
the atomic scale), preventing further improvements. But the power demand did not stop
in these year, and is not going to stop in the near future, and from these reason comes
the necessity of relying heavily on parallel architectures. Today, the dominating trend in
commodity CPU architectures is multiple processing cores mounted on a single die oper-
ating at "reduced" clock speeds sharing resources and memory with each other. Multi-core
(2,4,8,12, up to 40) CPUs on a desktop PC at home or at the office are ubiquitous at the
point that is even hard to be able to buy a single core device. Even smart-phones are proper
multi-core machines; for instance, the popular mobile CPU, the Snapdragon 835, manufac-
tured by Qualcomm is a 8× cores, each of them with a clock speed up to 2.45 GHz. Lot of
efforts have been put during these years in order to mitigate and overcome the limits that
the sequential computer architecture has which its three main components impose:

1. Processor (Cores, branch prediction etc.)

2. Memory (Ram, Caches, Registers etc.)

3. Communication system i.e. datapaths,usually buses (PCI or SCSI)
29
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Figure 4.1: Moore’s Law regarding CPU transistors number. Intel co-founder, Gordon Moore
in 1965 observed that number of transistors in integrated circuits doubled each year.
Although the pace has slowed in recent times, the number of transistors per square
centimeter has since doubled approximately every 18 months. This is used as the
current definition of the law. It is expected to hold true until 2020-2025. Note the loga-
rithmic vertical scale. The almost linear trend correspond to an exponential growth.

Figure 4.2: Integrated circuits power density over the years. Note that since 2000s power-density
is higher in CPUs than in nuclear reactors. This clearly shows that this trend of growth
is not sustainable.
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All three components present bottlenecks that limit the overall computing performance ca-
pability of a system. Caches, low-latency high bandwidth and small capacity high speed
memories, for example can hide latency of DRAM storing the fetched data and serving
subsequent requests of the same memory (or neighboring) locations1. But one of the most
important innovation that addresses these bottlenecks is multiplicity (in processors, mem-
ories and datapaths) that allows to improve the overall performance of a system and thus
extending the size of the problems that a computer can solve. Hardware multiplicity has
been organized in several manners during the years, giving birth to a variety of parallel
computer architectures.

Figure 4.3: Thermal camera image of a modern CPU showing that the whole CPU heat is concen-
trated in a small part of the wafer i.e. power density is. is very high in some areas.

4.2 parallel architectures - flynn’s taxonomy

A number of definitions and classifications have been proposed over the years in order to
categorize parallel systems, the majority of them are mostly based on the adopted hardware
configuration or on the logical approach in handling and implementing the parallelism.
Among all, Flynn’s taxonomy [49, 50] is probably the most famous and it is also well
accepted by the scientific community, therefore introduced briefly in this section.

Flynn’s classification is based on the notion of stream of information. Two types of infor-
mation flow into the processor: instructions and data. Conceptually they can be separated
into two independent streams. A coarse classification can be made taking in account only
the number of streams of both instructions and data that an architecture can manage con-
currently (see Figure 4.1). Flynn’s taxonomy classifies machines according to whether they
have one or more streams of each type. Flynn’s classifies architectures into four main cate-
gories:

sisd : Single instruction Single data.
No parallelism in either instruction or data streams. Each arithmetic instruction initi-
ates an operation on a data item taken from a single stream of data elements. A single
control unit fetches a single instruction from the memory. Mainframes belong to this
category.

1 The fraction of the data served by the various caches is commonly refeered to as hit rate.
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Single Instruction Multiple Instructions

Single Data Multiple Data Single Data Multiple Data

sisd misd misd mimd

Table 4.1: Flynn’s Parallel architecture taxonomy.

simd : Single instruction Multiple data.
Data parallelism. The same instruction is executed on a batch of different data. The
control unit is responsible for fetching and interpreting one instruction at a time.
When it encounters an arithmetic or an other data ALU instruction, it broadcasts the
instruction to all processing elements (PE), which then all perform the same opera-
tion in unison. For example, the instruction might be add R3,R0 . Each PE would
add the contents of its own internal register R3 to its own R0. This is how stream
processors work, for example, data elements are distributed across all available data
memories and, the same instruction executed on each PE. SSE and AVX extensions to
the x86 processors family is an example of such parallelism. One single instruction
can operate on up to 512 byte of data (see Figure 4.4 and Listing 4.1). SIMD exploits
data and spatial parallelism in a synchronous manner.

1 //adds 8 floats in a serial fashion. One at the time in 8 different steps

2 void multiply_and_add(const float* a, const float* b, const float* c, float* d) {

3 for(int i=0; i<8; i++) {

4 d[i] = a[i] * b[i];

5 d[i] = d[i] + c[i];

6 }

7 }

8 //A single instruction adds 8 floats in a SIMD fashion

9 __m256 multiply_and_add(__m256 a, __m256 b, __m256 c) {

10 return _mm256_fmadd_ps(a, b, c);

11 }

Listing 4.1: Multiplying eight floats of one array by eight floats of a second array and add
the result to a third array. Serial and SIMD (AVX2) code examples. Note that
the AVX2 intrinsic function __mm256_fmadd_ps processes twentyfour floats, but
it does not map to a single instruction (see Figure 4.4). Instead, it executes
three instructions: vfmadd132ps, vfmadd213ps, and vfmadd231ps. Despite this,
it executes quickly and it is much faster than looping through the individual
elements.

misd : Multiple instruction Single data.
Multiple instruction operating on the same single data stream (ee Figure 4.5). It is a
class of system very unusual. No machines in this category have been commercially
successful or had any impact on computational science. A type of computer that fits
the MISD description is the so called systolic array [51, 52] which consists of a network
of pipelined primitive computing nodes or processors.

mimd : Multiple instruction Multiple data.
Multiple instructions operating independently on multiple data streams. Most mod-
ern computers belogn to this family. A MIMD machine is an example of a true mul-
tiprocessor and are often employed to perform the so called Single Program Multiple
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Figure 4.4: Example of vectorization with Intel SSE and extension.

Figure 4.5: MISD machine schematization. Each processor CUi has its own instruction flow and
all operates on the same data.

Data computation where each independent processor executes the same program.
Note that modern machine also exposes SIMD capability within each instruction
stream. MIMD architecture can be further divided by considering the layout orga-
nization of memories:

shared memory (modern cpus) where each processors shares the same mem-
ory address space and are interconnected by shared buses. Shared memory ar-
chitecture are usually shipped as Symmetric Multi Processors (SMP) since each of
them is usually identical in computational and access to resources capabilities,
and the OS kernel can run on any of them in contrast to Asymmetric Multiproces-
sors where there is a master-slave relationship among the group of processors.
According to whether subsets of processors have a dedicated/private memory
module SM architectures can be categorized into:

• UMA (Uniform Memory Access) : Identical processors with equal access
time to memory (see figure 4.6). Also known as Cache Coherent UMA (CC-
UMA), because the hardware ensures that all the processor can see a modi-
fication in memory performed by one of them.
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• NUMA (Non Uniform Memory Access): Usually different several Symmetric
multiprocessors (SMP), group of usually not more than 32 processors commu-
nicating via buses, are inter-connected together, and processors belonging
to different SMP can access the memory spaces of each others. The time
required for a memory access is not uniform because the cost for a commu-
nication among SMP is higher than a intra-SMP one. As for UMA, if a cache
coherence mechanism is present, then this architecture is called CC-NUMA.

SM architecture provides an easy perspective to memory, data sharing across
processors and parallelism since no explicit communication is involved. Mem-
ory accesses and communications are fast due to the proximity of memory to
CPUs, but it is not scalable because adding more CPUs to the pool can geo-
metrically increases the traffic on the bus and makes cache management harder.
Additionally, ensuring the correctness of accesses to global memory, in order to
avoid race-conditions, is up to the programmer. As an example of real world SM
modern processor, Figure 4.9 shows the Intel Knights Landing architecture for
the Intel Phi processor family which is armed with 72 cores, 8 billions transis-
tors at 14 nm, AVX-512 and is able to executes 240 threads simultaneously. Many
software models (usually tightly coupled with this architecture) can be used to
program SM machines. Among all, the most used are:

• Threads; Lightweight processes but with same PID (e.g. pthreads)

• Compiler preprocessor directives; A standard language with preprocessor
directives to the compiler that is capable of converting the serial program
in a parallel one without any (or very few) interventions or hints by the
programmer (e.g. OpenMP, introduced in Section 4.3).

distributed memory Different systems, and hence, different multiprocessors con-
nected via some kind of network (see Figure 4.8b), usually high speed networks
such as gigabit Ethernet [53], InfiniBand [54] and Myrinet [55], where the
memory space in one processor does not map to another’s one. Each of them
operate independently on its memory address, so changes are not reflected on
memory spaces of the others. Explicit communication is required between pro-
cessors with synchronization under the programmer responsibility. This archi-

(a) (b)

Figure 4.6: UMA and NUMA shared memory architecture.
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(a) Hybrid memory architecture (each processor is
milti-core)

(b) Distributed memory architecture.

Figure 4.8: Hybrid (4.8a) and distributed memory (4.8b) architectures.

tecture is very scalable and there is no overhead in maintaining cache coherency.
The most used paradigm for programming distributed memory machines is the
message passing for which the Message Passing Interface (MPI2) [56, 57] is the de
facto industrial and academic standard.

hybrid systems As the name suggests a system belonging to this category, is a
mix of architectures. Only a limited number of processors, say N, have access
to a common amount of shared memory. They are inter-connected to the others
groups via network. Each group usually is an agglomerate of many computing
cores (SMP). Hybrid systems of the kind described in this section are usually
programmed using a combination of the message passing model (MPI) with the
threads model (OpenMP) in which:

• threads perform computationally intensive task, using local on-node mem-
ory space, taking advantage of spatial locality of data (via vectorization/AVX
for instance) and

• communications between processes on different nodes occur over network
using MPI (see figure 4.8a).

4.3 the openmp parallel computing paradigm for shared memory com-
puters

OpenMP is a portable API providing compiler directives and library functions for
shared memory parallel programming in C/C++ and Fortran [58] designed on top
of pthread [59]. It implements the multi-threaded fork-join programming model (see
Figure 4.10), where an initial (or master) thread forks a given number of new threads
(team of threads), which share the resources of the parent process and run con-
currently on the available processing cores. Threads created during the fork phase
can therefore rejoin to the master thread (join phase), and more fork-join stages can
occur in a typical execution of an OpenMP executable. The size of the teams can
be controlled by an environment variable OMP_NUM_THREADS, set at runtime by us-
ing the omp_set_num_threads(n) function or specified for each parallel region using
num_thread(n) in the #pragma omp parallel directive (see Listing 4.3).

2 http://www.mpi-forum.org/

http://www.mpi-forum.org/
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Figure 4.9: Xeon Phi, Intel Knight Landing architecture and technical specifications.

Figure 4.10: OpenMP fork-join execution model. 1. OpenMP programs start with a single thread;
the master thread (Thread #0). 2. At the starting point of a parallel region, master creates
team of parallel worker threads (FORK). 3. Statements in the parallel block are exe-
cuted in concurrently by every thread (master as well). 4. At end of parallel region,
all threads synchronize, and join master thread (JOIN). Note that parallel regions
can be nested.

The fork-join model allows for the selective parallelization of the original source code
(e.g. loops), by leaving portions that are difficult to be parallelized or that would lead
to negligible (or even worsening) improvements, unchanged with respect to the serial
implementation. Numerical applications usually accomplish most of their work in a
relatively small portion of their codebase, known as hotspots. Those are the solely parts
of an application that are worth parallelizing. Profilers and performance analysis tools
are funamental and employed extensively during in order to identify such hotspots.
OpenMP can therefore effectively utilized to share the iterations of a loop within a
pool of threads.

By default, static scheduling is adopted where iterations are equally subdivided in
chunks and statically allotted to threads in a round-robin policy. However, iterations
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can also be assigned to threads on demand, by using the dynamic scheduling clause.
In this manner, when a thread terminates processing its current chunk, it requests for
a new one, usually resulting in better performance in the case where load is not well
balanced across chunks. Scheduling can be specified using the schedule keyword in
the #pragma omp for directive. Static scheduling can be non-optimal in the case when,
for instance, different iterations take a different amount of time to be executed. As
an example consider the program in Listing 4.2 in which each loop iteration causes
the executing thread to sleep for a number of seconds equals to the number of the
iteration.

1 #define CHUNK_SIZE (1)

2 int main ( ) {

3 #pragma omp parallel for schedule(static,CHUNK_SIZE) num_threads(4)

4 for (int i = 0; i < N; i++) {

5 /* wait for i seconds */

6 sleep(i);

7 printf("Thread %d has completed iteration %d.\n",

8 omp_get_thread_num( ), i);

9 }

10 /* all threads done */

11 printf("All done!\n");

12 return 0;

13 }

Listing 4.2: Scheduling in OpenMP example. Note that specifying static scheduling is not
needed since it is the default setting.

Among the threads spawned by code in Listing 4.2, there is a great imbalance in the
number of seconds they will wait, because the last thread executes the last chunk of
iterations (which translates to longer sleep time). Dynamic scheduling can be applied
in a case like this to improve the overall execution time. OpenMP assigns one iteration
to each thread and when a thread completes its work, it is assigned the next iteration
that has not been executed yet reducing execution time effectively. See table 4.3 for a
complete list description of all kind of scheduling in OpenMP.

Moreover, OpenMP provides locking mechanism to serialize the access to shared vari-
ables by defining critical sections. A lock must be firstly initialized and then can be
acquired or released. When a thread attempts to acquire a lock that is already be set by
another thread, its execution is suspended until the lock is released, giving rise to per-
formance degradation (or even to possible deadlock situations). However, a lock can
also be queried in order to evaluate its state, without blocking the thread execution.
In thisway, if the lock is already set, the querying thread can do perform other trasks,
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Scheduling Kind Description

static The loop is divided into equal-sized chunks of iterations. By default,
chunk size is iterations

number_o f _threads . If the chunk size is set to 1, iterations
are executed by the threads in a interleaved fashion.

dynamic chunk-sized block of iterations are internally queued. When a thread
is ready to execute some work, it retrieves the next block from the
top of the queue. Note that by default chunk size is 1. Managing
the queue and assigning work to threads comes with an arrached
overhead.

guided similar execution policy to dynamic but the chunk size decreases
over time to better handle load imbalance between iterations. In this
case the optional parameter of the schedule construct specifies the
minimum chunk size. By default it is equal to iterations

number_o f _threads

auto The compiler is free to decide any possible mapping of iteration to
threads.

runtime the scheduling policy is choosen at runtime and changes according
to the environment variable OMP_schedule

Table 4.3: #pragma omp parallel for schedule(kind [,chunk size]) OpenMP scheduling
kinds. The optional parameter (chunk size), when specified, must be a positive integer.

thus minimizing idle time. See Listing 4.3 for an example of lock usage in OpenMP.

1 omp_lock_t writelock;

2 omp_init_lock(&writelock);

3 #pragma omp parallel for num_threads(5)

4 for ( i = 0; i < x; i++ ){

5 // some stuff in a concurrent fashion

6 omp_set_lock(&writelock);

7 // one thread at a time stuff

8 omp_unset_lock(&writelock);

9 // some more stuff in a concurrent fashion

10 }

11 omp_destroy_lock(&writelock);

Listing 4.3: OpenMP lock acquisition, usage and destruction example. Note that the region of code
between lines 6 and 8 is serialized.

In addition to the data-type parallelization provided by the fork-join model, OpenMP
aslo supports the functional-type parallelization, where different portions (called re-
gions) of code to be processed are assigned to different threads. In both cases, OpenMP
parallelization of a code is straightforward, by hiding most low-level implementation
details. Moreover, by using OpenMP it is possible to build the same source code to
produce both parallel or sequential executable. In the latter case, the compiler simply
ignores the #pragma omp directives.
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4.3.1 General Purpose GPU Computing - GPGPU

The concept of many processors working together in concert is not new in computer
graphics. Since the demand generated by entertainment started to grow, multi-core
hardware emerged in order to take advantage of the high amount of parallel work
available in the process of generating and rendering and manipulation of 3D images.
The main goal of the computer graphics is to render and then display 3D images
onto the screen, which translates to refreshing pixels at rate of 60 or more Hz [60].
Each pixel has to be processed goes through a number of stages, and this process is
commonly referred as to the graphic processing pipeline. The peculiarity of this task is
that the computation of each pixel is independent of the other’s. This specific task
is thus suitable for distribution over parallel processing elements as it can be catego-
rized as a embarassingly, perfect or pleasingly parallel problem [61] (see Section 6.3
and Listing 6.8 at pages 113 and 115 respectively, for an example of a perfectly paral-
lel problem). To support extremely fast processing of large graphics data sets (which
mainly consist of vertices and fragments), modern GPUs employ a stream processing
model with parallelism. The game industry boosted the development of GPUs, that
offer today greater performance than CPUs and are improving faster too as shown in
Figures 4.12 and 4.11. The reason behind the discrepancy in floating-point capabili-
ties between CPU and GPU is that GPUs are designed such that more transistors are
devoted to data crunching and processing rather than caching, flow control, branch
prediction, etc. Also note that memory bandwith is still one of the main advantages of
GPU and Xeon Phi over CPUs architectures. The gap is getting wider thanks also to
the introduction of High Bandwidth Memories (HBM), stacked memory by NVIDIA
and MCDRAM for Xeon Phi [62, 63]. Nowadays, GPU are widely used for general
purpose computing. The Top 500 supercomputers ranking 3 [64] is dominated by mas-
sively parallel computer, built on top of superfast networks and millions of sequential
CPUs working in concert. But as the industry is developing even more powerful, pro-
grammable and capable GPUs in term of GFLOPS, they begin to offer advantages over
traditional cluster of computers in terms of economicity and scalability as depicted
in Figure 4.13.

4.3.2 From Graphics Graphics to General Purpose HW

A graphics task such as rendering a 3D scene on the screen involves a sequence of
processing stages inside the GPU, i.e. shaders, that run in parallel and in a prefixed
order, known as the graphics hardware pipeline [65] which is the most common
form of 3D computer rendering, distinct from, for instance, raytracing or raycasting
for which the concept of pipeline is not even defined.

3 http://www.top500.org/statistics/list/

http://www.top500.org/statistics/list/


40 parallel computing

Figure 4.11: Memory Bandwidth comparisong between Intel CPUs and NVIDIA chips over time.
Higher is better.

Figure 4.14: Typical computer graphics pipeline.

Figure 4.14 shows the important key steps that make up the graphic pipeline and for
which the GPU hardware has been specialized for years. The pipeline works taking
as input graphics primitives, each stage forward its results on to the next stage.
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Figure 4.12: Performance comparison (FLOPs) between CPU and modern accelerators (NVIDIA,
Intel and AMD) over time. When Double precision is considered, relative perfor-
mance between the considered hardware does not change. Higher is better.

• The first stage of the pipeline is the vertex shader. The input to this phase is a
list of vertices in object space coordinates which are then converted to world
coordinates (applying the model and view matrices).

• Shape assembly is performed where vertices are grouped together by forming
graphics primitives, i.e. lines, point, polygons, triangles, tringles strips etc. If
enabled, lighting calculation is also performed for each vertex.

• The following step, the geometry shader is optional in the openGL pipeline and can
be used to produce or delete primitives. One of the most common use of this
shader is in reducing the communication between the GPU and the CPU. For
instance one can only pass to the graphic pipeline a list of vertices for drawing
cubes, and produce the primitives for them only when the geometry shader is
executed, reducing the amount of information exchanged between the CPU and
the GPU.

• Each of the (from the now final list of) primitives is scan-converted or rasterized
generating a set of fragments in screen space for the visible only part of the
shapes. Each fragment stores the state information needed to update a pixel and
are obtained by interpolating per vertex attributes coming from the geometry
shader. For instance, each vertex of a triangle end up having its color changed
based on the color of its neighbors.
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Figure 4.13: GFLOPs per Watt, Higher is better. GPUs offer higher performance per Watt utilised
especially for those fine-grained massively parallel problems such as dense matrix-
matrix multiplication. Note that the Figure also shows that the CPU is getting smaller,
indicating that CPU are introducing more GPU-like capabilities into their transistors.
Intel added wider vector processing units (up to 64 byte) to their latest processors.

• The fragment shader is used to calculate the final color of each individual frag-
ment. Texture coordinates of each fragment are used to fetch colors of the ap-
propriate texels (texture pixels) from one or more textures. Further interpolation
may also be performed to determine the ultimate color for the fragment.

• Finally, various tests (e.g., depth and alpha, etc.) are conducted to determine
whether or how the fragment should be used to update a pixel in the frame
buffer. Each shader in the pipeline performs a basic but specialised operation on
the vertices as it passes.

In a shader based architecture the individual shader processors exhibit very limited
capabilities beyond their specific purpose. Before the advent of CUDA in 2006 most of
the techniques for non-graphics computation on the GPU took advantages of the pro-
grammable fragment processing stage. The steps involved in mapping a computation
on the GPU are as follows:

1. The data are laid out as texel colors in textures;

2. Each computation step is implemented with a user-defined fragment program.
The results are encoded as pixel colors and rendered into a pixel-buffer (stored
into GPU main memory, similar to a frame-buffer);
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3. Results that are to be used in subsequent calculations are copied to textures for
temporary storage and the process could start over again for another iteration.

The year 2006 marked a significant turning point in GPU architecture. The G80 was
the first NVIDIA GPU to have a unified architecture whereby the different shader
processors were combined into unified stream processors (see Figures A.2 and A.3 at
pages 174 174 respectively). The resulting stream processors had to be more complex
so as to provide all of the functionality of the shader processors they replace. Al-
though research had been carried out into general purpose programming for GPUs
previously, this architectural change opened the door to a far wider range of appli-
cations and practitioners. GPUs are nowadays, well suited for data-parallel problems
because they are very effective at executing the same code on many data elements at
the same time in a Single Instruction, Multiple Threads (SIMT) fashion or using a more
general definition as Parallel Random-Access Machine in which each thread Can Read or
Write a memory location (CRCW PRAM).

4.4 the opencl parallel computing paradigm on heterogeneous de-
vices

Released on December 2008 by the Kronos Group, OpenCL [66–68] is an open stan-
dard for programming heterogeneous computers built from CPUs, GPUs and other
processors. It allows to define the intended computation using the platform abstrac-
tion. A platform is composed by an host and one or more compute devices. A C-like
language is used to program and orchestrate the various components of the platform
(see Figure 4.15).

One of the advantages of OpenCL is that it is not restricted, as in the case of CUDA [69],
to the use of GPUs only but it takes each computing resource in the system as com-
putational peer unit, interposing a uniform set of API between them and the pro-
grammer, easing the process of interfacing with them. Another big advantage is that
it is open, free, and cross-compatible across vendors since is supported by all major
hardware producers.

A typical OpenCL application is subdivided in two parts, one running on the CPU
(host application) and one or more running on a compliant device (device application),
where the actual parallel computation generally takes place. The host application
defines the tasks to be executed in parallel. Each parallel task is implemented as
an OpenCL kernel, which is a special C function, which is compiled at runtime for
each specifically for and deployed to a compliant device, or to different ones, for ex-
ecution. The execution model is similar to the one of CUDA (CUDA and OpenCL
share a similar programming model and underlying hardware architecture, even if
a quite different terminology is adopted), where each kernel is executed by threads,
the smallest execution entity, also called work-items, which are grouped into work-
groups. A work-item is executed by one or more processing elements as part of a
work-group executing on a compute unit. A work-item has to be considered a thread
in terms of its control flow and memory model, but the hardward and the compiler
can run multiple work-items on a single thread. As an example one can imagine that
work-items computation can be carried out on lanes of a SSE vector. A work-group is
a collection of related work-items that are executed on a single compute unit. A work
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Figure 4.15: OpenCL platform abstraction. A device is any supported device including GPU, CPU,
FPGAs, etc. Command queues are executed concurrently for each device and can be
synchronized by means of API calls.

group must map to a single compute unit (a core on a CPU, or using CUDA terminol-
ogy a streaming multiprocessor). Work-groups can synchronize internally between
work-items using local or global memory or barriers but they cannot synchronize
with each other, making impossible building locking and synchronization primitives
(among work-groups). The locality of execution of work-items leads to more efficient
synchronization, and makes possible to have access to user managed local fast mem-
ories and caches (similar to CPU L1 caches) in order to makes communication fast. A
work-item is distinguished from other executions within the collection by its global
ID and local ID (relative to the parent worl-group).

Work-groups can:

• Share data between the work-group’s work-items using local memory

• Synchronize between work-items using barriers and memory fences mechanism

• Use special built-in functions such as work_group_copy

Work-groups and work-items are arranged in a indexed grid-like structure. When
launching the kernel for execution, the host code defines the grid dimensions, or the
global work size. The host code can also define the partitioning to work-groups, or
leave it to the implementation. During the execution, the implementation runs a sin-
gle work item for each point on the grid (a kernel per work-item). It also groups
the execution on compute units according to the work-group size. The order of ex-
ecution of work items within a work-group, as well as the order of work-groups, is
implementation-specific (see Figure 4.17). Data to be processed has to be explicitly
partitioned and assigned to compute units because each work-item runs the same
kernel on different portions of data in a SIMD/SIMT fashion. For example, in case of
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Figure 4.16: OpenCL 1D,2D,3D work-items and work-groups partitioning.

an array of n elements and n work-items, data can be partitioned by associating each
work item to the array element with index corresponding to the work-item global
ID. Figure 4.16 depicts how items and groups can be arranged when partitioned in
1D, 2D and 3D. Figure 4.18 shows a 2D decomposition with details on global ID
computation from local group and thread indices.

Figure 4.17: OpenCL work-groups scheduling. The green boxes represent the computing unit. The
circles represent the work-groups. Blue work-groups are waiting to be executed, pink
work-groups are currently executing and yellow work-groups have been completed.
Each work group is queued for execution and executes on a single computing unit
(a GPU multiprocessor, CPU core, etc.) Note that execution order is not guaranteed
by the standard.
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Figure 4.18: OpenCL 2D work-items and work-groups detailed partitioning. The computation of
global index from local item and group index is also shown.

When the kernel execution terminates, work-items globally synchronize, and the con-
trol returns to the host application. Similarly to the OpenMP fork-joins stages, differ-
ent kernel executions and synchronization stages can take place in a typical OpenCL
application.

Data can be shared by all the running work-items by means of the device global mem-
ory, which is generally the largest among all the different memory levels available on
the device (this is especially true for modern GPUs) though being the slowest. A read-
only memory, equivalent to the global one in terms of latency and dimension, called
constant memory, is also available. Some devices have an appropriate portion of this
memory, while in other cases the constant memory space coincides with that of the
global memory. Threads within a work-group are executed by a specific compute unit
and therefore can share data on the local memory and also synchronize each other.
Local memory is generally smaller with respect to the global one, but allows for faster
access (about 100× faster on modern GPUs). Eventually, each work-item has its own
private memory, which is at the same time the fastest and the smallest one.

The memory in which a given data is stored must be initially defined and allocated
by the host using the appropriate API calls (e.g. see Listing 4.4).

clCreateBuffer(cl_context context, cl_mem_flags flags,

size_t size,void *host_ptr,cl_int *errcode_ret)

Listing 4.4: Allocate buffer API call in OpenCL.

Nevertheless, data can move among different memory levels during kernel execution
(from global, to local, to private or the other way round).

Data exchange and kernels execution are managed by the host thanks to an OpenCL

context. In particular, the host application links kernels into one or more containers,
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Figure 4.19: OpenCL program flow and interaction between memory, device and host.

called programs. The program therefore connects kernels with the data to be processed
and dispatches them to a special OpenCL structure called command queue (see Figure
4.15). This is necessary because only enqueued kernels are actually executed. The
context contains all the devices, command queues and kernels, whereas each device
has its own command queue each containing the kernels to be executed on the cor-
responding device. Moreover, an OpenCL application can configure different devices
to perform different tasks, and each task can operate on different data. OpenCL is
thus capable of full task-parallelism. Command queues are also used for host-device
and device-device data transfer operations, synchronization between different ker-
nels, and profiling operations.

Kernels are usually listed in separate files the OpenCL runtime use to create kernel
object that can be first decorated with the parameters on which it is going to be
executed and then effectively enqueued for execution onto device.

The following is a brief description of the typical flow of an OpenCL application (See
Figure 4.19).

contexts creation :
The first step in every OpenCL application is to create a context and associate to it
a number of devices, an available OpenCL platform (there might be present more
than one implementation). Each subsequent operation (memory management,
kernel compiling and running), is performed within this context. In the example
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4.5 a context associated with the CPU device and the first platform returned by
OpenCL is created.

1 cl_int err;

2 cl::vector<cl::Platform> platformList;

3 //Gets a list of available platforms.

4 cl::Platform::get(&platformList);

5 checkErr(platformList.size()!=0 ?CL_SUCCESS:-1,"cl::Platform::

get");

6 cl_context_properties cprops[3] ={CL_CONTEXT_PLATFORM,(

cl_context_properties)(platformList[0])(), 0};

7 //create a context based on the first platform from the list

8 //Constructs a context including a list of specified devices

9 cl::Context context(CL_DEVICE_TYPE_CPU,cprops,NULL,NULL,&err);

10 check_error(err, "Conext::Context()");

Listing 4.5: OpenCL context creation.

memory buffers creation :
OpenCL buffer objects on which kernels operate are created at this point using an
available and valid context object as shown in Listing 4.6.

1 memobj = clCreateBuffer(context, CL_MEM_READ_WRITE,MEM_SIZE * sizeof(char),

NULL, &ret);

2 check_error(err, "Buffer::Buffer()");

Listing 4.6: OpenCL context creation

build a program :
The actual code that runs on the devices has to be compiled first. The cl::Program
object takes care of building the device code for the devices listed during the
context creation. See Listing 4.7 for an example of how cl::Program are created.

1 std::ifstream file("pathToSourceCode.cl");

2 check_error(file.is_open() ? CL_SUCCESS:-1, "pathToSourceCode.cl");std::string

3 prog( std::istreambuf_iterator<char>(file),

4 (std::istreambuf_iterator<char>()));

5 cl::Program::Sources source(1,std::make_pair(prog.c_str(), prog.length()+1));

6 cl::Program program(context, source);

7 err = program.build(devices,"");

8 check_error(err, "Program::build()");

9 cl_kernel kernel = clCreateKernel(program, "nameofthekernel", &ret);

Listing 4.7: OpenCL program load and build

kernel launch :
In order a kernel to be executed a kernel object must be created. For a given Pro-
gram there would exists more than one entry point, identified by the keyword
__kernel. One of them is choosen for execution specifying its name in the kernel
object constructor. The kernel is eventually effectively executed by putting it into
a cl::CommandQueue. Given a cl::CommandQueue queue, kernels can be queued
using queue.enqueuNDRangeKernel that queues a kernel on the associated device.
Launching a kernel requires some parameters (similar to launch configuration
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in CUDA) to specify the work distribution among work-groups and their dimen-
sionality and size of each dimension (see listing 4.8). The status of the execution
can be tested by querying the associated event.

1 cl::CommandQueue queue(context, devices[0], 0, &err);

2 /*cl_kernel kernel = clCreateKernel(program, "nameofthekernel", &ret);*/

3 kernel.setArg(0,memobj);

4 //let the work-group size be choosen by the implementation

5 ret = clEnqueueNDRangeKernel(queue, kernel, 1, NULL,

6 &MEM_SIZE, NULL, 0, NULL, NULL)

Listing 4.8: OpenCL command queue definition and kernel enqueuing.
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5
T H E O P E N C O M P U T I N G A B S T R A C T I O N L AY E R F O R E X T E N D E D
C E L L U L A R A U T O M ATA A N D T H E F I N I T E D I F F E R E N C E S M E T H O D

There are two kinds of truths: those of reasoning and those of fact.
The truths of reasoning are necessary and their opposite is
impossible; the truths of fact are contingent and their opposites
are possible.

— Gottfried Leibniz

This chapter introduces OpenCAL, an open source computing abstraction layer defining a
domain specific language for Extended Cellular Automata and the Finite Differences
method (see chapters 2 and 3 at page 5 and 19 repectively). Different implementa-

tions have been developed, which allow for transparent parallelism and are able to exploit
multicore CPUs and manycore devices like GPUs, thanks to the adoption of OpenMP and
OpenCL, respectively, as well as distributed memory architectures and/or multiple GPUs
concurrently. System software architecture is presented and the underlying adopted data
structures and algorithms are described in detail. Numerical correctness and efficiency
have been assessed by considering the well known SciddicaT Computational Fluid Dynam-
ics landslide simulation model as reference example. Moreover, a comprehensive study has
been performed to device the best platform for execution as a function of numerical com-
plexity and computational domain extent. Obtained results have highlighted the OpenCAL

suitability for numerical models development and their execution on the most suitable
high-performance parallel computational device.

5.1 introduction

Scientific Computing [70] is a broad and constantly growing multidisciplinary research
field that uses formal paradigms to study complex problems and solve them through sim-
ulation by using advanced computing techniques and capabilities.

Different formal paradigms have been proposed to provide the abstraction context in
which problems are formalized. Partial Differential Equations (PDEs) were probably the
first to be largely employed for describing a wide variety of phenomena. Unfortunately,
PDEs can be analytically solved only for a small set of simplified problems [71] and Nu-
merical Methods have to be employed to obtain approximate solutions for real situations.
Among them, the Finite Differences Method (FDM) was one of the first considered, still
currently employed, to address a wide variety of phenomena such as acoustics [72, 73],
heat [74, 75], computational fluid dynamics (CFD) [76, 77], and quantum mechanics [78,
79].

