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Abstract

With the massive adoption of the Internet both our private and working life has dras-
tically changed. The Internet has introduced new ways to communicate and com-
plete every day tasks. Organisations of any kind have taken their activities online to
achieve many advantages, e.g. commercial organisations can reach more customers
with proper marketing. However, the Internet has also brought various drawbacks
and one of these concerns cyber security issues. Whenever an entity (e.g. a person or
company) connects to the Internet it immediately becomes a potential target of cy-
ber threats, i.e. malicious activities that take place in cyberspace. Examples of cyber
threats are theft of intellectual property and denial of service attacks. Many efforts
have been spent to make the Internet perhaps the most revolutionary communica-
tion tool ever created, but unfortunately little has been done to design it in a secure
fashion. Since the massive adoption of the Internet we have witnessed a huge num-
ber of threats, perpetrated by many different actors such as criminal organisations,
disgruntled workers and even people with little expertise, thanks to the existence of
attack toolkits. On top of that, cyber threats are constantly going through a steady
evolution process and, as a consequence, they are getting more and more sophis-
ticated. Nowadays, the cyber security landscape is in a critical condition. It is of
utmost importance to keep up with the evolution of cyber threats in order to im-
prove the state of cyber security. We need to adapt existing security solutions to the
ever-changing security landscape and devise new ones when needed. The research
activities presented in this thesis find their place in this complex scenario. We in-
vestigated significant cyber security problems, related to data analysis and anomaly
detection, in different areas of research, which are: Hybrid Anomaly Detection Sys-
tems; Intrusion Detection Systems; Access Control Systems and Internet of Things.

Anomaly detection approaches are very relevant in the field of cyber security.
Fraud and intrusion detection are well-known research areas where such approaches
are very important. A lot of techniques have been devised, which can be categorised
in anomaly and signature based detection techniques. Researchers have also spent
much effort on a third category of detection techniques, i.e. hybrid anomaly de-
tection, which combine the two former approaches in order to obtain better detec-
tion performances. Towards this direction, we designed a generic framework, called
HALF, whose goal is to accommodate multiple mining algorithms of a specific do-
main and provide a flexible and more effective detection capability. HALF can be
easily employed in different application domains such as intrusion detection and
steganalysis due to its generality and the support provided for the data analysis
process. We analysed two case studies in order to show how HALF can be exploited
in practice to implement a Network Intrusion Detection System and a Steganalysis
tool.

The concept of anomaly is a core element of the research activity conducted in
the context of intrusion detection, where an intrusion can be seen as an anomalous
activity that might represent a threat to a network or system. Intrusion detection
systems constitute a very important class of security tools which have become an
invaluable defence wall against cyber threats. In this thesis we present two research
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results that stem from issues related to IDSs that resort to the n-grams technique. The
starting point of our first contribution is the threat posed by content-based attacks.
Their goal is to deliver malicious content to a service in order to exploit its vulner-
abilities. This type of attacks has been causing serious damages to both people and
organisations over these years. Some of these attacks may exploit web application
vulnerabilities to achieve goals such as data theft and privilege escalation, which
may lead to enormous financial loss for the victim. IDSs that exploit the n-gram
technique have proven to be very effective against this category of cyber threats.
However, n-grams may not be sufficient to build reliable models that describe nor-
mal and/or malicious traffic. In addition, the presence of an adversarial attacker is
not properly addressed by the existing solutions. We devised a novel anomaly-based
intrusion detection technique, called PCkAD to detect content-based attacks threat-
ening application level protocols. PCkAD models legitimate traffic on the basis of
the spatial distribution of the n−grams occurring in the relevant content of normal
traffic and has been designed to be resistant to blending evasion techniques. Indeed,
we demonstrate that evading is an intrinsically difficult problem. The experiments
conducted to evaluate PCkAD show that it achieves state of the art performances in
real attack scenarios and that it performs well against blending attacks. The second
contribution concerning intrusion detection investigates issues that may be brought
by the employment of the n-gram technique. Many approaches using n-grams have
been proposed in literature which typically exploit high order n-grams to achieve
good performance. However, because the n-gram domain grows exponentially with
respect to the n-gram size, significant issues may arise, from the generation of huge
models to overfitting. We present an approach aimed to reduce the size of n-gram-
based models, which is able build models that contain only a fraction of the original
n-grams with little impact on the detection accuracy. The reported experiments, con-
ducted on a real word dataset, show promising results.

The research concerning access control systems focused on anomalies that repre-
sent attempts of exceeding or misusing access controls to negatively affect the con-
fidentiality, integrity or availability of a target information system. Access control
systems are nowadays the first line of defence of modern computing systems. How-
ever, their intrinsic static nature hinders autonomously refinement of access rules
and adaptation to emerging needs. Advanced attributed-based systems still rely
on mainly manual administration approaches and are not effective on preventing
insider threat exploiting granted access rights. We introduce a machine learning ap-
proach to refine attribute-based access control policies based on behavioural patterns
of users’ access to resources. The designed system tailors a learning algorithm upon
the decision tree solutions. We analysed a case study and conducted an experiment
to show the effectiveness of the system.

IoT is the last topic of interest in the present thesis. IoT is showing the potential
for impacting several domains, ranging from personal to enterprise environments.
IoT applications are designed to improve most aspects of both business and citi-
zens’ lives, however such emerging technology has become an attractive target for
cybercriminals. A worrying security problem concerns the presence of many smart
devices that have security holes. Researchers are investing their efforts in the evalu-
ation of security properties. Following this direction, we show that it is possible to
effectively assess cyber security scenarios involving IoT settings by combining novel
virtual environments, agent-based simulation and real devices and then achieving a
means that helps prevent anomalous actions from taking advantage of security holes
for malicious purposes. We demonstrate the effectiveness of the approach through
a case study regarding a typical smart home setting.



v

Acknowledgements

First of all, I would like to express my sincere appreciation to my advisors Prof.
Fabrizio Angiulli and Prof. Angelo Furfaro, for their precious guidance and support
throughout my whole PhD study.

I would like to thank my colleagues for the time we spent together. Many thanks
also to the co-authors of the publications referred to in this thesis.

I would also like to thank my friends and relatives, for their support and pres-
ence. Finally, my most heartful thanks go to my family, whose love, invaluable sup-
port and patience helped me sustain all the difficulties that I encountered during
these three years.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Hybrid Anomaly Detection Systems . . . . . . . . . . . . . . . . 3
1.1.2 Intrusion detection systems . . . . . . . . . . . . . . . . . . . . . 3

A n-gram-based intrusion detection technique . . . . . . . . . . 4
Using compressed n-gram-based models for intrusion detection 4

1.1.3 Access control systems . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Internet of things . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Computer security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Application attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Adversarial machine learning . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 A Hierarchical Hybrid Framework for Modelling Anomalous Behaviours 15

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Description of the framework . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Anomaly Detection Module . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Signature Detection Module . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Learning Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Initialization phase . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Framework design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Network Intrusion Detection System . . . . . . . . . . . . . . . . 25
3.4.2 Steganography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 PCkAD: Packet Chunk Anomaly Detector 31

4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Description of the technique . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Content-based attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Preprocessing phase . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Packet Profile Identification phase . . . . . . . . . . . . . . . . . 38



viii

4.4.3 Model building phase . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.4 Temporal and spatial cost . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Detection phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Anomaly scores and detection strategies . . . . . . . . . . . . . 40

4.6 The complexity of blending with chunks . . . . . . . . . . . . . . . . . . 41
4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7.3 Robustness against evasion attacks . . . . . . . . . . . . . . . . . 47

Blending technique . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Blending results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Meaningless traffic injection . . . . . . . . . . . . . . . . . . . . . 48

4.7.4 Comparison with PAYL and Spectrogram . . . . . . . . . . . . . 49
4.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Considerations on encrypted traffic . . . . . . . . . . . . . . . . . . . . . 50
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 An approach to compress n-gram-based models for novelty detection 53

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Compression phase . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Post training phase . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Adaptive Access Control with Machine Learning 67

6.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 A machine learning approach for access control . . . . . . . . . . . . . 70

6.2.1 An example of security policy . . . . . . . . . . . . . . . . . . . . 71
6.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.1 The inner working of MLc . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Machine Learning for Policy Refinement . . . . . . . . . . . . . . . . . . 75
6.4.1 Exploiting machine learning to generate policy rules . . . . . . 75
6.4.2 Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.3 Automated exception handling . . . . . . . . . . . . . . . . . . . 78

Using Association rules . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.1 Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5.2 Case study description . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5.3 ML-AC in action . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Classes of interaction evaluation . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



ix

7 Using Virtual Environments for the Assessment of Cybersecurity Issues in

IoT Scenarios 85

7.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Security concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2.1 Threat Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.2 IoT exploit scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Attack vectors/models . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Virtual environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.1 SMALLWORLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.1 Attacking the video surveillance system . . . . . . . . . . . . . . 96
7.4.2 Securing the smart home . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusions 101

8.1 Summary of Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.3 Open issues and future work . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.4.1 Journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.2 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107





xi

List of Figures

2.1 Type of weaknesses in mobile and non-mobile applications. The im-
age has been taken from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Anomaly Detection Module . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 EBNF syntax for rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Example of a rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Signature Detection Module . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Initialization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Rule handling classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Hierarchy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.9 HALF application classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Configuration Scheme as Network Intrusion Detection System . . . . . 27
3.11 Configuration Scheme as Steganalysis tool . . . . . . . . . . . . . . . . 28

4.1 Example of legitimate HTTP GET payload (a) and content-based at-
tacks (b,c,d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Example of a Shellshock payload . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Example of an HTTP POST payload . . . . . . . . . . . . . . . . . . . . 37
4.4 Dataset UW: sensitivity analysis. . . . . . . . . . . . . . . . . . . . . . . 45
4.5 (a) Memory consumption of PCkAD on UW with respect to n-gram

length and chunk length lck. (b) Robustness against meaningless traffic. 46
4.6 Results of the blending experiment. . . . . . . . . . . . . . . . . . . . . 48

5.1 Results for n = 3 and n = 4 with the brave approach. . . . . . . . . . . . 63
5.2 Results for n = 6 and n = 10 with the brave approach. . . . . . . . . . . 64
5.3 Results for n = 3 and n = 4 with the cautious approach. . . . . . . . . . 65
5.4 Results for n = 6 and n = 10 with the cautious approach. . . . . . . . . 66

6.1 High-level architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 MLc’s subcomponents and interactions. . . . . . . . . . . . . . . . . . . 74
6.3 Scenario where concept drift is detected, along with a few anomalies. . 77
6.4 Interactions between users and resources. . . . . . . . . . . . . . . . . . 79
6.5 Comparison among ML-AC, BBNAC and ML-ACnok . . . . . . . . . . 84

7.1 SMALLWORLD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 A typical insecure Smart Home scenario . . . . . . . . . . . . . . . . . . 95
7.3 Scenario configuration with: (a) firewall, (b) separate VLANs . . . . . . 97





xiii

List of Tables

4.1 Symbols used throughout the chapter. . . . . . . . . . . . . . . . . . . . 36
4.2 Comparison among PCkAD, PAYL and Spectrogram based on the

AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Average AUC for each combination of crtn and crtb. . . . . . . . . . . . 61
5.2 Maximum AUC for crtn = Brave by varying crtb. For each AUC the

compression level is specified between parenthesis. . . . . . . . . . . . 62
5.3 Maximum AUC for crtn = Cautious by varying crtb. For each AUC

the compression level is specified between parenthesis. . . . . . . . . . 62





xv

Dedicated to my beloved family.





1

Chapter 1

Introduction

The Internet has revolutionised the way in which we stay connected with other peo-
ple and perform our tasks, both in our private and working life, on a daily basis. It is
undeniable that the Internet has become an essential part of our life due to the ben-
efits that it carries with it. In this age of steep and fast technological advancement,
we can complete many tasks easily and conveniently with just few clicks, such as
paying our bills online, getting information about a topic of our interest, purchas-
ing almost anything that we need, even food, by going through various websites.
When it comes to business, the Internet has also brought a revolution, from recruit-
ing employees to improving efficiency and productivity. Commercial organizations,
for example, regardless of their size, invest a lot in Web applications supporting their
activities. By taking their business online, such organizations achieve many advan-
tages, e.g. they can reach more customers with proper marketing and they can cut
costs in almost every aspect of their business.

Of course, like anything else, the Internet has also brought various drawbacks,
such as addiction, trolling, bullying, health issues and so on. Among all these draw-
backs, in this thesis we will focus on those concerning cyber security issues. As soon
as any entity (e.g. a person or a company) starts using any Internet service it au-
tomatically expose itself to a wide variety of cyber threats, i.e. malicious activities
that can occur through cyberspace, such as theft of intellectual property, destructive
malware, denial of service attacks. These threats, often underestimated, have been
causing minor to serious damages to both people and companies by affecting, for
example, digital services and this also much likely happens on a daily basis [8].

Internet may represent, perhaps, the most revolutionary communication tool
ever created but, unfortunately, it was not designed to be secure. Decades ago,
when the Internet was going through its early stages of evolution, those who de-
voted themselves to its design and development were focused on technical issues
with the aim of being able to transfer information quickly and reliably. These peo-
ple were shortsighted about information security, they primarily took into account
military threats, but they failed to forecast that the same Internet users a day might
become threats. This led to a situation in which it was necessary to introduce ex post
information security solutions in response to a very high number of threats spanning
a wide range of severity.

While in the early years of the Internet there were few threats, the majority of
which were perpetrated by crackers, since its massive adoption we have witnessed
a huge number of threats. Nowadays, cyber threats are committed by not only crack-
ers, but also other figures, such as criminal organisations and even people with little
expertise. The latter category of attackers was born thanks to the development and
distribution of attack toolkits. These toolkits, also known as crimeware, are bundles
of malicious code designed to facilitate the launch of more or less sophisticated at-
tacks on networked computers, e.g. the theft of sensitive information or a denial of
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service (DoS) [155]. These kits, along with stolen information, are advertised and
sold by cybercriminals in a black market of servers and forums [47]. An example of
a well-known exploit kit is the Angler kit, which, according to [197] and [198], had
been the most used kit between 2015 and 2016 before its creators were arrested [53].

On top of that, cyber threats are constantly evolving and becoming more and
more sophisticated, attack after attack. Organisations, both private and governmen-
tal, have been struggling to keep up with the security of their systems and actually
many of them have failed to meet the challenges posed by the existing threats. One
of the reasons behind this failure is the lack of an adequate budget to address cyber
security issues, which may be caused by the fact that the privacy and security of cus-
tomer and business data were not valued enough. As a result, those organisations
may face disruptive consequences, including huge financial loss, theft of customer
data (as recently experienced by Yahoo [176], which revealed the largest incident
ever reported) or, in the worst case, they might go out of business. A study con-
ducted by the National cyber Security Alliance [137], published on April 22th 2015,
highlighted that over 60% of all the small companies hit by cyber threats went out
of business. In the light of the above discussion, it is clear how critical the cyber
security landscape is nowadays. A lot of efforts are required in order to improve
the state of cyber security and keep up with the evolution of cyber threats, and that
means adapting existing security solutions in response to the ever-changing security
landscape and devising new solutions when needed.

The research activities that we present in this thesis find their place in this com-
plex scenario. As further discussed in the following section, we investigated relevant
cyber security problems concerning the following topics: Hybrid Anomaly Detec-
tion Systems; Intrusion Detection Systems; Internet of Things and Access Control
Systems.

1.1 Thesis contributions

The main objective of the present thesis is to improve different aspects of cyber se-
curity, from a data analysis perspective, with particular emphasis on the concept of
anomaly.

We first present the research activity which seeks to improve hybrid anomaly
detection systems to enable the combination of almost any existing technique, with
the ultimate goal of making the analysis of anomalies more effective, in Chapter 3.
In Chapters 4 and 5 we discuss two research activities conducted in the context of
intrusion detection systems, where an anomaly can be seen as an anomalous activity
which aims at compromising the target system or network. We considered the class
of content-based attacks as intrusions and worked to address significant downsides of
n-gram-based classification approaches, which tend to be very effective against the
mentioned type of attack. We also devised an n-gram-based IDS technique that can
stand against an adversarial attacker. We introduce a machine learning approach in
Chapter 6 to improve the usage of access control systems in highly dynamic envi-
ronments so to address anomalous activities that attempt to exceed or misuse access
controls to carry out an attack against a target system. At last, in Chapter 7 we talk
about the research we conducted to improve the assessment of security properties
of IoT devices and to ultimately prevent anomalous actions from taking advantage
of security holes for malicious purposes.

Overall, the following topics were the subject of the research activities conducted:
Hybrid Anomaly Detection Systems, Intrusion Detection Systems, Access Control
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Systems and Internet of Things. For each topic there is a section that explains the
problem that has been considered, followed by the thesis contributions and motiva-
tions.

1.1.1 Hybrid Anomaly Detection Systems

The presence of anomalies in collected information, i.e. data that deviates substan-
tially from what is normally expected, is a valuable source of knowledge and its
discovery has many practical applications. One of the areas where anomaly de-
tection is a very important problem is cyber security. Well-known examples of
security-related problems that involve anomaly detection in such field are fraud de-
tection and intrusion detection. The approaches that have been proposed to address
anomaly detection fall in two categories: anomaly and signature-based detection.
Anomaly-detection approaches rely on building models that suitably describe data
patterns deemed as normal, however they may incur in the generation of a consid-
erable amount of false positives. Signature-based techniques, which exploit a prior
knowledge base of anomalous patterns, are able to effectively detect them but fail
in identifying anomalies which did not occur previously. A lot of research efforts
have been spent on another category of detection techniques, i.e. hybrid anomaly
detection, which combine the two former approaches in order to obtain better detec-
tion performances. State-of-the-art hybrid approaches are typically bound to exist-
ing anomaly detection techniques by design and allow the analysis of only specific
types of data. These constraints might limit the effectiveness of the analysis, in that it
would be not possible to combine any existing anomaly detection techniques based
on the capabilities they feature.

We designed a framework, called HALF, that allows to develop hybrid systems
by combining available techniques, both signature and anomaly-based. The idea
behind HALF is similar to the concept of defence-in-depth, which is about deploy-
ing multiple security tools with complementary capabilities together, to improve the
security of the target system. HALF allows the deployment of any anomaly-based
and/or signature-based techniques, thus it is possible to combine techniques with
complementary capabilities to empower the anomaly detection analysis. HALF is
here presented in a context where cyber security is the main topic, nonetheless our
framework is not bound to any specific field of application, in fact it is able to operate
on any data type. HALF has been designed to accommodate multiple mining algo-
rithms by organizing them in a hierarchical structure in order to offer an higher and
flexible detection capability. The framework effectiveness is demonstrated through
two case studies concerning a network intrusion detection system and a steganog-
raphy hunting system.

1.1.2 Intrusion detection systems

The concept of anomaly introduced in the previous section is very important in the
context of intrusion detection. An intrusion can be seen as an anomalous activity that
might represent a threat to a network or system. In order to detect such activities a
very important class of security tools are employed, the so called Intrusion Detection
System (IDS). IDSs have proven to be a valuable defence wall against cyber threats;
they provide a means for monitoring networks and/or systems in order to detect ac-
tivities which are potential or real violations of security policies. As a consequence,
it is possible to gain a greater level of awareness about what is happening within a
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network and/or system. So, suitable countermeasures can be taken against identi-
fied threats and, in addition, unknown vulnerabilities can be discovered as soon as
possible.

There exist different classes of IDSs, determined by a variety of criteria such as
the way an IDS is deployed, the nature of the algorithms that are used, etc. We
focused on issues concerning anomaly-based IDSs [21] that resort to the n-gram tech-
nique to distinguish between anomalous and normal data units. An n-gram is a
sequence of symbols that is extracted from a given input flow by using a sliding
window of length n. This research activity consists of two works. The first work
concerns the design and development of a novel n-gram-based intrusion detection
technique and it is introduced in the following section. The second work follows the
first one and it takes into account a variety of problems that derive from employing
the n-grams to build classification models. The latter work is introduced in Section
1.1.2.

A n-gram-based intrusion detection technique

Anomaly-based IDSs that employ the n-gram technique have achieved satisfactory
results in detecting intrusions, over the years. This category of IDS is very impor-
tant, especially due to the existence of a class of attacks, called content-based attacks,
which has been causing serious damages, year after year (e.g. see the shellshock
attack [157]). However, counting on the n-grams alone might not be sufficient to
create a reliable intrusion detection system. Indeed, n-grams that characterise nor-
mal data units may also occur in anomalous units and could make more difficult the
task of detecting such anomalies. This aspect is not properly addressed by existing
solutions, indeed they tend to focus on the detection of malicious n-grams.

Another very important aspect to consider is that nowadays in order to deploy
an IDS in an organization network, it must be able to cope with the presence of an
adversary attacker, i.e. a malicious user who aims at hindering the normal activities
performed by the security tool. A well-known example of adversary attack is called
evasion attack. Unfortunately, in literature many works do not address this aspect
with sufficient efforts while others do not take it into account at all.

We address the above two issues by proposing Packet Chunk Anomaly Detector or
PCkAD, a novel anomaly-based intrusion detection technique designed to monitor
network traffic. Its uniqueness is to learn legitimate payloads by splitting packets
in chunks and determining the within packet distribution of n-grams. This strategy
is resistant to evasion techniques as blending. We prove that finding the right le-
gitimate content is NP-hard in the presence of chunks. Moreover, it improves the
false positive rate for a given detection rate with respect to the case where the spa-
tial information is not considered. Comparison with well-know IDSs using n-grams
highlights that PCkAD achieves state of the art performances.

Using compressed n-gram-based models for intrusion detection

In order to make n-gram-based techniques more scalable and reliable, an important
concern is to keep under control the size of the achieved models. Generally, detec-
tion algorithms that resort to the n-grams achieve good performances by using high
order n-grams, i.e. n-grams with n ≥ 2. In effect, often even 2-grams are not suffi-
cient to obtain good results. The main implication behind the usage of higher-order
n-grams is that the n-gram domain grows exponentially with respect to the n-gram
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size. In the context of network intrusion detection, where a n-gram symbol is rep-
resented by a byte value, with just n = 3 the total number of n-grams that can be
observed is over 16 million. This aspect may lead to significant issues, from the gen-
eration of huge models to overfitting. In order to address these issues, we developed
an approach aimed to reduce the size of n-gram-based models, which is able achieve
models that contain only a fraction of the original n-grams with little impact on the
detection accuracy. The experimental results, conducted on a real world dataset,
show promising results.

1.1.3 Access control systems

Nowadays our daily activities rely on computing systems. The key element of mod-
ern computing systems is the data: controlling accesses to data is indeed of paramount
importance. Access control systems are the first line of defence for data. These sys-
tems enforce fine-grained conditions which determine the users that can act. Multi-
ple approaches to access control have been proposed, each of which enjoys different
property. A common aspect of the existing approaches is that they are not meant to
adapt over time according to new access needs and behaviours. For this reason, the
policies employed at a given time instant encode knowledge available only at de-
sign phase. This lack of adaptation is a very important problem, because access con-
trol systems work in highly dynamic environments, therefore they get weaker and
weaker over time. As a consequence, insider threats may arise, such as disclosure
or stealing of sensitive data. Similarly to the previous works, this research activity
focused on the concept of anomaly, which this time concerns the attempt of exceed-
ing or misusing access controls to negatively affect the confidentiality, integrity or
availability of a target information system. Continuative maintenance is required
to preserve adequate access rights to new controlled resources and for changing
users’ patterns. We then propose a machine learning solution, called ML-AC, to
address the above mentioned issues. ML-AC was designed to dynamically refine
and update policies, respectively, to prevent insider threats and to automate policy
administration. The capabilities of ML-AC are shown by means of a case study.

1.1.4 Internet of things

The latter contribution concerns the Internet of Things, which has been widely recog-
nised as the next main step in the evolution of Internet and has rapidly become a
synonym of opportunities for enterprises. There is a lot of hype around IoT, which
is also backed up by outstanding predictions. According to Gartner, by 2020 the eco-
nomic benefit brought by IoT will be close to $2 trillion. IoT carries a lot of significant
benefits with it, such as sensor-driven decision analytics; process optimisation and
optimised resource consumption. Of course, IoT is also impacting our private life,
as demonstrated by its applications in smart homes.

