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Abstract

In this thesis we introduce two types of symmetry notions, local and global, that are applicable
to many different mathematical contexts. To be more specific, let Ω be a fixed set. We call a
triple P = (U,F,Λ), where U and Λ are non-empty sets and F : U ×Ω→ Λ is a map, a pairing
on Ω. Then, for any subset A ⊆ Ω we define a local symmetry relation on U given by u ≡A u′ if
F (u, a) = F (u′, a) for any a ∈ A, and a global symmetry relation on the power set P(Ω) given
by A ≈P A′ if ≡A coincides with ≡A′ .
We use the very general notion of pairing to investigate the above two types of symmetry notions
for a broad spectrum of mathematical theories very far apart, such as simple undirected graphs,
digraphs, vector spaces endowed of bilinear forms, information tables, metric spaces and group
actions.
The relation ≈P induces a closure operator MP on Ω and we prove that any finite lattice is
order isomorphic to the closure system induced by an appropriate operator MP. On the other
hand, the relation ≈P also induces a set operator CP on Ω whose fixed point set MINP (P) is
an abstract simplicial complex, substantially dual to the closure system induced by MP. In this
way, we obtain a closure system and an abstract simplicial complex mutually interacting by
means of three set systems having relevance in both theoretical computer science and discrete
mathematics. As a matter of fact, any independent set family of a matroid on Ω can be
represented as the set system of the minimal partitioners of some pairing P on Ω. Hence, we
are enabled to investigate MINP (P) in relation to classical operators derived from matroid
theory.
Moreover, by means of the set operator MP, it is possible to introduce a preorder ≥P on
P(Ω) by setting A ≥P B if and only if MP(A) ⊇ MP(B). This preorder (and the associated
pair family D ⊆ P(Ω)2) satisfies the so-called union additive property according to which if
A′′ ∈ P(Ω) and A ≥P A′, A ≥P A′′ then A ≥P A′ ∪A′′ and whose induced equivalence relation
coincides exactly with ≈P. In particular, there exists a bijection between closure operators on
Ω and any preorder on P(Ω) having also the above property.
Actually, the preorder ≥P represents a local version of a more general preorder on P(P(Ω)2),
denoted by  Ω, depending uniquely on the starting set Ω and mutually interrelating the
preorders ≥P, for each P ∈ PAIR(Ω).
In this context, the study of the preorder≥P is relevant since it is possible to show that any finite
lattice L is order-isomorphic to the symmetrization of a preorder induced by ΩL on the power
set P(ΩL), for a suitable finite set ΩL and a pairing P on it. On the other hand, we will see that
the above preorder has an interpretation in terms of symmetry transmission. As a matter of fact,
we define a set map ΓP : P(Ω)× P(Ω)→ P(U) and, in the finite case, an associated numerical
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quantity, thanks to which it is possible to evaluate the transmission of symmetry between two
subsets A,B ∈ P(Ω). In this way, the previous finite lattices representation theorem provides
a refinement of order theory enabling us to connect order properties to topological, matroidal
or set combinatorial properties. The epistemological consequence of all the aforementioned
representation results is that we can consider closure system, finite lattice and matroid theories
as sub-theories that are parts of the more general pairing paradigm.
In such a perspective, we relate the preorder ≥P with the closure system MAXP (P) from an
operatorial standpoint by considering the map DP : P(P(Ω)2) → P(P(Ω)) and proving that
DP (D+) = DP (D) for any D ⊆ P(P(Ω)2) and that DP (G(P)) = DP (Q(P)) = MAXP (P),
where G(P) := {(A,B) ∈ P(Ω)2 : A ≥P B} and Q(P) := {(X, y) : X ∈ MINP (P), y ∈
MP(X) \ X}. Thus, it follows that the study of specific subset pair families D ⊆ P(Ω)2

is strictly related to the set systems and to the set operators characterizing pairings. This
explains the need to study the main properties of the specific families satisfying the same
properties as the above two previous models.
Finally, the investigation of the set map ΓP leads us to the analysis of a particular structure,
namely the indistinguishability linear systems. In particular, we focus our attention on the
corresponding concept of compatibility from both a local and a global standpoint. The term
compatibility is here used in analogy with the study of the compatibility of classical finite system
of linear equations with coefficients in any field K. An indistinguishability linear system S is a
very general structure 〈US, CS, DS, FS,ΛS〉 where US can be seen as the equation set, CS as the
variable set, DS consists of at most an element dS (constant term) and FS : US×(CS∪DS)→ ΛS

is a map that plays the role of the coefficients matrix in a classic linear system. Then, from
a local perspective, the study of the compatibility in S means to fix W ⊆ US, A ⊆ CS and
to determine in what cases all equations u ∈ W satisfy a specific condition related to local
symmetry. On the other hand, from a global perspective, we try to determine the conditions
to be satisfied by some operators formalizing the compatibility notion.
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Introduction

The study of the symmetry has always fascinated mathematicians. In his classical book [181],
Hermann Weyl discusses the symmetry concept in geometry from several points of view. Nev-
ertheless, currently, in literature there is no paradigm concerning symmetry that is sufficiently
unifying and general enough to be applied to mathematical structures apparently very far apart.
Therefore, it happens that in each specific research field, a characteristic notion of symmetry
is given and there is no a common paradigm connecting them. The following contexts provide
some of the most natural structures where specific symmetry questions can be investigated.

In graph theory, the symmetry notion is classically related to the properties of the auto-
morphism group Aut(G) of a graph G (see [83]) and it is also object of deep algebraic inves-
tigations (see [103]). However, even within graph theory itself, many notions of symmetry,
different from the classical one proposed in [83] have been introduced and well studied. For
example, in [115, 116, 117, 131, 155] several types of symmetry notions has been investigated
for Cayley graphs, Moore graphs, attachment graphs, graph algebras and directed graphs. In
fact, Cayley graphs of groups play an important role in symmetric graphs. In [36, 37, 38] it
have been introduced some types of homotopy relations based on the symmetry of graphs, that
are strictly related with database theory. Moreover, there is also a wide literature concerning
the study of symmetry breaking [2, 90, 101, 102, 133].

In hypergraph theory some questions concerning the hyperedge symmetry have been inves-
tigated in [165, 173, 175].

In a more algebraic context, the symmetry is a basic notion when one studies the sym-
metric group [121, 154], the symmetric functions [130], the plane symmetry groups [158], the
interrelations with Hopf bifurcations [91, 92, 93] and the association schemes [11, 12].

In order theory, the symmetry notion has been studied in relation to a specific types of
symmetric functions and representations of the symmetric group [160, 167] and in relation to
Ramsey theory [84]. In [21, 23, 24, 35] some classes of lattices with high symmetry degree have
been investigated in terms of sequential and discrete dynamical systems.

In metric space theory, some types of symmetry transformations have been related in [136,
179] to the Wigner’s theorem, that is a classical result in mathematical foundation of quantum
mechanics [183]. From a more general perspective, if X is any set a map d : X ×X → [0,∞[
such that d(u, v) = 0 if and only if u = v and such that d(u, v) = d(v, u) has been studied in
[100, 132] exactly for its symmetry properties.

In this work we introduce the unifying notion of pairing (see [20, 53, 55, 56, 58, 63, 64, 65])
or, equivalently, function system [61, 68]), that serves as paradigm to link each other, from an
interdisciplinary outlook, several different mathematical structures, such as matroids, group
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actions, vector spaces endowed with bilinear forms, metric spaces, simple undirected graphs
and digraphs. By means of this notion, we provide a new perspective to investigate a type of
generalized symmetry in the above structures and in all other mathematical structures where
it is natural to introduce an appropriate pairing.

Let us fix an arbitrary set Ω (finite of infinite). Our basic notion is given in the next
definition.

Definition 0.0.1. A pairing on Ω is a triple P = (U,F,Λ), where U , Λ are non-empty sets and
F : U × Ω→ Λ is a map having domain U × Ω and codomain Λ. We denote by PAIR(Ω) the
set of all pairings on Ω. When both the sets U = {u1, . . . , um} and Ω = {a1, . . . , an} are finite,
we say that P is a finite pairing. For a finite pairing, we denote by T [P] the m×n rectangular
table having on the i-th row the element ui, on the j-th column the element aj and F (ui, aj)
in the place (i, j). In the finite case, we identify P with T [P] and call T [P] the functional table
of P.

By starting from the very general notion of pairing, we can develop new refined mathemat-
ical notions without additional hypotheses. In particular, through the comparison of specific
partition symmetries induced on U by the subsets of Ω, we will construct a type of symmetriza-
tion geometry on P(Ω).

In this thesis, we are going to present several new and original results obtained during our
researches spread over the last three years, in relation to the aforementioned topic. In the next
subsection we introduce the basic relations, operators and corresponding set systems which are
naturally associated with any pairing P ∈ PAIR(Ω).

Local and Global Symmetry Relations on Pairings

Let P = (U,F,Λ) ∈ PAIR(Ω) and A,A′ ∈ P(Ω). For any u, u′ ∈ U we set

u ≡A u′ :⇐⇒ F (u, a) = F (u′, a), ∀a ∈ A.

It easily follows that ≡A is an equivalence relation on U that we call A-symmetry relation of
P. For any u ∈ U we denote by [u]A the equivalence class of u with respect to ≡A and we
call [u]A the A-symmetry class of u. Finally, we call the set partition πP(A) := {[u]A : u ∈ U}
induced by ≡A on U the A-symmetry partition of P.

The terminology symmetry relation stems by the fact that in graph context (i.e. when we
identify a graph with its adjacency matrix considered as a pairing), the previous equivalence
relation takes actually account of a local type of symmetry (see [47, 49, 52, 54, 63, 71]). Consider
for example the usual Petersen graph (briefly Pet) with vertex set V (Pet) = {1, . . . , 10} and let
us take A = {1, 6}. Then, it is easy to verify that there are exactly the following three symmetry
blocks of A in Pet: {1, 8, 9}, {2, 5, 6} and {3, 4, 7, 10}. Hence πPet(A) = 189|256|347(10). In
fact, we can note that the vertices in each one of the previous blocks have all the same behavior
with respect to the vertices 1 and 6. For example 1, 8 and 9 are all vertices of Pet adjacent
only to 6; the vertices 2, 5 and 6 are all vertices adjacent only to 1 and the vertices 3, 4, 7
and 10 are all vertices non adjacent neither 1 nor 6. Finally, we note that there is no vertex
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Figure 1:

adjacent to both 1 and 6. We can see better the symmetric position of the previous blocks with
respect to A if we colour them with three different colours, as we did in Figure 1.

Therefore, from our perspective, symmetry with respect to A ⊆ V (G) can be formally
translated as the equivalence relation ≡A and its equivalence classes can be seen as symmetry
blocks relatively to A. In general, note that when we fix a vertex subset A, we implicitly assume
A as an observation point (or, equivalently, a reference system), with respect to which observe
the behavior of all other vertices in G. Then, if v, v′ are two not adjacent vertices of G such that
v ≡A v′, it results (see Corollary 2.1.4) that the induced subgraph by A ∪ {v, v′} is symmetric
in the sense of Erdös-Rényi [83].

Now, let us note that πG(A) depends on both G and A, so we can not provide a general
way to determine πG(A), except for some simple graph structures (for example the complete
graph and the complete bipartite one). Therefore, given a finite undirected simple graph G, we
must study (in some way to determine) the whole family of vertex partitions induced by the
vertex subsets A ∈ P(Ω). In this way we try to establish some type of parameters, depending
only on the structure of G, which provide useful informations concerning the links among all
the A-symmetry partitions.

We observe now that the above discussed A-symmetry relation can be considered a type
of local symmetry on the set U , because it depends on the choice of the subset A. Then, by
starting from the above A-symmetry relation, we introduce a type of global symmetry relation
relatively to a given pairing. To this regard, we consider the following equivalence relation on
P(Ω):

A ≈P A′ :⇐⇒ πP(A) = πP(A′) ⇐⇒ (u ≡A u′ ⇐⇒ u ≡A′ u′)

for all u, u′ ∈ U . We call ≈P the global symmetry relation of P, and we denote by [A]≈P
the

equivalence class of A with respect to ≈P, that we call global symmetry class. When the pairing
is clear in the context, we omit the subscript P when denoting the global symmetry relation.

Hence the global symmetry class [A]≈P
contains all subsets of Ω which induce the same local

symmetry on U . Moreover, a basic property of any such class is that it is a union-closed family
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(Theorem 2.2.1, see [13, 76, 137, 152, 180, 187] for some studies on union-closed families arisen
mainly from the famous Frankl’s conjecture [85]), therefore it contains a maximum element
(the union of all its members), that we denote by MP(A).

Then, MP(A) is the largest subset of Ω which induces on U the same local symmetry of A.
Now, if we consider the set operator MP : P(Ω)→ P(Ω) such that A 7→ MP(A) it results (see
Theorem 2.2.1) that MP is a closure operator on Ω. As a direct consequence, the set system

MAXP (P) := {MP(A) : A ∈ P(Ω)} = {C ∈ P(Ω) : MP(C) = C}

is a closure system on Ω. On the other hand, we also consider the set partition family given by

PSYM(P) := {πP(A) : A ∈ P(Ω)}.

Then, it results that the two posets M(P) := (MAXP (P),⊆∗) and P(P) := (PSYM(P),�)
(where � is the usual partial order on set partitions) are two order isomorphic complete lattice
(see (ii) of Corollary 2.2.2). We call M(P) the maximum partitioner lattice of P.

Again, we also associate with the pairing P the family of all minimal partitioners, defined
as follows:

MINP (P) :=
⋃
{min([A]≈P

) : A ∈MAXP (P)}.

Hence, it results that MINP (P) is an abstract simplicial complex [119] (see Theorem 2.6.1).
In this thesis, we are going to establish a representation result (Theorem 6.1.1), through

which we prove that for any closure operator σ on an arbitrary finite set Ω it is possible to
construct a pairing P ∈ PAIR(Ω) such that σ = MP. By means of the aforementioned theorem
and of a classical result of matroid theory (Theorem 1.6.5), we deduce that any independent
set family of a matroid on Ω can be represented as the set system of the minimal partitioners
of some pairing P on Ω.

Therefore, by virtue of what we said before, we can study by means rectangular tables (in
the finite case) or pairings (in the general case) both closure systems and matroids through the
study of the local and global symmetry. In other terms, we can assert that we are going to
develop a symmetrization geometry on pairings through the study of a closure system and an
abstract simplicial complex, that are naturally associated with each pairing. In the remaining
part of the introduction, we denote by P a fixed pairing in PAIR(Ω).

The Global Symmetry Lattice

The deep link between maximum partitioners and minimal ones is provided by the following
structure. Consider the poset (GSYM(P),v), where

GSYM(P) := {[A]≈P
: A ∈MAXP (P)}

is endowed with the partial order

[A]≈P
v [B]≈P

:⇐⇒ A ⊆∗ B.

It can be shown (Theorem 2.2.8) that G(P) is a complete lattice order isomorphic to M(P),
that we call global symmetry lattice of P.

x



a1 a2 a3 a4

u1 1 1 0 0

u2 0 0 1 1

u3 1 0 1 0

u4 0 1 1 1

u5 1 0 1 1

Figure 2: The functional table of Example 0.0.2

Let us note that each global symmetry class contains all the subsets of Ω inducing the same
symmetry partition, and these subsets have a natural poset structure with respect to the usual
set inclusion. Therefore these posets can be studied with the usual techniques derived from
the order theory. Obviously, a relevant question is to understand if, and how, the inner order
structure of each class [A]≈P

interacts with the global order structure of the global symmetry
lattice G(P).

To this regard, we provide the following three type of results as a consequence of our study.

(1) results concerning the properties of the global symmetry classes.

(2) results concerning the global symmetry lattice.

(3) results that concern the possible interactions between the inner structure of any global
symmetry class and the maximum partitioner lattice.

A basic property relative to (3) is the global-local regularity, which can be expressed as
follows

(GLR) MP(A) $MP(A′) =⇒ Y * X for any X ∈ [A]≈P
and Y ∈ [A′]≈P

.

The global-local regularity property tells us that the inclusion between the maximum el-
ements of any two global symmetry classes preserves the same type of inclusion between any
two members of these classes.

Example 0.0.2. Let us consider the pairing P whose functional table is given in Figure 2.
In Figure 3 we represent the maximum partitioner lattice of P. In Figure 4 we represent the
global symmetry lattice of P.

Symmetry Set Systems Related to the Global Symmetry Lattice

The subset MP(A) is the largest subset of Ω that induces on U the same local symmetry of A.
On the other hand, given A ∈ P(Ω), if one studies the A-symmetry in relation to the subsets
of A there are two natural types of subsets that we can consider.
(A) The subsets C of A providing the same symmetry of A (i.e. πP(C) = πP(A)) and which
are also ⊆-minimals with respect to this property. Formally, we have the set system

BASP(A) := {C ∈ P(A) : πP(A) = πP(B) andπP(A) 6= πP(B′) ∀B′ $ B},
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∅

{a1} {a2} {a3} {a4}

{a1, a3} {a1, a4} {a2, a3} {a3, a4}

{a1, a3, a4} {a1, a2, a3} {a2, a3, a4}

{a1, a2, a3, a4}

Figure 3: The Maximum Partitioner Lattice M(P) of Example 0.0.2

and call any member of BASP(A) an A-symmetry base of P.
(B) The subsets C of A which are ”essential” to provide a maximum level of symmetry when we
partition A (that is πP(A \C) 6= πP(A)) and that are ⊆-minimal with respect to this property.
In such a case we have the set system

ESSP(A) := {C ∈ P(A) : πP(A \ C) 6= πP(A) andπP(A \ C ′) = πP(A) ∀C ′ $ C},

and call any member of ESSP(A) an A-symmetry essential of P.
In [54], the basic properties of the previous set systems in relation to simple undirected

graphs have been studied in relation to the notion of local dissymmetry. To this regard, we set

DIS(G) := {∆G(vi, vj) : vi, vj ∈ V (G)},

where ∆G(vi, vj) := NG(vi)
a
NG(vj) is the set symmetric difference between the adjacency

neighborhoods of vi and vj . We call the vertex subset family DIS(G) and the subset ∆G(vi, vj)
respectively the local dissymmetry set system of G and the dissymmetry neighborhood of vi and
vj . In fact, ∆G(vi, vj) contains those vertices which cut off a potential 2-path between vi and
vj (another kind of symmetric difference among neighborhoods of vertices has been introduced
recently in [131] in order to study some types of symmetries in random graphs).

In this case, we can put within a table ∆[G] the members of the dissymmetry set system,
i.e. if we denote by NG(v) the open neighborhood of all adjacent vertices to v ∈ V (G), then
in the place corresponding at the intersection between the vi-row and the vj-column there is
the set symmetric difference ∆G(vi, vj). Now, because G has no loops and multiple edges, it is
immediate to see that G is uniquely characterized from this table. In other terms, if G and G′

be two graphs on the same vertex set. Then

∆[G] = ∆[G′] ⇐⇒ E(G) = E(G′),
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∅

a1 a2 a3 a4

a1a3 a1a4 a2a3 a3a4

a1a3a4

a1a2a3

a1a2

a2a3a4

a2a4

a1a2a3a4

a1a2a4

Figure 4: Global Symmetry Lattice G(P) of Example 0.0.2.
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where E(G) denotes the edge set of G or, equivalently, two graphs G and G′ coincide if and
only if ∆G(vi, vj) = ∆G′(vi, vj) for all vi, vj ∈ V (G). An immediate and intuitive interpretation
for the previous identities is that if vi 6= vj then v ∈ ∆G(vi, vj) if and only if v is adjacent
to exactly one vertex between vi and vj , in other terms we can think any vertex in ∆G(vi, vj)
as a local dissymmetry vertex between vi and vj . Therefore, it is natural to think the entries
of ∆[G] as local dissymmetry neighborhoods of G and to call G a locally dissymmetric graph
when it happens that ∆G(vi, vj) 6= ∅ for all vi 6= vj . In particular, in [59] it has been provided
an interpretation of local dissymmetry in graph context within the so-called formal context
analysis (briefly FCA) [16, 27, 87, 88, 94, 184, 185, 186] (for the relation between graphs and
FCA, see also [7, 8, 9, 10, 16]).

However, let us note that the the condition DIS(G) = DIS(G′) is weaker than ∆[G] =
∆[G′], in fact there are non isomorphic simple graphs G and G′ having the same local dissym-
metry set system, for example the following:

1

2 3

4

and

1

2 3

4

The above example contains in itself the following potential research development: to classify
the simple graphs by means of the local dissymmetry, that is with respect to the condition
DIS(G) = DIS(G′).

Moreover, in [71], it has been studied a generalization of the local dissymmetry set system,
in fact it has been analyzed the behavior of the symmetric differences of vertex subsets. Again
in [71], the local symmetry relation ≡A has been studied in its interrelations with a specific type
of binary operation ◦ defined on the power set P(V (G)) and whose automorphism group is iso-
morphic to a subgroup of Aut(G) (for other works on similar topics see also [25, 26, 103, 153]).
In Section 4.2, we will investigate the main algebraic properties of the operation ◦ and see that
it satisfies many group-like properties, even if it is not associative (see Proposition 4.2.3 and
Theorems 4.2.18, 4.2.21 and 4.2.26).

Again in [54], it has been proved that BAS(G) is the minimal transversal set system of
DIS(G), whereas ESS(G) is the set system of all minimal (with respect to the usual inclusion)
subsets of DIS(G). The problem of compute the symmetry base set system is thus equivalent
to that of finding the minimal transversal of a given hypergraph [80, 81, 82, 97, 99, 118] and it is
a very difficult task that has many applications in mathematics and computer science [80, 81].
In Subsections 3.2.1 and 3.2.2, we treat the aforementioned problem for two graph models,
namely the Petersen graph, for which we completely classified the subgraphs corresponding to
the elements of BAS(Pet), and the cycle on n vertices, for whose symmetry bases we provide
an algebraic characterization (see Theorem 3.2.27).

We can generalize the local dissymmetry for graphs introducing the notion of dissymmetry
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in the more general pairing context as follows. For any A ∈ P(Ω) we consider the map ∆P
A :

U × U → P(Ω) defined by

∆P
A(u, u′) := {a ∈ A : F (u, a) 6= F (u′, a)},

for any u, u′ ∈ U , and the following set system on Ω:

DISP(A) := {∆P
A(u, u′) : u, u′ ∈ U and ∆P

A(u, u′) 6= ∅}.

We call DISP(A) the A-dissymmetry set system of P. Then, the map ∆P := ∆P
Ω satisfies the

following three basic properties:
(i) ∆P(u, u) = ∅ for each u ∈ U ;
(ii) ∆P(u, u′) = ∆P(u′, u) for all u, u′ ∈ U ;
(iii) ∆P(u, u′) =

⋂
u′′∈U [∆P(u, u′′) ∪∆P(u′, u′′)].

On the other hand, we prove (see Theorem 3.1.7) that if any map D : U × U → P(Ω) satisfies
the above properties, then there exists a pairing P ∈ PAIR(Ω) such that ∆P = D. Therefore
we can say that the properties (i), (ii) and (iii) can be considered as abstract axioms to define
an abstract notion of dissymmetry space on U . In other terms, we call dissymmetry space (see
[55]) on Ω a pair D := 〈U,D〉, where U is a non-empty set and D : U × U → P(Ω) is a map
which satisfies (i), (ii) and (iii).

Theorem 3.1.7 is the first of a series of representation theorems by pairings that are aimed
to unify in a broader and general perspective several different theories, such as dissymetry
spaces, finite lattices, closure systems and matroids.

Now, given a pairing P, for any A ∈ P(Ω), based on the computation of the A-dissymmetry
set system of P, it is possible also determine the A-symmetry bases and the A-symemtry essen-
tials. In fact, as in the graph case [54], we can prove (Theorems 3.2.13 and 3.2.15) respectively
that the A-symmetry essentials are the minimal elements of the set system DISP(A) and that
the A-symmetry bases are the minimal transversal of the same set system. Finally, in our
treatment, a relevant role will be played by the subset of A given by

CP(A) := {a ∈ A : πP(A) 6= πP(A \ {a})},

that we call core of A. This subset can be identified with all singletons of the set system
ESSP(A) and, it determines a set operator CP on Ω that we can substantially to consider
a type of dual version of the set operator MP (see Proposition 3.2.8 and Theorem 3.2.9).
Moreover, we also prove (see Theorem 3.2.9) that the set system MINP (P) is exactly the
fixed point set of CP.

Comparison Between A-Symmetry Relations

Relatively to the symmetry induced on U by the subsets of Ω, we want to specificate how these
subsets are mutually related. In particular, we are going to compare the various symmetry
partitions on U and, in the finite case, to determine a measure of transmission of symmetry.
As a matter of fact, we consider the map ΓP : P(Ω)× P(Ω)→ P(U) so defined:

ΓP(A,B) := {u ∈ U : [u]A ⊆ [u]B}.
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Furthermore, in the finite case, we can also define the symmetry transmission measure γP as
follows

γP(A,B) :=
|ΓP(A,B)|
|U |

.

Let us note (see [20, 53] for details) that

MP(A) ⊇MP(A′) ⇐⇒ πP(A) � πP(A′) ⇐⇒ ΓP(A,A′) = U,

for all A,A′ ∈ P(Ω).
Then, in an operatorial perspective, which is based on the above three equivalences estab-

lished, we introduce the binary relation ≥P on P(Ω) defined by

A ≥P A′ :⇐⇒ MP(A) ⊇MP(A′),

for any A,A′ ∈ P(Ω). We say that A is P-symmetrically finer than A′ whenever A ≥P A′. We
can restate the notion of P-symmetrically finer by noting that A ≥P B ⇐⇒ ΓP(A,B) = U .
Since

A ≈P A′ ⇐⇒ A ≥P A′ and A′ ≥P A,

we can interpret the global symmetry relation ≈P as the equivalence relation on P(Ω) induced
by the preorder ≥P.

The preorder ≥P has also the following property of union additivity: if A′′ ∈ P(Ω) and
A ≥P A′, A ≥P A′′ then A ≥P A′ ∪ A′′. Then, it is easy to see that any preorder on P(Ω)
having also the above union additive property (thus named union additive relation on Ω, and
union additive family its corresponding version as subset family) is uniquely associated with
a closure operator on Ω and vice versa. Hence the study of specific closure operators on Ω is
equivalent to the study of corresponding types of union additive families D ⊆ P(Ω)2. Then, we
will show (Theorem 5.2.8) that there is a bijective correspondence between closure operators
on Ω and union additive relations on P(Ω). Moreover, with respect to this correspondence,
the set operator MP can be identified with the union additive relation ≥P. Let us note that
the study of the preorder ≥P can also be seen as the abstract mathematical study of the
functional dependency relation (for details see [161]) induced by any concrete model of data
table associated with a pairing P on the set Ω and that has recently been analyzed in relation to
closure systems, abstract simplicial complexes [68] and to the corresponding convex geometries
[111, 112, 113, 114].
Based on the previous considerations, given any family D ⊆ P(Ω)2, it is natural to ask how to
characterize the smallest union additive family, denoted by D+, that contains D as a subfamily.
To this regard, we provide three distinct recursive way to build D+ by starting from the elements
of D (Theorem 5.3.1). Next, we address the links between order properties and subset structural
properties from a perspective similar to that of model theory. In other terms, if D ⊆ P(Ω)2,
we say that a pairing P ∈ PAIR(Ω) is a model of D, denoted by P ` D, if X ≥P Y for any
ordered pair (X,Y ) ∈ D. At this point, we introduce a preorder on P(P(Ω)2): if D′ ⊆ P(Ω)2 we
say that the ordered pair (D,D′) is a sequentiality (relatively to the given set Ω, [66]), denoted
by D  Ω D′, if for any pairing P ∈ PAIR(Ω) such that X ≥P Y for all pairs (X,Y ) ∈ D

we also have that X ′ ≥P Y ′ for all pairs (X ′, Y ′) ∈ D′. In this way we obtain a preorder
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 Ω between subset ordered pairs families of Ω that can be considered a global version of the
preorder ≥P on P(Ω). In fact, the preorder ≥P is related to the subsets of the starting set
Ω, but it can be considered a type of local preorder because it depends on the choice of the
particular model P. On the other hand, the preorder  Ω depends only on the starting set Ω,
therefore we can consider the study of  Ω as an abstract global order study depending on the
mutual interrelations between the preorders ≥P, for each P ∈ PAIR(Ω).
In this way, we link order theory with specific subset properties (for example the above discussed
union additivity). In such a perspective, we relate the preorder ≥P with the closure system
MAXP (P) from an operatorial standpoint as follows. We consider the map DP : P(P(Ω)2)→
P(P(Ω)) defined by

DP (D) := {Z ∈ P(Ω) : X ⊆ Z =⇒ Y ⊆ Z ∀(X,Y ) ∈ D}

and we show that DP (D+) = DP (D) for any D ⊆ P(P(Ω)2) (Theorem 5.5.1) and that
DP (G(P)) = MAXP (P) (Theorem 5.5.2), where

G(P) := {(A,B) ∈ P(Ω)2 : A ≥P B}.

Therefore it is natural to investigate the closure system MAXP (P) and its associated abstract
complex MINP (P) from the perspective of the union additive relations.
Again by Theorem 5.5.2, it results that DP (Q(P)) = MAXP (P), where

Q(P) := {(X, y) : X ∈MINP (P), y ∈MP(X) \X}.

In the pairing context, starting from the identities DP (G(P)) = DP (Q(P)) = MAXP (P),
it can be seen that the study of specific subset pair families D is strictly related to the set
systems and to the set operators characterizing pairings. Therefore, in this thesis, we feel
the need to include as an additional part the investigation of the specific properties of such
families, namely the pointed pair system on Ω [67], that is a family of ordered subset pairs whose
second component is a singleton. In particular, in Subsections 5.6 and 5.7 we see that some
classical notions that are usually investigated for several classes of set systems on Ω, such as,
for instance, extensiveness and finitely inheritance, can be translated in the context of pointed
pair systems and, furthermore, several links between specific classes of pointed pair systems,
finitary abstract complexes (an example in pairing context has been given on the euclidean
line, see Theorem 2.7.5) and weak types of MacLane-Steinitz set operators have been found.

Representation Theorems: Closure Systems, Finite Lattices and
Matroids as Pairings

In this thesis we establish a representation result (Theorem 6.1.1), according to which it is
possible to associate with any closure operator σ on an arbitrary finite set Ω a pairing P ∈
PAIR(Ω) such that σ = MP. In other terms, for any closure operator σ on a finite set Ω we
can find a pairing P ∈ PAIR(Ω) such that γP uniquely characterize σ and vice versa. This
equivalence implies that the symmetry transmission measure for pairings can provide to closure
operator theory all possible concrete models of investigation. Then, as a consequence of such
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a result, we deduce some relevant facts concerning union additive relations, finite lattices and
matroid theory. Firstly, we also show (Theorem 6.1.4) that any union additive relation on P(Ω),
when Ω is finite, is of the type ≥P, for some pairing P ∈ PAIR(Ω). Hence, the study of a
union additive relation becomes an abstract mathematical study of the functional dependency
relation induced by any concrete model of data table associated with a pairing P on Ω.

Secondly, in Theorem 6.1.5 and Theorem 6.1.7, we show that the partial order ≤L of any
finite lattice L can be described in terms of the symmetry transmission measure, for an appro-
priate finite set ΩL and a pairing P ∈ PAIR(ΩL).
Moreover, the function γP provides more information with respect to the partial order ≤L,
because γP can be computed on all pairs of P(ΩL) × P(ΩL) that are in bijective correspon-
dence with the pairs in L× L, whereas the partial order ≤L provides information only for the
comparable pairs of L × L. Hence the order relation of any finite lattice can be studied as
a quotient relation of the preorder ≥P induced by some appropriate pairing. The theoretical
consequence of this fact is that the whole finite lattice theory can be developed in a pairing
perspective. To this regard, the real refinement that we can carry out in finite lattice theory by
means of the study of the preorder ≥P is that we can connect order properties with set family
properties. For example, the above described union additive property is explicitly a type of
condition that naturally connects order theory with topological, matroidal or set combinatorial
properties. More in general, it is natural to ask in which way a joint study of order properties
and subset structural properties induced by pairings interact each other. We recall that there is
a wide literature dealing with studies on the links between order theory, topological structures
[95, 96, 138, 176], combinatorial and algebraic structures on subset families [1, 6, 78, 135, 177]
and discrete dynamical systems [23, 24, 35].

Another consequence of Theorem 6.1.1 is that any independent set family of a matroid on
Ω can be represented as the set system of the minimal partitioners of some pairing P on Ω.
Hence, we are enabled to investigate MINP (P) in relation to classical operators derived from
matroid theory (see Theorems 7.0.14 and 7.0.16). To this regard, we relate MINP (P), the
set operator MP and the classical rank-symmetry operator of a matroid. Finally (Theorem
7.0.18) we establish two equivalent conditions so that the rank-symmetry operator associated
with MINP (P) coincides with MP.
The epistemological consequence of the aforementioned results is that we can consider closure
system, finite lattice and matroid theories as sub-theories that are parts of the more general
pairing paradigm.

Applications in Computer Science

The notion of pairing generalizes the classical notion of Pawlak’s information table [142, 144,
145, 146].

Definition 0.0.3. An information table is a table whose rows are labeled with the elements
(called objects) of a finite set U and whose columns are labeled with the elements (called
attributes) of a finite set Att and having at the entry (i, j) the value F (ui, aj) ∈ V al, where
F : U ×Att→ V al is the so-called information map and V al the set of values.
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Remark 0.0.4. Our notion of pairing is actually a generalization of Pawlak’s information table
for two reasons. First of all, we can consider both U and Ω even infinite; on the other hand,
Pawlak’s notion of information table implicitily assumes a distinction between the nature of
the objects and that of the attributes. In our case (see for example the pairing arising in graph
context), we do not make this distinction.

Information tables arise from the necessity to study knowledge representation and data
extraction. As a matter of fact, in database theory there is a very frequent need to study
finite tables having a very large quantity of data, therefore many researches have been di-
rected towards the purpose of reducing and simplifying the interpretation of these data. With
such an aim, Pawlak [140, 141, 142, 144, 145, 146] developed the so called rough set theory
(abbreviated RST). RST is an elegant and powerful methodology in extracting and minimiz-
ing rules from data tables. In 1979 the concept of information granularity was introduced by
Zadeh [198] and it was related to the research on fuzzy sets. Next, the term granular com-
puting (briefly GrC) was introduced again by Zadeh in 1997 (see [199]). Roughly speaking,
information granules are collections of entities arranged together due to their similarity, func-
tional or physical adjacency, indistinguishability, and so on. Since 1979, granular computing
has become a very developed area of research in the scope of both applied and theoretical
information science [148, 174]. GrC deals with representing and processing information in the
form of some type of aggregates. These aggregates are generally called information granules
or simply granules and they arise in the process of data abstraction and knowledge derivation
from data. From a methodological perspective, GrC can be considered as an important attempt
to investigate several research fields by means of the unifying granularity paradigm: rough set
theory [17, 30, 74, 127, 128, 129, 144, 145, 146, 147, 148, 149, 151, 174, 190, 192, 194, 196]
and its generalizations [28, 29, 31, 164, 166, 195], mathematical morphology [169], interval
analysis [120], temporal dynamics [23, 24, 32, 33, 35, 73, 74], machine learning [197], preclu-
sivity spaces [28], formal concept analysis [110, 172, 188], database theory [104, 105, 139],
data mining [106, 125, 126, 191], fuzzy set theory [109, 150, 159, 199], interactive computing
[162, 163], matroid theory [107, 108, 122, 123, 124, 200], hypergraph theory [34, 170, 171, 193],
graph theory [39, 46, 47, 55, 156, 168], operative research [98], discrete dynamical systems
[3, 4, 5, 21, 22, 40, 42, 43, 41, 44, 45, 143, 157].

The notion of A-symmetry represents the so-called indiscernibility relation [142]. The ter-
minology indiscernibility relation derives by the classical Leibniz’ indiscernibility principle,
according to which two objects are indiscernible with respect to a given knowledge provided
by a subset of attributes if and only if they share the same properties on these attributes.
Formalizing, we obtain the following equivalence relation: let A ∈ P(Att) and u, u′ ∈ U . Then

u ≡A u′ :⇐⇒ F (u, a) = F (u′, a) ∀a ∈ A.

Indistinguishability Linear Systems

In the last part of this thesis, we deal with symmetry approximations. Suppose we have a
fixed set Y ⊆ U . We ask whether it is constituted of symmetry blocks with respect to a given
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A ∈ P(Ω) or it also contains part of a block. In the first case, we say that Y is A-symmetry
exact, while in the second case, we can approximate it through two sets, namely the lower
symmetry approximation and upper symmetry approximation. The lower symmetry approxi-
mation of a non-empty Y (briefly lA(Y )) represents the set of elements for which it can be said
that they surely belong to Y in relation to the symmetry provided by A; the upper symmetry
approximation of an element subset Y (briefly uA(Y )) for which it can be said that they surely
or possibly belonging to Y , even in relation to the symmetry provided by A. Furthermore, it
can be seen that Y is A-symmetry exact if lA(Y ) = uA(Y ).
In particular, in Subsections 8.2.1 and 8.2.2 we compute A-lower and A-upper approximations
for some basic graphs and digraphs families [47, 49, 54, 55, 52, 57, 60, 70, 72] and recall that
the complete determination of A-lower and A-upper approximations represents a difficult task,
even if the graphic structures at issue are very simple.
Some natural links of RST with both graph and hypergraph theory have recently been founded.
In fact, in [47, 48, 49, 50, 51] the idea to study any simple undirected graph G as if it were
a pairing was developed (in [34] this idea has been also extended to hypergraph theory). The
basic tool to connect graphs and Boolean pairings is the adjacency matrix of G, which in
[47, 48, 49, 50, 51] has been interpreted as the Boolean table of a particular information sys-
tem. In particular, it can be shown that any Boolean pairing is induced from a bipartite graph
[56].

Nevertheless, for finite sets it has been shown that the A-symmetry exactness of a subset
X ⊆ U is related to the value of the symmetry transmission measure γ(A, {dX}), where dX is
a special element depending on A.

The choice of a special element allows us to introduce a new class of structures, namely
the indistinguishability linear systems [62], that can be seen as a generalization of the so-called
decision tables [69, 134, 144, 145, 146].

We call a structure S = 〈US, CS, DS, FS,ΛS〉, where US, CS,ΛS are non-empty sets, DS is
empty or consists of a single element dS such that dS /∈ CS. FS is a map having domain
US × (CS ∪DS) and codomain ΛS an indistinguishability linear system.

In the last part of this work, we deal with the investigation of the main properties of
indistinguishability linear systems. Indeed, we will study from an operatorial standpoint the
notion of compatibility for indistinguishability linear systems.

Let us consider a system of linear equations S with coefficients in some field KS. Let
US := {u1, . . . , um} be the set of them linear equations u1, . . . , um and CS = {x1, . . . , xn} the set
of the n unknowns x1, . . . , xn of S. Let QS = (qij) the coefficient matrix and dS = (d1, . . . , dm)T

the column of the constant terms of S. If W ⊆ US and A ⊆ ΩS, we denote by SW,A the sub-
system of S determined by the equations contained in W , with their corresponding constant
terms, and by the unknowns contained in A. Then, it is well known that the compatibility
of S do not imply the compatibility of SW,A. In order to know the compatibility of any single
sub-system SW,A, it is sufficient to find the rank of the matrix and of the complete matrix
associated with this sub-system, but what can we say about the interrelations between the
compatibilities among all possible local sub-systems of S? In Subsection 8.4, we reformulate
the above problem in a combinatorial context. We say that SW,A is compatible if there exists a
map f : Kp → K such that FS(u, dS) = f(FS(u, xi1), . . . , FS(u, xip)) for any u ∈W .
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Hence, we propose a detailed investigation of the previous condition as a natural study of
the notion of local compatibility for an indistinguishability linear system. We will see that the
previous condition is logically equivalent to another condition relating an appropriate family
of partitions of US induced by the subsets of CS to the family of partitions induced by dS.
Since set partitions are essential for compatibility, we can interpret it as a kind of partition
compatibility. In fact, the aforementioned partitions are induced by the A-symmetry partition
on the equation set US. Then, it is easy to verify that the above condition is equivalent to the
following inclusion:

[u]A ∩W ⊆ [u]DS
∩W

for any u ∈ W . Therefore the investigation of the compatibility condition for SW,A ultimately
becomes an analysis of the combinatorial properties of the partitions πS(A) of US induced by
≡A.

The study of compatibility has been undertaken by defining some operators that we call
compatibility operators (see Subsection 8.5). In particular, given W ∈ P(US) and A ∈ P(CS),
we set φA(X) = ΘS(X,A), where

ΘS(X,Y ) := {v ∈ X : [v]Y ∩X ⊆ [v]DS
∩X}.

Then, if we fix a variable set A, it follows that φA(US) = US, that is A gives rise to compatibility
on US if and only if φA is a kernel operator [86]. In this way, we have that specific technical
properties of the set operator at issue assumes a relevant interpretative role.
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Chapter 1

Preliminaries

In this chapter we introduce notations we will use within the text and show some basic results.

1.1 Notations

In what follows, Ω will be an arbitrary (even infinite) set and P(Ω) denotes its power set. We
also set SS(Ω) := P(P(Ω)), S(Ω) := (SS(Ω),⊆). If we want to specify that Y is a finite subset
of Ω, we will write Y ⊆f Ω; moreover if n is a non-negative integer, we write Y ⊆≤n Ω if Y ⊆ Ω
and |Y | ≤ n. If |Ω| = n, we set Ωn := Ω. If k is a positive integer, Y ⊆ Ω and |Y | = k, we say
that Y is a k-subset of Ω. We write n̂ to denote the set {1, . . . , n}. We will denote by In the
n × n identity matrix and by Jn the n × n matrix having 1 in all its entries. If X and Ω are
two sets and we have two maps ψ : X → X and f : X → P(Ω) such that f(ψ(x))) = Ω \ f(x)
for any x ∈ X, we say that f is a ψ-complementary map.

1.2 Posets and Lattices

A partially ordered set (abbreviated poset) is a pair P = (Ω,≤), where Ω is a set and ≤ is
a binary, reflexive, antisymmetric and transitive relation on Ω. If P = (Ω,≤) is a partially
ordered set and x, y ∈ Ω, we also write x < y if x ≤ y and x 6= y. If x, y are two distinct
elements of Ω, we say that y covers x, denoted by x l y if x ≤ y and there exists no element
z ∈ Ω such that x < z < y. Moreover, we set [x|P ↑] := {z ∈ Ω : x l z} and call covers of
x all its elements. Analogously, we set [x|P ↓] := {y ∈ Ω : y l x} and call co-covers of x its
elements. We also set L↓(P ) = {x ∈ P : |[x|P ↓]| ≤ 1} and L↑(P ) = {x ∈ P : |[x|P ↑]| ≤ 1}.
Through the covering relation, it is possible to represent the so called Hasse diagram of P (see
[18]): draw a small circle for any element of P and a segment connecting x to y whenever x
covers y. An element x ∈ Ω is called minimal in P if z ≤ x implies z = x, and in a similar way
one defines a maximal element in P . If there is an element 0̂Ω ∈ Ω such that 0̂Ω ≤ x then 0̂Ω

is unique and it is called the minimum of P . Analogously the maximum of P , usually denoted
by 1̂Ω is defined (if it exists). We call upper bound of a subset Ω of P an element y ∈ P such
that x ≤ y for any x ∈ Ω. We call least upper bound the minimum of all the upper bounds.
The notions of lower bound and greatest lower bound are dual. We call lattice a poset any two
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of whose elements has both the least upper bound that the greatest lower bound. A lattice is
complete when each of its subsets Ω has a least upper bound and greatest lower bound in the
lattice (however a finite lattice is always complete). We say that a subset I ⊆ Ω is an ideal of
the lattice P = (Ω,≤) if the following conditions holds:
(a) I 6= ∅;
(b) for any x ∈ I and y ≤ x, it follows that y ∈ I;
(c) for any x, y ∈ I there exists z ∈ I such that x ≤ z and y ≤ z.

A chain C of P is a subset C ⊂ Ω such that for all x, y ∈ C we have x ≤ y or y ≤ x.
If a chain C has n + 1 elements x0, . . . , xn such that x0 < · · · < xn, it is said that C is an
n+ 1-chain and has length n; in this case often we write C = {x0 < · · · < xn}. If Ω itself is a
chain the poset P is said linearly ordered. If P is not linearly ordered, a maximal chain of P is
a chain C of P which is not properly contained in any other chain of P .

A map f : L→ L is said:

• order-preserving if x ≤ y implies f(x) ≤ f(y);

• involution if f(f(x)) = x.

Let L be a lattice endowed with an order-preserving involution ψ : L → L such that
ψ(α) ∧ α = 0̂L and ψ(α) ∨ α = 1̂L. In this case we say that the pair (L, ψ) is a complementary
involution lattice.

Two posets P = (Ω1,≤1) and P2 = (Ω2,≤2) are said isomorphic if there exists a bijective
map φ : Ω1 → Ω2 such that x ≤1 y ⇐⇒ φ(x) ≤2 φ(y), for all x, y ∈ Ω1. The dual poset of P
is the poset P ∗ := (Ω,≤∗), where ≤∗ is the partial order on Ω defined by x ≤∗ y :⇐⇒ y ≤ x,
for all x, y ∈ Ω. A poset P is called self-dual if there exists a bijection between P and P ∗.

Let P := (Ω,≤) and P′ := (Ω′,≤′) be two posets, α, β ∈ Ω and f : Ω → Ω′ a map. We
say that f is {α, β}-preserving if the restriction map f|{α,β} : {α, β} → {f(α), f(β)} is an order
isomorphism.

A poset P = (Ω,≤) is said graded of rank l if all the maximal chains in P have length l,
and in this case l is called rank of P .

Let Fn = {x1, . . . , xn} with x1 > x2 < x3 > · · ·xn (and no other comparabilities). A poset
P = (Ω,≤) which is isomorphic to Fn or to its dual F ∗n is called a n-fence (see [77]).

Let Cn = {x1, y1, . . . , xn, yn} with x1 < y1 > x2 < y2 > x3 < · · · < yn−1 > xn < yn > x1

(and no other comparabilities). A poset P = (Ω,≤) which is isomorphic to Cn or C∗n is called
a n-crown (see [178]).

1.3 Set Partitions

A set-partition π on Ω is a collection of non-empty subsets {Bi : i ∈ I} of Ω such that Bi∩Bj = ∅
for all i 6= j and such that

⋃
i∈I Bi = Ω. The subsets Bi are called blocks of π and, if I is finite,

we write π := B1| . . . |B|I| to denote that π is a set partition having blocks B1, . . . , B|I|. If
u ∈ Ω, we denote by π(u) the block of π which contains the element u. We use the standard
notation π := B1| . . . |B|π|, where |π| is the number of distinct blocks of π. We denote by πP(Ω)
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the set of all set-partitions of Ω. It is well known that on the set π(Ω) we can consider a partial
order � defined as follows: if π, π′ ∈ π(Ω), then

π � π′ :⇐⇒ (∀B ∈ π) (∃B′ ∈ π′) : B ⊆ B′ ⇐⇒ (∀u ∈ Ω) (π(u) ⊆ π′(u)). (1.1)

We will write π ≺ π′ when π � π′ and π 6= π′. The pair (πP(Ω),�) is a complete lattice which
is called partition lattice of the set Ω.

Let π1 = A1| . . . |Am and π2 = B1| . . . |Bn be two partitions on the same finite universe Ω,
i.e., π1, π2 ∈ πP(Ω), we firstly set

Sπ1, π2 := {C ⊆ Ω : if x ∈ C, then π1(x) ⊆ C and π2(x) ⊆ C}

Then, the meet of π1 and π2, denoted by π1 ∧ π2, is the set partition of Ω whose blocks are
given by

π1 ∧ π2 := {Ai ∩Bj : i = 1, . . . m; j = 1, . . . , n}. (1.2)

On the other hand, the more simple way to describe the join of π1 and π2, denoted by π1 ∨ π2,
is the following:

π1 ∨ π2 := C1| . . . |Ck, (1.3)

where C1, . . . , Ck are the minimal elements of the set family Sπ1, π2 with respect to the
inclusion.

Example 1.3.1. Let Ω = {x1, x2, x3, x4, x5, x6}, π1 = {x1, x2}|{x3}|{x4, x5}|{x6} and π2 =
{x1, x3}|{x2}|{x4}|{x5}|{x6} be two set partitions of Ω. Then, π1 ∧ π2 is the partition

π1 ∧ π2 = {x1}|{x2}|{x3}|{x4}|{x5}|{x6}.

The family Sπ1, π2 is equal to:

Sπ1, π2 = {{x1, x2, x3}, {x1, x2, x3, x4, x5}, {x1, x2, x3, x6}, {x4, x5}, {x4, x5, x6}, {x6}}.

Therefore, the meet of π1 and π2 is the partition

π1 ∨ π2 = {x1, x2, x3}|{x4, x5}|{x6}.

1.4 Set Systems

We call an element F ∈ SS(Ω) a set system on Ω. We call a set system family F ⊆ SS(Ω) a
2-set system on Ω. If F is a 2-set system on Ω, we consider it as sub-posets of S(Ω).

A hypergraph is a pair H = (Ω,F), where Ω = {x1, . . . , xn} is a finite set (called vertex set
of H) and F = {Y1, . . . , Ym} is a non-empty family of subsets Y1, . . . , Ym of Ω. The elements
x1, . . . , xn are called vertices of H and the subsets Y1, . . . , Ym of Ω are called hyperedges of H.

If F ∈ SS(Ω) we say that:

• F has uniform cardinality if each X ∈ F has the same cardinality. We denote by ||F|| the
cardinality of each X ∈ F.
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• F is k-uniform if it is the family of all k-subsets of Ω. In this case, we denote it by
(

Ω
k

)
.

• F is union-closed if whenever F′ ⊆ F then ∪F′ ∈ F. We denote by UCL(Ω) the collection
of all union-closed set systems on Ω.

• F is chain union-closed if whenever F′ ⊆ F is a chain, then ∪F′ ∈ F.

• F is a complement-closed family if Ω ∈ F and Z ∈ F implies Zc ∈ F.

• F is an abstract simplicial complex (or simply an abstract complex) on Ω if ∅ ∈ F and
whenever Y ∈ F and Z ⊆ Y , then Z ∈ F. We denote by ASC(Ω) the 2-set system on Ω
whose elements are all abstract complexes on Ω.

• F is finitary if whenever X ∈ P(Ω) and F ∈ F for any F ⊆f X, then X ∈ F;

• a finitary abstract complex on Ω if F is a finitary set system and also an abstract complex
on Ω. We denote by FAC(Ω) the 2-set system on Ω whose elements are all finitary
abstract complexes on Ω.

• F is a closure system on Ω if Ω ∈ F and whenever F′ ⊆ F then ∩F′ ∈ F. We denote by
CLSY (Ω) the 2-set system on Ω whose elements are all closure systems on Ω.

We say that a subset Y ⊆ Ω is a transversal of a set system F ∈ SS(Ω) if Y ∩ A 6= ∅ for
each non-empty A ∈ F. Moreover, a transversal A of F is minimal if no proper subset of A
is a transversal of F. We denote by Tr(F) the family of all minimal transversals of F. We
denote by max(F) the set system of all maximal members of F and by min(F) the set system
of all minimal members of F. If A ∈ P(Ω), we set max(F|A) := max{B ∈ P(A) : B ∈ F} and
min(F|A) := min{B ∈ P(A) : B ∈ F}, so that max(F|Ω) = max(F) and min(F|Ω) = min(F).

We prove now that the 2-set system of all finitary abstract complexes on Ω is a complete
lattice.

Theorem 1.4.1. FAC(Ω) is a complete lattice such that if F = {Fi}i∈I ⊆ FAC(Ω) then∧
i∈I

Fi =
⋂
i∈I

Fi. Moreover, if I is finite we also have
∨
i∈I

Fi =
⋃
i∈I

Fi.

Proof. We firstly show that given a collection {Fi : i ∈ I} ⊆ P(Ω) of finitary abstract simplicial
complexes on Ω, then

⋂
i∈I

Fi is a finitary abstract simplicial complex on Ω. For, let X ∈ P(Ω).

Suppose that F ∈
⋂
i∈I

Fi for any F ⊆f X. Thus, F ∈ Fi for any i ∈ I and, since each set system

Fi is finitary, it results that X ∈ Fi for each index i ∈ I. We conclude that X ∈
⋂
i∈I

Fi, i.e.⋂
i∈I

Fi is finitary.

On the other hand, we clearly have that ∅ ∈
⋂
i∈I

Fi. Furthermore, let Y ∈
⋂
i∈I

Fi and Z ⊆ Y .

Since Y ∈ Fi for any i ∈ I, we conclude that Z ∈ Fi for each index i ∈ I, so Z ∈
⋂
i∈I

Fi. This

shows that
⋂
i∈I

Fi is also an abstract simplicial complex, thus the claim has been shown.

Let F be such that F ⊆ Fi for any i ∈ I. Then, F ⊆
⋂
i∈I

Fi, so
∧
i∈I

Fi =
⋂
i∈I

Fi.
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We now show the existence of the join for an arbitrary collection {Fi : i ∈ I} ⊆ P(Ω). Since
P(Ω) ∈ FAC(Ω), the family of all upper bounds U of {Fi : i ∈ I} is non-empty. Let us take⋂

U. By the previous part, it is a finitary abstract simplicial complex on Ω; clearly, it belongs
to U and is minimal in U. This proves that

∨
i∈I

Fi =
⋂
U.

To conclude the proof, we note that the arbitrary union of abstract complexes is also an abstract
complex.
On the other hand, given a finite collection {F1, . . . ,Fn} of finitary abstract simplicial complexes

on Ω, we have that
n⋃
i=1

Fi is finitary. In fact, let X ∈ P(Ω) such that F ∈
n⋃
i=1

Fi for any F ⊆f X.

Assume by contradiction that X /∈
n⋃
i=1

Fi. Then, there exists Fi ⊆f X such that Fi /∈ Fi for any

i = 1, . . . , n. Let us take F :=
n⋃
i=1

Fi. Thus, F ⊆f X, so there exists j ∈ {1, . . . , n} such that

F ∈ Fj and, in particular, Fj ∈ Fj , contradicting our choice of Fj . This shows our claim.

Remark 1.4.2. When I is not a finite set, it turns out to be false in general that
⋃
i∈I

Fi is a

finitary abstract complex on Ω. As an example, just consider the 2-set system F = {Fi : i ∈ I},
where Fi = {F : F ⊆≤i Ω} ∪ ∅}.

1.5 Set Operators

A set operator on Ω is a map σ : P(Ω) → P(Ω). We denote by OP (Ω) the set of all the set
operators on Ω and we consider on OP (Ω) the partial order v defined by

σ v σ′ :⇐⇒ σ(X) ⊆ σ′(X) ∀X ∈ P(Ω), (1.4)

for any σ, σ′ ∈ OP (Ω).
We will consider the maps Fix : OP (Ω) → SS(Ω) and Int,Drk, Imx : SS(Ω) → OP (Ω)

defined respectively by
Fix(σ) := {A ∈ P(Ω) : A ∈ P(Ω)},

IntF(C) :=
⋂
{A ∈ F : C ⊆ A},

DrkF(C) := {b ∈ Ω : rkF(C ∪ {b}) = rkF(C)},

ImxF(C) :=
⋂
{A ∈ max(F|C)},

for any σ ∈ OP (Ω), F ∈ SS(Ω), C ∈ P(Ω).
We call fixed points of σ the members of Fix(σ), intersecting operator of F the set operator

IntF, rank-symmetry operator of F the set operator DrkF and intersecting maximal operator
of F the set operator ImxF.

We consider now the operator Θ : OP (Ω)→ SS(Ω) defined by

Θ(σ) := {X ∈ P(Ω) : A $ X =⇒ X * σ(A)}, (1.5)

for any σ ∈ OP (Ω). We call Θ the minimality operator on Ω. The following result easily
follows.
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Proposition 1.5.1. (i) (OP (Ω),v) is a complete lattice. In particular, given {σi :∈ I} ⊆
OP (Ω), it results that

∨
i∈I

σi = σ+ and
∧
i∈I

σi = σ−, where, respectively, σ+(X) :=
⋃
i∈I

σi(X)

and σ−(X) :=
⋂
i∈I

σi(X) for any X ∈ P(Ω).

(ii) If σ, σ′ ∈ OP (Ω) and σ v σ′ then Θ(σ) ⊇ Θ(σ′).
(iii) Let D,D′ ⊆ P(P(Ω)× Ω) such that D ⊆ D′. Then, σD v σ′D.

Let σ ∈ OP (Ω). We say that:

• σ is extensive if X ⊆ σ(X);

• σ is intensive if σ(X) ⊆ X;

• σ is monotone if X ⊆ Y implies σ(X) ⊆ σ(Y );

• σ is a pre-closure operator on Ω if it is extensive and monotone;

• σ is idempotent if σ(σ(X)) = X;

• σ is a closure operator on Ω if it an idempotent pre-closure operator. We denote by
CLOP (Ω) the set of all closure operators on Ω;

• σ is a kernel operator [86] if it is an intensive, monotone and idempotent set operator;

• σ is pseudo-monotone if, whenever A ⊆ B, then A ∩ σ(B) ⊆ σ(A);

• σ is a simplicial operator if it is intensive and pseudo-monotone. We denote by SOP (Ω)
the family of all simplicial operators on Ω;

• σ is quasi-regular if b ∈ Ω\ (A∪σ(A∪{b})) and c ∈ σ(A∪{c})\A, then c ∈ σ(A∪{b, c});

• σ is a core operator if it is a simplicial quasi-regular operator. We denote by COOP (Ω)
the family of all core operators on Ω;

• σ is finitary, if σ(X) =
⋃
{σ(Y ) : Y ⊆f X};

• σ is a weak MacLane-Steinitz operator (briefly σ is WMLS), if for any A ∈ Θ(σ) and any
x, y ∈ Ω such that x ∈ σ(A ∪ {y}) \ σ(A), we have that y ∈ σ(A ∪ {x});

• σ is a MacLane-Steinitz operator (briefly σ is WMLS), if for any A ∈ P(Ω) and any
x, y ∈ Ω such that x ∈ σ(A ∪ {y}) \ σ(A), we have that y ∈ σ(A ∪ {x}).

When the set operator σ is extensive, we have that Θ(σ) is an abstract simplicial complex.

Proposition 1.5.2. If σ ∈ OP (Ω) is extensive, then Θ(σ) ∈ ASC(Ω).

Proof. Clearly, ∅ ∈ Θ(σ). Let X ∈ Θ(σ) and Y ⊆ X. If were Y /∈ Θ(σ), there would be some
y ∈ Y belonging to σ(Y \ {y}). In particular, by extensiveness, it must be y ∈ σ(X \ {y}),
contradicting the fact that X ∈ Θ(σ).
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In the following result we establish the basic links between abstract simplicial complexes
and simplicial operators.

Theorem 1.5.3. Let σ ∈ SOP (Ω) and F ∈ ASC(Ω). Then, the following hold:

(i) Fix(σ) ∈ ASC(Ω);

(ii) Fix(ImxF) = F;

(iii) if F ∈ ASC(Ω) ∩ UCL(Ω), then ImxF ∈ SOP (Ω) and ImxF is idempotent.

Proof. (i) : Clearly, ∅ ∈ Fix(σ). On the other hand, let B ∈ Fix(σ) and A ⊆ B. By
intensivity, it follows that σ(A) ⊆ A. On the other hand, by pseudo-monotonicity it follows
that σ(A) ⊇ σ(B) ∩A = B ∩A = A, so A = σ(A), i.e. A ∈ Fix(σ).
(ii) : Just observe that ImxF(A) = A if and only if A ∈ F.
(iii) : Clearly, ImxF(A) ⊆ A for any A ∈ P(Ω). Assume now that A ⊆ B and let x ∈
A ∩ ImxF(B). Then, x ∈ A ∩ C for any C ∈ max(F|B). Let us prove that there exists
D ∈ max(F|A) such that x ∈ D. For, consider the set system G := {Z ∈ F : A ∩C ⊆ D ⊆ A}.
It is clearly non-empty, since A∩C ∈ G. Take a chain {Zi : i ∈ I} ⊆ G e consider Z :=

⋃
i∈I Zi.

By the fact that F is union-closed, it follows that Z ∈ F. Moreover, it is obvious that A∩C ⊆
Z ⊆ A. Hence, we can apply Zorn’s Lemma and prove that there exists an element D ∈ maxG.
Finally, it is also clear that x ∈ D and it is straightforward to see that D ∈ max(F|A).
We now show that x ∈ E for any E ∈ max(F|A). To this regard, assume by contradiction
the existence of some E′ ∈ max(F|A) for which x /∈ E′. Let us prove that E′ ⊆ C ′ for some
C ′ ∈ max(F|B). To this regard, set G′ := {Y ∈ F : E′ ⊆ Y ⊆ B}. It is clearly non-empty
since E′ ∈ G′. So, take a chain {Yi : i ∈ I} ⊆ G′ and set Y :=

⋃
i∈I Yi. It is immediate to see

that E′ ⊆ Y ⊆ B and Y ∈ F. By Zorn’s Lemma, G′ admits a maximal element C ′, that clearly
belongs to max(F|B).
Now, we have that x /∈ C ′, otherwise C ′ ∩ A % E′ and C ′ ∩ A ∈ max(F|A), contradicting the
maximality of E′. But x must belong to each subset of max(F|B), so we reach to an absurd.
This proves pseudo-monotonicity.
Finally, in order to prove that ImxF is idempotent, just observe that ImxF(A) ∈ F so, by
previous part (ii), we have ImxF(ImxF(A)) = ImxF(A)

Remark 1.5.4. It is easy to show that (iii) of Theorem 1.5.3 holds when Ω is a finite set,
without assuming that F ∈ UCL(Ω).

We now provide a characterization for Θ(σ) when σ ∈ CLOP (Ω).

Proposition 1.5.5. Let σ ∈ CLOP (Ω). Then:

Θ(σ) = {A ∈ P(Ω) : x /∈ σ(A \ {x}) ∀x ∈ A}. (1.6)

Proof. Let A ∈ Θ(σ) and x ∈ A. Then, A \ {x} ⊆ A, therefore σ(A \ {x}) ⊆ σ(A). If
x ∈ σ(A \ {x}), we would have A ⊆ σ(A \ {x}), i.e. σ(A) = σ(A \ {x}), that is a contradiction.
Vice versa, let A ∈ P(Ω) such that x /∈ σ(A \ {x}) for any x ∈ A. Let B ⊆ A \ {x} $ A for
some x ∈ A. This obviously implies that x /∈ σ(B), i.e. σ(A) * σ(B).
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In the next result, we characterize the condition for a closure operator to be WMLS.

Theorem 1.5.6. Let σ ∈ CLOP (Ω). The following conditions are equivalent:

(i) σ is WMLS;

(ii) if X ∈ P(Ω), y ∈ Ω and x ∈ σ(X ∪ {y}) \ σ(X) are such that X ∪ {y} ∈ Θ(σ), then
y ∈ σ(X ∪ {x});

(iii) for any X ∈ Θ(σ) and any x ∈ Ω \ σ(X), X ∪ {x} ∈ Θ(σ);

(iv) if X ∈ P(Ω) and Y ∈ max(Θ(σ)|X), then σ(Y ) = σ(X).

Proof. (i) =⇒ (ii): Let X ∈ P(Ω), y ∈ Ω and x ∈ σ(X ∪ {y}) \ σ(X) be such that
X ∪ {y} ∈ Θ(σ). By Proposition 1.5.2, X ∈ Θ(Ω), therefore by the fact that σ is WMLS, it
follows that y ∈ σ(X ∪ {x}).
(ii) =⇒ (iii): Let X ∈ Θ(σ), x ∈ Ω\σ(X) and assume by contradiction that X ∪{x} /∈ Θ(σ).
So, there exists z ∈ X such that z ∈ σ(X ∪ {x} \ {z}) \ σ(X \ {z}) but, by our assumptions,
this implies x ∈ σ(X), that is a contradiction. Hence, X ∪ {x} ∈ Θ(σ).
(iii) =⇒ (iv) Let X ∈ P(Ω) and Y ∈ max(Θ(σ)|X). Since σ ∈ CLOP (Ω), we need only to
prove that σ(Y ) ⊆ σ(X). To this regard, if x ∈ σ(X) \ σ(Y ), by our assumptions, it would be
Y ∪ {x} ∈ Θ(σ), contradicting maximality of Y .
(iv) =⇒ (i): Let A ∈ Θ(σ) and x, y ∈ Ω with x ∈ σ(A ∪ {y}) \ σ(A). It must necessarily be
A∪{x} ∈ Θ(σ) otherwise, σ(A) = σ(A∪{x}), contradicting the choice of x. On the other hand,
A ∪ {x} ∪ {y} /∈ Θ(σ), since x ∈ σ(A ∪ {y}). This entails that σ(A ∪ {x} ∪ {y}) = σ(A ∪ {x}),
i.e. y ∈ A ∪ {x}.

If F ∈ CLSY (Ω), the map σF : P(Ω)→ P(Ω) defined by

C ∈ P(Ω) 7→ σF(C) :=
⋂
{A ∈ F : C ⊆ A} ∈ P(Ω). (1.7)

is a closure operator on Ω. Moreover, if σ ∈ CLOP (Ω), the set system on Ω defined by

Fσ := {A ∈ P(Ω) : σ(A) = A}. (1.8)

is a closure system on Ω.

Theorem 1.5.7. The maps F ∈ CLSY (Ω) 7→ σF ∈ CLOP (Ω) and σ ∈ CLOP (Ω) 7→ Fσ ∈
CLSY (Ω) are inverses each other. In other terms, if F ∈ CLSY (Ω) and σ ∈ CLOP (Ω)
then FσF = F and σFσ = σ. Moreover, if F ∈ CLSY (Ω), then it is a complete lattice under
set-inclusion in which meet means intersection.

Proof. See [18].

By Theorem 1.5.7, we can consider equivalent the notions of closure system and closure
operator on the same set Ω (clearly this equivalence is described by means of (1.7) and (1.8)).
Therefore, for any closure system F ∈ CLSY (Ω), we always associate with F the corresponding
closure operator σF ∈ CLOP (Ω), and vice versa.
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Let A,B,C,D ∈ P(Ω). We say that A ∈ P(Ω) is σ-complemented if {A,Ω \ A} ⊆ Fσ.
Moreover, if {A,B} ⊆ Fσ and {A,B} is a covering on Ω, we say that {A,B} is a σ-covering
on Ω. If C ∩D = ∅ and {A,B} is a covering on Ω, we say that {C,D} splits {A,B}, denoted
by {C,D} o {A,B}, if C ∩ B = ∅ = D ∩ A. Furthermore, we say that {C,D} σ-splits {A,B},
denoted by {C,D} oσ {A,B}, if {C,D} o {A,B} and {A,B} ⊆ Fσ.

1.6 Matroids on Finite Sets

For general results on matroids, see [182]. In what follows, we provide the main results on
matroid theory that we use in the thesis.

Definition 1.6.1. Let Ω be a finite set. We say that a set system F ∈ SS(Ω) is a matroid on
Ω if:

(M1) F ∈ AC(Ω);

(M2) for any U, V ∈ F such that |U | = |V |+1, then there exists x ∈ U \V such that V ∪{x} ∈ F.

In this case, we call independent set any element of F. We denote by MATR(Ω) the set of all
matroids on Ω.

In the next result, the condition for a set system F is a matroid will be characterized in
terms of rank function.

Theorem 1.6.2. A map ρ : P(Ω) → N is the rank function of a matroid on Ω if and only if
for any A,B ∈ P(Ω), a, b ∈ Ω, it results that:

(Rk1) ρ(∅) = 0;

(Rk2) if A ⊆ B, then ρ(A) ≤ ρ(B);

(Rk3) if ρ(A ∪ {a}) = ρ(A ∪ {b}) = ρ(A), then ρ(A ∪ {a} ∪ {b}) = ρ(A).

In this case, the corresponding matroid is F = {A ∈ P(Ω) : ρ(A) = |A|}.

If F ∈MATR(Ω) and A ∈ P(Ω), an element B ∈ max(F|A) is usually called an A-basis of
F. In particular, an element B ∈ max(F) is called a basis of F.

In the next result, the condition for a subset family F is a matroid will be characterized in
terms of basis family.

Theorem 1.6.3. A non-empty set system B ∈ SS(Ω) is the basis family of a matroid on Ω if
and only if the following holds:

(B1) if B1, B2 ∈ B and x ∈ B1 \B2, there exists y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.

In this case, the corresponding matroid is F = {A ∈ P(Ω) : A ∈
⋃
B∈B

P(B)}.

Finally, we recall the following classical results concerning two further different characteri-
zations of matroid.
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Theorem 1.6.4. A set system F ∈ SS(Ω) is a matroid on Ω if and only if max(F|A) has
uniform cardinality for any A ∈ P(Ω).

Theorem 1.6.5. A set operator σ ∈ OP (Ω) is the rank-symmetry operator of a matroid on
Ω if and only if σ is a MLS closure operator on Ω. In this case, the corresponding matroid is
F = {A ∈ P(Ω) : a /∈ σ(A \ {a}) ∀a ∈ A}.

1.7 Graphs

We refer to [79] for any general notion concerning graph theory. Let G = (V (G), E(G)) be a
finite simple (i.e. no loops and no multiple edges are allowed) undirected graph, with vertex
set V (G) = {v1, . . . , vn} and edge set E(G). In this case, we also use the term n-graph. If
v, v′ ∈ V (G), we will write v ∼ v′ if {v, v′} ∈ E(G) and v � v′ otherwise. We denote by Adj(G)
the usual adjacency matrix of G.

We call neighborhood of v in G the set NG(v) := {w ∈ V (G) : v ∼ w}. In particular, if
A ⊆ V (G) we call neighborhood of A in G the set

NG(A) :=
⋃
v∈A

NG(v) (1.9)

We say that H = (V (H), E(H)) is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
If X ⊆ V (G), the generated subgraph by X in G, denoted by G[X], is the graph having X as
vertex set and such that if v and v′ are two distinct vertices in X, then {v, v′} ∈ E(G[X]) if and
only if {v, v′} ∈ E(G). If G1 and G2 are two graphs such that with V (G1)∩V (G2) = ∅, we call
disjoint union of G1 and G2, denoted by G1 +G2, the graph having vertex set V (G1)∪ V (G2)
and edge set E(G1) ∪ E(G2).

If v and w are two vertices of G, we call a sequence of vertices v0 . . . vk, where v0 = v and
v1 = w, a path between v and w. The number of edges of the path between v and w is called
the length of the path. We denote by d(v, w) the distance between v and w, i.e. the length of
any shortest path between v and w. The girth of G is the minimum length of a cycle contained
in G. A graph is said connected if there exists a path for any pair of vertices v and w. If v is
a vertex, we call the maximal connected subgraph of G containing v the connected component
of v in G. Each maximal connected subgraph of G is said connected component of G. An
automorphism φ of G is a bijective map φ : V (G) → V (G) such that for all v, v′ ∈ V (G) it
results that

{v, v′} ∈ E(G)⇐⇒ {φ(v), φ(v′)} ∈ E(G).

The set of all automorphisms of G is a group with respect to the composition of maps and it is
usually denoted by Aut(G). The graph G is said vertex-transitive if Aut(G) acts transitively on
the set of vertices V (G), i.e. for all v, v′ ∈ V (G) there exists φ ∈ Aut(G) such that φ(v) = v′.
The graph G is said edge-transitive if Aut(G) acts transitively on the set of edges E(G), i.e. for
all {v, w}, {v′, w′} ∈ E(G) there exists φ ∈ Aut(G) such that φ({v, w}) = {v′, w′}. The graph
G is said k-transitive if for any two ordered k−tuples of vertices (v1, . . . , vk) and (w1, . . . , wk)
such that d(vi, vj) = d(wi, wj) for all i, j ∈ {1, . . . , k}, there exists φ ∈ Aut(G) such that
φ(vi) = wi for every i ∈ {1, . . . , k}.

We give now a list of the graphs we use in the sequel:
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• n-null graph. It is denoted by Nn and is the n-graph without edges;

• Complete graph on n vertices. It is denoted by Kn and is the graph such that {vi, vj} is
an edge, for each pair of indexes i 6= j;

• (r1, . . . , rs)−complete multipartite graph on n vertices. It is denoted by Kr1,...,rs , where
r1 + · · ·+ rs = n and there exist s non-empty subsets B1, . . . , Bs of V (G) such that

(i) |Bi| = ri;

(ii) Bi ∩Bj = ∅ if i 6= j;

(iii)
s⋃
i=1

Bi = V (G);

(iv) E(G) = {{x, y} : x ∈ Bi, y ∈ Bj , i 6= j}.

In this case, we also denote Kr1,...,rs by the symbol (B1| . . . |Bs). Moreover, if s = 2, we
say that Kr1,r2 is a complete bipartite graph;

• n-path. It is denoted by Pn and has edge set E(Pn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn};

• n-cycle. It is denoted by Cn and has edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}.
In the sequel, all sums between vertex indexes of Cn are implicitly taken mod(n);

• n-wheel is denoted byWn+1 and has edge set E(Wn+1) = E(Cn)∪{{vi, vn+1} : 1 ≤ i ≤ n};

• n
2 -sticks. It is denoted by Fn, where n ≥ 4 is even and E(Fn) = {{vi, vi+1} : i =
1, 3, . . . , n− 1}.

Let G and H be two graphs and let V := V (G)× V (H).

• The Cartesian product of G and H is the graph G2H on V whose edge set is

E(G2H) := {{(u, u′), (v, v′)} : (u = v ∧ u′ ∼ v′) ∨ (u′ = v′ ∧ u ∼ v)}.

• The tensor product of G and H is the graph G ⊗ H whose vertex set is V (G ⊗ H) :=
V (G)× V (H) and whose edge set is

E(G⊗H) := {{(u, u′), (v, v′)} : u ∼ v ∧ u′ ∼ v′)}.

Let us note that if (u, u′) ∈ V (G)× V (H) then

NG2H(u, u′) = ({u} ×NH(u′)) ∪ (NG(u)× {u′})

and
NG⊗H(u, u′) = NG(u)×NH(u′).

Some well studied Cartesian product graph families are the following:

• Let m ≥ 2 and n ≥ 3. The (m,n)-prism graph is the Cartesian product Pm2Cn.

• Let m, n ≥ 2. The (m,n)-grid graph is the Cartesian product Pm2Pn.

• Let m, n ≥ 3. The (m,n)-rook’s graph is the Cartesian product Km2Kn.

11



1.8 Digraphs

A digraph (see [14]) is a pair D = (V (D), Arc(D)), where V (D) = {v1, . . . , vn} and Arc(D) =
{e1, . . . , em} are both finite sets. The elements of V (D) are called vertices of D and the elements
of Arc(D) are called arcs of D. If the ordered pair (v, w) is an arc of D we also write v → w.
If v ∈ V (D), we set

N+
D (v) := {z ∈ V (D) : (v, z) ∈ Arc(D)}. (1.10)

Usually N+
D (v) is called the out-neighborhood of v in D. We say that a vertex v ∈ V (D) is an

initial node of D if N−D (v) = ∅. We denote by I(D) the set of all initial nodes of D. A path P
in D is an alternating sequence v1e1 . . . vkek, where v1, . . . , vk ∈ V (D) are distinct vertices and
e1, . . . , ek ∈ A(D) are distinct arcs. If v1 = vk, we say that P is a cycle. A digraph is called
acyclic if it has no cycles. It is easy to prove that if a digraph is acyclic, then I(D) 6= ∅.