Besides other solutions proposed for numerically approximating PDEs like, for instance,
Finite Elements [80] and Finite Volume Methods [81], further formal paradigms were
more recently proposed for modeling complex systems. Among them, Cellular Automata
(CA) [82] are Turing-equivalent [21, 83] parallel computational models. CA are widely stud-
ied from a theoretical point of view [20, 84–86], and their application domains vary from
Artificial Life [87, 88] to Computational Fluid Dynamics [89–92], besides many others. In

53



54 opencal - the open computing abstraction layer

the 80s, an extension of the original CA formalism was proposed to better model and sim-
ulate a specific set of complex phenomena [5]. Such an extension is known as Complex or
Multi-Component Cellular Automata and was applied to the simulation of debris flows [93,
94], lava flows [95–98], pyroclastic flows [99, 100], forest fires spreading [101, 102], hydro-
logic and eco-hydrologic modeling [103–105], soil erosion [30], crowd dynamics [106–108],
urban dynamics [109], besides others. Please refers to Chapter 2 for an extensive introduc-
tion on Cellular Automata and XCA.

Independently from the adopted formal paradigm, the simulation of complex systems
often requires Parallel Computing. OpenMP is the most widely adopted solution for par-
allel programming on shared memory computers [58]. It fully supports parallel execution
on multi-core CPUs and, starting from the 4.0 specification, also includes support for ac-
celerators like graphic processing units (GPUs) or Xeon Phi co-processors. Unfortunately,
compilers like gcc currently do not fully support the OpenMP most recent specifications
and, in practice, OpenMP-based applications still mainly run on CPUs [97, 110, 111]. How-
ever, in recent years, general purpose computing on graphic processing units (GPGPU),
which exploits GPUs and many-core co-processors for general purpose computation, has
gained wide acceptance as an alternative solution for high-performance computing, result-
ing in a rapid spread of applications in many scientific and engineering fields [112]. Most
implementations are currently based on Nvidia CUDA (see e.g. [113–116]), one of the first
platforms proposed to exploit GPUs computational power on NVIDIA hardware. An open
alternative to CUDA is OpenCL [117], an Application Program Interface (API) originally
proposed by Apple and currently managed by Khronos Group for parallel programming
on heterogeneous devices like CPUs, GPUs, Digital Signal Processors (DSPs), and Field-
Programmable Gate Arrays (FPGAs). Interest in OpenCL is continuously growing and
many applications can already be found in literature [118–121]. However, an OpenCL par-
allelization of a scientific application is often a non-trivial task and, in many cases, requires
a thorough refactorization of the source code. For this reason, many computational lay-
ers were proposed, which make many-core co-processors computational power easier to be
exploited. For instance, ArrayFire [122] is a mathematical library for matrix-based computa-
tion such as linear algebra, reductions, and Fast Fourier transform; clSpMV [123] is a sparse
matrix vector multiplication library; clBlas [124] is an OpenCL parallelization of the Blas
linear algebra library. Examples of higher level computational layers, which provide the ab-
straction of formal computational paradigms, are: OPS [125, 126] and OP2 [127, 128], which
are open-source frameworks for the execution of structured and unstructured grid appli-
cations, respectively, on clusters of GPUs or multi-core CPUs; AQUAgpusph [129], which
is a smoothed-particle hydrodynamics solver; ASL [130], an accelerated multi-physics sim-
ulation software based, among others, on the Lattice Boltzmann Method; CAMELot [28,
131] and libAuToti [132], which are a proprietary simulation environment and an efficient
parallel library for XCA model development, respectively.

Among the above cited softwares, OPS, ASL and CAMELot probably are the most similar
to OpenCAL in terms of modeling and development approach, and could be considered
as possible alternatives to the library proposed in this thesis. In particular, OPS provides
a straightforward Domain Specific Language for structured grid-based modeling, even if
it does not refer to any specific abstract computational formalism. Its main characteristic
consists in allowing to obtain different parallel versions of a computational model starting
from its serial implementation, thanks to a seamless code-generator approach. MPI-based
distributed memory, as well as CUDA and OpenCL many-core versions can be obtained



5.1 introduction 55

in this way, with a minimal effort by the developer. Conversely, ASL provides different
higher level modeling abstractions among which the Lattice Boltzmann Method, that is
eventually a Cellular Automata-based paradigm. Nevertheless, it currently does not allow
for parallel execution on distributed memory systems, which can be a great limitation in
some cases. Eventually, CAMELot offers an integrated simulation environment for XCA
development and allows for parallel execution on both shared and distributed memory
systems thanks to the message passing paradigm, not permitting however the exploitation
of modern many-core devices.

This chapter is devoted to the description of OpenCAL which aims to be a portable parallel
computing abstraction layer for scientific computing. It provides the Extended Cellular Au-
tomata general formalism as a Domain Specific Language, allowing for the straightforward
parallel implementation of a wide range of complex systems. Cellular Automata, Finite
Differences and, in general, other structured grid-based methods are therefore supported.
Different versions of the library allow to exploit both multi- and many-core shared memory
devices, as well as distributed memory systems. Specifically, OpenMP- and OpenCL-based
implementations have been developed, both of them providing optimized data structures
and algorithms to speed-up the execution and allowing for a transparent parallelism to
the user. A MPI-based implementation is also currently under development and allows to
exploit many-core accelerators on interconnected systems. With respect to the above cited
softwares, OpenCAL therefore provides both the higher CAMELot modeling approach and,
similarly to OP2, allows for the execution on a wide range of shared and distributed parallel
platforms (even if by adopting a classic library approach). In addition, OpenCAL provides
different embedded strategies and optimization algorithms which allow to progressively
improve the computational performance of different kinds of models and simulations.
OpenCAL is released under Lesser GNU Public License (LGPL) version 3 and is freely down-
loadable from GitHub at the following link: https://github.com/OpenCALTeam/opencal.
OpenCAL allows for the definition of computational models based on CA, XCA and FDM. It
is designed to be easily extended and applied to all computational methods based on regu-
lar and uniform grids. The implementation described in this chapter targets shared multi-
core, distributed memory and GPUs and is designed to make the parallelism transparent
to the user addressing and hiding many aspects of the underlying formal computational
model and parallel execution platform.

In the following, the OpenCAL architecture is presented and the OpenMP- and OpenCL-
based parallel implementations described. The implementation of a first simple example
of application for multi- and many-core devices is also presented and discussed in order
to show how straightforward the OpenCAL-based model development is. Therefore, the
SciddicaT XCA landslide simulation model [133] is then considered as a more complex
reference example for correctness and computational performance evaluation on multi-core
CPUs, many-core GPUs. In particular, three different versions of SciddicaT are refeered to
in this chapter, which progressively exploit OpenCAL built-in features and, for each of
them, different implementations based on the serial and parallel versions of the library are
proposed. Eventually, results of a further study performed to devise the best platform for
execution, depending on the model’s computational intensity and the domain extent, is
presented. A general discussion concerning OpenCAL and future outcomes concludes the
chapter.

https://github.com/OpenCALTeam/opencal
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5.2 opencal software architecture and the considered parallel comput-
ing paradigms

The OpenCAL architecture is depicted in Figure 5.1. At the higher level of abstraction, the
Scientist conceptually designs the computational model, by referring the Extended Cellular
Automata general formalism. Structured grid-based models whose evolution is determined
by local rules, as well as by global laws or even by a combination of local and global oper-
ations, are therefore fully supported. At this level, domain topology and extent, boundary
conditions, substates (each of them representing the set of admissible values of a given char-
acteristic assumed to be relevant for the modeled system and its evolution), neighborhood
(defining the pattern over which local rules are applied), and elementary processes (defin-
ing the local rules of evolution), are formalized. The simulation process is also designed
at this level, by specifying the initial conditions of the system, optional global operations
(e.g. steering or global reductions), and a termination criterion to stop the system evolution.
Boundary conditions can be implemented by the user by creating ad-hoc code within the
transition function which treats the boundary cells (which can be identified to belonging
to the boundary, within the code) s.t. the boundary condition is enforced. For instance if
implementing a heat transfer model, adiabatic walls can be enforced programmatically by
setting heat transfer to 0 only for those cells that make up the walls. Any other boundary
condition can be implemented similarly. Note that, being supported by OpenCAL, some
specific optimizations can be accounted at design time. Specifically, the explicit updating
feature allows to both redefine the elementary processes application order and to selec-
tively update substates after the application of each elementary process, while the active
cells optimization, also known as quantization, allows to restrict the computation to a subset
of the whole computational domain, by excluding stationary cells.
OpenCAL can be found in the implementation abstraction level. As it can be seen, four

different versions can be considered for implementing the previously designed compu-
tational model, namely OpenCAL, OpenCAL-OMP and OpenCAL-CL and OpenCAL-MPI. The first
one refers to the serial implementation of the library, while second and the third are OpenMP

and OpenCL-based parallelizations, respectively, as pointed out by the language/low-level
library level. The fourth one is a cluster ready implementation that allows to execution
on distributed memory cluster where each node can exploit multiple GPUs. All imple-
mentations are written in C for the maximum efficiency and provide high-level data types
and functions that match the XCA formal components, allowing for a straightforward im-
plementation of the designed computational model, by also allowing to ignore low-level
issues like memory management and I/O operations. In this respect, OpenCAL can be con-
sidered as a domain-specific language (DSL) for the CA, XCA and FDM computational
methods. Finally, at the hardware level, depending on the adopted version of the library,
execution can be performed on single- and multi-core CPUs, or on many-core accelerators
like GPUs, almost transparently to the user. Figure 5.1 also shows hybrid MPI+Open-MP
and MPI+OpenCL parallel implementations of OpenCAL, which will allow to exploit clusters
of CPUs and many-core accelerators (see Chapter 6).

Note that an OpenMP-based parallelization is generally more straightforward with respect
to one based on OpenCL or MPI and, when compilers will fully support the 4.0/4.5 OpenMP

specifications, it will be possible to execute OpenMP-based applications on both multi-core
CPUs and many-core high-performance devices. On the other hand, an OpenCL-based par-
allelization allows to exploit a wide range of high-performance many-core devices straight
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Figure 5.1: OpenCAL architecture. At the higher level of abstraction, the models, as well as the
simulation process, and possible optimizations are designed. OpenCAL can be found at
the implementation abstraction layer, allowing for a straightforward implementation
of the designed model. In fact, it can be considered as a domain-specific language for
the CA, XCA and FDM computational methods, built on top of the C language and
the OpenMP and OpenCL APIs. OpenCAL applications can be executed at the hardware
level on both multi-core CPUs and many-core devices, while the execution on cluster
is planned but currently not supported.

away and, with greater control on the underlying hardware and on the execution flow, al-
lowing better exploitation of the hardware capabilities. For these reasons, both the OpenMP

and OpenCL versions of OpenCAL have been developed and are maintained.

5.3 the open computing abstraction layer

The OpenCAL API was designed to be clear and easy to use. For this purpose, it follows
some naming conventions, the most important of which are listed below:

• CALbyte, CALint, and CALreal redefine the char, int and double C native scalar types,
respectively;

• Derived data types start with the CAL prefix (or CALCL for some specifc OpenCAL-CL

data types), followed by a type identifier formed by one or more capitalised keywords,
an optional suffix identifying the model dimension (e.g. 2D or 3D), and an eventual
optional suffix specifying the basic scalar type, which can be b, i, or r, for CALbyte,
CALint and CALreal derived types, respectivey (e.g. CALSubstate3Dr represents an
example of three-dimensional double precision-based data type - cf. below);

• Constants and enumerals start with the CAL_ prefix, followed by one or more upper-
case keywords separated by the _ character (e.g. the CAL_TRUE and CAL_FALSE boolean
enumerals);
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• Functions are characterised by the cal prefix (or calcl for some specifc OpenCAL-CL

functions), followed by at least one capitalized keyword, and end with a suffix spec-
ifying the model dimension and the basic datatype (e.g. calSet2Di represents an
example of an API function acting on a bi-dimensional integer based data type).

In the following, the {arg1|arg2|...|argn} and [arg1|arg2|...|argn] conventions will
be adopted: the first one identifies a list of n mutually exclusive arguments, where one of
the arguments is needed; the second is used to identify a set of n non-mutually exclusive
optional arguments. As an example, calGet[X]{2D|3D}{b|i|r}() function actually iden-
tifies a set API functions with one optional and two mandatory suffixes: the first one, if
present, indicates that the fuction is able to access naighborhood data (X is the symbol
commonly used in the XCA formalism to refer the neighborhood), while the last two ones
indicate the domain dimension and the basic type of the data to be accessed, respectively.

Among derived data types, CALParameter{b|i|r} represents an alias for the correspond-
ing basic OpenCAL scalar data type, and can be optionally used for defining model parame-
ters.

5.3.1 API

An OpenCAL model is declared as a pointer to CALModel{2D|3D} and defined by means of
the calCADef{2D|3D}() function. The model object stores the dimensions of the computa-
tional domain in terms of number of rows and columns (and also slices in case of a 3D
model), the computational domain boundary topology (e.g., if a 2D computational domain
has to be considered as a bounded or an unbounded torus), the neighbourhood pattern,
and also registers pointers to substates and elementary processes composing the transi-
tion function. Moreover, it manages a sub-structure which allows to exploit the built-in
quantization feature by means of which, based on user-specified criteria, the computation
can be restricted to a subset of non-stationary cells (also called active cells) of the whole
computational domain.

As regards neighborhoods, OpenCAL provides a set of predefined patterns. For instance,
the CAL_MOORE_NEIGHBORHOOD_{2D|3D} enumeral refers to the Moore pattern (cf. Figures
5.2b and 5.3b). von Neumann 2D and 3D neighborhoods are also predefined, as well as
2D hexagonal patterns (cf. Figures 5.2c and 5.2d). Custom neighborhoods can also be de-
fined in OpenCAL by considering the CAL_CUSTOM_NEIGHBORHOOD_{2D|3D} enumeral and the
calAddNeighbor{2D|3D}() function, which adds a cell to the neighbourhood by means of
its relative coordinates with respect to the central one. Note that, a zero-based index is
assigned to the neigbouring cells in order to address them without the need to provide
their relative coordinates, as shown in Figures 5.2 and 5.3. Elementary processes, both local
interactions and internal transformations, are defined by means of callback functions and
registered to a computational model by means of the calAddElementaryProcess{2D|3D}()

function. Each elementary process callback must return void and takes a list of integer
arguments, representing the coordinates of a generic cell in the computational domain. Ele-
mentary processes define the OpenCAL transition function, and can be implicitly applied by
the simulation loop to the cells of the computational domain in the same order in which
they were registered to the computational model, or in a user defined order (cf. below).

Substates are defined as pointers to CALSubstate{2D|3D}{b|i|r} and can be registered by
means of the calAddSubstate{2D|3D}{b|i|r}() function. Substates are internally defined
by means of two linearized arrays (also called computational layers), having the same di-
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(a) (b) (c) (d)

Figure 5.2: Examples of Von Neumann (a) and Moore (b) neighborhoods for two-dimensional CA
with square cells. Examples of Moore neighborhoods are also shown for hexagonal
CA, both for the cases of horizontal (c) and vertical (d) orientations. Central cell is
represented in dark gray, while adjacent cells are in light gray. A reference system is
here considered to evaluate cells coordinates in terms of row and column indices in
a matrix-style representation, and a 0-based numerical identifier assigned to each cell
in the neighborhood for straightforward access.
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Figure 5.3: Examples of Von Neumann (a) and Moore (b, b’) neighborhoods for three-dimensional
CA with cubic cells. Central cell is represented in dark gray, while adjacent cells are
in light gray. A reference system is here considered to evaluate cells coordinates in
terms of row, column and slice indices in a matrix-style representation, and a 0-based
numerical identifier assigned to each cell in the neighborhood for straightforward
access.
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mensions of the computational domain. The current layer is used as a read-only memory for
retrieving central and neighboring cells current states, while the next one for updating the
new value for the central cell. This is a commonly adopted solution for obtaining the implicit
parallelism, thanks to which cells appear to be simultaneously updated with respect to each
other, even in the case of serial computation. Single layer substates can be also defined in
OpenCAL by simply registering them through the calAddSingleLayerSubstate{2D|3D}{b|i|r}()
function. In this case, they only consist of the current computational layer, and can be
used for internal transformations processing. To retrieve the current value of a substate
for a (central) cell by providing its coordinates within the computational domain, the
calGet{2D|3D}() function can be adopted, while the calGetX{2D|3D}() function can be
considered for obtaining the same information for a neighbouring cell, by providing an
additional parameter specifying the index of the cell in the neighborhood (cf. Figures 5.2
and 5.3 for predefined neighborhoods). Eventually, the calSet{2D|3D}() function can be
used to set the new value of a substate for the (central) cell to the next computational
layer. In the case of a single layer substate, the calSetCurrent{2D|3D}{b|i|r}() function
has to be employed for updating purposes. It acts like the calSet{2D|3D}() function, with
the exception that the new value is written on the current computational layer. Note that,
after the application of each elementary process, all the registered substates are implic-
itly updated, i.e. the next layer is copied into the current one. However, this behaviour
can be overridden and substates explicitly, as well as selectively, updated by means of the
calUpdateSubstate{2D|3D}{b|i|r} function (cf. below). Obviously, single layer substates
do not need to be updated.

5.3.2 The quantization strategy

In many grid-based simulations, system’s dynamics only affects a small region of the whole
computational domain. For instance, this is the case of topologically connected phenomena,
like debris or lava flows. In these cases, a naive approach where the overall domain is
processed can lead to a considerable waste of computational resources, even in the case
stationary cells (i.e. those cells that do not change their state to the next computational
step) are only checked and the application of the evolution rules skipped.

Different approaches have been proposed to improve the efficiency of the naive approach.
Among them, the hyper-rectangular bounding box (HRBB) optimization, consisting in sur-
rounding the simulated phenomenon by means of a fitting rectangle (or a parallelepiped,
in the case of a 3D model), by contextually restricting the computation to this specific sub-
region, proved to be a simple but effectiveg approach in different cases (see e.g. the work
of D’Ambrosio2013630 [D’Ambrosio2013630]). However, HRBB demonstrated its limit in
the simulation of scattered phenomena, where the hyper-rectangle can easily grow up to
the whole domain, by however embedding a considerable number of inactive cells.

A more effective approach, which is also able to optimally distribute the computational
load in case of parallel execution, consists in maintaining a dynamic set of coordinates of
the only active cells during the simulation, by restricting the computation only to this set
(see e.g. [115]). The activation state for a cell generally depends on the specific system to be
simulated. In many cases, e.g. in computational fluid-dynamics, a threshold-based criterion
can be adopted. For this reason, this latter approach is commonly known as quantization.
Even if more complex to be implemented, in many cases it outperforms the HRBB approach
and, for this reason, it was chosen over HRBB in OpenCAL.
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The OpenCAL quantization feature1 is implemented by considering a dynamic array of
active cells, A of the size of the grid-space, which is initially empty. An array of flags,
F, having the same dimension of the computational domain is also considered, which is
initially set to CAL_FALSE in each position. Eventually, an integer variable, size, initially set
to zero, is used to evaluate the new dimension of A per effect of the add/remove operations.
In order to add a cell to A, the calAddActiveCell{2D|3D}() function can be used, which
sets the flag value to CAL_TRUE in the corresponding position of the array F and increases
size by one. Similarly, the calAddActiveCellX{2D|3D}() function adds a neighbouring cell
to A. Eventually, the calRemoveActiveCell{2D|3D}() function can be used to remove a cell
from A, by contextually modifying the corresponding flag in F and decrementing size by
one. When an add/remove stage is completed, e.g. after the execution of an elementary
process, and the (scattered) array F is well defined, the set A must be updated. The update
process deletes the current set A, allocates a new set of active cells of dimension size, and
applies a straightforward serial stream compaction algorithm by processing the entire array
of flags F, as shown in Figure 5.4. As evident, the algorithm has a O(n) computational
complexity, being n the number of cells of the cellular space R. In this way, only the loop
updating A occurs on the whole computational domain (since the F array must be fully
checked). In fact, when A is not empty, it is processed instead of the whole computational
domain and both elementary processes computation and substates updating take place on
the active cells. As substates, even A is implicitly updated at the end of each elementary
process.

Using the quantization optimization is quite straightforward. Firstly, it must be enabled
at model object definition time by means of the calCADef{2D|3D}() function. Subsequently,
the calAddActiveCell[X]{2D|3D}() function can be used to mark the central cell and its
neighbors (if the X version of the function is considered) to be added to A, while the
calRemoveActiveCell{2D|3D}() to mark the central cell to be removed. All these functions
essentially write a 8-bit long Boolean value to F and, for this reason, there is not any
risk to obtain a corrupted value, even in the case of parallel execution (i.e. in the case two
threads/work-items attempt to store their own value to the same memory word at the same
time). Even in the case of OpenCAL-CL, if the same instruction is executed by more than
one work-item (even belonging to different work-groups) to the same location in global
memory (where F is stored), the access is serialized and at least one access is guarantied
(even if which the actual thread performing the operation is undefined - cf. e.g. [134]).
Eventually, in case of explicit update scheme, the calUpdateActiveCells{2D|3D} function
must be explicitly invoked to update A after each add/remove phase is complete.

Note that, since the API allows to modify the neighboring cells activation state, the quan-
tization optimization can give rise to race conditions. Nevertheless, to avoid them it is
sufficient to keep the add and remove phases disjoint, i.e. performed by different elemen-
tary processes. In fact, if the same elementary process could both add and remove cells
to/from A, two different (central) cells could update the same (neighboring) cell to differ-
ent activation states, and the resulting value in F before the stream compaction execution
would depend on the application order of the elementary process to the cells.

There are other ways to implementation the quantization strategy s.t. less time or space
space is used and some of them have also been investigated as for instance a strategy that
allows to use space proportional to the number of active cells, which consist of a dynamic

1 The term quantization has been chosen to refer to this optimization as when enabled, it treats the grid space
as a group of quanta of computation instead of as a single massive computation.
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Figure 5.4: An example of application of the serial stream compaction algorithm adopted to up-
date the set A of active cells in the serial implementation of OpenCAL. In the example,
active cells are represented in gray within a two-dimensional 4x4 matrix of flags, im-
plemented as a linearized array, F. The stream compaction algorithm simply processes
F and produces the compacted array A as output, containing the coordinates of the
active cells. The global state transition is therefore limited to the cell in A, and a new
configuration of the system obtained. The process is therefore repeated at the next
computational step.

list of active cells. The one shipped with this release of OpenCAL guarantees uniform perfor-
mance on all platforms and is for this reason adopted. future versions will feature multiple
implementation from which the user can choose from.

In order to perform a simulation, a pointer to CALRun{2D|3D} must be declared and de-
fined by means of the calRunDef{2D|3D}() function. The simulation object stores a pointer
to the OpenCAL model to be run, a step counter, the initial and final computational steps, an
enumeral of type CALUpdateMode, which specifies the substates update policy (if implicit
or explicit), and registers a set of four optional callback functions. These latter, described
below, take a pointer to an OpenCAL model as argument and do not return any value, with
the exception of the termination function, which returns a CALbyte (CAL_TRUE if the termi-
nation criterion is satisfied, CAL_FALSE in the other case). The optional callback functions
are:

• init(): It can be used to set the initial conditions of an OpenCAL computational model.
It can be registered to the simulation object by using the calRunAddInitFunc{2D|3D}()
function. If defined, the init() function is executed once before the simulation loop.

• globalTransition(): It can be used to redefine the execution order of the registered
elementary processes and to perform selective substate updating.
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The calApplyElementaryProcess2D|3D() function can be used within the registered
callback to apply a registered elementary process to each cell of the computational
domain, while the calUpdateSubstate{2D|3D}{b|i|r} to update a registered sub-
state. The globalTransition() function also allows to call functions that can perform
global operations over the computational domain, e.g. reductions. It can be registered
to the simulation object by using the calRunAddGlobalTransitionFunc{2D|3D}() func-
tion. If defined, the globalTransition() function overrides, i.e. is applied instead of,
the implicit global transition function.

• steering(): It can be used to perform global operations, e.g. reductions, at the end
of each computational step, that is after that all the elementary processes have been
applied. Predefined reductions allow to compute global minimum, maximum, sum,
product, as well as logical and bit-wise AND, OR and NOT operations on the reg-
istered substates. A steering can be registered to the simulation object by using the
calRunAddSteeringFunc{2D|3D}() function. If defined, the steering() function is ap-
plied at the end of each computational step.

• stopCondition(): It can be used to define a stopping criterion for the simulation. Note
that, if the last computational step was set to CAL_RUN_LOOP, the stopCondition()

callback is mandatory to stop the simulation. It returns CAL_TRUE if the termination
criterion is satisfied, CAL_FALSE in the other case. The termination callback can be
registered by using the calRunAddStopConditionFunc{2D|3D}() function. If defined,
the stopCondition() function is executed at the end of each computational step.

The simulation process can be executed by means of the calRun{2D|3D} function. Algo-
rithm 1 outlines the OpenCAL implicit simulation process, which takes place in the case
the enumeral CAL_UPDATE_IMPLICIT was used as last argument for the calRunDef{2D|3D}()

function. The init() function, if defined, is called first and then active cells (if quantization
is enabled) and substates are updated. Moreover, the step counter and the halt variable,
that is used to check the simulation termination condition, are set to the initial step and
to CAL_FALSE, respectively. The main simulation loop follows, which applies elementary
processes in the order they were registered to each cell of the computational domain. After
the execution of each elementary process, active cells and substates are updated. If defined,
the steering() global function is therefore called and active cells and substates updated.
The stopCondition() function is also called and the step counter increased. The simulation
loop continues while the halt variable, whose value is set by the stopCondition() function,
is CAL_FALSE or the final step of computation is met.

Explicit update can be set by using the CAL_UPDATE_EXPLICIT enumeral as last argument
of the calRunDef{2D|3D}() function. In this case, the global transition function must be
overridden and both active cells and substates explicitly updated. Eventually, instead of the
calRun{2D|3D}(), which executes the whole simulation process, the calRunCAStep{2D|3D}()
function can be used to apply a single step of the global transition function, including
steering and stop condition checking. In this case, the initialization function must be called
explicitly, as well as the simulation counter increased.

5.3.3 OpenCAL Conway’s Game of Life

As a first illustrative example, we here present the OpenCAL implementation of the Turing
complete Conway’s Game of Life [135], one of the most simple, yet powerful examples of



64 opencal - the open computing abstraction layer

Algorithm 1: OpenCAL main implicit simulation process.

1 init() // Call the init() global function

2 if quantization then
3 update (A) // Update the array of active cells

4 forall q ∈ Q do
5 update (q) // Update the substate q

6 step← initial_step
7 halt← f alse
8 while ¬halt ∧ (step ≤ final_step ∨ final_step = CAL_RUN_LOOP) do
9 forall e of σ do

10 forall (A 6= ∅ ∧ i ∈ A)∨ i ∈ R do
11 e(i) // Apply the elementary process e to the cell i

12 if quantization then
13 update (A) // Update the array of active cells

14 forall q ∈ Q do
15 update (q) // Update the substate q

16 steering() // Call the steering() global function

17 if quantization then
18 update (A) // Update the array of active cells

19 forall q ∈ Q do
20 update (q) // Update the substate q

21 halt←stopCondition() // Check the stop condition

22 step← step + 1

23 return

CA, devised by mathematician John Horton Conway in 1970. See Section 2.5 at page 14 for
a formal definition of The Game of Life and a description of its governing rules.

The program in Listing 5.1 provides a complete OpenCAL implementation of Game of Life
in just few lines of code, by defining both the CA model and the simulation object, needed
to let the CA evolve step by step.

1 #include <OpenCAL/cal2D.h>

2 #include <OpenCAL/cal2DIO.h>

3 #include <OpenCAL/cal2DRun.h>

4 #include <stdlib.h>

5

6 struct CALModel2D* life;

7 struct CALSubstate2Di* Q;

8 struct CALRun2D* life_simulation;

9

10 void lifeTransitionFunction(struct CALModel2D* life, int i, int j)

11 {

12 int sum = 0, n;

13 for (n=1; n<life->sizeof_X; n++)

14 sum += calGetX2Di(life, Q, i, j, n);

15

16 if ((sum == 3) || (sum == 2 && calGet2Di(life, Q, i, j) == 1))



5.3 the open computing abstraction layer 65

17 calSet2Di(life, Q, i, j, 1);

18 else

19 calSet2Di(life, Q, i, j, 0);

20 }

21

22 int main()

23 {

24 life = calCADef2D(8, 16, CAL_MOORE_NEIGHBORHOOD_2D, CAL_SPACE_TOROIDAL, CAL_NO_OPT);

25 life_simulation = calRunDef2D(life, 1, 1, CAL_UPDATE_IMPLICIT);

26

27 Q = calAddSubstate2Di(life);

28

29 calAddElementaryProcess2D(life, lifeTransitionFunction);

30

31 calInitSubstate2Di(life, Q, 0);

32 calInit2Di(life, Q, 0, 2, 1);

33 calInit2Di(life, Q, 1, 0, 1);

34 calInit2Di(life, Q, 1, 2, 1);

35 calInit2Di(life, Q, 2, 1, 1);

36 calInit2Di(life, Q, 2, 2, 1);

37

38 calSaveSubstate2Di(life, Q, "./life_0000.txt");

39

40 calRun2D(life_simulation);

41

42 calSaveSubstate2Di(life, Q, "./life_LAST.txt");

43

44 calRunFinalize2D(life_simulation);

45 calFinalize2D(life);

46

47 return 0;

48 }

Listing 5.1: An OpenCAL implementation of the Conway’s Game of Life.

OpenCAL header files are included at lines 1-3. Specifically, cal2D.h allows to define 2D CA
and substates, cal2DRun.h the simulation object, while cal2DIO.h provides some basic I/O
functions. The CA object is declared at line 6, while lines 7 and 8 declare a substate and
a simulation object, respectively. Objects declared at lines 6-8 are defined later in the main

function. In particular, the life CA object is defined at line 24 by the calCADef2D() func-
tion. The first 2 parameters define the dimensions of the computational domain (in terms
of number of rows and columns, respectively), while the third the Moore neighborhood.
Furthermore, the fourth parameter sets a toroidal topology for the cellular space, while the
last switches the active cells optimization to off.

The CA simulation object is defined at line 25 by the calRunDef2D() function, where the
first parameter is a pointer to the life CA object, while the second and third parameters
specify the initial and last simulation steps, respectively. Eventually, the last parameter sets
the update policy to implicit.

Line 27 allocates memory and registers the integer-based Q substate to the CA by means
of the calAddSubstate2Di() function, while line 29 registers an elementary process by
means of the calAddElementaryProcess2D() function. Here, the lifeTransitionFunction

parameter represents the name of a developer-defined function implementing the transi-
tion function rules (cf. lines 10-20). Within the elementary process, the calGet[X]2Di()

and calSet2Di() functions are used for reading and updating purposes, respectively. The
calInitSubstate2Di() function at line 31 sets the whole Q substate to the value 0 (for both
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Figure 5.5: Graphical representation of one computational step of the Game of Life, showing the
(a) initial and (b) final configurations of the system. Alive cells are represented in grey,
dead cells in white.

the current and next layers). Lines 32-36 define a so called glider pattern (cf. Figure 5.5a) by
means of the calInit2Di() function. The calSaveSubstate2Di() function at line 38 saves
the Q substate to file, while the calRun2D() function at line 40 enters the simulation process
(actually, only one computational step in this example), and returns to the main function
when the simulation is terminated. The calSaveSubstate2Di() is called again at line 42 to
save the new (last) configuration of the CA, while the last two functions at lines 44 and
45 release memory previously automatically allocated by OpenCAL for the CA, substates
(actually, only Q in this case) and simulation object. The return statement at line 47 ends
the program.

Figure 5.5 show a graphical representation of the initial and final configurations of Game
of Life, respectively, as implemented in Listing 5.1. As expected, the glider initially defined
has evolved into the new correct configuration.

5.4 the opencal openmp-based parallel implementation

In this section we present OpenCAL-OMP, the OpenMP-based parallel implementation of OpenCAL,
which allows for seamless parallel execution on shared memory computing systems in a
SIMD fashion. For brevity, we only present and discuss differences with respect to OpenCAL

in terms of API and internal algorithms. Since one of the main goal is to obtain transparent
parallelism, the OpenCAL-OMP API has been designed to differ as less as possible to the serial
one, leading to the adoption of the same naming conventions, interface, and programming
model.

