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Abstract

Advancements on microelectromechanical systems, embedded technologies,
and wireless communications have recently enabled the evolution of conven-
tional everyday things in enhanced entities, commonly defined Smart Objects
(SOs). Their continuous and widespread diffusion, along with an increasing
and pervasive connectivity, is enabling unforeseen interactions with conven-
tional computing systems, places, animals and humans, thus fading the bound-
ary between physical and digital worlds.

The Internet of Things (IoT) term just refers to such futuristic scenario,
namely a loosely coupled, decentralized and dynamic ecosystem in which bil-
lions (even trillions) of self-steering SOs are globally interconnected becoming
active participants in business, logistics, information and social processes. In-
deed, SOs are able to provide highly pervasive cyberphysical services to both
humans and machines thanks to their communication, sensing, actuation, and
embedded processing capabilities.

Nowadays, the systemic revolution that can be led through the complete
realization of the IoT vision is just at its dawn. As matter of facts, whereas
new IoT devices and systems have been already developed, they often result in
poorly interoperating “Intra-nets of things”, mainly due to the heterogeneity
featuring IoT building blocks and the lack of standards. Thus, the develop-
ment of massive scaled (the total number of “things” is forecasted to reach
20.4 billion in 2020) and actually interoperable IoT systems is a challenging
task, featured by several requirements and novel, even unsurveyed, issues.
In this context, a multidisciplinary and systematic development approach is
necessary, so to involve different fields of expertise for coping with the cy-
berphysical nature of IoT ecosystem. Henceforth, full-fledged IoT methodolo-
gies are gaining traction, aiming at systematically supporting all development
phases, addressing mentioned issues, and reducing time-to-market, efforts and
probability of failure.

In such a scenario, this Thesis proposes an application domain-neutral,
full-fledged agent-based development methodology able to support the main
engineering phases of IoT ecosystems. The definition of such systematic ap-
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proach resulted in ACOSO-Meth (Agent-based COoperating Smart Objects
Methodology), which is the major contribution of this thesis along with other
interesting research efforts supporting (i.e., a multi-technology and multi-
protocol smartphone-based IoT gateway) and extending (i.e., a full-fledged
approach to the IoT services modeling according to their opportunistic prop-
erties) the main proposal. Finally, to provide validation and performance eval-
uation of the proposed ACOSO-Meth approach, four use cases (related to
different application contexts such as a smart university campus, a smart dig-
ital library, a smart city and a smart workshop) have been developed. These
research prototypes showed the effectiveness and efficiency of the proposed
approach and improved their respective state-of-the-art.
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Riassunto

Recenti sviluppi nei campi della tecnologia integrata, microelettromeccanica,
e comunicazioni wireless hanno consentito l’evoluzione di semplici oggetti di
uso quotidiano in prodotti tecnologicamente avanzati, comunemente definiti
Smart Objects (SOs). La loro ampia e progressiva diffusione, supportata da
una connettività crescente e pervasiva, li rende capaci di interagire in maniera
adattiva con sistemi di calcolo tradizionali, luoghi e persone, contribuendo
cos̀ı a sfumare il confine tra il mondo reale e quello virtuale.

L’ Internet of Things (IoT) fa riferimento proprio ad un tale scenario, cioè
un ecosistema dinamico, decentralizzato e destrutturato, nel quale miliardi
(eventualmente triliardi) di SOs, autonomi ed in continua evoluzione, sono
connessi su scala globale e prendono parte attivamente ai processi sociali,
commerciali, logistici e informatici. Infatti, sfruttando le proprie capacità di
comunicazione, rilevazione, computazione ed attuazione, gli SOs sono in grado
di fornire servizi cyberfisici altamente avanzati e pervasivi ad utenti umani e
ad altre macchine.

La rivoluzione sistemica derivante da una piena realizzazione dell’IoT è,
tuttavia, ancora agli albori. Infatti, sebbene nuovi dispositivi e sistemi IoT
siano già stati sviluppati, il più delle volte questi costituiscono delle “Intra-net
of Things”, cioè sistemi isolati che non interagiscono reciprocamente a causa
dell’eterogeneità delle loro componenti e dell’assenza di standard di riferi-
mento. Lo sviluppo su larga scala di sistemi IoT effettivamente interoperabili
(previsioni stimano in 20.4 miliardi il numero totale di “cose” nel 2020), in-
fatti, rappresenta un compito complesso, con numerosi requisiti da rispettare
e nuove criticità, per certi aspetti ancora non del tutto enucleate. In tale con-
testo, per fronteggiare la natura cyberfisica degli ecosistemi IoT oggetti di
sviluppo si rende necessario un approccio sistematico e multidisciplinare, in
grado di coinvolgere diverse professionalità e competenze. Pertanto, metodolo-
gie di sviluppo stanno guadagnando popolarità, per supportare pienamente la
realizzazione di ecosistemi IoT, dalla fase di analisi a quella implementativa,
riducendo al tempo stesso gli sforzi ed i tempi necessari.
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Proprio in tale direzione, questa Tesi propone una metodologia di sviluppo,
rinominata ACOSO-Meth (Agent-based COoperating Smart Objects Method-
ology), che è completa, neutrale rispetto al dominio applicativo, e basata sul
paradigma ad agenti, con l’obiettivo di supportare le fasi principali di ingeg-
nerizzazione di ecosistemi IoT. ACOSO-Meth rappresenta il cardine di questa
Tesi, assieme ad altri contributi che la supportano (ad es., un framework com-
parativo per analizzare middleware, framework e piattaforme IoT, un gateway
IoT implementato su uno smartphone capace di interfacciare più tecnlogie e
protocolli di comunicazione) ed estendono (un approccio per la modellazione
a tutto tondo dei servizi IoT in accordo alle loro caratteristiche opportunis-
tiche). Infine, per validare ACOSO-Meth e valutarne le prestazioni, sono stati
sviluppati e presentati quattro casi d’uso (relativi a differenti scenari applica-
tivi quali smart university, smart digital library, smart city e smart workshop)
che hanno dimostrato l’efficacia e l’efficienza dell’approccio, contribuendo al-
tres̀ı a migliorare lo stato dell’arte.
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1

Motivations, Objective, Contributions and
Organization of the Thesis

1.1 Motivations

Everyday objects are being continuously augmented with novel communi-
cation, sensing, actuation and computation capabilities, so extending their
conventional uses. Therefore, they have been generically defined “smart” and
progressively exploited in a plethora of application domains (health, trans-
portation, manufacturing, etc.). The massive proliferation and the global net-
working of such heterogeneous Smart Objects (SOs) are pushing an epochal
paradigm shift from the current human-centered “Internet” to the so called
“Internet of Things” (IoT), a global interconnected scenario in which SOs,
conventional computing systems, and humans communicate and cooperate in
a synergic fashion to implement cyberphysical and highly pervasive services.
The management of such a scenario will require a minimal human intervention
because bio-inspired computing paradigms, such as autonomic and cognitive
computing, will be jointly applied, both at Thing- and System-level, to pur-
sue higher degrees of autonomy, adaptivity, and smartness. As result, the IoT
promises to change the way we live and work in a few years, with not en-
tirely predictable consequences. Because of its disruptive impact, the IoT has
become a prominent topic within the academia, industry and society, being
widely recognized as the most convincing candidate for leading the next In-
dustrial revolution. Indeed, the IoT market value is expected to exceed one
trillion euros by the 2020 just in the European Union, when it is foreseen that
almost 26 billion of SOs (eight SOs per person) will daily impact our life.

An ecosystem is generically defined as a set of, eventually heterogeneous,
communities, which comprise both biotic and abiotic components (in their
turn, more or less heterogeneous) interacting with each others and with the
surrounding environment. Likewise, IoT ecosystems (e.g., Smart Cities) con-
sist of numerous and notably different systems (e.g., Smart Roads, Smart
Buildings, Smart Grids), which in their turn integrate heterogeneous but in-
teracting components (e.g., human users, cars, smartphones, gateways, smart
meters) for realizing innovative and contextualized services.
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Chapter 1. Motivations, Objective, Contributions and Organization of the
Thesis

For making such IoT ecosystems actually dynamic and proactive, specific
requirements (both at System- and Thing-level) need to be met and proper
methodologies followed: indeed the development, management and integra-
tion in real-world applications of IoT ecosystems are complex and challenging
tasks. Broadly speaking, using an engineering methodology is widely recog-
nized as a fundamental practice in any system development process, since
the manual and non-systematic application of complex techniques, methods
and frameworks would very likely reduce effectiveness, increase development
time and tend to be error-prone. Particularly in the case of IoT ecosystems,
notably dynamic and heterogeneous with each others in terms of functionali-
ties, scales, and underlying technology, the need for a full-fledged development
methodology is much as ever crucial. However, despite a variety of research
efforts in the IoT context individually focusing on device, network and appli-
cation design, a full-fledged and general methodology to support the entire
IoT ecosystem development process, from analysis to implementation, is miss-
ing. Overlooking such deficiency could be a critical pitfall, compromising the
full exploitation of the actual IoT potential.

1.2 Objective and Contributions of the Thesis

The objective of the Thesis is the definition of a methodology, named ACOSO-
Meth (Agent-based COoperating Smart Objects Methodology), for fully sup-
porting the development of autonomic and cognitive IoT ecosystems. This
Thesis contributes to the state-of-the-art in IoT system engineering with the
following three main contributions:

� The first contribution is the design of a comparison framework compris-
ing IoT fundamental development requirements. The systematic identifi-
cation of the fundamental IoT development requirements and properties
raised from a thorough state-of-the-art analysis, and, to the best of our
knowledge, such analytic review work was lacking in the literature. The
comparison framework has inspired the ACOSO-Meth development but it
can be reused to analyze future work in the field.

� The second contribution is represented by the proposed ACOSO-Meth
methodology, that aims at supporting the whole development process of
IoT ecosystems, from the analysis to the design and finally implementation
phase. ACOSO-Meth follows an application-neutral approach that is based
on the jointly exploitation of well-known computing paradigms (in partic-
ular, agent-based, autonomic, and cognitive computing) and supported by
a set of metamodels (located at different abstraction levels but strongly
interrelated), development frameworks (i.e., the ACOSO middleware) and
simulation platforms (i.e., the OMNeT++ network simulator). Two case
studies have been prototyped and reported to show the effectiveness and
efficiency of the proposed ACOSO-Meth in different application scenarios.
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1.3. Structure of the Thesis

Specifically, the case studies are: (a) Smart Unical, a complex IoT ecosys-
tem providing cyberphysical services related to structural, indoor space
and wellness monitoring within a university campus; (b) Smart Digital Li-
brary, in which it is shown how SOs can be included into a Digital Library
for being effectively discovered, queried and managed.

� The third contribution refers to a research line extending the proposed
ACOSO-Meth methodology and specifically focused on IoT services, which
promise to play a central role in the IoT ecosystems. Differently from
conventional computing services (e.g., web-services, and ubiquitous ser-
vices) that are usually loosely impacted by context-awareness, co-location
or transience, IoT services require to actually consider the overall spatio-
temporal context of the heterogeneous entities involved in the service pro-
visioning. Therefore, a novel and full-fledged approach to IoT service mod-
eling, aiming to fully support the subsequent phases of verification and
simulation, is presented and its application shown in two concrete case
studies related to (c) crowd safety on a large mass event, in the context of
a Smart City; (d) connectivity recovery and monitoring of workers’ health
status, in the context of a Smart Workshop.

Most of this Thesis work has been carried out also under the frame-
work of the INTER-IoT H2020 EU research project (http://www.inter-iot-
project.eu/), that aims at the development of an open cross-layer framework to
provide voluntary interoperability among heterogeneous IoT platforms span-
ning single and/or multiple application domains.

1.3 Structure of the Thesis

This Thesis is organized as follows.
Chapter 2 contains a review of the currently available visions on the

IoT, emphasizes the adopted SO-based IoT perspective, and includes a brief
overview of its main enabling paradigms. The discussion is focused, however,
on the state-of-the-art analysis of IoT services, architectures, platforms, mid-
dlewares and methodologies. Instead of an exhaustive survey, unfeasible due to
their heterogeneity and definitively not functional for this thesis’ purposes, the
related works have been presented with respect to (i) their distinctive features
in supporting the different development phases; (ii) the fulfilled development
requirements, both at Thing- and System-level. A comparison framework has
been designed accordingly and presented to analyze the surveyed contribu-
tions, but it is suitable for being applied to compare future work in the field.

Chapter 3 presents ACOSO-Meth, an application domain-neutral, full-
fledged, agent-based approach able to support the main engineering phases
of IoT systems and applications and, simultaneously, to fulfill the fundamen-
tal System- and things-level requirements. In particular, analysis, design (as
well as simulation-based design), and implementation phases are discussed,
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Chapter 1. Motivations, Objective, Contributions and Organization of the
Thesis

along with related modeling techniques, simulation tools and programming
specifications. Specifically, a set of operational metamodels, each of which
is functional to a different development phase, is presented and the relations
among the entity concepts in the different phases are explained. Finally, based
on an extension of the ACOSO-Meth, a novel approach aiming at the defini-
tion and full-fledged modeling of “Opportunistic IoT Services” is proposed.

Chapter 4 describes some IoT ecosystems with related interesting use cases
i.e., a smart university, a smart digital library, a smart city and a smart work-
shop. These IoT ecosystems represent challenging scenarios whose implemen-
tation, specially due to their heterogeneity, required a systematic approach
along with proper technological solutions. Therefore, use cases development
processes have been (partially or completely) supported by the ACOSO-Meth,
that demonstrates flexibility and generality.

Finally, Chapter 5 includes a summary of the main results of this Thesis,
concluding remarks and comments on possible future research directions that
can derive from the work here presented. For the sake of completeness, a list
of the publications related to the Thesis is also reported.
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2

Background and Framework-supported
State-of-the-Art Analysis

Arisen at the conjunction of different enabling paradigms and technologies,
the Internet of Things (IoT) possesses an enormous, disruptive potential for
changing the way we interact with the world, but it also brings challenging
development issues.

This chapter introduces the different visions and enabling paradigms be-
hind the IoT, elicits a set of requirements for the IoT ecosystem development,
and presents an analysis of the current state-of-the-art of IoT services, ar-
chitectures, platforms, middlewares and methodologies, surveyed through a
comparison framework.

2.1 Introduction

Since early 2000s, technological advances in wireless communication, embed-
ded processing, sensing and actuation, are fueling rapid spread of novel cy-
berphysical artifacts [8]. Ranging from simple movement detectors and tem-
perature sensors, to more sophisticated smartphones and smart cars, they can
sense the physical world, process data, and impact the surrounding environ-
ment in different ways, for example by triggering actions through actuators
or engaging customized users interactions. In the IoT context, such devices
have been massively networked and provided with (different degrees of) in-
telligence, being defined as “Smart Objects” (SOs) [9] and exploited in a
multitude of scenarios, e.g., industrial automation, logistics, utilities manage-
ment, public security, entertainment, ambient assisted living and wellness,
to name just a few. The promise of an “anywhere, anytime, anything and
anyone” connectivity for blurring the line between the cyber and real worlds
outlines the IoT as a revolutionary concept, rich in potential as well as in
multi-facet requirements and development issues [10]. As a matter of fact, an
IoT ecosystem development process is intrinsically complex at the Thing-level
(“in the small”) as well as at the System-level (“in the large”), because fea-
tures such as smartness, dynamicity, interoperability and autonomy are trans-
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Chapter 2. Background and Framework-supported State-of-the-Art Analysis

versely required [11]. To comprehensively support needs arising in the complex
development of such heterogeneous IoT ecosystems, different mainstream pa-
radigms and approaches (especially in closely related fields of wireless sensor
networks, distributed systems, ubiquitous and pervasive computing [12]), have
been jointly exploited [13]. Among these, Agent-based Computing (ABC) [14]
has been widely recognized as comprehensive and effective support to de-
velop decentralized, dynamic, cooperating and open IoT systems, particularly
in conjunction with other complementary paradigms, e.g., cloud [15], auto-
nomic [16] and cognitive [17] computing.

2.2 Background: IoT visions and enabling paradigms

Within the literature there is a number of (even deeply) different IoT defini-
tions due to the overlapping of at least three technical visions, which outline
a common IoT scenario but from different perspectives [18]. The “Thing-
oriented” vision emphasizes the importance of the IoT devices as joining links
between the physical and the virtual worlds. The “Network-oriented” vision
is essentially focused on communication aspects which ensure an “anywhere,
anytime and anything connectivity”. Finally, the “Semantics-oriented” vision
concerns the scalable management and effective exploitation of the massive
amount of heterogeneous data generated by IoT devices. We adhere to the
“Thing-oriented” perspective and specifically to the SO-based IoT vision, in
which SOs are the fundamental IoT building blocks [9]. SOs are autonomous
everyday-things augmented with sensing/actuation, data management and
network capabilities, as depicted in Figure 2.1. Each of the aforementioned
features is essential for making SO self-aware and context-aware in providing
cyberphysical and ubiquitous services to both human and digital users [19].
Differently from passive Radio Frequency Identification (RFiD) items and
Wireless Sensor Networks’ (WSNs) motes, SOs are not only able to provide
identification, sensing, and object-to-object communication, but they can also
deeply understand their context, performing ad-hoc networking and complex
goal-oriented decision-making. However, with respect to the traditional com-
puter systems, SOs design is notably more challenging. In fact, SOs could
also be constrained by limited hardware resources (RAM, storage and CPU),
physical dimensions and price politics (imposed by the market). Moreover,
SOs are technologically and functionally heterogeneous, so their clustering
forms IoT systems of different scales (from a single Smart Home to a whole
Smart City) that appear as loose collections of miscellaneous devices and sub-
systems [10, 20]. Such heterogeneous features and requirements pose several
design challenges, and therefore an SO-based IoT ecosystem development and
management claim for proper paradigms and techniques. In fact, before their
actual deployment, SO-based IoT ecosystems require to be carefully analyzed,
designed, programmed and simulated, even more than conventional computer
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systems. To such purpose, Agent-based, autonomic and cognitive computing
are suitable enabling paradigms.

Fig. 2.1. Smart Object (SO) components

2.2.1 Agent-based Computing

Agent-based Computing (ABC) is centered around the concept of an agent
[14], a sophisticated software abstraction defining an autonomous, social, re-
active and proactive entity. Agents are situated in some environment (namely,
world of perceived resources) and act to achieve their design objectives, ex-
hibiting flexible problem solving behaviors (Figure 2.2). Agents, interacting
and cooperating to solve problems / realize services that are beyond the capa-
bilities of a single agent, constitute a MAS (Multi Agent System) [21]. MASs
are distributed and self-steering societies, featured by a strong situatedness
and well-defined organizational relationships, covering variety of application
domains (e.g., sociology, economy, logistics). The above characterization, al-
though not exhaustive, indicates that ABC provides a set of key abstractions
and metaphors for straightforwardly modeling complex systems, their com-
ponents, interactions and organizational relationships. Beside modeling, ABC
is also a well-established programming paradigm for concretely implement-
ing agents advanced features and for effectively addressing key requirements
typical of modern (distributed) applications. Indeed, agent’s, society’s and
environment’s modeling abstractions have been exploited to devise a high-
level, distributed programming paradigm, centered around two cornerstones
[22]: (i) encapsulation of control (each agent has its own thread of control and
reasoning capabilities, thus designing context-aware entities with autonomous
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Fig. 2.2. Agent-based Computing

behaviors), and (ii) interaction (including coordination and cooperation mech-
anisms, based on high-level asynchronous message passing). The adoption of
shared communication standards and management specifications (e.g., the
IEEE FIPA-based system platforms and communication languages [23, 24])
allows agents to act also as interoperability facilitators, by incorporating a va-
riety of resources and existing legacy systems within the agent society. Such
advantages enable agent-based programming paradigm to enhance systems
performance (i.e, computational efficiency, reliability, responsiveness), interop-
erability and scalability, specially with respect to the centralized approaches.
Finally, computing systems, modeled and programmed following the agent-
oriented approach, can be straightforwardly simulated for effectively studying
macro phenomena and patterns, as well as individual behaviors and environ-
ment evolution [25]. Indeed, agent-based simulation allows evaluating agent-
based systems exposing discrete, not linear, adaptive behaviors even in highly
interacting, distributed, scaling-up, virtual scenarios. To properly exploit the
surveyed agent-oriented metaphors, techniques and tools (thus providing a
systematical approach to the agent-based modeling, programming, and simu-
lation), several agent-oriented development methodologies have been designed
and successfully applied [26]. However, as highlighted in [27, 28], ABC is
neither a universal nor necessarily effective development solution, since agent-
level and society-level pitfalls can occur from different perspectives (manage-
ment, conceptual design, etc.), thus outweighing any agent-related benefits.
Therefore, the adoption of ABC paradigm needs to be carefully assessed. How-
ever, although software agents and IoT arose in very different computer ages
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with very different initial purposes (collaborative computation and RFID-
based object traceability, respectively), the ABC paradigm has proved to be
well-suited to support the development of autonomic and cognitive IoT sys-
tems [29].