Particular digraphs we will study are:

• Complete bipartite digraph. If p and q be are two positive integers, we denote by ~Kp,q

the digraph having vertex set V ( ~Kp,q) = {x1, . . . , xp, y1, . . . , yq} and arc set Arc( ~Kp,q) =

{(xi, yj) : i = 1, . . . , p, j = 1, . . . , q}. We call ~Kp,q the (p, q)-complete bipartite digraph,
or, simply complete bipartite digraph if p and q are clear from the context.

• Direct path. If n is a positive integer, we denote by ~Pn the direct path on n vertices , i.e.
the digraph having arc set Arc( ~Pn) = {(vi, vi+1) : i = 1, . . . , n− 1}.

• Direct cycle. Let n ≥ 2 we denote by ~Cn the direct cycle on n vertices , i.e. the digraph
having arc set Arc( ~Cn) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}.

• Tournament. A tournament is a digraph ~T obtained by assigning a direction to each edge
in an undirected complete graph.

• Transitive tournament. A n-transitive tournament is a tournament ~T on n vertices such
that, if (vi, vj) and (vj , vk) are in Arc(~T ), then (vi, vk) ∈ Arc(~T ).

Remark 1.8.1. It is easy to verify that all n-transitive tournaments are isomorphic to the
tournament ~Tn such that

V ( ~Tn) = {v1, . . . , vn}, Arc( ~Tn) = {(vi, vj) : 1 ≤ i ≤ n− 1, j = i+ 1, . . . , n}.

Therefore in the sequel we refer to the above ~Tn when we use the term n-transitive tournament.

1.9 Formal Concept Analysis

We start recalling the general definition of formal contexts and their basic properties (for details
see [87]).

Definition 1.9.1. A formal context is a triple K = (Z,M,R), where Z and M are sets and
R ⊆ Z×M is the binary relation involving them. The elements of Z and M are called objects
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and attributes (or properties) respectively. We write gRm instead of (g,m) ∈ R. If O ⊆ Z
and Q ⊆M , we set

O↑ := {m ∈M : (∀g ∈ O) gRm} ⊆M

and
Q↓ := {g ∈ Z : (∀m ∈ Q) gRm} ⊆ Z.

In this way the following two mappings are defined: ↑ : P(Z) → P(M), O 7→ O↑ and
↓ : P(M)→ P(Z), Q 7→ Q↓.

By suitable compositions of the above two mappings we are able to construct the two
new mappings ∗ : P(Z) → P(Z), O 7→ O∗ := O↑↓, which is a transformation on P(Z), and
� : P(M)→ P(M), Q 7→ Q� := Q↓↑, which is a transformation on P(M).

Definition 1.9.2. A formal concept of the formal context K = (Z,M,R) is a pair (O,Q),
where O ⊆ Z, Q ⊆ M , O↑ = Q and Q↓ = O. If (O,Q) is a formal concept, O is called extent
of (O,Q) and Q is called intent of (O,Q). We denote by B(K) the set of all formal concepts
of the formal context K.

Remark 1.9.3. If O ⊆ Z, it is immediate to verify that :
(i) O ⊆ O∗.
(ii) The ordered pair (O,O↑) is a formal concept of K if and only if O = O∗.
(iii) The ordered pair (O,O↑) is a formal concept of K if and only if there exists an attribute
subset Q ⊆ M such that O = Q↓. In this case O↑ coincides with the largest attribute subset
Q such that O = Q↓.
(iv) Obviously similar conditions to previous the (i), (ii) and (iii) also hold for the intent case.

Definition 1.9.4. Let K = (Z,M,R) be a Formal Context. We call extent set system of
K the set system E(K) := (Z,EXT (K)), where EXT (K) is the family of all extents of K.
Analogously, we call intent set system of K the set system I(K) := (M, INT (K)), where
INT (K) is the family of all intents of K.

If (O1, Q1) and (O2, Q2) are two concepts in B(K), it is usual to consider the relation
(O1, Q1) v (O2, Q2) if and only if O1 ⊆ O2 (that is equivalent to Q1 ⊇ Q2). Then, v is a
partial order on B(K) and (B(K),v) is a complete lattice, called concept lattice (or also Galois
lattice) of the formal context K, whose meet and join operations on an arbitrary family of
formal concepts {(Oα, Qα) : α ∈ A} are the following:∧

α∈A
(Oα, Qα) =

(⋂
α∈A

Oα, (
⋃
α∈A

Qα)�
)

∨
α∈A

(Oα, Qα) =
(

(
⋃
α∈A

Oα)∗,
⋂
α∈A

Qα

) (1.11)

Proposition 1.9.5. Both the set systems E(K) and I(K) are closure systems.

Proof. It follows directly by the two identities (1.11).
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Chapter 2

Pairings and Symmetry Relations

In this chapter, we provide some basic examples in which pairings arise in a natural way. Fur-
thermore, we study the main properties of the A-symmetry relation and of the indistinguishabil-
ity relation. In particular, we will prove that each global symmetry class [A]≈P

is union-closed,
so it admits a maximum, that we call maximum partitioner. The family of the maximum par-
titioners is a closure system on Ω and the set operator MP : A ∈ P(Ω) 7→ MP(A) ∈ P(Ω) is
a closure operator characterizing the pairing itself and satisfying many interesting topological
properties. Finally, we also consider the family of all minimal elements of each global symmetry
class and prove that it is an abstract simplicial complex on Ω.

2.1 Pairings

Let us consider an arbitrary set Ω (finite of infinite).

Definition 2.1.1. A pairing on Ω is a triple P = (U,F,Λ), where U , Λ are non-empty sets and
F : U × Ω→ Λ is a map having domain U × Ω and codomain Λ. We denote by PAIR(Ω) the
set of all pairings on Ω. When both the sets U = {u1, . . . , um} and Ω = {a1, . . . , an} are finite,
we say that P is a finite pairing. For a finite pairing, we denote by T [P] the m×n rectangular
table having on the i-th row the element ui, on the j-th column the element aj and F (ui, aj)
in the place (i, j). In the finite case, we identify P with T [P] and call T [P] the functional table
of P.

In the whole thesis, when Ω is finite, we always restrict our attention on finite pairings and
use the notation PAIR(Ω) in order to denote the aforementioned family.
Let P = (U,F,Λ) ∈ PAIR(Ω) and A,A′ ∈ P(Ω). For any u, u′ ∈ U we set

u ≡A u′ :⇐⇒ F (u, a) = F (u′, a), ∀a ∈ A. (2.1)

It is immediate to show that ≡A is an equivalence relation on U and we call it the A-
symmetry relation of P. For any u ∈ U we denote by [u]A the equivalence class of u with
respect to ≡A and we call [u]A the A-symmetry class of u. Finally, we call the set partition
πP(A) := {[u]A : u ∈ U} induced by ≡A on U the A-symmetry partition of P.
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We provide here some examples taken by various mathematical context within the notion
of pairing arises in a natural way. In the examples we consider in the sequel, we omit the
subscript P in all the notations when the context is clear.

2.1.1 Pairings by Graphs

Let G be a n-graph. We now consider the pairing P[G] := (V (G), F, {0, 1}) ∈ PAIR(V (G)),
where

F (u, v) :=

{
1 if u ∼ v
0 otherwise

Hereafter, we write G instead of P[G]. Let A ⊆ V (G) a vertex subset. It is easy to prove that
the A-symmetry relation ≡A can be translated as follows:

v ≡A v′ :⇐⇒ NG(v) ∩A = NG(v′) ∩A (2.2)

We now prove some basic property of A-symmetry for graphs.

Proposition 2.1.2. Let v, v′ ∈ G and A ⊆ V (G). Then:
(i) v ≡A v′ if and only if for all z ∈ A it results that v ∼ z if and only if v′ ∼ z.
(ii) If v ∼ v′ then v 6≡A v′ or {v, v′} ∩A = ∅.
(iii) If v ≡A v′ and {v, v′} ∩A 6= ∅, then v � v′.

Proof. (i): It follows immediately by (2.2).
(ii): We suppose that v ∼ v′ and v ≡A v′. We must show that {v, v′} ∩A = ∅. We suppose by
contradiction that {v, v′} ∩ A 6= ∅. Without loss of generality, we can assume v ∈ A. Hence,
we deduce that F (v, v) = F (v′, v), but F (v, v) = 0 since there are no loops in G while by our
assumption F (v′, v) = 1. So the equality F (v, v) = F (v′, v) does not hold, that is an absurd.
The case v′ ∈ A is analogous.
On the other hand, a similar argument shows that if v ∼ v′ and {v, v′} ∩ A 6= ∅ then v 6≡A v′.
In fact we just observe that if v ∈ A, then F (v, v) 6= F (v′, v), hence we conclude by (2.2). This
proves (ii).
(iii): It is the contra-nominal version of (ii).

We now explain formally why the equivalence relation ≡A is actually a symmetry relation
with respect to the vertex subset A. Let A ⊆ V (G) and let v, v′ be two distinct vertices of G.
We set X := A ∪ {v, v′} and we define a map φAv,v′ : X → X as follows: if x ∈ X then

φAv,v′(x) :=


x if x ∈ A \ {v, v′}
v′ if x = v
v if x = v′.

(2.3)

Proposition 2.1.3. With the above notations, if v � v′ or A ∩ {v, v′} = ∅, then

v ≡A v′ ⇐⇒ φAv,v′ ∈ Aut(G[X]).
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Proof. We set ψ := φAv,v′ . Firstly we assume that v ≡A v′. In order to prove that ψ ∈ Aut(G[X])
we observe, by (2.3), that the map ψ is bijective. Therefore we only need to show that for all
x, y ∈ X it results that

x ∼ y ⇐⇒ ψ(x) ∼ ψ(y). (2.4)

Let x, y ∈ X. Let us note that if x, y ∈ A \ {v, v′} by (2.3) we have ψ(x) = x and ψ(y) = y,
therefore (2.4) is satisfied. We can assume then that {x, y} ∩ {v, v′} 6= ∅. We distinguish two
cases. Firstly, let us suppose that x ∈ {v, v′} and y /∈ {v, v′} (the condition x /∈ {v, v′} and
y ∈ {v, v′} is similar. In this case we can assume without loss of generality that x = v. Since
y ∈ X and y /∈ {v, v′}, it follows that y ∈ A. By (i) of Proposition 2.1.2 we obtain that

v ∼ y ⇐⇒ v′ ∼ y. (2.5)

On the other hand, since y 6= v and y 6= v′, by (2.3) we deduce that ψ(y) = y, and this implies
that (2.5) is equivalent to (2.4). The other case that we have to examine is {x, y} = {v, v′}. We
can assume without loss of generality that x = v and y = v′. By (2.3) it follows that ψ(x) = y
and ψ(y) = x, and due to the symmetry of the relation ∼ we obtain (2.4).
We suppose now that ψ ∈ Aut(G[X]) and we prove that for all z ∈ A it results

z ∼ v ⇐⇒ z ∼ v′. (2.6)

By (i) of Proposition 2.1.2, the equation (2.6) is equivalent to show that v ≡A v′. Let therefore
z ∈ A. Firstly we assume that z /∈ {v, v′}. By (2.3) we have then ψ(z) = z. From this last
identity and since ψ ∈ Aut(G[X]) we deduce that

v ∼ z ⇐⇒ ψ(v) ∼ ψ(z)⇐⇒ v′ ∼ z,

that is exactly (2.6). Now, if A ∩ {v, v′} = ∅, since z ∈ A, it cannot be z ∈ {v, v′}. Hence,
if A ∩ {v, v′} = ∅ the proof is completed. We can suppose then that v � v′ and z ∈ {v, v′}.
Without loss of generality we can assume that z = v. Since G is a simple graph, (z = v) � v,
and by hypothesis (z = v) � v′, hence (2.6) is satisfied. This complete the proof.

Corollary 2.1.4. In the same hypotheses of the previous theorem, if v ≡A v′ then |Aut(G[X])| >
1. Thus, the graph G[X] is symmetric in the Erdös-Rényi terminology [83].

The result described in Proposition 2.1.3 tells us that the relation ≡A can be considered as
a type of symmetry relation with respect to the fixed vertex subset A. In other terms, we can
think the blocks of the set partition πG(A) as if they were symmetry blocks with respect to A.

2.1.2 Pairings by Digraphs

To any digraph D we can associate the pairing P[D] := (V (D), F, {0, 1}) ∈ PAIR(Ω) where
F (vi, vj) := 1 if vi → vj and F (vi, vj) := 0 otherwise. Hereafter, we write D instead of P[D].

We now provide a basic property of A-symmetry for digraphs.

Theorem 2.1.5. Let A ⊆ V (D) and v, v′ ∈ V (D). The following conditions are equivalent:
(i) v ≡A v′.
(ii) For all z ∈ A it results that v → z if and only if v′ → z.
(iii) N+

D (v) ∩A = N+
D (v′) ∩A.
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Proof. (i) =⇒ (ii): Let z ∈ A and v → z, we show that v′ → z. By (i) we have that
FD(v, a) = FD(v′, a) for all a ∈ A, therefore FD(v, z) = FD(v′, z). Since v → z it follows that
FD(v, z) = 1, and hence also FD(v′, z) = 1, that is v′ → z. By symmetry of the relation ≡A, if
we assume that v′ → z, we obtain v → z. This proves (ii)
(ii) =⇒ (iii): By symmetry of the condition (ii), it is sufficient to prove that N+

D (v) ∩ A ⊆
N+
D (v′) ∩ A. Let therefore z ∈ N+

D (v) ∩ A, then v → z and z ∈ A. By (ii) we have then that
v′ → z, that is z ∈ N+

D (v′). Hence z ∈ N+
D (v′) ∩A.

(iii) =⇒ (i): We must show that FD(v, a) = FD(v′, a) for all a ∈ A. Let a ∈ A such that
FD(v, a) = 1. Then v → a, i.e. a ∈ A ∩N+

D (v). Since by hypothesis N+
D (v) ∩A = N+

D (v′) ∩A,
we have v′ → a, i.e. FD(v′, a) = 1. On the other hand, let a ∈ A such that FD(v, a) = 0.
This means that v 6→ a, i.e. a /∈ A ∩N+

D (v). Therefore, a /∈ N+
D (v′) ∩ A and thus v′ 6→ a, i.e.

FD(v′, a) = 0.

Thus, if v ∈ V (D), it results by Theorem 2.1.5 that v′ ∈ [v]A if and only if v and v′ “out-see”
all the vertices z ∈ A in the same way, that is, v → z if and only if v′ → z for all z ∈ A. So
that an A-symmetry class for the pairing P is exactly a vertex subset of V (D) whose vertices
have all the same out-adjacency relation with respect all vertices in A. Therefore, if we fix a
vertex subset A of V (D), we can interpret A as if it were a type of symmetry block against
which to examine the out behavior of all vertices in D.

2.1.3 Pairings by Hypergraphs

Let us start by defining a pairing from a hypergraph.

Definition 2.1.6. Let H be a hypergraph on a set Ω = {x1, . . . , xn}, with hyperedges
Y1, . . . , Ym. We associate with H the pairing Γ(H) on Ω defined as follows. The object set of
Γ(H) is {Y1, . . . , Ym}, Λ = {0, 1} and F is

F (Yi, xj) :=

{
1 if xj ∈ Yi
0 otherwise.

Proposition 2.1.7. Let H be a hypergraph on a set Ω = {x1, . . . , xn}, with hyperedge family
F = {Y1, . . . , Ym} and Γ(H) = (F, {0, 1}, F ). Let A ⊆ Ω. Then, if ≡A is the A-symmetry
relation in Γ(H), we have that

Yi ≡A Yj ⇐⇒ Yi ∩A = Yj ∩A

for all i, j ∈ {1, . . . ,m}.

Proof. We assume that Yi ≡A Yj . If a ∈ A ∩ Yi, then a ∈ Yi, whence F (Yi, a) = 1. Therefore,
we also have F (Yj , a) = 1, i.e. a ∈ Yj and therefore A ∩ Yi ⊆ A ∩ Yj . The proof of other
inclusion is similar.
On the other hand, suppose that A∩Yi = A∩Yj . Let a ∈ A. If F (Yi, a) = 1, then a ∈ A∩Yi =
A∩Yj and hence F (Yj , a) = 1. If F (Yi, a) = 0, then a ∈ A but a /∈ Yi, hence a /∈ A∩Yi = A∩Yj ,
therefore a /∈ Yj , and this implies that F (Yj , a) = 0. This proves that Yi ≡A Yj because of the
arbitrariness of a.
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Let us note that, by Proposition 2.1.7, if Y is a hyperedge of H then

[Y ]A = {Yi ∈ F : Yi ∩A = Y ∩A}. (2.7)

2.1.4 Pairings by Metric Spaces

Let (X, dX) be a metric space and Ω = X. We can consider the pairing P[X, dX ] :=
(X,F, {0, 1}) ∈ PAIR(Ω) where F : X ×X → {0, 1} defined by F (u, u′) := 1 if dX(u, u′) = 1
and F (u, u′) := 0 otherwise. It is immediate to see that the A-symmetry relation can be
translated as follows: if u, u′ ∈ X, then

u ≡A u′ :⇐⇒ NX(u) ∩A = NX(u′) ∩A, (2.8)

where NX(u) = {u′ ∈ X : dX(u, u′) = 1}. Therefore, also in this case, ≡A can be naturally
interpreted as a symmetry relation with respect the fixed subset A.

2.1.5 Pairings by Vector Spaces

If V is a vector space and H ⊆ V , we write H 6 V when H is a vector subspace of V .
Let V be a vector space over a field K and ϕ : V × V → K a K-bilinear form on V . Let

Ω = V . We associate with V the pairing P[V, ϕ] = (V, ϕ,K) ∈ PAIR(Ω). We call it the
(V, ϕ,K)-vector bilinear pairing, abbreviated (V, ϕ,K)-VBP. Hereafter, we write V instead of
P[V, ϕ].

Let A be an arbitrary fixed subset of V . We denote by A⊥ the orthogonal subspace of A
with respect to ϕ, i.e. A⊥ := {v ∈ V : ϕ(v, a) = 0 ∀a ∈ A}. In particular, the subspace V ⊥

is the classical (left) radical of V and the form is said (left) non degenerate if V ⊥ = {0}. We
denote by V ∗ := Hom(V,K) the dual vector space of V . In particular, if V has finite dimension,
then ϕ is non degenerate if and only if the map dϕ : v ∈ V → ϕ(v, ·) ∈ V ∗ is an isomorphism,
that is if Ker(dϕ) = {v ∈ V : ϕ(v, w) = 0 ∀w ∈ V } = V ⊥ = {0}.

Now, we examine the A-symmetry relation relative to the (V, ϕ,K)-VBP. For any u, u′ ∈ V ,
we set

u ≡A u′ ⇐⇒ ϕ(u, a) = ϕ(u′, a) ∀a ∈ A ⇐⇒ ϕ(u− u′, a) = 0 ∀a ∈ A. (2.9)

In other terms,

u ≡A u′ ⇐⇒ u ≡ u′ mod A⊥ ⇐⇒ u+A⊥ = u′ +A⊥.

Therefore [u]A = u+A⊥ for any u ∈ V and

πP(A) = {u+A⊥ : u ∈ V } = V/A⊥.

So that, in this case, the set partition πP(A) has itself a vector space structure that coincides
with that of the quotient vector space V/A⊥.
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2.1.6 Pairings by Group Actions

Let Ω be a generic set and G a group acting on it. Let us denote by ψ : (g, x) ∈ G ×
Ω 7→ ψ((g, x)) = gx ∈ Ω this action. Then, we can associate with G the pairing P[G,ψ] :=
(G,ψ,Ω) ∈ PAIR(Ω). Hereafter, we write (G,ψ) instead of P[G,ψ].

Let A ⊆ Ω. We recall that the stabilizer of A is the following subgroup of G:

StabG,ψ(A) = {g ∈ G : ga = a ∀a ∈ A} =
⋂
a∈A

StabG,ψ(a).

In this context, the A-symmetry relation becomes

g ≡A g′ ⇐⇒ ga = g′a ∀a ∈ A ⇐⇒ (g′)−1g ∈ StabG,ψ(a) ∀a ∈ A

so that
g ≡A g′ ⇐⇒ (g′)−1g ∈ StabG,ψ(A).

This means that
[g]A = g StabG,ψ(A)

and
πG,ψ(A) = {g StabG,ψ(A) : g ∈ G}.

2.2 Global Symmetry and Maximum Partitioners

In this section we investigate the main properties of the global symmetry relation. To this
regard, we first introduce the map πP : P(Ω)→ πP(U) defined by

A ∈ P(Ω) 7→ πP(A), (2.10)

and we denote by PSYM(P) the image of the operator πP, i.e.

PSYM(P) := {πP(A) : A ∈ P(Ω)}, (2.11)

P(P) := (PSYM(P),�), (2.12)

so that P(P) is a sub-poset of the partition lattice (Π(U),�).
Let us note that

A ⊆ A′ =⇒ πP(A′) � πP(A). (2.13)

By starting from the A-symmetry relation, we introduce a type of global symmetry relation
relatively to a given pairing. To this regard, let us consider the following equivalence relation
on P(Ω):

A ≈P A′ :⇐⇒ πP(A) = πP(A′),

that is equivalent to the condition

u ≡A u′ ⇐⇒ u ≡A′ u′, (2.14)

for all u, u′ ∈ U . We call ≈P the global symmetry relation of P, and we denote by [A]≈P
the

equivalence class of A with respect to ≈P, that we call global symmetry class.
The basic properties of the global symmetry relation are established in the following result.
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Theorem 2.2.1. (i) If A ≈P A′ and D ⊆ Ω, then A ∪D ≈P A′ ∪D.
(ii) The global symmetry class [A]≈P

is a union-closed family.
(iii) The subset family [A]≈P

has a maximum MP(A) that coincides with
⋃

[A]≈P
.

(iv) MP(A) = {b ∈ Ω : A ∪ {b} ≈P A}.
(v) MP(A) = {a ∈ Ω : (u, u′ ∈ Ω ∧ u ≡A u′) =⇒ F (u, a) = F (u′, a)}.
(vi) MP(A) ⊇MP(A′) ⇐⇒ πP(A) � πP(A′).
(vii) The set operator MP : B ∈ P(Ω) 7→MP(B) ∈ P(Ω) is a closure operator on Ω.
(viii) The set family

MAXP (P) := {MP(B) : B ∈ P(Ω)} = {C ∈ P(Ω) : MP(C) = C} (2.15)

is a closure system on Ω.
(ix) A ≈P A′ ⇐⇒ MP(A) = MP(A′).

Proof. (i): Let u ≡A∪D u′, i.e. F (u, a) = F (u′, a) for any a ∈ A∪D. This means that u ≡A u′
and, since A ≈P A′, that u ≡A′ u′. But, in particular, if follows that F (u, d) = F (u′, d) for any
d ∈ A′ ∪D, i.e. u ≡A′∪D u′. The same argument holds when we start with u ≡A′∪D u′.
(ii): Let u, u′ ∈ U such that u ≡A u′ and let {Aj : j ∈ J} ⊆ [A]≈P

. Hence, u ≡Aj u′ for
all j ∈ J by definition of the relation ≈P. If z ∈

⋃
j∈J Aj there exists some index j ∈ J

such that z ∈ Aj , so that F (u, z) = F (u′, z) because u ≡Aj u′. Hence u ≡⋃
j∈J Aj

u′. This

implies that πP(A) � πP(
⋃
j∈J Aj). On the other hand, by (2.13) we have that πP(

⋃
j∈J Aj) �

πP(Aj) = πP(A) because Aj ≈P A. Since � is a partial order on PSYM(P) we deduce that
πP(A) = πP(

⋃
j∈J Aj), that is equivalent to the condition

⋃
j∈J Aj ∈ [A]≈P

.
(iii): Let MP(A) :=

⋃
{B : B ∈ [A]≈P

}. By part (ii), it follows that MP(A) ∈ [A]≈P
, moreover

we also have that B ⊆MP(A) for all B ∈ [A]≈P
. Uniqueness is obvious.

(iv): Let b ∈ MP(A). Then, there exists A′ ∈ [A]≈P
such that b ∈ A′. Let now u, u′ ∈ U such

that u ≡A∪{b} u′, then u ≡A u′ because A is a subset of A∪{b}. On the other hand, let assume
that u ≡A u′. Since A′ ∈ [A]≈P

, we have u ≡A′ u′, and therefore F (u, b) = F (u′, b) because
b ∈ A′. Hence u ≡A∪{b} u′, so we deduce that A ≈P A ∪ {b}.
Let now b ∈ Ω such that A ≈P A∪{b}. Then, we have that b ∈ A∪{b} ∈ [A]≈P

and we deduce
that b ∈MP(A).
(v): Let B := {b ∈ Ω : (u, u′ ∈ U ∧ u ≡A u′) =⇒ F (u, b) = F (u′, b)}. We show that B ≈P A.
In fact, let u, u′ ∈ U such that u ≡A u′ and let b ∈ B. By definition of B we have that
F (u, b) = F (u′, b), so that u ≡B u′. Hence πP(A) � πP(B). Let now C ∈ [A]≈P

and c ∈ C.
Then, for all u, u′ ∈ U such that u ≡A u′, by definition of ≈P we have that u ≡C u′, so that
F (u, c) = F (u′, c). It follows that C ⊆ B for all C ∈ [A]≈P

, in particular A ⊆MP(A) ⊆ B. By
(2.13) we obtain then πP(B) � πP(A). Therefore πP(B) = πP(A), i.e. B ∈ [A]≈P

. By part
(iii) we deduce then that B ⊆MP(A). Hence B = MP(A).
(vi) : If A and A′ are two subsets of Ω such that MP(A′) ⊆ MP(A) then πP(MP(A)) �
πP(MP(A′)) by virtue of (2.13), which is equivalent to πP(A) � πP(A′) by virtue of part (ii).
We assume now that πP(MP(A)) � πP(MP(A′)). Let v ∈ MP(A′) and let us suppose by
contradiction that v /∈ MP(A), so that MP(A) $ MP(a) ∪ {v}. By (2.13) we obtain then
πP(MP(A) ∪ {v}) � πP(MP(A)). On the other hand, by maximality of MP(A) proved in
part (ii) we also deduce that MP(A) 6≈P MP(A) ∪ {v}, i.e. πP(MP(A)) 6= πP(MP(A) ∪ {v}).
Then, there exist u, u′ ∈ U such that u ≡MP(A) u

′ and u 6≡MP(A)∪{v} u
′, and this is possible
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only if F (u, v) 6= F (u′, v). Now, since πP(MP(A)) � πP(MP(A′)) and u ≡MP(A) u
′, we obtain

u ≡MP(A′) u
′, therefore F (u, v) = F (u′, v) because v ∈ MP(A′). This shows the contradiction

and conclude the proof.
(vii): We now prove that the set operator MP is a closure operator. It is obvious that A ⊆
MP(A). Let now A′ ∈ P(Ω) such that A ⊆ A′. Let b ∈ MP(A). Thus A ≈P A ∪ {b}. Let
v, v′ ∈ Ω such that v ≡A′ v′. Since A is a subset of A′, we have that v ≡A v′, and this implies
F (v, b) = F (v′, b) because A ≈P A ∪ {b}. This shows that v ≡A′∪{b} v′, that is b ∈ MP(A′).
Hence MP(A) ⊆ MP(A′). Finally, we must prove that MP(M(A)) = MP(A), for this it is
sufficient to show that MP(M(A)) ⊆MP(A). Let then b ∈MP(M(A)) and v, v′ ∈ Ω such that
v ≡A v′. Since A ≈P MP(A), it follows that v ≡MP(A) v

′, therefore F (v, b) = F (v′, b) by part
(v), because b belongs to MP(MP(A)). Hence b ∈MP(A) again by part (v).
(viii): MAXP (P) is the family of all closed sets for the closure operators MP. Therefore the
result follows by Theorem 1.5.7.
(ix) : If A ≈P A′, by part (ii), it follows that MP(A) = MP(A′). On the other hand, let
MP(A) = MP(A′). Then A ≈P MP(A) and A′ ≈P MP(A′) and we conclude that A ≈P A′.

We set now
M(P) := (MAXP (P),⊆∗) (2.16)

By Theorem 2.2.1 we deduce then the following result.

Corollary 2.2.2. (i) M(P) is a complete lattice such that if {Aj : j ∈ J} ⊆MAXP (P) then:

(a)
∨
j∈J Aj =

⋂
j∈J Aj;

(b)
∧
j∈J Aj = MP(

⋃
j∈J Aj).

(ii) The map πP induces an order isomorphism between the posets M(P) and P(P). Moreover,
since M(P) is a complete lattice, the same holds also for P(P).
(iii) If A,A′ ∈MAXP (P) then

A ⊇ A′ ⇐⇒ πP(A) � πP(A′) (2.17)

Proof. (i): It follows by (vii) of Theorem 2.2.1 and by Theorem 2, p. 112 of [18].
(ii): It is an immediate consequence of (vi) of Theorem 2.2.1.
(iii): It is a special case of part (vi) of Theorem 2.2.1.

Definition 2.2.3. We call the elements of MAXP (P) the maximum partitioners of P and
M(P) the symmetry partition lattice of P. We call the set operator MP the P-maximum
partitioner operator.

For the sake of completeness, we introduce a relativization of the notion of maximum
partitioner. For any A ∈ P(Ω), we set

MAXPP(A) := {B ∩A : B ∈MAXP (P)}, MP(A) := (MAXPP(A),⊆∗), (2.18)

therefore we obtain a map MAXPP : P(Ω) → P(P(Ω)) such that MAXPP(Ω) = MAXP (P)
and

MAXPP(A) ∈ CLSY (A), (2.19)

for any A ∈ P(Ω).
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Definition 2.2.4. We call A-relative maximum partitioner of P any element of MAXPP(A).

We now prove that the family MAXPP(A) coincides with the family of all maximum
partitioners contained in A whenever A ∈MAXP (P).

Proposition 2.2.5. If A ∈MAXP (P), then

MAXPP(A) = {B ∈MAXP (P) : B ⊆ A}

Proof. Let B ∈ MAXPP(A). Then, there exists C ∈ MAXP (P) such that B = A ∩ C.
Therefore, B ⊆ A and B ∈MAXP (P) because MAXP (P) is a closure system. On the other
hand, let B ∈MAXP (P) and B ⊆ A. Then B = A ∩B ∈MAXPP(A).

2.2.1 Characterization of the Symmetry Partitions

In what follows, we want to understand when a given set partition π of U is an A-symmetry
partition of U , for some A ∈ P(Ω).

If W ⊆ U we set

ΞP(W ) := {a ∈ Ω : ∀ u, u′ ∈W,F (u, a) = F (u′, a)}. (2.20)

Let us observe that ΞP : P(U)→ P(Ω). Moreover, if W ′ ∈ P(U) it is clear that

W ⊆W ′ =⇒ ΞP(W ) ⊇ ΞP(W ′). (2.21)

We have the following basic result.

Proposition 2.2.6. ΞP(W ) = A if and only if the following conditions hold:

(i) W 4 πP(A);

(ii) if W 4 πP(A′), then A′ ⊆ A.

Proof. Straightforward.

If π = {Bi : i ∈ I} ∈ πP(U) we set now

Max(π) :=
⋂
i∈I

ΞP(Bi). (2.22)

By means of the set operator ΞP we can characterize now the symmetry partitions of P.

Theorem 2.2.7. Let π = {Bi : i ∈ I} ∈ π(U) and A = Max(π). Then:

(i) A ∈MAXP (P);

(ii) π � πP(A);

(iii) π ∈ PSYM(P) ⇐⇒ π = πP(A);
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(iv) Let π(A′) = {Cl : l ∈ I ′}. Then

MP(A′) =
⋂
l∈I′

ΞP(Cl).

Proof. (i): Since MAXP (P) is a closure system and ΞP(Bi) ∈MAXP (P), the thesis holds.
(ii): Let v, v′ ∈ V (P) belonging to a same block Bk of π. We must show that v ≡A v′.
Therefore, let a ∈ A. Then one has a ∈ ΞP(Bk), so F (v, a) = F (v′a) by definition of ΞP(Bk).
(iii): The implication ⇐= is obvious. We assume therefore that π ∈ PSYM(P). Let C =
Max(π). Then we have π = πP(C), and this implies that F (v, c) = F (v′, c) for all v, v′ ∈ Bi,
for each i = 1, . . . , s and each c ∈ C. By definition of ΞP(Bi) we deduce then that C ⊆ ΞP(Bi)
for every i = 1, . . . , s. Hence C ⊆ A.
Let now a ∈ A. By definition of A we have

F (v, a) = F (v′, a), ∀v, v′ ∈ Bi, for each i ∈ I. (2.23)

Let us suppose now by contradiction that a /∈ C. Since C ∈MAXP (P), by part (i) it follows
that πP(C ∪{a}) ≺ πP(C) = π. Therefore there exists at least an index r ∈ {1, . . . , s} and two
distinct vertices v, v′ ∈ Br such that F (v, a) 6= F (v′, a), and this in contrast with (2.23). This
shows that A ⊆ C. Thus A = C and π = πP(C) = πP(A). This concludes the proof of (iii).

(iv): We prove only the statement for A′. We set π := πP(A′) and A :=
⋂s′

l=1 ΞP(Cl), so that
π ∈ PSYM(P). By part (iii), it follows that πP(A′) = π = πP(A), that is A ≈P A′. Hence,
by (vi) of Theorem 2.2.1 and again by part (iii), we obtain MP(A′) = MP(A) = A.

2.2.2 Global Symmetry Lattice

In this subsection we introduce the global symmetry lattice of a pairing P. Let MAXP (P) =
{Cj : j ∈ J}. We set now

GSYM(P) = {[Cj ]≈P
: j ∈ J}. (2.24)

We introduce the following partial order v on GSYM(P). If [Cl]≈P
, [Cj ]≈P

∈ GSYM(P)
we set

Cl ⊆∗ Cj ⇐⇒ : [Cl]≈P
v [Cj ]≈P

(2.25)

and
G(P) := (GSYM(P),v). (2.26)

We have then the following immediate result

Theorem 2.2.8. G(P) is a lattice that is order isomorphic to the symmetry partition lattice
M(P).

Proof. It follows immediately by (2.25).

We call G(P) the global symmetry lattice of P and any ([Cj ]≈P
,⊆) a local symmetry poset

of P.
In the next result we show that the knowledge of MAXP (P) uniquely determine the

knowledge of the whole global symmetry lattice G(P).
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Theorem 2.2.9. Let P,P′ ∈ PAIR(Ω). Then, the following are equivalent:
(i) ≈P coincides with ≈P′;
(ii) G(P) = G(P′);
(iii) MAXP (P) = MAXP (P′).

Proof. (i) =⇒ (ii): Obvious.
(ii) =⇒ (iii): Since G(P) = G(P′), for any A ∈ P(Ω) we have that [A]≈P

= [A]≈P′ .
Therefore, the maximum partitioners MP(A) and MP′(A) coincide for any A ∈ P(Ω), so
MAXP (P) = MAXP (P′).
(iii) =⇒ (i): Since MP and MP′ are the closure operators associate respectively to the closure
systems MAXP (P) and MAXP (P′), by part (viii) of Theorem 2.2.1 we obtain (i).

2.3 Global Symmetry on Several Examples

In this section we provide some computations on the concrete pairings defined in Section 2.1.

2.3.1 Some Examples Taken From Graph Context

We now compute the maximum partitioner of some basic graph families.

Complete Multipartite Graphs

In what follows, we firstly determine the general form of the A-symmetry for Kr1,...,rs and
then its symmetry partition lattice.

Proposition 2.3.1. Let G := Kr1,...,rs = (B1| . . . |Bs). Then A ∈ MAXP (G) if and only if

A = V (G) or A =
t⋃

q=1
Biq , where 1 ≤ t ≤ s− 2.

Proof. We need to compute the A-symmetry partition of Kr1,...,rs . For, let A ⊆ V (G), then we
set

QG(A) := {Bi : A ∩Bi 6= ∅}.

We denote by r the quantity |QG(A)|. We claim that

πG(A) = Bi1 | . . . |Bir |QG(A)c (2.27)

For, just observe that two vertices u, u′ belonging to the same subset Bi are not adjacent to the
vertices of the same subset but they are adjacent to the other vertices. In particular, we deduce
that u ≡A u′ if and only if u, u′ ∈ Bi for some i = 1, . . . , s or u, u′ ∈ QG(A)c. Therefore, we have
πG(A) = Bi1 | . . . |Bir |QG(A)c and this proves (2.27). Let us also observe that if r = n−1, then
πG(A) = B1| . . . |Bs = πG(V (G)). It is now straightforward to deduce that A ∈ MAXP (G) if

and only if A = V (G) or A =
t⋃

q=1
Biq , where 1 ≤ t ≤ s− 2.
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As a particular subcase, if G is a complete bipartite graph, then MAXP (G) is a 2-chain.
We now show that the only graph G for which MAXP (G) is a 2-chain is the complete bipartite
one.

Proposition 2.3.2. MAXP (G) is a 2-chain if and only if G is a complete bipartite graph.

Proof. Let G be a graph such that M(G) is a 2-chain. If G is the n-null graph, then obviously
M(G) has only the trivial partition and this contradicts our hypothesis. Therefore let v be a
non isolated vertex of G. The partition induced by the singleton set {v} has only two blocks:
the neighborhood NG(v) of v in G and its complement in V (G). Since v � v and NG(v) 6= ∅,
this partition is different from πG(∅) = 1̂G. Moreover to say that M(G) is a 2-chain implies
that πG({v}) = πG(V (G)).

Let u, u′ be vertices of G. If u, u′ ∈ NG(v) or u, u′ /∈ NG(v), then u ≡{v} u′ and thus
u ≡V (G) u

′. By part (iii) of Proposition 2.1.2 we have therefore u � u′. If u ∈ NG(v) and
u′ /∈ NG(v), then u 6≡{v} u′, which is equivalent to u 6≡V (G) u

′. In this case, since v ∈ NG(u), u
is a non isolated vertex of G and so, as before, πG({u}) = πG(V (G)). Thus u 6≡{u} u′ and u � u
implies u ∼ u′. It follows that G = (NG(v), (V (G) \NG(v)) is a complete bipartite graph.

Let G = (V1|V2) be a complete bipartite graph. Let A be a non-empty subset of V (G) and
u, u′ ∈ V (G). If u, u′ ∈ V1 or u, u′ ∈ V2, then for each v ∈ A we have F (v, u) = F (v, u′), so
u ≡A u′. If u ∈ V1 and u′ ∈ V2, then for each v ∈ A we have F (v, u) 6= F (v, u′), so u 6≡A u′.
Thus πG(A) = V1|V2. It follows that PSYM(G) has only two elements: the trivial partition
πG(∅) = 1̂G and the partition πG(B) = V1|V2, induced by all non-empty subsets B of V (G),
with πG(B) � 1̂G, so M(G) is a 2-chain.

The Complete Graph and The n-Cycle

In the next results we give the A-symmetry partition for the complete graph Kn and its
symmetry partition lattice.

Proposition 2.3.3. Let n ≥ 1 and let A = {w1, . . . , wk} be a generic subset of V (Kn) =
{v1, . . . , vn}. Then

πKn(A) = w1|w2| . . . |wk|Ac.

Proof. Let v, v′ ∈ V (Kn), with v 6= v′. By (iii) of Proposition 2.1.2, since v ∼ v′, it holds that if
v ≡A v′, then v, v′ ∈ Ac. On the other hand, if v, v′ ∈ Ac, then ∀z ∈ A, F (z, v) = F (z, v′) = 1,
namely v ≡A v′. The proposition is proved.

We now provide an explicit expression for MAXP (Kn). To this aim, we first introduce the
following notation: if n ≥ k we set

V(n, k) := {K ⊆ n̂ : |K| ≤ n− k} ∪ {n̂} (2.28)

Proposition 2.3.4. Let n ≥ 2, G = Kn and V (G) = n̂. Then MAXP (G) = V(n, 2).

Proof. By virtue of (viii) of Theorem 2.2.1 the identity V(n, 2) = MAXP (G) is equivalent to
the following:

V(n, 2) = {K ⊆ V (G) : K = M(K)}. (2.29)
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Let K ∈ V(n, 2). We must prove that K = M(K). By definition of M(K) we have that
K ⊆ M(K), therefore it remains to show that M(K) ⊆ K. By (v) of Theorem 2.2.1 we have
that

M(K) = {v ∈ V (G) : (u, u′ ∈ V (G) ∧ u ≡K u′) =⇒ F (u, v) = F (u′, v)}. (2.30)

If K = n̂, then obviously K = M(K). We can assume therefore K 6= n̂. Let now v ∈ n̂ \K.
Since |K| ≤ n − 2, there exists a vertex let z ∈ n̂ \K such that v 6= z. Since 0 = F (v, v) 6=
F (v, z) = 1 and v ≡K z by (2.30) we have that v /∈M(K). It follows that n̂ \K ⊆ n̂ \M(K),
and thus M(K) ⊆ K. Hence if K ∈ V(n, 2) then K = M(K).
We assume now that K ⊆ V (G) and K = M(K). We must prove that K = n̂ or |K| ≤ n− 2.
Let K 6= n̂ and suppose by contradiction that |K| = n−1. Then Kc is a singleton and therefore
we have that πG(K) = v1| · · · |vn = πG(V (G)), by Proposition 2.3.3. Thus K ≈ V (G), and this
implies K = M(K) = V (G) by virtue of part (ix) of Theorem 2.2.1, which gives a contradiction
because K 6= n̂ = V (G). This shows that |K| ≤ n − 2, i.e. K ∈ V(n, 2). Hence the identity
in (2.29) is proved. Since V(n, 2) = MAXP (G), we have that M(G) = (V(n, 2),⊆∗), therefore
the claim follows by (ii) of Corollary 2.2.2.

We provide below the A-symmetry partition of the cycle Cn on n vertices.

Proposition 2.3.5. (i) Let V = V (Cn) = {v1, . . . , vn}. Fix a subset A ⊆ V , A = {vi1 , . . . , vik},
and let vi, vj ∈ V , with i < j. Then vi ≡A vj if and only if NCn(vi) ∩A = NCn(vj) ∩A = ∅ or
NCn(vi) ∩A = NCn(vj) ∩A = {vi+1} = {vj−1}.
(ii) Let us set BCn(A) := (NCn(A))c, CCn(A) := {vi ∈ A : vi−2 /∈ A∧vi+2 /∈ A} and KCn(A) :=
NCn(CCn(A)). Then, if vs1 , . . . , vsl are the vertices in SCn(A) := V (Cn) \ [BCn(A) ∪KCn(A)]
and vj1 , . . . , vjh are the vertices in CCn(A), we have

πCn(A) = BCn(A)|vj1−1vj1+1| · · · |vjh−1vjh+1|vs1 | · · · |vsl .

Proof. (i): Let us observe that for each i ∈ {1, . . . , n}, NCn(vi) = {vi−1, vi+1}, where the
index sums are all taken mod(n). The proof follows easily by observing that, since vi 6= vj ,
then |NCn(vi) ∩NCn(vj)| ≤ 1 and the equality holds if and only if j = i+ 2. It follows that, if
NCn(vi)∩A = NCn(vj)∩A, then NCn(vi)∩A = (NCn(vi)∩NCn(vj))∩A ⊆ NCn(vi)∩NCn(vj). By
(2.2), vi ≡A vj if and only if NCn(vi)∩A = NCn(vj)∩A. Thus |NCn(vi)∩A| = |NCn(vj)∩A| ≤ 1
and the equality holds if and only if j = i+ 2 and vi+1 = vj−1 ∈ A. This proves the thesis.
(ii): The proof follows directly by part (i). In fact, let vi, vj ∈ V (Cn), with i < j and vi ≡A vj .
Then, either (a) NCn(vi)∩A = NCn(vj)∩A = ∅ or (b) NCn(vi)∩A = NCn(vj)∩A = vi+1 = vj−1.
But (a) is equivalent to say that vi, vj ∈ BA, (b) that {vi, vj} = NCn(v), for some v ∈ CA. The
proposition is thus proved.

In the next result we provide a characterization for the maximum partitioners of Cn.

Theorem 2.3.6. Let A ⊆ V (Cn). Then A ∈MAXP (Cn) if and only if for any vi /∈ A it holds
one of the following conditions:
(i) (vi−2 /∈ A or vi+2 /∈ A) and (BCn(A) 6= {vi−1, vi+1});
(ii) (vi−2 ∈ A and vi−4 /∈ A) or (vi+2 ∈ A and vi+4 /∈ A).
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∅

{1} {2} {3} {4} {5}

{1, 2} {2, 3} {3, 4} {4, 5} {1, 5}

{1, 2, 3} {2, 3, 4} {3, 4, 5} {1, 4, 5} {1, 2, 5}

{1, 2, 3, 4, 5}

Figure 2.1: Symmetry Partition Lattice of C5

Proof. If A ⊆ V (Cn) is a maximum partitioner, then, for all vi /∈ A there exist vj , vk ∈ V (Cn)
such that vj ≡A vk and F (vi, vj) 6= F (vi, vk). This holds if and only if it holds one of the
two conditions: (1) vj , vk are both in BCn(A) and |{vj , vk} ∩ BCn(A ∪ {a})| = 1, or (2)
|k − j| = 2, vj+1 ∈ CCn(A) and either vi = vj−1 or vi = vk+1. Case (1) is equivalent to
say that vi−2 /∈ A or vi+2 /∈ A and if both vi−2 and vi+2 are not in A, there exists another
vertex vl ∈ BCn(A) \ {vi−1, vi+1}. This is clearly equivalent to condition (i) of the Theorem.
Condition (2) holds if and only if vj+1 ∈ CCn(A) \CCn(A∪{a}). This is equivalent to say that
vj+1 ∈ A, vj−1 /∈ A, vj+3 = vk+1 /∈ A and vi ∈ {vj−1, vk+1}. This means that vi+2 ∈ A and
vi+4 /∈ A or vi−2 ∈ A and vi−4 /∈ A, that is condition (ii). The theorem is thus proved.

Example 2.3.7. In Figure 2.1 we represent the symmetry partition lattice of C5, while in
Figure 2.2 that of C6. Let us observe that Psym(C5) is self-dual, but that of C6 is not. So far,
there exists no geometric characterization for the symmetry partition lattice of Cn.

2.3.2 Some Examples Taken From Digraph Context

In the next results we determine the form of any A-symmetry partition for the three digraph
families, ~Pn, ~Cn and ~Tn. In order to simplify the exposure form of all the following statements
we will use a convention.
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∅

{1} {3} {5} {2} {4} {6}

{1, 3, 5} {1, 2} {2, 3} {2, 5} {1, 4} {3, 4} {4, 5} {1, 6} {3, 6} {5, 6} {2, 4, 6}

{1, 2, 3, 5} {1, 3, 4, 5} {1, 3, 5, 6} {1, 2, 4, 6} {2, 3, 4, 6} {2, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

Figure 2.2: Symmetry Partition Lattice of C6
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Remark 2.3.8. Let D be one of the three digraphs ~Pn, ~Cn or ~Tn. If A ⊆ V (D) is such that
|A| = k, we implicitly assume that 1 ≤ k < n. Therefore, if |A| = k, we always have exactly
one of the following two cases:
(i) A = {vi1 , . . . , vik},
(ii) A = {v1, vi2 , . . . , vik},
where 1 < i1 < i2 < · · · < ik ≤ n.
Then, in the case (i) we will set A−1 := {vi1−1, . . . , vik−1}. In the case (ii) we will set A−1 :=

{vi2−1, . . . , vik−1} if D = ~Pn, whereas A−1 := {vn, vi2−1, . . . , vik−1} if D = ~Cn.

Finally, only when D = ~Pn or D = ~Tn, if we take a subset A ⊆ V (D) such that |A| = 1 we
implicitly assume that A 6= {v1}.

Proposition 2.3.9. We have that:
(i)

π ~Pn
(A) =


V if A = ∅ or A ⊆ {v1}
vi1−1| . . . |vik−1|Ac−1 if A = {vi1 , . . . , vik} and 1 ≤ |A| < n− 1
vi2−1| . . . |vik−1|Ac−1 if A = {v1, vi2 , . . . , vik} and 1 < |A| < n
v1| . . . |vn if A = V or A = {v2, . . . , vn}

(ii)

π ~Cn
(A) =


V if A = ∅
vi1−1| . . . |vik−1|Ac−1 if A = {vi1 , . . . , vik} and 1 ≤ |A| < n− 1
vn|vi2−1| . . . |vik−1|Ac−1 if A = {v1, vi2 , . . . , vik} and 1 ≤ |A| < n− 1
v1| . . . |vn if A = V or |A| = n− 1

(iii)

π ~Tn(A) =


V if A = ∅ or A = {v1}
v1 . . . vi1−1|vi1 . . . vi2−1| . . . |vik . . . vn if A = {vi1 , . . . , vik} and 1 ≤ |A| < n− 1
v1 . . . vi2−1| . . . |vik . . . vn if A = {v1, vi2 , . . . , vik} and 2 ≤ |A| < n
v1| . . . |vn if A = V or A = {v2, . . . , vn}

(iv) Let ~Kp,q = (B1|B2), where B1 = {x1, . . . , xp} and B2 = {y1, . . . , yq} and let V = V ( ~Kp,q) =
{x1, . . . , xp, y1, . . . , yq}. Then

π+
A( ~Kp,q) =

{
V if A = ∅ ∨A ⊆ B1

B1|B2 otherwise

Proof. (i): By the characterization of the symmetry relation given in Theorem 2.1.5, we have
only to study the intersections N+

~Pn
(v) ∩ A, when A and the vertex v vary. Therefore, if

A = ∅, the result is trivial. Even if A = V ( ~Pn), computations are trivial. Let A = {v1},
no neighborhood N+

~Pn
(v) contains the element v1, so every intersection N+

~Pn
(v) ∩ A is empty

and v1, . . . , vn form a single block. Now, let A be a singleton different from {v1}. The only
neighborhood whose intersection with A is non-empty is N+

~Pn
(vi−1). This means that, in this

case, π ~Pn
(A) = vi−1|{vi−1}c. On the other hand, let A = {vi1 , . . . , vik} and 2 ≤ k < n.
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it is clear that the neighborhoods intersecting A are N+
~Pn

(vij−1), for j = 1, . . . , k. Since

N+
~Pn

(vij−1) 6= N+
~Pn

(vil−1) if j 6= l, every vertex vi1−1, . . . , vik−1 form a single block and that the

remaining vertices form the last block, hence π ~Pn
(A) = vi1−1| . . . |vik−1|Ac−1. In particular, if

A = {v2, . . . , vn}, the set Ac−1 consists of a single element, namely vn, thus π ~Pn
(A) = v1| . . . |vn.

Furthermore, suppose A = {v1, vi2 , . . . , vik}, with 1 < |A| < n. In this case, the neighborhoods
intersecting A are N+

~Pn
(vij−1), for j = 2, . . . , k, because v1 is not contained in any neighbor-

hood. So π ~Pn
(A) = vi2−1| . . . |vik−1|Ac−1.

(ii): If A = ∅ or if A = V ( ~Cn) computations are obvious. Now, let A = {vi1 , . . . , vik} be a

generic proper subset of V ( ~Cn) not containing v1. Thus we have that the neighborhoods inter-
secting A are N+

~Cn
(vij−1), with j = 1, . . . , k; furthermore, N+

~Cn
(vij−1) 6= N+

~Cn
(vil−1) if j 6= l, so

every vertex vi1−1, . . . , vik−1 form a single block and the remaining vertices form the last block,
since the intersections of their neighborhoods with A are empty. Let A = {v1, vi2 . . . , vik}
be a proper subset of V ( ~Cn). As before, N+

~Cn
(vij−1), with j = 2, . . . , k and N+

~Cn
(vn) are the

neighborhoods intersecting A. Since N+
~Cn

(vj) 6= N+
~Cn

(vl) if j, l ∈ {i2 − 1, . . . , ik − 1, n} are two

distinct indices, we deduce that the elements vi2−1, . . . , vik−1, vn form a single block, while the
others stay in another unique block. Finally, by the previous argument, if |A| = n − 1, we
observe that Ac−1 consists of a single element, therefore π ~Cn

(A) = v1| . . . |vn.

(iii): It is clear that if A = ∅, then π ~Tn(A) consists of a unique block whereas if A = V ( ~Tn),

every vertex form a single block of π ~Tn(A). Moreover, if A = {v1}, we have that N+
~Tn

(vi)

doesn’t contain v1 for all indices i, so A ∩ N+
~Tn

(vi) = ∅. Let A = {vi}, where i 6= 1. Since

N+
~Tn

(vj) = {vj+1, . . . , vn}, clearlyN+
~Tn

(vj)∩A = {vi} if and only if A ⊆ N+
~Tn

(vj). This happens if

and only if j = 1, . . . , i−1, otherwise, this intersection is empty. Now, we can provide the proof
for the general case. Let A = {vi1 , . . . , vik} where 1 < i1 < · · · < ik ≤ n and 2 ≤ |A| < n − 1;
we have to study the intersections N+

~Tn
(vj) ∩ A. Proceeding exactly as before, we deduce

that the first block consists of v1, . . . , vi1−1; the second block contains all the vertices such that
N+
~Tn

(vj)∩(A\{vi1}) 6= ∅, i.e. it contains exactly the i2− i1 elements vi1 , . . . , vi2−1 and so on. In

particular, if A = {v2, . . . , vn}, Ac−1 consists of a single element, therefore π ~Tn(A) = v1| . . . |vn.
On the other hand, if A = {v1, vi2 , . . . , vik} where 1 < i2 < · · · < ik ≤ n and 2 ≤ |A| < n, the
argument is the exactly the same as before, starting from the index i2, since there is no vertex
vj whose neighborhood N+

~Tn
(vj) contains v1. Thus π ~Tn(A) = v1 . . . vi2−1| . . . |vik . . . vn and the

thesis follows.
(iv): We observe that

N+
~Kp,q

(v) =

{
B2 if v ∈ B1

∅ if v ∈ B2

Therefore, if A ⊆ B1, then N+
~Kp,q

(v) ∩A = ∅ for every vertex v ∈ V . Hence, π+
A( ~Kp,q) = V .

In the other cases, it is easy to see that N+
~Kp,q

(v)∩A is the same subset of B2 for every v ∈ B1

and this intersection is empty for every v ∈ B2. Hence, we conclude that π ~Kp,q(A) = B1|B2 in

the other cases.

In next result we provide the general form for the symmetry partition lattices of ~Tn, ~Pn
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and ~Cn.

Theorem 2.3.10. (i) Let D = ~Tn or D = ~Pn. Then

MAXP (D) = {{v1, vi1 , . . . , vik} : 1 < i1 < · · · < ik ≤ n}

and (M(D),⊆∗) ∼= (P([n−1]),⊆∗) by means of the isomorphism {v1, vi1 , . . . , vik} 7→ {i1, . . . , ik}.
(ii) If V = V ( ~Cn) we have

MAXP ( ~Cn) = {A ⊆ V : |A| ≤ n− 2} ∪ {V }

and (M( ~Cn),⊆∗) ∼= (V(n, 2),⊆∗) by means of the isomorphism {v1, vi1 , . . . , vik} 7→ {i1, . . . , ik}.

Proof. (i): Let D = ~Tn or D = ~Pn, A = {vi1 , . . . , vik} ⊆ V = V (D), where 1 < i1 < · · · < ik ≤
n and B = {v1} ∪ A. By Proposition 2.3.9, it is immediate that A ≈P B. In particular, a set
B is the maximum partitioner of πD(A) if and only if it is of the form B = A ∪ {v1}. In fact,
let B be a maximum partitioner. Then, it must to contain the vertex v1. On the other hand,
let B = {v1, vi1 , . . . , vik}, for 1 < i1 < · · · < ik ≤ n. By definition of maximum partitioner,
B ⊆ MP(B). Suppose by contradiction that B $ MP(B) and let C = MP(B). This means
that C contains at least another vertex distinct from those of B. So πD(C) � πD(B) = πD(A)
but πD(C) 6= πD(B); therefore C 6≈P B, and this in contrast with C = MP(B). Therefore
MAXP (D) = {{v1, vi1 , . . . , vik}}, where 1 < i1 < · · · < ik ≤ n. Moreover, it results that
A ⊆∗ B if and only if B ⊆ A. We define the bijective map φ : M(D) 7→ P([n − 1]) such
that B = {v1, vi1 , . . . , vik} 7→ φ(B) = {i1, . . . , ik}. Let A ⊆∗ B, i.e. B ⊆ A; it’s obvious that

φ(B) ⊆ φ(A), that’s to say φ(A) ⊆∗ φ(B). This means that (M( ~Tn),⊆∗) ∼= (P([n− 1]),⊆∗).
(ii): Let A ⊆ V = V ( ~Cn). By Proposition 2.3.9, it is then immediate that [A]≈P

= {A} if

|A| < n − 1. Hence if |A| > n − 2, then π ~Cn
(A) = π ~Cn

(V ( ~Cn)), otherwise [A]≈P
= {A}, i.e.

the maximum partitioner of [A]≈P
is A itself. This means that MAXP ( ~Cn) = {A ⊆ V : |A| ≤

n − 2} ∪ {V }. Define the bijective map φ : M( ~Cn) 7→ V(n, 2) such that A = {vi1 , . . . , vik} 7→
φ(A) = {i1, . . . , ik}. Let A ⊆∗ B, i.e. B ⊆ A; hence φ(B) ⊆ φ(A), i.e. φ(A) ⊆∗ φ(B). This
means that (M( ~Cn),⊆∗) ∼= (V(n, 2),⊆∗).

2.3.3 Global Symmetry in Hypergraphs

By using Proposition 2.1.7 we obtain the following useful characterization of the A-symmetry
classes in Γ(

(
n̂
k

)
), where A is a subset of n̂.

Proposition 2.3.11. Let P be the pairing Γ(
(
n̂
k

)
) where n ≥ k are positive integer and let

A ⊆ n̂. Then, there exists a bijection between the set πP(A) of all A-symmetry classes in Γ(H)
and the set

ΣA := {S ⊆ A : max{0, k + a− n} ≤ |S| ≤ min{a, k}},

where a := |A|.

Proof. Let S ∈ ΣA and set s := |S|. By Proposition 2.1.7 all k-subsets of n̂ whose intersection
with A is equal to S, if non-empty, is an A-symmetry class in P. But if max{0, k + a− n} ≤

31



s ≤ min{a, k} then there exists
(
n−a
k−s
)
k-subsets of n̂ such that their intersection with A is S.

On the other hand if x ∈
(
n̂
k

)
, then the cardinality s of S := x∩A satisfies max{0, k+ a−n} ≤

s ≤ min{a, k}. In fact s ≥ 0, s ≤ a and s ≤ k by definition of S. Moreover it holds that
S = x ∩A = x \ (n̂ \A) and so s ≥ k − (n− a) = k + a− n. We proved that the function that
associates with each S ∈ ΣA the A-symmetry class C := {x ∈

(
n̂
k

)
: x∩A = S} is bijective with

inverse that associates with each C ∈ πP(A) the subset S := A ∩
(⋂

x∈C x
)
.

Corollary 2.3.12. Let P be the Boolean information system Γ(
(
n̂
k

)
) where n ≥ k are positive

integers and let A ⊆ n̂ and x ∈
(
n̂
k

)
. By setting a := |A|, S := x ∩ A and s := |S| we have

max{0, k + a− n} ≤ s ≤ min{a, k} and |[x]A| =
(
n−a
k−s
)
.

Proof. As we have seen in the first part of the proof of Proposition 2.3.11 the A-symmetry class
[x]A is the set of all k-subsets of n̂ whose intersection with A is equal to S, max{0, k+a−n} ≤
s ≤ min{a, k} and |[x]A| =

(
n−a
k−s
)
.

Remark 2.3.13. Let H = (n̂,F) be a simple k-uniform hypergraph on n vertices (i.e. F is a
sub-family of

(
n̂
k

)
). Let P := Γ(H) and A a subset of the attribute set n̂.

In order to compute the number of distinct equivalence classes in the set πP(A) and the
complete list of all the objects of any symmetry class [x]A ∈ πP(A) it is convenient to see P as
a binary matrix T (P). With the subset A ⊆ Ω, we can associate in a natural way a

(
n
k

)
× |A|

submatrix TA(P) of T (P) by choosing the columns corresponding to the elements of A. By
using standard topological sort algorithms we can easily find the number of distinct rows of
TA(P) and partition the rows of TA(P) with respect to the equality relation.

In the following result we determine the number of elements in any symmetry partition
πP(A) when P = Γ(

(
n̂
k

)
).

Proposition 2.3.14. Let P = Γ(
(
n̂
k

)
). If A is a subset of attributes of P such that |A| = l,

then:
(i) if l ≤ k we have |πP(A)| =

∑min{l,n−k}
i=0

(
l
l−i
)
;

(ii) if l > k we have |πP(A)| =
∑min{k,n−l}

i=0

(
l

k−i
)
.

Proof. Without loss of generality we can assume that A = {1, 2, . . . , l}. By Proposition 2.1.7
we have that, given two k-subsets S1, S2 of [n], S1 ≡A S2 if and only if S1 ∩A = S2 ∩A. Then
we can associate with each class in πP(A) a subset of A. In particular for each subset B of A
we can consider the k-subsets S of [n] such that S ∩A = B. This set is either empty or it is an
equivalence class in πP(A). Such a class has

(
n−l
k−|B|

)
elements that can be obtained by choosing

k − |B| elements in [n] \A.
Let us suppose now l ≤ k. The k-subsets of [n] containing A form a class in πP(A). More

generally however we fix a subset B of A, the set of the k-subsets of [n] containing B, if it is
not empty, it matches an equivalence class of ≡A with

(
n−l
k−|B|

)
elements. Such a set is empty

if and only if k − |B| ≤ n − l which is equivalent to l − |B| ≤ n − k. Thus it follows that the
number of classes in πP(A) is equal to

|πP(A)| =
n−k∑
j=0

(
l

j

)
=

n−k∑
i=0

(
l

l − i

)
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and thus (i) holds.
If l > k then obviously for each subset B of A such that |B| > k there exists no k-subset S

of [n] such that S ∩A = B. When |B| = k the unique k-subset S of [n] containing B is B. So
each k-subset in A uniquely identifies a class in πP(A). As before if |B| < k and k−|B| ≤ n− l
then the equivalence class of ≡A of all the k-subsets S such that S ∩ A = B contains

(
n−l
k−|B|

)
elements. Finally if |B| < k and k − |B| > n − l then there is not an element S ∈

([n]
k

)
such

that S ∩A = B. Then when l > k the number of classes in πP(A) is thus equal to

|πP(A)| =
k∑

j=l−n+k

(
l

j

)
=

n−l∑
i=0

(
l

k − i

)
and the proposition is proved.

By virtue of the result established in Proposition 2.3.14 it is convenient to set

c(n, l, k) :=


∑min{l,n−k}

i=0

(
l
l−i
)

if l ≤ k

∑min{k,n−l}
i=0

(
l

k−i
)

if l > k

(2.31)

when n, l and k are three integers such that 0 ≤ l, k ≤ n.
We determine now the symmetry partition lattice of

(
n̂
k

)
for all n ≥ k ≥ 1.

Theorem 2.3.15. The lattice (P(
(
n̂
k

)
),�) is isomorphic to the dual lattice of (V(n, n− 2),⊆).

Proof. It is immediate to notice that πP(A) = πP(n̂) when A ⊆ n̂ has cardinality |A| > n− 2

and that πP(A) 6= πP(n̂) otherwise. Consider now the function φ : P((
(
n̂
k

)
)) −→ V(n, n − 2)

defined by:

φ(πP(A)) =


A if |A| ≤ n− 2,

n̂ if |A| > n− 2.

Let us prove now that φ is well defined. For this we have to prove that, if πP(A) = πP(B)
are two subsets of n̂, then φ(πP(A)) = φ(πP(B)). Let A, B ⊆ n̂, with |A| ≤ n− 2, B ≤ n− 2
and φ(πP(A)) = A 6= B = φ(πP(B)). Since A 6= B, we have A

a
B = (A \ B) ∪ (B \ A) 6= ∅.

Without loss of generality we can assume A \ B 6= ∅. Let a ∈ A \ B and let K be a k-subset
of n̂ such that a ∈ K and |B ∩K| > |B| + k − n. Note that such a K exists in this case. Set
S := B∩K and let K ′ ∈

(
n
k

)
such that B∩K ′ = S and a /∈ K ′. By Proposition 2.1.7, K ≡B K ′

but K 6≡A K ′ and thus πP(A) 6= πP(B).
The map φ is clearly both injective and surjective. Let us prove it is an isomorphism. For

this let A, B ⊂ n̂ such that πP(A) � πP(B). If |A| ≥ n − 1, then φ(πP(A)) = n̂ ⊇ φ(πP(B)),
for each B. Let us suppose |A| < n−1. In this case, since πP(A) � πP(B), we have |B| < n−1.

Thus φ(πP(A)) = A and φ(πP(B)) = B. Since πP(A) 6= πP(n̂), there exist K1, K2 ∈
(
n̂
k

)
such

that K1 6= K2 By Proposition 2.3.11 it holds k+a−n < |K1∪A| = |K2∪A| < k, where a = |A|.
Let b ∈ B\A. Then there exist K ′1, K

′
2 ∈

(
n̂
k

)
such that |K1∪A| = |K2∪A| = |K ′1∪A| = |K ′2∪A|

and b ∈ K ′1 \K ′2. This implies K ′1 ≡A K ′2 but K ′1 6≡B K ′2, and this contradicts the condition
πP(A) � πP(B). Thus B ⊆ A and the theorem is proved.
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2.3.4 Euclidean Real Line

Let us consider now the pairing R := P[R, dE ], where dE is the usual real euclidean distance.
Let A ⊆ R be fixed. We set

A∗ := (A− 1) ∪ (A+ 1), A∗ := (A− 1) ∩ (A+ 1)c ∩ (A− 3)c (2.32)

In the next result we provide the general form for an A-symmetry partition of R.

Proposition 2.3.16. We have that

πP(A) = R \A∗|{x, x+ 2}x∈A∗ |{y}y∈A∗\(A∗∪A∗+2),

Proof. Let x, y ∈ R such that x < y. It is easy to prove that x ≡A y in R if and only if
x, y ∈ R \ A∗ or x ∈ A∗ and y = x + 2. Moreover, in this second case, since A∗ = {x ∈ R :
x− 1 /∈ A, x+ 3 /∈ A, x+ 1 ∈ A}, there exist no other point equivalent to x beside y.

We now characterize the maximum partitioners of R.

Proposition 2.3.17. A ∈MAXP (P) if and only if for all a /∈ A

1′. (a− 2 /∈ A or a+ 2 /∈ A) and |R \A∗| ≥ 2;

2′. (a+ 2 ∈ A and a+ 4 /∈ A) or (a− 2 ∈ A and a− 4 /∈ A).

Proof. A subset A ⊆ R is a maximum partitioner in R if and only if, for all a /∈ A, there exist
x, y ∈ R such that x ≡A y but x 6≡A∪{a} y. By (2.3.16) it is equivalent to say that, for each
choice of a /∈ A, it holds at least one of the following conditions:

1. ∃x, y ∈ R \A∗ such that x < y and {x, y} ∩ (A ∪ {a})∗ 6= ∅;

2. ∃x ∈ A∗ \ (A ∪ {a})∗.

These conditions are equivalent respectively to 1′ and 2′.

Proposition 2.3.18. We have that

MP(A) = A ∪ [(A− 2) ∩ (A+ 2) ∩ (A− 4) ∩ (A+ 4)]. (2.33)

Proof. It is an immediate consequence of Proposition 2.3.17.

Corollary 2.3.19. A ∈MAXP (R) if and only if (A− 2) ∩ (A+ 2) ∩ (A− 4) ∩ (A+ 4) ⊆ A.

As a consequence of Proposition 2.3.17 we obtain the following result.

Proposition 2.3.20. If A is a bounded interval of R then A ∈MAXP (R).

Proof. Let A be a bounded interval of the real line. Let us consider A = [α, β), the other cases
are similar. Let a /∈ A. If a ∈ (−∞, α+ 2) or a ∈ [β− 2, +∞), then a− 2 /∈ A or a+ 2 /∈ A, so
condition 1′. is satisfied. If a ∈ (−∞, α+2)∪ [β−2, +∞), then β−α < 2, {a−2, a+2}∩A 6= ∅
and thus if a−2 ∈ A, then a−4 /∈ A and if a+ 2 ∈ A, then a+ 4 /∈ A. It follows the thesis.
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2.3.5 Global Symmetry in (V, ϕ,K)-VBP

If A,B ⊆ V , then
A ≈P B ⇐⇒ V/A⊥ = V/B⊥ ⇐⇒ A⊥ = B⊥, (2.34)

so that
MP(A) = {b ∈ V : (A ∪ {b})⊥ = A⊥}. (2.35)

We denote by Span(A) the vector subspace of V spanned by A. In next result, we study
the relation between MP(A) and Span(A) and give a sufficient condition on ϕ to ensure that
in finite dimensional vector spaces Span(A) = MP(A).

Proposition 2.3.21. (i) MP(A) is a vector subspace of V ;
(ii) Span(A) ⊆MP(A).
Moreover, let V be a finite dimensional vector space. Then:
(iii) if ϕ is (left) non degenerate, Span(A) = MP(A);
(iv): If ϕ is (left) non degenerate, then MAXP (V ) = {H : H 6 V };
(v) if ϕ is (left) degenerate and V ⊥ \ Span(A) 6= ∅, we have Span(A) $MP(A).

Proof. (i): Let v, w ∈MP(A) and let us consider λv+µw. It is obvious that (A∪{λv+µw})⊥ ⊆
A⊥. On the other hand, let x ∈ A⊥. Then ϕ(x, a) = 0 for any a ∈ A. Moreover, ϕ(x, λv+µw) =
λϕ(x, v) + µϕ(x,w) = 0 since (A ∪ {v})⊥ = (A ∪ {w})⊥ = A⊥, so x ∈ (A ∪ {λv + µw})⊥ and
(A ∪ {v + w})⊥ = A⊥. This means that λv + µw ∈MP(A) and MP(A) is a vector space.
(ii): Since A ⊆MP(A) and MP(A) is a vector space, we have that Span(A) ⊆MP(A).
(iii): Since V is a finite dimensional vector space and ϕ is (left) non degenerate, for any
H 6 V it results that H = (H⊥)⊥. Suppose now that a ∈ MP(A), i.e. (A ∪ {a})⊥ = A⊥.
Let W = Span({a}), then ( Span(A) + W )⊥ = Span(A)⊥, so that (( Span(A) + W )⊥)⊥ =
( Span(A)⊥)⊥. Hence Span(A) +W = Span(A), i.e. a ∈ Span(A). Thus MP(A) ⊆ Span(A)
and MP(A) = Span(A).
(iv): It follows immediately by part (iii).
(v): Let b ∈ V ⊥\ Span(A). In such a case, Span(A∪{b})⊥ = A⊥, i.e. Span(A) $MP(A).

2.3.6 Global Symmetry by Group Actions

If A,B ⊆ Ω and P = P[G,ψ], we have that

A ≈G,ψ B ⇐⇒ StabG,ψ(A) = StabG,ψ(B).

Let us consider the pairing (Sn, ψ) := P[Sn, ψ] induced by the action of the symmetric
group Sn on a set Ω having n elements. Then we have the following result:

Theorem 2.3.22. MAXP ((Sn, ψ)) = {A ⊆ Ω : |A| ≤ n− 2} ∪ {Ω}.
Proof. Let A ⊆ Ω such that |A| = k. Hence, there exists exactly (n − k)! permutations of
Sn fixing all elements of A. Hence | StabSn,ψ(A)| = (n − k)!. Moreover, since the index
of StabSn,ψ(A) = n!

(n−k)! , we deduce that there are n!
(n−k)! classes of A-symmetry for any A.

We conclude that if 0 ≤ |A| 6= |B| ≤ n − 2, then πSn,ψ(A) 6= πSn,ψ(B). Furthermore, if
1 ≤ |A| = |B| ≤ n − 2, we clearly have [Id]A = StabSn,ψ(A) 6= StabSn,ψ(B) = [Id]B, so
πSn,ψ(A) 6= πSn,ψ(B). Finally, we have that πSn,ψ(A) = πSn,ψ(Ω) for any A ⊆ Ω such that
|A| = n− 1. This gives MAXP ((Sn, ψ)) = {A ⊆ Ω : |A| ≤ n− 2} ∪ {Ω}.

35



2.4 Separators and Related Notions

In this section we assume a topological point of view for our investigation of the maximum
partitioner family. To be more detailed, the maximum partitioners can be seen as a generaliza-
tion of the closed sets of a topology on Ω. In this perspective, it is convenient to undertake an
analysis of the family of all corresponding generalized open sets, i.e. the complement of each
maximum partitioner. Therefore, if A ⊆ Ω, we set

SP(A) := Ω \MP(A) (2.36)

and
SEP (P) := {SP(A) : A ∈ P(Ω)}.

We call separator of A any element s ∈ SP(A). The following characterization is immediate.

Proposition 2.4.1. Let s ∈ Ω. Then s is a separator of A if and only if there exist two point
u, u′ ∈ U such that :

(i) F (u, a) = F (u′, a) ∀a ∈ A;

(ii) F (u, s) 6= F (u′, s).

If A = {Ai : i ∈ I} ∈ SS(Ω), we set

SP(A) :=
⋂
i∈I

SP(Ai). (2.37)

Proposition 2.4.2. SP(∪A) ⊆ SP(A).

Proof. Let s ∈ SP(∪A), then there exist u, u′ ∈ U with the property that for any a ∈
⋃
i∈I Ai,

F (u, a) = F (u′, a) and F (u, s) 6= F (u′, s). In other words, for any fixed ĩ ∈ I and for any
choice of a ∈ Aĩ ⊆

⋃
i∈I Ai, it follows that F (u, a) = F (u′, a) and F (u, s) 6= F (u′, s), that is

s ∈ SP(Aĩ). It readily follows that s ∈ SP(Ai) for any i ∈ I and hence s ∈ SP(A).

We say that a chain A ∈ SS(Ω) is union preserving separated if SP(A) ⊆ SP(∪A).
In what follows we define a new class of pairings, i.e. those for which any chain is union

preserving.

Definition 2.4.3. We say that the pairing P is union chain preserving, abbreviated UCP, if
any chain A ∈ SS(Ω) is union preserving separated.

Remark 2.4.4. Any finite pairing is UCP.

In the following result, we provide other alternative characterizations for UCP pairings.