When it comes to cyber security concerns, the situation is worrying. As reported
by [8], by 2016 cybersecurity risks have received little attention. Most of the attention
has been dedicated to the technologies needed to achieve the desired functionalities,
neglecting the aftermath of the security issues that are going to arise. This has led to
the production and deployment of insecure smart devices which have become juicy
targets of cyber criminals [71]. With respect to traditional Internet sources of infor-
mation, in the IoT scenarios data come from the physical world through the sensors
installed on smart devices, thus widening the range of possible applications, e.g. in-
volving the processing of environmental data and make intelligent decisions on the
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surrounding environment. IoT has become a bridge between the physical and the
digital world by including smart objects which interact with the physical environ-
ment without direct human intervention. This connection between the physical and
digital world has brought to us new threat scenarios that were unthinkable years
ago. On the positive side of things, recently there has been more interest in the exist-
ing security issues, starting from the growing attention received from governments
[65] to the announcement of bug bounty programs for the discovery of vulnerabili-
ties.

Researchers are trying to address the existence of vulnerable IoT devices by fo-
cusing on the evaluation of security properties. The goal is to identify and under-
stand the security issues of currently deployed devices and provide guidelines and
recommendations to manufacturers to help them fix the vulnerabilities, if possible,
and improve the security of future devices.

To this end, we believe that virtual environments could be very helpful to assess
security properties and discover vulnerabilities of IoT devices, in realistic scenar-
ios. We then evaluated the effectiveness of a platform, called SMALLWORLD, which
was designed to develop intelligent virtual environments where malicious and legal
behaviours are simulated by means of the agent paradigm.

With this contribution we propose a solution that on one hand helps to miti-
gate the presence of security holes in IoT devices to prevent anomalous actions from
taking advantage of them for malicious purposes. On the other hand, the solution
allows the collection of data that can be analysed to evaluate the security properties
of the devices of interest.

1.2 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 introduces concepts that
are crucial to the work presented in this thesis. Chapter 3 describes HALF, a frame-
work designed to address anomaly detection in multiple domains by combining
techniques that are both signature and anomaly-based. In chapter 4 we present
PCkAD a novel anomaly-based intrusion detection technique thought to monitor
network traffic and consider the presence of an adversary who tries to evade the
detection. Chapter 5 presents an approach for compressing n-gram-based models,
in the context of intrusion detection. Chapter 6 discusses a machine learning em-
powered access control system called ML-AC. Chapter 7 shows how virtual envi-
ronments can be used to assess security properties and discover vulnerabilities of
IoT devices, in realistic scenarios. Finally, Chapter 8 summarises the contributions,
draws the thesis conclusions and analyses the future work.
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Chapter 2

Background

In this chapter, the concepts that are fundamental background to the work presented
in this dissertation are introduced. The chapter starts with a presentation of com-
puter security, its definition, history and implications. Afterwards, machine learning
and adversarial environment are covered.

2.1 Computer security

Computer security is defined in [184] as the collection of tools designed to protect
data stored on the computer and to thwart hackers with malicious intentions. The
previous definition mainly takes into account technology aspects. However, tech-
nology alone is not sufficient to address all the existing cyber threats that besiege
organizations. Malicious users do not only target devices but also humans, e.g. by
means of social engineering, and physical objects. In order to accomplish effective
cyber defence an holistic approach is needed. The approach incorporates technical,
human and physical elements to detect, prevent and correct cyber security vulner-
abilities. Computer security have been a problem since the very beginning. In the
1970s computers were mainly used in academia, government agencies and large en-
terprises. Most of them were off-line, therefore they were hardly exposed to any
malicious users, except for insiders. Very few significant cyber threats occurred in
the 70s, indeed at the beginning most of the issues were caused by hacking. People
behind these "threats" were guided by curiosity, the desire of having fun in break-
ing into systems and building reputations. The real cyber threats find their origin in
cracking, which is the act of breaking into computers for criminal gain. In the 1980s
the number of cyber threats started to grow up considerably. By the late 80s, the
adoption of networks was growing rapidly and universities, militaries, and govern-
ments were connecting. As a consequence, the security need started to grow consid-
erably as more and more cyber threats arose. Remarkable examples of such threats
are the Vienna virus [72] and the Morris worm [164]. In particular, the latter was de-
vised in 1988, and is a well-known worm that managed to close down much of the
internet. In truth, the original goal of the Morris worm was to propagate on other
people’s systems stealthily, however, due to a critical mistake, the worm turned into
a denial of service attack. By the middle of the 90s, network security threats had
increased exponentially. This situation led to the creation of firewall and antivirus
programs, security tools that aim at protecting computers from worms and viruses,
and their mass production. The threats were so expansive that it was no longer pos-
sible to handle them by resorting to custom teams and measures. The internet has
exploded since its massive adoption in the 90s and the number of malicious users,
both amateur and professional, has also worryingly increased at an alarming rate.
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In today’s highly complex Internet environment, it is no longer sufficient to pro-
tect an organisation’s network, even though it is still of utmost importance. With
the emergence of applications accessible through the Internet, such as emails, Web
services, File Transfer Protocol (FTP) and sales force automation systems, more and
more people have started to conduct their every day business online, share all kinds
of information through social networking. Obviously, this has caught the attention
of users with malicious intentions. Unfortunately, these applications represent a
juicy attack surface, in fact, due to their complexity they contain inherent vulner-
abilities that can be exploited with enough knowledge and/or the right tools, for
malicious purposes. This scenario has led to the evolution of network attacks into
application-level attacks which have arisen as a new class of threats. Such threats
requires more sophisticated defensive measures than those employed to protect sys-
tems against network threats. Over the years, industry has been paying increased
attention to the security of applications (especially web applications) themselves in
addition to the security of the underlying computer network and operating systems.
Misuse of applications and Web services can result in the loss of valuable resources
and millions of dollars.

Application level attacks will be covered in depth in a subsequent section, due
to their importance in our work.

2.1.1 Vulnerabilities

In computer security, a vulnerability refers to a weakness in a system that exposes
information security to a cyber threat. Attacker takes advantage of these weaknesses
for a number of different reasons, from gaining financial information to turning the
target system itself into a bot schiller2011botnets. In particular, software vulnerabil-
ities are bugs (flaws) in applications (e.g., Web servers and browsers) that can be
leveraged to make the application act in a way that it is not intended to. The at-
tacker might deliver a piece of malicious code to the target system and run it in
order to start downloading malicious software from the Internet and crashing the
application. To exploit a vulnerability, sometimes deep knowledge on the system
may be required, combined with custom malicious software, while other times, un-
fortunately, prefab malicious tools are sufficient. The latter approach, if available,
allows even people with little expertise to accomplish malicious goals. In this frame,
vulnerability is also known as the attack surface.

According to [48], the majority of software vulnerabilities typically stem from
defects, bugs, and logic flaws, introduced by a relatively small number of common
software programming errors. Many words have been spent to produce guidelines
for software developers to help them develop secure coding best practices for their
daily development work. However, despite the efforts, attackers are still exploiting
old and new vulnerabilities in software. It might not be easy, but security must
be an integral part of the software development. It may never be possible to get
rid of all code defects, especially in very complex systems, but by following secure
coding best practices developers can diminish the impact and frequency of software
vulnerabilities.

Figure 2.1 shows the percentage of applications (mobile and non-mobile) that
exhibited a certain type of vulnerability in 2015 [8]. Three of the most prominent ex-
amples of application vulnerabilities are Input Validation and Representation, Code
Quality and API Abuse. Input validation is a security measure that is implemented
to ensure that information systems only process well-formed data, preventing mal-
formed data from triggering malfunctions and/or persisting in the database. Code
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FIGURE 2.1: Type of weaknesses in mobile and non-mobile applica-
tions. The image has been taken from [8].

quality issues raise for not adopting programming best practices, which may lead
to unreleased resources such as sockets and databases, and dereferences of null val-
ues. An API is a contract between two participants, i.e. a caller and a callee. The
participant that typically tend to fail to honor the contract, leading to API abuse, is
the former one. For example, consider a system that is exposed to the Internet. The
admin should do his best to limit the damage whenever the system should be com-
promised. An effective method to accomplish this goal is the use of a chroot jail. This
method aims at creating a temporary root directory for a running process so that
it has a restricted view of the filesystem. However, if a program fails to call chdir()
after calling chroot(), it violates the contract that specifies how to change the active
root directory in a secure fashion.

2.1.2 Exploits

An exploit is a piece of software, e.g. a sequence of malicious instructions or a chunk
of data, created expressly to take advantage of one or more vulnerabilities in a sys-
tem in order to make it perform unintended behaviour.

The target of an exploit might be a specific organisation or a population of users,
e.g. for stealing sensitive data and compromising as many hosts as possible to build
a botnet schiller2011botnets, respectively. There exist many different vehicles and
technologies behind delivery mechanisms, which are often characterised also by so-
cial engineering elements. With social engineering techniques attackers might fool
employees and individuals into handing over valuable information or open a mali-
cious file.

Many exploits are designed to get superuser-level privileges on a computer sys-
tem. However, this goal might not be achievable by resorting to just one exploit,
indeed it is not uncommon to witness an attack consisting of several exploits, first to
gain low-level access, then to escalate privileges repeatedly until one reaches root.
In the following a few examples of exploits are provided. Unauthorized Data Access
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describes the scenario where someone/something accesses to arbitrary files and di-
rectories, without the right privileges, willingly or not. Denial-of-Service attack (DoS
attack), such as the traditional ICMP and SYN floods, is a kind of attack whose ob-
jective is to consume all the resources of a target system (e.g. a server). We talk about
Distributed Denial-of-Service attack (DDoS attack), when the DoS attack is perpetrated
by multiple sources concurrently. An example of DDoS is to ask a server for informa-
tion from multiple compromised user machines at the same time, this may result in
a total system crash, corrupted services or a shutdown due to an enormous amount
of allocated memory.

Application attacks

An application-layer attack targets the layer of the internet that is essentially in-
tended for the end user. This layer is defined by the OSI (Open Systems Intercon-
nection) model [61], a conceptual model that standardises and characterises the com-
munication technologies of a communication system, and includes applications such
as Google Docs, email, maps, weather and news, in other words everything we need
in our daily lives. The application layer is perhaps the hardest to defend. The typical
vulnerabilities of this layer are often defined by complex user input scenarios that
are hard to encode into an intrusion detection signature. Moreover, the layer suf-
fers from the highest degree of accessibility to the outside world. Indeed, the typical
requirement for an application to function is that it must be accessible over Port 80
(HTTP [110]) or 443 (HTTPS [109]), two of the few ports that an organisation’s fire-
wall keeps open. These applications are referred to as web applications because the
communications between them and the clients are based on the HTTP protocol.

As soon as a web application goes online, it immediately becomes vulnerable
to attacks. The presence of vulnerabilities in web servers and programming flaws
in web applications has led to an explosive increase in the number of web attacks
over the past few years [111]. Such attacks can heavily affect organisations time and
money and compromise their reputation. It is then paramount for an organisation
to invest resources to build defence strategies and mechanisms.

Examples of common web attacks are briefly described in the following. Arbi-
trary Code Execution and Code Injection are two well-known examples of web appli-
cation exploits. The former consists of leveraging a software bug in order to execute
any commands of the attacker’s choice on a target machine or in a process. The lat-
ter type of attack is intended to make a system processing invalid data to trigger a
bug that allows the injection of malicious code into a target process to alter its exe-
cution flow . SQL/non-SQL injection and cross site scripting or XSS are two specific
injection attacks. Cybercriminals use SQL and non-SQL injection against databases
to export data such as Personally Identifying Data (PII), to delete accounts, create
bogus accounts and modify data. A DoS can also be initiated. Cross Site Scripting
or XSS is a variant on the injection attack. The main idea of XSS is to insert mali-
cious JavaScript code to the back end web database. The insertion can be achieved
by means of a blog comment post or a video. It is a very popular attack due to its ca-
pabilities of distributing malware, displaying illegitimate content or stealing session
cookies and users login credentials

2.2 Machine learning

Machine learning (ML) is the field of study that, according to Arthur Samuel in [174],
gives computers the ability to learn without being explicitly programmed. ML is a
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sub area of artificial intelligence, which also intersects other fields of study such
as statistics, theoretical computer science, mathematics and more. ML is about de-
signing algorithms that can learn from data, known as training samples, and make
predictions on future observations, known as test samples. The devised algorithms
are meant to learn in an automatic way, without human intervention or assistance.

Machine learning is employed in a range of domains where designing and pro-
gramming explicit algorithms with good performance is difficult or infeasible; in-
deed it has proven to be a very valuable tool and has found major applications in
finance, healthcare, cyber security, robotics, and many more. Enterprises are benefit-
ing from the use of ML algorithms and frameworks, thanks to their high predictive
accuracy, in that they are now able to achieve company-wide strategies faster and
more profitably than before. Machine learning algorithms can analyse enormous
datasets and extract interesting information that can turn past enterprises’ data into
a competitive advantage and lead to strategic goals being accomplished, such as
forecasting long-term customer loyalty, in reasonable time. All of this would be
impossible to accomplish for a human due to memory constraints and obvious/re-
dundant computations to perform for hours and days.

In the context of cyber security, ML finds numerous significant applications, and
a major one is the exploitation of ML in intrusion detection systems for detecting
malicious software or malicious network traffic. Conventional security software
requires a lot of human effort to identify threats, extract characteristics from the
threats, and encode the characteristics into software to detect the threats. This labor-
intensive process can be more efficient by applying machine learning algorithms.
ML algorithms can analyse large multidimensional data sets and identify anoma-
lies, policy violations, signs of compromise and much more. As a result, a number
of researchers have investigated various machine learning algorithms to detect at-
tacks more efficiently and reliably.

There are three main types of ML approaches: unsupervised, semi-supervised,
and supervised [44]. Before briefly explaining the mentioned approaches, it is im-
portant to introduce the concept of label. A label is a string or code that describes the
nature of data instances or, in other words, it identifies the class a data instance be-
longs to. The label is generally the business or problem variable that experts assume
has relation to the collected data. For instance, in the context of network intrusion
detection, data instances (e.g. network packets) might be labelled with either nor-
mal or anomalous. In unsupervised learning problems, the main objective consists of
finding patterns, structures, or knowledge in unlabeled data. When a portion of the
available data is labelled the problem is called semi-supervised learning, while if all
the data are labelled than the problem is called supervised learning. In the latter
problem, generally the task to solve is to find a function that explains the data.

2.3 Adversarial machine learning

Advances in computing capabilities has made it possible to employ machine learn-
ing to solve a variety of tasks, many of which related to security, such as network
intrusion detection [158] (e.g. to discriminate between malicious and legitimate net-
work packets), spam filtering [161] (to discriminate between spam and ham emails),
biometric identity recognition [32] (e.g. to discriminate between impostors and gen-
uine users), in a practical way. However, when it comes to security domains, ma-
chine learning solutions that are solely designed to solve the target problem might
not accomplish the desired results. Indeed, nowadays intelligent malicious users are
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aware of the employment of machine learning as a tool to improve security. Such
users, called adversaries or adversarial users/attackers, might go through a trial
and error process to downgrade the performance of the machine learning system,
e.g. by carefully crafting input data to figure out the weaknesses of the model used
by the system. Adversarial users try to break many of the assumptions made by the
authors of the machine learning solutions, e.g. data stationarity, which states that
training and test data are drawn by the same distribution (even though it is typically
unknown). This problem has led to the birth of a new area of research, namely Ad-
versarial Machine Learning, whose goal is to design machine learning algorithms,
able to hinder adversarial attacks, and to study the capabilities and limitations of
adversarial users [104].

In the following we provide a description for the adversarial user and the taxon-
omy of attacks against machine learning based on [104]. An adversarial attacker can
be described in three different ways, i.e. based on his capabilities, the type of secu-
rity violation he can cause and the attacker’s intention. The attacker may exhibit two
capabilities: (a) the attacker is able to somehow alter the training data that is used
to build the machine learning model (a causative attack) or (b) the attacker does not
influence the learned model, but can send new data samples to the model and pos-
sibly observe its responses on these carefully crafted instances (an exploratory attack).
The type of security violation the attacker may cause: either (a) making the machine
learning system recognise harmful input as normal data (an integrity violation) ; (b)
creating a denial of service event in which benign data samples are incorrectly fil-
tered as false positives (an availability violation); or (c) using the system’s responses
to infer confidential information used in the learning process (a privacy violation).
Concerning the attacker’s intention, he may launch an attack with the aim of: (a)
degrading the system’s performance on one particular data sample or (b) causing
the classifier to fail indiscriminately on a broad class of samples.

2.4 Summary

In this chapter we provided fundamental concepts for the understanding of the the-
sis. At the beginning of the chapter we defined computer security, which is the
general theme of this thesis, and provided a brief discussion about its evolution. We
highlighted that computer security is not just a collection of tools to improve the
security of the a system, but it also incorporates human and physical elements to
detect, prevent and correct cyber security vulnerabilities.

Vulnerabilities and exploits are two very important concepts related to cyber se-
curity, that were analysed in Section 2.1.1 and 2.1.2, respectively. These two concepts
are very important to understand the works presented in Chapter 7 and 4, especially
the former one.

In Section 2.1.2 we focused on a specific class of attacks called application attacks,
i.e. attacks that target the layer of the Internet that is essentially intended for the
end user. Application attacks include a class of attacks referred to as content-based
attacks, which is explained in detail in Chapter 4 and constitute the objective of the
intrusion detection technique presented in Chapter 4 and the classification approach
presented in Chapter 5.

Machine learning is an important part of this thesis too. Indeed, ML is related
to the works presented in Chapter 4, 5 and 6. As previously stated, when machine
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learning is employed to develop a security tool or approach, it is important to con-
sider the presence of an adversarial attacker. The research field of adversarial ma-
chine learning was discussed in Section 2.3 and has a very important role in the
research presented in Chapter 4.





15

Chapter 3

A Hierarchical Hybrid Framework
for Modelling Anomalous
Behaviours

Anomaly detection refers to the problem of finding patterns in data that do not con-
form to what it is expected [46], that are mainly known as anomalies or outliers in
different application domains. Anomaly detection is a common problem to many
areas such as fraud detection [75], speech recognition [2], military surveillance for
enemy activities [135], intrusion detection for cybersecurity [24] and detection of
anomalies in astronomical data [171, 69]. This wide range of applications is due to
the fact that very often anomalies are sources of significant or critical knowledge
that can be derived from raw data. Examples of anomalies are banking transactions
from unusual places which could indicate credit card or identity theft, in the con-
text of fraud detection; presence of malformed strings in network packets, for cyber
security; anomalous energy consumption, both for cybersecurity [123] and energy
consumption [208], and so on.

The problem of anomaly detection has received a lot of attention since the be-
ginning of the 19th century in the statistics community [70]. Recently, interesting
advances in the application of machine learning algorithms for anomaly detection
have been achieved. Over the years the research community has proposed a con-
siderable variety of techniques, many of which are very specific to their application
domains [29].

Signature-based techniques aim at analysing the data to find one or more matches
with a set of rules or signatures. Signatures can include specific strings or regular
expressions that characterize one or more classes of anomalies. These approach typ-
ically generates few false positives, however they fails to detect unknown anomalies
or variants of known ones.

Anomaly-based techniques use suitable models that represent normal data and
classify as anomalous data which deviate considerably from what expected by the
model. Unlike signature-based techniques, they are able to discover both known
and unknown anomalies. The main problem of these approaches is the generation
of a not negligible amount of false positives.

Despite both classes of techniques have been widely used, the above issues have
not yet been fully resolved. Some researchers have thus focused their attention
on hybrid techniques, which are considered a viable solution. Such systems are
designed to include the features of both signature-based and anomaly-based tech-
niques in the attempt to gain the advantages of both of them and, at the same time,
to mitigate their defects. Moreover, within the same class of techniques there exist
many different approaches for the identification of anomalies, such as those based
on statistics, machine learning and data mining for anomaly-based techniques. Each
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devised technique has unique features, strengths and drawbacks. Combining more
of them together can lead to better results.

In this chapter we present a flexible multi-domain framework, called HALF, that
generalizes the problem of anomaly detection. The framework is designed to em-
brace both signature-based and anomaly-based techniques. In addition, it makes
possible to combine the use of different models for the analysis of data, organized
in a hierarchical structure. Given its nature, HALF can work on any kind of data,
unlike the existing works which are bound to specific fields of application.

The rest of the chapter is organized as follows. Section 3.1 summarizes the related
work. Section 3.2 details the HALF architecture while Section 3.3 explains the design
choices. Section 3.4 presents two case-studies and finally Section 3.5 summarises the
work.

3.1 Related work

Hybrid approaches, subject of great interest in the research community, aim at ex-
ploiting the strengths of individual components, to obtain benefits from their com-
bination. They are widely used in the domain of cyber security, especially for moni-
toring network activities, where many hybrid intrusion detection systems have been
proposed [68].

A hybrid network intrusion detection system (HNIDS), which combines two
anomaly techniques, i.e. packet header anomaly detection (PHAD) [146] and net-
work traffic anomaly detection (NETAD) [145], with a misuse technique, was pro-
posed in [22]. In particular, by using Snort [52] as the misuse engine, they exploited
its pre-processors in order to integrate both PHAD and NETAD. The system resorts
to the libpcap packet-capturing library to collect packets. Packets are first analysed in
sequence by PHAD, then by NETAD and at last by Snort. The reported results show
the effectiveness of this hybrid approach.

Another hybrid system is presented in [63]. It runs the anomaly and signa-
ture based analysis in parallel and then combines the results through a combination
module. A SOM neural network is used to model the normal behaviour while the
J48 classifier is exploited to classify known attacks. At last in order to interpret the
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results three rules are defined: (i) if the modules are in agreement then the network
packet is classified according to the output (ii) if the misuse module detects an attack
then the packet is classified as such (iii) if an anomaly is detected while the misuse
module does not detect any attack then the packet is classified as unknown attack.

Hybrid systems have not only been proposed in the context of network intru-
sion detection, but also in other sub domains of cyber security, including steganaly-
sis. A novel approach for detecting concealed data in digital images has been re-
ported in [150] where an anomaly-based approach, using hyper-dimensional ge-
ometric methods to model steganography-free images, is exploited instead of the
widely used signature-based classifiers. The classification algorithm is also a hybrid
signature-anomaly based technique when instances from multiple classes are avail-
able for training. A signature-based classifier is used to label instances when they
are not enclosed by any class models. The authors focused primarily on JPEG im-
ages, but they stated that the proposed approach can also be applied on other types
of files.

As discussed in the following, there are also other domains where hybrid ap-
proaches have been adopted.

Koeppen et al. [129] developed and evaluated an hybrid approach that analyses
thermal infrared satellite time series data for detecting excess energy radiated from
thermal anomalies such as active volcanoes. The authors aimed at addressing the
limitations of MODVOLC [211], a state-of-the-art volcano monitoring system. The
proposed a system is a combination of MODVOLC and RST [170] algorithms. Specif-
ically, the system first processes the data by using MODVOLC. Subsequently the
data undergo a timeseries analysis which has the objective of detecting anomalies
that could not be identified by MODVOLC. This hybrid system too was designed
to combine specific techniques. The authors demonstrated that it achieves better
performance than MODVOLC alone, through an extensive experimental campaign.

Kumar et al. [133] propose the combined use of both data-driven and physics-of-
failure models for fault diagnosis and life prediction, by developing an hybrid prog-
nostics and health management methodology. Their goal is to combine the benefits
of the two individual approaches, i.e. the possibility to define the healthy behaviour
of the system by training and the ability to isolate the root causes and failure mech-
anisms that contribute to system failure, respectively. The results demonstrate the
effectiveness of the approach proposed.

The architecture of HALF is also inspired by some characteristics of the human
immune system [58], that include the learning component and the multi-layered
defence mechanisms. In addition, the framework also provides other capabilities
which distinguish the human immune systems such as signatures extraction mech-
anisms and storage. Artificial immune system are widely used in fields such as
computer security (e.g. virus detection and process monitoring), anomaly detection,
fault diagnosis and pattern recognition [58].

In [59] is presented a work that shares similar characteristics with our proposal.
The author proposes a multi-agent system, inspired by the immunological princi-
ples for network intrusion detection. There are three types of agents: i) monitoring,
ii) communicator and iii) decision/action. The first type of agents have the objective
of searching for events of interest. The second type serves the purpose of carrying
messages to enable cooperation among agents. In the context of the natural immune
system, these agents would correspond to lymphokines, i.e. protein mediators se-
creted from T cells for stimulating B cells and antibodies. The third type of agents
make decisions in response to detected events. The system takes into account multi-
ple layers for the analysis and supports the detection of both known and unknown
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FIGURE 3.2: Anomaly Detection Module

intrusions. It monitors different parameters, from the packet level (the lowest) to
the user level (the highest), and performs a correlation among them to support the
detection of anomalous activities.

