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Summary

The research presented in this dissertation treats the subject of efficient gear
contact simulation and is applied to the contact analysis of spiral bevel gears.

In today’s competitive environment getting better products to market faster
is essential to win a customer’s interest and loyalty. Therefore, engineers are
evermore in need of the correct solutions to rapidly predict, analyze and improve
their designs if they want to meet the tight development schedules and budgets.
Within the current development cycle of mechanical transmissions, computerized
tooth contact analysis (TCA) has proven to be an invaluable tool to predict a
gear pair’s key contact performance characteristics, while reducing the need
for expensive physical prototyping and labor-intensive experimental testing.
However, the geometrical complexity of the gear teeth still pose significant
computational challenges to the tooth contact simulation for spiral bevel gears.
Correctly capturing the spatial nature of the motion transfer and the resulting
contact load distribution requires a three-dimensional gear contact model.
Finite element method (FEM) based contact simulations are usually conducted,
especially in an industrial context, while various tailor-made solutions also
exist. When performing the contact detection, many of these solutions tend
to apply a general contact detection method (e.g. node-to-surface) that treats
the contacting gear teeth flanks as arbitrary surfaces. Not realizing that the
gear flanks are designed to transmit motion in a near-conjugate way, leads to
inefficient contact searches for which the associated computational cost not only
limits TCA’s application to static component-level analysis but also hinders
extension towards full-system level analysis or dynamic gear contact simulation.

Building upon the existing concept of the surface of roll angles to efficiently
detect contact, this dissertation develops a new penetration-based contact model
to compute the three-dimensional contact loads from the actual position and
orientation of the real tooth surfaces, whether misaligned or not. The proposed
methods show to correctly predict component behavior at a computational cost
that enables further application in system-level or dynamic analyses.
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vi SUMMARY

An accurate description of the spiral bevel gear tooth surfaces is deep-rooted
in the presented methodologies, since this proves vital to precisely describe
the gear pair kinematics but also to correctly include all the relevant complex
contact phenomena. However, a reference tooth profile, similar to the involute for
cylindrical gears, does not exist for spiral bevel gears. Therefore, a mathematical
model that simulates the cutting kinematics of the manufacturing process,
proves to be indispensable to correctly capture both the gear teeth’s macro- and
microgeometry. In this work the five-cut face-milling cutting process is adopted
to create a representative geometry of a face-milled spiral bevel gear set.

Contact detection based on the tooth flank’s surface of roll angles, combined
with the ease-off topography, has been proposed in the gear literature to reduce
the computational load, associated with the contact search. Yet, the ease-off
topography, which quantifies the geometrical mismatch of a pair of contacting
gear tooth surfaces, shows to hold limitations when moving beyond component-
level contact analysis, as it is sensitive to the instantaneous gear pair installment.
With the underlying idea of potential application of the presented methodologies
within multibody system simulation, the usage of ease-off topography concept
for contact detection is abandoned and replaced by a penetration-based contact
model. An analytical compliance model is formulated to translate the detected
penetrations into appropriate contact loads. The compliance model separates
the linear gear tooth deflection components from a tooth pair’s local nonlinear
deformation, which arises around the contact zone.

The developed gear contact model with surfaces of roll angles, computed for the
gear pair’s actual tooth flanks in the absence of misalignments, is then shown
to be well capable of predicting a misaligned gear pair’s contact performance.
In contrast, ease-off based contact models would require an update of the
(misaligned) ease-off topography, each time the gear pair’s configuration changes
(e.g. due to system-induced deflections), reducing their otherwise excellent
computational efficiency. The proposed penetration-based gear contact model
identifies the contact locations based on the surface of roll angles but computes
the flank mismatch based on the instantaneous position and orientation of the
real gear tooth surfaces, showing to be more robust to configurational changes.
Finally, a strategy to parametrically redefine the gear contact model’s surfaces
of roll angles in function of the instantaneous misaligned state of the gear pair,
is proposed to further increase the accuracy of the contact detection.

A prototype toolchain is created around the presented techniques for contact
modeling, covering the various analyses for unloaded and loaded tooth contact
analysis that are an essential part of today’s spiral bevel gear design process.
Automated finite element model creation routines are developed to support the
validation of the methods against nonlinear FEM-based contact simulations.
These tools will greatly support future research into methodological advances.



Samenvatting

Deze verhandeling behandelt de ontwikkeling van numeriek efficiënte methodes
voor de simulatie van het tandcontact in kegeltandwielen met spiraalvertanding.

In de huidige competitieve markt is het sneller lanceren van nieuwe producten
voor elk bedrijf essentieel om aan klantenvertrouwen te winnen. Ingenieurs
moeten daarom op steeds kortere tijd oplossingen bedenken die het product
zowel verbeteren als ook binnen het geplande budget en productietijd blijven.
In de ontwikkeling van moderne transmissies is tandcontactanalyse (TCA) een
waardevol instrument voor het voorspellen van de mechanische prestaties van
tandwielparen, zonder te moeten steunen op dure prototypes en experimenten.
De geometrische complexiteit van kegeltandwielen met spiraalvormige tanden
vormt echter een actuele rekenkundige uitdaging voor de TCA-methode. Om
accuraat de bewegingsoverbrenging en de krachtverdeling in het contactgebied te
voorspellen, is het gebruik van een driedimensionaal contactmodel noodzakelijk.
Vandaag wordt de tandcontactanalyse voornamelijk gesimuleerd met behulp
van de eindige-elementenmethode (FEM), hoewel ook andere meer specifieke
oplossing bestaan. De meeste van deze FEM-oplossingen gebruiken generieke
methodes (bijv. node-to-surface) om de contactgebieden te bepalen, waarbij de
tandoppervlakken vanwege hun complexiteit als willekeurig worden beschouwd.
Het niet in acht nemen dat de tandflanken ontworpen zijn om de beweging over
te brengen op een bijna geconjugeerde wijze, vertaalt zich voor tandwielen echter
in een zeer inefficiënte contactdetectie. De bijgevolg hoge rekenlast beperkt TCA
in haar toepassing tot statische componentanalyse en verhindert uitbreidingen
tot dynamische analyses of tot de simulatie van transmissies als systemen.

Bouwend op concepten zoals het oppervlak van rolhoeken en de interpenetratie
van de tandflanken, ontwikkelt deze verhandeling een nieuw driedimensionaal
contactmodel voor kegeltandwielen, die al dan niet uitlijnfouten vertonen. De
methodologie voorspelt het correcte contactgedrag van het tandwielpaar aan een
lagere rekenkost die de weg effent voor toekomstige toepassingen in de statische
of dynamische analyse van systemen met spiraalvormige kegeltandwielparen.
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viii SAMENVATTING

Een nauwkeurige beschrijving van de tandoppervlakken van de spiraalvormige
kegeltandwielen is essentieel om zowel de kinematica te beschrijven als ook
alle complexe contactfenomenen correct in rekening te brengen. Het ideale
profiel, gelijkaardig aan het evolvente tandprofiel voor cilindrische tandwielen,
bestaat echter niet voor spiraalvormige kegeltandwielen. Een wiskundig model
is daarom vereist om de kinematica van het snijproces te simuleren en zo de
macro- en microgeometrie van de tand te modelleren. In dit onderzoek wordt
het verspaningsproces, genaamd five-cut face-milling (frezen), gebruikt om de
geometrie van een spiraalvormige kegeltandwielpaar virtueel te genereren.

Een methode, die in de literatuur wordt geponeerd om de rekenkost van de
contactdetectie te reduceren, combineert het oppervlak van de rolhoeken met
het concept van ease-off topografie. Deze topografie kwantificeert het gebrek aan
geometrische conformiteit van een paar tandflanken in contact. Toch heeft deze
methode haar beperkingen met het oog op de analyse van tandwielsystemen,
daar de ease-off topografie sterk gevoelig is aan optredende uitlijnfouten. Daarom
verruilt de ontworpen methodologie het ease-off concept met een contactmodel
dat berust op de interpenetratie van de tandflanken, zodat deze toepasbaar
is in een meer systeemgeoriënteerde methode zoals de meerlichamensimulatie.
Een analytisch model wordt geformuleerd om de interpenetratie tussen de
tandflanken te vertalen naar contactkrachten. De vervorming van een tandpaar
in contact is beschreven als de som van twee componenten: een lineaire voor de
globale tandvervorming en een niet-lineaire voor de contactvervorming.

De ontwikkelde methodologie kan de prestaties van een verkeerd uitgelijnd
tandwielpaar voorspellen, vertrekkende van de rolhoekoppervlakken die berekend
zijn voor de tandflankparen in afwezigheid van de uitlijnfouten. Een op ease-off
gebaseerde methode moet echter de topografie herberekenen telkens de uitlijning
van het tandwielpaar verandert (bijv. door systeemgeïnduceerde verplaatsingen).
Hierdoor vermindert haar anders uitstekende numerieke efficiëntie sterk. Het op
interpenetratie gebaseerde contactmodel identificeert het contact door middel
van het rolhoekoppervlak maar brengt het gebrek aan geometrische conformiteit
in rekening via de ogenblikkelijke positie en oriëntatie van de tandoppervlakken.
Hierdoor is de accuraatheid van de methode minder afhankelijk van uitlijnfouten.
Een strategie om de rolhoekoppervlakken parametrisch te herdefiniëren in functie
van de ogenblikkelijke uitlijnfout wordt ook geopperd om de nauwkeurigheid
van de contactdetectie nog verder te verbeteren.

Een toolchain prototype is gecreëerd die alle gepresenteerde technieken omvat,
inclusief methodes voor onbelaste en belaste tandcontactanalyse. Deze zijn in
feite essentieel in het huidige ontwerpproces van spiraalvormige kegeltandwielen.
Routines voor het automatisch creëren van FEM modellen zijn ontwikkeld om
zo de methodes te valideren bij middel van niet-lineaire FEM contactsimulaties.
Dit alles ondersteunt toekomstig onderzoek naar methodologische verbeteringen.



Sommario

Il seguente lavoro di ricerca tratta l’efficienza di simulazioni di fenomeni di
contatto per ruote dentate, in particolare alle ruote coniche a denti spiroidali.

Al giorno d’oggi per ogni azienda è fondamentale sviluppare i propri prodotti
in modo più veloce possibile, al fine di sfidare la concorrenza e di ottenere la
fedeltà del cliente. Gli ingegneri hanno dunque la necessità di proporre, nel
minor tempo possibile, soluzioni corrette per migliorare il design dei prodotti
così da rientrare nel budget e nei tempi prestabiliti. Nello sviluppo delle
moderne trasmissioni meccaniche, la tooth contact analysis (TCA), rappresenta
un prezioso strumento per predire le prestazioni meccaniche delle coppie di
ruote dentate, senza dover ricorrere a costosi prototipi ed impegnativi test
sperimentali. Tuttavia, la complessità geometrica delle ruote coniche a denti
spiroidali pone costanti sfide computazionali al metodo della TCA. Al fine di
simulare correttamente la trasmissione del moto e la distribuzione del carico nella
zona di contatto, è necessario utilizzare un modello tridimensionale. Oggigiorno
le simulazioni del contatto fra i denti sono analizzate attraverso metodi agli
elementi finiti (FEM), nonostante esistano altre soluzioni più specifiche. Nella
maggior parte di questi metodi FEM, approcci generici (es node-to-surface) sono
utilizzati per captare le zone di contatto, considerando le superfici dei denti
come arbitrarie. Inoltre, trascurare che le superfici dei denti sono progettate
per trasmettere il moto in maniera quasi coniugata, porta ad una inefficiente
ricerca del contatto. Di conseguenza, l’onere computazionale associato limita
l’utilizzo della TCA alle analisi statiche dei componenti, impedendo l’estensione
del metodo a simulazioni di trasmissioni come sistemi o ad analisi dinamiche.

Il lavoro di tesi sviluppa un nuovo modello di contatto tridimensionale, basato
sulla compenetrazione dei denti reali. Esso si basa sul concetto di surface of roll
angles per identificare il contatto in modo efficiente. La metodologia mostra
una corretta previsione dell’interazione tra i componenti in contatto ad un costo
computazionale ridotto, aprendo la strada a future applicazioni per l’analisi
statiche o dinamiche di sistemi con ruote dentate spiroidali.
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x SOMMARIO

Una descrizione accurata della superficie dei denti spiroidali è fondamentale.
Questa si dimostra essenziale per definire la cinematica delle coppie di denti, ma
anche per includere correttamente tutti i complessi fenomeni relativi al contatto.
Tuttavia, un profilo del dente simile all’evolvente per ruote cilindriche non esiste
per le ruote coniche a denti spiroidali. Di conseguenza, un modello matematico
in grado di simulare la cinematica del processo di taglio è necessario al fine
di identificare correttamente la macro e microgeometria del dente. Nel lavoro
di tesi il processo di five-cut face milling (fresatura) è utilizzato per creare la
geometria di una coppia di ruote coniche a denti spiroidali.

In letteratura, vari metodi sono proposti sulla base della surface of roll angles
in combinazione con la topografia ease-off per ridurre il carico computazionale
associato alla ricerca del contatto. Questa topografia quantifica la mancata
corrispondenza geometrica di una coppia di superfici arbitrarie a contatto.
Essa mostra di avere limiti quando ci si sposta verso l’analisi di sistemi con
ruote dentate in contatto. In consapevolezza di ciò, la metodologia sviluppata
sostituisce il concetto di ease-off con un modello basato sulla compenetrazione
dei denti e diviene compatibile con ambienti di simulazione di tipo multibody.
Un modello analitico è formulato per tradurre la compenetrazione fra denti
in carichi di contatto. Esso descrive la deflessione di una coppia di denti in
contatto come somma di una componente lineare ed una non-lineare.

Il modello sviluppato è in grado di prevedere le prestazioni di una coppia di
ruote disallineate, partendo dalle surfaces of roll angles ottenute per i fianchi
della coppia di denti in assenza di disallineamenti. Al contrario, se cambiasse
la configurazione della coppia di ingranaggi (ad esempio a causa di deflessioni
indotte dal sistema), i modelli basati su ease-off dovrebbero effettuare un
aggiornamento relativo al disallineamento introdotto, riducendo così la loro
altrimenti eccellente efficienza computazionale. Il modello di contatto basato
sulla compenetrazione, identifica le posizioni del contatto in base alla surface
of roll-angles, ma calcola la mancata corrispondenza dei fianchi in base alla
posizione e all’orientamento istantaneo delle superfici dei denti. In tal modo
si mostra una maggiore versatilità ai cambiamenti di configurazione. Infine,
una strategia per ridefinire parametricamente il modello con le surfaces of roll
angles in funzione del disallineamento istantaneo della coppia di ingranaggi, è
proposto per aumentare la precisione del rilevamento del contatto.

Un prototipo di toolchain è creato attorno alle tecniche presentate, includendo le
varie analisi per il contatto fra denti con e senza carichi applicati. Queste analisi
sono infatti una parte essenziale dell’attuale processo di progettazione degli
ingranaggi conici a denti spiroidali. Le routine sono sviluppate per supportare la
creazione automatizzata di modelli FEM, al fine di validare i metodi a confronto
con simulazioni basate su FEM non lineari. Questi strumenti supporteranno
attivamente la ricerca futura sui progressi metodologici.
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emax The direction of the maximum principal curvature κmax.
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Chapter 1

Introduction

The level of technological advancement in today’s world would have been
unrealizable without the existence of gears; from the toys, with which we
played as kids, over the cars that we drive to work as adults, the planes,
which we take to go on holidays [96]. In nearly all applications where power
transfer is required, gears play an essential role. However, the gear industry
has recognized that significant technological challenges lie ahead and should be
overcome if it wants to remain the preferred solution for power transmission
in the near future [4]. More than ever does the industry need to integrate
consumers’ unceasing desire for increased performance into their products, while
complying to increasingly stringent regulations regarding energy consumption
and emissions. Still, the rising environmental awareness in our society provides
companies with opportunities for added-value, increased competitiveness and
brand identification through sustainable design [91]. Meanwhile, emerging
markets continue to invest heavily in the development of new technologies
and products, providing the developed markets with a drive for increased
cost-effectiveness and a focus towards innovation.

It is within this mind-set of continuous pursuit for innovation, improved
performance and shorter time-to-market cycles that the development of new key
technologies for design and analysis can play a decisive role. In the past, design
has often been treated as a "trial and error" process during which multiple
physical prototypes of a new product were built. Experimental test campaigns
were then conducted to assess the performance of a prototype with respect
to given design criteria (e.g. noise, durability, efficiency, ...) and if needed
the design was altered until the provided criteria were met satisfactorily. The
introduction and further development of computer-aided engineering (CAE)
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2 INTRODUCTION

platforms during the second part of the last century provided engineers with
powerful alternatives to evaluate their design choices. No longer do they have
to rely solely on information obtained through the laborious and costly creation
of physical prototypes. Methodologies, such as finite element analysis (FEA),
computational fluid dynamics (CFD), multibody system dynamics (MBSD) or
multi-objective optimization (MOO) now provide the means to create physics-
based virtual prototypes and analyze the influence of design modifications
relatively early in the development cycle.

For these CAE methodologies to fit within the design process, it is essential
that the underlying mathematical models approximate the real-life behavior as
accurately as desired, while maintaining a reasonable computational efficiency.
The growing complexity of today’s mechanical power transmission systems make
that an optimal system design through optimization of individual components
becomes progressively harder to maintain. Driven partially out of necessity
but also supported by continuous advances in computational power, the last
decade has seen a noticeable shift towards the use of CAE methods for the
study and optimization of component behavior as part of a larger system. Still,
as the complexity of the numerical models increases, the need for accurate and
computational efficient algorithms remains.

1.1 On the importance of accurate spiral bevel gear
models, applicable to system-level analysis

1.1.1 A growing need for system-level simulations

Following global environmental concerns, one of the focal points for industry
has been a reduction of fuel consumption through a combination of lightweight
design, downsizing and improved efficiency. Depending on the type, mechanical
transmissions can be a source of significant energy losses in automotive or
aerospace applications, leading to an overall efficiency of generally 85-94% [88].
When it comes to optimization and design, two viable approaches are often
pursued to increase the transmission efficiency.

Gear manufacturers aim at improving the mechanical efficiency of the individual
gear pairs, in the hope to optimize the (efficiency of the) system by optimizing
the individual components. An example of such a component-based approach
is the decision, taken in 2004 by the American Gear Manufacturers Association
(AGMA) to improve the mechanical efficiency of gears with 50% by 2020 [4].
The ambitiousness of such a task should not be underestimated, given that
the mechanical efficiency of current gear pairs is high. With an efficiency
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of well-above 99%, spur and helical gears (parallel axes) show to be one of
the most efficient ways to transfer power between rotating axes [55, 88]. The
mechanical efficiency of bevel (intersecting axes) and hypoid (crossed axes) is
lower due to higher frictional losses that go with the higher total load for a
given tangential load and the higher sliding velocities at the localized contact.
Still, a well-made bevel gear set generally reaches a mechanical efficiency of 98-
99% [96], whereas hypoid gears have an efficiency of 90-97% [67, 139]. The lower
efficiency for hypoid gears results from the higher sliding velocities across the
teeth faces, which are inherent to all motion transfer between crossed rotational
axes [31, 96]. With regard to further optimization on component-level, numerous
research studies are devoted to accurately modeling of the different mechanical
phenomena that occur during contact.

Transmission and gearbox designers on the other hand are ever more challenged
to unite conflicting design requirements of increased power density and
mechanical efficiency, while maintaining or further enhancing noise, vibration
and harshness (NVH) and durability characteristics [47, 108]. Notwithstanding
the importance of improvements towards gear pair efficiency, they realize that
consumers attach more importance to transmission efficiency than to efficient
gears. Moreover, consumers consider other system performance characteristics,
such as NVH and durability, equally important. While, recent studies [55, 82]
document the potential of significant gains towards transmission efficiency,
they do not include the impact of the loss phenomena on other system-
level performance characteristics. For example, friction can be beneficial in
dampening out undesired drivetrain vibrations, thus improving the overall
NVH performance [85]. Neglecting the impact of design choices on the
system’s behavior can lead to later problems during the manufacturing process,
where they prove to be more time-consuming and highly expensive to correct.
Consequently, manufacturers have indicated a need for adequate simulation
tools that can correctly capture the system-level dynamics of their systems [94].
The necessity for these system-level models within the transmission design
process is also reflected in the recent literature, as a growing number of
researchers explore methodologies to integrate models that simulate the behavior
of transmission components, such as bearings [39, 83, 103, 136], cylindrical
gears [16, 22, 38, 104, 120] and bevel and hypoid gears [25, 58, 95, 133, 140],
within multibody dynamics simulations. However, while high-fidelity models
for bearings and cylindrical gears are starting to be integrated in system-level
models, the geometrical complexity of the gear teeth makes that dynamic models
for bevel and hypoid gears often start from precomputed tooth contact results.



4 INTRODUCTION

(a) Helicopter main gearbox [3]. (b) Rudder propeller [102].

Figure 1.1: Examples of spiral bevel gear applications.

1.1.2 On the importance of numerically efficient and accurate
contact models for spiral bevel gears

Bevel gears play an essential role when it comes to motion transfer between
intersecting rotating axes. While in most cases the motion transfer takes place
between perpendicular axes, they can also be designed to transmit motion under
acute or obtuse shaft angles. Based on the tooth shape, bevel gears are usually
categorized into different subgroups (e.g. straight, skew, spiral, ...), of which
spiral bevel gears have the most complex tooth shape, manufacturing process
and contact characteristics.

Spiral bevel gears have found application in a wide variety of sectors, ranging
from general industry to aerospace (Fig. 1.1a) and marine (Fig. 1.1b). The
presence of the tooth spiral (length-wise curvature) causes the characteristically
curved and oblique teeth, while also providing a more gradual tooth engagement
and better load-carrying capacity, compared to other bevel gears of the same
size. This allows them to be used for highly loaded applications that run at
high operating speeds.

Even though spiral bevel gears produce less noise, compared to most of the
other gear types, noise and vibration problems can still arise from the periodic
engagement and disengagement of the gear teeth. Although it has no direct
impact on the transmissions lifetime, gear whine is often considered to be
undesired, due to its tonal sound that occurs at the mesh frequency and its
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Figure 1.2: An example of a face-milled spiral bevel gear pair.

harmonics [51]. Imperfect motion transfer between the mating gears can be
identified as the main cause for gear whine. This motion transfer is mainly
governed by the contact properties of the mating gear tooth flanks so that the
local tooth flank geometry, the tooth stiffness and tribological effects play an
important role. Moreover, as spiral bevel gears are usually part of a larger
system, these component characteristics are also affected by the interactions
with the other components to which they are connected (e.g. gear-bearing
interactions). As time-varying forces that arise from contact between the gear
teeth, can cause additional shaft and bearing deflections, the relative orientation
of the gear pair will also be altered, thus changing the local contact conditions.
Consequently, this shows that models for spiral bevel gears cannot overlook the
local contact phenomena that are at play on a component-level, if they want to
accurately predict the behavior on a system-level.

The complexity of the gear tooth geometry (Fig. 1.2) often forms an obstacle in
the development process of spiral bevel gear pairs. As both the macroscopic
(e.g. tooth shape and curvature) and microscopic (e.g. flank modifications)
properties of the tooth geometry are directly affected by the manufacturing
process, the machine settings have a significant impact on the contact location
and the error in motion transfer. Besides the tooth surface geometry, the gear
pair’s mounting conditions also influence the quality of motion transmission,
since the latter is the direct result of interactions between the mating flanks.

Contact between meshing gear teeth is highly nonlinear in nature, as visualized
in Fig. 1.3 through the Von Mises stress distribution for a spiral bevel gear
pair in mesh. Over the course of a mesh cycle (indexing of one gear tooth)
tooth engagement and disengagement occurs, changing the number of gear
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teeth that carry the contact at a given point. The resulting nonlinear and
time-varying nature of the mesh stiffness is often identified as a source for gear
pair vibrations and is tightly linked to the quality of motion transfer. In the
proximity of the contact zone the tooth deformation and the resulting contact
stresses also show to be vary nonlinearly as a function of the loading conditions.
To reduce vibrations at a given operational load, gear designers usually include
a certain amount of flank mismatch into the spiral bevel gear pair’s design to
counterbalance tooth deflections under load. This causes the local (dry-)contact
deformation, which resembles that of a point load for lightly loaded gears,
to develop into a line load for increased loading conditions, while potentially
bringing neighboring teeth into contact due to additional tooth deflections.

While just a few important aspects were discussed, it allows to form a clear idea
about the importance of component-based spiral bevel gear models. Tribological
(e.g. friction or lubrication), thermal or durability related (e.g. pitting) effects
were left out of the discussion, although they can have an important impact
on the behavior of the components as well as the system. Due to the amount
of variables, it becomes difficult to comprehend upfront which effects will
dominate the behavior. Without neglecting possible influences by the system,
it is therefore essential that component models unite a sufficiently accurate
description of the phenomena that govern a component’s behavior with an
acceptable amount of computational time. A component model of a spiral
bevel gear pair should for example be able to account for changes in relative
configuration due to system compliance. In conclusion, it is considered to be
good-practice to first establish an accurate description of the structural behavior
(static, then dynamic) of the mechanical components and then to augment the
model fidelity, depending on the phenomena that one wants to study.

Figure 1.3: The Von Mises stress distribution for spiral bevel gears in mesh
is here used to visualize the nonlinear nature of the tooth contact.
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1.2 Problem statement and research objectives

1.2.1 Problem statement

In light of a growing need for accurate gear models that integrate into a system-
level design process for mechanical transmissions, a clear difference can be
identified when comparing simulation technology for cylindrical involute gearing
with what exists today for bevel gears. While the models for spur and helical
involute gears have evolved from analytical models [20, 53, 70, 92] to component-
based models that allow to predict contact performance of lightweight gear
designs within (flexible) multibody simulations [17, 22, 97, 142], the dynamic
models for spiral bevel gears [85, 95, 133, 140] depend on pre-computed and
averaged tooth contact data to approximate the time-varying mesh stiffness
over the mesh cycle. One important basis that explains why the simulation
technology for bevel gears has not yet caught up, points to the geometry of
spiral bevel gear teeth and the resulting complexity of the contact phenomena.

For cylindrical gears, involute tooth profiles - introduced by Euler - have
become today’s standard, when motion transmission is required. Involute tooth
geometry is relatively simple and can be described analytically. Moreover,
meshing involute gear teeth also have additional beneficial properties. Unloaded
and unmodified involute gear teeth have so-called conjugate flanks, i.e. they
are able to guarantee perfect motion transmission. They also offer a good
sensitivity to gear pair misalignments. However, their most important property
for this discussion is that the contact between involute gear teeth can be
expressed analytically through the line (2D) or plane (3D) of action. This
allows to derive the contact points and the direction of the contact forces directly
from the instantaneous rotation of each gear element [38, 54]. In contrast, a
face-milling (FM) or face-hobbing (FH) process is used to create the required
tooth geometry that allows for near-conjugate motion transfer in spiral bevel
gears. The complexity of the tooth geometry does not allow for an analytical
expression but requires the numerical simulation of the actual manufacturing
process. Moreover, due to the three-dimensional nature of the motion transfer,
the contact will take place along a surface of action, for which an analytical
solution is not generally available.

As a consequence, a lot of research efforts (see Chapter 2) have gone into
the analysis and optimization of individual spiral bevel gear pairs, either by
experimental testing or by computerized tooth contact analysis (TCA). Through
simulation of the gear meshing process, TCA aims at providing answers about
key performance characteristics of the gear pair without a need for expensive
prototyping and experimental testing. The performance of a spiral bevel gear
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pair is typically classified based on the quality of the transmission error (TE),
the contact point path (CPP) on the gear flanks, the (overall) contact zone
under load and the sensitivity of these characteristics w.r.t. configurational
misalignments [76]. While unloaded tooth contact analysis (UTCA) focuses
mainly on determining the geometrical mismatch (referred to as ease-off
topography) between two mating tooth profiles and the resulting unloaded
transmission error (UTE), loaded tooth contact analysis (LTCA) predicts the
contact behavior under load. Both types of TCA have integrated the simulation
of the manufacturing process into their methodology to obtain an accurate
description of the mating tooth flanks. TCA is often extended with nonlinear
FEA (NL-FEA) of the meshing process to determine tooth bending and contact
stresses under load. To handle the geometrical complexity of the gear teeth, the
mating tooth surfaces are usually considered to be arbitrary and a general contact
detection method, such as continuous tangency (in TCA) or node-to-surface
(in FEA), is used to detect contact. The high computational requirements that
come with the generality of such an approach make it impractical for parameter
studies or optimization campaigns and have lead to its application being mostly
limited to the study of component behavior.

Perhaps one of the most applicable methods to the system-level analysis of
spiral bevel and hypoid gears, is the contact detection methodology that was
proposed by Kolivand and Kahraman to improve the computational efficiency
of TCA [63]. Their contact detection and load distribution model proved useful
in studies regarding the tooth flank optimization [9], efficiency analysis [67],
and wear prediction [93]. Rather than imposing contact between the real teeth
flanks, they simplified the contact detection by determining contact between the
(chosen) real pinion flank and a (computed) theoretical flank that is conjugate
to the pinion, while using the ease-off topography (EO) to account for difference
between the conjugate to the pinion and the real gear flank. Using the so-called
surface of roll angles or roll surface (RS), this methodology allows to compute
contact lines between the real pinion flank and its conjugate in a numerically
efficient way. This assumption is justified for flanks that transmit motion in a
nearly conjugate manner, since the differences between the real gear flank and
the conjugate to the real pinion flank are only a few micrometers and thus do
not affect the location nor the shape of the contact region.

A direct translation of the model that was proposed by Kolivand, to a system-
level model is however not without its difficulties. Since the ease-off topography
does not only depend on the gear tooth flank geometry but also on the relative
installment of the gear pair, the main drawback is directly related to changes in
the mounting conditions (due to system compliance) that can occur during time
simulation. Any variation in the nominal mounting conditions does not only
directly affect the ease-off topography but also the contact locations (surface
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of roll angles). Additionally, the gear-based projection plane method, as it is
defined by Kolivand, requires a detailed knowledge about the manufacturing
process to compute the 3D surface points of the gear teeth flanks. While such a
requirement is less relevant to the core of the methodology, it does make the
approach less applicable to predefined spiral bevel gear pair models for which
such information is not (directly) available.

Apart from detecting contact it is equally important to correctly translate the
detected deformation into accurate contact forces. System-level models for
cylindrical gearing show that current gear and transmission design still calls
for models with different levels of fidelity. While the development of more
advanced, often finite element (FE) based, contact models [5, 22, 38, 97, 121]
is driven by the present trend of lightweight design, analytical mesh stiffness
models [20, 53, 70] still have their place within the design process. When it comes
to TCA of spiral bevel gears, analytical mesh stiffness models are rarely used.
This is attributed to the fact that analytical models can sometimes introduce
significant approximations due to the complexity of the tooth geometry. Since
linear and nonlinear FEA methods have shown to be effective modeling tools that
allow for an accurate analysis of complex structures, FE-based methodologies
for TCA are commonly used [6, 37, 40, 46, 77]. The increase in computational
costs that comes with such an increase of model fidelity, also becomes easier to
accept in the absence of a computationally efficient contact detection method.
However, with efforts being done to improve the computational efficiency of
contact detection algorithms, accurate analytical mesh stiffness models for spiral
bevel gears can provide engineers with an additional powerful tool for quick
evaluation of design alternatives.

1.2.2 Existing solutions

Different software solutions are commercially available to assist designers
of transmissions with their design and simulation. Without any claim on
completeness, it is reasonable to group the following list of available solutions into
four product families. While originally each of these simulation approaches might
have targeted a specific phase in the design cycle, over recent years synergies
between the product families have emerged to compensate for individual weak
points or to provide a mutual integrated solution.

The first family covers gearbox design (e.g. Romax [98], KISSoft [60], ...),
integrating a lot of gearbox design know-how with simulation tools that allow
for strength calculations, design optimization and some level of simulation
capabilities for durability and NVH analysis.
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A second family comprises of NL-FEA software (e.g. Simulia Abaqus [28], LMS
Samcef Mecano [109], NX Nastran [111], ...), which can be situated at the
highest end of the spectrum when it comes to solution accuracy. However,
the price for high accuracy is often paid in terms of increased simulation time.
This is particularly true for NL-FEA contact simulations with sliding or rolling
surfaces, which require finely meshed contact interfaces to accurately represent
the contacting geometry and to describe the arising contact stress distributions.
In practice, these solutions are typically applied in the detailed static analysis
of components, as system-level analysis or time-domain simulations prove too
computationally expensive.

The third family governs products that are specifically created for the
contact analysis of geared transmission components (e.g. Gleason CAGE [45],
CALYX [127], BECAL [122], LDP and HAP [43], ...). Especially for spiral bevel
and hypoid gear design, most of these solutions have become a reference in the
field of TCA, as they provide the required tools for the optimization of tooth
flank geometry through both UTCA and LTCA. Compared to a general-purpose
NL-FEA software, these dedicated solutions are able to provide accurate results
at a lower computational cost. This is often achieved through an integration
of FE-based methods that describe the global behavior of the component with
analytical or integral solutions that model the local deformation of the contact
interface [37, 126].

The final product family covers the general-purpose multibody simulation
software (e.g. Simcenter Motion [110], Simulia SIMPACK [29], ...). They excel
at the simulation of system dynamics by representing the system as a set
of interconnected elements (bodies, joints, forces, ...) but inherently offer
less transmission design know-how or automated processes. To complement
the modeling process, recent developments have therefore pursued either the
integration of third-party software (of the first or third product family) or the
creation of dedicated programs (so-called verticals) that support an automated
process for multibody transmission creation [108]. The simulation tools that fit
in this product family, emphasize on predicting nonlinear (system) dynamics
within a reasonable time-frame and up to a sufficiently accurate level that
makes the analysis of NVH and durability performance feasible. Still, thanks
to the inclusion of advanced model order reduction techniques [22], current
state-of-the-art models for cylindrical gears [120] have reached a level of fidelity
that allows them to compete in terms of accuracy with solutions from the
third and even second product family. Multibody contact models for spiral
bevel and hypoid gears have not yet reached this level but are often included
through simplified models or tessellation-based contact [86]. Alternatively, user-
defined force (UDF) routines offer the possibility to create TCA-based contact
models [100], by means of precomputed look-up tables, as is described in [95].
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1.2.3 Research objectives

This dissertation aspires to establish foundation for gear contact modeling in
spiral bevel gears. Its goal is to develop advanced gear contact models that
accurately predict component behavior at a computational cost that enables
further application within system-level analysis. Not only do the contact models
have to efficiently predict the precise locations of contact, they also have to
provide an accurate estimate for the resulting deformation and contact loads.
Building on the thoughts of the previous sections, a successful modeling strategy
should therefore meet the following requirements:

• Numerically efficient, thanks to correct gear pair kinematics. In practice,
the real gear geometry only approximates the ideal transmission ratio
due to errors that result from a combination of geometrical mismatch
and contact deformation under external loading. An important step
towards simplifying the contact detection between mating spiral bevel
gear flanks and improving its numerical efficiency, lies in providing an
accurate description of the gear pair kinematics for both the installment
configuration of the gear pair and variable misaligned configurations.
The envisioned gain in computation time for a single contact simulation,
when compared to state-of-the-art methods, has to be significantly high
(e.g. seconds vs. hours) to support usage in system-oriented applications.