Theorem 2.4.5. The following three conditions are equivalent:

(i) P is UCP;

(ii) MAXP (P) is a chain union-closed family;
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(iii) For any A ∈ P(Ω) we have

MP(A) =
⋃
{MP(F ) : F ⊆f A}. (2.38)

Proof. (i) =⇒ (ii): Let P be a UCP pairing and let B = {Bi : i ∈ I} be a chain of maximum
partitioners of Ω. Let B := ∪B and s ∈ Ω \ B. Then s ∈ Ω \ Bi = Ω \MP(Bi) = S(Bi)
for all i ∈ I, because any Bi is a maximum partitioner and therefore MP(Bi) = Bi. Hence
s ∈

⋂
i∈I S(Bi) := S(B), and S(B) ⊆ S(∪B) by hypothesis, so that s ∈ S(B). This shows

that Ω \ B ⊆ S(B) = Ω \MP(B), i.e. MP(B) ⊆ B, and hence B ∈ MAXP (P). Therefore
MAXP (P) is a chain union-closed family.
(ii) =⇒ (i): LetMAXP (P) be a chain union-closed family and let A = {Ai : i ∈ I} ⊆ P(Ω) be
a chain. Since Ai ⊆ Aj implies that MP(Ai) ⊆MP(Aj), it follows that AM := {MP(Ai) : i ∈ I}
is a chain of maximum partitioners. Then by hypothesis we have that K :=

⋃
i∈IMP(Ai) ∈

MAXP (P). Let us note now that

S(A) :=
⋂
i∈I

S(Ai) =
⋂
i∈I

Ω \MP(Ai) = Ω \K. (2.39)

Then since K = MP(K), by (2.39) we deduce that

S(A) = Ω \MP(K) = S(K). (2.40)

Now, since Ai ⊆MP(Ai) for all i ∈ I, we have ∪A :=
⋃
i∈I Ai ⊆ K, therefore

S(K) ⊆ S(∪A). (2.41)

Hence, by (2.40) and (2.41) we deduce that S(A) ⊆ S(∪A). This shows that P is an UCP.
(ii) =⇒ (iii): If P is a pairing on a finite set Ω, then the thesis is obvious. Let now P be a
pairing on an infinite set Ω and let A ⊆ Ω. We endow A with a well-order <. Set

C(a) := {b ∈ A : b < a}

for any a ∈ A. Let us assume that the thesis holds for sets whose cardinality is less than |A|
and, furthermore, that for any a ∈ A, the set C(a) has cardinality strictly less than |A|. In
particular, the thesis holds for C(a), for any a ∈ A. Let Q := {MP(C(a)) : a ∈ A}. It is
clearly a chain in MAXP (P). Since MAXP (P) is a chain union-closed family, we have that
the union

D :=
⋃

Q

belongs to Q. Let K :=
⋃
a∈AC(a). Hence, we have that MP(C(a)) ⊆MP(K) for any a ∈ A,

so D ⊆ MP(K). On the other hand, it is obvious that MP(K) ⊆ D, thus D = MP(K). By
transfinite inductive hypothesis, the thesis holds for C(a), for any a ∈ A. We observe that for
any F ⊆f A, there exists a ∈ A such that F ⊆f C(a). This shows the claim.
(iii) =⇒ (ii): Let C be a non-empty chain of maximum partitioners in MAXP (P) and let
B :=

⋃
C. We will show that B ∈ MAXP (P). To this regard, assume by contradiction that

there exists F ⊆f
⋃
C such that F 6⊆f C for any C ∈ C. Let us fix a ∈ F . Then, just take
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C1, C2 ∈ C such that x ∈ C1 and F \ {a} ⊆ C2. Therefore, if C1 ⊆ C2, we would have F ⊆ C2,
that is an absurd and, analogously, if C2 ⊆ C1, then F ⊆ C1, once again a contradiction. Thus,
we conclude that for any F ⊆f

⋃
C, there must be C ∈ C containing it. Furthermore, we must

have MP(F ) ⊆ C ⊆ B so, by our hypothesis, the claim has been showed.

In the next result, we provide some sufficient condition in order to verify the existence of a
maximal element for any non-empty subfamily A of MAXP (P).

Theorem 2.4.6. If MAXP (P) is a chain union-closed family and for any C ∈ MAXP (P)
there exists F ⊆f C such that F ≈P C, then any non-empty subfamily A of MAXP (P) admits
a maximal element.

Proof. Let A be a non-empty subfamily of MAXP (P). Since MAXP (P) is a chain union-
closed family, then

⋃
K ∈MAXP (P) for any K chain in MAXP (P). Therefore, let us take a

chain K in A, so C :=
⋃
K ∈MAXP (P). By our assumption, there exists F ⊆f C such that

F ≈P C. Let us define the map φ : a ∈ F 7→ Aa ∈ K, where Aa is a maximum partitioner in
K containing a. Then, we obtain a finite chain {Aa : a ∈ F} in A clearly having a maximal
element, that we call Ab, for some b ∈ F . Thus, Ab ∈ MAXP (P). Since F ⊆ Ab ⊆ C, we
deduce that MP(Ab) = Ab = C. But since K is a maximal chain, we conclude that Ab is a
maximal element in A and this completes the proof.

As a consequence, we show that R is a UCP pairing.

Theorem 2.4.7. R is a UCP pairing.

Proof. Let us prove that MAXP (R) is a chain union-closed family. Let A = {Ai : i ∈ I}
be a chain of maximum partitioners of R and let A :=

⋃
i∈I Ai. Let a /∈ A and suppose

a − 2, a + 2, a + 4 ∈ A. Since A is a chain, there exists i ∈ I such that a − 2, a + 2 and
a + 4 are all in Ai. It follows that a − 4 /∈ Ai and thus for all j ∈ I such that Aj ⊆ Ai,
a − 4 /∈ Aj . Moreover if j ∈ I is such that Ai ⊆ Aj , then a − 2, a + 2, a + 4 ∈ Aj thus, since
Aj ∈MAXP (R), a− 4 /∈ Aj . We conclude that a− 4 /∈ A and A ∈MAXP (R).
Let us suppose now |R \ A∗| ≤ 1 and that a + 2 /∈ A and a − 2 ∈ A. We have to prove that
a − 4 /∈ A. If a − 4 ∈ A then for some i ∈ I, |R \ A∗i | ≤ 1, a + 2 /∈ Ai, a − 2 ∈ Ai and
a− 4 ∈ Ai and this contradicts the fact that Ai is a maximum partitioner. Moreover it can not
hold simultaneusly that both a + 2 and a − 2 do not belong to A, because in this case, since
a /∈ A, it would hold that |R \A∗| ≥ 1, contradicting our assumption.
Suppose a+ 4 ∈ A. If a− 2 /∈ A, then a+ 2 ∈ A and there exists i ∈ I such that |R \A∗i | ≤ 1,
a+ 2 ∈ Ai, a− 2 /∈ Ai and a+ 4 ∈ Ai, but this is impossible because Ai ∈MAXP (R). Finally
suppose that both a − 4 and a + 4 are in A. Then, in this case for some i ∈ I, |R \ A∗i | ≤ 1,
a− 4 ∈ Ai and a+ 4 ∈ Ai, so Ai is not a maximum partitioner by Proposition 2.3.17, which is
a contradiction. It follows that A ∈MAXP (R).

2.4.1 Coverings and UCP Pairings

In this subsection, we analyze which conditions must be satisfied in order to find a covering on
Ω constituted by maximum partitioners having well specific topological properties.
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Let A,B be two non-empty subsets of Ω. We set

EP(A,B) := {a ∈ Ω : A ∩MP(B ∪ {a}) 6= ∅}

and we call EP(A,B) the B-expansion of A.

In the following proposition we establish some basic properties for the above expansion.

Proposition 2.4.8. The following conditions hold:
(i) A ⊆ EP(A,B);
(ii) If A ∩B 6= ∅, then MP(A ∪B) ⊆ EP(A,B);
(iii) If C ⊆ A and D ⊆ B, then EP(C,D) ⊆ EP(A,B);
(iv) EP(A,B) =

⋃
a∈A

EP({a}, B).

Proof. Straightforward.

At this point we provide some sufficient conditions ensuring that EP(A,B) ∈MAXP (P).

Theorem 2.4.9. Let P be a UCP pairing and A,B ∈MAXP (P) be two non-empty maximum
partitioners. Assume that EP(MP(F ),MP(G)) ∈ MAXP (P) for any F ⊆f A and G ⊆f B.
Then EP(A,B) ∈MAXP (P).

Proof. Since P is a UCP pairing, we must prove that the maximum partitioner of each finite
subset of EP(A,B) belongs to EP(A,B). For this, let us consider c1, . . . , cn ∈ EP(A,B). By
definition of B-expansion of A, there exist a1, . . . , an such that ai ∈ A ∩MP(B ∪ {ci}). Since
P is a UCP pairing, for each index i there exists Gi ⊆f B such that ai ∈ MP(Gi ∪ {ci}).

Thus, we set F := {a1, . . . , an} and G :=
n⋃
i=1

Gi. It is obvious that ci ∈ EP({ai},MP(G)). By

(iv) of Proposition 2.4.8, it follows that ci ∈ EP(MP(F ),MP(G)) for any i = 1, . . . , n which is
a maximum partitioner by our assumption. But by (iii) of Proposition 2.4.8, it follows that
EP(MP(F ),MP(G)) ⊆ EP(A,B), so MP({c1, . . . , cn}) ⊆ EP(A,B) and, by the arbitrariness of
c1, . . . , cn, the claim has been proved.

We now characterize the existence of a MP-split for any pair of disjoint maximum parti-
tioners of a UCP pairing in terms of the expansions of pairs of finite subsets whose maximum
partitioners are disjoint from each other.

Theorem 2.4.10. Let P ∈ PAIR(Ω) be a UCP pairing. Then the following conditions are
equivalent:
(i) For each F,G ⊆f Ω such that MP(F ) ∩MP(G) = ∅, there exists a covering {A,B} on Ω
such that {MP(F ),MP(G)} oMP

{A,B}.
(ii) For any F,G ⊆f Ω, we have that EP(MP(F ),MP(G)) ∈MAXP (P).
(iii) For any A,B ∈MAXP (P) such that A ∩B = ∅, there exists a MP-complemented subset
C ∈ P(Ω) such that {A,B} oMP

{C,Cc}.
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Proof. (i) =⇒ (ii): Suppose by contradiction there exist F,G ⊆f Ω such that

EP(MP(F ),MP(G)) /∈MAXP (P)

Let C := MP(EP(MP(F ),MP(G))) and let a ∈ C \ EP(MP(F ),MP(G)). This means that
MP(F )∩MP(MP(G)∪{a}) = ∅. Let A,B ∈MAXP (P) such that {MP(F ),MP(G)∪{a}}oMP

{A,B}. Hence, MP(F ) ∩A = ∅ = (MP(G) ∪ {a}) ∩B, i.e.

MP(G) ∪ {a} ⊆ A \B and MP(F ) ⊆ B \A. (2.42)

A fortiori, we have that G ∪ {a} ⊆ A \B. Nevertheless, it is straightforward that C ⊆ B since
if b ∈ E(MP(F ),MP(G)), then MP(F ) ∩MP(G) ∪ {b} 6= ∅, so b ∈ B. In particular, it follows
that a ∈ B, contradicting (2.42).
(ii) =⇒ (iii): Let A,B ∈MAXP (P). Surely, we can always find two maximum partitioners
A′ and B′ containing respectively A and B and maximal with respect to the property of being
disjoint. Clearly, if one of them is empty, then Ω is the MP-complemented subset we are
searching for. Therefore, let us assume that A′ and B′ are both non-empty and let a ∈ (B′)c.
By maximality, it follows that MP(B′ ∪ {a}) ∩ A′ 6= ∅. This proves that B′ ⊆ Ω \ EP(A′, B′),
which belongs to MAXP (P) by Theorem 2.4.9. Thus, we have found a maximum partitioner
EP(A′, B′) such that A′ ⊆ EP(A′, B′) and B′ ⊆ Ω \ EP(A′, B′). In particular, by maximality,
it is immediate to prove that B′ = Ω \ EP(A′, B′).
Finally, we must prove that A′ ∪ B′ = ∅. Suppose by contradiction the claim is false. We
firstly observe that A′ $ EP(A′, B′). In fact, if c ∈ Ω \ (A′ ∪ B′) = (A′)c ∩ (B′)c then, since
B′ = Ω \EP(A′, B′), it results that A′ $ EP(A′, B′). Now, again by maximality, it follows that
EP(A′, B′) ∩ B′ 6= ∅ or, equivalently, there exists b ∈ B′ such that MP(B′ ∪ {b}) ∩ A′ 6= ∅, i.e.
A′ ∩B′ 6= ∅, contradicting our assumptions. This proves the thesis.
(iii) =⇒ (i): Obvious.

2.5 Recursive Properties of MP in UCP Pairings

In this section, we investigate further properties of the set operator MP. In particular, we
find the conditions needed to express MP(A ∪ {b}) as the union of the maximum partitioners
MP({a, b}) for any a ∈ A. In other terms, we provide some conditions whose main effect
consists of a recursive-like action of the closure operator MP on subset A ∪ {b}.

Definition 2.5.1. Let A ∈ MAXP (P) and b ∈ Ω. We say that the pair (A, b) is MP-union
decomposable if

MP(A ∪ {b}) =
⋃
a∈A

MP({a, b}). (2.43)

We say that the pairing P is MP-union decomposable if any pair (A, b) ∈ MAXP (P) × Ω is
MP-union decomposable.

We now define a specific tipology of pairing that will be useful in the sequel.

Definition 2.5.2. We say that a pairing P ∈ PAIR(Ω) is finitary if |MP(F )| < ∞ for any
F ⊆f Ω. We denote by PAIRfin(Ω) the family of all finitary pairings.
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We now show that a finitary pairing P is MP-union decomposable whenever the property
of a maximum partitioner A to be covered by a finite number of maximum partitioner Ai is
inherited by A ∪ {b}, where b /∈ A; in such a way all its covering maximum partitioners are of
the form MP(Ai ∪ {b}).

Proposition 2.5.3. Let P be a finitary UCP pairing on Ω. The following conditions are
equivalent:

(i) P is MP-union decomposable;

(ii) Let F, F1, . . . , Fn ⊆f Ω, A := MP(F ), Ai := MP(Fi). If A ⊆
n⋃
i=1

Ai, for any b ∈ Ω \ A it

results that

MP(A ∪ {b}) ⊆
n⋃
i=1

MP(Ai ∪ {b}); (2.44)

(iii) for any non-empty F ⊆f Ω and b /∈MP(F ), it results that

MP(F ∪ {b}) =
⋃

a∈MP(F )

MP({a, b}). (2.45)

Proof. (i) =⇒ (ii): Let P be a MP-union decomposable pairing. Let A,A1, . . . , An ∈

MAXP (P) such that A ⊆
n⋃
i=1

Ai and b ∈ Ω \ A. By hypothesis, for any a ∈ A there exists Ai

such that a ∈ Ai. Then {a, b} ⊆ Ai ∪ {b}. Hence, it results that

⋃
a∈A

MP({a, b}) ⊆
n⋃
i=1

MP(Ai ∪ {b}) (2.46)

and, since P is MP-union decomposable, that

MP(A ∪ {b}) ⊆
n⋃
i=1

MP(Ai ∪ {b}). (2.47)

(ii) =⇒ (iii): Let ∅ 6= F ⊆f Ω. We clearly have that

{a, b} ⊆MP(F ) ∪ {b}

for any a ∈MP(F ). Hence ⋃
a∈MP(F )

MP({a, b}) ⊆MP(MP(F ) ∪ {b})

or, equivalently, by (i) of Theorem 2.2.1,⋃
a∈MP(F )

MP({a, b}) ⊆MP(F ∪ {b}). (2.48)
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On the other hand, set Fi = MP({ai}) for any ai ∈MP(F ) and let b ∈ Ω \F . We observe that

MP(F ∪{b}) = MP(MP(F )∪{b}) ⊆
n⋃
i=1

MP(Fi∪{b}) =
n⋃
i=1

MP({ai, b}) =
⋃

a∈MP(F )

MP({a, b}).

(iii) =⇒ (i): Let A ∈ MAXP (P). If b ∈ A, then MP(A ∪ {b}) = MP(A) = A therefore it is
straightforward to see that A ⊆

⋃
a∈A

MP({a, b}).

Let now b ∈ Ω \A. Then

MP(A ∪ {b}) =
⋃

F⊆fA
MP(F ∪ {b})

that, by our hypothesis, gives⋃
F⊆fA

MP(F ∪ {b}) =
⋃

F⊆fA

⋃
a∈MP(F )

MP({a, b}) =
⋃
a∈A

MP({a, b}).

This shows (i).

Based on the results obtained in Proposition 2.5.3, we are also able to prove a more general
recursive-like property of the operator MP.

Theorem 2.5.4. Let P be a MP-union decomposable finitary UCP pairing and A1, . . . , An ∈
MAXP (P) are non-empty, then

MP(
n⋃
i=1

Ai) =
⋃

ai∈Ai,
i=1,...,n

MP({a1, . . . , an}). (2.49)

Proof. Let us observe that MP(A ∪ B) = MP(MP(A) ∪MP(B)) for any A,B ⊆ Ω. We shall
prove the theorem for two subsets A,B ∈ MAXP (P). Let |A| = k and |B| = l. We proceed
by induction on k + l. Fix k: if l = 1, the thesis follows immediately by (2.43). Let the thesis
be true for |B| ≤ l − 1 and suppose now that |B| = l. Let a ∈ MP(A ∪ B) and fix b ∈ B. By
(2.45), it results that

MP((A ∪B \ {b}) ∪ {b}) ⊆
⋃

c∈MP(A∪B\{b})

MP(b, c),

i.e. there exists c′ ∈ MP(A ∪ B \ {b}) such that a ∈ MP({b, c′}). By what we observed in the
first part of the proof, we can use the inductive hypothesis on A ∪ (B \ {b}), so there exist
a′ ∈MP(A) and b′ ∈MP(B \ {b}) such that c′ ∈MP({a′, b′}). In other terms, it results that

a ∈MP({b, c′}) = MP({a′, b, b′}) = MP({b, b′} ∪ {a′}).

Again by (2.45), there exists b′′ ∈MP({b, b′}) such that a ∈MP({a′, b′′}). Since {b, b′} ⊆ B, it
follows that b′′ ∈ B and, so, we have shown (2.49). We conclude by induction on the number
of maximum partitioners.
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2.6 Minimal Partitioners

In this section, we analyze another basic structures arising from the global symmetry rela-
tion and, moreover, we focus our attention to the relations between this new structure and
MAXP (P). To this regard, let us consider the subset family consisting of all the minimal
members of each global symmetry class, that is MINP (P), defined as follows:

MINP (P) :=
⋃
{min([A]≈P

) : A ∈MAXP (P)}. (2.50)

It is clear that the subset family MINP (P) can be considered a type of dual version of
MAXP (P). We call minimal partitioner of P any member of MINP (P).

In the next result, we show that MINP (P) is an abstract simplicial complex and, moreover,
we provide the so-called global-local regularity, according to which the inclusion between the
maximum elements of two any global symmetry classes preserves the same type of inclusion
between any two members of these classes.

Theorem 2.6.1. The following hold.
(i) Let Ci $ Cj be two subsets of Ω. Then, if X ∈ [Ci]≈P

and Y ∈ [Cj ]≈P
we have Y * X.

(ii) Let A ∈ P(Ω) and C ⊆ B ⊆ A with B ∈ MINP (P). Then πP(C \ {x}) 6= πP(C) for any
x ∈ C.
(iii) MINP (P) ∈ ASC(Ω).
(iv) MINP (P) = {A ∈ P(Ω) : a /∈MP(A \ {a}) ∀a ∈ A}.

Proof. (i): Since Ci and Cj are two distinct maximum partitioners such that Ci $ Cj , we have
πP(Cj) ≺ πP(Ci). Now, by absurd, let X ∈ [Ci]≈P

and Y ∈ [Cj ]≈P
such that Y ⊆ X. Then

πP(Ci) = πP(X) � πP(Y ) = πP(Cj), that is a contradiction.
(ii) : Let us suppose by contradiction that there exists x ∈ C such that πP(C \ {x}) = πP(C).
Then, since C \ {x} ⊆ B \ {x}, we have

πP(B \ {x}) � πP(C \ {x}) = πP(C). (2.51)

Therefore, if v, v′ ∈ Ω by (2.51) it follows that

v ≡B\{x} v′ =⇒ v ≡C v′ =⇒ F (v, x) = F (v′, x) =⇒ v ≡B v′,

therefore
πP(B \ {x}) � πP(B). (2.52)

On the other hand, since we also have πP(B) � πP(B \ {x}), by (2.52) we deduce that πP(B \
{x}) = πP(B), that is in contrast with the hypothesis that B ∈ BASP(A). This concludes the
proof.
(iii): Let C ∈MINP (P). Then, there exists B ∈MAXP (P) such that C ∈ min([B]≈P

). Let
K $ C, then there exists B′ ∈ MAXP (P) such that K ∈ [B′]≈P

. Suppose by contradiction
that K /∈ min([B′]≈P

), then there exists K ′ $ K such that K ′ ∈ min([B′]≈P
). Hence, there is

x ∈ K \K ′. We deduce that
K ′ ⊆ K \ {x} ⊆ K
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i.e.
πP(K) � πP(K \ {x}) � πP(K ′).

But since πP(K) = πP(K ′) = πP(B), we conclude that πP(K) = πP(K \ {x}), contradicting
part (ii). Hence K ∈MINP (P).
(iv): Let A ∈ MINP (P) and a ∈ A. Then A \ {a} /∈ [A]≈P

, so MP(A \ {a}) /∈ [A]≈P
.

Since A \ {a} $ A, we have πP(A) � πP(A \ {a}). Moreover, suppose by contradiction that
a ∈ MP(A \ {a}). Then A ⊆ MP(A \ {a}) and MP(A) ⊆ MP(A \ {a}). By (vi) of Theorem
2.2.1, we have πP(A \ {a}) � πP(A), so πP(A \ {a}) = πP(A) and A \ {a} ∈ [A]≈P

, that is an
absurd. So a /∈MP(A \ {a}) and MINP (P) ⊆ {A ∈ P(Ω) : a /∈MP(A \ {a}) ∀a ∈ A}. On the
other hand, let A ∈ P(Ω) such that a /∈MP(A \ {a}) for any a ∈ A. Suppose by contradiction
that A ∈ MINP c(P), i.e. there exists B $ A such that πP(A) = πP(B). Then, there exists
a ∈ A such that B ⊆ A \ {a} ⊆ A. This implies that πP(A) � πP(A \ {a}) � πP(B), i.e.
πP(A \ {a}) = πP(A). In other terms, we have MP(A \ {a}) = MP(A) ⊇ A, contradiction.

By Theorem 2.6.1, it follows immediately that we obtain a map MINPP : P(Ω)→ SS(Ω)
such that MINPP(Ω) = MINP (P) and

MINPP(A) ∈ ASC(A), (2.53)

for any A ∈ P(Ω).

2.7 Minimal Partitioners On Several Examples

In this section, we deal with the characterization of the minimal partitioners of some pairings,
namely the simple undirected n-cycle, a vector space with a bilinear form and the euclidean
real line.

2.7.1 Graphs: The n-Cycle Case

In the next result, we characterize the minimal partitioners of Cn.

Theorem 2.7.1. Let G = Cn and A ⊆ V (Cn). Then A ∈ MINP (G) if and only if for any
vi ∈ A it holds one of the following conditions:
(i) (vi−2 /∈ A or vi+2 /∈ A) and (BG(A) 6= ∅);
(ii) (vi−2 ∈ A and vi−4 /∈ A) or (vi+2 ∈ A and vi+4 /∈ A).

Proof. Let A ⊆ V (G) and suppose there exists vi ∈ A such that both (i) and (ii) are false. If
BG(A) = ∅, then

BG(A \ {vi}) =


{vi−1} if vi−2 /∈ A and vi+2 ∈ A,
{vi+1} if vi−2 ∈ A and vi+2 /∈ A,
{vi−1, vi+1} if vi−2 /∈ A and vi+2 /∈ A,
∅ otherwise.
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Moreover, since vi−2 ∈ A =⇒ vi−4 ∈ A and vi+2 ∈ A =⇒ vi+4 ∈ A, then

CG(A \ {vi}) =

{
CG(A) \ {vi} if vi−2 /∈ A and vi+2 /∈ A,
CG(A) otherwise.

In all cases we obtain A ≈P A \ {vi}, so A /∈MINP (G).
Let us suppose now that A /∈MINP (G) and let vi ∈ A such that A ≈P A \ {vi}. Then, there
exist vj , vk ∈ V (G) such that vj ≡A\{vi} vk and vj 6≡A vk. This happens if and only if the
following assertions are false:
(1) vj , vk ∈ BG(A \ {vi}), {vj , vk} * BG(A) and BG(A) 6= ∅;
(2) vi−2 ∈ CG(A) or vi+2 ∈ CG(A).
These conditions are equivalent to conditions (i) and (ii) respectively. This proves the theorem.

2.7.2 Vector Spaces

Let V be a vector space. If k is a non negative integer and dim((H) = k, we write H 6k V .
Let us assume that V is a vector space of dimension n over K and ϕ is (left) non degenerate.
Let P be the (V,K, ϕ)-VBP. We have the following characterizations.

Theorem 2.7.2. (i) MAXPP(A) = {H ∩A : H 6 V };
(ii) MINPP(A) = {C : C ⊆li A} ∪ ∅};
(iii) if A ∈ MAXP (P), u, u′ ∈ V \ A and MP(A ∪ {u}) = MP(A ∪ {u′}), then Span({u}) =
Span({u′}).

Proof. (i): By (iii) of Proposition 2.3.21, it is immediate to see that MAXP (P) = {H : H 6
V }. Hence, by the definition of MAXPP(A), it results that MAXPP(A) = {H ∩A : H 6 V }.
(ii): Again by (iii) of Proposition 2.3.21, it is immediate to see that MINP (P) = {C : C ⊆li
V } ∪ ∅}, that is the family consisting of all the possible bases of any vector subspace H of V
and of the null space. Hence, let us consider A ⊆ V . Then MINPP(A) = {C ∈ MINP (P) :
C ⊆ A}, i.e. MINPP(A) = {C : C ⊆li A} ∪ ∅}.
(iii): Let x ∈ Span({u}), then x = λu for some λ ∈ K. So, x ∈ Span(A) + Span({u}) =
Span(A) + Span({u′}) since ϕ is (left) nondegenerate, therefore x ∈ Span(A) + Span({u′}),

i.e. x ∈ Span({u′}). The converse is analogous.

Remark 2.7.3. The property of the operator MP for a VBP established in (iii) of Theorem
3.3.1 can be considered a weak version of the classical exchange property for a closure operator.

2.7.3 The Euclidean Real Line

We now characterize the minimal partitioners of the real euclidean line and then show that
MINP (R) is a finitary abstract complex on R.

Proposition 2.7.4. A ∈ MINP (R) if and only if for any a ∈ A it results that a − 4 /∈ A or
a+ 4 /∈ A.
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Proof. To say that A ∈MINP (R) is equivalent to require that πP(A\{a}) 6= πP(A). In other
terms, for any a ∈ A there exist x, y ∈ R such that x ≡A\{a} y and x 6≡A y. It is straightforward
to see that the only possibility is that {x, y} = {a−3, a−1} or {x, y} = {a+1, a+3}. Therefore,
one of the conditions a− 4 /∈ A or a+ 4 /∈ A must hold.

Theorem 2.7.5. MINP (R) is a finitary abstract complex on R.

Proof. By (iii) of Proposition 2.6.1, MINP (R) is an abstract simplicial complex on R.
Let now A ⊆ R. We prove that if F ∈ MINP (R) for any F ⊆f A then A ∈ MINP (R). For,
assume by contradiction that A /∈MINP (R). Thus, there exists a ∈ A such that a−4, a+4 ∈
A. Let us consider the finite set F = {a− 4, a, a+ 4}. By Proposition 2.7.4, we conclude that
F /∈MINP (R), contradicting our assumption.
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Chapter 3

Symmetry Set Systems Induced by
a Pairing

In this chapter we will represent by pairings a particular structure on a finite set Ω, called dis-
symmetry space, that generalizes the symmetry relation since it takes account of the conditions
to ”discern in Ω” two elements x, x′ of a given set X. Secondly, we introduce the main set
systems arising from the symmetry relation, that’s to say symmetry bases, core and symmetry
essentials. We investigate their interrelations by means of an operatorial standpoint.

3.1 Dissymmetry Spaces

We now introduce the notion of dissymmetry space on Ω.

Definition 3.1.1. A dissymmetry space on Ω is a structure D = 〈X,D〉, where X is a non-
empty set and D : X × X → P(Ω) is a map, called local dissymmetry map of D having the
following properties:
(i) D(x, x) = ∅ for each x ∈ X.
(ii) D(x, x′) = D(x′, x) for all x, x′ ∈ Ω.
(iii) D(x, x′) =

⋂
x′′∈X [D(x, x′′) ∪D(x′, x′′)].

We say that D is a finite dissymmetry space if both X and Ω are finite.

Remark 3.1.2. The reader can easily verify that the property (iii) of Definition 3.1.1 is
equivalent to the following:
(iii′) y ∈ D(x, x′) if and only if, for all x′′ ∈ Ω, y /∈ D(x, x′′) =⇒ y ∈ D(x′, x′′).

In the above definition, the three properties (i)–(iii) are the counterpart of the reflexivity,
symmetry and transitivity properties of an symmetry relation. Indeed, (i) says that an element
x is not discernible from itself, (ii) says that what distinguishes x from x′ is exactly the same
of what distinguishes x′ from x and (iii) expresses the idea that if x, x′ differ on a property y,
then there does not exist an element x′′ which is equal to both x and x′ on property y.

Given a pairing P ∈ PAIR(Ω) and fixed A ∈ P(Ω), let us define the map ∆P
A : U × U →

P(A) as follows
∆P
A(u, u′) := {a ∈ A : F (u, a) 6= F (u′, a)}, (3.1)
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for any u, u′ ∈ U .
In particular, we set ∆P := ∆P

Ω , so that ∆P
A(u, u′) = ∆P(u, u′) ∩ A. Let us observe that

∆P
A(u, u′) is the subset of all elements a ∈ Ω which discern ui from uj .

Therefore we call ∆P
A(u, u′) the A-dissymmetry neighborhood of u and u′ and A-dissymmetry

set system the subset family

DISP(A) := {∆P
A(u, u′) : u, u′ ∈ U and ∆P

A(u, u′) 6= ∅}. (3.2)

In particular, we set DIS(P) := DISP(Ω).

If P ∈ PAIR(Ω) is a finite pairing, we consider the A-dissymmetry matrix ∆[P] of P, that
is the m×m matrix with entries (dij), where

dij := ∆P
A(ui, uj). (3.3)

Let us note that ∆[P] is a symmetric matrix such that ∆P(ui, ui) = ∅ for all i = 1, . . . ,m.
Moreover, in the finite case, if k ∈ {1, . . . , n}, we set DISk(P) := {C ∈ DIS(P) : |C| = k}.

The following result relates the subsets ∆P
A(u, u′) to the local symmetry relations.

Proposition 3.1.3. Let D ⊆ A and u, u′ ∈ U . Then:
(i) D = ∆P

A(u, u′) =⇒ u ≡A\D u′;

(ii) u ≡A\D u′ =⇒ ∆P
A(u, u′) ⊆ D;

(iii) ∆P
A(u, u′) ∩D = ∅ ⇐⇒ u ≡D u′.

Proof. (i) : Let a ∈ A \D. Then, we have F (v, a) = F (w, a), therefore v ≡A\D w.
(ii) : By hypothesis, F (v, a) = F (w, a) for all a ∈ A \D. This means that the set of elements
of A for which the values of F (v, a) and F (w, a) are different, i.e. ∆P

A(v, w), stays in the

complement of A \D. Therefore ∆P
A(v, w) ⊆ D.

(iii) : Let ∆P
A(v, w)∩D = ∅. This is equivalent to require that for all c ∈ D, F (v, c) = F (w, c)

or, equivalently, v ≡D w.

In what follows, we will prove that to each finite dissymmetry space corresponds a pairing.
In fact, let us notice that the following result holds.

Proposition 3.1.4. Let P ∈ PAIR(Ω) be a pairing. Then, the map ∆P : U × U → P(Ω)
satisfies the following properties:
(i) ∆P(u, u) = ∅ for all u ∈ U ;
(ii) ∆P(u, u′) = ∆P(u′, u) for all u, u′ ∈ U ;
(iii) ∆P(u, u′) =

⋂
u′′∈U [∆P(u, u′′) ∪∆P(u′, u′′)].

Proof. Parts (i) and (ii) are obvious. Let us prove part (iii). Let a ∈ ∆P(u, u′) and let u′′ ∈ U .
If a /∈ ∆P(u, u′′), then it means that F (u, a) = F (u′′, a). But since a ∈ ∆P(u, u′) we have
F (u′, a) 6= F (u, a) = F (u′′, a) and thus a ∈ ∆P(u′, u′′). This proves the claim.

Remark 3.1.5. By Proposition 3.1.4, if P is a pairing, the structure D[P] := 〈U,∆P〉 is a
dissymmetry space, that we call dissymmetry space of the pairing P.
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We describe now a method to associate a pairing PD to any finite dissymmetry space 〈X,D〉
on Ω in such a way that ∆PD = D.

Let X = {x1, . . . , xm} be a finite set and let D : X ×X → P(Ω) be an arbitrary map. Let
us construct a pairing PD = (U,Λ, F ) in the following way. We set U := X and define a map
F : U × Ω→ N with the following recursive method:

1. For each yj ∈ Ω, set F (x1, yj) := 1.

2. Let i ∈ {2, . . . , m} and j ∈ {1, . . . , n} and we assume to have inductively defined the
values F (xs, yj), for s = 1, . . . , i− 1.

3. We set Sij := {s : s ∈ {1, . . . , i− 1} ∧ yj /∈ D(xs, xi)} and tij := minSij if Sij 6= ∅.

4. We set then

F (xi, yj) :=

{
F (xtij , yj) if Sij 6= ∅
1 + max

1≤s≤i−1
F (xs, yj) otherwise.

5. Finally we set Λ := Im(F ).

Example 3.1.6. Let X = {u1, u2, u3, u4}, Ω = {a1, a2, a3, a4} and D : X × X → P(Ω)
represented by the matrix below:

u1 u2 u3 u4

u1 ∅ {a1, a3} {a1, a2} {a4}
u2 * ∅ {a1, a2, a4} {a3, a4}
u3 * * ∅ {a2, a4}
u4 * * * ∅

Firstly, we set F (u1, ai) = 1 for i = 1, 2, 3, 4. We represent below the table of Si,j for
i = 2, 3, 4 and j ∈ {1, 2, 3, 4}.

S2,1 = ∅ S2,2 = {1} S2,3 = ∅ S2,4 = {1}
S3,1 = ∅ S3,2 = ∅ S3,3 = {1, 2} S3,4 = {1}
S4,1 = {1, 2, 3} S4,2 = {1, 2} S4,3 = {1, 3} S4,4 = ∅

Therefore, we obtain the following pairing:

a1 a2 a3 a4

u1 1 1 1 1

u2 2 1 2 1

u3 3 2 1 1

u4 1 1 1 2

and, in particular, Λ = {1, 2, 3}.

We have then the following result.
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Theorem 3.1.7. Let 〈X,D〉 be a dissymmetry space and let PD = (U,Λ, F ) be the finite
pairing built above. Then ∆PD = D.

Proof. Let xk, xi ∈ U . If k = i, then, by their definitions, both ∆PD(xk, xi) and D(xk, xi) are
equal to the empty set. Without loss in generality we can suppose in what follows k < i. Let
us recall the definition of the map ∆PD :

∆PD(xk, xi) := {yj ∈ Ω : F (xk, yj) 6= F (xi, yj)}.

In order to prove that ∆PD(xk, xi) ⊆ D(xk, xi), we claim that, ∀h ∈ Sij , Shj = Sij∩{1, . . . , h−
1}. In fact, if this holds then clearly, ∀h ∈ Sij , F (xh, yj) = F (xi, yj), so if yj /∈ D(xk, xi), then
F (xk, yj) = F (xi, yj) and thus yj /∈ ∆PD(xk, xi). This is equivalent to say that ∆PD(xk, xi) ⊆
D(xk, xi).

Let us prove the claim. Let h ∈ Sij . If Shj = ∅, then obviously Shj ⊆ Sij ∩ {1, . . . , h− 1}.
Let us suppose Shj 6= ∅ and let s ∈ Shj . In this case it holds yj /∈ D(xs, xh) and yj /∈ D(xh, xi),
so, by condition (iii′) of Remark 3.1.2, yj /∈ D(xs, xi) and thus s ∈ Sij ∩ {1, . . . , h − 1}.
Conversely if Sij ∩ {1, . . . , h− 1} = ∅, then clearly Sij ∩ {1, . . . , h− 1} ⊆ Shj . Le us suppose
then that Sij ∩ {1, . . . , h− 1} 6= ∅ and let s ∈ Sij ∩ {1, . . . , h− 1}. As before this means that
yj /∈ D(xs, xi) and since yj /∈ D(xh, xi), by (iii′) of Remark 3.1.2, yj /∈ D(xs, xh), so s ∈ Shj
and the claim is proved.

Let yj ∈ D(xk, xi). If Sij = ∅, by definition we have F (xi, yj) = 1 + max
1≤s≤i−1

F (xs, yj) 6=

F (xk, yj), so yj ∈ ∆PD(xk, xi). Let Sij 6= ∅. If F (xk, yj) = F (xi, yj), by (iii′) of Remark 3.1.2
it is straightforward to prove that there exists h such that 1 ≤ h ≤ k < i, yj /∈ D(xh, xk)
and yj /∈ D(xh, xi) or, equivalently, by (iii) of Definiton 3.1.1, that yj /∈ D(xk, xi) and this
is a contradiction. Then F (xk, yj) 6= F (xi, yj) and thus yj ∈ ∆PD(xk, xi). This proves the
theorem.

3.2 Symmetry Set Systems Induced by a Pairing

In this section we introduce some new set systems induced by A-symmetry relation and study
their main properties. To this regard, we introduce the notion of A-symmetry base.

Definition 3.2.1. Let B ⊆ A. We say that B is an A-symmetry base of P if:

(R1) πP(A) = πP(B);

(R2) πP(A) 6= πP(B′) for all B′ $ B.

We denote by BASP(A) the family of all A-symmetry bases of P and we set BAS(P) :=
BASP(Ω). We call symmetry bases of P the members of BAS(P). If P is a finite pairing on
Ω and if k ∈ {1, . . . , n}, we set BASk(P) := {C ∈ BAS(P) : |C| = k}.

We now provide some basic properties of A-symmetry bases.

Theorem 3.2.2. (i) BASP(A) = {B : B ∈ min([A]≈P
), B ⊆ A} for any A ∈ P(Ω).

(ii) BASP(A) ⊆ max(MINPP(A)) for any A ∈ P(Ω).
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1 2 3 4 5

u1 0 0 1 2 1

u2 1 0 2 2 0

u3 2 1 0 1 1

u4 1 1 2 0 2

u5 1 0 0 0 2

u6 0 1 2 2 0

Figure 3.1: The Functional Table P

Proof. (i): Let C ∈ BASP(A). Then, for any C ′ $ C, we have that πP(A) = πP(C) 6= πP(C ′).
This means that C is minimal in [A]≈P

.
Conversely, let C ∈ min([A]≈P

). Then πP(C) = πP(A). Moreover, let C ′ $ C. By the
minimality of C, it follows that C ′ /∈ [A]≈P

, whence πP(C ′) 6= πP(A). This shows that C
satisfies both the conditions of Definition 3.2.1, i.e. C ∈ BASP(A).
(ii): Let C ∈ BASP(A), then C ⊆ A and C ∈ min([A]≈) ⊆ MINP (P) by part (i). This
proves that C ∈ MINPP(A). Suppose by contradiction that BASP(A) * max(MINPP(A)),
i.e. there exists D ∈ MINPP(A) such that C $ D. Then, πP(D) � πP(C) = πP(A). On the
other hand, by the fact that D ∈MINPP(A), we deduce that πP(A) � πP(D). Therefore, we
infer that D ≈P A. It is now straightforward to see that it is in contrast with our choice of
D.

Let us note here that the inclusion established in (iii) of Theorem (3.2.2) cannot be reversed,
as we see in next example.

Example 3.2.3. Let P be the functional table given in Figure 3.1 and A = {2, 3, 5}. Then,
we have that

BASP(A) = {{2, 5}} $ max(MINPP(A)) = {{2, 3}, {2, 5}, {3, 5}}

We now provide the deep link between relative maximum partitioners and BASP(A).

Proposition 3.2.4. Let B ∈ MAXPP(A) such that B $ A. Then A \ B is a transversal of
BASP(A).

Proof. Suppose by contradiction that A \B is not a transversal of BASP(A), i.e. there exists
C ∈ BASP(A) such that C ∩ (A \B) = ∅. Thus, C ⊆ B $ A. In particular, it results that

MP(C) ⊆MP(B) ⊆MP(A),

but MP(C) = MP(A), so MP(A) = MP(B). Since there exists D ∈ MAXP (P) such that
B = A ∩D, we observe that MP(B) ⊆ D, hence

A ⊆MP(A) ⊆ D

or, equivalently, B = A∩D = A, contradiction. Therefore, A \B is a transversal of BASP(A).
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Figure 3.2: Diagram of I(P).
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We now provide the notion of core.

Definition 3.2.5. Let A ∈ P(Ω). An element a ∈ A is said indispensable if πP(A) 6= πP(A \
{a}). The subset of all indispensable elements of A is called the core of A and it is denoted by
CP(A). In particular, we set CORE(P) := CP(Ω).

Let us prove that the core of A is given by the intersection of all A-symmetry bases when
Ω is finite.

Proposition 3.2.6. We have that:

CP(A) :=
⋂
{C : C ∈ BASP(A)}. (3.4)

when Ω is finite.

Proof. Let a ∈
⋂
{C : C ∈ BASP(A)} and assume by contradiction that a /∈ CP(A). This

implies that πP(A) = πP(A \ {a}) and, in particular, the existence of a subset B ⊆ A \ {a}
belonging to BASP(A \ {a}. But we also have B ∈ BASP(A), contradicting the fact that
a ∈

⋂
{C : C ∈ BASP(A)}.

On the other hand, let a ∈ CP(A). Let B ∈ BASP(A) and assume by contradiction that a /∈ B.
This implies B ⊆ A \ {a}, so πP(A) � πP(A \ {a}) � πP(B) = πP(A), but this would mean
that a /∈ CP(A), leading us to a contradiction.

Actually, the core can be interpreted from an operatorial perspective, therefore we use the
following terminology.

Definition 3.2.7. We call the set operator CP the P- core operator.

We can now pass to examine the main properties of the core operator. In particular, the
P-maximum partitioner operator and the P-core operator are related in the following way.

Proposition 3.2.8. For any A ∈ P(Ω) we have that:

(i) CP(A) = {a ∈ A : MP(A \ {a}) $MP(A)};

(ii) CP(A) = {a ∈ A : a /∈MP(A \ {a})};

(iii) CP(A) = {a ∈ A : A \ {a} ∈MAXPP(A)};

(iv) MP(A) = {b ∈ Ω : b /∈ CP(A ∪ {b})};

(v) CP(MP(A)) ⊆ A.

Proof. Part (i) follows directly by the definitions of CP(A) and MP(A).
For (ii), let us observe that a /∈MP(A \ {a}) if and only if MP(A \ {a}) 6= MP(A), i.e. if and
only if πP(A) 6= πP(A \ {a}).
(iii): Let a ∈ CP(A). We must show that A \ {a} ∈ MAXPP(A), i.e. there exists B ∈
MAXP (P) such that A \ {a} = A ∩ B. Let us assume by absurd that A \ {a} 6= A ∩ B for
any B ∈MAXP (P). Since πP(A) 6= πP(A \ {a}), then A \ {a} 6≈P A. Let B be the maximum
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partitioner of [A \ {a}]≈P
. Clearly, A \ {a} ⊆ B and we have A \ {a} ⊆ A∩B therefore, by our

assumption, it follows that A \ {a} $ A ∩ B. Hence A ∩ B = A, i.e. A ⊆ B. It follows that
πP(B) = πP(A\{a}) � πP(A) � πP(A\{a}) = πP(B), i.e. πP(A) = πP(B), that is equivalent
to say that A ≈P B ≈P A \ {a}, that is an absurd. Thus A \ {a} ∈MAXPP(A).
Conversely, let a ∈ A such that A \ {a} ∈ MAXPP(A). Hence, there exists B ∈ MAXP (P)
such that A\{a} = B∩A. IfB = A\{a}, then A\{a} ∈MAXP (P). In this case, by maximality
of A \ {a}, then A /∈ [A \ {a}]≈P

, so πP(A) 6= πP(A \ {a}), therefore a ∈MAXPP(A) ⊆ CP(A)
and the claim is proved. Otherwise, let A\{a} $ B. Clearly, it results that a /∈ B. Furthermore,
it results πP(B) � πP(A \ {a}). Suppose by contradiction that πP(A) = πP(A \ {a}). Then,
we have πP(B) � πP(A), so

u ≡B u′ =⇒ u ≡A u′ =⇒ F (u, a) = F (u′, a) =⇒ u ≡B∪{a} u′.

In other terms, we have shown that πP(B) � πP(B ∪ {a}). Nevertheless, we also have πP(B ∪
{a}) � πP(B), i.e. πP(B) = πP(B ∪ {a}). This contradicts the maximality of B, that is an
absurd. Thus, a ∈ CP(A).
(iv): We simply observe that MP(A) = MP(A ∪ {b} \ {b}) so b ∈ MP(A) if and only if
b /∈ CP(A ∪ {b}).
(v): Let a ∈ CP(MP(A)) and suppose by contradiction that a /∈ A. Therefore we have
A ⊆MP(A) \ {a} ⊆MP(A) and, hence, that πP(MP(A)) � πP(MP(A) \ {a}) � πP(A). Since
πP(MP(A)) = πP(A), we conclude that πP(MP(A) \ {a}) = πP(MP(A)), contradicting the
fact that a ∈ CP(A).

In the next result we establish further new properties for the P-core operator.

Theorem 3.2.9. CP is an idempotent core operator. Moreover, if Ω is finite and A ∈
MAXP (P), it results that

a ∈ A \ CP(A) ⇐⇒ there exists B ∈ P(Ω) such that a /∈ B and a ∈MP(B) ⊆MP(A).
(3.5)

Proof. We clearly have that CP(A) ⊆ A. The set operator CP is pseudo-monotone. In fact, let
a ∈ CP(B) ∩ A, then a ∈ A and πP(B \ {a}) 6= πP(A). Suppose that a ∈ MP(A \ {a}), then
a ∈MP(B \ {a}), contradicting the fact that a ∈ CP(B). Thus, a ∈ CP(A).
Let us prove that CP is quasi-regular. To this regard, let A ∈ P(Ω) and b, c ∈ Ω \ A. Assume
that b ∈ Ω \ (A ∪ σ(A ∪ {b})). This means that b ∈ MP(A ∪ {b} \ {b}), i.e. b ∈ MP(A) \ A.
Moreover, assume that c ∈ σ(A∪ {c}). This implies that c ∈ Ω \MP(A∪ {c} \ {c}) = MP(A).
In particular, it results that MP(A ∪ {b, c} \ {c}) = MP(A ∪ {b}) = MP(A), so c ∈ Ω \MP(A)
or, equivalently, c ∈MP(A ∪ {b, c}).
Let us prove idempotency. By part (i), we have that CP(CP(A)) ⊆ CP(A). On the other
hand, let a ∈ CP(A), then πP(A \ {a}) 6= πP(A), i.e. MP(A \ {a}) $ MP(A). Now, since
CP(A) ⊆ A, we deduce that a ∈ MP(CP(A) \ {a}) ⊆ MP(A \ {a}) but this would imply
that A ⊆ MP(A \ {a}) or, equivalently, MP(A \ {a}) = MP(A), contradicting the fact that
a ∈ CP(A).
Finally, we show that (3.5) holds. Let us assume Ω to be finite. Let a ∈ A \CP(A). Then, just
consider B ∈ BASP(A) such that a /∈ B. Nevertheless, we have a ∈MP(B) = MP(A).
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On the other hand, assume that a ∈ A and let B not containing a and such that a ∈MP(B) ⊆
MP(A). Now, set C := A \ {a}. Clearly, MP(C) ⊆ MP(A) = A. Moreover, we have that
B ⊆ C and a ∈ MP(B) ⊆ MP(C) so, we conclude that A ⊆ MP(C) and, hence A = MP(C).
In this way, we have shown the existence of a subset C ∈ [A]≈P

not containing a. Now, let us
observe that a /∈ D for any D ∈ BASP(C). A fortiori, since BASP(C) ⊆ BASP(A), it follows
by (3.4) that a ∈ A \ CP(A).

By means of both the operators MP and CP we can also provide the following new charac-
terization for BASP(A) and MINPP(A).

Theorem 3.2.10. Let A ∈ P(Ω). Then:

(i) MINPP(A) = {B ∈ P(A) : CP(B) = B};

(ii) MINP (P) = {B ∈ P(Ω) : CP(B) = B};

(iii) BASP(A) = {B ∈ P(A) : MP(B) = MP(A) and CP(B) = B};

(iv) BAS(P) = {B ∈ P(Ω) : MP(B) = MP(Ω) and CP(B) = B};

(v) MINP (P) = {B ∈ P(Ω) : BASP(B) = {B}}.

Proof. (i): Let B ∈ MINPP(A). Clearly, CP(B) ⊆ B. Vice versa, let b ∈ B and assume by
contradiction that πP(B \ {b}) = πP(B). This means that B is not a minimal partitioner of
P, contradicting our assumption on B.
On the other hand, let B ∈ P(A) such that CP(B) = B and suppose by contradiction that
B /∈ MINPP(A). Then, there exists B′ $ B such that B′ ≈P B and B′ ∈ MINPP(A).
In particular, B′ ⊆ B \ {b} for some b ∈ B. This entails that πP(B \ {b}) = πP(B), i.e.
b /∈ CP(B) or, equivalently, B 6= CP(B), contradicting the choice of B. This proves that
MINPP(A) = {B ∈ P(A) : CP(B) = B}.
(ii): It follows by part (i) by replacing A with Ω.
(iii): Let B ∈ BASP(A). This means that πP(B) = πP(A) and πP(B′) 6= πP(A) for any
B′ $ B. In particular, we have that MP(A) = MP(B). Furthermore, if we take B′ = B \ {b},
it follows that πP(B \ {b}) 6= πP(A). By the arbitrariness of b, we deduce that CP(B) = B.
On the contrary, let B ∈ P(A) such that MP(A) = MP(B) and CP(B) = B. Then, πP(B \
{b}) 6= πP(B) for any b ∈ B. In particular, if B′ $ B, then there exists b ∈ B for which
B′ ⊆ B \ {b}. So, πP(B′) 6= πP(B) = πP(A) and this proves that B ∈ BASP(A).
(iv): It follows by part (iii) by replacing A with Ω.
(v): Let A ∈ MINP (P), then A ∈ min([A]≈P

). Moreover, the unique subset satisfying both
conditions of Definition 3.2.1 is exactly A, that is BASP(A) = {A}.
Vice versa, suppose that BASP(A) = {A}. Then, we have that A ∈ max(MINPP(A)) and, in
particular, A ∈MINP (P).

We now show that any core operator on a finite set Ω is the P-core operator of some pairing
P ∈ PAIR(Ω).

Theorem 3.2.11. Let Ω be a finite set. If σ ∈ COOP (Ω), there exists P ∈ PAIR(Ω) such
that σ = CP.

55



Proof. Let σ ∈ COOP (Ω). Let us consider the set operator ϕ : P(Ω) → P(Ω) defined as
follows:

ϕσ(A) := A ∪A∗, (3.6)

where A∗ := {b ∈ Ω : b ∈ Ω \ (A ∪ σ(A ∪ {b}))}. We will prove that ϕ is a closure operator.
Clearly, ϕ is extensive. Let now A ⊆ B. It suffices to show that A∗ ⊆ ϕσ(B). Let b ∈ A∗.
Assume that b ∈ Ω \ B. Then, A ∪ {b} ⊆ B ∪ {b}, therefore, by pseudo-monotonicity, we
have that σ(A ∪ {b}) ⊇ σ(B ∪ {b}) ∩ (A ∪ {b}). But since b ∈ Ω \ σ(A ∪ {b}), it follows that
b ∈ Ω \ ((A ∪ {b}) ∩ σ(B ∪ {b})). Clearly, it implies that b ∈ Ω \ σ(B ∪ {b}) and this proves
that b ∈ Ω \ (B ∪ σ(B ∪ {b})) = B∗, i.e. b ∈ ϕσ(B). On the other hand, if b ∈ B, it is obvious
that b ∈ ϕσ(B). This proves monotonicity.
We now show that ϕ is idempotent. By extensiveness of ϕσ, it follows that ϕσ(A) ⊆ ϕσ(ϕσ(A)).
Clearly, if (ϕσ(A))∗ = ∅, then ϕσ(ϕσ(A)) ⊆ ϕσ(A). Assume now that (ϕσ(A))∗ 6= ∅ and let
b ∈ (ϕσ(A))∗. Then, b ∈ Ω \ (ϕσ(A)∪ σ(ϕσ(A)∪ {b})) = Ω \ ((A∪A∗)∪ σ(A∪A∗ ∪ {b})). Let
us prove that the condition b ∈ Ω \A ∪A∗ implies b ∈ σ(A ∪A∗ ∪ {b}).
Let us observe that since b ∈ Ω \ϕσ(A), then b ∈ σ(A∪{b}). Therefore, let us fix an integer m
and assume that b ∈ σ(A ∪B ∪ {b}) for any B ⊆ A∗ such that |B| = m− 1. Let now B ⊆ A∗

such that |B| = m and fix c ∈ B. We will prove that c ∈ Ω \ σ((A ∪ (B \ {c})) ∪ {c}) and that
b ∈ σ((A∪B \ {c})∪ {b}) so that it is possible to use quasi-regularity that, in this case, yields
c ∈ σ((A ∪ B \ {c}) ∪ {b, c}) = σ(A ∪ B ∪ {b}), showing the claim for B. In particular, the
claim holds for B = A∗. Then, b ∈ σ(A ∪A∗ ∪ {b}), contradicting our choice of b. Necessarily,
it must be (ϕσ(A))∗ = ∅.
Hence, let us firstly show that c ∈ Ω\σ((A∪(B \{c}))∪{c}). As a matter of fact, we have that
c ∈ A∗, so c ∈ Ω \ (A ∪ {c}). Furthermore, to say that c ∈ B means that A ∪ {c} ⊆ A ∪ B so,
by pseudo-monotonicity, σ(A∪ {c}) ⊇ σ(A∪B)∩ (A∪ {c}). In other terms, c ∈ Ω \ σ(A∪B),
i.e. c ∈ Ω \ σ((A ∪ (B \ {c})) ∪ {c}).
On the other hand, we have that b ∈ σ((A ∪ B \ {c}) ∪ {b}), in fact we can use the inductive
hypothesis on B \ {c} ⊆ A∗ since |B \ {c}| = m − 1. The two hypothesis of the definition of
quasi-regular operator are satisfied and this proves that ϕσ is idempotent, so ϕσ ∈ CLOP (Ω).
By part (i), there exists a pairing P ∈ PAIR(Ω) such that MP = ϕσ. To conclude, we have
to show that σ = CP.
Let b ∈ CP(A), then b ∈ Ω \MP(A \ {b}) = ϕσ(A \ {b}). This entails that b ∈ Ω \ (A \ {b})∗
or, equivalently, b ∈ σ(A \ {b} ∪ {b}) = σ(A).
On the other hand, let b ∈ σ(A). By extensiveness, b ∈ A. Furthermore, assume by contra-
diction that b ∈ MP(A \ {b}). Then, b ∈ (A \ {b})∗, i.e. b ∈ Ω \ σ(A \ {b} ∪ {b}) = Ω \ σ(A),
contradicting our choice of b. This implies that CP(A) = σ(A) for any A ∈ P(Ω) and conclude
the proof.

We now provide the notion of A-symmetry essential.

Definition 3.2.12. Let B ⊆ A. We say that B is A-symmetry essential if:

(E1) πP(A \B) 6= πP(A);

(E2) πP(A \B′) = πP(A) for all B′ $ B.
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We denote by ESSP(A) the family of all A-symmetry essential subsets of A and we set
ESS(P) := ESSP(Ω). We call symmetry essentials of P the members of ESS(P). If P is
a finite pairing on Ω and k ∈ {1, . . . , n}, we set ESSk(P) := {C ∈ ESS(P) : |C| = k}

The motivation to introduce the set system ESSP(A) is that it is a generalization of the
core because CP(A) = ∅ or, otherwise, {a} ∈ ESSP(A) for any a ∈ CP(A).

The next result tells us that the A-symmetry essentials are exactly the minimal elements
of the A-dissymmetry set system.

Theorem 3.2.13. We have that ESSP(A) = min(DISP(A)).

Proof. Let B ∈ ESSP(A). By Definition 3.2.12 it results that πP(A \ B) 6= πP(A). Hence,
there exist two distinct elements v, w ∈ U such that v ≡A\B w and v 6≡B w. Equivalently, we

can express the previous condition by saying that A \ B ⊆ A \∆P
A(v, w), i.e. ∆P

A(v, w) ⊆ B.
This shows that any A-symmetry essential contains some subset of the A-dissymmetry set
system. We now claim that ∆P

A(v, w) = B. Indeed, if b ∈ B and B′ := B \ {b} $ B, we deduce

that v 6≡A\B′ w by Definition 3.2.12. Therefore b ∈ ∆P
A(v, w). By the arbitrariness of b ∈ B,

it follows that ∆P
A(v, w) = B. This proves that B ∈ DISP(A). Moreover, we proved that

whenever two elements v, w ∈ U satisfy the relation ∆P
A(v, w) ⊆ B, then ∆P

A(v, w) = B. This
means that B is minimal in DISP(A) with respect to set-theoretical inclusion.

Let now B = ∆P
A(v, w) 6= ∅ be minimal in the poset (DISP(A),⊆), for some v, w ∈ U . Since

B is non-empty, by (iii) of Proposition 3.1.3, it follows that v 6≡A w. Moreover, by (i) of
Proposition 3.1.3 we also obtain v ≡A\B w. Then, we have πP(A \ B) 6= πP(A), and thus B
satisfies (i) of Definition 3.2.12. Let now B′ $ B. B minimal in DISP(A) implies that, for all

u, u′ ∈ U such that ∆P
A(u, u′) 6= ∅, ∆P

A(u, u′) * B′. We claim that πP(A \ B′) = πP(A). It
is obvious that u ≡A u′ implies u ≡A\B′ u′; furthermore suppose that u ≡A\B′ u′ and assume

by contradiction that u 6≡A u′. Then, we have ∆P
A(u, u′) ⊆ B′, that is an absurd. Hence

u ≡A u′ ⇐⇒ u ≡A\B′ u′, so πP(A \B′) = πP(A). In this way, we have shown that B satisfies
also condition (ii) of Definition 3.2.12. Then, B ∈ ESSP(A) and the theorem is proved.

Remark 3.2.14. By Theorem 3.2.13, it is clear that Tr(DISP(A)) = Tr(ESSP(A)).

The next result shows that the A-symmetry bases are exactly the minimal transversals of
the family ESSP(A).

Theorem 3.2.15. Let B ⊆ A. Then:

(i) πP(B) = πP(A) if and only if B is a transversal of min(DISP(A)).

(ii) BASP(A) = Tr(DISP(A)) = Tr(ESSP(A)).

Proof. (i): Let B ⊆ A. Let us note that the equality πP(B) = πP(A) is obviously equivalent
to the identity ≡B=≡A. Therefore, we assume first that ≡B=≡A; we must show that B is a
transversal of DISP(A). Let then D ∈ DISP(A). By definition of DISP(A) it results that
D is non-empty and that there exist two distinct elements u, u′ ∈ U such that D = {a ∈ A :
F (u, a) 6= F (u′, a)}. Since D contains at least one element, we deduce that u 6≡A u′, and this
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also implies u 6≡B u′ from the hypothesis ≡B=≡A. Hence, by definition of ≡B, we find an
element b ∈ B such that F (u, b) 6= F (u′, b), i.e. b ∈ B ∩ D. This shows that B ∩ D 6= ∅,
therefore B is a transversal of DISP(A).
We suppose now that B is a transversal of DISP(A) and let u, u′ be two any distinct elements
in U . If u ≡A u′ it is obvious that we also have u ≡B u′. We can assume therefore that u 6≡A u′.
By definition of ≡A and by (3.1) it follows then that the D := ∆P

A(u, u′) is non-empty, so that
D ∈ DISP(A). Since B is a transversal of DISP(A) we have that B ∩D 6= ∅. Let b ∈ B ∩D.
Then, there exists b ∈ B such that F (u, b) 6= F (u′, b), and this implies that u 6≡B u′. Hence
≡B=≡A. This proves that πP(B) = πP(A) if and only if B is a transversal ofDISP(A). Clearly,
it suffices to be transversal of min(DISP(A)) in order to be also a transversal of DISP(A).
Hence, we showed that πP(A) = πP(B) if and only if B is a transversal of min(DISP(A)).
(ii): Let B ∈ BASP(A). By Definition 3.2.1 we have then πP(B) = πP(A), and by part (i)
this implies that B is a transversal of DISP(A). Now, if b ∈ B, again by Definition 3.2.1 we
have that πP(B \ {b}) 6= πP(A), therefore by (i) it follows that B \ {b} is not a transversal
of DISP(A). Hence B is a minimal transversal of DISP(A). On the other hand, let B be a
minimal transversal of DISP(A), then by (i) it follows that πP(B) = πP(A). Now, if b ∈ B
the subset B \ {b} is not a transversal of DISP(A) by virtue of the minimality of B, therefore,
again by (i) we obtain πP(B \ {b}) 6= πP(A). Hence B ∈ BASP(A) and the thesis follows.

Based on the relevance of the set system ESSP(A), we now provide a new characterization
for its structure in relation to the order structure of the poset MP(A).

Theorem 3.2.16. ESSP(A) = {B ∈ P(A) : A \B ∈ [A|MP(A) ↑]}.

Proof. Let B be a non-empty subset of A such that A \B ∈ [A|MP(A) ↑]. Assume by contra-
diction that πP(A \ B) = πP(A), i.e. MP(A \ B) = MP(A). Since A \ B = A ∩ C for some
C ∈MAXP (P), we have that

MP(A ∩ C) = MP(A \B) = MP(A) ⊆MP(A) ∩MP(C) = MP(A) ∩ C,

i.e. MP(A) ⊆ C. In other terms, we showed that A = A ∩MP(A) ⊆ A ∩ C = A \ B or,
equivalently A = A \ B, that is a contradiction. Hence πP(A) 6= πP(A \ B). Furthermore,
let B′ $ B and assume that πP(A \ B′) 6= πP(A). Then, we have that A \ B $ A \ B′ ⊆
MP(A\B′)∩A. In particular, we also have that MP(A\B′)∩A $ A, otherwise A ⊆MP(A\B′),
i.e. MP(A) = MP(A \ B′), contradicting our assumption. In this way, we showed that A \ B
is not a co-cover of A in MP(A), that is a contradiction. This shows that B ∈ ESSP(A).
On the other hand, let B ∈ ESSP(A). Let us show that A \ B = MP(A \ B) ∩ A. Clearly,
A \B ⊆MP(A \B)∩A. Vice versa, let a ∈MP(A \B)∩A and assume that a /∈ A \B. Hence
a ∈ B. Let u ≡A\B u′, then F (u, c) = F (u′, c) for any c ∈ A \ B and, in particular, for any
c ∈MP(A\B). Thus F (u, c) = F (u′, c) for any c ∈ (A\B)∪{a}, i.e. for any c ∈ A\ (B \{a}).
Set B′ := B \ {a}. In other terms, we have shown that u ≡A\B u′ implies u ≡A\B′ u′.
But πP(A \ B′) = πP(A), so u ≡A\B u′ implies u ≡A u′ or, equivalently, πP(A \ B) = πP(A),
contradicting the fact that B ∈ ESSP(A). This proves that A\B ∈MP(A). We must show that
A\B ∈ [A|MP(A) ↑]. Suppose by contradiction it were false. Then, there exists A\B $ C $ A
such that C ∈ [A|MP(A) ↑]. But, this ensures that C = A \ B′ for some non-empty B′ $ B.
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Let us prove that πP(C) 6= πP(A). Assume by contradiction that πP(C) = πP(A). Since
C = A ∩M for some M ∈ MAXP (P), so C ⊆ M and MP(C) = MP(A) ⊆ M , i.e. A ⊆ M .
But, this implies that A ∩M = C ⊇ A and this is impossible. So, πP(C) 6= πP(A). But the
existence of such a subset C contradicts the fact that B ∈ ESSP(A).

3.2.1 The Petersen Graph

In this section we apply all previous general notions to study the Petersen graph, denoted by
Pet. This graph has the following useful characterization: it is the graph whose vertices can be
identified with the 2-subsets of 5̂ = {1, 2, 3, 4, 5}, such that two vertices A and B are adjacent
if and only if they are disjoint. Therefore, we write vij to denote the vertex identified with
{i, j}.

We recall now, without giving any proofs, some important well known properties of the
Petersen graph.

Proposition 3.2.17. 1. The valency of each vertex in Pet is equal to 3.

2. The girth of Pet is equal to 5.

3. Pet is 3-transitive, thus both vertex-transitive and edge-transitive.

4. The automorphism group of the Petersen graph is isomorphic to the symmetric group S5.

In particular an isomorphism ψ between the symmetric group S5 and the automorphism
group of Pet, Aut(Pet), can be given in the following natural way. An element π ∈ S5 permutes

the element in 5̂ and thus induces a bijective map ψ(π) of V (Pet) =
(

5̂
2

)
in itself. It is not hard

to see that ψ : π 7−→ ψ(π) is an isomorphism.
The main aim of this section is to provide a complete description of DIS(Pet), ESS(Pet)

and BAS(Pet)). In what follows the letters h, i, j, k, l will denote all elements in 5̂ in an
arbitrary order. In this case, if we consider the vertex vij , it means an arbitrary vertex in
V (Pet). We begin to examine DIS(Pet).

Proposition 3.2.18. We have that DIS(Pet) = DIS4(Pet) ∪DIS6(Pet), where

DIS4(Pet) = {A ⊆ V (Pet) : A = ∆Pet(v, w) ∧ v � w}

and
DIS6(Pet) = {B ⊆ V (Pet) : B = ∆Pet(v, w) ∧ v ∼ w}.

Moreover:

• A ∈ DIS4(Pet) if and only if Pet[A] is isomorphic to the following graph H1:

H1
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• B ∈ DIS6(Pet) if and only if Pet[B] is isomorphic to the following graph H2:

H2

Proof. Let v, w ∈ V (Pet) such that v � w. In this case there exist distinct elements i, j, k ∈ 5̂
such that v = vij and w = vik. If h, l ∈ 5̂ are such that {h, l} = 5̂ \ {i, j, k}, then it holds:

∆G(v, w) = ∆G(vij , vik) = {vhj , vhk, vjl, vkl}.

If A = ∆G(v, w), then Pet[A] is the following graph:

vhj

vkl

vhk

vjl

Conversely, assume that A = {x1, x2, y1, y2} ⊆ V (Pet) is such that the induced subgraph
Pet[A] is the following:

x1

x2

y1

y2

Since x1 ∼ x2, there exist four distinct indexes i, j, k, l ∈ 5̂ such that x1 = vij and x2 = vkl.
Now, y1 and y2 are adjacent to each other and both not adjacent to vij and vkl. The only
possibilities are that {y1, y2} = {vik, vjl} or {y1, y2} = {vil, vjk}. It is easy to see that
{vij , vkl, vik, vjl} = ∆Pet(vhj , vhk) and {vij , vkl, vil, vjk} = ∆Pet(vhj , vhl), so A ∈ DIS4(Pet).

Suppose first that v, w ∈ V (Pet) and v ∼ w. Then, there exist four distinct indexes
i, j, k, l ∈ 5̂ such that v = vij and w = vkl. If h is the only element in 5̂ \ {i, j, k, l} then

∆Pet(v, w) = ∆Pet(vij , vkl) = {vij , vkl, vhi, vhj , vhk, vhl}.

If B = ∆Pet(v, w), the subgraph Pet[B] is the following:

vhk

vij

vhl

vhi

vkl

vhj

and thus it is isomorphic to H2. Let now B = {x1, x2, y1, y2, y3, y4} ⊆ V (Pet) such that
Pet[B] is the following graph:

y1

x1

y3

y2

x2

y4
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Then, it is easy to see that B = ∆Pet(x1, x2), and thus B ∈ DIS6(Pet). This concludes the
proof.

Corollary 3.2.19. ∆[Pet] = 4(J10 − I10) + 2Adj(Pet).

Proof. It follows by Proposition 3.2.18 and by definition of the adjacency matrix.

In order to give a complete description of the symmetry base for the Petersen graph, first
we establish some useful results.

Proposition 3.2.20. A ∈ DIS4(Pet) if and only if V (Pet) \A ∈ DIS6(Pet).

Proof. Let A ∈ DIS4(Pet). As in the proof of Proposition 3.2.18, there exist three distinct
indexes i, j, k ∈ 5̂ such that

A = ∆(vij , vik) = {vhj , vhk, vjl, vkl} = V (Pet)\{vhi, vhl, vij , vik, vil, vjk} = V (Pet)\∆(vhl, vjk),

where {h, l} = 5̂ \ {i, j, k}. So V (Pet) \A ∈ DIS6(Pet).
Similarly, if B ∈ DIS6(Pet), then there exist four distinct indexes i, j, k, l ∈ 5̂ such that

B = ∆Pet(vij , vkl) = {vij , vkl, vhi, vhj , vhk, vhl} = V (Pet) \ {vik, vil, vjk, vjl} = V (Pet) \
∆(vhi, vhj), where {h} = 5̂ \ {i, j, k, l}. This concludes the proof.

Corollary 3.2.21. |DIS4(Pet)| = |DIS6(Pet)| = 15 and |DIS(Pet)| = 30.

Proof. It follows by Proposition 3.2.18, Proposition 3.2.20 and by using the fact that |E(Pet)| =
15.

Proposition 3.2.22. We have that DIS(Pet) = ESS(Pet).

Proof. By Theorem 3.2.13 it is sufficient to prove that, if A ∈ DIS4(Pet), then there exists
no local dissimmetry subset B ∈ DIS6(Pet) such that A ⊆ B. This follows by Proposition
3.2.18 and by using the fact that, if A ⊆ B ∈ DIS6(Pet) has cardinality |A| = 4, then
Pet[A] ∼= H2[A] and there exists no 4-subset of V (H2) such that the subgraph in H2 generated
by A is isomorphic to H1. Thus the proposition is proved.

Proposition 3.2.23. If C ⊆ V (Pet) is a transversal of DIS4(Pet), then either |C| ≥ 5 or
C ∈ DIS4(Pet).

Proof. Let C ⊆ V (Pet) such that C = {vi1j1 , vi2j2 , vi3j3 , vi4j4} /∈ DIS4(Pet) and |C| = 4. In
C we have thus 4 vertices associates to distinct pairs of elements in 5̂. We define the function
ηC : 5̂ −→ {0, 1, 2, 3, 4} such that, if i ∈ 5̂, then ηC(i) is the number of time that i occurrs
in the sequences of number i1j1i2j2i3j3i4j4. Thus

∑5
i=1 ηC(i) = 2|C| = 8. Since the pairs

are mutually distinct, there exists at most one element i ∈ 5̂ such that ηC(i) = 0. Since
C /∈ DIS4(Pet), there exists i ∈ 5̂ such that η(i) = 1. In fact, if this does not hold, then
there would exist i, j, k, l ∈ 5̂ such that ηC(i) = ηC(j) = ηC(k) = ηC(l) = 2. It is easy to see
that in such a case Pet[C] ∼= H1 and thus C ∈ DIS4(Pet) that contradicts our assumptions.
Let h ∈ 5̂ such that ηC(h) = 1. Without loss in generality we can suppose that vhi ∈ C and
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vhj , vhk, vhl /∈ C. It is straightforward to prove that, for each choice of three vertices x, y and
z in V (Pet) \ {vhi, vhj , vhk, vhl}, C := {vhi, x, y, z} is included in one of these subsets:

B1 = {vhi, vij , vjk, vjl, vkl, vhj},
B2 = {vhi, vik, vjk, vjl, vkl, vhk},
B3 = {vhi, vil, vjk, vjl, vkl, vhl},
B4 = {vhi, vij , vik, vil, vjk, vhl},
B5 = {vhi, vij , vik, vil, vjl, vhk},
B6 = {vhi, vij , vik, vil, vkl, vhj}.

Note that Pet[Bk] ∼= H2, for each k ∈ {1, 2, 3, 4, 5, 6}. By Proposition 3.2.20, they can not
be transversals of DIS4(Pet) and the proposition is proved.

Corollary 3.2.24. Let C ⊆ V (Pet). C is a transversal of the 2-local dissymmetry set system
DIS(Pet) if and only if C is a transversal of DIS4(Pet) and C /∈ DIS4(Pet). In particular
each symmetry base of Pet has cardinality greater than or equal to 5.

Proof. Let C ⊆ V (Pet) be a transversal of DG. Since DIS4(Pet) ⊆ DIS(Pet), the subset C is
a transversal of D4(Pet). If C ∈ DIS4(Pet), then, by Corollary 3.2.21, V (Pet)\C ∈ DIS(Pet)
and this contradicts the assumption on C.

Let now C ⊆ V (Pet) be a transversal of DIS4(Pet) and we assume that C /∈ DIS4(Pet).
By Proposition 3.2.23, then |C| ≥ 5. Let D ∈ DIS(Pet). Then, by Proposition 3.2.18, |D| = 4
or |D| = 6. If |D| = 4, then D ∈ DIS4(Pet) and thus D ∩C 6= ∅. If |D| = 6, since |C| ≥ 5 and
|V (Pet)| = 10, we obtain D ∩ C 6= ∅. So C is a transversal of DG.

The last claim follows directly by definition of symmetry base.

We prove now the main result of this section.

Theorem 3.2.25. A subset C ⊆ V (Pet) is a symmetry base of Pet if and only if |C| = 5 and
Pet[C] is isomorphic to one of the following graphs:

C5
P2,2,1 P4,1

P5

Proof. Note first that, if C ⊆ V (Pet) is such that Pet[C] is isomorphic to C5, P2,2,1, P4,1 or
P5, then there is no element B ∈ DIS6(Pet) such that C ⊆ B. In fact, if B ∈ DIS6(Pet),
then, by Proposition 3.2.18, Pet[B] is isomorphic to H2 but, however we choose a 5-subset
C ⊆ V (H2), H2[C] is not isomorphic to C5, P2,2,1, P4,1 or P5. Thus if C ⊆ V (Pet) is such that
Pet[C] is isomorphic to one of the graphs listed above, then C is a transversal of DIS(Pet). By
Corollary 3.2.24, it is minimal among the transversal of DIS(Pet) with respect to the inclusion
relation, so C ∈ Tr(DIS(Pet)) = BAS(Pet) (see Theorem 3.2.15).

Consider the two graphs:

Y P3,1,1
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We now prove that, if C ⊆ V (Pet) has cardinality |C| = 5 and C ⊆ B ∈ DIS6(Pet), then
Pet[C] is isomorphic to Y or P3,1,1. By Proposition 3.2.18, Pet[B] is isomorphic to H2 and if
we remove from the graph H2 one vertex (with all the edges incident to it), then we obtain a
graph which is isomorphic to Y or P3,1,1. On the other hand, if C ⊆ V (Pet) is such that Pet[C]
is isomorphic to Y or P3,1,1, then there exist exactly one element B ∈ DIS6(Pet) such that
C ⊆ B. To prove that observe that, if C ⊆ V (Pet) is such that Pet[C] ∼= Y , then there exist
h, i, j, k, l ∈ 5̂ such that C = {vhi, vkl, vjk, vjl, vhj} or C = {vhi, vkl, vjk, vjl, vij}. In both
cases C is included in the unique B ∈ DIS6(Pet) given by B := {vhi, vkl, vjk, vjl, vhj , vij}.
Similarly, if C ⊆ V (Pet) is such that Pet[C] ∼= P3,1,1, then there exist h, i, j, k, l ∈ 5̂
such that C = {vhi, vhj , vhk, vhl, vij} and the unique B ∈ DIS6(Pet) containing C is B =
{vhi, vhj , vhk, vhl, vij , vkl}. Thus the number of 5-subsets of V (Pet) that are not included in a
local dissymmetry subset of Pet is equal to b5 =

(
10
5

)
−
(

6
5

)
|DIS6(Pet)| = 252−90 = 162. Each

of these subsets is not included in any element in DIS6(Pet), so it is a symmetry base of Pet.
We now characterize geometrically such subsets by proving that each of them is isomorphic to
one of the graphs listed in the statement of the theorem. For this, we will count the number
of 5-subsets of V (Pet) whose corresponding induced subgraph is isomorphic to C5, P2,2,1, P4,1

and P5, respectively.
If C ⊂ V (Pet), then the orbit of C among the 5-subsets of V (Pet) is equal to

|OAut(Pet)(C)| = |Aut(Pet)|
|Aut(Pet)C |

, (3.7)

where Aut(Pet)C is the stabilizer of C with respect to the action of Aut(Pet) on V (Pet).
Moreover, since the Petersen graph is symmetric, the orbit of C is the set of all 5-subsets
inducing the same graph (up to isomorphism), and so its cardinality is exactly the number of
5-subsets of V (Pet) such that the induced subgraph is isomorphic to X.