The approaches previously discussed suffer from a few limitations. They typi-
cally are bound to specific techniques. For example, in the case of [22] the hybrid
system was designed to combine two anomaly-based (PHAD and NETAD) and a
misuse-based (SNORT) techniques. Sometimes they are also limited to specific types
of data, like the pcap format [22], while other times it is not clear what kind of data
format is supported [63]. The solution presented in [59] has a completely different
infrastructure with respect to the other ones, nonetheless it also lacks the support for
the deployment of existing anomaly detection techniques.

3.2 Description of the framework

HALF has been designed to be applied to different domains, so it is not tied to any
particular type of data. In light of the previous consideration, we will use the term
data instance to indicate the basic unit of data processed by the detection techniques.

The framework architecture is shown in Figure 3.1 and consists of three main
modules: i) anomaly detection, ii) signature detection and iii) learning. The role of
the last module is to support the first two in detecting and handling the concept
drift [207]. The anomaly and signature detection modules employ detection tech-
niques, such as data mining techniques, which make use of different data sources,
one containing historical data of interest and the other signatures. Below we explain
the logical key steps for data instance processing.

The data instance is routed toward the anomaly detection module that marks it
as normal or anomalous based on the previously observed data. If the data instance
is marked as anomalous, then the misuse module checks whether it holds a known
signature, and in the positive case notifies a matching. The data instances that do
not match any known pattern could be either a new type of anomalous data or un-
seen normal data. In the last step, the learning module tries to establish if the data
instances suggest the presence of a new concept with the intent to update the right
data source, in order to maintain an updated view of the incoming data.
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From a formal point of view, the anomaly detection module receives as input D,
an instances-set which is composed by unlabelled normal and abnormal instances
that we denote with N and A, respectively. N is given by the union of known (Nk)
and unknown (Nu) normal instances, where Nk are documented instances. Instead
A will be compounded by known (Ak) and unknown (Au) abnormal data.

Before going into the details, we assume that all instances of A are interesting for
the purposes of our research / study.

Below are reported the properties of the different types of data:
Property 1: N ∪A = D and N ∩A = ∅.
Property 2: Nk ∪Nu = N and Nk ∩Nu = ∅.
Property 3: Ak ∪Au = A and Ak ∩Au = ∅.

The Anomaly Detection Module generates two output data streams, On and Op.
The former is composed of Nk ∪ Âu, where Âu ⊂ Au represents the false negatives,
i.e. abnormal data classified as normal, under the assumption that Nk is signature-
free (Nk ∩ Ak = ∅). Such stream does not require further processing. The aim of the
Anomaly Detection Module is to make empty the set Âu, a goal which is typically easy
to achieve for the anomaly-based detection techniques. The latter stream contains
Nu ∪ Ak ∪ (Au \ Âu) and is directed to the signature Detection Module. The module
provides Nu ∪ (Au \ Âu) as output, with the assumption that the false positive rate
of a signature detection technique is very low. The task of the learning Module is to
merge Nu with Nk and (Au \ Âu) with Ak. This operation coincides with the online
learning phase, detailed next. By looking the previous flow it is fundamental to
minimize the false negatives Âu and to properly do unions of sets.

In the following each single component is explained in details and, at last, the
initialization phase of the framework is discussed.

3.2.1 Anomaly Detection Module

The Anomaly Detection Module shown in Figure 3.2 has a hierarchical tree structure.
The structure is composed by n levels, each of which contains one or more nodes,
except for the root level. The idea at the basis of the hierarchical structure of the
module is to create a parallelism with the possible presence of a hierarchical struc-
ture in the data source. Let us consider Figure 3.2, it shows the set of data D to be
analysed by the module. Within D the subsets C1, C2 and C3 can be identified.
Each of these subsets corresponds to a class of data which might require a specific
detection technique in order to be properly analysed. To meet this need, each class
is associated with a node of the hierarchical structure which receives instances of the
specific class and hosts the required technique. A specific technique might also be
deployed on two or more nodes, with different configurations, as different classes of
data may be analysed by the same technique with a different setting.

In order to determine the destination node of the data that must be processed by
an appropriate detection technique, the framework provides a rule engine. A user
can utilise the engine to create rules in a semi-automatic way, indeed it only requires
to specify the fields of interest of the data to be analysed. These fields are used to
build a rule, by which the data of interest are filtered from the data stream and routed
to the selected node. Rules are represented as boolean expressions, according to
the grammar reported in Figure 3.3, allowing relational operators among variables,
corresponding to data instance fields, and literals. Figure 3.4 shows an example of
such a rule.
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This approach is based on the divide et impera strategy: whenever you come across
a data analysis problem, you might want to divide the problem into two or more
simple sub-tasks, depending on the characteristics of the data. For example, in the
context of cyber security, the detection of some types of network anomalies can be
split into the simpler problems of detecting anomalies in network traffic of each
host. Indeed, they may have a very different behaviour, making a global analysis
very difficult or inaccurate. In the medical field, the nodes of a certain level may be
associated with different age groups of a set of people. The same data may have a
different meaning for each age group, for which a data instance is an anomaly for a
certain age group, while it is normal for another group. The last example discussed
highlights a specific type of anomaly, defined contextual anomaly. There are three
different types of anomalies [46]: (i) point anomalies, a single data instance that can
be considered as anomalous with respect to the rest of data. This is the simplest type
of anomaly and is the focus of majority of research on anomaly detection; (ii) anoma-
lous sequences, a sequence of data instances that is anomalous with respect to the
entire dataset though the single data instances may not be anomalies by themselves;
(iii) contextual anomalies, data instances that are anomalous in a specific context but
not otherwise.

The contextual anomalies are managed through the use of rules and the hierar-
chical structure, as previously described, while the remaining two are dependent on
the model of the techniques used. Care must be taken when seeking anomalous se-
quences within a node. Indeed, the creation of a new child could prevent his father
to see part of the data that make up a behaviour. Therefore, when using a technique
to detect anomalous sequences, it should be directly used in a leaf node, or should
ask their children to forward to it the non-anomalous data.

Typically an anomaly detection technique can produce two types of output: scores
and labels. The former represent the degree of certainty a given data instance or data
instances is considered an anomaly. In the second case, the techniques assign a label,
normal or anomalous. However, the framework does not place any restrictions on
the type of output that an anomaly detection technique can generate.

3.2.2 Signature Detection Module

The signature detection module can be seen as specular with respect to the anomaly
detection module, as represented in Figure 3.5.

Each node belonging to the anomaly detection structure might be linked with a
node that employs a signature-based detection technique. If there exists a link, when
a data instance is marked as anomalous, a signature node is probed to establish if
the anomaly notified matches with any known signature or it is a potential false
positive.

In the presence of techniques that work on signatures characterized by sequen-
tial events, the same considerations made for the anomaly detection module hold. It

〈rule〉 ::= 〈bterm〉 { ‘||’ 〈bterm〉}

〈bterm〉 ::= 〈bfact〉 { ‘&&’ 〈bfact〉}

〈bfact〉 ::= 〈fact〉 〈relop〉 〈fact〉 | ‘!’ 〈fbact〉 | ‘(’ 〈rule〉 ‘)’

〈fact〉 ::= var | boolv | numv | ‘’’ stringv ‘’’

〈relop〉 ::= ‘<’ | ‘<=’ | ‘==’ | ‘!=’ | ‘>=’ | ‘>’

FIGURE 3.3: EBNF syntax for rules
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Name <string> Age <num> Role <string> Enrolled <bool>

Enrolled && (Age>= 18  && Age< 80 ) 

Data Type:

Valid rule:

FIGURE 3.4: Example of a rule
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FIGURE 3.5: Signature Detection Module

may be necessary to forward some data along the hierarchical structure of the sig-
nature module. In the light of the above discussion, the output produced by the
signature module is the set A \ (∪i∈SAi) where Ai denotes the subset of signatures
associated to the i-th node and S the subset of nodes in the signature module that
were asked to process the anomalies.

The purpose of a signature is to describe the characteristic elements of a specific
anomaly or set of anomalies. A signature can have different forms, e.g. it could be
a simple string or a rule. Generally, a signature is of good quality if it is narrow
enough to precisely characterize a given set of anomalies, and, at the same time, it
should be flexible enough to capture variations. If those requirements were not met,
a high number of false positives or false negatives could be observed [131].

Usually, when a signature-based technique identifies a signature, it generates as
output a label that describes the nature of the anomaly.

According to the application domain of the framework, the detected signatures
may have a different meanings. For example, in the case of intrusion detection sys-
tems, signatures match patterns through which is possible to recognize potential
attacks. In the area of steganography [150], instead, a signature identifies the pres-
ence of a hidden message inside an image through which terrorists, criminals, and
other hostile entities can plan and coordinate their illicit activities.

Using signature-based modules has a considerable impact on the analysis con-
ducted on the notifications generated by an anomaly-based technique. All known
true positives are recognized and set aside, leaving only data that have never been
seen to be further analysed or processed. In conclusion, the output of signature mod-
ule will be Au ∪Nu under the assumption that the false negative rate of a signature
detection technique is in general very low, such set of data instance there will be the
input of the learning model, with the scope to discover new concepts or signatures.

3.2.3 Learning Module

The learning module is the most critical component of the framework and it is re-
sponsible for the evolution of the detection techniques. If a data instance reaches



22
Chapter 3. A Hierarchical Hybrid Framework for Modelling Anomalous

Behaviours

Raw
Historycal

Data

D
a

ta
 

S
tre

a
m

Signature 
Detection 

Module

Signature
Dataset

Sub-set

Sub-set

Sub-set

First
Node

Second 
Node

i-th
Node

Initialization Phase t0-t1 Initialization Phase

R
u

le
 E

n
g

in
e

H
ie

ra
rc

h
ic

a
l S

tru
c
tu

re

FIGURE 3.6: Initialization phase

this module, it belongs to the set Au∪Nu, that represent the set of data instances un-
covered at the current time. Part of the set could be a consequence of data evolution.
Indeed, in many domains the nature of data keeps evolving and a current notion
of normal data might not be sufficiently representative in the future [46]. This phe-
nomenon takes the name of concept drift [199] [101]. In order to learn and maintain
an accurate detection level it is fundamental to detect the change and adapts the
model to classify new data. Techniques developed to overcome concept drift can be
divided into three categories: adaptive based [66] [45], learners which modify the
training set [3] and ensemble techniques [201]. The framework provides support for
the evolution for those techniques that do not natively support the concept drift.

Finding a new signature corresponding to an unknown anomaly is not a simple
task because any assumption depends on the application domain. Using only prior
knowledge may not be enough to establish if a new single or sequence of data in-
stances can be an anomaly of interest. To handle effectively this task it is necessary
the cooperation of a domain expert that can analyse the suspect data instances and
build new signatures. The objective of this module is to simplify and reduce as much
as possible the human work.

The learning module performs two tasks to accomplish his purpose:

• Scores top anomalies from Au ∪Nu;

• Shows the data instances that more than others can be anomalous, based on the
assigned scores, to a domain expert in order to discover unknown signatures
and update the techniques hosted by the signature module.

The learning module operates by creating a temporary dataset for each node that
requires support for the model evolution, in which new data instances in Au ∪ Nu,
observed during a chosen temporal window, are stored. The framework builds clus-
ters from these datasets, by using the models that need to be kept up to date. This
strategy is necessary as the models are the only ones to know the features considered
relevant for characterizing a data instance. Each cluster is then analysed by a domain
expert / analyst who must determine whether it represents a set of new normal or
abnormal data instances. In some cases, these operations can be automated, when
strong assumptions about the data to be searched are available. Another domain
expert’s task is to establish a criterion, when performing the verticalization of the
framework, according to which a cluster can be analysed or requires an additional
process of construction.

Once the new instances have been labelled, the knowledge gained can be inte-
grated into existing models in order to keep them updated. For this purpose, the
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framework may employ a technique for managing the concept drift based on en-
semble (or by modifying the training set), such as those proposed in [201] and [154].

Concept drift is a research area in its own right that requires a thorough study. In
addition, its management involves a in-depth analysis of its implications in various
domains. For these reasons we decided to not further address the topic here, but to
investigate it in a future work.

3.2.4 Initialization phase

The initial training phase involves two aspects: the training of signature-based and
anomaly-based models.

As regards the training of the signature-based models, it is assumed that the
dataset of signatures is available. This assumption is almost always valid since the
signatures represent what the analyst knows and wants to find. With this set of data,
the signature module is trained and put into operation mode.

Training the anomaly module can result in a more complex task than the process
previously described. In this case, a data set of normal data is not always avail-
able. Even if they were available, they may not be suitable for the analysis to be
conducted. For example, in the fraud detection domain, given a dataset containing
data instances about a certain group of subjects, if an analyst wants to analyse the
behaviour of a different group of subjects, the information already available are not
suitable for determining which transactions are normal and which are not. There-
fore the analyst has to collect new data instances by observing the behaviour of the
target subjects.

If the object of the analysis is a data flow, in order to obtain the dataset of normal
data, the framework collects data for the necessary time only with the signature
module enabled. A domain expert should analyse the resulting dataset, since it is
possible that some unknown anomalies are collected. At the end of this preliminary
phase the anomaly module can be trained. Figure 3.6 shows the training process
discussed above.

3.3 Framework design

This section presents some details about the design of the framework, which has
been implemented in the C++ language, and focuses on the most relevant aspects.
The design process has been driven by the rigorous application of the software en-
gineering principles, mainly modularity, and exploited several design patterns [84].

The UML class diagram reported in Figure 3.7 shows the main classes handling
data instances and managing rules. They are employed to build rules used to fil-
ter and route data instances within the hierarchical structure. The abstract class
DataInstance generalizes the notion of data instance and enables the framework
to be used in different specific domains. A DataInstance object is a collection
of pairs (field, value) allowing to access structured information from raw data rep-
resentation, e.g. IP fields from the raw bytes of an IP packet. Given a raw data
representation, the fields of data instance are defined by means of a JSON con-
figuration file. Rules are modelled by the class Rule and are evaluated with re-
spect to DataInstance objects. Rule objects are created by a suitable instance
of the RuleBuilder class which uses the data instance type configuration file to
define the building strategy and to parse a raw rule, expressed accordingly to the
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Rule

+evaluate(eval: Evaluable): bool
+and(r1: Rule, r2: Rule): Rule
+or(r1: Rule, r2: Rule): Rule
...

RuleBuilder

+RuleBuilder(type_id: string)
+build(raw_rule: string): Rule

RuleBuilderFactory

+getBuilder(type_id: string): RuleBuilder

ConcreteDataInstance

byte[]

«create»

DataInstance

+getTypeId(): string
+getBoolOf(field: string): bool
...

RawType

«use»

*

FIGURE 3.7: Rule handling classes

previously defined syntax. Finally, RuleBuilderFactory keeps an instance of
RuleBuilder for each type of data instance allocated within the framework.

The class diagram reported in Figure 3.8 shows the classes introduced to rep-
resent the hierarchical structure of the mining modules and to embed data mining
techniques. The base class Node introduces the data structures modelling the hier-
archical relations. In particular, each Node object stores the references to its parent
and children. In order to handle the routing of data instances between anomaly and
misuse hierarchies, a node may keep a reference (in its link field) to a node be-
longing to the other tree. Each node is also equipped with a Rule instance which
establishes the condition that has to be satisfied by a data instance for being suitable
to be processed by at least one mining technique among those embedded in the sub-
tree rooted at it. As described in the previous section, the most specific technique
will be effectively employed for processing the data instance.

The process method defines how a data instance is processed and optionally
routed to the other hierarchy.

The bound between a node and the relevant mining model is kept by the MiningNode
class which specializes the base class Node. A mining model is represented by the
class Model which introduces suitable methods defining the typical model handing
functions such as: training, model updating and data instance classification.

Two specific subclasses of Model are defined, i.e. ClassificationModel and
RegressionModel, depending respectively on whether the model is used for clas-
sification or regression. The AnomalyNode and SignatureNode classes have been
introduced to distinguish between nodes which are part of the anomaly or signature
hierarchy respectively.

The starting point to build a concrete application based on HALF is to create an
instance of the HALFApp and then to feed it with the suitably configured detection
hierarchies (anomaly and signature). The structures of these hierarchies and their
interconnections are achieved by parsing a configuration file. The class diagram of
Figure 3.9 shows the classes introduced to connect an HALF application with the
data sources, to configure the routing strategies along and between the two hierar-
chies and to handle the training and evolution (concept drift) phases.
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Node

+rule: Rule

+process(data: DataInstance):void
...

MiningNode

-children

*

-link

0..1

-parent

0..1

Model

+train(it: Iterator<DataInstance>): void
+update(it: InfIterator): void
+releaseMemory(): void
+load(): void
+save(): void

DataInstance

-model

AnomalyNodeSignatureNode

ClassificationModel

+classify(data: DataInstance): string

RegressionModel

+classify(data: DataInstance): double

FIGURE 3.8: Hierarchy classes

An instance of the InputSource class has the task of extracting the data in-
stances from a given data source and transform each of them into an instance of the
a subclass DataInstance. The class OutputSink defines objects whose role is that
of producing the output of the classification process in a suitable format, e.g. alerts or
logs, according to what specified by the analyst during the configuration phase. The
class Router embeds the routing strategy according to which actual data instances
are delivered to target nodes, by exploiting the rules associated with them. By de-
fault, the framework provides a breadth-first strategy. The LearningModule class
is in charge of handling training of the models (during the initial learning phase)
and concept drift aspects (during the execution).

3.4 Case studies

This section presents two case studies that demonstrate how HALF can be exploited
in practice for implementing a Network Intrusion Detection System and a Steganal-
ysis tool, respectively.

3.4.1 Network Intrusion Detection System

In this first case study, the framework is verticalized for the analysis of network traf-
fic. The first step is to determine the nature of the data instance. We consider packet-
switched networks [91], therefore the data instance corresponds to a network packet
which is a sequence of bytes containing control information and user data [78]. For
the purposes of verticalization, the user must specify which are the fields that con-
stitute a packet and how they should be extracted. In addition, a suitable module
for reading input data has to be implemented. In this case, packets are read by a
sniffer process that listens on a network interface [13]. The framework already offers
a network package, which contains all the tools for reading and handling network
packets in pcap format [105], so there is no need to implement what was discussed
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HALFApp

+addInputSource(in: InputSource): void
+addRoute(type: string, root: Node): void
+addOuputSink(out: OutputSink): void

Router

+getRoute(info: DataInstance): Node
+addRoute(information_type_id: string, root: Node): void
+setStrategy(strategy: RoutingStrategy): void

RoutingStrategy

+getPath(info: DataInstance, root: Node): Node

-routingStrategy

-router

OutputSink

InputSource

Observer

+notify(info: DataInstance): void

OutputFormat

-fields: string

+format(info: DataInstance): string

- schema

InputModule

+addInputSink(in: InputSource): void

OutputModule

+addOutputSink(out: OutputSink): void

-out

-in

-sources

1..*

-sources

1..*

LearningModule

+enableEvolution(node: Node, req: LearnReq): void
+enableTraining(node: Node, req: TrainReq): void

BreadthFirst

+getPath(info: DataInstance, root: Node): Node

Observable

+addObserver(o: Observer)
-notifyAll(info: DataInstance)

-observers

*

FIGURE 3.9: HALF application classes

so far. However, we want to point out that the steps described above are important
to understand how to verticalize the framework in the chosen context of analysis.

The problem of anomaly detection in networks [136] is to find patterns in the
traffic that does not conform to that considered as normal behaviour. The anomaly
detection systems unfortunately tend to generate many false positives and for this
reason they are poorly used within organizations networks. However they are most
commonly employed in hybrid architectures [68], combined with a signature-based
detection systems. The latter type of system takes the name of misuse-based, in this
domain.

We chose two techniques for the detection of network traffic anomalies: PAYL [203]
and PCkAD [11]. PAYL analyses network traffic payloads with the aim of building a
byte-frequency distribution model, with 1-grams and unsupervised learning. It was
designed to build a separate model for each combination of destination port and
data instance length. It is able to process application-level protocols such as SMTP,
HTTP and TELNET. The Mahalanobis distance is used to determine whether the
current traffic is anomalous. PCkAD was designed to identify content-based attacks
over HTTP and FTP protocols. It builds models of normality from network traffic
to learn the spatial distribution of higher order n-grams. The goal of this technique
is to detect unseen patterns and legitimate ones used in an anomalous way. These
two techniques were compared in [11] and results show that PCkAD performs better
than PAYL with respect to the type of traffic analysed, i.e. FTP.

SNORT [52], a well-known signature-based system, was chosen to integrate the
anomaly-based techniques. Since SNORT is a stand-alone system which captures
packets only through a network interface, it was necessary to develop a wrapper for
its integration. The wrapper performs the following steps:

• creates a virtual network interface (i.e. snort_tap);
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FIGURE 3.10: Configuration Scheme as Network Intrusion Detection
System

• starts the SNORT process as daemon and puts it to listen on the network inter-
face just created in non-promiscuous mode;

• opens a Unix-Socket (i.e. /var/log/snort/snort_alert) which it listens
to obtain the analysis results.

Finally, we added a final rule in the SNORT configuration, according to which
if a packet is not detected as an attack then it is labelled as normal. When a packet
is delivered to the SNORT node for the analysis, it is sent on the virtual network
interface and through the sockets the result is subsequently returned in output.

Before explaining how the three techniques were deployed in the framework, the
network configuration used for the case study is discussed.

Figure 3.10, block a, shows the network topology examined. It is composed of
an access router that connects three nodes to the Internet. Two of these nodes are
lamp servers that offer various types of services, while the third node is control
station, through which the network administrator manages the servers and network
configuration. A fourth node was introduced into the network, which hosts the
verticalization of the framework and analyses incoming traffic to the network. The
latter node is not shown in the network topology, but it is exploded in block b of the
figure. Block b shows how the framework was set up to protect the network. A three-
level hierarchical structure was created inside the anomaly module. The first level
hosts the root node, which should host a technique that can analyse all incoming
traffic. It follows the hosts level, where each node is configured to be able to analyse
the traffic addressed to a specific network host. Finally, each node of the last level
analyses the traffic of a specific service. Since PAYL supports a greater number of
protocol it was deployed in the root node. Instead, PCkAD is specific to the HTTP
and FTP traffic, on which it offers the best results, therefore it was deployed in the
third-level nodes as depicted in Figure 3.10. With this configuration, PCkAD can
monitor the traffic routed to both network servers. The second level contains only
one node, corresponding to the machine used by the network administrator. The
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node is not associated with any anomaly detection technique because it does not host
any services, and there is no need to model the administrator behaviour. All nodes
of the hierarchical structure are connected to the module signature-based, which
contains a single node where the Snort plugin is installed.

We developed an output module for sending reports to a network administrator
via email. An email is sent when an attack is notified by a detection module, or if an
host exceeds a certain predetermined threshold of anomaly.

With this case study we have easily developed a system that can detect anomalies
in network traffic of separate hosts and send e-mails to a network administrator to
notify the detected attacks.

3.4.2 Steganography

In this case study we configure the framework as a hybrid steganalysis tool able to
find hidden content and report suspicious images.

Steganography is a technique whose objective is to hide communication between
two parties, by concealing specific messages, in the form of files or text, inside of
other files, such as images and video [121]. Steganography is used for example by
terrorists, criminal organizations, etc., to camouflage the planning and coordination
of their illicit activities.

Considering the importance of the detection of hidden messages within suspi-
cious files, the scientific community has devoted much attention to the development
of detection techniques. Two main classes of techniques have been developed, i.e.
signature and statistical based. Signatures are established through the knowledge
of the processes and techniques used by stenography tools for hiding content in-
side files. These approaches, however, are not able to detect the presence of hidden
content if they are applied through ad-hoc techniques. This problem is handled
through the use of statistical-based techniques that use statistics and frequencies to
notice which files have anomalies. Techniques belonging to both classes can be also
divided in two groups: specific and universal approaches [162]. The former targets
a specific steganographic method while the latter can potentially detect all stegano-
graphic techniques.
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Figure 3.11 shows how HALF is verticalized for the proposed case. For our pur-
pose we developed an input module that builds an internal representation of an
input image. This representation consists of i) a header, in which information such
as image format, type of colors, and so on are specified; and ii) a body containing the
raw image data. The header is specified to the rules engine to generate rules. The
anomaly-based module is composed of two layers. The first layer contains only the
root node, in which a technique for the analysis of any type of image is deployed.
The second level hosts techniques each of which works on particular types of im-
ages. Given the need to analyse any type of image, regardless of the steganography
technique employed, the root node hosts an universal technique. To this end, any
of the techniques discussed in [162] may be suitable, such as [218] and [98]. The
second layer contains a variable number of nodes, depending on how many types
of image the user wants to analyse. In this specific case study it is assumed that the
user is interested in halftone, grayscale and colour images. For the above analysis
the techniques presented in the [117], [74] and [144] are chose, respectively.