Double layer substates were also considered in OpenCAL-OMP, which permitted a straight-
forward lock-free OpenMP parallelization. In fact no race conditions can occur, since the
current layer is accessed in read mode, and the update phase access to the next layer is
limited to the memory location associated with the central cell. As a consequence, elemen-
tary processes and substates updating loops, as well as global reduction operations, were
parallelized by simply considering lock-free OpenMP pool of threads, as shown in Figure 5.6.
In the example, a pool of three threads were used to partition the computational domain
in three subregions, which were therefore processed in parallel both during the applica-
tion of an elementary process and the subsequent substates updating. Note that, in the
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Figure 5.6: An example of OpenCAL-OMP parallel application of an elementary process to a sub-
state Q and its subsequent parallel updating. The computational domain is initially
partitioned by means of a pool of three threads (fork phase). These latter concurrently
apply the elementary process by reading state values from the current layer and by up-
dating new values to the next one. At the end of the elementary process application,
threads implicitly synchronize by joining into the master one (join phase), and the
parallel update phase starts. As before, a pool of threads concurrently copies the next
layer into the current one and the new configuration of Q is obtained. A join phase
eventually occurs, which ensures data consistency before the application of another
elementary process.

case only a subset of cells are actually involved in computation, as in the example, load
unbalance conditions can occur. In fact, the third thread is wasted, since it only applies
the elementary process on a subset of stationary cells. A dynamic OpenMP scheduling is
adopted in this case to mitigate the unbalance among chunks. As regards the quantization
feature, it is still based on the dynamic array of active cells A, containing the coordinates
of non stationary cells, and on the array of flags F, having the same dimension of the
computational domain, used to register the cells activation state during the application of
the transition function. F is initially set to CAL_FALSE in each position and, each time a
cell has to be added to/removed from A, the corresponding position in F is updated by a
CAL_TRUE/CAL_FALSE value. At the end of the add/remove stage, a lock-free parallel stream
compaction is executed on the resulting scattered array F to obtain the new set of active
cells A. For this purpose, F is partitioned over the N running threads. Each of them builds
a private subset, Ap (p = 0, 1, . . . N − 1), of cells to be added to/removed from A, by con-
textually evaluating its relative size, sizep. Eventually, the actual size of A is obtained as
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size = ∑N−1
p=0 sizep, and the subsets Ap assembled together to form the new set A, as shown

in Figure 5.7. As for the case of the OpenCAL serial stream compaction, it is evident that
also in this case the algorithm has a O(n) computational efficiency, where n is the number
of cells of the cellular space. Note that, being both the CAL_TRUE and CAL_FASE 8-bit long
enumerals, no inconsistent values can be obtained even in the case more than one thread
accesses the same location in F simultaneously and, therefore, a lock-free updating policy
was also here considered for the quantization optimization. However, as for OpenCAL, the
add and remove stages updating the values in F have to be performed separately, e.g. by
two different elementary processes, in order to avoid possible race conditions. In fact, if the
same elementary process could both add and remove cells (depending for instance on the
current state of the central cell), two different threads applying the elementary process to
two different cells could update the same (neighbouring) cell to different activation states.
In this case, the resulting value in F would depend on which thread writes the value for
last, giving rise to a possible logical error. Eventually, note that the quantization feature is
able to optimally distribute the computational load over the running threads, since station-
ary cells are simply excluded by the computation (cf. Figure 5.7). A more efficient static
OpenMP scheduling is therefore here adopted instead of the dynamic one.

5.4.1 OpenCAL-OMP implementation of the Game of Life

Conway’s Game of Life can be straightforwardly implemented in parallel by using OpenCAL-OMP.
The source code is almost identical to the one in Listing 5.1, with the exception of the first
three lines, where the OpenCAL-OMP header files are included instead of the OpenCAL ones.
For this purpose, it is sufficient to change the headers parent directory from OpenCAL to
OpenCAL-OMP. For instance, the OpenCAL/cal2D.h header is replaced by OpenCAL-OMP/cal2D.h.
The remaining lines of code are unchanged and therefore source code is omitted. As for
the case of the OpenCAL implementation, Figure 5.5 shows the initial and final configuration
of the system.

5.5 the opencal opencl-based parallel implementation

In this section, we present the OpenCL-based parallel implementation of OpenCAL, which
allows for the parallel execution on both shared memory computing systems and many-
core acceleration devices in a SIMD fashion, by highlighting the differences with respect
to the serial and OpenMP implementations of OpenCAL in terms of API and internal algo-
rithms.

The API is very similar to the serial one and adopts the same programming model and
naming conventions, with the exception that the calcl, CALCL and CALCL_ prefixes are
adopted for functions, data types and constants, respectively. The main difference with
respect to OpenCAL and OpenCAL-OMP is that an OpenCAL-CL application is subdivided in
two parts, one running on the CPU, the other in parallel on a compliant device. The host
application defines the host-side computational model, registers the required substates to it,
while elementary processes and other global function are implemented as OpenCL kernels
and registered to a device-side computational model. When a device-side model is defined,
data registered to the host-side model is implicitly copied to the compliant device global
memory, transparently to the user. Within kernels, however, the user can transfer data
to the local memory and then update the global memory when the local operations are
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Figure 5.7: An example of application of the parallel stream compaction algorithm used in
OpenCAL-OMP to update the set A of active cells. Active cells are represented in gray
within a two-dimensional 4x4 matrix of flags, implemented as a linearized array, F.
The parallel stream compaction algorithm processes F by means of a lock-free pool of
threads, resulting in the Ap (p = 0, 1, 2) partial arrays of active cells. These latter are
eventually assembled together by the master thread, resulting in the compacted array
A. A new pool of threads therefore applies the state transition function in parallel on
A with an optimal load balancing, and a new configuration of the system is obtained.
The process is therefore repeated at the next computational step.
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complete, for better performance. Data stored in global memory is therefore copied back to
the host at the end of the simulation process. This latter if equivalent to that of OpenCAL
and OpenCAL-OMP (cf. Algorithm 1), with the exception that kernels are executed device-side
and the simulation process can not be currently, in this first OpenCAL release, made explicit,
because the explicit API is not entirely correctly implemented.

Grid of work-items can be two- or three-dimensional, depending on the dimension of
computational model, if 2D or 3D, respectively. In the case the quantization feature is ex-
ploited, a one-dimensional grid is considered. The number of work-items is evaluated for
each model dimension by preliminary querying OpenCL for the (device-dependent) pre-
ferred work-group size multiple (i.e. the warp/wavefront size in NVIDIA/AMD GPUs),
ws, and therefore by considering the smallest multiple of ws which is greater than or equal
to the model dimension. For instance, if ws = 32 and the first dimension of the domain
is 2000, the number of work-items in that dimension will be 2016, i.e. the first multiple
of 32 which is greater than or equal to 2000, thus resulting in 16 redundant work-items.
However, since redundant work-items do not map any cell of the computational domain,
they immediately terminate their execution. Moreover, according to OpenCL, work-items
are grouped in workgroups. The choice of the number of workgroups to be considered,
and therefore the workgroup size, depends on the device architecture and is automatically
determined by default, transparently to the user. These choices should allow to not waste
resources and also permits the user to ignore low-level hardware details. In any case, the
calclSetWorkGroupDimensions{2D|3D}() function can be used to explicitly set the work-
group size.

Double layer substates are also considered in OpenCAL-CL. That is, as for the serial and
OpenMP-based versions of OpenCAL, the current layer is used for reading the states of the
neighboring cells, while the next for updating the new value for the central one. A grid of
OpenCL work-items can therefore be defined, each one executing the transition function
on a different cell of the computational domain, independently to each other. In fact, no
race conditions can occur, since access to the current layer is read-only, and each work-
item updates a different memory location of the next layer. Being the data stored in global
memory, work-items can be easily synchronized after the execution of each elementary
process, since a global barrier is implicitly defined at the end of each kernel execution. The
kernel-based transition function is therefore applied by considering the one-thread/one-
cell parallel execution policy and, at the end of each computational step, substates are
updated device side, avoiding the need to perform time consuming data transfer between
host and device.

The quantization feature is also supported in OpenCAL-CL, where coordinates of the
active cells are stored in the array A that, differently from the serial and OpenMP-based
implementations, is static and has the same dimension of the computational domain. A
variable, size, initially set to zero, is also considered to identify the actual number of ac-
tive cells. A static array of flags, F, is also considered, which has the same dimension of the
computational domain. It is initially set to CAL_FALSE in each position, to mark all cells as in-
active. The add/remove operations, performed by work-items at the init stage or during the
execution of the transition function, update the array of flags F as in the previous discussed
implementations. In case of concurrent access to the same location of F, data integrity is
guarantied only under the condition work-items execute the same instruction (e.g. all of
them write the CAL_TRUE value). In fact, if the same instruction is executed by more than
one work-item (even belonging to different workgroups) to the same location in global
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memory where F is stored, the access is serialized and at least one access is guarantied
(even if which actual thread performs the operation is undefined - cf. e.g. [134]). Moreover,
the same considerations discussed for the OpenCAL and OpenCAL-OMP implementations of
the active cells optimization, even hold for the OpenCAL-CL one. As a consequence, to both
guaranty data integrity and to avoid possible logical errors, the add and remove stages
have to be performed separately, e.g. by two different elementary processes. At the end of
each add or remove stage, cells to be considered active are marked by the CAL_TRUE value
in the scattered array F. In order to update A, a parallel stream compaction algorithm is
considered. F is partitioned in N chunks, being N the number of considered work-items,
and the following three stages applied:

1. Each work-item counts the number of active cells in its chunk of the array F. As a
result, an array S is obtained, where sp (p = 0, 1, . . . , N− 1) is the number of the active
cells counted by the pth work-item;

2. A prefix-sum algorithm is executed to both evaluate the total number of active cells,
size, and a further array, O, where op (p = 0, 1, . . . , N − 1) represents the offset to be
considered by the pth work-item from which it must start entering in A the coordi-
nates of the cells that are marked as active in its chunk of the array F.

3. Each work-item processes its chunk of F and enters in A the coordinates of the cells
marked as active, starting from the offset op (p = 0, 1, . . . , N − 1) computed in the
previous stage.

For illustrative purposes, the above three stages are graphically represented in Figure 5.9.
At step t, the configuration of the cells actually involved in the computation are represented
in gray in a two-dimensional 4x4 matrix, corresponding to the linearized scattered array
F. The parallel stream compaction algorithm processes the scattered array F to obtain the
compacted array A, containing the coordinates of the three active cells in its first three
positions. A two-block grid with two threads per block is considered in the example, which
adopt the one thread/one active cell execution policy. Note that, at step t a total of four
work-items are considered to process a set of three active cells. In this case, the thread
that does not match any active cell immediately terminates. Among the parallel stream
compaction stages, the prefix-sum algorithm at stage two, which evaluates the array O of
offsets, is crucial for the overall efficiency of the algorithm. As shown in Figure 5.8, the
algorithm takes as input the array S of partial sums and uses it to initialize the array O of
offsets. This latter is considered as a balanced tree, where its elements are the nodes. In the
first phase, the tree is crossed from the leaves to the root (up-sweep phase) by calculating,
for each level, the partial sums of the nodes of the previous level (by a parallel reduction
pattern). Here the total number of work-items is set to N/2, which means that a thread
will elaborate two elements of the array. The total number of active cells, necessary to set
the size variable, is obtained at the end of the up-sweep phase in the root node (i.e. in
the last element of the array). In the second phase, the tree is traversed from the root to
the leaves (down-sweep phase). At each iteration, each node sets the value of the right
child to the sum of its value and the value of the left child. In addition, each node sets the
value of its left child to its value. At the end of this phase, the array O contains at each
location the position from which each work-item can write the coordinates of the active
cells in its chunk of F to the array A. As known, the parallel prefix-sum algorithm has
a O(log2N) computational efficiency, and is well suitable for parallel execution, resulting
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Figure 5.8: An example of application of the prefix-sum algorithm used to evaluate the array
O of offsets, needed to build the array A of active cells. In the up-sweep phase, the
array O is initialized to the values of the array S, where sp is the number of cells to
be added to A by the pth wor-item. The array O is therefore efficiently processed by
a set of work-items and, at the end of the phase, the last cell of the array contains
the total number of active cells to be considered for the next computational step. The
down-sweep phase follows, in which dotted arrows are used to set the pointed cell of
the array O to 0, while continuous arrows to evaluate the sum of the source cells and
then to write the computed value to the pointed position, as in the previous phase.
Offsets are eventually obtained at the end of the down-sweep phase. The first work
item will therefore start adding S0 cells to A from the index 0, the second adding S1
cells starting from the offset S0, the third adding S2 cells from the offset S0 + S1, up
to the latter, which will add S7 cells starting from the offset S0 + S1 + . . . + S6.
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Figure 5.9: An example of application of the OpenCAL-CL parallel stream compaction algorithm.
Active cells are represented in gray within a two-dimensional 4x4 matrix of flags,
implemented as a linearized array, F. The parallel stream compaction algorithm pro-
cesses F and produces the compacted array A as output, containing the coordinates
of the active cells in its first part. A grid of work-items therefore processes data by
adopting the one thread/one active cell policy. The process is therefore repeated at
the next computational step.

in a fast solution for the second stage of the parallel stream compaction algorithm. The
overall computational complexity of the OpenCAL-CL parallel stream compaction, as for the
OpenCAL and OpenCAL-OMP implementations, is however O(n), being n the number of cells
of the computational domain. Due to its efficiency, the up-sweep phase of the parallel
prefix-sum algorithm is also applied to implement parallel global reductions on substates
(cf. Section 5.3).

5.5.1 OpenCAL-CL device-side kernels

Differently to OpenCL, where a kernel can have no parameters, OpenCAL-CL ones must have
at least the __CALCL_MODEL_2D meta-parameter (cf. line 8 of Listing 5.2). Actually, this is a
macro-like C object, defining a list of pre-fixed typed parameters, needed to let the ker-
nel access the model data device-side. Moreover, the calcl[Active]ThreadCheck{2D|3D}()



74 opencal - the open computing abstraction layer

function must be called within any elementary process implemented as a kernel to prevent
the execution of a number of threads out of the computational domain (cf. line 11) or of
the set of active cells. The calclGlobal{Row|Column|Slice}() function (cf. lines 15-16) have
also to be used to get the global cell coordinates, which here do not appear in the kernel pa-
rameter list. The calclGet[X]{2D|3D}{b|i|r}() and calclSet{2D|3D}{b|i|r}() functions
are used for reading and updating purposes. Differently to their host-side counterparts,
they take the MODEL_{2D|3D} macro-like C meta-object, which implicitly defines a list of
required prefixed parameters (cf. e.g. line 23). Moreover, substates are referred by means
of numerical handles (cf. the second parameter of the calclSet2Dr() function at line 23),
which have to be previously defined in the kernel (cf. line 6). The criterion to be adopted is
very simple: handles are zero-based IDs, i.e. zero is used to refer the first substate registered
to the host-side model, one to refer the second substate, and so on. Different zero-based
handles must be defined for different typed substates.

1 #include <OpenCAL-CL/calcl2D.h>

2

3 // Define substates handles

4 // omissis ...

5 #define Z 4

6 #define H 5

7

8 __kernel void calcl_kernel_example(__CALCL_MODEL_2D)

9 {

10 // Prevent the execution of more threads than the CA dimension

11 calclThreadCheck2D();

12

13 // omissis ...

14

15 // Get the cell coordinates back

16 CALint i = calclGlobalRow();

17 CALint j = calclGlobalColumn();

18

19 // omissis ...

20

21 // Set a new value for the substate

22 // whose handle is defined by H.

23 // Please, note the usage of the

24 // MODEL_2D macro-like object

25 calclSet2Dr(MODEL_2D, H, i, j, h_next);

26

27 // omissis ...

28 }

Listing 5.2: Example of OpenCAL-CL kernel.

5.5.2 OpenCAL-CL host-side Programming

An OpenCAL-CL host application is typically subdivided in the following parts:

• Definition of the host-side computational model;

• Selection of the OpenCL compliant device;

• Kernels reading and program generation;
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• Definition of the device-side computational model (which also embeds simulation
facilities);

• Kernels enqueuing;

• Simulation execution (on the previously selected compliant device).

The OpenCAL-CL host-side model definition does not differ from the serial implementation
of OpenCAL. Indeed, in Listing 5.3, a two-dimensional host-side model object is declared
by using the CALModel{2D|3D} data type (line 4), and then initialized by means of the
calCADef{2D|3D}() function (line 11). Note that the calcl{2D|3D}.h header file is included
at line 1. This, in turn, includes the cal{2D|3D}.h header, so that it is possible to use OpenCAL

data types and functions from an OpenCAL-CL host application.

1 #include <OpenCAL-CL/calcl2D.h>

2

3 // omissis ...

4

5 struct CALModel2D* hostCA;

6

7 // omissis ...

8

9 int main(int argc, char** argv)

10 {

11 // omissis ...

12

13 hostCA = calCADef2D(ROWS, COLS, CAL_VON_NEUMANN_NEIGHBORHOOD_2D, CAL_SPACE_TOROIDAL,

CAL_OPT_ACTIVE_CELLS);

14

15 // omissis ...

16

17 }

Listing 5.3: An example of OpenCAL-CL host-side application.

OpenCAL-CL provides the CALCLManager structure which, together with other utility func-
tions, considerably simplifies platform, device, and context management with respect to
the native OpenCL API. Listing 5.4 shows how to select a compliant device in OpenCAL-
CL. Line 7 declares a pointer to the CALCLManager OpenCAL-CL data type, and initializes
it through the calclCreateManager() function. This object, calcl_manager, is then used
as parameter for the calclInitializePlatforms() function (line 10), which fills the object
with the platforms available on the machine. Line 13 calls the calclInitializeDevices()

function, that initializes the available devices, while line 20 selects one of them for ker-
nel execution. Specifically, an object of type CALCLdevice is declared and initialized by the
function calclGetDevice(). This latter takes a pointer to a CALCLManager object as first
parameter, while the second and third parameters specify the platform and device to be
selected, respectively. Since both platforms and devices are identified by a 0-based index,
statement at line 20 selects the first device belonging to the first platform (e.g., a GTX
980 belonging to the Nvidia CUDA platform). If system platforms and devices are un-
known, the calclGetPlatformAndDeviceFromStdIn() function can be used alternatively to
calclGetDevice(). It prints all the available platforms and devices to standard output and
permits for their interactive selection from standard input. Eventually, line 23 creates an
OpenCL context, based on the device previously selected. For this purpose, an object of



76 opencal - the open computing abstraction layer

CALCLcontext type is declared and defined by means of the calclCreateContext() func-
tion.

1 #include <OpenCAL-CL/calcl2D.h>

2

3 // omissis ...

4

5 int main (int argc, char** argv)

6 {

7 // Initilize a pointer to the CALCLManager structure

8 CALCLManager* calcl_manager = calclCreateManager();

9

10 // get all available platforms

11 calclInitializePlatforms(calcl_manager);

12

13 // Initialize the devices

14 calclInitializeDevices(calcl_manager);

15

16 // Uncomment if platforms and devices are unknown

17 //calclGetPlatformAndDeviceFromStdIn();

18

19 // get the first device on the first platform

20 // this call is unnecessary if

21 // calclGetPlatformsAndDeviceFromStandardInput() is used

22 CALCLdevice device = calclGetDevice(calcl_manager, 0, 0);

23

24 // create a context CALCLcontext

25 context = calclCreateContext(&device);

26

27 // omissis ...

28 }

Listing 5.4: Example of OpenCAL-CL access to platform and devices.

Once the compliant device has been selected and functions to be executed in parallel
implemented as kernels, these latter can automatically be read and compiled through the
calclLoadProgram{2D|3D}() function. It takes both the context and device, and also the
paths to the directory containing the user defined kernels and related headers (if any), and
returns an OpenCL program. All the files in the kernel source directory are automatically
loaded. Note that, since kernel headers are optional, the last parameter can be NULL.

The device-side counterpart of the host-side computational model can be declared as a
pointer to CALCLModel{2D|3D} and, beside managing all the host model components device-
side, also embeds simulation execution facilities. In this manner, the user can continue to
deal with only two main structures, as in the serial and OpenMP-based implementations.
The calclCADef{2D|3D}() function can be used to initialize the device-side model object.
It takes a pointer to an host-side CALModel{2D|3D} serial model, an OpenCL context, an
OpenCL program, and a compliant device as parameters.

Kernels can be extracted from an OpenCL program by means of the
calclGetKernelFromProgram() function and then registered to the device-side model by
means of the calclAddElementaryProcess{2D|3D}() function, which adds the kernel to
the execution queue, in a transparent manner to the user. The function takes a pointer
to a host, a device model and also a pointer to an OpenCL kernel. Global functions can
also be registered to the device model. For instance, the calclAddInitFunc{2D|3D}() func-
tion registers a global initialization kernel, the calclAddSteeringFunc{2D|3D}() function
registers a global kernel to be executed at the end of each computational step, while the
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calclAddStopConditionFunc{2D|3D}() function registers a global stop condition kernel
callback.

The calclRun{2D|3D}() function runs the simulation by executing all the defined kernels
on the selected compliant device. The first two parameters are pointers to a device and
host models, respectively, while the last two are the initial and final step for the simulation
execution. If the last parameter is set to CAL_RUN_LOOP, the simulation never ends. In this
case, a stop condition criterion must defined by registering a termination kernel callback
to halt the simulation.

5.5.3 OpenCAL-CL implementation of the Game of Life

According to OpenCAL-CL, the Game of Life implementation here described is subdivided
in a device- and an host-side part. The device-side kernel implementing the Conway’s
Game of Life transition function is shown in Listing 5.5. The calcl2D.h is included at
line 1, and a numeric handle defined at line 3 to refer the Q substate device-side. The
transition rules are implemented as an elementary process kernel at lines 5-23. In partic-
ular, line 7 checks for redundant work-items, while lines 9-10 get the indices correspond-
ing to the integer coordinates of the cell the kernel is going to process. Similarly, line 12

retrieves the neighborhood size by means of the calclGetNeighborhoodSize() function.
Eventually, lines 16-22 implement the transition rules by using the calclGet[X]2Di() and
calclSet2Di() functions for reading and updating purposes, respectively.

1 #include <OpenCAL-CL/calcl2D.h>

2

3 #define DEVICE_Q 0

4

5 __kernel void lifeTransitionFunction(__CALCL_MODEL_2D)

6 {

7 calclThreadCheck2D();

8

9 int i = calclGlobalRow();

10 int j = calclGlobalColumn();

11

12 CALint sizeof_X = calclGetNeighborhoodSize();

13

14 int sum = 0, n;

15

16 for (n=1; n<sizeof_X; n++)

17 sum += calclGetX2Di(MODEL_2D, DEVICE_Q, i, j, n);

18

19 if ((sum == 3) || (sum == 2 && calclGet2Di(MODEL_2D, DEVICE_Q, i, j) == 1))

20 calclSet2Di(MODEL_2D, DEVICE_Q, i, j, 1);

21 else

22 calclSet2Di(MODEL_2D, DEVICE_Q, i, j, 0);

23 }

Listing 5.5: The OpenCAL-CL kernel implementing the Conway’s Game of Life elementary process.

The host-side application, running on the CPU and controlling the computation on the
compliant device (e.g. a GPU), is shown in Listing 5.8.1. The calcl2D.h header file is in-
cluded, together with the OpenCAL cal2DIO.h header for I/O operations at lines 1-2. The
kernel path is defined at line 4, while the name of the kernel considered in this example
is defined at line 5. Lines 6-8 define the IDs of the OpenCL platform and device to be
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considered. For the sake of simplicity, in this example the first device belonging to the
first platform is considered. Lines 12-15 are needed to select the compliant device and to
create an OpenCL context. These statements widely simplify the device management and
can be considered as a kind of template to be used in each OpenCAL-CL application. Line
16 reads kernels (actually, just one in this example) from file (contained in the directory
specified at line 4), compile and groups them into an OpenCL program, to be used later
to extract kernels for execution. As in the serial implementation of the Game of Life, the
host_CA host-side object is defined at line 18 and the Q substate declared at line 19. This
latter is therefore registered to the host-side CA at line 21. Eventually, the substate is set
to zero in each cell and a glider is defined at lines 23-28. Line 30 defines the device_CA

device-side object. The calclCADef2D() function initializes the device-side CA, by perform-
ing data transfer from host to device, in a transparent way to the user. Note that this
function implicitly registers each host-side defined substate to the device object. In order
to register an elementary process to the device-side CA, the elementary process (which ac-
tually is an OpenCL kernel) must be preliminarily extracted from the previously compiled
program. This operation is done at line 32 by means of the calclGetKernelFromProgram().
It returns an OpenCL kernel, which is subsequently registered to the device CA by means
of the calclAddElementaryProcess2D() function at line 33. Lines 35 and 39 are used to
save the CA state before and after simulation execution, respectively. The CA simulation,
for one step, is executed by means of the calclRun2D() function at line 37. In this example,
the only defined elementary process is executed in parallel on the compliant device in a
transparently way to the user. Eventually, lines 41-43 perform memory deallocation for the
previously defined objects. The return statement at line 45 terminates the program.

1 #include <OpenCAL−CL/calcl2D.h>
2 #include <OpenCAL/cal2DIO.h>
3

4 #define KERNEL_SRC "./kernel"

5 #define KERNEL_LIFE_TRANSITION_FUNCTION "lifeTransitionFunction"

6 #define PLATFORM_NUM 0
7 #define DEVICE_NUM 0
8 #define DEVICE_Q 0
9

10 int main()
11 {
12 struct CALCLDeviceManager* calcl_device_manager = calclCreateManager();
13 calclPrintPlatformsAndDevices(calcl_device_manager);
14 CALCLdevice device = calclGetDevice(calcl_device_manager, PLATFORM_NUM,

DEVICE_NUM);
15 CALCLcontext context = calclCreateContext(&device);
16 CALCLprogram program = calclLoadProgram2D(context, device, KERNEL_SRC, NULL);
17

18 struct CALModel2D* host_CA = calCADef2D(8, 16, CAL_MOORE_NEIGHBORHOOD_2D,
CAL_SPACE_TOROIDAL, CAL_NO_OPT);

19 struct CALSubstate2Di* Q;
20

21 Q = calAddSubstate2Di(host_CA);
22

23 calInitSubstate2Di(host_CA, Q, 0);
24 calInit2Di(host_CA, Q, 0, 2, 1);
25 calInit2Di(host_CA, Q, 1, 0, 1);
26 calInit2Di(host_CA, Q, 1, 2, 1);
27 calInit2Di(host_CA, Q, 2, 1, 1);
28 calInit2Di(host_CA, Q, 2, 2, 1);
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29

30 struct CALCLModel2D* device_CA = calclCADef2D(host_CA, context, program, device
);

31

32 CALCLkernel kernel_life_transition_function = calclGetKernelFromProgram(&
program, KERNEL_LIFE_TRANSITION_FUNCTION);

33 calclAddElementaryProcess2D(device_CA, &kernel_life_transition_function);
34

35 calSaveSubstate2Di(host_CA, Q, "./life_0000.txt");
36

37 calclRun2D(device_CA, 1, 1);
38

39 calSaveSubstate2Di(host_CA, Q, "./life_LAST.txt");
40

41 calclFinalizeManager(calcl_device_manager);
42 calclFinalize2D(device_CA);
43 calFinalize2D(host_CA);
44

45 return 0;
46 }

Listing 5.6: An OpenCAL-CL host-side implementation of the Conway’s Game of Life.

As for the case of the OpenCAL implementation of the Game of Life, Figure 5.5 shows the
initial and final configuration of the system.

5.6 the SciddicaTnaive example of application

In this section we show the OpenCAL, OpenCAL-OMP and OpenCAL-CL implementations of
a more complex example, namely the SciddicaTnaive fluid-flow XCA computational model.
This is a simplified version of the XCA model described in [133] and is able to simu-
late the dynamics of a generic non-inertial fluid-type flow over a real topographic surface.
The model is formally defined and key implementation sections reported and commented.
Eventually, the application to the simulation of a real case study, namely the 1992 Tessina
(Italy) landslide, is shown.

5.6.1 The SciddicaTnaive Formal Definition

The SciddicaTnaive fluid-flow XCA computational model is formally defined as:

SciddicaTnaive =< R, X, Q, P, σ >

where:

• R is the set of points, with integer coordinates, which defines the two-dimensional
domain over which the phenomenon evolves. The generic cell in R is individuated by
means of a couple of integer coordinates (i, j), where 0 ≤ i < imax and 0 ≤ j < jmax.
The first coordinate, i, represents the row, while the second, j, the column. The cell at
coordinates (0, 0) is located at the top-left corner of the computational grid.

• X = {(0, 0), (−1, 0), (0,−1), (0, 1), (1, 0)} is the von Neumann neighborhood relation
(cf. Figure 5.2a), a geometrical pattern which identifies the cells influencing the state
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transition of the central cell. The neighborhood of the generic cell of coordinate (i, j)
is given by

N(X, (i, j)) =

= {(i, j) + (0, 0), (i, j) + (−1, 0), (i, j) + (0,−1), (i, j) + (0, 1), (i, j) + (1, 0)} =

= {(i, j), (i− 1, j), (i, j− 1), (i, j + 1), (i + 1, j)}

Here, a subscript operator can be used to index cells belonging to the neighborhood.
Let |X| be the number of elements in X, and n ∈N, 0 ≤ n < |X|; the notation

N(X, (i, j), n)

represents the nth neighborhood of the cell (i, j).

• Q is the set of cell states. It is subdivided in the following substates:

– Qz is the set of values representing the topographic altitude (i.e. elevation a.s.l.);

– Qh is the set of values representing the thickness of the fluid;

– Q4
o are the sets of values representing the outflows from the central cell to the

neighboring ones.

The Cartesian product of the substates defines the overall set of states Q:

Q = Qz ×Qh ×Q4
o

so that the cell state is specified by the following sextuplet:

q = (qz, qh, qo0 , qo1 , qo2 , qo3)

In particular, qo0 represents the outflows from the central cell towards the neighbor 1,
qo1 the outflow towards the neighbor 2, and so on.

• P is the set of parameters ruling the model dynamics where:

– pε is the parameter which specifies the minimum thickness of fluid below which
it cannot leave the cell due to the effect of adherence;

– pr is the relaxation rate parameter, which essentially is an outflow damping
factor.

• σ : Q5 → Q is the deterministic cell transition function. It is composed by two ele-
mentary processes, listed below in the same order they are applied:

– σ1 : (Qz ×Qh)
5 × pε × pr → Q4

o determines the outflows from the central cell to
the neighboring ones by applying the minimization algorithm of the differences [5].
In its simplest form, here considered, the algorithm is able to lead the neigh-
borhood to the hydrostatic equilibrium in a single computational step. In the σ1

elementary process, a preliminary control avoids outflows computation for those
cells in which the amount of fluid is smaller or equal to pε, acting as a simpli-
fication of the adherence effect. If f (0, m) (m = 0, . . . , 3) represent the outgoing
flows towards the 4 adjacent cells, as computed by the minimization algorithm,
the resulting outflows are given by qo(0, m) = f (0, m) · pr, being pr ∈ ]0, 1] a
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relaxation factor considered to damp outflows in order to obtain a smoother
convergence to the global equilibrium of the system. The Q4

o substates are ac-
cordingly updated.

– σ2 : Qh × (Q4
o)

4 → Qh determines the value of debris thickness inside the
cell by considering mass exchange in the cell neighborhood: ht+1(0) = ht(0) +
∑3

m=0(qo(0, m)− qo(m, 0)). Here, ht(0) and ht+1(0) are the mass thickness inside
the cell at t and t + 1 computational step, respectively, while qo(m, 0) represents
the inflow from the n = (m + 1)th neighboring cell. The Qh substate is accord-
ingly updated to account for the mass balance within the cell.

5.6.2 The SciddicaTnaive OpenCAL and OpenCAL-OMP implementations

According to OpenCAL/ and OpenCAL-OMP, the XCA programming model, substates,
parameters and the simulation object can be declared as:

1 struct CALModel2D* sciddicaT;

2

3 struct sciddicaTSubstates {

4 struct CALSubstate2Dr *z;

5 struct CALSubstate2Dr *h;

6 struct CALSubstate2Dr *f[NUMBER_OF_OUTFLOWS];

7 } Q;

8

9 struct sciddicaTParameters {

10 CALParameterr epsilon;

11 CALParameterr r;

12 } P;

13

14 struct CALRun2D* sciddicaT_simulation;

where NUMBER_OF_OUTFLOWS is equal to 4, since the σ1 elementary process computes 4 out-
flows towards the adjacent cells belonging to the von Neumann neighborhood. Note that
the real-based substates and parameters are grouped in C structures for convenience.

The model object is defined through the calCADef2D() function, by specifying the dimen-
sions of the computational domain, the neighborhood pattern, the boundary topology and
the optimization to be used:

1 sciddicaT = calCADef2D(ROWS,

2 COLS,

3 CAL_VON_NEUMANN_NEIGHBORHOOD_2D,

4 CAL_SPACE_TOROIDAL,

5 CAL_NO_OPT

6 );

A toroidal domain is here defined even if, by considering the application described below, a
bounded one could be equivalently adopted. Moreover, according to the model definition,
the active cell optimization is not employed.