The automorphism groups of the graphs C5, P2,2,1, P4,1 and P5 are isomorphic respectively
to the dihedral group D5, the dihedral group D4, Z2 and Z2. We prove now that if Pet[C] is
isomorphic to X, where X is C5, P4,1 or P5, then Aut(Pet)C ∼= Aut(X), while if X = P2,2,1,
then Aut(Pet)C is isomorphic to Z2 × Z2.

We recall that D5 has order 10 and the following presentation:

D5 = 〈σ, ρ|σ5 = ρ2 = (σρ)2 = 1〉

To prove that Aut(Pet)C ∼= Aut(X) if X = C5, it is sufficient to prove that each generator
of the automorphism group of C5 extends uniquely to an automorphism of Pet. If C ⊆
V (Pet) is such that Pet[C] ∼= C5, then there exist different h, i, j, k, l ∈ 5̂ such that C =
{vhi, vjk, vhl, vij , vkl}. So we can choose the generators σ, ρ ∈ Aut(C5) defined by:

σ(vhi) = vjk, σ(vjk) = vhl, σ(vhl) = vij , σ(vij) = vkl, σ(vkl) = vhi

and
ρ(vhi) = vhi, ρ(vjk) = vkl, ρ(vhl) = vij , ρ(vij) = vhl, ρ(vkl) = vjk.

Then, σ extends to the automorphism of Pet defined by the permutation in S5 defined by:

σ′(h) = j, σ′(i) = k, σ′(j) = l, σ′(k) = h, σ′(l) = i,
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while ρ extends to the automorphism of Pet defined by the permutation in S5 defined by:

ρ′(h) = i, ρ′(i) = h, ρ′(j) = l, ρ′(k) = k, ρ′(l) = j.

Thus Aut(Pet)C ∼= Aut(C5) and the number of 5-subsets C ⊆ V (Pet) such that Pet[C] ∼= C5

is equal to
|Aut(Pet)|
|Aut(C5)|

=
120

10
= 12.

Let τ be the generator of the automorphism groups of the graphs P4,1 and P5, that are
both isomorphic to Z2.

A 5-subset C of V (Pet) such that Pet[C] ∼= P4,1 (Pet[C] ∼= P5) is given by

C = {vhi, vjk, vhl, vij , vhj} (C = {vhi, vjk, vhl, vij , vhk})

for a suitable choice of elements h, i, j, k, l ∈ 5̂. The automorphism τ of P4,1 (P5) corresponds
to the permutation τ ′ of the elements in 5̂ given by:

τ ′(h) = j (τ ′(h) = h), τ ′(i) = i (τ ′(i) = k), τ ′(j) = h (τ ′(j) = j),

τ ′(k) = l (τ ′(k) = i), τ ′(l) = k (τ ′(l) = l).

Thus the orbit of C has cardinality |Aut(Pet)||Z2| = 120
2 = 60.

Now a 5-subset C of V (Pet) satisfies Pet[C] ∼= P2,2,1 if and only if there exist h, i, j, k, l ∈ 5̂
such that C = {vhi, vjk, vhj , vik, vhk}. The graph Pet[C] is the following graph:

vhi

vjk

vhj

vik

vhk

We now find all automorphisms of Pet fixing Pet[C]. An automorphism φ of Pet that fixes
Pet[C] must also fix the vertex vhk. It is straightforward to prove that the only permutations
of the indices which give such an automorphism are id, α, β, αβ where α is defined by:

α(h) = h, α(i) = j, α(j) = i, α(k) = k, α(l) = l.

and β by
β(h) = k, β(i) = i, β(j) = j, β(k) = h, β(l) = l.

Thus the stabilizer of C is isomorphic to Z2 × Z2 and the number of the 5-subsets of Pet that
induce a subgraph isomorphic to P2,2,1 is 120

4 = 30.
The sum of all the numbers found so far is equal to 162, so they are all the possible symmetry

bases of Pet having cardinality 5.
Finally, observe that if A ⊆ V (Pet) is such that |A| > 5 and A /∈ DIS6(Pet), then B $ A,

for some B ∈ BAS5(Pet) and therefore A /∈ BAS(Pet)). This proves the theorem.
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3.2.2 The Cn Case

We now provide a general form for the symmetry essentials and the symmetry bases of Cn.

Proposition 3.2.26. Let n ≥ 5. Then:
(i) ESS2(Cn) = DIS2(Cn) = {{vi, vi+4}}.
(ii)

ESS4(Cn) =

{
∅ if 5 ≤ n ≤ 7,
{{vi, vi+2, vj , vj+2} : d(vi, vj) /∈ {0, 2, 4, 6, n− 6}} otherwise.

Proof. (i): Straightforward.
(ii): Let G = Cn for 5 ≤ n ≤ 7. By (iv) of Proposition 3.2.26, we deduce that the symmetry
essential subsets of order two of G have the form {vi, vi+n−4}. Thus, since a 4−subset of V (G)
must contain a pair of the form {vi, vi+n−4}, we deduce that ESS4(Cn) = ∅ if 5 ≤ n ≤ 7.
Let new assume that n ≥ 8. Firstly, we note that d(vi, vj) = 0 if and only if i = j and
d(vi, vj) = 2 if and only if j ≡ i+ 2 mod(n) or j ≡ i−2 mod(n). In these cases we have vi = vj ,
vi+2 = vj or vj+2 = vi, thus |{vi, vi+2, vj , vj+2}| 6= 4 and so {vi, vi+2, vj , vj+2} can not be an
element of ESS4(Cn). By part (i), we have that ESS2(Cn) = {{vi, vi+4} : 1 ≤ i ≤ n}. It
is straightforward to prove that a 4-subset of V (Cn) of the form {vi, vi+2, vj , vj+2} contains a
symmetry essential subset of order two if and only if d(vi, vj) 6= 4, d(vi, vj) 6= 6 and d(vi, vj) 6=
n− 6. This proves the claim.

We now provide the following characterization for the symmetry bases of Cn.

Theorem 3.2.27. Let A ⊆ V (Cn). Then, A is a symmetry base of Cn if and only if CCn(A) = ∅
and for all vi ∈ A one of the following conditions holds:

1. |BCn(A)| = 1 ∧ (vi−2 /∈ A ∨ vi+2 /∈ A);

2. |BCn(A)| ≤ 1 ∧ ((vi−4 /∈ A ∧ vi−2 ∈ A) ∨ (vi+2 ∈ A ∧ vi+4 /∈ A)).

Proof. Let V = V (Cn). By Definition 3.2.1 it’s clear that a vertex subset A ⊆ V (Cn) is a
symmetry base if and only if |BCn(A)| ≤ 1 and CCn(A) = ∅. We claim that A is minimal with
respect to (i) of Definition 3.2.1 if and only if (1) or (2) holds. Let A be a symmetry base of Cn
and vi ∈ A such that |BCn(A \ {vi})| ≥ 2. If |BCn(A)| = ∅, we would have {vi−2, vi+2} ∩A = ∅
or, equivalently, CCn(A) 6= ∅, contradicting our assumptions. Thus |BCn(A)| = 1 and one of the
two vertices vi−2 or vi+2 is not in A, which is condition (1). On the other hand, suppose that A
is a symmetry base of Cn and vi ∈ A such that CCn(A \ {vi}) 6= ∅. Hence vi−2 ∈ CCn(A \ {vi})
or vi+2 ∈ CCn(A \ {vi}). This is equivalent to condition (2). Conversely, suppose that A ⊆ V
is a vertex subset satisfying conditions (1) or (2) and such that CCn(A) = ∅. It’s obvious that
A satisfies (i) of Definition 3.2.1. Let vi ∈ A and let us consider the vertex subset A \ {vi}.
Suppose BCn(A) = {vj}. Hence j 6= i ± 1. If vi−2 /∈ A, then vi−1 ≡A\{vi} vj ; similarly if
vi+2 /∈ A, then vi+1 ≡A\{vi} vj . On the other hand, let vi ∈ A such that vi−4 /∈ A ∧ vi−2 ∈ A.
In this case vi−3 ≡A\{vi} vi−1; similarly in the other case. In both cases πP(A \ {vi}) 6= πP(V ).
This completes the proof.

Remark 3.2.28. So far, there exists no geometric characterization for the symmetry bases of
Cn.

65



3.3 Symmetry Bases and Symmetry Essentials for (V, ϕ,K)-VBP

Let us consider a finite dimensional vector space V . If B,C are two non-empty subsets of V ,
we write C ⊆li B when C is linearly independent and C ⊆ B. Let A be a fixed arbitrary subset
of V . We denote by rank(A) the rank of A, that is rank(A) := dim(( Span(A)). We have the
following characterizations.

Theorem 3.3.1. (i) BASP(A) = {C : C ⊆li A, |C| = rank(A)};
(ii) DISP(A) = {A ∩ (V \H) : H 6n−1 V };
(iii) ESSP(A) = {C : C ⊆ A, A⊥ $ (A \ C)⊥, C ′ $ A =⇒ A⊥ = (A \ C ′)⊥}.

Proof. (i): Let B ∈ BASP(A). Since BASP(A) ⊆ MINPP(A), it results that B ⊆li A. Let
C ⊆li A such that |C| 6= rank(A), then rank(C) 6= rank(A), hence Span(C) 6= Span(A),
so Span(C)⊥ 6= Span(A)⊥. Thus πP(C) 6= πP(A). Therefore, C ∈ BASP(A) if and only if
|C| = rank(A), and this proves part (i).
(ii): Let us observe that ∆P

A(u, u′) = {a ∈ A : ϕ(u, a) 6= ϕ(u′, a)}, that is equivalent to
{a ∈ A : ϕ(u − u′, a) 6= 0} = {a ∈ A : a /∈ (u − u′)⊥}. By varying u and u′ over V , we
obtain the family {u − u′ : u, u′ ∈ V } of all 1-dimensional subspaces. Therefore, DISP(A) =
{a ∈ A : a ∈ V \ (u − u′)⊥} that is equivalent, since dim(((u − u′)⊥) = n − 1, to say that
DISP(A) = {A ∩ (V \H) : H 6n−1 V }.
(iii): Let B ∈ ESSP(A). Then, πP(A) 6= πP(A \ B) and, therefore, A⊥ 6= (A \ B)⊥, i.e.
A⊥ $ (A \ B)⊥. Moreover, let B′ $ B. One has πP(A) = πP(A \ B′), i.e. A⊥ = (A \ B′)⊥.
Therefore ESSP(A) ⊆ {C : C ⊆ A, A⊥ $ (A \ C)⊥, C ′ $ A =⇒ A⊥ = (A \ C ′)⊥}. The
reverse inclusion is obvious.

3.4 Structure of the Global Symmetry Classes

In this subsection, we study the inner structure of each global symmetry class and we relate
this inner structure to the partial order of the poset LP(A). The starting point of our analysis
is the existence of a twofold link between BASP(A) with the order structure of LP(A) and
with the deletion of elements from members of the class [A]≈P

, similarly to what happens to
the indispensable elements whenever one defines the classical Pawlak’s core. More in detail, we
study a new class of elements preserving an global symmetry class. In this way, we formulate a
concept similar to Pawlak’s indispensability notion for the indistinguishability relation, though
weaker. It allows us to investigate the effects of deletion of elements in each global symmetry
class by means of the following terminology. In this section we assume that Ω is finite.

Let A be a fixed subset of Ω. We first recall the following notion (introduced in [20]) of
indistinguishability kernel of A, that is the subset defined by

KP(A) := {a ∈ A : ∃ B ∈ [A]≈P
such that B \ {a} /∈ [A]≈P

} (3.8)

Let us note that the indistinguishability kernel can be considered (by analogy) a version of the
usual Pawlak’s core relatively to the indistinguishability relation on P.

We recall then the following result.

Theorem 3.4.1. The following conditions hold.
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(i) Let A ∈MAXP (P). Then, a ∈ KP(A) if and only if there exists C ∈MAXPP(A) such
that a /∈ C and MP(C ∪ {a}) = A.

(ii) Let A ∈MAXP (P). Then, it results that A \KP(A) =
⋂
{B : B ∈ [A|M(P) ↑]}.

(iii) CP(A) ⊆ KP(A).

(iv) If A ⊆ A′ and A ≈P A′, then KP(A) ⊇ KP(A′).

(v) If A ∈MINP (P), then KP(A) = A.

(vi) A ≈P KP(MP(A)).

(vii) MP(A) = MP(KP(MP(A))).

Proof. (i): Let a ∈ KP(A). By definition of KP(A) there exists B ∈ [A]≈P
such that

B \ {a} 6≈P A. (3.9)

Since B ≈P A, by (3.9) we have that a ∈ B. Let C := MP(B \ {a}). We first show that
a /∈ C. In fact, let us assume by absurd that a ∈ C. In this case B ⊆ C because B \ {a} ⊆
MP(B \ {a}) = C. Therefore A = MP(B) ⊆ MP(C) = C because A,C ∈ MAXP (P) and
B ∈ [A]≈P

, and this implies that
πP(C) � πP(A). (3.10)

On the other hand, we also have

πP(A) = πP(B) � πP(B \ {a}) = πP(C). (3.11)

Then, by (3.10) and (3.11) we deduce πP(A) = πP(C), that is A ≈P C, and this implies (by
definition of C) A ≈P B \ {a}, that is in contrast with (3.9). Hence a /∈ C. Let us observe now
that

C = MP(B \ {a}) ⊆MP(B) = MP(A) = A, (3.12)

because A ∈MAXP (P). By (3.12) we have then C ∈MAXPP(A). Finally, since B\{a} ⊆ C,
we have B ⊆ C ∪ {a} ⊆ A, so that

πP(A) � πP(C ∪ {a}) � πP(B),

and this implies πP(C ∪ {a}) = πP(A) because πP(A) = πP(B). Hence MP(C ∪ {a}) =
MP(A) = A because A ∈MAXP (P). This proves the first implication.
For the other implication, we assume that there exists C ∈ MAXPP(A) such that a /∈ C and
MP(C∪{a}) = A. Then a ∈ A and we set B := C∪{a}. Therefore B ∈ [A]≈P

and B\{a} = C.
Let us note that C /∈ [A]≈P

. In fact, if C ≈P A then C = A because C ∈ MAXPP(A) and
A ∈MAXP (P), that is in contrast with the conditions a ∈ A and a /∈ C. Hence we obtain an
subset B ∈ [A]≈P

such that B \ {a} /∈ [A]≈P
and a ∈ A, that is a ∈ KP(A).

(ii): Let a ∈
⋂
{B : B ∈ [A|M(P) ↑]} and suppose by contradiction that a ∈ KP(A). By (i),
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there exists B ∈ MAXPP(A) such that a /∈ B and MP(B ∪ {a}) = A. We clearly have that
B /∈ [A|M(P) ↑]. Therefore, there exists C ∈MAXPP(A) such that B $ C $ A. Hence

πP(A) � πP(C). (3.13)

We claim that a /∈ C. In fact, if a ∈ C, we would have B ∪ {a} ⊆ C, hence

πP(C) � πP(B ∪ {a}) = πP(A). (3.14)

Thus, by (3.13) and (3.14), πP(A) = πP(C) and, so, C = A, contradicting our assumption on
C. Proceeding in this way, we will find a subset D ∈ [A|M(P) ↑] not containing a, that is an
absurd. Thus a ∈ Kc(A).
Conversely, let a ∈ Kc(A). Suppose by contradiction that there exists B ∈ [A|M(P) ↑] such
that a /∈ B. Hence C := B ∪ {a} ≈P A, so we have found an element C ∈ [A]≈P

such that
C \ {a} 6≈P A, i.e. a ∈ KP(A), that is an absurd.
(iii): Let a ∈ CORE(A). Hence πP(A) 6= πP(A \ {a}), i.e. a ∈ KP(A).
(iv): Let a ∈ KP(A). Hence, for any B ≈P A, it results that B \ {a} ≈P A. Therefore,
a ∈ KP(A′).
(v): Since A ∈MINP (P), we have that πP(A) 6= πP(A\{a}) for any a ∈ A, hence KP(A) = A.
(vi): Set A′ = KP(MP(A))). We have that A′ ⊆ MP(A). Let B ∈ min([A]≈P

), then B ⊆
MP(A), hence, by part (iv), we have that KP(B) ⊆ A′. Since B ∈ MINP (P), by part (v)
KP(B) = B, so B ⊆ A′. We conclude that

B ⊆ A′ ⊆MP(A).

Therefore, we have

πP(MP(A)) = πP(A) � πP(A′) � πP(B) = πP(A),

so πP(A) = πP(A′) and A ≈P A′ = KP(MP(A)).
(vii): It follows directly by part (vi).

We establish now the following new results.

Theorem 3.4.2. (i)
⋃
BASP(A) ⊆ KP(A).

(ii) Let A ∈MAXP (P). Then BASP(A) ⊆ L↓(LP(A)).

Proof. (i): Let a ∈
⋃
BASP(A), then there exists B ∈ BASP(A) containing a. In particular,

B \ {a} /∈ [A]≈P
, therefore a ∈ KP(A).

(ii): Just observe that B ∈ BASP(A) if and only if |[B|LP(A) ↓]| = 0.

Based on the results given in Theorems 3.4.1 and 3.4.2, we continue with the analysis of
the structure of [A]≈P

.
Let us firstly note that the converse of (i) of Theorem 3.4.2 turns out to be false, as it can be
seen in the next example.

Example 3.4.3. Let P be the pairing given in Example 3.2.3 and A = {2, 4, 5}. Then, we
have that KP(A) = A but

⋃
BASP(A) = {2, 5}.
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P RAM Memory Color BatteryLife

u1 Insufficient Small Black Very Long

u2 Sufficient Middle Blue Short

u3 Insufficient Small Black Long

u4 Sufficient Big Grey Short

u5 Excellent Middle Blue Long

Table 3.1: Mobile Phone pairing

In the next result we show that the minimum union generator of the class [A]≈P
coincides

with the family of all elements of [A]≈P
having at most one co-cover in the poset LP(A).

Theorem 3.4.4. Mug([A]≈P
) = L↓(LP(A)).

Proof. Let B ≈P A such that |[B|LP(A) ↓]| ≥ 2. Firstly, we claim that if A1, A2, A3 are three
distinct non-empty subsets such that A1, A2 ≈P A3 and A1, A2 l A3, then A1 ∪ A2 = A3. It
clearly results that A1∪A2 ⊆ A3, suppose therefore that A1∪A2 $ A3. Hence, A1 $ A1∪A2 $
A3, so A3 does not cover A1, contradicting our assumption. Thus, if [B|LP(A) ↓] = {D,E},
we have

B = D ∪ E. (3.15)

If D (or E) covers more than one subset, in (3.15) we can substitute D (or E) with the union
of two of the subsets it covers; proceeding in this way, since B is finite, we will express B as the
union of subsets of L↓(LP(A)), so L↓(LP(A)) spans [A]≈P

. In order to prove that L↓(LP(A))
is minimum, just observe that each element B of L↓(LP(A)) cannot be written as the union of
elements of [A]≈P

distinct from B.

In the next example, we discuss the result provided in Theorem 3.4.4 in a concrete situation.

Example 3.4.5. Let us consider the pairing P represented in Table 3.1. We indicate by r,m,c
and b respectively RAM, memory, color and battery life and, usually, we use string notation to
enumerate the various set systems arising during our analysis.

It is easy to see that

MAXP (P) = {∅, r, b,mc, rb, rmc, rmcb}.

In particular, in Figure 3.3, we represent its maximum partitioner lattice M(P), whereas in
Figure 3.4 we represent the diagram I(P).

By seeing Figure 3.4, we have that

MINP (P) = {∅,m, c, r, b, rm, rc, rb, cb,mb}.

Let now A = Ω. Then, it is easy to see that L↓(LP(Ω)) = {{c, b}, {m, b}, {r, c, b}, {r,m, b}}.
As we see, D :=

⋃
E∈BAS(P)

E 6= Ω, since r /∈ C. In particular, r ∈ Kc
P(Ω). By Theorem 3.4.4,

it follows that Mug([Ω]≈P
) = L↓(LP(Ω)). As an example, we could consider the subfamily
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∅

mc r b

rmc rb

rmcb

Figure 3.3: Diagram of M(P).

∅

mc

m c

r
b

rmc

rm rc

rb

rmcb

rcb
mcb

rmb

cb mb

Figure 3.4: Diagram of I(T).
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{{c, b}, {m, b}, {r, c, b}} $ L↓(LP(Ω)). Then, it results that πP({r,m, b}) = πP(Ω), but there is
no way to obtain {r,m, b} as union of the aforementioned family of subsets. Thus, their union
does not span [Ω]≈P

.
Let us observe that |[Ω|LP(Ω) ↓ | = 3. As we have seen in the proof of Theorem 3.4.4, Ω
can be obtain as the union of two of its co-cover. In particular, the three co-covers can be
obtained by deleting from Ω respectively m or r or c. It is obvious that the deletion of b is
not allowed, otherwise there exists a symmetry base not containing b, that is an absurd since
{b} = CORE(P).

The preceding discussion enables us to show the following general result.

Proposition 3.4.6. If |A| = k, then |[A|LP(A) ↓]| ≤ k.

Proof. Let ai, aj ∈ A with i 6= j. Let us set Ai = A \ {ai} and Aj = A \ {aj}. If |[A|LP(A) ↓
]| > k, then there exist two subsets B,C ⊆ Ai for some i = 1, . . . , k. Thus, B $ B ∪ C $ A,
that is an absurd since B,C ∈ [A|LP(A) ↓].

We conclude this subsection by finding find some conditions so that BASP(A) coincides
with the minimum union generator of [A]≈P

, when A ∈MAXP (P).

Theorem 3.4.7. Let A ∈MAXP (P) and B,C ∈ [A]≈P
such that

(i) B ∩ C = ∅,

(ii) B,C ∈ [A|LP(A) ↓].

Then BASP(A) = Mug([A]≈P
) = [A|LP(A) ↓] = {B,C} and [A]≈ = {A,B,C}.

Proof. By hypothesis, we have {B,C} ⊆ [A|LP(A) ↓]. Suppose by contradiction that {B,C} $
[A|LP(A) ↓] and let D ∈ [A|LP(A) ↓]\{B,C}. By the proof of Theorem 3.4.4, we have that the
union of any pair of elements of [A|LP(A) ↓] is exactly A, hence we must have B = A \C ⊆ D
and C = A \B ⊆ D. This implies B ∪ C = A ⊆ D, i.e. D = A, contradicting our assumption.
Therefore [A|LP(A) ↓] = {B,C}.
On the other hand, in order to prove that BASP(A) = {B,C}, it only suffices to prove
that {B,C} ⊆ BASP(A). Suppose that B /∈ BASP(A), thus there exists D $ B such that
D ∈ BASP(A). Hence, it results

C $ C ∪D $ A,

contradicting the fact that C ∈ [A|LP(A) ↓]. Similarly if C /∈ BASP(A). In this way, we
have that {B,C} ⊆ BASP(A). The reverse inclusion is now obvious. This also proves that
[A]≈ = {A,B,C}, therefore it follows that BASP(A) = Mug([A]≈P

) = [A|LP(A) ↓] = {B,C}
and the claim has been shown.

To conclude this section, we investigate the geometric properties of the minimal transversal
of each global symmetry class [A]≈P

.

Definition 3.4.8. We say that a subset B of Ω is A-strongly asymmetric if B ⊆ MP(A) and
C 6≈P MP(A) \ B, for any non-empty subset C ⊆ B. We denote by AP(A) the family of all
A-strongly asymmetric subsets of Ω.
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An A-strongly asymmetric subset B of Ω is any subset no part of which provides the same
degree of symmetry of its relative complement with respect to MP(A). In other terms, we
cannot extend MP(A) \B by means of any point or part of B without changing the symmetry
with respect to MP(A) \B itself.

In the next result we show that any non-empty subset B of MP(A) which is also a minimal
transversal of the set system [A]≈P

cannot induce the same symmetry partition of MP(A) \B.

Proposition 3.4.9. Tr([A]≈P
) ∩ P(MP(A)) ⊆ AP(A).

Proof. Let B ∈ Tr([A]≈P
) ∩ P(MP(A)). We now prove that B ∈ FP(A), where

FP(A) := {B ⊆MP(A) : ∀C ∈ P(B)\{∅}, ∀D ∈ P(MP(A)) with MP(D) ⊇MP(C), B∩D 6= ∅}.

For assume that B /∈ FP(A). Then, there exists a proper subset C of B and D ∈ P(MP(A))
such that MP(D) ⊇MP(C) and B ∩D = ∅.
Let us suppose, by contradiction, that there exists E ∈ [A]≈P

such that E ∩ (B \ C) = ∅
and set E′ := (E \ C) ∪ D. It is clearly disjoint from B. Because of our assumptions on D
and E, it readily follows that MP(E′) ⊆ MP(E). On the other hand, let us prove that that
MP(E) ⊆ MP(E′). By the condition MP(D) ⊇ MP(C), we have that C ⊆ MP(D) ⊆ MP(E′)
and E \ C ⊆ MP(E′), then E ⊆ MP(E′), i.e. MP(E) ⊆ MP(E′). In this way, we proved that
E′ ≈P E ≈P A. But the last claim contradicts the fact that B ∈ Tr([A]≈P

). This shows that
B \ C ∈ Tr([A]≈P

) ∩ P(MP(A)), contradicting the minimality of B. Hence B ∈ FP(A).
We now prove that FP(A) = HP(A), where

HP(A) := {F ⊆MP(A) : MP(F ′) *MP(MP(A) \ F ), ∀F ′ ∈ P(F ) \ {∅}},

which is clearly contained in AP(A). This will prove the thesis.
Let F ∈ FP(A) and F ′ ∈ P(F )\{∅}. Then, it is straightforward to see that F ′ *MP(MP(A)\
F ), otherwise, by the definition of FP(A) we should have F ′ ∩ (MP(A) \ F ) 6= ∅, that is an
absurd. This implies that F ∈ HP(A).
On the other hand, let Z ∈ HP(A) and suppose there exist Z ′ ∈ P(Z \ {∅}) and S ⊆ MP(A)
such that Z ′ ⊆MP(S) but S ∩ Z = ∅. Then S ⊆MP(A) \ Z, so

Z ′ ⊆MP(Z ′) ⊆MP(S) ⊆MP(MP(A) \ Z),

contradicting our assumption on Z. This shows that FP(A) = HP(A). The thesis is thus
proved.
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Chapter 4

A Dissymmetry Model in Graph
Theory

For any graph G, it is immediate to verify that the dissymmetry matrix is linked to the
neighboorhood of a graph as follows:

∀vi, vj ∈ V (G) ∆G(vi, vj) := {a ∈ V (G) : F (vi, a) 6= F (vj , a)} = NG(vi)
i
NG(vj) (4.1)

where ∆G(vi, vj) is the dissymmetry map of the pairing associated with G and ∆ is the
usual set symmetric difference: A

a
B := (A ∪B) \ (A ∩B).

Hence, the dissymmetry matrix of a graph represents a way to discern between two different
vertices vi 6= vj in the sense that v ∈ ∆G(vi, vj) if and only if v is adjacent to exactly one vertex
between vi and vj .

Example 4.0.10. Let Cn be the cycle on n vertices. In this case, the indices are taken modulo
n. We have

NCn(vi)
i
NCn(vj) =

{
{vi−1, vj+1} if j = i+ 2
{vi−1, vi+1, vj−1, vj+1} if i ≤ j ≤ n− 1 ∧ j 6= i+ 2

(4.2)

where 1 ≤ i < j ≤ n. Moreover, if we fix two vertices vi and vj such that j 6= i+ 2. It results
by (4.1) that vi−1, vi+1 are adjacent to vi but not to vj and, similarly, vj−1, vj+1 are adjacent
only to vj. Therefore

∆Cn(vi, vj) = {vi−1, vi+1, vj−1, vj+1} = NCn(vi)
i
NCn(vj).

If j = i+ 2, it is clear that vi+1 is adjacent to both vi and vj, while vi−1 is adjacent only to vi
and vj+1 only to vj. Therefore, in this case,

∆Cn(vi, vj) = {vi−1, vj+1} = NCn(vi)
i
NCn(vj).

A first immediate result shows that the dissymmetry matrix ∆[G] uniquely characterizes
its corresponding graph when G is a simple graph.
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Proposition 4.0.11. Let G1 and G2 be two simple graphs defined on the same set of vertices,
i.e., V (G1) = V (G2). Then:

∆[G1] = ∆[G2] ⇐⇒ E(G1) = E(G2).

Proof. Suppose that ∆G1(vi, vj) = ∆G2(vi, vj) for every vi, vj , then FG1(v, w) = FG2(v, w) for
every pair of vertices v and w, because in G1 and G2 there are no loops. Then, it follows
immediately that E(G1) = E(G2).

By Proposition 4.0.11, ∆ uniquely determines the edge set of a graph.
In this subsection we deal with the cases of Kn and Kp,q.

Theorem 4.0.12. Let G be a n-graph and V = V (G). Then:
(i) DIS(G) = {{V }} if and only if G = Kp,q;
(ii) Let DIS(G) =

(
V
2

)
. Then G = Kn if n is odd, while G = Kn or G = Fn if n is even.

Proof. (i): If G = Kp,q, then it is immediate to show that DIS(G) = {V }. Conversely,
let DIS(G) = {V } be the discernibility set system of G and let vi, vj ∈ V (G) such that
∆G(vi, vj) = V . Then, in this case, by settingB1 := NG(vi) andB2 := NG(vj), thenB1∩B2 = ∅
and B1 ∪ B2 = ∆G(vi, vj) = V . Now let v, w of B1 (equivalently B2). They cannot be
adjacent, otherwise ∆G(v, w) = V , contradicting the fact that vi ∈ NG(v)∩NG(w) (equivalently
vj ∈ NG(v) ∩NG(w)). If v ∈ B1 and w ∈ B2, then, since NG(v) 6= NG(w), it must result that
∆G(v, w) = V , hence v ∼ w. Thus, the claim is proved.
(ii): Firstly, we observe that any pair of vertices {vi, vj}, with i < j, occurs just once as
∆G(v′i, v

′
j), with v′i, v

′
j ∈ V (G) and i′ < j′. If n = 1 or n = 2, there is nothing to prove. Let

G be a n-graph such that DIS(G) =
(
V
2

)
. Without loss of generality, suppose moreover that

vn−1 ∼ vn. Thus ∆G(vn−1, vn) = {vn−1, vn}. Therefore any other vertex must be adjacent to
both vn−1 and vn or non-adjacent to none of them. Let vi, vj ∈ V (G) such that vi ∼ vn−1,
vi ∼ vn, vj � vn−1 and vj � vn. In this case, ∆G(vi, vj) = {vn−1, vn} but this contradicts
our preliminary remark. Hence all vertices in X := {v1, . . . , vn−2} are all adjacent to vn−1, vn
or are all non adjacent to them. Thus, by setting H := G[X], we have that |V (H)| = n − 2
and DIS(H) =

(
V (H)

2

)
. So, by the inductive hypothesis, H = Kn−2 or, in the even case,

H = Fn−2 or H = Kn−2. Let us suppose that H = Kn−2. If there exists vi ∈ V (G) such
that vi � vn−1 and vi � vn, then ∆G(vi, vn−1) = {vn} ∪ (X \ {vi}). Since |∆G(vi, vn−1)| = 2,
the only possibility is that n = 4 and G = Fn. On the other hand, if there exists vi ∈ V (H)
such that vi ∼ vn−1 and vi � vn, then clearly G = Kn. Let us suppose that n is even and
H = Fn−2. Let n 6= 4 and vi, vj ∈ V (H) such that vi ∼ vn−1 and vi � vj . Hence, ∆G(vi, vn−1)
contains {vi, vj , vn−1}, contradicting our assumption. Therefore, the only possibility in this
case is n = 4 and G = Kn or G = Fn.

4.1 Formal Context Analysis on Graphs

In this section we firstly recall some basic link notions between finite simple graphs and formal
context as introduced in [48], next we discuss some new results concerning the formal contexts
induced by simple graphs.
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Definition 4.1.1. [48] We call formal context of the graph G the formal context K[G] :=
(V (G), V (G),RG), where vRGv

′ if and only if {v, v′} ∈ E(G) for all v, v′ ∈ V (G).

Hence the object subset and the attribute subset of the formal context K[G] are both equal
to the vertex set V (G), whereas the binary relation which defines this formal context is exactly
the incidence relation between vertices of the graph G. Let us also note that, since the graph
G is undirected, the relation RG is symmetric.

Given the above considerations, in the formal context K[G] induced by a simple undirected
graph G, the maps ↑ : P(V (G)) → P(V (G)) and ↓ : P(V (G)) → P(V (G)) are coincident.
Therefore in the sequel we denote with the same symbol ′ the map ′ : P(V (G)) → P(V (G))
such that O 7→ O′ := O↑ = O↓, when O is any vertex subset of G. This implies obviously
that also the two operators ∗ : P(V (G)) → P(V (G)) and � : P(V (G)) → P(V (G)) coincide.
Therefore in the sequel we set O 7→ O′′ := O∗ = O�, for all O ⊆ V (G).

If O is a vertex subset of G, it is immediate to verify that

O′ =
⋂
v∈O

NG(v) = {w ∈ V (G) : O ⊆ NG(w)}, (4.3)

moreover, since G has not loops, we also have

O′ ⊆ V (G) \O. (4.4)

Remark 4.1.2. The identity in (4.3) is also valid when O = ∅. In fact, in this case, we always
have (by convention in FCA) ∅↑ = M and ∅↓ = Z, that is O′ = O↑ = O↓ = V (G) in the
formal context K[G]. On the other hand, it is usual (in elementary set theory) to interpret the
intersection

⋂
v∈ONG(v) as coincident with the whole set V (G) when O is the empty set.

Remark 4.1.3. If G is a finite simple undirected graph, a vertex subset O ⊆ V (G) is the
extent [intent] of some concept of the formal context K[G] if and only if O′′ = O. In this case,
both the pairs (O,O′) and (O′, O) are concepts of K[G]. Moreover, since G has no loops, the
cross table of the formal context K[G] (that is, the adjacency matrix of G) has zeroes in all
its diagonal places, and this obviously implies that V (G)′ = ∅. Hence both the pairs (∅, V (G))
and (V (G), ∅) are always concepts of the formal context K[G].

Proposition 4.1.4. Let A ⊆ V . Then A is the extent [intent] of some concept of the formal
context K[G] if and only if A = O′, for some O ⊆ V .

By Proposition 4.1.4 and Equation (4.3) it follows that a vertex subset A is an extent [in-
tent] of some concept in K[G] if and only if A is intersection of open neighborhoods of vertices
of G.

We explicitly introduce now the notion of concept lattice for a finite simple undirected
graph.

Definition 4.1.5. [48] We call concept lattice (or also Galois lattice) of the graph G the
concept lattice of the formal context K[G] and we denote it simply by (B(G),v) instead of
(B(K[G]),v). We also call Galois poset of G the poset (B§(G),v), where B§(G) := B(G) \
{(∅, V (G)), (V (G), ∅)}.
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Remark 4.1.6. (i) Since the adjacency matrix of G is a symmetric matrix, we immediately
deduce that the concept lattice (B(G),v) is self-dual.
(ii) From FCA general theory it is well known that is sufficient to represent any formal concept
B = (B1, B2) of K[G] simply with its extent B1 (or, equivalently, with its intent B2). As a con-
sequence of this premise, in several cases we implicitly identify a formal concepts B = (B1, B2)
of K[G] with its extent B1 (or, equivalently, with its intent B2). Obviously, in these cases we
can also identify the partial order v with the usual inclusion relation ⊆ (or, respectively, with
the dual inclusion ⊆∗).

In the next two definitions we introduce two basic notions.

Definition 4.1.7. Let G, G′ be two finite simple graphs.

• We say that G is Galois equivalent with G′, denoted by G ≡gal G′, if the corresponding
Galois lattices B(G) and B(G′) are isomorphic.

• We call the Galois class of G the graph family [G]gal = {G′ : G ≡gal G′}.

Definition 4.1.8. Let s be a positive integer. We call s-Galois class of G the following graph
family

[G, s]gal := {G′ ∈ [G]gal : |V (G′)| = s}.

Moreover, we say that the ordered pair (G, s) is:

• Galois undetermined if there exist at least two non-isomorphic locally dissymmetric
graphs in [G, s]gal;

• Galois determined if there is just one locally dissymmetric graph up to isomorphism in
[G, s]gal;

• Galois inconsistent if [G, q]gal is non-empty and there is not any locally dissymmetric
graph in [G, q]gal.

We also say that the graph G is:

• Galois undetermined if the pair (G, |V (G)|) is Galois undetermined;

• Galois determined if the pair (G, |V (G)|) is Galois determined;

• Galois inconsistent if the pair (G, |V (G)|) is Galois inconsistent;.

Remark 4.1.9. If G is a locally dissymmetric n-graph then it is clear that G is Galois deter-
mined if and only if [G,n]gal = {G}.

In the next propositions of this section we establish some useful properties of the Galois
poset of a graph.
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Proposition 4.1.10. Let G, G′ be simple graphs. Then:
(i) G ≡gal G′ if and only if B§(G) = B§(G′).
(ii) Let G1, . . . , Gk be the connected components of G. Then, the Galois poset of G is the
direct sum of the Galois posets of its components, B§(G) = B§(G1) + · · ·+ B§(Gk).
(iii) Let vi1 , . . . , vik be some isolated points in G and let G′′ := G[V (G) \ {vi1 , . . . , vik}]. Then
B§(G) = B§(G′′).

Proof. (i) This is trivial and follows directly by the definition of the Galois poset.
(ii) Let O ⊆ V (G) be a vertex subset. Then O′ 6= ∅ if and only if O′ ⊆ V (Gi) for some
i ∈ {1, . . . , k}. More in general a vertex subset A of G, such that A 6= V (G) and A 6= ∅, is an
extent [intent] in G if and only if it is an extent [intent] in a connected component of G. The
thesis thus holds.
(iii) This follows directly by part (ii).

Remark 4.1.11. (i) By Proposition 4.1.10, part (i), we can use the Galois poset of G instead
of its Galois lattice in order to study the Galois class of G.
(ii) The notion of local dissymmetry is important in our context because each Galois class is
uniquely determined by a locally dissymmetric graph. In fact, if G be a finite simple graph,
then G ≡gal G'.
(iii) By (ii) of Proposition 4.1.10 we can restrict our analysis to graphs without isolated vertices.

Proposition 4.1.12. Let G be a n-graph, O ⊆ V (G) be an extent and vi ∈ O. Then O contains
all the vertices vj such that vi ' vj.

Proof. Let vj ∈ V (G) twin with vi and vi ∈ O for some extent O ⊆ V (G). By Proposition 4.1.4,
there exists a vertex subset A ⊆ V (G) such that O = A′ =

⋂
v∈A

NG(v). Hence vi ∈
⋂
v∈A

NG(v),

so vi ∼ v for each v ∈ A. Since NG(vi) = NG(vj), we deduce that vj ∼ v for any v ∈ A, thus
vj ∈

⋂
v∈A

NG(v), i.e. vj ∈ O.

Proposition 4.1.13. Let G be a graph. Then, if O is a vertex subset of G such that O′ is
minimal in B§(G), then |O′| = 1. The maximal extents in B§(G) are the neighborhoods of the
elements which appear in the bottom part.

Proof. Without loss in generality we can suppose O = O′′. Let us suppose that |O′| ≥ 2. Since
there are not twin vertices in G, there exists a vertex w ∈ O′ such that NG(w) contains strictly
O. Let u ∈ NG(w) \ O and set U = O ∪ {u}. It follows that w ∈ U ′, so U ′ is non-empty and
contained strictly in O′. This contradicts the assumption that O′ is minimal in B§(G). Thus
|O′| = 1. By duality, if O′ = {v}, then O′′ = NG(v) is maximal in B§(G). This completes the
proof.

In the last result of this scetion we show how the connectedness of the graph is related to
the connectedness of the cover graph of the corresponding concept lattice.

Proposition 4.1.14. Let G be a simple graph. If the cover graph of B§(G) is connected, then
G is a connected graph.
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Proof. Suppose that the graph G is not connected. Since G has no isolated vertices, every com-
ponent has at least an edge. This means that we can find two different proper neighborhoods,
which are extent in the concept lattice. Hence, B§(G) can be expressed as the disjoint sum of
lattices, i.e. its cover graph is not connected.

We will note in the next section that the reverse implication of that established in Propo-
sition 4.1.14 is not true (see the next Remark 4.1.23).

4.1.1 Galois classes of Kn and Kp,q

In this section we describe the Galois classes of the complete graph and of the bipartite complete
graph. The complete determination of the Galois class of a graph G is in general a difficult
task, even in the case when the structure of G is relatively simple.

In the next result we provide the equivalent conditions that characterize a n-graph G that
has the same Galois lattice of Kn.

Proposition 4.1.15. Let G be a n-graph and let V = V (G). Then, the following conditions
are equivalent:
(i) for any vertex subset X ⊆ V we have X ′ = V \X;
(ii) G = Kn;
(iii) B(G) = {(X,V \X) : X ⊆ V };
(iv) (B(G),v) ∼= (P(V ),⊆).

Proof. (i) =⇒ (ii) : Let v ∈ V and let X = {v}. By (i) we have that NG(v) = {v}′ = V \ {v},
therefore G = Kn.
(ii) =⇒ (iii) : Let X ⊆ V . Since G = Kn, by definition of X ′ we have that X ′ = V \ X,
therefore X ′′ = (X ′)′ = V \ (V \X) = X. This implies that the ordered pair (X,V \X) is a
formal concept of G. Hence (iii) is satisfied.
(iii) =⇒ (iv) : It follows directly by the definition of the partial order in the concept lattice.
(iv) =⇒ (i) : Let us suppose there exists X ⊆ V such that X ′ 6= V \X. Since X ′ is disjoint
from X, we have that X ′  Xc and thus that the cardinality of X ∪ X ′ is strictly less than
n. By (iv) and by the duality property of the concept lattice associated with a graph, we have
that each subset Y of V occurs exactly once as extent and once as intent in suitable formal
concepts of G. Thus if we sum the cardinalities of all the extents and all the intents in B(G),
then we obtain: ∑

Y ∈P(V )

|Y ∪ Y ′| = 2
∑

Y ∈P(V )

|Y | = 2n2n−1 = n2n.

Since the number of addends in the first sum is equal to 2n and one of addends, |X ∪ X ′| =
|X| + |X ′|, is strictly less than n, then there exists Y ⊆ V such that |Y ∪ Y ′| > n, but this
contradicts the fact that Y and Y ′ are disjoint. This proves that X ′ = V \X.

In the next result we provide the conditions under which a local dissymmetry graph G is
Galois equivalent to Kn.
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Proposition 4.1.16. Let G be a locally dissymmetric graph. Then, G ≡gal Kn if and only if
there exists a vertex subset U = {u1, u2, . . . , un} ⊆ V (G) such that the following conditions
hold:
(i) G[U ] ∼= Kn;
(ii) for each v ∈ V (G) \ U , there exist ui ∈ U such that NG(v) ⊆ NG(ui);
(iii) if v, w ∈ V (G) \ U are in V (G), then v ∼ w if and only if U ⊆ NG(v) ∪NG(w).

Proof. By Proposition 4.1.13, since (B(G),v) ∼= (P(V ),⊆), there exist u1, . . . , un ∈ V (G)
such that the minimal elements in B§(G) are the singletons {ui} and the maximal elements
are NG(ui), for i = 1, 2, . . . , n. Then, for each A ⊆ U := {u1, . . . , un}, there exist just one
extent BA in B(G) such that A ⊆ BA. Let now v ∈ V \ U and let us consider NG(v) = {v}′.
By maximality of the extents NG(ui) in B(G), there exists a vertex ui ∈ U such that NG(v) ⊆
NG(ui). So (ii) holds.
Let now v, w ∈ V (G)\U such that U ⊆ NG(v)∪NG(w). In this case (U∩NG(v))∪(U∩NG(w)) =
U . By setting A := NG(v)∩U , then BA = NG(v). On the other hand, ((U∩NG(w))\NG(v))′ is
another extent such that its intersection with U is equal to A. This implies that ((U ∩NG(w))\
NG(v))′ = BA = NG(v) and thus v ∼ w. Conversely let v, w ∈ V (G) \ U , with v ∼ w. As an
immediate consequence, we deduce that {w}′ = NG(w) is an extent in B(G) whose intersection
with U is A := (NG(w)∩U). Thus it coincides with (U \NG(w))′ and if u ∈ U \NG(w), then,
since v ∈ {w}′ = (U \NG(w))′, we obtain u ∼ v. It follows (iii).
Let us suppose now that V (G) satisfies the condition (iii). Then, for each A ⊆ U , we set
BA := (U \ A)′. Let us prove now that the BA are all the possible extents in B(G). For this,
let O be a vertex subset in G. Let us prove that O′ = (U \ O′)′. For this, let v ∈ O′ and
u ∈ U \O′. If v ∈ O′ ∩U , then u 6= v and so u ∼ v because they are different vertices in U and
G[U ] ∼= Kn. Let v ∈ O′ \ U . In this case, if u ∈ O, then u ∼ v because v ∈ O′. If u /∈ O, since
u /∈ O′, then there exist v′ ∈ O \ U such that u � v′. But since v′ ∼ v, by property (iii), we
obtain that u ∼ v, so O′ ⊆ (U \ O′)′. Let now u ∈ (U \ O′)′. If u ∈ U , then u ∈ O′, so u ∼ v,
for all v ∈ O. Let us suppose thus u /∈ U and let v ∈ O. If v ∈ U ∩ O, then v ∈ U \ O′, so
v ∼ u. If u′ ∈ U and u′ � v, then u′ ∈ U \O′, so u ∼ u′. This proves that U ⊆ NG(v)∪NG(w)
and thus, by property (iii), u ∼ v.

At this point we provide our results concerning the complete graph Kn in the following
result.

Theorem 4.1.17. (i) The complete graph Kn is Galois determined.
(ii) [Kn]gal is the family of all the finite simple graph G such that G' satisfies the conditions
(i), (ii) and (iii) of Proposition 4.1.16.
(iii) If s > n then the pair (Kn, s) is Galois undetermined or Galois inconsistent.

Proof. Part (i) follows by Proposition 4.1.15, whereas the parts (ii) and (iii) follow by Propo-
sition 4.1.16.

We devote now our attention to the complete bipartite graphs. We will prove that all
these graphs are mutually equivalent to one another and, moreover, that a graph G is Galois
equivalent to a complete bipartite graph if and only if it is a complete bipartite graph by itself.
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Proposition 4.1.18. The following conditions for a graph G with vertex set V are equivalent:
(i) G is the complete bipartite graph having bipartition (B1, B2).
(ii) B(G) = {(∅, V ), (B1, B2), (B2, B1), (V, ∅)}, where B1|B2 is a set partition of V .
(iii) (B(G),v) ∼= (P(2̂),⊆).

Proof. (i) =⇒ (ii) : Let O ⊆ V a non-empty vertex subset. Then, clearly:

O′ =


B2 if O ⊆ B1,
B1 if O ⊆ B2,
∅ otherwise.

So the only contexts (extents) are ∅, B1, B2, V and the thesis follows.
(ii) =⇒ (iii) : This is obvious.
(iii) =⇒ (i) : Let (B1, B2) and (B2, B1) be the two concepts in B(G) where both B1 and B2

are different from the empty set. Then, by definition of the operator ′, all vertices in B1 are
adjacent to all vertices in B2, so that {x, y} ∈ E(G), for all x ∈ B1 and y ∈ B2. Let us suppose
now there exist x1, x2 ∈ B1 such that {x1, x2} ∈ E(G). Set O := NG(xi) ⊇ {x2} ∪ B2. In
this case x1 ∈ O′ and x2 /∈ O′, so O′ 6= B1, O′ 6= B2, O′ 6= ∅ and O′ 6= V . As observed in
Remark 2.3, this contradicts the fact that the only extents in B(G) are ∅, B1, B2 and V . The
proposition is thus proved.

For the complete bipartite graphs we obtain then the following result.

Corollary 4.1.19. (i) The Galois class of any complete bipartite graph is is the family of all
the complete bipartite graphs.
(ii) If s > 2 then the pair (Kp,q, s) is Galois inconsistent.

Proof. It follows directly by Proposition 4.1.18.

4.1.2 Galois Posets of Cycles, Paths and Wheels

In this section we determine the Galois lattices of three well studied graph families: the n-
cycles Cn, the n-paths Pn and the n-wheels Wn+1. The Galois posets of these graph families
are graded of rank 1 (for Cn and Pn) or of rank 2 (for Wn+1).
In the next result we show that the only n-graph in the Galois class of Cn is just Cn.

Theorem 4.1.20. Let G be a graph with |V (G)| = n ≥ 5. Then, G = Cn if and only if the
Galois poset (B§(G),⊆) is a n-crown when n is odd and is a disjoint sum of two n

2 -crowns
when n is even.

Proof. Let G = Cn and let vi ∈ V (G). Then, NG(vi) = {vi−1, vi+1}, where the index sums are
taken mod(n). Now let i, j ∈ {1, . . . , n} such that i < j. Then,

{vi, vj}′ = NG(vi) ∩NG(vj) =


{v1} if i = 2 and j = n
{vn} if i = 1 and j = n− 1
{vi+1} if j = i+ 2
∅ otherwise.
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Finally, note that if O ⊆ V has cardinality greater than or equal to 3, then O′ = ∅.
Therefore, we conclude that B§(Cn) = {{vi}, {vi−1, vi+1} : i = 1, . . . , n}, where the index sums
are taken mod(n). Now, let n be an odd integer. We set

xk := {v2k−1} for k = 1, . . . , n

and
yk := {v2k−1, v2k+1} for k = 1, . . . , n

where all index sums are taken mod(n). It’s immediate to see that, in this way, B§(Cn) is an
n-crown with respect to set theoretic inclusion.
Let n be an even integer. We set

xk := {v2k−1} for k = 1, . . . ,
n

2

yk := {v2k−1, v2k+1} for k = 1, . . . ,
n

2

and
xk+n

2
:= {v2k} for k = 1, . . . ,

n

2

yk+n
2

:= {v2k, v2k+2} for k = 1, . . . ,
n

2

where all index sums are taken mod(n). In this way, it’s obvious that B§(Cn) is the disjoint
union of two n

2 -crowns.
Vice versa, let (B§(G),v) = {x1, y1, . . . , xn, yn} with x1 < y1 > x2 < y2 > x3 < · · · <
yn−1 > xn < yn > x1. At first, we observe that, by minimality, the xi are n pairwise disjoint
subsets. Hence, we conclude necessarily that xi = {vi}. Then, it is also clear that |yi| = 2 for
every i = 1, . . . , n and, by the maximality of yi, we conclude that for each i = 1, . . . , n, there
exists some vk ∈ V (G) such that yi = NG(vk). This means that the graph G is 2-regular and
connected, i.e. G = Cn. In particular, n must be necessarily an odd integer.
In a similar way, let (B§(G),⊆) be the disjoint sum of two n

2 -crowns. It is obvious that the
minimal elements of the first crown are disjoint from those of the second one and hence the
maximal elements of the first crown are also disjoint from those of the second one. Arguing as
before, it is easy to deduce that, even in this case, G = Cn.

Corollary 4.1.21. (i) The n-cycle Cn is Galois determined, that is equivalent to the condition
[Cn, n]gal = {Cn} because Cn is locally dissymmetric.
(ii) Let G be a simple finite graph. Then, G ≡gal Cn if and only if G' = Cn.

Proof. Both assertions follow directly by Theorem 4.1.20 and by (ii) of Remark 4.1.11.

Example 4.1.22. In the figure we represent the concept lattice of C5.
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{1, 2, 3, 4, 5}

{1, 3} {3, 5} {2, 5} {2, 4} {1, 4}

{1} {3} {5} {2} {4}

∅

Figure 4.1: Concept Lattice of C5

In the next figure we also represent the concept lattice of C6.

{1, 2, 3, 4, 5, 6}

{3} {5} {1} {4} {6} {2}

{1, 3} {3, 5} {1, 5} {2, 4} {4, 6} {2, 6}

∅

Figure 4.2: Concept Lattice of C6

Remark 4.1.23. Let us note that the graph Cn, where n is even, is connected but the cover
graph of its Galois poset is not connected.

We examine now the case G = Pn. For this graph we can establish the following result.

Theorem 4.1.24. Let G be a graph with |V (G)| = n ≥ 5. Then

G = Pn ⇐⇒ (B§(G),⊆) = Fn−2 ∪d F ∗n−2.
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Proof. Let G = Pn and let vi ∈ V (G). Then

NG(vi) = {vi}′ =


{v2} if i = 1
{vn−1} if i = n
{vi−1, vi+1} otherwise.

(4.5)

Now let vi, vj ∈ V (G) such that i < j. Then

NG(vi) ∩NG(vj) = {vi, vj}′ =
{
{vi+1} if j = i+ 2
∅ otherwise.

Moreover if O ⊆ V (G) is such that |O| ≥ 3, then O′ = ∅. We conclude that B§(Pn) =
{{vi}, {vj , vj+2} : i = 2, . . . , n− 1, j = 1, . . . , n− 2}.
Let n be an even integer. If we set, for k = 1, . . . , n−2

2 ,

{v2k} = x2k−1 and {v2k, v2k+2} = x2k

and
{v2k−1} = x′2k−1 and {v2k−1, v2k+1} = x′2k

it’s immediate to note that B§(Pn) is the disjoint union of two (n− 2)-fences. Similarly, let n
be an odd integer. If we set

{v2k} = x2k−1 for k = 1, . . . ,
n− 1

2

{v2k, v2k+2} = x2k for k = 1, . . . ,
n− 3

2

and

{v2k−1, v2k+1} = x′2k−1 for k = 1, . . . ,
n− 1

2

{v2k+1} = x′2k for k = 1, . . . ,
n− 3

2

and we obtain an (n− 2)-fence Fn−2 and the dual (n− 2)-fence F ∗n−2. Hence, the Galois poset
B§(Pn) is the disjoint union of two (n− 2)-fences.
Vice versa, let (B§(G),⊆) = Fn−2 ∪d F ∗n−2. We observe that the minimal elements of a fence
are clearly pairwise disjoint; moreover it is obvious the minimal elements of the first fence
are disjoint from those of the second one. Hence the minimal elements are singletons and the
maximal elements are pairs of vertices; in particular they are neighbourhoods of some vertex.
If n is an even integer, then every fence has exactly n−2

2 minimal as many maximal elements,
while if n is an odd integer, in the first fence there are n−1

2 minimal elements and n−3
2 maximal

elements and in the second there are n−3
2 minimal elements and n−1

2 maximal elements. It is
immediate to see that the maximal elements of a fence are the neighbourhoods of the minimal
elements of the other fence; so, since G is a connected graph, we conclude that the n−2 vertices
at issue form a (n− 2)-path. Moreover, the remaining vertices can be linked only to the ends
of the previous path and there are no edges between them, otherwise we obtain a n-cycle but
this is impossible by Theorem 4.1.20. Thus, we deduce that G = Pn.
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Corollary 4.1.25. (i) The n-path Pn is Galois determined, that is equivalent to the condition
[Pn, n]gal = {Pn} because Pn is locally dissymmetric.
(ii) Let G be a simple finite graph. Then, G ≡gal Pn if and only if G' = Pn.

Proof. Both assertions follow directly by Theorem 4.1.24 and by (ii) of Remark 4.1.11.

Example 4.1.26. We represent the concept lattice of P6 in the figure below.

{1, 2, 3, 4, 5, 6}

{3} {5} {2} {4}

{1, 3} {3, 5} {2, 4} {4, 6}

∅

Figure 4.3: Concept Lattice of P6

In the following theorem, we will prove that there not exists any graph whose concept lattice
is isomorphic to a n-fence.

Theorem 4.1.27. Let Fn be a n-fence. There exists no graph having Fn as Galois poset.

Proof. Let us assume, by absurd, that there exists a graph G such that his Galois poset is
isomorphic to Fn. Without loss in generality we can assume G locally dissymmetric. By
Proposition 4.1.13 the minimal extents of G are singletons and the maximal elements in B§(G)
are the neighborhoods of the vertices that occur in the minimal part. Thus the number of
minimal and maximal elements is the same.
Let Fn be the n-fence such that x1 < y1 > x2 < · · · < xn and let v1, v2, . . . , vn ∈ V such that,
for each i, xi corresponds to the singleton {vi} and yi corresponds to NG(vσ(i)), where σ is a
permutation of the index set {1, 2, . . . , n}. Since vi, vi+1 ∈ NG(vσ(i)), where i = 1, . . . , n− 1,
and vn ∈ NG(vσ(n)), the induced subgraph on G by the vertex subset {v1, v2, . . . , vn} has one
vertex of degree 1 and all the others of degree 2. But there exists no such graph. This concludes
the proof.

We close this section by determining the Galois lattice of an n-wheel.
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Proposition 4.1.28. Let n ≥ 5 and Wn+1 be the n-wheel. Then:

(B§(Wn+1),⊆) = {{vi}, {vj , vj+2}, {vj , vn+1}, NWn+1(vi)},

for i = 1, . . . , n+ 1, j = 1, . . . , n and the index sums j + 2 are taken mod(n).

Proof. Let G = Wn+1 and vi ∈ V (G). Then

NG(vi) = {vi}′ =


{v2, vn, vn+1} if i = 1
{v1, vn−1, vn+1} if i = n
{v1, . . . , vn} if i = n+ 1
{vi−1, vi+1, vn+1} otherwise.

It is easy to see that, if O ⊆ V (G) have cardinality |O| ≥ 2, then |O′| ≤ 2 and |O′| = 2 if and
only if O′ = {vj , vj+2} or O′ = {vj , vn+1} for some j = 1, . . . , n. Moreover, if i = 1, . . . , n+ 1,
then:

{vi} =


{v2, vn, vn+1}′ if i = 1
{vi−1, vi+1, vn+1}′ if i ∈ {2, . . . , n− 1}
{v1, vn−1, vn+1}′ if i = n
{v1, v2}′ if i = n+ 1

The Proposition is thus proved.

Corollary 4.1.29. The Galois poset of Wn+1 is graded of rank 2.

Example 4.1.30. In the figure we represent the concept lattice of W7.
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{1, 2, 3, 4, 5, 6, 7}

{1} {2} {3} {7} {4} {5} {6}

{1, 3} {2, 4} {1, 5} {1, 7} {2, 7} {3, 7} {4, 7} {5, 7} {6, 7} {2, 6} {3, 5} {4, 6}

{1, 3, 7} {2, 4, 7} {1, 5, 7} {1, 2, 3, 4, 5, 6} {2, 6, 7} {3, 5, 7} {4, 6, 7}

∅

Figure 4.4: Concept Lattice of W7

4.1.3 The Galois Lattice of Products of Cycles and Paths

By using the results of the previous section, we now investigate the the concept lattice of
graphs obtained by composing cycles and paths by means of two classical graph operations:
the Cartesian product and the tensor product.

We firstly establish a preliminary result.

Proposition 4.1.31. Let G and H be two graphs. The Galois poset of the tensor product
G⊗H is the direct product of the two Galois posets B§(G) and B§(H).

Proof. Let (u, u′) ∈ V (G⊗H). Then, NG⊗H((u, u′) = (u, u′)′ = NG(u)×NH(u′). By Equation
(4.3) and Proposition 4.1.4 it follows easily that A ⊆ V (G⊗H) is an extent (intent) if and only
if there exist O ∈ V (G), Q ∈ V (H) such that A = O′ ×Q′. The thesis follows by definition of
the product order in B§(G⊗H).

In the next result, we determine the extent family of the (m,n)-prism and we prove that
its Galois poset is graded of rank 2.
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Theorem 4.1.32. Let m ≥ 2, n ≥ 3 and G be the (m,n)-prism Pm2Cn. Then

B§(G) = {{(i, j′)}, {(k, r′), (k + 1, r′ − 1)}, {(k, r′), (k + 1, r′ + 1)}, NG((i, j′))}, (4.6)

where i = 1, . . . ,m, j′ = 1, . . . , n, k = 1, . . . ,m− 1 and r′ = 1, . . . , n.
Moreover, the Galois poset B§(G) is graded of rank 2.

Proof. All the index sums in this proof are taken mod(n). We have that NG((1, j′)) = {(1, j′−
1), (1, j′+1), (2, j′)} for j′ = 1, . . . , n, NG((i, j′)) = {(i, j′−1), (i, j′+1), (i−1, j′), (i+1, j′)} for
any j′ = 1, . . . , n and i = 2, . . . ,m−1 and NG((m, j′)) = {(m, j′−1), (m, j′+1), (m−1, j′)} for
j′ = 1, . . . , n. In particular, to distinct pairs correspond distinct neighborhoods. We obviously
have O′′ = O if O = {(i, j′)} or O = NG((i, j′)). Let O ⊆ V (G) of the form O = {(i, r′), (i, s′)}.
Since these vertices belong to a Cn, we deduce that O′ = ∅ unless d(r′, s′) ≡ 2 (mod n). In this
case, O′ = {(i, r′−1)} or O′ = {(i, r′+ 1)}, depending on whether s′ = r′−2 or s′ = r′+ 2, but
in both situations we have O′′ 6= O. Let O ⊆ V (G) of the form O = {(i, r′), (i+ 1, s′)} for some
r′, s′ ∈ {1′, . . . , n′} and i ∈ {1, . . . ,m − 1}. It is easy to see geometrically the different cases
occurring: if these two vertices belong to the same lateral face of a prism and are opposite, then
O′ consists of the other two vertices of the face; if these two vertices belong to the same lateral
face of a prism and are adjacent, then O′ = ∅ as well as if they belong to the different lateral
faces of a prism. Hence O′′ = O if O = {(i, r′), (i + 1, r′ − 1)} or O = {(i, r′), (i + 1, r′ + 1)}.
If O ⊆ V (G) is a vertex subset of cardinality 3, we have to consider two different cases; in the
first, there exist a vertex (i, j′) such that O ⊆ NG((i, j′)), so O′′ = O if and only if i = 1 or
i = m, i.e. if and only if O = NG((1, j′)) or O = NG((m, j′)), while in the second case, it is
easy to show that O′ = ∅. All other possible vertex subsets don’t satisfy the condition O′′ = O,
since there are at least two adjacent vertices or two vertices belonging to different faces of a
prism or there are at least three vertices which don’t belong to the same neighborhood and
this conclude the proof of (4.6).
Now, by (4.6) it is easy to deduce that any maximal chain in B§(G) has one of the following
forms:

• {(1, j′)} $ {(1, j′), (2, j′ − 1)} $ NG((1, j′ − 1));

• {(1, j′)} $ {(1, j′), (2, j′ − 1)} $ NG((2, j′));

• {(1, j′)} $ {(1, j′), (2, j′ + 1)} $ NG((1, j′ + 1));

• {(1, j′)} $ {(1, j′), (2, j′ + 1)} $ NG((2, j′));

• {(i, j′)} $ {(i, j′), (i− 1, j′ − 1)} $ NG((i− 1, j′));

• {(i, j′)} $ {(i, j′), (i− 1, j′ − 1)} $ NG((i, j′ + 1));

• {(i, j′)} $ {(i, j′), (i− 1, j′ + 1)} $ NG((i− 1, j′));

• {(i, j′)} $ {(i, j′), (i− 1, j′ + 1)} $ NG((i, j′ + 1)).

where i = 2, . . . ,m and j′ ∈ {1′, . . . , n′}. Hence, any maximal chain has length 2, so the Galois
poset B§(G) is a graded poset of rank 2.
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Example 4.1.33. In the following figure we represent the concept lattice of the (2, 3)-prism.

{(1, 1′), (1, 2′), (1, 3′), (2, 1′), (2, 2′), (2, 3′)}

{(1, 1′)} {(1, 2′)} {(1, 3′)} {(2, 3′)} {(2, 2′)} {(2, 1′)}

{(1, 1′), (2, 2′)} {(1, 1′), (2, 3′)} {(1, 2′), (2, 3′)} {(1, 3′), (2, 2′)} {(1, 3′), (2, 1′)} {(1, 2′), (2, 1′)}

{(1, 1′), (2, 2′), (2, 3′)}{(1, 2′), (2, 1′), (2, 3′)}{(1, 3′), (2, 1′), (2, 2′)}{(1, 1′), (1, 2′), (2, 3′)}{(1, 1′), (1, 3′), (2, 2′)}{(1, 2′), (1, 3′), (2, 1′)}

∅

Figure 4.5: Concept Lattice of the (2, 3)-prism.

In the next result we determine the extent family of the (m,n)-grid graph and we prove
that its Galois poset is graded of rank 2.

Theorem 4.1.34. Let m,n ≥ 2 and let G = Pm2Pn be the (m,n)-grid graph. Then

B§(G) = {{(i, j′)}, {(k, r′), (k + 1, r′ − 1)}, {(k, s′), (k + 1, s′ + 1)}, NG((i, j′))} (4.7)

where i = 1, . . . , n, j′ = 1, . . . ,m, k = 1, . . . ,m− 1, r′ = 2, . . . , n and s′ = 1, . . . , n− 1.
Moreover B§(G) is a graded poset of rank 2.

Proof. We have that NG((1, j′)) = {(1, j′−1), (1, j′+1), (2, j′)} for j′ = 1, . . . ,m, NG((i, j′)) =
{(i, j′ − 1), (i, j + 1), (i − 1, j′), (i + 1, j′)} for any j′ = 1, . . . ,m and i = 2, . . . , n − 1 and
NG((n, j′)) = {(n, j′ − 1), (m, j′ + 1), (n− 1, j′)} for j′ = 1, . . . ,m. At this point the remaining
part of the proof of (4.1.34) is very similar to that provided in Theorem 4.1.32, therefore we
omit it.
For the second part of the statement, by (4.7) we easily deduce that any maximal chain has
one of the following form:

• {(1, 1′)} $ {(1, 1′), (2, 2′)} $ NG((1, 2′));
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• {(1, 1′)} $ {(1, 1′), (2, 2′)} $ NG((2, 1′));

• {(1, n′)} $ {(1, n′), (2, n′ − 1)} $ NG((1, 2′));

• {(1, n′)} $ {(1, n′), (2, n′ − 1)} $ NG((2, 3′));

• {(m, 1′)} $ {(m, 1′), (m− 1, 2′)} $ NG((m, 2′));

• {(m, 1′)} $ {(m, 1′), (m− 1, 2′)} $ NG((m− 1, 1′));

• {(m,n′)} $ {(m,n′), (m− 1, n′ − 1)} $ NG((m,n′ − 1));

• {(m,n′)} $ {(m,n′), (m− 1, n′ − 1)} $ NG((m− 1, n′));

• {(1, j′)} $ {(1, j′), (2, j′ − 1)} $ NG((2, j′));

• {(1, j′)} $ {(1, j′), (2, j′ + 1)} $ NG((2, j′));

• {(m, j′)} $ {(m, j′), (m− 1, j′ − 1)} $ NG((m− 1, j′));

• {(m, j′)} $ {(m, j′), (m− 1, j′ + 1)} $ NG((m− 1, j′));

• {(i, 1′)} $ {(i, 1′), (i− 1, 2′)} $ NG((2, j′));

• {(i, 1′)} $ {(i, 1′), (i+ 1, 2′)} $ NG((2, j′));

• {(i, n′)} $ {(i, n′), (i− 1, n′ − 1)} $ NG((m− 1, j′));

• {(i, n′)} $ {(i, n′), (i+ 1, n′ − 1)} $ NG((m− 1, j′));

• {(k, l′)} $ {(k, l′), (k − 1, l′ − 1)} $ NG((k, l′ − 1));

• {(k, l′)} $ {(k, l′), (k − 1, l′ − 1)} $ NG((k − 1, l′));

• {(k, l′)} $ {(k, l′), (k − 1, l′ + 1)} $ NG((k, l′ + 1));

• {(k, l′)} $ {(k, l′), (k − 1, l′ + 1)} $ NG((k − 1, l′));

• {(k, l′)} $ {(k, l′), (k + 1, l′ − 1)} $ NG((k, l′ − 1));

• {(k, l′)} $ {(k, l′), (k + 1, l′ − 1)} $ NG((k + 1, l′));

• {(k, l′)} $ {(k, l′), (k + 1, l′ + 1)} $ NG((k, l′ + 1));

• {(k, l′)} $ {(k, l′), (k + 1, l′ + 1)} $ NG((k + 1, l′))

where i, k = 2, . . . ,m− 1 and j′, l′ = 2′, . . . , n′ − 1. Hence any maximal chain has length 2 and
Pm2Pn is a graded poset of rank 2.
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Example 4.1.35. In the following figure we represent the concept lattice of the (3, 2)-grid
graph.

{(1, 1′), (1, 2′), (2, 1′), (2, 2′), (3, 1′), (3, 2′)}

{(1, 1′)} {(1, 2′)} {(2, 1′)} {(2, 2′)} {(3, 1′)} {(3, 2′)}

{(1, 1′), (2, 2′)} {(1, 2′), (2, 1′)} {(2, 2′), (3, 1′)} {((2, 1′), (3, 2′)}

{(1, 1′), (2, 2′), (3, 1′)}{(1, 2′), (2, 1′), (3, 2′)}

∅

Figure 4.6: Concept Lattice of the (3, 2)-grid graph.

For a rook’s graph we obtain the following result.

Theorem 4.1.36. Let m,n ≥ 5 and G be the rook’s graph Km2Kn. Then:

B§(G) = {{(i, j′)}, {(i, j′1), . . . , (i, j′s)}, {(i1, j′), . . . , (ir, j′)}, {(i, j′), (k, l′)}, NG((i, j′))}

where i, k = 1, . . . ,m and j′, l′ = 1, . . . , n, (i, j′) � (k, l′), i1, . . . , ir ∈ {1, . . . ,m}, j′1, . . . , j′s ∈
{1, . . . , n} and r = m− 2, s = n− 2.

Proof. The rook’s graph is (m+ n− 2)-regular. Let O ⊆ V (G). It is immediate to see that

O′ =

{
NG((i, j′)) if O = {(i, j′)}
{(i, j′)} if O = NG((i, j′))

Now, let O be a vertex subset of cardinality 2. If the two elements (i, j′) and (k, l′) are not
adjacent, we deduce that O′ contains the pairs respectively (i, l′) and (k, j′), so we have O′′ = O.
Moreover, if O = {(i, j′), (i, k′)}, then their neighborhoods share n−2 points which are adjacent
only to the previous two vertices, i.e. even in this case O′′ = O. In particular, this is true for
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any vertex subset containing at most n− 2 vertices of the same row. When we consider n− 1
elements of the same row, their neighborhoods have in common one vertex, so O′′ ) O, while if
we consider all the vertices of the row, then O′ = ∅ and O′′ = V . The case in which O contains
elements of the same column is similar. Let O ⊆ V (G) containing 3 vertices, at least 2 of which
non-adjacent. Then, |O′| = 1 when we consider two vertices of the same row (resp. column)
and another vertex in one of the remaining columns (rows), so O′′ ) O; we have O′ = ∅ in the
other cases, so O′′ = V . In the other cases, we have three vertices as before, so O′′ 6= O and
we conclude the proof.

Remark 4.1.37. In general, the Galois poset of the rook’s graph G = Km2Kn is not graded.
In fact, by Proposition 4.1.36 it is immediate to deduce that

• {(i, j′)} $ {(i, j′), (k, l′)};

• {(i1, 1′)} $ {(i1, 1′), (i2, 1′)} $ · · · $ {(i1, 1′), . . . , (im−2, 1
′)} $ NG((1, 1′));

• {(1, j′1)} $ {(1, j′1), (1, j′2)} $ · · · $ {(1, j′1), . . . , (1, j′n−2)} $ NG((1, 1′)),

where (i, j′) � (k, l′), are three maximal chains having length respectively 2, m− 1 and n− 1.

We conclude this section by determining the extent family of the tensor product of an
m-path and an n-cycle. We also detremine the rank for the corresponding Galois poset.

Theorem 4.1.38. Let m,n ≥ 2 and G = Pm ⊗ Cn be the tensor product graph of the m-path
and the n-cycle. Then

(B§(G),⊆) = {{(i, j′)}, {(r, j′), (r + 2, j′)}, {(i, j′), (i, j′ + 2)}, NG((i, j′))}, (4.8)

where r = 1, . . . ,m− 2, i = 2, . . . ,m− 1 and j′ = 1, . . . , n.
Moreover, the Galois poset B§(G) is graded of rank{

1 if m=3
2 if m=4

Proof. In this proof the index sums in the second component of the tensor product are taken
mod(n). We firstly observe that NG((i, j′)) = NG(i)×NG(j′). This means that

|NG((i, j′))| =
{

2 if i = 1 ∨ i = m
4 otherwise

It is immediate to see that all the singletons (i, j′) such that |NG((i, j′))| = 4 and their neigh-
borhoods are extent of the formal context K[G]. Let O = {(i, j′)} such that |O′| = 2. In order
to fix ideas, let O = {(1, j′)}. Then, O′ = {(2, j′ − 1), (2, j′ + 1)} and O′′ = {(1, j′), (3, j′)},
hence in this case O is not an extent. Let O ⊆ V (G) of the form O = {(i, r′), (i, s′)}, where
i = 2, . . . ,m− 1. Since these vertices belong to the same n-cycle, we deduce that O′ = ∅ unless
d(r′, s′) ≡ 2 (mod n). In this case, O′ = {(i− 1, r′), (i+ 1, r′)}. Moreover, let O ⊆ V (G) of the
form O = {(i, r′), (i + 2, r′)}, where i = 1, . . . ,m − 2. Since these two vertices belong to the
same m-path, it is easy to show that O′ = {(i + 1, r′ − 1), (i + 1, r′ + 1)}, so we deduce that
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both the vertex subsets O = {(i, r′), (i, s′)}, where i = 2, . . . ,m−1, and O = {(i, r′), (i+2, r′)},
where i = 1, . . . ,m− 2, are extent of K[G]. Let O ⊆ V (G) be a vertex subset of cardinality 2
different from the previous. If the two pairs are adjacent, then their first components different
of one, but have their second components are the same, hence it is immediate to see that their
neighborhoods do not intersect in any point. If the two pairs are non-adjacent, we have

|O′| =
{

1 if O = {(i, j′), (i+ 2, j′ + 2)}
0 otherwise

where i = 1, . . . ,m − 2. In both cases, it’s clear that O′′ ) O, i.e. O is not an extent. Let
O ⊆ V (G) be any subset of cardinality greater than 2; then we have three cases: (a) there exist
a vertex (i, j′) such that O ( NG((i, j′)), (b) there exist a vertex (i, j′) such that O = NG((i, j′))
or (c) O is not neighborhood of any vertex. In the first situation, it is clear that O′′ 6= O, while
in the third there are always two vertices whose neighborhoods don’t have any point in common.
Thus, O is an extent only in case (b) and we can conclude the proof of (4.8).
Let now m = 3. By (4.8) we deduce that {(2, j′)} and pairs {(1, j′ − 1), (1, j′ + 1)}, for
j′ = 1, . . . , n, are disjoint and they are minimal elements for the poset B§(P3⊗Cn). Moreover,
singletons are contained only in the maximal elements {(2, j′ − 1), (2, j′ + 1)}, while pairs are
contained only in the maximal elements NP3⊗Cn((2, j′)), for j′ = 1, . . . , n. Thus, if m = 3, it
results that B§(P3 ⊗ Cn) is a graded lattice of rank 1.
Let m ≥ 4. By 4.1.38 one can verify that the maximal chains of B§(G) assume one of the
following forms:

• {(2, j′)} $ {(2, j′), (2, j′ − 1)} $ NG((3, j′ + 1));

• {(2, j′)} $ {(2, j′), (2, j′ + 1)} $ NG((3, j′ − 1));

• {(2, j′)} $ {(2, j′), (4, j′)} $ NG((3, j′ − 1));

• {(2, j′)} $ {(2, j′), (4, j′)} $ NG((3, j′ + 1));

• {(i, j′)} $ {(i, j′), (i, j′ − 1)} $ NG((i− 1, j′ + 1));

• {(i, j′)} $ {(i, j′), (i, j′ − 1)} $ NG((i+ 1, j′ + 1));

• {(i, j′)} $ {(i, j′), (i, j′ + 1)} $ NG((i− 1, j′ − 1));

• {(i, j′)} $ {(i, j′), (i, j′ + 1)} $ NG((i+ 1, j′ − 1));

• {(i, j′)} $ {(i, j′), (i− 2, j′)} $ NG((i− 1, j′ − 1));

• {(i, j′)} $ {(i, j′), (i− 2, j′)} $ NG((i− 1, j′ + 1));

• {(i, j′)} $ {(i, j′), (i+ 2, j′)} $ NG((i+ 1, j′ − 1));

• {(i, j′)} $ {(i, j′), (i+ 2, j′)} $ NG((i+ 1, j′ + 1));

• {(m− 1, j′)} $ {(m− 1, j′), (m− 1, j′ − 1)} $ NG((m− 2, j′ + 1));
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• {(m− 1, j′)} $ {(m− 1, j′), (m− 1, j′ + 1)} $ NG((m− 2, j′ − 1));

• {(m− 1, j′)} $ {(m− 1, j′), (m− 3, j′)} $ NG((m− 2, j′ − 1));

• {(m− 1, j′)} $ {(m− 1, j′), (m− 3, j′)} $ NG((m− 2, j′ + 1));

where i = 3, . . . ,m− 2 and j′ = 1, . . . , n. Hence, when m ≥ 4, the Galois lattice of Pm ⊗Cn is
graded of rank 2.