As discussed in [118] and [162], by manually analyzing stego images, an analyst
can obtain signatures that characterize the steganographic technique employed to
hide a message. Then the signatures are used by specific models to conduct auto-
matic analysis of new samples. The signature-based module has been developed
according to this logic. It consists of two layers. The second layer contains nodes
whose aim is to check whether a specific technique of steganography was used
within an input image. Therefore, each node should host a model built for using
signatures of a specific steganography technique. Once again the first layer contains
only the root node. Unlike the previously discussed root nodes, this one does not
host a specific technique, but a routing module. The aim of this module is to route a
new anomaly image to the second-layer nodes that are able to process it, on the basis
of the defined rules. Once the image gets processed, the nodes notify the result, e.g.
the stego message and information about the steganography technique used, to the
output module.

3.5 Summary

Nowadays the analysis of data and seeking patterns is a growing issue. In particular,
this problem is very important because anomalies usually represent significant or
critical information. This problem is addressed in many application domains such
as medical, energy consumption and cyber security fields.

Researchers are constantly studying and developing new algorithms in order to
analyse the ever increasing amount of data available and keep up with their evo-
lution. Sometimes there might be the need to combine different types of existing
techniques to achieve better results, leading to the creation of hybrid systems. This
idea is similar to the concept of defence-in-depth, where multiple security tools with
complementary capabilities are combined to improve the security of a target sys-
tem, given that a single security tool cannot provide an holistic protection by itself.
Likewise, a single anomaly detection technique has limited capabilities, in that it can
typically detect one or a few classes of anomalies. That said, state-of-the-art hybrid
systems are typically bound to specific techniques and limit the analysis to specific
types of data. These constraints may limit the effectiveness of the analysis.

The existence of a software able to provide a basis for the analysis of data that
supports the elements discussed above would make easier and more effective the
approach to the problem of the anomaly detection.
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Our research towards this goal led us to the design of HALF, a generic framework
through which it is possible to combine and manage different techniques of a specific
domain by means of a hierarchical structure. Its generality makes it easily applicable
in different application domains such as fraud detection, speech recognition and
intrusion detection for cyber security. The framework fully supports the entire data
analysis process, from the training and data collection phases to the execution of
data analysis algorithms. Moreover, we introduced a learning module to handle the
concept drift.

In the next chapter, we present PCkAD, an intrusion detection technique. PCkAD
is part of a research activity for which the concept of anomaly is of utmost impor-
tance, indeed an intrusion can be seen as an anomalous activity that is interesting to
detect because it might represent a cyber threat.
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Chapter 4

PCkAD: Packet Chunk Anomaly
Detector

Content-based attacks is a class of attacks whose goal is to deliver malicious con-
tent (e.g. shellcode or a malicious FTP command-value pair) to a service in order to
exploit its vulnerabilities. This type of cyber threats has gained considerable impor-
tance over these years, especially when their target are web applications. In this case
we talk about application level web attacks. Such attacks exploit web-application
vulnerabilities, to achieve goals such as data theft and privilege escalation. If the
attacker succeeds, the target organization may suffer severe financial loss and dam-
ages to its image. A recent example of web attacks is the shellshock attack [157]
which could expose organizations and individuals to potential fraud, financial loss,
or access to confidential information, by exploiting a bash vulnerability of UNIX-
like OSs.

A class of security tools that have proven to be a valuable defence wall against
this type of attacks is called Intrusion Detection System or IDS. There exist two
main classes of IDS [21]: misuse-based [180] and anomaly-based IDS. The former uses
a database of rules or signatures to search for specific patterns in network packets
to detect well-known attacks, but it fails with unknown malicious attempts or even
variants of known ones. In contrast, the latter class is able to identify both known
and unknown attacks, at the expense of a higher level of false positives, by mod-
elling legitimate network traffic. This is the most known drawback of anomaly-based
IDSs, which can lead to an excessive workload to recognize true attacks among the
false positives and lose confidence in alerts.

In this chapter we present Packet Chunk Anomaly Detector or PCkAD. PCkAD is
an anomaly-based intrusion detection technique thought to monitor network traffic.
Its main goal is to detect content-based attacks by monitoring application-level traffic,
e.g. web applications.

PCkAD uses the n−gram technique to model normal network traffic. The n−grams
have proven to be an effective tool for the detection of malicious contents, how-
ever they alone might be insufficient to create a reliable intrusion detection system.
Malicious contents tend to contain never seen n−grams that increase the degree of
anomaly, but, on the other hand, they might also contain legitimate n−grams that
could make them appear as normal contents.

Another very important aspect of an IDS concerns the way it has been designed.
Typically, an IDS is designed with only the problem to solve in mind, i.e. detecting
specific types of attack. The problem with this attitude is that nowadays in order to
deploy an IDS in an organization network, it must be able to cope with the presence
of an adversary attacker, i.e. a malicious user who aims at hindering the normal
activities performed by the security tool. Such attackers might employ the so-called
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exploratory evasion techniques [57][30] whose objective is to carefully manipulate at-
tack samples in such a way that they seem legitimate from the IDS point of view.
Section 2.3 provides an in-depth characterisation of adversarial attackers and the
techniques they employ. Unfortunately, many works in literature, like [182], mainly
focus on how to detect attacks and do not dedicate significant efforts to address the
presence of an adversary, sometimes this aspect is not taken into account at all [34].
It is then of utmost importance to design the system in such a way that it is robust
to adversary attacks.

The contributions of the approach are summarized next:

• As a major feature, differently from previous techniques that aim mainly at
learning the count distribution of raw content, the proposed technique builds
models of legitimate traffic by learning the spatial distribution of the n-grams
occurring in the relevant payloads of normal traffic. Moreover, separate mod-
els are associated with different traffic lengths in order to better capture the
relationship between length and content inherent in traffic.

• The strategy adopted has two main advantages: i) it allows the system to rec-
ognize both never seen and suspicious legitimate patterns (i.e. used in an
anomalous way), and ii) it provides resistance to a specific evasion technique,
known as blending. This evasion technique, which consists in obfuscating ma-
licious code by mixing it with legitimate content, is difficult to implement by
an attacker in the case of PCkAD, since both occurrence and position distribu-
tions have to be determined.

• We further prove that, even if the above information are available to the at-
tacker, finding the right legitimate content in presence of chunks is per se a
difficult problem, in that it turns out to be NP-hard.

• PCkAD is evaluated on both real and synthetic datasets. We show that PCkAD
is able to achieve an high detection rate with a very low false positive rate.
Moreover, we present a comparison between PCkAD and two well-known
anomaly-based IDSs that use n-grams as well.

Experimental results show that PCkAD outperforms the other two algorithms.

The source code of PCkAD is publicly available on GitHub [12].
This chapter is structured as follows. Section 4.1 presents the related work. Sec-

tion 4.2 gives an overview of the technique and of its features. Section 4.3 explains
the type of attacks that can be detected by PCkAD. Sections 4.4 and 4.5 explain how
PCkAD models the network traffic and performs packet classification, respectively.
Section 4.6 studies the computational complexity of blending with n-grams in pres-
ence of chunks. Section 4.7 discusses experimental results. Section 4.8 discusses
the implications of processing encrypted traffic. Finally, Section 4.9 summarises the
work.

4.1 Related work

An anomaly-based IDS learns normal behaviours to build a model which can dis-
criminate between legitimate and malicious activities. The main benefit of this ap-
proach is that the IDS can identify both known and unknown attacks but, on the
other hand, this feature comes at the expenses of a high generation of false positives,
and this constitutes a relevant problem when performing IDS alerts log analysis.
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One of the most important goals of the IDS research field is the mitigation of the false
positive rate. Over the years, a lot of anomaly-based IDS have been devised [85].

Popular approaches for intrusion detection include Support Vector Machines
[122] [119] [141], Decision Trees [212] [202] [35] [34], Naïve Bayes [27] [128], Ensem-
ble Learning [216] [33] and Clustering [36], and n-grams [204, 182].

Promising results have been achieved by employing the n-gram technique for
modelling network traffic. Other research fields, like information retrieval [1] and
statistical natural language processing [42], also extensively employ n-gram based
algorithms. Some of the IDS techniques based on n-grams are briefly discussed in
the following. A general survey on IDS can be found in [60].

PAYL [204] builds a byte-frequency distribution model of network traffic pay-
loads with 1-grams and unsupervised learning. A distinct model of normal traffic
is built for each combination of destination port and length of the flow. During the
detection phase, the current traffic is compared with a matching model by means of
a simplified Mahalanobis distance measure, and an anomaly is raised if the distance
exceeds a given threshold. PAYL was evaluated on the DARPA 1999 dataset. The
IDS got good performances, despite using only 1-grams, featuring an overall detec-
tion rate of about 60% at a false positive rate less then 1%. However, as shown in
[77], PAYL can be easily evaded by an attacker, if he manages to know the normal
byte frequencies, since malicious payloads can be padded with bytes to match the
distribution.

POSEIDON [38] performs the detection task by using PAYL as a basis, but with
different preprocessing. POSEIDON uses the output of a Self Organizing Map (SOM)
classifier for determining whether to create a separate model, instead of using the
length of a packet payload. The SOM classifier aims at identifying similar payloads
for a given destination address and port. The authors showed that this improvement
produces less models and higher accuracy than PAYL.

ANAGRAM [205] uses a mixture of high-order n-grams, with n > 1, and can
be considered as an evolution of PAYL. The use of high-order n-grams makes ANA-
GRAM less susceptible to mimicry attacks than PAYL, since it is harder to emulate
such n-grams distribution, in padded bytes. Supervised learning is employed to
model both normal and attack traffic,therefore a payload is classified based on both
normal and attack models. One of the interesting features of Anagram is its ability
to end model training by estimating the likelihood of observing new n-grams. De-
spite Anagram is effective at detecting certain types of attacks, it was shown that
this approach suffers from overfitting [182].

In [182] the authors propose an anomaly-based technique, called Spectrogram,
which models higher order sequences by means of a mixture of Markov chains. The
technique is designed to learn a representation for both the content and the structure
of script arguments strings. It has been thought to achieve a favourable trade-off be-
tween accuracy, generalization ability and speed. Spectrogram uses dynamic packet
re-assembly to see what the target application sees. The IDS was able to achieve good
detection and low false-positive rate on two datasets collected from two Columbia
University’s servers, however the speed of the method is very low due to the packet
payload modelling.

Existing solutions tend to focus on producing a detection approach that features
high detection rate and low false-positive rate, whereas the robustness against eva-
sion attacks has been taken into consideration with different degrees of attention
[205][182] or it has not been considered at all [38]. More generally, the problem is
part of a significant area of research that concerns the design of pattern classifiers in
adversarial environments. There is a great variety of works that aims at countering
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evasion attacks, including [57][93][30][31]. Recently it has been shown that interac-
tions between the classification system and the attacker can be modeled in non-zero-
sum games, using game theory [43]. However, in order to satisfy the condition of
uniqueness of the equilibrium, the two participants must meet specific conditions,
moreover computationally demanding algorithms are required to find solutions. In
[193][217] the goal is to learn secure classifiers by minimizing a modified version of
the loss function which considers the worst case of data manipulation at test time.
This approach suffers from a computationally intensive training phase.

Unlike previous works on IDSs, we extensively evaluated PCkAD in an ad-
versarial environment and devised a solution against the exploratory attack called
blending that does not have a negative impact on the performance of the technique.
PCkAD was designed to search for legitimate n-grams that also appear in malicious
contents so that it is not negatively affected by their presence. This is accomplished
by learning structural information, a kind of information that has not been properly
exploited so far.

4.2 Description of the technique

In the past a lot of IDSs were proposed to detect network attacks by examining ei-
ther the IP or TCP header, or both of them [146], [185]. However, such strategy is
not suitable for the detection of content-based attacks, which can be revealed by in-
specting higher layer payloads, e.g. transport or application level data. Indeed, an
HTTP-based attack could be recognized by analysing the URL of a request, while a
FTP attack could use a suspicious command-value pair.

PCkAD performs its analysis at the application level, though it assumes as processing
unit the single network level packet. This means that, even though PCkAD processes IP
packets one at a time, it is anyway aware of the information regarding the higher-
level protocols. For example, PCkAD knows whether a given packet is an HTTP
fragment and also if it is part of a GET or of a POST request. This strategy has the
advantage to account for relevant application-level information. As a consequence,
PCkAD does not incur in the complexity due to the reassembly of the whole content
of an application session, as done in other techniques (see, e.g., [182]).

PCkAD is designed as a pure intrusion detection technique, so its main goals
consist in monitoring application traffic and in raising alerts when anomalous ac-
tivities are identified. This is accomplished by distinguishing between two main
phases, that are the training and the detection phase. The network traffic is mod-
elled in a semi-supervised fashion, in that only legitimate data are employed to build
classification models.

During the training phase, detailed in Section 4.4, the technique learns the spatial
distribution of the n-grams which typically occur in the relevant content of legitimate traf-
fic. In particular, the relevant content is split up in portions of equal length, called
chunks, and the spatial distribution of patterns characterizing legitimate traffic is
modelled as the expected number of occurrences of the n-grams within each chunk.
Distributions are computed on groups of packets homogeneous for application-layer
protocol, direction, type and, moreover, number of chunks. The last feature is in-
spired by studies carried out in the literature concerning the relationship between
the packet length and the traffic content, as the one reported in [204] which has high-
lighted how the byte distribution of HTTP packets varies among different payload
length.
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During the detection phase, detailed in Section 4.5, the models built during the
training phase are used to identify anomalous network traffic. Specifically, for each
packet an anomaly score is computed and exploited to classify the packet as anoma-
lous or not. With this aim three different detection schemes are available, which take
into account global information, local information or both. This strategy allows the
system to recognize both never seen patterns and legitimate patterns which are used in
an anomalous way. Moreover, this feature has the additional advantage of providing
resistance to an evasion technique called blending [77]. To illustrate, an anomaly-based
IDS, which performs deep packet inspection, is able to recognize zero day attacks
which contain, typically, never seen contents. When using the n-gram technique,
such contents are interpreted as a set of unusual (e.g., never seen) n-grams.

It is important to note that malicious packets may contain data whose nature is
not malicious, e.g. very frequent n-grams. The presence of such data could pre-
vent an IDS to correctly detect threats by lowering the overall packet anomaly score.
Thus, looking only at anomalous n-grams might be not enough. However, usually
they are not distributed in the packet in the same way as in legitimate traffic. For
instance, a malicious packet could contain a set of legitimate n-grams that appear
with an anomalous number of occurrences and/or in unusual positions within the
payload. Hence, accounting for spatial distribution may well mitigate the negative
influence of legitimate data contained in malicious packets and, in addition, hinder
an evasion attack such as blending.

When an attacker performs blending, he tries to make an attack packet appear
as normal, typically by mixing malicious code with a set of legitimate bytes. The
outcome of such process is an attack packet which might contain a considerable
amount of legitimate content. However, deceiving PCkAD is not an easy task because
the attacker not only has to guess the exact distribution of the n-grams, in terms of
occurrences, but he also has to guess in which chunks such patterns are typically
located. Moreover, we show (see Section 4.6) that even if the above information is
available, finding a legitimate content suitable to obfuscate the malicious one is per se a
difficult problem in the presence of length constraints. The behaviour of the technique
with blended traffic is analysed in-depth in Section 4.7.

Table 4.1 reports a complete list of the symbols used throughout the chapter.

4.3 Content-based attacks

Content-based attacks were introduced in Section 2.1.2, while this section explains
their characteristics and what they look like. One of the reasons behind the success
of this class of attacks is the lack of input validation on the server.

Figure 4.1 depicts an example of a legitimate URL that is part of an HTTP GET
payload (a). The URL points to www.dangerous.com and is followed by two param-
eters, namely param1 and param2, both of which takes integer values. Below the
legitimate payload a few examples of content-based attacks are reported. As can be
seen, the difference between the malicious and legitimate payloads lies in the input

FIGURE 4.1: Example of legitimate HTTP GET payload (a) and
content-based attacks (b,c,d)
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TABLE 4.1: Symbols used throughout the chapter.

n the n-gram length
g n-gram

Σn n-gram alphabet
lck the chunk length
lrc the relevant payload length
nck the number of chunks
P traffic profile
Pa application-layer protocol of P
Pd packet direction of P
Pt payload type of P
Pl relevant payload length in terms of

number of chunks of P
T set of packets

TP subset of packets of T that comply
with the profile P

MP the model associated to a profile P
ΣP the set of n-grams occurring in at least

a packet in TP

T
g
P

the set of packets in which g occurs at
least once

µ
g
P

the mean regarding the number of oc-
currences of g in the packets where it
appears

σ
g
P

the standard deviation regarding the
number of occurrences of g in the
packets where it appears

µ
g
P,i

the mean regarding the number of oc-
currences of g in the i-th chunk of P

σ
g
P,i

the standard deviation regarding the
number of occurrences of g in the i-th
chunk of P

p a packet

c
g
p the number of occurrences of g in p

c
g
p,i the number of occurrences of g in the

i-th chunk of a packet p
GP the global component of MP

LP the local component of MP

m Pl

l
p

pkt the size of a packet p

l
p
ng the number of n-gram in p

o a packet to classify
Po the profile to which o belongs to
Po
a application-layer protocol of o

Po
d

packet direction of o
Po
t payload type of o

Po
l

relevant payload length in terms of
number of chunks of o

P̃o the most similar profile of Po with re-
spect to Po

l

Z(g, o) the global Zeta score of g in o

Zi(g, o) the local Zeta score of g in the i-th
chunk of o

asG(g, o) the global anomaly score of g in o

asL(g, o) the local anomaly score of g in o

1 the indicator function
asGS(o) the anomaly score of o based on global

information
asLS(o) the anomaly score of o based on the n-

gram distribution within the packet
as2LS(o) the anomaly score of o based on the

combination of asGS(o) and asLS(o)
tS the n-gram anomaly score threshold
tas the packet anomaly score threshold

provided for the URL parameters, which in the former case consists of a malicious
sequence of characters, like an SQL code (b). The server expects to read integer val-
ues when processing the request, but when it receives a payload like (b, c, d) it reads
alphanumeric strings that could cause serious damages if not properly handled. In
particular, (b) is an SQL-injection that attempts to print one or more values related to
param1, by sending a query that is always true, i.e. 1′or′1′ =′ 1. The payload in (c) is
a path traversal attack whose goal is to steal a file called passwd from the server. The
remaining attack (d) is known as remote file inclusion, which in this case tries to inject
PHP code into the server by exploiting the PHP’s remote library inclusion feature.

URL parameters do not represent the only means by which an attacker can de-
liver malicious contents. Figure 4.2 shows an example of a Shellshock payload [157],
where the user-agent field of an HTTP request is exploited to remotely execute a com-
mand.

FIGURE 4.2: Example of a Shellshock payload
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POST /service/login.php HTTP/1.1

Host: 192.168.110.64

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Cookie: PHPSESSID=wyfytlxsxxlsqexelmlkbsytvc;

Content-Type: application/x-www-form-urlencoded

Content-Length: 86

reqURI=&destination=&tl_login=myusername&tl_password=strongpassword

&login_submit=Login

(A) Relevant payload

0-24  /service/login.phpreqURI=

25-49 &destination=&tl_login=my

50-74 username&tl_password=stro

75-99 ngpassword&login_submit=L

100-103 ogin

(B)
Chunks
for
lck =

25

FIGURE 4.3: Example of an HTTP POST payload

4.4 Training phase

The system does not gather statistics from IP and TCP header fields but it focuses on
information relevant to the specific application-layer protocol, e.g. HTTP or FTP.

PCkAD builds normal traffic models based on n-grams. An n-gram g is a se-
quence of n symbols belonging to a given alphabet Σ, i.e. g ∈ Σn. n-grams are
extracted from an input flow by resorting to a sliding window of length n. In this
work we employ byte values as the alphabet Σ.

The training phase is done off-line on a training set T = {p1, . . . , pN} of packets
containing legitimate traffic pertaining to a user-specified application-level protocol.
The training phase receives in input two parameters: (i) the length n of the n-grams
to be extracted, and (ii) the chunk size lck. During this phase, each network packet
goes through three main sub-phases: (1) Preprocessing, (2) Packet profile identification,
and (3) Model building.

The following subsections detail the three steps of the training phase.

4.4.1 Preprocessing phase

At the beginning, PCkAD inspects the packet headers to determine the application
protocol, e.g. HTTP, the direction (incoming or outgoing) and the specific application-
level payload type. Depending on the protocol, it is possible to identify different
types of application payloads. For example, in the case of HTTP traffic, packets con-
taining GET or POST headers can be observed.

PCkAD does not process an entire application flow but single IP packets. Then
some packets may contain the header of the application-level protocol while others
are fragments of the payload. For these reasons, for each type of IP packet two
different models are respectively built, that are header models and fragment models.

Not always the whole payload is relevant for the detection of a malicious be-
haviour. For example, HTTP attacks typically exploit only a portion of the entire
payload of a request to carry malicious code to a vulnerable service. Such a portion
is referred to as relevant content, and will be indicated as rc. Fig. 4.3a shows an ex-
ample of payload that corresponds to an HTTP POST request header. It is composed
of the start line, containing the verb POST, a set of header fields (e.g. User-Agent
and Host) and the body data (see [110] for more details). Of all these elements, an
attacker typically exploits the body data and sometimes the URL following the verb
(e.g. [188]).

As a default setting, PCkAD considers the body data for POST requests as rel-
evant content (that are the characters surrounded by blue rectangles in the figure),
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and also the URL parameters for GET requests. However, as anticipated in Section
4.3, it might happen that other fields are exploited by an attacker, usually by forcing
them to have arbitrary values. Examples of such attacks are cross site scripting (XSS)
and CSRF attacks (see [214] and [125]). To capture also these attacks, PCkAD can
be configured to choose which part of a packet has to be taken into account for the
training and detection phase.

As for the FTP traffic, the entire payload is considered relevant by PCkAD.
The extraction of the relevant content rc carries a variety of benefits. First, the

data which has to be processed by the subsequent phases is typically smaller than the
whole payload and less computational resources are needed. Second, removing byte
sequences having no discriminating power results in a higher classification accuracy.

After the relevant payload has been identified, PCkAD splits it up into not over-
lapping portions of equal length, which we refer to as chunks. Let lrc denote the
relevant payload length, the number of chunks nck that rc contains is given by:
nck = ⌈lrc/lck⌉. Fig. 4.3b shows a possible subdivision of the relevant content of Fig.
4.3a for lck = 25.

4.4.2 Packet Profile Identification phase

For each packet, PCkAD identifies the matching profile and then uses the extracted
data to incrementally build the corresponding model. Each profile P is a tuple
(Pa,Pd,Pt,Pl) characterized by the following attributes: application-layer protocol
(Pa); packet direction, that is either incoming or outgoing (Pd); payload type (Pt); rele-
vant payload length in terms of number of chunks into which it is split up (Pl). For
example, for a chunk length of 25 bytes, the profile of the packet depicted in Fig. 4.3a
is characterized by HTTP as the application protocol, incoming as the packet direction,
POST as application specific class and 5 as number of chunks (computed on the basis
of the relevant content which, in this case, is 105 bytes).

The choice of the attributes employed to characterize a profile is actually an
heuristic thought to distinguish different types of traffic, similarly to what was pro-
posed in [204].

Pa and Pd are needed in order to separate network traffic profiles of different
nature, since each protocol implies specific contents and models learned on hetero-
geneous traffics usually exhibit large misclassification rates. We note that these two
attributes alone could not be enough to build accurate models. Attributes Pt and Pl

serve the purpose of better discriminating real application traffic profiles.
For example, HTTP GET and POST requests typically carry different types of

data and, hence, will be grouped in different profiles. In particular, the protocol
domain knowledge, taken into account by Pt, is complemented by the packet size
Pl which instead does not depend on the specific protocol.

Given a profile P , we denote by TP the subset of packets of the training set T
matching with the profile P .