2.2.2 Autonomic Computing

Natural self-governing systems are defined “autonomic” when the establish-
ment of policies and rules is sufficient to guide the self-management process.
For example, the human autonomic nervous system is able to free our con-
sciousness from managing major and minor, inter-connected and complex,
vital functions. In computer science, the attribute autonomic refers to com-
puting systems that can manage themselves according to high-level objectives
initially defined by the administrator [16]. From an architectural point of
view, instead, autonomic systems may be considered as interactive collections
of autonomic elements, each of which performs its objectives and interactions
following their own policies and the system ones. Since autonomic elements
have complex life-cycles, it is required that they expose autonomy, proactiv-
ity, and goal-directed interactivity with the environment: these are precisely
the agent-oriented [14] architectural concepts. The depth analysis of history
and of features of the Autonomic Computing falls outside the scope of this
Thesis; anyway, the four main aspects that characterize autonomic systems
or elements, reported in Figure 2.3, are:

� self-configuration, which enables system and its components to automati-
cally and seamlessly configure themselves following high-level policies, de-
spite vendors’ specifics, technological heterogeneity and low-level details;

� self-optimization, which guides system to continually seek opportunities
for improving performance, without human intervention of tuning;

� self-protection, which automates system defense and prevents from system
failures due to malicious attacks;

� self-healing, which consists in the automatic detection, diagnosis and re-
pairing of system defections, both hardware and software.

The term “self-*” hence refers to a cognitive system or element which exposes
all such features. In a complex scenario such as the IoT, the design of systems
that prescind from a constant human monitoring as well as the adoption of
techniques automatizing the node’s management are more than ever neces-
sary. For these reasons, the Autonomic Computing principles have inspired
the design of numerous IoT architectures and frameworks, as discussed in
Section 2.5.

2.2.3 Cognitive Computing

Cognitive systems [17] have been originally considered a “self-*” kind of sys-
tems since they autonomously make use of the information gained from the
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Fig. 2.3. Autonomic Computing

experience of each node to improve the overall system performance. In de-
tails, each node is involved in a loop, defined cognition loop and depicted in
Figure 2.4, which oversees

� the perception of the current system conditions;
� the planning of actions according to both input and policies;
� the decision between the available solutions;
� the actuation of the plan; and
� the learning from the consequence of the performed actions.

Context-awareness and self-awareness are essential requirements to realize the
cognition loop, since it is requires that every node has knowledge about itself,
its functionalities, and its interfaces to the outside. Just like the autonomic
systems, cognitive systems have been conceived to cope with the increasing
network complexity but relying as little as possible on human intervention [30].
Hence, in analogy with the autonomic system’s architecture, cognitive systems
aggregate cognitive agents, which are entities with reasoning capabilities able
to cooperate, to act selfishly, or to do both. Since the need of cognition is
spread among the system components and layers, and it is not only limited to
the management one, the cognitive systems have given rise to an independent
line of research, which often exploits the ABC [14] as enabling paradigm.

2.3 Services in the IoT: state-of-the-art

Services notably contributed to the spread of Internet, which evolved from a
restricted/small-sized academic and military network into a worldwide plat-
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Fig. 2.4. Cognitive Loop

form hosting applications of all kinds [31]. Likewise, services promise to rep-
resent the real drivers for the IoT and within the IoT ecosystems [32, 33].
Indeed, everyday objects, conventional computing systems, places, pets and
people, supported by ubiquitous and seamless connectivity, take part in novel,
advanced, cyberphysical services (indicated as IoT services in the follow),
which are expected to revolutionize every application context. Although IoT
is gaining momentum, and regardless the substantial background on comput-
ing services, the development of an IoT service is a challenging and not fully
mastered task. Suffice it to say that, as underlined in [34], the state-of-the-art
lacks of a well-established definition for an IoT service. In particular, service
modeling is often a neglected or underestimated activity, thus complicating
the overall development process and limiting IoT services potentials. Tradi-
tional computing services are based on a vertical data flow between physical
and application layers, and each service is often independent [31]. Conversely,
IoT services exploit both data and cyberphysical functionalities provided by
a horizontal landscape of heterogeneous entities, sharing the same resources
and environment. Due to their complexity, IoT services require a specific de-
velopment methodology, so to be thoughtfully designed, formally verified, and
simulated. Such a full-fledged approach, so long as supported by a prelimi-
nary and systematic modeling phase, paves the way toward reliable, fast and
effective IoT service development [35]. Even though there has been much talk
about IoT services, the majority of the related results directly or indirectly
derive from only a few IoT service models.

One of the most important contributions derives from the IoT-A project [1]
(see Figure 2.5(a)), in which a detailed IoT service model has been provided
and then exploited as an architectural building block (“IoT Service Layer”)
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in different IoT platforms [36] like Butler and ICore. The IoT-A service model
extends the previous one developed within the SENSEI project [37], and is to-
tally aligned with the ones of AIOTI [38] and FIWARE [39] initiatives, as well
as with the IEEE P2413 “Standard for an Architectural Framework for the
IoT” [40]. According to the SSN (Semantic Sensor Networks) ontology [41], it
describes an IoT service as a well-defined and standardized interface enabling
interactions with the real world, specifically through its Virtual Entities (VEs,
namely physical entities abstractions). Indeed, IoT services allow accessing a
VEs status, properties and functionalities (sensing, actuation, computation,
storage or networking) by means of its Resources, thereby hiding VE hetero-
geneity/complexity to IoT developers and users. Associations between IoT
services and VEs are established according to both dynamic (e.g., IoT service
current status, VE location, and VE resource availability) and static informa-
tion (for example, IoT Service specifications and quality of service, VE id and
dimension). In particular, relevant information for each IoT service is coded in
a Service Description Model according to the business-oriented USDL (Unified
Service Description Language) [42].

This paves the way toward the application of the IoT-A service model
within the world of Business Processes (BPs): indeed, by extending the BPMN
2.0 [43], it is possible to treat IoT services as IoT-aware BPs [7]. In particular,
as shown in Figure 2.5(e), Participants (Human or any Physical/Digital en-
tity) mainly featured by a role, location, devices and resources, are involved in
Activities: these are executable compound of work described by some textual
labels (activity type, contextual conditions, annotation, quality metrics, etc.)
and implemented through both sensing or actuation tasks, namely atomic
operations concretely realizing the related activity. Such conceptual view on
IoT-services according to the BPM modeling supports the integration of IoT
entities into the Enterprise SOA world and into service science [5, 34].

Similarly to the IoT-A project, authors of [44, 2] propose an SSN-based
model in which IoT services are provided according to established associations
between Physical Entities (PE, namely every person, place, or object whose
spatio-temporal attributes and preferences constitute its Context). Differently
from business-oriented service model of [1], however, the IoT service model
of [44, 2] specifically focus on semantic IoT service description, thus extend-
ing the OWL-S (Web Ontology Language for Service) [45]. Indeed, each IoT
Service (see Fig2.5(b)) is featured by a ServiceProfile describing what a ser-
vice does (functional and not-functional properties), a ServiceModel eliciting
how a service works (processes and related Preconditions, Effects, Inputs,
and Outputs), and a ServiceGrounding specifying how a service is concretely
implemented (message formats, serialization, transport and addressing, etc.).
In particular, with respect to the original OWL-S service model, ServicePro-
visionConstraint, ContextPrecondition and ContextEffect classes have been
introduced within the Service Profile to explicitly consider context-awareness
and cyberphysicality at the modeling phase. Indeed, the ContextPrecondition
class specifies the conditions related to the PE Context (namely its spatio-
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temporal features) that should hold before the service can be provided (Pre-
condition specifies just general functional preconditions). Similarly, the Con-
textEffect class describes changes to the external world or environment (Effect
just describes the change to the service provider entity). Finally, ServicePro-
visionConstraint class represents PE physical constraints that are relevant to
the service provision.

IoT-A like, but not SSN-based, service models are reported in [4, 46] and
in [3]. In particular, service model in [4] mainly consists of IoT services and
Entities of Interest (EoI), representing physical objects featured by their Prop-
erties of Interest (PoI, namely desired properties associated with an EoI) and
Devices (their physical interface with the other EoI). IoT services, instead,
are featured by a set of Requirements which consider a specific application
context, an EoI, its PoI, and PoIs observation rate and provided reliability (as
shown in Figure 2.5(d)). IoT service Requirements are specified in a declara-
tive way and can be autonomously processed and matched with the expected
levels of dependability. Conversely, as reported in Section 3.2, [3] proposes an
application-neutral, UML-like IoT service high-level metamodel. Each Service
is described through some textual information (name, a description, service
type, input and return parameter types, and zero or more QoS Indicators)
and at least one Operation (in its turn, provided by a description, a set of
input parameters and return parameters type) which implements the service
by defining an individual action that may be invoked. In this service model
(as shown in Figure 2.5(c)), Services are provided by SOs and consumed by
any kind of IoT entity (human users, conventional digital systems or other
SOs).

A completely different approach to service modeling is carried out in [47, 6].
In particular, these models are specifically conceived for operational purposes
more than for descriptive goals. Indeed, both works exploit (extensions of)
Petri Nets [48] to model real world entities as Nets, their operations as transi-
tions and their IoT services as a sequence of states, as shown in Figure 2.5(f).
Such operational modeling allows controlling the correctness of IoT services
among dynamic context changes, thus exhaustively and automatically check-
ing their compliance to a given set of specifications.

2.3.1 Analysis and limitations of IoT services specifications

In the previous Section, a general overview of most relevant IoT service models
has been provided, along with some insights about entities involved in services
provision/consuming. Even at a first glance, it could be noted that IoT ser-
vice models of Figure 2.5 are conceptually aligned since their main features
present marked analogies. Indeed, they include a (mostly) coarse and uni-
form description of service providers/consumers (i.e., SOs, Participant, Phys-
ical/Virtual/Real World Entity, Entity of Interest) and they consider an IoT
service not as a monolithic body but as the result of subunits (i.e., Operations,
Processes, Tasks,) concretely implementing the service constituent low-level
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Fig. 2.5. IoT service modeling in (a) [1]; (b) [2]; (c) [3]; (d) [4]; (e) [5]; (f) [6].

actions. Interestingly, service specifications of [1], [2], [3] and [7] show a quasi
one-to-one mapping and hence they have been deepened and compared in
Table 2.1. Beside their analogies, however, the presented IoT service models
share several deficiencies in modeling important IoT services-related concepts,
mainly related to IoT entity, context and policy modeling, that are hereinafter
discussed along with some examples contextualized in the IIoT scenario [49].

With respect to IoT entity modeling, [5], [6], [4], and [2] have a very coarse-
grained entity notion (same representation without any distinctive features
among humans, things, and places), considering it as a generic, passive ser-
vice participant. However, IoT entities are notably heterogeneous and play an
active role (both as service providers and/or service users), hence requiring
detailed descriptions (partially provided in [1] and mostly in[3]). For example,
in a typical production line as the one of [50], it is important to model specif-
ically human operators, machines, robots, conveyors and product parts with
their own features to capture not only their static descriptions (e.g., opera-
tor id, conveyor length, robots drivers version) but, most importantly, their
dynamic status (e.g., busy or idle machines, partially or totally assembled
products), physical properties (e.g., conveyors load and speed, machines in-
ternal temperature), available devices (e.g., temperature, humidity, pressure,
presence sensors, video cameras, hydraulic, pneumatic, electric, and thermal
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actuators), etc. In such a way, IoT entities can be better characterized and
their interactions and services effectively designed, enabling at the same time
a thorough context modeling.

With respect to context modeling, in [5], [2], [4], and [3] the concepts
of context and location essentially overlap, while it lacks in the other two
service models . However, in order to effectively impact the service provision,
any implicit or explicit information related to the entity current/historical
situation and the surrounding cyberphysical environment should be taken
into account also at a modeling stage. For example, if we consider a chemical
factory as in [51], multiple factors linked to different entities (rooms humidity,
barrels wear and tear, machines vibrations) contribute to the “stock service”
context and affect the production systems. Hence, context should be designed
as first class abstraction (including, but not limited to the location concept), so
providing also suitable inputs to dynamically choose the best service execution
according to the available policies.

Finally, all the surveyed service models are essentially neutral with respect
to the concept of policy, that provides macro level specifications and, in gen-
eral, represents an effective way to adapt dynamic systems. Taking inspiration
from the hybrid product-services surveyed in [52] and considering a radiology
hospital department, equipment machines embedding both usage and legal
health policies could (i) monitor healthcare professionals current exposure to
radiations, timely alerting them in case of dangerous situations, and (ii) en-
able pay-per-use business models and customized risk bonuses that consider
the actual healthcare professionals’ use of the equipment machines. Hence, the
service model should allow the inclusion of different policies, thereby making
the service provision more flexible and adaptive.

In conclusion, although these models notably improved their original ver-
sions aiming at an effective IoT service modeling, the aforementioned lim-
itations prevent them for being concretely applied. Indeed, they have been
designed considering static environments and generic IoT entities with es-
tablished interactions, so that service provisioning is typically modified just
according to user current position or a sensed phenomenon. However, IoT ser-
vices would dynamically appear and disappear because their provision may
be meaningful only in a certain space/time and it may be heavily subject
to heterogeneous constraints and conditions (related, for example, to current
user status, context, different policies, etc.). Nevertheless, the aforementioned
IoT service models represent a good starting point to open a discussion about
a novel yet actually exploitable “Opportunistic” IoT service model, presented
in Chapter 3.6.
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2.4. IoT ecosystem development requirements

2.4 IoT ecosystem development requirements

IoT ecosystems are composed of many distributed and interacting components
that are usually heterogeneous in terms of hardware devices, communication
protocols, software interfaces, data, and semantics. To effectively support their
development, general and specific requirements need to be defined [11, 53].
While the general requirements allow effective and flexible middleware [54, 55]
for facilitating IoT system/thing programming, the specific requirements are
purposely defined for a target IoT system/thing by considering its specific
application domain. In the following, we focus on the former that are com-
mon to all IoT ecosystems. In particular, we group such requirements in two
categories:

� System-level (Table 2.2), which includes requirements related to the whole
distributed system and its development, and

� Thing-level (Table 2.3), which encompasses requirements particularly re-
ferring to the “things”, such as RFID items, SOs, mobile devices, and
robots, in an IoT system.

Requirements listed in Tables 2.2 and 2.3 have been outlined by thoroughly
analyzing the state-of-the-art of IoT middleware, architectures and platforms,
focusing on their main features and extracting common keywords. Such re-
quirements are not totally new, since they have been already studied in sev-
eral fields of computer science and engineering. However, at both levels, they
recur at the same time and with a substantial prominence within the IoT
context and they allow accommodating all the most important features of
IoT ecosystems. Indeed, conventional computing devices and everyday things
tend to converge in the IoT, requiring virtual networked alias (SLR1), soft-
ware interfaces (SLR3) and communication/data abstractions (SLR2-SLR5)
to synergistically cooperate, despite their heterogeneity (TLR1). To cope with
such cyberphysical (SLR4) and dynamic scenario rich in continuously evolv-
ing (TLR4) and augmented (TLR2) things, proper methodologies are needed
(SLR6) to fully support the IoT system development. Furthermore, decen-
tralized management (TLR3) mechanisms are essential for making things au-
tonomous and effectively integrated in their application contexts. Finally, at
both System- and Thing-level, the cyberphysical nature of SOs introduces
important novel elements in the characterization of SO-based IoT systems,
particularly with regard to the concept of “scale” (SLR7 and TLR5). In tradi-
tional distributed systems, the concept of scale is closely related to the number
of involved computing nodes, their geographical distribution and logical orga-
nization among different administrative domains. Such domains usually have
different configurations, policies and privileges, thus emphasizing the need of
interoperability and coordination mechanisms [56]. In traditional agent-based
systems, the scale concept usually overlaps with agent population [57] and
agents distribution among host devices, regardless of their actual geographic
location (note that one of the peculiarities of agents is their mobility). Finally,
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Chapter 2. Background and Framework-supported State-of-the-Art Analysis

in WSNs the concept of scale refers both to the number of involved devices
and to their spatial collocation, as the radio communications are strongly sus-
ceptible to interference and mutual collisions [58, 59]. It is just in the WSN
context, indeed, that the concept of density, intended as the number of sen-
sors per unit area, appears [58]. In conclusion, depending to the application
contexts, the “scale” term is differently defined as well as its characteriza-
tions (large, medium, small scale) can notably vary (a large scale WSNs very
likely will differ from a large scale computational grid in terms of geograph-
ical extension, population and density). Within the SO-based IoT context,
therefore:

� It is handy to refer to well established concepts of “small-medium-large
scale” taken from traditional distributed systems, as long as such defini-
tions are not exclusively attributable to geographical factors. Moreover, it
is convenient to take into account the network infrastructure, in partic-
ular the number of subnets involved, in order to better evaluate system
performance; and

� Since SOs are highly pervasive and mostly based on wireless communica-
tions, the density issue pointed out for WSNs strongly recurs. Although
not only simple sensors but even other kinds of functionally heterogeneous
devices are involved within SO-based IoT systems, the density remains a
useful metric to characterize scenarios when the number of SOs changes.

On the basis of such considerations, and specifically for an unambiguous char-
acterization of the case studies of Chapter 4, hereinafter we classify IoT sys-
tems and SOs in small-medium-large scale on the basis of their physical di-
mension and density, as shown in Figure 2.6. Similar criteria for scenario
characterization are defined in [11, 60].

Fig. 2.6. Scale in IoT systems
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Table 2.2. System-Level Requirements (SLRs)

Requirement Description
SLR1: Hardware
Devices (Virtu-
alization)

IoT systems typically comprise heterogeneous devices;
in order to facilitate their use, abstractions are needed
to virtualize and let them be used, as they are homo-
geneous by following a kind of a “plug&play” paradigm
[11].

SLR2: Com-
munication
(Abstractions)

Software components and devices need to communi-
cate with each other. Communication abstractions are
needed to make them interact and cooperate, indepen-
dently from the available low-level network protocols [8].

SLR3: Software
Interfaces

As software interfaces are usually heterogeneous, they
need to be generic and standardized through higher level
mechanisms such that their use is straightforward. Thus,
software components based on such high-level interfaces
can be seamlessly accessed [61].

SLR4: Phys-
icality (Self
and Context
Awareness)

Hardware and software components in IoT systems and
entire IoT systems themselves are intrinsically situated.
This implies that they have static or dynamic locations
and refer to one or multiple contexts during their life-
cycle. Abstractions are therefore needed to capture the
concepts of location and context, as they are useful in
the design and implementation of IoT systems [62].

SLR5: Data
(Abstraction)

Different hardware and software components, e.g. sen-
sors, machines, smart objects, and mobile apps, usually
produce data according to different modalities, formats
and types. Thus, abstractions are needed to formalize
data streams generated by such components. Contin-
uous data streams, discrete data and sporadic events
should be defined under a common framework. More-
over, the representation of data types needs to be stan-
dardized as it would allow interoperability in data ex-
change among heterogeneous components [63].

SLR6: Devel-
opment Process
(Methodology)

To analyze, design and implement IoT systems, suit-
able software engineering methods and tools need to be
defined. They should be able to effectively model IoT
systems by using high-level modeling abstractions and
fully support their design, implementation, deployment
and management [13].

SLR7: Systems
Scale Character-
ization

IoT systems can notably differ in terms of geographi-
cal extensions, network infrastructures and number of
involved IoT devices. Hence, it is useful to define some
criteria to facilitate the unambiguous characterization
of their scale and possibly enable their comparison [56].
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Table 2.3. Thing-Level Requirements (TLRs)

Requirement Description
TLR1: Het-
erogeneity and
Interoperability

Applications that use “things” should be programmed
independently from vendors-specific things. For in-
stance, if an application is based on a “smart chair”,
it should be able to use smart chairs built by differ-
ent vendors. Moreover, applications should be able to
exploit things to be built in the future. This implies
to adopt a standardized approach or, if not applicable
(standardization is a very long process), to exploit soft-
ware layering-based dynamic adaptation techniques be-
tween application and the thing level [18].

TLR2: Augmen-
tation Variation

“Things” usually provide a set of devices and services
that can vary in quantity and types both among different
things and among similar things. In particular, differ-
ent things can provide same services whereas two sim-
ilar things can provide different services. Thus, things
cannot be crisply classified only by their type and may
expose non-standard interfaces. Augmentation variation
of things is an important requirement as it defines how
things can modify their augmentation by providing di-
versified services that can change during their lifecycle.
This implies to design not only methods to dynamically
add/modify/remove things services and devices but also
how they are actually furnished [64].