Example 4.1.39. In the following figure we represent the concept lattice of the graph P3⊗C3.

{(1, 1′), (1, 2′), (1, 3′), (2, 1′), (2, 2′), (2, 3′), (3, 1′), (3, 2′), (3, 3′)}

{(2, 1′)} {(1, 1′), (1, 3′)} {(2, 2′)} {(1, 1′), (1, 2′)} {(2, 3′)} {(1, 2′), (1, 3′)}

{(2, 1′), (2, 2′)}{(1, 1′), (1, 2′), (3, 1′), (3, 2′)}{(2, 1′), (2, 3′)}{(1, 1′), (1, 3′), (3, 1′), (3, 3′)}{(2, 2′), (2, 3′)}{(1, 2′), (1, 3′), (3, 2′), (3, 3′)}

∅

Figure 4.7: Concept Lattice of the graph P3 ⊗ C3.

4.2 Algebraic Consequences of Dissymmetry and of its Gener-
alizations On Graphs

In this section we study the properties of an algebraic operation arising whenever we consider
the symmetric differences between non-empty vertex subsets of a graph G.

4.2.1 The Odd Extension of the Graph G

In this subsection we introduce the notion of odd extension G§ of a n-graph G, which stems from
the odd number of order pairs between two any non-empty vertex subsets of G. We construct
G§ by means of a binary operation having several interesting properties. We will show that G§

turns out connected and locally dissymmetric when G is connected and the determinant of its
adjacency matrix is odd. In the remaining part of this section we assume n ≥ 3.
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Definition 4.2.1. Let G be a n-graph and let A,B ∈ P∗(V (G)). We set

cG(A,B) := |{(vi, vj) ∈ A×B : vi ∼G vj}|.

We denote by Ĝ the graph having vertex set V (Ĝ) := P∗(V (G)) and the following adjacency
relation: if A,B ∈ V (Ĝ) then

A ∼Ĝ B :⇐⇒ cG(A,B) is an odd integer. (4.9)

If S ⊆ V (Ĝ), we denote by ĜS the subgraph of Ĝ induced from the vertex set S.

We now introduce a binary operation on the vertex set of Ĝ.

Definition 4.2.2. We set

A ◦B :=

{
A if A �Ĝ B
A

a
B if A ∼Ĝ B,

(4.10)

for any A,B ∈ V (Ĝ). It is clear that ◦ is a binary operation on V (Ĝ), that we call disparity
operation.

In the next result we establish some useful properties of the operation ◦.

Proposition 4.2.3. The binary operation ◦ : V (Ĝ)× V (Ĝ)→ V (Ĝ) has the following proper-
ties:
(i): A ◦A = A;
(ii): (A ◦B) ◦B = A;
(iii): (A ◦B) ◦ C = (A ◦ C) ◦ (B ◦ C);
(iv): if A ◦B 6= A, then A ◦B = B ◦A;
for any A,B,C ∈ P∗(V (G)).

Proof. Straightforward.

In what follows we will treat with other binary operations having the properties (i)− (iv)
established in Proposition 4.2.3, therefore we introduce the following general terminology.

Definition 4.2.4. (i) We call delineated space any pair (X,�), where X is a non-empty set
and � is a binary operation on X that satisfies the properties (i)− (iv) of Proposition 4.2.3.
(ii) If (X1, �1) and (X2, �2) are delineated spaces, we say that a map f : X1 → X2 is a
homomorphism of delineated spaces if f(x�1x

′) = f(x)�2f(x′) for all x, x′ ∈ X1. In particular,
if f is a bijective homomorphism of delineated spaces, we say that f is an isomorphism of
delineated spaces.
(iii) If f is an isomorphism of some delineated space (X,�) into itself, we say that f is an
automorphism of (X,�). We denote by Aut(X,�) the set of all the automorphisms of (X,�).
Obviously Aut(X,�) is a group with respect to the usual composition of functions.

In this section we will investigate the class of the subsets of V (Ĝ) that are closed with
respect to the previous binary operation ◦. For such subsets we also consider a corresponding
families of subgraphs of Ĝ. We first introduce some terminology.
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Definition 4.2.5. (i) If T is a subset of V (Ĝ) that is closed with respect to the binary operation
◦ (therefore (T, ◦) is a delineated space) we say that T is a delineated subspace of Ĝ.
(ii) If S ⊆ V (Ĝ), we call delineated closure of S in V (Ĝ), denoted by S◦, the smallest delineated
subspace of Ĝ that contains S.
(iii) We denote by TG the delineated closure of the subset V (G) ⊂ V (Ĝ) in V (Ĝ), and we
denote by tG the number of elements of TG. We call odd extension of G the graph G§ := ĜTG .
Hence TG is the vertex subset of the graph G§ and tG is its vertex number.
(iv) A delineated subgraph of Ĝ is a subgraph of the form ĜT , for some delineated subspace T
of Ĝ.

We now show that the algebraic automorphisms of any delineated subspace T of Ĝ coincide
with the geometric automorphisms of the correspoding delineated subgraph ĜT .

Proposition 4.2.6. Let T be a delineated subspace of Ĝ, then Aut(T, ◦) = Aut(ĜT ). In
particular, Aut(TG, ◦) = Aut(G§).

Proof. Let σ ∈ Aut(T, ◦) and let A, B ∈ T such that A ∼ĜT B. Then, σ(A) 6= σ(A ◦ B) =
σ(A) ◦ σ(B), hence σ(A) ∼ĜT σ(B). On the other hand, suppose that σ(A) ∼ĜT σ(B), then
σ(A) 6= σ(A) ◦ σ(B) = σ(A ◦B), so A 6= A ◦B or, equivalently, A ∼ĜT B. The case A �ĜT B
is similar. Hence σ ∈ Aut(ĜT ).
Conversely, let σ ∈ Aut(ĜT ) and suppose that A �ĜT B. Then,

σ(A ◦B) = σ(A) = σ(A) ◦ σ(B).

On the other hand, if A ∼ĜT B, we have that A ◦ B = A
a
B. Without loss of generality, let

x ∈ A \B. Hence σ(x) ∈ σ(A) \ σ(B), therefore

σ(x) ∈ σ(A)
i
σ(B)

or, equivalently,
σ(A ◦B) = σ(A) ◦ σ(B).

Therefore, σ ∈ Aut(T, ◦) and the claim follows.

Remark 4.2.7. (i) Let us note that G can be identified with a subgraph of Ĝ because the
adjacency between two vertices of G coincides with the particular case of the adjacency between
the singletons of V (Ĝ).
(ii) By Definition of Ĝ, since G is simple also Ĝ is a simple graph.
(iii) Ĝ has 2|G| − 1 = 2n − 1 vertices.
(iv) Since we treat the elements of P∗(V (G)) as vertices of the graph Ĝ, often we also use the
letters u, v, w, . . . instead of A,B, . . . in order to denote these elements.

Example 4.2.8. Let G = P4. It is easy to verify that the delineated closure of V (G) =
{v1, v2, v3, v4} in V (Ĝ) is the subset

TG = {{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v2, v3}, {v3, v4}, {v1, v2, v3}, {v2, v3, v4}, {v1, v2, v3, v4}}

In Figure 4.8, we give a representation for the odd extension of P4:
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{v1}

{v2}

{v3}

{v4}

{v1; v2}

{v2; v3}

{v3; v4}

{v1; v2; v3}

{v2; v3; v4}

{v1; v2; v3; v4}

Figure 4.8: Odd Extension of P4.
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We denote by Sym(V (Ĝ)) the permutation group of V (Ĝ) and by Id the identity map on
V (Ĝ). We introduce now some specific elements of this group. If u ∈ V (Ĝ) we set

ξu(v) := v ◦ u, (4.11)

for any v ∈ V (Ĝ).
We have then the following result.

Proposition 4.2.9. (i) ξu ∈ Sym(V (Ĝ)) for any u ∈ V (Ĝ).
(ii) ξ2

u = Id for any u ∈ V (Ĝ).
(iii) If T is a delineated subspace of Ĝ then ξu|T ∈ Aut(T, ◦) for any u ∈ T .

(iv) If u,w ∈ TG and σ ∈ Aut(Ĝ), it results

σ−1ξuσ = ξσ−1(u). (4.12)

In particular, we have that
ξ−1
w ξuξw = ξu◦w. (4.13)

Proof. (i) : Since V (Ĝ) is a finite set it is sufficient to prove that ξu is surjective. By (ii) of
Proposition 4.2.3, if v ∈ V (Ĝ), then v = (v ◦ u) ◦ u = ξu(v ◦ u).
(ii) : The thesis follows immediately by (ii) of Proposition 4.2.3.
(iii) : By (iii) of Proposition 4.2.3, we deduce immediately the thesis.
(iv) : Let us consider σ−1ξuσ(v). Then,

σ−1ξuσ(v) = σ−1(σ(v) ◦ u) = v ◦ σ−1(u)

by Proposition 4.2.6. But the last term is exactly ξσ−1(u)(v) and the thesis has been shown.

4.2.2 Regularity properties of G§

In what follows, we always assume that G is a connected graph. In the next result we relate
the presence of isolated vertices in Ĝ to the parity of the determinant of the adjacency matrix
of G.

Proposition 4.2.10. Ĝ has at least an isolated vertex if and only if det(Adj(G)) is even.

Proof. Let us suppose Ĝ has an isolated vertex A ∈ V (Ĝ) = P(V (G)) and let vA = (x1, . . . , xn)
be the vector in Rn defined by

xi :=

{
1 if vi ∈ A,
0 otherwise.

The vector Adj(G) vA = (y1, . . . , yn) is the vector in Rn such that yi is the number of vertices
in A that are adjacent to vi, for all i = 1, . . . , n. Thus yi = cG({vi}, A) ≡ 0 (mod 2), for
all i = 1, . . . , n because {vi} �Ĝ A. By considering A as a square matrix of order n with
entries in Z2, then vA ∈ Zn2 \ {0} is in the kernel of the matrix A. So det(A) ≡ 0 (mod 2). For
the reserve implication let us note that all of the previous arguments are reversible. In fact if
det(Adj(G)) ≡ 0 (mod 2), then, by considering Adj(G) as a matrix in Matn(Z2), it has non-
trivial kernel. So there exist v ∈ Zn2 such that Adj(G)·v is the null vector in Zn2 . We can interpret
v as a vertex subset of G. v ∈ ker(Adj(G)) implies that, for all i = 1, . . . , n, cG({vi}, v) ≡ 0
(mod 2). It follows that v is an isolated vertex of Ĝ. This proves the proposition.
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In the next result we prove several regularity properties of the graph G§ when det(Adj(G))
is odd. In particular, under this hypothesis we will show that G§ is always a connected and
locally dissymmetric graph.

Theorem 4.2.11. Let det(Adj(G)) be odd. Then:
(i) G§ is connected and locally dissymmetric.
(ii) There exists λ such that λ = |NG§(v) ∩NG§(w)| for any two adjacent vertices v, w of G§.
(iii) G§ is not a complete graph.
(iv) G§ is a 2λ-regular graph.
(v) There exists µ ≡ 0 (mod 4) such that µ = |NG§(v) ∩ NG§(w)| for any two non-adjacent
vertices v, w of G§.

Proof. (i): Suppose by contradiction that G§ is not connected. Let SG the connected compo-
nent containing G and fix a vertex v /∈ SG. Then, cG({vi}, v) ≡ 0 (mod 2), for all i = 1, . . . , n
because {vi} �Ĝ v. Thus, for all w ∈ P∗(V (G)), it holds

cG(w, v) =
∑
vi∈w

cG({vi}, v) ≡ 0 (mod 2),

so w �Ĝ v. Then, w is an isolated vertex in Ĝ, but this is impossible by Proposition 4.2.10.

Let us prove that G§ is locally dissymmetric. Suppose by contradiction that G§ is not lo-
cally dissymmetric. Hence there exist two distinct elements v, w ∈ TG such that ∆G§(v, w) = ∅.
Thus, by setting u := v

a
w, then, for all z ∈ TG, cG(u, z) ≡ 0 (mod 2). This contradicts the

previous part of the proof.

(ii): Let v and w be two adjacent vertices in G§. The application ξv defined in (4.11) induces
a bijection between NG§(v) ∩NG§(w) and NG§(v) \NG§(w). In fact, if u ∈ NG§(v) ∩NG§(w),
then u ◦ v = u

a
v and thus

cG(u ◦ v, v) = cG(u, v) + cG(v, v)− 2cG(u ∩ v, v) ≡ 1 (mod 2),

and
cG(u ◦ v, w) = cG(u,w) + cG(v, w)− 2cG(u ∩ v, w) ≡ 0 (mod 2),

so ξv(u) = u ◦ v ∈ NG§(v) \ NG§(w). On the other side, if u ∈ NG§(v) \ NG§(w), then in this
case it results that

cG(u ◦ v, v) = cG(u, v) + cG(v, v)− 2cG(u ∩ v, v) ≡ 1 (mod 2),

and
cG(u ◦ v, w) = cG(u,w) + cG(v, w)− 2cG(u ∩ v, w) ≡ 1 (mod 2),

so ξv(u) = u ◦ v ∈ NG§(v)∩NG§(w). In the same way, ξw induces a bijection between NG§(v)∩
NG§(w) and NG§(w) \NG§(v), hence |NG§(v) ∩NG§(w)| = |NG§(w) \NG§(v)|. Therefore, the
following relation holds for any two adjacent vertices v, w ∈ S◦

|NG§(v)| = 2|NG§(v) ∩NG§(w)| = |NG§(w)|. (4.14)
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So, there exists λ such that λ = |NG§(v) ∩NG§(w)| for any two adjacent vertices v, w of G§.
(iii): If G is not complete, then there are two non-adjacent vertices vi, vj ∈ V (G), hence this
holds also in G§. On the other hand, if G is the complete graph on n vertices, it is immediate
to see that if u, v and w are three distinct vertices in V (G), then u, v ∪ w are vertices in G§

such that cG(u, v ∪ w) ≡ 0 (mod 2), hence G§ is not complete.
(iv): Since G§ is a connected graph, for any two non-adjacent vertices v and w we can take a
path between them and iterate the equality (4.14) for any two adjacent vertices in the path.
Hence, we conclude by part (ii).
(v): Let v, w be two non adjacent vertices of G§. Note that, if u ∈ NG§(v) ∩ NG§(w), then
v ◦ u, w ◦ u, v ◦ (w ◦ u) ∈ NG§(v)∩NG§(w) and |{u, v ◦ u, w ◦ u, v ◦ (w ◦ u)}| = 4. Moreover, if
u′ ∈ {v ◦u, w ◦u, v ◦ (w ◦u)}, then {u, v ◦u, w ◦u, v ◦ (w ◦u)} = {u′, v ◦u′, w ◦u′, v ◦ (w ◦u′)}.
In fact, it is straightforward to prove that the vertices v ◦ u and w ◦ u are adjacent to both v
and w. Let us prove now that v ◦ (w ◦ u) ∈ NG§(v) ∩NG§(w) too. It holds

cG(v ◦ (w ◦ u), v) = cG(v, v) + cG(w ◦ u, v)− 2cG(v ∩ (w ◦ u), v) ≡ 1 (mod 2)

and

cG(v ◦ (w ◦ u), w) = cG(v, w) + cG(w ◦ u,w)− 2cG(v ∩ (w ◦ u), w) ≡ 1 (mod 2),

so v ◦ (w ◦ u) ∼G§ v and v ◦ (w ◦ u) ∼G§ w.

Let now u′ = v ◦ u. Then, we have

u′ ◦ v = (v
i
u)

i
v = v,

u′ ◦ w = (v
i
u)

i
w = v

i
(w

i
u) = v ◦ (w ◦ u)

and
u′ ◦ (v ◦ (w ◦ u)) = (v

i
u)

i
(v ◦ (w ◦ u)) = w,

because (v ◦ u) ∼G§ (v ◦ (w ◦ u)). This prove that |NG§(v) ∩NG§(w)| ≡ 0 (mod 4).
We prove that |NG§(v)∩NG§(w)| is constant for any two distinct non-adjacent vertices v, w ∈
Ĝ. Let v′, w′ ∈ Ĝ two non-adjacent vertices distinct from v, w. First of all, we prove that
|NG§(v) ∩ NG§(w)| = |NG§(v

′) ∩ NG§(w
′)| can be reduced to the case |NG§(v) ∩ NG§(w)| =

|NG§(v) ∩ NG§(y)| for some y ∈ TG non-adjacent to v. By Proposition 4.2.9, if u, v ∈ V (Ĝ),
then

ξu(NĜ(v)) = NĜ(ξu(v)). (4.15)

Let P = s0, s1, . . . , sl−1, sl be a path between v′ = s0 and v = sn. Since si ∼ si−1, for each
i ∈ {1, . . . , l}, by applying sequentially ξsi◦si−1 =: ξui and by using Equation (4.15), it is easy
to prove that

ξun · · · ξu2ξu1(NG§(v) ∩NG§(w)) = NG§(v) ∪NG§(y),

where y := (. . . ((w′ ◦ u1) ◦ u2) · · · ◦ un). Moreover, by Proposition 4.2.9 again, v �G§ y.
Let us note that |NG§(v) ∩ NG§(w)| 6= 0 6= |NG§(v) ∩ NG§(y)| since any path between two
non-adjacent vertices can be shortened to a 2-path by replacing two adjacent vertices by their
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symmetric difference. It is easy to prove that ξw induces a bijection between NG§(v)∩NG§(w)∩
NG§(y) and (NG§(v) ∩ NG§(w)) \ NG§(y). Similarly ξy induces a bijection between NG§(v) ∩
NG§(w) ∩ NG§(y) and (NG§(v) ∩ NG§(y)) \ NG§(w). Thus |(NG§(v) ∩ NG§(w)) \ NG§(y)| =
|(NG§(v) ∩NG§(y)) \NG§(w)|. By a simple computation, it is immediate to see that

|NG§(v) ∩NG§(w)| = |NG§(v) ∩NG§(w) ∩NG§(y)|+ |NG§(v) ∩NG§(w) \NG§(y)| =

= |NG§(v) ∩NG§(w) ∩NG§(y)|+ |NG§(v) ∩NG§(y) \NG§(w)| = |NG§(v) ∩NG§(y)|.

So the theorem holds in the first case. Suppose that w � y. Then, there exists x ∈ ∆G§(v, w)
because G§ is a locally dissymmetric graph. Without loss in generality we can assume y ∼
x. Let us observe that (NG§(v) ∩ NG§(w) ∩ NG§(x)) \ NG§(y) 6= ∅. In fact, we know that
|NG§(v)∩NG§(w)| 6= 0 so, there exists z ∈ (NG§(v)∩NG§(w))\NG§(y). Furthermore, it is easy
to show that

ξx : (NG§(v) ∩NG§(w) ∩NG§(x)) \NG§(y)→ (NG§(w) ∩NG§(y) ∩NG§(x)) \NG§(v)

ξx : (NG§(w) ∩NG§(x)) \NG§(v) \NG§(y)→ (NG§(v) ∩NG§(w) ∩NG§(y)) \NG§(x)

ξx : (NG§(w) ∩NG§(x)) \NG§(v) \NG§(y)→ NG§(v) ∩NG§(w) ∩NG§(y) ∩NG§(x)

ξv : (NG§(v) ∩NG§(w) ∩NG§(y)) \NG§(x)→ (NG§(w) ∩NG§(y) ∩NG§(x)) \NG§(v)

ξv : (NG§(v) ∩NG§(w)) \NG§(y) \NG§(x)→ (NG§(v) ∩NG§(w) ∩NG§(x)) \NG§(y)

ξy : (NG§(w) ∩NG§(y)) \NG§(v) \NG§(x)→ (NG§(w) ∩NG§(y) ∩NG§(x)) \NG§(v)

are all bijections. Therefore, by some simple computations we deduce that

|NG§(v) ∩NG§(w)| = |NG§(v) ∩NG§(y)| = 4|(NG§(v) ∩NG§(w) ∩NG§(x)) \NG§(y)|.

4.2.3 Two Algebraic Characterizations for the Odd Extension of G

In this section we associate with G two groups, denoted respectively by DG and KG. In terms
of these groups we provide two algebraic characterizations related to the graph structure of G§.

Let T be a delineated subspace of Ĝ. We set then

FT := {ξu|T : u ∈ T},

and we will consider the following two subgroups of Sym(T ) (the permutation group on T ):

KT := 〈ξu|T ξw |T : u,w ∈ T 〉 ⊆ DT := 〈FT 〉.

However, when T is specified and u ∈ T , we write simply ξu instead of ξu|T .

Proposition 4.2.12. Let w ∈ T be a fixed element. Then, KT = 〈ξuξw : u ∈ T 〉.

Proof. It is sufficient to observe that ξuξv = (ξuξw)(ξvξw)−1 for any u, v ∈ T .
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Definition 4.2.13. We call DG := DTG the first normalization group of G and KG := KTG

the second normalization group of G.

Remark 4.2.14. (i): By Proposition 4.2.9 and by (4.12), it is immediate to see that DG is a
normal subgroup of Aut(TG).
(ii): Since DG is a subgroup of Sym(V (Ĝ)), it induces a natural group action on TG.

In what follows, ifH is a group acting on a setX and h ∈ H, we denote hX := {hx : x ∈ X}.

Definition 4.2.15. Let X be a finite set and H a group acting on X. We say that S ⊆ X is
a block for H if for any h ∈ H we have hS = S or hS ∩ S = ∅. We say that H is primitive
over X if its action on X is transitive and all its blocks are only singletons or the whole X. A
group acting on a set X which is not primitive over X is called imprimitive over X.

Proposition 4.2.16. Let T be a delineated subspace of Ĝ and let us consider the natural action
of DT over T . If S ⊆ T is a block for DT , then S is a delineated subspace of T .

Proof. Let S ⊆ T be a block for DT and let u, v ∈ S. Then, since v = v ◦ v ∈ ξvS ∩ S, then
ξvS = S, so u ◦ v ∈ ξvS = S.

Proposition 4.2.17. DG is primitive over TG if and only if for any delineated subspace S $ TG
such that |S| ≥ 2 it results

∅ $ τS ∩ S $ S, (4.16)

for some τ ∈ DG.

Proof. If DG is primitive over TG, the claim is obvious. Vice versa, suppose that (4.16) holds
and let S $ TG be a block for DG. By Proposition 4.2.16 S is a delineated subspace of TG.
Thus, by (4.16), S is a singleton.

Let us prove now that the action of DG over TG is transitive. Let us show that, for any
v ∈ TG, DGv := {τ(v) : τ ∈ DG} = TG. Let v ∈ V (G) ⊆ TG, then, since G is connected, there
exists w ∈ V (G) such that v ∼ w. It follows |DGv| ≥ 2. By (4.16) it holds DGv = TG. If
v ∈ TG, then v ∈ DGw for some w ∈ V (G). Thus DGw = DGv = TG, so we proved that the
action is transitive and the proposition holds.

In the next result we provide an algebraic characterization for the condition that the odd
extension of G is a graph connected and locally dissymmetric.

Theorem 4.2.18. The following properties are equivalent:
(a) The odd extension G§ is connected and locally dissymmetric.
(b) DG is primitive over TG.

Proof. (a) =⇒ (b): Let us suppose that G§ is connected and locally dissymmetric and let v,
w in TG. Let us prove, by using induction on the distance between v and w, that there exists
τ ∈ DG such that v = τ(w). If n = 1, then v ∼G§ w, so v ◦w 6= v. By (iv) of Proposition 4.2.3,
it holds v ◦ w = w ◦ v, so

v = (v ◦ w) ◦ w = (w ◦ v) ◦ v = τ(w),
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where τ := ξv ξw. Let now n > 1. In this case v �G§ w and there exists u ∈ TG such that
v ∼G§ u and d(u,w) = n− 1. By using the inductive hypothesis there exists τ1, τ2 ∈ DG such
that τ1(w) = u and τ2(u) = v. Thus v = τ2(u) = τ2(τ1(w)). This proves transitivity. Let now
S be a block for DG. Then, by Proposition 4.2.16, S is a delineated subspace of TG. Let us
assume now that S is a proper delineated subspace of TG such that |S| ≥ 2 and let x, y ∈ S.
Since S is a delineated subspace, x ◦ y ∈ S. Let us consider the case x ◦ y 6= x. If v ∈ TG,
then let us note that, if both x ◦ v and y ◦ v are not in S, then (x ◦ y) ◦ v = x ◦ y ∈ S. By
definition of block for the action of DG, it holds ξvS = S. By transitivity of the action of DG,
it follows that S = TG, so DG is primitive over TG. Consider now x ◦ y = x. Since G§ is locally
dissymmetric, then there exists u ∈ TG such that either x ◦ u = x and y ◦ u = y or y ◦ u 6= y
and x ◦u 6= x. Still, by definition of block for DG over TG, in both cases we obtain ξuS = S. If
x ◦u 6= x, then u ∈ S and u 6= x, so the thesis follows as before. Similarly in the case y ◦u 6= y.
(b) =⇒ (a): Let us assume now that DG is primitive over TG. Let v, w ∈ TG with v 6= w. Since
DG is primitive, its action over TG is transitive. So there exist τ ∈ DG such that τ(v) = w.
Suppose first that τ = ξu, for some u ∈ TG. In this case w = v ◦ u, so w ◦ u = (v ◦ u) ◦ u = v.
Moreover, since v ◦ u 6= v and w ◦ u 6= w, it holds v ∼G§ u and w ∼G§ u. The connectedness
of G§ follows by using induction over the minimum length of τ as reduced word in DG. Let us
prove now that G§ is locally dissymmetric. Let v, w ∈ TG. If NG§(v) = NG§(w), then v �G§ w.
Let us prove now that S := {v, w} is a block for DG. For this, let u ∈ TG such that v ∼G§ u
and w ∼G§ u. Then, in this case, v ◦ u 6= v and w ◦ u 6= w. Moreover, since v ◦ u ∼G§ v and
w ◦ u ∼G§ w, then v ◦ u 6= w and w ◦ u 6= v. Then, ξuS ∩ S = ∅. Now let u ∈ TG such that
v �G§ u and w �G§ u. In this case v ◦ u = v and w ◦ u = w, so ξuS = S. This proves that S is
a block for DG. Since DG is primitive over TG, then |S| = 1 and thus v = w.

Usually, KG is not a commutative group. In the next result we provide a necessary and
sufficient condition so that KG is abelian.

Theorem 4.2.19. Let G§ be a connected and locally dissymmetric graph. Then, KG is an
abelian group if and only if there exists w ∈ TG such that KG = {ξuξw : u ∈ TG}.

Proof. Suppose that KG = {ξuξw : u ∈ TG}, where w is a fixed element of TG. We will
show that KG is an abelian group. Let ξuξw ∈ KG. Then, it results that the map ξuξw 7→
ξ−1
w ξuξwξw = (ξuξw)−1 is an automorphism of KG mapping an element to its inverse. This

ensures that KG is an abelian group.
On the other hand, suppose that KG is an abelian group. Let us consider the following map

F : TG → FG (4.17)

u 7→ ξu.

It is obviously surjective. We show now that F is also injective. In fact, let u, v ∈ TG such
that ξu(w) = ξv(w), that is w ◦ u = w ◦ v, for any w ∈ TG. Then, w /∈ NG§(u) if and only if
w /∈ NG§(v), so NG§(u) = NG§(v). This implies that u = v because G§ is locally dissymmetric
and F is thus injective.
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Let now v ∈ TG be a fixed element. Then, for any u ∈ TG we define

ukv :=

{
(ξuξv)

i(v) if k = 2i,
(ξuξv)

i(u) if k = 2i+ 1.
(4.18)

Since ξuξv has finite order in KG, there exists a least positive integer n such that unv = v.
We also observe that

ξv(ξuξv)
−i = (ξuξv)

iξv. (4.19)

In fact, the subgroup of DG spanned by the elements ξu, ξv is dihedral since 〈ξu, ξv〉 = 〈ξv, ξuξv〉
and it results

• ξ2
v = Id;

• There exists an integer j such that (ξuξv)
j = Id;

• ξv(ξuξv)ξv = (ξuξv)
−1.

Hence, in particular, (4.19) holds.
By using (4.18), (4.19) and (4.12), it is easy to prove that

ξukv = (ξuξv)
kξv (4.20)

and, by means of the latter relation, we also conclude that, if j < 2k, then

ξukv (ujv) = u2k−j
v . (4.21)

Now we prove that the smallest integer n such that unv = v is an odd integer for any u ∈ TG.
Suppose by contradiction that there exists an element u ∈ TG such that n is the least positive
integer for which unv = v, with n = 2k. Let l be the order of ξuξv in KG, then by (4.20)
ξulv = (ξuξv)

lξv, hence ξulv = ξv so, by injectivity of F , ulv = v and thus n ≤ l. We also observe
that, again by (4.20), we also have (ξuξv)

n = ξunv ξv = ξvξv = Id, thus l|n and this forces l = n.
Therefore there exists w ∈ TG such that (ξuξv)

k(w) 6= w.

Let us prove, by using that KG is an abelian group, that ξξuξv(w)ξw = (ξuξv)
2. In fact, by

(4.12),
ξξuξv(w) = (ξuξv)ξw(ξuξv)

−1 = (ξuξv)ξw(ξvξu),

so, by using the commutative property on KG,

ξξuξv(w)ξw = ξuξv(ξwξv)(ξuξw) = ξuξv(ξuξw)(ξwξv) = (ξuξv)
2.

It follows that k is the order of ξξuξv(w)ξw in KG. Moreover, it is easy to see that

(ξuξv)
j(w) =

{
(ξξuξv(w)ξw)i(w) if j = 2i

(ξξuξv(w)ξw)i(ξuξv(w)) if j = 2i+ 1.

Thus it follows that (ξuξv(w))jw = (ξuξv)
j(w). By (4.20), it holds that

ξ(ξuξv(w))kw
= (ξξuξv(w)ξw)kξw = ξw.
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By the injectivity of F , we observe that (ξuξv)
k(w) = (ξuξv(w))kw = w, by contradicting our

assumption. Hence n cannot be an even integer.
We finally show that KG = {ξuξw : u ∈ TG}, where w ∈ TG is a fixed element. Let u, v ∈ TG
two fixed elements such that unv = v and set n = 2k + 1. Then, (ξuξv)

k(u) = v, hence
(ξuξv)

k+1(v) = u. As direct consequence, we have u2k+2
v = u. In order to show the claim, we

must see that any composition and any inverse can be expressed as elements of {ξuξw : u ∈ TG}.
Let w ∈ TG. Then, there exists z ∈ TG such that

ξwξvξu = ξz (4.22)

In fact, ξwξvξu = ξwξvξu2k+2 which, by means of (4.12) and (4.19), becomes (ξuξv)
−(k+1)ξw(ξuξv),

i.e., ξ(ξuξv)k+1(w). Therefore, we set z = (ξuξv)
k+1(w). In particular, ξwξvξuξv = ξzξv. Moreover,

it results that
(ξuξv)

−1 = ξum−1
v

ξv, (4.23)

where m is the order of ξuξv in KG. So KG = {ξuξw : u ∈ TG}, where w ∈ TG is a fixed
element. The theorem is thus proved.

In reference to the formalism introduced in (4.18) we use the following terminology.

Definition 4.2.20. Let u, v ∈ TG. We call order of u with respect to v the smallest positive
integer n such that unv = v.

In next result, we establish some structural properties of the group KG when G§ is a
connected locally dissymmetric graph.

Theorem 4.2.21. Let G§ be connected and locally dissymmetric. Then:
(a) KG is the unique subgroup of DG that satisfies the two following properties:

(i) KG E DG;

(ii) For any {IdTG} $ H E DG it results KG ⊆ H.

(b) KG is either a simple group or it is the direct product of two its non-trivial normal conjugate
subgroups.

Proof. (a): For the part (i), since ξ−1
w (ξuξv)ξw = ξ−1

w ξuξwξ
−1
w ξvξw = ξu◦wξv◦w, we deduce that

KG is a normal group. We prove now part (ii). Let H 6= {IdTG} be a normal subgroup of
DG. For any v ∈ TG we consider the H-orbit Hv := {h(v) : h ∈ H} of v in TG. Then, since
H 6= {IdTG} there exists a vertex v0 ∈ TG such that |Hv0| > 1. We show now that the H-orbit
Hv0 is a block for the group DG.

To this aim, we assume that σ ∈ DG and σ(Hv0) ∩Hv0 6= ∅, so that there is an element

w0 = h1(v0) = σh2(v0) ∈ Hv0 ∩ σ(Hv0),

for some h1, h2 ∈ H. We must prove then that σ(Hv0) = Hv0.
Let first v = h3(v0) ∈ Hv0, for some h3 ∈ H. Then,

v = h3h
−1
1 (w0) = h3h

−1
1 σh2(v0) = σ(σ−1h3σ)(σ−1h−1

1 σ)h2(v0) ∈ σ(Hv0)
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because H is normal in DG. Hence Hv0 ⊆ σ(Hv0).
On the other hand, let now v = σh4(v0) ∈ σ(Hv0), for some h4 ∈ H. Then

v = σh4h
−1
2 σ−1(w0) = (σ(h4h

−1
2 )σ−1)h1(v0) ∈ Hv0

because H is normal in DG. Hence σ(Hv0) ⊆ Hv0. This shows that Hv0 is a block for DG.
By Theorem 4.2.18, DG is primitive over TG, so any block for DG is a singleton or the whole
TG. In our case, it must results that Hv0 = TG. In particular, we observe that Hv0 = Hv for
any v ∈ TG. Thus H is transitive over TG. In other terms, if u, v ∈ TG, there exists ρ ∈ H such
that ρ(v) = u. By (4.12), we have:

ξuξv = ξ−1
u ρ−1ξuρ ∈ H. (4.24)

So KG ⊆ H, i.e. KG is the minimum non-trivial normal subgroup of DG. Clearly, KG is the
unique subgroup of DG satisfying both (i) and (ii).
(b): Suppose that KG is not a simple group, we want to show that it can be expressed as
the direct product of two simple normal subgroups N,M 6= {IdTG} conjugate in DG, i.e.
KG
∼= M ×N . Since KG is not simple, there exists {IdTG} $ N / KG. For any u, v ∈ TG, we

have that ξu, ξv ∈ DG and ξuξv ∈ KG. Since N is normal in KG we have (ξvξu)−1N(ξvξu) = N ,
therefore we deduce that

ξuNξu = ξvNξv, (4.25)

since ξ2
u = ξ2

v = IdTG = IdTG . Let M := ξzNξz for some, and thus for all, z ∈ TG. We have to
verify that M ∩N = {IdTG} and that MN is a normal subgroup of DG contained in KG. In
order to prove that M ∩N = {IdTG}, we firstly show that M ∩N is a normal subgroup of DG.
Let then φ ∈M ∩N and ξv ∈ DG. Therefore, there exists φ′ ∈ N such that φ = ξzφ

′ξz. Then,
ξ−1
v φξv = (ξzξv)

−1φ′(ξzξv) ∈ N because N is normal in KG. On the other hand, by taking u = z
in (4.25), it follows that ξ−1

v φξv = ξvφξv = ξzφ
′′ξz ∈M , where φ′′ ∈ N . Thus M ∩N is normal

in DG. Now, if M ∩N 6= {IdTG}, by (ii) of the previous part (a), we would have KG ⊆M ∩N ,
that is, KG = M∩N , that is in contrast with the hypothesis N $ KG. So, it must be necessarily
M ∩ N = {IdTG}. We observe that M ⊆ KG: in fact KG consists of all the automorphisms
of DG given by the product of an even number of elements of FG, and any element of M is
also given by products of an even number of elements of FG. So, we conclude that M ⊆ KG.
We now prove that M E KG. In fact, ξuξvMξvξu = ξuξvξvNξvξvξu = ξuNξu = M . We
clearly deduce that MN is a subgroup contained in KG. We claim that MN / DG. In fact,
ξvMNξv = ξvξvNξvNξv = NξvNξv = NM . Hence, by (ii) of previous part (a), we have that
KG ⊆MN , but since MN ⊆ KG, we deduce that MN = KG. So, the thesis follows.

4.2.4 Solvability of KG

In this subsection, we provide a sufficient condition on TG in order to ensure that KG is a
solvable group when the odd extension G§ is connected and locally dissymmetric.

Definition 4.2.22. We say that a delineated subspace T of Ĝ is transitively spanned if for any
u, v ∈ T there exists ξw ∈ FT , for some w ∈ T , such that ξw(u) = v.

Any subset of a transitively spanned is also transitively spanned.
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Lemma 4.2.23. Let T1 ⊆ T2 ⊆ V (Ĝ) be two delineated subspaces of Ĝ. If T2 is transitively
spanned, then also T1 is.

Proof. Let u, v ∈ T1. If u = v, then by taking w = u, it holds ξw(u) = v and clearly w ∈ T1.
Let u 6= v. Since u, v ∈ T2, there exists x ∈ T2 such that ξx(u) = v. Thus, x ∼Ĝ u, so
u ◦ x = x ◦ u. If we set w = v ◦ u ∈ T1, then we obtain

u ◦ w = u ◦ (v ◦ u) = u ◦ ((x ◦ u) ◦ u) = u ◦ x = v.

Now, we want to find an algebraic condition on the groupKG ensuring that TG is transitively
spanned. In order to do this, we need some preliminary classical notions and results:

Definition 4.2.24. [89] Let H be a group. We denote by MH the core of H, i.e. the maximal
normal subgroup of odd order in H. Furthermore, we denote by Z∗(H) the subgroup of H
containing MH such that Z∗(H)/MH = Z(H/MH), where Z(H/MH) denotes the center of
H/MH .

Theorem 4.2.25. [89] Let τ be an involution of a group H. Then, τ ∈ Z∗(H) if and only if
for any g ∈ H the element g−1τ−1gτ has odd order.

In next result we provide a necessary and sufficient onKG condition so that TG is transitively
spanned.

Proposition 4.2.26. Let G§ be connected and locally dissymmetric. Then, following conditions
are equivalent:

(i) For any u, v ∈ TG, u has odd order with respect to v;

(ii) TG is transitively spanned;

(iii) KG has odd order.

Proof. (i) ⇐⇒ (ii): Suppose that for any u, v ∈ TG, the order of u with respect to v is odd.
Fix two vertices u, v ∈ TG such that the order of u ∈ TG with respect to v is n = 2k+1. Hence,
if we take uk+1

v , by (4.21), we have ξuk+1
v

(u) = v. Hence u is mapped to v. By the arbitrariness
of u and v, we conclude that TG is transitively spanned.
On the other hand, assume that TG is transitively spanned and suppose by contradiction that
there are two elements u, v ∈ TG such that the order of u with respect to v is even, i.e.
n = 2k. Let us note that the delineated subspace T consisting of the distinct elements of
{v, u, . . . , un−1

v } is transitively spanned by Lemma 4.2.23. By (4.21), we have ξukv (ujv) = un−jv ,
for any 0 ≤ j ≤ n − 1. Now, since the order n coincides with the order of ξuξv in KG, it is
immediate to see that ξukv (ujv) = un−jv = u−jv = ξv(u

j
v). Since the restriction to T of the map F

defined in (4.17) is also bijective, we deduce that ξukv = ξv and ukv = v and this contradicts the
minimality of n.
(ii) ⇐⇒ (iii): Suppose that KG has odd order and let u, v ∈ TG. In the proof of Theorem
4.2.19 we showed that the order m of ξuξv in KG coincides with the order of u with respect to
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v. Let m = 2k+ 1. Then, by (4.21), it follows that ξuk+1
v

(u) = v. By the arbitrariness of u and
v, we conclude that TG is transitively spanned.
On the other hand, let TG be transitively spanned, hence, for any u, v ∈ TG, there exists w ∈ TG
such that ξw(u) = v. For any ξu ∈ FG we have FG∩SDG(ξu) = {ξu}, where SDG(ξu) denotes the
stabilizer of ξu in DG. Now, since the group spanned by the single element ξu fixes only u ∈ TG,
we deduce that |FG| = |TG| = 2k+1, for some integer k. Let H := 〈ξu, ξv〉 be the group spanned
by two fixed elements for some u, v ∈ TG. Let us consider the set ξHu := {ρ−1ξuρ, ρ ∈ H}.
The group H acts by conjugation on ξHu and the only element in ξHu fixed by ξu is ξu, then its
cardinality must be odd. In particular, also ξv fixes only v, hence we obtain

ξv = (ξuξv)
−jξu(ξuξv)

j ,

for some integer j. But, since H is dihedral, we deduce that

ξv = (ξuξv)
−jξu(ξuξv)

j = ξu(ξuξv)
2j , (4.26)

i.e. (ξuξv)
2j−1 = Id. Thus ξuξv has odd order. It is immediate to see that [DG : KG] = 2.

Let D′G be the derived subgroup of DG. We claim that KG = D′G. Since TG is transitively
spanned, for any u, v ∈ TG there exists ξw ∈ FG such that ξv = ξu◦w = ξwξuξw, so ξuξv is a
commutator in DG and KG ⊆ D′G. On the other hand, it is easy to prove that D′G ⊆ KG since
any commutator in DG is an element of KG. In particular, for any σ ∈ DG, it results that the
element σ−1ξ−1

u σξu is in KG, then it has odd order and, by Theorem 4.2.25, we deduce that
ξu ∈ Z∗(DG) for any u ∈ TG, i.e. DG = Z∗(DG). Therefore, by Definition 4.2.24, DG/MG is
an abelian group and since D′G = KG is the smallest normal subgroup such that DG/KG is
abelian, we deduce that MG contains KG. Thus, we have shown that KG has odd order.

Theorem 4.2.27. Let G§ be a connected and locally dissymmetric graph such that TG is tran-
sitively spanned. Then, KG is a solvable group.

Proof. It is an immediate consequence of Proposition 4.2.26 and of the classical theorem of
Feit-Thompson.
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Chapter 5

The Pre-Order Induced by
Symmetry Relation

By means of the aforementioned P-maximum partitioner operator, in this chapter we inves-
tigate the set map ΓP as the preorder ≥P (reflexive and transitive binary relation) on P(Ω)
which is exactly the symmetrization of the above indistinguishability relation ≈P.

5.1 Symmetry Transmission on Pairings

In this section, we focus our attention to the map ΓP : P(Ω)× P(Ω)→ P(U) so defined:

ΓP(A,B) := {u ∈ U : [u]A ⊆ [u]B}. (5.1)

Furthermore, in the finite case, we can also define the symmetry transmission measure γP as
follows

γP(A,B) :=
|ΓP(A,B)|
|U |

. (5.2)

Since we have that

MP(A) ⊇MP(A′) ⇐⇒ πP(A) � πP(A′) ⇐⇒ ΓP(A,A′) = U, (5.3)

for all A,A′ ∈ P(Ω), we introduce the binary relation ≥P on P(Ω) defined by

A ≥P A′ :⇐⇒ MP(A) ⊇MP(A′), (5.4)

for any A,A′ ∈ P(Ω). We say that A is P-symmetrically finer than A′ whenever A ≥P A′. Let
us observe that

A ≥P B ⇐⇒ ΓP(A,B) = U. (5.5)

Some basic properties of the map ΓP are described in the next proposition.

Proposition 5.1.1. Let A, A′, B, B′ ∈ P(Ω). Then, the following hold:
(i) If A ⊆ A′ and B ⊆ B′, then

ΓP(A,B) ⊆ ΓP(A′, B) and ΓP(A,B) ⊇ ΓP(A,B′).

(ii) If P is a finite pairing, then A ≥P A′ ⇐⇒ γP(A,A′) = 1.

108



Proof. (i): Let A ⊆ A′, then πP(A′) � πP(A). This proves that ΓP(A,B) ⊆ ΓP(A′, B). Let
u ∈ ΓP(A,B), then [u]A ⊆ [u]B but since [u]A′ ⊆ [u]A, we deduce that [u]A′ ⊆ [u]B, i.e.
u ∈ ΓP(A′, B).
On the other hand, let B ⊆ B′ and u ∈ ΓP(A,B′). Then, [u]A ⊆ [u]B′ ⊆ [u]B, hence
u ∈ ΓP(A,B).
(ii): It follows immediately by (5.2) and by (5.3).

We can interpret the global symmetry relation ≈P as the equivalence relation induced by
the preorder ≥P. Indeed, by (viii) of Theorem 2.2.1 and (5.4) it follows that

A ≈P A′ ⇐⇒ A ≥P A′ and A′ ≥P A,

consequently, if we consider the preordered set H(P) := (P(Ω),≥P), we have that

H(P)/ ≈P = G(P) ∼= M(P). (5.6)

We will show that, in addition to the reflexivity and transitivity, there is a property that
uniquely characterize the above binary relation ≥P. We call union additivity this property,
which can be expressed as follows:

A ≥P A′ and A ≥P A′′ =⇒ A ≥P A′ ∪A′′ (5.7)

In order to investigate in a deeper way the link between the closure operator MP and the
preorder ≥P we introduce the following ordered subset pair family

G(P) := {(A,B) ∈ P(Ω)2 : ΓP(A,B) = U} (5.8)

and we call any pair (A,B) ∈ G(P) a semi-symmetry of P.
In the next result we establish eight basic properties that are satisfied by the family G(P).

Next, in order to show a deep link between closure operators and specific families of ordered
pairs of elements, we use seven of this properties as potential properties for generic families
D ⊆ P(Ω)2.

Theorem 5.1.2. Let X,Y, Z,W, T ∈ P(Ω). The family G(P) satisfies the following properties:

(I1) if X ⊇ Y then (X,Y ) ∈ G(P);

(I2) if (X,Y ) ∈ G(P) then (X ∪ Z, Y ) ∈ G(P);

(I3) if (X,Y ) ∈ G(P) and (X,Z) ∈ G(P) then (X,Y ∪ Z) ∈ G(P);

(I4) if (X,Y ∪ Z) ∈ G(P) then (X,Y ) ∈ G(P);

(I5) if (X,Y ) ∈ G(P) and (Y,Z) ∈ G(P) then (X,Z) ∈ G(P);

(I6) if (X,Y ) ∈ G(P) and (Y ∪ Z,W ) ∈ G(P) then (X ∪ Z,W ) ∈ G(P);

(I7) if (X,Y ∪ Z) ∈ G(P) and (Z, T ∪W ) ∈ G(P) then (X,Y ∪ Z ∪ T ) ∈ G(P).

109



Proof. (I1): Since X ⊇ Y , for any P ∈ PAIR(Ω) we have that ΓP(X,Y ) = U .
(I2): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ) = U . Since X ⊆ X ∪ Z, we deduce that
[u]X∪Z ⊆ [u]X ⊆ [u]Y for any u ∈ U , therefore ΓP(X ∪ Z, Y ) = U .
(I3): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ) = ΓP(X,Z) = U . Hence, [u]X ⊆ [u]Y
and [u]X ⊆ [u]Z for any u ∈ U . Therefore, [u]X ⊆ [u]Y ∩ [u]Z for any u ∈ U or, equivalently,
πP(X) � πP(Y )∧πP(Z) and the latter coincides with πP(MP(Y ∪Z)) = πP(Y ∪Z). Therefore,
[u]X ⊆ [u]Y ∪Z for any u ∈ U , i.e. ΓP(X,Y ∪ Z) = U .
(I4): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ∪ Z) = U . Then, [u]X ⊆ [u]Y ∪Z ⊆ [u]Y for any
u ∈ U . Therefore ΓP(X,Y ) = U .
(I5): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ) = ΓP(Y, Z) = U . Then, [u]X ⊆ [u]Y ⊆ [u]Z
for any u ∈ U .
(I6): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ) = ΓP(Y ∪ Z,W ) = U . Then, [u]X ⊆ [u]Y and
[u]Y ∪Z ⊆ [u]W for any u ∈ U . Thus, we have that [u]X∪Z = [u]X∩ [u]Z and [u]Y ∪Z = [u]Y ∩ [u]Z
for any u ∈ U . Since [u]X ∩ [u]Z ⊆ [u]Y ∩ [u]Z = [u]Y ∪Z ⊆ [u]W , so ΓP(X ∪ Z,W ) = U .
(I7): Let P ∈ PAIR(Ω) be such that ΓP(X,Y ∪ Z) = ΓP(Z, T ∪W ) = U . This implies that,
for any u ∈ U , the following holds:

[u]X ⊆ [u]Y ∪Z ⊆ [u]Z ⊆ [u]T∪W ⊆ [u]T .

In other terms, if u ≡X u′ then u ≡Y ∪Z u′ and u ≡T u′ and this is equivalent to require that
F (u, a) = F (u, a′) for any a ∈ Y ∪ Z ∪ T , i.e. u ≡Y ∪Z∪T u′. By the arbitrariness of u ∈ U , we
conclude that ΓP(X,Y ∪ Z ∪ T ) = U .

5.2 Union Additive Relations

We consider now the conditions established in Proposition 5.1.2 as specific properties that can
be satisfied by suitable families D ⊆ P(Ω)2. To this regard, let D ⊆ P(Ω)2 be a given family
on Ω.

Some Conditions for a Generic Family D on P(Ω)2. Let X,Y, Z,W, T ∈ P(Ω). We
give the following possible axioms for D:

(D1) if X ⊇ Y then (X,Y ) ∈ D;

(D2) if (X,Y ) ∈ D then (X ∪ Z, Y ) ∈ D;

(D3) if (X,Y ) ∈ D and (X,Z) ∈ D then (X,Y ∪ Z) ∈ D;

(D4) if (X,Y ∪ Z) ∈ D then (X,Y ) ∈ D;

(D5) if (X,Y ) ∈ D and (Y, Z) ∈ D then (X,Z) ∈ D;

(D6) if (X,Y ) ∈ D and (Y ∪ Z,W ) ∈ D then (X ∪ Z,W ) ∈ D;

(D7) if (X,Y ∪ Z) ∈ D and (Z, T ∪W ) ∈ D then (X,Y ∪ Z ∪ T ) ∈ D;

(D8) (X,Y ) ∈ D if and only if (MP(X),MP(Y )) ∈ D.
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We have then the following result.

Proposition 5.2.1. The following conditions are equivalent:

(i) D satisfies the properties (D1), (D3) and (D5);

(ii) D satisfies the properties (D1), (D2) and (D6);

(iii) D satisfies the properties (D1), (D4) and (D7);

(iv) D satisfies all properties (D1)–(D7).

Proof. (i) =⇒ (ii): We have to derive the properties (D1), (D2) and (D6) starting from
(D1), (D3) and (D5). For, let us consider (X,Y ) ∈ D. By (D1), also (X ∪ Z,X) ∈ D and, by
(D5), it follows that (X ∪ Z,X), (X,Y ) ∈ D implies (X ∪ Z, Y ) ∈ D.
On the other hand, let us prove that (D6) derives by (D1), (D2), (D3), (D5). To this regard,
assume that (X,Y ), (Y ∪ Z,W ) ∈ D. By (D2), it results that (X ∪ Z, Y ) ∈ D and, by (D1),
this turns out to be true also for the pairs (Z,Z) and (X ∪ Z,Z). Thus, by (D3) applied to
the pairs (X ∪Z, Y ), (X ∪Z,Z), we have that (X ∪Z, Y ∪Z) ∈ D and, by (D5) applied to the
pairs (X ∪Z, Y ∪Z), (Y ∪Z,W ) we have that (X ∪Z,W ) ∈ D. So, the claim has been shown.
(ii) =⇒ (iii): Let us derive the properties (D1), (D4) and (D7) by using (D1), (D2) and
(D6). To this regard, let (X,Y ∪ Z) ∈ D. By (D1), (Y ∪ Z, Y ) ∈ D. Now, by (D6) applied
to the pairs (X,Y ∪ Z), ((Y ∪ Z) ∪ ∅, Y ) we have that (X,Y )D. This shows that (D4) can be
derived by (D1), (D2) and (D6).
We now prove the claim for (D7). Let now assume that (X,Y ∪ Z), (Z, T ∪ W ) ∈ D. By
(D2), (Y ∪ Z, T ∪W ) ∈ D. Moreover, applying (D6) to the pairs (Y ∪ Z, T ∪W ), (T ∪W,T ),
we have that (Y ∪ Z, T ) ∈ D. Again, we apply (D6) to the pair (X,Y ∪ Z)(Y ∪ Z, T ), so
(X,T ) ∈ D and, by (D6) applied to the pairs (X,Y ∪ Z, Y ∪ Z ∪ T, Y ∪ Z ∪ T ), we deduce
(X ∪ T, Y ∪ Z ∪ T ) ∈ D. Finally, starting from the pairs (X,T ), (X ∪ T, Y ∪ Z ∪ T ), by (D6)
we obtain that (X,Y ∪ Z ∪ T ).
(iii) =⇒ (iv): Let us derive the properties (D2), (D3),(D5) and (D6) by using (D1), (D4)
and (D7). For, let (X,Y ) ∈ D. We will prove (D2). By (D1), (X ∪ Z,X ∪ Z) ∈ D, so, by
applying (D7) to the pairs (X∪Z,X∪Z), (X,Y ) we have that (X∪Z,X∪Y ∪Z) ∈ D. Finally,
by applying (D4) to the latter pair, we deduce that (X ∪ Z, Y ) ∈ D.
We now show that (D6) can be derived by (D1), (D4) and (D7). Let (X,Y ), (Y ∪Z,W ) ∈ D.
By (D1), (X∪Z,X∪Z) ∈ D so, by (D7) applied to the pairs (X∪Z,X∪Z), (X,Y ) we deduce
that also (X ∪ Z,X ∪ Y ∪ Z) ∈ D. Again by (D7), this time applied to (X ∪ Z,X ∪ Y ∪ Z)
and (Y ∪Z,W ), we have that (X ∪Z,X ∪ Y ∪Z ∪W ) ∈ D. Then, by (D4), (X ∪Z,W ) ∈ D.
Furthermore, (D5) is nothing but (D6) with Z = ∅.
We prove the claim for (D3). We will use (D1), (D2) and (D6) that have been already derived
by (D1), (D4) and (D7). Assume (X,Y ), (X,Z) ∈ D. By (D1), we also have (Y ∪ Z, Y ∪ Z)
and, by (D6) applied to the pairs (X,Y ), (Y ∪ Z, Y ∪ Z), we deduce that (X ∪ Z, Y ∪ Z) ∈ D.
By applying again (D6) to the pairs (X,Z), (X ∪ Z, Y ∪ Z), it results that (X,Y ∪ Z) ∈ D.
This shows the thesis.
(iv) =⇒ (i): Obvious.

111



Definition 5.2.2. If D satisfies one of the equivalent conditions established in Proposition
5.2.1 we say that D is a union additive family on Ω. We denote by UAF (Ω) the set of all union
additive families on Ω.

Since any D ⊆ P(Ω)2 can be uniquely identified with the binary relation that it induces on
P(Ω), the conditions established in Proposition 5.1.2 can also be expressed in terms of condi-
tions on binary relations on P(Ω) as follows.

Some Conditions for a Generic Binary Relation ≥ on P(Ω). Let ≥ a binary relation
on P(Ω) and X,Y, Z,W, T ∈ P(Ω). We give the following possible axioms for ≥:

(R1) if X ⊇ Y then X ≥ Y ;

(R2) if X ≥ Y then X ∪ Z ≥ Y ;

(R3) if X ≥ Y and X ≥ Z then X ≥ Y ∪ Z;

(R4) if X ≥ Y ∪ Z then X ≥ Y ;

(R5) if X ≥ Y and Y ≥ Z then X ≥ Z;

(R6) if X ≥ Y and Y ∪ Z ≥W then X ∪ Z ≥W ;

(R7) if X ≥ Y ∪ Z and Z ≥ T ∪W then X ≥ Y ∪ Z ∪ T ;

(R8) X ≥ Y if and only if MP(X) ≥MP(Y ).

Then, Proposition 5.2.1 can be reformulated in terms of equivalences between conditions
on binary relations on Ω as follows.

Proposition 5.2.3. The following conditions are equivalent for any binary relation ≥ on Ω.

(i) ≥ satisfies the properties (R1), (R3) and (R5);

(ii) ≥ satisfies the properties (R1), (R2) and (R6);

(iii) ≥ satisfies the properties (R1), (R4) and (R7);

(iv) ≥ satisfies all properties (R1)– (R7).

Definition 5.2.4. We call union additive relation on Ω a binary relation ≥ on P(Ω) that sat-
isfies one of the equivalent conditions established in Proposition 5.2.3. We denote by UAR(Ω)
the set of all union additive relations on Ω.

It is clear that the notions of union additive family and union additive relation are equiv-
alent. In fact, if ≥ a union additive relation on Ω then D≥ := {(X,Y ) ∈ P(Ω)2 : X ≥ Y } is
a union additive family on Ω. On the other hand, if D is a union additive family on Ω, the
binary relation X ≥D Y : ⇐⇒ (X,Y ) ∈ D is a union additive relation on Ω. Moreover, the
maps D ∈ UAF (Ω) 7→≥D∈ UAR(Ω) and ≥∈ UAR(Ω) 7→ D≥ ∈ UAF (Ω) are inverses each
other. So that, in what follows we use the terms union additive relation and union additive
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family in equivalent way.
Thus, by Proposition 5.1.2 it follows that ≥P is a union additive relation on Ω, or, equivalently,
G(P) is a union additive family on Ω.

In the following result we establish some first basic properties of the union additive relations.

Proposition 5.2.5. (i) If {Di : i ∈ I} ⊆ UAF (Ω), then
⋂
i∈I

Di ∈ UAF (Ω).

(ii) Let ≥∈ UAR(Ω) and A,B,C,D ∈ P(Ω). Then, the following facts hold:

(a) If A ≥ B, C ⊇ A and B ⊇ D, then C ≥ D;

(b) If A ≥ B and C ≥ D, then A ∪ C ≥ B ∪D.

Proof. (i): Let Y ⊆ X ∈ P(Ω). Then, (X,Y ) ∈ D for any D ∈ UAF (Ω), so (X,Y ) ∈
⋂
i∈I

Di.

Let (X,Y ), (Y, Z) ∈
⋂
i∈I

Di. Then, (X,Y ), (Y, Z) ∈ Di for any i ∈ I. Therefore (X,Z) ∈ Di for

any i ∈ I, i.e. (X,Z) ∈
⋂
i∈I

Di. Finally, let (X,Y ), (X,Z) ∈
⋂
i∈I

Di, hence (X,Y ), (X,Z) ∈ Di

for any i ∈ I. So, (X,Y ∪ Z) ∈ Di for any i ∈ I, i.e. (X,Y ∪ Z) ∈
⋂
i∈I

Di. This shows that⋂
i∈I

Di ∈ UAF (Ω).

(ii): (a): By (R1), it follows that C ≥ A and B ≥ D. Moreover, by applying (R5) on the three
conditions C ≥ A, A ≥ B and B ≥ D, we conclude that C ≥ D.
(b): Let us observe that A ∪ C ≥ A ≥ B and A ∪ C ≥ C ≥ D. Moreover, we have that
B∪D ≥ B by (R1). So, by applying (R3) and then (R5), we conclude that A∪C ≥ B∪D.

It is natural to define the smallest union additive family on Ω containing D by setting

D+ :=
⋂
{E ∈ UAF (Ω) : D ⊆ E} (5.9)

Then, the following result holds.

Proposition 5.2.6. D+ is the smallest union additive family on Ω containing D as a subfamily
and the set operator + : D ∈ P(P(Ω)2) 7→ D+ ∈ P(P(Ω)2) is a closure operator on P(Ω)2.

Proof. Let us observe that the set {E ∈ UAF (Ω) : D ⊆ E} is non-empty since P(Ω)2 ∈ UAF (Ω).
Thus, by (i) of Proposition 5.2.5, it follows that D+ ∈ UAF (Ω). Moreover, it is obvious that
D+ is the smallest union additive family on Ω containing D.
We now prove that the set operator + : D ∈ P(P(Ω)2) 7→ D+ ∈ P(P(Ω)2) is a closure operator
on P(Ω)2. Let D ∈ P(Ω)2. Then, D ⊆ D+. On the other hand, if D ⊆ F, it is immediate to
see that D+ ⊆ F+ since the union additive families containing F also contain D. Finally, since
D+ is a union additive family, we have (D+)+ = D+ and the claim has been proved.

We call D+ the union additive envelope of D. If D,D′ ⊆ P(Ω)2, we say that D and D′ are
union additive equivalent (denoted by D ' D′) if D+ = (D′)+.
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5.2.1 Union Additive Families and Closure Operators

In this subsection, given a fixed finite set Ω, we show (Theorem 5.2.8) that the notions of union
additive family and closure operator are equivalent. To this aim we consider the set operator
cD : P(Ω)→ P(Ω) defined by

cD(X) :=
⋃
{Y ∈ P(Ω) : (X,Y ) ∈ D}. (5.10)

So that, for any z ∈ Ω we have that

z ∈ cD(X) ⇐⇒ ∃Z ∈ P(Ω) : z ∈ Z and (X,Z) ∈ D (5.11)

When D satisfies the conditions (D1) and (D3), another equivalent way to characterize the
subset cD(X) is the following.

Proposition 5.2.7. If D satisfies the conditions (D1) and (D3), then cD(X) is the largest
subset W of Ω such that (X,W ) ∈ D.

Proof. By (D1), the subset family F := {Y ∈ P(Ω) : (X,Y ) ∈ D} is non-empty because it
contains at least X. On the other hand, by means of repeated applications of (D3) we deduce
that W :=

⋃
F ∈ F. Since cD(X) = W , the thesis follows.

On the other hand, for any set operator σ ∈ OP (Ω) we also consider the subset family

Cσ := {(X,Y ) ∈ P(Ω)2 : σ(X) ⊇ Y }. (5.12)

Then, we obtain the following result.

Theorem 5.2.8. (i) If D ∈ UAF (Ω) then cD ∈ CLOP (Ω).
(ii) If σ ∈ CLOP (Ω) then Cσ ∈ UAF (Ω).
(iii) The map D ∈ UAF (Ω) 7→ cD ∈ CLOP (Ω) is bijective and the map σ ∈ CLOP (Ω) 7→ Cσ
is its inverse. That is, if D ∈ UAF (Ω) and σ ∈ CLOP (Ω) we have that CcD = D and cCσ = σ.

Proof. (i): Let D ∈ UAF (Ω) and X ∈ P(Ω). By (D1) we have (X,X) ∈ D, so that X ⊆ cD(X).
Let now Y ∈ P(Ω) and X ⊆ Y . Again by (D1) we have (Y,X) ∈ D. Let now a ∈ cD(X).

By (5.11) there exists Z ∈ P(Ω) such that (X,Z) ∈ D and a ∈ Z. Then, by (D5) we deduce
that (Y, Z) ∈ D, therefore by (5.11) it follows that a ∈ cD(Y ). Hence cD(X) ⊆ cD(Y ).

In order to show that cD(cD(X)) = cD(X), let W := cD(X) and a ∈ cD(W ). By (5.11)
there exists Z ∈ P(Ω) such that (W,Z) ∈ D and a ∈ Z. By Proposition 5.2.7 we have that
(X,W ) ∈ D, therefore, by (D5), it follows that (X,Z) ∈ D. Then, by (5.11) we have that
a ∈ cD(X). This shows that cD(W ) ⊆W . Finally, by the first part of this proof, we also have
W ⊆ cD(W ). Hence cD(W ) = W .

This proves that cD is a closure operator on Ω.
(ii): If Y ⊆ X ∈ P(Ω), then Y ⊆ X ⊆ σ(X), so (X,Y ) ∈ Cσ. Let now (X,Y ), (Y,Z) ∈ Cσ,

then Z ⊆ σ(Y ) and Y ⊆ σ(X). Moreover, we have Z ⊆ σ(Y ) ⊆ σ(σ(X)) = σ(X). Finally,
if (X,Y ), (X,Z) ∈ Cσ, it results that Y ⊆ σ(X) and Z ⊆ σ(X), so Y ∪ Z ⊆ σ(X), i.e.
(X,Y ∪ Z) ∈ Cσ. Thus we showed that Cσ ∈ UAF (Ω).
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(iii): Let us prove that CcD = D. Let (X,Y ) ∈ D, then clearly Y ⊆ cD(X) by definition of
cD(X), i.e. (X,Y ) ∈ CcD . On the other hand, if (X,Y ) ∈ CcD , it is obvious, again by definition
of cD(X), that (X,Y ) ∈ D. Vice versa, let us prove that cCσ = σ. Clearly, if X ∈ P(Ω) is a
fixed subset, we have

cCσ(X) =
⋃
{Y ∈ P(Ω) : Y ⊆ σ(X)} = σ(X),

and the claim follows.

If σ ∈ CLOP (Ω) and D ∈ UAF (Ω) are such that D = Cσ (and therefore equivalently
σ = cD, by Theorem 5.2.8), we say that Cσ is the union additive family induced by σ and cD is
the closure operator induced by D.

As a direct consequence, we prove that G(P) coincides exactly with the union additive
family on Ω induced by the closure operator MP.

Proposition 5.2.9. CMP
= G(P) and cG(P) = MP. That is, MP is the closure operator on Ω

induced by G(P) and G(P) is the union additive family on Ω induced by MP.

Proof. Let (X,Y ) ∈ CMP
. Then, Y ⊆ MP(X), so we have πP(X) = πP(MP(X)) � πP(Y ).

Therefore, [u]X ⊆ [u]Y for any u ∈ U or, equivalently, ΓP(X,Y ) = U . This implies that
CMP ⊆ G(P). Vice versa, let us suppose that (X,Y ) ∈ G(P), so ΓP(X,Y ) = U . Therefore,
[u]X = [u]MP(X) ⊆ [u]Y = [u]MP(Y ), i.e. πP(MP(X)) � πP(MP(Y )) and this is equivalent to
require that MP(Y ) ⊆MP(X) hence, a fortiori, Y ⊆MP(X). This shows that CMP

= G(P).
On the other hand, by (5.10), it is immediate to verify that cG(P) = MP.

5.3 Union Additive Families from an Abstract Mathematical
Perspective

Starting now from D, we inductively define three sequences of different subset ordered pair
families and next we show that all their unions coincide with the above additive envelope
D+. In this way, we provide a new interpretation for (D1) − (D7). First of all, let us set
D̂ := D ∪ {(X,Y ) ∈ P(Ω)2 : Y ⊆ X}.

I) Set D∗0 := D̂. Moreover, if k ≥ 1, we inductively define D∗k as follows. A subset ordered
pair (X ′, Y ′) belongs to D∗k if one of the following holds:

(A1) there exist Y,Z ∈ P(Ω) such that (X ′, Y ), (X ′, Z) ∈ D∗k−1 and Y ′ = Y ∪ Z;

(A2) there exists Y ∈ P(Ω) such that (X ′, Y ), (Y, Y ′) ∈ D∗k−1.

II) Set D§0 := D̂. Moreover, if k ≥ 1, we inductively define D
§
k as follows. A subset ordered

pair (X ′, Y ′) belongs to D
§
k if one of the following holds:

(B1) there exists X ⊆ X ′ such that (X,Y ′) ∈ D
§
k−1;
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(B2) there exist X,Y, Z ∈ P(Ω) such that (X,Y ) ∈ D
§
k−1, (Y ∪Z, Y ′) ∈ D

§
k−1 and X ′ = X∪Z.

III) Set D[
0 := D̂. Moreover, if k ≥ 1, we inductively define D[

k as follows. A subset
ordered pair (X ′, Y ′) belongs to D[

k if one of the following holds:

(C1) there exists Z ∈ P(Ω) such that (X ′, Y ′ ∪ Z) ∈ D[
k−1;

(C2) there exist Y, Z,W, T ∈ P(Ω) such that (X ′, Y ∪Z), (Z, T∪W ) ∈ D[
k−1 and Y ′ = Y ∪Z∪T .

We have then the following result.

Theorem 5.3.1. We have that⋃
k≥0

D∗k =
⋃
k≥0

D
§
k =

⋃
k≥0

D[
k = D+

Proof. Let us prove that
⋃
k≥0

D∗k ∈ UAF (Ω). Let X ⊇ Y . Then, (X,Y ) ∈ D∗0 and so

(X,Y ) ∈
⋃
k≥0

D∗k. By (A1), it can be readily proved that D∗k ⊆ D∗k+1 for any k ∈ N. Hence,

if (X,Y ), (X,Z) ∈
⋃
k≥0

D∗k, then there always exists an index j such that (X,Y ), (X,Z) ∈ D∗j .

Thus (X,Y ∪ Z) ∈ D∗j+1 hence (X,Y ∪ Z) ∈
⋃
k≥0

D∗k. Finally, if (X,Y ), (Y, Z) ∈
⋃
k≥0

D∗k,

there exists an index i such that (X,Y ), (Y, Z) ∈ D∗i . Thus, by (A2), (X,Z) ∈
⋃
k≥0

D∗k. This

shows that
⋃
k≥0

D∗k ∈ UAF (Ω). Moreover, D ⊆
⋃
k≥0

D∗k and it is immediate to see that any

(X,Y ) ∈
⋃
k≥0

D∗k also belongs to any E ∈ UAF (Ω) containing D. So D+ =
⋃
k≥0

D∗k.

Let us prove now that ⋃
k≥0

D∗k =
⋃
k≥0

D
§
k.

Obviously, D∗0 ⊆
⋃
k≥0

D
§
k. Fix an integer n and assume that D∗l ⊆

⋃
k≥0

D
§
k for any l ≤ n− 1. We

will prove that D∗n ⊆
⋃
k≥0

D
§
k. For, let (X ′, Y ′) ∈ D∗n. If (A1) holds, there exist Y,Z ∈ P(Ω) such

that (X ′, Y ), (X ′, Z) ∈ D∗n−1 and Y ′ = Y ∪ Z. By the inductive hypothesis, (X ′, Y ) ∈ D
§
i and

(X ′, Z) ∈ D
§
j , for two integers i and i′. Since D

§
k ⊆ D

§
k+1 for any k ∈ N, then (X ′, Y ), (X ′, Z) ∈

D
§
j for some D

§
j . Moreover, since (Y ∪Z, Y ∪Z) ∈ D

§
0, it also belongs to D

§
j . By (B2), the pair

(X ′∪Z, Y ∪Z) ∈ D
§
j+1 can be obtained starting from the pairs (X ′, Y ) and (Y ∪Z, Y ∪Z) and,

again by (B2), we obtain the pair (X ′, Y ∪Z) = (X ′, Y ′) ∈ D
§
j+2 from to the pairs (X ′, Z) and

(X ′ ∪ Z, Y ∪ Z). Thus, (X ′, Y ′) ∈
⋃
k≥0

D
§
k. If (A2) holds, then there exists Y ∈ P(Ω) such that

(X ′, Y ), (Y, Y ′) ∈ D∗n−1. Hence, by inductive hypothesis and by the previous remark, it results

that (X ′, Y ), (Y, Y ′) ∈ D
§
j for some integer j. By (B2), we obtain the pair (X ′, Y ′) ∈ D

§
j+1

from the pairs (X ′, Y ), (Y, Y ′), so (X ′, Y ′) ∈
⋃
k≥0

D
§
k. This shows that

⋃
k≥0

D∗k ⊆
⋃
k≥0

D
§
k.
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On the other hand, D§0 ⊆
⋃
k≥0

D∗k. Fix an integer n and assume that D
§
l ⊆

⋃
k≥0

D∗k for any

l ≤ n − 1. We will show that D
§
n ⊆

⋃
k≥0

D∗k. For, let (X ′, Y ′) ∈ D
§
n. If (B1) holds, then

there exists X ⊆ X ′ such that (X,Y ′) ∈ D
§
n−1 and, by the inductive hypothesis, (X,Y ′) ∈ D∗i

for some integer i. Since (X ′, X) ∈ D∗0, it also belongs to D∗i . By (A2), the pairs (X ′, X)
and (X,Y ′) yield (X ′, Y ′) ∈ D∗i+1, so (X ′, Y ′) ∈

⋃
k≥0

D∗k. If (B2) holds, then there exist

X,Y, Z ∈ P(Ω) such that (X,Y ), (Y ∪Z, Y ′) ∈ D
§
k−1 and X ′ = X. By the inductive hypothesis,

(X,Y ) ∈ D∗i and (Y ∪Z, Y ′) ∈ D∗i′ for some integers i and i′. In particular, there exists j such
that (X,Y ) ∈ D∗j . Moreover, since (X ∪ Z,X), (X ∪ Z,Z) ∈ D∗0, they belong to D∗j for
any integer j. Now, by (A2), the pair (X ∪ Z, Y ) ∈ D∗j+1 can be obtained from the pairs
(X ∪Z,X) and (X,Y ) and, by (A1), we obtain the pair (X ∪Z, Y ∪Z) ∈ D∗j+2 from the pairs
(X∪Z, Y ) and (X∪Z,Z). Finally, again by (A2), the pairs (X∪Z, Y ∪Z) and (Y ∪Z, Y ′) yield

(X ∪ Z, Y ′) = (X ′, Y ′) ∈ D∗j+3, thus (X ′, Y ′) ∈
⋃
k≥0

D
§
k. This implies that

⋃
k≥0

D∗k =
⋃
k≥0

D
§
k.

Let us prove that ⋃
k≥0

D
§
k =

⋃
k≥0

D[
k.

Obviously, D§0 ⊆
⋃
k≥0

D[
k. Fix an integer n and assume that D

§
l ⊆

⋃
k≥0

D[
k for any l ≤ n− 1. We

will prove that D
§
n ⊆

⋃
k≥0

D[
k. For, let (X ′, Y ′) ∈ D

§
n. If (B1) holds, then there exists X ⊆ X ′

such that (X,Y ′) ∈ D
§
n−1. By the inductive hypothesis, (X,Y ′) ∈ D[

i for some integer i. Since

(X ′, X ′) ∈ D[
0, then (X ′, X ′) ∈ D[

i . Let Z = X ′ \ X. By (C2), by starting from the pairs
(X ′, X ∪ Z), (X,Y ′) we obtain that (X ′, X ∪ Z ∪ Y ′) ∈ D[

i+1. Moreover, by (C1), it follows

that (X ′, Y ′) ∈ D[
i+2, so (X ′, Y ′) ∈

⋃
k≥0

D[
k. If (B2) holds, then there exist X,Y, Z ∈ P(Ω) such

that (X,Y ), (Y ∪ Z, Y ′) ∈ D
§
k−1 and X ′ = X ∪ Z. By the inductive hypothesis (X,Y ) ∈ D[

i

and (Y ∪ Z,W ) ∈ D[
i′ for some integers i, i′. Since D[

k ⊆ D[
k+1 for any k ∈ N, we have that

(X,Y ) ∈ D[
j for some j ∈ N. Moreover, since (X ∪Z,X ∪Z) ∈ D[

0, then (X ∪Z,X ∪Z) ∈ D[
j .