4.4.3 Model building phase

During the model building phase, PCkAD builds a model MP for each profile P
such that TP 6= ∅. Given a profile P , let ΣP be the set of n-grams occurring in at least
a packet in TP . Given a n-gram g ∈ ΣP , let T g

P ⊆ TP be set of packets in which g
occurs at least once.
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For each g ∈ ΣP , PCkAD computes the mean and the standard deviation of its
occurrences among the packets where it appears:

µg
P =

1

|T g
P |

∑

p∈T g
P

cgp and σg
P =





1

|T g
P |

∑

p∈T g
P

(cgp − µg
P)

2





1

2

, (4.1)

and the mean and the standard deviation of the number of occurrences for each
chunk:

µg
P,i =

1

|T g
P,i|

∑

p∈T g
P,i

cgp,i and σg
P,i =







1

|T g
P,i|

∑
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P,i)

2







1
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, (4.2)

where cgp is the number of occurrences of g in a packet p ∈ T g
P , cgp,i represents the

number of occurrences of g in the i-th chunk of a packet p and T g
P,i is the set of

packets where g occurs in the i-th chunk.
A model MP of a profile P is a pair MP = (GP , LP), where GP is the global

component and LP the local component.
The global component GP of a model MP is a set of pairs GP = {(µg

P , σ
g
P) | g ∈

ΣP}, each one associated with a different n-gram g occurring in ΣP .
The local component LP of a model MP consists of a set of m-tuples LM =

{〈(µg
P,1, σ

g
P,1), . . . , (µ

g
P,m, σg

P,m)〉 | g ∈ ΣP}, each one associated with a different n-
gram g occurring in M , where m = Pl.

4.4.4 Temporal and spatial cost

The dimension of the input |I| corresponds to the size of the training set T , that is
|I| =

∑

p∈T lppkt, where lppkt is the byte length of packet p.

The preprocessing step is done in linear time with respect to lppkt, while the pro-
file identification step requires constant time. During the model building step, the
model building operation accesses the data structure which stores model informa-
tion, so we must account for that access time. We employ a hash table for storing
models and, as a consequence, we achieve O(1) as the amortized cost for accessing
it. Then, because the hash table has to be accessed for each n-gram extracted from the
relevant content of p, the cost of the third step is O(lpng), where lpng = lprc − n+ 1, with
lprc the size of the relevant content of p, i.e. the total number of n-grams contained in
the relevant content of p. Being lpng < lppkt, the time complexity of the training phase

is O (|I|), that is to say linear in the number of bytes of the training set.
Regarding the spatial complexity, the data structure where models are stored

dominates by far the space usage. In the worst case, each chunk requires a distinct
model and then O (|I|/lck) space is need. However, we note that in practice the space
requirements are much smaller.

4.5 Detection phase

PCkAD exploits models MP for classifying new observations with the goal of detect-
ing content-based attacks. Packet classification is also done in three steps: (1) packet
preprocessing, (2) profile identification and (3) anomaly computation. The first two
are the same as in the training phase. The third one is detailed in the following.
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4.5.1 Anomaly scores and detection strategies

Each observed packet o is first parsed in order to identify the presence of content not
structured accordingly to what is specified by the application protocol. For example,
when PCkAD inspects a payload containing an HTTP GET header, it is aware of
how the packet must be structured (the format of HTTP requests is described in the
protocol specification RFC 2616 [110]).

If the packet o is not well-structured, it is automatically marked as anomalous,
otherwise it is compared with the model MPo corresponding to the matching profile
Po = (Po

a ,P
o
d ,P

o
t ,P

o
l ). In the case there is no matching profile but there are some

differences only for the Pl component, it is still possible to try to classify o by using
the model MP̃o for the profile P̃o = argminP{|Pl−Po

l | : (Pa = Po
a)∧(Pd = Po

d)∧(Pt =
Po
t )} characterized by the most similar number of chunks.

We exploit the trained models in order to compute the Zeta score, which mea-
sures how many standard deviations the observed value is far apart from the popu-
lation mean. Given an observation o, the global Zeta score Z(g, o) of the n-gram g in
o is

Z(g, o) =

∣

∣

∣

∣

cgo − µg
Po

σg
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∣

. (4.3)

Analogously, a set of of local Zeta scores Zi(g, o) (1 ≤ i ≤ Po
l ) are associated with g

in o by considering each different chunk within the packet:

Zi(g, o) =

∣

∣
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. (4.4)

Now, we introduce the anomaly scores we employ to detect anomalous traffic. Anomaly
scores make use of a threshold tS . The global anomaly score of g in o is defined as:

asG(g, o) =

{

cgo if Z(g, o) > tS
0 otherwise.

(4.5)

The local anomaly score of g in o is defined as:

asL(g, o) =
∑

i

(

cgo,i · 1[Zi(g, o) > tS ]
)

, (4.6)

where 1 : {f, t} 7→ {0, 1} denotes the indicator function s.t. 1(f) = 0 and 1(t) = 1.
In those cases where there is no model associated with Po, we use the model MP̃o

and the local anomaly score becomes:

asL(g, o) =

P̃o
l

∑

i=1

(

cgo,i · 1[Zi(g, o) > tS ]
)

+

Po
l

∑

i=P̃ o
l
+1

cgo,i, (4.7)

that is to say, we consider as anomalous the n-grams occurrences pertaining to
chunks not shared with the model.

We devised three different strategies for deeming an observed packet as anoma-
lous. long denotes the total number of n-grams contained in the relevant content of
o.



4.6. The complexity of blending with chunks 41

Global strategy (GS). This strategy takes into account global information:

asGS(o) =
1

long

∑

g

asG(g, o). (4.8)

It is the fastest strategy and has the lowest memory requirements.
Local strategy (LS). It takes into account the n-gram distribution within the packet:

asLS(o) =
1

long

∑

g

asL(g, o). (4.9)

It has the benefit of taking into account a greater amount of structural information
than GS and of enforcing stricter constraints on the payload structure. Hence, We
expect such a strategy to be more accurate than GS.

Two levels strategy (2LS). This strategy combines the two above defined strategies:

as2LS(o) =
1

long

∑

g

(

asG(g, o) + asL(g, o) · 1[Z(g, o) ≤ tS ]
)

. (4.10)

It is a hybrid strategy which can be faster than LS and more accurate than GS.
A packet o is declared as anomalous if its anomaly score exceeds a give threshold

tas.
As for the temporal cost of the detection phase, all the anomaly scores can be

computed in time O(long), i.e. linear in the length of the relevant content of the
packet.

4.6 The complexity of blending with chunks

Blending a packet requires to figure out how to pad malicious payloads with fake
data so as to obtain a n-gram distribution which is similar to that of a legitimate
payload. This is in general not easy because the padding must not alter the malicious
payload semantics while guessing the exact distribution of the n-grams employed to
learn the classification models.

Moreover, here we show that even if all the information exploited by the IDS
to detect intrusions is known to the attacker, the blending problem in presence of
chunks still remains intrinsically difficult. More formally, given a malicious payload
smal the attacker is interested to position in a piece of traffic (chunk), of given length
K, a padding byte sequence spad, of a proper length K ′ = K − |smal|. The sequence
spad should be crafted so as to minimize the anomaly score of the blended content
smal ⊕ spad, where ⊕ denotes the blending operator, that is

s∗pad = arg min
spad∈ΣK′

as(smal ⊕ spad).

In order to characterize the computational complexity of the blending problem for
intrusion detection techniques exploiting n-gram statistics in presence of chunks, we
introduce the decision version of the above optimization problem.

Problem 4.6.1 The Chunk n-Gram Blending Problem 〈smal,K, n,Σ,M, t〉 is defined as
follows: given a malicious payload smal, a chunk length K > |smal|, an integer n > 0, an
alphabet Σ, a model M , consisting of a certain number of n-grams gi from the alphabet Σ
with associated mean µi and standard deviation σi values, and a threshold t > 0, decide if
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there exists a padding payload spad of size K−|smal| such that the payload smal spad consisting
of the juxtaposition of smal and spad is such that as(smal spad) > t.

We notice that the blending operator ⊕ is no less difficult than the juxtaposition,
since the latter is a specific instance of the former. Indeed, in its general form ⊕ takes
in input h stripes s1,mal, . . . , sh,mal of malicious content to be possibly interleaved
with padding content.

The following results account for the intrinsic difficulty of Problem 4.6.1. Specif-
ically, we show that this problem has connections with the Superstring problem
which is routinely used in DNA sequencing and data compression practice.

Theorem 4.6.1 The Chunk n-Gram Blending Problem is NP-hard.

Proof. We show that the NP-complete Superstring Problem can be reduced to the
Chunk n-Gram Blending Problem.

A superstring of a set of strings S = {s1, . . . , sm} is a string s containing each si,
1 < i < m, as a substring. The Superstring Problem 〈S,K〉 is [83]: Given a set of
strings S and a positive integer K, does S have a superstring of length K ?

We exploit the following results from [83] in order to perform the reduction.

Lemma 4.6.2 The superstring problem is NP-complete. For two-symbol alphabets, this
problem is NP-complete even if for any real number h > 1, all strings in S have length
⌈h⌈log2

∑

i |si|⌉⌉ (Th. 3 of [83]).

Let ΣS denote the set s1 ∪ . . . ∪ sm. The malicious payload sSmal is obtained as

sSmal = s1 u s2 u . . . u sm-1 u sm u

and is of size (n + 1)m, where u is a padding character not occurring in ΣS . Since
original strings si are different and separated by the novel padding character u, it
holds that each si occurs exactly once in sSmal.

Let ΣS be ΣS ∪ {u}. W.l.o.g. assume that |si| = n for each string si in S (see Th.
1 of [83]). Moreover, let spad be a sequence of K symbols from the alphabet ΣS .

Let gi denote a generic n-gram on the alphabet ΣS which does not occur in S
(and possibly including u). The maximum number of occurrences of gi in the chunk
sSmal spad is c′max = m+K−n+1, where K−n+1 (m, resp.) is the maximum number

of occurrences starting in spad (sSmal, resp.).
Moreover, assume that spad contains at least one occurrence of each si in S. Con-

sider a generic string si of S: in order to accommodate the remaining m−1 n-grams,
at least m− 1 consecutive positions are needed and at most c′′max = K − (m− 1) + 1
copies of si can be accommodated in the whole chunk (one copy is already included
in sSmal.)

Given an interval I = [a, b], let µI = a+b
2 and σI = b−a

2 . Consider the intervals
I ′ = [1, c′max] and I ′′ = [2, c′′max]. Let the model MS such that each gi ⊂

(

ΣS
)n

\ S
(gi ∈ S, resp.) has mean µI′ (µI′′ , resp.’) and standard deviation σI′ (σI′′ , resp.). This
means that n-grams gi ⊂

(

ΣS
)n

\ S do not contribute to the anomaly score, while n-
grams gi ∈ S give a contribution > 0 to the anomaly score provided that they occur
exactly once in the overall chunk or, equivalently, do not occur at all in spad.

W.l.o.g. assume that (A1) |ΣS | = 2 (and, hence, |ΣS | = 3), that (A2) each si is such
that |si| = n and, moreover, that (A3) m = 2n

2n or, equivalently, that n = 1 + log2mn,
where mn denotes the size (in bits) of the set S. Then the size of the input is mn. In
such a case, the number of n-grams in the model MS is |ΣS |n = 31+log

2
mn, a quantity

which represents a polynomial in mn, being (mn)2 > 3log2 mn (indeed n2 > 3log2 n if
and only if 2 log2 n > log2 n · log2 3 if and only if 2 > log2 3 ≈ 1.585).
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Let KS = m(n+1)+K. Given an instance 〈S,K〉 of the Superstring Problem satis-
fying assumptions A1+A2+A3, consider the associated instance 〈sSmal,K

S , n,ΣS ,MS , 0〉
of the Chunk n-Gram Blending Problem. We note that the size of the latter instance
is polynomially related to the size of the former one, since it is enough to assume
K ≤ mn, all the numbers encoded by using O(log2mn) bits, and all the symbols
in ΣS encoded by using 2 bits. Moreover, by Lemma 4.6.2 it holds that deciding if
〈S,K〉 is an instance YES of the Superstring Problem is NP-complete.

Now we show that 〈S,K〉 is an instance YES of the Superstring Problem if and
only if 〈sSmal,K

S , n,ΣS ,MS , 0〉 is an instance YES of the Chunk n-Gram Blending
Problem. This will complete the proof.

(⇒) Assume that 〈S,K〉 is an instance YES of the Superstring Problem, then there
exists a string s∗ of length K consisting of symbols from ΣS which contains at least
one occurrence of each si in S. It holds from what stated above that s∗pad = s∗ is such

that the chunk sSmal s
∗
pad has anomaly score > 0 with respect the model MS .

(⇐) Assume that 〈sSmal,K, n,ΣS ,MS , 0〉 is a YES instance of the Chunk n-Gram
Blending Problem, then from what stated above it is the case that there exists a se-
quence s∗pad of K symbols from ΣS which contains at least once each string si in S. It
follows that the string s∗ obtained from s∗pad by replacing each occurrence of u with
any symbol in ΣS , is a superstring of S having size K. �

The result of Theorem 4.6.1 suggests that deceiving n-gram based techniques in
presence of chunks can be far more difficult with respect to the case in which statis-
tics simultaneously involve the whole packet content and no constraint is imposed
on the size of the content pertaining to a specific model.

From the technical point of view this can be explained by the fact that chunks in-
troduce a strict constraint that may favour the combinatorial explosion of the symbol
arrangements to be explored in order to put blending into practice.

4.7 Experimental results

The section is organized as follows. The datasets are presented in Section 4.7.1. The
sensitivity of the technique with respect to parameters is studied in Section 4.7.2. The
effectiveness against exploratory evasion techniques is evaluated in Section 4.7.3. A
comparison with two well-known intrusion detection techniques based on n-grams,
i.e. Spectrogram [182] and PAYL [204], is presented in Section 4.7.4. Finally, section
4.7.5 discusses peculiarities of PCkAD strategies on the light of experimental results.

4.7.1 Dataset

In the experiments we employed the following datasets: Tiki Usenet (TW): It is a
synthetic dataset generated by a purposely developed framework [37] by a research
team of the Columbia University; Unical Web (UW): This dataset is made of inbound
network traffic to our departmental web server at University of Calabria collected
over a week; CLET: It is a publicly available HTTP attack dataset which was origi-
nally provided by [112] and was later enriched with new attack instances by [169];
CSIC 2010 (CS): A publicly available HTTP dataset which was created at the “In-
formation Security Institute” of CSIC (Spanish Research National Council) [196]. It
contains web traffic concerning an e-commerce web application.

The modular framework used to produce the first dataset is called Wind Tunnel
[37] and has been designed for synthetic data generation towards web applications.
The goal of Wind Tunnel is to allow the comparison of security tools which operates at
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different layers, e.g. a web content anomaly detector and a file access sensor. Whilst
the datasets created by Wind Tunnel are synthetic like the DARPA 1999 dataset [142],
they are much similar to real traffic because their generation is based on publicly
available contents like usernames, passwords and plain English text. The authors
focused only on a single important attack vector, i.e. remote attacks on web applica-
tions, to better model the content.

Of the nine available datasets created with Wind Tunnel, we evaluated PCkAD
on Tiki Usenet (TW) since it is the one for which Spectrogram achieved the best per-
formances. TW contains few HTTP attack instances of two types: (i) exploitation
of a vulnerable version of the PHP function unserialize() [156], which allows
arbitrary code execution, and (ii) an SQL injection vulnerability.

Being able to conduct experiments on a dataset made of real traffic is of utmost
importance in order to get reliable results. For this reason a second dataset was
built, by sniffing the network traffic from our departmental web server, for about
one week. The server hosts the Department website, a number of sites reserved to
academic personnel and a platform for courses management and e-learning. We
selected only those packets holding GET or POST requests with parameters, hence
obtaining a set of 160,000 packets. Manual labelling was performed on the dataset,
with the help of domain experts that identified different kinds of attacks, such as
SQL injection and OS Command Injection.

CLET is composed of three datasets each of which contains specific types of at-
tacks: Generic attacks (GN): This dataset includes all the HTTP attacks provided by
the authors of [112] plus a shell-code attack that exploits the vulnerability MS03-022
of the Windows Media Service (WMS); Shell-code attacks (SH): This dataset contains
shell-code attacks; CLET attacks (CL): This dataset contains polymorphic attacks. It
is named after the polymorphic engine CLET [64] used to generate the attacks. UW
was employed to build a normal traffic dataset for CLET.

CSIC contains thousands of both normal and malicious web requests that were
generated in an automatic fashion. The dataset is labelled and includes a consider-
able variety of attacks such as SQL injection, buffer overflow, files disclosure, CRLF
injection and so on.

We also employed a purposely crafted variant of the UW dataset, called UWB,
where malicious packets were replaced by a suitably blended version of them.

The following metrics were used for the evaluations: the detection rate (DR) (or
True positive rate), i.e. the proportion of positive (anomalous) samples correctly
classified, and the False positive rate (FPR), i.e. the proportion of negative samples
erroneously classified as being positive. The datasets were characterised by imbal-
anced classes, with most of the instances belonging to the negative class or legiti-
mate traffic. Therefore, we employed the average accuracy, i.e. the arithmetic mean
of the accuracies (ratio between the correctly classified packets and the total number
of packets) associated with the negative class and the positive class (or the attack
traffic). Ten fold cross validation was used for all the techniques. For the experi-
ments we used the values of n ranging in the set {2, 3, 4, 5}. Another parameter of
great interest for the assessment of PCkAD is lck. By varying lck the distribution of
the structural information changes, as well as the models accuracy, so we wanted to
investigate how this parameter affects PCkAD from an accuracy perspective. With
regard to the values of lck, a succession of logarithmically spaced values was defined,
starting from a configuration which splits packets in a lot of chunks, until we reach
a configuration in which the packets are made of one single chunk. If not otherwise
specified, the value for the threshold tS is 2.
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FIGURE 4.4: Dataset UW: sensitivity analysis.
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4.7.2 Sensitivity analysis

This section investigates how parameters’ values affect the technique. Figure 4.4
reports the average accuracy on the UW dataset of LS (column on the right) and GS
(column on the left) for n = 2 (upper row), n = 3 (middle row), and n = 4 (lower
row), when both the chunk length lck (on the x-axis, between 10 and 3000) and the
anomaly score threshold tas (the four curves on each plot are associated with values
tas ∈ {40, 50, 60, 70}) vary.

We do not report the curves associated with 2LS, since in these experiments they
are very close to those associated with LS.

As for the dependency from the chunk length lck, the plots highlight that the
accuracy gets worse when the chunk size is comparable to the packet payload length,
thus confirming that taking into account chunks is beneficial to the quality of the
detection. The best trade-off between chunk length and complexity of the models is
obtained for some intermediate values of size, specifically of the order of some tens
of bytes.

As for dependency from the n-gram length, the shorter the n-grams, the smaller
their discriminating power. Nonetheless, the longer the n-grams, the larger the peril
to overfit the training data. Even for n = 3 performances appear to be satisfactory
and sensibly better than for n = 2, while for n = 5 the behaviour is similar to the
case n = 4. It follows that using larger values of n is not advised, due to the risk of
overfitting and the increase of model complexity.

Consider the dependency from the anomaly score threshold tas. Large values
of tas are expected to generate almost no false positives, with the accuracy of the
negative class close to 1 and, hence, the average accuracy will tend to the detection
rate (the accuracy of the positive class) associated with outstanding true positives.
Conversely, small values of tas are expected to capture larger fractions of true pos-
itives and, hence, to improve the detection rate, while the number of false positive
will increase. Overall, the average accuracy tends to increase as tas decreases, since
the fraction of true positives increases quickly than the fraction of false positives,
though for small values of tas the latter fraction is expected to abruptly enlarge. As
for the differences between GS and LS it appears that the latter strategy is more ro-
bust to threshold variations in the range of values for lck which guarantees the best
performances.

Figure 4.5a shows the memory consumption of the LS strategy for different com-
binations of the n-gram length and of the chunk length lck. Given that the training
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set size is about 120 MB, in the worst case, i.e. for n = 5 and lck = 10, PCkAD
requires about 5.0% of the total size, while intermediate cases even halve memory
requirements. 2LS uses a little more memory than LS, while GS is slightly lighter
than LS.

4.7.3 Robustness against evasion attacks

The goal here is to show that the exploitation of local information makes our tech-
nique robust to the attempt of hiding attacks by reproducing the legitimate fre-
quency of n-grams within the overall packet payload. Section 4.7.3 describes the
blending technique and Section 4.7.3 reports the results of the experiments.

Blending technique

In [77] it was shown an approach to carry out mimicry attacks against PAYL [204]
and other anomaly detectors. PAYL uses only 1-grams, so in order to bypass its
inspections it was sufficient to guess how each single byte is distributed within the
normal traffic. In the case of PCkAD, high order n-grams are used, therefore the
simple concatenation of legitimate n-grams is not effective because it easily leads to
the generation of never seen n-grams or known n-grams with an anomalous number
of occurrences.

In the following we assume that the attacker (i) is able to sniff the traffic and
hence to gather statistics about it, and (ii) is aware that the IDS employs a technique
based on n-grams and that specific models are built for different traffic profiles. Even
in this scenario, the attacker is not aware of the chunk length used by PCkAD, there-
fore he does not know the exact profile which the payload belongs to. Choosing the
wrong profile would mean blending the malicious code with n-grams that could not
be legitimate for the actual packet profile. To overcome this problem, the attacker
may try to perform the blending process for a reasonable range of chunk length val-
ues lck.

Finding the optimal payload s∗pad for blending the malicious payload smal is a
complex task, as witnessed by Theorem 4.6.1, hence we developed an heuristic to
cope with this problem. Let M denote a generic global model associated with the
IDS incoming traffic. Each packet p belonging to the profile PM associated with M
is processed in order to check whether it contains a suitable spad sequence of length
K ′ = lppkt−|smal|. In particular, the blender extracts from p all possible subsequences

spi of length K ′, each one starting at position i ∈ [1, lppkt −K ′ + 1], and selects those

such that the anomaly score asGS(smal ⊕ spi ) is above a pre-defined threshold. From
each sequences spi satisfying the above condition an attacking packet is generated as
smal ⊕ spi .

To illustrate the blending operator, we describe a specific type of blending con-
cerning SQL injection. Usually, this kind of attack is characterized by the presence
of strings such as “’1’=’1”, that are exploited for extrapolating data without the
right permission. An attacker could replace the 1s with two identical sequences
of legitimate n-grams, so that the resulting anomaly score is lower than the selected
threshold. Note that the previous example is an exceptional case, in fact it is required
to duplicate the sub payload, so the blender has to take into account sub-payloads
spi of length K ′/2.
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FIGURE 4.6: Results of the blending experiment.

Blending results

The experimental activity on the UWB dataset, that is the version of the UW dataset
blended by means of the procedure described in Section 4.7.3, allowed us to further
assess the effectiveness of chunk-based strategies. Specifically, UWB contains all the
legitimate traffic of UW, but the attack set was replaced by a set of about 500 blended
attack packets.

Based on the sensitivity analysis presented in Section 4.4, we selected lck = 21
as the chunk length and varied the parameter n in the range [3, 5]. Moreover, we
studied how the accuracy of the system changes with respect to the threshold pa-
rameter tas. In the following we suppose that the attacker knows the chunk length
used by PCkAD and, hence, all the blended packets are generated by the attacker by
assuming lck = 21.

Figure 4.6 reports the impact of the blending technique on the average accuracy
of the three strategies. The plots show that LS and 2LS exhibit a better accuracy than
GS, with 2LS obtaining the best results for almost all the thresholds’ values tas. This
result witnesses that the global strategy alone is not sufficient to guarantee a reliable
detection for significant levels of anomaly score threshold, and that the local strategy
offers sensible improvements in terms of robustness of the technique. Moreover, by
merging the global and the local strategies the best performances are achieved.

Meaningless traffic injection

Here, we test the robustness of PCkAD in the case the attacker injects meaningless
n-grams within the traffic for the purpose of deceiving the detection capability of the
technique. With this aim we generated a novel attack dataset, called UWM, starting
from the UW dataset, as follows. We randomly partitioned the legitimate traffic into
ten sets and then we injected an increasing fraction, varying from the 10% to the
100% by 10%, of meaningless traffic into each set.

We considered three test sets. The first, namely ORIG, corresponds to the orig-
inal UW attack set and does not include the meaningless traffic. In the second test
set, namely MLAT, both the meaningless traffic and the original attacks of UW are
considered as true attacks. The third one, namely MLNAT, includes the meaning-
less traffic, but it is considered as normal this time. Figure 4.5b reports the ROC
curves associated with the three test sets. It can be seen that the accuracy of PCkAD
on MLAT (AUC=0.9960) and MLNAT (AUC=0.9958) only slightly decreases with
respect to ORIG (AUC=0.9964). In particular, the experiment witnesses that the
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TABLE 4.2: Comparison among PCkAD, PAYL and Spectrogram
based on the AUC

Dataset UW TW GN SH CL CS

PCkAD 99.64% 99.99% 99.91% 99.91% 99.93% 99.98%

PAYL 83.72% 80.06% 94.97% 98.53% 98.40% 86.34%

Spectrogram 86.70% 96.26% 87.68% 88.00% 99.91% 92.78%

technique performances do not significantly deteriorate in presence of meaningless
traffic.