Substates are therefore registered to the XCA model by means of the calAddSubstate2Dr()
function:

1 Q.z = calAddSubstate2Dr(sciddicaT);

2 Q.h = calAddSubstate2Dr(sciddicaT);

3 for (i = 0; i < NUMBER_OF_OUTFLOWS; i++)

4 Q.f[i] = calAddSubstate2Dr(sciddicaT);
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as well as elementary processes through the calAddElementaryProcess2D() function:

1 calAddElementaryProcess2D(sciddicaT, flowsComputation);

2 calAddElementaryProcess2D(sciddicaT, widthUpdate);

where flowComputation() and widthUpdate() are callback functions implementing the σ1

and σ2 elementary processes, respectively. A snippet of the σ1 elementary process is shown
below:

1 void flowsComputation(struct CALModel2D* model, int i, int j)

2 {

3 CALreal f[NUMBER_OF_OUTFLOWS];

4

5 if (calGet2Dr(model, Q.h, i, j) <= P.epsilon)

6 return;

7

8 computeMinimizingOutflows(f);

9

10 for (n=1; n<model->sizeof_X; n++)

11 calSet2Dr(model, Q.f[n-1], i, j, f[n]*P.r);

12 }

The calGet2Dr() function is here used to retrieve the thickness of the fluid in the central
cell, comparing its value with the pε parameter for evaluating the adherence condition. In
case the thickness overcomes the adherence threshold, the computeMinimizingOutflows()

function is called, which applies the minimization algorithm of the differences (whose
implementation is here omitted) and returns the array of outgoing flows, f. Such flows are
eventually damped by considering the pr factor and the resulting values used to update
the corresponding substates by means of the calSet2Dr() function. The implementation of
the σ2 elementary processes is also shown below:

1 void widthUpdate(struct CALModel2D* model, int i, int j )

2 {

3 CALint n;

4 CALreal h_next = calGet2Dr(model, Q.h, i, j);

5

6 for(n=1; n<sciddicaT->sizeof_X; n++)

7 h_next += calGetX2Dr(model, Q.f[NUMBER_OF_OUTFLOWS-n], i, j, n) - calGet2Dr(model, Q.f[n-1], i

, j);

8

9 calSet2Dr(model, Q.h, i, j, h_next);

10 }

Here, the calGetX2Dr() function is used to get the incoming flows from the neighbouring
cells which, together with the outgoing flows, are used to evaluate the mass balance and
the resulting value to update the Qh substate.

The above OpenCAL/OpenCAL-OMP code snippets completely define the XCA model
according to the SciddicaTnaive formal definition. In order to perform a simulation, a sim-
ulation object must be defined, by means of the calRunDef2D() function, permitting the
model evolve step by step:

1 sciddicaT_simulation = calRunDef2D(sciddicaT,

2 1,

3 STEPS,

4 CAL_UPDATE_IMPLICIT

5 );



5.6 the SciddicaTnaive example of application 83

The function takes the computational model to be carried out as first parameter, the ini-
tial and final computational step and the substates update policy. In this case, the implicit
scheme is considered, which demands the substates updating entirely to OpenCAL/OpenCAL-OMP,
transparently to the user. The simulation object therefore registers two global callbacks for
initialization and steering purposes through the calRunAddInitFunc2D() and calRunAddSteeringFunc2D()

functions, respectively:
1 calRunAddInitFunc2D(sciddicaT_simulation, simulationInit);

2 calRunAddSteeringFunc2D(sciddicaT_simulation, steering);

In particular, the simulationInit() callback, listed below, is executed once before the sim-
ulation loop (cf. Algorithm 1) to define the initial condition of the system. By referring
the application described in the next section, the callback simply subtracts the thickness of
the mass, represented by the Qh substate, from the surface over which it will flow down,
represented by the Qz substate:

1 void simulationInit(struct CALModel2D* sciddicaT)

2 {

3 CALreal z, h;

4 CALint i, j;

5

6 for (i=0; i<sciddicaT->rows; i++)

7 for (j=0; j<sciddicaT->columns; j++){

8 h = calGet2Dr(sciddicaT, Q.h, i, j);

9 z = calGet2Dr(sciddicaT, Q.z, i, j);

10

11 calSet2Dr(sciddicaT, Q.z, i, j, z-h);

12 }

13 }

Similarly, the steering callback, shown below, is executed at the end of each computational
step (cf. Algorithm 1) and is here simply used to reset the outflow substates, as needed, by
means of the calInitSubstate2Dr() function:

1 void steering(struct CALModel2D* sciddicaT)

2 {

3 for(n=0; n<NUMBER_OF_OUTFLOWS; n++)

4 calInitSubstate2Dr(sciddicaT, Q.f[n], 0);

5 }

Eventually, the simulation is performed for STEPS computational steps by simply calling
the calRun2D() function:

1 calRun2D(sciddicaT_simulation);

5.6.3 The SciddicaTnaive OpenCAL-CL implementation

According to OpenCL, the OpenCAL-CL implementation of SciddicaTnaive differs from the
one described in the previous section as it is subdivided in two parts, the first running on
the CPU, the other on an OpenCL compliant device.

The computational model (here called host_CA), substates and parameters are defined
host-side exactly as before, as well as the initial conditions of the system. A device-side
model is therefore declared as an object of type CALCLModel2D:

1 struct CALCLModel2D* device_CA;

and then defined by means of the calclCADef2D() function:
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1 device_CA = calclCADef2D(host_CA, context, program, device);

which takes a pointer to the host-side model as first parameter, needed for host-device
data transfer purposes, while the other ones are the OpenCL context, program and device,
respectively.

The code to be executed device-side is defined as kernels. In particular, the OpenCAL-CL

implementation of SciddicaTnaive define both the σ1 and σ2 elementary processes and the
steering global functions as kernels. The kernel defining the σ1 elementary process is de-
fined as:

1 __kernel void flowsComputation(__CALCL_MODEL_2D, __global CALParameterr* Pepsilon, __global

CALParameterr* Pr )

2 {

3 calclThreadCheck2D();

4

5 int i = calclGlobalRow();

6 int j = calclGlobalColumn();

7

8 CALint sizeof_X = calclGetNeighborhoodSize();

9

10 CALreal f[5];

11

12 if (calclGet2Dr(MODEL_2D, H, i, j) <= *Pepsilon)

13 return;

14

15 computeMinimizingOutflows(f);

16

17 for (n = 1; n < sizeof_X; n++)

18 calclSet2Dr(MODEL_2D, n-1, i, j,f[n]*(*Pr));

19 }

Besides the mandatory __CALCL_MODEL_2D meta-parameter, the kernel takes two further pa-
rameters, corresponding to the SciddicaTnaive model parameters. Here, the two additional
parameters are located in the device global memory, even if they could be stored in the
(fast) local memory by simply using the __local qualifier instead of the __global one. The
function calclThreadCheck2D() is called first to check if the work-item executing the kernel
actually maps a cell of the computational domain, where in such case cell coordinates are re-
trieved by means of the calclGlobalRow() and calclGlobalColumn() (kernel execution im-
mediately terminates in case of wrong mapping). The calclGet2Dr() function is used to re-
trieve the thickness of the fluid in the central cell, referred by the H numerical handle, which
is therefore compared with the pε parameter for evaluating the adherence condition. In case
the thickness overcomes the adherence threshold, the computeMinimizingOutflows() func-
tion is called, which applies the minimization algorithm of the differences and returns the
array of outgoing flows, f. Such flows are eventually damped by considering the pr fac-
tor and the resulting values used to update the values of the corresponding substates by
means of the calclSet2Dr() function. As regards the optional kernels parameters, they can
be defined host-side by means of the calclSetKernelArg2D() function:

1 calclSetKernelArg2D(&flow_computation_kernel,

2 0,

3 sizeof(CALParameterr),

4 &P.epsilon

5 );

6

7 calclSetKernelArg2D(&flow_computation_kernel,
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8 1,

9 sizeof(CALParameterr),

10 &P.r

11 );

It takes the kernel as first argument, a 0-based handle identifying the position of the param-
eter within the kernel parameter list (the __CALCL_MODEL_2D pseudo-parameter excluded),
and both the size and the host-side parameter.

Similarly to σ1, the σ2 elementary process is defined by an OpenCAL-CL kernel as:

1 __kernel void widthUpdate(__CALCL_MODEL_2D) {

2 calclThreadCheck2D();

3

4 int i = calclGlobalRow();

5 int j = calclGlobalColumn();

6

7 CALreal h_next;

8 CALint n;

9

10 h_next = calclGet2Dr(MODEL_2D, H, i, j);

11

12 for (n = 1; n < calclGetNeighborhoodSize(); n++)

13 h_next += calclGetX2Dr(MODEL_2D, NUMBER_OF_OUTFLOWS-n, i, j, n) - calclGet2Dr(MODEL_2D, n-1, i

, j);

14

15 calclSet2Dr(MODEL_2D, H, i, j, h_next);

16 }

Here, the calclGetX2Dr() function is used to get the incoming flows from the neighbouring
cells that, together with the outgoing flows, are used to evaluate the mass balance and
therefore to update the Qh substate.

Once defined as kenels, elementary processes are added to the device-side model by
means of the calclAddElementaryProcess2D() function:

1 calclAddElementaryProcess2D(device_CA, &flow_computation_kernel);

2 calclAddElementaryProcess2D(device_CA, &width_update_kernel);

Eventually, a steering kernel, whose implementation is here omitted, can be added by
means of the calclAddSteeringFunc2D() function:

1 calclAddSteeringFunc2D(device_CA, &steering_kernel);

and the simulation performed for STEPS computational steps by means of the calclRun2D()

function:

1 calclRun2D(device_CA, 1, STEPS);

5.6.4 The SciddicaTnaive Simulation of the Tessina Landslide

Here we show the application of SciddicaTnaive to the simulation of the Tessina landslide [133]
that occurred in Northern Italy in 1992. The real case developed in the Tessina valley be-
tween altitudes of 1220 m and 625 m a.s.l., with a total longitudinal extension of nearly 3

km and a maximum width of about 500 m. The landslide skimmed over the town of Funes
and stretched downhill as far as the village of Lamosano.

The topographic surface over which the landslide developed was discretized as a DEM
(Digital Elevation Model) of 410 rows per 294 columns, with square cells of 10 m side, for
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SciddicaT parameter Value Unit

pε 0.001 m

pr 0.5 1

Table 5.1: SciddicaT parameters considered for the simulation of the 1992 Tessina (Italy) land-
slide.

Figure 5.10: The SciddicaT simulation of the 1992 Tessina (Italy) landslide: (a) landslide source; (b)
final landslide path. Topographic altitudes are represented in gray and vary between
1220 and 625 m a.s.l. Debris thickness is represented with colors ranging from red
(lower values) to yellow (higher values).

a total of 102,540 cells. The landslide source, specifying the location and thickness of the
detachment area, was also described by means of a raster map of the same dimensions.

The SciddicaTnaive parameters were set to the values listed in table 5.1 and a total of
4000 computational steps considered in experiments. Simulation outcomes obtained by
considering the serial and the two parallel implementations of SciddicaTnaive did not differ,
confirming the numerical correctness of the OpenMP- and OpenCL- based implementation
of OpenCAL. Figure 5.10 show the initial and final configuration of the Tessina landslide,
as obtained by the SciddicaTnaive simulation. It is worth to note that, even if SciddicaTnaive is
a simplified model and parameters were preliminary evaluated, simulation outcome is in
agreement with that of Avolio et al. [133].
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5.7 the SciddicaTac example of application

In this section we show the OpenCAL, OpenCAL-OMP and OpenCAL-CL implementations
of SciddicaTac, a computationally improved version of the SciddicaTnaive fluid-flow XCA
model which exploits the OpenCAL active cell optimization feature. The model is formally
defined and key implementation sections reported and commented. The application to the
simulation of the 1992 Tessina (Italy) landslide is here omitted since results are equivalent
to those obtained by SciddicaTnaive.

5.7.1 The SciddicaTac Formal Definition

In the case of a fluid-flow model, only cells involved in mass variation can be interested in
a state change to the next computational step. On the basis of this simple observation, we
can initialize the set of active cells to those cells containing mass. Moreover, if during the
computation an outflow is evaluated from an active cell towards a neighboring non-active
cell, this latter can be added to the set of active cells and then considered for subsequent
state change. Similarly, if a given active cell looses a sufficient amount of debris, it can be
eliminated from the set of active cells. In the case of SciddicaTac, this happens when its
thickness becomes lower than or equal to the pε threshold.

In order to account for these processes, we have to slightly revise the formal definition of
the XCA fluid-flow model, by adding the set of active cells, A. The optimized SciddicaTac

model is now defined as:

SciddicaTac =< R, A, X, Q, P, σ >

where A ⊆ R is the set of active cells, while the other components are defined as in the
formal definition of SciddicaTnaive. The transition function is now defined as:

σ : A×Q5 → Q× A

denoting that it is applied only to the cells in A and that it can add/remove active cells.
More in detail, the σ1 elementary process has to be modified, as it can activate new cells.
Moreover, a new elementary process, σ3, has to be added in order to remove cells that
cannot produce outflows during the next computational step due to the fact that their
debris thickness is negligible. The new sequence of elementary processes is listed below, in
the same order they are applied.

• σ1 : A × (Qz × Qh)
5 × pε × pr → Q4

o × A determines the outflows from the central
cell to the neighboring ones, as in the case of SciddicaTnaive. In addition, each time
an outflow is computed, the neighbor receiving the flow is added to the set of active
cells.

• σ2 : A×Qh × (Q4
o)

4 → Qh determines the value of debris thickness inside the cell by
considering mass exchange in the cell neighborhood. This elementary process does
not differs with respect to that of the SciddicaTnaive model.

• σ3 : A× Qh × pε → A removes a cell from A if its debris thickness is lower than or
equal to the pε threshold.
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5.7.2 The SciddicaTac OpenCAL and OpenCAL-OMP implementations

Here we highlight the OpenCAL and OpenCAL-OMP differences between the SciddicaTac and
SciddicaTnaive models. In particular, to properly exploit the active cells optimization, we
have to change the definition of the CA object by using the CAL_OPT_ACTIVE_CELLS param-
eter in the model definition:

1 sciddicaT = calCADef2D (ROWS,

2 COLS,

3 CAL_VON_NEUMANN_NEIGHBORHOOD_2D,

4 CAL_SPACE_TOROIDAL,

5 CAL_OPT_ACTIVE_CELLS

6 );

and by adding the σ3 elementary process to the model, in addition to the σ1 and σ2 ones:

1 calAddElementaryProcess2D(sciddicaT, flowsComputation);

2 calAddElementaryProcess2D(sciddicaT, widthUpdate);

3 calAddElementaryProcess2D(sciddicaT, removeInactiveCells);

Preliminarly, at the init stage, cells belonging to the landslide source are set as active by
means of the calAddActiveCell2D() function:

1 void simulationInit(struct CALModel2D* model){

2 CALreal z, h;

3 CALint i, j;

4

5 for (i=0; i<model->rows; i++)

6 for (j=0; j<model->columns; j++){

7 h = calGet2Dr(model, Q.h, i, j);

8 z = calGet2Dr(model, Q.z, i, j);

9

10 calSetCurrent2Dr(model, Q.z, i, j, z-h);

11 calAddActiveCell2D(model, i, j);

12 }

13 }

and, when a flow is computed from the central cell towards a neighbor by σ1, the neighbor
is added to A by means of the calAddActiveCellX2D() function:

1 void flowsComputation(struct CALModel2D* model, int i, int j )

2 {

3 // omissis...

4

5 for (n=1; n<model->sizeof_X; n++){

6 calSet2Dr(model, Q.f[n-1], i, j, f[n]*P.r);

7 calAddActiveCellX2D(sciddicaT, i, j, n);

8 }

9 }

The σ2 elementary process, here omitted, does not differ from the one of SciddicaTnaive,
while σ3 is new, and is responsible to remove a cell if its debris thickness is lower than or
equal to the pε threshold:

1 void removeInactiveCells(struct CALModel2D* model, int i, int j){

2 if (calGet2Dr(model, Q.h, i, j) <= P.epsilon)

3 calRemoveActiveCell2D(model, i, j);

4 }

No other changes with respect to the SciddicaTnaive implementation are needed.
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Eventually, note that the active cells adding and remove stages were implemented by
two different elementary processes, σ1 and σ3 respectively, according to the considerations
discussed in Sections 5.3 and 5.4.

5.7.3 The SciddicaTac OpenCAL-CL implementation

To properly exploit the active cells optimization in the OpenCAL-CL implementation of
SciddicaTac, the host-side CA object, here called host_CA, was defined as in the OpenCAL/OpenCAL-
OMP implementation, by using the CAL_OPT_ACTIVE_CELLS parameter in the definition.
Moreover, the σ3 elementary process was added to the device-side model, in addition to
the σ1 and σ2 ones:

1 calclAddElementaryProcess2D(device_CA, &flow_computation_kernel);

2 calclAddElementaryProcess2D(device_CA, &width_update_kernel);

3 calclAddElementaryProcess2D(device_CA, &rm_active_cells_kernel);

As for the OpenCAL and OpenCAL-OMP implementations, cells belonging to the landslide
source are set as active by means of the calAddActiveCell2D() at the init stage and when
a flow is computed from the central cell towards a neighbor by σ1, the neighbor is added
to A by means of the calclAddActiveCellX2D() function:

1 __kernel void flowsComputation(__CALCL_MODEL_2D, __global CALParameterr* Pepsilon, __global

CALParameterr* Pr )

2 {

3 // omissis ...

4

5 calclActiveThreadCheck2D();

6

7 // omissis ...

8

9 for (n = 1; n < calclGetNeighborhoodSize(); n++){

10 calclSet2Dr(MODEL_2D, n-1, i, j,f[n]*(*Pr));

11 calclAddActiveCellX2D(MODEL_2D, i, j, n);

12 }

13 }

Here, note that the calclActiveThreadCheck2D() is called instead of the the calclThreadCheck2D()
function to restrict the application of the elementary process to the cells actually belonging
to A. The σ2 elementary process, here omitted, does not differ from the one of SciddicaTnaive
OpenCAL-CL implementation, while the σ3 one is new, which is responsible to remove a cell
if its debris thickness is lower than or equal to the pε threshold:

1 __kernel void removeInactiveCells(__CALCL_MODEL_2D, __global CALParameterr * Pepsilon )

2 {

3 // omissis ...

4 if (calclGet2Dr(MODEL_2D, H, i, j) <= *Pepsilon)

5 calclRemoveActiveCell2D(MODEL_2D,i,j);

6 }

Eventually, as for the case of the OpenCAL/OpenCAL-OMP implementation, the active
cells adding and remove stages were implemented by two different elementary processes,
σ1 and σ3 respectively, according to the considerations discussed in Section 5.5. Moreover,
it is worth to note that the number of active cells involved during the simulation of the
Tessina landslide vary between 637, corresponding to the number of cells defining the
landslide source, and 5,509. The resulting mean value of active cell processed per step is
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Figure 5.11: Number of active cells over time for the considered SciddicaTac simulation model of
the Tessina landslide shown in Figure 5.10.

3,277, corresponding to about the 3.2% of the whole computational domain. Figure 5.11

shows how the number of active cells varies when the SciddicaTac computational step is
increased.

5.8 the SciddicaTac+es l example of application

In this section we show the OpenCAL and OpenCAL-OMP implementations of the further com-
putationally improved SciddicaTac+asl fluid-flow XCA model, which exploit both the active
cell optimization and the explicit simulation loop feature. The formal definition of the
model does not differ from SciddicaTac, as well as the application to the simulation of the
1992 Tessina (Italy) landslide, and are not, therefore, reported in this section again. The key
implementation sections are reported and commented in the following section.

5.8.1 The SciddicaTac+esl OpenCAL and OpenCAL-OMP implementations

Here we highlight the OpenCAL/OpenCAL-OMP few implementation differences between
the SciddicaTac+esl and SciddicaTac models. In particular, to properly exploit the explicit sim-
ulation loop feature, which is able to override the predefined OpenCAL/OpenCAL-OMP
global transition function, by also allowing for the selective update of model substates, we
have to change the definition of the CA simulation object by using the CAL_UPDATE_EXPLICIT
parameter in its definition:

1 sciddicaT_simulation = calRunDef2D(sciddicaT,

2 1,

3 STEPS,

4 CAL_UPDATE_EXPLICIT

5 );
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and also register a callback function to the simulation object to implement the overridden
global transition function:

1 calRunAddGlobalTransitionFunc2D(sciddicaT_simulation,

2 overridedGlobalTransitionFunction

3 );

The overridden transition function is defined as:

1 void overridedGlobalTransitionFunction( struct CALModel2D* model){

2 CALint i;

3

4 calApplyElementaryProcess2D(model, flowsComputation);

5 calUpdateActiveCells2D(model);

6 for (i=0; i<NUMBER_OF_OUTFLOWS; i++)

7 calUpdateSubstate2Dr(model, Q.f[i]);

8

9 calApplyElementaryProcess2D(model, widthUpdate);

10 calUpdateSubstate2Dr(model, Q.h);

11

12 calApplyElementaryProcess2D(model, removeInactiveCells);

13 calUpdateActiveCells2D(model);

14 }

The calApplyElementaryProcess2D() is used to explicitly apply the elementary processes
to the whole computational domain or, as in this case, to the set of active cells. Similarly,
the active cells and substates updating must be explicitly performed. These operations can
be performed by considering the calUpdate2D() function, which updates both the active
cell structures and all the registered substates or, as reported in this example, by means of
the calUpdateActiveCells2D() and calUpdateSubstate2Dr() functions, which allows to
restrict the update phase to only data processed by the elementary processes. Indeed, the
first elementary process only processes the active cells structure and the outflows substates,
so that both the Qz and Qh substates do not need to be updated. Similarly, since the sec-
ond elementary process only changes the debris thickness by evaluating the incoming and
outcoming flows mass balance, only the Qh substate is updated. Similarly, since the last
elementary process simply removes cells that have become inactive from A, only the active
cells structure is updated.

Note that, even if their implementations are here omitted, explicit updates have also to
be performed after the execution of each global functions.

5.9 validation, and performance results

In order to evaluate OpenCAL from a computational point of view, the different versions
of SciddicaT presented in the previous Section were considered and the Tessina landslide
taken into account as simulation reference case study for a first set of tests (standard tests).
In particular, a total of ten benchmark simulations were executed for each of the nine
SciddicaT implemented versions, and the speed-up evaluated with respect to the serial
implementation of SciddicaTnaive, by considering the minimum recorded execution times.
Furthermore, in order to better assess the impact of local memory usage in OpenCAL-CL,
a further implementation based on SciddicaTnaive was considered, namely SciddicaTlocal . In
this version, a 8 × 8 work-group size was considered and data, i.e., the substates values of
the cells belonging to the neighborhood, transparently transferred from the global to the
fast local device memory by using the calclGlobaltoLocal[X]() API function (cf. Section
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Threads SciddicaTnaive SciddicaTac SciddicaTac+esl

1 78.221 7.828 5.076

2 46.192 4.990 3.862

4 29.321 3.287 2.501

8 20.576 2.745 1.698

16 16.746 2.705 1.536

Table 5.2: Elapsed times (in seconds) registered for the simulation of the Tessina Landslide (cf.
Figure 5.10) by different OpenCAL and OpenCAL-OMP versions of the SciddicaT fluid-flow
model. The adopted CPU is an Intel Xeon 2.0GHz E5-2650.

5.3). In addition, due to the low transition function computational intensity of SciddicaT
(i.e., the model is a more memory-bound rather than compute-bound application) and the
data-set dimension, which are not adequate to take significant advantage of the adopted
GPUs, two additional stress tests were carried out: the transition functions were fictitiously
made computationally heavier by reapplying them, at each step, for a total of 200 times
(transition function stress tests), and the landslide source replicated for a total of 100 times
over a wider computational domain by considering a DEM of a total of 13,401,890 cells
(computational domain stress tests). These latter tests were also considered to evaluate the
preliminary OpenCAL-MPI versions of SciddicaT, both in terms of correctness and perfor-
mance.

In all cases, OpenCAL and OpenCAL-OMP benchmarks were executed on a 8-core/16 threads
Intel Xeon 2.0GHz E5-2650 CPU based workstation. One thread was considered for testing
the different OpenCAL versions of SciddicaT, while 2, 4, 8 and 16 threads were employed for
benchmark experiments concerning OpenCAL-OMP implementations. Moreover, two de-
vices were adopted for testing the different versions of the OpenCAL-CL implementations of
SciddicaT, namely a GTX 980 (Maxwell architecture) and a Tesla K40 (Kepler architecture)
graphic processor. In particular, the former has 2048 CUDA cores, 4 GB global memory
and 112 GB/s theoretical bandwidth communication for double precision data between
CPU and GPU, while the latter device has 2880 cores, 12 GB global memory and 144 GB/s
double precision high-bandwidth. Eventually, a Gigabit Ethernet interconnected dual node
test system with a GTX 980 GPU per node, which is the configuration used for develop-
ment purposes, was considered for preliminary evaluating the OpenCAL-MPI versions of
SciddicaT .

5.9.1 Standard Tests

The speed-up and execution times of the Tessina landslide simulation related to the OpenCAL

and OpenCAL-OMP different versions of SciddicaT are shown in Figure 5.12 and reported
Table 5.2. Here, it is worth to note how the optimizations progressively introduced are ef-
fective and, as expected, execution times decrease steadily in all cases. In fact, even in the
case of the serial OpenCAL-based implementations, the execution time decreases signifi-
cantly from about 78 seconds, registered by SciddicaTnaive, to about 5 seconds, for the fully
optimized SciddicaTac+esl version. As expected, SciddicaTac+esl is the version exhibiting the
best performance, running about 51 times faster on 16 threads with respect to the reference
simulation.
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Figure 5.12: Speed-up obtained by the different OpenCAL-OMP versions of the SciddicaT fluid-
flow model. Elapsed times in seconds are also shown in correspondence of each
speed-up vertex. The considered case study is the Tessina Landslide (cf. Figure 5.10).
The adopted CPU was an Intel Xeon 2.0GHz E5-2650 CPU.

Device SciddicaTnaive SciddicaTlocal SciddicaTac

Tesla K40 11.108 10.605 3.960

GTX 980 5.063 5.453 2.981

Table 5.3: Elapsed times (in seconds) registered for the simulation of the Tessina Landslide (cf.
Figure 5.10) by different OpenCAL-CL versions of the SciddicaT fluid-flow model. The
adopted OpenCL compliant devices are a Nvidia Tesla K40 and a Nvidia GTX 980.
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Figure 5.13: Speed-up obtained by the different OpenCAL-CL versions of the SciddicaT fluid-
flow model. Elapsed times in seconds are also shown on top of each speed-up bar.
The considered case study is the Tessina Landslide (cf. Figure 5.10). The adopted
OpenCL compliant devices were a Nvidia Tesla K40 and an Nvidia GTX 980.

The benchmark results of the OpenCAL-CL versions of SciddicaT are instead shown in
Figure 5.13 and reported in Table 5.3. Here, as expected, SciddicaTac resulted the more per-
forming on both devices. Unexpectedly, however, all the experiments executed on the GTX
980 have outclassed simulations that were performed on the Tesla K40, notwithstanding
the first one being a gaming oriented GPU, while the latter a HPC dedicated device. Even
GPU hardware issues might be taken into account: for instance, the K40, though having
more cores with respect to the GTX 980, has a lower CUDA core clock-rate (745MHz vs
1126MHz) and lower memory clock-rate (6008 MHz vs 7012 MHz). Also cache issues could
justify the results, since the K40 has less of both L1 and L2 level cache memories than
the GTX 980, this latter benefiting from Nvidia’s hardware improvements carried out in
the more recent Maxwell architectures with respect to the Kepler ones. Moreover, indepen-
dently from the adopted device, the SciddicaT version exploiting the GPU local memory
did not resulted faster than the corresponding global memory version. This can be justified
by the low transition function computational intensity, whereby work-items do not access
data in local memory a sufficient number of times to result in better trade-off and thus
better performances.

In addition, in the case of SciddicaTac, it is worth to note that the CPU performs better
than the considered GPUs: 2.70 seconds on 16 threads, against 2.98 and 3.96 seconds on
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Threads SciddicaTnaive SciddicaTac SciddicaTac+esl

1 8,665.033 303.904 308.735

2 6,240.054 221.756 217.155

4 3,366.411 111.761 113.116

8 1,945.686 58.656 57.947

16 1,385.546 31.279 30.077

Table 5.4: Elapsed times (in s) registered during the transition function stress test for the simulation
of the Tessina Landslide (cf. Figure 5.10) by different OpenCAL and OpenCAL-OMP versions
of the SciddicaT fluid-flow model. The adopted CPU is an Intel Xeon 2.0GHz E5-2650.

the GTX 980 and the Tesla K40, respectively. This can be explained by considering that
the mesh generated by the quantization algorithm is too small to exploit the GPU latency
thread hiding mechanism at best [136]. In fact, the mean number of cells processed per step
is 3,277 (cf. Section 5.7), which is of the same order of magnitude of the number of cores of
the adopted GPUs (cf. above in this Section). This also leads to a waste of bandwidth. In fact,
while the other versions were able able to adequately exploit the available bandwidth (e.g.
the SciddicaTnaive version reached about 88 GB/s on the Tesla K40 GPU), the one exploiting
the quantization optimization was not able to take advantage of it (achieving 10 GB/s only).
Eventually, a further study performed on the most time consuming kernels has shown that
the achieved bandwidth is significantly higher for the CPU. Particularly indicative is the
value measured for the more time consuming kernel, i.e. the one implementing the stream
compaction algorithm. This latter, which takes alone about the 55% of the overall execution
time on both the adopted CPU and GPUs versions, exploits the bandwidth the 35% better
on the CPU, while the other kernels are bandwidth equivalent or perform better on the
GPUs, all having however in this latter case a negligible percentage of the overall execution
time (about the 3%). In other words, the standard test case here considered is simply too
small to make decent use of the considered GPUs and, consequently it not surprising that
the CPU performs better in this specific case.

5.9.2 Transition Function Stress Tests

As anticipated, in order to evaluate performances when considering computationally inten-
sive state transitions, further tests were carried out by fictitiously increasing the complexity
of the SciddicaT transition function. This was done by reapplying the transition function
σ for a total of 200 times during each simulation step, excluding data transfer (e.g. from
global to local memory, in the case of SciddicaTlocal).

Results of the benchmarks executed on the CPU are shown in Figure 5.14, both in terms
of execution time and speed-up. Raw execution times for this benchmark are also reported
in Table 5.4. A more pronounced timings decrease is here observed for each SciddicaT
version as the number of threads is increased, with a maximum speed-up of about 289 for
the SciddicaTac+esl execution on 16 threads. Here, the implementations exploiting the active
cells optimization outperform the naive one of two orders of magnitude.

Figure 5.15 shows instead, the benchmark results of the different OpenCAL-CL versions of
SciddicaT on the considered graphic hardware for the transition function stress test. Raw
execution times are also reported in Table 5.5. Here, conversely from the standard tests,
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Figure 5.14: Speed-up obtained during the transition function stress test by the different OpenCAL-
OMP versions of the SciddicaT fluid-flow model. Elapsed times in seconds are also
shown in correspondence of each speed-up vertex. The considered case study is the
Tessina Landslide (cf. Figure 5.10). The adopted CPU was an Intel Xeon 2.0GHz
E5-2650 CPU.

Device SciddicaTnaive SciddicaTlocal SciddicaTac

Tesla K40 11.108 10.605 3.960

GTX 980 5.063 5.453 2.981

Table 5.5: Elapsed times (in seconds s) registered during the transition function stress test for the
simulation of the Tessina Landslide (cf. Figure 5.10) by different OpenCAL-CL ver-
sions of the SciddicaT fluid-flow model. The adopted OpenCL compliant devices are a
NVIDIA Tesla K40 and a Nvidia GTX 980.
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Figure 5.15: Speed-up obtained during the transition function stress test by the different
OpenCAL-CL versions of the SciddicaT fluid-flow model. Elapsed times in seconds
are also shown on top of each speed-up bar. The considered case study is the Tessina
Landslide (cf. Figure 5.10). The adopted OpenCL compliant devices were a Nvidia
Tesla K40 and an Nvidia GTX 980.

the SciddicaT version exploiting the GPU local memory resulted significantly faster with
respect to the corresponding global memory version on both the considered devices. In
particular, in this case, the Tesla K40 reported the best result, evidencing a better local
memory system (i.e., better tradeoff between local memory access/transfer) with respect to
the GTX 980 GPU. Nevertheless, the SciddicaTac performances resulted always better than
any CPU/GPU version (the GTX 980 performing better), demonstrating even in this case
the validity of the active cells optimization. It is worth to note that this time the best GPU
performance registered by the SciddicaT OpenCAL-CL versions significantly overcame the
one registered on the CPU. In particular, the SciddicaTac ran about 441 times faster than
the serial version of SciddicaTnaive, against the best 289 speed-up registered on the CPU,
pointing out, as expected, the full suitability of GPGPU solutions in the case of sufficiently
computational intense simulation models.
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Figure 5.16: SciddicaT simulation stress test of 100 landslide sources distributed over a DEM of
3593 rows per 3730 columns, with square cells of 10 m side. Landslides paths are
represented in black.
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Figure 5.17: Speed-up obtained during the computational domain stress test by the different
OpenCAL-OMP versions of the SciddicaT fluid-flow model. Elapsed times in seconds
are also shown in correspondence of each speed-up vertex. The considered case
study is the simulation shown in Figure 5.16. The adopted CPU was an Intel Xeon
2.0GHz E5-2650 CPU.

5.9.3 Computational Domain Stress Tests

In order to evaluate performances when larger computational domains are taken into ac-
count, further tests were carried out by considering a DEM of 3,593 rows per 3,730 columns,
with square cells of 10 m side. Moreover, the landslide source was uniformly replicated 100

times over the extended DEM and a simulation executed for each combination of SciddicaT
versions and available devices. Figure 5.16 shows the simulation outcomes obtained by
considering the wider DEM and the 100 landslide sources.

Computational results of the OpenCAL-OMP versions of SciddicaT are reported in Figure
5.17 and Table 5.6. Similarly to the standard tests, a slight timings decrease is observed for
all cases as the number of threads is increased. Values increase accordingly to the adopted
optimizations, resulting Sciddicaac+esl the fastest version with a value of about 21.