Then, by (C2), the pairs (X ∪ Z,X ∪ Z) and (X,Y ) yield (X ∪ Z,X ∪ Y ∪ Z) ∈ D[
j+1.

Moreover, again by (C2), we obtain that (X ∪ Z,X ∪ Y ∪ Z ∪ W ) ∈ D[
j+2 from the pairs

(X ∪Z,X ∪ Y ∪Z) and (Y ∪Z,W ). Finally, by (C1), by starting from (Y ∪Z,W ), we obtain

that (X ∪ Z,W ) = (X ′, Y ′) ∈ D[
j+3, so (X ′, Y ′) ∈

⋃
k≥0

D[
k. This shows that

⋃
k≥0

D
§
k ⊆

⋃
k≥0

D[
k.

On the other hand, D[
0 ⊆

⋃
k≥0

D
§
k. Fix an integer n and suppose that D[

l ⊆
⋃
k≥0

D
§
k for

any l ≤ n − 1. Let (X ′, Y ′) ∈ D[
n. If (C1) holds, then there exists Z ∈ P(Ω) such that

(X ′, Y ′ ∪ Z) ∈ D[
n−1 and, by the inductive hypothesis, (X ′, Y ′ ∪ Z) ∈ D

§
i for some integer

i. Since (Y ′ ∪ Z, Y ′) ∈ D
§
0, it is contained in D

§
i , therefore, from the pairs (X ′, Y ′ ∪ Z) and

(Y ′ ∪ Z, Y ′) and by using (B2), we obtain that (X ′, Y ′) ∈ D
§
i+1, thus (X ′, Y ′) ∈

⋃
k≥0

D[
k. If

(C2) holds, then there exist Y,Z,W, T ∈ P(Ω) such that (X ′, Y ∪ Z), (Z, T ∪ W ) ∈ D[
n−1
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and Y ′ = Y ∪ Z ∪ T . By the inductive hypothesis we have that (X ′, Y ∪ Z) ∈ D
§
i and

(Y ∪Z, T ∪W ) ∈ D
§
i′ for some integers i and i′. Since D

§
i ⊆ D

§
j whenever i < j, we can assume

that (X ′, Y ∪Z) ∈ D
§
j . By applying (B1), we obtain that (Y ∪Z, T ∪W ) ∈ D

§
j+1 from the pair

(Z, T ∪W ). Moreover, the pair (T ∪W,T ) ∈ D
§
0 also belongs to D

§
j+1. Hence, by (B2) we obtain

that (Y ∪Z, T ) ∈ D
§
j+2 from the pairs (Y ∪Z, T ∪W ), (T ∪W,T ) . Again by (B2), we also obtain

that (X,T ) ∈ D
§
j+3 from the pairs (X,Y ∪ Z), (Y ∪ Z, T ). Now, (Y ∪ Z ∪ T, Y ∪ Z ∪ T ) ∈ D

§
0

also belongs to D
§
j+3. Therefore, by (B2) we obtain (X ∪T, Y ∪Z ∪T ) ∈ D

§
j+4 from (X,Y ∪Z)

and (Y ∪ Z ∪ T, Y ∪ Z ∪ T ). Finally, again by (B2), we have the pair (X,Y ∪ Z ∪ T ) ∈ D
§
j+5

from (X,T ) and (X∪T, Y ∪Z∪T ). This proves that
⋃
k≥0

D
§
k =

⋃
k≥0

D[
k and the thesis holds.

At this point, we introduce the notion of model for D.

Definition 5.3.2. We say that a pairing P ∈ PAIR(Ω) is a model for D, denoted by P ` D,
if for any pair (X,Y ) ∈ D we have that X ≥P Y , i.e. if D+ ⊆ G(P).

In particular, if D = {(X1, Y1), . . . , (Xk, Yk)}, we write simply P ` (X1, Y1), . . . , (Xk, Yk) in-
stead of P ` {(X1, Y1), . . . , (Xk, Yk)}, that is therefore equivalent to say thatX1 ≥P Y1, . . . , Xk ≥P

Yk.

Let us introduce now a preorder between families of P(Ω)2.

Definition 5.3.3. Let D′ ⊆ P(Ω)2. We say that the ordered pair (D,D′) is a sequentiality on
Ω, in symbols D  Ω D′, if, for any P ∈ PAIR(Ω) such that X ≥P Y for all (X,Y ) ∈ D, we
also have X ′ ≥P Y ′ for all (X ′, Y ′) ∈ D′. In particular, if D = ∅, then ∅  Ω D′ if and only if
X ′ ≥P Y ′ for any P ∈ PAIR(Ω) and for any (X ′, Y ′) ∈ D′.

Moreover, if D = {(X1, Y1), . . . , (Xk, Yk)} and D′ = {(X ′1, Y ′1), . . . , (X ′l , Y
′
l )}, we will write

(X1, Y1), . . . , (Xk, Yk) Ω (X ′1, Y
′

1), . . . , (X ′l , Y
′
l )

instead of {(X1, Y1), . . . , (Xk, Yk)} Ω {(X ′1, Y ′1), . . . , (X ′l , Y
′
l )}.

Let us note that
D Ω D′ ⇐⇒ D Ω (X ′, Y ′), ∀ (X ′, Y ′) ∈ D′ (5.13)

and that Ω is a preorder between ordered subset pairs families. In the next result, we establish
some basic properties concerning this preorder.

Theorem 5.3.4. Let X,Y, Z,W ∈ P(Ω). Then, the following sequentiality on Ω hold:

(I1) if X ⊇ Y , then ∅ Ω (X,Y ) and, in particular, ∅ Ω (X,X);

(I2) (X,Y ) Ω (X ∪ Z, Y );

(I3) (X,Y ), (X,Z)  Ω (X,Y ∪ Z);

(I4) (X,Y ∪ Z)  Ω (X,Y );
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(I5) (X,Y ), (Y,Z)  Ω (X,Z);

(I6) (X,Y ), (Y ∪ Z,W ) Ω (X ∪ Z,W );

(I7) (X,Y ∪ Z), (Z, T ∪W ) Ω (X,Y ∪ Z ∪ T ).

Proof. It is the same of that of Theorem 5.1.2.

In the next section we use some properties established in Theorem 5.3.4 to connect our
investigation to particular types of acyclic digraphs.

5.4 Tail Decomposition Digraphs

In this section we link the study of the preorder  Ω to the existence of some particular kinds
of acyclic digraphs having as vertex sets suitable subsets of P(Ω).

Let D ⊆ P(Ω)2.

Definition 5.4.1. We call D-tail decomposition digraph an acyclic digraphD = (V (D), Arc(D))
such that V (D) ⊆ P(Ω) and for any (W,Z) ∈ Arc(D), there exist X1, X2, . . . , Xk, Z

′ ∈ P(Ω)
such that:

(i) X1 = W and Z ⊆ Z ′;

(ii) (X1 ∪X2 ∪ · · · ∪Xk, Z
′) ∈ D;

(iii) (Xi, Z) ∈ Arc(D) for all i = 1, . . . , k.

Let D be a D-tail decomposition digraph. We call a pair (A,B) ∈ D that satisfies the above
conditions a D-extension of the arc (W,Z) and we denote by ExtD(W,Z) the set of all D-
extensions of (W,Z). Moreover, we also set

UD(D) :=
⋃
{ExtD(W,Z) : (W,Z) ∈ Arc(D)}.

If (X,Y ) ∈ P(Ω)2, we say that D is a D|(X,Y )-tail decomposition digraph if X =
⋃
{W : W ∈

I(D)} and Y =
⋃
{Z : Z ∈ F}, for some F ⊆ V (D).

Example 5.4.2. Let D = {(X1∪X2, Z1∪Z2), (Z2, Z3), (Z1∪Z2∪Z3, Y )} ⊆ P(Ω)2. In Figure
6.2, we illustrate an example of D|(X1 ∪X2, Y )-tail decomposition digraph. All the edges have
been introduced by using Definition 5.4.1.

In the next Theorem 5.4.4, we show that the condition D Ω (X,Y )′ is equivalent to require
both that (X,Y ) ∈ D+ and also that there exists a D|(X,Y )-tail decomposition digraph. In
order to prove this equivalence, we firstly introduce the following notion.

Definition 5.4.3. We call D|(X,Y )-tail resolution a sequence of pairs

S = ((X0, Y0), (X1, Y1) . . . , (Xr, Yr))

such that:
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Figure 5.1: D|(X1 ∪X2|Y )-tail decomposition digraph

(i) (X0, Y0) = (X,X);

(ii) (X1, Y1) ∈ D̂;

(iii) if 2 ≤ k ≤ r − 1, (Xk, Yk) satisfies one of the following conditions:

(a) (Xk, Yk) ∈ D̂;

(b) Xk = Xk−2 = X and there exist T,W,Z ∈ P(Ω) such that Yk−2 = T ∪ Xk−1,
Yk−1 = Z ∪W and Yk = Yk−2 ∪ Z.

(iv) (Xr, Yr) = (X,Y ) and satisfies one of the following conditions:

(a) there exist T,W,Z ∈ P(Ω) such that Yr−2 = T ∪ Xr−1, Yr−1 = Z ∪W , Xr−2 = X
and Y = Yr−2 ∪ Z;

(b) there exists Z ∈ P(Ω) such that Yr−1 = Y ∪ Z.

(v) No other pair (Xk, Yk), for all k = 0, . . . , r − 1, is (X,Y ).

We denote by RS
D(X,Y ) the set of all pairs in D occurring in the D-tail resolution S of

(X,Y ).

We have then the following result.

Theorem 5.4.4. Let (X,Y ) ∈ P(Ω)2. The following conditions are equivalent:
(i) D Ω (X,Y );
(ii) (X,Y ) ∈ D+;
(iii) there exists a D|(X,Y )-tail decomposition digraph.

Proof. (i) =⇒ (ii): Let us suppose that D  Ω (X,Y ) and assume by contradiction that
(X,Y ) ∈ P(Ω)2 \D+. We will prove that there exists P ∈ PAIR(Ω) such that ΓP(W,Z) = U
for any (W,Z) ∈ D+ but ΓP(X,Y ) 6= U . Since (X,X) ∈ D+ =

⋃
k≥0

D∗k, we can consider
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X := max{Y ∈ P(Ω) : (X,Y ) ∈ D+}. Let us consider the pairing P ∈ PAIR(Ω) with
U := {u, u′}, Λ := {λ1, . . . , λn, µ1, . . . , µn} and F so defined:

F (v, ai) =

{
λi if v = u ∨ (v = u′ ∧ ai ∈ X),
µi otherwise.

(5.14)

Firstly, let us show that ΓP(W,Z) = U for any (W,Z) ∈ D+. For, we distinguish two cases,
namely W 6⊆ X and W ⊆ X.
Let W 6⊆ X. Then, u 6≡W u′, i.e. πP(W ) = u|u′, therefore ΓP(W,Z) = U for any Z ∈ P(Ω)
and, in particular ΓP(W,Z) = U for any pair (W,Z) ∈ D+.
Suppose now that W ⊆ X. Hence, u ≡W u′. Since (W,Z) ∈ D+, there exists an index i such
that (W,Z) ∈ D∗i . Moreover, we have that (X,W ) ∈ D∗0. Thus (X,W ) ∈ D∗k, for any integer k.
By applying (A2) on the pairs (X,W ) and (W,Z), it follows that (X,Z) ∈ D∗i+1. On the other
hand, by (A1), we obtain (X,X ∪ Z) ∈ D∗i+2 from the pairs (X,X) and (X,Z). Furthermore,
by (A2) we construct the pair (X,W ) starting from the pairs (X,X ∪Z) and (X ∪Z,W ). By
the definition of X, it results that (X,X) ∈ D+, hence we can find a D∗j , for some j > i, such

that (X,X), (X,W ) ∈ D∗j . In particular, by applying (A2) on the latter pairs, we obtain the
pair (X,W ) ∈ D∗j+1. Finally, since (W,Z) ∈ D∗i ⊆ D∗j+1, by (A2) we obtain (X,Z) ∈ D∗j+2

starting from the pairs (X,W ) and (W,Z). This means that (X,Z) ∈ D+. In other terms, we
showed that Z ⊆ X, thus u ≡Z u′, i.e. ΓP(W,Z) = U .
At this point, we must prove that ΓP(X,Y ) = ∅. By (5.14), we can deduce that u ≡X u′. Sup-
pose by contradiction that u ≡Y u′; it must necessarily result that Y ⊆ X. Since (X,X) ∈ D+,
then (X,X) ∈ D∗i for some i ∈ N. Therefore, we can obtain the pair (X,Y ) ∈ D∗i+1 starting
from the pairs (X,X) and (X,Y ). This means that (X,Y ) ∈ D+, contradicting our choice of
(X,Y ). Therefore, u 6≡Y u′, so ΓP(X,Y ) = ∅. This shows the claim.

(ii) =⇒ (i): Let us suppose that (X,Y ) ⊆ D+ =
⋃
k≥0

D[
k and let P be a pairing such that

ΓP(W,Z) = U , for any (W,Z) ∈ D. We will prove that ΓP(X,Y ) = U . If (X,Y ) ∈ D̂, then
obviously ΓP(X,Y ) = U . Let n be a fixed integer and suppose that for any k ≤ n− 1 we have
that ΓP(W ′, Z ′) = U for any (W ′, Z ′) ∈ D[

k. We now show that for any pair (X ′, Y ′) ∈ D[
n,

it results that ΓP(X ′, Y ′) = U . Let (X ′, Y ′) ∈ D[
n. If (C1) holds, there exists Z ∈ P(Ω) such

that (X ′, Y ′ ∪ Z) ∈ D[
n−1. By the inductive hypothesis, ΓP(X ′, Y ′ ∪ Z) = U , then, by (I4),

(X ′, Y ′ ∪ Z) Ω (X ′, Y ′), so ΓP(X ′, Y ′) = U .
On the other hand, if (C2) holds, there exist Y, Z,W, T ∈ P(Ω) such that (X ′, Y ∪ Z), (Z, T ∪
W ) ∈ D[

n−1 and Y ′ = Y ∪Z∪T . By the inductive hypothesis, ΓP(X ′, Y ∪Z) = ΓP(Z, T ∪W ) =
U hence by (I7), it follows that (X ′, Y ∪ Z), (Z, T ∪W ) Ω (X ′, Y ′), i.e. ΓP(X ′, Y ′) = U and
the claim has been showed.
(ii) =⇒ (iii): Let us suppose that (X,Y ) ∈ D+. We divide the proof of (iii) in two steps.
Firstly, we show that there exists a D|(X,Y )-tail resolution S = ((X0, Y0), (X1, Y1) . . . , (Xr, Yr)).

By virtue of the identity D+ =
⋃
k≥0

D[
k and by Theorem 5.3.1, there exists a sequence of

ordered subsets pairs (X0, Y0), . . . , (Xs, Ys) such that (X0, Y0) ∈ D̂ and (Xs, Ys) = (X,Y ). In
particular, since the pair (X,X) ∈ D̂, we can always assume that (X0, Y0) = (X,X).
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Suppose that a pair (W,Z) 6= (X,Y ) in the sequence has been obtained from some pair (W,Z∪
Z ′) by (C1). If (W,Z) is not used elsewhere to obtain some other pair of sequence, we can
remove it from the sequence. On the contrary, suppose that (W,Z) is used to yield another
pair. If this second pair has been obtained through (C1), we can suppose directly that it
has been obtained by the pair (W,Z ∪ Z ′), hence (W,Z) can be removed from the sequence.
Nevertheless, the second pair can be obtained from (W,Z) through (C2). In this case, two
possibilities are allowed:

(a) there exist S, T, U ∈ P(Ω), with S ⊆ Z, such that the pairs (W,Z), (S, T ∪ U) yield the
pair (W,T ∪ Z);

(b) there exist U, V ∈ P(Ω), with V ⊇ W , such that the pairs (U, V ), (W,Z) yield the pair
(U,W ∪ V ).

In case (a) we can use the ordered pair (W,Z∪Z ′) to obtain (W,T∪Z∪Z ′) instead of (W,T∪Z).
This implies that we can remove (W,Z) in the above sequence replacing all the pairs derived
from (W,T ∪ Z) with the ones obtained by starting from (W,T ∪ Z ∪ Z ′). In case (b), we can
directly replace (W,Z) with (W,Z ∪ Z ′) without changing the resulting pair (U,W ∪ V ). In
other terms, in both cases we replaced a pair (W,Z) with a pair (W,Z ∪ Z ′). Let us observe
that with these replacements, it can happen that we derive the pair (X,Y ∪ Y ′) instead of
(X,Y ). The latter can be yielded by applying (C1) to the pair (X,Y ∪ Y ′).
However, by iterating the previous procedure, we find a sequence (X0, Y0), . . . , (Xm, Ym), with
(X0, Y0) = (X,X) and (Xm, Ym) = (X,Y ) and where each intermediate pair can be derived
only through (C2).
Let us prove now that, if (X,Z) can be obtained by (C2) from some pairs of form (X,V ′) and
(S, T ∪ U) of the above sequence, then we can obtain a pair of the form (X,W ), with Z ⊆W ,
starting from a pair of the form (X,V ) and belonging to the previous sequence and a pair
(S,R) ∈ D.
For, let us assume that the pair (X,Z) has been yielded by (X,V ), (S, T ∪ U) by applying
(C2). Firstly, let us note that by the previous argument we can suppose that (S, T ∪U) cannot
be obtained by using some application of (C1). We distinguish two cases: if S ⊇ T ∪ U , then
we can add the pair (S, T ∪ U) in the sequence; otherwise, (S, T ∪ U) has been obtained by
means of (C2) from two pairs (S,R), (R′, T ′ ∪ U ′), both belonging to the above sequence. In
this case, we have that R ∪ T ′ = T ∪ U and, thus, another application of (C2) to the pairs
(X,V ∪ T ′), (S,R) yields (X,Z ∪U). The only problem that may arise is that (S,R) /∈ D̂ but,
if so, just repeat the same argument for it. Hence, we can remove (S, T ∪ U) and all the pairs
in our sequence not belonging in D and not having the form (X,Z) for some Z ∈ P(Ω). This
proves the existence of a D|(X,Y )-tail resolution.
The second step of our proof consists of constructing a D|(X,Y )-tail decomposition digraph
starting from the above D|(X,Y )-tail resolution.
Let S be a D|(X,Y )-tail resolution and let (X,Z0), (X,Z1), . . . , (X,Zk) be the ordered subset
pairs occurring in S, with Z0 = X and Zk = Y . We will construct a collection Di of D|(X,Zi)-
tail decomposition digraphs, for i = 0, . . . , k. When i = 0, the graph with just a node X
is clearly a D|(X,Z0)-tail decomposition digraph, where (X,Z0) = (X,X). Let i ≤ k be a
fixed integer and suppose inductively that Dj is a D|(X,Zj)-tail decomposition digraphs for
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j = 0, . . . , i− 1; we now construct a D|(X,Zi)-tail decomposition digraph obtained from Di−1

by adding suitable vertices and edges. For, let us consider (X,Zi) in S. If (X,Zi) ∈ D, then we
can add to Di−1 a vertex Zi and an edge (X,Zi). Thus we obtain a D|(X,Zi)-tail decomposition
digraph Di.
On the other hand, suppose that (X,Zi) ∈ D+\D̂. This implies that one of the conditions (C1),
(C2) holds. Suppose that there exists T ∈ P(Ω) such that the pair (X,Zi) have been obtained
from (X,Zi ∪ T ) = (X,Zi−1). In this case Di−1 is already a D|(X,Zi)-tail decomposition
digraph. Then, we can set Di = Di−1.
On the contrary, suppose that there exist T,U,W ∈ P(Ω) such that Zi−2 = T ∪Xi−1, Zi−1 =
U ∪W and Zk = Zk−2 ∪ U . In this case, Di−2 is a subgraph of Di−i and in Di−2 there are
subsets of Ω whose union is Zi−2. Then, we form Di by adding a vertex labeled U to Di−1 and
arcs connecting nodes of Di−2 labeled by some subsets of Zi−2 with U . This ends our inductive
construction, so a D|(X,Y )-tail decomposition digraph has been formed.
(iii) =⇒ (ii): Let us assume that a D|(X,Y )-tail decomposition digraph is given. Let D
be a D|(X,Y )-tail decomposition digraph and D0, D1, . . . , Dk = D be a sequence of D-tail
decomposition digraphs such that Di is obtained by Di−i by adding nodes and edges compatibly
with Definition 5.4.1. For each i = 0, . . . , k, we assume that Zi is the union of subsets of Ω
labelling some nodes in Di and, moreover, suppose that Zk ⊇ Y . We will construct a D|(X,Y )-
tail resolution S from D containing (X,Z0) = (X,X), (X,Z1), . . . , (X,Zk) as a subsequence.
Firstly, set Z0 := X and D0 be the digraph whose vertex set is exactly X and Arc(D0) = ∅. Let
us set S0 := {(X,X)}. Let now i ≥ 1 and suppose that a there exists D|(X,Zj)-tail resolution Sj
containing (X,Z0) = (X,X), (X,Z1), . . . , (X,Zj) as a subsequence, for all j ≤ i−1. According
to Definition 5.4.1, we obtain Di from Di−1 through a pair (T,U ∪W ) ∈ D, where T,W ∈ P(Ω)
and T ⊆ Zi−1, by adding a vertex labeled by U and edges of the form (Sl, U) for l = 1, . . . ,m,

where m is a suitable integer and
m⋃
l=1

Sl ⊆ T . By considering the pairs (X,Zi−1) and (T,U∪W ),

we obtain (X,Zi), where Zi = Zi−1∪U , by (C2). Therefore, we add both the pairs (T,U ∪W )
and (X,Zi) to Si−1.
In this way we construct a D|(X,Zk)-tail resolution, where Y ⊆ Zk. It could happen that
Y $ Zk. In this case, since by (C1) we obtain the pair (X,Y ) from (X,Zk), we can add (X,Y )
to Sk. Denote by S the sequence so constructed. Thus, we obtain a D|(X,Y )-tail resolution
S from D containing (X,Z0) = (X,X), (X,Z1), . . . , (X,Zk) as a subsequence. Finally, let
us observe that we used only conditions (C1) and (C2) to construct the above D|(X,Y )-tail
resolution. Hence (X,Y ) ∈ D+ and the claim has been proved.

By Theorem 5.4.4 we deduce the following results.

Corollary 5.4.5. Let D,D′ ⊆ P(Ω)2. Then, D ' D′ if and only if D Ω D′ and D′  Ω D.

Proof. Let us observe that by Theorem 5.4.4, condition D  Ω D′ becomes D′ ⊆ D+ so, by
Proposition 5.2.6. Hence, we easily infer the claim.

Corollary 5.4.6. Let D ⊆ G(P). Then, D Ω G(P) if and only if D+ = G(P).

Proof. Suppose that D  Ω G(P). By Theorem 5.4.4 it follows that G(P) ⊆ D+ and, by
Proposition 5.2.6, we also have the reverse inclusion. Hence, D+ = G(P).
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On the other hand, if (X,Y ) ∈ G(P) = D+, by Theorem 5.4.4 we have that D Ω (X,Y ). By
the arbitrariness of (X,Y ) ∈ G(P) we conclude the thesis.

By means of Theorem 5.4.4 we are also able to establish a deeper relation between tail
resolutions and tail decomposition digraphs.

Proposition 5.4.7. Let (X,Y ) ∈ P(Ω)2. If there exists a D|(X,Y )-tail resolution S, then
there exists a D|(X,Y )-tail decomposition digraph D such that UD(D) = RS

D(X,Y ).

Proof. Let S be a D|(X,Y )-tail resolution and let (X,Z0), (X,Z1), . . . , (X,Zk) be the ordered
subsets pairs occurring in S, with Z0 = X and Zk = Y . Let us construct a collection of
D-tail decomposition digraphs D0, D1, . . . , Dk such that, for each i, Di is a D|(X,Zi)-tail
decomposition digraph. When i = 0, the graph with just a node X is clearly a D|(X,Z0)-tail
decomposition digraph. Let us suppose, by using induction, that for any k in 0, 1, . . . , i−1, Dk

is a D|(X,Zk)-tail decomposition digraph and let us construct a D|(X,Zk)-tail decomposition
digraph by adding suitable vertices and edges. For this let us consider (X,Zi) in S. If (X,Zi) ∈
D̂, then clearly Di−1 is still a D|(X,Zi)-tail decomposition digraph. Let us suppose now that
(X,Zi) is not in D̂ and that there exist T, W, Z ∈ P(Ω) such that T ⊂ Zj for some j < i,

Zi = Zj ∪W and (T,W ∪ Z) ∈ D̂, so, by Theorem 5.4.4 and by Theorem 5.3.4, it follows that
(X,Zj), (T,W ∪ Z)  Ω (X,Zj ∪W ) = (X,Zi). In this case Dj is a subgraph of Di−i and in
Dj there are vertices of Ω whose union is Zj . Then, by adding a vertex W to Di−1 and suitable
edges we obtain a D|(X,Zi)-tail decomposition digraph Di. Finally let us suppose that (X,Zi)
is not in D and there exists j < i such that Zj ⊆ Zi, so (X,Zj)  Ω (X,Zi). In this case Dj

is already a D|(X,Zi)-tail decomposition digraph, so is Di−1. Then, we can set Di = Di−1.
Finally, it is now easy to prove that D := Dk is a D|(X,Zk)-tail decomposition digraph and
that UD(D) = RS

D(X,Y ).

We conclude this section with the following result.

Proposition 5.4.8. Let D ⊆ G(P), (X,Y ) ∈ P(Ω)2 and S be a D|(X,Y )-tail resolution.
If (U, V ) ∈ RS

D(X,Y ), then we can obtain a D|(X,U)-tail resolution S′ by adding eventually
(X,U) to a subsequence of S.

Proof. Let (U, V ) ∈ RS
D(X,Y ). If U = X, then (X,U) = (X,X) and there’s nothing to

prove. If U 6= X, then (U, V ) = (Xi, Yi) and, by definition of D|(X,Y )-tail resolution
Xi−1 = X and Yi−1 = T ∪ Xi = T ∪ U . So by adding (X,U) to the subsequence of S,
((X0, Y0), (X1, Y1) . . . , (Xi−1, Yi−1)), we obtain a D|(X,U)-tail resolution S′.

5.5 Generators

From the above sections, we observe that the investigation of the mathematical foundations con-
cerning an abstract theory of the binary relations between specific types of families D ⊆ P(Ω)2

has an its implicit justification. On the other hand, there also more structural reasons that
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induce to study these types of binary relations in P(P(Ω)2). In this perspective we introduce
the set map DP : P(P(Ω)2)→ P(P(Ω)) defined by

DP (D) := {Z ∈ P(Ω) : X ⊆ Z =⇒ Y ⊆ Z ∀(X,Y ) ∈ D}. (5.15)

Let us notice that DP (D) ∈ CLSY (Ω) for any D ∈ P(Ω)2. Furthermore, if D ⊆ D′, it results
that

DP (D) ⊇ DP (D′). (5.16)

We now show that the map DP is invariant in the passage from a family D to its union
additive envelope.

Theorem 5.5.1. DP (D+) = DP (D).

Proof. By (5.16), we have that DP (D+) ⊆ DP (D). Conversely, let Z ∈ DP (D) and let
(X,Y ) ∈ D+ such that X ⊆ Z. We have to prove that Y ⊆ Z. Clearly, if (X,Y ) ∈ D∗0, the
claim is obvious.
Assume now that (X,Y ) ∈ D+ \ D∗0. So, (X,Y ) ∈ D∗k, for some k ≥ 1. By Theorem 5.3.1,
the pair (X,Y ) can be obtained by applying (A1) or (A2) to some pairs belonging to D∗k−1.
Thus, we must show our claim inductively. To this regard, let (X,Y ) ∈ D∗1 and assume that
there exists Y ′ ∈ P(Ω) such that (X,Y ′), (Y ′, Y ) ∈ D∗0. By our assumptions on Z, it follows
that Y ′ ⊆ Z and, then, that Y ⊆ Z. On the other hand, if there exist {Yi : i ∈ I} ⊆ P(Ω)
for which (Y, Yi) ∈ D∗0 for any i ∈ I and Y =

⋃
i∈I Yi, then Yi ⊆ Z for any i ∈ I, i.e. Y =⋃

i∈I Yi ⊆ Z. This proves that DP (D) = DP (D∗1). Assume now that DP (D∗j−1) = DP (D∗j )
for any j ≤ k. Let us prove that DP (D∗k) = DP (D∗k+1). By (5.16), we have only to show that
DP (D∗k) ⊆ DP (D∗k+1). Let (X,Y ) ∈ DP (D∗k+1) and Z ∈ DP (D∗k) be such that X ⊆ Z. If
there exists Y ′ ∈ P(Ω) such that (X,Y ′), (Y ′, Y ) ∈ D∗k, then Y ′ ⊆ Z and, then, Y ⊆ Z. On
the other hand, suppose that there exist {Yi : i ∈ I} ⊆ P(Ω) for which (Y, Yi) ∈ D∗k for any
i ∈ I and Y =

⋃
i∈I Yi. Then, Yi ⊆ Z for any i ∈ I, i.e. Y =

⋃
i∈I Yi ⊆ Z. This proves that

DP (D∗k) = DP (D∗k+1) and concludes the proof.

We consider now the family given by

Q(P) := {(X, y) : X ∈MINP (P), y ∈MP(X) \X}. (5.17)

Then, through the map DP we can alternative characterize MAXP (P) in terms of the families
G(P) and Q(P).

Theorem 5.5.2. DP (G(P)) = DP (Q(P)) = MAXP (P).

Proof. We firstly prove that DP (Q(P)) = MAXP (P). Let Z ∈ MAXP (P) and let (X, y) ∈
Q(P) with X ⊆ Z. Then, or X ∈ [Z]≈P

and thus, y ∈ Z or MP(X) $ Z and, also in this case,
y ∈ Z. This proves that Z ∈MAXP (P).
On the other hand, let Z ∈ DP (Q(P)). Then, there exists X ∈MINP (P) such that X ≈P Z
and X ⊆ Z. Hence, by our assumption on Z, it results that MP(X) ⊆ Z ⊆ MP(X), i.e.
Z = MP(X). Thus, Z ∈MAXP (P) and the claim has been shown.
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Now, we show that DP (G(P)) = MAXP (P). Let Z ∈ MAXP (P) and (X,Y ) ∈ G(P) with
X ⊆ Z. Then, we have that

Z ⊇MP(X) ⊇MP(Y ) ⊇ Y,

hence Z ∈ DP (G(P)).
On the other hand, let Z ∈ DP (G(P)). Then, Z ⊆ MP(Z). Moreover, the pair (Z,MP(Z))
clearly belongs to G(P). Thus, we conclude that MP(Z) ⊆ Z, i.e. Z = MP(Z) and so
Z ∈MAXP (P).

Based on the results given in Theorems 5.5.1 and 5.5.2, it is natural to investigate some
particular types of families D that completely characterize all the semi-symmetries of a given
information table. The role that these families have in our context is analogue to that of a
generator system in an algebraic structure.

Definition 5.5.3. We say that:

• D generates the semi-symmetries of P, denoted by D  P, if D ⊆ G(P) and D+ = G(P).

• D minimally generates the semi-symmetries of P, denoted by D mgs P, if D  P and
for any D′ $ D we have that (D′)+ $ G(P);

• D is a essentially generates of the semi-symmetries of P, denoted by D egs P, if D  P
and |D| = min{|D′| : D′  P}.

By virtue of Theorem 5.5.1 and 5.5.2 we obtain the following result.

Corollary 5.5.4. If D  P, then DP (D) = MAXP (P).

A partial converse of the previous corollary can be given.

Proposition 5.5.5. Let D ⊆ P(P(Ω)2) be such that DP (D) = MAXP (P). Then, D ⊆ G(P).

Proof. Let (X,Y ) ∈ D. Then, MP(X) ⊇ X implies MP(X) ⊇ Y , therefore MP(Y ) ⊆MP(X),
i.e., by (5.4), X ≥P Y . This shows that (X,Y ) ∈ G(P).

We determine now a specific family of ordered pairs of P(Ω)2 that generates the semi-
symmetries of P. To this regard, we set

Gminp(P) := {(X,Y ) ∈MINP (P)× (MINP (P) ∪ P(MP(∅))} ∩ G(P).

We have then the following result.

Theorem 5.5.6. Gminp(P)  P.

Proof. It is obvious that G+
minp(P) ⊆ G(P), since + is a closure operator and G(P) ∈ UAF (Ω).

On the other hand, it results that G(P) ⊆ G+
minp(P). In fact, let (X,Y ) ∈ G(P). Then,

there exists Z ∈ MINP (P) such that Z ⊆ X and Z ≈P X. In particular ΓP(Z, Y ) = U , so
(Z, Y )  Ω (X,Y ) by (I2). Similarly, there exists W1 ∈ MINP (P) such that W1 ⊆ Y and
W1 ≈P Y . Hence Y = W1 ∪W ′1, where W ′1 = Y \W1. Clearly, ΓP(Z,W1) = ΓP(Z,W ′1) = U .
Furthermore, by (I3), we have that (Z,W1), (Z,W ′1)  Ω (Z, Y ). Let us consider the pair
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(Z,W ′1). Let W2 ∈ MINP (P) such that W2 ≈P W ′1 and W ′1 = W2 ∪ W ′2, where W ′2 ∩
W2 = ∅. Again, ΓP(Z,W2) = ΓP(Z,W ′2) = U . By iterating this procedure, we obtain a
family of subsets W1, . . . ,Wr belonging in MINP (P) and such that ΓP(Z,Wi) = U for any
i = 1, . . . , r and a set W ′r ∈ P(MP(∅)) with W ′r ∩ Wr = ∅. In particular ΓP(Z,W ′r) = U .
Therefore, (Z,W1), . . . , (Z,Wr), (Z,W

′
r)  Ω (Z, Y ), hence Gminp(P)  Ω (X,Y ), i.e. (X,Y ) ∈

G+
minp(P).

Given X,Y ∈ P(Ω), we now consider the case in which both the pairs (X,Y ) and (Y,X)
belong to D+. Formally, whenever X,Y ∈ P(Ω) are such that {(X,Y ), (Y,X)} ⊆ D+, we write
X 
D Y and we also set

[X|D] := {X ′ ∈ P(Ω) : X 
D X ′},

FD(X) := {(X ′, Y ′) ∈ D : X 
D X ′},

and
fD(X) := {X ′ ∈ P(Ω) : ∃Y ′ ∈ P(Ω) such that (X ′, Y ′) ∈ FD(X)}.

Proposition 5.5.7. Let D,D′ ⊆ P(Ω)2 such that D mgs P and D′ mgs P. Then, for any
(X,Y ) ∈ D there exists (X ′, Y ′) ∈ D′ such that X 
D X ′.

Proof. By Corollary 5.4.5, it holds D′  Ω D and thus D′  Ω (X,Y ). Let S be a D′|(X,Y )-tail
resolution. Then, because of the minimality of D, there exists (X ′, Y ′) ∈ RS

D(X,Y ) that can be
deduced by D by using (X,Y ). Thus, D  Ω (X ′, X). In a similar way, D′  Ω (X,X ′) since
we use (X ′, Y ′) to deduce (X,Y ). This implies that D  Ω (X,X ′). The proposition is thus
proved.

We prove now that if D and D′ essentially generate the semi-symmetries of P, then the two
sets LD(X) and LD′(X) have the same cardinality, for any X ∈ P(Ω). To this aim, we need a
technical notion.

Definition 5.5.8. Let (X,Y ) ∈ G(P). We say that X resolves Y in P, denoted by X|PY ,
if there exist D such that D mgs P and a D|(X,Y )-tail decomposition digraph D such that
FD(X) ∩ UD(D) = ∅.

Now, we establish a preliminary technical result.

Proposition 5.5.9. (i) Let D egs P, X ∈ P(Ω) and {(Y, Z), (Y ′, Z ′)} ⊆ D ∩ FD(X) such
that Y |PY ′. Then, (Y, Z) = (Y ′, Z ′).
(ii) Let D mgs P, (X,Y ) ∈ D and X ′ ∈ [X|D]. Then, X ′|PY ′, for some Y ′ ∈ fD(X).

Proof. (i): Let us assume, by contradiction, that the thesis is false. Let D be a D|(Y, Y ′)-tail
decomposition digraph such that UD(D) ∩ FD(X) = ∅ and let D′ ⊆ G(P) obtained from D by
replacing (Y,Z) and (Y ′, Z ′) with (Y ′, Z ∪ Z ′). By (I4) we obtain (Y ′, Z ∪ Z ′)  Ω (Y ′, Z ′),
so D′  Ω (Y ′, Z ′). Since (Y,Z), (Y ′, Z ′) /∈ UD(D), D is also a D′|(Y, Y ′)-tail decomposition
digraph, by the proof of Theorem 5.4.4, D′  Ω (Y, Y ′) and thus D′  Ω (Y,Z), so finally we
obtain D  Ω D′. On the other side it is easy to prove that D′  Ω D, so D and D′ are
equivalent, by contradicting the minimality of D. The claim is thus proved.
(ii): If X ′ ∈ fD(X), then trivially X ′ resolves itself and (X ′, X ′) /∈ D by the minimality of D.
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So the claim trivially holds in this case.
Let us suppose by contradiction that the thesis does not hold. Since (X ′, Y ′) ∈ G(P) for
any choice of Y ′ ∈ fD(X), there exists a D|(X ′, Y ′)-tail decomposition digraph for every
Y ′ ∈ fD(X). Let Y ′ be a subset of Ω such that the number of nodes of D in a D|(X ′, Y ′)-
tail decomposition digraph is minimum and let D be such a digraph. Let us prove that
FD(X ′) ∩ UD(D) = ∅. For, let (U, V ) ∈ D ∩ UD(D). Then, it follows easily by Theorem
5.4.4 and Proposition 5.4.7 that D is a (X ′, U)-tail decomposition digraph and there exists a
pair in UD(D) that can be removed and still leave a D|(X ′, U)-tail decomposition digraph H ′,
contradicting our assumptions. Then, FD(X) ∩ UD(D) = ∅.

Theorem 5.5.10. Let D and D′ such that D egs P and D′ egs P. Then, |FD(X)| =
|LD′(X)| for any X ∈ P(Ω).

Proof. Let us suppose, by contradiction, that FD(X) = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} and
LD′(X) = {(X ′1, Y ′1), (X ′2, Y

′
2), . . . , (X ′m, Ym)}, with n < m. By (i) of Proposition 5.5.9 there

exist j ∈ {1, 2, . . . , m} such that X ′j is different from any of the Xi’s.
By (ii) of Proposition 5.5.9 X ′j resolves Xk for some k ∈ {1, 2, . . . , n}. Without loss in

generality we can consider j = 1 and k = 1. Let D′′ obtained from D′ by replacing (X ′1, Y
′

1)
with (X1, Y

′
1). Then, D′′ is a minimum generator of the semi-symmetries of P such that

|LD′(X)| = |LD′′(X)|.
IfX1 = X ′j for some j > 1, then, by (I3), (X1, Y

′
1), (X ′j , Y

′
j ) Ω (X1, Y

′
1∪Y ′j ) and conversely,

by (I6), it holds both (X1, Y
′

1∪Y ′j ) Ω (X1, Y
′

1) and (X1, Y
′

1∪Y ′j ) Ω (Yj , Y
′
j ), by contradicting

the minimality of D′′. Thus X1 6= X ′j for all j > 1 and |fD(X)∩ lD′′(X)| = |fD(X)∩ lD′(X)|+1.
As in the beginning of the proof we still have that some X ′j is different from any of the Xi’s.

The previous procedure can thus be iterated, obtaining a minimum generator D(s) of the pairs
of P such that fD(X) ⊂ lD(s)(X).

Let now X ′j ∈ lD(s)(X) \ fD(X). Then, by (ii) of Proposition 5.5.9, there exists k ∈
{1, 2, . . . , n} such that X ′j resolves Xk. Let F be the minimum generator of the semi-

symmetries of P obtained from D(s) by replacing (X ′j , Y
′
j ) with (Xk, Y

′
j ). By (i) of Proposition

5.5.9, Y ′k = Y ′j . So m = n and the theorem is proved.

5.6 Pointed Pair Systems on Ω

Equation (5.17) allows us to investigate the general properties of the pairs (X,x) ∈ P(Ω)× Ω.
In what follows, we assume that Ω is an arbitrary (even non finite) set. We call any ordered
pair (X,x) ∈ P(Ω) × Ω a pointed pair on Ω. Let Ω̂ := P(Ω) × Ω, Ω̂tr := {(X,x) ∈ Ω̂ : x ∈ X}
and Ω̂ntr := Ω̂ \ Ω̂tr. We call the elements of Ω̂tr and Ω̂ntr respectively the trivial and the
non-trivial pointed pairs. Let SS(Ω) := P(P(Ω)) and PPS(Ω) := P(Ω̂).

Let us define a map ∂ : PPS(Ω)→ SS(Ω) such that

∂(D) := {A ∈ P(Ω) : (A \ {x}, x) /∈ D ∀x ∈ A}, (5.18)

for any D ∈ PPS(Ω). We call the set system ∂(D) the boundary of D.
We now provide some basic properties of the boundary of a pointed pair family D.
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Proposition 5.6.1. Let {Di : i ∈ I} ⊆ PPS(Ω). Then, the following conditions hold:
(i) If Di ⊆ Dj then ∂(Di) ⊇ ∂(Dj);
(ii) If D :=

⋂
i∈I

Di, then ∂(D) ⊇
⋃
i∈I

∂(Di);

(iii) If D :=
⋃
i∈I

Di, then ∂(D) =
⋂
i∈I

∂(Di).

Proof. (i): Let A ∈ ∂(Dj). Then, for any x ∈ A it results that (A \ {x}, x) /∈ Dj so, a fortiori,
(A \ {x}, x) /∈ Di, i. e. A ∈ ∂(Di).
(ii): It follows immediately by part (i).
(iii): By part (i), it is straightforward to see that ∂(D) ⊆

⋂
i∈I

∂(Di). On the other hand, let

A ∈
⋂
i∈I

∂(Di). Hence, for any x ∈ A and any i ∈ I it follows that (A \ {x}, x) /∈ Di, i. e. for

any x ∈ A we have that (A \ {x}, x) /∈
⋃
i∈I

Di = D or, equivalently, A ∈ ∂(D).

We now introduce two fundamental equivalence relations on PPS(Ω).

Definition 5.6.2. Let D,D′ ∈ PPS(Ω). We say that D and D′ are:

• boundary equivalent, denoted by D '∂ D′, if ∂(D) = ∂(D′). We denote by [D]'∂ the
equivalence class of D in PPS(Ω) with respect to the equivalence relation '∂ and we call
it the boundary class of D.

• essentially equivalent, denoted by D l D′, if D ∩ Ω̂ntr = D′ ∩ Ω̂ntr. We denote by [D]l
the equivalence class of D in PPS(Ω) with respect to the equivalence relation l and call
it the essential class of D.

The basic relation between the essential equivalence and the boundary equivalence is easily
established in next result.

Proposition 5.6.3. Let D,D′ ∈ PPS(Ω). Then, D l D′ =⇒ D '∂ D′.

Proof. Just observe that A ∈ ∂(D) if and only if (A\{x}, x) /∈ D for any x ∈ A and, by essential
equivalence, this is equivalent to say that (A \ {x}, x) /∈ D′ for any x ∈ A, i. e. A ∈ ∂(D′).
This proves that ∂(D) = ∂(D′).

At this point, we introduce the specific families of pointed pair systems on Ω that are our
main element of study.

Definition 5.6.4. Let D ∈ PPS(Ω). Then, we say that D is:

• extensive, if whenever (X,x) ∈ D, Y ∈ P(Ω) and X ⊆ Y , then (Y, x) ∈ D. We set
PPSext(Ω) := {D ∈ PPS(Ω) : D is extensive};

• reflexive, if Ω̂tr ⊆ D. We set PPSref (Ω) := {D ∈ PPS(Ω) : D is reflexive};

• finitely hereditary, if for any (X,x) ∈ D there exists a finite subset F of X such that
(F, x) ∈ D. We set PPSfh(Ω) := {D ∈ PPS(Ω) : D is finitely hereditary};
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• absorbing, if for any (X,x) ∈ Ω̂ntr there exists A ∈ ∂(D) such that A ⊆ X and (A, x) ∈ D.
We set PPSabs(Ω) := {D ∈ PPS(Ω) : D is absorbing};

• matroidal, if for any A ∈ ∂(D) and any x, y ∈ Ω such that (A, x) /∈ D and (A∪{y}, x) ∈ D,
then (A ∪ {x}, y) ∈ D. We set PPSmat(Ω) := {D ∈ PPS(Ω) : D is matroidal}.

We provide below some basic properties of the previous families of pointed pair systems
and, in particular, investigate their relations with the corresponding boundaries.

Proposition 5.6.5. The following conditions hold:

(i) if D is extensive then ∂(D) ∈ AC(Ω) and, moreover,

A ∈ ∂(D) ⇐⇒ (B ⊆ A, x ∈ A \B =⇒ (B, x) /∈ D); (5.19)

(ii) if D is finitely hereditary then ∂(D) is a finitary set system on Ω;

(iii) if D is extensive and finitely hereditary then

A ∈ ∂(D) ⇐⇒ (F ⊆f A, x ∈ A \ F =⇒ (F, x) /∈ D); (5.20)

(iv) if D is extensive and matroidal, A ∈ ∂(D) and x ∈ Ω \A, then

(A, x) ∈ D ⇐⇒ A ∪ {x} /∈ ∂(D); (5.21)

(v) if for any A ∈ ∂(D) and any x ∈ Ω \ A, we have that A ∪ {x} /∈ ∂(D) if and only if
(A, x) ∈ D, then D is matroidal;

(vi) Let D,D′ ∈ PPS(Ω) such that D ⊆ D′ and D '∂ D′. If D is extensive and matroidal
and D′ is absorbing, then D is absorbing and D l D′.

Proof. (i): Clearly, ∅ ∈ ∂(D). Let X ⊆ Y with Y ∈ ∂(D). Suppose by contradiction that X /∈
∂(D). Then, there exists x ∈ X such that (X \ {x}, x) ∈ D. Since D ∈ PPSext(Ω), it results
that (Y \ {x}, x) ∈ D, contradicting our hypothesis on Y . This shows that ∂(D) ∈ AC(Ω).
Let A ∈ ∂(D), B ⊆ A and x ∈ A \ B. It must be (B, x) /∈ D, otherwise (A \ {x}, x) ∈ D,
contradicting the fact that A ∈ ∂(D).
On the contrary, let A ∈ P(Ω) and assume that for any B ⊆ A and any x ∈ A \ B, it follows
that (B, x) /∈ D. Let us fix x ∈ A and set B := A \ {x}. Then, (A \ {x}, x) /∈ D and, by the
arbitrariness of x, we infer the thesis.
(ii): Let X ∈ P(Ω) and assume that F ∈ ∂(D) for any F ⊆f X. Suppose by contradiction
that X /∈ ∂(D), i. e. there exists x ∈ X for which (X \ {x}, x) ∈ D. In particular, there exists
F ′ ⊆f X \ {x} such that (F ′, x) ∈ D. Let G := F ′ ∪ {x}. Then, G ∈ ∂(D) but this would
imply that (G \ {x}, x) = (F, x) /∈ D, that is a contradiction. This proves that X ∈ ∂(D).
(iii): Let A ∈ P(Ω) such that (F, x) /∈ D for any F ⊆f A and any x ∈ A \ F . Assume by
contradiction that A /∈ ∂(D), i. e. (A \ {x}, x) ∈ D for some x ∈ A. Since D ∈ PPSfh(Ω,
there exists F ⊆f A \ {x} such that (F, x) ∈ D, but this contradicts our choice of A. Thus
A ∈ ∂(D). To show the converse, just take F ⊆f A instead of B in (5.19).
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(iv): Let A ∈ ∂(D), x ∈ Ω \ A and assume that (A, x) ∈ D. It must necessarily be A ∪ {x} /∈
∂(D), otherwise (A, x) /∈ D by definition of boundary. Vice versa, assume that B := A∪{x} /∈
∂D, i. e. there exists y ∈ B for which (B \ {y}, y) ∈ D. If y = x, then (A, x) ∈ D and
the claim has been proved; on the contrary, assume y ∈ A. By part (i), ∂(D) is an abstract
complex, therefore C := A \ {y} ∈ ∂(D). Note that (C ∪ {x}, y) = (B \ {y}, y) ∈ D and that
(C, y) = (A \ {y}, y) /∈ D since A ∈ ∂(D) and y ∈ A. Now, since D ∈ PPSmat(Ω), it results
that (C ∪ {y}, x) = (A, x) ∈ D and this shows the claim.
(v): Let A ∈ ∂(D) and x, y ∈ Ω such that (A, x) /∈ D and (A ∪ {y}, x) ∈ D. In particular, it
must necessarily be A ∪ {x} ∪ {y} /∈ ∂(D). So, (A ∪ {x}, y) ∈ D, i. e. D ∈ PPSmat(Ω).
(vi): Let (X,x) ∈ D be a non-trivial pair. Then, (X,x) ∈ D′. Since D′ ∈ PPSabs(Ω), there
exists A ∈ ∂(D′) such that A ⊆ X and (A, x) ∈ D′. Moreover, by ∂(D) = ∂(D′), it results
that A ∈ ∂(D). Now, let us observe that A ∪ {x} /∈ ∂(D′) = ∂(D), otherwise (A, x) /∈ D′, that
contradicts the fact that D′ ∈ D′ ∈ PPSabs(Ω). By (5.21), it follows that (A, x) ∈ D, i. e.
D ∈ D′ ∈ PPSabs(Ω).
We now show that D l D′. Let (X,x) ∈ D′ be non-trivial. Since D′ ∈ PPSabs(Ω), there exists
A ∈ ∂(D′) such that A ⊆ X and (A, x) ∈ D′. In particular, (5.21), A ∪ {x} /∈ ∂(D′). Thus,
A ∈ ∂(D) and A ∪ {x} /∈ ∂(D) and this implies that (A, x) ∈ D. We conclude the proof by
using the fact that D ∈ PPSext(Ω).

In what follows we want to understand in which way the boundary and essential classes
of a generic D ∈ PPS(Ω) behave with respect to the various families of specific pointed pair
systems introduced in Definition 5.6.4. To this regard, we need some notations. We then set:

[D|ema]'∂ := [D]'∂ ∩ PPSext(Ω) ∩ PPSmat(Ω) ∩ PPSabs(Ω);

[D|efm]'∂ := [D]'∂ ∩ PPSext(Ω) ∩ PPSfh(Ω) ∩ PPSmat(Ω);

[D|refm]'∂ := [D|efm]'∂ ∩ PPSref (Ω);

[D|refma]'∂ := [D|refm]'∂ ∩ PPSabs(Ω);

[D|m]l := [D]l ∩ PPSmat(Ω);

[D|em]l := [D]l ∩ PPSext(Ω) ∩ PPSmat(Ω);

[D|efm]l := [D|em]l ∩ PPSfh(Ω).

In the next results, we will prove that both [D|refm]'∂ and [D|efm]l are complete lattices
for each D ∈ PPS(Ω).

Theorem 5.6.6. For any D ∈ PPS(Ω), [D|refm]'∂ is a complete lattice such that if {Di :
i ∈ I} ⊆ [D|refm]'∂ then

∨
i∈I

Di =
⋃
i∈I

Di and
∧
i∈I

Di =
⋂
i∈I

Di when I is finite.

Proof. Let us fix D ∈ PPS(Ω) and let {Di : i ∈ I} ⊆ [D|refm]'∂ . We divide the proof in
several steps.
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I We will show that
⋃
i∈I

Di ∈ [D|refm]'∂ and
∨
i∈I

Di =
⋃
i∈I

Di.

It is obvious that
⋃
i∈I

Di is reflexive. Moreover, by (iii) of Proposition 5.6.1 we have that

∂(
⋃
i∈I

Di) =
⋂
i∈I

∂(Di) = ∂(D), so
⋃
i∈I

Di '∂ Di for any i ∈ I. Let us prove now that
⋃
i∈I

Di

is extensive. Assume that (X,x) ∈
⋃
i∈I

Di and X ⊆ Y . Then, there exists an index k ∈ I

such that (X,x) ∈ Dk, so (Y, x) ∈ Dk and, in particular, (Y, x) ∈
⋃
i∈I

Di. This shows that⋃
i∈I

Di ∈ PPSext(Ω).

Let us prove now that
⋃
i∈I

is finitely hereditary. For this, assume that (X,x) ∈
⋃
i∈I

Di.

Then, there exists k ∈ I such that (X,x) ∈ Dk, so, there exists F ⊆f X such that
(F, x) ∈ Dk. A fortiori, (F, x) ∈

⋃
i∈I

Di. This shows that
⋃
i∈I

Di ∈ PPSfh(Ω).

Let us show that
⋃
i∈I

Di ∈ PPSmat(Ω). Let A ∈ ∂(
⋃
i∈I

Di) and x, y ∈ Ω such that

(A, x) /∈
⋃
i∈I

Di and (A ∪ {y}, x) ∈
⋃
i∈I

Di. It is straightforward to verify the existence of

an index k ∈ I such that (A ∪ {y}, x) ∈ Dk. In particular, it follows that A ∈ ∂(Dk),
(A, x) /∈ Dk and (A∪{y}, x) ∈ Dk. Hence, (A∪{y}, x) ∈ Dk, hence (A∪{y}, x) ∈

⋃
i∈I

Di.

This proves that
⋃
i∈I

Di ∈ PPSmat(Ω).

Finally, it is now easy to deduce that
∨
i∈I

Di =
⋃
i∈I

Di.

II We prove that

D := Ω̂tr ∪ {(X,x) ∈ Ω̂ntr : ∃A ⊆ X such thatA ∈ ∂(D) andA ∪ {x} /∈ ∂(D)} (5.22)

is a minimum in [D|refm]'∂ .

Obviously, D is reflexive and extensive. Furthermore, it is contained in each D′, with
D′ ∈ [D|refm]'∂ . In fact, if (X,x) ∈ D is non-trivial, by (5.21) it follows that (A, x) ∈ D′

for each D′ ∈ [D|refm]'∂ , so (X,x) ∈ D′ by extensivity.
Let us show that D is finetely hereditary. Let (X,x) ∈ D be non-trivial. Then, there
exists A ⊆ X such that A ∈ ∂(D) and A ∪ {x} /∈ ∂(D). Since ∂(D) is a finitary abstract
complex, there exists F ⊆f A such that F ∈ ∂(D) and F ∪ {x} /∈ ∂(D). This shows that
(F, x) ∈ D and the claim follows.
Let us prove now that D ∈ PPSmat(Ω). Let A ∈ ∂(D) and x, y ∈ Ω such that (A, x) /∈ D

and (A ∪ {y}, x) ∈ D. We have to prove that (A ∪ {x}, y) ∈ D, ore, equivalently, the
existence of B ⊆ A ∪ {x} belonging to ∂(D) and such that B ∪ {y} /∈ ∂(D). By our
assumptions, there exists C ⊆ A ∪ {y} such that C ∈ ∂(D) and C ∪ {x} /∈ ∂(D). It is
straightforward to see that y ∈ C. Now, let σ = σ′ ∪ {y}, where clearly C ′ ⊆ A. We
are saying that C ′ ∪ {x} ∪ {y} /∈ ∂(D). We must prove that C ′ ∪ {x} ∈ ∂(D). Sup-
pose by contradiction that C ′ ∪ {x} /∈ ∂(D). Hence C ′ ∪ {x} /∈ ∂(D) by (5.21) so, since
Di ∈ PPSext(Ω) for any i ∈ I, it must be (A, x) ∈ Di for any i ∈ I. Again by (5.21), the
previous condition is equivalent to say that A ∪ {x} /∈ ∂(D). This contradicts our choice
of A. Hence C ′ ∪ {x} ∈ ∂(D) and setting B := σ′ ∪ {x}, the claim has been proved.
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Finally, let us prove now that D ∈ [D]'∂ . Let A ∈ ∂(D) and suppose by contradiction
that A /∈ ∂(D). Since ∂(D) is finitary, there exists F ⊆f A such that F /∈ ∂(D). Thus,
F ∈ ∂(D), otherwise there would be y ∈ F such that (F \ {y}, y) ∈ D and, by extensivity
of D, (A \ {y}, y) ∈ D, contradicting our choice of A. Hence, we proved that ∂(D) \ ∂(D)
is non-empty. Let G be minimal in ∂(D) \ ∂(D). Surely, G 6= ∅ since ∅ belongs by
definition to each boundary. Therefore, we infer the existence of some x ∈ G for which
G \ {x} ∈ ∂(D). Since G = (G \ {x}) ∪ {x} /∈ ∂(D), we have that (G \ {x}, x) ∈ D and,
by extensivity of D, (A \ {x}, x) ∈ D, contradicting our choice of A. Thus ∂(D) ⊆ ∂(D).
Contrariwise, let A ∈ ∂(D). If A /∈ ∂(D), there exists B ⊆ A\{x} such that B ∈ ∂(D) and
B∪{x} /∈ ∂(D). By (5.21), this is equivalent to require that (B, x) ∈ D′, with D′ ∈ [D]'∂ ,
so (A\{x}, x) ∈ D′ for any D′ ∈ [D]'∂ , contradicting the fact that A ∈ ∂(D). This proves
that ∂(D) ⊆ ∂(D) and, hence ∂(D) = ∂(D).

III Let L be the family of all lower bounds of {Di : i ∈ I}. By the previous part, L is
non-empty. By the first part of the proof,

⋃
L ∈ PPSref (Ω)∩PPSext(Ω)∩PPSfh(Ω)∩

PPSmat(Ω). Moreover, it is obvious that
⋃
L is maximal in L and that ∂(

⋃
L) = ∂(Di)

for any i ∈ I. This shows that
∧
i∈I

Di =
⋃
L.

IV We now prove that
∧
i∈I

Di =
⋂
i∈I

Di when I is finite. To be more specific, we will prove

that
⋂
i∈I

Di ∈ PPSref (Ω) ∩ PPSext(Ω) ∩ PPSmat(Ω) also in the infinite case and, in the

last part of the proof, that
⋂
i∈I

Di ∈ PPSfh(Ω) only for I finite.

Obviously
⋂
i∈I

Di ∈ PPSref (Ω). Let us show that
⋂
i∈I

Di ∈ PPSext(Ω). Assume that

(X,x) ∈
⋂
i∈I

Di and X ⊆ Y . Then, (X,x) ∈ Di for any i ∈ I so (Y, x) ∈ Di for any i ∈ I

and, consequently, (Y, x) ∈
⋂
i∈I

Di.

V In order to show that
⋂
i∈I

Di ∈ PPSmat(Ω), we need the following technical result. Let

F ⊆f Ω. Then, F ∈ ∂(D) if and only if F ∈ ∂(
⋂
i∈I

Di).

To this regard, let us observe that, since
⋂
i∈I

Di ⊆ Di for any i ∈ I, by (i) of Proposition

5.6.1, we deduce that if F ∈ ∂(D) then F ∈ ∂(
⋂
i∈I

Di).

On the other hand, we prove the converse by induction on |F |. Assume that F =
{x} ∈ ∂(

⋂
i∈I

Di). If {x} /∈ ∂(D), then (∅, x) ∈ Di for any i ∈ I, thus (∅, x) ∈
⋂
i∈I

Di,

so ({x}, x) /∈ ∂(
⋂
i∈I

Di), contradicting our hypothesis. Suppose now the claim to be

true for all finite subsets having cardinality at most n and let F ∈ ∂(
⋂
i∈I

Di) such that

|F | = n + 1. Suppose by contradiction that F /∈ ∂(D). By using (5.21), it is immediate
to prove the existence of some y ∈ F for which (F \ {y}, y) ∈ Di, for any i ∈ I. Since⋂
i∈I

Di ∈ PPSext(Ω), by (i) of Proposition 5.6.5, ∂(
⋂
i∈I

Di) is an abstract complex. This
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implies that F \{y} ∈ ∂(
⋂
i∈I

Di). By the inductive hypothesis, F \{y} ∈ ∂(D). But, since

(F \ {y}, y) ∈
⋂
i∈I

Di, we are contradicting the fact that F ∈ ∂(
⋂
i∈I

Di). This shows that

F ∈ ∂(D).

VI We now show that
⋂
i∈I

Di ∈ [D]'∂ and that
⋂
i∈I

Di ∈ PPSmat(Ω).

By (ii) of Proposition 5.6.5, ∂(D) is finitary on Ω, while by (i) of Proposition 5.6.1,
∂(D) ⊆ ∂(

⋂
i∈I

Di). On the contrary, let A /∈ ∂(D). Since ∂(D) is finitary on Ω, there

exists F ⊆f A such that F /∈ ∂(D). In particular, by the previous part, F /∈ ∂(
⋂
i∈I

Di).

Therefore, there exists y ∈ F such that (F \{y}, y) ∈
⋂
i∈I

Di. Since
⋂
i∈I

Di ∈ PPSext(Ω), we

conclude that (A \ {y}, y) ∈
⋂
i∈I

Di, so A /∈ ∂(
⋂
i∈I

Di). This shows that ∂(
⋂
i∈I

Di) = ∂(D).

Finally, we must prove that
⋂
i∈I

Di ∈ PPSmat(Ω). Let A ∈ ∂(
⋂
i∈I

Di) and x, y ∈ Ω such

that (A, x) /∈
⋂
i∈I

Di and (A ∪ {y}, x) ∈
⋂
i∈I

Di. By (5.21), it is straightforward to see

that A ∪ {x} ∈ ∂(D) and, by the same relation, (A, x) /∈ Di for each i ∈ I. Since
Di ∈ PPSmat(Ω) for any i ∈ I, it follows that (A ∪ {x}, y) ∈ Di for any i ∈ I, thus it
also belongs to

⋂
i∈I

Di.

VII To conclude the proof, let us show that
⋂
i∈I

Di ∈ PPSfh(Ω) when I is finite. We prove

the claim for two pointed pair systems D′,D′′ ∈ [D|refm]'∂ . To this regard, let (X,x) ∈
D′ ∩ D′′. Then, there exist F, F ′ ⊆f X such that (F, x) ∈ D and (F ′, x) ∈ D′′. Thus
(F ∪ F ′, x) ∈ D′ ∩D′′ and the claim has been showed. Now, extending by induction the
previous argument, we conclude the proof.

Remark 5.6.7. The same claim of Theorem 5.6.6 holds even if we consider [D|efm]'∂ . The
main change in this case is in part ( II), since D can be defined by removing the trivial pairs,
i. e.

D
′
:= {(X,x) ∈ Ω̂ntr : ∃A ⊆ X such thatA ∈ ∂(D) andA ∪ {x} /∈ ∂(D)}. (5.23)

The other modifications are obvious and subsequent.

Theorem 5.6.8. For any D ∈ PPS(Ω), we have that [D|efm]l is a complete lattice such that
if {Di} ⊆ [D|efm]l, then

∨
i∈I

Di =
⋃
i∈I

Di.

Proof. Let {Di : i ∈ I} ⊆ [D|efm]l. It has been shown in Theorem 5.6.6 that
⋃
i∈I

Di ∈

PPSext(Ω)∩PPSfh(Ω)∩PPSmat(Ω). Furthermore, it is straightforward to verify that
⋃
i∈I

Di ∈

[D]l and, hence, that
∨
i∈I

Di =
⋃
i∈I

Di.
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Let us consider the pointed pair system

D̂ := {(X,x) ∈ Ω̂ : ∃A ⊆ X such thatx /∈ A and (A, x) ∈ D}. (5.24)

Obviously D̂ ∈ PPSext(Ω) ∩ PPSfh(Ω). We now claim that D̂PPSmat(Ω). To this regard,

let A ∈ ∂(D̂) and x ∈ Ω \ A. We argue that A ∪ {x} /∈ ∂(D̂) if and only if (A, x) ∈ D̂. In
fact, assume that A ∪ {x} /∈ ∂(D̂). It must necessarily be (A, x) ∈ D̂, otherwise (A, x) /∈ Di

for any i ∈ I and, by (5.21), this is equivalent to say that A ∪ {x} ∈ ∂(Di) ⊆ ∂(D̂), that is a
contradiction. Contrariwise, if (A, x) ∈ D̂, by definition of boundary, we must necessarily have
A ∪ {x} /∈ ∂(D̂). We infer the claim by (v) of Proposition 5.6.5.
Furthermore, D̂ is a minimum in [D|efm]l. In fact, it is immediate to see that if (X,x) ∈ D̂,
then (X,x) ∈ D′ for any D′ ∈ [D|efm]l. Finally, if (X,x) ∈ D′ is a non-trivial pair, then it
obviously belongs to D̂. This shows that D̂ ∈ [D]l.
Let now L be the family of all lower bounds of {Di : i ∈ I}. By the above argument, L is
non-empty. Moreover

⋃
L ∈ [D]l ∩ PPSext(Ω) ∩ PPSfh(Ω) ∩ PPSmat(Ω), belongs to Di for

any i ∈ I and it is maximal in L. This shows that
∧
i∈I

Di =
⋃
L and, hence, that [D|efm]l is

a complete lattice.

In the next result, we will show that whenever we take D′ ∈ PPS(Ω) such that D1 ⊆ D′ ⊆
D2, where D1,D2 ∈ [D|efm]l, then D′ inherits only matroidality and essential equivalence.

Proposition 5.6.9. For any D,D′ ∈ PPS(Ω) and D1,D2 ∈ [D|efm]l such that D1 ⊆ D′ ⊆
D2, we have that D′ ∈ [D|m]l.

Proof. It is immediate to show that D′ ∈ [D]l We now prove that D ∈ PPSmat(Ω). To this
regard, let A ∈ ∂(D′) and x ∈ Ω\A. Let us show that A∪{x} /∈ D′ if and only if (A, x) ∈ ∂(D′).
Assume that (A, x) ∈ D′. Then, (A, x) ∈ D1 so, by (5.21), A ∪ {x} /∈ ∂(D1). In particular,
A∪{x} /∈ ∂(D′). On the contrary, if A∪{x} /∈ ∂(D′), then A∪{x} /∈ ∂(D1). This entails that
(A, x) /∈ D1 and, hence, that (A, x) /∈ D′. We conclude by (vi) of Proposition 5.6.5.

We show now that [D|ema]'∂ is a complete lattice.

Theorem 5.6.10. For any D ∈ PPS(Ω), we have that [D|ema]'∂ is a complete lattice such
that if {Di} ⊆ [D|ema]'∂ , then

∨
i∈I

Di =
⋃
i∈I

Di and
∧
i∈I

Di =
⋂
i∈I

Di.

Proof. Let {Di : i ∈ I} ⊆ [D|ema]'∂ . It has been shown in the proof of Theorem 5.6.6
that

⋃
i∈I

Di ∈ [D]'∂ ∩ PPSext(Ω) ∩ PPSmat(Ω). We now show that
⋃
i∈I

Di ∈ PPSabs(Ω). Let

(X,x) ∈
⋃
i∈I

Di be a non-trivial pair. Then, there exists k ∈ I such that (X,x) ∈ Dk, so

there exists A ∈ ∂(Dk) with A ⊆ X and (A, x) ∈ Dk. We conclude by using the fact that⋃
i∈I

Di ∈ [D]'∂ . This shows that
⋃
i∈I

Di ∈ PPSabs(Ω). In particular, it is straightforward to

deduce that
∨
i∈I

Di =
⋃
i∈I

Di.

Let us prove that
∧
i∈I

Di =
⋂
i∈I

Di. It has been shown in Theorem 5.6.6 that
⋂
i∈I

Di ∈ PPSext(Ω).
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Now, we have to prove that
⋂
i∈I

Di ∈ [D]'∂ ∩ PPSabs(Ω) ∩ PPSmat(Ω). By (i) of Proposition

5.6.1, we have ∂(D) ⊆ ∂(
⋂
i∈I

Di). Contrariwise, let A ∈ ∂(
⋂
i∈I

Di) \ ∂(D). Then, there exists

y ∈ A such that (A \ {y}, y) ∈ Dj for some j ∈ I. Since Dj ∈ PPSabs(Ω), there exists
B ∈ ∂(

⋂
i∈I

Di) such that B ⊆ A\{y} and (B, y) ∈ Dj . By (5.21), it follows that B∪{y} /∈ ∂(D)

and, again by (5.21) and since Di ∈ [D]'∂ for any i ∈ I, we deduce that (B, y) ∈ Di for any
i ∈ I, i. e. (B, y) ∈

⋂
i∈I

Di. Since
⋂
i∈I

Di ∈ PPSext(Ω), we have that (A ∪ {y}, y) ∈
⋂
i∈I

Di, i. e.

A /∈ ∂(
⋂
i∈I

Di), contradicting our choice of A. This shows that ∂(
⋂
i∈I

Di) = ∂(D).

We now prove that
⋂
i∈I

Di ∈ PPSmat(Ω). Let A ∈ ∂(
⋂
i∈I

Di) and x, y ∈ Ω such that (A, x) /∈⋂
i∈I

Di and (A ∪ {y}, x) ∈
⋂
i∈I

Di. Thus, (A, x) /∈ Di for each i ∈ I and, by (5.21), it follows

that A ∪ {x} ∈ ∂(Di) for any i ∈ I. Since Di ∈ PPSmat(Ω) for any i ∈ I, it results that
(A ∪ {x}, y) ∈ Di for any i ∈ I, thus it also belongs to

⋂
i∈I

Di.

Finally, we show that
⋂
i∈I

Di ∈ PPSabs(Ω). To this regard, let (X,x) ∈
⋂
i∈I

Di be non-trivial.

Suppose by contradiction that for each A ∈ ∂(
⋂
i∈I

Di), with A ⊆ X, it results that (A, x) /∈⋂
i∈I

Di. Since
⋂
i∈I

Di ∈ PPSext(Ω) ∩ PPSmat(Ω), by (5.21) we have that A ∪ {x} ∈ ∂(
⋂
i∈I

Di).

Then, A ∪ {x} ∈ ∂(D), so, again by (5.21), (A, x) /∈ Dj for some j ∈ I. In other terms, we
are saying that (X,x) ∈ Dj , x ∈ Ω \ X and for each A ∈ ∂(Dj) with A ⊆ X, it results that
(A, x) /∈ Dj , contradicting the fact that Dj ∈ PPSabs(Ω). It is now straightforward to show
that

∧
i∈I

Di =
⋂
i∈I

Di.

In the next result we assert that boundary equivalence, together with extensivity, matroidal-
ity and absorbency entails essential equivalence.

We now prove that [D|refma]'∂ is an ideal of [D|refm]'∂ .

Theorem 5.6.11. For any D ∈ PPS(Ω) we have that [D|refma]'∂ is an ideal of the lattice
[D|refm]'∂ .

Proof. First of all, we have to show that [D|refma]'∂ is non-empty. To this regard, let us
consider the pointed pair system D defined in (5.22). By (5.21), it is straightforward to see
that D is absorbing. Hence [D|refma]'∂ is non-empty.
Let D′ ⊆ D, where D ∈ [D|refma]'∂ and D′ ∈ [D|refm]'∂ . By (vi) of Proposition 5.6.5, it
follows that D′ ∈ [D|refma]'∂ .
Finally, by Theorem 5.6.6, Corollary 5.6.11 and Theorem 5.6.10, given D′,D′′ ∈ [D|refma]'∂ ,
consider D′ ∪D′′ ∈ [D|refma]'∂ . Then, D′,D′′ ⊆ D′ ∪D′′ and this proves the claim.

To conclude this section, we consider the map a : SS(Ω)→ PPS(Ω) such that

a(F) := Ω̂tr ∪ {(X,x) ∈ Ω̂ntr : X ∪ {x} /∈ F}, (5.25)

for any F ∈ SS(Ω). We now show that ∂ and a are inverse each other.
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Proposition 5.6.12. Let F ∈ SS(Ω). Then:
(i) F = ∂(a(F)).
(ii) Let X ∈ P(Ω) and x, y /∈ X. Assume that (X,x) /∈ a(F) but (X ∪ {y}, x) ∈ a(F). Then,
(X ∪ {x}, y) ∈ a(F).

Proof. (i): Let X ∈ ∂(DF). This is equivalent to say that for each x ∈ X it must be (X \
{x}, x) /∈ a(F), i. e. X \ {x} ∪ {x} = X ∈ F.
(ii): By our assumptions, we have that X ∪ {x} ∈ F but X ∪ {x} ∪ {y} /∈ F. It is now obvious
that (X ∪ {x}, y) ∈ F and the claim has been shown.

Summarizing suitably the results of this section, we can state the following result.

Theorem 5.6.13. Let D ∈ PPS(Ω) extensive, finitely hereditary and matroidal. Then, ∂(D) ∈
FAC(Ω). Moreover, if F ∈ FAC(Ω) then the [a(F)|efm]'∂ is a complete lattice.

5.7 Pre-Closure Operators and Pointed Pair Systems

In this final section we study the interrelations between pre-closure operators on Ω and pointed
pair systems D ∈ PPS(Ω) that are extensive, finitely hereditary and matroidal.

Let D ∈ PPS(Ω), then we consider the set operator σD ∈ OP (Ω) given by

σD(X) := {x ∈ Ω : x ∈ X ∨ (X,x) ∈ D}, (5.26)

Contrariwise to any set operator σ ∈ OP (Ω) we associate the pointed pair system

Dσ := {(X,x) ∈ Ω̂ : x ∈ σ(X)} (5.27)

In the next result, we prove that, whenever σ is an extensive set operator, then σ = σDσ .

Proposition 5.7.1. If σ ∈ OP (Ω) is extensive, then σ = σDσ .

Proof. Let X ∈ P(Ω). Then, by both (5.26) and (5.27), it results that x ∈ σDσ(X) if and only
if x ∈ X or (X,x) ∈ Dσ, i. e. if and only if x ∈ X or x ∈ σ(X). By extensiveness of σ, we
conclude that the previous condition is equivalent to say that x ∈ σ(X). We conclude by the
arbitrariness of X ∈ P(Ω).

We have the following result.

Theorem 5.7.2. Let D ∈ PPS(Ω) extensive, finitely hereditary an matroidal. Then, σD is
a WMLS, finitary pre-closure operator on Ω. On the contrary, let σ be a WMLS, finitary
pre-closure operator on Ω. Then, Dσ is a reflexive, extensive, finitely hereditary and matroidal
pointed pair system on Ω and, moreover, [Dσ|efm]l is a complete lattice.

Proof. We divide the proof in two parts.
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(I) Let D ∈ PPS(Ω) be extensive, finitely hereditary and matroidal. We associate the σD
given in (5.26). It is easy to show that it is a pre-closure operator. Let us prove that

Θ(σD) = ∂(D). (5.28)

Let X ∈ Θ(σD) and assume that X /∈ ∂(D). Thus, there exists x ∈ X such that
(X \ {x}, x) ∈ D. In particular, we have that X \ {x} * X ⊆ σD(X \ {x}), obviously a
contradiction with our choice of X.
Contrariwise, let A /∈ Θ(σD). This means that there exists B $ A ⊆ σD(B). In particular,
there exists x ∈ A \ B such that (B, x) ∈ D. Since D ∈ PPSext(Ω), it follows that
(A \ {x}, x) ∈ D, i. e. A /∈ ∂(D). This proves (5.28).
Let us prove that σD(X) is finitary, i. e. σD(X) =

⋃
{σD(F ) : F ⊆f X} for any

X ∈ P(Ω). Let x ∈ σD(X). If x ∈ X, then x ∈ σD({x}). On the contrary, if x /∈ X, then
(X,x) ∈ D and, since D ∈ PPSfh(Ω), there exists F ⊆f X such that (F, x) ∈ D. Hence,
x ∈ σD(F ). This proves that σD(X) ⊆

⋃
{σD(F ) : F ⊆f X}. The reverse inclusion is

obvious. This proves that σD is finitary.
We have to show that σD is WMLS. Let A ∈ Θ(σD) and x ∈ σD(A ∪ {y}) \ σD(A).
This means that x /∈ A, (A, x) /∈ D and (A ∪ {y}, x) ∈ D. Moreover, A ∈ ∂(D) by
(5.28). Hence, by the fact that D ∈ PPSext(Ω), it follows that (A ∪ {x}, y) ∈ D, i. e.
y ∈ σD(A ∪ {x}). This shows that σD is WMLS.