• Accurate, thanks to geometrical correctness. A precise description of the
contacting interfaces is of the utmost importance when developing an
accurate 3D-contact model. While current manufacturing techniques allow
for the creation of nearly-conjugate spiral bevel gears, the tooth’s (macro-)
geometry can differ significantly, depending on both the cutting process
and gear parameters. Moreover, since the nonlinear contact behavior is
predominantly influenced by the local surface geometry in contact, the
geometrical models have to accurately capture the tooth’s micro-geometry.
Furthermore, a correctly defined tooth geometry also benefits the accuracy
with which the gear pair’s mesh stiffness is predicted.
The methodology’s accuracy is evaluated based on established criteria such
as transmission error, contact pattern and contact pressure distribution.
Static FEM-based contact simulations are used as a source of reference
to assess whether the targeted accuracy is achieved against these metrics.
The accurate prediction of the unloaded contact is deemed required to
illustrate the contact detection methodology’s effectiveness, together with
a correct representation of the trends in loaded gear contact behavior.
Considering that numerous loads are analyzed, differences in averaged
model behavior that are in a range 10-15%, are thought to be permissible.
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• Modular design. Providing different levels of model complexity can prove
advantageous when designing systems. Depending on the application,
simplified models that make correct assumptions, are often able to provide
good impressions at a fraction of the computational cost. Moreover,
having the option to include or remove more complex effects such as gear
pair misalignments, friction, lubrication or the flexibility of a (lightweight)
gear blank provides transmission design engineers with the appropriate
tools to investigate the influences of such phenomena on the design.
While this dissertation does not aim to provide a spiral bevel gear contact
model that includes all these effects, the model should be developed in
such a way that a future inclusion of more complex effects remains feasible.

1.3 Research approach and methodology

To successfully create a basis for the development of advanced gear contact
models for spiral bevel gears, this research focuses on the design of innovative
strategies for accurate and numerically efficient contact detection of both aligned
and misaligned gear pairs. The methodologies, described in this dissertation,
have been integrated in a Matlab framework for the simulation of spiral bevel
gear contact, that covers the creation of accurate tooth geometry, unloaded and
loaded tooth contact analysis and validation of the proposed methods.

The presented methods for contact detection rely on concepts that originate from
Differential Geometry, such as the equation of meshing, to predict the gear pair
kinematics and optimize the contact search. They are therefore not restricted
to the analysis of spiral bevel gears but can in general be applied to components
that are designed to transmit rotational motion in a close-to-conjugate manner.
Yet, an accurate description of the contacting tooth surfaces is required to
capture effects on both a macro- and a microscopic scale. Various methods have
been developed to make production of bevel and hypoid gears economically
viable (see Chapter 3) but the mathematical models of these cutting processes,
which are required to define the final gear tooth surface geometry, are not as
accurately described in the literature for each of the processes. Within the
scope of this research the first requirement is to create a sufficiently complex
tooth surface geometry that is representative of a spiral bevel gear pair, rather
than to investigate the contact performance of a gear pair that is created by one
specific manufacturing method. Therefore, this work uses the five-cut method, a
historically relevant face-milling method with an in the literature well-described
model, to create a virtual prototype of a spiral bevel gear with accurately
defined gear tooth surfaces.
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The developed methods for contact detection and contact modeling in spiral
bevel gears are presented over the course of the remaining chapters. At the
end of each chapter, the different methods are applied to the analysis of an
in-the-literature-described spiral bevel gear pair, created by the five-cut process.
Simulation and analysis of this gear pair’s contact performance under different
operating conditions will provide sufficient data to evaluate the various aspects
of the proposed methodology. The results from the performed unloaded or
geometrical analysis (Chapter 4) can be compared with those published in the
literature. The loaded tooth contact behavior of the aligned gear pair (Chapter 5)
and of the misaligned gear pair (Chapter 6) are extensively correlated against the
results of detailed static FEM-based contact simulations. The validation of the
contact performance is achieved based on well-defined criteria for transmission
error, contact pattern and contact pressure distribution.

To determine the contact loads, a modeling approach that separates the total
gear tooth deflection into a global and a local deformation component, is
adopted. Separating both effects creates a modular gear contact compliance
model of which each component can be modeled with a different level of accuracy,
depending on the application. Within the scope of this research, it is investigated
if an analytical compliance model can be developed to accurately model the
global tooth deformation, while using a Hertzian contact model to describe the
local contact deformation under the assumption of a dry, frictionless contact.
Advances in model fidelity, e.g. the inclusion of a FEM-based global compliance
model or of friction models, are retained as possible future extensions.

Potential application within a multibody simulation environment should be
a central idea during the development. Given the complexity of the various
effects that arise during the gear contact, the dissertation emphasizes on an
incremental validation of the unloaded and (statically) loaded contact behavior
to build confidence in the modeling methodology. Simulation and analysis of
the dynamic contact performance are kept as next steps for future research.

1.4 Outline and contributions

The modeling and simulation strategy for contact in spiral bevel gears is outlined
in seven chapters. Each chapter addresses a specific aspect of the methodology,
while shifting the focus from state-of-the-art methods to novel contributions.
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1.4.1 Thesis outline

The equation of meshing, together with the ideas for TCA, formulated by
Kolivand [63], will prove essential in the development of an efficient penetration-
based contact detection algorithm. Consequently, Chapter 2 discusses the
state-of-the-art TCA methods that are available to analyze spiral bevel gears.

Chapter 3 covers the basic models, that are used to simulate the manufacturing
process of spiral bevel gears. The process for creating face-milled spiral bevel
gears is described in details, since it is used to create the gear pair under study in
the following chapters. A general method to determine the principal curvatures
of the contact surfaces is provided.

Spiral bevel gear pair kinematics and the theory of conjugate surfaces are
discussed in Chapter 4. Kolivand’s methodology for UTCA is modified and
extended to construct conjugate surfaces, surfaces of roll angles and gear-based
ease-off topography from predefined tooth flanks of the pinion and gear elements
without the need for additional knowledge about the manufacturing process.

Chapter 5 proposes a multibody approach to LTCA. Using the surfaces of
roll angles, an efficient contact detection algorithm that detects contact over
multiple tooth pairs, is developed. Tooth deflections under load are computed
by using a penetration-based contact model that applies a slicing technique
to compute the individual tooth slice deformation, based on Hertzian contact
and beam theory. The chapter concludes with a validation of the proposed
analytical model against results, obtained by NL-FEA.

Chapter 6 proposes the novel idea of interpolating a new surface of roll angles
that is a function of the actual gear pair misalignment. Using this methodology
the developed multibody gear contact model is extended to simulate continuously
varying gear pair misalignments that can occur due to system compliance. The
developed methodology is again validated against NL-FEA results.

Finally, Chapter 7 draws the main conclusions of the presented research, while
also drafting a blueprint for improvements and future work.

To provide the reader with a clear understanding of how these different chapters
come together, the proposed modeling strategy for spiral bevel gears is provided
at the end of Chapter 2 (Section 2.4), following a concise overview of the
state-of-the-art methods for tooth contact analysis.
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1.4.2 Thesis contributions

The main contributions, which have resulted from these research efforts and
which are described in this dissertation, can be summarized as follows:

• Modification of an existing methodology for unloaded TCA.
Rather than incorporating the equations that govern the manufacturing
process into the process, the developed UTCA methodology starts from
a discrete description of the meshing gear tooth surfaces. The UTCA
methodology is based on the surface of roll angles and gear-based ease-
off topography but applies these concepts, combined with interpolation
methods, directly to a predefined geometry for which the manufacturing
process should not necessarily be known. A description of the tooth flanks
in terms of surface coordinates and surface normal vectors in combination
with a specification about the gear pair kinematics will prove sufficient.

• Application of an existing contact detection strategy within a
multibody framework. A gear contact force element, suitable for
multibody applications, is developed that uses the concept of the surface
of roll angles to compute the contact curves for multiple teeth pairs in
contact. The computed penetration is then translated into contact loads
to simulate the contact behavior of a spiral bevel gear pair, while a static
load is applied. The resulting gear contact force element could also be
applied to the simulation of the dynamic gear contact.

• Development of an analytical mesh stiffness model for spiral
bevel gears. To translate the occurring penetration into accurate contact
loads, it is assumed that the detected penetration between rigid flanks
reflects the tooth deformation of gear teeth, if they were flexible. The local
contact deformation between two flanks is computed with an analytical
expression that is derived from Hertzian contact theory. To approximate
the global deformation of each gear tooth in contact, an involute tooth
profile is fitted onto a local segment of the spiral bevel tooth. A set of
analytical expressions, developed based on beam theory, are used to model
the deformation of each tooth segment.

• Development of a numerically efficient strategy to accurately
detect contact under varying misalignments. The surface of roll
angles is dependent on the actual gear pair configuration. When the
configurational states of the gear pair change, the original surface of
roll angles will become less capable of accurately detecting the contact
locations. The developed approach proposes to update the surface of roll
angles by interpolating precomputed surfaces of roll angle based on the
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actual configuration, so that the newly-created surface of roll angles better
represents the misaligned configuration.

• Validation of the developed methods. For validation purposes, a
virtual model of a spiral bevel gear pair that has been extensively described
in the literature, is created and analyzed with the different developed
techniques. In addition a FEM-based model of this gear pair is also created
with one of the developed tools and a FEA-based contact simulations are
performed for both aligned and misaligned configurations. A commercially
available NL-FEA software package is used to perform these reference
calculations. Besides creating different data sets to which the developed
contact model is validated, the generated reference results can also be of
use for the validation of future research.

• Creation of dedicated toolchain for the contact analysis of spiral
bevel gears. An automated toolchain is created in Matlab that
combines all of the developed methods to cover: (i) accurate description
of the gear tooth flank geometry through either simulation of the
cutting process or importing existing cloud-of-point data. (ii) automated
FE-model creation, (iii) automated computation of the required data for
contact detection (preprocessing), (iv) UTCA and (v) LTCA.



Chapter 2

State-of-the-art in
tooth contact analysis of
spiral bevel gears

Computerized TCA has significantly aided the development of spiral bevel gears,
since it allows to characterize a gear pair’s performance without the need for
prototyping and experimental testing. Depending on whether the kinematic
or static performance of the gear pair is of interest, either unloaded (UTCA)
or loaded (LTCA) tooth contact analysis is applied during the gear pair’s
design process. As a result, tailor-made TCA solutions have been developed
to facilitate the simulation of the gear meshing process in both unloaded and
loaded conditions. To obtain an accurate description of the gear geometry
under analysis, many of these solutions integrate a numerical simulation of the
manufacturing process into their functionality. This makes them particularly
useful when it comes to the identification of optimized machine settings, as a
function of desired contact characteristics. At the same time general purpose
NL-FEA-based simulations are also performed when a deeper understanding of
the arising contact and tooth bending stresses are required.

This chapter’s main goal is to provide an overview of the different methodologies
that have been developed for the contact detection and mesh stiffness calculation
within TCA. Although it is possible to analyze any gear type using TCA,
only those solutions that are used for spiral bevel gears will be of interest.
Additionally, the key concepts for contact simulation using NL-FEA are provided
and some interesting multibody models for spiral bevel gears are discussed.

17
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2.1 Models for unloaded tooth contact analysis

Historically, the first computerized simulation methodologies that were
developed for tooth contact analysis focused on a kinematic investigation of
the gear pair’s meshing performance. Without the consideration of external
loads, UTCA’s main attention goes to providing an accurate description of the
geometrical mismatch between the mating rigid tooth flanks. Two fundamentally
different methodologies for UTCA have been proposed in the literature: contact
can be detected by directly imposing the contact conditions or through the
concept of ease-off topography. Independently from the applied methodology,
the goal of UTCA is to determine: (i) the unloaded transmission error (UTE),
(ii) the path of instantaneous contact points (CPP), and (iii) the contact
bearing pattern that provides an idea of how the contact develops under load.
The bearing pattern is usually established based on the concept of the elastic
approach δe, which represents an artificial deformation threshold [76].

2.1.1 Conventional approach to contact detection in TCA

The groundwork for most of today’s methods for geometry, manufacturing
and tooth contact analysis for spiral bevel and hypoid gears has been laid
by Wildhaber [137] and Baxter [14]. In the following years significant
advancements were made by the researchers of the Gleason Works [69]
and Klingelnberg-Oerlikon [61]. Their efforts resulted in the creation of
commercial TCA solutions for spiral bevel and hypoid gears.

In the early 1980s, Litvin and Gutman presented their work on the geometrical
analysis of FM spiral bevel gears in a triplet of papers [78, 79, 80]. Their work
introduced the concept of local synthesis as a method to determine the machine
settings, starting from predetermined contact characteristics for the gear pair
at a predefined point. In later publications by Litvin, Fuentes and Argryis
this methodology was adopted again to further optimize the manufacturing
parameters for spiral bevel gear sets [6, 40, 77]. Their methodology for
determining the contact between the meshing flanks under no-load conditions
was based on the principle of continuous tangency between the mating flanks.
It became a generally accepted method for contact detection in UTCA.

Methodology

The condition of continuous tangency is obtained by imposing the contact
conditions between the mating flanks. Mathematically, this translates to
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identifying the contact locations as those surface points (r(1) and r(2)) on
the corresponding flanks that become coincident and whose surface normal
vectors (N (1) and N (2)) become collinear in case of contact [76]:

r(1) = r(2) (2.1a)

−N (1) = N (2) (2.1b)

As a result, computerized programs for TCA, which make use of this
methodology, usually have the following assumptions built-in to determine
a solution to the contact problem: (i) the equations that define the pinion and
gear tooth flanks are known, (ii) the gear pair installment is known and constant
during the simulation, and (iii) the meshing tooth flank surfaces are conjugate
in a specified point (point M).

A mathematical description of the individual gear tooth flanks can be obtained
from the equations that govern the kinematics of the gear cutting process in
combination with the equation of meshing (See Chapter 3). Given that this
information is available, it becomes possible to define the position vector of each
point r(1)

1 (u(1), v(1)) and corresponding surface normal vectorN (1)
1 (u(1), v(1)) on

the pinion tooth surface S1 (gear 1 ) as a function of two independent curvilinear
coordinates u(1) and v(1). Similarly it is possible to define the position vector
r

(2)
2 (u(2), v(2)) and corresponding surface normal vector N (2)

2 (u(2), v(2)) on the
gear tooth surface S2 (gear 2 ) as a function of the two independent curvilinear
coordinates u(2) and v(2). In addition to the local reference frames S1 and S2,
which are used to express the teeth surfaces of respectively the pinion and the
gear element, a third reference frame can be introduced to define the gear pair
installment and misalignments. These misalignments can be seen as variations
about the nominal installment configuration (see Chapter 6). In this work, this
auxiliary reference frame is referred to as the Base frame SB. To satisfy the
contact conditions at the point M (see Fig. 2.1a) both the pinion and the gear
element are allowed to rotate about their respective rotational axes (z-axis of
each local frame), while the gear pair’s installment parameters are considered
to remain constant during the simulation. From Eq. (2.1) the conditions for
contact between the pinion and gear flanks is then defined in the frame SB by:

TB1(φ(1)
z ) r̄(1)

1 (u(1), v(1)) = TB2(−φ(2)
z ) r̄(2)

2 (u(2), v(2)) (2.2a)

−LB1(φ(1)
z )N (1)

1 (u(1), v(1)) = LB2(−φ(2)
z )N (2)

2 (u(2), v(2)) (2.2b)

In Eq. (2.2) the angles φ(1)
z and φ

(2)
z represent the pinon and gear rotations

about their respective rotational axes. To simplify the operations when dealing
with numerous rotation and translation transformations, the coordinates of the
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contact points on the pinion and gear surfaces, given by the vectors r(1)
1 and r(2)

2
in their respective local frames S1 and S2, are written in their homogeneous forms
r̄

(1)
1 and r̄(2)

2 (See also Appendix B: Eqs. (B.1) and (B.2)). The homogeneous
transformation matrices TB1 and TB2 are then used to represent the gear pair’s
installment (translation and rotation) w.r.t. the Base frame SB . The matrices
LB1 and LB2 are sub-matrices of TB1 and TB2, respectively, that represent
the orientation of the contact flanks w.r.t. the Base frame SB .

While Eq. (2.2) defines the contact locations in terms of six unknown variables
(φ(1)
z , u(1), v(1), φ(2)

z , u(2) and u(2)), it comprises only five independent nonlinear
equations [76]. Because of the collinearity of the surface normal vectors at the
contact point, the components of Eq. (2.2b) are further related by:∥∥∥N (1)

B

∥∥∥ =
∥∥∥N (2)

B

∥∥∥ = 1 (2.3)

Consequently, the user has to specify either φ(1)
z or φ(2)

z in order to solve the
system of equations for the remaining five unknowns. In addition, accurate
guess values are also required to guarantee a correct solution. When applied
successfully, the methodology of continuous tangency allows to determine the
UTE, based on the resulting pinion rotation angle φ(1)

z and gear rotation angle
φ

(2)
z , using the general equation for transmission error:

TE =
(
φ(2)
z − φ

(2)
z0
)
− Z1

Z2

(
φ(1)
z − φ

(1)
z0
)

(2.4)

Here φ(1)
z0 and φ(2)

z0 correspond to the initial angular displacement of the pinion
and the gear that are required to position the mating tooth flanks in contact
(as close as possible) at the start of the simulation, while Z1 and Z2 correspond
to the number of teeth for the pinon and gear, respectively [36].

Solving the system of equations, given by Eq. (2.2), for each of the selected
angular configurations of the mesh cycle, allows to establish the path of
instantaneous contact points on both the pinion and the gear flank. To estimate
how the contact pattern develops when a light load is applied, a potential contact
line is computed for each point of the CPP. It is assumed that the instantaneous
contact line develops along the direction for which the distance between the two
contact surfaces (i.e. the pinion and the gear surface) is minimal [75, 76, 134].
This direction also corresponds to the direction that minimizes the relative
normal curvature between the two surfaces at the instantaneous contact point
(ICP) M . To compute the relative curvature, the contacting surfaces are locally
approximated as two contacting ellipsoids, centered around the contact point
M , as shown in Fig. 2.1. When viewed in the tangent plane T , the resulting
contact pattern resembles that of an ellipse for which the size and orientation
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are determined by the minor axis s and major axis t. Since the direction of the
contact ellipse’s major axis t represents the direction of the contact line, the
normal curvature along t has to be determined for both surfaces.

When the principal curvatures of both the pinion surface (κ(1)
min and κ(1)

max) and
the gear surface (κ(2)

min and κ(2)
max) and their corresponding principal directions

(e(1)
min, e

(1)
max, e(2)

min and e(2)
max) are known, Euler’s formula, given in Eq. (2.5),

allows to compute the normal curvature along any direction t.

κ(g)
n = κ(g)

max cos2 (θ(g)
t

)
+ κ

(g)
min sin2 (θ(g)

t

)
(g = 1, 2) (2.5)

The angle θ(g)
t is defined as the angle between the direction t and the direction

of maximum principal curvature e(g)
max for a surface g, as shown in Fig. 2.1b.

Correspondingly, Eqs. (2.6) and (2.7) allow to compute the normal curvature
along t for respectively a pinion (i = 1) and a gear surface (i = 2). The relative
orientation of both surfaces is taken into account through θ(21)

t = θ
(2)
t − θ

(1)
t ,

which allows the relative normal curvature κ(21)
n along t to be expressed as a

function of θ(1)
t .

κ(1)
n = κ(1)

max cos2 (θ(1)
t

)
+ κ

(1)
min sin2 (θ(1)

t

)
(2.6)

κ(2)
n = κ(2)

max cos2 (θ(1)
t + θ

(21)
t

)
+ κ

(1)
min sin2 (θ(1)

t + θ
(21)
t

)
(2.7)

κ(21)
n = κ(2)

n − κ(1)
n (2.8)

Assuming that the contact ellipse occurs along the direction of minimum relative
normal curvature κ(21)

n , its orientation is found by computing the value of θ(1)
t

that minimizes Eq. (2.8). From dκ(21)
n

dθ
(1)
t

= 0, one obtains [76]:

tan
(
2θ(1)
t

)
=

g
(2)
S sin

(
2θ(21)
t

)
g

(1)
S − g

(2)
S cos

(
2θ(21)
t

) (2.9)

In order to compact the notation, the following expressions are introduced:

κ
(g)
S = κ(g)

max + κ
(g)
min, g

(g)
S = κ(g)

max − κ
(g)
min (g = 1, 2) (2.10)

With the orientation of the contact ellipse determined, it is also possible to
estimate the length of the contact line along t as Lc = 2b and the width of the
contact along s as 2a (see Fig. 2.1b), using Eq. (2.11) [76].

2a = 2
∣∣∣∣∣δeA
∣∣∣∣∣
1/2

, 2b = 2
∣∣∣∣∣δeB
∣∣∣∣∣
1/2

(2.11)
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where:

A = 1
4

[
κ

(1)
S − κ

(2)
S +

[(
g

(1)
S
)2 − 2g(1)

S g
(2)
S cos

(
2θ(21)
t

)
+
(
g

(2)
S
)2
]1/2

]
(2.12)

B = 1
4

[
κ

(1)
S − κ

(2)
S −

[(
g

(1)
S
)2 − 2g(1)

S g
(2)
S cos

(
2θ(21)
t

)
+
(
g

(2)
S
)2
]1/2

]
(2.13)

In practice, the elastic approach δe, which is used in Eq. (2.11) to estimate
the size of the contact ellipse, corresponds to the thickness of the marking
compound that is applied to the gear teeth when an experimental TCA test
is performed. In case of a light load, the resulting tooth deformation can
be considered negligible. Therefore, the marking component that is removed
due to friction, indicates the minimum distance between the engaging tooth
flanks. Experimental results have shown that this thickness is usually between 4-
7 µm [76, 134]. Alternatively, an estimated value for the overall tooth deflection
can also be chosen to predict the emerging contact pattern under load.

Challenges

The conventional approach to TCA considers the contacting teeth flanks to
be arbitrary, while imposing the condition of continuous tangency at each
step of the mesh cycle by solving a system of nonlinear equations (Eqs. (2.2a)
and (2.2b)). Finding an accurate solution to this problem is complicated as
convergence to points in the proximity of the true contact point can occur
due to the high level of conformity (similarity) between the mating flanks.
The solution also shows to be very sensitive to the initial guesses, which are
not straightforward to determine [63]. Consequently, dedicated strategies for
automatic determination of appropriate guess values have been proposed for
both general TCA [81] and TCA in the presence of misalignments [49].

The condition of continuous tangency also shows limitations when contact
occurs at the edges of the teeth flanks (edge contact) or when the mating teeth
surfaces are in a perfect line contact [72, 99]. In case of an edge contact the
methodology might fail at solving the contact problem, if a common direction
for the contact surface normal cannot be identified. When the flanks show to
be in line contact for unloaded conditions, multiple solutions to the contact
problem exist and the accuracy of the methodology might be low, depending
on the chosen solution. In addition, the assumption of a contact ellipse, equally
distributed around the instantaneous contact point M , does not account for
a change in relative flank curvature along the contact direction but rather
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Figure 2.2: Comparison between the actual contact distribution and the
estimated elliptical contact distribution that is centered around contact point.

assumes a constant relative curvature along the contact direction. Such an
approximation can lead to incorrect estimates for the contact length and contact
pressure distribution at narrow (toe) and wide (heel) end of the teeth flanks. A
comparison between the assumed elliptical contact pressure distribution and
the contact pressure distribution, that was computed using the methodology
of Chapter 5, is provided in Fig. 2.2. The three instantaneous contact curves
and pressure distributions (for different tooth flank pairs) are projected onto a
common projection of the tooth flank for better visualization.

Different solutions are proposed in the literature to overcome these problems.
Simon developed a methodology for TCA, which he applied to the analysis
of spiral bevel gears [114, 115] and hypoid gears [112, 113, 116], for which
he optimized contact pressure and transmission error. While detecting the
ICP through the concept of continuous tangency, he introduced the separation
function to compute the instantaneous contact lines. By assuming that under
load the contact point would evolve into a line load, he was able to compute the
direction of the contact curves through minimization of the separation functions.
This procedure avoided the computation of the relative curvatures [114, 115] and
allowed him to demonstrate that the assumption of an elliptical contact zone,
centered around the ICP, can lead to significant errors when the contact occurs
near the toe and heel sections of the teeth (see Fig. 2.2) [112]. To overcome
problems related to edge or line contacts, Vijayakar proposed to discretize
the tooth surfaces and to solve the contact detection problem by finding the
points of minimum distance between the discretized surfaces, similar to the
node-to-surface method (see Sec. 2.2.3). He combined this approach with an
adaptive grid refinement strategy to increase the accuracy with which candidate
contact points are identified [126]. Lin also adopted a numerical approach to
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TCA [72], for which he discretized the tooth surface. Rather than solving for the
contact location that satisfies both contact conditions, his methodology focuses
on the computation of the smallest rotational angle, required to bring the gear
into contact with the pinion. During the analysis the pinion element with finely
meshed tooth flanks is kept fixed, while the gear with initially coarsely meshed
flanks is allowed to rotate about its rotational axis. At each step of the mesh
cycle an adaptive mesh refinement procedure is performed in order to identify a
converged value for the smallest gear rotational angle. Building on the same
ideas, Sanchez-Marin recently proposed a geometric approach to TCA that
relies on discretization and adaptive refinement of all the contact surfaces [99].
To show the robustness of the method he analyzed spur and helical gears in
both aligned (line contact) and misaligned (edge contact) configurations.

All of the described methods in this sections have a common drawback: they
consider the mating flanks as arbitrary surfaces. While some of these methods
have proven to be robust for contact detection, they fail to benefit from the
fact that the contacting surfaces are designed to transmit motion in a nearly
conjugate manner. As a result their computational cost tends to be relatively
high compared to methods that can include such information.

2.1.2 Ease-off based contact detection in TCA

Stadtfeld introduced the concept of ease-off (EO) topography to TCA in [117]
and used it in a later study to optimize the shape of the UTE by applying flank
modifications to reduce impacts and lower the noise of the gear pair [118]. His
definition for ease-off topography includes the effects of flank form corrections
and misalignments, applied to either pinion or gear, that cause a mismatch
between the mating flanks and thus a non-conjugate behavior of the gear pair.

Kolivand and Kahraman developed a novel methodology for TCA which is
based on the ease-off concept. During the UTCA they construct the surface of
roll angles (RS) and ease-off topography from the gear pair installment, whether
misaligned or not. Through the combination of the surface of roll angles and
the ease-off topography they are able to compute potential contact curves and
unloaded transmission error in an elegant way [63, 64]. In their developed
approach the ease-off topography is defined w.r.t. the gear element.

Given that the ideas behind the TCA methodology of [63] serve as a starting
point for the contact detection techniques that are developed in this work, the
different concepts are introcuded in this section and Kolivand’s method for
UTCA is briefly discussed. A detailed description on how these ideas contribute
to this work’s methodology for UTCA and penetration-based contact detection
is given in Chapters 4 and 5.
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Background

Two contacting surfaces are considered to be mathematically conjugate when
they have line contact. A gear pair is said to be conjugate when the contacting
tooth flanks have line contact for each position of the mesh cycle [62]. For
unloaded conditions or when rigid flanks are considered, a conjugate gear pair
provides motion transfer as prescribed by the (instantaneous) gear ratio and
thus yields zero UTE throughout the mesh cycle.

In practice, a gear pair does not only need to transmit rotational motion in a
continuous manner, it also needs to transmit power between the rotating axes.
Under operational loading the contact forces that arise between the conjugate
teeth cause deformation of both contacting and neighboring gear teeth, causing
teeth to come into contact sooner than designed. When this happens the tooth
engagement is characterized by shocks and high contact pressure concentrations
at the flank edges, which is detrimental for a gear pair’s NVH and durability
performance. In addition the transmitted torque also causes housing and shaft
deflections that introduce configurational misalignments, which in turn affects
the error of motion transmission and edge contacts. Therefore, flank form
modifications, e.g. lengthwise and profile crowning, are typically applied to
one (usually the pinion) or both gear elements by removing a microscopic
amount of material (up to a few hundred micrometers). The purpose of these
modifications is to create enough space for the tooth to deform under a given
design load or to allow smooth motion transmission for a range of misaligned
configurations. However, the definition of the flank form modifications for spiral
bevel and hypoid gears is far more complicated than it is for cylindrical involute
gearing. Firstly, the meshing conditions vary along the flank width, requiring a
three-dimensional approach. Secondly, no clear description of a tooth profile,
equivalent to the involute for planar gearing, is known for face-cut spiral bevel
and hypoid gears [31]. Although it should be mentioned that with the latest
cutting machines it has become theoretically possible to manufacture conjugate
face-cut spiral bevel gears by optimization of the machine settings.

With the purpose of defining a metric that can be used in the optimization
of the tooth flank form modifications of spiral bevel and hypoid gears, the
concept of ease-off has been introduced [10, 117]. The ease-off topography is
defined as the overall geometrical mismatch between a pair of mating pinion
and gear flanks. As mentioned, this flank mismatch does not only correlate
with the applied flank form modifications but it also depends on the spatial
(mis)alignment of the gear pair. Therefore, the tooth flank form modifications
are no longer considered as deviations from the basic rack - which is the case
for cylindrical gears - but are rather related to the tooth contact characteristics
of the mating wheel and pinion flanks of a spiral bevel or hypoid gear pair [62].
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Methodology

Two different methodologies can be used to construct the ease-off topography.
The first method simulates the load-free meshing of the tooth flanks, while
keeping track of the distances along the instantaneous contact curves [10, 115,
117]. The enveloping surface of all the instantaneous ease-off curves results
in a surface of minimum contact distances, which is the ease-off topography.
However, in this case the ease-off topography is only a result of the UTCA and
another methodology is required to detect contact between the mating flanks.
An alternative approach relies on the computation of the flank that is conjugate
to a (chosen) flank of the flank pair in contact [63]. The ease-off topography
is then constructed by comparing the conjugate to the chosen flank with the
other flank with which this chosen flank is in contact.

Ease-off topography The ease-off topography is either expressed with respect
to the real gear flank (gear-based) or with respect to the real pinion flank
(pinion-based). In a gear-based ease-off approach, the ease-off topography is
constructed by comparing the gear flank with the flank that is conjugate to
the chosen pinion flank. When a pinion-based ease-off approach is adopted,
the conjugate to the chosen gear flank is computed and the topography is
constructed by comparison with the pinion flank. Depending on the definition,
the ease-off topography is either visualized on a gear-based or pinion-based
projection plane, which can be constructed by a circular projection of the
involved gear flanks onto a plane that includes the rotational axis. An example
of gear-based ease-off topography is provided in Fig. 2.3. A comparison between
gear-based and pinion-based ease-off topography is found in Appendix C.

Figure 2.3: An example of gear-based ease-off topography.
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Conjugate flanks In unloaded conditions each contact point on a pair of
conjugate (gear tooth) surfaces transfers the motion according to the prescribed
kinematic law (i.e. the gear ratio). Thus, neither penetration nor gap exists
between any of those points in contact for an incremental surface rotation φz.
Differential Geometry formulates these conditions with the equation of meshing:

f(u, v, φz) =
(
∂r

∂u
× ∂r

∂v

)
· ∂r
∂φz

= 0 (2.14)

Starting from a known (tooth) surface S(u, v), where the curvilinear coordinates
u and v describe the coordinates r of a point P on S(u, v), the conjugate to
the surface is found by solving Eq. (2.14). The vector product of the partial
derivatives of r to u and v denotes the surface normalN . The partial derivative
of r to φz has the same direction as the relative velocity v between a point
on surface S(u, v) and a coincident point on the surface, conjugate to S(u, v).
Consequently, Eq. (2.14) is often written in a more practical form:

N · v = 0 (2.15)

Eq. (2.15) reflects the no-gap/penetration condition, as it requires the relative
velocity v to be perpendicular to the surface normal N at the contact point P .

Surface of roll angles The roll angle is the value of φz for which a point P on
the surface S(u, v) satisfies Eq. (2.15). The surface of roll angles Rφ is the set
of roll angles φz,i for S(u, v), of which each value belongs to a point on S(u, v).
More details on the surface of roll angles and its usage are given are Chapter 4.
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Contact detection By combining both the surface of roll angles and the ease-
off topography an efficient contact detection methodology was developed in [63].
The different steps of the method can be summarized as follows:

• Construction of the projection plane. A gear-based ease-off approach
is adopted in [63]. The required gear-based projection plane is created by
applying a discretized grid of n×m points to the projected flank overlap.

• Computation of the real gear surface points. Using the machine
settings and a mathematical model that simulates the machining process,
the surface points for the gear flank are computed for each of the points
on the discretized projection plane. An example of such a mathematical
model that simulates the machining process can be found in Chapter 3.

• Computation of the real pinion surface points. A pinion projection
plane is created, starting from the the points of the gear projection
plane. To guarantee coincident grids, the projected conjugate flank
points are defined to coincide with those of the projected real gear. The
conjugate surface points can be computed by combining Eq. (2.15) with
the mathematical model that simulates the machining process of the
pinion flanks. To account for potential gear pair misalignments, these
equations are solved in an auxiliary reference frame that is similar to the
earlier introduced base frame SB .

• Construction of the EO topography and surface of roll angles.
By solving Eq. (2.15) for each point on the projection plane, the pinion’s
surface of roll angles is automatically obtained. In addition, the gear-based
ease-off topography can be computed as the difference between the real
gear flank and the flank that is conjugate to the real pinion flank. To
visualize the flank form modification, both flanks are rotated to have them
in contact in at least one point (see Fig. 2.5). This rotation is removed to
have an ease-off topography that is zero in at least one point (see Fig. 2.3).