4.7.4 Comparison with PAYL and Spectrogram

In this section we compare PCkAD with PAYL [204] and Spectrogram [182]. Based
on the considerations presented in [204], we chose the following values for the con-
figuration parameters of PAYL: smoothing factor α = 0.001 and clustering thresh-
old tCL = 0.5. As for Spectrogram, based on what was observed in [182], we
considered the following configuration parameters: for the n-gram length the set
{3, 5, 7, 10, 11, 13} and for the number of employed Markov chains m the set {4, 5, 8, 10}.
As for PCkAD, 2LS was used, with n = 3 and lck varied on the whole range of legal
values. For each technique and associated combination of parameters, we computed
the respective AUC by suitably varying the decision thresholds. The best AUCs as-
sociated with each method are shown in table 4.2.

PCkAD outperforms both PAYL and Spectrogram in every case and obtains an
AUC very close to 1. Generally, PAYL performs the worst, except for the GN and
SH datasets for which it achieves better performances than Spectrogram. We be-
lieve that such results are determined by the amount of structural information that a
technique leverages in order to classify an observation. PAYL does not take into ac-
count structural information at all and, in addition, by relying on 1-grams, it might
not be able to detect complex malicious patterns. Spectrogram, on the other hand,
has a limited amount of structural information, that allows it to obtain good per-
formances. Specifically, the technique is able to infer whether a string should follow
another one by determining the normality of a character based on the characters that
occur in the previous n − 1 positions. However, Spectrogram lacks the concept of
spatial distribution, indeed the presence of legitimate n-grams within a malicious
payload, regardless of their position, may lead to the computation of low anomaly
scores. Finally, PCkAD is aware of the spatial distribution of the n-grams, therefore
it can count on a sufficient amount of structural information that allows it to achieve
the best performances.

A better AUC on TW for Spectrogram is reported in [37] . However, in that work
Spectrogram is used in conjunction with a framework, called STAND [55], which
has been designed to sanitize the training data in order to improve the accuracy of
anomaly detection.

4.7.5 Discussion

The sensitivity analysis shows that LS and 2LS in general obtain more satisfactory
results. GS can achieve comparable performance with respect to the other two strate-
gies as the length of n-grams increases and for low threshold values (e.g. 0.4).

The experiments highlighted that GS generates lower anomaly scores compared
to the other strategies. This potentially leads GS to produce fewer false positives
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with a greater number of false negatives. On the other hand, LS and 2LS impose
a more restrictive constraint on the payload structure and are more effective in de-
tecting attacks whose contents share a considerable number of n-grams with the
legitimate traffic.

Moreover, in conditions where the traffic is heterogeneous it is needed to raise the
anomaly score threshold to avoid large false positive rates. In these cases GS would
produce the highest number of false negatives. In addition, GS is less resistant to
blending because its detection rate degrades more steeply with the threshold.

As far as blending is concerned, the worst case happens when a legitimate se-
quence of known n-grams is put at a position which is consistent with the normal
traffic profile. To enhance robustness to blending, we introduced a factor of random-
ness concerning the model building process. For each distinct traffic profile PCkAD
generates a random offset which is used to determine the byte starting from which
the relevant payload of a packet is examined. Then each packet payload is treated
as a circular array.

4.8 Considerations on encrypted traffic

HTTP is the protocol that enables communications between a user’s browser and a
website. The communications are in ’plain text’, therefore any malicious user that
manages to break into an HTTP connection can read its content. This scenario is
very dangerous in that sensitive data such as credit card details or social security
number can be stolen. In order to overcome the privacy and security issues arisen
from HTTP protocol, cross-industry started to promote the use of HTTPS [109], the
secure version of HTTP. HTTPS makes use of the TLS or SSL protocol to encrypt the
communication channel. Historically, HTTPS connections were primarily used for
payment transactions on the World Wide Web, e-mail and for sensitive transactions
in corporate information systems. In the late 2000s and early 2010s, HTTPS began to
see widespread use for protecting page authenticity on all types of websites, secur-
ing accounts and keeping user communications, identity and web browsing private.

Over the last few years HTTPS adoption has grown substantially. According
to [76] the majority of desktop browsing is done over HTTPS and the number of
top websites featuring this protocol has doubled between early 2016 and early 2017.
Nonetheless, as of February 2017 about half of top websites still served HTTP by
default and there were a lot of servers that did not support HTTPS at all.

The benefits provided by the increasingly widespread use of encrypted traffic are
counter balanced by serious disadvantages. Encryption creates a problem for secu-
rity because tools such as intrusion detection systems, anti-malware and data-loss
prevention (DLP) solutions can no longer inspect the traffic, due to its obfuscation.
This is a hard blow for defenders against malware and network intrusions. Thanks
to encryption, crackers do not have to obfuscate malicious payloads in order to avoid
drawing unwanted attention. They can focus on exploiting the vulnerabilities of
their target system and enjoy a built-in masking against security solutions.

The security tools that we mentioned are of utmost importance and they have to
be employed and PCkAD falls into this category. Our technique inspects application
level traffic, therefore it can not achieve its goal when data are encrypted. A possible
solution to keep using PCkAD is to decrypt the traffic, a solution that has already
been adopted by other tools. Similarly to the next-generation firewalls from Palo
Alto [5], when it comes to process inbound traffic to an internal web server or device,
PCkAD could decrypt the traffic by knowing the SSL server certificate and key of
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the target device. These data has to be provided by the device administrator. The
decryption would not have any negative consequences on the network traffic, the
only notable difference would be that PCkAD would be able to inspect packet data
and detect malicious content over secure channels.

4.9 Summary

In this chapter, we described a novel anomaly-based intrusion detection technique,
called PCkAD which achieved very good performances in detecting content-based
attacks threatening application level protocols. PCkAD models legitimate traffic on
the basis of the spatial distribution of the n−grams occurring in the relevant content
of normal traffic. Separate models are built for different traffic lengths in order to
better capture the relationship between size and content inherent in the network
traffic. The technique achieved state of the art performances in real attack scenarios
and is resistant to blending evasion techniques in that evading it is an intrinsically
difficult problem.
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Chapter 5

An approach to compress
n-gram-based models for novelty
detection

In the previous chapter we presented an intrusion detection technique designed to
address a significant downside of n-gram-based approaches and to be resistant to
blending attacks. In this chapter we further investigate the usage of the n-gram
technique as a tool for developing a classification strategy, but with a different per-
spective. We recall that a n-gram g is a sequence of n symbols that belong to a given
alphabet Σ, i.e. g ∈ Σn. n-grams are extracted from an input flow by resorting
to a sliding window of length n. Excellent results have been achieved, even with
1-grams, but in general the best results are achieved with high order n-grams, i.e.
n-grams with n > 1, most of the time even n > 2. Using such n-grams has the fol-
lowing implication: the greater n, the exponentially greater is the n-gram domain.
For instance, in the context of the network intrusion detection, where typically byte
values constitute the alphabet Σ, with just n = 3 the total number of n-grams that
can be observed is over 16 million and with n = 4 there are over 4 billion. Depend-
ing on the approach that uses the n-gram technique, new problems may emerge,
including: i) difficulties in storing all needed n-grams and ii) difficulties in building
a classification model that generalises well the training data.

Another important thing to consider is that the greater the n-gram domain, the
more likely is to observe similar n-gram distributions within the data. There might
also be n-grams that carry very similar information, so that there is a certain degree
of redundancy in a model. All these considerations lead to the following question:
is it possible to renounce to a subset of the n-grams that are part of a classification
model and get a new model with less n-grams but still with a satisfactory classifica-
tion accuracy? This is the problem that we intend to explore in this chapter.

We propose an approach to compress n-gram-based classification model, which
takes advantage of the k-center problem to select a representative subset of all the
n-grams of a given model. Our goal is to assess whether it is possible to reduce the
size of such models and still be able to classify data in a satisfactory way. This work
has been conducted in the context of intrusion detection, indeed it follows a work
concerning the development of a n-gram-based intrusion detection technique. We
focus on content-based attack classification, a class of attacks for which the n-grams
have proven to be very effective (see Section 4.3 for more details). We conducted a
number of experiments on a real dataset and the preliminary results show that even
if we retain only 5% of the model’s n-grams we still get an AUC > 95%.

The rest of the chapter is organized as follows. Section 5.1 provides an overview
of the related work. Section 5.2 discusses the approach that we employ to build
compressed models. Section 5.3 explains how we perform the classification phase.
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Section 5.4 describes the experiments conducted to evaluate the compressed models
built by means of our approach. Finally, Section 5.5 summarises the work.

5.1 Related work

The problem of compressing n-gram-based models has been addressed in many
works, especially in the research field of speech recognition. In this context, a n-gram
symbol corresponds to a word, so a n-gram represents a word sequence of length n.
Several techniques have been proposed in the past, which can be categorised in prun-
ing, quantisation and world-class modelling techniques. The former category is about
training a model on all available training data and afterwards removing n-grams by
pruning the model. Examples of strategies include removal of n-grams with low
frequency counts [116] and entropy-based pruning [186]. The second category of
techniques (e.g.[206] and [209]) apply a quantitation process in order to reduce the
size of a n-gram-based model. Such process consists of mapping a variable with
continuous range of values onto a discrete one, whose values belongs to a set of
quantitation levels. The approach exploits the fact that many words sequences may
have the same frequency and that the number of unique probabilities is considerably
smaller than the total number of the n-gram probabilities in the model. World-class
modelling techniques [42] [127] [95] seek to discover relationships between words
and ultimately reduce the size of the vocabulary of the language model.

In the context of the intrusion detection, in [120] the authors propose a frame-
work for network traffic classification and visualisation. They process web server
textual log files to model HTTP queries with n-grams. Afterwards they derive a
feature matrix from the n-gram frequency counts and reduce the number of dimen-
sions by employing first PCA then Diffusion Map. At last, they use clustering to
detect intrusions and visualise data. The latter work indirectly reduces the number
of n-grams, by performing dimensionality reduction on the numerical representa-
tion of the HTTP queries, derived from the n-gram analysis. In contrast, our solu-
tion not only takes into account the frequency of the n-grams, but also the n-grams
themselves to determine the fraction to use. In [130] the n-grams are used to detect
malicious executables. The authors propose to combine the n-gram technique with
a number of data mining and machine learning approaches, such as Bayes, decision
trees and SVMs. Instead of using all the n-grams learned from the training data, the
authors select only the most relevant fraction of the n-grams. To find the fraction,
the authors analyse how the performances of the approaches vary with respect to
the number of selected n-grams, the size of n-grams and the type of n-gram symbol
(e.g. one byte, two bytes, etc). While the authors of [130] resort to an empirical ap-
proach to determine the fraction of n-grams, we propose a systematic approach that
is supported by an extensive experimental campaign which allows us to understand
how to tune the resulting classifier to get the best results.

5.2 Problem statement

Let T be a training set containing network packets. Our goal is to build a classifica-
tion model M based on n-grams, such that it only contains a small fraction of all the
n-grams observed in the training set.

As proposed with PCkAD, we partition the training set based on four criteria, in
order to identify different types of legitimate traffic profiles. Such partition allows us
to better capture the relationship between size and content inherent in the network
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traffic and build more accurate models. The criteria used are the application proto-
col, e.g. HTTP, the direction (incoming or outgoing) and the specific application-level
payload type. See Section 4.4.1 for an in-depth explanation.

In the light of the above discussion, we build a classification model for each iden-
tified network traffic profile. However, for the sake of explanation we will refer to
only a single model M and the network traffic profile it describes, denoted as TP . In
order to build M we devised a process that consists of the following steps:

• training;

• compression;

• post training.

These steps are described in the following subsections.

5.2.1 Training phase

The objective of this phase is to build a model that describes the training packets of
the traffic profile TP , based on all the n-grams observed. We refer to this model as
the original model Mo.

We learn the n-grams from the relevant payload of the network packets as PCkAD
does. The relevant payload is defined as the portion of a packet that is actually
exploited by an attacker to deliver malicious code (see Section 4.4.1 for additional
details).

Let ΩP be the set of packets occurring in TP . Given a packet p ∈ ΩP , let pr be its
relevant payload and Σpr be the set of n-grams occurring in pr.

For each n-gram g ∈ Σpr , we compute the relevant frequency fg which is defined
as

fg =
O(g, pr)

lP
(5.1)

where O(g, pr) is a function that returns the number of occurrences of g in a
relevant payload pr and lP = maxi(|pr,i|), with pr,i ∈ pi and |pr,i| the length of pr,i.

Mo is then a vector of length N where each dimension corresponds to a different
n-gram and the i−th element is the relative frequency fi of the i−th n-gram observed
in TP .

5.2.2 Compression phase

Data: Mo, k
Result: Mc

1 determine the set H of the most frequent n-grams in Mo;
2 randomly pick z ∈ H and set T = z;
3 while |T | < k do

4 compute C = {g ∈ Mo|g = argmaxs∈Mo mint∈T ρ(s, t)};
5 pick z ∈ C such that z = argmaxs∈Cf(s);
6 T = T ∪ {z};

7 end
Algorithm 1: The compression phase.

In this phase we take the output of the previous phase, i.e. Mo, and we build
a new model Mc, called the compressed model. Mc contains only a fraction of the n-
grams in Mo, which are chosen so that they can properly represent all the original
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n-grams. Indeed, even though we are discarding n-grams, we want to limit the
amount of information that is lost so that we can achieve satisfying classification
accuracy.

In order to accomplish the goal we employ a clustering algorithm. Indeed clus-
tering is commonly used to approximate a large/infinite/continuous set of data by
a finite set of representatives. A well-known example of such usage is represented
by vector quantization in audio processing.

Specifically, we resorted to the k-centre problem, which is described in the fol-
lowing. Given a metric space (Φ, ρ), where Φ is the set of data and ρ is a distance
function that satisfies the three properties of a metric, let S ⊂ Φ be a finite set of
data and k an integer, the problem asks to find the smallest radius r such that S
is contained within k balls of radius r. The k-centre problem is NP-hard, thus we
cannot count on an efficient algorithm that can always return the right solution. We
then used a well-known greedy algorithm called Farthest-first traversal [94] . The al-
gorithm takes S and k as input and builds a solution T one point at a time. The
algorithm starts by choosing any point from S, and then iteratively picks the point
furthest from the ones chosen so far. Farthest-first traversal is quite efficient, in fact
its computational complexity is O(k|S|). Moreover, the algorithm always returns a
solution that is close to the optimal one, when the latter cannot be reached (see [94]
for additional details).

We performed clustering in the metric space of length-n strings, the n-grams,
with the Hamming distance. In our context the set S is represented by the set of n-
grams that belongs to Mo, while k is chosen according to the percentage of n-grams
that we want to retain. For example, given a model containing 10,000 n-grams, we
might decide to retain 5% of the n-grams, therefore k = 500.

At last, we slightly modified the algorithm so that the selection of a centre is also
influenced by the relative frequency of the n-grams. As shown in algorithm 1, we
randomly choose a n-gram from the set H of the most frequent n-grams as initial
point (lines 1 an 2). During the iteration process, we first determine the set C of can-
didate centres (line 4), i.e. the points that maximises the string-based distance with
respect to T . Subsequently, we pick the candidate which has the highest frequency
among all the candidates, where f(s) is a function that returns the frequency of a
n-gram s (lines 5 an 6). The reason behind this choice is bind to how we perform the
classification, therefore it will be explained later, in Section 5.3.
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5.2.3 Post training phase

Data: Mo, Mc, Ω
r
P

Result: M
1 initialise Θ;
2 initialise M ;
3 for each g ∈ Mo do

4 compute Cg = {c ∈ Mc|c = argmins∈Mcd(g, c)};
5 for each c ∈ Cg do

6 pick θc ∈ Θ;
7 θc = θc ∪ {g};

8 end

9 end

10 for each θ ∈ Θ do

11 for each pr ∈ Ωr
P do

12 compute Dθ
pr

;

13 end

14 compute Dθ
Ωr

P
;

15 add < centre(θ), Dθ
Ωr

P
> to M ;

16 end
Algorithm 2: The post training phase.

At the end of the previous phase, we get a model Mc whose n-grams should rep-
resent all the n-grams in Mo. We believe that in order to perform a reliable classifica-
tion, each centre c should tell us how the n-grams that it represents are distributed in
the legitimate relevant payloads. Therefore, Mc cannot be used for the classification
phase yet.

This phase takes as input both Mc and Mo and produces a new model M in out-
put, which contains the same n-grams of Mc, each of which describes the distribution
of the n-grams it represents.

Algorithm 2 shows the steps that are performed during the post training phase.
We first need to perform a new clustering phase, this time with the goal of assigning
each n-gram in Mo to its closest centre. The clustering is performed by combining
two types of distances, i.e. the Hamming and a frequency-based distances. The
resulting distance d(g, c) between a n-gram g and a centre c is defined as:

d(g, c) =

{

dS(g, c), if
|fc−fg |

fg
< tf

+∞, otherwise
(5.2)

where dS(g, c) indicates the string-based distance and tf is a frequency threshold.
Because we use a distance that incorporates a string similarity notion, during

the search process we might end up finding multiple centres that are evenly close
to a given n-gram g. We then initially evaluated two strategies to build the desired
clusters, i.e. i) each n-gram g ∈ Mo is assigned to one centre exclusively, based
on some criteria; ii) each n-gram g ∈ Mo is assigned to the closest centres. After
preliminary investigations, we decided to discard the first option, because we could
not find any suitable criteria to choose the right centre. We realised that by choosing
a centre instead of another would lead to completely different results in some cases,
which does not make sense to us. Regarding the second option, the aforementioned
problem does not exist because we assign g to multiple clusters. Lines 4 to 8 show
the clustering process, where the set Cg contains the closest centres to g and Θ is the
set of clusters that we want to build.
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Once Θ has been built, we proceed by computing the distribution of their n-
grams within the legitimate relevant payloads of the network traffic profile (lines
12 to 14). First, we determined the set ΩP for the traffic profile TP described by
Mo and derive the set of relevant payloads , which is defined as Ωr

P = (pr|pr =
relevant(p), withp ∈ ΩP ), where relevant (p) is a function that returns the relevant
content of a packet p. For each θ ∈ Θ and for each pr ∈ Ωr

P we compute the following
score:

Dθ
pr

=
∑

g∈Σpr

O(g, pr) ·
|Σθ

pr
|

|Σpr |
(5.3)

The score is computed by summing the number of occurrences in pr of every n-
gram g ∈ Σpr , such that g ∈ θ, and multiplying it by the ratio of the distinct number
of assigned n-grams, denoted as |Σθ

pr
|, to the total number of distinct n-grams within

the payload |Σpr |.
After every pr ∈ Ωr

P has been inspected we compute the final score (line 14)
which represents how the n-grams are distributed in Ωr

P with respect to the centre
of θ:

Dθ
Ωr

P
=

∑

pr∈Ωr
P
Dθ

pr

∑

pr∈Ωr
P

|Σθ
pr

|

|Σpr |

(5.4)

The final step of this phase is to built the vector representing M where the ith
dimension is associated to a centre cθ whose value is the pair < fi, D

θ
Ωr

P
> (line 15,

where centre(θ) is a function that the returns the centre of θ).

5.3 Classification

The objective of this phase is to use a classification model M to compute the anomaly
score of a relevant payload pr. We want the anomaly score to reflect the similarity be-
tween the n-grams distribution within pr and the distribution encoded in the centres
that belongs to M .

The computation consists of two phases: sp1) n-grams distribution computation;
sp2) anomaly score computation.

At the beginning of phase sp1, for each centre θ ∈ M we compute the score
Dθ

pr
. The result of this operation is a vector V containing the score of the centres

that represent at least one n-gram g ∈ Σpr . To conclude this phase we assign to
each n-gram g an anomaly index asV (g) which is determined based on two different
strategies, called Brave and Cautious, and computed as:

asV (g) = opθ∈Θg
V (θ) (5.5)

where Θg is the set of the closest centres to g and op is an operation that is deter-
mined by the chosen strategy, i.e. min or max when the Brave or Cautious strategy is
chosen, respectively. We expect to observed a difference between the distribution of
n-grams in malicious payloads and the distribution represented by the model that
is significantly higher than the difference between n-grams in legitimate payloads
and the model. However, there might exist a considerable number of n-grams in
malicious payloads for which there exists a centre with a very similar distribution
or a considerable number of n-grams in legitimate payloads such that there exists a
centre with a very different distribution. Such n-grams may lead to the computation
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of anomaly scores that poorly represent the true nature of a payload. In order to mit-
igate this negative influence, if the number of the first type of n-gram is significantly
greater then we employ the Cautious approach, otherwise the Brave approach.

The anomaly score is then computed in the second phase sp2. To achieve this
goal we introduce the concept of byte coverage. Given a relevant payload pr, let Bpr

be its set of bytes. For each byte b ∈ Bpr we determine the set of n-grams that contain
b, denoted as Gb. After that, we compute a score for b, here referred to as asGb

(b), as
a function of the scores associated to the n-grams in Gb. We evaluated three criteria
to compute asGb

(b), i.e. we select i) the minimum score in Gb, ii) the maximum
score in Gb or iii) the average score in Gb. The main idea behind the first criterion
is to trust the fact that anomalous payloads contain n-grams whose distribution is
sufficiently different from that encoded in its closest centres, if any. Concerning the
second criterion, we rely on the fact that normal payloads contain n-grams whose
distribution is very similar to that encoded in its closest centres.

It is important to note that there might exist one or more n-grams g ∈ Σpr such
that Θ = ∅, so it is possible to observe at least one byte b such that Gb = ∅, i.e.
there is no coverage. In this case, we set asGb

(b) to 1, the maximum score possible.
This strategy allows us to properly weight the presence of n-grams that cannot be as-
signed to any centres. By picking the most frequent n-grams during the compression
phase, we might be able to get a better coverage, especially for legitimate payloads.
This strategy might be beneficial to the performances of our approach, in that the
anomaly score assigned to a legitimate payload should be lower than that assigned
to an anomalous payload. To conclude, the anomaly score as(pr) of pr is computed
as:

as(pr) =

∑

b∈Bpr
asGb

(b)

|Bpr |
(5.6)

where |Bpr | is the total number of bytes.

5.4 Experimental validation

In this section we assess the performances of our approach. We build a variety of
compressed models and for each of them we compute the Area Under the Curve or
AUC, which is a classification measure that reflects the probability that the classi-
fier will compute a higher score for a randomly chosen positive example than for a
randomly chosen negative example. Such models are built based on different pa-
rameter configurations, which are discussed in the next section. Experiments were
conducted on the UW dataset, previously introduced in Chapter 4. However, this
time we used a subset of the dataset, that was obtained by selecting only the traffic
profiles for which there are both normal and malicious packets. We chose to do so
because we are mainly interested in knowing how effective the compressed models
are to distinguish between normal and malicious packets. In the case of PCkAD, the
profiles for which there are no malicious packets are still meaningful because they
could be used whenever a test sample does not match any existing profile. So in this
case we resort to the concept of model similarity to find a similar traffic profile to
compute the anomaly score (see Section 4.5 for additional details).
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5.4.1 Parameter setting

In order to generate a compressed model M there are a few parameters that need to
be set, i.e.: cl, crtn, crtb, ths, thf and n. The parameters represent aspects that were
discussed in the previous sections. cl denotes the compression level that we desire
for M , specifically if cl = 5% it means that M contains just 5% of the number of
n-grams that belong to its corresponding original model Mo. This parameter is used
to set the parameter k that is used to solve the k-centre problem in the compression
phase. k is computed as k = |Mo| ·

cl
100 , where |Mo| is the number of n-grams con-

tained in Mo. For the experiments we chose values that range from 5% to 30% with
a step of 5%.The parameter crtb represents the criterion that is used to assign an
anomaly index to each payload byte, during the classification phase. It can take only
three values, i.e. min, max and avg. The parameter crtn is used to choose between
the Brave and Cautious strategies. Both ths and thf are thresholds, where the former
is used for string-based distances and the latter for frequency-based distances. The
parameters are used in both the post training and classification phase. ths deter-
mines the similarity between n-grams and we chose the range of values from 1 to
n−1, to evaluate the impact of this parameter on the performances of M . Regarding
thf , preliminary results showed that it has a little impact on the performances. This
is due to the fact that the majority of high order n-grams share the same distribu-
tion in the dataset we used, therefore only a small portion of them is affected by thf .
Given the aforementioned results, we decided to not consider thf in our analysis.
The last parameter mentioned is n, i.e. the n-gram length, for which we explored
the values (3, 4, 6, 10), so that we could observe how the performances of M change
with respect to small and large high order n-grams. Before presenting the results,
we split the traffic in profiles, similarly to PCkAD. The traffic consisted of incoming
HTTP packets and was split based on the type of packets, i.e. GET and POST, and
the range of length. With regard to the latter criterion, a subset of packets is formed
when the difference between the relevant payload length of any pair of packets is
less or equal to 20 bytes. The value was chosen based on the results presented in the
previous chapter.