(II) Let σ ∈ OP (Ω) be a WMLS, finitary pre-closure operator. We associate with it the
pointed pair system Dσ defined in (5.27). Obviously, Dσ ∈ PPSref (Ω). Moreover, we
have that Dσ ∈ PPSext(Ω), in fact if (X,x) ∈ Dσ and X ⊆ Y , then, x ∈ σ(X) ⊆ σ(Y ),
i. e. (Y, x) ∈ Dσ.
It is also straightforward to see that Dσ ∈ PPSfh(Ω). As a matter of fact, let (X,x) ∈ Dσ,
then x ∈ σ(X) =

⋃
{σ(F ) : F ⊆f X}, i. e. there exists F ⊆f X such that x ∈ σ(F ), i.

e. (F, x) ∈ Dσ. Let us observe that

Θ(σ) = ∂(Dσ) (5.29)

by the same argument used to show (5.28). We now prove that if D l Dσ, then σD = σ.
Given (X,x) ∈ Ω̂ntr, we have that (X,x) ∈ D if and only if (X,x) ∈ Dσ. This implies
that σD(X) = σDσ(X) = σ(X) and, by the arbitrariness of X ∈ P(Ω), that σD = σ.
Finally, Dσ ∈ PPSmat(Ω). In fact, let A ∈ ∂(Dσ) and x, y ∈ Ω such that (A, x) /∈ Dσ and
(A∪{y}, x) ∈ Dσ. This implies that x ∈ σDσ(A∪{y})\σDσ(A), i. e. x ∈ σ(A∪{y})\σ(A).
By (5.29), A ∈ Θ(σ). Since σ is WMLS, then y ∈ σ(A ∪ {x}), i. e. (A ∪ {x}, y) ∈ Dσ

and the thesis follows.

Let F ∈ FAC(Ω). By Theorem 5.6.13, [a(F)|efm]'∂ is a complete lattice. In particular,
for any D ∈ [a(F)|efm]'∂ , by Theorem 5.7.2 we can consider the WMLS, finitary pre-closure
operator σD. In what follows, we denote by WFPCO(F,Ω) the family of all WMLS, finitary
pre-closure operators σD, when D ∈ [a(F)|efm]'∂ .

In the next result, we show that (WFPCO(F,Ω),v) is a complete lattice and we also
determine its minimum element.
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Theorem 5.7.3. If σ be a WMLS, finitary pre-closure operator on Ω then ∂(Dσ) ∈ FAC(Ω).
Moreover, if F ∈ FAC(Ω) then (WFPCO(F,Ω),v) is a complete lattice whose minimum is

σF(X) :=


X ∪

⋃
{x : X ∪ {x} /∈ F} if X ∈ F⋃

A∈F
{σF(A) : A ⊆ X} otherwise

(5.30)

Proof. Let σ be a WMLS, finitary pre-closure operator on Ω. By Theorem 5.7.2, [σD|efm]l is a
complete lattice. By Proposition 5.6.3, for each D,D′ ∈ [σD|efm]l, we have that ∂(D) = ∂(D′).
In particular, ∂(Dσ) ∈ FAC(Ω) by Theorem 5.6.13.
On the contrary, let F ∈ FAC(Ω). Let us prove that (WFPCO(F,Ω),v) forms a complete
lattice. To this aim, let {σi : i ∈ I} ⊆WFPCO(F,Ω) and let us consider σ :=

∨
i∈I σi, where

the join has been taken in (OP,v). We have to prove that σ is a WMLS, finitary pre-closure
operator. First of all, let us observe that

σ(X) :=

{
x ∈ Ω : x ∈ X ∨ (X,x) ∈

⋃
i∈I

Di

}
for any X ∈ P(Ω). In other terms, σ is the set operator associated with

⋃
i∈I

Di ∈ [a(F)|efm]'∂ .

By Theorem 5.7.2, σ is a WMLS, finitary pre-closure operator and, by (i) of Proposition 5.6.12,
∂(
⋃
i∈I

Di) = F, i. e. σ ∈WFPCO(F,Ω).

On the other hand, let {σi : i ∈ I} ⊆ WFPCO(F,Ω) and D∗ be the meet of the family
{[Dσi |efm]l : i ∈ I} in [a(F)|efm]'∂ . Moreover, let us consider the set operator

σD∗ := {x ∈ Ω : x ∈ X ∨ (X,x) ∈ D∗}.

Since it is the set operator associated with D∗, we deduce it is a WMLS, finitary pre-closure
operator such that ∂(

⋃
i∈I

Di) = F. Furthermore, it is straightforward to show that σD∗ v σi

for any i ∈ I. This proves that σD∗ ∈WFPCO(F,Ω), i. e. (WFPCO(F,Ω),v) is a complete
lattice.
Let us consider σ

D
′ , where D′ is the minimum of [a(F)|efm]'∂ defined as in (5.23). Hence,

by (5.26) it follows that σ
D
′(X) = {x ∈ Ω : x ∈ X ∨ (X,x) ∈ D′}. Obviously, σ

D
′ is a

WMLS, finitary pre-closure operator since it is associated with D
′ ∈ [a(F)|efm]'∂ , so σ

D
′ ∈

WFPCO(F,Ω).
Furthermore, we observe that if X ∈ ∂(D′) = F, then it results that σ

D
′(X) = X ∪

⋃
{x :

X ∪ {x} /∈ F}; on the other hand, assume X /∈ F. We will show that σ
D
′(X) :=

⋃
A∈F
{σ

D
′(A) :

A ⊆ X}. Let x ∈ σ
D
′(X). Then, or x ∈ A for some A ⊆ X such that A ∈ F or, on the contrary,

A ∪ {x} /∈ F, so x ∈
⋃
A∈F
{σ

D
′(A) : A ⊆ X}. Vice versa, let x ∈

⋃
A∈F
{σ

D
′(A) : A ⊆ X}. This

means that or x ∈ A for some A ⊆ X or there exists A ⊆ X such that A ∈ F and A∪ {x} /∈ F,

i. e. (X,x) ∈ D
′
. Thus, x ∈ σ

D
′(X). In this way, we showed that σ

D
′ coincides with the set

operator σF defined in (5.30).
Finally, by (iii) of Proposition 1.5.1, it results that σF v σ for any σ ∈ WFPCO(F,Ω). This
concludes the proof.
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Chapter 6

Representation Theorems

In this chapter, we deal with representation theorems. In particular, we will show that an
arbitrary closure system S on a finite set Ω are represented by a pairing P ∈ PAIR(Ω) whose
MAXP (P) coincides with S and, by using a classical result by Birkhoff and Frink [19], that
for any finite lattice L there exist a finite set ΩL and a pairing P ∈ PAIR(ΩL) whose maximum
partitioner lattice is exactly L. In other terms, we can consider closure system theory and finite
lattice theory as sub-theories of that of pairings. Finally, we introduce the notion of symmetry
transmission average, that provides a numerical information between all the nodes of the finite
lattice L. Thus, we are able to compare through the set map ΓP also two elements of the lattice
L that are non-comparable with respect to the order ≥L.

6.1 Representation Theorems for Closure Systems and Finite
Lattices

We now assume that Ω is a finite set and in the next result we provide a representation theorem
for arbitrary closure systems on Ω.

Theorem 6.1.1. The map MAXP : P ∈ PAIR(Ω) 7→MAXP (P) ∈ CLSY (Ω) is surjective.

Proof. Let S ∈ CLSY (Ω), E ∈ S be the minimum element in S and let C1, C2, . . . , Ck be all
maximal chains from E to the top Ω, where Ci is the chain in S given by Ai0 = E ⊂ Ai1 ⊂
· · ·Aili = Ω, for i = 1, 2, . . . , k. Furthermore, we set m0 = 0, mi :=

∑i
s=1 ls, and m := mk.

We now define a pairing

P = P(S) := 〈US, Ω, FS, N〉 ∈ PAIR(Ω) (6.1)

whose maximum partitioner lattices is exactly S. First of all, we consider the set US =
{u1, u2, . . . , um}. On the other hand, we must define the function FS : US × Ω −→ N. To
this regard, we set FS(us, aj) := 1 if aj ∈ E, for any us ∈ US. Let now aj ∈ Ω \ E. For each
i ∈ {1, 2, . . . , k} we define tij be the smallest positive integer such that aj ∈ Aitij \ Aitij−1 .
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Finally, we set:

FS(us, aj) :=


1 if s = 1,
FS(us−1, aj) if mi−1 + 2 ≤ s ≤ mi − tij + 1,
FS(us−1, aj) + 1 otherwise.

(6.2)

Let us firstly show that if A ∈ S then A ∈ MAXP (P). If A = Ω there is nothing to
prove. Hence, assume A 6= Ω. Let Ci : Ai0 = E ⊂ Ai1 ⊂ · · ·Aili ⊂ Ω be a chain from E
to Ω and t ∈ {1, 2, . . . , li} be such that A = Ait . Set moreover s := mi − t. Let us prove
now that us ≡A us+1 but, for each choice of aj ∈ Ω \ A, it holds FS(us, aj) 6= FS(us+1, aj).
Let us notice that if aj ∈ A, then tij ≤ t, so mi−1 + 1 ≤ s ≤ mi − tij . By (6.2), it follows
that FS(us, aj) = FS(us+1, aj), therefore we have shown that us ≡A us+1. On the other
hand, if aj /∈ A, then tij > t, so s = mi − t > mi − tij . Again by (6.2), it follows that
FS(us+1, aj) = FS(us, aj) + 1, i.e. us 6≡A us+1. This proves that A ∈MAXP (P).
Let now A ∈ MAXP (P). We will now prove that A ∈ S. To this regard, let us consider
the minimum element B in S such that A ⊆ B. We now prove that A ≈P B. Let us notice
that, for any B′ ∈ S such that B′ ⊂ B, it results that B′ ⊂ A. In fact, let ak ∈ B′ and
ah ∈ A \ B′ ⊆ B \ B′. Let s be such that us−1 ≡A us. Thus FS(us, ah) = FS(us−1, ah),
so mi−1 + 2 ≤ s ≤ mi − tih + 1. But both the conditions ah ∈ B \ B′ and ak ∈ B′ imply
that tih > tik, so mi−1 + 2 ≤ s ≤ mi − tik + 1 and, then, FS(us, ak) = FS(us−1, ak). Since
A ∈ MAXP (P), it holds that ak ∈ A and thus that B′ ⊂ A. Without loss in generality, we
can assume that B′ is maximal among the proper subsets of B. Let now Ci be a chain through
B. Then, there exists t such that B′ := Ait−1 ⊂ A ⊆ Ait = B and let s ∈ {1, 2, . . . , m} such
that us−1 ≡A us. If ak ∈ B and ah ∈ A \B′, then tik < tih, so, since us−1 ≡A us, it holds that
FS(us, ak) = FS(us−1, ak), thus ak ∈MP(A) = A. This proves that A = B ∈ S and the thesis
has been shown.

Example 6.1.2. Let us consider Ω := {a1, a2, a3, a4, a5} and let

S := {Ω, {a1, a2, a3}, {a2, a3, a4}, {a2, a3}, {a2, a5}, {a2}}

be a closure system on Ω. The minimum in S is E = {a2}. The lattice associated with S has
the following Hasse diagram

a2

a2a3 a2a5

a1a2a3 a2a3a4

Ω
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a1 a2 a3 a4 a5

u1 1 1 1 1 1

u2 1 1 1 2 2

u3 2 1 1 3 3

u4 3 1 2 4 4

u5 4 1 2 4 5

u6 5 1 2 5 6

u7 6 1 3 6 7

u8 7 1 4 7 7

Figure 6.1: The pairing P(S).

There are three chains from E to Ω:

C1 : {a2} ⊂ {a2, a3} ⊂ {a1, a2, a3} ⊂ Ω

C2 : {a2} ⊂ {a2, a3} ⊂ {a2, a3, a4} ⊂ Ω

C3 : {a2} ⊂ {a2, a5} ⊂ Ω

(6.3)

Thus m0 = 0, m1 = 3, m2 = 6 and m3 = 8. Moreover t11 = 2, t21 = 3, t31 = 2, t13 = 1,
t23 = 1, t33 = 2, t14 = 3, t24 = 2, t34 = 2, t15 = 3, t25 = 3 and t35 = 1. Then, US =
{u1, u2, u3, u4, u5, u6, u7, u8}, and, by (6.2) and (6.1) we can construct the pairing in Figure
6.1.

Moreover, in Figure 6.2 we represent the Hasse diagram of G(P(S)) (we use string notation
in the figure).

Corollary 6.1.3. Let S ∈ CLSY (Ω) and let P ∈ PAIR(Ω) such that MAXP (P) = S.
Then, the lattices PSYM(P), M(P) and (S,⊆∗) are order isomorphic.

Proof. The result is a direct consequence of Theorem 6.1.1 and part (ii) of Corollary 2.2.2.

Another consequence of Theorem 6.1.1 is that any union additive relation on Ω satisfies a
condition similar to the definition of the relation ≥P. Therefore, this means that in the finite
case, it is not restrictive to consider the union additive relations induced by pairing systems.

Theorem 6.1.4. Let ≥ be a union additive relation on Ω. Then, there exists a pairing P ∈
PAIR(Ω) such that ≥ coincides with ≥P.

Proof. Let D := D≥ be the union additive family associated with union additive relation ≥.
By Proposition 5.2.8, we can associate with D a closure operator cD such that cD(X) :=⋃
{Y ∈ P(Ω) : (X,Y ) ∈ D} for any X ∈ P(Ω). By Theorem 1.5.7, to the closure operator

cD corresponds a closure system S. Moreover, by Theorem 6.1.1, there exists a pairing P ∈
PAIR(Ω) such that MAXP (P) = S. As a direct consequence, it is easy to show that cD(X) =
MP(X) for any X ∈ P(Ω). Indeed, X ⊆ MP(X) and since cD(X) ∈ MAXP (P), we conclude
that MP(X) ⊆ cD(X). Vice versa, since MP(X) ∈ S, then cD(X) ⊆MP(X).
Now, we have to prove that X ≥ Y if and only if X ≥P Y . Assume that X ≥ Y . Then,
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2

∅

25

5

23

3

234

24 34

4

123

13 23

1

14
15 35

45

124 134 145 125 135 235 345 245

1234 1245 1235 1345 2345

12345

Figure 6.2: Hasse Diagram of G(P(S)).
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Y ⊆ cD(X) = MP(X), so MP(Y ) ⊆MP(X) and, by definition of ≥P, it follows that X ≥P Y .
On the other hand, if X ≥P Y , it follows that Y ⊆MP(X) = cD(X), so (X,Y ) ∈ D and, thus,
X ≥ Y . This concludes the proof.

At this point, based on a classical representation theorem of Birkhoff and Frink (see [19]),
we can establish the more important theoretical result of this section, that we can consider a
pairing representation theorem for finite lattices.

Theorem 6.1.5. Let L = (L,≤L) be a finite lattice. Then, there exist a finite set Ω, a positive
integer n such that |Ω| = n and a pairing P ∈ PAIR(Ω) such that the lattices L, M(P), G(P)
and P(P) are order isomorphic. Therefore, if ηP : L → MAXP (P) is the map that induces
such an isomorphism between L and M(P), we have that

x ≤L x′ ⇐⇒ ηP(x) ⊆∗ ηP(x′) ⇐⇒ πP(ηP(x)) � πP(ηP(x′)) ⇐⇒ γP(ηP(x), ηP(x′)) = 1
(6.4)

for any x, x′ ∈ L.

Proof. In [19], Birkhoff and Frink proved that any finite lattice is order isomorphic to the
corresponding lattice induced from some closure system. So that there exist a finite set Ω, a
closure system S ∈ CLSY (Ω) and a map η : L → S that is an order isomorphism between
the dual lattice L∗ and the lattice (S,⊆). Then, by Theorem 6.1.1, we can construct a pairing
P ∈ PAIR(Ω) such that MAXP (P) = S. Therefore ηP := η is an order isomorphism between
L and M(P), and (6.4) becomes a direct consequence of (2.17).

The relation established in (6.4) has deep theoretical consequences: it says us that the
study of the symmetry transmission measure between subsets of finite sets is equivalent to the
study of order relations on finite lattices. Therefore, we now investigate the basic theoretical
properties of the symmetry transmission measure between subsets of finite sets and the direct
interrelation of this notion with other classical notions of lattice theory.

Definition 6.1.6. We call pairing characteristic of the lattice L, denoted by pc(L), the mini-
mum positive integer N for which the thesis of Theorem 6.1.5 is verified.

Let N = pc(L). We set then

PAIR(L) := {P ∈ PAIR(Ω) : M(P) ∼= L}.

Now, if P ∈ PAIR(L), with the same notations introduced in the statement of Theorem 6.1.5,
we can consider the inverse order isomorphism η−1

P : MAXP (P)→ L and the closure operator
MP : P(Ω)→MAXP (P), so that we obtain the surjective map

ξP := η−1
P ◦MP : P(Ω)→ L

Let us note that the map ξP is not canonically determined. In fact, it depends from the order
isomorphism ηP, which in turn depends on the not uniquely determined closure system S given
in the proof of Theorem 6.1.5. However, by means of the map ξP we can formally describe the
following equivalences.
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Theorem 6.1.7. Let L = (L,≤L) be a finite lattice, N = pc(L) and X,Y ∈ P(Ω). Then, the
following conditions are equivalent:
(i) for any P ∈ PAIR(L) we have ξP(X) ≤L ξP(Y );
(ii) for any P ∈ PAIR(L) we have γP(X,Y ) = 1;
(iii) there exists P ∈ PAIR(L) such that γP(X,Y ) = 1.

Proof. (i) =⇒ (ii): Let x := ξP(X) ≤L y := ξP(Y ). Let P′ ∈ PAIR(L) and ηP′ : L →
MAXP (P′). By (6.4), ηP′(x) ⊆∗ ηP′(y), i.e.

πP′(ηP′(x)) � πP′(ηP′(x′)) ⇐⇒ γP′(ηP′(x), ηP′(x
′)) = 1

and the claim has been shown.
(ii) =⇒ (iii): Obvious.
(iii) =⇒ (i): By (6.4), we have that γP(X,Y ) = γP(MP(X),MP(Y )) = 1 if and only if
πP(X) � πP(Y ) or, equivalently, MP(Y ) ⊆ MP(X), that is equivalent to η−1

P (MP(X)) �
η−1
P (MP(Y )), i.e. ξP(X) ≤L ξP(Y ).

6.2 Pairing Representation of Finite Complementary Involu-
tion Lattices

In this section, we prove a second representation theorem for finite lattices. For, we assume
that MP(∅) = ∅ and define a set operator IP : P(Ω) → P(Ω) that behaves as the topological
interior part of a set. To be more specific, we set

IP(A) := (MP(Ac))c . (6.5)

Definition 6.2.1. We call IP(A) the interior of A. We say that A ∈ P(Ω) is regularly closed
if A = MP(IP(A)) and denote by R(P) the family of all regularly closed subsets.

Similarly to what happens to its topological counterpart, the complement of the interior of
any subset belongs to MAXP (P).

Proposition 6.2.2. Let A ∈ P(Ω). Then:
(i) IP(A) is the greatest subset of A whose complement is a maximum partitioner.
(ii) If A ⊆ B then IP(A) ⊆ IP(B).
(iii) IP(IP(A)) = IP(A).
(iv) If Z ∈ P(Ω) is the complement of some maximum partitioner, then MP(Z) ∈ R(P).
(v) If A and Ac both belong to MAXP (P) then A is regularly closed.

Proof. (i): Let Z ⊆ A such that Z = Ω\MP(B) for some B ∈ P(Ω). Then, Z = Ω\MP(B) ⊆ A
implies that MP(B) ⊇ Ac, i.e. MP(B) ⊇MP(Ac), so Z ⊆ Ω \MP(Ac) = IP(A).
(ii): Straightforward.
(iii): IP(IP(A)) = Ω \MP(Ω \ IP(A)) = Ω \MP(Ω \ (Ω \MP(Ac))) = Ω \MP(Ac) = IP(A).
(iv): Let Z ∈ P(Ω) be the complement of some maximum partitioner. By (i), it readily follows
that Z ⊆ IP(MP(Z)) ⊆MP(Z), therefore MP(IP(MP(Z))) = MP(Z), i.e. MP(Z) ∈ R(P).
(v): Suppose that A and Ac both belong to MAXP (P). Then, IP(A) = (MP(Ac))c = A, thus
MP(IP(A)) = A, i.e. A is regularly closed.
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Let us set R(P) := (R(P),⊆). In next result we will show that R(P) is a complete lattice.

Theorem 6.2.3. R(P) is a complete lattice with 0̂R(P) = ∅ and 1̂R(P) = Ω.

Proof. It is evident that ∅ and Ω are both regularly closed subsets. Let Σ be a subfamily of
R(P) and set

A := MP

(
IP

( ⋂
B∈Σ

B

))
. (6.6)

Since IP

( ⋂
B∈Σ

B

)
is the complement of a maximum partitioner, by (iv) of Proposition 6.2.2,

we deduce that A ∈ R(P). We now prove that A = inf Σ. If there exists A′ ∈ R(P) such that

A′ ⊆ B for any B ∈ Σ, then A′ ⊆
⋂
B∈Σ

B, so IP(A′) ⊆ IP
( ⋂
B∈Σ

B

)
by (ii) of Proposition 6.2.2.

Applying MP to both sides of the previous relation, we obtain A′ ⊆ A. This implies that A is
the g.l.b. of Σ and our claim has been proved.
On the other hand, set

C := MP

( ⋃
B∈Σ

IP(B)

)
. (6.7)

By (iv) of Proposition 6.2.2, it is clear that C ∈ R(P), since
⋃
B∈Σ

IP(B) = Ω\
⋂
B∈Σ

MP(Bc) is the

complement of a maximum partitioner. We now show that C = sup Σ. Let C ′ ∈ R(P) such that

B ⊆ C ′ for any B ∈ Σ, then, by (ii) of Proposition 6.2.2, it follows that
⋃
B∈Σ

IP(B) ⊆ IP(C ′).

Applying MP to both sides of the previous relation, we obtain C ⊆ C ′. This implies that A is
the l.u.b. of Σ and our claim has been shown.

Let us define a map ψ : R(P) −→MAXP (P) by setting ψ(A) := MP(Ac).

Theorem 6.2.4. The map ψ satisfies the following properties:

(i) ψ(R(P)) ⊆ R(P);

(ii) If A ⊆ B, then ψ(A) ≥P ψ(B);

(iii) ψ is an involution;

(iv) ψ(A) ∧A = ∅ and ψ(A) ∨A = Ω.

Proof. (i): Let A ∈ R(P). Since A ∈MAXP (P), then, by (iv) of Proposition 6.2.2, MP(Ac) ∈
R(P).
(ii): ψ is clearly order-reversing, in fact ifA ⊆ B, then Ω\B ⊆ Ω\A, i.e. MP(Ω\B) ⊆MP(Ω\A)
or, in terms of union additive relation, MP(Ω \A) ≥P MP(Ω \B), i.e. ψ(A) ≥P ψ(B).
(iii): Let A ∈ R(P). Then

ψ(ψ(A)) = ψ(MP(Ac)) = MP(Ω \MP(Ac)) = MP(IP(A)) = A.
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Thus, ψ2 = Id, i.e. ψ is an involution.
(iv): Let us prove that ψ(A) ∧A = ∅. Firstly, by (6.6), we have that

ψ(A) ∧A = MP(IP(ψ(A) ∩A)) = MP(IP(MP(Ac) ∩A)).

We now prove that the unique subset contained in MP(Ac) ∩ A and whose complement is
a maximum partitioner is the empty set. As a matter of fact, let Z ⊆ MP(Ac) ∩ A, then
Z ⊆ A and, in particular, by (i) of Proposition 6.2.2, Z ⊆ IP(A) = Ω \ MP(Ac). But it
happens if and only if Z = ∅. Thus, IP(MP(Ac) ∩A) and, since MP(∅) = ∅, we conclude that
ψ(A) ∧A = MP(∅) = ∅.
On the other hand, let us now compute ψ(A) ∨A. By (6.7), it results that

ψ(A) ∨A = MP(IP(A) ∪ IP(ψ(A))) = MP(Ω \MP(Ac)) ∪ ((Ω \MP(ψ(A)c)))

but it follows that
MP(MP(Ω \MP(Ac)) ∪MP(Ac)) = Ω.

by using (b) of Corollary 2.2.2 and the definition of ψ. This shows that ψ(A) ∨A = Ω and the
proof concludes here.

In next result, we prove that for any finite complementary involution lattice there exists a
pairing on a certain finite set ΩL,ψ whose regularly closed family is isomorphic to L itself.

Theorem 6.2.5. Let (L, ψ) be a finite complementary involution lattice. Then, there exist a
finite set ΩL,ψ and a pairing P ∈ PAIR(ΩL,ψ) such that R(P) is order-isomorphic to (L,≤L).

Proof. We divide the proof in three steps:

I Let us show that given an order-preserving ψ-complementary map f : L → F, where
F is a complement-closed family on a certain finite set Ωn, there exist a finite set Ω,
a complement-closed family G on it and, fixed two elements α, β ∈ L, there exists an
order-preserving ψ-complementary map ĝ : L→ G {α, β}-preserving such that:

(1) Ω := Ωn and F = G or there exists ξ /∈ Ωn such that Ω := Ωn+1 = Ωn ∪ {ξ} or there
exist some η, ξ /∈ Ωn such that Ω := Ωn+2 = Ωn ∪ {η, ξ};

(2) for any γ ∈ L, ĝ(γ) = f(γ) or ĝ(γ) = f(γ) ∪ {ξ} or ĝ(γ) = f(γ) ∪ {η, ξ}.

Clearly, if f is {α, β}-preserving, there is nothing to prove since we can set ĝ := f , G := F

and Ω := Ωn. Hence, we must prove the claim when f is not {α, β}-preserving. For, we
have to investigate two cases: in the first case, let us assume that α <L β (or that they
are non-comparable) and that f(α) = f(β). Let ξ /∈ Ωn and Ω′ := Ωn ∪ {ξ}. We now
define a map h1 : L→ h1(L) ⊆ Ω′ where, for any γ ∈ L,

h1(γ) :=

{
f(γ) ∪ {ξ} if β ≤L γ
f(γ) otherwise.

First of all, we observe that h1 is an order-preserving map. Moreover it holds that,
whenever f is {γ, δ}-preserving for some γ, δ ∈ L, then also h1 satisfies the same property.
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In fact, if γ and δ are non-comparable, then one of the following situations occur: if
β ≤L γ, δ, then h1(γ) = f(γ) ∪ {ξ} and h1(δ) = f(δ) ∪ {ξ} and since f(γ) and f(δ) are
non-comparable, it follows that h1(γ) and h1(δ) are also non-comparable; if γ, δ <L β,
then h1(γ) = f(γ) and h1(δ) = f(δ), so h1(γ) and h1(δ) are also non-comparable; if
γ <L β and β and δ are non-comparable, then h1(γ) = f(γ) and h1(δ) = f(δ), so h1(γ)
and h1(δ) are also non-comparable and, finally, if β ≤L γ and β and δ are non-comparable,
then h1(γ) = f(γ)∪{ξ} and h1(δ) = f(δ). Since f(γ) and f(δ) are non-comparable, also
h1(γ) and h1(δ) are.
The other cases to be analyzed are similar. This proves that h1 is {γ, δ}-preserving.
Moreover, it results that

h1(γ) ∩ h1(ψ(γ)) = ∅ (6.8)

for any γ ∈ L. Let us suppose that β ≤L γ. This implies that ψ(γ) and β are non-
comparable. Therefore h1(γ) = f(γ)∪{ξ} and h1(ψ(γ)) = f(ψ(γ)) = Ωn \f(γ) and (6.8)
holds. The other possible cases are similar.
Now, let us consider all possible pairs {γ, ψ(γ)}, for each γ ∈ L. We order these pairs in
the following way

{γ0, ψ(γ0)}, {γ1, ψ(γ1)}, . . . , {γm, ψ(γm)},

so that γi 6≤L α for each i = 0, . . . ,m.
Let us set g0 := h1. Suppose that, for each i = 1, . . . ,m − 1, there exist a complement-
closed family Gi on Ω′ and a mapping ĝi : L→ Gi such that:

(i) ĝi(γ) = h1(γ) or ĝi(γ) = h1(γ) ∪ {ξ} for any γ ∈ L;

(ii) if f is {γ, δ}-preserving, then also ĝi is;

(iii) if i ≤ j, then ĝi(γ) ⊆ ĝj(γ) for any γ ∈ L;

(iv) ĝi(γ) ∩ ĝi(ψ(γ)) = ∅;
(v) if γ ≤L δ and ξ ∈ ĝi(γ), then ξ ∈ ĝi(δ);

(vi) ĝi(ψ(γi)) = Ω′ \ ĝi(γi), i.e. ĝi is an order-preserving ψ-complementary map.

We set, for any γ ∈ L and 1 ≤ k ≤ m− 1,

gk(γ) :=

k−1⋃
i=0

ĝi(γ).

If gi(ψ(γq)) ∪ gi(γq) = Ωn for some γq ∈ L and i = 0, . . . , k − 1, then we set

gi(γ) :=

{
gi(γ) ∪ {ξ} if γq ≤L γ
gi(γ) otherwise.

whereas, if gi(ψ(γ)) = Ω′ \ gi(γ) for any γ ∈ L, we set gi := gi. Clearly, if gi satisfies
(i)− (vi), then also gi does. Moreover, in both cases, we set

Gi := {gi(γ) : γ ∈ L}.
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Analogously, we set:

gm(γ) :=

m−1⋃
i=0

gi(γ)

and
Gm := {gm(γ) : γ ∈ L}.

Let us prove (i) − (vi) for gm. The properties (i), (iii) and (v) are obvious. Suppose
now that f is {γ, δ}-preserving for some γ, δ ∈ L. Suppose moreover that γ <L δ. Then,
f(γ) $ f(δ) so, by the definition of gm and h1, we necessarily have gm(γ) $ gm(δ). The
other cases are similar. This proves (ii).
In order to prove (iv), firstly assume by contradiction that gm−1(γ) ∩ gm−1(ψ(γ)) 6= ∅
for some γ ∈ L. Then, there exist two indices i ≤ j such that ∅ 6= gi(γ) ∩ gj(ψ(γ)) ⊆
gj(γ) ∩ gj(ψ(γ)), that is an absurd. On the other hand, if we assume by contradiction
that gm−1(γq)∩gm−1(ψ(γq)) 6= ∅ for some q ≤ m−1, then {ξ} = gm−1(γq)∩gm−1(ψ(γq)),
i.e. γq = 0L, that is an absurd. This proves (iv). As a direct consequence of (iv), we
obtain (vi), i.e. gm is an order-preserving ψ-complementary map.
Assume now that ξ ∈ gm(α) and let j be the minimum index so that ξ ∈ gj(α). This
implies that γq ≤L α, that is an absurd. So gm(α) $ gm(β). If α <L β, we set ĝ := gm,
G := Gm and Ω := Ω′ and this shows that ĝ(γ) = f(γ) ∪ {ξ}. Otherwise, if α and β are
non-comparable, let η /∈ Ω′ and set Ω′′ := Ω′ ∪ {η}. Moreover, for any γ ∈ L, we set

h2(γ) :=

{
gm(γ) ∪ {η} if α ≤L γ
gm(γ) otherwise.

By reasoning as above, we can construct g′m through gm and h2 using η instead of ξ.
Clearly, since ξ ∈ g′m(β) \ g′m(α) and η ∈ g′m(α) \ g′m(β), we deduce that g′m is {α, β}-
preserving. Therefore, we can set ĝ := g′m and G := {ĝ(γ) : γ ∈ L}. This concludes the
proof in the case α <L β (or they are non-comparable) and f(α) = f(β).
In the second case, we assume α and β non-comparable and f(α) $ f(β). We can
construct ĝ by starting from f in the same way we obtained g′m from gm, by replacing η
with ξ and it holds ĝ(γ) = f(γ) ∪ {η, ξ}.

II We now prove that there exist a finite set ΩL,ψ and an isomorphism f : L→ F, where F

is a complement-closed family on ΩL,ψ. Firstly, let g : L→ ∅}. Let us consider the family
of all 2-subsets of L, i.e. {(α0, β0), (α1, β1), . . . , (αm, βm)}. We set f0 := ĝ, F0 := G and
G0 := Ω, where ĝ,G,Ω have been constructed in the previous step, ĝ is {α0, β0}-preserving
and F0 is a complement-closed family on G0.
Suppose that for any 0 ≤ i ≤ m− 1 there exist fi, Fi and Gi such that:

(A) fi : L → Fi is an order-preserving complementarity {xi, yi}-preserving and Fi is a
complement-closed family on Gi;

(B) If i < j < m and fi is {α, β}-preserving, then fj does. Moreover, for any α ∈ L, it
results that fj(α) ∩Gi = fi(α).
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Let us set:

fm(α) :=

m−1⋃
i=0

fi(α)

for any α ∈ L,
Fm := {fm(α) : α ∈ L}

and
Gm :=

⋃
Fm.

Let us prove that fm satisfies both (A) and (B). It is obvious that fm is order-preserving
since if α ≤L β, then fi(α) ⊆ fi(β) for each i < m and, by the definition of fm, a
fortiori, it follows that fm(α) ⊆ fm(β). We now prove that fm is an order-preserving
ψ-complementary map. Suppose that fm(ψ(α))∩fm(α) 6= ∅ for some α ∈ L. This implies
that there exist two indices i < j < m and b ∈ Gm such that b ∈ fi(ψ(α))∩ fj(α) but, by
(2), it follows that fi(ψ(α)) ⊆ fj(ψ(α)), i.e. b ∈ fj(ψ(α))∩ fj(α), that is a contradiction.
Thus, fm(ψ(α)) ⊆ Gm \ fm(α). Indeed, the previous relation is an equality. In fact, let
b ∈ Gm, then there exists β ∈ L and an index i < m such that b ∈ fi(β). In particular,
b ∈ Gi = fi(α)∪ fi(ψ(α)). Therefore it necessarily must be fm(ψ(α)) = Gm \ fm(α). So,
fm satisfies (A).
Suppose that fi is {α, β}-preserving. Let us show that fm is also {α, β}-preserving. In
fact, suppose without loss of generality that α ≤L β and let b ∈ fi(β) \ fi(α). Then,
clearly b ∈ fm(β). If we assume by contradiction that b ∈ fm(α), there would be an
index j > i such that b ∈ fj(α), so b ∈ fj(α)∩Gi = fi(α), that is a contradiction. Hence
b ∈ fm(β) \ fm(α). The converse is obviously true. Therefore fm is {α, β}-preserving.
Furthermore, it is immediate that fm(α) ∩ Gi = fi(α) for any i = 0, . . . ,m − 1. So fm
satisfies (B). It is also obvious that Fm is a complement-closed family on Gm.
Therefore we have constructed an order-preserving ψ-complementary map fm : L→ Fm.
By starting from fm, Fm and Gm, as in the first step of the proof, we can construct a finite
set ΩL,ψ, a complement-closed family F on it and an order-preserving ψ-complementary
map f : L → F. Obviously, f is an isomorphism since it is {α, β}-preserving for each
2-subset {α, β} of L. Thus, since (F,⊆) is a poset, the isomorphism f : L → F induces
on (F,⊆) a natural lattice structure.

III The last step of the proof consists of proving the existence of pairing P on ΩL,ψ such that
F = R(P).
Let us consider the map φ : P(ΩL,ψ)→ P(ΩL,ψ) defined as follows:

φ(X) =
⋂
{Y ∈ F : X ⊆ Y }. (6.9)

It is immediate to see that X ⊆ φ(X) and that φ(X) ⊆ φ(Y ) whenever X ⊆ Y . Moreover,
it also results that φ is idempotent. In fact, by (6.9), if Z ∈ F contains X, then it also
contains φ(X). The converse is obvious. This implies that φ is a closure operator.
Furthermore, it is evident that φ(∅) = ∅. Thus, by Theorem 6.1.1, there exists P ∈
PAIR(Ω) such that MAXP (P) coincides with the family of all the fixed subsets of φ.
This means that in next calculations we are allowed to use MP instead of φ.
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We must prove that F = R(P). For, let us observe that if Z ∈ F, then MP(Z) = Z. So,
F ⊆ MAXP (P). In particular, we have that IP(Z) = Z ∈ F, so Z = MP(IP(Z)), i.e.
Z ∈ R(P).
On the other hand, let Z ∈ R(P). Since F is a complete lattice, it follows that

Z∗ := inf{Y ∈ F : Z ⊆ Y } ∈ F.

Furthermore, we have that Z∗ ⊆
⋂
{Y ∈ F : Z ⊆ Y } = MP(Z) = Z. Let A ⊆ Z such

that Ac ∈MAXP (P). Let us show that

A =
⋃
{Y ∈ F : Y ⊆ A}. (6.10)

In fact,

Ac = MP(Ac) =
⋂
{Y ∈ F : Ac ⊆ Y } =

⋃
{Z ∈ F : Z ⊆ A}.

as claimed.
Moreover, let us note that Z∗ contains each Y in (6.10). This implies that A ⊆ Z∗. Now,
since Z∗ ∈ F, then (Z∗)c ∈ MAXP (P). By (i) of Proposition 6.2.2, we conclude that
IP(Z) = Z∗. But since F ⊆ MAXP (P), we deduce that Z = MP(IP(Z)) = IP(Z) ∈ F.
Hence F = R(P). This concludes the proof.

6.3 Symmetry Transmission Table

Let L be a finite lattice, N = pc(L) and P ∈ PAIR(L). By means of (6.4) of Theorem 6.1.5,
we can note that the function γP is a refinement of the partial order ≤L, since it provides a
numerical information also between two non-comparable nodes of the lattice L. In fact, for
any two elements x, y ∈ L, we have that x ≤L y if and only if γP(ηP(x), ηP(y)) = 1 and,
moreover, we can always compute γP(ηP(x), ηP(y)) even if x and y are non-comparable each
other. Therefore, it is natural to investigate all possible values of γP(X,Y ) when (X,Y ) runs
over P(ΩN )× P(ΩN ).
To this aim, we introduce the symmetry transmission table of a pairing P ∈ PAIR(ΩN ) within
which we collect all values γP(X,Y ) when (X,Y ) ∈ P(ΩN )× P(ΩN ).

Definition 6.3.1. Let P ∈ PAIR(ΩN ). We call symmetry transmission table of P, denoted
by Tdep(P), the 2N × 2N table having as rows and columns all elements of P(ΩN ) and in the
place corresponding to row X and column Y the value γP(X,Y ).

The symmetry transmission table is a source of very useful information when one studies
the properties of P. In fact, a complete knowledge of the symmetry transmission table enables
us to build the symmetry partition lattice of P. Hence, we can think the table Tdep(P) as a
type of numerical completion of the symmetry partition lattice of P.

Since the symmetry transmission table provides numerical informations for any pair (X,Y ) ∈
P(ΩN )× P(ΩN ), it is natural to introduce a global symmetry transmission measure as well as
it is usually done in many sectors of discrete mathematics.
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To this regard, if A ⊆ ΩN , we set

λr(A) :=
1

2n

∑
X⊆ΩN

γP(A,X)

and

λc(A) :=
1

2n

∑
X⊆ΩN

γP(X,A).

Definition 6.3.2. We call symmetry transmission average of P the number

λ(P) :=
1

2n

∑
A⊆ΩN

λr(A) =
1

2n

∑
A⊆ΩN

λc(A).

We can interpret the number λ(P) as the average capacity to transmit (or to receive)
symmetry of a generic subset of ΩN .

6.4 Symmetry Transmission Tables on Some Examples

In this section, we compute the symmetry transmission average for some basic digraph family,
also providing an asymptotic estimate. On the other hand, we consider two cases of pairings
on infinite sets Ω and we compute the map ΓP in this cases.

6.4.1 The Directed n-Cycle

We determine the symmetry transmission table for the pairing P[ ~Cn].

Proposition 6.4.1. Let A and B be two distinct vertex subsets of V = V ( ~Cn) = {v1, . . . , vn}.
Then

ΓP(A,B) =


V if B = ∅ or A = V or |A| = n− 1 or B ⊆ A
∅ if A = ∅ and B 6= ∅
A−1 otherwise

(6.11)

and

γP(A,B) =


1 if B = ∅ or A = V or |A| = n− 1 or B ⊆ A
0 if A = ∅ and B 6= ∅
|A|
n otherwise

(6.12)

Proof. By (ii) of Proposition 2.3.9, we have that if B = ∅, then π ~Cn
(B) = V . Therefore if

A is any subset of V and v ∈ V is any vertex, it follows that [v]A ⊂ [v]B = V . Similarly, if
A = V or if |A| = n − 1, we have π ~Cn

(A) = v1| . . . |vn. In other words, in these situations
ΓP(A,B) = V . Furthermore, by (2.13), if B ⊆ A, we deduce that ΓP(A,B) = V . Again by
(ii) of Proposition 2.3.9, it is clear that if A = ∅ and B 6= ∅, we have [v]A = V for every
v ∈ V , but [v]B $ V . So, ΓP(A,B) = ∅. Let |A| = k and |B| = l. By (ii) of Proposition
2.3.9, we have π ~Cn

(A) = vi1−1| . . . |vik−1|Ac−1 and π ~Cn
(B) = vj1−1| . . . |vjl−1|Bc

−1. This means
that [v]A ⊆ [v]B only for x = vi1−1, . . . , vik−1, therefore ΓP(A,B) ⊇ {vi1−1, . . . , vik−1}. Let
v ∈ ΓP(A,B) \ A−1. Then, [v]A = Ac−1. We have two cases: v ∈ B or v /∈ B. In the first
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case, [v]B has a single element, so [v]A can’t be contained in [v]B unless Ac−1 consists of a single
element, but this happens if |A| = n−1 and we have excluded this situation. In the second case,
we have [v]A ⊆ [v]B if and only if Ac−1 ⊆ Bc

−1, i.e. if and only if B−1 ⊆ A−1. This means that
B ⊆ A, but this situation has been excluded. Hence the proof of (6.11) is complete. Finally,

by definition we have γP(A,B) =
|ΓP(A,B)|
|V | , therefore (6.12) follows directly from (6.11).

We compute the previous average numbers in the particular case of the pairing P[ ~Cn] and
we also provide an asymptotic estimate for the symmetry transmission average.

Theorem 6.4.2. (i): Let A ⊆ V ( ~Cn). Then

λr(A) =



1
2n if A = ∅

1
2n−k

+ k
n2n−k

(2n−k − 1) if k = |A| < n− 1

1 if |A| ≥ n− 1

(ii): Let B ⊆ V = V ( ~Cn). Then, we have:

λc(B) =



1 if B = ∅

3n−1
4n + 1

n2n if |B| = 1

1
2k

+ k
2n + 1

2n

[
k−1∑
l=1

(
n
l

)
l
n +

n−2∑
l=k

((
n
l

)
−
(
n−k
l−k
))

l
n

]
if 1 < k = |B| < n

1
2n + 1

2 if |B| = n

(iii): λ( ~Cn) = 1
4n

{
n−2∑
k=0

(
n
k

) [
2k + k 2n−2k

n

]
+ 2n(n+ 1)

}
and lim

n→∞
λ( ~Cn) = 1

2 .

Proof. (i): If A = ∅, by (6.12), in the first row of symmetry transmission table of ~Cn we have
all the entries 0 except the first, which is 1, so λr(∅) = 1

2n . Otherwise, if |A| = r, where
r = 1, . . . , n− 2, we have exactly 2r entries equal to 1, corresponding to all its possible subsets,
and the other are equal to r

n . finally, when |A| = n−1 or A = V , the entries of the corresponding
rows in the symmetry transmission table are all 1.
(ii): We use the numbers γP(A,B) determined in (6.12) of Proposition 6.4.1. The first column,
corresponding to B = ∅, has all entries 1, therefore, λc(∅) = 1. Let B be a singleton. Then, if
B ⊆ A, the corresponding entries of the symmetry transmission table are 1; this happens 2n−1

times. Moreover, it is true also if |A| = n − 1. Now, we compute the other values. There are
exactly

(
n−1
k

)
k−subsets of V not containing B and the corresponding value of the symmetry

transmission table is k
n . Therefore we have

λc({vi}) = 2n−1 + 1 +

n−2∑
k=1

(
n− 1

k

)
k

n
.
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Since
n−2∑
k=1

(
n−1
k

)
k
n = 1

n

n−1∑
k=0

k
(
n−1
k

)
− n−1

n = n−1
n (2n−2−1), after algebraic manipulation we obtain

λc({vi}) =
3n− 1

4n
+

1

n2n
.

Let B be a generic subset with 1 < |B| < n elements. First of all, we observe that there are
exactly 2n−k subsets of V containing it and there are

(
n
n−1

)
−
(
n−k
n−k−1

)
= k subsets of cardinality

n− 1 not containing B, to which correspond the value 1. Furthermore there are no l−subsets
containing B for l = 1, . . . , k−1 and, for each of them, the corresponding value in the symmetry

transmission table is l
n , i.e. we can sum the quantity

k−1∑
l=1

(
n
l

)
l
n . Now, suppose that k ≤ l ≤ n−2.

There are exactly
(
n
l

)
−
(
n−k
l−k
)

subsets of cardinality l not containing B and in correspondence

of them, the value taken in the symmetry transmission table is l
n . Therefore we have:

λc(B) =
1

2k
+

k

2n
+

1

2n

[
k−1∑
l=1

(
n

l

)
l

n
+
n−2∑
l=k

((
n

l

)
−
(
n− k
l − k

))
l

n

]
.

Finally, when |B| = n, we have n + 1 entries equal to 1. Furthermore, there are no l−subsets
containing B for l = 1, . . . , n−2 and, for each of them, the corresponding value in the symmetry

transmission table is l
n . So λc(V ) = n+1

2n + 1
2n

n−2∑
l=1

(
n
l

)
l
n . Adding and subtracting the quantities

n(n − 1) + n, using the fact that
n∑
k=0

(
n
k

)
k = n2n−1, with algebraic manipulations we obtain

λc(V ) = 1
2n + 1

2 .
(iii): Setting k = |A|, we have 22n elements in the table, while, by (i), the sum of elements in

the same row is 2k + k2k

n (2n−k − 1) for k = 1, . . . , n − 2. We observe that if k = 0, then the
previous formula gives the result 1, in agreement with part (i). Therefore we have

λ( ~Cn) =
1

4n

{
n−2∑
k=0

(
n

k

)[
2k + k

2n − 2k

n

]
+ 2n(n+ 1)

}
. (6.13)

Now, let us note that lim
n→∞

2n(n+1)
4n = 0 and lim

n→∞
1

4n

n−2∑
k=0

(
n
k

)
2k = 0, since

n−2∑
k=0

(
n
k

)
2k =

n∑
k=0

(
n
k

)
2k−

n2n−1 − 2n = 3n − n2n−1 − 2n. Moreover

n−2∑
k=0

(
n

k

)
k

n
(2n − 2k) ≤

n−2∑
k=0

(
n

k

)
k2n

n
=

2n

n

[
n∑
k=0

k

(
n

k

)
− n(n− 1)− n

]
= 22n−1 − n2n.

Hence

lim
n→∞

λ( ~Cn) ≤ lim
n→∞

22n−1 − n2n

4n
=

1

2
.

Similarly, since
n∑
k=0

(
n
k

)
k = n2n−1, by (6.13) we obtain

λ( ~Cn) =
1

4n

{
n−2∑
k=0

(
n

k

)[
k

2n

n
+ 2k

(
1− k

n

)]
+ 2n(n+ 1)

}
≥ 1

4n
[22n−1 + 2n(1 + n)].

154



Therefore

lim
n→∞

λ( ~Cn) ≥ lim
n→∞

1

4n
[22n−1 + 2n(1 + n)] =

1

2

and the thesis follows.

6.4.2 The directed n-path

Now we focus our attention to the case of the directed n-path ~Pn.

Proposition 6.4.3. Let A and B be two distinct vertex subsets of V = V ( ~Pn) = {v1, . . . , vn}.
Then

ΓP(A,B) =


V if B = ∅ ∨B = {v1} ∨A = V ∨A = {v2, . . . , vn} ∨B ⊆ A
∅ if (A = ∅ ∨A = {v1}) ∧ (B 6= ∅ ∧B 6= {v1})
A−1 otherwise

(6.14)

Moreover

γP(A,B) =



1 if B = ∅ ∨B = {v1} ∨A = V ∨A = {v2, . . . , vn} ∨B ⊆ A

0 if (A = ∅ ∨A = {v1}) ∧ (B 6= ∅ ∧B 6= {v1})

k
n if |A| = k ∧ v1 /∈ A

k−1
n if |A| = k ∧ v1 ∈ A

(6.15)

Proof. By Proposition 2.3.9, we have that if B = ∅ or B = {v1}, then π ~Pn
(B) = V . Therefore

if A is any subset of V and v ∈ V is any vertex, it follows that [v]A ⊆ [v]B = V . Similarly,
if A = V or if A = {v2, . . . , vn}, we have π ~Pn

(A) = v1| . . . |vn. Moreover, by (2.13), if B ⊆ A,
then π ~Pn

(A) � π ~Pn
(B). In other words, in these cases Γ~Pn

(A,B) = V . A fortiori, even if A = ∅
or A = {v1}, then Γ~Pn

(A,B) = V . This is false when B 6= ∅, {v1}, in fact in this case we would
have [v]A = V contained in one of its subsets, that is an absurd. Let |A| = k and |B| = l
vertex subsets different from the previous. We have respectively π ~Pn

(A) = vi1−1| . . . |vik−1|Ac−1

and πB = vj1−1| . . . |vjl−1|Bc
−1. it is clear that the classes of vertices which form single blocks

with respective to A are contained in their classes with respect to B, so A−1 ⊆ Γ~Pn
(A,B). Let

v ∈ Γ~Pn
(A,B) \ A−1. Then, [v]A = Ac−1. We have two cases: v ∈ B or v /∈ B. In the first

case, [v]B has a single element, so [v]A can’t be contained in [v]B unless Ac−1 consists of a single
element, but this happens if A = {v2, . . . , vn} and we have excluded this situation. In the
second case, we have [v]A ⊆ [v]B if and only if Ac−1 ⊆ Bc

−1, i.e. if and only if B−1 ⊆ A−1. This
means that B ⊆ A, but this situation has been excluded. Thus Γ~Pn

(A,B) = {vi1−1, . . . , vik−1}.

This complete the proof of (6.14). Finally, by definition, we have γ ~Pn(A,B) =
|Γ~Pn (A,B)|
|V | ,

therefore (6.15) follows directly from (6.14).
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Lemma 6.4.4. Let A ⊆ V = V ( ~Pn). Then, we have

λr(A) =



1
2n−1 if A = ∅ ∨A = {v1}

1 if {v2, . . . , vn} ⊆ A

1
n + 3

2n (1− 1
n) if |A| = 1

1
2n−k

(1 + k−1
n (2n−k − 1)) if A = {v1, vi2 , . . . , vik}

1+2k+ k
n

(2n−2k−1)

2n if |A| = k 6= n− 1 ∧ v1 /∈ A

Proof. By (6.15) of Lemma 6.4.3, in the rows corresponding to A = ∅ and A = {v1} we have
only two entries 1 and the others are all 0, so λr(∅) = λr({v1}) = 1

2n−1 . When A = V , we have

that γ+
A (B) = 1 for every B ⊆ V = V ( ~Pn), therefore λr(V ) = 1. If A is singleton {vi} 6= {v1},

by (6.15) only in three entries we have 1, in the other entries we have 1
n . Therefore we have

λr(A) = 1
2n

(
2n

n −
3
n + 3

)
, i.e. 1

n + 3
2n (1− 1

n). Let A = {v1, vi2 , . . . , vik}. By (6.15), the entries
are 1 when the sets in the columns of the symmetry transmission table are contained in A,
therefore there are exactly

(
k
0

)
+ · · ·+

(
k
k

)
= 2k entries equal to 1, i.e. the number of all vertex

subsets of a set of cardinality k, while the other entries are equal to k−1
n . If A doesn’t contain

the vertex v1 and has cardinalitiy |A| = k 6= n−1, there are 2k + 1 entries equal to 1, i.e. those
corresponding to all its subsets and one corresponding to the second column. By (6.15), we
deduce that the remaining entries have value k

n .

Theorem 6.4.5. The quantity λ( ~Pn) is equal to:

1

4n

{
4 + 2n+1 + (n− 2)

(
3 +

2n − 3

n

)
+
n−1∑
k=2

(
n− 1

k − 1

)
2k
[
1 +

k − 1

n
(2n−k − 1)

]}
+

1

4n

{
n−2∑
k=2

(
n− 1

k

)[
1 + 2k +

k

n
(2n − 2k − 1)

]}
.

and lim
n→∞

λ( ~Pn) = 1
2 .

Proof. We must add the numbers λr(A) determined in Lemma 6.4.4, when A varies among
the subsets of V ( ~Pn). So, if A = ∅ or A = {v1}, we have to add 2, while if A = {v2, . . . , vn}
or A = v we have to add 2n. If A is a singleton vi, then we have exactly three entries equal
to 1, while the others take the value 1

n . Since there are n − 2 of these singletons, we can add
the quantity (n− 2)

(
3 + 2n−3

n

)
. Since, for k = 2, . . . , n− 1 the number of sets of cardinality k

containing the vertex v1 is
(
n−1
k−1

)
, we have to add the quantity

n−1∑
k=2

(
n−1
k−1

)
2k
[
1 + k−1

n (2n−k − 1)
]
.

Moreover, since for k = 2, . . . , n−2 the number of sets of cardinality k not containing the vertex
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v1 is
(
n−1
k

)
, we also have to add the quantity

n−2∑
k=2

(
n−1
k

)
2k
[
1 + 2k + k

n(2n − 2k − 1)
]
. Thus, we

conclude

λ( ~Pn) =
1

4n

{
4 + 2n+1 + (n− 2)

(
3 +

2n − 3

n

)
+
n−1∑
k=2

(
n− 1

k − 1

)
2k
[
1 +

k − 1

n
(2n−k − 1)

]}
+

1

4n

{
n−2∑
k=2

(
n− 1

k

)[
1 + 2k +

k

n
(2n − 2k − 1)

]}
.

We set R =
n−1∑
k=2

(
n−1
k−1

)
2k
[
1 + k−1

n (2n−k − 1)
]

and S =
n−2∑
k=2

(
n−1
k

) [
1 + 2k + k

n(2n − 2k − 1)
]
.

Then, by means of both the Stifel formula and the identities
n∑
k=0

(
n
k

)
2k = 3n,

n∑
k=0

(
n
k

)
k = n2n−1,

n−1∑
k=0

(
n−1
k

)
= 2n−1, with algebraic manipulations we obtain

R+ S ≤ 3n + 22n−1 − 2− 3 · 2n − 3n− n− 1

n
2n.

Then, we have

λ( ~Pn) =
1

4n

[
4 + 2n+1 + (n− 2)

(
3 +

2n − 3

n

)
+R+ S

]
≤

≤ 1

4n

[
4 + 2n+1 + (n− 2)

(
3 +

2n − 3

n

)
+ 3n + 22n−1 − 2− 3 · 2n − 3n− n− 1

n
2n
]
,

hence

lim
n→∞

λ( ~Pn) ≤ 1

2
.

In a similar way, again by means of both the Stifel formula and the identities
n∑
k=0

(
n
k

)
k = n2n−1,

n∑
k=0

(
n
k

)
k2k = 2n ·3n−1,

n−1∑
k=0

(
n−1
k

)
= 2n−1,

n−1∑
k=0

(
n−1
k

)
2k = 3n−1,

n−1∑
k=0

(
n−1
k

)
k = (n−1)2n−2, we get

R+ S ≥ 1

n
[2n+1 − 2n + 2n−1(n− 1)2 + 2n− 2− 2(n− 1)(2n−3 + 1)]+(

1− 1

n

)
22n−1 − (2 · 3n−1 + 2n−1)

(
1− 1

n

) (6.16)

Adding the term Q = 4 + 2n+1 + (n− 2)
(
3 + 2n−3

n

)
, dividing by 4n and passing to the limit as

n→∞, we obtain

lim
n→∞

λ( ~Pn) ≥ 1

2
.

Hence lim
n→∞

λ( ~Pn) = 1
2 .
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6.4.3 The Case of (V, ϕ,K)-VBP

Let us analyze the case of (V, ϕ,K)-VBP and that of pairings associated with group actions on
Ω.

Proposition 6.4.6. Let V be a (V, ϕ,K)-VBP and A,B ⊆ V . Then

ΓV (A,B) =

{
V if B ⊆ A
∅ otherwise

Proof. Since πP(A) = {u + A⊥ : u ∈ V }, we deduce that u + A⊥ ⊆ u + B⊥ if and only if
A⊥ ⊆ B⊥ or, equivalently, if B ⊆ A. Hence, ΓV (A,B) = V if and only if B ⊆ A, otherwise
ΓV (A,B) = ∅.

6.4.4 The Case of Pairings Arising from Group Actions on Ω

Let us analyze the case of pairings associated with group actions on Ω.

Proposition 6.4.7. Let (G,ψ) be the pairing associated with the action ψ of the group G on
Ω and A,B ⊆ Ω. Then

ΓG,ψ(A,B) =

{
G if StabG,ψ(A) ≤ StabG,ψ(B)
∅ otherwise

Proof. Since πP(A) = {g StabG,ψ(A) : g ∈ G}, we deduce that g StabG,ψ(A) ⊆ g StabG,ψ(B) if
and only if StabG,ψ(A) ≤ StabG,ψ(B). Hence, for any g′ ∈ G, it results that g′ StabG,ψ(A) ⊆
g′ StabG,ψ(B), so ΓG,ψ(A,B) = G. Otherwise, we must have ΓG,ψ(A,B) = ∅.
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Chapter 7

Matroidal Properties of MINP (P)

The result provided in Theorem 6.1.1 can be linked in a deeper way with the classical notion of
matroid. As a matter of fact, Theorem 1.6.5 gives a necessary and sufficient condition so that
a rank-symmetry operator of a matroid M on a finite set Ω coincides with a specific closure
operator on Ω.

This means that we can pass from the rank-symmetry operator σ of a given matroid on Ω
to the closure operator associated with some pairing P on Ω itself by means of Theorem 6.1.1.
To be more specific, in [20] it has been showed that

MINP (P) = {A ∈ P(Ω) : a /∈MP(A \ {a})∀a ∈ A}. (7.1)

Then, the identity provided in (7.1) tells us that MINP (P) behaves as the family of inde-
pendent sets of a potential matroid associated with the closure operator MP. In other terms,
MINP (P) is related to MAXP (P) in a similar way in which the indipendent set family of a
matroid is related to its closed set family.
Therefore, the representation Theorem 6.1.1 leads us to conclude that we do not lose in gen-
erality whenever we study closure systems or abstract simplicial complexes through pairings
and, furthermore, we also obtain explicit constructive criteria in order to study matroids as
particular cases of abstract simplicial complexes and finite lattice theory as a subtheory of
closure system theory.

In this chapter, we assume that Ω is a finite fixed set. We will establish new links between
matroid theory and the maximum partitioners, the minimal ones and the symmetry bases.
To this regard, our first basic result is a new representation theorem, where we prove that any
matroid M on Ω can be represented through a pairing whose MINP (P) coincides with M.

Theorem 7.0.8. Let M be the independent set family of a matroid on Ω. Then, there exists a
pairing P ∈ PAIR(Ω) such that MINP (P) = M.

Proof. Let σ be the closure operator associated with M (see [182]). Then, it is well known that

M = {A ∈ P(Ω) : a /∈ σ(A \ {a}) ∀a ∈ A} (7.2)

By Theorem 6.1.1 there exists a pairing P ∈ PAIR(Ω) such that MP = σ. Then, the thesis
follows by (7.2) and by (iv) of Theorem 2.6.1.
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We now study the two maps rkP := rkMINP (P) and DrkP := DrkMINP (P). To this regard,
we firstly note that

rkP(A) = max{|X| : X ∈MINPP(A)} = max{|X| : X ∈ max(MINPP(A))} (7.3)

and
DrkP(A) := {x ∈ Ω : rkP(A ∪ {x}) = rkP(A)}. (7.4)

Example 7.0.9. In reference to the pairing P given in Example 3.4.5, it results that:

rkP(∅) = 0; rkP({r}) = rkP({c}) = rkP({m}) = rkP({b}) = rkP({m, c}) = 1;

rkP({r,m}) = rkP({r, c}) = rkP({r, b}) = rkP({b, c}) = rkP({m, b}) = rkP({r,m, c}) =

= rkP({r,m, b}) = rkP({m, c, b}) = rkP({r, c, b}) = rkP({r,m, c, b}) = 2

Therefore, we deduce that

DrkP(∅) = ∅; DrkP({r}) = {r}; DrkP({b}) = {b};

DrkP({c}) = DrkP({m}) = DrkP({m, c}) = {m, c};

DrkP({r,m}) = DrkP({r, c}) = DrkP({r, b}) = DrkP({m, b}) = DrkP({b, c}) =

= DrkP({r,m, c}) = DrkP({r, c, b}) = DrkP({m, c, b}) = DrkP({r,m, b}) =

= DrkP({r,m, c, b}) = {r,m, c, b}.

Proposition 7.0.10. The function rkP satisfies the following properties:

(i) rkP(∅) = 0;

(ii) If A ⊆ B, then rkP(A) ≤ rkP(B);

(iii) 0 ≤ rkP(A) ≤ |A| for any A ∈ P(Ω);

(iv) rkP(A) ≤ rkP(A ∪ {x}) ≤ rkP(A) + 1.

Proof. All these properties are direct consequences of (7.3).

In [20]. it has been proved the next characterization for set system MINP (P) in terms of
rkP:

MINP (P) = {A ∈ P(Ω) : rkP(A) = |A|}. (7.5)

Remark 7.0.11. Let us observe that the map rkP behaves as the rank function of a ma-
troid whose independent set coincides with MINP (P) and whose bases are the elements of
max(MINP (P)). However, in general, MINP (P) is not a matroid, even if it has many
matroidal-like properties.

We can establish now two basic links between some properties of the symmetry bases and
the matroidal properties of the set system MINP (P).
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Proposition 7.0.12. (i) If MINP (P) is a matroid, then BASP(A) has uniform cardinality
for any A ∈ P(Ω).
(ii) If MP is a MLS closure operator on Ω then MINP (P) is a matroid.

Proof. (i): It follows immediately by Theorem 1.6.4 and by (iii) of Theorem 3.2.2.
(ii): Since MP is a MLS closure operator on Ω, the family

F := {A ∈ P(Ω) : a /∈MP(A \ {a}) ∀a ∈ A}

coincides with the indipendent set family of a matroid on Ω (see [182]). By virtue of (7.1), we
deduce that F = MINP (P), hence the claim has been showed.

We now ask which relation there is between the set operators DrkP and MP. In general,
the identity DrkP(A) = MP(A) does not hold, as we can see in the next example.

Example 7.0.13. Let P be the pairing given in Example 3.2.3 and let A = {1, 2}. It is
immediate to see that rkP({1, 2}) = rkP({1, 2, 5}) = 2 and that 5 /∈MP({1, 2}) = {1, 2}. Hence
MP(A) 6= DrkP(A). Furthermore, let us observe that BAS(P) 6= max(MINP (P)). In fact,
we observe by Figure 3.2 that BAS(P) = {{2, 5}, {1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {1, 2, 3}, {2, 3, 4}},
whilst max(MINP (P)) = {{2, 5}, {4, 5}{1, 2, 4}, {1, 3, 4}, {1, 3, 5}, {1, 2, 3}, {2, 3, 4}}. Finally,
MINP (P) is not a matroid: let A = {2, 5} and B = {1, 2, 4}. Then, for any b ∈ B \ A, it
follows that A ∪ {b} /∈MINP (P). As a matter of fact, neither {1, 2, 5} nor {2, 4, 5} belong to
MINP (P), as Figure 3.2 shows.

However, we show now that MINP (P) is a matroid on Ω when the set operators DrkP
and MP coincide.

Theorem 7.0.14. If DrkP(A) = MP(A) for any A ∈ P(Ω), then MINP (P) ∈MATR(Ω).

Proof. Let us prove that rkP satisfies (Rk1), (Rk2) and (Rk3). By (i) and (ii) of Proposition
7.0.10, we have that rkP satisfies (Rk1) and (Rk2). Let us assume that rkP(A ∪ {a}) =
rkP(A∪{b}) = rkP(A). This means that a, b ∈ DrkP(A) = MP(A). Hence, A∪{a}∪{b} ≈P A.
Moreover, it clearly results that MP(A ∪ {a}) = DrkP(A ∪ {a}) = DrkP(A) = MP(A) and
MP(A∪{b}) = DrkP(A∪{b}) = DrkP(A) = MP(A). Thus, b ∈MP(A∪{a}) = DrkP(A∪{a}),
therefore we conclude that rkP(A∪{a}∪ {b}) = rkP(A∪{a}) = rkP(A). This shows that rkP
satisfies (Rk3) and that rkP is the rank function of a matroid on Ω. By Theorem 1.6.2 and
(7.5), we deduce that MINP (P) is a matroid.

The reverse theorem does not hold, as we can see in next example.

Example 7.0.15. Let us consider the pairing P of Example 3.4.5. It is easy to see that
MINP (P) is a matroid. In fact, for the empty set, Property (M2) holds trivially. Moreover,
if we take A,B such that |A| = 1 and |B| = 2, two cases occur: if A $ B, (M2) is trivially
verified, otherwise, we clearly have that A ∩ B = ∅. Let us consider, for example A = {r}
and B = {b, c}. Since both {r, c} and {r, b} belong to MINP (P), we conclude that (M2) is
satisfied for these two particular sets. A similar argument holds for any pair of subsets as
A and B. Therefore MINP (P) is a matroid. Neverthless, by Example 7.0.9, we have that
DrkP({r, b}) = {r,m, c, b} 6= MP({r, b}) = {r, b}.
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Nevertheless, the following partial reverse of Theorem 7.0.14 can be provided.

Theorem 7.0.16. If MINP (P) ∈MATR(Ω), then MP(A) ⊆ DrkP(A) for any A ∈ P(Ω).

Proof. Let A ∈ P(Ω) and a /∈ DrkP(A). Then, rkP(A ∪ {a}) = rkP(A) + 1. In particular, by
Theorem 1.6.4, it results that ||BASP(A)|| = rkP(A) and ||BASP(A ∪ {a})|| = rkP(A) + 1.
If a were in MP(A), we would have that BASP(MP(A)) has not uniform cardinality. But,
BASP(MP(A)) ⊆ max(MINPP(MP(A))) so, by Theorem 1.6.4, BASP(MP(A)) must have
uniform cardinality too. Therefore, a /∈MP(A).

In the last part of this chapter, we first recall the notion of maxp-symmetry base uniform
pairing introduced in [20] and we show the link between such pairings and symmetry bases,
minimal partitioners and the coincidence of the two set operators DrkP and MP.

Definition 7.0.17. We say that P ∈ PAIR(Ω) is maxp-symmetry base uniform if the following
two conditions are satisfied:

(i) for any A ∈ P(Ω), BASP(MP(A)) has uniform cardinality;

(ii) if A,B ∈ P(Ω), A $ B and A 6≈P B, then ||BASP(MP(A))|| < ||BASP(MP(B))||.

We denote by MSBUP (Ω) the set of all maxp-symmetry base uniform pairings.

In the next fundamental result, we characterize the maxp-symmetry base uniform pairings
in terms of equality of the two operators DrkP and MP and of the two set systems BASP(A)
and max(MINPP(A)) for any A ∈ P(Ω).

Theorem 7.0.18. The following conditions are equivalent:
(i) P ∈MSBUP (Ω);
(ii) max(MINPP(A)) = BASP(A) for any A ∈ P(Ω);
(iii) DrkP(A) = MP(A) for any A ∈ P(Ω).

Proof. (i) =⇒ (ii): By (iii) of Theorem 3.2.2, we have that BASP(A) ⊆ max(MINPP(A))
for any A ∈ P(Ω). Let now B ∈ max(MINPP(A)) \BASP(A). Therefore πP(B) 6= πP(A), so
there exists a ∈ A \MP(B) such that B ∪ {a} 6≈P B. Since B ∈ max(MINPP(A)), it follows
that BASP(B) = {B}. Let us prove that a ∈ C for any C ∈ BASP(B∪{a}). Suppose the claim
false. Then, C ⊆ B ⊆ B∪{a}, but this implies πP(B∪{a}) � πP(B) � πP(C) = πP(B∪{a}),
i.e. πP(B ∪ {a}) = πP(B), contradiction. Thus, a ∈ C for any C ∈ BASP(B ∪ {a}). Since
P is a maxp-symmetry base uniform pairing, ||BASP(B ∪ {a})|| > ||BASP(B)||. Moreover, if
C ∈MINPP(B), then C ∈MINPP(B∪{a}) hence, in particular, B ∈MINPP(B∪{a}). So,
necessarily, BASP(B ∪ {a}) = {B ∪ {a}}. In other terms, we have found a subset containing
B and belonging to max(MINPP(A)), i.e. B /∈ max(MINPP(A)), contradiction. This shows
the thesis.
(ii) =⇒ (iii): Let a /∈ MP(A). Hence A ∪ {a} 6≈P A. Suppose by contradiction that
a ∈ DrkP(A), that is rkP(A) = rkP(A ∪ {a}). Let B ∈ MINPP(A) such that |B| = rkP(A).
It must necessarily be B ∈ max(MINPP(A ∪ {a})) = BASP(A ∪ {a}), so πP(A) = πP(B) =
πP(A ∪ {a}), contradicting the fact that a /∈MP(A). Thus, a /∈ DrkP(A).
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1 2 3 4 5

u1 1 0 0 1 0

u2 0 1 0 0 1

u3 0 0 0 0 1

u4 1 0 0 1 0

u5 1 0 0 0 1

Figure 7.1: Functional Table P.

Vice versa, let a ∈ MP(A), then A ∪ {a} ≈P A. Let us consider B ∈ BASP(A ∪ {a}). We
have two possibilities: if also B ∈ BASP(A), then rkP(A) = rkP(A ∪ {a}) by the definition
of rkP; otherwise a ∈ B. In the latter case, we have B 6= C ∪ {a} for each symmetry base C
of A, otherwise πP(B \ {a}) = πP(C) = πP(A) but, by (ii) of Theorem 2.6.1, it must result
πP(B\{a}) 6= πP(B) = πP(A). It must necessarily result B = B′∪{a} for some B′ $ C, where
C is a symmetry base of A. This implies that rkP(A∪ {a}) ≤ rkP(A). Thus, by monotonicity
of rkP, we conclude that rkP(A) = rkP(A ∪ {a}), i.e. a ∈ DrkP(A).
(iii) =⇒ (i): By Theorem 7.0.14, we deduce that MINP (P) is a matroid. This implies that
||BASP(A)|| has uniform cardinality for any A ∈ P(Ω), so, in particular, ||BASP(MP(A))||
has uniform cardinality for any A ∈ P(Ω). Moreover, if A,B ∈ P(Ω), A $ B and A 6≈P B,
we conclude by (ii) of Proposition 7.0.10 that rkP(A) < rkP(B), so ||BASP(MP(A))|| <
||BASP(MP(B))|| and the thesis follows.

In the following example, we provide an example of maxp-symmetry base uniform pairing.

Example 7.0.19. Let us consider the pairing P represented in Figure 7.1.
The indistinguishability lattice of I(P) has been drawn in Figure 7.2.
It is easy to verify that DrkP(A) = MP(A) for any A ∈ P(Ω). Thus, we conclude that

MINP (P) is a matroid. As it can be easily seen by Figure 7.2, P is maxp-symmetry base
uniform, whence it follows that BASP(A) = max(MINPP(A)) for any A ∈ P(Ω).

As immediate consequences of the previous theorem, we obtain the following results.

Corollary 7.0.20. Let P ∈MSBUP (Ω). Then, MP is a MLS closure operator.

Proof. By Theorem 7.0.18, it results that DrkP(A) = MP(A) for any A ∈ P(Ω). Furthermore,
by Theorem 7.0.14, it follows that MINP (P), therefore DrkP is a MLS closure operator. A
fortiori, MP is a MLS closure operator.

Let us note that the converse of Corollary 7.0.20 does not hold as we see in next example.

Example 7.0.21. In reference to the pairing P given in Example 3.4.5, it results that MP is
a MLS closure operator, but P is not a maxp-symmetry base uniform pairing.

Corollary 7.0.22. Let P ∈ MSBUP (Ω). Then, MINP (P) is a matroid whose basis family
is BAS(P).

Proof. It follows immediately by Theorems 7.0.18 and 7.0.14.
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Figure 7.2: The indistinguishaibility lattice I(P).
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Chapter 8

Symmetry Approximations and
Indistinguishability Linear Systems

In this chapter, we introduce the notions of lower and upper symmetry approximations and
determine in specific cases, namely graphs and digraphs, the corresponding sets. Furthermore,
we link these approximations to a class of pairings that gives rise to an analogy with linear
systems and that we call indistinguishability linear systems.

8.1 Symmetry Approximations

We provide now the basic definitions concerning symmetry approximation.

Definition 8.1.1. Let P = (U,Λ, F ) ∈ PAIR(Ω), A ⊆ Ω and X ⊆ U .

• The A-lower symmetry approximation of X is the following subset of U :

lA(X) := {x ∈ U : [x]A ⊆ X}.

• The A-upper symmetry approximation of X is the following subset of U :

uA(X) := {x ∈ U : [x]A ∩X 6= ∅}.

• The subset X is called A-symmetry exact if and only if lA(X) = uA(X) and A-rough
otherwise.

• The subset
BNA(X) := uA(X) \ lA(X)

is called the A-boundary region of X.

• If X 6= ∅, the A-symmetry approximation accuracy of X is the quantity αA(X) := |lA(X)|
|uA(X)| .

Remark 8.1.2. It is immediate to verify that both the following relations hold:

(i) lA(X) =
⋃
{C ∈ πP(A) : C ⊆ X};

(ii) uA(X) =
⋃
{C ∈ πP(A) : C ∩X 6= ∅}.
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8.2 Symmetry Approximation in Some Examples

In this section we compute the A-upper and the A-lower symmetry approximations for some
specific cases of pairings.

8.2.1 The A-upper and the A-lower Approximations for Cn

In this subsection, we compute the A−upper and the A−lower approximation functions for
the n−cycle Cn. However, we interpret in geometric terms what the A-lower and A-upper
approximation represent in graph context.

Proposition 8.2.1. Let G = (V (G), E(G)) be a simple undirected graph and let A and Y be
two subsets of V (G). Then:
(i) uA(Y ) = {v ∈ V (G) : ∃u ∈ Y : NG(u) ∩A = NG(v) ∩A}.
Therefore, v ∈ uA(Y ) if and only if v is an A-symmetric vertex of some u ∈ Y .
(ii) lA(Y ) = {v ∈ V (G) : (u ∈ V (G) ∧NG(u) ∩A = NG(v) ∩A) =⇒ u ∈ Y }.
Therefore, v ∈ lA(Y ) if and only if all A-symmetric vertices of v are in Y .