• Computation of the UTE and CPP. For a given orientation of the
pinion, a potential contact curve is computed between the real pinion
flank and its conjugate flank. To determine the true contact state, the
ease-off values that belong to each point on the potential contact curve
are computed. The point where the ease-off values of the contact curve
reach a minimum point is identified as the instantaneous contact point.
The ease-off value at the ICP indicates the rotation that is required for
the gear to contact the pinion and thus is the UTE value for this mesh
cycle configuration. Assuming a marking compound with thickness δe, the
instantaneous contact curve is defined by all points for which the ease-off
is within a value δe from the ICP.
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Contrary to the continuous tangency approach, the roll surface and ease-off
methodology does not consider the gear teeth flanks to be arbitrary surfaces.
In fact, it embeds the knowledge that the gear teeth are designed to transmit
near-conjugate motion to attain an increased numerical performance. Moreover,
the assumption of near-conjugate tooth surfaces holds also for real gear pairs
where the tooth profiles have both global (e.g. manufacturing errors) and local
(e.g. wear) deviations [65]. The methodology does not require the solution of a
system of nonlinear equations to identify the contact point, nor are the relative
curvatures required to determine the direction and the length of the contact line.
The method only requires the tooth surfaces to be defined by their position
vectors and corresponding normal vectors to solve Eq. (2.15), prior to the actual
contact detection. A more accurate and more natural contact curve - instead
of a line - is found through the use of the surface of roll angles in combination
with the ease-off topography and the threshold value δe.

Challenges

Because of these advantages, other researchers have also used the methodology
or its ideas. A similar method for ease-off based TCA was used by Fan to
optimize the pinion tip line to avoid root-tip interference [35]. Artoni et al.
developed a TCA variant that expressed the ease-off topography w.r.t. the
pinion element, allowing corrective modifications to the behavior of the gear
pair by only correcting the pinion [8]. While the methodology, as formulated
in [63], has proven its worth in TCA, a direct adaptation to a contact detection
strategy within a multibody application is not without its challenges.

The methodology’s main limitation is tied to how it uses the projection plane for
contact detection in the presence of gear pair misalignment. The gear projection
plane is defined to be bounded by the overlap between the contacting flank pair
(pinion and gear). This flank overlap varies depending on the misalignment,
as shown in Fig. 2.6. As a result, only a gear pair misalignment that remains
constant during the mesh cycle can be analyzed. For TCA purposes this is
sufficient, since this is what TCA tends to accomplish. However, during a
multibody simulation the gear pair configuration should not be expected to
remain constant but should be assumed to vary continuously as the result of
component compliance and component interactions within the system. Under
such conditions the projection plane, the surfaces of roll angle and the ease-off
topography should be reestablished each time the gear pair deviates from its
original configuration. One of the greatest advantages of this methodology lies in
the fact that the contact locations can be determined as part of a preprocessing
step (offline). A recalculation of the contact data, each time the configuration
changes (online), would significantly reduce its computational efficiency.
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Gear flank (rotated onto conjugate)

Pinion flank

Conjugate 
to pinion flank

Gear flank 
in original position

Figure 2.5: An illustration of the pinion (red), conjugate to pinion (green) and
gear (blue) flanks in contact, displaying the rigid body rotation that generally
exists between the gear flank and the conjugate to the pinion.

An approximation may be to assume that the misalignments remain relatively
small and therefore do not affect the flank overlap all that much. Still another
challenge, directly related to the way how contact is detected, should be overcome
when considering variable misalignments. While the gear-based approach
determines the potential contact curves between the real pinion flank and its
conjugate flank by using the surface of roll angles, the ease-off topography is
required to determine the gap between the real pinion flank and the real gear
flank. Naturally, the opposite holds for a pinion-based approach. However, the
shape and value of the ease-off topography, reveal a much higher sensitivity to
changes of the local (relative) geometry, as shown in Fig. 2.6. As mentioned,
the construction of the ease-off topography is performed by determining the
difference between the real gear flank and the conjugate to the pinion flank.
Since both flanks are generally not yet in contact (see Fig. 2.5), the first step
of this process rotates both flanks to have them make contact in at least one
point. To compute this rigid body rotation the complete conjugate flank needs
to be evaluated, which leads to an additional (online) computational cost.

Kolivand and Kahraman show in [66] that their methodology can be
applied to other geared geometries, given that the manufacturing process
is known in order to compute the data on the projection plane. Therefore, a
somewhat specific and minor challenge can be encountered when extending their
methodology to geometries for which the manufacturing process is not known
or not available to the user. Such an extension can be particularly useful when
a multibody application is considered. Multibody models are often created by
starting from the CAD-files and by (often different) users that have no direct
access to additional information, regarding the manufacturing process of the
components.
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(a) An example of the ease-off topography in a aligned configuration.

(b) An example of the ease-off topography in a misaligned configuration.

Figure 2.6: Example of the flank overlap and the ease-off topography for an
aligned and misaligned configuration.
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2.2 Models for loaded tooth contact analysis

Where UTCA mainly focuses on providing an accurate description of the
geometrical aspects that govern the contact between meshing surfaces, loaded
tooth contact analysis (LTCA) shifts its focus to correctly capturing the
deformation effects that occur due to contact loads. In LTCA, an assessment of
the gear pair’s performance under load is usually obtained, based on the loaded
transmission error (LTE), the (instantaneous and overall) contact pressure and
the root bending stresses. However, a prediction of the latter is not always
included in the different methodologies.

Models for LTCA of spiral bevel and hypoid gears are relatively scarce. Most of
the models, which are currently described in literature, can be divided into two
fundamental groups: analytical and FE-based semi-analytical models. LTCA
models are often tailor-made for the purpose of gear analysis and can make
use of the contact detection methodologies that were developed for UTCA.
Alternatively, NL-FEA methods are also applied to the loaded analysis of spiral
bevel gear pairs. Because of the general formulation that these methodologies
adopt, they are considered as a separate family of modeling tools in this work.

2.2.1 Analytical models

Depending on the assumed behavior and applied boundary conditions, different
approximate solutions can be derived to analytically model a problem. For
this reason, this work limits itself to providing only a brief description of some
analytical models that have been described in the literature. The reader is
referred to the referenced work for more information.

Krenzer proposed a methodology for LTCA in which the overall tooth
deformation was modeled as a combination of Hertzian contact theory and
beam theory. In his work a TCA program, based on continuous tangency, was
used to describe the tooth geometry and no-load contact analysis [68].

Elkholy et al. used an analytical procedure to calculate the transmitted
load distribution for straight bevel gears by dividing the teeth into different
slices with varying cross-section [34]. Using Tredgold’s approximation [18]
he assumed that the cross-section of each slice could be well represented by
involute tooth profile, for which he computed the deflection using analytical
formulas developed by Nakada and Utagawa [87].

Schlecht et al. also applied a slicing method to approximate spiral bevel
and hypoid gear teeth as cylindrical gear teeth, obtained by fitting of a
square polynomial tooth profile [101]. Ziegler and Baumann developed this
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methodology to estimate the bending, compressive and shear deformation of
cylindrical [141] and bevel [13] gears, for which they in turn used the deformation
energy based approach, formulated by Weber and Banaschek [135].

The relatively inexpensive computational cost of analytical load distribution
models enable them to provide good impressions of the gear pair’s loaded
behavior within an acceptable simulation time. Yet, correctly capturing coupled
deformation effects that occur between different teeth pair in contact, remains
difficult within an analytical model. Therefore, limitations to these models are
expected when load sharing between multiple gear teeth pair is predominant.
Such situations can occur in high contact ratio gears1, or under high operating
loads where the coupling effects should not be neglected.

2.2.2 Semi-analytical models

Where analytical models approximate the deformation of the teeth with
expressions that have been derived for a simpler geometry, semi-analytical
models use a combination of numerical and analytical methods to compute
the gear pair’s mesh stiffness. An example of such a numerical method is the
finite element method (FEM), which is commonly applied to discretize complex
geometries, like spiral bevel gear teeth, to obtain a more accurate description
of the structural behavior. The deformation field that is computed with FEM
also allows to correctly include all the relevant coupling effects. However, to
accurately represent the correct stress-strain field and its high gradients near
the contact zone, FEM requires locally refined meshes. The number of finely
meshed contact zones that are required to accurately model the contacting gear
teeth, would result in FE models with hundreds of thousands of degrees of
freedom (DOFs). Using only FEM would result in simulation times that would
make design and optimization processes extremely cumbersome. Therefore,
semi-analytical models try to combine the best of both worlds by typically using
a FE model to describe the linear deformation of the gear (body and crown),
while using analytical expressions to capture the local nonlinear (Hertzian)
contact deformation accurately.

Without any claim on completeness, this subsection provides a brief overview
of some relevant semi-analytical LTCA models that have been described in
literature. In light of the modeling strategy that this work wants to adopt,
ideas that were proposed by Andersson-Vedmar [5] and Fernandez del
Rincon [38] for the analysis of spur and helical gears, are also mentioned.

1No clear definition of a high contact ratio spiral bevel gear is given in the gear literature.
Since most spiral bevel gears have a contact ratio between 2 and 3, in this work a high contact
ratio spiral bevel gear is said to have a contact ratio greater than 3.
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Gosselin et al. developed an LTCA program for spiral bevel and hypoid gears
and included tooth compliance by precomputing the tooth stiffness along the
surface normal with a 3D FE model of a single tooth. Weighting functions were
used to translate the tooth compliance values, computed on the FE nodes, to
the contact points [46].

Fan and Wilcox presented a methodology for loaded TCA where the loaded
contact is assumed to take place along the conjugate line of tooth contact. The
concept of a combined flexibility matrix is used to model the compliance of the
gear, the pinion and the housing. Load sharing is included through the use of
FEA-based meshing models with multiple teeth [37].

Hemmelmann also developed an FE-based LTCA model for spiral bevel and
hypoid gears where he computed tooth compliance from a three-dimensional
FE model that included multiple teeth [50]. He used the spring model by
Neupert [89], to include the coupling effects between teeth.

Kolivand and Kahraman used a semi-analytical approach, developed by
Vaidyanathan et al. [123], to model the tooth stiffness by using a Rayleigh-
Ritz based shell model with linearly varying tooth thickness along the toe, heel
and top [63].

Andersson and Vedmar developed a FEM-based methodology to compute
the load distribution between two rotating helical gears [5, 124]. They proposed
to divide the total deformation field of the gear tooth into a global deformation
and a local deformation component. In accordance with the principle of Saint-
Venant2 they reasoned that outside of the contact zone the gear’s deformation
field could be approximated well by a linear FEA model. In a preprocessing
phase, the global deformation field was computed as a superposition of two
load cases. During the first load case a unit force is applied to each of the
contact nodes, which results in a deformation field that is globally correct but
incorrectly represents the tooth’s deflection inside the contact zone. To eliminate
this locally incorrect solution, a second load case is computed under different
essential boundary conditions on displacements, which allow to isolate the
locally incorrect displacement field. Finally, the total deformation of the gear is
correctly described by adding a local contact deformation, which is nonlinearly
dependent on the magnitude fo the contact load. By locally approximating the
contacting tooth surfaces as cylinders in contact and by using the closed-form
expression that was derived by Weber and Banaschek [135], they were able
to well-approximate the local contact deformation under the assumption of a
Hertzian contact pressure distribution.

2Principle of Saint-Venant: The difference between the strain-stress fields, generated by
two different but statically equivalent loads, becomes very small at a sufficiently large distance
from the load application zone.
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In order to eliminate the need for highly refined FE-meshes of the contacting
surfaces, Vijayakar introduced a similar approach to separate the deformation
field of flexible gears. By combining the FE deformation field of the bodies
with a surface integral form of the Boussinesq half space solution for the
contact zone, he developed a hybrid approach that allows for precise LTCA
simulations [126]. Although the developed program is considered to be a
reference for LTCA of cylindrical, bevel and hypoid gears, the use of large FE
models and a computationally expensive FE-based contact detection method,
limits its applicability to efficient system-level simulations.

Using the methodology of [5] to model the gear pair compliance, Fernandez
del Rincon described an advanced model to simulate the quasi-static behavior
of spur gear transmissions [38]. By exploiting the concept of line of action
for cylindrical involute gear teeth, he developed a penetration-based contact
algorithm. The compatibility condition was then imposed to translate the
measured penetration into contact loads under the assumption that the flank
penetration matches the deformation of the flexible gear teeth. Finally, by
guaranteeing that the complementary condition was satisfied, he limited the
active contact locations to those on which compressive contact forces acted.

Recently the methodology by Andersson and Vedmar was also successfully
adopted by other researchers for the simulation of cylindrical gear pair [22, 120]
and bearing [39] dynamics.

2.2.3 FE-based contact formulations, applied to TCA

When it comes to the contact analysis of spiral bevel and hypoid gears, the
application of FEA has become a widely used technique. The reason for its
success can be found in the main idea of the FEM. By dividing the complete
domain into a set of simple subdomains (finite elements) and then applying
an approximate solution to the problem on an element level, the FEM lends
itself very well to the structural analysis of complex geometries, such as spiral
bevel and hypoid gears. Within the design process of gear drives, FEA offers
an extension to TCA by allowing a detailed investigation into the load transfer
between the contacting gear teeth, as well as the determination of areas where
severe contact and bending stresses occur during the mesh cycle [41].

In this work FEA-based contact simulations are mainly performed to validate
the modeling techniques that are developed. For this purpose a commercially
available software package is used (See Chapters 5 and 6). The goal of this
subsection is to provide a concise overview of the methods that are used to
detect contact and establish the contact conditions.
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Methodology

In FEA the contact between two surfaces is usually treated as a kinematic
nonlinearity or a boundary nonlinearity, since the displacement boundary
conditions are determined by the structure’s deformation [59]. To avoid that
two colliding bodies penetrate each other, the contact constraints need to be
enforced along the contact boundary. However, while it is expected that the
displacements along the contact boundary remain small, it is usually not known
in advance which part of the boundary will be in contact. Therefore, before the
contact constraints can be enforced, a contact search is required to identify the
location of potential contact points on both surfaces in contact.

Contact detection Earlier presented techniques to determine contact locations,
such as continuous tangency or ease-off based methods, have found little to no
application in FEA because they either require a continuous description of the
contacting surfaces or because they are so specific that they can only be applied
to near-conjugate surfaces. Considering that NL-FEA methods are not only
used to analyze gear-related contact problems, they require a contact detection
strategy that is applicable to surfaces of arbitrary shape.

One of the most widely used techniques that is applied to large deformation 3D
contact problems of discretized bodies, is the node-to-surface (NTS) algorithm.
To determine potential contact locations this method makes use of a gap-function
that expresses the perpendicular distance between the FE-nodes of a chosen
slave surface S(S) and the FE-surfaces (elements) of the opposing master surface
S(M). For each of the node-element combinations, the shortest distance (or
gap) between the slave node P (S) with coordinates r(S) and a to-be-computed
point P (M) on the master surface with coordinates r(M)(ξ(cont), η(cont)) has
to be found to determine whether the surfaces are locally penetrating (See
Fig. 2.7). The location of this point P (M) is found by minimizing the distance
function

∥∥r(S) − r(M)(ξ, η)
∥∥, which corresponds to solving the following system

of nonlinear equations in terms of quadrilateral surface coordinates ξ and η:
∂r(M)(ξ, η)

∂ξ
·
(
r(S) − r(M)(ξ, η)

)
= 0

∂r(M)(ξ, η)
∂η

·
(
r(S) − r(M)(ξ, η)

)
= 0

(2.16)

The coordinates of the point r(M)(ξ, η) in Eq. (2.16) are defined by the
coordinates r(M)

l of the corner points P (M)
l and the corresponding shape

functions Ne
j . Assuming that the contacting bodies have been discretized

with 8-noded hexahedron finite elements of which each face is defined by a
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Figure 2.7: Contact detection using the node-to-surface algorithm.

4-noded quadrilateral surface, as shown in Fig. 2.7, any point r(M)(ξ, η) on the
quadrilateral master element is described by Eq. (2.17) for which the shape
functions can be found in Appendix D.

r(M)(ξ, η) =
4∑
l=1

Ne
l (ξ, η) r(M)

l (2.17)

Finally, with the quadrilateral parameters (ξ(cont), η(cont)) of the perpendicular
projection determined, the gap value gN is computed as:

gN = N (M) ·
(
r(S) − r(M)(ξ(cont), η(cont))

)
(2.18)

where the N (M) is the normal vector of the master surface, evaluated at the
contact point, that points outwards of the material. According to this definition,
contact will not be detected when gN ≥ 0.

Using the master-slave concept, the contact constraints are imposed in such a
way that the slave surface cannot penetrate the master surface. However, since
such a requirement is not imposed on the master surface, it is still possible
that both surfaces penetrate. To reduce this type of numerical error, it is
recommended to select the master and slave surfaces in such a way that the
overall penetration is minimized. Practically speaking, this means of two
contacting surfaces, the surface with either the highest curvature, the finest
mesh size or the highest compliance, should be best chosen as the slave surface
and the opposing surface as the master surface. Consequently, when FEA-based
contact analysis is considered for a spiral bevel gear pair, it is recommended
to select the tooth surfaces of the pinion and the gear as the slave and master
surfaces, respectively.
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Contact constraints For elastic systems, contact can be considered as a
constraint optimization problem where a displacement field has to be found
that minimizes the potential energy while satisfying the contact constraints [59].
In case of frictionless contact, the Hertz-Signorini-Moreau conditions for
the contact force fN and gap gN , given by Eq. (2.19), can be used to prevent
the bodies from penetrating each other along the normal direction [138].

fN ≥ 0, gN ≥ 0, fNgN = 0 (2.19)
In FEA the constrained optimization problem is usually converted into an
unconstrained one for which one of the following techniques can be used: the
penalty method, the Lagrange method or the augmented Lagrange method, which
is a combination of the two former methods. In the penalty method the potential
energy is penalized proportionally to the magnitude of constraint violation that
is allowed [59, 71]. The effect of the penalty factor εP can best be compared by
adding a one-directional spring with stiffness εP between the contacting surfaces,
such that |fN | = |εP gN | when gN < 0. As a result, the contact constraints
are only satisfied approximately and an amount of penetration between the
contacting surfaces is allowed. Choosing the optimal value for the penalty
factor εP comes down to making a trade-off between allowing a magnitude of
nonphysical penetration and creating an ill-conditioned problem (εP →∞).
In contrast, the Lagrange method supplements the potential energy by a product
of the contact constraint and an unknown Lagrange multiplier λ, such that
the impenetrability requirement is exactly satisfied. In this case the Lagrange
multiplier λ correspond to the value of the contact force fN [71]. Depending
on the level of interest, the reader is referred to the textbooks by Kim [59],
Wriggers [138] or Laursen [71] for a more detailed discussion.

To conclude, the constraint function method [11, 12] is briefly discussed. To
improve the computational efficiency, the constraint function method replaces
the inequality constraints of Eq. (2.19) by a constraint function w(gN , λ) = 0
that provides a continuous and differentiable relation between the gap gN and
contact force λ. For the normal contact condition such a function is given by:

w(gN , λ) = gN + λ

2 −

√(
gN + λ

2

)
+ εN (2.20)

where εN is a small user-defined parameter (εN � 1) [11, 107]. Compared to
the ideal contact constraints of Eq. (2.19), the constraint function relaxes the
constraints as a function of εN (See Fig. 2.8). The constraint of Eq. (2.20) can
be imposed through either the above mentioned penalty or Lagrange multiplier
method [12]. In this work, NX Nastran’s implicit nonlinear solution (SOL 601)
[107], which makes use of the ADINA solver [106] to solve the contact problem,
is used for validation purposes. The ADINA solver has the constraint function
method implemented through the use of Lagrange multipliers [12].
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Figure 2.8: Comparison between ideal contact constraints of Eq. (2.19) and the
constraint-function method of Eq. (2.20).

2.3 Multibody contact models for spiral bevel gears

The field of mechanics that studies the dynamic behavior of mechanical systems
is called multibody system dynamics (MBSD) [48]. A multibody system can
here be considered as a collection of components (e.g. shafts, gears, ...) that
undergo large translational or rotational motion, while being held together
by a number of kinematic constraints and having forces (e.g. a contact force)
acting between them. While in theory the components (or bodies) can be either
rigid or deformable, all the models that are mentioned here consider the bodies
as rigid. This implies that the deformation of each body is assumed to be
small such that the body deformation does not affect the overall body motion.
The motion of each body in space can thus be completely described by six
generalized coordinates [105]. The equations of motion for a dynamic system of
rigid bodies can be derived using Hamilton’s principle [105], leading to:{

M(q)q̈ + GT
q (q)λ = Q(q, q̇, t)

G(q) = 0
(2.21)

where M is the mass matrix, G(q) the vector of applied holonomic kinematic
constraints, Gq is the constraint Jacobian matrix and λ is the vector of
Lagrange multipliers. The vectors q, q̇ and q̈ represent the system’s generalized
coordinates, generalized velocities and generalized accelerations, respectively.
The generalized forces Q = Qv + Qe + Qcont that act on the system are
subdivided into: Fv for the generalized quadratic velocity forces (gyroscopic and
Coriolis components), Qe for the generalized externally applied forces and Qcont

for the generalized contact forces. An in-depth treatment of the equations of
motion of an MB-system, is found in the works of Haug [48] or Shabana [105].
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Figure 2.9: An example of a spiral bevel gear mesh model for dynamic analysis.

Methodology

Of all the generalized forces that act on the system, only the gear mesh contact
forces that contribute to the generalized contact forceQcont are considered in this
discussion. Compared to parallel axis gears, the dynamic analysis of spiral bevel
and hypoid gears is significantly more challenging due to the tooth geometry
and the resulting unique time- and spatial-varying mesh characteristics.

For this reason, general purpose multibody codes often still include a tessellation-
based contact detection method, comparable to the NTS method for FEA, and
Hertzian-based contact models to simulate spiral bevel and hypoid gears [86].

Alternatively, dynamic mesh models that are described in the literature have
adopted a simplified mesh model, similar to the one of Fig. 2.9. These models
also rarely define the problem as a set of differential-algebraic equations (DAE),
given by (2.21), but rather eliminate the constraints to obtain a system of
ordinary differential equations (ODE) in terms of the system’s DOFs. Similar
to some models for parallel axis gears [92, 125], the simplified dynamic mesh
force for spiral bevel and hypoid gears is modeled through the use of a spring-
damper system that shows a nonlinear behavior when backlash is considered
[24, 25, 95, 133]. By making use of LTCA programs that correctly include the
gear tooth geometry, time- (i.e. mesh cycle) and spatially-varying mesh data,
such as the mesh point, direction of the surface of action (here simplified to
a line), mesh stiffness and mesh damping values, are precomputed and stored
in so-called look-up tables that are accessed during the dynamic simulation.
However, the approximation of a spring-damper model inevitably reduces the
gear meshing process from a complex spatially distributed contact problem to a
single point, that is obtained by averaging the precomputed LTCA results.
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Challenges

Besides studies into the dynamic transmission error (DTE) of spiral bevel and
hypoid gears in dry-contact conditions [57, 95, 133], the above-mentioned lumped
parameter models also prove fruitful in the development of elastohydrodynamic
lubrication (EHL) models for lubricated hypoid gears [58, 85], and in the
investigation of system influences (e.g. bearing compliance and preload) on
the transmission’s DTE, vibration spectra and efficiency [83]. In addition,
UDF routines, which are commonly available in general-purpose multibody
simulation software packages, allow for the integration of look-up table based
contact models for spiral-bevel and hypoid gears [84, 100].

Besides reducing the spatial meshing process to a single time- and spatially-
varying mesh point, the TCA-based contact model is not without its drawbacks.
For instance, while the effects of the gear tooth geometry are correctly captured
by using LTCA results, the behavior of the gear pair under load is always
the result of two components: the EO topography (unloaded) and the tooth
deformation (loaded). Therefore, at least two TCA simulations are required:
an unloaded analysis to identify the UTE and one loaded analysis to isolate
the mesh stiffness based on LTE and UTE [95]. Moreover, while the equivalent
spring-damper model for the mesh force is capable of introducing gear pair
misalignments due to system compliance, the lack of an actual 3D contact
detection makes that the model can only correctly approximate those misaligned
conditions that were precomputed and stored in the look-up tables.

For this reason some researchers have proposed a co-simulation approach to the
dynamic simulation of spiral bevel gears [132], where two simulation tools (i.e. a
multibody solver and a LTCA program) work together to solve the problem. At
each iteration/time-step, the multibody solver communicates the position and
orientation of the gear pair to the LTCA program that simulates the 3D tooth
meshing. The LTCA program in its turn provides the multibody solver with
the resulting contact forces, which are applied to the MB model to solve the
equations of motion. However, the feasibility of co-simulation, heavily depends
on the numerical efficiency of the TCA program, since numerous calls by the
multibody solver are required. In addition, the extra time that is needed for the
different programs to communicate with each other becomes another bottleneck.

All things considered, it is recognized in [95] that the development of a three-
dimensional mesh model to simulate the meshing process with an acceptable
level of accuracy and simulation time, remains one of the major challenges for
the dynamic analysis of spiral bevel gears.
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2.4 Proposed modeling strategy

While the introduction of this dissertation identified a clear need for accurate
and numerically efficient modeling methods for spiral bevel gears to allow
both dynamic and system-level analysis, an overview of the current state of
the art has shown a noticeable gap in terms of modeling fidelity between the
methodologies that are used for tooth contact analysis and dynamic analysis. To
help bridge the gap between both modeling methodologies, this work proposes a
modeling strategy (see Fig. 2.10) that enables the development of a accurate and
numerically efficient gear contact model, applicable to multibody simulations

Similar to TCAmethods, the proposed modeling strategy also places an emphasis
on the accurate description of the tooth surfaces to correctly describe the effects
of flank form modifications. To this end the methodology creates a virtual
model of the tooth geometry by either simulating the manufacturing process or
by importing a predefined geometry (Chapter 3). The latter aspect, however, is
not directly illustrated in the dissertation.

Of all the discussed methods for contact detection, the methodology proposed by
Kolivand [63], shows to be the most computationally efficient and most suited
for adaption to a multibody framework. Therefore, the theory of conjugate
surfaces is used to analyze the gear pair kinematics and to determine the surface
of roll angles of the gear teeth (Chapter 4). In addition to computing the
required data for the contact model, these efforts lead to the creation of a tool
for the unloaded tooth contact analysis of (spiral bevel) gear pairs.

Adopting a multibody approach to LTCA, the surfaces of roll angles of the
gear teeth are used to develop an efficient and accurate algorithm for contact
detection over multiple tooth pairs (Chapter 5). As the surface of roll angles
defines the surface of action - a generalization of the line of action for cylindrical
gears - the contact between teeth flanks is established based on penetration,
similar to the model that was proposed by Fernandez del Rincon [38]. To
translate the measured penetration into distributed contact loads, an uncoupled
analytical tooth stiffness model is proposed as a first level of modeling fidelity.
The effects of varying gear pair misalignments due to assumed system compliance
are then included by interpolating a new surface of roll angles based on the
misaligned state (Chapter 6).

In parallel, starting from the virtual model of the gear teeth, an automated
process for the generation of detailed FE spiral bevel gear models is created
(Chapter 3). Using this process, NL-FEA contact simulations are performed
to validate the different aspects of the proposed methodology (Chapters 5 and 6).
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With one of the research objectives being modular architecture, the proposed
modeling strategy is defined to allow a level of scalability. Drawing another
analogy to the model by Fernandez del Rincon, the proposed contact
model can be extended with FEA-based gear stiffness models, similar to the
one by Andersson and Vedmar. Such improvements, together with the
implementation of the proposed model within a multibody (system) dynamics
simulation code, are considered future work (Chapter 7).

Gear geometry (Chapter 3)

Simulation of the 
manufacturing process

Import 
cloud-of-point data

Automated 
FE creation

Gear pair kinematics and UTCA (Chapter 4)

A multibody approach to TCA (Chapter 5)

Effect of gear pair misalignment (Chapter 6)

Future extensions (Chapter 7)
FEA-based gear tooth compliance

MBSD of spiral bevel gears

Validation 
(NL-FEA)

Figure 2.10: Overview of the proposed modeling strategy.



Chapter 3

Spiral bevel gear geometry

Most of the fundamental principles for today’s spiral bevel gear design and
manufacturing were established during the first part of the previous century
in notable works by Buckingham [19], Wildhaber [137] and Baxter [14],
to name only a few. Yet, present-day research [8, 35, 41, 77, 115] still focuses
intensively on the identification of the optimal machine settings and cutter
parameters, since significant improvements in contact performance can be
achieved by local modifications to the gear tooth flank geometry. For this
reason an accurate contact modeling methodology cannot but include a detailed
description of the contacting surfaces.

An overview of the geometrical aspects of the modeling strategy is provided
in this chapter. The basics to spiral bevel gear geometry are presented in
Section 3.1. These concepts are meant to provide a limited but necessary
background to understand the remainder of the dissertation. Section 3.2 focuses
on the mathematical procedures that are used to construct the tooth flank
geometry. Common to most types of spatial gears, is a geometrical complexity
of the tooth flank surfaces that cannot be described by a closed-form expression
but has to be obtained through simulation of the manufacturing process. In
addition, the resulting tooth flank geometry will also depend on the applied
manufacturing process and shape of the cutter blades. Through simulation
of the manufacturing process a discrete model of the tooth flank geometry is
created that will serve as input for the contact detection methods, developed
in Chapters 4 and 5. Starting from a discretized surface, a general procedure
to determine the local surface curvature in terms of principal curvature and
directions is described in Section 3.3. Finally, an automated procedure for the
creation of FEM-based spiral bevel gear models is described in Section 3.4.

45
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Figure 3.1: Convention for tooth numbers, hand of spiral and gear flanks.

3.1 Basic concepts of spiral bevel gear geometry

The conical shape of spiral bevel gears is explained by the shape of their axodes,
which are generated by the loci of the instantaneous rotational axis with respect
to each of the rotational axes. When motion is transferred between intersecting
rotational axes, these axodes will take on a conical shape. Correspondingly, the
design of a bevel gear set is based on a set of characteristic cones that help in
defining the gear tooth geometry (see Fig. 3.2). For example, the face and root
cones are used to indicate the boundaries of the gear teeth, while the pitch cone
can be used as a reference point when designing the tooth geometry. In the case
of intersecting rotational axes, the pitch cones and the axodes coincide. When
discussing the axodes of a gear pair, a comment to hypoid gears can also be
made. Since hypoid gears transfer motion between crossed rotational axes, their
axodes are hyperboloids of revolution. Yet, the concept of axodes has found
limited use in the design of hypoid gear [31, 76]. In practice the hyperboloids of
revolution are approximated as cones, leading to the concept of operating pitch
cones and a simplified conical shape for hypoid gear elements. As such, some
textbooks on gear geometry classify hypoid gears as a special case of spiral
bevel gears [62], while others make a distinction [31, 76]. In this dissertation
only spiral bevel gears with intersecting axes will be analyzed, although the
developed techniques are also applicable to gears with crossing rotational axes.

The face cone can be used as a reference to establish a convention for the tooth
numbers and the direction of the tooth spiral, as illustrated in Fig. 3.1. The
teeth of a (spiral) bevel gear are numbered from 1 to Z in ascending order by
observing the face cone of the gear and moving in a clockwise direction along
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Figure 3.2: Cross-sectional views for a spiral bevel gear pair.
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the cone’s circumference. A spiral bevel gear is said to be right-handed when
the outer half of the tooth is inclined in a clockwise direction when viewed by
an observer that looks onto the face cone of the gear. Similarly, for a left-handed
spiral bevel gear the outer half of the tooth is inclined in counter-clockwise
direction when viewed from the same position [2, 52]. For a right-handed spiral
bevel gear the left tooth flank is the convex flank, while the right flank is the
concave flank, as shown in Fig. 3.1b. The opposite is true for a left-handed
spiral bevel gear. Meshing between the gear flanks is only feasible if a contacting
flank pair contains a convex and a concave flank side. As such a spiral bevel
gear pair always contains a pinion and a gear that is opposite in spiral hand.

The remaining parameters that determine the gear geometry are defined through
the use of three cross-sections. The axial section is created by sectioning the
gear pair by a plane that is spun by a projection of the gear pair’s rotational
axes (see Fig. 3.2a). It is in this section that most of the gear blank’s dimensions
are defined. Two additional sectional views, the normal and transverse sections,
are defined perpendicular to the tooth surface and the pitch cone, respectively.
Both sections are predominantly used to dimension the gear teeth. The presence
of the spiral angle and the conical shape of the gear blank cause the shape and
size of gear teeth to vary from the inside (toe) to the outside (heel) of the tooth.
When designing the gear blank, approximate calculations that regard the size of
the gear teeth are therefore made at the midface of the gear. The dimensions of
the gear teeth are computed in the mean transverse plane under the assumption
that the bevel gear geometry can be approximated in the transverse plane by
an equivalent spur gear (see Fig. 3.2b) These calculations have been described
in the international standards by the AGMA [2] or the ISO [52]. It should also
be noted that, while the calculations are made in the mean transverse plane,
the literature often reports the geometrical parameters of Fig. 3.2b in the outer
transverse plane, where they are easier to measure.