5.4.2 Results

Figures 5.1 and 5.2 report the experimental results for crtn = Brave, while 5.3 and
5.4 for crtn = Cautious. The Y axis represents the AUC and the X axis the compres-
sion level cl. We generate a distinct AUC curve for each value of ths and a dedicated
graph for each value of crtb. We note that with n = 6, 10 the number of curves
gets too large, so for the sake of visualisation we decided to show only the best four
curves per graph. For each combination of crtn and crtb, in Table 5.1 we present
the average AUC of the best curve, with the purpose of highlighting the stability of
the different configurations. Moreover, Tables 5.2 and 5.3 report the highest AUC
values observed in each graph and for each AUC the compression level is specified
between parenthesis.

In the following we discuss the results. For some configurations we achieve an
AUC greater than 95% (fig. 5.3 (b, d, f), 5.1 (b, d, f) and 5.2 (f)) and there are a few
other configurations that allow us to achieve an AUC between 90% and 95% (fig. 5.1
(a, c, e), 5.2 (a, b, d, e, f), 5.3 (a, c, e) and 5.4 (a, b, c, d, e, f)) . Even more surprisingly,
the best results in some cases are provided by the configurations with the lowest
compression level, i.e. cl = 5%. With n = 3, 4 the best performances are achieved



5.4. Experimental validation 61

TABLE 5.1: Average AUC for each combination of crtn and crtb.

crtn Brave Cautious

crtb Min Max Avg Min Max Avg

n = 3 0.8840 0.8488 0.8702 0.7433 0.7283 0.7316

n = 4 0.9469 0.9467 0.9481 0.9484 0.9470 0.9515

n = 6 0.8237 0.8640 0.8368 0.8079 0.8911 0.8919

n = 10 0.7899 0.8872 0.8447 0.8272 0.9098 0.9005

when we select the lowest ths possible, in other words we demand that the differ-
ence between a centre and a payload n-gram lies in just one byte. The result holds
for both the Brave and Cautious strategies, even though there is a difference between
them. It seems that the former guarantees more stable performances than the latter,
as can be seen by comparing figures 5.1 and 5.3. When crtn = Cautious, the curve
that achieves the best AUC value is characterised by values that drastically decrease
by varying the cl value, especially for n = 3. Indeed, the average AUC values in
Table 5.1 are greater for the Brave approach, even though the maximum AUC values
observed are comparable. On the other hand, with n = 6, 10 the situation is the op-
posite, in that now we achieve the best performances when setting ths to high values.
This can be explained by recalling that the greater n the exponentially greater is the
n-gram domain, therefore with n = 6, 10 there is such a huge variety of n-grams that
it gets more and more difficult to assign many payload n-grams to the centres. As a
consequence, the byte coverage of legitimate payloads should get worse and lead to
higher anomaly scores. In this case, there is not a significant difference between the
Brave and Cautious strategies, in terms of stability.

According to the results, when n = 3, 4 the best values to choose for crtb are min
and avg, while for the n = 6, 10 the option max is slightly better. As can be seen in
Tables 5.2 and 5.3, the maximum AUC values are achieved with small compression
levels, generally between 5% to 20%. However, note that for some configurations
(e.g. crtn = Cautious, crtb = max and n = 4) the difference between the smallest
compression level and the one reported in the table is negligible.

5.4.3 Discussion

The experimental results previously discussed are promising. The approach is able
to distinguish between normal and malicious packet payloads in a satisfactory way,
with only 5% of the total n-grams that characterise the network traffic. In other
words, the space required by the approach is very small and this has interesting
implications in that it could naturally find its applicability in an IoT environment,
where it could be deployed in resource-constrained devices [215]. We also believe
that having smaller models to work with may lead to improving the processing
speed of the approach. We would like to explore this aspect in the future.

Even though the dataset that we used for these experiments is a subset of the UW
dataset used in Chapter 4, we believe it is worth to mention that there is a significant
gap between the performances of the compressed models and those achieved by
PAYL and Spectrogram, two IDS techniques that use all the learnt n-grams. The
compressed models obtained an AUC which is greater than 95% while PAYL and
Spectrogram about 83% and 86%, respectively.
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TABLE 5.2: Maximum AUC for crtn = Brave by varying crtb. For
each AUC the compression level is specified between parenthesis.

crtb Min Max Avg

n = 3 0.9609 (10%) 0.9482 (15%) 0.9615 (10%)

n = 4 0.9726 (30%) 0.9692 (20%) 0.9697 (20%)

n = 6 0.8654 (15%) 0.8960 (20%) 0.9009 (10%)

n = 10 0.9266 (15%) 0.9433 (5%) 0.9397 (5%)

TABLE 5.3: Maximum AUC for crtn = Cautious by varying crtb. For
each AUC the compression level is specified between parenthesis.

crtb Min Max Avg

n = 3 0.9395 (5%) 0.9312 (5%) 0.9351 (5%)

n = 4 0.9732 (30%) 0.9695 (20%) 0.9757 (20%)

n = 6 0.9197 (10%) 0.8959 (15%) 0.9278 (10%)

n = 10 0.8776 (5%) 0.9269 (5%) 0.9396 (5%)

5.5 Summary

In this chapter we proposed an approach for compressing n-gram-based classifica-
tion models, in the context of intrusion detection. Specifically, our goal was to build
compressed models that can classify content-based attacks in a satisfactory way. We
first build a model containing all the n-grams learned from the training data and
then we compress it by resorting to the k-centre problem. At last, we perform an
additional post training step to compute the n-gram distribution within the legiti-
mate relevant payloads, for each centre. We introduced the concept of byte coverage
to compute the anomaly score of a packet. Experiments were conducted on a real
word dataset to assess the performances of compressed models. The experimental
results show promising results, we achieved an AUC greater than 95% for significant
parameter configurations.



5.5. Summary 63

cl

0.05 0.1 0.15 0.2 0.25 0.3

A
U

C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

2

(A) crt = avg, n = 3.

cl

0.05 0.1 0.15 0.2 0.25 0.3
A

U
C

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

(B) crt = avg, n = 4.

cl

0.05 0.1 0.15 0.2 0.25 0.3

A
U

C

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1

2

(C) crt = min, n = 3.

cl

0.05 0.1 0.15 0.2 0.25 0.3

A
U

C

0

0.2

0.4

0.6

0.8

1

1

2

3

(D) crt = min, n = 4.

cl

0.05 0.1 0.15 0.2 0.25 0.3

A
U

C

0.5

0.6

0.7

0.8

0.9

1
1

2

(E) crt = max, n = 3.

cl

0.05 0.1 0.15 0.2 0.25 0.3

A
U

C

0.5

0.6

0.7

0.8

0.9

1

1

2

3

(F) crt = max, n = 4.

FIGURE 5.1: Results for n = 3 and n = 4 with the brave approach.
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FIGURE 5.2: Results for n = 6 and n = 10 with the brave approach.
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FIGURE 5.3: Results for n = 3 and n = 4 with the cautious approach.
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FIGURE 5.4: Results for n = 6 and n = 10 with the cautious approach.
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Chapter 6

Adaptive Access Control with
Machine Learning

In the previous chapters we discussed about anomalies that are interesting to de-
tect because they represent intrusions in a network or system. In this chapter we
consider anomalies that are attempts of exceeding or misusing access controls to
negatively affect the confidentiality, integrity or availability of a target information
system.

Nowadays computing systems are at the basis of our daily activities, enabling
always more and more services and management of critical applications. The key
ingredient of all such modern computing systems is the data: controlling accesses to
data is indeed of paramount importance. Access control systems are the first line of
defence for data as they establish fine-grained conditions under which allowed users
can act. Multiple approaches to access control have been proposed, each of which
enjoys different properties. However, all of them are intrinsically static: access con-
trol is not conceived to adapt over time thus to evolve according to the behaviours
occurred in the controlled system.

The recently proposed Attribute-Based Access Control (ABAC) [103] is a flexible
and expressive approach which bases its access decisions on so-called attributes, any
information available from the evaluation context such as subject’s identifier and
role, resource’s type, current time and location data. State-of-the-art ABAC infras-
tructure, such as the XACML standard [163], divides calculation and enforcement of
access decisions enabling support for the introduction of new attributes at runtime.
However, maintenance and administration of access control policies are still carried
out in a manual fashion. The policies in force at a given instance are the result of the
information available at design phase, they can not address access needs emerging
at runtime [107]. This lack of adaptation makes access control systems weaker and
weaker over time: authorised users may figure out allowed access patterns to per-
form insider threat such as disclosure or stealing of sensitive data. Therefore, ABAC
systems lack of timely adaptation means to dynamically changing policies according
to occurred behaviours.

As a matter of fact, weaknesses of access control systems not spotted in time are
always causing huge economic losses to companies or international embarrassment
to public bodies. Just to mention a few, an US soldier took advantage of granted
access rights to dump a massively amount of classified data then breached on Wik-
iLeaks1. Similarly, a major Intel microprocessor project was disclosed to a competi-
tor by a resigned employee whose managed to maintain access to classified projects

1https://www.csmonitor.com/USA/2011/1222/Bradley-Manning-case-signals-US-vulnerability-
to-insider-cyberattack
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while he was working for the competitor 2. More and more of such cases happen
daily, but adequate countermeasures can be put in place to monitor and timely spot
malicious behaviours. Indeed, both cases would have been avoided by a runtime
refinement mechanism for access control policies: behavioural features like writ-
ing/reading patterns, timing and location of access represent a normal user conduct
that if properly encoded within policies would avoid by-design such insider threat
attacks.

Detecting and preventing insider threats by monitoring and evaluation access
control policies has been an active aerea of research. Common approaches rest on
rule mining techniques to discover harmful exploitable policy faults [108, 25]. Alter-
natively, behavioural models have been proposed [166, 147, 138], both online and of-
fline solutions, to detect based on monitoring system insider threats. However, both
solutions are just detecting threats or faults and do not propose any knowledge-
informed adaptation to the access control policies so to timely avoid such mali-
cious behaviour. An attempt to adapt access control policies is described in [102].
However the approach ignores valuable contextual knowledge and do not build be-
havioural models.

The highly dynamic environment where access control systems work can also
cause additional issues: access policies become out-of-data soon and would require
continuative maintenance to preserve adequate access rights to new controlled re-
sources and for changing users’ patterns. Indeed, unforeseen needed access rights
could emerge over time from the monitored patterns, for instance users working in
commercial Chinese Wall environments whose access rights are not properly set to
carry out required business tasks. Generally speaking, this would amount to being
able of detecting inconsistencies of (un)granted access so to automatically modify
and adapt the access control policies by themselves.

In this chapter, we propose an approach based on machine learning to dynam-
ically refine and update policies, respectively, to prevent insider threats and to au-
tomate policy administration. The proposed learning approach permits refinement
and generation of new access control rules according to behavioural features moni-
tored at runtime. The designed system, named ML-AC, exploits a white-box deci-
sion learning approach whose aim is to learn behavioural profiles of users accessing
resources so to accurately refine policies and detect anomalies or inconsistencies for
classes of users. Such behavioural profiles are here called classes of interaction.

Practically, ML-AC uses knowledge on access patterns learned at runtime to
introduce behavioural rules into the policy both to avoid abuse of granted rights
and fix inconsistencies. Behavioural rules are used to refine access policies with
controls on features like frequency of access, amount of data, location, etc. Based
on such behavioural profile, ML-AC will also introduce amendments to policies to
harmonise access patterns.

Contributions. The main contributions of this work are:

• to introduce the system architecture of ML-AC which integrates ABAC with
machine learning to autonomously refine and update access control policies;

• to tailor well-known machine learning techniques such as decision tree to auto-
mate generation and update of behavioural rules;

• to discuss a case study to show the capabilities of ML-AC and to conduct an
experiment to assess the impact of the classes of interaction.

2http://www.insiderthreatdefense.com/pdfs/Insider%20Threats%20Incidents-
Could%20They%20Happen%20To%20Your%20Organization.pdf
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The rest of the chapter is organised as follows. Section 6.1 discusses the related
work. Section 6.2 provides a brief description of how machine learning is used in
this work. The architecture of ML-AC and its components are described in Section
6.3, while Section 6.4 details how machine learning is used to achieve our goals.
Section 6.5 describes a case study that is used to show how the system works. Sec-
tion 6.6 presents an experiment conducted for assessing the impact of the classes of
interaction. Finally, Section 6.7 concludes the chapter.

6.1 Related work

This work is closely related to three main areas of research: insider threats detection,
policy misconfiguration detection and adaptive access control.

Few works have addressed the problem of dynamically update access control
policies based on the user exhibited behaviour. Hummer et al. [107] propose a dy-
namic policy management process (DPMP) for access and identity management.
DPMP aims to discover new and potentially relevant policies as well as outdated
policies that reflect the current system state. Such policies describe new relation-
ships between users and resources that might be integrated in the current policies.
In contrast, ML-AC aims to automatically update the employed policies by adding
new controls that capture run-time aspects concerning access control. Similarly to
ML-AC, Costante et al. [54] use an anomaly-based engine to automatically learn a
model of normal user behavior, making it possible to flag anomalous transactions,
and exploit an operator’s feedback on alerts to automatically build and update sig-
natures of attacks that are used to timely block suspicious transactions.

The closest work to ours is BBNAC [79]. BBNAC is a behaviour-based network
access control system, where behaviour-based access control policies are employed
instead of rule-based policies. The mechanism employs a clustering-based algorithm
to perform access control. In its first incarnation, BBNAC required human inter-
vention in order to perform its tasks. It was later enhanced in [80] to work in an
automatic fashion. However, BBNAC suffers from the lack of static knowledge on
users, operations and resources, only relying on run-time aspects. Therefore, differ-
ently from ML-AC, it can build models that do not properly distinguish between
behaviours generated by different types of user, as we show in the experiments dis-
cussed in Section 6.6.

A number of approaches [108, 25] for detecting faults within a policy use asso-
ciation rule mining. Hwang et al. [108] mines likely properties (patterns of interest)
from a policy under verification via association rule mining to learn relationships
between subject, action, and subject-action attributes. The properties are verified
by producing counterexamples that help policy makers to detect faults. The ap-
proach, however, does not take into account run-time user behaviours, thus limiting
its detection capabilities to request-decision pairs encoded in the policy. Bauer et
al. [25] instead aims to predict changes in access control policies that are likely to re-
flect users’ intentions. These changes can represent potential misconfigurations that
could interfere with legitimate accesses. However, as pointed out in Section 6.4.3,
this approach can produce a significant number of wrong predictions due to the
lack of contextual knowledge.

Following the realization of the risks posed by insider threats, several approaches
for insider threat detection have been proposed in the last years. Maloof et al. [147]
propose a system called ELICIT to detect insiders that violate need-to-know. The
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system focuses on a variety of user activities, including searching, browsing, down-
loading, etc. It builds behavioural models from contextual information about past
activities, user identities and social networks. A Bayesian network is then employed
to rank insider threats. A more recent work [138] presents a system designed to ana-
lyze data repositories and activity logs to characterize recent activities performed by
users within an organization. The system extracts a rich set of features from the ob-
served user profiles and employs several anomaly metrics to score user behaviours.
Alizadeh et al. [4] propose an approach for behavioral analysis to detect anomalous
behaviors in the use of break-the-glass within a Dutch hospital. The underlying
idea is to build histogram-based profiles representing user and group behaviors and
compare those profiles to measure to what extent a user behaves differently from
users having the same job functions. Those works, however, only detect anomalous
behaviors based on contextual knowledge.

Other works have also exploited knowledge access control policies to detect in-
sider threats. Hu et al. [102] propose an approach that combines Role-Based Access
Control (RBAC) and genetic algorithms to generate role-action mapping rules for in-
sider threat detection. The main assumption at the basis of this work is that users
with similar job functions tend to use resources in a similar fashion. The authors
focus on users, roles and permitted/expected processes to build descriptive mod-
els. Another work that exploits the knowledge of access control for insider threat
detection is [166]. The authors propose a monitoring mechanism that analyses both
role and individual behavioural profiles to detect coarse and finer-grained anoma-
lies, respectively. The behavioural models are quite simple; they only describe the
operations performed by the insiders (e.g., search, send, copy) and their frequency
patterns. Because of such simplicity, the applicability of the extracted models might
be limited. In contrast, ML-AC provides a system that neither relies only on the con-
cept of role nor uses a fixed set of features, so it can be adapted to any application
domain.

6.2 A machine learning approach for access control

In this section we explain how we employ machine learning (ML) to achieve our
objectives. We build two different types of ML models: a model that describes how
the users utilise the resources and a model that describes the users’ resource access
patterns. The former type of models are built by means of the Random Forest algo-
rithm and are used to generate dynamic policy (or behavioural) rules. These rules
are then integrated in the original security policy, so that they can be used for the de-
tection of legitimate users with malicious intent. On the other hand, the latter type
of models are built by resorting to association rule mining and are used to identify
policy inconsistencies.

As anticipated in the introduction, the system models user behaviours based
on the concept of class of interaction, where a class is denoted as C. The concept
describes a set of user behaviours exhibited by one or more users that access to a
specific set of resources by means of a selected set of operations. Their goal is to
differentiate between different kinds of user behaviours to better detect legitimate
users with malicious intent, therefore the behaviours contained in a class Ci are dif-
ferent from those contained in Cj . Such differentiation was previously proposed
in [160], where the authors show that insider detection can be improved by distin-
guishing user behaviours related to different job roles. To achieve their objective
they exploit the concept of role in a Role-Based Access Control system or RBAC. The
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main assumption behind their work is that users with the same role generate similar
behaviours. We do not limit the differentiation only to the concept of role, but we
define the classes of interaction based on knowledge derived from a security policy
and knowledge that concerns a specific application domain. The latter knowledge
is exploited to define the behavioural features that characterise the user behaviours.
In terms of machine learning, we achieve the differentiation by building a distinct
behavioural model for each class of interaction.

In order to make it clear the benefits of the combination of machine learning with
an access control system, in the following we discuss how their combination can be
employed to detect anomalous behaviours.

A user behaviour is considered anomalous if it exhibits characteristics that are
significantly different from those exhibited by the remaining population of user be-
haviours. However, there may be behaviours, generated by users that belong to a
class of interaction Ci, that are anomalous with respect to those observed in Ci, but
are normal with respect to another existing class Cj . This might be a problem in the
context of insider threat detection, because a user might willingly act as another user
to evade detection. However, it might also happen that a legitimate user that is per-
forming a malicious action could unwillingly exhibit a behaviour that is similar to
those of other classes of interaction. Those kind of behaviours might be hardly clas-
sified as anomalies, without making a proper distinction between the two sets of be-
haviours. If the knowledge available in the context of access control were exploited
(e.g. types of users and resources) then the classifier would be able to recognise the
type of user that is generating the anomalous behaviour and would use the correct
knowledge in order to classify the behaviour. We refer to the anomalous behaviours
that require the exploitation of contextual knowledge as Sneaky Anomalies, because
it is particularly difficult to classify them otherwise. The other type of anomalies are
referred to as Outstanding Anomalies. We use the notation b for a generic behaviour,

bi for a behaviour associated to Ci and bji for a sneaky behaviour which is similar to
behaviours from Cj but anomalous with respect to those from Ci.

Knowing the classes of interaction, the system can build a set of dynamic rules
for each class in order to better represent their behaviours. Let C1, ..., CN be N classes
of interaction, where each distinct Ci exhibits user behaviours that are different from
those related to Cj , with i 6= j. ML-AC builds N different sets of behavioural rules,
here referred to as B1, ..., BN . Suppose now that ML-AC has to classify an anoma-
lous user behaviour bi. Because ML-AC distinguishes among the different classes
of interaction, it knows the origin of ui and, as a consequence, that the best way

to classify bi is to use Bi. If the anomalous behaviour were sneaky, i.e. bji , ML-AC
would then use Bi to perform the classification, so that it is more likely to classify the
behaviour correctly. On the contrary, if ML-AC modelled user behaviours related
to different classes of interaction as if they were part of the same class, the anomaly
might go undetected.

6.2.1 An example of security policy

Policy set policy1 {permit-overrides

target: equal ("R 1", resource/type) policies:

Rule rule1(permit target:

equal ("Read", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)
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)

Rule rule1(permit target:

equal ("Write", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)

)

}

LISTING 6.1: A portion of a ABAC policy π.

Policy set policy1 {permit-overrides

target: equal ("R 1", resource/type) policies:

Rule rule1(permit target:

equal ("Read", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)

&& less-than (feature/BytesRead, 345.6)

&& less-than (feature/NumberOfReads, 14)

&& greater-than (feature/BytesRead, 98.1)

&& greater-than (feature/NumberOfReads, 4)

)

Rule rule1(permit target:

equal ("Write", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)

&& less-than (feature/BytesWritten, 234.5)

&& less-than (feature/NumberOfWrites, 12)

)

}

LISTING 6.2: A portion of a new policy (πML) containing behavioural
rules.

Subject’s "department"="Department 1"

Subject’s "role"="Junior manager"

Subject’s "project"="Project A"

Action="read"

Resource "type"="R 1"

LISTING 6.3: An example of user request.

Subject’s "department"="Department 1"

Subject’s "role"="Junior manager"

Subject’s "project"="Project A"

Action="read"

Resource "type"="R 1"

Feature "BytesRead"="246.2"

Feature "NumberOfReads"="8"

LISTING 6.4: An example of request from a legitimate user that acts
normally.

Subject’s "department"="Department 1"

Subject’s "role"="Junior manager"

Subject’s "project"="Project A"

Action="read"
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Resource "type"="R 1"

Feature "BytesRead"="591.6"

Feature "NumberOfReads"="22"

LISTING 6.5: An example of request from a legitimate user with ma-
licious intentions.

To further highlight the role of machine learning in the context of access control,
we now present an example of a portion of a ABAC policy π that is part of a case
study that will be discussed in depth in Section 6.5. The portion reported in the list-
ing 6.1 defines two rules that allow users that has the role of junior manager to access
to resources of type R1. Not all the junior managers have this privilege, only those
that work on Project A, are from Department 1 and perform read and write opera-
tions. The listing 6.3 describes a user request. As long as the attributes specified by
the user satisfy the policy rules, the access control system will authorise the access,
regardless of how the user behaves. If the user were performing an anomalous num-
ber of reads (e.g. to steal sensitive data in a short time window), the access control
system would still authorise the access. We want the access control system to be able
to recognise these scenarios and to accomplish this goal we exploit machine learn-
ing to model user behaviours. We aim at changing π by integrating dynamic rules
that describe user behaviours and get a new policy πML, as shown in Listing 6.2.
The attributes (BytesRead, NumberOfReads, BytesWritten, NumberOfWrites) represent
behavioural features and are used to model user behaviours. After this integration,
a user request looks like those reported in listings 6.4 and 6.5. The request contains
both static and "behavioural" attributes. Note that only the former attributes are
specified by the user, while the latter ones are provided by a monitoring system.
The request 6.4 is generated by a user who is acting normally, in fact the values of
the behavioural attributes satisfy the policy rules. On the other hand, the request
6.5 represents the attempt of a junior manager to steal sensitive data. In fact, both
BytesRead and NumberOfReads have anomalous values. In this case, the access con-
trol system is able to recognise that a legitimate user is acting in a malicious way
and, as a consequence, the access will be denied.

6.3 System model

The model of the proposed system is depicted in Figure 6.1, which shows the funda-
mental components of ML-AC and the most significant interaction among them.
The three main components of ML-AC are Access Control, Machine Learning and

FIGURE 6.1: High-level architecture
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FIGURE 6.2: MLc’s subcomponents and interactions.