Benchmark results of the OpenCAL-CL different versions of SciddicaT on the computa-
tional domain stress tests are instead reported in Figure 5.18 and Table 5.7. Here, as for
the standard tests, the SciddicaT version exploiting the GPU local memory did not result
significantly faster than the corresponding global memory version on both the considered
devices, by confirming that local memory has to be accessed an elevated number of times
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Threads SciddicaTnaive SciddicaTac SciddicaTac+esl

1 5,015.624 1,322.817 724.035

2 4,132.714 833.233 656.593

4 3,271.501 610.365 349.662

8 2,943.584 478.984 272.623

16 2,794.782 412584 237.513

Table 5.6: Elapsed times (in seconds) obtained for the computational domain stress test based on the
simulation shown in Figure 5.16) by different OpenCAL and OpenCAL-OMP versions of the
SciddicaT fluid-flow model. The adopted CPU is an Intel Xeon 2.0GHz E5-2650.
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Figure 5.18: Speed-up obtained during the computational domain stress test by the different
OpenCAL-CL versions of the SciddicaT fluid-flow model. Elapsed times in seconds
are also shown on top of each speed-up bar. The considered case study is the simu-
lation shown in Figure 5.16. The adopted OpenCL compliant devices were a Nvidia
Tesla K40 and an Nvidia GTX 980.
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Device SciddicaTnaive SciddicaTlocal SciddicaTac

Tesla K40 909.664 704.518 95.939

GTX 980 518.479 392.300 41.019

Table 5.7: Elapsed times (in seconds) obtained for the computational domain stress test based on
the simulation shown in Figure 5.16) by different OpenCAL-CL versions of the SciddicaT
fluid-flow model. The adopted OpenCL compliant devices are a Nvidia Tesla K40 and
a Nvidia GTX 980.

to take an effective advantage compared to the global one (and thus can result more use-
ful for higher computationally complex models). However, the SciddicaTac versions per-
formances resulted always better than any CPU/GPU version (the GTX 980 performing
better), demonstrating even in this case the validity of the active cells optimization. More-
over, even in this case, the best GPU performance overcame the one registered on the CPU.
In particular, the SciddicaTac ran about 122 times faster on the GTX 980 than the serial ver-
sion of SciddicaTnaive, against the best 21 absolute speed-up registered on the CPU pointing
out, as expected, the usefulness of GPGPU solutions also in the case of extended computa-
tional domains. The result is justified by the same evaluations performed for the standard
test case. In particular, the higher dimension of the computational domain stress test mesh
permits the GPUs to always perform better than the CPU in terms of achiewed bandwidth
for all the considered SciddicaT versions (the SciddicaTac version included, which achieves
about 77 GB/s of bandwidth on the Tesla K40, against the 10 GB/s achieved on the smaller
mesh), by consequently allowing to hide the thread latency in all cases, and thus to better
exploit the GPU computational power. Eventually, it is worth to note that, as in the stan-
dard tests, the GTX 980 outperformed the Tesla K40, confirming that a gaming-oriented
device is a preferable solution in case of low-intense computational models.

5.10 discussion and outlooks

In this chapter the first release of OpenCAL is presented, a new open source computing ab-
straction layer for Scientific Computing, currently supporting Cellular Automata, Extended
Cellular Automata and the Finite Differences computational methods.

Besides the serial implementation, two different parallel versions were developed, namely
OpenCAL-OMP and OpenCAL-CL, based on OpenMP and OpenCL, respectively. The first one
allows to exploit multi-core CPUs on shared memory computers, while the second a wide
range of heterogeneous devices like GPUs, FPGAs and other many-core coprocessors.

Each version was designed to be the most reliable and fast possible and, for this purpose,
the C language was adopted and efficient data types and algorithms considered. In partic-
ular, also to permit a more straightforward OpenCL parallelization, linearized arrays were
adopted to represent both one-dimensional and higher order structures like substates and
neighbourhoods. Moreover, the quantization optimization, which allows to define the set
A of non-stationary cells to which restrict the application of the transition function, was
implemented in each version. Specifically, a straightforward stream compaction was consid-
ered in OpenCAL, which serially checks the state of the cells in the computational domain,
by placing the coordinates of non-stationary cells in A. OpenCAL-OMP essentially implements
the same strategy, even if a pool of threads preliminarily build a set of sub-arrays of active
cells in parallel, which are eventually assembled together to form the final array A. A dif-
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ferent algorithm was implemented in OpenCAL-CL, where the parallel stream compaction
relies on a parallel prefix sum algorithm used to preliminary evaluate the offsets to be used
by work-items to fill the array of active cells A in parallel. In addition to the quantization
optimization, OpenCAL and OpenCAL-OMP were designed to allow for the explicitation of the
global transition function, by also allowing selective updating of substates.

The SciddicaT XCA landslide simulation model was considered to show the straightfor-
ward implementation of a computational model and also to assess numerical correctness
and computational efficiency of each OpenCAL implementation. Specifically, the OpenCAL

and OpenCAL-OMP implementations of three different versions of SciddicaT were shown,
from a naive one, SciddicaTnaive, to a version supporting the quantization optimization,
SciddicaTac, up to a fully optimized version, SciddicaTac+esl , supporting both the quanti-
zation and the explicitation of the global transition function. The first two versions of
SciddicaT were also implemented in OpenCAL-CL. In addition, a naive version of SciddicaT
exploiting the local memory, namely SciddicaTlocal , was implemented in OpenCL to evalu-
ate the role of different GPUs memory levels.

For each SciddicaT version, the Tessina landslide was considered and a total of ten
benchmarks (simulations) executed to evaluate correctness and timings on each consid-
ered hardware configuration, namely a 16 threads Intel Xeon CPU based workstation and
two Nvidia GPUs. Numerical correctness was confirmed by all the simulation outcomes,
which perfectly matched to the one of the OpenCAL implementation of SciddicaTnaive that
was selected for reference. Regarding computational performance, the different SciddicaT
versions demonstrated to be able to efficiently exploit the computational power of the
heterogeneous devices considered in this work, by reducing the execution time of all the
performed benchmarks accordingly to the progressively adopted optimizations. However,
the best result obtained by SciddicaTac+esl using 16 threads on the CPU surprisingly dou-
bled the best one obtained by SciddicaTac on the GPU in terms of absolute speed-up (i.e.
computed with respect to the timing of the reference simulation), probably due to the very
low computational complexity of the transition function and the dimension of the computa-
tional domain. Nevertheless, subsequent stress tests performed by fictitiously complicating
the transition function execution, and a further set of tests where the computational do-
main was considerably increased with respect to the one originally considered, overturned
the results, and GPUs significantly resulted faster than the CPU, pointing out their use-
fulness in case of the simulation of computationally heavy models. Eventually, as regards
GPU local memory, it showed to provide an actual advantage only in the case of the first
set of stress tests, pointing out that data must be accessed an adequate number of times
to be effective. Here, in particular, the Tesla K40 resulted more efficient with respect to the
GTX 980, even if based on the previous Nvidia hardware architecture, probably due to a
better management of the local memory.

Though preliminary, obtained results confirm correctness and efficiency of the different
OpenCAL versions here presented, by highlighting their goodness for numerical model de-
velopment of complex systems in the field of Scientific Computing and their execution on
parallel heterogeneous devices. Moreover, since the implementations do not significantly
differ from an OpenCAL implementation to another, it is easily possible to obtain two dif-
ferent CPU/GPU parallel versions of the same model with a minimum effort and, therefore,
to test them on the available hardware to select the best platform for execution. In fact, as
shown for the case of SciddicaT, the best choice can deeply depend on both the computa-
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tional complexity of the transition function and on the extent of the computational domain,
and the best solution can not be determined a priori.

Nevertheless, a fine tuning of underlying data structures and algorithms will be per-
formed in order to make OpenCAL still more performing and MPI will be adopted to allow
OpenCAL to exploit the computational power of distributed memory systems. As regard the
OpenCL implementation, the seamless management of GPUs local memory will be intro-
duced in the next releases, and Multi-GPU support added to intelligently scale the overall
system performances. Subsequent releases will also progressively support further computa-
tional paradigms, like the Lattice Boltzmann, the Smoothed Particle Hydrodynamics (SPH),
as well as other mesh-free numerical methods, with the aim to become a general software
abstraction layer for computation.

The OpenCAL software libraries, together with a comprehensive installation and user
manual accompanied by numerous examples, are currently freely available on GitHub,
at https://github.com/OpenCALTeam/opencal.

https://github.com/OpenCALTeam/opencal
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6
O P E N C A L - C L U S T - T H E D I S T R I B U T E D M E M O RY
I M P L E M E N TAT I O N O F O P E N C A L

In reality the space in which we moved was all battlemented and
perforated, with spires and pinnacles which spread out on every
side, with cupolas and balustrades and peristyles, with rose
windows, with double- and triplearched fenestrations, and while
we felt we were plunging straight down, in reality we were
racing along the edge of moldings and invisible friezes, like ants
who, crossing a city, follow itineraries traced not on the street
cobbles but along walls and ceilings and cornices and chandeliers.
Now if I say city it amounts to suggesting figures that are, in
some way, regular, with right angles and symmetrical
proportions, whereas instead, we should always bear in mind
how space breaks up around every cherry tree and every leaf of
every bough that moves in the wind, and at every indentation of
the edge of every leaf, and also it forms along every vein of the
leaf, and on the network of veins inside the leaf, and on the
piercings made every moment by the riddling arrows of light, all
printed in negative in the dough of the void, so that there is
nothing now that does not leave its print, every possible print of
every possible thing, and together every transformation of these
prints, instant by instant, so the pimple growing on a caliph’s
nose or the soap bubble resting on a laundress’s bosom changes
the general form of space in all its dimensions.

— Italo Calvino

F
or most problems in physics and engineering there is a huge demand for improv-
ing the time needed to solve a certain problem. For instance, some numerical
meteorological models are so complex that even executed on powerful computers
the execution time would be so long that by the time the results are available the

prediction would be of no practical use. But speed is not the only important key aspect in
scientific computing. Sometimes, the accuracy of a solution needs to be improved and that
usually translates to a bigger and denser discretization of the problem. It is clear that in
order to overcome these limitations more computing power needs to be employed.

Nowadays, computing systems are often equipped with more than one GPU. From high-
end workstations, that are able to accommodate up to 8 GPUs or more on the same mother-
boards to large clusters, that are usually composed of several computing nodes (see Figure
4.8b and Section 4.2 at page 35 and 31 respectively) each of them equipped with one or
more accelerators possibly made by different manufacturers and with different underlying
architecture. Programming distributed memory machines is complex especially for non-
HPC computer scientist because of the intrinsic complexity introduced by the parallelism
and because of the hardware heterogeneousness, and this is especially true since large clus-
ters are equipped with several accelerators. However it is important to fully and effectively
utilize such computing power, especially since having multiple GPUs per node improves
the ratio performance over Watt and price over Watt. For these reasons, multi-GPU pro-
gramming is becoming more and more important.
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Unfortunately, neither CUDA or OpenCL supports natively a multi-GPU model. The
model they support is based on a single core-single GPU relationship and works really well
for tasks that are independent one from the other. On the other hand, the aforementioned
model makes things more difficult when a task needs to have several GPUs cooperate in
some way in order to solve a problem instance. As an example of an application of the
supported model, the BOINC application [137] allows a user to donate computing power
and time to solve relevant problems. In a multi-GPU environment, it works spawning N
independent tasks and each of them is scheduled on one of the N available GPUs. When
a task is finished, the application simply requests another task to the central server, the
task dispatcher. No cooperation or communication is required between the GPUs as the
tasks to be solved is self-contained, meaning that it does not need any external input or
information to be fully completed. An example of the unsupported model, consider the
Lattice Boltzmann (LB) [90] [92] [91] method on a domain that is decomposed along one
axis, let’s say the x axis, as depicted in Figure 6.1, so that each GPU is responsible for a
subset of the whole mesh. Computation for a grid point that lies on the boundary of the
domain portion assigned to the GPU 2 needs information about neighboring points that
are stored on different GPUs (1 and 3 in this case). As a consequence, communication of
such boundary points between the two devices is required.

6.1 opencal-clust

This chapter describes the distributed memory version of OpenCAL, OpenCAL-CLUST, which
has been designed to take advantage of the modern multi-GPU capabilities of multi-node
systems. This makes OpenCAL applications deployable on a variety of computer architec-
tures, from a single CPU workstation to large heterogeneous clusters. Section 6.1.1 starts
by describing the configuration file that is used to dispatch data and computation across the
machine. Sections 6.1.2 and 6.2 outline the adopted parallelization and domain decompo-
sition strategies and introduce a set API and number of examples that show how OpenCAL

can be used to code distributed memory applications. Finally, Section 6.4 discusses perfor-
mance and tests.

6.1.1 Run Configuration

Each OpenCAL-CLUST application is attached with a running configuration that is provided
by the user or the programmer and describes both which computational resources are
going to be used during the execution and how the domain is decomposed among them.
The running configuration is provided as a plain text file whose syntax and structure are
described in Listing 6.1.

The configuration file starts with two lines describing:

1. The size of the domain along each of the dimensions as a list of positive integers.

2. The number N of computational nodes, each described and identified uniquely by its
IP address.

N descriptions of nodes follow. A node i, 1 ≤ i ≤ N is described by a line contain-
ing its IP address IPi and the number of devices (installed and available on that node)
NUM_GPU_NODEi to be utilized. NUM_GPU_NODEi lines follow, each containing the
definition of the devices within node i and its workload.
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domain size

DIM_1 DIM_2 ... DIM_N

number of nodes

NUMBER OF NODES

ip node 1

IP_NODE_1 NUM_GPU_NODE_1

Device List Node 1

PLATFORM_NUMBER_1 DEVICE_NUMBER_1 LOAD_1_1

PLATFORM_NUMBER_1 DEVICE_NUMBER_2 LOAD_1_2

...

PLATFORM_NUMBER_1 DEVICE_NUMBER_K1 LOAD_1_K1_1

PLATFORM_NUMBER_2 DEVICE_NUMBER_1 LOAD_2_1

...

PLATFORM_NUMBER_2 DEVICE_NUMBER_K2 LOAD_2_K1_2

...

PLATFORM_NUMBER_M1 DEVICE_NUMBER_KM LOAD_M1_K1_M1

ip node 2
IP_NODE_2 NUM_GPU_NODE_2

Device List Node 2

PLATFORM_NUMBER_1 DEVICE_NUMBER_1 LOAD_1_1

PLATFORM_NUMBER_1 DEVICE_NUMBER_2 LOAD_1_2

...

PLATFORM_NUMBER_1 DEVICE_NUMBER_K2_1 LOAD_1_K2_1

PLATFORM_NUMBER_2 DEVICE_NUMBER_1 LOAD_2_1

...

PLATFORM_NUMBER_2 DEVICE_NUMBER_K2 LOAD_2_K2_2

...

PLATFORM_NUMBER_M2 DEVICE_NUMBER_K2_M2 LOAD_M1_K2_M2

...
...

ip node N IP_NODE_N NUM_GPU_NODE_N

Device List Node N

PLATFORM_NUMBER_1 DEVICE_NUMBER_1 LOAD_1_1

PLATFORM_NUMBER_1 DEVICE_NUMBER_2 LOAD_1_2

...

PLATFORM_NUMBER_1 DEVICE_NUMBER_KN_1 LOAD_1_KN_1

PLATFORM_NUMBER_2 DEVICE_NUMBER_1 LOAD_2_1

...

PLATFORM_NUMBER_2 DEVICE_NUMBER_KN_2 LOAD_2_KN_2

...

PLATFORM_NUMBER_MN DEVICE_NUMBER_KN_MN LOAD_M1_KN_MN

Listing 6.1: File Format for the domain decomposition of a OpenCAL-CLUST application. It de-
scribes the size of the domain and the machine on which the model is executed.
Note that for each node of the cluster, the IP address and a list of devices is listed.
Each device is identified, à la OpenCL, by platform and device number (within the
platform).
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Figure 6.1: Domain decomposition along one axis.

A device is identified by its platform number PLATFORM_NUMBERp, 1 ≤ p ≤ Mi,
where Mi is the number of the platforms on node i, a device number within the plat-
form DEVICE_NUMBERl (l relative to the platform). A load parameter for the device d,
LOADi

(p,d) describing the amount of work assigned (portion of the domain) to that device.
Eventually, the list of devices within a node can be arbitrarily ordered.

6.1.2 Domain Decomposition

In this preliminary work, the general strategy for dividing work among the available nodes
and devices is to decompose the domain along the first dimension listed in the run config-
uration. The configuration file has to correctly describe a 1D decomposition along the first
dimension of the domain. This means that the following has to be always true:

N

∑
i

Mi

∑
p

Kp

∑
d

LOADi
(p,d) = DIM_1

i.e. the sum of the loads has to match the size of the first dimension of the domain exactly.
This ensures that the whole domain is assigned to some device on a node.

The decomposition follows the order in which nodes and devices are listed in the config-
uration file. Subsequent portions of not yet assigned portions of the domain are assigned
to subsequent (with the respect to the order in which they appear in the file) devices. The
size of such portion is described by the device load parameter.
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In order to show how decomposition works, consider the configuration file in Listing 6.1.

1 16384 16384

2 2

3 192.168.1.111 2

4 0 0 4096

5 0 1 4099

6 192.168.1.222 3

7 0 0 1200

8 1 0 3200

9 1 1 3792

Listing 6.1: Configuration file example. Size of the domain is 16384× 16384, scattered along the
first dimension among 2 nodes and 5 devices overall.

which defines a 2D domain of size 214×214
= 228 points. The domain is scattered along the

first dimension, x, among 2 nodes and 5 devices, in the following manner:

• 0 ≤ x < 4096 7−→ device (0, 0) running at node 192.168.1.111.

• 4096 ≤ x < 4096 + 4099 go to device (0, 1) running at node 192.168.1.111.

• 4096+ 4096 ≤ x < 1200+ 4096+ 4096 7−→ device (0, 0) running at node 192.168.1.222.

• 1200 + 4096 + 4096 ≤ x < 3200 + 1200 + 4096 + 4096 7−→ device (1, 0) running at
node 192.168.1.222.

• 3200 + 1200 + 4096 + 4096 ≤ x < 3792 + 3200 + 1200 + 4096 + 4096 7−→ device (1, 1)
running at node 192.168.1.222.

Generally speaking, using the decomposition described in section 6.1.2, when N devices
are involved, GPU i needs to know, for the update of the grid points within the boundaries
of its subdomain, the value of substates of the neighboring subdomains belonging to dif-
ferent devices (that can be possibly located on different nodes). At each iteration, it must
perform all the operations depicted in Figures 6.2 and 6.3 (assuming periodic boundary
conditions for the sake of simplicity).

Send bottom
boundaries

to GPU (i −
1) mod N

Receive GPU
(i + 1) mod N

bottom boundary

Update grid
points in its
subdomain

Send top bound-
aries to GPU
(i + 1) mod N

Receive GPU
(i − 1) mod N
top boundary

Figure 6.2: Communication scheme in a multi-GPU OpenCL application

Note that this approach always requires CPU intervention as the OpenCL device-device
memory transfer feature in the current implementation only works between devices that
are within the same OpenCL context. This implies that synchronization is also required
during the boundary exchange, as depicted in figure 6.3b. For a communication step to
take place, it is necessary to:
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Figure 6.3: The adopted multi-GPU computation scheme.

1. Pack and upload boundary data to the CPU ( device 7→ host memory transfer)

2. If the two GPUs involved in the communications are controlled by different nodes,
an extra communication step over the network is performed between the two nodes.
This phase is implemented via MPI [56] to ensure and guarantee portability and
scalability.

3. Unpack and upload boundary data to the recipient GPU (host 7→device memory
transfer).

6.2 the opencal-clust parallel implementation

In this section, the OpenCL distributed memory and multi-GPU parallel implementation
of OpenCAL is described, which allows for the parallel execution on one or more accelerators
installed on computing nodes interconnected via network and MPI. This section describes
the difference between OpenCAL-CL and OpenCAL-CLUST and discusses only the set of the
additional API calls that the latter version exposes.

The programming model adopted by OpenCAL-CLUST is similar to the other versions of
OpenCAL (see Section 5) but it introduces new concepts that mainly reflect the multi-GPU
and multinode structure of the target machines.

The main difference is the addition of the MultiNode class (see Listing 6.2).

template <class Init_Functor,class Finalize_Functor>

class MultiNode{

public:
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Cluster c;

Init_Functor *init;

Finalize_Functor *finalize;

...

Listing 6.2: OpenCAL-CLUST MultiNode Class Declaration

It manages communications and computations across nodes and across GPUs and must be
constructed by all the processes/nodes.

In order to use OpenCAL-CLUST, a valid domain decomposition must be specified, see
Section 6.1.2 and 6.1.1. The Domain Decomposition format described in section 6.1.2 is
reflected in the OpenCAL implementation with the following classes:

device described by 4 non-negative integers, two of which identify the device within
the node (using the OpenCL idiom of platform and device numbers) while the rest
describe the portion of the subdomain assigned to the specific device.

node containing an IP address, a integer values describing the portion of subdomain as-
signed to it and finally, a list of Devices installed on the machine that are used for the
computation.

cluster containing a list of Nodes that are concurrently used to execute an OpenCAL appli-
cation.

Each OpenCAL-CLUST application necessitates of a Cluster object correctly initialized that
can be conveniently constructed from a file using the calFromClusterFile function ex-
posed. Given a configuration file, calFromClusterFile parses, validates and finally returns
a valid Cluster instance.

The information stored in the Cluster object is then utilized by each MPI process to
allocate and to initialize all the listed devices. The library is designed s.t. each MPI process
runs several instances of OpenCAL-CL (see Section 5.5), each executing on a different
device and on a different portion of the original subdomain. Note also that, OpenCAL-CLUST
degenerates to OpenCAL-CL when only one none and one device are utilized, and that a
multi-GPU single node configuration is obtainable specifying a single node with several
devices in the configuration file.

Devices within a node are managed by a CALCLMultiGPU object, which coordinates them
and can be created using the calclMultiGPUDef2D API call. CALCLMultiGPU takes care of
storing hooks to a per node’s devices and resources as the list of compiled kernels for each
device. It also exposes a number of functions for adding or removing a device from the
pool and for boundaries exchange between two devices.

6.2.1 Init and finalize functors

Listing 6.2 shows that the MultiNode object, among others fields, contains a Cluster object
and two pointers to functors which type is shown in listing 6.3.

void finalize(struct CALCLMultiGPU*);

void init(struct CALCLMultiGPU*, const Cluster*);

Listing 6.3: OpenCAL-CLUST init and finalize functor signature
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init and finalize if defined, are executed by each MPI process (Node) at the initializa-
tion and finalization phases, respectively. Their definition is optional. They can be employed
to perform operations that are hard to manage automatically on a per-node basis. For ex-
ample, a certain node might need a particular initialization phase such as module loading
for instance. The library can completely hide the initialization and allocation phases, but it
is important to note that this behaviour can be changed and manual initialization can be
enabled. When it is the case, the init functor can be employed to take care of making sure
that each MPI process allocates all of its listed devices with the right resources in order to
process the assigned domain.

Listing 6.4 shows an example of init function that is part of the OpenCAL Julia Set genera-
tor example application shown in section 6.3.1 and in listing 6.8. It shows how manual ini-
tialization can be performed from the configuration file. Each nodes access its own list of de-
vices using its MPI rank (lines 3-4) and add them all to the pool using the calclAddDevice

function (lines 7-11).

1 void init(struct CALCLMultiGPU* multigpu, const Cluster* c){

2 //add devices from the cluster configuration

3 Node mynode = c->nodes[rank];

4 auto devices = mynode.devices;

5 struct CALCLDeviceManager* calcl_device_manager = calclCreateManager();

6 calclSetNumDevice(multigpu, devices.size());

7 for (auto& d : devices) {

8 calclAddDevice(multigpu,

9 calclGetDevice(calcl_device_manager, d.num_platform, d.num_device),

10 d.workload);

11 }

12 //create the model

13 struct CALModel2D* host_CA =

14 calCADef2D(mynode.workload, mynode.columns, CAL_MOORE_NEIGHBORHOOD_2D, CAL_SPACE_TOROIDAL,

CAL_NO_OPT);

15 //add the substate

16 Q_fractal = calAddSubstate2Di(host_CA);

17 //gosh cells radius

18 int borderSize = 1;

19 calclMultiGPUDef2D(multigpu, host_CA, KERNEL_SRC, KERNEL_INC,

20 borderSize, mynode.devices, c->is_full_exchange());

21 calclAddElementaryProcessMultiGPU2D(multigpu, KERNEL_LIFE_TRANSITION_FUNCTION);

22 }

Listing 6.4: OpenCAL-CLUST finalize example code for the Julia Set generator application. It
outputs the node’s portion of a substate to a file.

Listing 6.4 shows also that cluster object is used to eventually configure a calclMultiGPUDef2D

object (line 19). Note that the decomposition along the first dimension of the domain is clear
here. A CALModel2D object is created using the node’s workload (the number of rows in
this case). The finalize functor is executed, if defined, at the end of the computation at the
node level. Listing 6.5 shows an example in which the finalize is used to save a per node
copy of the grid to a file.

1 void finalize(struct CALCLMultiGPU* multigpu){

2 //for each node, save the substate to a file

3 std::string fractal_str = "./fractal_portion" + std::to_string(rank)+".txt";

4 calSaveSubstate2Di(multigpu->device_models[0]->host_CA, fractal_substate, (char*)fractal_str

.c_str());

Listing 6.5: OpenCAL-CLUST init and finalize functor signature
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Note that an implicit MPI barrier is present right before the execution of the init and
finalize call.

A MultiNode is used in user code as shown in listing 6.6

//Construct a MultiNode object

MultiNode<decltype(init), decltype(finalize)> mn(cluster, mpi_world_rank, init, finalize);

//trigger allocation and init execution

mn.allocateAndInit();

Listing 6.6: OpenCAL-CLUST init and finalize functor signature

6.2.2 Kernel Side

Kernel side API and build-in variables are added. Those additional variables and func-
tions can be used to access and manage boundary cells belonging to neighboring devices,
the so call ghost cells. Each device keeps an updated copy of neighboring devices bound-
aries and offers to the programmer the abstraction of a single domain. A built-in variable,
border_radius is exposed in the kernel side and can be used, from within the kernel, to
retrieve the size of boundaries.

The following sections provides examples of usage of OpenCAL-CLUST . Section 6.3 pro-
vides a complete code that generates large BMP images of Julia Sets. Section 6.3.4 shows
how to apply a Sobel’s convolutional filter to a large 2D image. Section 6.3.5 shows an
implementation of sciddicaT, described in Section 5.6.

6.3 opencal-clust high resolution julia set generation

As a first illustrative example of the usage of OpenCAL-CLUST this section shows an applica-
tion which generates high resolution Julia Set images running on an heterogeneous cluster
of GPUs.

6.3.1 Julia Set

Julia set fractals are normally generated by initializing a complex number z = x + yi where
i2 = −1 and x and y are image pixel coordinates. Then, z is repeatedly updated using:

zn+1 = z2
n + c

where c is a complex constant that gives a specific Julia set (see Figure 6.4).
In the broader sense the exact form of the iterated function may be almost anything of

the form zn+1 = f (zn). Interesting sets arises with non-linear functions. Commonly used
ones include the following:

zn+1 = c sin(zn) zn+1 = c exp(zn)

zn+1 = i c cos(zn) zn+1 = c zn(1− zn)

A point is said to be part of the set if after the repeated iteration it does not tend to
infinity. The fractal is created by first mapping each pixel to a rectangular region of the
complex plane. Each pixel represents the initial value of z0. The series is computed for each
pixel and if it does not diverge to infinity it is drawn in black while, if it doesn’t, then a
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(a) c = 1 + 0i (b) c = 1 + 0.1i (c) c = 1 + 0.2i

(d) c = 1 + 0.3i (e) c = 1 + 0.4i (f) c = 1 + 0.5i

Figure 6.4: 6 Examples of Julia sets obtained variating the constant c.

color is chosen depending on the number of iterations taken to diverge. Nevertheless, this
convergence or otherwise isn’t always obvious and it may take a large number of iterations
to resolve and so a decision procedure is required to determine divergence. This typically
involves assuming the series tends to infinity as soon as its value exceeds some threshold;
if the series has not diverged after a certain number of terms it is similarly assigned to be
part of the set.

6.3.2 Julia Sets OpenCAL-CLUST implementation

In order to generate the fractal, for each pixel, information regarding how many steps are
necessary to diverge is stored in a single integral substate. In order to compute this value,
the iterative process described in Section 6.3.1 is implemented in listing 6.8 and is executed
once for each pixel of the final image.

As OpenCAL uses OpenCAL-CL, source code and execution is divided in host and device
(kernels) sub-parts as seen in Section 5.5.

Host side code is shown in listing 6.7. Note that init and finalize functions are omit-
ted since already shown in listings 6.4 and 6.5. The application takes as an input parameter
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a configuration file that describes the size and the partitioning of the domain among the
nodes and the devices of the cluster. It constructs a Cluster objects out of it using the
fromClusterFile function. The MultiNode class is then created (line 13), and used to allo-
cate (line 14) and eventually starts the executions (line 17).

1 #define KERNEL_SRC "~/fractal2D/kernel_fractal2D/source/"

2 #define KERNEL_INC "~/fractal/kernel_fractal2D/include/"

3 #define KERNEL_LIFE_TRANSITION_FUNCTION "fractal2D_transitionFunction"

4

5 struct CALSubstate2Di *Q_fractal;

6 int main(int argc, char** argv){

7 //create the cluster file from input parameter path

8 string clusterfile;

9 clusterfile = parseCommandLineArgs(argc, argv);

10 Cluster cluster;

11 cluster.fromClusterFile(clusterfile);

12 //declare and initialize a multinode object

13 MultiNode<decltype(init), decltype(finalize)> mn(cluster, world_rank, init, finalize);

14 mn.allocateAndInit();

15 //start crunching numbers

16 MPI_Barrier(MPI_COMM_WORLD);

17 mn.run(STEPS);

18 //a barrier and finalize functor are implicitly called here

19 return 0;

20 }

Listing 6.7: OpenCAL-CLUST kernel for the generation of Julia Set.

The run function takes care of splitting the domain and handle communication among the
devices transparently. This means that at each iteration the code shown in Listing 6.8 is
executed on each device and on each point of the grid assigned to it. Note that in this ex-
ample, boundaries communication is not required, since no neighboring values are needed
in order to compute the value of a pixel.

1 typedef double2 cl_complex;

2

3 #define DEVICE_Q_fractal (0)

4 #define MAXITERATIONS (5000)

5 #define SIZE (16384)

6 #define moveX (0)

7 #define moveY (0)

8 // Maps and zoom a pixel (x,y) to the complex plane

9 cl_complex convertToComplex(const int x, const int y, const double zoom,

10 const int DIMX, const int DIMY) {

11 double jx = 1.5 * (x - DIMX / 2.0) / (0.5 * zoom * DIMX) + moveX;

12 double jy = (y - DIMY / 2.0) / (0.5 * zoom * DIMY) + moveY;

13 return (cl_complex)(jx, jy);

14 }

15 cl_complex juliaFunctor(const cl_complex p, cl_complex c) {

16 const cl_complex c_ipow =

17 cl_complex_multiply(&p, &p);

18 return cl_complex_add(&c_ipow, &c);

19 }

20 //Returns the number of iteration taken to diverge to infinity

21 int evolveComplexPoint(cl_complex p, cl_complex c) {

22 int it = 1;

23 while (it <= MAXITERATIONS && cl_complex_modulus(&p) <= 10) {

24 p = juliaFunctor(p, c);
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25 it++;

26 }

27 return it;

28 }

29 __kernel void fractal2D_transitionFunction(__CALCL_MODEL_2D) {

30 calclThreadCheck2D();

31 int i = calclGlobalRow() + borderSize;

32 int j = calclGlobalColumn();

33

34 const double zoom = 1.0;

35 const cl_complex c; c.x = -0.391;c.y = -0.587;

36

37 int global_i = i - borderSize + offset;

38 cl_complex p = convertToComplex(global_i, j, zoom, SIZE, SIZE);

39 calclSet2Di(MODEL_2D, DEVICE_Q_fractal, i, j, evolveComplexPoint(p, c));

40 }

Listing 6.8: OpenCAL-CLUST kernel for the generation of Julia Set.

Figure 6.5: Julia set of size 1.07 GigaPixel, ≈ 3.22GB in the BMP uncompressed format. It is
generated using OpenCAL-CLUST on two NVIDIA GTX 980 and rendered on QGIS [138]
interpreting each point value as color intensity in the spectral color map. Note that
the Figure has been subsequently optimized and rescaled for book format.

6.3.3 Convolutional Filters

The example presented in this section is an application that applies the Sobel convolutional
filter [139, 140] on a large 2D image. The code presented can be trivially extended to support
any kind of convolutional filter also on a domain with more dimensions .

Convolution filtering is used to modify the spatial frequency characteristics of an image.
Its name derives from the term convolution which is a general purpose filter. It is applied
to each point of the domain and consists of determining the new value of the point by
adding weighted values of all its neighbors together, as shown in Figure 6.7. Conovolution
is performed multiplying the whole neighborhood of a point by a matrix, called the kernel
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Figure 6.6: Common point spread functions. The Pillbox (a), Gaussian (b) and Square (c) are
common smoothing, low-pass filters. Edge enhancement (d) is an example of high-
pass filter.

of the convolution, which usually is a small square matrix of size r (the most common size
for kernels is 3× 3). Kernels coefficients correspond to point-wise values of an arbitrary
fixed continuous function, called Point Spread Functions (PSF). Figure 6.6 depicts some of
the most common PSF.