Unlike cylindrical gears, the shape of spiral bevel gear teeth is not standardized
but depends completely on the manufacturing process that is used to cut the
gear pair. Not only do the manufacturing parameters, such as the machine
settings and cutter blade geometry, dictate the tooth’s shape in the transverse
plane, but also the curvature of the tooth spiral is determined by the kinematics
of the machining process. The two most common methods to manufacture
spiral bevel gears on an industrial scale are discussed in the next section.
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3.2 Face-cut spiral bevel gears

Intensive research in the field of design and manufacturing of bevel gears has
resulted in not less than twelve different cutting methods, which are currently
available for the manufacturing of spiral bevel gears [62]. The majority of these
methods can be attributed to The Gleason Works or The Klingelnberg
Group, which played a pivotal role in the development of spiral bevel gear
generators, capable of mass-production [75]. Metal cutting processes for spiral
bevel gear production are commonly grouped, based on how the gear blank
indexes w.r.t. the cutter blades. In a single indexing process, the cutter head
withdraws once a tooth slot is created, so that the blank can be rotated to cut
the next tooth slot. Alternatively, continuous indexing processes, where both
the gear blank and the cutter blades rotate according to predefined kinematic
relations, were also developed. The first generation of spiral bevel gear generators
made use of a so-called cradle system that, combined with the other machine
settings, provided the required degrees of freedom to produce gears by either the
single or continuous indexing method. An example of a cradle-based generator
and its available machine settings are provided in Fig. 3.3. While current
generation cutting machines have evolved into numerically controlled machines,
their working principles and machine settings have remained equivalent to those
of the cradle-based ones.

cradle rotation

sliding base

machine center-to-backswivel rotation

cutter head tilt

radial setting

blank offset

blank rotation

machine root angle

cutter head rotation

Figure 3.3: Cradle-based bevel gear generator.
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3.2.1 Manufacturing processes: face-milling and face-hobbing

Although the design of the gear blank is described in standards, the final
tooth geometry can vary significantly, depending on the cutting process that is
adopted. The single indexing and continuous indexing processes, also referred
to as face-milling (FM) and face-hobbing (FH) respectively, are two families of
cutting methods that allow to produce spiral bevel gears on an industrial scale.
For both the face-milling and face-hobbing processes, the rotation of the cradle
(onto which the gear head cutter is mounted), will have an important influence
on the resulting tooth geometry. When this additional rotation is included (see
Fig. 3.4), the cradle is allowed to rotate according to a predefined roll ratio
that kinematically determines the rotation of the cradle as a function of the
gear blank. This generating process for face-milling or face-hobbing produces
a tooth profile with an increased curvature due to the additional generating
motion [62, 76]. Alternatively, in a non-generating cutting process the cradle
is held at rest during operation and the teeth are created by a plunge cut
process that leads to a shorter machining time. Since there is no generating
motion between the cutter head and the work-piece, the ratio of roll is zero
and the tooth profile is an exact reproduction of the cutter tool [62]. While the
generating process can be used to produce both pinion and gear elements, the
non-generating process is only applied to the manufacturing of gear wheels.

Varying the different machine settings directly affects the tooth’s geometry in
terms of the tooth profile, the tooth spiral trace or the tooth’s height variation.
As such different types of FM and FH processes have been developed and it is
generally not possible to pair a pinion, created by one manufacturing process,
with a gear that has been created by another process; not even if both of
these cutting processes belong to the same family of methods (i.e. FM or FH).
Given the number of available cutting methods, the dissertation limits itself to
highlighting the main differences between the single and the continuous indexing
method. The interested reader is referred to a textbook by Klingelnberg [62],
which provides an extensive overview of the fundamentals spiral bevel gear
design and manufacturing.

The face-milling process In this group of manufacturing processes the gear
teeth are created by cutting one tooth slot at a time, as shown in Fig. 3.4a.
Once a tooth slot is cut, the cutter head retracts and the gear blank rotates
by one angular pitch (τ = 2π

Z ) so that the next tooth slot can be created
(single-indexing). Two types of cutter blades are mounted onto the cutter head
in altering fashion so that each set cuts one side of the tooth. The inside blades
are used to cut the convex side of the tooth, while the outside blades create
the concave side. Both blade groups are positioned along a circle, giving the
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(a) Single indexing process (face-milling).
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(convex)blade group
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(b) Continuous indexing process (face-hobbing).

Figure 3.4: Face cutting methods: the single and continuous indexing process.
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impression of a conical cup when rotated at high speed. While the circular
installment of the tool’s cutting edges leads to a tooth spiral that traces a
circular arc, it also allows for an accurate installment of the blades and ensures
that the inactive regions of the cutting edges will never make contact with the
gear blank [62]. FM spiral bevel gears are most commonly found with tapered
teeth along the face width (see Fig. 3.5a). The face-milling process is still used
on a large scale within the aerospace industry.

The face-hobbing process By coupling the rotation of the cutter head and
the gear blank, a group of manufacturing methods for spiral bevel gears was
developed that allows to machine the gear teeth almost quasi-simultaneous.
The required kinematic relation is defined by envisioning the cutter head to
roll together with the gear blank such that at any time one blade group will
pass through one tooth slot, as shown in Fig. 3.4b. By correctly positioning the
blade groups onto the cutter head, they are able to simultaneously cut different
parts of multiple tooth slots, resulting in a continuous indexing process [62].
Each blade group contains an inside and an outside blade, which again are used
to cut the convex and concave side of the tooth slot, respectively. The rolling
of the work-piece and the cutter head can be seen as the meshing between
the to-be-created gear element and a virtual crown gear, created by various
blade groups of the cutter head. The correct kinematic relation is obtained
by defining the ratio of the number of gear teeth and the number of blade
groups, which is equivalent to the ratio of the base circle radius and the roll
circle radius [62]. When the cutting edges of the blade groups are positioned
on a radius that is greater than the roll circle radius, the trace of the created
tooth spiral will be that of an extended epicycloid. FH spiral bevel gears have
a constant tooth height (see Fig. 3.5b). The face-hobbing process is mostly
applied for the manufacturing of automotive gear sets.

(a) Variabled tooth height. (b) Constant tooth height.

Figure 3.5: Bevel gears with variable (tapered) and constant tooth height.
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3.2.2 A mathematical model for face-milled spiral bevel gears

Since it is this dissertation’s main objective to develop a numerically efficient and
accurate contact model for spiral bevel gears in multibody applications, a correct
description of the contacting geometry can not be overlooked. However, while
various manufacturing processes have been developed, not every methodology
is accurately described in the literature. Because the five-cut method is a
historically relevant face-milling process [62, 117], it is rather well described in
the literature and has complete data sets published [6, 40, 76]. Therefore, this
method is implemented in this work to create a reference model that can be
used for intermediate verification of the developed techniques.

The five-cut method This method derives its name from the five independent
steps that are required to produce an FM spiral bevel gear pair. The gear wheel
is created using only two cuts: a roughing and a finishing cut, since both tooth
flanks can be cut simultaneously. The machining of the pinion involves the
remaining three cuts: a roughing cut for both flanks, which is followed by a
finishing cut for the convex flanks and another for the concave flanks. This
allows flank form modifications to be defined independently for each flank by
variation of the machine and tool settings. Lengthwise crowning is obtained by
altering the cutter radii. Profile crowning can be achieved by modifying the
machine kinematics, e.g. by the inclusion of modified roll to modify the ratio of
roll during the generating process [62].

A computer model, which is used to compute tooth flank surfaces, should only
simulate the finishing steps of the manufacturing process. Following the steps
in Fig. 3.6, the creation of such a virtual model for gear and pinion can be
achieved. By describing the motion of the cutting edges (Fig. 3.6a) w.r.t. the
gear blank, a family of surfaces is obtained (Fig. 3.6b). The envelope to this
family of surfaces defines the tooth geometry (Fig. 3.6c) and can be computed
with the earlier-introduced equation of meshing (Eq. (2.14)).

convex
blade

concave
blade

(a) Blade definition.

cutter blade
motion

gear blank

(b) Kinematics of cutting process. (c) Gear tooth surface.

Figure 3.6: Steps for the simulation of the manufacturing process.
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(b) Convex and concave blades of a straight-line head cutter for the gear.

Figure 3.7: Straight-line head cutter for the pinion and the gear.
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Description of a straight-line cutter blade

The model for tooth flank generation makes use of a straight-line blade with
circular arc to cut the active part and root fillet of the tooth, respectively. The
geometrical parameters that define the blade edges, used to manufacture the
pinion and the gear element, are given in Fig. 3.7. As shown in Fig. 3.7a and
Fig. 3.7b, these parameters are almost identical for the pinion and gear blades.
The differences that exist are introduced to allow the simulation of the two
independent finishing cuts for the concave and convex pinion flanks.

The cross-sectional geometry of the blade edges is defined in the XZ-plane of
the local reference frame SC for the cutter head and then rotated by an angle
θC about the cutter head’s rotational axis (local z-axis). Due to the rotation,
the straight-line or active part of the blade describes the conical surface S(A),
while the circular arc of fillet part of the blade describes the surface S(F ) that
is part of a torus (see Fig. 3.6a). In practical applications, the rotational speed
of the cutter head is high enough that it can be considered independent from
the machine kinematics. As such the rotational speed of the cutter head can be
chosen to allow for optimal machining conditions. However, the rotation angle
of the cutter head θC still defines the point on the tooth flank that is created.

The equations that define the mathematical model for a straight-bladed face-
milling process are presented in a condensed form. The parameters of the blades
that cut the concave (CNC) flank and convex (CNV) flank of the tooth slot
are indicated by the corresponding superscripts in Fig. 3.7. These superscripts
have been omitted in the presented equations for clarity and compactness of
notation. Where a double sign (± or ∓) is used, the upper sign refers to the
CNC blade, while the lower sign should be used to define the CNV blade. A
detailed description of these equations can also be found in [76].

Active part of the cutter blade Under normal operational conditions the gear
pair is designed so that the active part of the pinion tooth flank (g = 1) contacts
the active part of the gear tooth flank (g = 2). The active part of the tooth
flank is generated by the straight blade edge of the cutter tool. When viewed
in the XZ-plane of the local reference frame SC (see Fig. 3.7), the position
along the straight part of the blade is defined by u(g)

A , while the profile angle
α

(g)
A defines the inclination of the tool’s edge. Due to the rotation of the cutter

head, defined by the angle θ(g)
C about its rotational axis, a conical surface S(A)

is described by the straight part of the blade. Eq. (3.1) is used to define the
coordinates of any point on the surface S(A) in the frame SC as a function of
the surface parameters u(g)

A and θ(g)
C .



56 SPIRAL BEVEL GEAR GEOMETRY

r
(g,A)
C (u(g)

A , θ
(g)
C ) =



[
R

(g)
A ± u

(g)
A sin

(
α

(g)
A

)]
cos
(
θ

(g)
C

)
[
R

(g)
A ± u

(g)
A sin

(
α

(g)
A

)]
sin
(
θ

(g)
C

)
−u(g)

A cos
(
α

(g)
A

)

 , (g = 1, 2) (3.1)

The installment of the blades onto the cutter head is defined by the cutter point
radius R(g)

A . To allow for an independent motion of the cutter blades (i.e. for
two finishing cuts), the blade edges of the pinion are specified by a separately
defined cutter point radius R(1)

A for the CNC and CNV blade. Since the gear
wheel is finished with a single cut, the cutter point radius R(2)

A for the CNC
and CNV blades are linked by the point width P (2)

C of the cutter and (mean)
radius R(2)

C of the cutter head, onto which the blades are installed. The cutter
point radii for the gear cutters are therefore defined by:

R
(2)
A = R

(2)
C ±

P
(2)
C

2 (3.2)

Additionally, the unit normal N (g,A)
C to the generating surface S(A) for the

pinion (g = 1) or gear (g = 2) at the corresponding point r(g,A)
C is obtained

from:
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 , (g = 1, 2) (3.3)

Fillet part of the cutter blade The root of the gear tooth connects the active
part of the tooth to the root cone of the gear blank and is created by the second
part of the cutter blade. In the XZ-plane of the local reference frame SC (see
Fig. 3.7), the rounding of the cutter, which is used to create the root fillet, is
described as part of a circle with radius RF , the cutter point radius. Due to
the rotation of the cutter head, this blade segment describes a toroidal surface
S(F ), when viewed in the local reference frame SC . A possible parametrization
for the coordinates of a point on the surface S(F ) is given by Eq. (3.4), in which
u

(g)
F and θ(g)

C are the surface parameters. The cutter point angle u(g)
F defines

an acute angle within the interval 0 ≤ u
(g)
F ≤ π

2 − α
(g)
A to allow a continuous

connection with the straight part of the blade. The center of the cutter point
X

(g)
F defines the center of the blade’s circular arc and is computed by Eq. (3.5).
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The unit normal N (g,F )
C to the generating surface S(F ) for the pinion (g = 1)

or gear (g = 2) at the corresponding point r(g,F )
C is defined by:
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Machine kinematics of the generating process

While the previous section focused on a description of the different edges of
the cutter blade, this section focuses on a parametrization of the machine
kinematics that are used for the finishing motion. The presented model includes
the motions of a cradle-based spiral bevel gear generator to simulate the five-cut
manufacturing process of generated spiral bevel gear pairs. The same machine
settings that are displayed in Fig. 3.3 are present in the model, with the exception
of cutter head tilt and swivel rotation. The swivel and tilt rotational settings allow
other - mostly FH - manufacturing methods to introduce lengthwise crowning,
whereas the five-cut FM process is able to achieve lengthwise crowning through
variation of the cutter head radius [62].

To describe the machining process, the motion of the head cutter is expressed
w.r.t. the gear blank as a series of elementary rotations or translations, for which
the transformation matrix method is used [76]. An overview of the required
reference frames and elementary transformations is provided in this section,
while the corresponding transformation matrices can be found in Appendix B.
With the machining motion established, the correct kinematic relations for a
generating FM process are then imposed by defining the (modified) ratio of roll
between the head cutter and the gear blank.



58 SPIRAL BEVEL GEAR GEOMETRY

zC

xC

xM

zM

zE

xE

OE, O

Og

zg

xg

XD

XSB

SR

OC

OM

zγ

xγ

γM

cutter head

cradle

gear blank

(a) Top-down view of the cutter head and of the gear blank.

zC

xC
yC

zQ, zM

xM

xQ

yQ

yM

OC

OQ,OM

XSB

EM

XD

γM
SR

q0
q

zB

xB

yB

OB

zE

xE

yE, yγ

zγ

xγ

zD, zg

φg
yD

xD

yg

xg

gear blank

cutter head

OE, Oγ

OD, Og

(b) Schematic representation of a cradle-based gear generator for the FM process.

Figure 3.8: Reference frames that are used to describe the machining motions.
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Machine settings A schematic representation of the cradle-based spiral bevel
gear generator of Fig. 3.3 is shown in Fig. 3.8, where Fig. 3.8a shows the
simplifications to the head cutter’s installment due the exclusion of cutter head
tilt and swivel rotation. The remaining machine settings are described through
a series of reference frames that allow to parameterize the gear cutting process.
The head cutter, described by equations (Eqs. (3.1) - (3.6)), is connected to the
machine’s cradle such that its position can be defined by the radial setting of
the cradle SR and the basic cradle angle q0, which reflects the initial orientation
of the cradle. The rotation of the cradle, represented by q, is specified w.r.t. to
the machine’s reference frame SM . This fixed reference frame is then also used
to describe the position and orientation of the gear blank, which is defined by
the following machine settings: a translation along the direction of the sliding
base XSB, a translation along the direction of the blank offset EM , a rotation
that defines the machine-root angle γM and a translation along the gear blank’s
rotational axis to set the machine-center-to-back XD. The rotation of the gear
blank about its rotational axis is represented by φg.

The homogeneous transformation matrix TgC can be defined to combine all of
these sequential translations and rotations into a single matrix that expresses
the motion of any point rC on the cutter head (in the reference frame SC)
w.r.t. the gear blank (in the local reference frame Sg). The definition of the
individual transformation matrices can be found in Appendix B.

TgC(φg, XD, EM , XSB , q, q0, SR) = TgD(−φg) TDγ(−XD) ...

TγE

(
− (π2 − γM )

)
TEB(EM ) ... (3.7)

TBM (−XSB) TMQ(q) TQC(SR, q0)

By applying Eq. 3.7 to the generating process of a pinion (g = 1) or a gear wheel
(g = 2), a family of cutter surfaces for the active part of the blade and of the
fillet part of the blade, given by Eq. (3.8) and (3.9) respectively, can be defined
w.r.t. the work-piece in Sg. To perform the transformation, the vectors r(g,A)

g

and r(g,F )
g , which represent the points on the cutter surfaces, are expanded to

their homogeneous vector equivalents r̄(g,A)
g and r̄(g,F )

g .
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The unit normal vectors to the surfaces that are described by r̄(g,A)
g and r̄(g,F )

g

are given by Eqs. (3.10) and (3.11), respectively, where LgC corresponds to the
rotational part of the homogeneous transformation matrix TgC .
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Kinematics and modified roll When defining the motion of the cutter head
w.r.t. to the gear blank in Eq. (3.7), the rotation of the cradle and the rotation of
the gear blank were considered to be independent. In case of the non-generating
process both the cradle and the gear blank are kept fixed, removing both
parameters as variables in the above equations. If the generating process is
applied to cut the spiral bevel gear, a kinematic relation is imposed such that the
rotation of the gear blank φ(g)

g (q(g)) becomes a function of the cradle rotation
q(g). In addition, when also the concept of modified roll is used to introduce
additional flank form modifications, both rotational angles are defined by means
of a polynomial function [76]:

φ(g)
g = mgc

(
q(g) − C(g)

2
(
q(g))2 − C(g)

3
(
q(g))3

)
(g = 1, 2) (3.12)

In Eq. (3.12), the coefficients C(g)
2 and C

(g)
3 are considered constants that

determine the higher order contributions, while mgc determines the so-called
ratio of roll or velocity ratio that is defined as [76]:

mgc = dφ(g)
g /dt

dq(g)/dt

∣∣∣∣∣
q(g)=0

(3.13)

Although it would theoretically be possible to manufacture both elements of
the gear pair by using the modified roll method, it is more practical to apply
the modified roll method only to the pinion (lower number of teeth) and to
produce a generated gear wheel with a constant ratio of roll. In this case, the
following kinematic relations are usually used for pinion and gear, respectively:

φ
(1)
1 = m1c

(
q(1) − C(1)

2
(
q(1))2 − C(1)

3
(
q(1))3

)
(3.14)

φ
(2)
2 = m2c q

(2) (3.15)
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gear blank

family of surfaces
of the inside blade (convex)

envelope to family of cutter surfaces

family of surfaces
of the outside blade (concave)

Figure 3.9: Gear teeth are created as the envelope to family of cutter surfaces.

Envelope to family of cutter surfaces

By substituting Eq. (3.12) into Eqs. (3.8) and (3.9), the family of cutter surfaces,
described by the active part of the blade and the fillet part of the blade, can be
expressed as a function of three variables: the cutter head rotation θC , the blade
edge coordinate u (i.e. uA or uF ), and the cradle rotation q. Fig. 3.9 illustrates
this family of cutter surfaces for the active parts of the inside (convex) and the
outside blade (concave) edges during the cutting simulation of the ring gear.

The resulting tooth surface geometry can be defined by the surface that envelopes
the respective family of cutter surfaces. This enveloping surface is obtained as
the solution to the equation of meshing between the moving cutter surface and
the gear blank, where the tooth flank takes to role of conjugate flank to the
cutter blade. Starting from Eq. (2.14), while using Eqs. (3.10) and (3.11) to
replace the vector product, the equation of meshing can be simplified to:

f(q, u, θC) = Ng(q, u, θC) · ∂rg(q, u, θC)
∂q

= 0 (3.16)

Since the tooth flank geometry is a surface that is described by two independent
curvilinear coordinates, Eq. (3.16) defines the additional constraint that allows
one of the three surface variables to be defined as a function of the other two.
One possible choice could be to express the blade parameter u(q, θC) as a
function of the rotations q and θC , such that it becomes possible to determine
the position rg(q, θC) on the tooth flank analytically.
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However, depending on the complexity of the manufacturing process and the
resulting nonlinear nature of the equations, it is not always possible to derive
these equations in a closed form. In that case the tooth flank surface is computed
in an iterative way. When considering the family of cutter surfaces that are
described by the active part of the blade, the resulting set of nonlinear equations
that has to be solved numerically is given as by Eq. (3.17) for both pinion
(g = 1) and gear (g = 2).r̄

(g,A)
g (q(g), u

(g)
A , θ

(g)
C ) = TgC(q(g)) r̄(g,A)

C (u(g)
A , θ

(g)
C )

f (g,A)(q(g), u
(g)
A , θ

(g)
C ) = 0, (g = 1, 2)

(3.17)

In addition, a similar set of equations has to be derived for the fillet part of the
blade edge to compute surface that defines the root of the gear tooth.

The gear tooth surfaces are computed as an ordered set of points and their
corresponding surface normal vectors, which requires two additional constraints
that define the location on the tooth flank. The active parts of the tooth
surfaces are computed based on a discretization of the projected tooth flank
(see Fig. 3.10). The tooth root surfaces are obtained from the discretization
of the interval [0, π2 − α

(g)
A ], in which uF exists, while imposing that the root

points lie along the direction of the tooth profile section, which is determined
by the active flank points.

flank projection

flank profile section

active 
flank

root

constraints to determine 
the 3D flank points

face cone

root cone

toe

heel

Figure 3.10: Discretization of the gear tooth surfaces in 3D.
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3.3 Tooth surface curvature

The normal curvature of a surface depends on the directions along which the
surface is observed. Consequently, for any point on the surface there exists a
direction along which the normal curvature reaches its maximum value and a
direction along which the normal curvature is minimal. These extreme values
of normal curvature are referred to as the principal curvatures and principal
directions of the surface at that point. When the principal curvatures and
corresponding directions are known in a point on the surface, it becomes
possible to reconstruct the normal curvature along any given direction in that
point. In Chapter 5 this approach is used to compute the normal curvature
along the direction of the instantaneous contact curves, based on precomputed
curvature data. Therefore, this dissertation adopts the methodology of [90] to
estimate the contact surfaces’ principal curvature and directions, based on the
curvature of fitted spatial circles and Mohr’s circle of curvature.

3.3.1 Normal curvature of a spatial circle

In the vicinity of a point P on the surface S, the curvature along a given
direction t that is tangent to the surface S can be well-approximated by fitting a
spatial circle through P . Considering that the gear tooth surfaces were generated
as discretized surfaces, for which the surface points and surface normal vectors
are stored on ordered grids, a local 3-by-3 grid that has P as its central point
is defined on the tooth flank. In this local grid, four spatial circles ci are then
constructed through P along the different directions of the grid, as shown in
Figure 3.11. Each circle ci is defined by a center point Ci and a radius Ri
and runs through P where a local reference frame is defined. The unit vectors
ni, ti and bi are the curve normal vector, the curve tangent vector and the
curve binormal vector of the circle ci, respectively.

The curvature of each spatial curve κC,i is computed from Eq. (3.18), where the
spatial curve’s radius of curvature is given by ρC,i = Ri.

κC = 1
ρC

(3.18)

The surface normal curvature κn,i is obtained for each circle ci by projecting
the curvature of the curve κC,i onto the surface normal vector N , where Γi
represents the projection angle between the vectors ni and N (see Fig. 3.11).

κn,i = κC,i ni ·N (3.19a)

= κC,i cos(Γi) (3.19b)
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S

c,31

Figure 3.11: Surface normal curvature calculation at the Point P by fitting
circles ci along different directions. The process is illustrated for circle c3 (i = 3).

3.3.2 Surface principal curvatures and directions

The principal directions emin and emax are defined as those directions through
each point P on a smooth surface S for which the surface torsion τg is zero [90].
The normal surface curvatures κmin and κmax along these directions are then
said to the minimum and maximum principal curvatures of the surface at P .
The Circle of Mohr for surface curvature relates the surface normal curvature κn
and the surface torsion τg with the principal curvatures κmax and κmin [90]:

κn = κmax + κmin
2 + κmax − κmin

2 cos(2θt)

τg = κmax − κmin
2 sin(2θt)

(3.20a)

(3.20b)

In Eq. (3.20) the Circle of Mohr is defined by the center κmax+κmin

2 and the
radius κmax−κmin

2 , while the θt represents angle between the maximum principal
curvature direction emax and the curve tangent t direction that yields (κn, τg).

The curvature parameters κmax, κmin and emax are found from a tensor rotation
(see Appendix E), once at least three normal curvatures along three different
directions at P are known [73, 74]. The process is shown in Fig. 3.12.
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Figure 3.12: Principal curvature calculation using the Mohr circle.

Using a circle fitting approach, illustrated in Fig. 3.11 for i = 3, three spatial
circles ci (i = 1, 3) with spatial curve curvature κC,i are fitted through a point P
of the gear tooth surface S along three known tangent directions ti. Using
Eq. (3.19), the corresponding surface normal curvatures κn,i along directions ti
are obtained by projecting onto the surface normal N at P . With only the
surface normal curvatures κn,i in three different directions ti known, the tensor
rotation is found by solving the following system for κmax, κmin and θt,1:

κn,1 = κmax + κmin
2 + κmax − κmin

2 cos(2 θt,1)

κn,2 = κmax + κmin
2 + κmax − κmin

2 cos(2 (θt,1 + θc,21))

κn,3 = κmax + κmin
2 + κmax − κmin

2 cos(2 (θt,1 + θc,31))

(3.21)

The angle θt,1 provides the orientation of emax w.r.t. the tangent direction t1
of the curve c1, while the angles θc,i1 express the orientation of the tangent
direction of a curves ci w.r.t. t1.

To reconstruct the normal curvature along any direction t at the point P of the
surface, Euler’s formula for normal curvature, given in Eq. (2.5), is written as:

κn = κmin + (κmax − κmin) cos2(θt) with cos(θt) = t · emax (3.22)
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3.4 Finite element model creation

Starting from a CAD model, the creation of FEM-based spiral bevel gear models
can become a time-expensive process, especially when the same operations have
to be (manually) repeated for each design case. Therefore, numerous researchers
have dedicated their time on advancing tools that allow the automatic creation
of FE models of spiral bevel gears [6, 77, 40, 41]. Similar to the TCA tools,
these automated tools also include the equations that govern the manufacturing
process of spiral bevel and hypoid gears, to assure the correct description of the
tooth geometry. Once the FE models have been created, commercially available
FEA software can then be used to perform the contact simulations [6, 41].

Within this research and related activities [1, 23, 26] a set of procedures is
developed to automatically generate detailed spiral bevel gear FE models. While
the main focus of these efforts is turned towards enabling NL-FEA-based contact
simulations to validate the developed contact model (see Chapter 5 and 6), future
extensions of the contact model with FE-based tooth stiffness data are already
considered. Fig. 3.13 shows the process. By simulating the manufacturing
kinematics with the models of Section 3.2.2, the tooth surfaces are generated as
a set of points that are stored on a regular grid. The gear blank geometry is
then created, as described in Section 3.1, and the tooth volume is defined and
discretized with finite elements. These routines are integrated into a dedicated
tool, which are developed for the automated FE mesh creation of cylindrical
gears [16, 21]. The process supports the generation of fully parametric 3D spiral
bevel gear elements, of which the geometry is discretized by linear hexahedral
elements. The model files are written in the Nastran format.

In addition, specific procedures have been developed for the purpose of FEA-
based contact simulations. Due to their high computational cost, these analyses
rarely focus on more than one mesh cycle since the behavior is expected to
repeat itself. Accordingly, models for FEA-based tooth contact analysis require
only those teeth that are expected to be in contact over the course of one mesh
cycle, to be finely meshed so that accurate contact detection is guaranteed.
The remaining section of the gear, for which the teeth are not expected to be
in contact, can either be excluded from the model or replaced by a coarsely
meshed FE model. Within the scope of this dissertation, the decision was made
to use 3D FE models of complete gear pairs. To reduce the size of the model,
each gear’s FE mesh is constructed out of three sections, to which a fine, coarse
and intermediate mesh1 is applied. The intermediate section is used to assure a
smooth transition between the finely and coarsely meshed sections.

1In Fig. 3.13, 1 fine tooth has 36750 el. (100 %), 1 intermediate tooth has 6150 el. (17 %)
and 1 coarse tooth 1200 el. (3 %). Within the complete FE gear model with 36 coarse,
2 intermediate and 5 fine teeth their respective contributions are 18 %, 5 % and 77 %.
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Figure 3.13: Finite element model generation process for spiral bevel gears.
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3.5 Conclusion

This chapter focuses on the geometrical aspects of the developed modeling
methodology for spiral bevel gears. In Section 3.1 the basic concepts and
terminology of spiral bevel gear geometry are discussed. Section 3.2 provided
an overview of the most common methods to manufacture spiral bevel gears
on an industrial scale. Since the shape of a spiral bevel gear tooth is not
standardized, it is completely dictated by the blade geometry and machine
settings that are used during the machining process. Depending on how the
gear blank rotates w.r.t. to the cutter blades, the available machining processes
are typically divided into single indexing (face-milling) and continuous indexing
(face-hobbing) methods. A mathematical model of the five-cut method (a face-
milling process) is described and used to generate the spiral bevel gear’s tooth
flank geometry as an ordered set of points and surface normal vectors. The
model simulates the motion of the cutter blades during the finishing cut, while
using the equation of meshing to determine the tooth flanks as the envelope
to a family of cutter surfaces. Building upon the discrete representation of the
tooth surfaces, a general methodology is developed in Section 3.3 that estimates
the tooth flank curvature. By combining the curvature of surface-fitted spatial
circles with the circle of Mohr for curvature, the principal curvatures and
principal directions are determined. Finally, the developed procedures for the
creation of detailed FEM-based spiral bevel gear models are briefly described
in Section 3.4. The discrete tooth surfaces, obtained by simulating the cutting
process, serve as input for this automated process.



Chapter 4

Gear pair kinematics and
unloaded TCA

This chapter lays the groundwork for the contact detection strategy that is used
in Chapter 5 to develop a novel gear contact force model for spiral bevel gears.
From the discussion of the different contact detection methods in Chapter 2,
it becomes clear that - besides their accuracy - the numerical efficiency with
which the potential contact locations are detected significantly impacts the
overall effectiveness of the methodology. While conventional methods, such as
the continuous tangency approach (see Section 2.1.1) or the NTS method for
discretized surfaces (see Section 2.2.3), have proven to be adequate for contact
detection, they consider the mating flanks to be arbitrary, which in turn impacts
the numerical efficiency of the methodology. The knowledge that the contacting
tooth flanks of the gear pair are designed to be near-conjugate to ensure motion
transmission with minimal transmission error, can be exploited to improve
the efficacy and accuracy of the contact detection method. This additional
information is embedded in the ease-off approach (see Section 2.1.2) through
the use the theoretical conjugate surfaces.

To attain a superior performance in terms of contact detection, the methodology
adopts a conjugate surface approach. Building upon the theory of conjugate
surfaces, the kinematic relations between a given tooth flank and its theoretical
conjugate flank are determined in Section 4.1. The predefined tooth flank
surfaces (see Chapter 3) are the starting point for this computation in order to
develop a methodology that is general and independent from the manufacturing
process. The equation of meshing, which determines the conjugate motion, is
solved for each point of the discrete flank to determine that flank’s surface of roll

69
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Figure 4.1: Overview of the process for unloaded tooth contact analysis (UTCA).

angles. The surface of roll angles is of major importance for the methodology as
it not only defines the conjugate to a given flank but also allows to determine the
location of the contact points on the surface of action. Once the complete surface
of roll angles has been obtained, the ease-off topography for that flank pair is
constructed. By combining the surface of roll angles and ease-off topography an
accurate and performant UTCA process, similar to the one of [63], is developed
in Section 4.2. A schematic overview of this process is provided in Fig. 4.1.
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4.1 Gear pair kinematics

Although current generation computer-controlled face cutting machines are
capable of producing fully conjugate tooth pair surfaces, no direct geometrical
relation exists between the mating flanks that would allow an a priori definition
of a conjugate flank pair. Current spiral bevel gear design therefore does not start
from conjugate flanks - as it is the case for cylindrical gears - but is dependent on
TCA procedures to determine a gear pair’s contact performance and to identify
optimized machining parameters. Additionally, flank form modifications that
result in close-to-conjugate surfaces are introduced to ensure the desired quality
of motion transfer when tooth deformation and misalignments occur. Such
considerations explain why a conjugate surface based methodology, such as the
ease-off approach, can be applied to the gear contact analysis. Inherent to the
methodology is the assumption that for a given flank pair the difference between
the real mating surface to a selected flank and its conjugate remain small (up
to a few hundred micrometers), such that contact detection can be simplified
based on the kinematic motion of the selected flank and its computed conjugate.
The ease-off topography can then be used to account for the differences that
exist between the real mating surface and the conjugate to the selected surface.

4.1.1 Conjugate motion transfer

Conjugate motion transfer so far is defined as perfect motion transfer between
two contacting surfaces without providing a proper definition. In case of a gear
pair this means that the resulting motion is conveyed according to the gear
ratio m21, which can be defined as the ratio between the angular velocities of
the gear (gear 2) and of the pinion (gear 1) or the ratio between the number of
gear teeth of the pinion Z1 and of the gear Z2:

m21 = ω(2)

ω(1) = dφ(2)
z /dt

dφ(1)
z /dt

(4.1a)

= Z1

Z2
(4.1b)

Assuming that the gear rotational axis coincides with the z-axis of a local
reference frame that is attached to the gear body, integration of Eq. (4.1a)
results into the expression for the transmission error, given by Eq. (2.4). A
common simplification of Eq. (2.4) is obtained as: TE = φ

(2)
z −m21φ

(1)
z , when

both gears are rotated such that the flanks are in contact at the start of the
analysis and the initial gear rotation φ(1)

z0 and φ(2)
z0 can be omitted. In case of

conjugate motion the resulting transmission error is zero.
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A pair of gear teeth in mesh does not have to be (fully) conjugate to transmit
motion with zero transmission error. This can be achieved as long as at least
one contact point on both flanks is capable of conveying the rotation according
to the prescribed gear ratio. However, when computing the conjugate surface
to a chosen tooth flank, the equation of meshing ensures that the gear ratio is
enforced for every point on the surface.

4.1.2 The equation of meshing

Similarly to how the cutter blade meshes perfectly with the gear blank when it
performs the cutting of the tooth flank, a real tooth flank also meshes perfectly
with its conjugate when it rotates about its rotational axis. The conjugate to a
given flank is therefore defined as the envelope to a family of real tooth flank
surfaces and can be computed with the equation of meshing for the flank while
taking into account the relative position and orientation of the gear pair. When
a continuous parametrization of the selected surface is available, its conjugate
surface is obtained by both Eqs. (2.14) and (2.15). In case of a discrete surface
the latter equation is best adopted, since it avoids the computation of the partial
derivatives by replacing them with their geometric and kinematic counterparts.

A real world spiral bevel gear pair is created with manufacturing errors, e.g. flank
form errors or tooth pitch errors. However, the modeling and the effects of
such errors are not studied in this work. The following assumptions are made
regarding the gear geometry when solving the equation of meshing: (i) all teeth
of the pinion are identical without indexing errors, (ii) all teeth of the gear are
identical without indexing errors and (iii) the gear geometry is predefined. The
first two assumptions allow to solve the equation of meshing for the flanks of a
single tooth pair, the reference tooth pair, and to translate the results to other
tooth pairs when needed. The final assumption allows to write Eq.(2.15) as:

N(φz) · v(φz) = 0 (4.2)

provided that the discrete surface is described as a set of surface coordinates r
with accompanying surface normal vectors N and that the correct kinematic
relations are available. The required kinematic relation is prescribed by the
relative velocity v between the coincident contact points on both the chosen
surface and its conjugate counterpart. As additional advantage, solving Eq. (4.2)
is simplified to finding the solution in terms of gear rotational angle φz to a
single nonlinear equation for each point of the gear flank surface.
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Figure 4.2: Relative orientation of pinion (gear 1) and gear (gear 2) w.r.t. the
base frame, displayed for installment parameters A1 > 0, EH > 0, A2 > 0 and
γ = −90 deg.