TLR3: De-
centralized
Management

An effective management is crucial in IoT applications
where tons of distributed “things” could potentially in-
teract with each other and/or be used to fulfill a final
goal. Applications and things should be therefore able to
dynamically adapt as things could continuously change
for different purposes (augmentation variation, mobility,
failures, etc.). Thus, the matching among things services
and application requirements should be often done at
run-time. Discovery services are therefore strategic in
such a dynamic context to find and retrieve things ac-
cording to their static and dynamic properties [65].

TLR4: Dynamic
Evolution

Applications and “things” should be simply and rapidly
prototyped and upgraded through proper programming
abstractions. The evolution can be driven by program-
ming, learning, or both. In particular, evolution by
learning is usually based on smart self-evolving com-
ponents able to self-drive their evolution on the basis of
some learning models [9].

TLR5: Things
Scale Charac-
terization

“Things” can notably differ in terms of physical dimen-
sions and number of aggregated devices. Hence, it is use-
ful to define some criteria to facilitate the unambiguous
characterization of their scale and possibly enable their
comparison [57].
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2.5 Framework-supported state-of-the-art survey

In this Section, the state-of-the-art of IoT platforms, architectures, middle-
wares and methodology has been surveyed. Due to their heterogeneity, instead
of an exhaustive survey of their features, it is reported how these contributions
perform the development phases of analysis, design and implementation, and
if they follow a methodological approach. Simultaneously, for each surveyed
work, has been reported which of the SLRs and TLRs presented in Section
2.4 it fulfills. The outcome of such state-of-the-art analysis is the compari-
son framework (split in two parts for the sake of readability) of Tables 2.4
and 2.5. It provides an overview of the current situation of IoT platforms,
architectures, middlewares and methodology, highlighting common practices
and trends, as well as lacks and limitations. Such insights represented the
starting points to set up our development methodology for autonomic and
cognitive IoT ecosystems. Furthermore, the comparison framework can be
straightforwardly reused to compare future work in the field. To the best of
our knowledge, this is a novel research contribution in this context.

2.5.1 Analysis phase

Goal: identifying the main entities of the IoT and abstracting their basic fea-
tures and high-level interactions. This is a preliminary phase often exploiting
metamodels to provide expressive, but not too much complex, high-level repre-
sentations which can be handled by IoT developers with different expertise.

The IoT-A project [66] envisages a technological-agnostic and application-
neutral reference model architecture to be further specified in different do-
mains (information domain, functional domain, etc.) according to developer
needs. It is centered around the concept of an “IoT Entity”, namely an aug-
mented physical entity hosting some “IoT devices” (e.g., sensors, actuators,
tags, TLR2), that is virtualized through a “Virtual Entity” (SLR1) for expos-
ing its “Resources” to the “Users” through some “Services”. On the basis of
these concepts, IoT-A project provides different models that can be used to
derive a concrete IoT architecture following specific computing paradigms. By
means of different views, perspectives and metamodels, IoT-A aims to offer
a unified approach to the analysis of IoT systems, in order to promote cross-
domain interaction (SLR2), to support interoperability (TLR1) and to reduce
fragmentation within an IoT context. Most of the indications provided by IoT-
A have inspired the AIOTI (Alliance for the Internet of Things) [38], and the
IEEE P2413 [40] reference models, specifically their domain models. Indeed,
they describe IoT entities and their relationships through common definitions
and recurrent building blocks’ high-level metamodels, with the final goal of
promoting a unified approach to the development of IoT systems.

In [67], it is proposed a metadata model to represent functional and non-
functional characteristics of SOs in a structured way (SLR5). The metadata
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model is divided into four main categories: Type, Device, Service, and Loca-
tion. The Type is the SO type (e.g., smart pen, smart table, smart space);
a secondary type can also be given that contains information about the SO
design classification as proposed in [9], (TLR2). The Device defines the hard-
ware/software characteristics of the SO device (e.g., sensors, actuators, com-
puting units) that allow to augment and make “smart” the object. Services
contain the list of services provided by the SO; in particular, an SO service can
have one or more operations implementing it. Lastly, the Location represents
the position of the SO (SLR4) and it can be set in absolute terms, specifying
the coordinates (latitude and longitude), and/or in relative terms through the
use of location tags. Because of its generality (SLR1), this metadata model
can characterize an SO in any application domain of interest and has been
extended and re-organized in [68, 69], and it represents the starting point of
the ACOSO-Meth High Level Metamodel presented in Section 3.2.

Finally, [70] presents an high-level models for interacting SOs, namely
digital representation of physical artifacts (SLR1), augmented with sensors,
actuators, processing and networking units. Artifacts have Properties which
represent physical characteristics, capabilities, and services and are modeled
as a firts-order logic function, while a snapshot of all such properties at a given
time constitutes the artifact’s State. Plugs are the input/output interfaces of
an artifact, exposing its featuring properties (output plug) or indicating its
requirements (input plug) for enabling certain functionalities (SLR3). When
two plugs are compatible, they are associated through Synapses, namely log-
ical communication channels (SLR2) between the nodes of the distributed
system, while two or more artifacts (simple or composite) can be combined in
an Artifact Composition (TLR1, TLR4) in order to provide a complex service.

2.5.2 Design phase

Goal: modeling the functional components of the system, their specific relation-
ships and interactions. Differently from the analysis phase, the design phase
focuses on identifying suitable paradigms (supported by well-defined semantics)
and enabling mechanisms, but without being coupled to a specific technology
or any implementation detail.

In [71], the actor-oriented paradigm inspired design models which deeply
describe cyberphysical systems in terms of their concurrent and parallel inter-
actions, with a particular attention on the intrinsic complexity, heterogeneity
and sensitivity to timing (TLR1). Such aspects can be effectively modeled
thanks to the implicit actors’ semantics (SLR5) that allows a fine-grained de-
sign of IoT entities and of both software processes (deeply rooted in sequential
steps, SLR1) and physical processes (by contrast, rarely procedural, SLR4).
Likewise the actor-oriented paradigm, also the ABC represent a suitable pa-
radigm for supporting the design of main SOs features abstracting them from
low-level details or specific implementation constraints, as reported in Sec-
tion 2.2.1. Indeed, agent-based design models allows capturing key charac-
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teristics of SOs and IoT systems, at different degrees of granularity and in
a technology-agnostic way, because strong conceptual relation exists between
agents and SOs, as well as between MAS and IoT systems. In particular, SO
autonomicity, proactiveness and situatedness are implicitly embedded in the
agent model, while other important SO features can be explicitly described
through agent-related concepts. This is the case of [72, 73, 74], and [75], which
express SO functionalities in terms of goals, SO working plan in terms of be-
haviors, and SO augmentation-related components (like knowledge bases, sen-
sors and actuators) in terms of dynamically bindable agent resources (TLR2).
However, these works adopt different mechanisms for specifically character-
izing SOs/agents. In particular, in [76, 77] each agent/SO has a role (taken
from a scenario-dependent repository, e.g., smart car, smart driver-support
or smart road for the transportation context) that determines, by default,
its own behaviors, goals and communications paradigms; similarly, in [78],
SO/agent plans and goals are encoded in templates reflecting their function-
alities. Other contributions do not reference a-priori defined roles or templates
(TLR4). For example, in [79], each agent/SO has a self-model (an automa-
ton) driving its actions according to stimuli (modeled as messages) from other
agents or the environment. Similarly, in [80, 81], SOs actions/reactions are en-
coded in behaviors, driven by incoming (internal/external) events and design
goals (encapsulated in state-based tasks). Finally, in [72], SO/agent self-state
is dynamically determined by combining its real-time sensor data, position
and status of computational units. Autonomic and cognitive properties can be
successfully instilled from the design phase by properly exploiting the ABC pa-
radigm. For example, self-steering agentified SOs play a crucial role in I-Core
[78], a cognitive management framework that gives a three-layered architec-
tural model. At the lower level, there are real world objects (RWOs) and their
digital cognitive counterparts, called virtual objects (VOs, SLR1). VOs vir-
tualize RWOs functional and non-functional features. They are self-managed
entities and can be dynamically created, destroyed, modified or aggregated at
the intermediate level (TLR3, TLR4). By matching application requirements
and single VO capabilities (exploiting pattern recognition and machine learn-
ing techniques), the need of composite virtual objects (CVOs) arises. CVOs
are sophisticated entities that represent cognitive mashup of semantically in-
teroperable VOs, aiming at the development of situation-aware, user-tailored
and proactive services at the top-level. Similarly, [82] presents a comprehen-
sive definition of CIoT (Cognitive Internet of Things) and hence a layered
framework conceived to implement five cognitive tasks, namely environment
perception, data analytics, semantic analysis/knowledge discovery, intelligent
decision-making, and on-demand service provisioning. Again, physical/virtual
things are abstracted into agents that, with minimum human intervention, in-
teract with each other enabling a smart resource allocation, automatic network
management and intelligent service provisioning (SLR1, TLR1, TLR3, TLR4).
Finally, Cascadas [83] (Componentware for Autonomic Situation-aware Com-
munications, and Dynamically Adaptable Services) presents a high-level ar-
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chitecture centered on the notion of autonomic elements (AEs) and designed
on the principles of situation awareness, semantic self-organization, interoper-
ability, scalability and modularity (SLR1, SLR3, SLR3). Each AE is developed
following an agent-oriented approach and, by means of a shared communica-
tion interface, of a conventional passing messages paradigm, and of a set of
a software plugins for the data-format conversion (SLR2, SLR5), it provides
adaptive, composite and situated communication intensive services.

2.5.2.1 Simulation-based Design

Simulation-based design (SBD) is a design approach focusing on simulation
as the key-enabler for evaluating, validating and optimizing design choices
or design alternatives. It exploits models, simulation tools, and techniques,
starting at earliest conceptual design phases, to support developers in making
informed design choices [84]. In particular, simulation allows validating design
choices and discloses unexpected behaviors before actual system deployment,
that is often time-consuming, costly and error-prone. Particularly in the IoT
context, where interactions are subject to variety of contingent factors (e.g.,
SOs density, physical network design, traffic congestion, wireless signal atten-
uation and coverage), being able to simulate the system have a paramount
importance [35]. In fact, it allows understanding overall dynamics, estimat-
ing performance, and validating models, protocols and algorithms featuring
under-development SOs and IoT systems. However, no IoT-specific simulators
are currently available.

Agent-based simulators, being centered on high level agent abstraction,
do not directly address issues that characterize SO-to-SO interactions in a
physical environment (such as limited computational and energetic resources,
network congestion due to SO density, interference obstructing wireless com-
munications, and so on). Therefore, agent-based simulations have been ex-
ploited to inspect high-level issues, such as increased collective dynamics and
behavioral patterns in IoT systems, assuming that agents are deployed in
aseptic environments without any connectivity issues [85] (SLR1, TLR1). In
contrast, conventional network simulators allow a contextualized and detailed
management of low-level communication features [75] (SLR4). Specifically,
such simulators allow validating network design choices and deeply analyzing
network performance, but they are usually exploited in application agnostic
scenarios [86]. To exploit the benefits of both approaches, network and agent-
based simulators have been jointly exploited, but the actual validity [87] of
such combination is hard to verify. Nevertheless, considering that IoT ecosys-
tems deals with computation, networking, and physical dynamics, the hybrid
solution is anyway considered the most suitable simulation approach [35].
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2.5.3 Implementation phase

Goal: actually realizing the outcome of the design phase by means of specific
programming paradigms, adopting well-established specifications and develop-
ment tools.

Because of deep heterogeneity of resources and communication protocols
in the IoT context, many authors propose SOA and REST for making SOs
functionalities accessible under the form of Web Services over standard In-
ternet protocols, which are platforms and programming languages indepen-
dent [88, 89, 90] (SLR1, SLR2, SLR5). Conversely, there is a wide research
line proposing an agent-oriented approach for programming uniform inter-
faces and thus transparently interacting with resources and SOs. Authors of
[76, 77, 80, 78, 91, 70, 90] exploit software adapters (developed for specific
technologies and somehow internally coordinated, e.g., through a device man-
ager, as in [80]) for accessing agent/SO augmentation devices (SLR3). This
approach improves modularity and extensibility (TLR2), since it leverages
pluggable software components that can be defined when needed, and cus-
tomized within the target resource. Instead, [73, 74, 79] follow a different
approach: each resource is directly coupled with one agent that interfaces the
resource itself with the related SO, or with rest of the system. This solution
completely hides the underlying technological heterogeneity, but it is not suit-
able for such constrained devices that cannot support an agent-based architec-
ture (SLR3, TLR1). Apart from resource handling, agent-oriented program-
ming contributes to overcoming lack of communication/coordination stan-
dards (SLR1, SLR2, SLR5) within the IoT arena:

� by implementing the IEEE FIPA “de facto” standard specifications [23],
which standardize both message format (specifically, the Agent Commu-
nication Language [92], ACL, is used for encoding message envelope) and
message content (whose concepts, typically expressed through metadata-
oriented languages, refer to ontology for facilitating data and the context
management), as well as provide effective message transport service (lever-
aging on both semi/centralized and distributed services of agent discov-
ery); and

� by supporting the SOs virtualization [78, 15, 79], thus paving the way
towards integration of self-steering agentified SOs within the Cloud. In
such a way, by outsourcing computation/storage resources, the SO hard-
ware/software limitations are mitigated and complex analytics services can
be provided even at the edge of the network [93].

With regard to the last point, relevant contributions are provided by
[94, 90]. In [94] authors present the Cloud-assisted Agent-based Smart home
Environment (CASE) platform, which allows the distributed sensing and ac-
tuation in Smart Home environments (SLR4, TLR3). The CASE platform
presents a three-layered architecture that exploits the distributed multi-agent
paradigm and the cloud technology for offering analytics services. In the CASE
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architecture, agents are disseminated both on local devices and at the edge
(performing in-node feature extraction, activity discovery, activity recogni-
tion) and on the cloud (defining articulated strategies of actuation or execut-
ing complex algorithms). Such architectural design allows a real-time event
processing since the computation is close to the information sources, an ef-
ficient communication by propagating across the system only aggregated in-
formation, and an increase of reliability and scalability through the use of
(even complex) distributed algorithms. A virtualization framework using the
sensor-as-a-service notion to expose IoT clouds connected objects functional
aspects in the form of web services is presented in [90]. In detail, the frame-
work exploits an event-driven service oriented architecture (e-SOA) paradigm
along with a set of policy-based service access mechanisms based on ontology
and semantic rules (SLR3, TLR3). The goal of the virtualization layer is to
expose the functional aspects of underlying IoT cloud and information in the
form of services (TLR1, SLR1). The architecture is composed of three layers:
(i) the Real-world access layer (gets real-world information and carry it to
the upper layer for further processing, adopting an adapter oriented approach
to address the technical diversity regarding sensor types and communication
mechanisms), (ii) the Semantic Overlay layer (provides the semantic model of
underlying IoT cloud, IoT/sensor/event ontology and policies), and (iii) the
Service Virtualization layer (expose the functional aspects of underlying IoT
cloud and information in the form of services).

2.5.4 Development Methodologies

Despite a variety of research efforts that tackle different specific issues within
an IoT system development process, a full-fledged IoT methodology is miss-
ing. There are many studies which, instead of providing a proper methodology,
collect domain-specific best practices, guidelines, checklists and templates. For
example, Slama et al. [95] and Collins [96] build up a repository of technology-
dependent solutions coming from the experience in the industrial/business
world and specifically directed to the IoT makers and enterprises. In fact,
they propose reference architectures and guidelines to make specific-purpose
devices interoperable (TLR1) through abstract data models (SLR5) and high-
level software interfaces (SLR3). Differently, some researchers present general-
purpose approaches. IoT-A [66] is a systematic collection of architectures,
reference models, common definitions and guidelines that can be used to de-
rive a concrete IoT architecture. By means of different views, perspectives and
metamodels, IoT-A aims to offer a unified approach to the development of IoT
systems, in order to promote cross-domain interaction (SLR2), to support in-
teroperability (TLR1) and to reduce fragmentation within an IoT context.
Zambonelli [97] proposes a software engineering methodology centered on the
main general-purpose concepts related to the analysis, design and implementa-
tion phases of IoT systems and applications. Such concepts are used to identify
the key software engineering abstractions (SLR1, and SLR3-SLR5) as well as
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a set of guidelines and activities that may drive the IoT systems development.
The envisioned methodology, however, lacks the definition of models and tools
to represent different conceptual and software artifacts. In tandem with these
contributions, some agent-oriented methodologies have been specifically ex-
tended for the IoT context [98, 97], and [99]. Indeed, beside disciplining the
exploitation of agent-based suite of models, programming techniques and sim-
ulation tools, these work have been extended for dealing with requirements
that are typically overlooked by agent-based methodologies, such as (i) the
cyberphysical nature of the involved entities and environments, foreseeing by
design, solutions for interoperability, security and scalability [98, 99] (SLR4);
(ii) the identification of IoT users and stakeholders, depicting significant use
cases through textual descriptions [97] and technical notations, like UML (Uni-
fied Modeling Language) [100] or BPMN (Business Process Model Notation)
[43], for meeting different expertise and perspectives (SLR3, TLR1, SLR5);
and (iii) the analysis of the infrastructural features and limitations according
to the specific IoT system requirements [98], since these factors cannot be
considered independently. Without extensively dealing with all these factors,
even effective and well-known conventional agent-based software development
methodologies like Tropos [101] are definitively inadequate, and thus unable
to actually unfold the full IoT potential.

2.6 Comparative Analysis

Contributions surveyed in the previous sections are compared in Table 2.4 on
the basis of the development phases they (totally, partially or do not) sup-
port. In particular, Table 2.4 shows if each single work provides fine or coarse
grained models for the analysis phase, if it supports the design phase (and,
eventually, a simulated-based design phase), if it has been concretely imple-
mented, and if these phases have been driven by a development methodology.
Instead, Table 2.5 shows if the surveyed works (totally, partially or not at all)
fulfill the SLRs and TLRs presented in Section 2.4. By examining the reported
tables it should be noted that:

� with respect to Table 2.4, analysis and simulation-based design phases are
mostly overlooked, despite of their importance for the further implemen-
tation. Even though IoT is a well-established research area, interestingly,
these two aspects havent been deeply investigated. Moreover, none of the
surveyed methodology seamlessly support the different phases of the de-
velopment process. Indeed, they individually present guidelines or best
practices, models and design techniques, but without including them into
a comprehensive and generic approach.

� with respect to Table 2.5, the surveyed works neither completely support
the TLRs and SLRs, nor cover the entire development process. Indeed,
they tend to differently address specific issues in particular application
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contexts. In particular, both the thing’s and system’s scale characterization
are systematically unfulfilled requirements.

� because of the entire set of requirements and issues related to the devel-
opment of IoT systems, ABC gained consensus a suitable paradigm for
modeling, programming and simulating IoT ecosystem. Indeed, the agent-
oriented view of the world is perhaps the most natural way of approaching
several types of (natural and artificial) systems, featured by a relevant
complexity, dynamicity, situatedness, and autonomy, and, in particular,
strong conceptual relation exists between agents and SOs, as well as be-
tween MAS and IoT systems.

Such considerations have been carefully taken into account in our devel-
opment methodology for autonomic and cognitive IoT ecosystems. Indeed,
tacking advantage from the lessons learned from the state-of-the-art analy-
sis, a full-fledged, agent-oriented, and metamodel-based engineering approach
has been developed, reserving equal importance to the analysis, design (and
simulated-based design), and implementation phases.

Table 2.4. Related work’s support to the development phases (Y = totally sup-
ported, P = partially supported, Blank = not supported)

Analysis
Design (* if SBD supported) Implementation Methodology

Fine Coarse
[66] Y Y
[38] Y
[40] Y
[67] Y Y
[78] Y Y Y
[70] Y Y Y
[71] Y Y

[76, 77] Y Y
[80] Y Y
[81] Y Y P
[102] Y Y
[75] Y*

[85, 86, 87] P Y*
[83] Y P
[91] P Y

[73, 74] Y Y
[79] P Y Y

[94, 90] Y Y
[88, 89] Y Y

[98, 97, 99] Y Y
[95] P Y
[96] P Y
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Table 2.5. Related work’s fulfillment of development requirements (Y = totally
fulfilled, P = partially fulfilled, Blank = not fulfilled)

System-Level Requirements (SLRs) Thing-Level Requirements (TLRs)
SLR1 SLR2 SLR3 SLR4 SLR5 SLR6 SLR7 TLR1 TLR2 TLR3 TLR4 TLR5

[66] Y Y P P Y Y Y P
[38] Y Y P P Y Y
[40] Y Y Y Y Y
[67] Y P Y P Y Y
[78] Y Y Y P P Y Y P
[70] Y Y Y Y Y
[71] Y Y Y P P

[76, 77] Y Y Y P Y Y P
[80] Y Y Y P Y Y Y
[81] Y Y Y P Y P Y Y P
[102] Y Y P P Y P P
[75] Y Y Y Y Y P

[85, 86, 87] Y P Y Y
[83] Y Y Y P Y Y Y
[91] Y Y Y P P Y P P

[73, 74] Y Y P Y Y P
[79] Y Y Y P Y Y Y

[94, 90] Y Y Y Y Y P
[88], [89] Y Y Y P Y P Y

[98, 97, 99] Y Y P Y Y Y
[95] Y Y Y Y Y
[96] Y Y Y Y Y

2.7 Summary

The development of IoT ecosystems and related services is a complex process
featured by several and heterogeneous requirements, thus demanding for the
joint exploitation of different computing paradigms. In the past years, several
IoT architectures, service models, and methodologies have been proposed in
the literature and have been surveyed in this chapter. These solutions face
notable challenges such as physical device virtualization, decentralized and
autonomous management, guideline identification, but they tend to tackle
different specific requirements, typically one at a time, without providing a
full-fledged approach to support the entire IoT system development process,
from analysis to implementation. Indeed, the main outcome from the study
of the state-of-the-art is the lack of a complete IoT development methodology
specifically tailored on the distinctive requirements of IoT ecosystems and
related services.
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3

A methodology for the development of
autonomic and cognitive Internet of Things
ecosystems

The development of IoT ecosystems and services, their management as well
as their integration in real applications, are complex and challenging, thereby
requiring suitable models, methods, techniques and technologies.