Convolution is very often used in image processing. Examples in this field are the Sobel’s
edge detection filter and the Gaussian Blur filters, that are shown in Figures 6.8 and 6.9.

Formally, convolution can be expressed by the following formula:

f ′ij =
n

∑
i′=0

(
m

∑
j′i′=0

f(i+i′)(j+j′) × dij) (6.1)

where

• m, n are the vertical and horizontal size of the kernel,

• fij and f ′ij are the old and new value of the cell at coordinate (i, j),

• dij is the value of kernel at location (i, j)
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Figure 6.7: The process of determining the new value of the central cell by applying a convolution
matrix to its neighborhood.

Figure 6.8: Gaussian Convolution filter application. The emnployed Gaussian Kernel has radius
4.
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Figure 6.9: Sobel edge detection filter. The new pixel value is computed in two subsequent steps,
horizontal and vertical, in order the final image to be less affected by noise.

6.3.3.1 Edge Handling

It is clear from Equation 6.1 that kernel convolution requires values from pixels outside the
domain boundaries. There are a number of ways for handling these corner cases:

wrap

The image is conceptually treated as it was wrapped in a toroidal shape. OpenCAL
natively deals with toroidal domain.

mirror

The image boundaries are mirrored at the edges, meaning that if trying to read a
pixel 2 units outside the edges, the returned value is the corresponding pixel 2 unit
inside the edge instead.

crop

The final image does not contain pixel which would require values from beyond the
edges. The output is smaller than the input because edges have been cropped out.

6.3.4 Sobel Edge Detection OpenCAL-CLUST implementation

Convolutional filtering is easily implemented in OpenCAL-CLUST in the following steps and
has been applied to the image shown in Figure 6.10a:

1. Image channels are separately read by each OpenCAL process into short substates
(using any image reading third part library, as SOIL1, for instance).

2. A cluster file is defined for the image and shown in listing 6.10. A single node and 3

GPUs were employed in this example. Two NVIDIA GTX980 and one NVIDIA K40 each
with an equal workload.

3. The kernels depicted in Figure 6.9 are applied to each pixel of the image. OpenCAL
kernel code is shown in Listing 6.9. Boundaries are automatically handled and trans-
ferred between devices. When devices running on different nodes need to communi-
cate then a MPI communication takes place.

4. The resulting image is written on disk and shown in Figure 6.10 (optimized for book
format).

1 SOIL webpage: http://www.lonesock.net/soil.html

http://www.lonesock.net/soil.html
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10800 21600

1

192.168.1.111 3

0 0 3600

0 1 3600

0 2 3600

Listing 6.10: Adopted cluster file for the Sobel filtering example. The image is decomposed
equally among 3 devices.

1 #define DEVICE_Q_red (0)

2

3 __kernel void sobel2D_transitionFunction(__CALCL_MODEL_2D) {

4

5 calclThreadCheck2D();

6 int i = calclGlobalRow() + borderSize;

7 int j = calclGlobalColumn();

8 int KX[3][3] = {

9 {-1, 0, 1},

10 {-2, 0, 2},

11 {-1, 0, 1}};

12

13 int KY[3][3] = {

14 {1, 2, 1},

15 {0, 0, 0},

16 {-1, -2, -1} };

17

18 int Gx,Gy,n,k,k1;

19 Gx = Gy = n = 0;

20 if (j > 0 && j < calclGetColumns() - 1)

21 for (k = -1; k <= 1; k++)

22 for (k1 = -1; k1 <= 1; k1++) {

23 Gx += calclGet2Di(MODEL_2D, DEVICE_Q_red, i + k, j + k1) *
24 KX[k + 1][k1 + 1];

25 Gy += calclGet2Di(MODEL_2D, DEVICE_Q_red, i + k, j + k1) *
26 KY[k + 1][k1 + 1];

27 }

28 const int P = sqrt(Gx * Gx + Gy * Gy);

29 //set new pixel color for red channel

30 calclSet2Di(MODEL_2D, DEVICE_Q_red, i, j, P);

31 return;

32 }

Listing 6.9: OpenCAL Sobel edge detection filter kernel. For the sake of simplicity

6.3.5 SciddicaT

This section briefly describes the OpenCAL-CLUST implementation of the SciddicaT landslide
model introduced in Section 5.6.1. The aim of this section is to show that it is possible
to deploy any model written in OpenCAL-CL to OpenCAL-CLUST on multiple nodes and
accelerators very easily. The code for the implementation of sciddicaT shown in Section
5.6.3 is used in this section, with few lines added. The additional lines take care of the
definition of a cluster object, as shown in Listing 6.11, during the initialization phase, as
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(a) Input Image

(b) Zoomed cut on Europe and North Africa of the Output Image.

Figure 6.10: Input Image for the Sobel filter example shown in listing 6.9. Image size is 233

MegaPixel ≈ 700MB in BMP uncompressed format.
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shown in Listing 6.12. Note that in this example no configuration file is used, as to show
that is possible to set up a configuration launch programmatically.

1 void setUpParallelWork(Cluster& mn, const uint XDIM, const uint YDIM){

2 //------node 1

3 struct Node n1;

4 struct Device d1_0 = {0,0,XDIM/4}; //NVIDIA GTX980

5 struct Device d1_1 = {0,1,XDIM/4}; //NVIDIA K40

6 struct Device d1_2 = {0,2,XDIM/4}; //NVIDIA K40

7 n1.devices.push_back(d1_0);

8 n1.devices.push_back(d1_1);

9 n1.devices.push_back(d1_2);

10 //node workload’s is the sum of its devices workloads

11 n1.workload = d1_0.workload+d1_1.workload+d1_2.workload;

12 n1.columns=C;

13 n1.offset = 0;

14 mn.nodes.push_back(n1);

15

16 //------node 2

17 struct Node n2;

18 //remainder work to this device

19 struct Device d2_0 = {0,0,XDIM/4+XDIM%4};//NVIDIA K20

20 n2.devices.push_back(d2_0);

21 n2.workload = d2_0.workload;

22 n2.columns=C;

23 //n2.workload starting from n1.workload

24 n2.offset = n1.workload;

25

26 mn.nodes.push_back(n2);

27 }

Listing 6.11: OpenCAL-CLUST sciddicaT Cluster defined programmatically during the init (see
Section 6.2.1) phase.

1 void init( struct CALCLMultiGPU* multigpu , const Cluster* c){

2 Node mynode = c->nodes[rank];

3 auto devices = mynode.devices;

4 struct CALCLDeviceManager * calcl_device_manager = calclCreateManager();

5

6 calclSetNumDevice(multigpu,devices.size());

7 for(auto& d : devices){

8 calclAddDevice(multigpu,calclGetDevice(calcl_device_manager, d.num_platform , d.num_device)

, d.workload);

9 }

10

11 CALModel2D* host_CA;

12 host_CA = calCADef2D(mynode.workload, mynode.columns, CAL_VON_NEUMANN_NEIGHBORHOOD_2D,

CAL_SPACE_TOROIDAL, CAL_OPT_ACTIVE_CELLS_NAIVE);

13

14 // Add substates

15 Q.f[0] = calAddSubstate2Dr(host_CA);

16 Q.f[1] = calAddSubstate2Dr(host_CA);

17 Q.f[2] = calAddSubstate2Dr(host_CA);

18 Q.f[3] = calAddSubstate2Dr(host_CA);

19 Q.z = calAddSubstate2Dr(host_CA);

20 Q.h = calAddSubstate2Dr(host_CA);

21

22 int my_readoffset, my_writeoffset=0;

23 my_readoffset = mynode.offset;
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24 // Load configuration

25 calLoadSubstate2DrMulti(host_CA, Q.z, DEM_PATH,my_readoffset,my_writeoffset);

26 calLoadSubstate2DrMulti(host_CA, Q.h, SOURCE_PATH,my_readoffset,my_writeoffset);

27

28 // Initialization

29 sciddicaTSimulationInit(host_CA);

30 calUpdate2D(host_CA);

31

32

33 // Define a device-side CAs

34 calclMultiGPUDef2D(multigpu,host_CA,KERNEL_SRC,KERNEL_INC, 1, c->nodes.size() == 1);

35

36 // Extract kernels from program

37 calclAddElementaryProcessMultiGPU2D(multigpu, KERNEL_ELEM_PROC_FLOW_COMPUTATION);

38 calclAddElementaryProcessMultiGPU2D(multigpu, KERNEL_ELEM_PROC_WIDTH_UPDATE);

39

40 bufferEpsilonParameter = calclCreateBuffer(multigpu->context, &P.epsilon, sizeof(CALParameterr))

;

41 bufferRParameter = calclCreateBuffer(multigpu->context, &P.r, sizeof(CALParameterr));

42

43 calclAddSteeringFuncMultiGPU2D(multigpu,KERNEL_STEERING);

44 calclSetKernelArgMultiGPU2D(multigpu,KERNEL_ELEM_PROC_FLOW_COMPUTATION, 0,sizeof(CALCLmem), &

bufferEpsilonParameter);

45 calclSetKernelArgMultiGPU2D(multigpu,KERNEL_ELEM_PROC_FLOW_COMPUTATION, 1, sizeof(CALCLmem), &

bufferRParameter);

46 }

Listing 6.12: OpenCAL-CLUST sciddicaT model definition and launch configuration set up
programmatically during the init (see Section 6.2.1) phase.

In this case, a configuration Cluster specifying two nodes and four devices in total is
created. The four employed devices are:

• 2 nvidia K40

• 1 nvidia K20

• 1 nvidia GTX980

(see Appendix B for the technical specification of the accelerators).
The initialization phase is used here in order to allocate and initialize the library using

the same approach shown in Listing 6.4 (lines 7-11).
The kernel side of the application remains also the same, with the exception that bound-

aries cells are not considered, and are only used in read-mode.

6.4 performance analysis

This section describes the computational results of OpenCAL-CLUST by considering the mod-
els presented in the previous sections tested on the following benchmarks:

1. Julia Set Generation, described in Section 6.3.1, representing a typical compute bound
application (see Section 6.3.1).

2. Convolutional Filter application, described in Section 6.3.3, is an example of memory
bound application (see Section 6.3.4).
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3. Landslide numerical model sciddicaT, introduced and formally defined in Section
5.6.1 at page 79, and is used to benchmark the performance of OpenCAL-CLUST on a
real life computational model. Its kernels are both memory and compute bounds (see
Section 6.3.5).

Assessing the type of the limiting factor for performance in relatively short kernels as Julia
Set generation and convolutional filter is relatively easy by considering the instruction:byte
rate of the considered kernel. Each GPU is attached with a theoretical peak in memory and
instruction throughputs [141]. Let I, in GInst/s, and M,in GB/s, be the peak instruction and
memory throughput, respectively. The quantity I

M is then called balanced instruction:byte
ratio. This is the number of fp32 operations per byte that should be issued in order to
obtain peak compute and bandwidth performance. For example, the GPU NVIDIA K40

has a theoretical instruction throughput of 715.2 GInstr/s and a theoretical bandwidth of
288 GB/s. Its theoretical instruction throughput is computed by considering the base clock
of a single core, that is F = 745 MHz and their number, that is N = 2880. Assuming
that a fp32 operation is completed with a latency of L = 3 cycles then the throughput is
computed as follows:

F∗2880
1000
3

=
745 ∗ 2880

3000
= 715.2

The balanced ratio for the K40 is then:
715.2
288

= 2.83

If, compared to the balanced ratio for the device at hand, the instruction:byte ratio of a kernel
is:

higher :
usually means that the kernel is instruction/compute bound, while if it is

lower :
usually mean that the kernel is memory/bandwidth bound.

The ratio for the Listing 6.8 has a value of roughly (assuming MAXITERATION =

10000, and cost for cl_complex_multiply and cl_complex_add is equal to 2 fp32 instruc-
tions): ≈ 40000 : 1 >> 2.48. Therefore, Listing 6.8 is a compute bound kernel for the K40
GPU. For the same reasons we can conclude that kernel shown in Listing 6.9 is memory
bound: its instruction:byte ratio for is ≈ 1 : 1.

SciddicaT exposes both kind of bounds within its kernels. Some are memory bound, as
for instance width_update while other are more compute intense as for instance flow_computation.

6.4.1 Adopted Test Hardware

All test are executed on two computing nodes (named JPDM1 and JPDM2, respectively)
interconnected via Gigabit Ethernet. Technical specification of both nodes can be found in
Section B.0.2.

6.4.2 Julia Set Generation

Fractal Generation is an example of a perfectly parallelizable problem since the computa-
tion of each point of the grid does not require any communication and does not depend on
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GTX980 K40

Time(ms) 10908 2561

Speedup(×) 116 496

Table 6.2: Timings and speedups obtained on a single NVIDIA K40 and GTX980 for the small
dataset.

the value of any other grid points other than itself. Moreover, the granularity of the work
is small, making it a good candidate for GPU acceleration. The Julia generating function
adopted is the following zn+1 = z2

n + c where c = −0.391 +−0.587i. Each discrete point of
the grid (x, y) 0 ≤ x < Sx, 0 ≤ y < Sy is mapped to the complex plane using the following
mapping:

Re(z) =
3(x− Sx

2 )

KSx

Im(z) =
2(y− Sy

2 )

KSy

where K is the zoom factor, Sx and Sy are the vertical and horizontal sizes, respectively, of
the discrete computational grid.

Two domain sizes are considered:

• small, consisting of 12000× 12000 = 144× 106 points, 103 iterations limit per step.

• large, consisting of 17000× 17000 = 289× 106 points, 104 iterations limit per step.

It is worth to note that besides its much higher number of grid points, the large domain
case performs 10× more work (in a single step) per grid point than the small case, as the
number of iteration limit is increased from 103 to 104.

Table 6.2 shows timings and speedup obtained on a single NVIDIA K40 and GTX980 on the
small domain. As expected, speedup results are extremely positive, up to ≈ 500×, thanks
to the great parallelizability of the problem on GPU architecture.

Table 6.3, Figures 6.12 and 6.11 show timings and speedups of the same application on
two GPUs on the small domain. Note that since the two adopted devices have a substan-
tial difference in hardware (see Table B.1) it is not easy to determine in advance the best
workload for each of the GPU in order to obtain the best load balancing. For this reason, a
number of experiments are performed in order to discover the optimal workloads for the
considered GPUs and kernel. The best speedup is obtained when only 25% of the domain
is assigned to the GTX 980. It can be seen that for this type of kernels, the K40 shows better
performance, due to the fact that the K40 has a higher number of processing cores and
shows a better divergence management than the GTX980. Moreover, it also worth to note
that the Julia set kernel is highly divergent and that computational work is not homoge-
neously spread across the domain, as can be seen from Figure 6.5. Pixels colored in blue
correspond to a small number of iterations of the loop in Listing 6.8, lines 23-26, while the
ones colored in red to a higher number of iterations. Note that no communication what-
soever is performed during this application since the problem is embarrassingly parallel.
The rightmost part of Figure 6.12a (from 9000 to 12000) shows a weird fluctuation in the
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(a) Fractal non-homgeneous scaling.
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(b) Fractal homogeneous work scaling
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Figure 6.11: Fractal Generation speedups obtained on single-GPU execution (K40, GTX980) and
multi-GPU execution on two devices (small dataset).

speedups, mainly due to the fact that pixels contained in rows from 1000 to 2000 corre-
spond to black ones i.e. to pixels with almost no work attached to them. In order to show
that in case of uniform work attached to each pixel the speedup curve behaves normally, a
variation of Listing 6.8 is used and shown in Listing 6.13 where each execution of the ker-
nel lasts for 1000 iterations. Figure 6.12b shows that fluctuation in this case are not present.

1 int evolveComplexPoint(cl_complex p,cl_complex c){

2 int it=1;

3 volatile cl_complex p1={p.x,p.y};

4 while(it++ <= 1000)

5 p1=juliaFunctor(p1,c);

6 return 100;

7 }

Listing 6.13: OpenCAL-CLUST kernel for the generation of Julia Set. volatile keyword ensures that
the object code for the while is emitted

Table 6.5 and Figure 6.13 show speedup and timings for the case where two identical
GPUs GTX980 are employed. It is not surprising that in this case best performance are
achieved when the dataset is shared in an equal manner among the two devices. However,
timing and speed-up are not perfectly symmetrical in this case, since one of the GPUs is
attached with the (small) overhead of performing screen rendering.

Table 6.7 and Figure 6.14 show timing and speedup for the large dataset that is divided
among the three employed devices. In this case, the workload not assigned to the K40
is equally divided among the two GTX980 as this is the case where best performance
is achieved when two identical devices are adopted, as shown in Figure 6.13. As noted,
achieved speedups are good, up to to ≈ 110×, when workload division is s.t. ≈ 20%
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(a) Non Homogeneous work. High divergent code.
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(b) Homogeneous work. No thread divergence.
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Figure 6.12: Time and Speed-up for the fractal generation small case on two different GPU: 1
GTX980 and 1 K40. The bottom and top horizontal axes indicate the amount of rows
assigned to the K40 and GTX980, respectively. Note that Figure 6.12b depicts time and
speedup values for the modified version of the kernel 6.8 that force homogeneous
amount of work among all the grid points.
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(a) Non Homogeneous work. High divergent code.
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(b) Homogeneous work. No thread divergence.
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Figure 6.13: Time and Speed-up for the fractal generation small case on two GTX980. The bottom
and top horizontal axes indicate the amount of rows assigned to the first and second
GTX980, respectively. Figure 6.13a depicts time and speedup values for the modified
version of the kernel reported in Listing 6.8 which forces homogeneous amount
work among all the grid points. Note that in this case the graph is almost perfectly
symmetrical. Time in red (lower is better), speed-up in blue (higher is better).
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(a) Non homogeneous work case. Note that this is a code with an high value of thread divergence .
A number 3 of GPUs are employed.
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(b) Homogeneous work. No thread divergence.3 GPUs employed.

Figure 6.14: Timings and Speed-up for the fractal generation large case. (a) shows non-
homogeneous work i.e. the real fractal, (b) the homogeneous one. Time in red (lower
is better), speed-up in blue (higher is better).
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(a) Real Fractal

Workload

gtx980 K40 Time(ms) Speedup(×)

0 12000 2561 522.05

1000 11000 2520 530.54

2000 10000 2935 455.52

3000 9000 2314 577.77

4000 8000 3305 404.53

5000 7000 4458 299.90

6000 6000 6123 218.35

7000 5000 7573 176.54

8000 4000 8744 152.90

9000 3000 9669 138.27

10000 2000 10359 129.06

11000 1000 10669 125.31

12000 0 10908 122.57

(b) Uniform number of iterations.

Workload

gtx980 K40 Time(ms) Speedup(×)

0 12000 6039 193.01

1000 11000 5444 214.10

2000 10000 5092 228.91

3000 9000 4688 248.63

4000 8000 5043 231.13

5000 7000 6049 192.69

6000 6000 7006 166.37

7000 5000 7819 149.07

8000 4000 8771 132.89

9000 3000 9625 121.10

10000 2000 10625 109.70

11000 1000 11603 100.45

12000 0 12708 91.72

Table 6.3: Timing and speedups for the fractal generation (small dataset) on aK40 and a GTX980.
(a) and (b) are refereed to the real case and the uniform work scenarios, respectively.
The Best speed-up case is highlighted in dark gray. The workload columns indicate the
amount of rows assigned to each device.

(a) Real Fractal

Workload

gtx980 gtx980 Time(ms) Speedup(×)

0 12000 12896 90.38

1000 11000 11869 98.20

2000 10000 10968 106.27

3000 9000 9959 117.04

4000 8000 9131 127.65

5000 7000 8173 142.61

6000 6000 7088 164.44

7000 5000 7931 146.97

8000 4000 8819 132.17

9000 3000 9684 120.36

10000 2000 10629 109.66

11000 1000 11630 100.22

12000 0 12708 91.72

(b) Uniform number of iterations.

Workload

gtx980 gtx980 Time(ms) Speedup(×)

0 12000 10916 122.48

1000 11000 11866 112.67

2000 10000 11595 115.30

3000 9000 10953 122.06

4000 8000 9761 136.97

5000 7000 8865 150.81

6000 6000 7132 187.46

7000 5000 7624 175.36

8000 4000 8770 152.45

9000 3000 9681 138.10

10000 2000 10341 129.29

11000 1000 10715 124.77

12000 0 10986 121.70

Table 6.5: Timing and speedups for the fractal generation (small dataset) on two identical GTX980.
(a) and (b) are refereed to the real case and the uniform work scenarios, respectively.
The Best speed-up case is highlighted in dark gray.
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Figure 6.15: Timing and speedups for the multinode test of the fractal generation (large dataset,
real case, non homogeneous work) on a total of 4 devices: a GTX980 and a K40 on
node 1 and a GTX980 and a K20 on node 2. The workload on the x dimension is shared
among two devices: K40 and K20 while the remaining portion of the domain among
the two GTX980. Time in red (lower is better), speed-up in blue (higher is better).

of the total work is shared among the two GTX980 (see Figure 6.14a). This is due to the
non-homogeneous distribution of the work along the domain and to the high number of
divergent threads. In fact, when homogeneity of work if forced, i.e. all threads perform
the same number of iterations, the best performance are obtained assigning ≈ 40% of the
domain to the two GTX980 (see Figure 6.14b).

Finally, Figure 6.15 shows an example of execution of this benchmark (large dataset,
non-homogeneous work) on an experimental cluster, which technical specification can be
found in Appendix B, composed of two nodes interconnected via GigaBit Ethernet for a
total of 4 accelerators (2 GTX980, 1 K40 and 1 K20). It can be seen that this leads to a ≈ +50×
speed-up improvement w.r.t. the 3 GPU single node execution depicted in Figure 6.14a,
reaching a peak improvement of 158× w.r.t. the serial execution. The workload specified
on the label of the x-dimension of Figure 6.15 is shared among two devices i.e. the K40
and K20 while the remaining portion of the domain among the two GTX980s. This means
that peak performance are achieved when a portion corresponding to 44% of the domain
is assigned to each K-type GPU and only the 6% to each GTX.

6.4.3 Convolutional Filtering

In contrast to fractal generation, convolutional filtering is not a perfectly parallelizable
problem since grid points on the boundaries requires values from grid points that reside
on different GPUs. Here, the ratio of instruction:byte is usually low (it can vary depending
on the convolutional kernel adopted), meaning that the problem is low compute-intensity
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(a) Real Fractal.

Workload

gtx

K40 #1 #2 Time(ms) Speedup(×)

16500 250 250 65617 94.8

15500 750 750 66438 93.6

14500 1250 1250 62685 99.2

13500 1750 1750 57851 107.5

12500 2250 2250 78570 79.1

11500 2750 2750 87098 71.4

10500 3250 3250 109818 56.6

9500 3750 3750 134713 46.2

8500 4250 4250 154125 40.3

7500 4750 4750 186840 33.3

6500 5250 5250 219067 28.4

5500 5750 5750 186668 33.3

4500 6250 6250 193661 32.1

3500 6750 6750 223505 27.8

2500 7250 7250 249335 24.9

1500 7750 7750 257837 24.1

500 8250 8250 264234 23.5

(b) Uniform number of iterations.

Workload

gtx

K40 #1 #2 Time(ms) Speedup(×)

16500 250 250 95371 255.8

15500 750 750 102673 237.6

14500 1250 1250 93783 260.2

13500 1750 1750 82648 295.2

12500 2250 2250 75620 322.7

11500 2750 2750 66651 366.1

10500 3250 3250 61123 399.2

9500 3750 3750 65084 374.9

8500 4250 4250 70829 344.5

7500 4750 4750 81022 301.1

6500 5250 5250 92560 263.6

5500 5750 5750 92070 265.0

4500 6250 6250 95433 255.7

3500 6750 6750 108764 224.3

2500 7250 7250 122306 199.5

1500 7750 7750 122318 199.5

500 8250 8250 123519 197.5

Table 6.7: Timing and speedups for the fractal generation (small dataset) on three devices: a pair
of GTX980 and a K40. (a) and (b) are refereed to the real case and the uniform work
scenarios, respectively. The Best speed-up case is highlighted in dark gray.

and latency/bandwidth bound. Two filtering operations are taking in consideration for
assessing the performance of OpenCAL-CLUST on this kind of algorithm:

sobel edge detection :
Described in Section 6.3.3 and which kernel is shown in Listing 6.9,

gaussian blur :
that consists of a uniform matrix with coefficients equal to 1

9 . At each step of the
the application change the value of a grid point with the average of its 8 immediate
neighboring points. It has a instruction:byte ratio ≈ 1. See Figures 6.16 and 6.8. Listing
6.14 shown the actual kernel code which implements this filter.

Both filters are applied on a computational grid of size 15000× 15000 = 225× 106 cells for
a number of 100 steps. The image upon which the filter are applied are generated using
the OpenCAL fractal application described in Sections 6.3.1.
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(a) Raw detail from a rendered image of a Julia
Set.

(b) Gaussian Blur rendered version of Figure
6.16a

Figure 6.16: Raw and blurred detail of the of the image upon which the OpenCAL-CLUST convolu-
tional filter application is ran upon. Rendering of fractals are obtained using QGIS
software [138].

1 int convolutional_gaussian_blur(cl_complex p,cl_complex c){

2 int sum=0,n=0;

3 const int sizeOfX_ =calclGetNeighbor\right oodSize();

4 for(; n < sizeOfX_; ++n)

5 sum+= calclGetX2Di(MODEL_2D,DEVICE_Q_red, i, j, n);

6 calclSet2Di(MODEL_2D, DEVICE_Q_red, i, j,sum/sizeOfX_);

7 }

Listing 6.14: OpenCAL kernel implementing the Gaussian blur convolutional filter.

Table 6.9 and Figure 6.18 shows performances for the sobel filter on two (6.18a) and three
(6.18b) devices respectively. Note that in this case, the disparity in performance between
the K40 and the GTX980 is not evident: in-fact, best performance behavior is obtained when
the domain is shared in an equal manner among the devices. It is worth to note that the
speedup scales linearly as the number of GPUs increases, as a ≈ 28× speed-up is obtained
with 1 GPU, ≈ 56× with 2 GPUs and ≈ 82× when 3 devices are employed as shown in
Figure 6.17b.

Similar results are obtained for the Gaussian blur kernel as can be seen from Figure 6.19.
The blur kernel is even more memory bound than sobel, which explains why performances
are lower w.t.r to the Sobel experiments. Note that the speedup scales super-linearly as the
number of GPUs increases as a ≈ 10× speed-up is obtained with 1 GPU, ≈ 36× with 2
GPUs and ≈ 53× when 3 devices are employed as shown in Figure 6.17a.

Eventually, Figure 6.20 shows an execution of the Sobel benchmark on the test cluster
specified in Appendix B. As can be seen, good speedups are achieved even in the presence
of network communication between nodes. Figure 6.20a reports timing and speedup for
an execution of two nodes where node 1 and node 2 are equipped with a GTX980 and a
K40, respectively. Obtained performance are comparable to the two GPU single node case
depicted in Figure 6.18a. Figure 6.20b reports timing and speedup for an execution on
two different nodes each equipped with two accelerators (a total of 4, adopting the same
configuration adopted for the Julia Set Generation benchmark). In this case, 22× and ≈
103× improvements are obtained w.r.t. the single node 3 GPU (reported in Figure 6.17b)



134 opencal-clust - the distributed memory implementation of opencal

(a) Blur Scaling
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Figure 6.17: Blur and Sobel Speed-up benchmark scales linearly with the number of GPUs.

and the serial executions, respectively when ≈ 25% of the domain is assigned to each of
the devices involved.

6.4.4 The sciddicaT landslide model

sciddicaT is an example of a real world model with both compute and memory bounded
kernels (see Section 5.6.1). sciddicaT parallelization across several accelerators requires the
communication of boundary cells residing on different GPUs. Despite three benchmarks
are considered for performance evaluation of OpenCAL as shown in Section 5.9, only two
benchmarks are here considered:

standard
the small standard domain of size 610× 496 cells (see section 5.9.1)

computational domain stress test
the large domain of size 3593× 3730 cells (see section 5.9.3)

Figure 6.21 shows that good absolute speed-up performance, for the large dataset, are
obtained when multiple devices are utilized, up to ≈ 25×. It is worth to note that in this
case the GTX980 shows better performances than the K40 ( 9.7× vs 5.5× respectively) which
explains also the reason why sciddicaT runs faster on a pair of GTX980 than the case where
one of them is replaced by a K40. This is mainly due to the fact that memory bounded
kernels are in sciddicaT the ones that make up for most of the execution time, and it
has been shown in Section 6.4.3 that the GTX980 performs better executing such latency
bound kernels. Despite the good performance obtained in the large dataset, performance
for the standard dataset are worse when adopting multiple devices than a single GPU
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(a) Performance on 2 GPUs: NVIDIA K40 and 1 GTX980.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  2000  4000  6000  8000  10000  12000  14000

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2000 4000 6000 8000 10000 12000 14000

T
im

e
 (

m
s

)

S
p

e
e

d
-u

p
 (

X
)

Workload - K40

Workload - GTX980

 
Time

Speed-up

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0  2000  4000  6000  8000  10000  12000  14000

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000

T
im

e
 (

m
s

)

S
p

e
e

d
-u

p
 (

X
)

Workload - K40

Workload - GTX980 #1 and #2

 
Time

Speed-up

(b) Performance on 3 GPUs: NVIDIA K40 and a pair of GTX980.

Figure 6.18: Sobel benchmark performance metrics on two (a) and three (b) GPUs. Time in red
(lower is better), speed-up in blue (higher is better).
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(a) Performance on 2 GPUs: NVIDIA K40 and 1
GTX980.

Workload

k40 gtx980 Time(ms) Speedup(×)

15000 0 97028 14.75

14000 1000 83304 17.18

13000 2000 46178 30.99

12000 3000 54814 26.11

11000 4000 41506 34.48

10000 5000 40067 35.72

9000 6000 32556 43.96

8000 7000 27314 52.39

7000 8000 26013 55.01

6000 9000 29330 48.79

5000 10000 29861 47.92

4000 11000 35657 40.13

3000 12000 38970 36.72

2000 13000 42851 33.39

1000 14000 46527 30.76

0 15000 50583 28.29

(b) Performance on 3 GPUs: NVIDIA K40 and a
pair of GTX980.

Workload

gtx

K40 #1 #2 Time(ms) Speedup(×)

14500 250 250 89033 16.07

13500 750 750 74482 19.21

12500 1250 1250 55861 25.61

11500 1750 1750 46666 30.66

10500 2250 2250 39233 36.47

9500 2750 2750 33240 43.05

8500 3250 3250 29388 48.69

7500 3750 3750 25364 56.41

6500 4250 4250 22197 64.46

5500 4750 4750 17678 80.94

4500 5250 5250 17524 81.65

3500 5750 5750 19415 73.70

2500 6250 6250 21177 67.57

1500 6750 6750 22856 62.60

500 7250 7250 24364 58.73

Table 6.9: Sobel benchmark performance metrics on two (a) and three (b) GPUs. Best speed-up
case is highlighted in dark gray.

configuration. The main reason is that the standard test (see Section 5.9.1) has a relatively
small number of cells (≈ 300000) making the efforts of further parallelization on several
accelerators unnecessary since the communication overhead is dominant in this case. As
it is known GPUs need a large number of threads in order to hide the intrinsic latency of
the memory controller due to such latency/memory bound kernels. Figures 6.21a and 6.22

shows that a negative speedup (with the respect to a single GPU execution) are achieved.
In particular, when adopting a K40 and a GTX980 −1.5× slowdown is achieved at best.
Figure 6.24b and 6.24a show timing and speed-ups metrics for the large dataset, for the case
where a pair of GTX980 and a K40 and a GTX980 are adopted, respectively. The former shows
that slightly super-linear speedup is achieved when an equal amount of work is assigned
to each device while the latter configuration achieves best performance when only ≈ 30%
of the domain is assigned to the K40 reaching a peak of ≈ 15× speedup. Figure 6.24c shows
timing and speed-up in the case where 3 GPUs are adopted. In this case best performance
are achieved when only ≈ 15% of the domain is assigned to the K40 obtaining a speedup
of ≈ 25×.

The last experiments concern the execution of this benchmark on the test cluster on both
the small and large datasets considering the naive and the active cells versions. The small
dataset is scattered equally (a total of 300× 496 cells assigned to each device) among two
GTX980s each located on a different node. As expected the small dataset incurs in a high
communication overhead giving rise to worsening performance w.r.t. the single node single
GPU configuration with a ≈ 5× slowdown. Measured communication and computation
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(a) Performance on 2 GPUs: NVIDIA K40 and 1 GTX980.
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(b) Performance on 3 GPUs: NVIDIA K40 and a pair of GTX980.

Figure 6.19: Gaussinan Blur benchmark performance metrics on two (a) and three (b) GPUs. Time
in red (lower is better), speed-up in blue (higher is better).

time are reported in Table 6.11 shows that communication time dominates the overall exe-
cution time.
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(a) Performance on 2 nodes and 2 GPUs: NVIDIA K40(node 1) and 1 GTX980(node 2).
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(b) Performance on 2 nodes each with 2 GPUs.