Position and orientation of the gear pair

The different reference frames that are used to describe the position and
orientation of the gear pair are shown in Fig. 4.2. The surface points of
the pinion flank (gear 1 ) are expressed in a local reference frame S1, while the
points of both the conjugate to the pinion flank and the gear flank (gear 2 ) are
expressed in the local reference frame S2. The gear pair installment is defined
through the shaft offset EH , the pinion axial offset A1, the gear axial offset A2
and shaft angle γ. The angles φ(1)

z and φ(2)
z represent the rotation about the

rotational axes of the pinion and of the gear w.r.t. the base frame, respectively.
The base frame SB is introduced as an auxiliary reference frame to describe
the relative position and orientation of the gear and the pinion. It is defined in
such a way that its origin stays the same as that of S1 while the pinion is only
allowed to rotate about their common z-axis. The homogeneous transformation
matrix TB1 expresses the position and orientation of the reference frame S1
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w.r.t. the base frame SB , while matrix TB2 expresses the position and orientation
of the reference frame S2 w.r.t. the base frame SB. The two transformation
matrices are given by Eqs. (4.3) and (4.4), respectively.

TB1 = Tz

(
φ(1)
z

)
(4.3)

TB2 = TB2′
(
A1, γ, EH , A2

)
Tz

(
φ(2)
z

)
(4.4)

The transformation matrix Tz represents the rotation about the gear rotational
axis for either the pinion in Eq. (4.3) or for the gear in Eq. (4.4).

Tz(φz) =


cos(φz) − sin(φz) 0 0
sin(φz) cos(φz) 0 0

0 0 1 0
0 0 0 1

 (4.5)

The considered gear pair installment parameters are combined in a single
transformation matrix TB2′ , given by Eq. (4.6).

TB2′ =


cos(γ) 0 sin(γ) 0

0 1 0 0
− sin(γ) 0 cos(γ) −A1

0 0 0 1




1 0 0 0
0 1 0 EH
0 0 1 A2
0 0 0 1

 (4.6)

The conjugate to the pinion flank

The conjugate to the pinion flank is obtained by solving the equation of meshing
for the real pinion flank while taking into account the relative position and
orientation of the gear pair. Expressing Eq. (4.2) w.r.t. the base frame SB
results in Eq. (4.7) for the real pinion flank.

N
(1)
B · v(12)

B = 0 (4.7)

The relative velocity v(12)
B defines the correct kinematic relation between the

surface points of the pinion and its conjugate flank and is defined by Eq. (4.8).

v
(12)
B = (ω(1)

B × r
(1)
B )− (ω(2)

B × ρB) (4.8)

The vector ρB = r
(1)
B −R

(2)
B accounts for the rotational moment that arises

when either the shaft offset EH or the axial offset A1 are non-zero for the
configuration in Fig. 4.2. The vector R(2)

B expresses the arm of the rotational
moment and is defined as the vector that points from the origin of SB to the
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origin of S2. The position and orientation of the corresponding surface normal
for any point on the surface of the pinion w.r.t. the frame SB is given by:

r̄
(1)
B = TB1

(
φ(1)
z

)
r̄

(1)
1 (4.9)

N
(1)
B = LB1

(
φ(1)
z

)
N

(1)
1 (4.10)

The vectors r̄(1)
1 and r̄(1)

B are used to express the homogeneous form of the
position vectors r(1)

1 and r(1)
B . The matrices LB1 and LB2 correspond to the

rotational part of the homogeneous transformation matrices TB1 and TB2. The
angular velocity vectors ω(1)

B and ω(2)
B of Eq. (4.8) for the pinion and the gear

are defined as:

ω
(1)
B = LB1

 0
0
ω(1)

 (4.11)

ω
(2)
B = LB2

 0
0

−ω(2)

 (4.12)

The magnitudes ω(1) and ω(2) of the corresponding angular velocity vectors for
the pinion and its conjugate are defined by the gear ratio m21 in Eq. (4.1).

Surface of roll angles and surface of action

Solving the equation of meshing for one particular point P on the tooth flank
of the pinion yields a specific value of pinion roll angle φ(1)

z . The surface of roll
angles R(1)

φ of the real pinion flank is the complete set of pinion roll angles that
are obtained by solving Eq. (4.7) for each point on the flank. The roll angle
φ

(1)
z of a point on the pinion flank corresponds to the rotation that the pinion

has to undergo for that point to reach its mating point on the conjugate flank.

The location where this contact takes place is a point on the surface of action
of the pinion flank. Similarly to the plane of action for involute cylindrical
gears, the surface of action describes the family of contact curves between two
conjugate flanks that are represented in a fixed reference frame [76]. The action
surface of a left pinion flank is given in Fig. 4.3 by using Eq. (4.9) to express
all the contact locations of the pinion flank w.r.t. the base frame SB . Similarly
to cylindrical gears the tooth flank will intersect the surface of action when it
comes in contact with its conjugate for a given value of pinion roll angle φ(1)

z .
For those points that belong to the (instantaneous) contact curve between
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pinion flank and its conjugate the two contact conditions, given by Eq. (2.1),
are satisfied. The resulting conditions for (i) coincidence of contact points and
(ii) collinearity of surface normal vectors can be written as:

r
(1)
B = r

(2c)
B (4.13a)

N
(1)
B = −N (2c)

B (4.13b)

where the position vector r(2c)
B is used to represent the points on the conjugate

flank, while the vector N (2c)
B expresses the surface normal vector at r(2c)

B .

Finally, the surface coordinates r(2c)
2 of a point on the conjugate to the pinion

flank are obtained from Eq. (4.14). The resulting homogeneous transformation
expresses the coordinates r(1)

1 of the point on the pinion flank w.r.t. to the local
reference frame S2 that is attached to the gear, while imposing the kinematic
relation that is prescribed by the gear ratio m21.

r̄
(2c)
2 = T−1

B2
(
−m21 φ

(1)
z

)
TB1

(
φ(1)
z

)
r̄

(1)
1 (4.14)

In this transformation the vectors r̄(1)
1 and r̄(2c)

2 are the homogeneous versions
of the position vectors r(1)

1 and r(2c)
2 , respectively.

pinioninstantaneous 
contact curves

action surface
of the pinion flank

gear
conjugate to the pinion flank

Figure 4.3: Example of the surface of action of the left pinion flanks.
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The conjugate to the gear flank

The conjugate to a given real tooth flank is computed without changing its
relative configuration w.r.t. the pinion. This way the obtained surface of roll
angles allows a direct description of the real gear flank’s action surface in SB.
Similarly to Eq. (4.7), the equation of meshing between the real gear flank and
is conjugate is defined as:

N
(2)
B · v(21)

B = 0 (4.15)

Considering that v(21)
B = −v(12)

B , the relative velocity v(21)
B can be replaced by

Eq. (4.8), since its sign does not affect the required perpendicularity to the
surface normal N (2)

B . However, Eq. (4.8) expresses the relative velocity v(12)
B

in function of the vector r(1)
B , which in the current case would correspond to

the coordinates r(1c)
B of a point on the surface that is conjugate to the gear

flank. By relying on the contact conditions, which are valid for any point on
the surface of action of the real gear flank, it is possible to replace r(1c)

B by r(2)
B .

The equation of meshing between the real gear flank and its conjugate is then
found as:

N
(2)
B ·

[(
ω

(1)
B × r

(2)
B

)
−
(
ω

(2)
B × (r(2)

B −R
(2)
B

))]
= 0 (4.16)

The surface of roll angles R(2)
φ of the real gear flank is then constructed by

solving Eq. (4.16) for the gear roll angle φ(2)
z for each point on the real gear

flank. The coordinates r(1c)
1 of the points on the conjugate surface to the real

gear flank are defined in the pinion reference frame S1 and can be obtained
from the following transformation:

r̄
(1c)
1 = T−1

B1
(
− φ(2)

z /m21
)

TB2
(
φ(2)
z

)
r̄

(2)
2 (4.17)

4.1.3 Ease-off topography

In the actual gear pair the real pinion flanks do not mesh perfectly with the
real gear flanks. This amount of flank mismatch is expressed through the
ease-off (EO) topography, which is defined as the amount of deviation of a real
flank from the conjugate to its real mating flank. Therefore, it is a property
of the flank pair that includes all possible types of small deviations, such as
changes in the flank’s micro-geometry, misalignments and manufacturing errors.
To determine the ease-off topography, a point-by-point comparison between the
real flank and the theoretical conjugate to its mating flank is performed on a
region that is bounded by the flank overlap of the real flanks. This region can
be identified by projecting both the real flank and the conjugate to its mating
flank onto a common plane.
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The gear-based ease-off topography that is constructed in this work is only
created to optimize the UTCA process and to provide a metric that enables an
evaluation of the tooth flank form modifications during data preprocessing. In
following chapters the computed penetration between the real tooth flanks (of
both the pinion and the gear) is used to determine contact and to compute the
resulting contact forces.

The projection plane

To construct the gear-based ease-off topography of a given flank pair, the real
gear tooth surface has to be compared with the conjugate gear surface, i.e. the
surface that is conjugate to the mating pinion tooth surface. Considering that
the real tooth flanks of both the pinion and the gear are discretized during
the geometry generation process, a direct comparison between the real gear
flank and the conjugate gear surface is difficult to obtain without the use of
interpolation or surface fitting techniques. For example, if both pinion and gear
flanks are discretized with a different number of points, a common coincident
grid cannot be created. In addition, it should also be noted that the points
on the surface that is conjugate to the pinion flank are obtained by solving
the equation of meshing. Therefore, their distribution resembles that of the
movement of the distributed pinion flank points as they mesh with the to-be-
computed conjugate surface. While the points on this conjugate surface are
still stored on an ordered grid, due to the meshing motion there is no guarantee
that the points will keep their regular distribution. By projecting the points of
both the real gear tooth flank and the conjugate gear surface onto a common
plane, an interpolation strategy was developed to compute the points of both
flanks onto a common grid, which is bounded by the resulting flank overlap.

The conjugate to the real pinion flank and the real gear flank are first projected
onto a plane in S2 that includes the gear rotational axis. Such a projection is
feasible without loss of accuracy due to the similarity between both flanks in
terms of size and flank curvature. This so-called projection plane is bounded
by the flank overlap of the conjugate to the real pinion and the real gear, as
illustrated in Fig. 4.4. The projection is carried out as the rotation along a
circular arc about the gear rotational axis, for which the parametrization is
given by Eq. (4.18). 

x2 = Rproj cos(θproj)
y2 = Rproj sin(θproj)
z2 = Zproj

(4.18)

The projection plane is then discretized with a new grid to enable a one-to-one
comparison of the real gear flank (g = 2) and the conjugate gear surface (g = 2c).
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conjugate 
to pinion

flank overlap

projection plane

R

Z
gear

Figure 4.4: Projection plane creation.

For each point of the projection plane grid, the 3D surface coordinates of
both surfaces are computed in the gear reference frame S2 through a shape-
function based interpolation method. While both bilinear and biquadratic shape
functions can be used, the latter is here preferred since the point distribution
of the conjugate (gear) surface can be nonlinear due to the motion of the real
(pinion) flank. The process is visualized in Fig. 4.5, while the most important
steps are summarized below.

• A local grid of nine projected surface points (of either the gear flank or the
conjugate gear flank) is identified for each point Pppg on the projection
plane grid, such that the distance between Pppg and the central node of
the local grid P9 is minimized.

• The local nine-noded grid is used to define a biquadratic element that
is defined by the surface’s projected coordinates (R(g)

proj,l, Z
(g)
proj,l) of the

corner points P (g)
l and the shape functions Ne

l (ξ, η). The position of
any point on this nine-noded element is then found by the following
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interpolation function:
R

(g)
proj(ξ, η) =

9∑
l=1

Ne
l (ξ, η) R(g)

proj,l

Z
(g)
proj(ξ, η) =

9∑
l=1

Ne
l (ξ, η) Z(g)

proj,l

(g = 2, 2c) (4.19)

• Since the position of the grid point Pppg is known from the imposed
discretization, the corresponding natural coordinates ξppg and ηppg are
determined by solving the system of nonlinear equations of Eq. (4.19).

• The required 3D surface coordinates are found by evaluating the function:

r
(g)
2 (ξppg, ηppg) =

9∑
l=1

Ne
l (ξppg, ηppg) r(g)

2,l (g = 2, 2c) (4.20)

• To completely define the projection plane data, this process is repeated
for each of the projection plane grid points and for both the real gear
flank and the conjugate gear flank.

Rproj

Zproj

projection of the 
conjugate to pinion flank

projection of the 
real gear flank

projection 
plane
grid

P2

P5

Pppg

ξ
η

P9

P1

P8

P4

P7

P3

P6

to compute from Pl 

flank 
overlap

Figure 4.5: Interpolation of the real gear flank data and the conjugate to pinion
flank data onto a common projected grid that is bounded by the flank overlap.
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Gear-based ease-off topography

Once all the data is defined onto the projection plane, the ease-off topography
is constructed as the difference in projection angle θ(2)

proj of the gear flank and
of the conjugate flank θ(2c)

proj . The gear-based ease-off topography definition is
given in Eq. (4.21) in terms of angular deviations or in Eq. (4.22) in terms of
distance by multiplying the angular ease-off value with the radius R(2)

proj of the
corresponding point on the projection plane:

E(2)
θ = θ

(2)
proj − θ

(2c)
proj (4.21)

E(2)
δ = R

(2)
proj E

(2)
θ (4.22)

The rigid body rotation between both flanks (see Fig. 2.5) that translates into
an offset of the ease-off topography is automatically removed. The resulting
ease-off topography is 0 µm or 0 µrad in at least one point to indicate that
both pinion and gear flank are conjugate in this point.

An example of gear-based ease-off topography is found in Fig. 2.3, while an
example for pinion-based ease-off topography has been added to Appendix C.

4.2 Unloaded tooth contact analysis

The UTCA process focuses on the geometrical analysis of the tooth flank pairs
in contact. Inherent to such a process is the assumption that all the contacting
teeth pairs are identical and that flank-related manufacturing errors are absent.
Since load sharing does not occur in unloaded conditions, the results obtained
for a single flank pair can be extrapolated to the neighboring teeth flank pairs.
Therefore, the results of a single flank analysis provide sufficient information to
determine the unloaded contact behavior of the gear pair.

As mentioned in Section 2.1.2, typical results for unloaded TCA, such as the
unloaded transmission error (UTE) and the contact point path (CPP), can
be elegantly obtained by combining the surface of roll angles and the ease-off
topography of a single flank pair. This process has been described in [63] and
is briefly illustrated in the following subsection.
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4.2.1 Unloaded transmission error and contact point path

The main idea behind an ease-off topography-based approach to UTCA is that
the contact detection can be simplified by first establishing the contact between
a chosen flank and its conjugate flank. In the described procedure the pinion
flank is selected as the input flank such that the ideal instantaneous contact
curve is computed based on this pinion flank’s surface of roll angles. The true
instantaneous contact curve is computed in a second phase by accounting for
the difference between the conjugate gear surface and the real gear flank, which
is captured in the gear-based ease-off topography. Both steps of this procedure
are illustrated in Fig. 4.6 for an instantaneous value of roll angle φ(1)

z,i .

For any value φ(1)
z,i of the pinion’s roll surface R(1)

φ it is possible to define an
instantaneous contact curve such that all the contact points have the same
value of pinion roll angle, as shown in Fig. 4.6. First, an instantaneous curve
of potential contact points is computed from the intersection of a plane with
constant pinion roll angle φ(1)

z,i and the surface of pinion roll angles R(1)
φ , which is

defined on the gear-based projection plane. Such a contact search is numerically
more efficient compared to finding the contact points as the solution to a
system of nonlinear equations, in which the surfaces are considered to be
arbitrary. The potential contact points are projected onto the projection plane
to determine the contact locations on the tooth flank. The instantaneous contact
curves ςθ (angular units) and ςδ (linear units) are established by computing
the ease-off value for each point of the projected contact curve, using the
ease-off topographies E(2)

θ and E(2)
δ respectively. Depending on the ease-off

topography, the line contact, present for the instantaneous curve of potential
contact points, evolves into a point contact for the instantaneous contact curve ς.
The instantaneous contact point (ICP) is the first point on the real pinion flank
that contacts the real gear flank for an incremental pinion rotation. As shown
in Fig. 4.6b, it is computed from the contact curve ςθ as the point where the
ease-off E(2)

θ reaches an (absolute) minimum. Since this ease-off value represents
the angle that the conjugate to the pinion flank has to rotate about the gear axis
to come into contact with (a point on) the real gear flank, it directly represents
the instantaneous transmission error value TE(φz1,i) in unloaded conditions. To
illustrate the contact zone under load, the contact curve length Lc is computed
by moving from the ICP along the direction of the contact curve ςδ (linear scale)
within a predefined distance δe, (see Section 2.1.1).

By repeating the above process for all values φ(1)
z,i of the pinion roll surface R(1)

φ ,
the unloaded transmission error and contact point path of a single flank pair
can be determined. The UTE and CPP of the gear pair, analyzed in this work,
are presented in Fig. 4.7 and Fig. 4.8 of the next subsection.
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(a) Creation of the instantaneous contact curve ςδ.
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(b) Instantaneous UTE and contact width Lc.

Figure 4.6: UTCA based on the surface of roll angles and the ease-off topography.
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4.2.2 UTCA Results

Gear pair data

The unloaded contact behavior of a FM spiral bevel gear pair is analyzed with
the developed process for ease-off-based UTCA. The data that defines the
analyzed gear pair was taken from the literature [6] to have an additional level
of validation during the development process. In the literature this gear pair
has been analyzed with the continuous tangency method (see Section 2.1.1).
An overview of the required data can be found in Appendix A.

Results for UTE and CPP

Results for unloaded transmission error and contact point path are reported
for the left flank pair in Fig. 4.7 and for the right flank pair in Fig. 4.8. Given
pinion’s right-handed spiral, the left flank pair consists of the convex side of the
pinion tooth and the concave side of the gear tooth, while for right flank pair
contains the concave side of the pinion and the convex side of the gear tooth.

The UTE curves, shown in Fig. 4.7a and Fig. 4.8a, can be determined in two
ways. Either a single flank analysis, as described in Section 4.2.1, can be used
to compute the UTE of a single flank pair (tooth pair 0 ) and then translated
to the neighboring flank pairs (tooth pairs +1 and +2 ) under the assumption
that the periodicity of the UTE corresponds to the angular pitch. Alternatively,
the computed surface of roll angles of a single pinion flank can be translated
in a similar fashion to the neighboring pinion flanks to simulate a roll test
in unloaded conditions. In this case the contact is detected between multiple
pinion flanks and their conjugate surface, while the same ease-off topography
is used to establish the different instantaneous contact curves. Assuming that
each flank has only one instantaneous contact curve, the flank that has the
lowest ease-off value on its contact curve will be in contact. This minimum
value corresponds directly to the UTE value for the considered roll angle. The
resulting UTE curve is described by the envelope to the family of UTE curves
that are computed for the individual flank pairs.

The obtained CPP for both tooth pair flanks is shown in Fig. 4.7b and Fig. 4.8b.
Since the neighboring tooth pairs can take over the contact as the gear pair
rotates, the CPP has to be computed by considering multiple tooth pairs in
contact. If this were not the case, the CPP would span the complete gear
flank, leading to an unnatural representation of the contact pattern. Besides an
indication of the instantaneous contact points, a predefined marking thickness
of δe = 5 µm is used to illustrate the contact width.
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(a) Unloaded tooth transmission error (UTE) for the left flank pair

(b) Contact point path (CPP) on the projected left flank of the gear.

Figure 4.7: UTCA results for the analyzed gear pair: left flank pair in contact.
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(a) Unloaded tooth transmission error (UTE) for the right flank pair

(b) Contact point path (CPP) on the projected right flank of the gear.

Figure 4.8: UTCA results for the analyzed gear pair: right flank pair in contact.
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4.3 Conclusion

This chapter lays the emphasis on a correct description of the gear pair’s
kinematics. Current spiral bevel gear design depends on tooth contact analysis
to optimize the machine settings and flank form modifications such that the
desired quality of motion transmission can be obtained. Although an a priori
definition of the ideal conjugate surfaces is not known, the resulting contact
flanks are designed to be close-to-conjugate surfaces. Embedding this knowledge
into the contact detection is essential for the computational efficiency of the
gear contact model that is developed in the next chapter.

Therefore, the theory of conjugate surfaces is used in Section 4.1 to establish
the kinematic relation between a chosen real tooth flank and its computed
theoretical conjugate flank. The equation of meshing is used to define the
surface that is conjugate to the selected flank and to construct the surface of
roll angles for this flank. The surface of roll angles defines the location of the
contact points on the surface of action such that it can be used to identify
curves of potential contact points. Once the conjugate surface to the real tooth
flank is computed, the ease-off topography is constructed to account for the
differences that exist between the real mating tooth flank and the conjugate
to the selected surface. Since the tooth flank geometry is considered to be
predefined, an interpolation strategy was developed to compute the ease-off
topography on a newly defined grid that is bounded by the projected flank
overlap. By combining the surface of roll angles of the pinion flank with the
gear-based ease-off topography for its mating real gear flank, Section 4.2 builds
upon the established concepts to create an efficient and accurate procedure
for unloaded tooth contact analysis of spiral bevel gear pairs. The process is
used to determine the unloaded transmission error and contact point path for
both tooth flank pairs of a face-milled spiral bevel gear pair that is also further
analyzed in the following chapters.





Chapter 5

A novel spiral bevel gear
contact force element

The content of this chapter is based on the following research papers:

• Vivet, M., Mundo, D., Tamarozzi, T., and Desmet, W. An
analytical model for accurate and numerically efficient tooth contact
analysis under load, applied to face-milled spiral bevel gears. Mechanism
and Machine Theory 130 (Dec. 2018), 137–156

In this chapter a spiral bevel gear contact force element (GCFE) is developed
that has the potential to be included in a multibody simulation environment.
In Section 5.1 a conceptual overview of the GCFE is provided together with the
required input data. By taking advantage of the earlier established concepts
such as the surfaces of roll angles and the action surfaces for each flank pair,
an accurate and computationally efficient penetration-based contact detection
algorithm is developed in Section 5.2. In Section 5.3 a load distribution model
is developed to translate the detected penetration into resulting contact forces,
under the assumption that the flank penetration matches the deformation of
the teeth if they were flexible. To model the overall tooth compliance the
deformation field is decomposed in a global and a local component. While
the global tooth deformation is approximated with a set of expressions that
are based on beam theory, the local contact deformation is modeled based on
Hertzian contact theory. In Section 5.4 a multibody approach to tooth contact
analysis is proposed to validate the GCFE against NL-FEA simulations in terms
of transmission error, contact patterns and contact pressure distribution.

89
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5.1 Design of the gear contact force element

A schematic representation of the novel gear contact force element for spiral
bevel gears is presented in Fig. 5.1. The force element models the gear pair as two
rigid bodies but assumes that the contacting gear teeth deform quasi-statically.
Therefore, the inputs to the element are the generalized coordinates q(1) and q(2),
which represent the rigid-body DOFs of the pinion and gear, respectively. Each
set of rigid-body coordinates contains three translational coordinates and three
(e.g. Euler angles or Bryant angles) or four rotational coordinates (e.g. Euler
parameters), depending on the parametrization that is used [44]. A specific
Bryant angles convention is used by the GCFE to internally describe the
rotational motion where needed (see Section 5.2). The outputs of the force
element are the generalized contact forces Q(1)

c and Q(2)
c that act on the body-

attached frames of the pinion and the gear, respectively.

IN

IN

OUT

OUT

q(1)

q(2) Q
c
(2)

Q
c
(1)

Figure 5.1: Schematic representation of the gear contact force element.

Besides the material-related parameters that are used to compute the load
distribution, the force element also requires the following UTCA-related data
to perform the three-dimensional contact detection efficiently:

• Tooth flank geometry. The GCFE internally represents the contact
surfaces of the pinion and of the gear as a 3D crown of gear teeth. Both the
left and the right tooth flanks are included and each flank surface contains
both the active and the root sections of the tooth flank. The tooth flank
surfaces are discretized according to the procedures of Chapter 3.

• Surface of roll angles. Unlike in the UTCA procedure, the gear-based
ease-off topography is not used by the GCFE to determine contact since
it depends on the instantaneous configuration of the gear pair. In the
GCFE the ease-off is replaced by a penetration-based contact detection
algorithm that uses the surfaces of roll angles of both the pinion and gear
flanks. The required surfaces are computed during preprocessing for the
active parts of the tooth flanks. Updating the surface of roll angles allows
to efficiently include effects of gear pair misalignments in Chapter 6.
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• Initial values. The initial rotation of the gear and pinion can be
defined by the user in order to acquire the desired phasing of the gear
pair. Alternatively, the rotation of the gear pair can also be determined
automatically by using the pinion’s surface of roll angles to reconstruct
the gear-based ease-off topography of the reference tooth flank pair for the
initial flank overlap. In the latter case the gear pair is rotated such that
the reference flank pair is in contact (i.e. where the ease-off is minimal) at
the start of the simulation.

The working principle of the gear contact force element can be divided into two
major tasks: (i) detection of the contact for multiple and varying flank pairs,
and (ii) a correct translation of the detected penetration into contact loads.
Both aspects are addressed in the remainder of this chapter.

5.2 Penetration-based contact detection

Similarly to cylindrical gears, where the (roll) angle of the involute is used to
express the position of the contact points on the line/plane of action [54], the
surface of roll angles can be used to accurately and efficiently compute the
contact location on the surface of action for spiral bevel gears. This methodology
was already illustrated in Chapter 4 for the UTCA process and is now extended
to loaded conditions. To this end, the gear-based ease-off topography is replaced
by the surface of roll angles of the real gear flanks during the development of
the novel GCFE for spiral bevel gears.

The contact detection methodology is described by considering only one type of
flank pairs, i.e. either the right or the left flank of the tooth, since the process
to include the other flank pairs is identical.

5.2.1 The challenge of ease-off topography in a general gear
contact force element

By including the surfaces of roll angles for both the real pinion and the real
gear flanks, a contact detection methodology, similar to the ones that exist for
cylindrical gears [38], is developed. As such, the contact locations are directly
identified on the real teeth flanks (for both the pinion and the gear) without
the requirement of the ease-off topography but rather based on the computed
penetration of the real flank geometry. The choice to include the surfaces of roll
angles of both the real flanks rather than the ease-off topography of the flank
pair proves highly relevant for a general case, in which the gear pair’s relative
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configuration and rotations are no longer predetermined but rather the result
of the component compliance, external forces and arising contact forces.

Although both the gear-based ease-off topography and the surface of roll angles
of the gear flank contain equivalent information; nl. they allow to compute the
contact line on the gear flank and indicate the geometrical error between the
real gear and pinion flanks, the ease-off topography poses a challenge when
the general case is considered. In this dissertation, gear pair misalignments
that can occur during a multibody simulation are considered as an example
of such a case. In sections 2.1.2 and 4.1.3 it has been explained that to
determine the geometrical error of a mating set of tooth flanks, the ease-off
topography is computed on the projected flank overlap using the conjugate
to a chosen flank and its real mating flank. When the flank overlap changes
due to misalignments (see Section 2.1.2), the complete conjugate flank should
be computed to determine its location w.r.t. to the real mating flank and
to reestablish the ease-off topography. Performing such an analysis during
the contact simulation significantly reduces the computational efficiency of
the GCFE. Using both surfaces of roll angles allows to determine the contact
points on the real teeth flanks (both for the gear and the pinion) without the
requirement of ease-off topography but rather through the penetration of the
real flank geometry.

5.2.2 Position and orientation of the gear pair

Within the envisioned multibody simulation environment, the position and the
orientation of the pinion and the gear element are defined by their respective
generalized coordinates q(1) and q(2). Although the teeth are assumed to deform
quasi-statically to compute the resulting contact forces, it is assumed that both
gears can be represented as rigid bodies, such that their generalized coordinates
only contain the rigid body coordinates.

In the proposed GCFE the position and orientation of each geared body g
(e.g. g = 1 for the pinion and g = 2 for the gear wheel) is expressed w.r.t. the
global reference frame SG. Any point on the tooth surface of the geared body,
defined by r(g)

g in the body-attached reference frame Sg, is then expressed in
the world frame SG by:

r
(g)
G = R

(g)
G + Agr

(g)
g (g = 1, 2) (5.1)

The global position of the origin of the body-attached reference frame Sg is
given by the vector R(g)

G . while its orientation w.r.t. SG is given by the rotation
matrix Ag [105]. The GCFE internally makes use of a set of Bryant angles to
parameterize the rotational motion of the geared bodies [44].
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An auxiliary reference frame SB, referred to as the Base frame, is computed
based on the position and orientation of the body-attached frames S1 and S2 to
describe the relative position and orientation of the gear pair. The set of Bryant
angles (φ(g)

x , φ(g)
y , φ(g)

z ) is used to express the rotation of each geared body
w.r.t. SB. Since the Bryant angle φ(g)

z corresponds to the roll angle of each
gear, the base frame SB has to define the relative orientation of the gear pair in
correspondence with the equation of meshing, which was used to compute the
surface of roll angles during preprocessing (see Fig. 4.2). Conform to the spiral
bevel gear literature, which defines the shaft angle γ as a rotation about the
Y-axis, the rotational convention Y-X-Z is chosen. This allows the rotations
about the Y- and Z-axis of SB to be described in the range of [0, 2π], while
having its singularity for φx = ±π/2.

5.2.3 Contact curves over multiple flank pairs

Using the expressions in [30], the instantaneous rotation angles φ(1)
z for the

pinion and φ(2)
z for the gear are computed based on the orientation of S1 and

S2 w.r.t. SB . Once the instantaneous rotational angles φ(1)
z and φ(1)

z for pinion
and gear are known, their respective surfaces of roll angles R(1)

φ and R(2)
φ can

be used to determine the potential contact curves on the real tooth flanks.

Number of teeth in contact In a loaded contact simulation different teeth
pair can come into contact as the result of either the rotation of the gears or
due to increased loading. An estimate for the number of teeth NT that are
potentially in contact is determined based on the contact ratio εγ for spiral
bevel gears and includes the profile contact ratio εα and face contact ratio εβ [2].
The calculation of the contact ratio involves the approximation of the spiral
bevel gear pair as an equivalent spur gear pair that is seen from the back cone
(Tredgold’s approximation). Therefore the contact ratio only offers a rough
approximation and a safety factor is introduced to overestimate NT as:

NT = 2dεγe+ 1 (5.2)

Tooth flank pair identification At the start of each new rotational configura-
tion it is a priori not known which tooth numbers of each geared body forms
the tooth flank pairs that are potentially in contact. Therefore, an estimate
is made by first identifying combinations of the NT closest tooth flank pairs,
which are computed by evaluating the distance between each pinion flank and
each gear flank at the middle of the flank. Since all the teeth of a gear are
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projected pinion flank

Figure 5.2: Curves of potential contact are created for different pinion flanks,
starting from the reference roll surface R(1)

φ . The contact curves are computed
as the intersection of the surfaces of roll angle R(1)

φ,k with a plane of constant
roll angle φz1.

assumed to be identical, the roll surface of each flank k of the gear pair can be
computed based on the tooth number Tk and the angular pitch τ . Adopting a
clock-wise tooth numbering when looking at the face cone of the spiral bevel
gears (see Fig. 3.1a), the roll surfaces for tooth pair k are found by Eqs. (5.3)
and (5.4) for the pinion and the gear flanks.

R(1)
φ,k = R(1)

φ − (T (1)
k − 1) τ1 τ1 = 2π

Z1
(5.3)

R(2)
φ,k = R(2)

φ − (T (2)
k − 1) τ2 τ2 = 2π

Z2
(5.4)

Curves of potential contact points While in Chapter 4 a common projection
plane was used onto which the ease-off topography and surface of roll angles
had been defined, the GCFE works directly with the discretized flank geometry
such that the flank’s surface of roll angles is stored directly onto the grid
of the respective flank. However, the procedure to compute the potential
contact curves remains the same as explained in Section 4.2.2. As illustrated
in Fig. 5.2 for a pinion flank, multiple potential contact curves are created
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onto the projected pinion flank as the intersection of a plane with constant
roll angle φz and the surfaces of roll angle Rφ,k. Since NT is defined to be
an overestimation of the number of teeth in contact, it is more than likely
that a curve of potential contact points cannot be created for certain flank
pairs k. In Fig. 5.2 these flanks are the ones that have roll surfaces R(1)

φ − 2τ1

and R(1)
φ + 2τ1. The same procedure can be established for the gear flanks

by using the gear’s surface of roll angles R(2)
φ and the gear’s rotational angle φ(2)

z .

Slicing of the flank overlap For a general mismatched flank pair (non-
conjugate) the use of two surfaces of roll angles, one for each of the real
flanks, results into two curves of potential contact points, which do not coincide
when projected onto the flank overlap, as illustrated in Figure 5.3. Therefore,
Kolivand [65] proposed to replace the contact line of the real gear with the
one of the conjugate to the real pinion when solving for the conditions of
compatibility and equilibrium, since it would change the orientation and shape
of the contact curve very little due to the high level of conformity between
the mating flanks. In that case contact is determined based on the pinion’s
roll surface and the gear-based ease-off topography. Since in this work the
contact forces are computed from the computed penetration between the real

high conformity

lower conformity

flank slice

lower conformity

actual contact curve
(average)

contact curve using R

contact curve using R

Figure 5.3: Actual contact curve (green) computed as the average of the contact
curves, determined with roll surfaces R(1)

φ (red) and R(2)
φ (blue). The ease-off

contours are added to indicate zones of high conformity.
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tooth flanks, a new actual contact curve is determined as the average of both
contact curves by dividing the flank overlap into a finite number of slices and
by computing maximum one actual contact point for each of the tooth slices.

This extension fits well in the philosophy of the envisioned multibody approach,
where the system’s behavior is influenced by each individual body (i.e. gear).
Geometrical effects of both real tooth surfaces in mesh are included to better
approximate of the contact curve in low conformity regions. Moreover, this
approach correlates naturally with commonly adopted concepts that simplify the
contact detection between cylindrical involute gear teeth. There, the concept of
the roll angle of the involute is used to express the contact position on the tooth
flank along the line/plane of action for each gear [38]. The methodology, as it
is formulated here, generalizes these well-known concepts for contact detection.