This chapter describes ACOSO-Meth, a novel application domain-neutral,
agent-oriented, and metamodel-based methodology that completely supports
the development of autonomic and cognitive SO-based IoT ecosystems as well
as of novel “Opportunistic” IoT services.

3.1 Introduction

The analysis of the state-of-the-art of the IoT domain has highlighted that the
IoT ecosystem development is a very complex and articulated process, since
the fulfillment of specific requirements (both at System- and Thing-level) is
necessary to enable dynamic cooperation among cyberphysical SOs over het-
erogeneous IoT systems. Hence, using an engineering methodology is widely
recognized as a fundamental practice because the manual and non-systematic
application of complex techniques, methods and frameworks would very likely
reduce effectiveness, increase development time and tend to be error-prone. In
such direction, middlewares represent suitable solutions to speed up system
development and prototyping, as well as management and evolution. In par-
ticular, the ACOSO middleware [80] provides agent-oriented modeling and
programming techniques for effectively realizing advanced SO-based IoT sys-
tems in any IoT application context, fulfilling both Thing- and System-level
requirements identified in Section 2.4. Just the exploitation of the ABC para-
digm is crucial to straightforwardly instill smartness and autonomy within a
single SO and realize cognitive and autonomic IoT systems [103]. On the basis
of these considerations and in order to support the SO analysis, design and
implementation phases, the ACOSO-Meth (Agent-based COoperating Smart
Objects Methodology) has been developed [3, 104]. It integrates within a
comprehensive methodology the agent-oriented modeling and programming
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techniques provided by the ACOSO middleware with a set of metamodels
placed at different abstraction levels and completely decoupled from any spe-
cific application context.

As showed in Figure 3.1 (diagrams are compliant with Object Management
Group (OMG) Software Process Engineering Modeling (SPEM) 2.0 [105]),
ACOSO-Meth supports the analysis phase through a high-level model describ-
ing main basic SO features. Such model is specialized and better detailed, thus
evolving in the design and implementation phases. In particular:

� at the Analysis phase, a High-Level SO Metamodel is exploited;
� at the Design phase, an ACOSO-based SO Metamodel specializes the

analysis-level metamodel in order to model the functional components of
the system, their relationships and interactions. Such metamodel can be
also mapped on the OMNeT++ platform [106] and simulated for having
immediate feedback on design decisions; and

� at the Implementation phase, a JACOSO (JADE-based ACOSO) Meta-
model specializes the ACOSO-based SO Metamodel with respect to a par-
ticular implementation based on the JADE platform [107].

Every phase introduces new features and a higher degree of detail in the
metamodels, maintaining at the same time strong relations with the higher-
level metamodels. This allows the straightforward transition from the analysis
to implementation phases, seamlessly supporting the translation of high-level
system models into design-level agent-oriented platform-independent models
that, in turn, may be refined into agent-oriented implementation platform-
dependent system models.

Finally, our definition of “Opportunistic” IoT service has been provided
and an extension of the ACOSO-Meth has been proposed, presenting a novel
and full-fledged approach to IoT service modeling. In particular, the High-
Level SO Metamodel has been extended to support IoT service development
by means of (i) general purpose descriptive metamodels, suitable for the ser-
vice analysis; and (ii) detailed operational models, instantiated over specific
domains or case studies, suitable for service implementation and verification.
Due to such features, the proposed descriptive and operational models meet
the desiderata emerging from the “Opportunistic” IoT service definition as
well as the skills of the different professionals involved in its development.

3.2 Analysis phase

The metamodel portrayed in Figure 3.2 is a very high level metamodel, since
its components may characterize an ecosystem of SOs [67] in any application
domain, e.g., smart cities, smart factories, and smart homes. In fact, it models
the main aspects of a generic SO/SO ecosystem in a very straightforward way,
sharing similar characteristics with IEEE P2413 [40], AIOTI [38] and IoT-A
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Fig. 3.1. Relationships among ACOSO-Meth metamodels at different phases

[108] reference models surveyed in Section 2.5. As matter of fact, main coarse-
grained SO concepts (namely SO physical/virtual representation, SO user, SO
service, and SO device) recur in all the aforementioned models, as well as in
the High-Level SO Metamodel, as shown in Table 3.1. To fully support the
SO analysis phase, ACOSO-Meth High-Level SO Metamodel exposes further
features, reported by means of a UML class diagram in Figure 3.2. These
features describe both static (e.g., SO id, creator) and dynamic (mainly related
to the services provided, e.g., quality-of-service indicators) SO characteristics.

Table 3.1. Comparison of main entities of SOs metamodels of ACOSO-Meth, IEEE
P2413, AIOTI and IoT-A.

ACOSO-Meth
High-Level SO MM [3]

AIOTI
SO MM [38]

IoT-A
SO MM [66]

IEEE P2413
SO MM [40]

SO Virtual Entity Virtual Entity Virtual Entity
SO Physical Properties Thing Physical Entity Physical Entity

SO Device IoT Device Device/Resource IoT Device
SO Service IoT Service Service N/A
SO User User User User
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They are categorized in five main groups:

� SO BasicInfo comprises basic SO information. In detail, the Status con-
tains a list of variables, given as pairs $name, value$, that capture the
SO state; Location represents its geophysical position (expressed in abso-
lute terms by specifying latitude and longitude and/or in relative terms
through the use of location tags); PhysicalProperty describes a physical
property of the original object without any hardware augmentation and
embedded smartness (it contributes to determining its scale); FingerPrint
comprises immutable SO information like the SO identifier (or Id, which
allows its unique identification within an IoT system), SOCreator that
creates the SO for personal use, business or research purposes, SOType
represents an SO type, e.g., a smart pen, smart building, and smart city,
and QoSParameters defines one or more QoS parameters associated to the
SO, e.g., precision, reliability, and availability.

� SO Service models a digital service provided by an SO. Each service is
characterized by a name, description, type (e.g., sensing and actuation),
input parameter type and return type. Each Service is implemented by one
or more Operations and by zero or more QoSIndicators whose associated
values are provided. In detail, an Operation, which defines an individual
operation that may be invoked on a service, has a description, a set of input
parameter types necessary for its invocation, and a return type related to
its output value.

� SO User identifies an entity using the services provided by an SO. In par-
ticular, SO Users can be Humans (representing the classical man-machine
use relationship), Smart Objects (representing a less conventional use re-
lationship, in which SOs take advantage of services exposed by other SOs
and vice versa) or Digital Systems (representing a generic digital entity,
like a web server, software agent, robot or a more complex system).

� Augmentation defines the hardware and software characteristics of a de-
vice that allows augmenting the physical object and making it smart. A
device can be specialized in one of the following three categories: (i) Com-
puter, which represents the features of a processing unit of the SO, e.g.,
PC, smartphone, and embedded computer; (ii) Sensor, which models the
characteristics of a sensor node of the SO; and (iii) Actuator, which models
the characteristics of an actuator node of the SO.

� SO Aggregation supports aggregation among SOs. In particular, a complex
SO (e.g., a Smart City) may physically or logically aggregate other SOs
to provide more advanced and integrated services.

3.3 Design phase

A High-Level SO Metamodel at the analysis level is refined to obtain an
ACOSO-based SO Metamodel (Figure 3.3), which allows, at the design level,
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Fig. 3.2. Analysis Phase: High-Level SO Metamodel

agent-based modeling of the functional components of an IoT system, their
relationships and interactions. The latter is suitable for modeling both ba-
sic IoT building blocks (e.g., basic devices and SOs ) and more complex IoT
components (e.g., WSNs and aggregated SOs), and it represents the corner-
stone of the ACOSO middleware. ACOSO middleware provides an agent-
oriented programming model for effectively realizing cooperating SOs in any
IoT application context requiring distributed computation, proactivity, knowl-
edge management and interaction among SOs/sensors/actuators, thus fulfill-
ing both System- and Things-level requirements identified before. According
to the ACOSO-based SO Metamodel, an SO is modeled as an event-driven,
lightweight and platform-neutral agent whose lifecycle is specified in terms
of Behavior. A Behavior consists of one or more state machine-based com-
ponents named Tasks, coordinated by a TaskManagement subsystem (TMS).
Tasks can refer to internal system operations (SystemTask, e.g., SO shut-
down/reboot/standby) required for the management of the agent lifecycle,
or to user-defined operations (UserDefinedTask) defining specific SO- and
application-oriented functionalities. SO Tasks are driven by Events accord-
ing to the following model [80]: whenever the SO has to be notified (e.g., an
incoming message or a user request has arrived, an internal system operation
is over), a specific Event is created; hence, the Event activates one or more
Tasks according to its own event type and event source. Events are classi-
fied into: (i) InternalEvent (the event source is an SO internal component),
raised to notify information/request/error messages coming from an internal
SO module; (ii) ExternalEvent (the event source is an SO external entity),
raised to notify information/request/error messages sent from entities external
to the SO; (iii) DeviceEvent (the event source is an SO device) raised to no-
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tify information/error messages produced by the SO sensors, actuators, etc.;
and (iv) ServiceEvent, raised from internal, external or device event sources,
which specifically drives UserDefinedTasks to define application-oriented func-
tionalities. The ACOSO-based SO metamodel components (Figure 3.3) are
categorized into four main groups:

� SO Basic Info is spread between the SO itself and KBManagementSubsys-
tem (KMS). The latter handles information pertaining its global current
state, inference rules and other useful data that can be shared among tasks.

� SO Service provided by SOs is encapsulated in specific application-level
UserDefinedTasks. They are highly customizable, easily programmable,
and interact with other SO components through ServiceEvents.

� Augmentation is handled by the DeviceManagementSubsystem (DMS),
which manages sensors, actuators and devices embedded into the SO. In-
teractions between SOs and such augmentation devices, regardless of their
specific technology or protocol, are conducted through DeviceEvents.

� SO Communication is handled by the CommunicationManagementSubsys-
tem (CMS), which provides a common interface enabling communication
toward the SO itself (through InternalEvents) or toward external entities
(by means of ExternalEvents).

Fig. 3.3. Design Phase: ACOSO-based SO Metamodel

3.3.1 A Hybrid Agent-Oriented Simulation-based Design
Approach

Computation, networking, and physical factors equally contribute to IoT
ecosystems’ dynamics: as a consequence, simulation approaches that address
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only the concerns of software are inadequate. Thus, for simulating an ACOSO-
based IoT system, it has been chosen an hybrid agent-oriented approach [109],
[110] based on the ACOSO middleware and on the INET extension for the
OMNeT++ network simulator. OMNeT++ [106] is an open source discrete
event simulation platform that mainly aims to simulate communication among
entities of distributed computer systems. OMNeT++ is fully programmable
and modular, and it follows a reusable, component based approach to build
up complex and customizable network scenarios. An OMNeT++ node is com-
posed of multiple compound and simple modules interacting through the
message-passing paradigm, while settings, properties, and data can be re-
trieved from different configuration files. Several extensions can be integrated
to simulate specific typologies of networks. In particular, INET is an extension
suite that introduces specific protocols and models for WSNs [111]. An INET
compound module representing a generic wireless node comprises modules
that are grouped in packages, organized according to a simplified ISO OSI
model, and interacting through cMessages (a class of message objects repre-
senting events, messages, or jobs in a simulation), as depicted in Figure 3.4. In
addition, different device boards can be plugged at the physical level to man-
age INET node components ranging from wired/wireless physical interfaces
and radio antenna to sensors and actuators. SO features can be equivalently

INET
Node

<<uses>>

Application
Module

Transport
Module

Network
Module

Link Module

Physical
Module

Configuration
File

cMessage

Device Board<<uses>>

<<uses>>

1..*

1..*

1..*

1..*

1..*

1..*

1..*

Fig. 3.4. INET node metamodel

represented via the ACOSO-based SO and the INET node metamodels, as
depicted in Figure 3.5. However, the transition from an agent-based SO to an
INET node must be guided by a preliminary mapping phase. Table 3.2 shows
these guidelines for the transition from modeling to simulation for IoT system
designers; the definition of automatic translation rules is beyond this thesis
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scope but it is a future work (an automatic transition, whenever possible, may
speed up the ACOSO-Meth application but keeping the same effectiveness).
In detail, both ACOSO-based SOs and INET nodes are state-based entities
whose evolution and interactions are driven by messages (ACOSO Events
and INET cMessages, respectively) flowing among their components. In both
cases, these components constitute modular and versatile architectures and
allow the implementation of SO-based IoT systems of different scales in differ-
ent application scenarios by just reusing or re-implementing some pluggable
blocks. In particular, specific SO services can be implemented via UserDefined-
Tasks within ACOSO-based SOs as well as through application level modules
in INET nodes. New SO communication protocols can be introduced by de-
veloping related CommunicationAdapter in the ACOSO CMS or by adding
a new transport/network/link module to the INET node stack. Likewise, SO
sensing/actuation devices can be managed through the ACOSO DMS and its
DeviceAdapters or through specif device boards connected to the INET nodes
physical level. Finally, SO data coming from computation or communication
activities as well as SO configuration setups and parameters are managed by
the ACOSO KMS while they are stored and queried into configuration files in
the INET node. In brief, simulating an ACOSO SO in OMNeT++ requires
a minimal effort since the similarities between SOs/agents and OMNET++
network nodes is straightforward. Indeed, only the SO application logic needs
to be defined in terms of OMNeT++ application modules, while issues related
to the transport, network and physical layers (including challenging aspects
like the node energy management, the physical modeling of obstacles that
interfere with wireless signal transmission, etc.) are directly managed by the
simulator.

3.4 Implementation phase

To obtain the metamodel for supporting the implementation phase, the
ACOSO-based SO metamodel has been implemented by using the JADE plat-
form [107]. JADE has been selected mainly for the following reasons: (i) it is
an FIPA-compliant, well-known and Java-based agent middleware; (ii) it is
open-source, has a spread community and, over the years, has evolved (e.g.,
JADEX [112], JADE-LEAP [113]) to run atop heterogeneous computing sys-
tems such as Java Micro Edition-enabled and Android-supported devices, as
well as on sensor nodes constituting heterogeneous WSNs (Figure 3.6); (iii) its
middleware provides an effective agent-oriented management/communication
infrastructure, that comprises an Agent Management System (AMS), ACL-
based message transport system and Directory Facilitator (DF). In particular,
DF supports agent service discovery, and has been extended with an agent-
oriented interface [65] to allow SOs registration, indexing, and searching on the
basis of their functional and/or non functional features (e.g., Location, Fin-
gerPrint, and provided Services) reported in the High-Level SO metamodel
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Table 3.2. Mapping guidelines

SO functionality ACOSO-based SO INET node Rationale
Service provision Task Management

Subsystem (TMS)
Application
level module

Application logic
defining specific SO
services can be im-
plemented within
ACOSO UserDefined-
Tasks coordinated by
the TMS or within
INET modules located
at the application level

Communication Communication
Management Sub-
system (CMS)

Physical to
transport
level module

Communication with
SO itself or exter-
nal entities carried
out through ACOSO
events managed by the
ACOSO CMS (and
its Communication-
Adapters) or by INET
cMessages among
modules of every level

Sensing / Actua-
tion

Device Management
Subsystem (DMS)

Physical level
module

SO sensing/actuation
devices can be man-
aged by the ACOSO
DMS (and its De-
viceAdapters) or at
physical level module
in the INET node

Data management Knowledgebase
Management Sub-
system (KMS)

Configuration
files

SO data can be stored
and queried through
database managed by
the ACOSO KMS or
in configuration files in
the INET node

of Section 3.2. These features are represented through metadata descriptions
in a JSON [114], which is lightweight format, easy to read and to manu-
ally/automatically written, analyzed and generated. Indeed, differently from
general-purpose JADE agents, SOs have a strong situatedness and may seam-
lessly appear and disappear, but they may also evolve on the basis of some
learning models or extemporary interactions with other SOs. An enhanced Di-
rectory Facilitator, providing a dedicated and dynamic SO discovery service, is
thus fundamental. The metamodel shown in Figure 3.7 refers to JADE-based
implementation of the ACOSO-based SO metamodel, named JACOSO. Con-
sidering the inheritance relationship from the ACOSO-based SO model and
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Fig. 3.5. Layered view of (a) the ACOSO SO Architecture and (b) the OMNeT++
Node Architecture

Fig. 3.6. JACOSO three-layered architecture
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the JADE components, hereinafter we present only the implementation com-
ponents that characterize the JACOSO SO metamodel with reference to the
related macro-components:

� SO Basic Info is spread between the JADE-based agent itself and an
internal knowledge base. The latter contains also the current values of
the variables constituting the inference rules required for an SO decision-
making process. Information, inference rule variables and configurations
that need to be provided at the SO instantiation (e.g., for the JACOSO
SO devices), are set by ConfiguratorTask.

� SO Service is defined as UserDefinedTasks implemented as JADE-based
behaviors. The application logic encapsulated in UserDefinedTasks can ex-
ploit the JACOSO SO inference rules required for the SO decision-making
process by interacting with InferenceRuleTask.

� Augmentation is handled by the DeviceManager which, by means of dif-
ferent DeviceAdapters, interfaces JACOSO SO with heterogeneous aug-
mentation devices. In particular, BMFAdapter and SPINEAdapter allow
the management of Wireless Sensor and Actuator Networks (WSANs) and
Body Sensor Network (BSN) respectively through BMF (Building Manage-
ment Framework) [115] and SPINE (Signal Processing In-Node Environ-
ment) [116] frameworks. BMF is a domain specific framework, expressly
conceived for the management of WSAN in the context of environment
monitoring and building automation; while SPINE is designed for effi-
cient management of BSNs. Both SPINE and BMF comprise networks of
heterogeneous devices (e.g., Shimmers, Telos-B and MICA2 sensor motes,
Android-based devices, and conventional computers) based on typical IoT
standards (e.g., IEEE 802.15.4, ZigBee, 6LowPan, Bluetooth) [117] and
they interact with JACOSO by means of the related deviceAdapters.

� SO Communication is handled by the CommunicationManager which en-
ables JACOSO SO to flexibly support different communication patterns
by just implementing appropriate CommunicationAdapters. In particular,
ACLCommunicationAdapter allows a direct message passing of ACLMes-
sages [92] between a sender and receiver; TopicPSAdapter, instead, realizes
an asynchronous one-to-may communication in which ACLMessages sent
by a publisher are only received from those who have subscribed the re-
lated topic and operate in the same platform. JACOSO guarantees high
versatility, allowing the implementation of SOs and IoT systems of differ-
ent scales and within different application scenarios just by re-using and/or
re-implementing some components. Such components that can model new
SO functionalities are indicated as hot-spots and are (i) ConfiguratorTask
that sets up specific SO Basic Info, SO components and Tasks at the SO
instantiation time; (ii) UserDefinedTasks that encapsulate a specific SO
application logic; (iii) CommunicationManager, because it should be set
up to handle new CommunicationAdapters realizing other communication
patterns (e.g., web services and sockets) beside or instead of the existing
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ones (direct message passing and publish/subscribe); and (iv) DeviceM-
anager if other DeviceAdapters are introduced to interface JACOSO SO
with specific devices. On the opposite, JACOSO architectural blocks that
do not need to be changed are the so-called frozen-spots.