Figure 6.20: Sobel filter benchmark performance metrics on two Ethernet interconnected nodes.
(a) reefers to the case where node 1 is equipped with 1 K40 and node 2 with a
GTX980. (b) to the case where node 1 uses a K40 and a GTX980 while node 2 a K20
and a GTX980. Time in red (lower is better), speed-up in blue (higher is better).
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(a) SciddicaT Small Dataset
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(b) SciddicaT Large Dataset

 0

 5

 10

 15

 20

 25

K
40

G
TX98

0

G
TX98

0+
K
40

G
TX98

0+
G
TX98

0

G
TX98

0+
G
TX98

0+
K
40

1.75x

1.54x

0.79x

0.77x

S
p

e
e
d

-u
p

 (
X

)

5.52

9.68

14.94

19.69

25.34

Figure 6.21: sciddicaT (small and large datasets) speed-up scaling as the number of GPUs is
increased.
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Figure 6.22: sciddicaT standard dataset on 2 GPUs. Time in red (lower is better), speed-up in
blue (higher is better).

Active cells version of the small dataset benchmark on two nodes exposes even worse per-
formance due to the fact that active cells need further communication computation since a
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Communication Time Computation Time

20527.2 ms 5163.8 ms

Table 6.11: Communication and computation time for the execution of the naive version small
dataset on two nodes and each equipped with a GTX980.

Communication Time Computation Time

19720.99 ms 10204.1 ms

Table 6.12: Communication and computation time for the execution of the active cell version
small dataset on two nodes and each equipped with a GTX980.

cell can be activated by its owning GPU or by a neighboring one. Once the boundary active
cells data are exchanged, activation information need to be processed by each device, by
means of an additional active cell merging kernel. Communication and computation timings
are reported in Table 6.12 and show that even in this case, communication time dominates
and also that the computation time is higher, leading to a 10× slowdown w.r.t. the single
GTX980 execution.

Regarding the large dataset naive version, good performance is achieved for the two
adopted run-configurations.

• When the domain is scattered equally across the two GTX980 (each one residing of
the two nodes) a speedup of ≈ 20 is reached (similarly to the single-node 2 GTX980

experiment reported in Figure 6.24b).

• When the domain is scattered across 4 devices i.e. 2 GTX980 and 1 K40 and 1 K20 in the
same cluster configuration of the benchmark reported in Section 6.4.3 good overall
performances but no improvement is obtained with the addition of two GPUs. This
is mainly due to two factors:

I The additional devices perform worse (≈ 2×) than the GTX980 on this benchmark
as can be seen in Table 5.7.

II When divided among 4 devices each sub domain size is relatively small impeding
good utilization of the device.

Figure 6.23 shows timing and speed-up achieved for this specific case.

6.5 conclusion and future works

This chapter introduced the preliminary implementation of the distributed memory and
multi-GPU version of OpenCAL: OpenCAL-CLUST. It has been shown that it allows deploying
numerical applications on regular grid on machines composed by several computational
nodes interconnected by network each armed with multiple accelerators. Thanks to the
adoption of OpenCL, different kinds of accelerators can be employed seamlessly. The per-
formance benchmarks that have been used to test OpenCAL-CLUST ( Section 6.4) show that
it effectively use the computational power of multiple devices in order to speedup the
computation.
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Figure 6.23: sciddicaT large dataset naive version on 4 devices installed onto 2 separate nodes.
Time in red (lower is better), speed-up in blue (higher is better).

As regarding future developments, OpenCAL-CLUST will be extended allowing domain de-
composition on multiple dimensions. As shown in Section 6.1.2, decomposing the domain
on a single dimension is not always optimal, as in order to obtain better load balancing
among the devices different decomposition may be necessary. The programmer would be
able to decompose the domain multidimensional cubic portions and assign one to each
available device. Another important issue that will be addressed is that the current imple-
mentation serializes communications at each step execution taking advantages of possible
computation-communication overlapping. Another limitation that the current implemen-
tation exposed is that boundaries are always exchanged among intra-node devices. This
might not be optimal in cases where boundaries grid cells between two devices or nodes
do not change and thus, the communication of such cells avoided. This mechanism can be
accomplished by performing boundaries exchange only if there is a relevant update i.e. by
means of the so called dirty-bits mechanism. A scaling benchmark will be performed on a
proper HPC cluster with at least 16 nodes interconnected by fast network (Infiniband et.
similia for instance) in order to obtain information about the scalability of OpenCAL-CLUST
as the number of nodes is increased.
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(a) Performance on 2 GPUs: NVIDIA K40 and 1 GTX980.
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(b) Performance on 2 GPUs: a pair of NVIDIA GTX980.
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(c) sciddicaT performance on 3 GPUs: a pair of NVIDIA GTX980 and a NVIDIA

K40.

Figure 6.24: sciddicaT benchmark performance metrics on a NVIDIA K40 and NVIDIA GTX980 (a)
and on a pair of NVIDIA GTX980 (b) GPUs. Time in red (lower is better), speed-up in
blue (higher is better).
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Other Related HPC Applications
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This part of the thesis contains work that have been developed within the context of
OpenCAL but has diverged over time into something self contained, and for this reason is
only partially related to the content of the first part of the thesis. Both following Chapters,
7 and 8 have been originally investigated as test applications while Appendix A as an opti-
mization for the OpenCAL framework. Chapter 7 describes an application of an early stage
version of OpenCAL to the tracking of particle-like object and parallel image processing of
time-lapse images. Chapter 8 is an application related to agents and crowd dynamics and it
was an attempt to adapt the library to mesh-less spaces. Appendix A contains an algorithm
which is highly optimized for new generation GPUs that have dedicated hardware for the
so called ballotting functions.
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7
A T R A C K I N G A L G O R I T H M F O R PA RT I C L E - L I K E O B J E C T S

All things as subsist from nature appear to contain in themselves
a principle of motion and permanency; some according to place,
others according to increase and diminuation; and others
according to change in quality.

— Aristotle

This chapter is adapted from [142].

Studying the movement of sub-micron particles, micro-spheres and molecules under
microscopic observation often requires their time trajectories from which important
kinematic and dynamic properties can be computed. Several studies employ time-

lapse microscopy, especially in the field of biophysics, as a tool to gather data and re-
trieve single particle time trajectories. The researcher usually relies on manual or semi-
manual/interactive software to study such properties. However, this approach is unfeasible
when the number of cells involved in the analysis is high.

In this Chapter an original algorithm for detecting and tracking particles that is based on
image processing techniques and to shape difference and centroid displacement analysis to
reconstruct the trajectories is presented. To our knowledge this is the first study regarding
semi-automatic detection of particles-like objects adopting parallel CA. In particular, the
method works for n-dimensional input data provided that particles are represented by
at least a centroid space coordinate and a geometrical entity which describe its shape.
Since 2D images are a common source of such data we also present framework for image-
manipulation based on the Extended Cellular Automata(XCA) paradigm .
TraCCA has been successfully applied for the investigation of the motility of B. subtilis.

injected in a micro-fluidic device using 4100 images taken at 100 frames per second, as
reported in Section 7.3.

The Chapter is organized as follows: Sections 7.1 and 7.2 outline the proposed tracking
algorithm and cellular automata based image processing framework, respectively; Section
7.3 shows a detailed application of TraCCA referred to a real case study regarding bacterial
motility, while conclusions and possible future works are reported in Section 7.4.

7.1 tracking algorithm

The objective of the tracking algorithm is to produce a set Tn = {ti}, where ti = {ci
k, ci

k+1, . . . , ci
l}

of trajectories each described as a time-ordered list of positions in space from a set of in-
put particles P = P1 ∪ P2 ∪ . . . ∪ Pn and a function D : P × P 7→ R, the distance function.
Pi = {pj

i | 1 ≤ j } indicates all particles at time i and each particle pj
i is defined by a

centroid position, and a bounding box which describes its geometrical properties. D(p, q)
measures the likeliness that a particle p has been transformed into q as a result of the ap-
plication of a number of geometrical transformations such as translation, scaling, shearing
or rotation (see Eq. 7.2). Indexes k and l, k ≤ l indicate the trajectory starting and end-
ing time of the tracked movement respectively, and the length l − k + 1 is its duration in
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time. Note that particles may appear or disappear at any time and hence k ≥ 0 and l ≤ n.
Moreover, |ti| ≤ l − k + 1 since a particle which has been successfully tracked from Pk to
Pk∗ can disappear for a certain time and may appear again in Pk̄, k ≤ k∗ ≤ k̄. We only
allow disappearing time k̄ − k∗ ≤ ξ where ξ ≥ 0 is a parameter of the algorithm. Each
trajectory t∗ = {c∗k , c∗k+1, . . . , c∗l } is composed by positions of particles pj1

k , pj2
k+1, . . . , pj∗

l at

different times. This means that, for our purpose, particle pj1
k at frame k has moved from c∗k

to location of particle pj2
k+1,c∗k+1 at time k + 1 and to location of pj∗

l , c∗l at time l.
As an example, let us consider a human tracking system where each Pi could correspond

to all the detected bodies in a video frame i and the distance function a linear combination
of the euclidean distance between two detected bodies centroids and pixel-by-pixel differ-
ence in colors of all the pixels within their bounding boxes. In this context, it would make
sense to consider a not null disappearing time since it is not uncommon for the human
detection module (which is in charge of producing the centroids and bounding box from
the images) to skip recognizing a specific target only for a limited number of frames.

In order to construct the trajectories, the algorithm works sequentially from frame 1 to
n processing, at each step, two subsets of particles, Mi and Pi, where Mi contains all the
corresponding trajectories ending particles pj

l that can still be expanded, i.e. i − l ≤ ξ .
Informally, the algorithm tries to augment an element in Mi using a particle in Pi making
sure at most one particle is added to it, the same particle does not augment two different
trajectories and the augmenting is performed s.t. the distance function is minimized.

Since at each step of the process a possible assignment between an element of Mi and one
of Pi is sought, the algorithm can be thought to be similar to the assignment problem [143]
and more specifically, it consists in finding a minimum weight matching (not necessarily
perfect) in a weighted bipartite directed graph G = (V, E) where V = Mi ∪ Pi is the set of
nodes and Mi, Pi are the two partitions, E = Mi × Pi s.t. e ∈ E,D(e) ∈ R is the weight of
the edge. A valid matching S ⊆ E must satisfy the following:

∀(u, v) ∈ S


(w, x) ∈ S, v = x ⇐⇒ u = w

D(u, v) = minx∈V2 D(u, x)

@ (w, v) ∈ E s.t.D(w, v) < D(u, v)

(7.1)

If we denote the matching operator as the following recurrence relation Mi♦Pi+1 =

(Ti+1, Mi+1), M0 = P0, then the tracking algorithm can be summarized as (Tn, Mn) =

Mn−1♦Pn = (((P0♦P1)♦P2)♦ . . .♦Pn). If after the ♦ application a particle p∗ ∈ Mi ∪ Pi
remains unmatched1, two cases have to be considered (see Figure 7.1):

1. if p∗ ∈ Mi, the disappearing time counter up∗ for p∗ is updated and if up∗ > ξ, p∗

is not included in Mi+1 and the corresponding tracked trajectory is flushed into Ti,
otherwise it is retained. This handles the case when particles may disappear from the
dataset for a number of time steps and appear again.

2. if p∗ ∈ Pi, it corresponds to a newly appeared particle which is then inserted into
Mi+1.

The pseudo-code reported in Algorithm 2 shows how the matching procedure is imple-
mented. Note that the NEIGH procedure filters the possible candidates for a particle only
to those which the euclidean spatial distance is less than a threshold parameter. In many

1 @ (u, v) ∈ S s.t. u = p∗ ∨ v = p∗ (cf. Equation 7.1)
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real life applications particle displacement between two subsequent time-steps are small,
so it would be useless trying to match a particle at time i with one at time i + 1 which are
spatially far apart.

Algorithm 2: TraCCA tracking procedure

1 Function MATCH (Mi, Pi+1);
Input : Matched and to be matched particles M and P respectively.
Output : (Ti+1, Mi+1), which are the updated set of trajectories and matched

particles.
2 Ti+1 = Ti
3 foreach p ∈ Mi do
4 neighbours[p]← NEIGH(p, Pi+1) ;
5 foreach n ∈ neighbours[p] do
6 d[p][n]← DISTANCE(p, n);

7 SORTBY(neighbours[p], d[p]);

8 foreach p ∈ Mi do
9 if neighbors[p].size 6= 0 then

10 candidate← neighbors[p]. f irst
11 else
12 p.u← p.u + 1;
13 continue;

14 if match[candidate] = NIL then
15 match[candidate]← p;
16 p.u← 0;
17 else
18 p′ ← match[candidate]
19 if d[p][candidate] >= d[p′][candidate] then
20 neighbors[p].pop()
21 else
22 match[candidate]← p;
23 neighbors[p′].pop() ;
24 p← p′;

25 go to 10;

26 foreach p ∈ Pi+1 do
27 if match[p] = NIL then
28 Ti + 1.push(< p >)

29 else
30 MATCH(Ti+1, match[p]).enqueue(p));

31 foreach p ∈ Mi ∪ Pi+1 do
32 if p.u < Pr then
33 Mi+1.push(p)

34 return (Ti+1, Mi+1);
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Figure 7.1: An application of the ♦ operator referred to a frame Pi+1 of m particles. Dashed
red arrows highlight the solution S. For instance, the trajectory t∗ = ps

a  pi
1 is

lengthened by pi+1
m becoming t = ps

a  pi
1 → pi+1

m . Unmatching (no incident dashed
red arrow are present) particle pi+1

k causes a trajectory of length one to be created,
while unmatching particle pi

l causes its disappearing time counter to be updated and
the corrensponding trajectory to be possibly finalized (if upi

l
> ξ). Note that, for the

sake clarity, arrows for the unmatched nodes are omitted.

7.2 manipulating images using xca

In this section we present a Cellular Automata ( [10, 26]) based framework for manipulating
images that allows seamless parallel filters application.

7.2.1 Definition and Usage

The XCA adopted for manipulating images is defined as a 7-tuple IFCA = 〈R, X, Q, P, σ, Γ, γ〉
where:

• R is the 2-dimensional cellular space.

• Γ ⊆ R is the region over where the global operation is applied

• X = X(x0, y0) = {(x, y) : |x− x0| ≤ r ∧ |y− y0| ≤ r} defines the Moore’s neighbor-
hood relationship of radius r

• Q = Qr ×Qg ×Qb ×Qa representing the pixel color channels in the RGBA space.

• P is the set of global parameters
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• ψ is the initialization function (which is in charge of reading images from files and
converting them to substates).

• σ = {σi : Q|X| 7→ Q} is the set of image convolutional filters (corresponding to XCA
elementary processes)

• γ = {γi : Q|Γ| → Q|Γ|} is the set of non-local filters (the XCA global functions).

In order to take advantage of the intrinsic parallel nature of CA, IFCA is implemented
augmenting an existing CA library, OpenCAL [144] which is empowered with a set of pro-
cedures that allows seamless input/output and image convolution. More specifically each
image is represented as an cellular automaton whose substates represent the color of the
pixel and filters implemented as elementary processes composition (see listing 7.1).

1 //Model and CA engine

2 CALMooreNeighborhood<DIM,RADIUS> neighbor;

3 MODELTYPE calmodel(IMG_SIZE,&neighbor,SPACE_FLAT);

4 CALRun calrun(&calmodel, 1, STEPS, UPDATE_IMPLICIT);

5 CALSUBSTATE* bgr=calmodel.addSubstate<PIXELTYPE>();

6 //Image loading

7 bgr->loadSubstate(*(new std::function(loadImage<PIXELTYPE>)), "image.tiff");

8 //Image Filters Creations

9 ContrastStrchFlt<...>csf(bgr,1285,1542,0,65535,1);

10 ThresholdFlt<...> tf (bgr,0,61680,0,65535);

11 calmodel.addElementaryProcess(&cst);

12 calmodel.addElementaryProcess(&tf);

13 //Trigger execution

14 calrun->run();

Listing 7.1: Example of usage of the IFCA XCA engine. Lines 1-5 create a model and runtime for
an image of size IMG_SIZE and dimension DIM. Lines 7 loads the image into the
substate which

IFCA is extensible as it allows the application of user-defined filters by only specifying
the pixel transformation rules (or kernels in case of convolutional ones). Filters are then
executed by the IFCA engine which comes with two parallel (OpenMP and OpenCL) and a
serial implementations. The parallel execution is completely transparent and automatic
and may be extremely useful in such cases where the size of the image is large or filters are
particularl

7.3 motility analysis of b . subtilis

7.3.1 Introduction

In this section we present an application of TraCCA to the analysis of motion of B. subtilis.
The analysis of trajectories in bacteria is really interesting because it is a non-invasive way
of extracting much information about their chemotaxis which is the ability of bacteria to
sense and respond to chemicals. Thanks to chemotaxis, bacteria are able to reach a source
of nutrient and move away from repellents, which makes it a key characteristic for their sur-
vival. Studying chemotaxis is really interesting not only because it has a strong influence
on many biological mechanisms, e.g. biofilm formation and disease pathogenesis but also
because evolution’s natural selection has optimized bacterial chemotaxis making bacteria
excellent source-seekers and their strategies can be used to design bio-inspired, simple and
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Figure 7.3: Segmented and color inverted version of Figure 7.2 as obtained by applying the filters
(cf. Section 7.3.2) using the IFCA model. White cluster of pixels represent bacteria.

efficient algorithms for robotic source locating systems. The motility of B. subtilis is com-
posed of a series of run (bacteria swim along smooth segments) and “tumbles” (cells stop
and randomly select a new direction). Combining run and tumbles bacteria are able to di-
rect their motility in order to reach nutrients and move away from repellent, in other words,
to do their chemotaxis. An algorithm that is able to track bacteria is really useful because
from bacterial trajectories much information about the way bacteria perform chemotaxis
(e.g. duration of the run, swimming speed, frequency of tumbling events) can be extracted.
This information is important in studying the strategy they adopt to reach a source of nu-
trient; moreover it is also interesting to investigating how the trajectories changes as certain
environmental conditions change, such as temperature, oxygen concentration or gradient
of chemicals.

In this work we used B. subtilis strain OI1085 for the tracking experiment. Cells were
taken from frozen stock, resuspended in CAM (Cap Assay Minimal) and shaken (37°, 100

rpm) until the optical density OD600 = 0.3 was reached; we then diluted the suspension
1:10 in CAM. The bacterial suspension was injected in a micro-fluidic device. The micro-
fluidic device is a simple device made by PDMS and glass, composed of three parallel
channels (height 100 µm). In the central channel (600 µm wide) bacteria were hosted and
observed. Two walls of PDMS (200 µm) separate the central channel from the left and right
channels were oxygen was flown in order to reach a concentration of oxygen closed to
100% in the central channel. 10 minutes after the injection of bacterial suspension a video
was acquired at 100 frames per second for 41 s (#4100 frames). All images were acquired
through a 10× phase contrast objective (Nikon microscope), using binning 2× 2. All images
are 512× 512 pixels and have been exported in 16-bit grayscale TIFF image format.

7.3.2 Bacteria Segmentation

The B. subtilis cells typically have a large range of motion patterns and the cell soma gen-
erally appears as a dark area surrounded with a white halo. Colors can be inverted and
the cell may appear white when it moves out of focus sufficiently (see Figure 7.2). In order
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Figure 7.4: An example of tracked trajectory of a single bacterium. Blue-yellow colors levels are
proportional to the velocity, while dark red segments represent the individuated tum-
bles.

to automatically detect subtilis cells, it is possible to use a histogram-based thresholding
method as suggested in [145]. A key step of tracking bacteria is to individuate first, and
then to label and describe each of the bacteria present in the images. For this purpose, a
segmentation preprocessing phase is performed on all the images. Segmentation is carried
out by means of a threshold method [Stockman:2001:CV:558008] which produces a bipar-
tition of pixels based on the color intensity. The value of pixel (x, y) in image g is given by
the following, where P is a predicate and f is the original image:

g(x, y) =

1, if P( f (x, y), T)

0, otherwise

As a consequence, a drawback of using the threshold method is that, among all inter-pixels
relationships, color intensity difference is the only involved by the bi-partition process. This
can easily lead to binary regions where pixels are not contiguous or to miss or include rele-
vant or unwanted pixels respectively, with these effects getting worse as the noise increases.
In the considered case, however, the threshold method works well because after the appli-
cation of the contrast stretch filter the analysed images present high contrast between
the background and cells soma (see Figure 7.2), since the filter stretches or scales the range
of pixel values between an upper and lower limit. More specifically, color values that are
above or below this range are saturated to the upper or lower limit values respectively,
while values that lay in the interval are scaled according to the following formula:

g(x, y) =


Lo if f (x, y) < Li

Ho if f (x, y) > Hi

Lo + ( f (x, y)− Li)
Ho−Lo
Hi−Li

if Li ≤ f (x, y) ≤ Hi

where [Li, Hi] defines the interval in the original image which is linearly scaled into the
interval [Lo, Ho].

Eventually, all the images go through a noise reduction stage which employs a combina-
tions of gaussian, laplacian and blurring filters [146]. It is worth to note that filters parameters
are dataset dependent and the best set of values experimentally determined.
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7.3.3 Bacteria Tracking

Binary images are then used to extract the relevant information (shape and centroid) for
each of the segmented bacteria. This is done by interpreting each image as a graph whose
nodes are pixels and arc (i, j) exists if pixels i and j are neighbours (according to Moore’s
relationship, see section 2). A bacterium corresponds to a connected component that can
be easily individuated by using the DFS visiting algorithm. Once all pixels that make up
the cell soma are individuated, a unique ID idi which identifies the bacterium uniquely,
a centroid ci and a bounding box si which describe the location, the shape and the area,
respectively, are computed for each bacterium i. All the bacteria whose extension is less
than Me = 2px are ignored and no further considered. The creation and manipulation of
all the geometrical entities involved in this latter phase are carried out by means of the
computational geometry library CGAL [147].

In order for the application of the algorithm described in Section 7.1, a distance function
is required. Among possible functions, a linear combination of the centroids displacement
and shapes difference was adopted:

D(ci, cj) = a
√
(xci − xcj)

2 + (yci − ycj)
2 + b|Si ∩ Sj| (7.2)

where Si and Sj are the sets of pixels within the boundaries of the bacteria’s bounding
box. Best values of weights a and b were experimentally determined in being 0.6 and 0.4
respectively. Parameters search is carried out by computing the confusion matrix for 5 ran-
domly picked images and for different values of a, b ∈ { i

20 | 0 ≤ i ≤ 20} and then choosing
the ones minimizing false negatives and false positives and maximizing true negatives and
true positive ones.

Figure 7.6 shows 4 snapshots of the outcome of the tracking algorithm for 4 bacteria
taken at 4 different times, while Figure 7.5 depicts the final collective view of all bacteria
movements in the considered case study.

7.3.4 Analysis and Validation

Starting from the relationship Db = v2tt
2 [148] that links the diffusion coefficient to both

swim velocity (v) and tumbling time (tt), we have partitioned each trajectory into running
and tumbling events. These events allow the swimming speed to be calculated as difference
between subsequent bacteria positions and average tumbling time as the overall time spent
tumbling over by the number of tumbling events. Inspired by the work of Wong-Ng et
al. [149] and B. Masson et al. [150] an algorithm, implemented in MATLAB, was adopted
for detecting such running/tumbling events (see Figure 7.4) which in turn were used to
extract all the relevant bacterial motility parameters from the tracked trajectories2.

The main parameters that were considered as as descriptors of the motion of the bacteria
were:

• Mean Swimming Velocity (v),

• Mean Run Time (rt) and

2 Tumbles are associated both to a decrease in advancing velocity and an abrupt change in the angular velocity
(i.e. in the direction of the motion). By fixing a threshold on both advancing and angular velocities it is possible
to identify running/tumbling and use them to compute the mean values tt and v over all the trajectories of the
experiment.
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Figure 7.5: Final collective view of all the tracked bacteria tracjectories as obtained by processing
all 4100 images of the case study dataset. For the sake of figure clarity, a random color
is associated to each bacterium trajectory.

• Tumble Time (tt).

By analyzing the entire trajectory set produced by TraCCA on the dataset described in Sec-
tion 7.2, the obtained values of the motion descriptors were the following:

• v =18 µm s−1,

• rt = 0.8 s

• tt= 0.18 s.

These experimental values3 are in accordance with those available in the literature as for
instance in the work of Cisneros et al. [153].

3 These motility parameters were also calculated using the Mean Square Displacement (MSD) in time (which for
the sake of brevity is only outlined here) by means of the MATLAB @msdanalyzer implementation [151] and

considering the following relationship MSD(t) = 1
2

v2t2
R

2t/tR+e
−2t
tR
−1

[152] where v is the swimming speed, tR is the

timescale associated to rotational diffusion that is tR = 2tt, it is possible to obtain tR and v via fitting. tt and v
are then used to compute Db.
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Figure 7.6: 4 different tracked bacterial trajectories shown at 4 different subsequent times.

7.4 conclusion

In this preliminary work, a cellular-automata based tracking framework composed by a
tracking algorithm and a CA support model for image processing, is presented for recon-
structing trajectories of particle-like objects. This work reports the application to a real case
study concerning the tracking of B. subtilis, by evaluating standard motility parameters (av-
erage swimming velocity, running and tumble times) in a microfluidic device. Results that
were obtained during experimentation, proved that the TraCCA framework has correctly re-
constructed bacterial trajectories. The tracking algorithm described in this work can also be
effectively adopted in other fields as, for instance, crowd dynamics, provided that traceable
elements can be described by means of a bounding box and a position. Due to the large
number of particles often involved in such applications, a preliminary parallel GPGPU +
MPI version of the framework is currently being developed which has provided promising
results in terms of scalability and speed up, allowing much larger dataset to be analyzed.
Eventually, it is worth to note that under the assumption of associativity of the assignment
operator ♦, the tracking algorithm could be implemented using the parallel reduction design
pattern.
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M U LT I - A G E N T S Y S T E M W I T H M U LT I P L E G R O U P M O D E L L I N G F O R
B I R D F L O C K I N G O N G P U

There cannot be a single, simple body which is infinite, either, as
some hold, one distinct from the elements, which they then derive
from it, nor without this qualification. For there are some who
make this (i.e. a body distinct from the elements) the infinite, and
not air or water, in order that the other things may not be
destroyed by their infinity. They are in opposition one to another
— air is cold, water moist, and fire hot—and therefore, if any one
of them were infinite, the rest would have ceased to be by this
time. Accordingly they say that what is infinite is something
other than the elements, and from it the elements arise.

— Anaximander

This chapter is adapted from [154].

The study of collective coherent motion of self-propelled biological organisms such as
flocks of birds, schools of fish and swarms of insects has fascinated humans from
ancient time. This kind of behaviour, often referred to as flocking, exists in nature

at almost every length scale of observation: from human crowds, mammalian herds, bird
flocks, fish schools to unicellular organisms such as amoebae and bacteria, individual cells,
and even at a microscopic level in the dynamics of acting and tubular filaments and molec-
ular motors. Despite the huge differences in the scales of aggregations, the similarities in
the patterns that such groups produce have suggested that general principles may underlie
collective motion.

An effective approach to study these collective behaviours is represented by mathemati-
cal modelling and numerical simulation, as proven by numerous papers published in this
field that are related with both biology and computer science (e.g., [155]). In models that
study simple motion principles of organisms like flocking, shoaling or phenomena based
on random motion, organisms are treated like gas molecules and their motion is Brownian
combined with attraction/repulsion forces. Also ‘mean-field’ approaches, mainly carried
out by adopting ordinary differential equation (ODE) models, might be useful to model
some biological swarm systems, whenever the assumption of a ‘well mixed’ distribution
may be applicable. However, organisms seldom move really randomly, nor are they just
simple particles. They pursue specific goals, aggregate or disperse in space, communicate
and memorize. They can be characterized by specific physiological states (e.g. energy-level)
and morphologies (size, weights, etc.). These factors do not only affect their energetics,
but may have prominently affect the behaviours that they (choose to) perform. In addition,
they frequently interact by direct and indirect communication and they tend to memorize
past effects. Eventually, also the environment in which they operate is highly structured
and this heterogeneity is also dynamic. All these factors describe important discrepancies
between biological life forms and atoms or molecules. Thus, it is likely that models, which
were originally derived from physics and chemistry, might not hold well for biological
swarm systems as soon as a certain level of abstraction has to be overcome. In these cases,
individual-based models or even multi-agent models [156, 157] might be a better choice.

157
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In this article we present the ACIADDRI1 (Aggregate Collection of Interactive Agents us-
ing NVIDIA CUDA Reliable Informatics) multi-agent flocking model, besides an efficient
GPGPU implementations on SIMT architectures. In particular, section 8.1 formalizes the
model and 8.2 the parallel implementation using the CUDA framework. Specifically, start-
ing from Reynolds works [158] [159] [160] on bird flocking behaviour, ACIADDRI extends
it by means of additional features such as support for multi-species interaction, predator
avoidance, partially observable environment and birds flight constraints (maximum thrust,
stall and peak velocity, etc.). Section 8.2 reports experiments carried out on the specific
GPU hardware and by considering both aggregate motion of a huge number (up to tens
of millions) of boids in a virtual environment and other species or predators avoidance,
significant performance improvement in terms of speedup were obtained ( up to 500×),
while conclusions and future works are reported at the end of the paper.

8.1 the aciaddri model

This work is based on flocking behaviour that was proposed by Craig W. Reynolds in 1987

and extends it by adding both the support to coexistence and interaction between different
species, and the predator avoidance. Reynolds was amongst the first to abstract this be-
haviour, in order to steer a swarm of simulated birds which he called boids [Reynolds](contraction
of birdoid). Every boid has some limitations: it has a strictly local knowledge of the space
it occupies and its knowledge comes from a simulated vision from its current position. In
other words there is no centralized control. The flock takes its decisions in a totally dis-
tributed manner in order to obtaining a synchronized movement. More specifically, each
bird obeys three behavioural rules:

cohesion

to attempt to stay close to nearby flockmates

collision avoidance/separation

to evade obstacles and flock mates which are too close

velocity/heading matching

also called alignment, to move in the same direction as nearby flock mates.

8.1.1 Model Parameters

In our Aciaddri model, the environment and each bird’s species is described by means of
sets of parameters as shown in the following subsections.

8.1.1.1 Environment Parameter

The environment is described by means of its width, length, height and by the time step
parameter i.e. the duration in seconds of a single computational step.

Wx, Wy, and Wz are the dimension of the environment that represent 1 pixel as 1 meter.
t is computational duration where 1 time step equivalent to 1 processing time.

1 Meaning birds in Calabrian language.



8.1 the aciaddri model 159

Name Symbol Dimension Description

Length Wx [L] Length of the environment

Height Wy [L] Height of the environment

Width Wz [L] Width of the environment

Time Step t [T] Computational step duration

Table 8.1: List of Environment Parameters of Birds Flocking

Name Symbol Dimension Description

Size s [L] Size of the bird

Peak Velocity vp [L]
[
T−1] The maximum velocity

Thrust a [L]
[
T−2] The maximum acceleration

Horizontal Range of View sh − Maximum horizontal range of view

Vertical Range of View sv − Maximum vertical range of view

Sight Distance ds [L] Maximum sight distance

Minimum Distance dmin [L] The minimum distance between two birds to avoid collision

Alignment Radius da [L] The maximum distance bird consider to align

Other Species Avoidance Radius rs [L] The minimum distance bird avoid other species

Predator Avoidance Radius rp [L] The minimum distance bird avoid predator

Maximum Turn θmax [rad]
[
T−1] Maximum turn for each time step

Wander Distance wd [rad]
[
T−1] The maximum wandering distance

Wander Radius wr [rad]
[
T−1] The maximum radius wandering from the target

Table 8.2: List of Bird Parameters with values considered for the simulation

8.1.1.2 Species Parameters

Each specie is described by a set of parameter that represent quantities that are involved in
the flight and flocking dynamics (see table 8.2).

The bird’s wingspan s is used as an approximation of the volume it occupies. vp is the
maximum velocity it can travel and a represents bird’s maximum acceleration. Each bird
has a limited sight of view that is described by its maximum horizontal, sh, and vertical, sv

vision span (see images 8.2 and 8.1) and by ds that is the maximum sight distance of bird
i.e. the maximum distance at which the bird can observe objects. Vertical and horizontal
field of view (FOV) together with the maximum sight distance define the viewing frustum.
Table 8.2 shows the complete list of the used parameters and corresponding alongside.

Figure 8.1: Birds vertical field of view. ds and sv represent the sight distance and the vertical
perceptual span, respectively.
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Figure 8.2: Birds horizontal field of view. sh represents the horizontal perceptual span. ds as in
Fig. 8.1.

8.1.2 Flight Model

Bird b flight at step i is described by its 3-dimensional space vectors position ~pi
b =

〈
pi

x, pi
y, pi

z

〉
and velocity ~vi

b =
〈

vi
x, vi

y, vi
z

〉
, that correspond to its current sight direction.

The evolution of the bird’s velocity over time is regulated by the following:

~vi+1
b = (rsinθ′cosφ′, rsinθ′sinφ′, rcosθ′) (8.1)

where:

• θ′ =

θd if |θb − θd| < θmax

θb + θmax otherwise

• φ′ =



φd if |φb − φd| < φmax

φb + φmax otherwise, it should be adjusted

depending on the sign if it have to

go right or left

• ~vi
d = µc~vc + µs~vs + µa~va + µa

(
~τi +~Γi

)
+ ~ωi

– µc, µs, µa are the cohesion, separation and alignment coefficient (social coeffi-
cients) and µa is the avoidance coefficient.

• ~vi
c,~vi

s, ~vi
a are the social velocities [161]

– ~vi
c, the cohesion velocity that has direction parallel to the line that pass through

~pi
b and the average position of its neighbors
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– ~vi
s, the separation velocity, keep the bird at a minimum safety distance from its

flockmates

– ~vi
c, the align velocity, synchronize boids heading.