Furthermore, it will be shown in Chapter 6 that the surfaces of roll angles,
computed for an aligned gear pair, can still provide a good approximation for
the contact locations when the gear flanks become misaligned. Consequently,
transmission error and contact pattern remain well-approximated, since the
gear contact force model always accounts for the actual position and orientation
of the (misaligned) real gear tooth surfaces, when computing the contact loads.
An ease-off based contact detection method cannot provide a similar prediction
without computing the ease-off topography for the misaligned gear flank pair.

5.2.4 Flank penetration

For each of the actual contact points (2D) the corresponding pinion and gear
points (3D) are computed in order to determine the penetration between the
mating flanks. The flank slice penetration δ is then computed by first calculating
the distance between the point in the pinion flank r(1)

G and the corresponding
point on the gear flank r(2)

G , both expressed in the global reference frame SG.
The distance between the flank slices is then projected onto the local contact
normal N cont

G to obtain the flank slice penetration δ.

δ =
(
r

(1)
G − r

(2)
G

)
·N cont

G (5.5)

rcontG = 1
2

(
r

(1)
G + r(2)

G

)
(5.6)

N cont
G = 1

2

(
N

(1)
G −N (2)

G

)
(5.7)

The contact location rcontG is defined in the global frame SG as the average of
the contact point on the pinion and on the gear. The direction of the contact
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normal N cont
G is also computed in SG as the average of the directions of the

respective surface normal vectors N (1)
G and N (2)

G , given by Eqs. (5.8) and (5.9).
The surface normal vectors are evaluated at the contact points on the respective
flanks. Since both flanks are penetrating their respective contact points are
not coincident and their surface normal will not be collinear. Although such
deviations are expected to be small, the averaging is still performed to compute
a common contact point and contact direction along which the contact force
can be applied to both gears.

N
(1)
G = A1N

(1)
1 (5.8)

N
(2)
G = A2N

(2)
2 (5.9)

5.3 Tooth compliance modeling

The tooth contact forces that act on the individual tooth slices, are computed
under the assumption that the measured penetration between two rigid tooth
surfaces is identical to the deformation that these surfaces would experience
if they were flexible. Adopting the idea of Anderson and Vedmar [5], the
deformation between the contacting tooth slices is modeled as the result of two
contributions; (i) a local contribution that describes the deformation in the
region of contact between the two bodies, and (ii) a set of global contributions
that describe the deflection of the individual teeth outside the contact zone. In
the presented model each of the contributions is modeled in an analytical way.

5.3.1 An analytical model for local tooth compliance

For a general case of mismatched flanks the instantaneous contact between two
meshing flanks can be described as a point contact under no-load conditions.
Under load this point contact spreads into a line contact that runs over a part of
the tooth flanks. Therefore, a Hertzian line contact, oriented along the direction
of the contact curve, is assumed for each of the contacting tooth slices. The
nonlinear contact deformation dc, which represents the combined deformation
of the pinion and gear flanks near the contact zone due to the contact load Fc
that is distributed over a contact curve segment of length lc, can be described
with a closed-form formula that was derived by Weber and Banaschek [135].

dc = Fc
πlc

(
1− ν2

1
E1

+ 1− ν2
2

E2

)[
ln
(

4 h(1)
C h

(2)
C

a2

)
− 1

2

(
ν1

1− ν1
+ ν2

1− ν2

)]
(5.10)
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pinion tooth segment

contact line

contact normal

cylinder used 
to approximate 

the contact zone
of a tooth segment

Figure 5.4: A Hertzian line contact is adopted to describe the contact
deformation of each pair of tooth segments. The line contact is oriented along
the contact direction, while the surfaces are locally approximated as cylinders.

Eq. (5.10) was derived under the assumption that in the proximity of the contact
the two contacting flanks can be well represented as cylinders with radii of
curvature ρ(1) and ρ(2), as illustrated in Fig. 5.4. The parameters h(1)

C and h(2)
C

correspond to the distance along the contact direction from the point of contact
to the center of the tooth slice for the pinion and the gear, respectively. An
example for a general hC is given in Fig. 5.5b. Hertz derived the analytical
formulas that allow to approximate the half contact width a and the maximum
contact pressure p0 at the surface as functions of a contact load Fc [56].

a =
[

4Fc
πlc

ρ∗
(

1− ν2
1

E1
+ 1− ν2

2
E2

)]1/2

(5.11)

p0 = 2Fc
πalc

(5.12)

The material characteristics are taken into account through the Young’s
moduli E1 and E2 and the Poisson’s ratios ν1 and ν2 of the pinion and of
the gear, respectively. The relative radius of curvature ρ∗ accounts for the
relative curvature of the two cylinders at the contact point [56].

1
ρ∗

= 1
ρ(1) + 1

ρ(2) = κ(1)
n + κ(2)

n (5.13)

The normal curvatures κ(1)
n and κ(2)

n in Eq. (5.13) are obtained for each of the
contact points by evaluating Euler’s curvature formula, given by Eq. (3.22),
along the direction t of each local contact segment.
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5.3.2 An analytical model for global tooth compliance

The global deformation dg of a single tooth is approximated by assuming that
the gear body remains undeformed, while the crown of gear teeth are deformable.
Tredgold’s approximation is applied to each tooth slice, where penetration is
detected, to estimate the global compliance of a single gear tooth in contact.
Within this simplification the (spiral) bevel gear pair is approximated by an
equivalent spur gear pair when viewed from the back cone, as shown in Fig. 5.5a.
For each tooth slice of the spiral bevel gear element the tooth flank geometry is
modeled in the transverse plane by fitting an involute profile onto the existing
tooth flank geometry. Each equivalent involute tooth profile is then projected
to the local normal plane to determine the required tooth slice dimensions.

To match the direction of the contact force, defined by the contact normalN cont
G ,

the deformation of the tooth segment is computed in a plane that is local
to the tooth surface at the contact point. Based on the dimensions of the
resulting tooth profile in the normal plane (see Fig. 5.5b), the tooth segment’s
global compliance is estimated by using a set of expressions that were derived
by Nakada and Utagawa [87]. The bending db, shear ds and gear body
foundation df deformation contributions are computed by approximating each
tooth slice of width ws as a beam with variable thickness.

db = 12FcsF cos2(αn)
E ws t3F

[
sM + s3

F

3 − sF sM
]

+ 6Fc(s0 − sF )3 cos2(αn)
E ws t3F

[
s0 − sM
s0 − sF

(
4− s0 − sM

s0 − sF

)

− 2 ln
(
s0 − sM
s0 − sF

)
− 3
]

(5.14)

ds = 2(1 + ν)Fc cos2(αn)
E ws tF

[
sF + (s0 − sF ) ln

(
s0 − sF
s0 − sM

)]
(5.15)

df = 24Fcs2
M cos2(αn)

π Ews t2F
(5.16)

s0 = sT tF − sF tT
tF − tT

(5.17)

The resulting global deformation dg at the contact point of the segment is found
as the sum of the individual contributions:

dg = db + ds + df (5.18)
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Figure 5.5: To compute the global compliance components each tooth slice
profile is approximated as an equivalent involute tooth in the transverse plane
and the dimensions are projected onto the local normal plane.
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The tooth thickness in the normal plane at the bottom tF and top tT of the
active flank are computed by projecting the transverse tooth thickness values of
the equivalent spur gear onto the normal plane. The transverse tooth thicknesses
for the equivalent spur gear are computed based on the actual tooth geometry.
The tooth thickness is computed at the front and the back of the gear tooth
and assumed to vary linearly across the face width. The tooth heights sF , sT ,
s0 at the bottom and the top of the active flank and at the intersection with the
tooth’s mid plane are directly computed from the tooth flank slice geometry.

Validity of the analytical global compliance model

Nakada and Utagawa originally formulated Eqs. (5.14) to (5.17) to estimate
the tooth stiffness of spur cylindrical gears [87]. Elkholy applied their model,
combined with Tredgold’s approximation, to analyze straight bevel gears [34].
Within the scope of the dissertation the presence of the spiral angle is included
by locally projecting the equivalent spur tooth geometry onto the normal plane.

While the model can offer a good first estimation of the spiral bevel gear tooth
stiffness, some considerations are made to identify its validity and limitations.

Since the analytical global compliance model does not include the gear blank,
inherently the blank is assumed rigid with only the teeth deforming under load.
Therefore, in case of lightweight blank design or under high operational loading,
where the gear blank’s deformation is non-negligible, the model lacks accuracy.

Furthermore, the gear teeth deflections are also described uncoupled, meaning
that the loading of one tooth slice does not deform the other teeth slices.
Consequently, the model cannot predict the deformation of surrounding gear
teeth due to the loading of an adjacent tooth. Here, it can only offer an estimate
of the load sharing between multiple gear teeth pairs in contact at high loads.
Although the global slice deformation is computed in the normal plane and in the
direction of the contact load, the absence of coupling between the neighboring
tooth slices on the same tooth flank is expected to affect the accuracy of the
load transfer along the tooth spiral direction in case of highly curved gear teeth.

Finally, the linearly varying tooth height assumption seems to better suit slender
gear teeth, although further investigation is required to confirm this assumption.

Improving the global compliance’s modeling fidelity can address such limitations,
e.g. change the analytical model with a numeric FEM-based one (see Chapter 7).
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5.3.3 Computation of the gear contact forces

The contact forces for pinion and gear are computed as the result of the
individual contact forces that are acting between the different tooth segments.
The total deformation dt of two contacting flank segments is found as the
combination of the global deformation of the pinion d(1)

g and of the gear d(2)
g ,

and the contact deformation dc. Considering that at a given moment during
the simulation NT tooth pairs are possibly in contact (i.e. penetrating or not)
and that each flank of the tooth pair is discretized into NS segments, the total
deformation dt,ki(Fc,ki) for a single flank pair slice s of tooth pair t becomes:

dt,ts(Fc,ts) = d
(1)
g,ts(Fc,ts) + d

(2)
g,ts(Fc,ts) + dc,ts(Fc,ts) (5.19)

The contact force Fki that acts on the flank pair segment is found by assuming
that the total deformation dt,ts is the same as the penetration δts that is
computed by Eq. (5.5) under the assumption that contacting flanks are rigid
surfaces.

δts = d
(1)
g,ts(Fc,ts) + d

(2)
g,ts(Fc,ts) + dc,ts(Fc,ts) (5.20)

If no penetration between the flank segments is detected, the contact force Fts
for that segment pair is considered to be zero. Otherwise the contact force is
computed by numerically inverting Eq (5.20). The resulting contact forces Q(1)

c

and Q(2)
c that act on the pinion and gear body, respectively, are found as the

result of the individual contact forces magnitudes Fc,ts of each segment.

5.4 A multibody approach to TCA

To validate the proposed methodology and to demonstrate its capabilities, the
novel gear contact force element is applied to the loaded tooth contact analysis
of the spiral bevel gear pair, whose unloaded contact behavior was already
analyzed in Section 4.2. Appendix A contains an overview of all the important
gear geometry and material-related data. To acquire the reference data that
is needed to validate the methodology, a FEM-based model of the spiral bevel
gear pair is created. The FE-based LTCA of the gear pair is conducted as a
series of static contact simulations, which are computed by using NX Nastran
(SOL 601), a commercial software package for NL-FEA [107]. The validation of
the GCFE is based on a comparison of the obtained results in terms of static
transmission error, contact curves and contact pressure.
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5.4.1 A multibody representation of the spiral bevel gear pair

By using the developed gear contact force element, a multibody (MB) approach
to tooth contact analysis is achieved that can be used to simulate the static
contact behavior of spiral bevel gears. While the force element could also be
applied to the dynamic simulation of spiral bevel gear pairs, dynamic studies are
postponed for future work since this dissertation focuses on the the development
and validation of the static behavior of the gear pair. A representation of the
multibody model of the spiral bevel gear pair under analysis is shown in Fig. 5.6.

Model setup

The gear pair is modeled as a set of rigid bodies such that position and orientation
of each body in space are defined by 6 DOFs. To correctly validate the GCFE
the LTCA is performed by constraining the MB model in such a way that it
is easily compared in Section 5.4.3 with the NL-FEA results. Therefore, both
geared bodies are connected to a ground body to remove their respective DOFs.
The pinion is constrained so that it can only rotate about the z-axis of the
body-attached frame S1, whereas the gear body is clamped to ground to remove
all of its DOFs during each step of the contact simulation. The deflections of
the gear teeth under load are taken into account by the GCFE that is defined by
using the body-attached frames of the pinion S1 and the gear S2. An external
torque is applied to the pinion in the global reference frame SG, such that the
spiral bevel gear pair can be loaded with a desired constant load.

T

pinion axis

gear axis

Figure 5.6: Multibody model of the analyzed spiral bevel gear pair.
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Figure 5.7: Schematic overview of the multibody approach to loaded tooth
contact analysis (LTCA), using the proposed gear contact force element (GCFE).
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LTCA process

A schematic overview of the working principles of the GCFE during the LTCA
process is shown in Fig. 5.7. The initial values that place both real gear flanks
in contact at their conjugate point at the start of the simulation, are computed
through the use of the gear-based ease-off topography and the surface of roll
angles for the pinion flank, using the methodology of Chapter 4 for the predefined
tooth flank geometry. Using an iterative procedure the pinion’s rotation about
its rotational axis is updated until static equilibrium is achieved for the applied
constant load. The arising contact forces are computed as the result of the gear
tooth flank penetration, which is measured during the contact simulation by
the developed contact detection algorithm. At the end of each static simulation
the contact points, the contact forces and the contact pressures are stored for
postprocessing. Based on the pinion rotation angle φ(1)

z and gear rotation angle
φ

(2)
z at equilibrium, the instantaneous value for the static transmission error

(STE) is computed with Eq. (2.4). The next step of the mesh cycle is simulated
by appropriately updating the generalized coordinates of both the pinon and
the gear, such that the GCFE can compute the contact forces for the next step.
The process is repeated until a full mesh cycle is simulated.

5.4.2 Creation of the FEM-based reference model

The FEM-based contact simulations purpose the creation of reference LTCA
data sets to validate the presented bevel gear contact model at component-level.
Results of interest are the STE curves, the overall contact pressure distribution
and the local contact curves to provide both global and local evaluation of the
gear contact model. Such metrics are commonly used in the gear literature to
rate the performance of a spiral bevel gear set [7, 64, 77].

Finite element model creation

A FEM-based representation of the gear pair is created to serve as a reference
model for the validation of the developed spiral bevel gear contact force element.
Using the procedures that are described in Section 3.4, both the pinion and
gear geometry (blank and teeth) are discretized as a set of connected 3D solid
elements (HEXA8) for which the tooth flank nodes are directly computed
during the simulation of the manufacturing process. The mixed-mesh approach
of Fig. 3.13 is used to reduce the overall model size and thus the required
computation time. Fig. 5.9 shows the resulting FE-model.
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Figure 5.8: Effect of contact compliance on the constraint function w(gN , λ) = 0.

Contact solver parameters

The contact simulations are computed with NX Nastran’s implicit nonlinear
solution (SOL 601). The accuracy of this commercial NL-FEA software package
is evaluated for application within LTCA of cylindrical and bevel gears in [26].

NX Nastran’s SOL 601 uses the ADINA solver to solve the contact problem.
Section 2.2.3 explains that this solver uses the constraint function method in
combination with Lagrange multipliers to enforce the contact constraints. The
contact detection is performed with the NTS method, for which the master
and slave contact interfaces are defined on the FE-model’s finely meshed gear
teeth. Conform to Section 2.2.3, the pinion tooth flanks are selected as the
slave surfaces, while the gear tooth flanks are assigned to be the master surfaces
within the NTS formulation. With exception of those listed in Table 5.1, the
contact solver parameters are kept to the default values (see also [107]).

To reduce contact pressure concentrations, arising from the FEM-discretization,
the contact compliance εp is specified to allow for a penetration magnitude δ
between the contacting surfaces before enforcing the contact constraints, via:

δ = εp pN (5.21)

Fig. 5.8 illustrates the change to the constraint function w(gN , λ) = 0 by
introducing the contact compliance εp. Its working principle resembles that
of the penalty method, as the contact compliance mimics the behavior of a
one-directional spring with stiffness Ap/εp. The latter follows from the relation

Constraint function εN [−] 1 ∗ 10−12

Contact compliance εp [µm/MPa] 1 ∗ 10−03

Table 5.1: Contact solver parameters used in the NL-FEA simulations.
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between the contact pressure pN , the contact force λ and the contact area Ap:

δ = εp

( λ

Ap

)
→ λ =

(Ap
εp

)
δ (5.22)

The value for εp in Table 5.1 is chosen to allow for a penetration of δ = 1 µm in
case of a maximum contact pressure pN = 1000 MPa at 200 Nm (see Fig. 5.11).

Figure 5.9: Finite element model of the spiral bevel gear pair, used to validate
the proposed methodology through nonlinear finite element contact simulations.

Number of total 1 tooth active root face
elements [el.] (contact) profile profile width

Base Pinion 242 250 el. 36 750 el. 35 el. 10 el. 75 el.
Gear 269 850 el. 36 750 el. 35 el. 10 el. 75 el.

Refined Pinion 329 760 el. 50 400 el. 42 el. 10 el. 90 el.
Gear 362 880 el. 50 400 el. 42 el. 10 el. 90 el.

Table 5.2: Mesh convergence analysis: Overview of the number of finite elements
that are used for the complete model (total) and for the contacting teeth of the
base and refined FE model in specific.
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Convergence analysis of the reference model

A mesh convergence analysis is performed to determine the required number of
elements that provide the desired trade-off between the accuracy of the results
and the computation time, required to obtain those results. Different models
are created to study the mesh convergence, such that for each analysis a Base
model can be compared with a Refined model. At each iteration the Refined
model is created by increasing the the number of elements by 20 % along the
directions of the active profile, the root profile and the face width. The resulting
number of elements (el.), used to create the final iteration of the FE gear pair
model, are listed in Table 5.2 for the Base and Refined versions. It includes the
total number of elements for the complete model and for a single finely meshed
gear tooth, together with the number of elements along the profile (active and
root) and the face width directions of a single finely meshed gear tooth.

To verify the mesh size convergence of the Base model, its results for transmission
error (Fig. 5.10) and overall contact pattern and contact pressure (Fig. 5.11) are
analyzed and compared with the results of the Refined model. In this work the
root bending stresses are not considered, since the analytical compliance model
does not include them. Each static simulation is computed by applying the
specified load to the pinion, while the gear element is kept fixed. Considering
that mesh discretization effects are more noticeable at lower loads, the mesh
convergence study addresses two cases: a nearly unloaded case at 0.01Nm and a
moderately loaded case at 200Nm for which a clear contact pattern is identified.

Based on the STE curves in Fig. 5.10, and the overall contact pressure
distribution in Fig. 5.11, it is concluded that both models produce similar
results and that existing differences are small. Thus, allowing the Base model
to serve as a good reference model for validating the GCFE.

5.4.3 Numerical validation

A total of eight load levels that range from unloaded contact (0.01Nm) to highly
loaded contact (700Nm), are applied to validate the gear contact force element.

Using the Base model as the reference FE model, NL-FEA contact simulations
are performed and the results for static transmission error, instantaneous contact
curves, overall contact pattern and contact pressure distribution are extracted.
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(a) Static transmission error for 0.01 Nm.

(b) Static transmission error for 200 Nm.

Figure 5.10: Mesh convergence analysis: Static transmission error comparison
(right-handed flanks) for the Base and Refined model at 0.01 Nm and 200 Nm.

(a) Base FE model. (b) Refined FE model.

Figure 5.11: Mesh convergence analysis: Contact pressure pattern at 200Nm.
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(a) Contact curves for 200Nm. (b) Contact curves for 700Nm.

Figure 5.12: Comparison of instantaneous contact curves for 200Nm and 700Nm.
The tooth flank pair that carries the majority of the load is given index 0, while
the neighboring left and right flank pairs are given index -1 and 1, respectively.

Instantaneous contact curves Figure 5.12 shows the evolution of the
instantaneous contact curves for the different tooth flank pairs in contact
at the start of the mesh cycle. Since ease-off topography is introduced to the
gear pair, only a single tooth flank pair will be in contact for unloaded and
lightly loaded conditions. As the load increases, multiple tooth flanks come
into contact. Fig. 5.12a and Fig. 5.12b show that for this specific gear pair two
and three tooth flank pairs carry the contact at a given load level of 200Nm
and 700Nm. In order to visualize the results for different tooth flank pairs the
contact points of the flank pairs in contact are projected onto a common flank
projection for the pinion. The tooth flank that carries the majority of the load
is identified through index 0, while the neighboring left and right flank pairs
are given index −1 and 1, respectively. The obtained results show that a good
correlation in terms of instantaneous contact location is obtained between the
reference FE model and the analytical model for loaded contact conditions.

Overall contact pattern Within experimental TCA a dye or paint is commonly
applied to the gear teeth of the physical prototype to reveal the contact pattern
that occurs during the roll test as the result of friction between the gear teeth.
The shape, location and orientation of the region, where the paint is removed,
then provides a natural way to evaluate the quality of the tooth contact. Within
simulated LTCA the overall contact pattern is generated by keeping track of
the instantaneous contact curves and contact pressures during a full mesh cycle.
A comparison between the MB model and the FEA model in terms of overall
loaded contact pattern and contact pressure distribution is provided in Fig. 5.13,
Fig. 5.14 and Fig. 5.15 for loads of 200Nm, 500Nm and 700Nm, respectively.
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(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 5.13: Comparison of the overall contact pressure pattern at 200Nm.

(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 5.14: Comparison of the overall contact pressure pattern at 500Nm.

(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 5.15: Comparison of the overall contact pressure pattern at 700Nm.
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To allow a one-to-one comparison of both models the maximum contact pressure
during the mesh cycle is displayed on a projection of the pinion flank. The
nodal contact pressure is computed on the nodes of the slave surfaces (pinion)
during the NL-FEA contact simulation, while the contact pressure for the
analytical model is computed using Eq. (5.12). Fig. 5.13a, Fig. 5.14a and
Fig. 5.15a show the overall contact pressure distribution and the boundary of
the contact pattern, which are computed with the analytical compliance model
of the GCFE for the different load cases. Fig. 5.13b, Fig. 5.14b and Fig. 5.15b in
their turn illustrate the overall contact pressure distribution that was obtained
through NL-FEA simulations for the same load cases. The contact pattern
boundary of the analytical model is also displayed on these figures to facilitate
the comparison of the size of the contact patterns.

Results in terms of overall loaded contact pattern for the GCFE show a
remarkably good correlation in terms of actual contact region and maximum
contact pressure, when compared to the FEA results. While the contact
pressure distribution for the FE results is accurately represented, it does show
that the effect of mesh discretization is more pronounced for lower load cases
(i.e. 200Nm). The GCFE does not suffer from such effects, since the contact
curves that are computed based on the surface of roll angles are less susceptible
to mesh discretization. The local contact compliance of Eq. (5.10) also allows
to model the contact pressure analytically by assuming that a Hertzian pressure
distribution is present across the line load for each of the tooth slices in contact.

Static transmission error The STE-curves, shown in Fig. 5.16, are analyzed
in terms of shape and peak-to-peak value for each load case. Two STE cycles
are shown with one cycle repeating itself every 18 deg, indicating that the error
in motion transmission occurs according to the (pinion’s) gear mesh frequency.
Overall the STE curves, predicted by the GCFE, show a good correlation for
curve’s shape and for the peak-to-peak STE (PP STE) values of Table 5.3.

Similar to cylindrical gears, micro-modifications (ease-off) are also applied to
bevel gear flank to counteract the deformation due to loading. Based on the
obtained results the designed operating load, where the micro-modifications
balance out the deformation and thus minimize the peak-to-peak TE, appears to
be located around 100Nm. Fig. 5.16c shows that for the lower torque ranges the
STE is very well predicted, which is a good indicator for the correctness of the
contact detection and the local contact compliance model. As the load increases
and the teeth start to deform more, differences arise. Such differences are not
unexpected since the assumption of an equivalent involute tooth geometry and
the uncoupled global compliance formulas of Eqs. (5.14)-(5.18) do introduce
some approximations into the model. The effect of load sharing, due to the
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(a) STE curves under highly loaded conditions (500Nm and 700Nm).

(b) STE curves under moderately loaded conditions (100Nm, 200Nm and 300Nm).

(c) STE curves under lightly loaded conditions (0.01Nm, 10Nm and 75Nm).

Figure 5.16: Comparison of the STE curves from 0.01 Nm to 700Nm for the
reference model (FEA) and the GCFE with the analytical tooth compliance
formulation (MB-A).
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coupled deformation of the neighboring teeth, is not yet included into the
proposed contact force model. Since effects of load sharing are more pronounced
with an increase of the load, they can most likely be connected with the
noticeable increase in phase difference between the STE curves of both models
for high loading conditions, as shown in Figure 5.16a.

Load [Nm] 0.01 10 50 100 200 300 500 700

PP
ST

E FEA [µrad] 36.5 31.4 15.4 10.4 21.2 20.3 16.1 13.0
MB-A [µrad] 36.1 29.8 16.5 7.6 17.3 19.8 18.9 18.9
Diff. [µrad] −0.4 −1.6 1.1 −2.8 −3.9 −0.5 2.8 5.9

Table 5.3: Peak-to-peak STE (PP STE), computed by the reference model
(FEA) and the GCFE with the analytical tooth compliance formulation (MB-A).

Computational requirements To benchmark the proposed model objectively,
it is executed on the desktop computer (i7 @ 3.20 GHz with 32 GB RAM) that
is used to perform the NL-FEA simulations. Table 5.4 provides an overview of
the required computation time for both models.

The differences between both models are contributed to the methodology for
contact detection that was used, and the number of DOFs of each model. The
element size that is required to accurately model the contacting tooth geometry
not only results in a higher number of elements that have to be included into the
general contact search, but also increases the overall problem size (number of
DOFs). The GCFE benefits from an optimized contact search that is based on
precomputed surfaces of roll angles. In addition, the (rigid) MB model contains
a minimal number of DOFs, since the penetration is computed between the
tooth surfaces of rigid bodies and converted into contact loads by an analytical
compliance formulation.

Computation time Reference Model MB Model MB Model
(NL-FEA) (50 slices) (100 slices)

Single step 10, 625 s 1.2 s 1.4 s
Mesh cycle (37 steps) 4 d 13h 44 s 51 s

Table 5.4: Computation time for a single step and a full mesh cycle for the
reference NL-FEA model and the developed GCFE (for 50 and 100 flank slices).
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Validity of the gear contact model Having correlated the LTCA results of the
spiral bevel gear contact model (GCFE) with those of the NL-FEA simulations,
a discussion w.r.t. the research objectives (Section 1.2) is given for completeness.

Table 5.4 is a strong indicator that the envisioned numerical efficiency for the
GCFE, i.e. the solution of a static LTCA step in an order of seconds, is achieved.

In terms of accuracy the objectives are also sufficiently reached, yet there is
room for further improvement. The statement is based on following motivations.
A visual check of Figs. 5.13 to 5.15 shows the overall contact pressure distribution
and pattern to be well predicted with differences being within the 15 % limit.
Looking at the STE, it is concluded that the GCFE correctly captures the
evolution of the STE shape and peak-to-peak value as a function of the load. Yet,
limitations of the analytical compliance model result in a loss of correlation at
higher loads (above 500Nm), which explain the high error (17-45 %) in predicted
PP STE. Nonetheless, on average the GCFE predicts the peak-to-peak STE
within the desired 10-15 % error range for the analyzed loads up to 300Nm.

5.5 Conclusion

This chapter develops a novel spiral bevel gear contact force element for
application within a multibody framework. The requirements for this gear
contact force are discussed in Section 5.1. The methodology’s starting point is
fact that the real contacting flanks are designed to transmit motion in a near-
conjugate way (i.e. near 0 TE). This information, contained in the surface of roll
angles of the real pinion and real gear flanks, allows to create a general, accurate
and efficient penetration-based contact detection algorithm in Section 5.2. The
contact forces are computed efficiently by assuming that the detected penetration
between the rigid flanks matches the gear teeth deformation, if they were flexible.
In Section 5.3 an analytical tooth compliance model is proposed that divides
the total tooth compliance into a local and global contribution.

In Section 5.4 a multibody approach to loaded tooth contact analysis is used
to validate the gear contact model against NL-FEA-based contact simulations.
Overall, a good correlation is found for peak-to-peak static transmission error,
contact pattern and contact pressure distribution, while the computational time
of the proposed model is a fraction of that of the the NL-FEA simulations.
Nevertheless, limitations of the contact force element, due to the analytical
compliance model, are identified for highly loaded conditions. More advanced
methods to model the global gear (tooth) compliance, e.g. FEM-based, are
proposed as a future research track. Chapter 6 focuses on extending the contact
detection methodology to accurately capture gear pair misalignments.





Chapter 6

Parametric modeling of gear
pair misalignments

Errors in the alignment of a gear pair can prove detrimental for its contact
performance, yielding an open-ended subject for many actual research
activities [41, 42, 49, 64]. In general, any deviations from the designed relative
configuration causes the overall contact pattern to move from the designed
location - often around the flank middle - towards the edges of the gear tooth
surfaces. In addition to an increased chance for edge contacts, this shift of
contact pattern is usually also accompanied by an increase of both contact
and bending stresses and a rise in transmission error. Consequently, these
effects have the tendency to cause elevated noise and vibration levels, while
also negatively impacting the operational life time of the gear pair. Therefore,
a well-designed gear pair incorporates an optimized ease-off topography that
counteracts the effects of alignment errors within a predefined range [42].

This chapter focuses on the correct modeling and efficient simulation of gear pair
misalignment by means of the developed spiral bevel gear contact force element.
In Section 6.1 the force element (GCFE), as described in Chapter 5 for the
nominal alignment, is used to analyze a case of predefined alignment error. The
performance of the nominal GCFE is evaluated by comparing its behavior with
that of a GCFE that is updated with the surfaces of roll angles that corresponds
to the misaligned configuration. Section 6.2 introduces the novel idea of
interpolating new surfaces of roll angles based on the instantaneous misaligned
state of the gear pair. This enables the simulation of varying misalignment
in an accurate and efficient way. In Section 6.3 the proposed methodology is
numerically validated against NL-FEA-based contact simulations.

117
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6.1 Evaluation of the developed gear contact model
in case of gear pair misalignment

To correctly predict the above-mentioned changes in gear pair performance
under gear pair misalignment, the contact force model should be able to include
all the relevant effects that arise at the contact interfaces. In this work special
attention is given to those effects that concern the computation of the contact
curves and the resulting penetration between the (real) gear tooth surfaces.

6.1.1 Approximations regarding the contact detection

Besides potential assembly and/or manufacturing errors, misalignment of the
gear pair can also be caused by load-induced deflections of the supporting
components (e.g. shafts, bearings, ...) [41]. The latter source can be of particular
interest when analyzing power transmission in gear drive systems, since it can
result in variable alignment errors.

The contact detection methodology within the developed spiral bevel gear
contact force model is based on the instantaneous position and orientation of
both the pinion and the gear body, providing it with the potential to correctly
include each of these misalignment sources. However, since alignment errors
alter the kinematics of the gear pair, they have a direct effect on the surfaces of
action and the surfaces of roll angles that are used to determine the contact
curves. Realizing that the alignment errors, which occur during a contact
simulation, are not known beforehand but are rather the result of interactions
with the supporting components, it is unfeasible to include the required data
(i.e. the surfaces of roll angles) that would guarantee a correct contact detection.

Given that typical alignment errors remain relatively small1, it is reasonable to
assume that the surfaces of action are only slightly modified when compared
to the nominal (i.e. non-misaligned) configuration. Consequently, the rotation
(i.e. the roll angle) that each gear tooth surface needs to undergo to reach the
corresponding surface of action is not altered much either. It is hypothesized
that the developed spiral bevel GCFE with the surfaces of roll angles, which
are computed for the nominal configuration, could very well provide accurate
results when gear pair misalignments occur.

1Alignment errors occur due to the deflection of the supporting components, such as
bearings or shafts. Although there is an application and load dependency, the order of
magnitude for translational misalignments can range up to a few tenths of a millimeter or up
to a few tenths of a degree for angular misalignments.
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6.1.2 Studied case of gear pair misalignment

To verify whether the GCFE, developed in Chapter 5 with nominal surfaces
of roll angles, would be directly applicable to the analysis of gear pair
misalignments, its performance is evaluated against an updated GCFE that
contains the recalculated and exact surfaces of roll angles for the misaligned
configuration. A predefined case of gear pair misalignment is selected and
kept fixed during the analysis to accommodate a clear comparison between
both models. The corresponding installment parameters are listed in Table 6.1.
Fig. 6.1 illustrates the effects of the gear misalignment in terms of flank overlap
and ease-off topography. The alignment errors for the misaligned case are
chosen based on three criteria: (i) the alignment error has to be sufficiently large
to create a clear shift in contact pattern when compare to the nominal case,
(ii) the alignment errors should be defined by all four installment parameters,
and (iii) the resulting combination of parameters has to avoid double-sided
tooth contact that would result in wedging of the gear teeth.

Installment data γ EH A1 A2
[deg.] [mm] [mm] [mm]

Nominal case −90.000 0.000 0.000 0.000
Misaligned case −90.250 0.250 0.249 0.250

Table 6.1: Installment parameters for the nominal and misaligned configuration.

To quantify the effects of alignment errors on the nominal force element, the
study focuses on the analysis of the right flank pairs of the gear pair, which
were also analyzed in Chapter 5 for non-misaligned conditions. If the initial
rotations are not specified, the GCFE computes the rotations such that the
initial contact occurs at the minimum of the ease-off topography. To avoid that
this contact point varies depending on the surfaces of roll angles that are used
(e.g. nominal or recalculated), the initial contact is specified to take place at
the midface of the right gear flank. The required rotations, listed in Table 6.2
are computed by using the UTCA procedures, described in Chapter 4.

Initial gear rotation Pinion (gear 1) Gear (gear 2)
[deg.] [deg.]

φz0 179.802392 −7.538770

Table 6.2: Initial gear rotation to analyze the misaligned gear pair. The rotation
angles bring the right flank pairs of both the pinion and the gear in contact.
The contact point on the gear flank is situated at the midface.
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(a) Projected flank overlap and ease-off topography for the aligned case..

(b) Projected flank overlap and ease-off topography for the misaligned case.