Proof. It is an immediate consequence of (2.2) and of the definitions of lower and upper sym-
metry approximations.

Hence the lower symmetry approximation of a vertex set Y represents a subset of Y such
that there are no elements outside Y with the same connections of any vertex in lA(Y ) (rel-
atively to A). The upper symmetry approximation of Y is the set of vertices with the same
connections (with respect to A) of at least one element in Y . By the previous proposition it is
natural to call lA(Y ) the A-symmetry kernel of Y and uA(Y ) the A-symmetry closure of Y .

In order to determine the general form of the A-upper approximation function of Cn, we
must examine all possible relations between the vertex subset Y and the three subsets BCn(A),
KCn(A) and SCn(A). Next, we also show that any possible choice of the vertex subsets A and
Y is included in the cases we examined.

If A and Y are two vertex subsets of Cn we set

QA(Y ) :=
⋃
{NCn(v) : v ∈ CCn(A) ∧NCn(v) ∩ Y 6= ∅}.

Theorem 8.2.2. Let A and Y be two vertex subsets of Cn. The map u : (A, Y ) ∈ P(V (Cn))×
P(V (Cn)) 7→ uA(Y ) ∈ P(V (Cn)) is completely described from the cases listed in the following
table:
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CONDITIONS uA(Y )

Y = V (Cn) V (Cn)

Y = ∅ ∅
Y 6= ∅ ∧ Y ⊆ BCn(A) BCn(A)

Y 6= ∅ ∧ Y ⊆ KCn(A) QA(Y )

Y 6= ∅ ∧ Y ⊆ SCn(A) Y

Y ∩BCn(A) 6= ∅ ∧ Y ∩KCn(A) 6= ∅ ∧ Y ∩ SCn(A) = ∅ QA(Y ) ∪BCn(A)

Y ∩BCn(A) 6= ∅ ∧ Y ∩ SCn(A) 6= ∅ ∧ Y ∩KCn(A) = ∅ BCn(A) ∪ Y
Y ∩KCn(A) 6= ∅ ∧ Y ∩ SCn(A) 6= ∅ ∧ Y ∩BCn(A) = ∅ QA(Y ) ∪ Y
Y ∩BCn(A) 6= ∅ ∧ Y ∩KCn(A) 6= ∅ ∧ Y ∩ SCn(A) 6= ∅ BCn(A) ∪ Y ∪QA(Y )

Proof. 1): Let Y = V (Cn) and A any vertex subset of V (Cn). Obviously [v]A∩Y 6= ∅ for every
vertex v, so uA(V (Cn)) = V (Cn).
2): Let Y = ∅ and A any vertex subset of V (Cn). Obviously [v]A ∩ ∅ = ∅ for every vertex v, so
uA(∅) = ∅.

3): Let A and Y be two vertex subsets such that Y 6= ∅ ∧ Y ⊆ BCn(A). This means that the
indiscernibility block intersecting Y is exactly BCn(A), therefore [v]A ∩ Y 6= ∅ if and only if
v ∈ BCn(A).
4): Let A and Y be two vertex subsets such that Y 6= ∅ ∧ Y ⊆ KCn(A). Recalling that
KCn(A) = NCn(CCn(A)), we deduce that Y intersects only the neighbourhoods of some points
vj1 , . . . , vjm ∈ CCn(A), therefore QA(Y ) 6= ∅ and uA(Y ) = QA(Y ).
5): Let A and Y be two vertex subsets such that Y 6= ∅ ∧ Y ⊆ SCn(A). Since the elements of
SCn(A) form single blocks in the A−indiscernibility partition, we have that Y ∩ [v]A 6= ∅ if and
only if v ∈ SCn(A) ∩ Y = Y . Hence uA(Y ) = Y .
6): LetA and Y be two vertex subsets such that Y ∩BCn(A) 6= ∅∧Y ∩KCn(A) 6= ∅∧Y ∩SCn(A) =
∅. In other words, Y is transversal only to BCn(A) and KCn(A); therefore we have that
[v]A ∩ Y 6= ∅ if and only if v ∈ BCn(A) or ∃w ∈ CCn(A) : v ∈ NCn(w) ∧ NCn(w) ⊆ QA(Y ).
Thus uA(Y ) = BCn(A) ∪QA(Y ).
7): LetA and Y be two vertex subsets such that Y ∩BCn(A) 6= ∅∧Y ∩SCn(A) 6= ∅∧Y ∩KCn(A) =
∅. In this case, Y is transversal only to BCn(A) and SCn(A), hence [v]A ∩ Y 6= ∅ if and only if
v ∈ BCn(A) or v ∈ Y ∩ SCn(A). Thus uA(Y ) = BCn(A) ∪ (Y ∩ SCn(A)) = Y ∪BCn(A).
8): Let A and Y be two vertex subsets such that Y ∩ KCn(A) 6= ∅ ∧ Y ∩ SCn(A) 6= ∅ ∧ Y ∩
BCn(A) = ∅. Then, [v]A ∩ Y 6= ∅ if and only if v ∈ Y ∩ SCn(A) or ∃w ∈ CCn(A) : v ∈
NCn(w) ∧ NCn(w) ⊆ QA(Y ), since Y is transversal to both KCn(A) and SCn(A). So, we
conclude that uA(Y ) = QA(Y ) ∪ (Y ∩ SCn(A)) = QA(Y ) ∪ Y .
9): LetA and Y be two vertex subsets such that Y ∩BCn(A) 6= ∅∧Y ∩KCn(A) 6= ∅∧Y ∩SCn(A) 6=
∅. It means that Y is transversal to the three sets. Therefore we have [v]A∩Y 6= ∅ if and only if
v ∈ BCn(A) or v ∈ Y ∩ SCn(A) or ∃w ∈ CCn(A) : v ∈ NCn(w)∧NCn(w) ⊆ QA(Y ). Therefore,
uA(Y ) = BCn(A) ∪QA(Y ) ∪ (Y ∩ SCn(A)) = Y ∪BCn(A) ∪QA(Y ) and we are done.

At this point, we prove that the previous cases are all disjoint each other and they are all
possible cases that can occur. Let Y be a proper vertex subset of V = V (Cn), then since
V (Cn) = BCn(A) ∪KCn(A) ∪ SCn(A), we deduce that Y can be a subset of one of these three
sets, as we have said writing down the conditions 3), 4) and 5), or it can be transversal to two
of them, without containing none of them and without intersecting the third, as we have said
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writing down the conditions 6), 7) and 8). Finally, Y can be transversal to every set, without
containing none of them, as written in the last condition. So, the cases discussed above are
disjoint one another and, above all, describe all possible occurring situations. In this way we
have shown the theorem.

Let us compute now the A−lower approximation function for the n−cycle Cn. Also to
compute the A-lower approximation function of Cn we will use the previous technique, namely
to study all possible relations between the vertex subset Y and the three subsets BCn(A),
KCn(A) and SCn(A) determining the A-symmetry partition.

If A and Y are two vertex subsets of Cn we set

TA(Y ) :=
⋃

v∈CCn (A)

{NCn(v) : NCn(v) ⊆ Y }.

Theorem 8.2.3. Let A and Y be two vertex subsets of Cn. The map l : (A, Y ) ∈ P(V (Cn))×
P(V (Cn)) 7→ lA(Y ) ∈ P(V (Cn)) is completely described from the cases listed in the following
table:

CONDITIONS lA(Y )

Y = V (Cn) V (Cn)

Y $ BCn(A) ∅
Y ⊇ BCn(A) ∧ TA(Y ) = ∅ BCn(A) ∪ (Y ∩ SCn(A))

Y ⊇ BCn(A) ∧ TA(Y ) 6= ∅ BCn(A) ∪ (Y ∩ SCn(A)) ∪ TA(Y )

Y ∩BCn(A) 6= ∅ ∧BCn(A) 6⊆ Y ∧ TA(Y ) = ∅ Y ∩ SCn(A)

Y ∩BCn(A) 6= ∅ ∧BCn(A) 6⊆ Y ∧ TA(Y ) 6= ∅ (Y ∩ SCn(A)) ∪ TA(Y )

Proof. 1): Let Y = V (Cn) and A be any vertex subset of V (Cn). Obviously [v]A ⊆ V (Cn) for
every vertex v, so lA(V (Cn)) = V (Cn).
2): Let Y = ∅ and A be any vertex subset of V (Cn). Obviously no indiscernibility class is
contained in the empty set, so lA(∅) = ∅.
3): Let A and Y be two vertex subsets such that Y $ BCn(A). Since BCn(A) forms a single
block and since Y is disjoint from KCn(A) and SCn(A), we deduce that there is no vertex whose
indiscernibility class is contained in Y , thus lA(Y ) = ∅.
4): Let A and Y be two vertex subsets such that Y ⊇ BCn(A) and TA(Y ) = ∅. We observe
that Y may or not intersect the vertex subset KCn(A) and, in the first case, in such a way that
there not exists any vertex w ∈ CCn(A) whose neighbourhood is contained in Y . Furthermore,
Y may or not intersect SCn(A). Thus we conclude that [v]A ⊆ Y if and only if v ∈ BCn(A) or,
possibly, v ∈ Y ∩ SCn(A), i.e. lA(Y ) = BCn(A) ∪ (Y ∩ SCn(A)).
5): Let A and Y be two vertex subsets such that Y ⊇ BCn(A) and TA(Y ) 6= ∅. We observe that
Y may or not intersect the vertex subset SCn(A). Moreover, there exists at least one vertex
w ∈ CCn(A) whose neighbourhood is contained in Y . Hence we conclude that [v]A ⊆ Y if and
only if v ∈ BCn(A) or v ∈ NCn(w) ⊆ TA(Y ) for some w ∈ CCn(A) or, possibly, v ∈ Y ∩SCn(A),
i.e. lA(Y ) = BCn(A) ∪ TA(Y ) ∪ (Y ∩ SCn(A)).
6): Let A and Y be two vertex subsets such that Y ∩BCn(A) 6= ∅ ∧BCn(A) 6⊆ Y ∧ TA(Y ) = ∅.
Since BCn(A) forms a single block, we conclude that BCn(A) 6⊆ lA(Y ). We also observe that Y
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may or not intersect the vertex subset SCn(A). Moreover, there is no vertex w ∈ CCn(A) such
that v ∈ NCn(w) and NCn(w) ⊆ Y . This means that [v]A ⊆ Y if and only if v ∈ Y ∩ SCn(A),
i.e. lA(Y ) = Y ∩ SCn(A).
7): Let A and Y be two vertex subsets such that Y ∩BCn(A) 6= ∅ ∧BCn(A) 6⊆ Y ∧ TA(Y ) 6= ∅.
Since BCn(A) forms a single block, we conclude that BCn(A) 6⊆ lA(Y ). We also observe that
Y may or not intersect the vertex subset SCn(A). Furthermore, there exists at least a vertex
w ∈ CCn(A) such that v ∈ NCn(w) and NCn(w) ⊆ Y . In other words, we are saying that
[v]A ⊆ Y if and only if v ∈ Y ∩ SCn(A) or ∃w ∈ CCn(A) : v ∈ NCn(w) ∧NCn(w) ⊆ TA(Y ), i.e.
lA(Y ) = (Y ∩ SCn(A)) ∪ TA(Y ).

At this point, we show that we have studied all the occurring cases. Let Y be a proper vertex
subset of V = V (Cn). In case 3) we have that Y $ BCn(A) while in cases 4) and 5) we are
requiring that Y contains BCn(A) and it may (or not) be transversal to both KCn(A) and
SCn(A). Finally, Y may only transversal to BCn(A), without containing it, as we have seen
in the last two cases. So, the cases discussed above are disjoint one another and, above all,
describe all possible occurring situations. Hence, the theorem is proved.

To conclude this section, we recall that A-symmetry exactness has been investigated in [52].

8.2.2 Symmetry Approximation in Some Basic Digraphs

Let D = (V (D), Arc(D)) be a digraph and let A, Y be two vertex subsets of D. We denote
by l+A(Y ) := {v ∈ V (D) : [v]A ⊆ Y } the A-lower approximation of Y and by u+

A(Y ) := {v ∈
V (D) : [v]A ∩ Y 6= ∅} the A-upper approximation of Y .

In the next results we completely determine A-lower approximation, A-upper approximation
and A-symmetry exactness for the four basic digraph families ~Kp,q, ~Pn, ~Cn and ~Tn.

We begin with the case of the complete bipartite digraph ~Kp,q.

Proposition 8.2.4. Let A and Y be two subsets of V ( ~Kp,q) = {x1, . . . , xp, y1, . . . ,
yq}, where Y 6= ∅ and Y 6= V . Then:
(i) the A-lower approximation of Y is

l+A(Y ) =


Y if A = V
∅ if A = ∅∨

A ⊆ B1 ∨ (Y ∩B1 6= ∅ ∧ Y ∩B2 6= ∅ ∧B1 6⊆ Y ∧B2 6⊆ Y )
B1 if B1 ⊆ Y
B2 if B2 ⊆ Y

(ii) The A-upper approximation of Y is

u+
A(Y ) =


B1 if Y ⊆ B1 ∧A 6⊆ B1

B2 if Y ⊆ B2 ∧A 6⊆ B1

V otherwise

(iii) If A = V , then Y any vertex subset is A-symmetry exact. In the other cases, Y is
A-symmetry exact if and only if Y = B1 or Y = B2.
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Proof. (i): The statement in the case A = V is obvious. Moreover, let A = ∅ ∨ A ⊆ B1. Then
[v]A = V , whence l+A(Y ) = ∅. Let A be a non-empty vertex subset not contained in B1. By
Proposition 2.3.9, π ~Kp,q(A) = B1|B2, therefore if Y is any vertex subset containing B1 or B2, it

is clear that, respectively, l+A(Y ) = B1 or l+A(Y ) = B2; otherwise, if Y is transversal to both
B1 and B2 without containing none of them, then [v]A 6⊆ Y , hence l+A(Y ) = ∅.
(ii): By Proposition 2.3.9, if we suppose that A = ∅ or A ⊆ B1, we conclude easily that
u+
A(Y ) = V . Let A be a non-empty vertex subset such that A 6⊆ B1 and let Y be another

vertex subset. We have three cases: if Y ⊆ B1, clearly it results u+
A(Y ) = B1, if Y ⊆ B2,

clearly it results u+
A(Y ) = B2, otherwise Y is transversal to both B1 and B2, so it intersects

both the symmetry blocks of π ~Kp,q(A). This means that, in this case, u+
A(Y ) = V .

(iii): It follows immediately by the previous parts.

We can now examine the digraph ~Pn.

Proposition 8.2.5. Let A and Y be two subsets of V ( ~Pn) = {v1, . . . , vn}, where Y 6= ∅ and
Y 6= V . Then:
(i) the A-lower approximation of Y is

l+A(Y ) =


Y if A = V ∨A = {v2, . . . , vn} ∨ (|A| = k ∧ Y ⊇ Ac−1)
∅ if A = ∅ ∨A = {v1}
Y ∩A−1 otherwise.

(ii) The A-upper approximation of Y is

u+
A(Y ) =


V if A = ∅ ∨A = {v1}
Y ∪Ac−1 if |A| = k ∧ Y ∩Ac−1 6= ∅
Y otherwise.

(iii) If A = V or A = {v2, . . . , vn} then Y is always A-symmetry exact. In the other cases, Y
is A-symmetry exact if and only if A 6= ∅ ∧A 6= {v1} ∧ (|A| = k ∧ (Y ⊇ Ac−1 ∨ Y ⊆ A−1)).

Proof. (i) By Proposition 2.3.9, if A = V or A = {v2, . . . , vn}, then π ~Pn
(A) = v1| . . . |vn

and therefore l+A(Y ) = Y for any choice of the vertex subset Y . Again, by Proposition
2.3.9, it is obvious that if A = ∅ or if A = {v1}, then l+A(Y ) = ∅, since the only subset Y
containing V is V itself, but by hypothesis Y 6= V . Let |A| = k; then, by Proposition 2.3.9,
π ~Pn

(A) = vi1−1| . . . |vik−1|Ac−1 or π ~Pn
(A) = vi2−1| . . . |vik−1|Ac−1 depending on whether v1 /∈ A

or v1 ∈ A. In both cases, if Y ⊇ Ac−1, then [v]A ⊆ Y if and only if v ∈ Ac−1 or v ∈ Y ∩ A−1

and l+A(Y ) = Ac−1 ∪ (Y ∩ A−1) = Y . If |A| = k and Y + Ac−1, then [v]A ⊆ Y if and only if
v ∈ Y ∩A−1, so l+A(Y ) = Y ∩A−1.
(ii) By Proposition 2.3.9, if A = ∅ or A = {v1}, then π ~Pn

(A) = V and therefore all the vertices
of the digraph are contained in a single block that obviously intersects Y . Let A = V , then
by Proposition 2.3.9, π ~Pn

(A) = v1| . . . |vn. If |A| = k and Y ∩ Ac−1 6= ∅, then [v]A ∩ Y 6= ∅ if

and only if v ∈ Ac−1 or v ∈ Y ∩ A−1 and thus in this case u+
A(Y ) = Y ∪ Ac−1. If |A| = k and

Y ⊆ A−1, then [v]A ∩ Y 6= ∅ if and only if v ∈ Y ∩ A−1 = Y , so u+
A(Y ) = Y . If A = V or

A = {v2, . . . , vn}, then by using Proposition 2.3.9, it is easy to see that [v]A ∩ Y 6= ∅ if and
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only if v ∈ Y . This completes the proof of (ii).
(iii) By the previous parts, it is clear that if A = V or if A = {v2, . . . , vn} then Y is always A-
symmetry exact. Moreover if A 6= ∅∧A 6= {v1}∧ (Y ⊇ Ac−1 ∨Y ⊆ A−1) then Y is A-symmetry
exact. On the other hand, it is obvious that if A = ∅ or A = {v1} then no proper vertex
subset Y is A-symmetry exact. Now, let |A| = k, where A 6= {v2, . . . , vn}. A vertex subset Y
is A-symmetry exact if and only if l+A(Y ) = Y = u+

A(Y ). By part (i), l+A(Y ) = Y if and only
if Y ⊇ Ac−1 or Y ∩ Ac−1 = ∅ which is equivalent to say that Y ⊆ A−1. Finally, by part (ii),
Y = u+

A(Y ) if and only if Y ∩Ac−1 6= ∅ and Y ∪Ac−1 = Y (equivalent to say that Y ⊇ Ac−1) or
Y ∩Ac−1 = ∅ (equivalent to say that Y ⊆ A−1). The proposition is thus proved.

We determine now the rough approximation functions and the corresponding exactness for
the n-directed cycle.

Proposition 8.2.6. Let A and Y be two subsets of V ( ~Cn) = {v1, . . . , vn}, where Y 6= ∅ and
Y 6= V . Then:
(i) the A-lower approximation of Y is

l+A(Y ) =


Y if (A = V ) ∨ (1 ≤ |A| ≤ n− 2 ∧ Y ⊇ Ac−1) ∨ |A| = n− 1
∅ if A = ∅
A−1 ∩ Y otherwise

(ii) The A-upper approximation of Y is

u+
A(Y ) =


V if A = ∅
Y ∪Ac−1 if 1 ≤ |A| ≤ n− 2 ∧ Y ∩Ac−1 6= ∅
Y otherwise

(iii) If A = V or |A| = n − 1, then Y is always A-symmetry exact. In the other cases, Y is
A-symmetry exact if and only if 1 ≤ |A| ≤ n− 2 ∧ (Y ⊇ Ac−1 ∨ Y ⊆ A−1).

Proof. (i) : By Proposition 2.3.9, if A = ∅ then l+A(Y ) = ∅, since the only subset Y containing
V is V itself, but by hypothesis Y 6= V . Suppose that |A| ≥ n− 1, then by Proposition 2.3.9,
it results that π ~Cn

(A) = v1| . . . |vn, therefore it is clear that l+A(Y ) = Y for any choice of the
vertex subset Y . Let 1 ≤ |A| = k ≤ n − 2; by Proposition 2.3.9 we deduce that if Y ⊇ Ac−1,
then [v]A ⊆ Y if and only if v ∈ Ac−1 or v ∈ Y ∩ A−1 and l+A(Y ) = Ac−1 ∪ (Y ∩ A−1) = Y . If
1 ≤ |A| ≤ n− 2 and Y % Ac−1, then [v]A ⊆ Y if and only if v ∈ Y ∩A−1, so l+A(Y ) = Y ∩A−1.
(ii) : By Proposition 2.3.9, if |A| ≥ n − 1, it results that π ~Cn

(A) = v1| . . . |vn, therefore it is

clear that u+
A(Y ) = Y for any choice of the vertex subset Y . On the contrary, if A = ∅ then

u+
A(Y ) = V , since for every vertex v, we have [v]A = V and every vertex subset Y intersects

V . Let 1 ≤ |A| = k ≤ n − 2 and Y ∩ Ac−1 6= ∅, then [v]A ∩ Y 6= ∅ if and only if v ∈ Ac−1 or
v ∈ Y ∩ A−1, therefore u+

A(Y ) = Y ∪ Ac−1. Finally, if 1 ≤ |A| ≤ n − 2 and Y ⊆ A−1, then
[v]A ∩ Y 6= ∅ if and only if v ∈ Y ∩ A−1 = Y , hence we conclude that u+

A(Y ) = Y . We have
thus shown (ii).
(iii) : By the previous parts, it is clear that if |A| ≥ n − 1 then Y is always A-symmetry
exact. it is also clear that if 1 ≤ |A| ≤ n − 2 ∧ (Y ⊇ Ac−1 ∨ Y ⊆ A−1) then Y is A-symmetry
exact. Moreover, it is obvious that if A = ∅ then no proper vertex subset Y is A-symmetry
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exact. Now, let 1 ≤ |A| ≤ n − 2. A vertex subset Y is A-symmetry exact if and only if
l+A(Y ) = Y = u+

A(Y ). By part (i), l+A(Y ) = Y if and only if Y ⊇ Ac−1 or Y ∩Ac−1 = ∅, i.e. if
and only if Y ⊆ A−1. Furthermore, by part (ii), Y = u+

A(Y ) if and only if Y ∩ Ac−1 6= ∅ and
Y ∪ Ac−1 = Y or Y ∩ Ac−1 = ∅, i.e. if and only if Y ⊇ Ac−1 or Y ⊆ A−1. This completes the
proof.

Finally, we focus our attention on the n-transitive tournament ~Tn. Let A = {vi1 , . . . , vik} ⊆
V ( ~Tn). We set then, for each choice of j ∈ {0, 1, . . . , k}:

CjA :=


{v1, . . . , vi1−1} if i1 6= 1 ∧ j = 0,
{vij , . . . , vij+1−1} if 1 ≤ j < k,
{vik , . . . , vn} if j = k.

These sets are the blocks of the partition π ~Tn(A) (see Propostion 2.3.9). Thus clearly it holds:

l+A(Y ) =


Y if A = V ∨A = {v2, . . . , vn}
∅ if A = ∅ ∨A = {v1}⋃

vij∈A
{CjA : CjA ⊆ Y } otherwise.

and

u+
A(Y ) =


Y if A = V ∨A = {v2, . . . , vn}
V if A = ∅ ∨A = {v1}⋃

vij∈A
{CjA : CjA ∩ Y 6= ∅} otherwise.

8.3 Exactness as a Type of Dependency

Exactness with respect to a fixed subset can be characterized through symmetry approximation
accuracy, in fact, an element subset X is A-symmetry exact if and only if αA(X) = 1. In the
sequel, we introduce the notion of indistinguishability linear system and then we see in which
way this notion is linked to symmetry approximation accuracy.

Definition 8.3.1. We call indistinguishability linear system a structure S = 〈US, CS, DS, FS,ΛS〉,
where US, CS,ΛS are non-empty sets, DS is empty or consists of a single element dS such that
dS /∈ CS. FS is a map having domain US × (CS ∪DS) and codomain ΛS. We also call:

• the elements of US the equations of S;

• the elements of CS the variables of S;

• the element dS the constant of S;

• the set DS the constant set of S;

• the elements of ΛS the coefficients of S;

• the map FS the coefficient map of S.
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We say that S is a homogeneous indistinguishability linear system when DS = ∅. If the sets
US and ΩS are both finite we say that S is a finite indistinguishability linear system. In what
follows we will set ΩS := CS ∪DS.

In what follows we denote by S = 〈US,ΩS, CS, DS, FS,ΛS〉 a given indistinguishability linear
system.

If W ∈ P(US) and A ∈ P(CS) we denote by SW,A the indistinguishability linear system
having equation set W , variable set A, constant set DS, coefficient map the restriction of FS to
the subset W × (A ∪DS) ⊆ US × ΩS, coefficient set ΛS. In particular, we write SA instead of
SUS,A and SW instead of SW,CS

.

Remark 8.3.2. Let us observe that indistinguishability linear systems are a particular case
of pairings. Hence, the notion of A-symmetry partition can be given for them, recalling that
Ω = CS∪DS. At an interpretative level, given a linear system, we fix a subset of variables (and
possibly also the constant term) and we consider all the equations restricted to the previous set
of variables. At this point, there may be some identical equations that we identify. By means of
this equivalence relation we reinterpret many concepts of local and global compatibility relative
to the indistingushability linear system S. In what follows, we denote by πS(A) the set partition
on US induced by ≡A.
On the other hand, if we restrict our attention only to variable subsets, we can introduce
the indstinguishability relation ≈S and the notion of maximum partitioner (as in the pairing
context) in the case of indistinguishability linear systems and, hence, the other structures
related to ≈S. Therefore, we can extend to indistinguishability linear systems all the results
we proved in the previous chapters.

Let S be a finite indistinguishability linear system having Boolean values 0 and 1 in the
column corresponding to the constant dj , for some 1 ≤ j ≤ p. Then, there is only a subset
X ⊆ US such that FS(u, dj) = 1 if u ∈ X and FS(u, dj) = 0 if u ∈ US \X.

Definition 8.3.3. Let S and X as above. We say that:

• S is a decision table with j-th decision X, and we set dj := dX ;

• X is a decision of S if S is a decision table with j-th decision X, for some 1 ≤ j ≤ p.

If S is a simple decision table that such dS = dX , for some X ⊆ US, we say that S is a simple
X-decision table.

We have then the following result.

Proposition 8.3.4. Let X ⊆ US and A ⊆ CS. Then,

γS(A, {dX}) = 1− |BNA(X)|
|US|

(8.1)

Hence, in particular, X is A-symmetry exact if and only if γ(A, {dX}) = 1.

173



Proof. We have

ΓS(A, {dX})) = lA(X) ∪ lA(Xc) = lA(X) ∪ (US \ uA(X)),

therefore

γS(A, {dX}) =
|ΓS(A, {dX}))|

|US|
=
|lA(X)|+ |US| − |uA(X)|

|US|
=
|US| − |uA(X) \ lA(X)|

|US|
,

and the thesis follows.

Remark 8.3.5. The result established in Proposition 8.3.4 is simple but important, since it
connects the A-symmetry exactness of the subset X to the value of the symmetry transmission
measure γ(A, {dX}). In other terms, we can see that X is A-symmetry exact if and only if the
single element dX totally depends by the subset A in the indistinguishability linear system S.

Definition 8.3.6. If X ⊆ US and A ⊆ CS, we set

βSA(X) := γS(A, {dX})

We call βA(X) the (A, dX)-approximation symmetry measure of X.

The identity established in (8.1) can also be reformulated in the following two equivalent
ways:

βA(X) = 1− (1− αA(X))
|uA(X)|
|US|

(8.2)

and

αA(X) = 1− (1− βA(X))
|US|
|uA(X)|

(8.3)

By (8.2) we immediately deduce the following result

Proposition 8.3.7. If αA(X) = βA(X) then αA(X) = βA(X) = 1 or uA(X) = US.

Here we simply recall the following differences between αA and βA:

(α1) αA(X) = 0 ⇐⇒ lA(X) = ∅,

(α2) for a fixed lA(X) 6= ∅, αA(X) strictly monotonically decreases with |uA(X)|,

and

(β1) βA(X) = 0 ⇐⇒ (lA(X) = ∅ ∧ uA(X) = US),

(β2) for a fixed lA(X), βA(X) strictly monotonically decrease with |uA(X)|.
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8.4 Compatibility for Indistinguishability Linear Systems

Let X ∈ P(US) and Y ∈ P(CS). We set

ΘS(X,Y ) := {v ∈ X : [v]Y ∩X ⊆ [v]DS
∩X} (8.4)

and

θS(X,Y ) :=
|ΘS(X,Y )|
|X|

(8.5)

if S is finite.
Moreover, if Y,Z ∈ P(ΩS) we also set

ΓS(Y,Z) := {v ∈ US : [v]Y ⊆ [v]Z}

and

γS(Y,Z) :=
|ΓS(Y,Z)|
|US|

if S is finite.
For A ∈ P(CS) and u ∈ US we denote by F uS,A the map from A to ΛS defined by F uS,A(a) :=

FS(u, a) for any a ∈ A. Moreover, we denote by ηS,A the map from US to ΛAS defined by
ηS,A(u) := F uS,A for any u ∈ US. We will denote by ηWS,A the restriction of ηS,A to W ∈
P(US). By means of these notations we establish (also in the non finite case) an equivalence
between the notion of compatibility (ILS1), discussed in the introductory section, and one of
its formulations expressed in terms of symmetry classes.

Proposition 8.4.1. Let W ∈ P(US) and A ∈ P(CS). Then, the following conditions are
equivalent.

(ILS1) There exists a map f : ΛAS → ΛS such that FS(u, dS) = f(ηS,A(u)) for any u ∈W .

(ILS2) ΘS(W,A) = W .

Proof. Suppose that (ILS1) holds and let u ∈ W and u′ ∈ W such that u′ ≡A u. Thus
FS(u, a) = FS(u′, a) for any a ∈ A. In other terms it results that F uS,A = F u

′
S,A, so ηWS,A(u) =

ηWS,A(u′). By hypothesis, we conclude that FS(u, dS) = FS(u′, dS), therefore u′ ∈ [u]DS
∩W .

This means that ΘS(W,A) = W .
On the other hand, suppose that (ILS2) holds. Let us consider an application f : ΛAS → ΛS

such that FS(u, dS) := (f ◦ ηS,A)(u) for any u ∈ W . Let u, u′ ∈ W such that u ≡A u′. Hence,
by our assumption, FS(u, dS) = FS(u′, dS) and, in particular, f(ηS,A(u)) = f(ηS,A(u′)), so f is
well defined and the claim has been shown.

Remark 8.4.2. (i) When A = {ai1 , . . . , aip} is a finite set of CS the condition (ILS1) is
equivalent to the following:

(ILS1′) There exists a map f : ΛpS → ΛS such that FS(u, dS) = f(FS(u, ai1), . . . , FS(u, aip)) for
any u ∈W .

175



(ii) When S is a finite indistinguishability linear system the condition (ILS2) is equivalent to
the condition θS(W,A) = 1.

Definition 8.4.3. If the condition (ILS1), or equivalently (ILS2), is satisfied we say that
S is (W,A)-compatible, otherwise we say that S is (W,A)-incompatible. In particular, we say
that S is W -equation compatible if S is (W,CS)-compatible and A-variable compatible if it is
(US, A)-compatible. Finally, we say that S is compatible if it is (US, CS)-compatible.

Remark 8.4.4. (i) Let us note that when S is a homogeneous indistinguishability linear system
the condition (ILS2) is trivially satisfied for any W ∈ P(US) and A ∈ P(CS). On the other
hand, as we will see in next sections, several constructions depend exclusively by the variable
set CS, therefore, mantaining the analogy with classical linear systems, we can assert that
these constructions depend by the homogeneous indistinguishability linear system associated
with S. Therefore, the investigation of homogeneous indistinguishability linear systems is also
important in the analysis of compatibility; in fact we restrict our attention to the variable set
CS and then ”trasle” to the non-homogeneous case our results.
(ii) When we have a classical compatible linear system, if we keep all variables fixed and take
a subset of equations, the compatibility of the system is preserved. This is true also in our
context, in fact it is immediate to verify that S is compatible if and only if S if W -equation
compatible for any W ∈ P(US).

Based on the terminology introduced in Definition 8.4.3, we note that ΘS(X,Y ) is the set of
all equations of X that form a compatible system relatively to the variables of Y . Therefore we
call ΘS(X,Y ) the (X,Y )-compatibility region and θS(X,Y ) the (X,Y )-compatibility measure
(when S is finite).
Analogously, ΓS(Y,Z) is the set of all equations whose symmetry with respect to the variables
in Y implies also their symmetry with respect to the variables in Z.

8.5 Compatibility Operators

In this section we investigate the notion of local compatibility of S in terms of compatibility
operators. In fact, we can introduce two operators φA : P(US) → P(US) and ϕW : P(CS) →
P(US) by setting respectively

φA(X) = ΘS(X,A) (8.6)

and
ϕW (Y ) := ΘS(W,Y ). (8.7)

We call φA the A-equation compatibility operator of S and ϕW the W -variable compatibility
operator of S. Moreover, let us set φ̂A(X) := θS(X,A) and ϕ̂W (Y ) := θS(W,Y ).

The compatibility operators are directly related to the local compatibility of S by means of
the next result.

Proposition 8.5.1. (i) SW,A is compatible if and only if φA(W ) = W .
(ii) If ϕW (A) = ∅ then SW,A is incompatible.
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Proof. (i): SW,A is compatible if and only if for any pair of ponits u, u′ ∈W such that u ≡A u′
we have that dS(u) = dS(u′). But this is equivalent to require that [u]A ∩W ⊆ [u]DS

∩W for
any u ∈W , i.e. ΘS(W,A) = W or, equivalently, φA(W ) = W .
(ii): By our assumptions, ϕW (A) = ∅, i.e. ΘS(W,A) = ∅. This means that

[u]A ∩W 6⊆ [u]DS
∩W

for any u ∈ W . Thus, for any u ∈ W there exists u′ ∈ W such that u ≡A u′ and u 6≡dS u′.
Hence dS(u) 6= dS(u′), therefore SW,A is incompatible.

We state now some basic properties of the A-equation compatibility operator.

Proposition 8.5.2. The A-equation compatibility operator φA satisfies the following properties:

(i) φA(W ) ⊆W for any W ∈ P(US);

(ii) φ2
A(W ) = φA(W ) for any W ∈ P(US);

(iii) if W ′ ⊆W then φA(W ) ∩W ′ ⊆ φA(W ′);

(iv) φA(W ) = W if and only if φA(W ′′) ⊆ φA(W ′) for any W ′,W ′′ ∈ P(W ) such that
W ′′ ⊆W ′.

Proof. (i): It follows directly by the definition of φA(W ).
(ii): By (i) it’s clear that φ2

A(W ) ⊆ φA(W ). On the other hand, let v ∈ φA(W ) = ΘS(W,A).
Hence [v]A ∩W ⊆ [v]DS

∩W . By (i), we have that ΘS(W,A) ⊆ W ; therefore, if v ∈ φA(W ),
then [v]A ∩W ⊆ [v]DS

∩W , thus

[v]A ∩ φA(W ) = [v]A ∩W ∩ φA(W ) ⊆ [v]DS
∩W ∩ φA(W ) = [v]DS

∩ φA(W ),

so v ∈ ΘS(φA(W ), A) = φ2
A(W ). Hence φA(W ) ⊆ φ2

A(W ) and (ii) follows.
(iii): Let v ∈ φA(W ) ∩W ′ = ΘS(W,A) ∩W ′. Then [v]A ∩W ⊆ [v]DS

∩W , and this relation
is preserved if we both intersect members with W ′, thus [v]A ∩ W ′ ⊆ [v]DS

∩ W ′, i.e. v ∈
ΘS(W ′, A) = φA(W ′).
(iv): Suppose that ΘS(W,A) = W and let W ′′ ⊆W ′ ⊆W . Firstly we observe that [v]A ∩W ⊆
[v]DS

∩W , for any v ∈W , hence, obviously, [v]A∩W ′ ⊆ [v]DS
∩W ′ for any W ′ ⊆W . A fortiori,

if v ∈ φA(W ′′), then it results that v ∈ φA(W ′) and the claim follows.
Conversely, since φA({v}) = {v} for any v ∈W , we deduce that φA(W ) = ΘS(W,A) = W .

Corollary 8.5.3. φA is a kernel operator if and only if φA(US) = US.

Proof. The thesis follows immediately by (i), (ii), (iv) of Proposition 8.5.2.

In the next result we establish the first basic properties of the W -variable compatibility
operator.

Proposition 8.5.4. The W -variable compatibility operator ϕW satisfies the following proper-
ties:
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(i) If A′ ∈ P(CS) and A ⊆ A′ then ϕW (A) ⊆ ϕW (A′).

(ii) Let A,B ∈MAXP (S). Then,

ϕW (A ∨B) ⊆ ϕW (A) ∩ ϕW (B) ⊆ ϕW (A) ∪ ϕW (B) ⊆ ϕW (A ∧B). (8.8)

Moreover, if ϕW (A ∩B) = ϕW (A) ∩ ϕW (B) it results that

ϕ̂W (A ∧B) + ϕ̂W (A ∨B) ≥ ϕ̂W (A) + ϕ̂W (B). (8.9)

(iii) If A,B ∈ P(CS) and A ≈S B then ϕW (A) = ϕW (B).

(iv) ImS(ϕW ) = {ϕW (A) : A ∈MAXP (S)}.

Proof. (i): Let u ∈ ϕW (A) = ΘS(W,A). Since A ⊆ A′, it results that [u]A′ ⊆ [u]A, therefore

[u]A′ ∩W ⊆ [u]A ∩W, (8.10)

But the condition u ∈ ΘS(W,A) is equivalent to require that [u]A ∩W ⊆ [u]DS
∩W . By (8.10),

we conclude that [u]A′ ∩W ⊆ [u]DS
∩W , i.e. u ∈ ϕW (A) = ΘS(W,A′).

(ii): We have that A∨B = A∩B and A∧B = MS(A∪B). Therefore, by (i), we deduce that

ϕW (A ∨B) = φA∩B(W ) ⊆ φA(W ) ∩ φB(W ) = ϕW (A) ∩ ϕW (B)

and
ϕW (A ∧B) = φMS(A∪B)(W ) ⊇ φA(W ) ∪ φB(W ) = ϕW (A) ∪ ϕW (B).

This proves (8.8).
Let now A,B ∈MAXP (S) satisfying the condition ϕW (A∩B) = ϕW (A)∩ ϕW (B). We prove
the following equivalent version of (8.9):

φ̂A∧B(W ) + φ̂A∨B(W ) ≥ φ̂A(W ) + φ̂B(W ). (8.11)

Since

|ΘS(W,A) ∪ΘS(W,B)| = |ΘS(W,A)|+ |ΘS(W,B)| − |ΘS(W,A) ∩ΘS(W,B)|

and A ∨B = A ∩B, from our hypothesis on A and B it follows that

|ΘS(W,A) ∪ΘS(W,B)|+ |ΘS(W,A ∨B)| = |ΘS(W,A)|+ |ΘS(W,B)|. (8.12)

On the other hand,we have that A ∧ B = MS(A ∪ B), therefore, since A,B ⊆ MS(A ∪ B) it
follows that

ΘS(W,A) ∪ΘS(W,B) ⊆ ΘS(W,MS(A ∪B)) = ΘS(W,A ∧B). (8.13)

Then, by (8.12) and (8.13) we have that

|ΘS(W,A ∧B)|+ |ΘS(W,A ∨B)| ≥ |ΘS(W,A)|+ |ΘS(W,B)|,

that is equivalent to (8.11).
(iii) : Clearly, A ≈S B if and only if πS(A) = πS(B). Thus it is clear that ΘS(W,A) = ΘS(W,B),
i.e. ϕW (A) = φA(W ) = φB(W ) = ϕW (B).
(iv): It follows directly by (iii), since ϕW (A) = ϕW (MS(A)) for any A ∈ P(S).

178



Remark 8.5.5. By (iii) and (iv) of Proposition 8.5.4, we can identify the W -variable com-
patibility operator ϕW with its restriction on MAXP (S). Therefore in what follows we will
assume that

ϕW : MAXP (S)→ P(US).

We have so far undertaken a local study of compatibility. We now want to focus our
attention to the global counterpart of the theory.

For any W ∈ P(US) we set

ΦS(W ) := {(A,ϕW (A)) : A ∈MAXP (S)}, PRS(W ) := (ΦS(W ),v)

and
Φ̂S(W ) := {(A, θS(W,A)) : A ∈MAXP (S)}, P̂RS(W ) := (Φ̂S(W ),v),

if S is finite, where

(A,ϕW (A)) v (A′, ϕW (A′)) :⇐⇒ (A, θS(W,A)) v (A′, θS(W,A′)) :⇐⇒ A ⊆∗ A′,

so that PRS(W ), P̂RS(W ) and MS(S) are three order isomorphic lattices.

We can interpret, respectively, the lattices PRS(W ) and P̂RS(W ) as a type of W -projection
and W -numerical projection of the maximum partitioner lattice MS(S) on the corresponding
equation subset W .

Definition 8.5.6. We call PRS(W ) the W -projection lattice and P̂RS(W ) the W -numerical
projection lattice of S.

At this point we can provide an interpretation of W -equation compatibility and A-variable
compatibility in terms of the previous set operator language.

Proposition 8.5.7. (i) S is W -equation compatible ⇐⇒ (CS,W ) ∈ ΦS(W ) ⇐⇒ ϕW (CS) =
W .
(ii) S is A-variable compatible ⇐⇒ φA is a kernel operator.

Proof. (i): By (iv) of Proposition 8.5.4, it results that (A,W ) ∈ ΦS(W ) if and only if there
exists A ∈MAXP (S) such that ϕW (A) = ΘS(W,A) = W . By (i) of the same Proposition, we
deduce that ϕW (CS) = W . By Proposition 8.5.1 it follows immediately that SW is compatible
if and only if ΘS(W,CS) = W .
(ii): Straightforward.

We can relate from a global perspective the local incompatibilities of an indistinguishability
linear system S and the W -variable compatibility operator. In order to analyze this interre-
lation, let πS(CS) = {Bi : i ∈ I} and πS(dS) = {Cj : j ∈ J}. For any index i ∈ I we set
then

(SB)i := {B′ 4 Bi : B′ 6⊆ Cj ∀j ∈ J}

and
NS :=

⋃
i∈I

(SB)i.

We have then the following result.
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Proposition 8.5.8. Let ∅ 6= W ⊆ US. Then, ΦS(W ) = {(A, ∅), A ∈ MAXP (S)} if and only
if W =

⋃
k∈K

B′k, for some sub-family {B′k : k ∈ K} ⊆ NS.

Proof. By (i) of Proposition 8.5.4 the condition {(A, ∅), A ∈ MAXP (S)} is equivalent to
ϕW (CS) = ∅. Let us note that ϕW (CS) = ∅ if and only if for any u ∈ W it results that
[u]CS

∩W 6⊆ [u]DS
∩W . This is equivalent to require that, for any u ∈W , there exists at least

a equation u′ ∈ W such that u ≡US
u′ and u 6≡dS u′. In other terms, we are saying that there

exist some CS-symmetry sub-blocks B′k ∈ NS, for some index set k ∈ K, such that
⋃
k∈K

B′k = W .

Hence the thesis follows.

We set now
DEPS(A) := {W ∈ P(US) : φA(W ) = W}, (8.14)

that is equivalent to the following

DEPS(A) = {W ∈ P(US) : ∀v ∈W, [v]A ∩W ⊆ [v]DS
∩W}. (8.15)

We observe that if we consider the operator DEPS : P(CS)→ SS(US), this is constant over
each global symmetry class. Therefore it is sufficient to consider its restriction

DEPS : MAXP (S)→ SS(US).

We now prove three basic properties holding for the above operator DEPS.

Proposition 8.5.9. The following properties hold.

(i) ∅ ∈ DEPS(A) and {v} ∈ DEPS(A) for any v ∈ US;

(ii) φA(W ) = ϕW (A) ∈ DEPS(A) for any W ∈ P(US);

(iii) If W ∈ DEPS(A) and W ′ ⊆W then W ′ ∈ DEPS(A).

Proof. (i): It is immediate to see that (8.15) holds for W = ∅. Moreover, let W = {v}. Then

[v]A ∩ {v} = {v} = [v]DS
∩ {v}

and the claim is proved.
(ii): It is a direct consequence of (ii) of Proposition 8.5.2 and (8.14).
(iii): Let W ∈ DEPS(A) and W ′ ⊆W . Then, by (8.15), we have

[v]A ∩W ⊆ [v]DS
∩W, ∀v ∈W.

In particular, it results that

[v]A ∩W ∩W ′ = [v]A ∩W ′ ⊆ [v]DS
∩W ∩W ′ = [v]DS

∩W ′ ∀v ∈W ′. (8.16)

So (iii) follows.
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In next result we state some important properties of the operator DEPS. We will use the
notation

MDEPS(A) := max(DEPS(A)).

Theorem 8.5.10. The following conditions hold.

(i) If v ∈W \ ϕW (A), then [v]A ∩W ⊆W \ ϕW (A).

(ii) We have that

ϕUS
(A) =

⋂
Z∈MDEPS(A)

Z. (8.17)

(iii) ϕUS
(A) = US ⇐⇒ DEPS(A) = P(US).

(iv) If ϕUS
(A) 6= US and W ∈ DEPS(A), then ∅ 6= ϕUS

(A)c 6⊆W .

(v) If W ∈ DEPS(A) then [v]A 6⊆W for any v ∈ ϕUS
(A)c.

(vi) Suppose that [v]A ∩W = ∅ for any v ∈ ϕUS
(A)c, whence W ∈ DEPS(A).

(vii) Let A ⊆ B. Then DEPS(A) ⊆ DEPS(B).

Proof. (i): Let v ∈W\ϕW (A) and let u′ ∈ [v]A∩W . Suppose by contradiction that u′ ∈ ϕW (A),
i.e. [u′]A ∩W ⊆ [u′]DS

∩W . Then, we have v ∈ [v]A ∩W = [u′]A ∩W ⊆ [u′]DS
∩W , hence

[v]DS
∩W = [u′]DS

∩W , therefore [v]A ∩W ⊆ [v]DS
∩W , i.e. v ∈ ϕW (A), contradiction. Then,

u′ ∈W \ ϕW (A) and the claim follows.
(ii): Let v ∈ ϕUS

(A) = ΓS(A, {dS}). Then [v]A ⊆ [v]DS
. Let us prove now that, if W ∈

DEPS(A), then W ∪ {v} ∈ DEPS(A). This implies that, for all Z ∈ MDEPS(A), v ∈ Z. If
u ∈W , then, by definition of DEPS, [u]A∩W ⊆ [u]DS

∩W . If w 6≡A u, then [u]A∩(W ∪{w}) =
[u]A∩W ⊆ [u]DS

∩(W∪{w}). If w ≡A u, then w ≡dS u, so [u]A∩(W∪{w}) ⊆ [u]DS
∩(W∪{w}).

Moreover [u]A ⊆ [u]DS
implies [u]A ∩ (W ∪ {w}) ⊆ [u]DS

∩ (W ∪ {w}).
Conversely, let us suppose that v ∈ Z, ∀Z ∈ MDEPS(A). Then, by Proposition 8.5.9, part
(ii), we obtain: ⋃

Z∈MDEPS(A)

Z = US,

thus
[v]A =

⋃
Z∈MDEPS(A)

(Z ∪ [v]A) ⊆
⋃

Z∈MDEPS(A)

(Z ∪ [v]DS
) = [v]DS

,

so v ∈ ΓS(A, {dS}) = ϕUS
(A).

(iii): Since v ∈ ϕUS
(A) = ΓS(A, {dS}) = US, then [v]A ⊆ [v]DS

, so it is obvious that [v]A ∩W ⊆
[v]DS

∩W for any W ∈ P(US), i.e. DEPS(A) = P(US).
Conversely, suppose that DEPS(A) = P(US). Hence, US ∈ DEPS(A), so, by (8.15), we have

[v]A ∩ US = [v]A ⊆ [v]DS
∩ US = [v]DS

for any v ∈ US. Thus v ∈ ΓS(A, {dS}) for any v ∈ US.
(iv): Let X ∈ DEPS(A). Since ϕUS

(A) 6= US, we clearly have that ϕUS
(A)c 6= ∅. Now, suppose
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by contradiction that ϕUS
(A)c ⊆ X and let u ∈ ϕUS

(A)c. By (i), we have that if u ∈ ϕUS
(A)c

and u′ ≡A u then u′ ∈ ϕUS
(A)c. An immediate consequence is that

[v]A ∩W = [v]A. (8.18)

Moreover, since u ∈ ϕUS
(A)c, it results that [v]A 6⊆ [v]DS

, hence, a fortiori, [v]A 6⊆ [v]DS
∩W

and the thesis follows.
(v): Let W ∈ DEPS(A) and suppose by contradiction that there exists u ∈ ϕUS

(A)c such that
[v]A ⊆ W . By (i) we have that if u′ ≡A u, then u′ ∈ ϕUS

(A)c. Therefore u′ ∈ W for any
u′ ∈ [v]A. In particular, we have

[v]A ∩W = [v]A. (8.19)

Moreover, since u ∈ ϕUS
(A)(DS)c, we have that [v]A 6⊆ [v]DS

, therefore [v]A 6⊆ [v]DS
∩W and

the thesis follows.
(vi): Suppose that [v]A ∩W = ∅ for any v ∈ ϕUS

(A)c. Then v /∈ W for any v ∈ ϕUS
(A)c, i.e.

ϕUS
(A)c ⊆W c or, equivalently, W ⊆ ϕUS

(A). Therefore, for any v ∈W it results [v]A ⊆ [v]DS
,

so that
[v]A ∩W ⊆ [v]DS

∩W.

Hence, by (8.15), we have that W ∈ DEPS(A).
(vii): Let A ⊆ B. We want to show that any equation of DEPS(A) belongs also to DEPB(S).
LetW ∈ DEPS(A), thus [v]A∩W ⊆ [v]DS

∩W for any v ∈W . Moreover, by (2.13) it follows that
πS(B) � πS(A) or, equivalently, [v]B ⊆ [v]A. In particular, it results that [v]B ∩W ⊆ [v]A ∩W ,
hence we obtain

[v]B ∩W ⊆ [v]A ∩W ⊆ [v]DS
∩W,

i.e. W ∈ DEPB(S).

8.6 Reduction of Indistinguishability Linear Systems

In this section we investigate the question concerning the reduction of an indistinguishability
linear system S. In other terms, we fix an equation subset W and a variable subset A. The
reduction technique consists of the choice of a criterion in order to reduce the complexity of a
linear system. Clearly, this criterion refers to the choice of an operator or function associated
with the property we want to preserve. In what follows, we provide two different reduction cri-
teria. In fact, we can reduce the linear system by taking the smallest variable sets providing the
same set of constants relative to all the equations of a given equation subset W . On the other
hand, the second kind of reduction we consider here consists of taking the smallest variable set
B of A such that any equation compatible with respect to A is also compatible with respect toB.

We set now

∆dS
W,A(u, u′) :=

{
∆W,A(u, u′) if u 6≡dS u′,
∅ otherwise.

(8.20)

for all u, u′ ∈W . In particular, we set ∆dS := ∆dS
US,CS

.
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We call ∆dS
W,A(u, u′) the (dS,W,A)-discernibility neighborhood of u and u′ in S and (dS,W,A)-

discernibility set system of S the system D(W,A, dS) := (A,DISS(dS,W,A)), where

DISS(dS,W,A) := {∆dS
W,A(u, u′) : u, u′ ∈W and ∆dS

W,A(u, u′) 6= ∅}.

In particular, we set DIS(dS, S) := DISS(dS, US, CS) and D(dS, S) := (US, DIS(dS, S)), more-
over we call ∆dS(u, u′) the dS-discernibility neighborhood of u and u′ and D(dS, S) the dS-
discernibility set system of S. If W and A are both finite sets with W = {u1, . . . , um}, we
denote by DTS[dS,W,A] the m × m table having the equations u1, . . . , um on both its rows
and columns and the subsets ∆dS

W,A(ui, uj) in the (ui, uj)-entry and we call DTS[dS,W,A] the
(W,A, dS)-discernibility table of S. In particular, we set DTS[dS] := DTS[US, CS, dS] and we call
it the dS-discernibility table of S.

In what follows we fix a variable set A and an equation u. We associate with u the set of
all constants relative to all the equations that are A-symmetric to u.

We introduce the following function ξA : W → P(ΛS):

ξA(u) = {FS(u′, dS) : u′ ∈ [u]A}. (8.21)

Remark 8.6.1. (i): If A and B are two variable subsets such that A ⊆ B, then ξA(w) ⊆ ξB(w)
for any w ∈W .
(ii): If SW,A is compatible, then ξA(w) = {FS(w, dS)}.

We now introduce the (ξ,W,A)-essentials.

Definition 8.6.2. We say that a subset B ⊆ A is a (ξ,W,A)-essential if:

• there exists w ∈W such that ξA\B(w) 6= ξA(w),

• for any B′ $ B and for any w ∈W , we have ξA\B′(w) = ξA(w).

We denote by ESSS(ξ,W,A) the family of all (ξ,W,A)-essentials. We denote by ESS(ξ, S) :=
ESSS(ξ, US, CS) the family of all ξ-essentials of S.

We introduce the (ξ,W,A)-reducts.

Definition 8.6.3. We say that a subset B ⊆ A is a (ξ,W,A)-reduct if:

• ξA(w) = ξB(w) for any w ∈W ,

• for any B′ $ B there exists wB′ ∈W such that ξB′(wB′) 6= ξA(wB′).

We denote by REDS(ξ,W,A) the family of all (ξ,W,A)-reducts. We denote by RED(ξ, S) :=
REDS(ξ, US, CS) the family of all ξ-reducts of S.

In next result we relate the (ξ,W,A)-reducts to the compatibility of SW,A.

Theorem 8.6.4. Let SW,A be a compatible indistinguishability linear system. Then REDS(ξ,W,A)
coincides with the family of variable sets B such that:
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(i) ΘS(W,B) = W ;

(ii) ΘS(W,B′) 6= W for any B′ $ B.

Proof. Let B ∈ REDS(ξ,W,A), then ξB(w) = ξA(w) = {FS(w, dS)} for any w ∈ W . We
must prove that [w]B ∩W ⊆ [w]DS

∩W . Let w′ ∈ [w]B ∩W and set t = FS(w′, dS). Then,
t ∈ ξB(w) = ξA(w), so that t = FS(w, dS) or, equivalently, w′ ∈ [w]DS

∩W . So ΘS(W,B) =
W . Let us consider B′ $ B. Then, B′ /∈ REDS(ξ,W,A), hence there exists w ∈ W such
that ξB(w) 6= ξA(w), so ξA(w) $ ξB′(w). This means that there exists w′ ∈ W such that
w′ 6≡A w, w′ ≡B′ w and t := FS(w′, dS) 6= FS(w, dS). Hence, [w]B′ ∩ W 6⊆ [w]DS

∩ W , i.e.
w ∈W \ΘS(W,B′).
On the other hand, let B ∈ P(CS) satisfying (i) and (ii). By Proposition 8.5.7, SW,B is
compatible, hence ξB(w) = ξA(w) = {FS(w, dS)}. Now, let B′ $ B. Then Θ(W,B′) $ W ,
so there exists w ∈ W such that [w]B′ ∩ W 6⊆ [w]DS

∩ W . This means that there exists
w′ ∈ W such that w′ ≡B′ w but FS(w, dS) 6= FS(w′, dS), so ξA(w) 6= ξB′(w). We conclude that
B ∈ REDS(ξ,W,A).

We now provide a geometric property for the set system ESSS(ξ,W,A).

Theorem 8.6.5. Let SW,A be a compatible indistinguishability linear system. Then,

ESSS(ξ,W,A) = min(DISS(dS,W,A)).

Proof. Let B ∈ ESSS(ξ,W,A). Then, there exists u ∈ W such that ξA(u) 6= ξA\B(u). By
compatibility of SW,A, ξA(u) consists of the single element FS(u, d). Since πS(A) � πS(A \ B),
there exists u′ ∈W such that:

(a) u ≡A\B u′;

(b) u ≡A u′;

(c) FS(u, d) 6= FS(u′, d).

Hence ∆dS
W,A(u, u′) ⊆ B. Now, let b ∈ B and set C = B \ {b}. By (ii) of Definition 8.6.2, it

results ξA\C(u) = ξA(u) for any u ∈W . Let u, u′ as before. It must results

u 6≡A\C u′,

otherwise, we would have FS(w, d), FS(u, d) ∈ ξA\C(u), so ξA\C(u) 6= ξA(u), that is an absurd.
In other terms, we have shown that B ∈ min(DISS(dS,W,A)).
Conversely, let B ∈ min(DISS(dS,W,A)). Hence there are two equations u, u′ ∈ W such that
B = ∆dS

W,A(u, u′). By (8.20), we have u 6≡dS u′ and u 6≡A u′. It follows immediately that

u ≡A\B u′, therefore ξA(u) 6= ξA\B(u). Let C $ B. We firstly observe that by minimality of

B, we must have ∆dS
W,A(u, u′) 6⊆ C for any u, u′ ∈ W . We show that πS(A \ C) = πS(A). In

fact, if u ≡A\C u′ and u 6≡A u′, we would have ∆dS
W,A(u, u′) ⊆ C, that is an absurd. Hence

u ≡A u′ ⇐⇒ u ≡A\C u′, so πS(A \C) = πS(A). So B satisfies also condition (ii) of Definition
8.6.2 and the theorem is proved.
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Theorem 8.6.6. Let SW,A be a compatible indistinguishability linear system. Then:
(i) ξB(u) = ξA(u) for any u ∈W if and only if B is a transversal of DISS(dS,W,A).
(ii) REDS(ξ,W,A) = Tr(DISS(dS,W,A)).

Proof. Assume that ξA(u) = ξB(u) for any u ∈ W . We show that B is a transversal of
DISS(dS,W,A). Let then E ∈ DISS(dS,W,A). Then, there exists two distinct equations
u, u′ ∈ W such that u 6≡dS u′ and E = {a ∈ A : (FS(u, a) 6= FS(u′, a))}. Since SW,A is
compatible, we deduce that u 6≡A u′ and so E 6= ∅. If u ≡B u′, by hypothesis we would
have ξA(u) 6= ξB(u), that is an absurd. So, we have thus found a variable a′ ∈ B such that
FS(u, a′) 6= FS(u′, a′), i.e. a′ ∈ B ∩ E. Therefore B is a transversal of DISS(dS,W,A).
Conversely, letB be a transversal ofDISS(dS,W,A). Moreover, let u, u′ ∈W such that u ≡B u′.
Suppose by contradiction that FS(u, d) 6= FS(u′, d). Then u 6≡dS u′ and, by consistency, u 6≡A u′.
Therefore ∆dS

W,A(u, u′) 6= ∅ but ∆dS
W,A(u, u′) ∩ B = ∅, that is an absurd. Hence, ξB(u) = ξA(u)

for any u ∈W .
(ii) : Let B ∈ REDS(ξ,W,A). Hence ξA(u) = ξB(u) for any u ∈ W , and by (i) this implies
that B is a transversal of DISS(dS,W,A). Now, if c ∈ B, again by Definition 8.6.3, there
exists some u ∈ W such that ξB\{c}(u) 6= ξA(u), therefore by (i) it follows that B \ {c} is
not a transversal of DISS(dS,W,A). Hence B is a minimal transversal of DISS(dS,W,A). On
the other hand, let B be a minimal transversal of DISS(dS,W,A), then by (i) it follows that
ξA(u) = ξB(u) for any u ∈W . Moreover, for any c ∈ B, the subset B\{c} is not a transversal of
DISS(dS,W,A), therefore, again by (i), there exists some u ∈W such that ξB\{c}(u) 6= ξA(u).
Hence B ∈ REDS(ξ,W,A).

In what follows we provide another criterion of reduction relied on the operator ϕW .

Definition 8.6.7. We say that a subset B ⊆ A is a (ϕ,W,A)-essential if:

• ϕW (A \B) $ ϕW (A),

• for any B′ $ B we have ϕW (A \B′) = ϕW (A),

that are equivalent to the following conditions,

• ϕ̂W (A \B) < ϕ̂W (A);

• for any B′ $ B we have ϕ̂W (A \B′) = ϕ̂W (A).

We denote by ESSS(ϕ,W,A) the family of all (ϕ,W,A)-essentials and we denote by ESS(ϕ, S) :=
ESSS(ϕ,US, CS) the family of all ϕ-essentials of S.

We now introduce the notion of (ϕ,W,A)-reducts.

Definition 8.6.8. We say that a subset B ⊆ A is a (ϕ,W,A)-reduct if:

• ϕW (A) = ϕW (B),

• for any B′ $ B we have ϕW (B′) $ ϕW (A),

that are equivalent to the following conditions,
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S2 a1 a2 a3 a4 a5 dS6
u1 1 0 0 0 0 1

u2 0 1 1 0 0 2

u3 0 1 1 0 0 3

u4 1 0 0 0 0 4

u5 0 1 1 1 1 5

Figure 8.1: Indistinguishability linear system S2.

• ϕ̂W (A) = ϕ̂W (B),

• for any B′ $ B we have ϕ̂W (B′) < ϕ̂W (A).

We denote byREDS(ϕ,W,A) the family of all the (ϕ,W,A)-reducts. We denote byRED(ϕ, S) :=
REDS(ϕ,US, CS) the family of all the ϕ-reducts of S.

In the next example we see that the ESSS(ϕ,W,A) does not coincide with the minimals
of DISS(dS,W,A) and that REDS(ϕ,W,A) is not the family of the minimal transversals of
DIS(dS, S).

Example 8.6.9. Let us consider the indistinguishability linear system S2 represented in Figure
8.1.

Then,
πS2(dS2) = u1|u2|u3|u4|u5

and
πS2(CS2) = u1u4|u2u3|u5.

Furthermore, it is easy to see that

DIS(dS2 , S2) = {{a1, a2, a3}, {a4, a5}, {a1, a2, a3, a4, a5}},

and
min(DIS(dS2 , S2)) = {{a1, a2, a3}, {a4, a5}}.

By Definition 8.6.7, we have that

ESS(ϕ, S2) = {{a4, a5}}.

Thus, we conclude that, in general, ESS(ϕ, S2) does not coincide with the family of all minimal
hyper-edges of DIS(dS2 , S2). Finally, by Definition 8.6.8, we see that

RED(ϕ, S2) = {{a4}, {a5}},

so the ϕ-reducts family is not the transversal of DIS(dS2 , S2).

The next proposition asserts that we can focus our attention only on the maximum parti-
tioners in order to study the family of all ϕ-reducts of an global symmetry class.
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Proposition 8.6.10. Let A ≈S B and A ⊆ B, then

REDS(ϕ,W,A) ⊆ REDS(ϕ,W,B). (8.22)

In particular,
REDS(ϕ,W,A) ⊆ REDS(ϕ,W,MS(A)). (8.23)

Proof. We firstly observe that since A ≈S B, then φA(W ) = φB(W ). By Definition 8.6.8 it
follows that, if C ∈ REDS(ϕ,W,A), then φB(W ) = φC(W ) and φC′(W ) $ φB(W ) for any
C ′ $ C. Thus, C ∈ REDS(ϕ,W,B).

In next result we show the interrelation between (ϕ,W,A)-reducts and the (ϕ,W,A)-
essentials.

Theorem 8.6.11.
REDS(ϕ,W,A) = Tr(ESSS(ϕ,W,A))

Proof. Let B ⊆ A such that ϕW (A) = ϕW (B). This means that

ΘS(W,A) = ΘS(W,B) (8.24)

i.e.
[u]A ∩W ⊆ [u]DS

∩W ⇐⇒ [u]B ∩W ⊆ [u]DS
∩W. (8.25)

We claim that B is a transversal of ESSS(ϕ,W,A). For, let E ∈ ESSS(ϕ,W,A). Hence

ΘS(W,A \ E) $ ΘS(W,A). (8.26)

In other terms, there exists an equation u ∈W such that

[u]A ∩W ⊆ [u]DS
∩W (8.27)

and an equation u′ ∈W such that

(a) u′ ≡A\E u;

(b) u′ 6≡dS u.

This implies by (8.27) that u 6≡A u′ and, in particular, by (8.25), it follows that

u′ 6≡B u. (8.28)

Thus, there exists b ∈ B such that FS(u, b) 6= FS(u′, b). Therefore, we have that b ∈ ∆dS
W,A(u, u′).

By (a) and (b) it is easy to see that ∆dS
W,A(u, u′) ⊆ E, in fact for any a ∈ A \ E it results that

FS(u, a) = FS(u′, a),

hence A \ E ⊆ A \ ∆dS
W,A(u, u′), i.e. ∆dS

W,A(u, u′) ⊆ E. So b ∈ E and B is a transversal of E
and, since the choice of E ∈ ESSS(ϕ,W,A) is arbitrary, B is a transversal of ESSS(ϕ,W,A).
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On the other hand, let B be a transversal of ESSS(ϕ,W,A) and fix E ∈ ESSS(ϕ,W,A). By
Definition 8.6.7, there exists u ∈ ΘS(W,A) such that u /∈ ΘS(W,A \ E). Hence

[u]A ∩W ⊆ [u]DS
∩W

and there exists u′ ∈ W satisfying (a) and (b). In other terms, it results that u′ ∈ [u]cA ∩W ∩
[u]A\E . Let b ∈ B ∩ E. We have that FS(u, b) 6= FS(u′, b), otherwise

FS(u, a) = FS(u′, a) (8.29)

for any a ∈ (A \ E) ∪ {b}. If we set E′ = E \ {b}, we are saying that (8.29) holds for any
a ∈ A \ E′, thus u ≡A\E′ u′, so u /∈ ΘS(W,A \ E′), contradicting Definition 8.6.7. Therefore,
FS(u, b) 6= FS(u′, b), i.e. u 6≡B u′ or, equivalently, u′ ∈ [u]cB ∩W ∩ [u]A\E . Since the previous
argument can be extended to any u′ ∈ [u]cA ∩W ∩ [u]A\E , we conclude that

[u]cA ∩W ∩ [u]A\E ⊆ [u]cB ∩W ∩ [u]A\E ,

i.e.
[u]B ∩W ∩ [u]A\E ⊆ [u]A ∩W ∩ [u]A\E

or, equivalently,
[u]B ∩W ⊆ [u]A ∩W.

Since u ∈ ΘS(W,A), we deduce that u ∈ ΘS(W,B) or, equivalently, that ΘS(W,A) ⊆ ΘS(W,B).
The reverse inclusion holds by Proposition 8.5.4. So, ϕW (B) = ϕW (A). We have thus shown
that B ⊆ A is a transversal of ESSS(ϕ,W,A) if and only if ϕW (B) = ϕW (A). We can now
conclude the proof. Let c ∈ B and B′ = B \ {c}. By (ii) of Definition 8.6.8, we have that

ΘS(W,B′) $ ΘS(W,A)

therefore, by the above argument, B′ is not a transversal of ESSS(ϕ,W,A). Thus

REDS(ϕ,W,A) ⊆ Tr(ESSS(ϕ,W,A)).

Conversely, if B ∈ Tr(ESSS(ϕ,W,A)), by the above argument it results that

ΘS(W,B) = ΘS(W,A)

and by minimality, (ii) of Definition 8.6.8 follows immediately. This shows the claim.

In what follows, we want to define a new class of indistinguishability linear systems such that
the (ϕ,W,A)-essentials are exactly the minimal elements of DISS(dS,W,A) and the (ϕ,W,A)-
reducts are the minimal transversal of the same set system. In order to do this, we introduce
the following terminology.

Definition 8.6.12. We say that S is (ϕ,W,A)-disjunctive if for any pair of equations u, v ∈W
the following condition holds:

∆dS
W,A(u, v) 6= ∅ =⇒ u ∈ ϕW (A) ∨ v ∈ ϕW (A). (8.30)

In particular, if W = US and A = CS, we say that S is ϕ-disjunctive.
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S3 a1 a2 a3 a4 a5 dS3
u1 1 0 0 1 0 2

u2 0 1 0 0 1 1

u3 0 0 0 0 1 0

u4 1 0 0 1 0 3

u5 1 0 0 0 1 0

Figure 8.2: Indistinguishability linear system S3.

In the next example we show that a ϕ-disjunctive indistinguishability linear system fails to
be a (ϕ,W,A)-disjunctive indistinguishability linear system for any A ⊆ CS and any W ⊆ US.

Example 8.6.13. Let us consider the indistinguishability linear system S3 given in Figure 8.2.

It is immediate to see that S3 is a ϕ-disjunctive indistinguishability linear system. On the
other hand, let W = {u1, u2, u3, u4} and A = {a1}. It is easy to verify that

[u]A ∩W =

{
{u1, u4} if u = u1 ∨ u = u4 ∨ u = u5

{u2, u3} if u = u2 ∨ u = u3

and

[u]dS3 ∩W =


{u1} if u = u1

{u2} if u = u2

{u3} if u = u3 ∨ u = u5

{u4} if u = u4

Thus
ΘS(W,A) = ∅.

This shows that S3 is not a (ϕ,W,A)-disjunctive indistinguishability linear system.

As an immediate result, we prove that all the compatible indistinguishability linear systems
are also ϕ-disjunctive.

Proposition 8.6.14. If S is compatible, then it is also a ϕ-disjunctive indistinguishability
linear system.

Proof. By Proposition 8.4.1, compatibility of S is equivalent to the condition ΘS(US, CS) =
US.

Remark 8.6.15. Let us note that there exist incompatible indistinguishability linear systems
that are ϕ-disjunctive, as we can see taking the indistinguishability linear system S3 of Figure
8.2.

In the next result we show that for any (ϕ,W,A)-disjunctive indistinguishability linear
system the essentials ESSS(ϕ,W,A) are exactly the minimal elements of DISS(dS,W,A).
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Theorem 8.6.16. Let S be a (ϕ,W,A)-disjunctive indistinguishability linear system. Then,

ESSS(ϕ,W,A) = min(DISS(dS,W,A)). (8.31)

Proof. We will prove that a variable subset B ⊆ A belongs to ESSS(ϕ,W,A) if and only if it
satisfies the following two conditions:

(a) B ⊇ ∆dS
W,A(u, v) 6= ∅, for some u, v ∈W ;

(b) if there exists u, v ∈W such that ∅ 6= ∆dS
W,A(u, v) ⊆ B, then ∆dS

W,A(u, v) = B.

Let ESSS(ϕ,W,A). By Definition 8.6.7 and by Proposition 8.5.4, this means that there exists
u ∈W such that [u]A∩W ⊆ [u]DS

∩W and [u]A\B∩W 6⊆ [u]DS
∩W . This means that there exists

v ∈ W such that u ≡A\B v and u 6≡dS v, so, FS(u, a) = FS(v, a) for any a ∈ A \ B. By (8.20),

we deduce that A \B ⊆ A \∆dS
W,A(u, v), so B satisfies condition (a). Now, suppose that there

exists u, v ∈ W such that ∅ 6= ∆dS
W,A(u, v) ⊆ B. Let b /∈ ∆dS

W,A(u, v); hence FS(u, b) = FS(v, b).
Let B′ := B \ {b}. Since FS(u, a) = FS(v, a) for all a ∈ A \ B and FS(u, b) = FS(v, b), we have
FS(u, a) = FS(v, a) for all a ∈ (A \ B) ∪ {w} = A \ B′. In other terms, we have u ≡A\B′ v.
Then, since u 6≡dS v, we deduce that u /∈ ΘS(W,A \ B′). But, we have that u ∈ ΘS(W,A), so
b /∈ B, by Definition 8.6.7. Hence part (b) holds.

Assume now that B ⊆ A satisfies (a) and (b). Since ∆dS
W,A(u, v) 6= ∅, it holds that u 6≡A v

and u 6≡dS v. We may assume that u ∈ ΘS(W,A). Moreover B ⊇ ∆dS
W,A(u, v) implies that

u ≡A\B v and u 6≡dS v, thus u /∈ ΘS(W,A \B), so (i) of Definition 8.6.7 holds.

Let now B′ $ B. Condition (b) implies that, for all u, v ∈ W such that ∅ 6= ∆dS
W,A(u, v),

it holds that ∆dS
W,A(u, v) * B′. This is equivalent to say that πS(A \ B′) = πS(A). In fact, it

is obvious that u ≡A u′ implies u ≡A\B′ u′; moreover, suppose that u ≡A\B′ u′ and assume

by contradiction that u 6≡A u′. Then, we have ∆dS
W,A(u, u′) ⊆ B′, that is an absurd. So (ii) of

Definition 8.6.7 holds too and B ∈ ESSS(ϕ,W,A).

The next result shows that the reducts of S are exactly the minimal transversals of the
essentials family ESS(S) for any ϕ-disjunctive indistinguishability linear system S.

Theorem 8.6.17. Let S be a (ϕ,W,A)-disjunctive indistinguishability linear system and let
B ⊆ A. Then:
(i) θS(W,B) = θS(W,A) if and only if B is a transversal of DISS(dS,W,A).
(ii) REDS(ϕ,W,A) = Tr(DISS(dS,W,A)) = Tr(ESSS(ϕ,W,A)).

Proof. (i) : Assume that θ(W,B) = θ(W,A). We show thatB is a transversal ofDISS(dS,W,A).
Let then E ∈ DISS(dS,W,A). Then, there exists two distinct equations u, u′ ∈ W such that
u 6≡dS u′ and E = {a ∈ A : (FS(u, a) 6= FS(u′, a))}. We deduce that u 6≡A u′ and we can assume
that u ∈ ΘS(W,A). By hypothesis, u ∈ ΘS(W,B), hence u 6≡B u′. Thus, there exists b ∈ B
such that FS(u, b) 6= FS(u′, b), i.e. b ∈ B ∩ E. Therefore B is a transversal of DISS(dS,W,A).
On the other hand, we suppose now that B is a transversal of DISS(dS,W,A). Hence, there
exist u, u′ ∈ W such that ∆dS

W,A(u, u′) 6= ∅. We clearly have that u 6≡A u′. We set now

E := ∆dS
W,A(u, u′). Let b ∈ B ∩E, then FS(u, b) 6= FS(u′, b), so u 6≡B u′. We are saying that for
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any u, u′ ∈ W such that u 6≡dS u′ and u 6≡A u′, then u 6≡B u′. In other terms, we have shown
that

[u]cA ∩W ⊆ [u]cB ∩W

or, equivalently, that
[u]B ∩W ⊆ [u]A ∩W.

Since u ∈ ΘS(W,A), we deduce that u ∈ ΘS(W,B), i.e. ΘS(W,A) ⊆ ΘS(W,B). The reverse
inclusion follows by Proposition 8.5.4. So θS(W,B) = θS(W,A).
(ii) : Let B ∈ REDS(ϕ,W,A). Hence θS(W,B) = θ(W,A), and by (i) this implies that B is
a transversal of DISS(dS,W,A). Now, let b ∈ B and set B′ = B \ {b}. By Definition 8.6.8
we have that θS(W,B′) < θS(W,A), therefore by (i) it follows that B′ is not a transversal of
DISS(dS,W,A). Hence B is a minimal transversal of DISS(dS,W,A). On the other hand, let
B be a minimal transversal of DISS(dS,W,A), then by (i) it follows that θS(W,B) = θS(W,A).
Now, if b ∈ B, the subset B′ := B \ {b} is not a transversal of DISS(dS,W,A) by virtue
of the minimality of B, therefore, again by (i) we obtain θS(W,B′) < θS(W,A). Hence B ∈
REDS(ϕ,W,A). Thus, REDS(ϕ,W,A) = Tr(DISS(dS,W,A)). By Theorem 8.6.16, it results
Tr(DISS(dS,W,A)) = Tr(ESSS(ϕ,W,A)), hence (ii) has been proved.
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[104] P. Hońko, Description and classification of complex structured objects by applying simi-
larity measures, International Journal of Approximate Reasoning, 49(3): 539–554 (2008).
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