Fig. 3.7. Implementation phase: JACOSO SO Metamodel

3.5 Discussion

In the previous subsections a set of metamodels, each of which is functional to
a different development phase, has been presented. Here, the relations among
the entity concepts in the different phases will be explained. Indeed, from
analysis to implementation, SO-related concepts evolve, being refined from
high-level abstractions to implementable software components. In Table 3.3,
such concepts are listed and hence their mapping to different development
phases of analysis, design and implementation is presented. First, it should
be noted that an SO at the analysis phase is described as a very abstract
entity, becoming an agent only at the design phase: since the High-Level SO
Metamodel is unbound from any paradigm, it may be used as a reference
model, similar to AIOTI [38] and IoT-A [66] ones. Moreover, the abstract SO
User introduced at the analysis phase is further replaced by an agentified user
(ACOSO SO, if it aggregates and exploits other SOs) at the design phase
and by a JADE agent at the implementation phase (JACOSO SO, if it ag-
gregates and exploits other SOs). SO Basic Info, individually described in a
High-Level SO Metamodel, is spread between the SO itself and its knowledge
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base in the design and implementation phases. Regarding the augmentation,
SO devices are simply reported at the analysis phase while their management
(DeviceManagementSubsystem and DeviceEvent) and actual interfacing (De-
viceAdapters and DeviceManager) are elicited respectively in the ACOSO-
based and JACOSO SO metamodels. SO communication features, not explic-
itly highlighted at a High-Level SO metamodel, are introduced at the design
and implementation phases.

Indeed, an ACOSO-based SO Metamodel presents a Communication-
ManagementSubsystem exploiting ExternalEvents and InternalEvents while a
JACOSO-based SO Metamodel introduces the CommunicationManager, cus-
tomizable CommunicationAdapters, and FIPA-compliant ACLMessages in-
frastructures. Finally, an SO Service concept is first abstractly presented in
terms of operations and QoS indicators at the analysis phase and then refined
as an application-level UserDefinedTask and ServiceEvents at the design and
implementation phases. With regard to the fulfillment of SLRs and TLRs dis-
cussed in Section 2.4, ACOSO-Meth provides a systematic and full-fledged
approach (SLR6) to the SO development, exploiting (i) the agent abstrac-
tion to virtualize and homogenize the different SOs to be developed (SLR1);
(ii) a flexible and modular communication infrastructure (comprising at de-
sign phase the CommunicationManagementSubsystem and at implementation
phase the Communication Manager with its CommunicationAdapters) to en-
able voluntary communication among different paradigms and data formats
(SLR2 and SLR5); (iii) a customizable augmentation infrastructure (compris-
ing the DeviceManagementSubsystem at design phase and DeviceManager
with its DeviceAdapters) to enable interoperability among heterogeneous IoT
devices (TLR1); (iv) well-known FIPA-compliant interfaces and ontology to
straightforwardly access SOs functionality, historical and contextual informa-
tion (leveraging at design phase on the KBManagementSubsystem and at
implementation phase on SO internal knowledge bases, SLR3 and SLR4); (v)
the ACOSO-middleware (in particular its domain-neutral metamodels and
programming techniques) and the JADE facilities (e.g., AMS and DF) to
speedup SOs prototyping and evolution (TLR4), and support their augmen-
tation variation (TLR2) and decentralized management (TLR3); and (vi) a
revised scale concept to unambiguously characterize SO-based IoT systems
and possibly enable their comparison (SLR7 and TLR5).
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3.6 A methodology extension: towards Opportunistic
IoT services

IoT services represent a novel class of customized, pervasive, cyberphysical
services, promising to play a crucial role within IoT ecosystems: however, some
essential concepts, as highlighted in Section 2.3.1, have been so far overlooked
by the available IoT service models.

In such direction, this Section introduces a novel “Opportunistic” IoT ser-
vice definition and proposes a novel approach [50, 118] to fully support IoT
service development, comprising two main steps: (i) metamodeling, in which
high-level representations are provided, mainly for descriptive purposes, to
outline a service overview particularly suitable for the analysis phase; and
(ii) operational modeling, in which services are formalized following specific
notations to support the further phases of service design, verification and
simulation. These two steps (based on the same concepts but presented from
two different perspectives) are both centered around innovative cyberphysical
IoT services involving heterogeneous entities, generally defined “IoT Entities”,
within a certain “IoT Environment”, to be detailed later, as depicted in Fig-
ure 3.8. Similarly to models surveyed in Section 3.6, we consider IoT services
as interfaces for making an IoT Entity’s functionality accessible by other IoT
Entities. Conversely, our IoT service model is the first that explicitly consid-
ers the following “Opportunistic” properties, crucial to capture the real IoT
service potentials but largely overlooked in the past:

1. Dynamicity, IoT services can be dynamically, and not a-priori, cre-
ated/activated;

2. Context-awareness, any implicit/explicit information about the current
location, identity, activity, and physical condition of the involved IoT en-
tities should be considered;

3. Co-location, IoT services are created for being simultaneously exploited
by different IoT entities sharing the same (cyberphysical) resources in the
same location;

4. Transience, IoT services can last for a temporary time or till certain con-
ditions are met.

By integrating such considerations with the background surveyed in the Sec-
tion , we define an Opportunistic IoT Service as an interface that allows an
IoT entity to be engaged, under specific constraints and pre/post-conditions,
in a temporary, contextualized and localized usage relationship. The service
provision impacts the service provider(s), service consumer(s) (and, in some
case, third parties indirectly involved to the service provisioning), by modifying
their properties and/or their status.
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Fig. 3.8. Proposed IoT Service model

3.6.1 Opportunistic IoT service modeling

IoT Entity Metamodeling

IoT Entities synergically interact within the IoT Environment, providing and
leveraging IoT Services according to their own features (namely static/dynamic
attributes) and cyberphysical functionalities (namely entity capabilities sub-
ject to specific conditions or constraints). To provide more customized mod-
eling, and differently from the surveyed related works, IoT Entities are cate-
gorized into Humans, Pets (both involved uniquely in service consuming) and
Things (acting as IoT service “prosumers”). Figure 3.9 depicts the aforemen-
tioned IoT Entities classification and their role in the IoT Service provision. In
their turn, Things can be further classified into Smart Objects and Computing
Systems. In particular, Computing Systems are conventional PC, notebooks,
servers, etc. They are usually described by means of features like IP/MAC
addresses, software and hardware specifications, exposing their functionalities
(typically computation) locally or remotely on the Web. Smart Objects (SOs),
instead, are everyday objects augmented with sensing/actuation, processing,
storing, and networking functionalities. Because of their capabilities, cyber-
physical nature and pervasiveness, SOs are primary service prosumers in an
IoT scenario.

To consider all the information that could be relevant for the IoT Service
provision, the SO metamodel of [3] has been extended in Figure 3.10 by adding
(i) in the FingerPrint category, the Constraint (defines an SO static constraint
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Fig. 3.9. IoT Entities and their roles in IoT Service provision

that, if violated, prevent the SO from working, such as electric voltage, and
maximum SO work temperature), and Preference (helping choose between
alternatives options, properties, modalities, e.g., a SmartCar with a preferred
fuel brand) fields, where a preference is not necessarily stable over time and,
as opposed to a Constraint, it can be disregarded; and (ii) in the Service
category, the Service Model and Service Profile fields, with the same purposes
of [45].

IoT Environment and Context Metamodeling

Differently from the conventional computing services, usually loosely impacted
by context-awareness, co-location or transience, IoT Services are actually and
opportunistically tightly related to the IoT Environment. It represents the
physical environment without any augmentation (e.g., a parking area, an agri-
cultural field, and an industrial warehouse) in which IoT Entities and Physical
Elements (e.g., trees, unanimated obstacles, and weather phenomena) are co-
located during the IoT Service provision. Context, instead, represents a set of
dependencies among IoT services and both IoT Entities and the IoT Environ-
ment. Indeed, service provision is expected to exploit any implicit or explicit
information regarding IoT Entity, IoT Environment, or other IoT Services.
For example, an IoT Service can be influenced from an IoT Entity constraint
or preference, as well as from the dimensions of the physical environment.

IoT Service Metamodeling

Each IoT Service is featured by a Service Profile and a Service Model (extend-
ing the one reported in [2]), such that it can be accurately described, auto-
matically discovered, consumed or composed. The Service Profile contains the
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Fig. 3.10. Smart Object modeling and main features related to IoT Service provi-
sion (in red the extensions with respect to [3])

main attributes describing the IoT Service itself and the relationships between
the service provision and the involved IoT Environment. In detail:

� Service Name: it refers to the name of the IoT Service that is being offered.
It can be used as services identifier;

� Service Description: it provides a brief human-readable description of the
IoT Service;

� Service Category: it refers to an entry in some IoT Service ontology or
taxonomy (e.g., monitoring, and payment);

� Service Parameter: it describes the quality parameters provided by the IoT
Service (e.g., latency, and precision);

� Service Input: information required for the IoT Service execution;
� Service Output: information generated as output of the IoT Service exe-

cution;
� Service Precondition & Service Context Precondition: functional and IoT

Entity-related conditions required for a valid IoT Service execution;
� Service Effect & Service Context Effect: events involving IoT Entities

which result from the IoT Service execution;
� Service Provision Constraint: IoT Entity’s constraint that is relevant to

the IoT Service execution.

The Service Model, instead, contains details about a process, namely the
operation(s) concretely implementing the IoT Service. In detail:

� Process Id: it identifies the process;
� Process Input: it specifies the information that the Process requires for its

execution;
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� Process Output: it specifies the information generated from the Process
execution;

� Process Precondition: it specifies the condition under which the Process
has place;

� Process Effect: events or changes to the state of IoT Entities that result
from the Process execution.

IoT Service Operational Modeling

For a number of reasons, IoT services promise to be notably more compli-
cated, heterogeneous and large-scale than conventional ones. First, the IoT
service deployment phase is obviously notably complex, time-consuming, and
error-prone, comprising not only software distribution but also the configura-
tion of (even thousands of) heterogeneous devices according to their specific
resources and surrounding environment [103, 119]. Second, IoT service provi-
sions cannot underestimate several issues related to the network size, density,
and topology, as well as failures and changes to service working conditions,
that are difficult to be described through static metamodels [109, 119]. Third,
IoT services require to completely adhere to their expected provisions, since
they perform cyberphysical actuation in time-sensitive, critical environments
[44]. It follows that the static and descriptive, yet accurate and expressive,
IoT service metamodels need to be complemented by operational IoT service
models for paving the way toward verification and simulation phases.

Considering that IoT Entities and Service interactions are typically (asyn-
chronously) event-driven and time-dependent (namely influenced by the cur-
rent state and previous history), IoT systems may be formally modeled as
DESs (Discrete Event Systems)[120]. Indeed, DES formalization allows de-
scriptive models to be mapped into operational representations, enabling the
subsequent verification and simulation by means of different computing tools.
Essential elements in DESs are the (discrete) Event set Ev and the (discrete)
States Space Ss. Ss comprises all the services states (e.g., activation, ready,
execution, and aborted) that can be reached according to the possible events
(e.g., input received, computed value out of threshold, physical constraint vio-
lated, etc.) included in Ev. Doing so, it is possible to model, verify and simulate
IoT Services by taking into account relevant elements defining their Service
Profile and Service Model (e.g., service/process input, output, preconditions,
and effects), as well as important IoT Entity features (e.g., constraints, and
preferences locations). In Figure 3.11, an example Opportunistic IoT Service
S involving an IoT Entity E and an IoT Environment Env is modeled as a
DES through a finite state automaton. Essential elements in DESs are the
(discrete) event set Ev and the (discrete) state space Ss. In the proposed ex-
ample, Ss comprises five service states (service activated, ready, in execution,
terminated, and aborted) that are reached according to seven possible events,
related to S, E and Env, which constitute Ev. Indeed, service S is activated
only if functional preconditions p1 and p2 (indicated as servicePreconditions,
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following the service model notation of [45]) are satisfied and it is executed
only if entity E provides an input within 30 seconds. In such case, the service
execution impacts E and Env. If E provides no input within 30 seconds (rep-
resenting by over-lining the related event ev4) after the service execution or,
in the meanwhile, its physical constraint c1 is violated, then S is aborted. Any
context change occurring during the service execution requires a new input
from E.

Petri nets and their extensions (e.g., for dealing with real time and stochas-
tic systems) represent an excellent model for DESs and provide a well-
established suite of tools for their formal verification [121, 122]. Future works
will also explore advanced operational models for large-scale collective adap-
tive systems, such as the work in [119].

Fig. 3.11. Abstract IoT Service modeled through an FSA

3.7 Summary

This chapter has introduced the application domain-neutral, agent-oriented
and metamodel-based ACOSO-Meth methodology for SO-based IoT systems
development. By exploiting the ABC paradigm (whose features allow to
straightforwardly instill smartness and autonomy within a single SO and thus
realize cognitive and autonomic IoT systems) and the ACOSO middleware’s
agent-oriented modeling and programming techniques, ACOSO-Meth signif-
icantly facilitates and speeds up all the development phases leading to the
actual and full-fledged engineering of an IoT system. Three levels of SO meta-
models (respectively linked to the analysis, design and implementation phases)
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have been proposed, providing a seamless support among the different phases
of SO development process. In addition, since many design decisions affect-
ing the final configurations of under development SOs and IoT systems can
be taken as a result of simulations, a hybrid approach for straightforwardly
simulating an ACOSO SO in OMNeT++ has been presented. Furthermore,
considering that services are the real IoT drivers, an extension of the ACOSO-
Meth has been presented, proposing a novel full-fledged approach that support
opportunistic IoT Service development by means of descriptive metamodels
and operational models. They allow testing (and thus, better designing and
understanding) IoT services before their actual implementation so as to in-
spect important issues related to the network size, density, and topology, as
well as failures and changes to service working conditions.

The effectiveness and efficiency of ACOSO-Meth in supporting the devel-
opment of IoT ecosystems of different complexities and scales will be proved
in the next chapter of this Thesis by means of four use cases referring to
different application contexts.
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4

Smart and Interoperable IoT Ecosystems

This chapter emphasizes how the proposed ACOSO-Meth is actually able to
support the development of heterogeneous IoT ecosystems and related services
in different application contexts. Indeed, one of the main goal of ACOSO-Meth
is to provide a domain-neutral methodology that can seamlessly support the
analysis, design, and implementation phases through a modular and versatile
approach.

Therefore, some interesting use cases improving the current state-of-the-
art have been (fully or partially, according to their specific needs) realized
following the ACOSO-Meth development approach, and they have been re-
ported hereinafter.

4.1 Smart Unical

The application of ACOSO-Meth for engineering a complex Smart University
Campus IoT ecosystem, specifically prototyped at the University of Calabria
and named Smart UniCal, is presented in the following. Several references
to Smart University/Smart Campus scenarios are available in the literature
[123], [124], [125], [126] and [127] and, regardless of particular goals or im-
plementations, they all present “comfortable and user-tailored environments,
rich in innovative services”. Our Smart UniCal system (Figure 4.1) is an
aggregated SO composed by a Smart Bridge (dotted yellow bordered area)
and Smart Departments (yellow bordered area), spanning multiple adjacent
buildings, which contains smart rooms such as Smart Lab and Smart Office.
Smart UniCal SOs have been characterized respectively in “L”arge (i.e., the
SmartBridge), “M”edium (i.e., the SmartDIMES) and “S”mall scale (i.e., the
SmartSenSysCalLab) SOs, according to the considerations reported in Sec-
tion 2. In particular, Table 4.1 reports the list of services provided by Smart
UniCal SOs:

� SmartBridge provides a cyberphysical service for a structural health mon-
itoring [128] purpose;
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Fig. 4.1. The Smart UniCal infrastructure: the SmartBridge part (dotted yellow
bordered area) which crosses the SmartDIMES (yellow bordered area with building
identification codes)

� SmartDIMES (Department of Informatics, Modeling, Electronics and Sys-
tems Engineering), namely a Smart Department, provides a cyberphysical
service to remotely control department spaces and facilities, e.g., HVAC
(Heating, Ventilation and Air Conditioning) systems and lights, aiming to
save energy; and

� SmartSenSysCalLab, namely a Smart Lab, provides cyberphysical services
to laboratory users who are supported in their daily activities.

It should be noted that the domain-neutrality of the ACOSO-Meth and
ACOSO middleware allows supporting the development of the different kinds
of Smart Unicals SOs and related services by keeping the same methodologi-
cal approach and by exploiting the same metamodels and programming tech-
niques. In the following, the descriptions of the SmartBridge in the analysis,
design and implementation phases are provided according to the ACOSO-
Meth. Finally, the Smart UniCal performance evaluation is presented.

Table 4.1. Smart Objects constituting Smart Unical along with their provided
services

Scale Smart Object Service Description

S SmartSenSysCalLab
smartWellness Correct lifestyle suggestions
smartComfort Workplace conditions improvement

M Smart DIMES smartMonitoring Indoor environmental monitoring
L Smart Bridge smartVibration Bridge vibrations monitoring
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4.1.1 Analysis phase

Smart Bridge (Figure 4.2) is a large-scale SO physically based on the “Pietro
Bucci” bridge, which crosses the Unical campus for 1.22 Km, linking to-
gether all the 14 university departments (spread among different building
units called cubes). Its Administrator can query its status, specifically the
currently recorded vibration, or use the smartVibration service for monitoring
the bridges structural health [128]. Service smartVibration allows the analysis
of the vibrations generated by the transit of vehicles and pedestrians upon the
bridge. If the sensed vibrations reach warning thresholds, the service notifies
such event to the Administrator. In order to provide such service, Smart-
Bridge is augmented through different devices, including accelerometer sensor
nodes and laptop base stations, coordinated by a PC acting as a main co-
ordinator. In more details, smartVibration service has two basic operations:
getVib that exploits accelerometer sensors on the bridge to accurately sense
the vibrations, and vibAnalysis that exploits SmartBridges computing devices
to elaborate the raw vibration data acquired and to compare them with the
defined thresholds. The getVib operation has a response time in the order
of second while vibAnalysis detects all the vibrations exceeding the warning
thresholds with 100% accuracy.

Fig. 4.2. High-Level SmartBridge Metamodel at analysis phase.
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4.1.2 Design phase

SmartBridges High-Level metamodel is refined at the design phase, resulting
in Smart Bridges ACOSO-based metamodel as shown in Figure 4.3. In par-
ticular, SmartBridge is modeled as an ACOSO-based agent and SO Users as
generic agents. The smartVibration service and the vibAnalysis and getVib re-
lated operations are modeled as UserDefinedTasks (smartVibrationTask, vib-
AnalysisTask and getVibTask respectively) driven by the corresponding Ser-
viceEvents (getVibEvent and vibAnalysisEvent). The vibrationSensingEvent,
instead, allows interfacing the accelerometer sensors with SmartBridge, e.g.,
providing the raw vibration sensed data.

Fig. 4.3. ACOSO-based SmartBridge Metamodel at design phase.

4.1.3 Implementation phase

Smart Bridges ACOSO-based metamodel is refined at the implementation
phase, resulting in Smart Bridges JACOSO-based metamodel (Figure 4.4).
In particular, in this phase the generic agentified SmartBridge is specialized
into a JADE-based agent, as well as the agentified SO User. ACLCommu-
nicationAdapter allows SmartBridge exploiting a direct ACL-based messages
exchange mechanism. SmartBridgeInferenceRuleTask contains both inference
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rules required for a SmartBridge decision-making process and current values
of the variables constituting such inference rules. UserDefinedTasks (smartVi-
brationTask, vibAnalysisTask and getVibTask) implementing smartVibration
and related events (vibAnalysisEvent and getVibEvent) are modeled as JADE
Behaviour, while BMFAdapter interfaces SmartBridge with its devices. In-
teraction diagram of Figure 4.5 illustrates the methods realizing the Smart
Bridges Smart Vibration service.

Fig. 4.4. JACOSO-based SmartBridge Metamodel at implementation phase.

4.1.3.1 Technical implementation details

In the following, some key technical implementation details of the Smart
UniCal system, related to the used IoT devices and to the implemented
JACOSO-based software components, are described. In particular, Figure 4.6
shows some technical deployment snapshot of the IoT devices of SmartBridge,
SmartDIMES and SmartSenSysCalLab.

Table 4.2 shows the characteristic of main hardware/software devices. Such
heterogeneous IoT devices along with Android-based devices and conven-
tional computers adopting different technologies (e.g., IEEE 802.15.4, Wifi,
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Fig. 4.5. Interaction diagram of the Smart Bridges Smart Vibration service.

Fig. 4.6. Snapshot of the IoT devices of (a) SmartBridge, (b) SmartDIMES and
(c) SmartSenSysCalLab
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and Bluetooth) and managed by different frameworks (i.e., SPINE [116] and
BMF [115]) have been made interoperable through the related deviceAdapters
provided by the ACOSO middleware, independently from low-level network
protocols or different communication paradigms through the exploitation of
the related communicationAdapters. We focus on the implementation of the
following services: (1) smartVibration service of SmartBridge, (2) smartMon-
itoring service of SmartDIMES, and (3) smartWellness and the smartComfort
services of SmartSenSysCalLab.