Figure 6.1: Comparison between the nominal and misaligned cases of Table 6.1
in terms of projected flank overlap and ease-off topography to indicate the
to-be-expected change of the contact pattern due to the gear misalignment.
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6.1.3 Preliminary analysis of the UTCA-relevant data

Depending on the gear alignment error, the modified gear pair kinematics cause
contact between the gear teeth to occur either earlier or later than in the
non-misaligned configuration. This difference in tooth engagement timing is
explained by the fact that the alignment error alters the shape of the surfaces
of action of the gear teeth. Consequently, it also causes a change in the location
and orientation of the instantaneous contact curves. Combined with the local
geometry of the mating tooth flanks, these alterations are responsible for the shift
of contact pattern towards the edges of the tooth surfaces due to a modification
of the ease-off topography (see Figs. 2.6 and 6.1).

The goal of this subsection is to quantify the difference that exist between the
nominal surface of roll angles and the newly calculated surface of roll angles
under misalignment for the right flank pair. Additionally, the gear-based ease-
off topographies are constructed for the misaligned configuration by using the
nominal and recalculated surfaces of roll angles for the pinion flanks.

Effect of misalignments on the surface of roll angles

Even though the ease-off topography and the contact pattern can be significantly
altered under gear pair misalignment, if one considers that typical alignment
errors remain relatively small, the rotation that each of the flank points needs
to undergo to reach its modified surface of action is only slightly changed. To
verify this assumption the nominal and recalculated surfaces of roll angles of
the right flanks of both the pinion and the gear are analyzed in Table 6.3. Each
surface of roll angles is stored on the same underlying grid onto which the
respective tooth surface points are defined, hence a direct comparison is easily

Roll Rφ
Rφ,min ∆Rφ,min Rφ,max ∆Rφ,max RMSE

angles [deg.] [deg.] [deg.] [deg.] [deg.]

Pinion cal. 151.1755 − 203.7397 − −
nom. 151.9420 0.7665 204.5576 0.8179 0.7849

Gear cal. −20.9396 − 4.0437 − −
nom. −20.0324 0.9072 4.9108 0.86702 0.8862

Table 6.3: Error analysis of the computed surface of roll angles for a right
flank pair in the nominal (nom.) and the misaligned (cal.) configuration. The
absolute error between the minimum and maximum value of the surface of roll
angles is represented by ∆Rφ,min and ∆Rφ,max, respectively.



122 PARAMETRIC MODELING OF GEAR PAIR MISALIGNMENTS

obtained. Based on an analysis of the corresponding surfaces of roll angles,
this assumption seems to be confirmed relatively well. The extreme values of
each surface of roll angles, Rφ,min and Rφ,max, show that the corresponding
teeth indeed require a similar amount of rotation to reach and exit their action
surface. The difference between in extreme values, ∆Rφ,min and ∆Rφ,max, for
the nominal and recalculated surfaces of roll angles amounts to less than 1 deg.
Moreover, the root mean square error (RMSE) for both pinion and gear provides
a similar estimate of the absolute error, providing a reliable estimate for the
average absolute error. For an average (projected) gear radius of R = 110mm
and a face width of 41mm, the estimated error on the position of the contact
curve would result to 1.92mm or less than 5 %. Although the estimated error
is obviously misalignment dependent, this preliminary result is promising and
shows the validity of the earlier-made assumption.

Effect of misalignments on the ease-off topography

Since the ease-off topography is determined by the local flank geometry, it
is much more susceptible to gear alignment errors. This is confirmed by an
evaluation of the iso-contour lines of the gear-based ease-off topography for
the gear pair’s right flank pair in the nominal configuration, shown in Fig. 5.3,
and the studied misaligned configuration, shown in Fig. 6.2. However, the
change in ease-off topography due to misalignment is of lesser concern, since it
is not required by the developed GCFE. More relevant is an evaluation of how
well the nominal surface of roll angles (of the pinion flank) can approximate
the conjugate to the misaligned gear flank, since this indicates the quality
with which the nominal GCFE can approximate the unloaded behavior of the
misaligned gear pair. Table 6.4 provides a comparison of the ease-off topography
for a right flank pair of the misaligned gear pair, computed once with the pinion
flank’s surface of roll angles for the nominal configuration and once with the

Ease-
E(2)
δ

E(2)
δ,min ∆E(2)

δ,min E(2)
δ,max ∆E(2)

δ,max RMSE
off [µm] [µm] [µm] [µm] [µm]
Gear cal. 0.0000 − 165.1737 − −
pair nom. 0.0156 0.0156 159.5261 −5.6464 1.8284

Table 6.4: Error analysis: gear-based ease-off topography for a right flank pair
in the misaligned configuration, computed with the surface of roll angles for the
nominal (nom.) and misaligned (cal.) configuration. The absolute error between
the minimum and maximum value of the ease-off topography is represented
by ∆E(2)

δ,min and ∆E(2)
δ,max, respectively.
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pinion flank’s surface of roll angles for the misaligned configuration. Overall,
the gear-based ease-off topography is well-approximated by the nominal surface
of roll angles with an RMSE value of 1.8282 µm. Analysis of the extreme values
of both ease-off topographies, learns that: the maximum value E(2)

δ,max can be
easily identified in the same point for both the nominal and misaligned case due
to the shape of the ease-off topography, while the minimum value E(2)

δ,min is more
influenced by the differences between the nominal and recalculated surfaces of
roll angles. To evaluate the absolute error on E(2)

δ,min, the ease-off topography,
created by the nominal surface of roll angles, is evaluated at the point where the
ease-off topography, created by the recalculated surface of roll angles reaches its
minimum value of 0 µm. While the absolute error in ease-off topography is the
highest for the flank regions that have high ease-off values, it should be noted
that in practice the resulting error on the UTE curve is lower, because the flank
overlap restricts the contact zone to the lower ease-off regions, for which the
absolute error is also lower.

6.1.4 Limitations of the nominal gear contact force element

A preliminary analysis of the surfaces of roll angles and the corresponding ease-
off topographies in the previous section shows promising results towards the use
of the nominal surfaces of roll angles for the analysis of gear pair misalignment.
Obviously, the verification of this hypothesis cannot be completed without an
actual analysis of the loaded behavior of the misaligned gear pair. Therefore, an
in-depth analysis of the performance of the contact force element that once uses
the nominal surfaces of roll angles (RS nom.) and once the exact roll surfaces
(RS cal.) that correspond to the analyzed misalignment, is provided in terms of
contact curves and pattern, transmission error and contact pressure.

Contact curves and overall contact pattern

A comparison between of the instantaneous contact curves and overall contact
pattern, which has been obtained by both spiral bevel gear contact force models
under an applied load of 200Nm for the specified installment error of Table 6.1,
is shown in Fig. 6.2. As predicted by Table 6.3, the difference between the
nominal and recalculated surfaces of roll angles cause a noticeable shift in the
location of the instantaneous contact curves. Moreover, Fig. 6.2a shows that the
orientation of the contact curve is slightly altered. The shift in contact location
causes the contact, approximated by the nominal GCFE, to lead w.r.t. the
contact that is computed by the GCFE that uses the exact surfaces of roll
angles. Consequently, the nominal GCFE predicts gear teeth to enter and exit
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(b) Contact pattern for 200Nm.

Figure 6.2: Error analysis: contact pattern under gear pair misalignments.
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the contact too soon, such that it is not able to detect tooth contact at the
edges of the contact pattern where there should actually be teeth in contact
(see Fig. 6.2a) or vice versa. However, as shown in Fig. 6.2b, the latter effect
seems to be minor, as the size of the overall contact pattern, computed as
the convex hull to the family of instantaneous contact curves, remains almost
unaffected. The size of the contact pattern under load is also directly linked to
the misaligned gear pair’s ease-off topography, which the nominal surface of roll
angles is able to approximate well for the studied alignment error. This makes
the area of the overall contact pattern less meaningful as a metric to evaluate
the performance of the GCFE for spiral bevel gears.

Static transmission error

The GCFE with nominal surfaces of roll angles and the GCFE with recalculated
and exact roll surfaces are used to perform a loaded tooth contact analysis of
the gear pair in the studied misaligned configuration. The LTCA process that
was used, corresponds to the one that is described in Fig. 5.7. The resulting
STE curves for 0.01Nm (unloaded) and 200Nm are shown in Fig. 6.3a and
Fig. 6.3b, respectively. A summary of the peak-to-peak TE and an evaluation
of the absolute error that is introduced by the use of the nominal surfaces
of roll angles is provided in Table 6.5. Overall, it can be concluded that the
STE curves and especially the peak-to-peak STE value is well-predicted by the
GCFE with nominal surfaces of roll angles. However, the obtained STE curves
confirm that the differences in nominal and recalculated roll surfaces not only
cause a shift in the location of the instantaneous contact curve but also lead to
a noticeable angular shift of the resulting STE curve. Accordingly, the contact
behavior of the GCFE with nominal roll surfaces leads w.r.t. the GCFE with
recomputed surfaces of roll angles.

STE RS peak-to-peak error p-p shift p-p RMSE p-p
[µrad] [µrad] [deg.] [µrad]

0.01Nm cal. 45.6725 − − −
nom. 47.0008 1.3283 0.5005 3.6552

200Nm cal. 19.3049 − − −
nom. 18.4586 0.8463 0.5005 1.4600

Table 6.5: Error analysis: transmission error at 0.01Nm and 200Nm for the
right flank pairs in the misaligned configuration, computed with the surface of
roll angles for the nominal and misaligned configuration.
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(a) Unloaded transmission error at 0.01Nm.

(b) Static transmission error at 200Nm.
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(c) Maximum contact pressure at 200Nm.

Figure 6.3: Transmission error at 0.01Nm and 200Nm and maximum contact
pressure at 200Nm for the right flank pairs in the misaligned configuration,
computed with the surfaces of roll angles for the nominal and misaligned
configuration.
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Maximum contact pressure

In addition to the static transmission error, the evolution of the maximum
contact pressure throughout the mesh cycle is analyzed for both GCFE models.
Fig. 6.3 shows that the GCFE with nominal surfaces of roll angles accurately
predicts this evolution for the considered case of gear pair misalignment. An
overview of the differences between both gear contact force models is summarized
in Table 6.6. The differences in minimum and maximum contact pressures are
situated between 6-7MPa, which corresponds to less than 1 %. The relatively
higher RMSE value of the contact pressure can be explained by the presence of
an angular shift, similar to the one identified for the STE curves.

Contact RS pmin ∆pmin pmax ∆pmax shift RMSE
pressure [MPa] [MPa] [MPa] [MPa] [deg.] [MPa]

200Nm cal. 791.18 − 978.73 − − −
nom. 784.11 7.07 972.29 6.44 0.5005 16.13

Table 6.6: Error analysis: contact pressure at 200Nm for the right flank pairs
in the misaligned configuration, computed with the surface of roll angles for
the nominal and misaligned configuration.

6.1.5 Summary and findings of the study

The study investigates if the surfaces of roll angles of the aligned configuration
would be viable approximations for the exact surfaces of roll angles of the
misaligned gear pair. This endorses the use of the (nominal) gear contact force
element for the analysis of gear misalignment. Preliminary analysis of the
nominal surfaces of roll angles confirms the assumption that differences with
the recomputed surfaces of roll angles remain small. Therefore, the nominal
surfaces of roll angles accurately approximates the misaligned gear pair’s ease-
off topography. Furthermore, LTCA showed that a GCFE with nominal roll
surfaces predicts the contact behavior of the misaligned gear pair with good
accuracy, since the model computes the contact based on the actual location
of the (misaligned) real gear tooth surfaces. This gives the penetration based
GCFE, which uses the surfaces of roll angles of both pinon and gear flanks rather
than the pinion’s surface of roll angles and a gear-based ease-off topography, a
higher versatility. A better approximation of the true surfaces of roll angles in
case of gear misalignment is expected to reduce the spatial shift of the contact
curves and to improve the GCFE’s performance.
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6.2 Improved contact detection by parametrically
updating the surfaces of roll angles

This section proposes the novel idea to update the gear pair’s surfaces of roll
angles, based on the instantaneous alignment error of the gear pair and a set
of surfaces of roll angles, computed for predefined misaligned configurations.
Building upon the knowledge that the differences between a tooth flank’s surface
of roll angles for the aligned (nominal) configuration and the surface of roll
angles of the misaligned configuration remain small, a multivariate but linear
interpolation strategy is proposed. To describe this parametric surface of roll
angles (pRS) a general parametrization of the gear pair misalignment is proposed.
Although applicable to any gear type, the methodology is only applied to the
analysis of spiral bevel gears in this dissertation. Aiming to better approximate
the gear pair’s exact surfaces of roll angles for the the misaligned configuration,
the gear contact force element is then extended with the proposed methodology
and its performance is reevaluated.

6.2.1 A parametric description of the surface of roll angles

The gear contact force element is developed to analyze the loaded contact
behavior of spiral bevel gear pairs within a multibody multibody simulation
environment. The contact force model assumes that the gear pair can be
represented as a set of rigid bodies for which the tooth compliance has been
modeled in an analytical fashion (See Chapter 5). Internally, the GCFE
represents the rotation of each geared body by a set of Bryant angles, such that
the position and orientation of each rigid body is defined by three translational
and three rotational coordinates. An auxiliary reference frame SB (the Base
frame) is introduced to describe the relative position of the gear w.r.t. the
pinion.

A general parametrization of the gear pair misalignment

The definition of the Base frame SB determines the parametrization that is
used to describe the relative position of the gear pair and the possible alignment
errors. The straightforward choice within the GCFE is to parameterize the
relative position of the gear w.r.t. the pinion in function of three translational
and three rotational coordinates. This way the rotational misalignment of the
gear pair can be expressed in terms of the adopted Bryant angle convention.
Additionally, to correctly describe the gear pair kinematics, the definition of
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Figure 6.4: Relative orientation of a misaligned gear pair w.r.t. the global frame.

the Base frame has to correspond to the one that is used to define the equation
of meshing for the gear tooth surfaces (see Chapter 4).

As described in Chapter 5, the position and the orientation of the gear pair
w.r.t. to the global frame SG are described by the body-attached frames S1 for
the pinion and S2 for the gear wheel. An example of a misaligned configuration
with an illustration of the proposed parametrization is shown in Fig. 6.4. To
develop this parametrization, the Base frame SB is defined to be coincident
with the pinion’s body-attached frame S1 such that the pinion can only rotate
about its local z-axis. The position vector R(B)

G and the rotation matrix AB

define the position of the origin and the orientation of the reference frame SB
w.r.t. to the global frame SG. The relative position and orientation of the pinion
(g = 1) and the gear (g = 2) w.r.t. the Base frame SB are then defined by:

R
(g)
B = AT

B

(
R

(g)
G −R

(B)
G

)
(g = 1, 2) (6.1)

LBg = AT
BAg (g = 1, 2) (6.2)

The position of the origin of body-attached pinion frame S1 w.r.t. SB is by
definition given as R(1)

B = 0, while the rotation of the pinion is described by
LB1 = Lz(φ(1)

z ), which is in accordance with Eq. (4.3). The relative position of
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the body-attached gear frame S2 w.r.t. SB and w.r.t. the body-attached pinion
frame S1 is simply derived from Eq. 6.1 and parameterized as:

R
(2)
B = AT

B

(
R

(2)
G −R

(B)
G

)
=

x
(2)
B

y
(2)
B

z
(2)
B

 (6.3)

The relative orientation of the body-attached gear frame S2 w.r.t. SB is defined
by the rotation matrix LB2 as a series of successive rotations that are described
by the adopted set of Bryant angles φ(2)

x , φ(2)
y and φ(2)

z (See Section 5.2), which
can be found by combining Eqs. (6.2) and (6.4) with the expressions of [30].

LB2 = Ly(φ(2)
y )Lx(φ(2)

x )Lz(φ(2)
z ) (6.4)

where

Lx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 , Ly(φ) =

 cos(φ) 0 sin(φ)
0 1 0

− sin(φ) 0 cos(φ)

 ,

Lz(φ) =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1


(6.5)

Adopting the Bryant-angles based parametrization, the position and orientation
of the gear pair is described as a function of seven parameters. However, since
both gear rotational angles φ(1)

z and φ(2)
z are used to computed the contact curves

on the corresponding surfaces of roll angles R(1)
φ and R(2)

φ , the five remaining
parameters (x(2)

B , y(2)
B , z(2)

B , φ(2)
x and φ

(2)
y ) that define the configurational

alignment can be used to interpolate the new surfaces of roll angles. Since
the proposed parametrization describes the gear pair misalignment in terms
of relative translation and a set of Bryant angle rotations, it has the potential
to be generally applicable that is analyzed by using the concept surface of roll
angles. Considering that the parametrization is used to update the surfaces of
roll angles based on interpolation, the adopted Base frame definition guarantees
that its position and orientation remain unchanged w.r.t. the installment of the
gear wheel and pinion, This way the interpolation error is only introduced on
the surfaces of roll angles that is relatively insensitive to small errors.
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Multivariate interpolation of the surfaces of roll angles

To improve the contact detection in case of gear alignment errors a parametric
surface of roll angles methodology is proposed that updates the gear teeth their
surface of roll angle depending on the instantaneous misaligned configuration.
Therefore, multiple roll surfaces, which correspond to different misaligned gear
pair configurations, are computed in a preprocessing phase to the contact
simulation. The gear contact force element is extended so that it identifies
the correct parametrization of the gear pair’s misaligned state at the start of
the contact detection. If the gear pair’s spatial configuration changes during
simulation, the surfaces of roll angles of the gear teeth flanks are updated by
using a linear multivariate interpolation strategy.

Parametric surface of roll angles To interpolate the new surface of roll
angles that better-approximates a flank’s true surface of roll angles for the
misaligned configuration, a basis of surfaces of roll angles, which correspond to
predefined misaligned gear pair configurations, has to be computed during data
preprocessing for each gear and for each tooth flank that is considered in the
contact simulation. This basis is created by parametrically varying the alignment
error around the given nominal configuration. Starting from the gear pair’s
nominal installment settings, defined by A1, A2, EH and γ, it is possible to
compute the equivalent parametrization in terms of x(2)

B , y
(2)
B , z

(2)
B , φ

(2)
x and φ(2)

y .

Given that this parametrization is an input to derive the required surfaces of roll
angles, the following renaming of the parametrization is adopted that simplifies
the notation by omitting the superscript •(2):

{x(2)
B , y

(2)
B , z

(2)
B , φ(2)

x , φ(2)
y } → {XB , YB , ZB ,Φx,Φy}

The parameters that describe the nominal configuration are thus defined
as X̃B , ỸB , Z̃B , Φ̃x and Φ̃y. Within the scope of this dissertation, the level
of alignment variations, represented by ∆XB ,∆YB ,∆ZB ,∆Φx and ∆Φy, is
considered to be defined by the user. The parameters that define the resulting
misaligned configuration are then given as:

XB = X̃B + ∆XB YB = ỸB + ∆YB ZB = Z̃B + ∆ZB

Φx = Φ̃x + ∆Φx Φy = Φ̃y + ∆Φy
(6.6)

The surfaces of roll angles for the different user-defined misaligned configurations
are obtained by solving the equation of meshing for the pinion and the gear,
given by Eqs. (4.7) and (4.15) respectively. However, given the different
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parametrization of the gear’s installment w.r.t. the Base frame SB, the
transformation matrix TB2′ of Eq. (4.6) has to be replaced by Eq. (6.7).

TB2′ =


XB

Ly(Φy)Ly(Φx) YB
ZB

01×3 1

 (6.7)

Eqs. (4.7) and (4.15) should be solved for all possible combinations of the
specified levels of alignment error to completely define the parametric surface
of roll angles (pRS) of the tooth flanks for the pinion and for the gear.

Eq. (4.7): f
(
φ(1)
z ;XB , YB , ZB ,Φx,Φy

)
→ R(1)

φ

(
XB , YB , ZB ,Φy,Φx

)
Eq. (4.15): f

(
φ(2)
z ;XB , YB , ZB ,Φx,Φy

)
→ R(2)

φ

(
XB , YB , ZB ,Φy,Φx

)
Consequently, the dimensions of the pRS for a pinion flank (g = 1) and of the
pRS for the gear flank (g = 2) are defined as:

size
(
R(1)
φ

)
= N1 ×NX ×NY ×NZ ×Nφy

×Nφx
(6.8)

size
(
R(2)
φ

)
= N2 ×NX ×NY ×NZ ×Nφy

×Nφx
(6.9)

where N1 and N2 correspond to the number of points on the respective pinion
and gear flank and NX , NY , NZ , Nφy and Nφx are the number of specified
alignment error variations for each parameter.

Eqs. (6.8) and (6.9) illustrate the the proposed pRS for the pinion and the
gear flanks are data intensive. Assuming that all the misalignment parameters
are considered during the contact simulation of a spiral bevel gear for which
both sides of each gear tooth are included and that the nominal surface of
roll angles and at least one variation for each alignment error parameter is
specified, the minimal number of roll surfaces that have to be computed is:
25 × 2 gears× 2 flanks = 128 RS. A more practical approach would consider
an interval (e.g. [−∆, 0,+∆]) around the nominal configuration such that
both positive and negative alignment error variations can be analyzed. For
the latter case the total amount of required surfaces of roll angles rises to:
35×2 gears×2 flanks = 972 RS. Of course, depending on the applied constraints,
it is not always required to include all dimensions. For example if only relative
translations between the pinion and gear element are modeled, then it suffices
to include only variations of the parameters XB , YB and ZB .

While the data preprocessing for the proposed approach may be intensive, the
multivariate interpolation that is described in the next paragraph, results in a
relative inexpensive update of the roll surfaces during actual simulation.
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Multivariate interpolation The contact detection algorithm of the GCFE
is extended with a procedure that computes the instantaneous misalignment
parametrization from Eqs. (6.1) to (6.4) in terms of {x(2)

B , y
(2)
B , z

(2)
B , φ

(2)
x , φ

(2)
y }

each time the contact detection is performed. This new misalignment
parametrization is compared with the stored parametrization to determine
whether the spatial configuration of the gear pair has changed sufficiently such
that it is required to update the surfaces of roll angles of the gear tooth surfaces.
Since the parametric surface of roll angles of a gear tooth surface is a function of
five coordinates, a multivariate interpolation procedure, which is based on linear
shape functions in each dimension, is adopted to compute the tooth flank’s new
surface of roll angles that approximates the current misaligned configuration.

To identify the surfaces of roll angles Rφ,l, which serve as data points for the
interpolation algorithm, it is first required to determine in which interval of
predefined alignment error variations each of the misalignment parameters lies.
For each of the computed parameters X the lower bound and upper bounds
are identified such that X1 ≤ X ≤ X2. Since FEM-based shape functions are
used to interpolate the different dimensions, Eq. (6.10) is used to scale the
misalignment parameter X such that its value ranges between −1 and +1.

g
(
X;X1, X2

)
: X 7→ x = X −mean(X1, X2)

X2 −mean(X1, X2) (6.10)

For a misaligned configuration c, given by {x(2)
B,c, y

(2)
B,c, z

(2)
B,c, φ

(2)
x,c, φ

(2)
y,c}, the scaled

parameters within their respective interval are then defined as:

g
(
x

(2)
B,c; XB,1, XB,2

)
: x(2)

B,c 7→ ξc g
(
y

(2)
B,c; YB,1, YB,2

)
: y(2)

B,c 7→ ηc

g
(
z

(2)
B,c; ZB,1, ZB,2

)
: z(2)

B,c 7→ µc g
(
φ(2)
y,c; φ

(2)
y,1, φ

(2)
y,2
)

: φ(2)
y,c 7→ υc

g
(
φ(2)
x,c; φ

(2)
x,1, φ

(2)
x,2
)

: φ(2)
x,c 7→ ζc

(6.11)

Considering all five misalignment parameters, 32 RS data points are needed to
cover all the possible combinations that are used in the pentalinear interpolation
scheme. These 32 RS data points populate a five-dimensional regular grid for
which two variations around the nominal value in each dimension are considered.
The updated surface of roll angles for a tooth flank of the pinion (g = 1) or of
the gear (g = 2) is computed by using Eq. (6.11) to evaluate Eq. (6.12).

R(g)
φ (ξc, ηc, µc, υc, ζc) =

32∑
l=1

Ne
l (ξc, ηc, µc, υc, ζc) R(g)

φ,l (g = 1, 2) (6.12)

An overview of the shape functions that allow to interpolate linearly in each
of the misalignment dimensions (up to five), is provided in Appendix D. The
shape functions in Eq. (6.12) correspond to those that are defined by Eq. (D.7).
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6.2.2 Updated results for the studied gear alignment error

The predefined case of gear pair misalignment, which was intensively studied
during Section 6.1, is analyzed with the extended GCFE to evaluate the proposed
pRS-methodology for contact detection under gear pair misalignment.

Parametrization of the studied gear pair alignment

The misaligned gear pair configuration, defined for the installment parameter
A1, A2, EH and γ in Table 6.1, can be translated into the misalignment
parametrization for XB , YB , ZB ,Φx and Φy. The resulting values of the
equivalent parametrization are listed in Table 6.7.

Base frame XB YB ZB Φx Φy
parameters [mm] [mm] [mm] [deg.] [deg.]
Gear pair −0.250 0.250 −0.250 0.000 −90.250

Table 6.7: Misalignment parametrization of the gear pair w.r.t. the Base frame.

Based on the specified alignment error variation in Table 6.8, a data set of
parametric surface of roll angles R(1)

φ and R(2)
φ for both the left and right gear

tooth surfaces of the pinion and the gear, are constructed during that data
preprocessing phase of the extended GCFE. The magnitude of alignment error
variation is chosen for two specific reasons. Since the interpolation function is
linear along each dimension, the interpolation error evolves quadratically over
the interval of each selected parameter. Therefore, the maximum interpolation
error is achieved by evaluating the function for those parameters value that lie
in the middle of the identified interval. Secondly, it illustrates that even though
the parameter variation ranges are user-specified, it is still possible to obtain
good results by selecting relatively wide ranges.

Base frame XB YB ZB Φx Φy
parameters [mm] [mm] [mm] [deg.] [deg.]
min. variation −0.500 −0.500 −0.500 −0.500 −90.500

nominal 0.000 0.000 0.000 0.000 −90.000
max. variation +0.500 +0.500 +0.500 +0.500 −89.500

Table 6.8: Nominal alignment and alignment error variations that are included
in the precomputed parametric surfaces of roll angles.
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(a) Unloaded transmission error at 0.01Nm.

(b) Static transmission error at 200Nm.
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(c) Maximum contact pressure at 200Nm.

Figure 6.5: Error analysis: TE at 0.01Nm and 200Nm and maximum contact
pressure at 200Nm for the rights flank pairs in the misaligned configuration,
computed with the nominal and extended gear contact force element.
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Evaluation of the LTCA results

To assess the accuracy of the pRS-based contact detection methodology the
LTCA results for STE and maximum contact pressure, obtained with the
extended GCFE (RS int.), are compared in Fig. 6.5 with the LTCA results of
Fig. 6.3. The latter are computed by the nominal GCFE that used the surfaces
of roll angles for the nominal configuration (RS nom.) and the recomputed
surfaces of roll angles for the misaligned configuration (RS calc.).

Static transmission error The unloaded (0.01Nm) and loaded (200Nm) STE
curves are provided in Fig. 6.5a and Fig. 6.5b. In both cases the STE curve,
obtained the extended GCFE with interpolated surfaces of roll angles, is nearly
identical to the GCFE with exact surfaces of roll angles for the misaligned
configuration. Table 6.9 quantifies these results for the load case of 200Nm.
When compared to the GCFE with nominal surfaces of roll angles, the extended
GCFE predicts a peak-to-peak STE value of which the error is an order of
magnitude lower for both the absolute error and the RMSE value. In addition,
the results show that the interpolated surfaces of roll angles provide a better
approximation of the true roll surfaces, such that the angular shift in the
evolution of the STE curve disappears.

STE RS peak-to-peak error p-p shift p-p RMSE p-p
[µrad] [µrad] [deg.] [µrad]

200Nm
cal. 19.3049 − − −
nom. 18.4586 0.8463 0.4969 1.4600
int. 19.2763 0.0287 0.0000 0.0738

Table 6.9: Error analysis: STE at 200Nm for the rights flank pairs in the
misaligned configuration, computed by the nominal and the extended GCFE.

Contact RS pmin ∆pmin pmax ∆pmax shift RMSE
pressure [MPa] [MPa] [MPa] [MPa] [deg.] [MPa]

200Nm
cal. 791.18 − 978.73 − − −
nom. 784.11 7.07 972.29 6.44 0.5004 16.13
int. 792.07 −0.89 979.32 −0.59 0.0000 1.15

Table 6.10: Error analysis: contact pressure at 200Nm for the rights flank pairs
in the misaligned configuration, computed by the nominal and extended GCFE.
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Maximum contact pressure While the GCFE with nominal surfaces of roll
angles already shows good results in terms of maximum contact pressure over
the course of the mesh cycle, the main cause for the higher RMSE is attributed
to the angular shift that results due to the differences between the nominal and
recalculated surfaces of roll angles. Similar to the STE results, Fig. 6.5c and
Table 6.10 illustrate that this angular shift of the contact pressure curve is not
present for the extended GCFE. The interpolated surfaces of roll angles enable
to approximate the true contact curves with such an accuracy that both the
absolute error and RMSE value between the extended GCFE and the GCFE
with exact surfaces of roll angles become negligible (order of 1MPa).

6.3 Numerical validation

To validate both the proposed parametric surface of roll angles methodology
for contact detection and the gear contact force element that is developed in
the dissertation, LTCA is performed to further evaluate the static behavior of
the extended GCFE against NL-FEA contact simulations.

6.3.1 Model setup

FEM-based reference model The FEM-based procedure for LTCA that
is used in Chapter 5 to validate the nominal GCFE with analytical mesh
compliance formulation, is used to validate the methodology for contact analysis
in misaligned spiral bevel gears. The earlier-analyzed Base FE model of the
spiral bevel gear pair is also used for this analysis. The details with regard to
the NL-FEA-based contact simulations, the creation of the FEM-based gear
pair model and the performed mesh convergence analysis, can be found in
Subsection 5.4.2. The performed mesh convergence analysis for nominal gear
pair alignment proves the Base model’s mesh size convergence in terms of both
contact pressure and STE. Since it is more than reasonable to assume that
these findings can be extrapolated to the studied misaligned configuration of
Table 6.1, a mesh convergence analysis under gear pair misalignment is omitted.

MB model with extended GCFE The multibody approach to TCA, described
in Subsection 5.4.1, is used to analyze the misaligned gear pair configuration
of Table 6.1. The nominal GCFE is replaced with the extended force element
to detect the contact in case of alignment errors, while the contact forces are
computed based on the analytical gear mesh compliance model. The required
pRS data, used to compute the contact curves, is defined by Table 6.8.
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(a) STE curves under highly loaded conditions (500Nm and 700Nm).

(b) STE curves under moderately loaded conditions (100Nm, 200Nm and 300Nm).

(c) STE curves under lightly loaded conditions (0.01Nm, 10Nm and 75Nm).

Figure 6.6: STE curves for the misaligned gear pair from 0.01Nm to 700Nm for
the reference model (FEA) and the extended GCFE with interpolated surfaces
of roll angles and the analytical tooth compliance formulation (MB-A).



NUMERICAL VALIDATION 139

(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 6.7: Overall contact pressure pattern for the misaligned case at 200Nm.

(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 6.8: Overall contact pressure pattern for the misaligned case at 500Nm.

(a) GCFE - analyical compliance. (b) NL-FEA contact simulation.

Figure 6.9: Overall contact pressure pattern for the misaligned case at 700Nm.
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6.3.2 Loaded tooth contact results

As with the numerical validation of the nominal GCFE, the accuracy of the
extended force element is studied for eight load cases that vary from unloaded
(0.01Nm) to highly loaded (700Nm). The STE, the contact pattern and the
overall contact pressure distribution are compared against those of FEM-based
LTCA for the right tooth flank pairs of the misaligned spiral bevel gear pair.

Static transmission error Fig. 6.6 shows the STE curves for the misaligned
gear pair. Each STE curve displays two cycles, which repeat themselves in
correspondence with the pinion’s tooth indexing. Table 6.11 provides an overview
of the PP STE. The STE curves, predicted by the extended GCFE, provide
a good correlation in terms of both shape and peak-to-peak value. Up to
moderately high torque magnitudes, the STE is well correlated to the NL-FEA
results, as shown in Fig. 6.6c and 6.6b. This suggests that the interpolated
surfaces of roll angles approximate the true contact curves for the misaligned
configuration with high accuracy. Comparing the STE curves of the aligned gear
pair with those where misalignments are present, it can be noted the UTE value
for the misaligned configuration is higher. This is easily explained by the change
in ease-off topography (Fig. 5.3 vs. Fig. 6.2) that occurs due to the misalignment.
At higher loads a loss of correlation is again noted (See also Subsection 5.4.3),
although the shape of the STE curves is better preserved. This further indicates
that at high load the uncoupled global compliance model reaches its limits
and more advanced methodologies (e.g. FEM-based) are needed to improve the
modeling of load sharing and gear blank deformation.

Load [Nm] 0.01 10 50 100 200 300 500 700

PP
ST

E FEA [µrad] 47.3 39.0 22.3 11.3 25.6 24.6 18.5 12.6
MB-A [µrad] 45.7 39.4 24.7 15.6 19.3 28.3 27.6 23.7
Diff. [µrad] −1.6 0.4 2.4 4.3 −6.3 3.7 9.1 11.1

Table 6.11: Peak-to-peak STE (PP STE) for the misaligned gear pair, computed
by the reference model (FEA) and by the proposed GCFE model (MB-A).

Contact pattern The contact pattern and overall contact pressure distribution,
predicted by the extended GCFE, is shown in Fig. 6.7a, Fig. 6.8a and Fig. 6.9a.
The contact pattern and contact pressure distribution, extracted from the NL-
FEA contact simulations, are provided in Fig. 6.7b, Fig. 6.8b and Fig. 6.9b onto
which the contact pattern boundary, predicted by the GCFE, is added to aid
the evaluation of the size and direction of both contact patterns. The results are
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displayed on a projection of the pinion flank to compare the analytical contact
pressure with the maximum nodal pressure that is computed by the NL-FEA
contact simulations. Besides a good correlation in terms of contact pattern
location and contact pressure distribution, Figs. 6.7 to 6.9 predict the expected
shift of contact pattern towards the toe of the flank edges (see Figs. 5.13 to 5.15).
This is consistent with the change in ease-off topography, shown in Fig. 6.2.

Validity of the gear contact model Given that the extended GCFE for
misaligned spiral bevel gears uses the analytical tooth deformation model, its
numerical efficiency and accuracy are in line with what is reported in Chapter 5.