• θd, θb are the polar angle of the velocity vector ~vi
b and ~vi

d respectively.

• φd, φb are the azimuthal angle of the velocity vector ~vi
b and ~vi

d respectively.

8.1.3 Bird’s Field of View

Each bird has a limited visual capacity described by its field of view (FOV). This implies
that it can only perceive objects that are within its FOV. Bird o’s FOV Fp, is here defined
as the set of points pn that satisfy equations 8.2,8.3 and 8.4. An object n, in order to be
within the observer o’s neighbourhood, must fall within its viewing frustum i.e. the polar
and azimuthal angle between observer’s view direction and the object should be less or
equal than sh and sv respectively, and the distance between them should be less than the
maximum sight distance of the observer sd. Let p′n =

〈
px

n − vx
o , py

n − vy
o , pz

n − vz
o
〉

the position
vector of the object n in the o’s frame of reference, then n is o’s neighbor if and only if the
followings hold:

δs = ||po − pn||, δs ≤ ds (8.2)

− sh

2
≤ θ ≤ sh

2
(8.3)

− sv

2
≤ φ ≤ sv

2
(8.4)

where:

φ = arccos

 p′zn√
(p′xn )2 + (p′yn )2 + (p′zn )2


θ = atan2

(
p′yn
p′xn

)
We use the two arguments tan version in order to gather information on the signs of the
inputs in order to return the appropriate quadrant of the computed angle, which is not
possible for the single argument arctan function. Additionally, the ordinary arctan suffers
when required to produce ±π

2 angle 2.

θ =



π
2 , if p′xn = 0, p′yn > 0
3π
2 , if p′xn = 0, p′yn < 0

undefined if p′xn = 0, p′yn = 0

arctan p′yn
p′xn

if p′xn > 0, p′yn ≥ 0

arctan p′yn
p′xn

+ 2π if p′xn > 0, p′yn < 0, or p′xn < 0, p′yn > 0

arctan p′yn
p′xn

+ π if p′xn < 0, p′yn ≤ 0

2 Computing angle between x and y axis would require a division by zero.
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Figure 8.3: Example of spherical coordinate representation of two vectors. .Vd for instance is a
vector of magnitute 10 and polar and aximuthal angles 45° and 27.94° respectively.(a)
and (b) show views from the top and from the side of the reference frame.

8.1.4 Cohesion

Cohesion is a flight behaviour that attracts a bird to centroid of its perceived neighbour-
hood. In formal terms ~Ci

b, the bird b’s centroid at time i, is given by:

~Ci
b =

1
|Nb|

|Nb|

∑
n=1

~pn
di,j

ds
(8.5)

where:

1. Nb the set of birds in b’s FOV.

2. ~pn is the position of n ∈ Nb

3. di,j is the distance between bird b and its neighbour c

The b’s cohesion vector ~vc is then defined as follows.

~vi
c =


~Ci

b−~pb

||~Ci
b−~pb||

+ a, if 0 < |~vd| ≤ vp

vp, otherwise
(8.6)
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8.1.5 Separation

A bird try to keep certain distance between itself and its neighbors. Bird b’s separation
velocity ~Si

b at time i is given by:

~Si
b =


[
∑j∈Nb

~pb−~pj
||~pb−~pj|| fs

]
+ a, if 0 < |~Si| ≤ vp

vp, otherwise
(8.7)

where:

1. Nb is the set of neighbours,

2. fs =

0 if di,j > dmin

1− di,j
dmin

otherwise

8.1.6 Alignment

A bird tries to match its velocity (speed and heading) with those of nearby flockmates.
This behaviour is called velocity alignment. Real life birds only consider a relatively small
number flockmates while performing this behaviour and it usually is about seven neigh-
bours [161]. In formal terms, bird b’s alignment ~Ai

b is here defined as

~Ai =

 ∑
j∈N ′b

~vj fa

+ a, 0 < |~Ai| ≤ vp (8.8)

where:

1. N ′b ⊆ Nb is the set of birds considered by b for the alignment (e.g. the nearests).

2. ~vj is the j’s velocity.

3. fa is the alignment coefficient. Let di,j the distance between bird i and j then fa is given
by:

fa =

0 , if di,j > da

1− di,j
da

, otherwise

8.1.7 Other species and predator avoidance

ACIADDRI is a multi-agent with multiple group model where each group correspond
to a different bird’s species or to the group of predators. Different species interaction is
described in section 1 and predator avoidance in section 2.

1. Other species avoidance This behaviour is similar to separation (see section 8.1.5)
with the difference that a only birds from other species are taken into consideration.
In formal terms the other specie avoidance vector ~τi is given by:
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~τi =

[
∑

j∈Nb

~pb − ~pj

||~pb − ~pj||
fs

]
+ a (8.9)

where:

a) Nb is the number of neighbours of specie different from the one of b,

b) fs =

0 if di,j > rs

1− di,j
rs

otherwise

2. Predator avoidance The predator avoidance vector is computed by taking in consider-
ation position and velocity (speed and heading) of all the predators within the bird’s
FOV. Intuitively birds will flee from the future (step i + 1) centroid of predators’s
position [162]. Formally the predator avoidance vector ~Γi

b is defined as follows:

~Γi
b =

[
∑

j∈Pb

~pi − (~pj +~vj)

||~pi − (~pj +~vj)||
fp

]
+ a, 0 < |~Γi| ≤ vp (8.10)

where:

a) Pb is the b’s set of predators

b) fp =

0 if di,j > rp

1− di,j
rp

otherwise
is the predator avoidance coefficient.

8.1.8 Wandering

When the neighbourhood of a bird is empty it flies pseudo-randomly in the space. This
kind of behaviour is called wandering. Wandering is obtained combining a current and a
random direction

~ωi
b =

0 if Nb 6= ∅
~s
|~s| wr + wd, 0 < |~ωi| ≤ vp otherwise .

8.2 gpgpu parallel implementation and results

In this work we adopt GPUs and the CUDA framework to accelerate the flocking simulation
of a large number of boids using the the model presented in section 8.1 in an environment
with a number of agents up to 5× 106. According to the APOD development methodology
we produced two different parallel versions, both sharing the high-level implementation
structure that consists in (the well-known host-managed accelerated program structure):

• Initialization of data structures on CPU

• Data transfer from CPU to GPU
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• Kernels execution on GPU

• Copying the result back from GPU to CPU

The parallelization strategy is designed with the purpose to avoid as much as possible the
very undesirable data copy from host to device , or vice versa [163] [7] [116]. The compu-
tation of ~pi+1

b and ~vi+1
b is entirely performed on GPU and implemented as composition

of CUDA kernels. Moreover Parameters are stored in constant memory for fast access. An
OpenGL 3D visualization tool comes with the simulation system and permits real time and
interactive rendering of the flocking model.

8.2.1 Naïve version

In this version each agent is mapped to a CUDA thread organized in a 1D block-grid
structure. All data resides in global memory and user managed cache (shared memory)
remains unused. Due to the high parallel nature of the simulation, although its simplicity,
this version already gives rise to a speedup of ≈ 20×. In addition, an optimization was
carried out by considering the If-Divergence mitigation. As known, thread divergence is a
well known issue, that inhibits full parallelism at warp level. Two threads are said to diverge
if they belong to the same warp but execute different instructions3. If some threads in a
warp evaluate a conditional to true and others to false, then threads will branch to different
instructions paths and those paths are executed in serial manner4 [69]. As a consequence,
this serialization may result in significant performance loss.

A series of workarounds have been implemented in order to mitigate this problem and
more specifically, a number of i f construct have been substituted with an equivalent arith-
metical operation that are performed by all threads and preserves the original semantic of
the code. Listings 8.1 and 8.2 show an example of such code transformation.

1 private var;

2 if(threadIdx.x > 16) then

3 var:= A

4 else

5 var:= B

Listing 8.1: Example of thread divergent code.

1 bool c = threadIdx.x > N

2 private var;

3 var:= c*A + !c*B

Listing 8.2: If mitigated version of the listing 8.1

8.2.2 Shared memory version

This version exploits the shared memory in order to cache birds’s frequently accessed data.
Shared memory is much faster than global memory but is of limited capacity (and depends
on compute capability of the device, 48KB in the GTX980) [164], only accessible at block

3 Common code constructs that usually cause thread divergence are conditionals that depends on thread-id
variable

4 It is important to stress that serial execution happens only when thread of the same warps diverge.
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level and cleared at each kernel invocation. This implies a number of restrictions on its
usage, namely:

1. it has to be initialized (i.e. requires a global memory access, see line 7 in listing 8.3),

2. limited size of data available per thread,

3. cannot be used to share data between threads of different blocks.

The adopted strategy divides the computation in a number of phases that depend on the
chosen block size. Each phase can be then performed exploiting the fast memory as shown
in listing 8.3. The above points 2 and 3 are the main reason for the division in phases.
Moreover the constraint posed by aciaddri that requires that each bird know about all the
other birds (to decide if it falls within its FOV for instance) make impossible to load all the
data in shared memory [165, 166].

1 extern __shared__ Bird shBird[];

2 uint loop = NBIRDS/BLOCK_X + (NBIRDS % BLOCK_X ? 1 : 0);

3 #pragma unroll

4 for (uint i = 0; i < loop; i++) {

5 int idx = i * blockDim.x + threadIdx.x;

6 if(idx<NBIRDS)

7 shBird[threadIdx.x]=birds[idx];

8

9 ...

10 COMPUTATION USING SM shBird

11 ...

Listing 8.3: Main loop of the agent function kernel. The loop variable represents the number
of phases which one at time use SM to store data of a portion of the whole bird
population.

Three devices were adopted for testing different CUDA version of the model: the high-
end GTX 980, a GT 635M and a low-end mobile chip (see table 8.3 for further details).

In order to ensure the correctness of the parallelization the output of each parallel version
were matched against the corresponding serial output. In particular, the sequential CPU
version is identical to the version that was developed for the GPUs, that is, no optimizations
were adopted in the former version. In practice, at every step, the CA space array is scrolled
and the transition function applied to each cell of the CA where bird is present.

Name Comp. Capability RAM SM-Clock # cores

GT 653M 2.1 1024MB 675 MHz 635

GTX 980 5.5 4096MB 1216 MHz 2048

TESLA K40 5.2 12288MB 875 MHz 2880

Table 8.3: Hardware utilized for experiments

Different tests were carried out regarding both parallelizations described in the previous
sections, and by considering different number of boids and an environment composed of
1000× 1000× 1000 cells. Each simulation was carried out for 104 time steps.

Tables 8.4 and 8.5 shows the execution times of the naïve and shared memory version,
respectively.
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# birds Sequential GT 635M (×) GTX 980 (×)

1024 263.9 29.1, (9.07) 10.5, (25.13)

5120 4913.0 574.4, (8.55) 51.7, (95, 02)

10240 19074.5 2241.6, (8.51) 109.0, (174.99)

15360 43332.3 5004.7, (8.65) 235.2, (184.23)

20480 86065.7 8868.9, (9.70) 312.5, (275.408)

40960 452423.1 - 1023.8, (441.90)

81920 1966134.9 - 3663.5, (536.70)

163840 8003173.0 - 14877.4, (537.94)

327680 35815012.0 - 58003.0, (617.47)

Table 8.4: Timing (in seconds) and speed-ups for the Parallel CUDA Naïve implementation

# birds Sequential GT 635M GTX 980

1024 263.9 19.9 7.9

5120 4913.0 366.3 34.6

10240 19074.5 1398.7 96.5

15360 43332.3 3110.0 154.9

20480 86065.7 5522.0 280.8

40960 452423.1 - 825.4

81920 1966134.9 - 3307.2 -

163840 8003173.0 - 13565.9

327680 35815012.0 - 54113.4

Table 8.5: Timing (in seconds) for the Parallel shared memory CUDA implementation

Timings reported for the considered GPU devices indicate their full suitability for paral-
lelizing multi-agent models, demonstrating the effectiveness of GPGPU to cut down com-
putational time. In fact, the adoption of the CUDA technology has produced dramatic
improvements in model speedup on the considered hardware up to 617x.

8.3 conclusions and future outcomes

Starting from Reynolds’s behavioural model, we have here presented a preliminary multi-
agent and multiple group approach for bird flocking, together with an efficient implemen-
tation by means of the CUDA framework. Experiments carried out by adopting different
hardware have proven the full suitability of the GPGPU paradigm for efficiently simulat-
ing multi-agent systems. Although our model describes bird movement adequately, future
versions of ACIADDRI can take into account more behaviours by adding some parameters
to improve the bird’s flight modelling [167–169] as the introduction of stall velocity (that
represents the velocity’s lower bound) or wing’s length and width (for thrust and lift forces
computation), to better adhere with aerodynamics theory.
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In current ACIADDRI implementation, all the computational intensive computations are
carried out on the device and only final results are sent back to the host. When the proper
mode is active, data is transferred from GPU to CPU at fixed times steps for visualization
purposes. This results in additional time costs related to both the transfer and rendering on
CPU. In order to avoid this issue, the adoption of OpenGL / CUDA interoperability will
be investigated, permitting to directly and effectively copy data from device memory to
the GPU display buffer to avoid the aforementioned additional costs, resulting in an more
efficient solution.

Eventually, future developments will also regard model improvement, such as the possi-
bility of the environment to contain obstacles, and the usage of multi-GPU hardware [136,
170], which can further scale the performance of the application and dramatically speed up
the overall simulation process.
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C O N C L U S I O N

Forse l’immobilità delle cose intorno a noi è loro imposta dalla
nostra certezza che sono esse e non altre, dall’immobilità del
nostro pensiero nei loro confronti.

— Marcel Proust

Computers performance improvements have usually come from adding more transistors
onto silicon or increasing the clock speed of the chips. As stated by the Moore’s law, com-
puter systems performance has growth steadily since the 70’s at a pace of almost a twofold
improvement every two years. But this trend is not sustainable since cramming more tran-
sistors or increasing the clock speed require more power, which in turn generates more
heat. Modern chips have already a ratio of heat over cm2 that is higher of that of nuclear
reactor core and transistors size is also hard to shrink since their size is already almost of
the same order of magnitude of a single atom.

Demand for speed did not stop over the years and thus in order to be able to create com-
puter systems able to tackle the challenges posed by the modern big-data and scientific
computing fields. it is necessary to use multiple computing cores and nodes concurrently.
Parallel computing is ubiquitous as even low-end smartphones feature, multi-core proces-
sors but parallel dedicated machines have evolved over years into complex and hardware
heterogeneous agglomerate of computing devices in order to be able to solve bigger and
bigger instances. Programming this ecosystem of devices, each with its own peculiarity in
terms of hardware architecture and programming model and tools, at his full efficiency
is notoriously hard, especially for non specialized computer scientist because specialized
knowledge (algorithms, tools, programming languages, systems tools, high-speed network-
ing, etc.) is absolutely necessary.

This work aimed at the design of a programming abstraction for seamless implementa-
tion of numerical methods on regular grid targeting a plethora of different parallel com-
puter architectures: from commodity PC, to large clusters of accelerators. The OpenCAL

framework has been developed which exposes a domain specific language for the defini-
tion of a large class of numerical models and their subsequent deployment on the targeted
machines. At this stage of development there are a number of specialized implementation
of OpenCAL each targeting a different architecture (or a mix of them). Each version was
designed to be the most reliable and fast possible and, for this purpose, the C/C++ lan-
guage was adopted and efficient data types and algorithms considered. In particular, also
to permit a more straightforward OpenCL parallelization, linearized arrays were adopted
to represent both one-dimensional and higher order structures like substates and neighbor-
hoods.

Though preliminary, obtained results confirm correctness and efficiency of the different
OpenCAL versions here presented, by highlighting their goodness for numerical model de-
velopment of complex systems in the field of Scientific Computing and their execution
on parallel heterogeneous devices. Among all versions, OpenCAL-CLUST targets distributed
memory machines and multi-accelerators architectures. Results show that OpenCAL allows
deploying numerical applications on regular grid on machines composed by several com-
putational nodes interconnected by network each armed with multiple accelerators. Thanks

169
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to the adoption of OpenCL, different kinds of accelerators can be employed seamlessly and
efficently. The performance benchmarks that have been used to test OpenCAL-CLUST show
that it effectively use the computational power of multiple devices in order to speedup the
computation.

As regarding future developments, OpenCAL will be extended allowing domain decom-
position on multiple dimensions. As shown in Section 6.1.2, decomposing the domain
on a single dimension is not always optimal, as in order to obtain better load balancing
among the devices different decomposition may be necessary. The programmer would be
able to decompose the domain multidimensional cubic portions and assign one to each
available device. Another important issue that will be addressed is that the current imple-
mentation serializes communications at each step execution taking advantages of possible
computation-communication overlapping. Another limitation that the current implemen-
tation exposed is that boundaries are always exchanged among intra-node devices. This
might not be optimal in cases where boundaries grid cells between two devices or nodes
do not change and thus, the communication of such cells avoided. This mechanism can be
accomplished by performing boundaries exchange only if there is a relevant update i.e. by
means of the so called dirty-bits mechanism. A scaling benchmark will be performed on
a proper HPC cluster with at least 16 nodes interconnected by fast network (Infiniband
et. similia for instance) in order to obtain information about the scalability of OpenCAL as
the number of nodes is increased. Nevertheless, a fine tuning of underlying data structures
and algorithms. As regard the OpenCL implementation, the seamless management of GPUs
local memory will be introduced in the next releases. Subsequent releases will also progres-
sively support further computational paradigms, like the Lattice Boltzmann, the Smoothed
Particle Hydrodynamics (SPH), as well as other mesh-free numerical methods, with the
aim to become a general software abstraction layer for computation.

The OpenCAL software libraries, together with a comprehensive installation and user
manual accompanied by numerous examples, are currently freely available on GitHub,
at https://github.com/OpenCALTeam/opencal.

https://github.com/OpenCALTeam/opencal
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C U D A B A L L O T T I N G I N T R I N S I C S T R E A M C O M PA C T I O N

An efficient implementation of stream compaction on SIMD processors based on bal-
lotting instructions is here presented and based on the followings works: [171, 172].

a.1 introduction

Stream compaction/reduction/scan is commonly referred to as the operation of removing
unwanted elements in a collection (see Figure A.1). More formally, we have a list of element
A0...N of N elements and a predicate p : A → {True, False} that bisects A in wanted and
unwanted elements (some of which satisfy the predicates p while others don’t). The stream
compaction of A under p is an array B = {x ∈ A|p(x) = True}. Sometimes it is sufficient to
return B0...N s.t. all valid (suppose M ≤ N) elements are grouped at the first M position of B.
A more general and rigorous definition of prefix-sum is the following: given an associative
operator ♦, a vector V0...N of N elements and an identity element I, the scan operation
returns a vector

P = {I, v0, (v0♦v1), (v0♦v1♦v2), . . . , (v0♦v1♦ . . .♦vn−2)}

.
Stream reduction is a key building block in several important algorithms, especially in

the field of parallel programming where it is not uncommon to have large and sparse data
structures to process such as in the parallel breadth tree traversing, ray tracing problems,
etc. Sparsity can often be the cause of performance degradation of the overall parallel
algorithm and it is often the cause of load imbalance/communication imbalance. As an
example, the stream compacting with the predicate p(x) = x > 0 the following array of
twelve integers A = {1, 0, 0, 0, 4, 3, 2, 0, 6, 8, 9, 0} would produce B = {1, 4, 3, 2, 6, 8, 9}.

Figure A.1: Stream Compaction consists in removing all the elements for which the predicate is
not satisfied. In this case the predicate is: color 6= white.

171
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a.1.1 Serial Algorithm

Serial implementation in a single thread is straightforward:

1 template <typename T>

2 void serialCompact(T* input, T*output, uint length,bool (*predicate)(T)){

3 uint j=0;

4 for(uint i=0;i<length;i++)

5 if(predicate(input[i])){

6 output[j] = input[i];

7 j++;

8 }

9 }

Listing A.1: Naive Serial Stream Compaction Algorithm

Elements satisfying the predicate are pushed into an output buffer. The algorithm can be
easily implemented as a one line filter operation using the copy_it operation in C++.

a.1.2 Parallel Algorithm

The parallel implementation is more challenging and the most effective parallel implemen-
tations produced so far (Thrust [173], Chag:pp [171]) are mainly based on the computation
of the so called exclusive or inclusive prefix-sum. The exclusive prefix-sum on a vector V0...N

with validity test p consists in producing a vector S0...N s.t. S0 = 0 and Si = k where k is the
number of valid elements strictly preceding (or up to the element i in case of inclusive prefix
sum) the element of i. The inclusive prefix sum can be obtained from the exclusive one us-
ing the following: let A = {0, a1, . . . , an−1} the vector of elements and E = {0, e1, . . . , en−1}
its exclusive prefix sum then I = {e1, e2 . . . , en−1 + p(an−1)} is the corresponding inclusive
prefix sum.

Suppose P is the number of processors and N, N > P, is the size of the vector. The input
stream is divided in sub-streams of size of size S. The parallel algorithm is divided in three
distinct phases:

1. Each processor pi counts the number of valid elements independently in its sub-
stream and saves this value in procCount[pi]

2. A prefix sum operation is performed on the sub-array procCount producing the vector
procO f f set0...P

3. Each processor can flush out its valid elements independently from the others in the
correct location (at the correct offset) output[procO f f set[pi] + currentValidElm]

1 //phase1

2 for each processor p in parallel

3 int count=0;

4 for(int i=0;i<S;i++)

5 if(valid(input_p[i])

6 count++;
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7

8 procCount[p]=count;

9

10 //phase 2

11 procOffset = prefixSum(procCount)

12

13 //phase3

14 for each processor p in parallel

15 int j=0;

16 for(int i=0;i<S;i++)

17 if(valid(input_p[i]){

18 output[procOffset[p] + j ]

19 j++;

20 }

21 }

Listing A.2: Naive Parallel Stream Compaction Algorithm Pseudocode

It is worth noticing that phase 2 can also be carried out in parallel and that its implemen-
tation on SIMT hardware is not straightforward and is not discussed here. We will then use
available implementation as the one shipped with the Thrust library. In CUDA this phase
load is usually negligible with respect to the other two, as the number of processors P is
usually several orders of magnitude smaller than N.

a.2 simt/ballotting instruction implementation

a.2.1 CUDA Hardware

GPUs hardware is made of a number of order of tens streaming multiprocessors (SM), that
can be considered as SIMD processors made up of streaming processor (the SIMD lanes,
SP). For instance, the newest 2017 Volta Architecture introduced by NVIDIA counts 84 SM
and 64 SP per SM, for a total of 5376 cores (see Figure A.2 and A.3). SM schedule kernel
execution in a SIMD fashion in groups of 32 threads (a warp) which in turn perform the
same instructions in a synchronized manner. SM are not scalar processors and hence, using
the parallel approach described in Section A.1.2, where each SM is considered as a single
scalar processor p would result in poor performance due to the large number of idle lanes
lanes 84 ∗ (64− 1) = 5376− 84. In this implementation each SM is entirely used to perform
the block counting of valid elements and to finally compact the input.

a.2.2 Phase 1

The pseudocode A.3 shows how block counting can be performed on a SIMT hardware
effectively using all computing lanes.

1 //input is a SM private vector containing the portion of the //original input

to be processed by the processor

2 for each SM processor p in parallel

3 lanesCount[0]=0;
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Figure A.2: NVIDIA GPU Volta SM Architecture.

Figure A.3: Volta GV100 Full GPU with 84 SM Units.
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4 ...

5 lanesCount[32]=0;

6 for(int i=0;i&amp;lt;S;i+=32)

7 for each SIMD lane s in parallel

8 if(predicate[input[i+s])

9 lanesCount[s]++;

10

11 procCount[p] = reduce(+,lanesCount);

Listing A.3: Stream Compaction phase 1 on SIMT processor

With the introduction of the intrinsic function __syncthreads_count(predicate) this
phase is easier (compared to the pseudo-code mentioned above) to implement and results
in a more efficient and faster execution due to specialized transistors to execute the function.
This instruction synchronizes threads at a block level and takes an integer as predicate. It
returns to all threads of the block the number of non-zero predicates passed to it by all
threads of the block. For instance, suppose that a kernel is executed only by one block
made up of four threads and that each thread is calling __syncthreads_count() as shown
in Listing A.4:

1 //thread0

2 int BC=__syncthreads_count(1)

3 //thread1

4 int BC=__syncthreads_count(0)

5 //thread2

6 int BC=__syncthreads_count(1)

7 //thread3

8 int BC=__syncthreads_count(0)

Listing A.4: __syncthreads_count() calls from threads within a block. 1 and 0 represents
predicate expressions.

At this point, each thread ti will own its private copy of the BC variable containing the
value 2. This kind of operation is exactly what is needed in order to count the number of
valid elements per block. The previous approach can be summarized as shown in listing
A.5.

1 template <typename T,typename Predicate>

2 __global__ void computeBlockCounts(T* d_input,int length,int*d_BlockCounts,Predicate predicate){

3

4 int idx = threadIdx.x + blockIdx.x*blockDim.x;

5 if(idx < length){

6 int pred = predicate(d_input[idx]);

7 int BC=__syncthreads_count(pred);

8 if(threadIdx.x==0)

9 d_BlockCounts[blockIdx.x]=BC;

10 }

Listing A.5: Phase 1 implemented using ballotting intrinsic built-in functions.

a.2.3 Phase 2

While the output of phase 1 is a count of valid elements per block, phase 2 takes care of
computing a prefix-sum among the block counters, whose number is much smaller than
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the original input array. For the sake of brevity and since it does not affect the overall
performance because this phase is not an hot-spot for the algorithm,Thrust prefix sum
is employed here in order to produce a vector of offsets. Offset i indicates how many
valid elements will be pushed by blocks j < i, thus actually indicating what is the block’s i
writing index in the output array. Listing A.6 shows how to perform a prefix-sum on blocks’
counter, output of phase 1.

1 //prefix sum thrust call

2 thrust::exclusive_scan(blockCounters, blockCounters + numBlocks, blockOffsets);

Listing A.6: Phase 2 implemented using a scan operation in Thrust.

a.2.4 Phase 3

The most elaborate part of the algorithm takes the to be compacted stream as input, and the
block offsets computed during the previous phases outputting the compacted stream. It is
based on the intra warp voting function __ballot(), ans __popc() procedure and a bit of
manipulation.

The unsigned int __ballot(int predicate); function. evaluates predicate for all threads
of the warp and returns an integer whose ith bit is set if and only if predicate evaluates to
non-zero for the ith thread of the warp.
__popc(int number) function returns the number of set bits in its parameter.
It is worth noticing that the underlying matching has to support a word size which is

not smaller that the size of the warp. This could be a problem if the warp-size is increased
in the future releases of CUDA (even if this is unlikely to happen).

As shown in A.7, this phase starts computing a per warp offset (intra warp prefix sum)
offset. This means that the offset computed for the last thread of the warp is the warp’s
number of valid elements. Each thread stores its offset in a register while warp’s valid
elements are stored in a shared memory buffer (warpTotal[warpIDX]).

1 int pred= predicate(threadInput);

2 int w_i = threadIdx.x/warpSize; //warp index

3 int w_l = idx % warpSize;//thread index within a warp (warp lane)

4 int t_m = INT_MAX >> (warpSize-w_l-1);

5 int b = __ballot(pred) & t_m;

6 int t_u = __popc(b);

7 //last thread of the warp stores in Shared Memory

8 if(w_l==warpSize-1)

9 warpTotals[w_i]=t_u + pred;

10 __syncthreads();

Listing A.7: Intra warp prefix-sum using ballotting intrisic

where w_i is the warp index within the block,w_l is the thread index within the warp and
t_m is the thread mask, i.e. a number the only bits sets are the ones with an index less then
w_l. b contains only set bits corresponding to the validity of predicated of threads of lower
index. __popc(int number) is then used to retrieve the number of set bits. t_u is the warp
offset of thread w_l. A block memory fence is necessary in order to ensure correctness for
future access to the shared memory array warpTotals.

At this point an intra block scan operation is performed on warpO f f set in order to
compute a per-block offset, as shown in the listing A.8. Assuming warpsize >= blocksize

warpsize , i.e.
the number of warps in a block does not exceed the size of a single warp, this operation can
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be performed by a single warp. This scan operation is performed in log2(warpsize) steps
because we are summing up numbers whose max value is warpsize (each warp cannot
perform more write than its number of threads). Usually in CUDA this number is 32 hence
bit-scan is performed in log2(32) = 5 steps.

1 if(w_i==0 && w_l<blockDim.x/warpSize){

2 int w_i_u=0;

3 for(int j=0;j<log2(warpsize);j++){

4 int b_j =__ballot( warpTotals[w_l] & pow2i(j) );

5 w_i_u += (__popc(b_j & t_m) ) << j;

6 }

7 warpTotals[w_l]=w_i_u;

8 }

Listing A.8: Per-block offset computation.

where bj is a number in which each bit is one if and only if the jth bit of the jth per-warp
counter is one. Each warp then masks only the bits i′ < i (of the warps before it) and finally
sum them up, effectively completing the prefix sum operation.

Knowing the warp, block, and grid offsets it is possible to flush out the valid elements
from the input array at the correct locations in the output array. If the current thread is
managing a valid element then it will flush it out at the following location: output[tu +

warpTotals[w_i] + blocksO f f set[blockIdx.x]] = input[idx]; which reads as: (thread’s offset
within its warp) + (thread’s warp offset within the block) + (thread’s block offset within
the grid).

As an example let’s suppose that a block of 4 warps produces the following warpTotals:

warpTotals[0] = 16 = 1 0 0 0 0

warpTotals[1] = 18 = 1 0 0 1 0

warpTotals[2] = 17 = 1 0 0 0 1

warpTotals[3] = 13 = 0 1 1 0 1

Note that warp 0 always produces zero as output because t_m = 0 >= (b_j & t_m) =0.

step 0

b0 = __ballot( warpTotals[w_l] & pow2i(0) ) = 12 (column zero)
w1 = __popc(12 & 1) << 0= 0 << 0 = 0
w2= __popc(12 & 3) << 0 = 0 << 0 = 0
w3= __popc(12 & 7) << 0 = 1 << 0 = 1

step 1

b0 = __ballot( warpTotals[w_l] & pow2i(1) ) = 2 (column one)
w1 = __popc(2 & 1) << 1= 0 << 1 = 0
w2= __popc(2 & 3) << 1 = 0 << 1 = 2
w3= __popc(2 & 7) << 1 = 1 << 1 = 2

step 2

b0 = __ballot( warpTotals[w_l] & pow2i(2) ) = 8 (column two)
w1 = __popc(8 & 1) << 2= 0 << 2 = 0
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w2= __popc(8 & 3) << 2 = 0 << 2 = 0
w3= __popc(8 & 7) << 2 = 1 << 2 = 0

step 3

b0 = __ballot( warpTotals[w_l] & pow2i(2) ) = 8 (column three)
w1 = __popc(8 & 1) << 3= 0 << 3 = 0
w2= __popc(8 & 3) << 3 = 0 << 3 = 0
w3= __popc(8 & 7) << 3 = 1 << 3 = 0

step 4

b0 = __ballot( warpTotals[w_l] & pow2i(4) ) = 7 (column four)
w1 = __popc(7 & 1) << 4= 16 << 4 = 0
w2= __popc(7 & 3) << 4 = 36 << 4 = 0
w3= __popc(7 & 7) << 4 = 48 << 4 = 1

The final result for each warp is simply the sum of the wi u at all steps
w0 = 0 + 0 + 0 + 0 + 0 = 0
w1 = 0 + 0 + 0 + 0 + 16 = 16
w2 = 0 + 2 + 0 + 0 + 36 = 38 = 16 + 18 = 34
w3 = 1 + 2 + 0 + 0 + 48 = 51 = 16 + 18 + 17 = 51



B
H A R D WA R E - T E C H N I C A L S P E C I F I C AT I O N

b.0.1 Accelerators Specification

Spec. K40 K20 GTX980

CUDA Cores 2880 2496 2048

Core Clock 745-845 MHz 706 MHz 1126− 1216 MHz

Memory Size 12 GB 5 GB 4 GB

Memory Clock Speed 3.0 GHz 2.6 GHz 1.753 GHz

Bandwith 288 GB/s 208 GB/s 224 GB/s

Interface 384 bit 308 bit 256 bit

API Supported
OpenACC,
OpenCL 1.2

OpenACC,
OpenCL 1.1

OpenACC,
OpenCL 1.1

Table B.1: Technical Specification for the NVIDIA K40,K20 and GTX980 GPUs.

b.0.2 Test Cluster HW Specification

The following table reports the main technical specifications for the test cluster adopted
for benchmarking the preliminary version of OpenCAL-CLUST (see Section 6.4). Nodes are
interconnected to a Cisco Catalyst 3750 Series switch via standard GigaBit Ethernet. The real
performance of the network has been tested using iperf Linux command line tool giving
raise to a bidirectional bandwidth of ≈ 820Gbit/s .

Spec. Node 1 Node 2

Core Count 20cores - 40threads 8cores - 16threads

Processor Intel(R) Xeon(R) E5-2650 Intel(R) Xeon(R) E5440

Memory Size 32 GB 16 GB

Memory Clock Speed 2.133 GHz 0.667 GHz

Table B.2: Technical Specification for the two nodes composing the test cluster adopted for bench-
marking OpenCAL-CLUST.
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107. Wąs, J., Mróz, H. & Topa, P. GPGPU computing for microscopic simulations of crowd
dynamics. Computing and Informatics 34, 1418 (2015).
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