1. smartVibration is based on the data gathered by 90 Crossbow MICA2
devices. Every 27 meters, two of them are deployed facing each other and
laying on a metallic beam that transversely passes through the axis of
the bridge (Figure 18(a)). Such network of Crossbow MICA2 devices is
managed by 9 notebooks (placed in rooms in front of the bridge such that
each notebook can manage data of its closest 10 motes), hosting the BMF
application and collecting the data, while a central PC acts as a main coor-
dinator and hosts the SmartBridge SO application. Each notebook works
in a different subnetwork and all the notebooks interact with the main co-
ordinator through an IP-based WiFi UniCal Intranet; Crossbow MICA2
devices, instead, are connected to their associated notebook through the
802.15.4 wireless protocol. Totally, 20 non-overlapping subnetworks have
been used to realize this service.

2. smartMonitoring is based on 43 Telos-B-based indoor environmental sen-
sors, i.e., humidity, temperature, light, and presence sensors, and on 20
Telos-B-based actuators (i.e., smart plugs) deployed within 18 DIMES
rooms (Figure 18(b)). In detail, at least two devices (one sensor and one
actuator) have been deployed for each of the 18 monitored environments,
located in different cubes. Each monitored environment is associated to a
laptop (the environments located at the same floor of the same cube share
the same one) hosting a base station and running the BMF application
(totally, ten laptops have been used and interconnected through 10 over-
lapping subnetworks). Each laptop interoperates with the associated sen-
sors/actuators through the BMFAdapter: it allows the collection of sensed
data from the sensing devices to the base station, and the forwarding of
commands from a base station to actuating devices. The SmartDIMES ap-
plication is hosted in a separate laptop. The SmartDIMES administrator,
through such application, can transparently manage all the environments
and send both request and configuration messages to the deployed Telos-B
motes and smart plugs.

3. smartWellness provides customized and real-time hints to SenSysCal lab
users by displaying notifications on their personal smartphones and/or
laptop monitors. Data coming from 12 light/presence Telos-B sensors (one
for each of the ten SenSysCal desktops, one at the entrance and one in the
middle of the lab) and from 30 users wearable Shimmer sensors (three for
each user, placed at user wrist, waist and leg) are forwarded by means of
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BMFAdapter (environment data) and of SPINEAdapter (wearable data),
to a base station. The base station is a laptop running the SmartSen-
SysCalLab application that collects the overall data, elaborates them and
sends back customized notifications to users (specifically, on their Twit-
ter profile or on the computer screen placed on their desktop). The same
base station, in the context of a smartComfort service and through BM-
FAdapter, periodically queries the light intensity value to every Telos-B
sensor deployed atop one of the 12 user desktops. In case of poor lighting,
the corresponding desktop lamp is switched on through its smart plug. The
aforementioned devices that contribute to realize the SmartSenSysCalLab
services (Figure 18(c)) are connected to the local laboratory subnetwork.

Table 4.2. Main hw/sw characteristics of the IoT devices used to implement Smart
Unical SOs and their service

Device Main characteristics SO/Services
OS : TinyOS.

CPU : Atmel Atmega 128L (8 bit bus, 8MHz clock).
MICA2 Memory : 4K Ram 128K Flash 512K EEPROM. SmartBridge/ smartVibration

Radio: 802.15.4 compatible CC2420.
Expansion board (2-axis accelerometers).

Battery : 2X AA batteries (4000-5000 mAh in total, depending on the cell).
OS : TinyOS.

CPU : TI MSP430F1611 (16-bit bus, 4-8MHz clock). SmartDIMES/ smartMonitoring
Telos-B Memory : 10K Ram 48K Flash 1M EEPROM.

Radio: 802.15.4 compatible CC2420.
On-board sensors (humidity, temperature light sensors). SmartSenSysCalLab/ smartComfort

Battery : 650 mAh.
OS : TinyOS.

CPU : TI MSP430F1611 (16-bit bus, 4-8MHz clock).
Shimmer Memory : 10K Ram 48K Flash. SmartSenSysCalLab/

Radio: 802.15.4 compatible CC2420. smartWellness
On-board sensors (3-axis accelerometer)

Battery : 650 mAh.

4.1.3.2 Performance evaluation

As presented in Section 4.1.3, ACOSO-Meth is based on a JACOSO SO Meta-
model for system implementation, deployment and execution. In the following,
the Smart UniCal performance evaluation is presented to assess the suitabil-
ity of the ACOSO-Meth implementation phase in actually supporting efficient
small-, medium- and large-scale IoT systems. Indeed, SmartBridge, Smart-
DIMES and SmartSenSysCalLab SOs and their aggregated IoT devices, are
evaluated when providing their specific services (see below). However, in or-
der to define the proper scenario size (number of SOs and their distribution
in different subnetworks) that effectively enables the developed services, pre-
liminary tests were conducted to evaluate SOs performance, thus analyzing
possible bottlenecks (Figure 4.7 in the information exchange (IE) phase.

Please note that the deployment stage and performance evaluation require
a significant effort, especially due to the number of SOs involved: fortunately,
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Fig. 4.7. SmartSenSysCal, SmartDIMES, and SmartBridge performance evaluation
considering different communication paradigms (C/S or P2P) and MGR models (D
or N)

we can leverage on our previous experience in the fields of WSNs and cyber-
physical systems [115, 116, 81, 12] to speed up the identification of operation
modalities and performance indices, as well as the SO monitoring and data
gathering. In particular, we considered SOs exchanging 2KB fixed length sim-
ple FIPA-compliant data messages by following either a Client/Server (C/S)
or a Peer-to-Peer (P2P) paradigm. As some services are intrinsically central-
ized or distributed, they can be implemented following either a C/S or a P2P
paradigm. Moreover, we considered IoT device data sources (or simply data
sources) with either stochastic normal distribution (N, with mean = 0.5 msg/s
and variance = 0.2 msg/s) or deterministic (D, 1 msg/s) message generation
rate (MGR) models. Given the communication paradigms and MGR models,
we focused on two fundamental network-oriented performance indices for dis-
tributed SOs when providing specific services collaborating with each other:
(i) message delivery ratio (MDR); and (ii) round trip time (RTT). In Figure
4.7, however, only the RTT values calculated in small- (SmartSenSysCalLab),
medium- (SmartDIMES), and large-scale (SmartBridge) scenario are shown,
as the MDR values are always 100%, being JADE communications based on
TCP connections, thus fully reliable. Figure 4.7(a) highlights how the increase
of the involved SOs in the small-scale scenario adversely affects RTT, which
rapidly grows due to the network congestion. In Figure 4.7(b), differently from
Figure 4.7(a), where SOs are supported by just one network within a squared
grid of side 10 m, SOs are now distributed in 10 different sub-networks within
a squared grid of side 250 m. In such a deployment area, it happens that ad-
jacent networks interfere with each other, since their coverage radii overlap.
Nevertheless, a better SO distribution implies less congestion and lower RTT.
For example, the RTT of 100 SOs distributed in 10 subnetworks is definitively
lower than the RTT of the same number of SOs deployed in one network. Fi-
nally, in the large-scale scenario of Figure 4.7(c), the SOs are distributed in
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20 non-overlapping subnetworks within a squared grid of side 1000 m. Dif-
ferently from the small- and medium-scale scenarios, in Fig 4.7(c), it can be
noted that increasing the number of SOs has a little impact on RTT. Com-
pared to the same configuration of a medium-scale scenario, RTT values are
lower. In fact, in a large-scale scenario, networks are deployed in a wider area.
Thus, they do not interfere with each other and consequently both congestion
and RTT decrease. For example, given 50, 70 and 100 SOs, RTT values in the
large-scale scenario significantly decrease by comparing those in the medium-
scale scenario. The aforementioned SOs performance evaluation has provided
important insights to define, for each SO and for each SO service, the best
operation modalities in the Smart UniCal ecosystem. Such modalities are de-
tailed in Table 4.3 by specifying: the number of embedded devices (#EDev),
number of involved subnetworks (#SubNets), evaluation time (EvTime), mes-
sage length (ML) and deterministic message generation rate (D-MGR). Given
the SOs and SO service operation modalities as shown in Table 4.3, the Smart
UniCal performances have been evaluated in terms of MDR and RTT, IoT
devices energy and memory consumption (base stations are powerful and less
constrained than motes and they are typically plugged to the mains electricity,
such that they can be easily recharged), and the provided results reported in
Table 4.4. Such performance indices have been chosen in order to characterize
SO performance both functionally and non-functionally: indeed, they provide
insights about services reliability and responsiveness (according to the perfor-
mance indices previously outlined to describe the IE phase), but also about
the required resources (energy and memory, in particular). The latter is a rele-
vant aspect considering that most of the IoT devices are resource-constrained.
The results reported in Table 4.4 confirm the RTT trends shown in Figure
4.7 and JADE message systems high reliability, being based on the TCP pro-
tocol. Then, the increase of #EDev adversely affects both RTT, which grows
due to the network congestion, and energy consumption, especially if also the
evaluation time increases (in the case of smartVibration services, the residual
energy is only slightly nicked since MICA2 capacity is bigger than those of
Shimmer and Telos-B ones).
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Table 4.4. Smart Unical performance evaluation

Service MDR RTT
(s)

Residual
Energy

Residual
RAM-
ROM

smartComfort (SmartSenSysCalLab) 100% 0.046 85% 63%-28%
smartWellness (SmartSenSysCalLab) 100% 0.059 57% 56%-17%

smartMonitoring (SmartDIMES) 100% 0.513 48% 60%-26%
smartVibration (Smart Bridge) 100% 0.507 87% 78%-12%

Moreover, EDev deployment on different SubNets affects RTT more than
#SubNets. In particular, by comparing the RTT values of SmartSenSysCalLab
and SmartDIMES, it should be noted that when #EDev scarcely doubles,
RTT increases tenfold; however, if there is no overlapping among the Sub-
Nets, then the performances are quite stable, even if #EDev and #SubNets
increase, as in the case of SmartBridge. SO lifetimes varies depending on the
provided service, devices batteries, operation modalities and scenario config-
urations as reported in Tables 4.2, 4.3. In particular, we have defined the
Residual Energy of an SO X providing a service s by exploiting (all or a set
of) its different Di devices as

RE(Xs) = min{batteryD1..batteryDn} (4.1)

where batteryDi is the amount of power currently left in a Dis battery that
enables its correct working [129] in the context of service provision. Given
such definition, RE(Xs) can vary from 100% (all SO devices involved in the
service provision are full of energy) to 0% (at least one SO device has an en-
ergy shortage preventing it from correct working). With regard to the Smart
Unical and testing, for the sake of simplicity, each SO in providing only a
single service, SO service provision varies from 18 hours (SmartSenSysCalLab
providing only the SmartWellness service) to 92 hours (SmartBridge provid-
ing only the SmartVibration service). Finally, memory consumption results
highlight that IoT devices have enough free memory to deploy other in-node
services or customized extensions.

4.2 Smart Digital Libraries

Digital Libraries (DLs) are distributed software infrastructures that aim at
collecting, managing, preserving, and using digital objects (or resources) for
the long term, and providing specialized services on such resources to its users
[130]. Currently, DLs include not only books and digitalized textual docu-
ments, but also a wide range of digital objects: text document, image, audio,
video, software, etc. [131]. In the IoT context, SOs represent a novel type
of digital resources, since during their lifecycle they can produce continuous
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streams of geolocalized and contextual data also related to their use and their
surrounding environment, providing different cyberphysical services to their
users. Including SOs, the newest type of digital objects, into DLs could have
a twofold implication:

� on the one hand, it would allow DLs to acquire a plethora of novel con-
tent creators/consumers, since it is expected that billions of SOs will soon
impact our daily life;

� on the other hand, it would allow end users to acquire a valuable tool to
simplify the complex SOs management, exploiting the functionalities that
DLs provide for their traditional contents.

The SOs inclusion into DLs as novel first-class objects to be collected, man-
aged, and preserved is therefore notably promising yet challenging. In such
direction, this case study presents an approach for the inclusion of SOs into
DLs which would enable effective discovery, querying and management of SOs
based on typical DL tools and facilities [67, 68, 69]. To the best of our knowl-
edge, this approach, although currently focused just to the analysis phase,
represents the first research effort for the integration of SOs into DLs, thus
seeking towards novel cyberphysical DLs, or Smart DLs (SDLs).

4.2.1 Analysis phase

The proposed inclusion approach is based on the ACOSO High-Level SO
metamodel because, as already presented in Section 3.2, it describes all the cy-
berphysical SOs characteristics (geophysical, functional, and non-functional)
through a set of metadata categories that can characterize an SO in any ap-
plication domain of interest (e.g., Smart Cities, Smart Factories, Smart Grid).
In particular, when instantiated, the ACOSO High-Level SO metamodel gen-
erates a well-defined but flexible SO metadata model, structured so as to be
easily manually or automatically generated, queried and managed. Moreover,
it is technology-neutral and can be implemented by using any data model-
ing language (e.g., XML, JSON). To exemplify the proposed approach, the
instantiation of an SO (SmartDesk) metamodel and related metadatamodel
(following the JSON format) are reported respectively in Figures. 4.8, 4.9.

The Smart Desk [68] is an SO located in the SenSysCal Lab at the Uni-
versity of Calabria (other specific information are equivalently reported in
Figures 4.8 and 4.8) and supports its user Antonio during his daily working
activities. In particular, the Smart Desk is equipped with a presence sensor
and provides a sensing service to check whether a user is at the desk (Pres-
enceDesk Service) and an actuation service to send messages, targeting the
desk user, onto the desk monitor (Visualization Service). There is only one
QoS Param defined which is the level of trust (in the range 0..1) of the Smart
Desk. According to the SmartDesk metamodel of Figure 4.8, the JSON doc-
ument reported in Figure 4.9 has six members associated with each of the six
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categories of metadata previously described (FingerPrint, PhysicalProperty,
Location, Status, Device, and Service).

Fig. 4.8. SmartDesk Model

In order to foster the seamless integration of SOs into existing DLs, the
proposed SO metamodel and metadata model have been made compliant with
the Digital Library Reference Model (DLRM) proposed by the DL.org com-
munity [132], that is currently the main reference model for architecting DLs.
In particular, the DLRM states that a DL is similar to an Organization, which
foundations are six core concepts or domains: Content, User, Functionality,
Policy, Quality, and Architecture, as depicted in 4.10.

The first five of them capture the features characterizing the DL and its
expected services. The Architecture, instead, captures the systemic proper-
ties underlying the expected services. The cornerstone of the DLRM as well
as the shared concept between the six DL domains is the Resource, which
models any element easily identifiable through an unique Resource ID. As
long as the Resource complies with the established specifications defined into
the Resource Format (an arbitrarily complex and structured schema usually
drawn from an ontology to guarantee a uniform interpretation), it may be
accessed, queried and managed. An SO, as compliant with the definition (and
also rationale) provided in the DLRM, can be straightly included as Resource
in a DL, uniquely identified through its FingerPrint, easily accessed, queried
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Fig. 4.9. JSON representation of a smart desk according to the SO metadata model

Fig. 4.10. Digital Library Main Concepts
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and managed by the DL entities as long as it complies with presented SO
metadata model. Table 4.5 shows a map of the aforementioned DL concepts
with the ACOSO High-Level SO metamodel and specifically for the Smart
Desk case study. Similarly, Tables 4.6-4.10 specifically map the DL domains’
main concepts.

Table 4.5. Mapping between the Resource DLRM Concepts, the Smart Object and
the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Resource Instance of Smart Object Instance of SmartOffice
Resource ID SmartObject FingerPrint SmartOffice FingerPrint:

� Identifier: Office1
� Type: SmartOffice
� Creator: SenSysCal
� Location: University of

Calabria, 41c
� QoSParameter: 0,95

Trustness

Resource Format Smart Object metamodel SmartOffice metamodel

The Content Domain (see Table 4.6) represents the various aspects related
to the modeling of information managed in the DL universe to serve the in-
formation needs of the active entities interacting within the DL, namely the
Actors. The main Resource of Content Domain is the Information Object,
which is an information item that seamlessly provides data to the DL Actors
by means of the functionality offered by the DL itself. Such interactions, orga-
nized according to different types of criteria, are displayed in different Views
and recorded by the Action Log, so allowing the Actor profiling. Specifically,
the SO is a novel Information Object that contributes to the production and
consumption of content that will be handled by the DL Actors through the SO
Services and the SO service requests could be monitored by the Action Log
over time so allowing the Actor profiling. Moreover, such content is suitable
for being contextualized or displayed in different Views.

The User Domain (see Table 4.7) represents the various aspects related to
the modeling of entities, either human or machines, interacting with any DL
system. In particular, the DL End-Users are the ultimate clients the Digital
Library is going to serve. Specifically, an SOs play a dual role within the DL
reference model, and specifically in the end-user domain: in fact, SOs are both
content creators, because they produce or update data and information, and
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Table 4.6. Mapping between the DLRM Content Domain Concepts, the Smart
Object and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Information Object Smart Object SmartOffice
Action Log When and how a specific

SO Service has been used
“When the LightService
has been used?”

Actor Profiling Who used specific a SO
Service

“Who used the LightSer-
vice?”

content consumers, as it often happens that they are themselves users of other
SOs or Resources in general.

Table 4.7. Mapping between the DLRM User Domain Concepts, the Smart Object
and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Actor Users (Smart Objects,
Humans, Digital Systems)

SmartOffice, Smart Desk,
Smart Whiteboard, Smart
Projector and Antonio

Content creator Smart Object SmartOffice w.r.t. Light
Services user

Content consumer Smart Object, Smart Ob-
ject Users

SmartOffice w.r.t. Pres-
ence Services user

The Functionality Domain (see Table 4.8) represents the various aspects
related to the modeling of facilities/services provided in the DL universe to
serve Actor needs. A Function is a particular operation that can be realized
on a Resource upon an Actor request. Functions can be specialized in two
main classes: the Access Resource Function and the Manage Function. The
first family of functions aims at finding Resources compliant to certain (static
or dynamic) features (Discovery), querying them (Search-Browse), retaining
the content retrieved through specific mechanisms (Acquire) and finally dis-
playing it (Visualize). The Manage Function, instead, supports the production
(Create), publication (Publish), updating (Update), configuration (Personal-
ize) and other basic operations related to the Resource lifecycle. It should
be noted that these functionalities are directly provided to the DL Actors
by the DL for each included Resource, on the basis of the information struc-
tured following the given Resource Format. Likewise, these functionalities are
not provided directly by the SO but by the DL, on the basis of information
structured in the proposed SO metadata model.
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Table 4.8. Mapping between the DLRM Functionality Domain Concepts, the Smart
Object and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Access Re-
source Functions
(discovery-search-
query-visualize)

The User exploits the DL
Discovery Function to dis-
cover a specific service;
hence, the User submit
a request to the Service
through the DL Query-
Function

The User queries the DL
for a specific services:
the DL Discovery Func-
tion finds that the inserted
criteria match with the
LightService metadata; so
the request is carried out
by the Query Function

Manage Functions
(create-publish-
update- personal-
ize)

The User specifies through
the Personalize Function
how to display the SO Ser-
vices usage

The User specifies through
the Personalize Function
the desired view (daily
or monthly) for display-
ing the LightService re-
quest output

The Policy Domain (see Table 4.9) represents a set of guiding principles
designed to organize actions in a coherent way and to help in decision making.
In particular, the User Policy defines possible User actions on the Resource.
The proposed SO metadata model is neutral with respect to the concept
of Policy. Few changes to the SO metadata model could be carried out to
regulate the interactions between the SO user and the SO services, according
to what is present in the reference DL model respectively with the User Policy
and Content Policy. In particular, one could implement the concept of Policy
by directly associating it to the SO User or SO Service entity, or binding it
outside of the SO metadata model, at the level of the DL.

Table 4.9. Mapping between the DLRM Policy Domain Concepts, the Smart Object
and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

User Policy SO Services enabled on
the basis of User degree of
reliability

SmartOffice w.r.t. to
LightService and Visual-
izationService access

The Quality Domain (see Table 4.10) captures the aspects that permit
considering DL systems from a quality point of view, with the goal of judging
and evaluating them with respect to specific facets. It represents the various
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aspects related to features and attributes of Resources with respect to their
degree of excellence. In particular, the DLRM provides Quality Parameter on
the Resources (Generic Quality Parameter), on the Information Object (Con-
tent Quality Parameter), and on the User (User Quality Parameter). The
proposed SO metadata model already contains two elements that refer to the
SO quality (QoS Parameter) and the quality of the SO Services (QoS Indi-
cator), in full agreement with the DL reference model that provides Quality
Parameters on the Resources (Generic Quality Parameter) and on the Infor-
mation Object (Content Quality Parameter). Regarding the User, the DLRM
presents a User Quality Parameter that could be easily imported into the SO
metadata model, for example by assigning each SO User a reliability value,
on the basis of which it is possible to define Policy and granting special rights
or access privileges to the SO Services.