The differences in overall contact pressure distribution and contact area are well
within the 15 % error limit, as learned from a visual comparison of Figs. 6.7 to 6.9.
For the studied case of gear misalignment, the extended GCFE also shows to
correctly capture the evolution of the STE in function of the applied load.
However, the listed limitations of the analytical tooth compliance model again
cause a correlation loss in (peak-to-peak) TE at higher loads (above 500Nm).
While for loads up to 300Nm the difference in PP STE for the misaligned gear
pair is on average still around the envisioned 15 % limit, the results show that
further improvements to the gear mesh compliance model have to be considered.

6.4 Conclusion

The correct and accurate modeling of gear alignment errors, using the tools that
are developed in this dissertation, is the prime focus of this chapter. Latent in
the discussion but important for the applicability of the developed gear contact
force element, is the requirement to simulate variable gear pair misalignment,
which occurs due to system interactions (e.g. bearing or shaft compliance, ...).

Section 6.1 shows the versatility of the penetration-based gear contact force
element with surfaces of roll angles, computed for the non-misaligned (nominal)
configuration, as it is capable of predicting the transmission error and the contact
pressure for a misaligned gear pair rather accurately. However, comparing
against LTCA with the exact surfaces of roll angles reveals small differences in
the location and the orientation of the instantaneous contact curves.

In Section 6.2 a novel method that updates the surfaces of roll angles depending
on the instantaneous misalignment, is proposed to further improve the contact
detection under gear pair misalignment. Validation of this extended gear contact
model against nonlinear finite element analysis in Section 6.3 shows a good
correlation in terms of transmission error and contact pressure distribution.





Chapter 7

Conclusions and future work

The research that is presented in this dissertation, treats the development of
an accurate and numerically efficient modeling strategy for spiral bevel gears.
The proposed methodology aims at correctly predicting component behavior at
a computational cost that constitutes further application within system-level
analysis, while also creating a foundation to facilitate future research into the
field of contact modeling for spiral bevel gears. Considering that present-day
engineering challenges often arise from a pursuit of increased performance that
is contrasted by a continued desire for lightweight design, the need for such
solutions, which integrate into the system-level design process for mechanical
transmissions, is evermore growing.

The complexity of the three-dimensional tooth surface geometry, which is
required to guarantee near-conjugate motion transmission, poses a substantial
obstacle for the design of spiral bevel gears. This has made the tooth contact
analysis (TCA) based optimization of the contact characteristics common
practice during the design. Yet, the numerical efficiency of TCA simulations
is often hindered by the fact that they consider the contacting flanks to be
arbitrary. The high computational cost, which results from applying general
contact detection methods, limit their applicability to the study of component
behavior. In contrast, dynamic models of spiral bevel gears are commonly based
on three-dimensional TCA results that are condensed into a single mesh point.

The modeling strategy that is presented in this dissertation makes an attempt
to bridge the gap between both modeling methods. A summary of the main
contributions and findings is provided in Section 7.1. Notwithstanding the
progress that is made, the nice thing about research is that improvements are
always possible; some suggestions are made in Section 7.2.

143
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7.1 Conclusions

7.1.1 A novel spiral bevel gear contact force model

This dissertation’s main contribution is the development of a novel gear contact
force model that allows the analysis of spiral bevel gear drives within a multibody
simulation framework. The modeling methodology is devoted to the analysis of
discretized contact surfaces to increase its versatility within the design process.
Since an accurate representation of the contact interfaces is vital for the correct
prediction of the contact phenomena during operation, the gear tooth surfaces
are created by simulating the five-cut face-milling manufacturing process.

Given the complexity of the tooth surfaces and computational cost that
characterizes general-purpose contact detection methods, the development of
an accurate but also numerically efficient contact detection is accentuated.
The contact detection methodology, which is proposed in [63] to improve the
computational efficiency of TCA, is identified as one fo the most applicable
methods to the system-level analysis of spiral bevel gears. Instead of enforcing
contact between the real tooth surfaces, the detection process is simplified
by determining contact between the (chosen) real pinion tooth flank and a
(computed) theoretical flank that is conjugate to the pinion flank. The ease-off
topography, which is computed during data preprocessing for a given mounting
configuration, is used by this method to account for the differences between the
conjugate to the pinion flank and the mating real gear flank. The key to the
superior numerical efficiency of the methodology lies in the surface of roll angles,
which enables to express the instantaneous contact curves between the real pinion
flank and its conjugate surface as a function of the gear rotational angle (i.e. roll
angle). The surface of roll angles are computed during data preprocessing by
solving the equation of meshing, which determines the kinematics of the chosen
pinion flank for a given alignment of the gear pair. The assumption that the
contact curve between the pinion flank and its conjugate surface does not differ
much from the one between the real pinion and the real gear flanks is considered
justified, since the contacting tooth surfaces of real-world gear pairs are designed
to transmit motion in a near-conjugate manner.

However, since the ease-off topography depends on both the geometry of the
contacting tooth surfaces and the relative installment of the gear pair, it shows
to be susceptible to gear alignment errors. In a system-level analysis, it is
not uncommon that variations about the nominal mounting conditions are
introduced due to interactions with and the compliance of the supporting
components (e.g. shafts). Therefore, the dissertation proposes a spiral bevel
gear contact model that does not rely on the ease-off topography to detect
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contact but uses the surfaces of roll angles of the real contact flank pair, i.e. the
real pinion and the real gear tooth surfaces. It is shown that this modification
improves the versatility of the gear contact model (with surfaces of roll angles
for the nominal gear pair configuration) to approximate the contact conditions
of a misaligned gear pair with high accuracy. The surfaces of roll angles for the
real pinion and the real gear flanks are used to develop a general, accurate and
numerically efficient penetration based contact detection algorithm. Contact
between a mating pair of gear tooth surfaces is determined based on the
penetration between the discretized, rigid flanks. The resulting contact forces
are computed based on the assumption that the flank penetration matches the
deformation of the gear tooth surfaces if they were flexible. A tooth deformation
model is used that formulates the total tooth deflection as the result of: a
local contribution that represents the nonlinear deformation in the region of the
contact zone between the two contact surfaces, and a global contribution that
captures the linear deformation of the gear teeth outside of the contact zone.

The compliance model is designed to be modular, allowing future improvements
of both the global and local compliance models. In this dissertation the local
contact deformation is modeled based on Hertzian contact theory that assumes
a line contact along a segmented contact curve. The global deformation, on
the other hand, is modeled under the assumption that an equivalent involute
tooth profile can be fitted onto the spiral bevel tooth geometry. Analytical
expressions, derived from beam theory, are used to create an uncoupled model
that approximates the linear component of the tooth deformation.

The envisioned computational efficiency of the proposed gear contact model,
i.e. order of seconds for a single contact simulation step, is successfully achieved,
thanks to the optimized contact detection (the surfaces of roll angles), and a
minimum degrees of freedom (contact between tooth surfaces of rigid bodies).

7.1.2 Accurate contact detection in case of gear misalignment

Given that mechanical transmissions are used to transmit power under high
operational loads or at high operational frequency, gear alignment errors are
expected to occur due to deformation of the supporting components, such
as shafts, spline connections or bearings. However, since these deflections
remain small, it is assumed that the resulting alignment errors remain small
and that they vary around the nominal (non-misaligned) configuration of the
gear pair. Based on these assumptions, it is reasoned that even in case of gear
pair misalignment the rotation of the tooth flanks to their respective surfaces
of actions does not change significantly. Therefore, the surfaces of roll angles
that are computed for the non-misaligned gear pair configuration, can serve
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as reasonable approximations to detect contact between misaligned gear tooth
surfaces. Investigation into the contact behavior of the nominal gear contact
model for misaligned spiral bevel gear pairs, proves that this assumption is
indeed acceptable. The overall contact pattern, contact pressure and peak-to-
peak transmission error show to be well approximated by the contact force
element with nominal surfaces of roll angles, when compared to contact force
element that is updated with the exact surfaces of roll angles (i.e. computed
for the misaligned configuration). Yet, small differences in the location and the
orientation of the instantaneous contact curves are identified, which result in a
notable angular shift of the transmission error curves.

To further improve the contact detection in the presence of gear pair alignment
errors, the idea of parametrically defined surfaces of roll angles is proposed
in this dissertation. A set of roll surfaces that correspond to parametrically
defined configurations of gear pair misalignment, is computed during data
preprocessing for each tooth surface of the gear pair. A linear multivariate
interpolation strategy is developed that enables the extended spiral bevel gear
contact model to automatically compute new surfaces of roll angles that better
represent the kinematics of the misaligned gear pair. Evaluation of the TCA
results for transmission error and contact pressure, obtained by the extended
contact force element with interpolated surfaces of roll angles, demonstrates
that the differences between the proposed methodology and the model with
exact surfaces of roll angles are negligibly small.

7.1.3 Validation of the methodology and limitations

To validate the spiral bevel gear contact force model the dissertation proposes a
multibody approach to loaded tooth contact analysis (LTCA) and compares its
results against nonlinear finite element analysis (FEA) based contact simulations.
The TCA is performed by modeling the studied spiral bevel gear pair as rigid
bodies, while the developed gear contact force element is used to compute the
forces that arise due to a prescribed load that is statically applied to the pinion.
The FEM-based reference model of the spiral bevel gear pair is created with
dedicated and automated procedures that are developed within this research.
A commercially available software package for FEA (NX Nastran - SOL 601) is
used to perform the contact simulations and to compute the reference data sets.

The accuracy of the nominal and extended gear contact model is evaluated
against FEM-based contact simulations for an aligned and misaligned spiral
bevel gear pair configuration. The analytical tooth compliance model is used
to compute the contact loads. For each alignment case, eight loads that range
from 0.01Nm (unloaded) to 700Nm, are simulated.
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Correlation against the FEA-based LTCA results shows that the spiral bevel
gear contact model well predicts the overall gear pair’s performance both in the
absence and the presence of gear alignment errors. The results are compared
for well defined metrics such as static transmission error (STE), location and
orientation of the instantaneous contact curves, location and area of the overall
contact pattern and the resulting contact pressure distribution. For both
analyzed configurations of gear pair (mis)alignment and for loads up to 300Nm,
the metrics are correctly predicted with an averaged accuracy that is within the
desired 10-15 % error range, when compared to the FEA-based contact results.

At higher loads (above 500Nm) the results for both alignment configurations
indicate a loss of correlation in terms of peak-to-peak STE, although the overall
contact pressure distribution remains well predicted. When the gear tooth
deflection of a single gear teeth pair is sufficiently high due to the applied load,
multiple gear teeth pair enter in contact, giving rise to load sharing effects.
However, the analytical global tooth deformation models is uncoupled, such that
the loading of one tooth does not induce the deformation of neighboring teeth.
Therefore, it only approximates the load sharing effects between multiple teeth.
In addition, the model assumes the gear blank to be rigid, which becomes a less
accurate assumption as the load increases. More advanced modeling methods
(e.g. FEM-based), which correctly include such effects, are the preferred path
for further research to increase the fidelity of the global gear deformation model.

Besides enabling the proposed methodology to be evaluated at a level that goes
beyond what is commonly published in the literature, the FEA-based contact
simulations also create data sets that can be used to validate future research.

7.1.4 Overall conclusion

The research and effort that went into the development of the novel spiral
bevel gear contact force model, naturally unifies all the different building blocks
into a dedicated toolchain that covers: (i) the creation of the tooth surface
geometry, (ii) the automated creation of detailed parametric FEM-based spiral
bevel gear models, (iii) the automated preprocessing of the required data for
contact detection and (iv) dedicated procedures for unloaded and (v) loaded
tooth contact analysis of spiral bevel gears. The decision to develop a modeling
methodology that starts from an accurate but discrete representation of the
gear tooth surfaces proves to be successful, since it enables the analysis of
non-face-cut spiral bevel and hypoid gears without any additional knowledge
of the manufacturing process. While these efforts are not described in this
dissertation, a recently published article, which is co-authored by the author,
explores the unloaded contact behavior of such spiral bevel gears [33].
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7.2 Future work

7.2.1 Advanced methodologies for gear compliance modeling

Validation of the proposed spiral bevel gear contact model with analytical tooth
compliance formulation reveals a loss of accuracy for higher levels of the applied
load. In the developed compliance model the total tooth deflection of a set of
gear teeth under load is described as the superposition of two contributions: the
local contact deformation of the contacting gear teeth and a global deformation
component for each gear tooth in contact. This leads to an uncoupled compliance
model that lacks the ability to account for load sharing effects and gear blank
deformation. Notwithstanding the overall excellent correlation that is obtained
against FEA-based contact simulations, there is significant room for further
improvement of the tooth compliance model within the proposed methodology.

The inclusion of a FEA-based approximation for the global tooth compliance,
leads to the creation of a semi-analytical contact model (see Section 2.2.2) in
line with what Andersson and Vedmar established for cylindrical gears [5].
The flexibility matrix approach and model order reduction are proposed in the
literature as viable methods to include FEA-based compliance data.
The flexibility matrix includes the combined compliance of the pinion, the gear
and potentially supporting component. Each column of the flexibility matrix
reflects the FE model’s deformation due to a unit normal load that is applied
to one of the contact nodes. The deformation is evaluated along the surface
normal direction for all the listed contact nodes. Since only the deformation
fields of the contacting surfaces are of importance, the flexibility matrix is often
generated based on partial FE models that only include a few gear teeth [36].
Alternatively, model order reduction methods (MOR) can be used to better
represent the multibody contact problem. An example of such MOR techniques
are project-based methods that approximate the unknown state vector by a
basis of reduced dimension, while projecting the governing equations onto an
appropriately defined subspace of lower dimension [16]. The added advantage
of MOR lies in the fact that a statically complete basis can consist of both
static deformations shapes and dynamically reacting eigenvectors of the flexible
body, enabling a future integration of the proposed modeling methodology for
spiral bevel gears into a flexible multibody (dynamics) simulation environment.
Relevant parametric MOR-techniques are proposed in [119], [16] and [21], where
the emphasis lies on the dynamic solution of gear contact problems, applied to
cylindrical gears. These techniques can also be applied to spiral bevel gears
and the contact detection methods, developed in this dissertation, can aid in
improving the efficiency of the contact detection.
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7.2.2 Improved simulation of gear alignment error

To improve the contact detection in case of gear alignment error, this dissertation
proposes the novel idea of updating the surfaces of roll angles, depending on
the instantaneous misalignment parametrization. While the idea proves to be
successful, the required parametrization is data intensive. Investigating whether
a parametrization in terms of spiral bevel gear installment settings provides
equivalent results, might provide further improvements of the methodology.
This way the maximum number of misalignment parameters is reduced to four.
Alternatively, a sensitivity study is proposed to identify those parameters that
contribute the most to the approximation of the exact surfaces of roll angles.
Building on this information, improved sampling strategies can be investigated
to minimize the number of precomputed surfaces of roll angles, used to cover a
predefined range of gear pair misalignment. However, a suitable error criterion
has to be identified to indicate how well the interpolated surface of roll angles
approximates the exact surface. Since error criteria based on the surface of
roll angles or the ease-off topography require the computation of the exact
solution, their applicability might be limited. Evaluating how well a gear tooth
flank’s interpolated surface of roll angles satisfies the equation of meshing for a
predefined gear alignment error, seems to be a good starting point.

7.2.3 Towards dynamic 3D simulation of spiral bevel gears

The ultimate goal of the established methodology is the dynamic simulation and
analysis of spiral bevel gears, using the advanced three-dimensional gear contact
models that are developed in this dissertation. The presented spiral bevel gear
contact force model is an important first step towards this goal’s realization.
The further development of the gear force model within a dynamic multibody
simulation context for spiral bevel gear pairs is considered the logical next step.
The simulation of gear pair dynamics is a numerically challenging problem
due to the non-smooth nature of the contact force, which requires a small
enough time step during the (transient) time simulation to correctly capture
its effects. Besides the efficient modeling of the gear pair’s structural behavior,
an efficient contact detection method is therefore essential to minimize the
total computational load for each time step. Correct simulation of the gear
dynamics also requires an extension of presented models to include additional
effects between the contact interfaces, such as friction and gear mesh damping.
The gear mesh damping accounts for the energy loss at the contact interfaces,
lessening the dynamic effects that arise from the tooth impacts. Finally, the
development of a three-dimensional dynamic gear contact model can also support
the research towards more accurate lubrication models for spiral bevel gears.





Appendix A

Important data of the
analyzed spiral bevel gear pair

To demonstrate the different aspects of the proposed methodology, a spiral bevel
gear set is analyzed over the course of the different chapters of this dissertation.
The gear pair data was taken from literature [6] to have a first level of validation
during the development process for both the geometry and the UTCA results.
A virtual model of the spiral bevel gear pair, visualized in Fig. A.1, is obtained
by simulating the face-milling process. Other important data such as the blank
data for the individual gear pair elements (Section A.1), the nominal installment
data (Section A.2) and the manufacturing data (Section A.3) are also reported.

Figure A.1: A virtual model of the analyzed spiral bevel gear pair.
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A.1 Gear blank data

The gear pair’s blank geometry is derived according to the calculation procedures
that are defined by international standards, such as AGMA [2] or ISO [52].

Blank data symbol units Pinion Gear
Number of teeth Z [-] 20 43
Face width [mm] 41.0000
Mean cone distance [mm] 120.9400
Mean spiral angle [deg.] 32.0000
Hand of spiral [-] RH LH
Pitch cone angle [deg.] 24.9439 65.0561
Root cone angle [deg.] 23.1666 61.8166
Face cone angle [deg.] 28.1833 66.8333
Outer addendum [mm] 6.8900 3.2500
Outer dedendum [mm] 4.3700 8.0100

Table A.1: Blank geometry the analyzed spiral bevel gear pair.

Material data symbol units Pinion Gear
Material Steel Steel
Young’s modulus E [GPa] 210.00 210.00
Poisson’s ratio ν [-] 0.30 0.30

Table A.2: Material properties of the analyzed spiral bevel gear pair.

A.2 Gear pair installment data

In absence of misalignments, the gear pair installment is defined by Table A.3.

Installment data symbol units Gear Pair
Shaft angle γ [deg.] −90.0000
Hypoid offset EH [mm] 0.0000
Pinion axial offset A1 [mm] 0.0000
Gear axial offset A2 [mm] 0.0000

Table A.3: Nominal installment parameters of the spiral bevel gear pair.
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A.3 Manufacturing data

The gear pair’s tooth surface geometry is obtained by simulation of face-milling
process. The mathematical model that is described in Section 3.2.2 was used
to simulate the five-cut process. The required blade parameters and machine
settings are listed in Tables A.4 and A.5.

A.3.1 Blade parameters

Blade parameters Pinion Gear
CNC CNV CNC CNV

Profile angle αA [deg.] 18.0000 22.0000 20.000
Root fillet radius RF [mm] 1.1016 2.413
Cutter point diameter 2RA [mm] 305.3927 304.6986 n/a
Head cutter diameter 2RC [mm] n/a 304.800
Point width PC [mm] n/a 3.556

Table A.4: Blade parameters of the analyzed spiral bevel gear pair.

A.3.2 Machine settings

Machine settings Pinion Gear
CNC CNV CNC CNV

Radial setting SR [mm] 128.8831 140.9091 135.2870
Basic cradle angle q0 [deg.] 73.4721 71.3245 −72.8081
Sliding base XSB [mm] −0.8492 0.7376 0.0000
Blank offset EM [mm] 7.7182 −6.8138 0.0000
Mach. center to back XD [mm] 2.2066 −1.8271 0.0000
Mach. root angle γM [deg.] 23.1666 61.8166
Ratio of roll mgc [-] 2.2941 2.4260 1.1011
2nd roll constant C2 [-] 0.0000 0.0000 0.0000
3rd roll constant C3 [-] 0.0000 0.0000 0.0000

Table A.5: Machine settings of the analyzed spiral bevel gear pair.





Appendix B

Transformations to simulate
the face-milling process

To acquire an accurate representation of the tooth flank geometry of a generated
face-milling spiral bevel gear pair, created with the five-cut machining process,
the cutting process is simulated in Chapter 3 by determining the enveloping
surface to a family of cutter surfaces. This family of cutter surfaces describes
the motion of the cutter head w.r.t. the work-piece as the cutter head cuts
away material. The envelope to this family of surfaces represents the created
tooth slot. The model of a cradle-based spiral bevel gear generator is used to
incorporate the required machining motions, which are described as a series of
elementary transformations (i.e. rotations or translations).

A homogeneous transformation matrix allows to express the general motion of
a rigid body by combining the rotational and translational components in a
single matrix. The homogeneous transformation matrix TgC is used to express
any point rC on the cutter head, given in the cutter head’s reference frame SC ,
w.r.t. the reference frame Sg, fixed to the gear blank.

r̄g = TgC r̄C (B.1)

In Eq. (B.1), r̄C and r̄g are the homogeneous vector equivalent of rC and rg.

TgC =
[

LgC ∆OgC
01×3 1

]
, r̄C =

[
rC
1

]
, r̄g =

[
rg
1

]
(B.2)

This 4× 4 homogeneous transformation matrix is built, using the 3× 3 rotation
matrix LgC to express the orientation of SC w.r.t. Sg and the vector ∆OgC to
express the translation from OC (the origin of SC) to Og (the origin of Sg).
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Given the layout of the cradle-based gear generator (see Fig. 3.8b), TgC is found
as a series of successive transformations, leading to Eq. (3.7). The required
elementary transformation matrices of Eq. (3.7) are defined as follows:

The homogeneous transformation matrix from the cutter head reference frame
SC to the cradle reference frame SC is defined as:

TQC(SR, q0) =


1 0 0 SR cos(q0)
0 1 0 SR sin(q0)
0 0 1 0
0 0 0 1

 (B.3)

The homogeneous transformation matrix from the cradle reference frame SC to
the machine reference frame SM is defined as:

TMQ(q) =


cos(q) − sin(q) 0 0
sin(q) cos(q) 0 0

0 0 1 0
0 0 0 1

 (B.4)

The homogeneous transformation matrix from the machine reference frame SM
to the sliding base reference frame SB is defined as:

TBM (−XSB) =


1 0 0 0
0 1 0 0
0 0 1 −XSB

0 0 0 1

 (B.5)

The homogeneous transformation matrix from the sliding base reference frame
SB to the blank offset reference frame SE is defined as:

TEB(EM ) =


1 0 0 0
0 1 0 EM
0 0 1 0
0 0 0 1

 (B.6)
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The homogeneous transformation matrix from the blank offset reference frame
SE to the machine root reference frame Sγ is defined as:

TγE(−(π2 − γM )) =


cos
(
−(π2 − γM )

)
0 sin

(
−(π2 − γM )

)
0

0 1 0 0
− sin

(
−(π2 − γM )

)
0 cos

(
−(π2 − γM )

)
0

0 0 0 1



=


sin(γM ) 0 − cos(γM ) 0

0 1 0 0
cos(γM ) 0 sin(γM ) 0

0 0 0 1

 (B.7)

The homogeneous transformation matrix from the machine root reference frame
Sγ to the machine center-to-back reference frame SD is defined as:

TDγ(−XD) =


1 0 0 0
0 1 0 0
0 0 1 −XD

0 0 0 1

 (B.8)

The homogeneous transformation matrix from the machine center-to-back
reference frame SD to the gear blank reference frame Sg is defined as:

TgD(−φg) =


cos(−φg) − sin(−φg) 0 0
sin(−φg) cos(−φg) 0 0

0 0 1 0
0 0 0 1



=


cos(φg) sin(φg) 0 0
− sin(φg) cos(φg) 0 0

0 0 1 0
0 0 0 1

 (B.9)





Appendix C

Ease-off topography
definitions

For completeness, a comparison between the ease-off topography definitions is
provided in Fig. C.1. Using the circular arc projection approach of Section 4.1.3,
the gear-based (Fig. C.1a) and pinion-based (Fig. C.1b) ease-off topography
has been created. The equations to compute the gear-based ease-off topography
in units of angle and length are given by Eqs. (4.21) and (4.22), respectively.
Similarly, the equations to construct the pinion-based ease-off topography are
given by Eqs. (C.1) and (C.2).

E(1)
θ = θ

(1)
proj − θ

(1c)
proj (C.1)

E(1)
δ = R

(1)
proj E

(1)
θ (C.2)

In a general case of mismatched flanks the conjugate to the (real) pinion flank
differs from the mating (real) gear flank. As a result, the flank overlap between
the conjugate to the pinion flank and the gear will slightly differ from the flank
overlap between the pinion and the gear. Due to this difference in flank overlap,
small differences between the pinion-base and gear-based ease-off can be noticed
at the edges of the flank overlap. However, as is seen from Fig. C.1 such that
differences are negligible. When ease-off is expressed as an angular rotation, the
pinion-based and gear-based ease-off relate to each other as a function of the
gear ratio m21 = Z1

Z2
.
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(a) Gear-based ease-off topography.

(b) Pinion-based ease-off topography.

Figure C.1: Illustration of gear-based and pinion-based ease-off topography
onto the corresponding projection plane.



Appendix D

Shape functions

This appendix contains an overview of the different shape functions that are
used in this dissertation to enable multivariate interpolation. Notable examples
of the use of shape functions are found in Chapter 2 (Section 2.2.3) for the NTS
contact detection method, in Chapter 4 (Section 4.1.3) to compute the ease-off
topography on the projection plane and in Chapter 6 to update the surface
of roll angles of the gear flanks, depending on the instantaneous position and
orientation of the gear pair.

D.1 Linear element shape functions

D.1.1 Linear interpolation

Linear interpolation in one dimension (1D) requires two data nodes, which are
spatially envisioned as two end points of a line. The general form of the shape
functions that are used to perform the linear interpolation is written as:

Ne
l (ξ) = 1

2(1 + ξξl) (D.1)

The value of the shape function variable ξ varies between −1 and 1 along the
line that connects both nodes. The parameters ξl correspond to the natural
coordinates of the lth node of the element, such that the shape functions are
defined by:

Ne
1 (ξ, η) = 1

2(1− ξ), Ne
2 (ξ, η) = 1

2(1 + ξ) (D.2)
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D.1.2 Bilinear multivariate interpolation

Linear interpolation along two dimensions (2D) requires four data nodes, which
can be spatially represented as four points that span a quadrilateral element.
The general form of the shape functions that are required to perform the linear
interpolation is written as:

Ne
l (ξ, η) = 1

4(1 + ξξl)(1 + ηηl) (D.3)

The shape function variables are ξ and η of which the values vary between −1
and 1 across the surface of the quadrilateral element. The parameters ξl and ηl
denote the natural coordinates of the lth node of the element, according to the
node numbering convention shown in Table D.1.

Node ξl ηl

1 −1 −1
2 +1 −1
3 +1 +1
4 −1 +1

1 2

4 3

η

ξ

Table D.1: Node numbering convention for a four-noded quadrilateral element.

Following the provided numbering convention the shape function that describe
the bilinear quadrilateral element are found as:

Ne
1 (ξ, η) = 1

4(1− ξ)(1− η), Ne
2 (ξ, η) = 1

4(1 + ξ)(1− η)

Ne
3 (ξ, η) = 1

4(1 + ξ)(1 + η), Ne
4 (ξ, η) = 1

4(1− ξ)(1 + η)
(D.4)

D.1.3 Trilinear multivariate interpolation

Linear interpolation along three dimensions (3D) requires eight data points,
which can be spatially represented by an eight-noded hexahedron element.
The general form of the shape functions that are required to perform the linear
interpolation is written as:

Ne
l (ξ, η, µ) = 1

8(1 + ξξl)(1 + ηηl)(1 + µµl) (D.5)
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The values of the shape function variables ξ, η and µ again vary between −1
and 1 throughout the volume of the element. The parameters ξl, ηl and µl denote
the natural coordinates of the lth node of the element. The node numbering
convention for the trilinear hexahedron element is given in Table D.2.

Node ξl ηl µl

1 −1 −1 −1
2 +1 −1 −1
3 +1 +1 −1
4 −1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 +1 +1 +1
8 −1 +1 +1

η

ξ

μ

1

2
3

4

5

6

7

8

Table D.2: Node numbering convention for a eight-noded hexahedron element.

As can be derived from this table, the node numbering of the shape functions is
obtained in similar fashion as was a done for the bilinear quadrilateral element.

D.1.4 Extension to higher dimensions

Linear interpolation along four dimensions (4D) requires 16 data nodes, while
the linear interpolation along five dimensions (5D) requires 32 data nodes. The
general form of the shape functions that are required to perform the linear
interpolation in four and five dimensions are respectively given as:

Ne
l (ξ, η, µ, υ) = 1

16(1 + ξξl)(1 + ηηl)(1 + µµl)(1 + υυl) (D.6)

Ne
l (ξ, η, µ, υ, ζ) = 1

32(1 + ξξl)(1 + ηηl)(1 + µµl)(1 + υυl)(1 + ζζl) (D.7)

The shape function variables ξ, η, µ, υ and ζ vary between −1 and 1 throughout
the dimensions of the element. The parameters ξl, ηl, µl, υl and ζl denote the
natural coordinates of the lth node of the element. Although both elements
are more difficult to represent graphically, their node numbering is derived in
a similar way as it was done for the the bilinear quadrilateral and trilinear
hexahedron elements.
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D.2 Quadratic element shape functions

D.2.1 Biquadratic interpolation

Quadratic interpolation along two dimensions (2D) can be achieved when the
data points are stored on a 3× 3 grid. In this case the shape function elements
of a nine-noded quadrilateral element are used to interpolate the data across
the area of the element. The geometry of the element and its node configuration
is given in Fig. D.1.

ξ

5

6

7

8
9

1 2

34
η

(a) Element geometry

η

ξ

5

6

7

8
9

1 2

34

(b) Reference element

Figure D.1: Node numbering convention for a nine-noded quadrilateral element.

According to the node numbering convention, the shape functions that describe
this biquadratic quadrilateral element are as follows:

Ne
1 (ξ, η) = 1

4(1− ξ)(1− η)ξη, Ne
2 (ξ, η) = −1

4(1 + ξ)(1− η)ξη

Ne
3 (ξ, η) = 1

4(1 + ξ)(1 + η)ξη, Ne
4 (ξ, η) = −1

4(1− ξ)(1 + η)ξη

Ne
5 (ξ, η) = −1

2(1− ξ2)(1− η)η, Ne
6 (ξ, η) = 1

2(1 + ξ)(1− η2)ξ (D.8)

Ne
7 (ξ, η) = 1

2(1− ξ2)(1 + η)η, Ne
8 (ξ, η) = −1

2(1− ξ)(1− η2)ξ

Ne
9 (ξ, η) = (1− ξ2)(1− η2)

The shape function variables are ξ and η of which the values vary between −1
and 1 across the surface of the quadrilateral element. The parameters ξl and ηl
denote the natural coordinates of the lth node of the element.
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Surface curvature tensor

The principal curvatures of a tooth surface S(u, v) are determined in Section 3.3
through the Circle of Mohr and the surface normal curvature, computed along
various directions of the tooth surface. Here, the relation between the surface
normal curvature, the surface torsion (or warping), the principal curvatures and
the surface curvature tensor are briefly explained, based on the textbook [15].

Consider a regular surface S(u, v) that is defined by the independent coordinates
u and v, such that the position of a point P on S(u, v) is expressed as r(uP , vP ).
The tangent vectors tu and tv along the u and v directions are then given as:

tu = ∂r(u, v)
∂u

∣∣∣
(uP ,vP )

and tv = ∂r(u, v)
∂v

∣∣∣
(uP ,vP )

(E.1)

The u− v plane, spanned by unit tangent vectors u and v, is the local tangent
plane to S(u, v) at P , such that the (unit) surface normal N is given by:

u = tu
‖tu‖

, v = tv
‖tv‖

, N = u× v (E.2)

The surface curvature tensor K, given by Eq. (E.3), then describes the curvature
of the surface S at the point P along the perpendicular directions u and v.

K =
[
κuu κuv
κvu κvv

]
(E.3)

The surface normal curvature κuu along the u-direction is well approximated
by the curvature of the curve Cu, defined by the intersection of the (u,N)
plane and the surface S. Similarly, the surface normal curvature κvv along
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the v-direction is well described by the curvature of the curve Cv, defined by
the intersection of the (v,N) plane and the surface S. The surface torsion
(or warping) κuv expresses the rate with which the surface inclination in the
v-direction changes when moving along the u-direction, and vice versa for κvu.

Assuming that in the vicinity of the point P the local surface geometry is well
approximated by a quadratic function f(u, v), the coordinates P in the frame SN ,
defined by vectors u, v and N , are given as rN (uP , vP ) = [uP , vP , f(uP , vP )]T .
Then, the surface normal curvatures and surface torsion at P are found as [15]:

κuu = −∂
2f(u, v)
∂u2

∣∣∣
(uP ,vP )

(E.4)

κvv = −∂
2f(u, v)
∂v2

∣∣∣
(uP ,vP )

(E.5)

κuv = −∂
2f(u, v)
∂u ∂v

∣∣∣
(uP ,vP )

= −∂
2f(u, v)
∂v ∂u

∣∣∣
(uP ,vP )

= κvu (E.6)

The surface curvature tensor K (along the u and v directions) can be used to
compute the curvature along two new directions m and q, which also lie in the
u− v plane and are perpendicular (m · q = 0). When the vector m is defined
w.r.t. the vector u through a rotation about the N axis of angle θ, represented
by the transformation matrix L(θ), the directions of m and q are:

m =
[
mu

mv

]
=
[
cos(θ)
sin(θ)

]
and q =

[
−mv

mu

]
=
[
− sin(θ)

cos(θ)

]
(E.7)

The surface normal curvature κmm and the corresponding surface torsion κmq
along the newly defined m-direction are then found as:

κmm = mTKm (E.8)

= κuu cos(θ)2 + 2κuv cos(θ) sin(θ) + κvv sin(θ)2 (E.9)

κmq = mTKq (E.10)

= (κvv − κuu) cos(θ) sin(θ) + κuv(cos(θ)2 − sin(θ)2) (E.11)

The surface curvature tensor K
′
along the m and q directions is then found as:

K
′

= LT K L (E.12)

In Section 3.3 the normal curvature κmm along a direction m is replaced by κn.
Similarly, the surface torsion κmq along a direction m is replaced by τg. When
u and v are the principal directions of the surface, such that κuu = κmax,
κvv = κmin and κuv = 0, Eq. (E.9) reduces to Eqs. (2.5) and (3.22), and the
equation for the Mohr Circle (Eq. (3.20)) is obtained from Eqs. (E.9) and (E.11).
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