Table 4.10. Mapping between the DLRM Quality Domain Concepts, the Smart
Object and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Generic Quality
Parameter

SO QoS Parameter Trustness value of QoSPa-
rameter

Content Quality
Parameter

SO Service QoS Indicator Accuracy value of Pres-
enceServices QoSIndica-
tor

The Architecture Domain (see Table 4.11) represents the various aspects
related to the software systems that concretely realize the DL universe. In
particular, it offers useful insights about how to develop new efficient DL sys-
tems and how to improve current ones. The inclusion of an SO within the
DL architecture presented in the DLRM may involve (i) the insertion of an
architectural Running Component, which represents a running instance of a
Software Component active on a Hosting Node, suitably designed, based on
the SO characteristics and equipped with specific interfaces, or (ii) the cre-
ation of a new component, currently not present in the reference architecture,
delegated to the SO virtualization [133].

Table 4.11. Mapping between the DLRM Architecture Domain Concepts, the
Smart Object and the SmartDesk ones

DLRM Concepts General Smart Object
Concepts

SmartOffice Concepts

Inclusion strategy Proxy-based inclusion Proxy-based inclusion
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4.3 Opportunistic IoT services

The modeling approach described in Section 3.6 has been applied for showing
its flexibility and effectiveness to the “Crowd safety” [118], “SmartConnectiv-
ity” [50] and the “SmartHealth” [134] opportunistic IoT services, which refer
to different IoT ecosystems (respectively a Smart City and a Smart Work-
shop) and pursue different goals (i.e., public safety, connectivity restoring and
health monitoring). In particular, these services exploit a smartphone-based
mobile IoT Gateway as fundamental buiding block, since it can continuously
collect data from heterogeneous wireless IoT devices and forward them over
different communication interfaces and standards.

4.3.1 Smartphone-based Mobile IoT Gateway

Within IoT ecosystems, interoperability among different standards and com-
munication technologies is still a significant challenge that we have started to
address by proposing a smartphone-based mobile gateway acting as a flexi-
ble and transparent interface between different IoT devices and the Internet
[134, 135]. Since smartphones are always connected, have a mass diffusion,
are equipped with several communication interfaces (e.g., Wi-Fi, NFC, Blue-
tooth) and have significant storage and computing capability [136], they are
ideal candidates to carry out the delicate task of linking the world of the Inter-
net and the world of “things”, resulting as a fundamental block in making the
so called Opportunistic IoT services. We developed an App based on Android
OS able to activate all the communication interfaces available on common
smartphones in order to collect data from different IoT devices as shown in
Figure 4.11. In particular, since smartphones available on the market do not
include the ZigBee radio interface, we equipped our smartphones with a Mi-
cro SD ZigBee card [137] in order to add a new radio interface well suited
for communication with environmental IoT devices such as the widely used
Waspmote [138]. Furthermore, biomedical and lifestyle data can be acquired
by setting the communication on the standard Bluetooth radio interface to
exchange data with IoT devices such as bangles, pedometers and scales or in-
tegrating the SPINE-android framework [116] within the smartphone-centric
application to communicate with specific Shimmer [139] wearable sensors well
designed to acquire high quality, biophysical and movement data in real-time.
The presented solution can continuously collect and forward data coming from
wireless IoT devices and sensors transmitting over different communication in-
terfaces and standards; moreover it can send control messages or data flows,
such as video streaming, to neighboring IoT devices in an opportunistic fash-
ion. It has been exploited in the use cases presented in the next section.

The general architecture of the smartphone-centric mobile gateway appli-
cation (Figure 4.12) is mainly constituted by

1. a Management GUI through which the user can receive notifications from
IoT devices and sensor nodes and manage them (Graphical User Inter-
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Access Point-Gateway
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Fig. 4.11. Communication scenario for testing the smartphone-centric application.

face module of Figure 4.13 is an implementation of Management GUI. It
handles an easy interaction with users, displays all measurements and all
settings of the software modules);

2. an Application Services to start a set of different services according to a
specific application scenario (Application Services module of Figure 4.13
is an implementation of Application Services. It allows for the starting of
different bound services and to manage them through a specific GUI in
order to show all the performed measurements and to send the control
commands to the IoT devices);

3. a Communication, Coordination and Management Brain (CCMB) able to
acquire data from different interfaces and to control several devices. In
particular the CCMB module consists of three main logical blocks that
can interact with each other as shown in Figure 4.12:
� The Communication block handles the reception and transmission of

messages over the air, and manages the radio duty cycling. It is formed
by a series of decoders for incoming packets and a series of encoders
for outgoing packets. Each message received or sent is initially han-
dled by the radio controller that provides a common interface on a
specific radio adapter that can be dynamically loaded to support sev-
eral communication technologies such as Bluetooth SMART, ANT+,
IEEE 802.15.4, ZigBee, NFC, Wi-Fi, Z-wave. Communication Service
Engine module of Figure 4.13 is an implementation of the Communica-
tion Block. It creates five bound services (i.e., ZigBee, SPINE, Wi-Fi,
Bluetooth and 3G/LTE) in this specific implementation, by handling
the logical functionality of access to data and measures. The bound
services are based on a standard client-server communication model by
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allowing other components and applications to be connected, to send
requests and receive replies.

� The IoT Device Management block acts as an interface to the IoT
devices by creating periodic timers when the remote sensing operation
on the IoT devices is required by a specific user or when a specific
command message needs to be send to an IoT device. The controller
within this block can handle a variety of IoT devices regardless of their
hardware specifications through the appropriate interfaces by imple-
menting the specific high level protocol for each device. This ensures
modularity and efficiency. The controller also uses a BufferPool to store
the readings that become available for further applications. Finally, the
Device Registry contains a list of each active IoT device to connect to
in order to receive information or to send control messages. IoT Device
Management module of Figure 4.13 is an implementation of the IoT
Device Management block. It is in charge of the data interpretation ex-
change, control commands execution, and dynamic adapters loading of
discovered devices. It is formed by three software sub-modules (i) the
Protocol Device - it implements the data exchange protocol to which
the specific request is addressed (e.g., reset sensor, read accelerometer
measure, reset gateway). Furthermore it addresses the request to the
specific sensor/platform/gateway by correctly interpreting each spe-
cific data frame structure; (ii) IoT Device Board Controller - it is in
charge of the dynamic device adapter loading by setting the specific
data structure for each new device, adding it to the protocol device
module; (iii) Message Handler - it handles the communication between
services and GUI by favoring the message passing (e.g. measures, er-
rors, requests failure) from the IoT devices to the graphical interface.
It also allows the diffusion of control messages from the GUI to the
IoT devices.

� The Coordination Manager block, which derives from [140], is in charge
of the management of the interaction between the IoT device Man-
agement and Communication modules (the Manager module of Figure
4.13 is an Coordination Manager implementation. It includes the func-
tional software modules. It starts all software blocks by also handling
the logic functionalities of the application at a high level). It includes
the following blocks (i) Event dispatcher: it triggers when a particular
event occurs, such as the discovery of new nodes or a particular alarm
(e.g. temperature monitoring and the alarm is triggered when the tem-
perature falls under a specific threshold); (ii) Function Datamodel: it
represents the available functionalities for each specific IoT device,
such as the independent specification of sampling rates for multiple
IoT devices; (iii) Message Datamodel: it is used to forward a message
after a particular event or any user action (e.g. it is possible to receive
a message with the average value of the performed measurements or
a message that contains the new discovered IoT devices or a generic
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error message); (iv) IoT network control API : it represents the inter-
face for developers through which it is possible to control, configure
and reset the IoT Device.

All the data from these different interfaces are firstly stored on a local SQLite
DataBase (see Figure 4.13) before being sent to a remote server throughout a
3G/4G interface in order to be further processed and made available to differ-
ent experts in specific fields. To support the opportunistic interaction during
the mobility of the gateway, a timed scanning procedure has been implemented
in order to periodically discovery new IoT devices for data exchange according
to the supported bound services.
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Fig. 4.12. Software architecture of the smartphone-centric gateway.

To evaluate the performances of the proposed solution, we implemented
a testbed and conducted several tests. In detail, we used three smartphones
(with different hardware and software capabilities listed in Table 4.12) which
collect and forward data received from different sensors and IoT devices on
different communication interfaces (listed in Table 4.13) for several periods,
6 minutes long. In particular, to better evaluate the system performances, we
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Fig. 4.13. Specific implementation of the smartphone centric gateway application.

decided to repeat the test 10 times with the aim of averaging the traffic load
distribution due to the natural asynchronous. We set the confidence interval
level to 0:95 and we excluded the first 60 seconds from the statistical error
computation in order to verify the correctness of the statistical analysis for
the obtained results also reducing the systems transient effects.

Table 4.12. Smartphones used for the testbed.

Samsung Galaxy S2 Samsung Galaxy S3 Samsung Galaxy S4
CPU Dual-Core 1.2GHz Quad-Core 1.4GHz Quad-Core 1.9GHz
RAM 1GB 1GB 2GB

Battery 1800mAh 2100mAh 2600mAh
Operating System Android 2.3.3 Android 4.0.4 Android 4.2.2

Gingerbread Ice Cream Sandwich Jelly Bean

We evaluated the smartphone performances in terms of energy consump-
tion, memory and CPU usage to further discuss the efficient use of such inte-
grated communication architecture. The GUI of the implemented IoT mobile
gateway application is shown in Figure 4.14. It is worth noting that none of
the used devices represents the cutting edge in the mobile phones market and
none has any specific add-ons, so that they can be considered as representative
of a wide range of current common user devices and customers.
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Table 4.13. IoT devices connected to the Smartphone-centric application through-
out several interfaces.

Interfaces
Bluetooth SD-Zigbee Wi-Fi

2 Garmin Vivofit [141] 3 Waspmote 1 Samsung Smart TV
1 Scale Beurer 74822 BF XBee ZB-Pro 1 Samsung Air Conditioner

3 Shimmer

(a) (b) (c)

Fig. 4.14. Screenshots of the mobile gateway application: a) Main GUI, b) Multiple
interfaces choice and activation, c) Data received on a specific interface.

Figure 4.15 shows that the IoT gateway application has a reduced average
CPU load regardless of the different tested smartphones; certainly the greater
the computational capacity of the device, the greater the percentage of CPU
load, however since the average CPU load value is around 15% in case of the
most performing smartphone (Galaxy S4), we can argue that the implemented
IoT gateway application is fully supported. Regarding to the memory usage,
significant results are shown in Figure 4.16, showing that a maximum memory
amount of about 85MBytes is required to run the IoT gateway application on
the Galaxy S4 smartphone; this value is fully reasonable since that smartphone
is equipped with 2GB of memory. Regarding the energy consumption we
conducted a 30 minutes long test to make more evident the battery level
decrease. Starting with a different battery level for each smartphone model,
we experienced quite similar behaviour in terms of battery discharge speed
as shown in Figure 4.17. This result is mostly due to the fact that, even if
the most performing smartphone is equipped with a more powerful battery,

77



Chapter 4. Smart and Interoperable IoT Ecosystems

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

Time [seconds]

C
P

U
 L

oa
d 

[%
]

 

 
Samsung Galaxy S2
Samsung Galaxy S3
Samsung Galaxy S4

Fig. 4.15. CPU load by activating all the interfaces.
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Fig. 4.16. Memory usage by using all the interfaces.

it also has a bigger screen and a higher CPU load due to more performing
hardware characteristics offsetting the benefits of having a bigger battery.

In conclusion, the obtained results confirmed the lightweight of the imple-
mented application, that can easily run on common smartphones for several
hours. Therefore, such kind of smartphone-based mobile IoT gateway results
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suitable to be exploited in real IoT ecosystems, like the one described here-
inafter.

4.3.2 Smart City scenario: Crowd Safety service

The Crowd Safety IoT Service considers a mass public event [142], such as the
Vienna marathon, and aims at (i) alerting people located nearby overcrowded
zones, where any small incident can create a dangerous panic situation; (ii)
proposing alternative paths according to the users preferences/constraints
(e.g., a tourist, an elder, a biker can receive different suggestions for the same
destination customized on their preferences). In details, SOs deployed around
the city (e.g., smart traffic lights, and smart lamps) monitor through their
embedded devices the flow of athletes and audience, and allow estimating the
city zones density. The Crowd Safety IoT Service thus alerts citizens located
nearby overcrowded zones by sending a notification on their personal devices.
The same alerted citizens can hence specify their destination and receive cus-
tomized, context-aware, and real-time hints on the best path to be followed.
The Crowd Safety is clearly an opportunistic IoT Service because it exposes
the four aforementioned opportunistic properties of:

1. Dynamicity, since it is activated only if a zones density level exceeds a
threshold continuously for a certain amount of time;

2. Co-located, since it exploits multiple SOs at the same time for contempo-
rary serving multiple citizens located nearby the overcrowded zones;

3. Transient, since it lasts only for an emergency situation and until the
citizen is near an overcrowded zone;
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4. Context-aware, since it considers athletes and audience positions and envi-
ronmental elements (e.g., a bridge) for determining density and risk levels,
as well as citizens positions and their preferences for providing alerts and
customized hints.

The opportunistic “Crowd Safety” IoT Service is described according to high-
level metamodels (Figure 4.18) and operational models (Figure 4.19). Citizens
and Things (namely, IoT Entities) located in Vienna and deployed on its mon-
itored Streets, Squares and Bridges (IoT Environment) are differently involved
in the Crowd Safety IoT Service. This comprises three processes for mapping
each zone to a risk level (Density calculation), alerting citizens located near
overcrowded zones (User Alert), and, if required by the same alerted citizens,
providing customized alternative paths for a certain destination (Path Sugges-
tion). The Crowd Safety IoT Service and related processes are better detailed
through a Service Profile and a Service Model. The former provides func-
tional specifications (e.g., a citizens position is determined with a precision of
50 meters and they are notified within 10 seconds from their detection near an
overcrowded zone), while the second specific preconditions can trigger certain
events concretely implementing the Crowd Safety IoT Service (e.g., how a city
zone gets matched with its density level). A (simplified but enough expres-
sive) operational model describing the Crowd Safety IoT Service according to
the Petri net formalism is depicted in Figure 4.19. In detail, Service Space Ss
comprises five service states while six events in Event set Ev represent service
preconditions (e.g., the density level should exceed a warning threshold for a
period before the zone is considered as being overcrowded) and effects (alert
notifications or path suggestions are sent to a citizen who is near a dangerous
zone). Even at a first glance, it is evident to see the matching between the con-
cepts of Figures. 4.18 and 4.19. For example, S0, S3 and S4 depicted in Figure
4.19 are the homonyms processes constituting the Crowd Safety Service Model
in Figure 4.18, which encodes, among others, ev3 as Process Precondition and
ev4 as Process Effect. However, as previously motivated, the metamodels in
Figure 4.18 accomplish a descriptive functionality while operational model in
Figure 4.19 allows performing the formal verification and simulation of the
service.

4.3.3 Smart Workshop scenario: SmartConnectivity and
SmartHealth services

Industrial environments can be featured by harsh ambient, featured by ex-
cessively values of humidity and temperature, power and gas leakages, etc.
These factors negatively impact the reliability of data transmission (and,
consequently, a production process), and, most importantly, can endanger
the operators’ health. In the context of an industrial Smart Workshop com-
prising different industrial areas, two opportunistic IoT Services, namely the
SmartConnectivity [50] and the SmartHealth services [134], exploit operators’
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Fig. 4.18. Metamodeling of the Crowd Safety opportunistic IoT service

Fig. 4.19. Simplified FSM describing Crowd Safety IoT Service
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smartphones respectively with the aims to (i) perform temporary networking
for enhancing the workshop connectivity against node failures, and (ii) col-
lect and analyze data from both wearable medical and environmental IoT
devices for constantly monitor workers’ health and the ambient conditions,
potentially reporting dangerous situations. In detail, each operator brings a
a mobile smartphone-based IoT gateway like the one described in Section
4.3.1, thus exploiting (i) its WiFi interface for carrying data among the dis-
connected machines, thus avoiding network fragmentation and implementing
the SmartConnectivity service; and (ii) its ZigBee and Bluetooth interfaces
for interacting respectively with environmental (temperature, humidity, gas
sensors) and wearable medical IoT devices (pulsioximeters, blood and pres-
sure monitors, Fitbit devices), thus implementing the SmartHealth service.
Hence, in performing both the tasks of data gathering and data collection,
operators’ smartphones act as opportunistic, multi-technology, mobile gate-
ways, since they flexibly and transparently interface different IoT devices,
otherwise non interacting. Differently from the Crowd Safety, the opportunis-
tic services designed for the Smart Workshop are described only according
to the high-level metamodels in order to provide a preliminary overview for
the initial service analysis phase. Figure 4.20 indeed reports IoT Entities (the
workshop operators along with things, such as the IoT devices) and their role
in the SmartConnectivity and the SmartHealth provision within the Smart
Workshop environment.

Fig. 4.20. Metamodeling of the SmartHealth and SmartConnectivity opportunistic
IoT services
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4.4 Summary

This chapter has presented four IoT ecosystems with related use cases, show-
ing how the systematic application of ACOSO-Meth has significantly facil-
itated and speeded up their development in different phases. In particular:
(a) the High-Level SO Metamodel supported the abstract analysis of the
main Smart UniCal and SmartDesk features and functionalities, as well as
the modeling of the Opportunistic IoT services for the Smart City and Smart
Workshop scenarios and finally the SOs inclusion into DLs as novel first-class
objects to be collected, managed, and preserved; (b) the agent-oriented design
provided the adequate flexibility and effectiveness to fulfill the fundamental
requirements at both System- and things- levels of Smart UniCal; finally,
(c) the JADE-based implementation allows a rapid and efficient prototyp-
ing of the Smart UniCal; this just demands the only effort of programming
(by extension) the application specific JACOSO hot-spots that represent only
25% of the overall lines of code constituting the Smart UniCal software. It
follows that, because of such modular and extensible approach, most of the
code does not need to be customized according to the particular application
requirements, but it can be directly reused. Such benefits are not affected
by the hand-made transitions among the analysis, design and implementa-
tion phases: an automatic transition, whenever possible, may speed up the
ACOSO-Meth application while keeping the same effectiveness.
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Conclusions, Publications and Future Work

The Internet of Things (IoT) can be depicted as a heterogeneous, dense, and
open ecosystem rich in contextualized interactions among different entities,
such as humans, conventional computing systems and Smart Objects (SOs).
Because of these features, IoT promises to impact every application context
(e.g., transportation, industry, public safety), thus opening novel markets and
definitively blurring the line between the physical and virtual worlds. However,
although several IoT systems and applications have been already developed,
the IoT is still far from unfolding all its potential. Main factors for this delay
(which is contributing, by the way, to the proliferation of poorly interopera-
ble “Intranet of Things”) are the lack of standards, the heterogeneity featur-
ing IoT building blocks, and their challenging and articulated development
processes. With regard to the last issue, this Thesis provided an application-
neutral, full-fledged methodology, named ACOSO-Meth (Agent-based COop-
erating Smart Objects Methodology), for supporting all the development phases
of autonomic and cognitive IoT ecosystems and related services, from analysis
to implementation.

During the development of this Thesis, three main contributions have been
provided to the IoT research area.

The first important contribution is the definition of a comparison frame-
work comprising IoT fundamental development requirements, raised from a
thorough state-of-the-art analysis of IoT platforms, architectures, middleware
and methodologies. In particular, we grouped such requirements in System-
level requirements (namely, related to the whole distributed system and its de-
velopment), and Things-level requirements (particularly referring to “things”
such as SOs, RFiD, mobile devices, etc.). These requirements recur at the
same time and with a substantial prominence within the IoT systems, and
allow accommodating all their most important features. Among them, partic-
ular emphasis has been given to a novel “scale characterization” requirement,
meeting the need of unambiguously classify IoT systems and SOs according
to multiple factors, not exclusively attributable to geographical factors. This
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comparison framework has inspired the ACOSO-Meth development but can
be reused to analyze future work in the field. To the best of our knowledge,
such a review work was missing before, and, therefore, it can be considered
as the first contribution of this Thesis.

As second contribution, the ACOSO-Meth, designed for fulfilling the afore-
mentioned fundamental System- and Thing-level requirements, has been pre-
sented. Based on the jointly exploitation of metamodels, agent-based pro-
gramming abstractions and middleware, ACOSO-Meth is the first application-
neutral, agent-based methodology able to support the main engineering phases
of IoT systems and applications. In detail, metamodels (completely decoupled
from any specific application) allow highlighting IoT entities main features,
functionalities and relationships at different degrees of granularity. Going fur-
ther the analysis phase, the agent based computing paradigm has a paramount
importance because key features of autonomy, proactiveness, intelligence and
sociability are necessary, along with agent-based middleware, for designing and
implementing autonomic and cognitive SOs and IoT systems. Just autonomic
and cognitive properties will be crucial in the future IoT characterization,
enabling billion (or, even, trillion) of SOs and IoT systems to perform sev-
eral self-management actions without a steady human intervention. ACOSO-
Meth has been exploited to support the development (from the high-level
system analysis to the concrete JADE-based implementation) of the Smart
UniCal IoT ecosystem, a complex case study comprising heterogeneous SOs
of different scales, deployed in a real scenario (the University of Calabria)
and providing cyberphysical services related to structural, indoor space and
wellness monitoring. In particular, the JADE-based implementation allowed a
rapid and efficient prototyping of the Smart UniCal ecosystem; this demanded
the only effort of programming by extension the application-specific JACOSO
hotspots, which represent just 25% of the overall lines of code constituting the
Smart UniCal software. It follows that, because of such modular and extensible
approach, most of the code has been directly and effectively reused, regard-
less the particular application requirements. The benefits becoming from a
full-fledged engineering of the Smart Unical in terms of a multi-agent sys-
tem, and resulted in a significantly facilitated and speeded up development
process, were not affected by the hand-made transitions among the analysis,
design and implementation phases: an automatic transition, whenever pos-
sible, may speed up the ACOSO-Meth application while keeping the same
effectiveness. Furthermore, the ACOSO-Meth approach, and specifically the
ACOSO High-Level SO metamodel, has been exploited to drive the inclusion
of SOs into Digital Libraries (DLs, namely distributed software infrastruc-
tures providing specialized services on a wide range of digital resources) as
novel first-class objects to be collected, managed, and preserved. Indeed, dur-
ing their lifecycle, SOs can produce continuous streams of geolocalized and
contextual data and provide different cyberphysical services to their users.
Instantiated on the case study of a SmartDesk supporting its user’s working
activities, the technology-neutral ACOSO High-Level SO metamodel has gen-
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erated a well-defined but flexible SO metadata model (specifically following
the JSON format), structured so as to be easily manually or automatically
created, queried and managed through the facilities provided by the DLs. To
the best of our knowledge, this approach represents the first research effort
towards the integration of SOs into novel cyberphysical DLs, or Smart DLs
(SDLs).

Finally, a further (preliminary) contribution of this Thesis pertains the
definition of novel IoT services according to their opportunistic properties,
i.e., dynamicity, context-awareness, co-location and transience. Services no-
tably contributed to the spread of Internet, and, likewise, they promise to
represent the real drivers for the IoT. Currently available IoT service models,
however, consider static environments with established interactions, such that
service provisioning is typically customized just according to a users current
position or a sensed phenomenon. Such limitations prevent them for being
concretely applied because the subsequent crucial phases of their automatic
verification, execution and simulation are not properly supported. Indeed, de-
ploying an IoT service is obviously notably complex, time-consuming, and
error-prone, while its provision must to completely adhere to the expected
terms, even in case of unexpected issues (e.g., network congestion or fail-
ures, changes to service working conditions) that are difficult to be described
through static metamodels. This motivated us in discussing about a novel, yet
actually exploitable, IoT service model, and therefore we have promoted our
vision of Opportunistic IoT Service and a full-fledged approach to its descrip-
tive metamodeling (particularly suitable for supporting the analysis phase)
and operational modeling (particularly suitable for supporting formal verifi-
cation, execution and simulation). For the first purpose, the ACOSO-Meth
has been extended, and specifically the High-Level SO metamodel refined
by introducing some categories particularly related to the IoT services. For
the second purpose, considering that IoT services interactions are typically
(asynchronously) event-driven and time-dependent (namely influenced by the
current state and previous history), we have modeled the whole IoT systems as
Discrete Event System (DES) and adopted the finite state automaton (FSA)
notation to design service operational models. To show the effectiveness and
flexibility of the proposed IoT service modeling approach in different contexts,
two use cases have been reported, which are related to the Industrial IoT and
Smart City, and featured by different scales, purposes, and requirements. This
research line is still in an initial phase, so it not presented any tried-and-true
solution, but some novel elements to advance the state-of-the-art and some
interesting insights for the future work.
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5.1 Publications related with this Thesis

This Thesis is based on several articles published in international workshops,
conferences, books, and journals. The research work related to this Thesis has
resulted in 15 publications, including:

� 3 journal articles (3 with ISI impact factor);
� 10 conference papers;
� 2 book chapters;

In the following, the publications are organized according to their publi-
cation venues and a brief description of each publication is provided.

5.1.1 Journal Articles

� Modeling and Simulating Internet-of-Things Systems: A Hybrid
Agent-Oriented Approach. [35]:
Fortino, G., Gravina, R., Russo, W., and Savaglio, C. Modeling and Simulating Internet-of-

Things Systems: A Hybrid Agent-Oriented Approach. Computing in Science & Engineering,

19(5):68-76. 2017.

This paper is a significant extension of [109], [110] and [103]. In particular,
it presents relevant mapping guidelines that provide a guidance to IoT
system designers during the transition from modeling to simulation.

� Enabling IoT Interoperability through Opportunistic Smartphone-
based Mobile Gateways. [134]:
Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., and Savaglio, C. En-

abling IoT interoperability through opportunistic smartphone-based mobile gateways. In

Journal of Network and Computer Applications, 81:74-84. 2017.

This paper extends the contents of [135] adding (i) new discussions on the
requirements for the interoperability of the proposed opportunistic mo-
bile smartphone-based gateway, (ii) more details on the architecture of
the developed application, (iii) realistic use cases based on funded ongoing
research projects, and (iv) new results in high load data traffic scenario.

� Agent-Oriented Cooperative Smart Objects: from IoT System
Design to Implementation. [3] :
Fortino, G., Russo, W., Savaglio, C., Shen, W., and Zhou, M. Agent-Oriented Cooperative

Smart Objects: from IoT System Design to Implementation. IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, PP(99):1-18. 2018.

The paper first elicits and discusses main IoT ecosystem development re-
quirements, then proposes a full-fledged approach to their development
based on ACOSO-Meth and its related middleware. Finally, the applica-
tion of ACOSO-Meth for the development of a complex IoT ecosystem
highlights the effectiveness and the efficiency of the proposed approach.

88



5.1. Publications related with this Thesis

5.1.2 Book Chapters

� Towards Multi-layer Interoperability of Heterogeneous IoT Plat-
forms: The INTER-IoT Approach. [63]:
Fortino, G., Savaglio, C., Palau, C. E., de Puga, J. S., Ghanza, M., Paprzycki, M., Mon-

tesinos, M., Liotta, A., and Llop, M. Towards Multi-layer Interoperability of Heterogeneous

IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and Interoper-

ability of IoT Systems, 199-232, Springer, Cham. 2018.

This work presents the INTER-IoT systemic approach, which is being
created within the INTER-IoT project together with necessary software
tools and end-user applications. Solutions for overcoming interoperability
problems across the communication/software stacks of heterogeneous IoT
platforms are discussed, aiming at facilitating the reuse and integration
of current IoT platforms with existing and future (even standard) IoT
ecosystems.

� Towards Cyberphysical Digital Libraries: Integrating IoT Smart
Objects into Digital Libraries. [69]:
Fortino, G., Rovella, A., Russo, W., and Savaglio, C. Towards Cyberphysical Digital Libraries:

Integrating IoT Smart Objects into Digital Libraries. In Management of Cyber Physical Ob-

jects in the Future Internet of Things, 135-156. Springer International Publishing. 2015.

This paper is an extension of our previous works [68] and [67]. In particular,
to foster the SOs inclusion into DLs, a mapping between Digital Library
Reference Model (DLRM, namely the main reference model for architect-
ing DLs) and the proposed SO metadata model is presented, showing the
alignment between their key concepts and thus supporting the idea of
treating SOs as novel and valuable first-class DL resources.

5.1.3 Conference Papers

� Opportunistic Cyberphysical Services: A Novel Paradigm for the
Future Internet of Things. [?]:
Fortino, G., Savaglio, C., Zhou, M. Opportunistic Cyberphysical Services: A Novel Paradigm

for the Future Internet of Things. The 4th IEEE World Forum on the Internet of Things

(WF-IoT 2018), February 2018.

This paper summarizes our previous contributions in the novel research
context of IoT services [50], [118] and promotes our vision of “Opportunis-
tic IoT Services” along with a full-fledged approach to their modeling. Its
effectiveness and flexibility is illustrated by means of two case studies, re-
lated to the Industrial IoT and Smart City scenarios.

� Agent-based Computing in the Internet of Things: a Survey. [29]:
Fortino, G., Savaglio, C., Ghanza, M., Paprzycki, M., Badica C., and Ivanovic, M. Agent-

based computing in the Internet of Things: a survey. International Symposium on Intelligent
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and Distributed Computing, 307-320. Springer, Cham. October 2017.

This paper shows how Agent-Based Computing (ABC) paradigm has been
effectively exploited for modeling, programming and simulating IoT sys-
tems. Hence, main ABC’s concepts, metaphors, techniques, and methods
applied so far for the IoT system development are surveyed, and a critical
analysis of their common misapplications and misconceptions reported.

� A Mobile Multi-technology Gateway to Enable IoT Interoper-
ability. [135]:
Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., and Savaglio, C. A

mobile multi-technology gateway to enable IoT interoperability. In Internet-of-Things De-

sign and Implementation (IoTDI), 2016 IEEE First International Conference on, 259-264.

IEEE. 2016.

This paper introduces a mobile gateway solution to support IoT interop-
erability through a multi-standard, multi-interface and multi-technology
smartphone, that becomes a universal interface between the Internet and
the Things. The feasibility of the proposed solution has been tested by
implementing a specific testbed and evaluating gateway performances in
continuously collecting and forwarding data coming from heterogeneous
wireless IoT devices and sensors.

� Modeling Opportunistic IoT Services in Open IoT Ecosystems.
[118]:
Fortino, G., Savaglio, C., Zhou, M. Modeling Opportunistic IoT Services in Open IoT Ecosys-

tems.Proc. 18th Workshop Objects to Agents (WOA17), 90-95. July 2017.

This paper notably extends [50] by proposing detailed descriptive meta-
models (suitable to the analysis phase) and operational models (suitable
to the implementation and verification phases) aiming to fully support IoT
service development according to opportunistic properties, i.e., dynamic-
ity, context-awareness, co-location and transience. The application of the
proposed modeling approach is shown in a concrete case study (public
safety during a mass events evolution).

� Toward Opportunistic Services for the Industrial Internet of
Things. [50]:
Fortino, G., Savaglio, C., Zhou, M. Toward Opportunistic Services for the Industrial Internet

of Things.Proceedings of 13th IEEE Conference on Automation Science and Engineering

(CASE), 825-830. IEEE. August 2017.

This paper surveys the state-of-the-art of both developer- and enterprise-
oriented IoT service models, analyses their limitations, and presents a first
contribute towards the definition of a novel “Opportunistic IoT Service”
paradigm. A particular emphasis is given to the Industrial IoT (IIoT) con-
text, reporting a case study related to an opportunistic IoT service that
provides a reliable data transmission in a smart factory.
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Towards Interoperable, Cognitive and Autonomic IoT Systems:
An Agent-based Approach. [103]:
Savaglio, C., Fortino, G., and Zhou, M. Towards interoperable, cognitive and autonomic IoT

systems: An agent-based approach. In Internet of Things (WF-IoT), 2016 IEEE 3rd World

Forum on, 58-63. IEEE. December 2016.

This paper first discusses the importance of the synergic application of
paradigms such as agent-based computing, cognitive networks and auto-
nomic computing, in order to pave the way toward an interoperable IoT
ecosystem, and then demonstrates how the ACOSO middleware (whose
performance verification has been made through the OMNeT++ simu-
lator) can support the development of distributed and self-steering IoT
systems.

� Simulation of Agent-Oriented Internet of Things Systems. [110]:
Fortino, G., Russo, W., and Savaglio, C. Simulation of Agent-Oriented Internet of Things

Systems. Proc. 17th Workshop Objects to Agents (WOA16), 8-13. 2016.

This paper presents a preliminary work related to the simulation of agent-
oriented IoT systems in small-medium-large scale scenarios through the
OMNeT++ simulation platform. A specific attention has been devoted to
the “inter-Things” communications phase, by characterizing the three sim-
ulation scenarios according to their SO population and related distribution
in a different number of subnetworks, and, therefore, by testing different
transport protocols, performance metrics, communication parameters, and
message exchange patterns.

� Agent-oriented Modeling and Simulation of IoT Networks. [109]:
Fortino, G., Russo, W., and Savaglio. Agent-oriented modeling and simulation of IoT net-

works.2016 Federated Conference on Computer Science and Information Systems (FedC-

SIS), 90-95. IEEE. September 2016.

This paper proposes the agent-oriented modeling of IoT networks (through
the ACOSO-based Smart Object model) and their simulation (through the
INET extension for the OMNeT++ network simulator) with the goal of
evaluating performances and validating network design choices.

� Autonomic and Cognitive Architectures for the Internet of Things.
[36]:
Savaglio C., and Fortino, G. Autonomic and Cognitive Architectures for the Internet of

Things. In International Conference on Internet and Distributed Computing Systems, 9258:

39-47. G. Di Fatta, G. Fortino, W. Li, M. Pathan, F. Stahl, and A. Guerrieri, Eds. Springer

International Publishing 2015.

This paper reviews the current trends in IoT management architectures,
inspecting the underlying motivations and framing the current state-of-
the-art of the most relevant autonomic and cognitive architectures. Indeed,
the countless challenges and opportunities that the development of such
an ecosystem entails require a marked intervention on the current Internet
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architectural frameworks and models, primarily as regards the manage-
ment function.

� Towards a Development Methodology for Smart Object-oriented
IoT Systems: A Metamodel Approach. [104]:
Fortino, G., Guerrieri, A., Russo, W., and Savaglio, C. Towards a development methodol-

ogy for smart object-oriented IoT systems: A metamodel approach. In Systems, Man, and

Cybernetics (SMC), 2015 IEEE International Conference on, 1297-1302. IEEE. October

2015.

This paper presents a preliminary software engineering approach aiming
to support a systematic development of SOs-based IoT systems, from the
high-level design to its agent-based implementation. Based on metamodels
defined at different levels of abstraction and instantiated on an example
case study, this work represents the first building block toward the defi-
nition of a generic, agent-based, full-fledged methodology resulting in the
ACOSO-Meth [3].

5.2 Future Work

Some research directions related with this Thesis and deserving further ef-
forts are still being explored. Therefore, in the following, on-going activities
(short-term perspective and technological approach) and future research lines
(medium-long term perspective and methodological approach) are presented.

An interesting activity is currently devoted to the development of the
following strategic Smart UniCal services: an RFID-based people count-
ing/identification system (smartTrack service) for SmartBridge, an RFID-
based inventory system for SmartDIMES valuable stuff (smartInventory ser-
vice), and an NFC-based system to automatically record SenSysCal users’
attendances and their daily timetable (smartAttendance service).

Another relevant on-going work is the definition of well-formalized and au-
tomatic translation rules for driving the transition from IoT system modeling
to simulation. By automatically mapping an agent-based SO to an INET node,
scalability and efficiency of our hybrid simulation approach of IoT ecosystems
could be notably enhanced.

Furthermore, we are actually working on re-investing some of the research
contribution presented in this thesis, especially the smartphone-based mobile
IoT gateway and the guidelines provided by the ACOSO-Meth, in the Euro-
pean H2020 INTER-IoT project (that already supported most of the presented
work and exploited several of the provided contributions).

On the basis of the achieved results and on the on-going research activities,
a number of new research directions have been envisaged.

With respect to ACOSO-Meth, future work is already planned towards
four main lines: (i) extending the current ACOSO-based approach to sup-
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port the BDI (Belief-Desire-Intention) paradigm, the topic-based communi-
cation among different platforms by means of dedicated “mediator” agents,
and creation of a tool for the automatic models instantiation and code gen-
eration; (ii) integrating Cloud/Edge computing with the ACOSO-based ap-
proach to enhance system scalability and enable more critical real-time system
responses; (iii) defining mechanisms to automatize, where possible, the transi-
tion among the different phases constituting the methodology, thus speeding
up the ACOSO-Meth application while keeping the same effectiveness, and
(iv) using data validation models for IoT domains.

A promising future work intend to implement the proposed approach in-
clusion for the SOs in DLs through the exploitation of a real DL management
system such as Fedora and/or DSpace.

Finally, future research efforts will focus on an integrated framework for
supporting the formal verification, simulation and implementation of IoT ser-
vices before their deployment. Formal methods and verification tools, e.g.,
Petri nets and their extensions for dealing with real time and stochastic sys-
tems, will be explored and applied. Additionally, we plan to investigate the
application of Aggregate Computing techniques to foster the “collective adap-
tive” character of opportunistic IoT services.
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[129] Tomás Sánchez López, Damith C Ranasinghe, Mark Harrison, and Duncan
McFarlane. Adding sense to the internet of things. Personal and Ubiquitous
Computing, 16(3):291–308, 2012.

[130] Gobinda G Chowdhury and Sudatta Chowdhury. Introduction to digital li-
braries. Facet publishing, 2003.

[131] Tefko Saracevic. Digital library evaluation: Toward an evolution of concepts.
Library trends, 49(2):350, 2000.

[132] Leonardo Candela, G Athanasopoulos, D Castelli, K El Raheb, P Innocenti,
Y Ioannidis, A Katifori, A Nika, G Vullo, and S Ross. The digital library
reference model. DL. org Project Deliverable, 2011.

[133] Dieter Uckelmann, Mark Harrison, and Florian Michahelles. An architectural
approach towards the future internet of things. In Architecting the internet of
things, pages 1–24. Springer, 2011.

[134] Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Raffaele Gravina,
Pasquale Pace, Wilma Russo, and Claudio Savaglio. Enabling iot interop-
erability through opportunistic smartphone-based mobile gateways. Journal
of Network and Computer Applications, 81:74–84, 2017.

[135] Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Raffaele Gravina,
Pasquale Pace, Wilma Russo, and Claudio Savaglio. A mobile multi-
technology gateway to enable iot interoperability. In Internet-of-Things Design
and Implementation (IoTDI), 2016 IEEE First International Conference on,
pages 259–264. IEEE, 2016.

[136] Gianluca Aloi, Marco Di Felice, Valeria Loscr̀ı, Pasquale Pace, and Giuseppe
Ruggeri. Spontaneous smartphone networks as a user-centric solution for the
future internet. IEEE Communications Magazine, 52(12):26–33, 2014.

[137] Micro SD ZigBee card. http://www.spectec.com.tw/sdz-539.html.
[138] Waspmote Ultra Low power sensors. http://www.libelium.com/products/waspmote/.
[139] Shimmer wearable sensors. http://www.shimmersensing.com/.
[140] Francesco Aiello, Fabio Luigi Bellifemine, Giancarlo Fortino, Stefano

Galzarano, and Raffaele Gravina. An agent-based signal processing in-node en-
vironment for real-time human activity monitoring based on wireless body sen-
sor networks. Engineering Applications of Artificial Intelligence, 24(7):1147–
1161, 2011.

[141] Garmin Vivofit. http://www.garmin.com/itit/esplora/sport-e-fitness/.

103



References

[142] Roberto Casadei, Danilo Pianini, and Mirko Viroli. Simulating large-scale ag-
gregate mass with alchemist and scala. In Computer Science and Information
Systems (FedCSIS), 2016 Federated Conference on, pages 1495–1504. IEEE,
2016.

104


	List of Figures
	List of Tables
	Motivations, Objective, Contributions and Organization of the Thesis 
	Motivations
	Objective and Contributions of the Thesis
	Structure of the Thesis

	Background and Framework-supported State-of-the-Art Analysis
	Introduction
	Background: IoT visions and enabling paradigms 
	Agent-based Computing
	Autonomic Computing
	Cognitive Computing

	Services in the IoT: state-of-the-art
	Analysis and limitations of IoT services specifications

	IoT ecosystem development requirements
	Framework-supported state-of-the-art survey
	Analysis phase
	Design phase
	Implementation phase
	Development Methodologies

	Comparative Analysis
	Summary

	A methodology for the development of autonomic and cognitive Internet of Things ecosystems
	Introduction
	Analysis phase
	Design phase
	A Hybrid Agent-Oriented Simulation-based Design Approach

	Implementation phase
	Discussion
	A methodology extension: towards Opportunistic IoT services
	Opportunistic IoT service modeling

	Summary

	Smart and Interoperable IoT Ecosystems
	Smart Unical
	Analysis phase
	Design phase
	Implementation phase

	Smart Digital Libraries 
	Analysis phase

	Opportunistic IoT services
	Smartphone-based Mobile IoT Gateway
	Smart City scenario: Crowd Safety service
	Smart Workshop scenario: SmartConnectivity and SmartHealth services

	Summary

	Conclusions, Publications and Future Work
	Publications related with this Thesis
	Journal Articles
	Book Chapters
	Conference Papers

	Future Work

	References