Monitoring System and are referred to as ACc, MLc and MSc, respectively. ML-
AC receives a user request req as input and produces a deny or permit as output.
ACc serves the purpose of evaluating the request, by resorting to both static and
dynamic policy rules. Upon the reception of req, only static attributes are known
(i.e. those specified by the user). In order to assess whether a legitimate user is be-
having as expected, ACc contacts MSc, which is in charge of computing the user
behaviour. MSc returns the user behaviour to ACc, which is now able to answer to
the request. Note that MSc should know the class of interaction of each behaviour
so that it can properly monitor the users and keep their behaviours updated. After
the evaluation of req, ACc communicates its decision to MLc. MLc leverages the
user request and other data produced by the other system’s components (e.g. the
user behaviour computed by MSc and the result of the evaluation performed by
ACc) to decide whether the decision took by ACc should be changed or the current
policy should be updated. The relationship called "Feedback" indicates the possible
updating process that MLc might demand to ACc and MSc.

When the system is deployed, it asks MLc to build the behavioural models from
a given training set. The instances contained in the dataset are grouped in different
behavioural classes based on the classes of interaction specified as input. The sys-
tem then derives a set of dynamic policy rules B from the output produced by the
machine learning algorithm employed. The set is used to update the original pol-
icy π and get a new policy πML, which will be used by the access control system to
perform its tasks.

In the following subsection we describe the inner working of MLc.

6.3.1 The inner working of MLc

MLc is made of three subcomponents, here referred to as CD, UB and IN . The
subcomponents serve the purpose of handling the concept drift, training the be-
havioural models and checking for policy inconsistencies, respectively. MLc per-
forms different tasks depending on the answer produced by ACc, after the evalua-
tion of a user request req. If the answer is deny, due to the static part of the request,
MLc is asked to verify whether there are policy inconsistencies. Note that if the
denial was due to an anomalous user behaviour there would be no policy inconsis-
tencies to search for. In this scenario, MLc receives the parameters < req, deny >
as input (dashed arrow 1). The component resorts to IN (dashed arrow 2) to verify
the correctness of ACc. After this operation, IN notifies its decision to the system
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(dashed arrows 3, 4). If the outcome is positive then the system is asked to change
the decision and to monitor the user behaviour with respect to the denied resource.
If the user behaves similarly to other users that can access to the resource then a new
policy rule is generated to address the exception. On the other hand, if req is either
accepted or denied due to an anomalous behaviour, a second scenario occurs. This
time, MLc receives the pair < req, b > as input (continuous arrow 1). As shown
by the numbered continuous arrows, MLc asks CD to monitor user behaviours by
taking into account b. This operation has two possible outcomes: 1) a new concept
is detected and 2) there is no new concept. In the first case, CD asks UB to up-
date the behavioural models (arrow 3a) that are affected by the concept drift. After
UB completes the updating process, it notifies MLc (arrow 4a), which in turn noti-
fies ML-AC (arrow 5). In the second case, CD simply notifies that there is no new
concept (arrows 3a, 4a).

6.3.2 Notation

In the following we report the symbols used throughout the chapter to denote all
the elements that are part of or used by ML-AC.

A user request is referred to as req and the generic output produced by ML-
AC as O. We represent a user with u, while a single resource is denoted by r and
a set of resources by R. The original policy used by ACc is referred to as π and
any subsequent policy that includes dynamic or behavioural rules, built by means
of machine learning, are denoted by πML. Knowledge about users, resources and
available operations is referred to as Kac, while knowledge about the application
domain, i.e. the one used to determine the behavioural features of user behaviours,
Kd. The classes of interactions that are determined based on Kac and Kd are denoted
by C and Ci is the i-th class. With ui we indicate a user belonging to Ci, instead by
using the notation Ri, we are referring to the i-th set of resources which has nothing
to do with an existing class Ci. The set of dynamic or behavioural rules that models
the behaviours related to Ci is referred to as Bi. A user behaviour is denoted by b
and, by adding the subscript i, bi represents a user behaviour generated by a user
ui. b might represent either a normal or an anomalous behaviour; its nature will be
clarified by the context. If an anomalous behaviour is sneaky, e.g. generated by a

user ui and similar to behaviours related to Cj , then it is represented by bji .

6.4 Machine Learning for Policy Refinement

6.4.1 Exploiting machine learning to generate policy rules

In this section we explain in detail how machine learning is employed in order to
achieve our goal.

In our initial setting we have a training set containing normal behavioural in-
stances that could belong to different classes of interaction. In this work we assume
that only normal behaviours are available because collecting even just a few sam-
ples of malicious insider behaviours might be a very difficult task to accomplish
[173]. Each of the classes of interaction represents a specific set of normal user be-
haviours. Given a class Ci, our goal is to recognise if a user behaviour bi is similar
to those related to Ci or not (i.e. it is anomalous). We cannot expect that an anoma-
lous bi could always match the characteristics of behaviours from a different class
Cj . This explains why we cannot consider our problem as a multi-class classification
problem, where the labels would be represented by the classes of interaction and our
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goal would be to determine if the label of a test sample bi is Ci or another Cj , with
i 6= j. To conclude, we want to solve the One Class Classification or OCC problem
[190] for each class of interaction.

Well-known solutions for the OCC problem relies on machine learning algo-
rithms like Support Vector Machine or SVM [192][191]. We point out that that a ma-
chine learning empowered access control systems should be able to explain, to a
certain extent, why a user request has been denied or permitted. Therefore, we want
to use white box machine learning approaches (e.g. Decision Tree), in contrast to
black box approaches (e.g. SVM), because the former provide clues about the rea-
sons behind a classification decision. We chose the Decision Tree or DT algorithm
[151] to pursue our goal because its output might be very useful to generate policy
rules. Indeed, the output produced by DT can be converted to a set of rules in the
form of antecedent− > consequent, as shown in [172], where antecedent is the logi-
cal and of all the conditions that a behaviour must satisfy in order to be classified as
normal or anomalous, as indicated by the consequent. Such rules are here referred to
as ML rules, to distinguish them from policy rules. We note that DT is not suitable to
solve the OCC problem, because it has been designed to be trained on a dataset con-
taining labelled instances from two or more classes. However, the approach can still
be employed to solve OCC by resorting to two possible solutions, i.e. i) by generat-
ing artificial data to turn OCC into a binary classification problem, e.g. as proposed
in [73], or alternatively ii) by using a variant of the DT algorithm that can handle
OCC (see [62] and [140] for additional details).

Another important aspect to consider is that DT by itself might not be able to
build an accurate classifier. Indeed, this algorithm is successfully used as part of
the Random Forest (RF) [100][41] approach or Bagging, a machine learning meta
algorithm [40]. We then chose to resort to RF for our purposes. A Random Forest
consists of an ensemble of DTs. Each DT produces its own set of ML rules, so if
we suppose that there are k DTs, RF yields k different sets of ML rules. All these
sets are used to classify user behaviours of a specific class of interaction, the one for
which RF has been built. When it comes to classify an observation, RF asks its DTs to
determine whether the observation is normal or anomalous and subsequently uses
a voting algorithm to perform the final classification. Suppose that we have a RF
with 3 DTs. Given an observation o to classify, each DT produces its own decision,
for example output(DT1) = 1, output(DT2) = 0 and output(DT3) = 1, where 1 and
0 denote the normal and anomalous classes, respectively. At this point, RF decides
that o is normal, by means of the voting algorithm.

Despite its accuracy, RF introduces a new problem that concerns the generation
of policy rules. The problem lies in the existence of multiple sets of rules and the
fact that now a voting algorithm is required to take the final decision, because not
all the sets could agree on the nature of a given user behaviour. It would be better
to have one single set of ML rules to generate policy rules, therefore we want to
merge the sets yielded by RF. There exist a couple of works in literature that address
this problem, such as [187] and [10]. We implemented the solution presented in [10]
and run it on a RF built from a synthetic dataset that we generated, containing both
normal and anomalous behaviours from two classes of interaction. Therefore, we
used the original implementation of DT for this analysis. The final set of ML rules
obtained by emerging the initial sets was able to classify the user behaviours in a
satisfying way.
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FIGURE 6.3: Scenario where concept drift is detected, along with a
few anomalies.

6.4.2 Concept Drift

After the training phase, the system starts monitoring the evolution of user be-
haviours to detect concept drifts. We don’t know whether a new user behaviour
is normal or not, in other words the upcoming data are not labelled. Therefore,
we need an unsupervised approach to monitor the concept drift and, according
to the literature, an approach that might help us is called Olindda [183]. Olindda
is a clustering-based approach, which has also been used to implement the incre-
mental learning of BBNAC. Olindda uses the k-means algorithm [99] to detect new
concepts. The detection is based on the distance between the new observations/be-
haviours and the existing concepts (represented by the clusters). The main limi-
tation of Olindda is that it relies on k-means which is suitable only for numerical
data. However, if there were categorical features we could replace k-means with the
k-modes algorithm [106], which is an extension of the former algorithm.

By employing Olindda, we use two different approaches for modelling user be-
haviours: we use Random Forest for the task of building policy rules and a clustering-
based algorithm to detect concept drift. We need to understand how the results of
the latter approach affect the policy rules built by employing the former. To make
it clear: when Olindda finds a new concept, which set of policy rules should be up-
dated? The answer to this question lies in what we know about the user behaviours.
We know that a user behaviour is associated to a specific class of interaction. There-
fore, if a new concept concerns behaviours related to Ci, then we know that ONLY
the policy rules that describe the behaviours of Ci have to be updated. Figure 6.3
depicts a scenario where concept drift is observed. In this example there are three
types of classes of interaction: C1, C2 and C3. At the beginning there are three clus-
ters of user behaviours, namely A, B and D, containing user behaviours from classes
C1, C2 and C3, respectively. At this point, the behaviours are represented by shapes
filled with blue. After a certain amount of time, the behaviours from C3 change to
the point that concept drift is detected. The drift is denoted by shapes, representing
the class of interaction, filled with red. Because the system knows the origin of the
user behaviours, it determines that the set of policy rules that describe C3 should be
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updated. Beside the behaviours involved in the concept drift, a few more instances
are observed, those represented by a red cross shape. Such instances are recognised
as anomalies by Olindda, because they don’t form any cluster and are quite far away
from the existing clusters. This is an important aspect to highlight because in order
to update the set of policy rules of a class of interaction, we do not want to feed the
Random Forest with anomalous behaviours.

It is worth pointing out that it may happen that a new concept mostly concerns
behaviours of Ci, but also very few behaviours of other different classes. The box
in the bottom right of Figure 6.3 illustrates a scenario where a cluster of new be-
haviours is made of instances from C3 and very few instances from C2. In this case,
it might be too risky to consider these few behaviours as normal. Conceptually, these
behaviours should be treated as anomalies, because they are in a cluster the majority
of whose members are part of a different class of interaction. The system should no-
tify a domain expert about these few behaviours so that appropriate decisions could
be taken.

6.4.3 Automated exception handling

The approach we chose to detect unforeseen accesses to be granted is inspired by the
work presented in [25]. The work proposes the usage of association rules to predict
policy misconfigurations from user activity logs that describe the resources that are
accessed by the users. By policy misconfigurations the authors mean the absence
of one or more rules in a policy that prevent one or more users from accessing to
specific resources. In other words, the access control system answer to a valid user
request with deny instead of permit.

In this context, each accessed resource is represented as an attribute and a set
of resources used by a user form a record. The idea behind the usage of associa-
tion rules is to find significant subsets of attributes in the records describing user
activities. From these subsets a set of rules is derived, in the form of premise ⇒
conclusion, which state that if the attributes in the premise are present in a record
then the attribute in the conclusion should also be present. In order to solve the
problem the authors assume that knowing the past user resource usage patterns can
provide useful information to determine if a user is likely to access to a resource
even if the access control system denies it.

To make the approach clear we provide an example which is based on the pol-
icy shown in Listing 6.1. Suppose that Alice, a junior manager, wants to access to a
resource r that is needed to complete certain tasks, but her request is denied, due to
a negligence or a configuration error. The resource is also used by other users, in-
cluding the senior manager that is assisted by Alice. Moreover, some of these users
utilise a set of resources Ri that are related to r, in that when the users access to
resources that belongs to Ri, they typically access to r. Some of the resources in Ri

are also used by Alice and it happens that these resources are related to r. The work
proposed in [25] is able to infer that the authorisation should be granted to Alice,
based on the past activities of all the other users that are authorised to access to Ri.
The main problem of the approach is that it tends to generate a considerable num-
ber of wrong predictions that do not make sense. Consider the previous example.
Suppose now that the users that can also access to r perform activities that have
nothing to do with those conducted by Alice. Alice might be involved only in activ-
ities concerning Project A, while the other users works on different projects. In this
case, it makes no sense to authorise Alice to access to r, because the resource is used
in different contexts. However, the approach proposed in [25] would suggest to let
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FIGURE 6.4: Interactions between users and resources.

Alice use r by looking at the activities performed by the other users. We believe that
by combining the mentioned approach with contextual knowledge we can obtain a
useful tool to detect inconsistencies. We want to exploit knowledge about users and
resources to identify significant resource access patterns based on which we take de-
cisions. In the example, knowing that the other users are working in a completely
different context, ML-AC would not change the decision taken by ACc, therefore
Alice would not be able to access to r.

The assumption that constitutes the basis for the chosen approach is likely to not
hold in every application domain. In this case, the solution might not work very
well. Therefore, ML-AC should feature a modular architecture, so that it is easy to
integrate new solutions that work better under different assumptions.

Using Association rules

This section explains in detail how we use Association rules. First of all, ML-AC
runs an association rules algorithm, like Apriori, on a given user activity log. Specif-
ically, the log contains the activities of all users, where each activity describes a set
of resources accessed by an individual. An activity is mapped to a record, which is
represented as a set of attributes (a1, a2, ..., am), where m is the record length. After-
wards, a set of rules Θ is derived, based on user-specified confidence and support
values.

When ML-AC receives a user request req such that ACc answers with deny, the
system communicates the outcome to MLc. MLc determines the type of user who
is requesting the denied resource based on criteria determined by a domain expert.
The criteria should suggest what is the level of privilege assigned to the user and
who are users with similar characteristics (i.e. compatible users). At this point, the
system searches for a subset of rules ΘR ∈ Θ such that the conclusion of the rules
is the denied resource R. If ΘR 6= ∅ then ML-AC checks whether there exists a
rule θ ∈ ΘR so that i) its premise is satisfied by the requesting user and ii) both its
premise and conclusion are satisfied by another compatible user. If the outcome of
the mentioned operation is positive then ML-AC changes the answer produced by
ACc from deny to permit.
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6.5 Case study

We suggest as an application case study the management of two software projects,
A and B, from an access control point of view. For the sake of simplicity, only aspects
that are needed to explain how ML-AC works will be taken into account.

Figure 6.4 depicts the IT figures and the resources involved in our case study
and how they interact. The former group includes junior and senior managers, while
the latter consist of two servers, i.e. S1 and S2. The servers contain project-related
documents.

The following sections provide the description of the organisation needs, part of
which are described in the portion of policy that we introduced in Section 6.2.1, and
of the case study scenarios.

6.5.1 Policy

In this section we highlight the interactions that are useful to present the application
of ML-AC in the case study.

There are two junior managers, Alice and Bob, who are assisting Charlie on Project
A and B, respectively. Similarly to Charlie, both Alice and Bob are authorised to
access to the S1 server, but Alice can only read and/or write a set of resources R1,
while Bob can perform the same operations only on the set of resources R2. Charlie
and Alice can also access to the set of resource R3, stored in the S2 server.

6.5.2 Case study description

We propose four scenarios to show the capabilities of the system, namely i) sensitive
data theft, ii) access wrongly denied, iii) access correctly denied and iiii) behaviour
evolution. The first scenario describes an attempt of Alice to steal sensitive data
from the server S1, in a fairly brief period of time. Such attempt leads to the gen-
eration of an abnormal amount of downloaded data. In the second scenario Alice
tries to access to a document that is important to complete tasks related to her work,
without success. The request is denied due to a negligence from the policy admin-
istrator. MLc overwrites the output produced by ACc, because the junior manager
shows resource usage patterns similar to those of other compatible users that can
access the resource. The third scenario sees Alice trying to access to a document that
can only be accessed by Charlie and Bob. We show two possible scenarios where
Alice’s request cannot be allowed. At last, the fourth scenario shows what happens
when new emerging user behaviours are detected, in other words the concept drift.
Specifically, we show that in the moment the system realises that the behaviour of
Alice and other colleagues has changed, it starts a process whose goal is to update
the dynamic policy rules.

6.5.3 ML-AC in action

Before proceeding we recall the features that are used to represent user behaviours:
the average number of bytes read (or BytesRead); the average number of reads per-
formed (or NumberOfReads); the average number of bytes written (or BytesWritten)
and the average number of writes performed (or NumberOfWrites). The features are
computed so that they describe how a user behaves in a time window of 10 minutes.

In the first scenario we observe the action taken by Alice who wants to steal
sensitive data from the S1 server. She is part of a class of interaction C1 which is
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defined as the triple <(Junior manager, Department 1, Project A); (read, write); (R1)>.
The class C1 is characterised by: 1) users who are junior managers that are assigned
to Department 1 and work on Project A; 2) read and write operations and 3) R1, a set
of resources stored in the S1 server. The listing 6.1 introduced at the beginning of
this chapter describes a portion of the original ABAC policy π used to check user
requests related to C1. As explained in Section 6.3, after the deployment of ML-AC
MLc builds a behavioural model for each class of interaction and from each i − th
model a set of dynamic policy rules Bi is derived. Therefore, ML-AC builds B1 that
is used (along with other sets) to modify π to get a new policy πML. The current
policy captures dynamic aspects concerning user behaviours, as can be seen in List-
ing 6.2. The attributes BytesRead, NumberOfReads, BytesWritten and NumberOfWrites
have been introduced, which are used to describe how the users from C1 are ex-
pected to behave when they use any resource r ∈ R1. For the sake of simplicity, the
rules reported are very simple. In reality, many more rules might be needed in order
to properly describe user behaviours from a class of interaction. Going back to the
main actor of this scenario, at some point Alice decides to act in a short time window
to steal as many documents as possible from the server. We assume that the actor
issues many normal requests in a short timeframe. That means that at the begin-
ning Alice is allowed to access to the resource because her behaviour is still normal.
However, after a couple of requests the behaviour starts deviating too much from
the expected one. The deviation is detected by ML-AC, therefore it will deny the
access.

In the second scenario we focus on the senior and junior managers. This time we
analyse what happens when Alice tries to access to a document called doc0.docx that
she needs in order to complete tasks related to her work. Alice is working on Project
A, as well as Charlie, the senior manager. Due to a negligence from the policy admin-
istrator, she cannot access to doc0.docx. Therefore, when ML-AC receives a request
from Alice for doc0.docx, ACc denies the access. Before ML-AC produces the out-
put, MLc analyses the user request to determine if ACc is correct. MLc determines
the type of user, i.e. a junior manager that is working on Project A from Department
1. Afterwards, the component searches for other types of users that are compatible
with Alice that can access to doc0.docx. MLc finds out that Charlie is a compatible
user. The next step consists of verifying if there exist a set of rules where the con-
clusion corresponds to the requested resource. MLc finds the following patterns:
{doc1.xls, doc3.docx} → {doc0.docx} and {doc2.xls} → {doc0.docx}. It then checks
Charlie’s resource usage patterns. The outcome suggests that when users like Char-
lie access to doc0.docx, they exhibit the following pattern: {doc1.xls, doc3.docx} →
{doc0.docx}. The patterns are presented as rules built by means of association rule
mining (see Section 6.4.3 for additional details). According to the rules, doc0.docx is
typically used along with the resources doc1.xls, doc3.docx and doc2.docx. To conclude
MLc checks whether there exist a Alice’s usage pattern that matches Charlie’s pat-
tern. In this case the answer is positive, therefore MLc asks ML-AC to overwrite the
answer of ACc and let Alice access to the desired resource.

The third scenario sees Alice trying to access to a document docb.docx with the
intent of damaging the reputation of Bob. The resource is typically used by Bob and
Charlie for tasks related to Project B and Alice should not access to it, indeed when
ML-AC receives her request, ACc answers with a deny. MLc performs all the steps
previously described, but this time Alice will not be able to get the authorisation.
Two possible possible outcomes could be observed. In one case, there could exist
another compatible type of users that can access to docb.docx, but use resources that
are different from those used by Alice, due to their job role. MLc will not be able to



82 Chapter 6. Adaptive Access Control with Machine Learning

find matching patterns, therefore it will not change the answer of ACc. Alternatively,
there exist no compatible user, so MLc immediately concludes that Alice should not
access to the resource.

In the last scenario we observe what happens when concept drift is detected.
Listing 6.6 shows a portion of πML that describes the behaviour of users that access
to resources of type R3, at time t1. In this time instant the users are struggling to meet
a deadline. To achieve their goal they need to work primarily on the set of resources
R1, therefore they are performing a few reads and writes on R3. After the deadline,
they start working at a higher pace with resources in R3, so their behaviour starts to
change. ML-AC receives a sequence of user requests related to user behaviours that
are significantly different from previous ones. MLc recognises a new concept and at
time t2 it decides to update the behavioural model that describes the behaviours re-
lated to the usage of R3. New dynamic policy rules are derived and πML is updated
accordingly. Listing 6.7 shows the new portion of πML.

Policy set policy1 {permit-overrides

target: equal ("R 3", resource/type) policies:

Rule rule1(permit target:

equal ("Read", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)

&& greater-than (feature/BytesRead, 921.8)

&& greater-than (feature/NumberOfReads, 8)

&& less-than (feature/BytesWritten, 1183.2)

&& less-than (feature/NumberOfWrites, 12)

)

}

LISTING 6.6: A portion of πML that describes the behaviour of junior
managers at time t1.

Policy set policy1 {permit-overrides

target: equal ("R 3", resource/type) policies:

Rule rule1(permit target:

equal ("Read", action/action-ID)

&& equal ("Junior manager", subject/role)

&& equal ("Department 1", subject/department)

&& equal ("Project A", subject/project)

&& greater-than (feature/BytesRead, 2458.6)

&& greater-than (feature/NumberOfReads, 35)

&& less-than (feature/BytesWritten, 3239.1)

&& less-than (feature/NumberOfWrites, 51)

)

}

LISTING 6.7: A portion of πML that describes the behaviour of junior
managers at time t2.

6.6 Classes of interaction evaluation

In the previous sections, we showed how to exploit user behaviours to improve ac-
cess control. As discussed in Section 6.1, another work that perform access control
based on user behaviours is BBNAC. BBNAC replaces policy rules with behavioural
models, so a user request is evaluated only as a function of his behaviour. However,
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this approach suffers from a coarse-grained modelling. BBNAC builds a distinct
behavioural model for each network protocol (e.g. HTTP, FTP, etc), in order to sepa-
rate different types of behaviour. However, it does not properly address the types of
anomalies that we discussed in Section 6.2. Suppose that there are two subpopula-
tions of HTTP behaviours, here referred to as A and B, and that BBNAC represents
each of them with a cluster. If a user from A generated a malicious behaviour that
is very similar to those observed in B, BBNAC would classify it as normal because
there exists a cluster in which it belongs to.

We set up an experiment to demonstrate that combining a machine learning algo-
rithm with domain knowledge and knowledge encoded into a policy has significant
benefits. Thus, we compare ML-AC with BBNAC , which is the closest approach to
ours from the literature, and show that we can better classify anomalous behaviours.
We also perform a comparison with a variant of ML-AC that ignores contextual
knowledge , to better highlight the role of contextual knowledge. We note that in
[160] an experiment to evaluate the impact of the separation of different types of
user behaviours on a variety of ML algorithms was presented, therefore we will not
propose an experiment with the same goal.

We generated a synthetic dataset D for confirmatory purposes [92], containing
user behaviours that belong to two different classes of interactions. Specifically, we
generated two sets of random points defined by Cartesian coordinates. The points
of each set are uniformly distributed within a 3-dimensional hypersphere of radius
r. The hyperspheres were generated in a way that there is no intersection between
them. Each hypersphere represents a distinct class of interaction, i.e. a population
of legitimate behaviours. Like this we simulate an OCC setting, where only nor-
mal user behaviours are available. In order to turn the OCC problem into a binary
classification problem, we generated a cloud of anomalous points around each hy-
persphere. The cloud consists of a set of random points generated on the surface
of an hypersphere which shares its centre with the hypersphere containing normal
behaviours and has a radius slightly greater.

Depending on the knowledge used by the machine learning approach, different
training and test sets can be built. We have three different settings for this experi-
ment. The first setting is used for ML-AC, when it takes into account the existence
of the classes of interaction. We have two training sets, one for each class of in-
teraction. The training set of the class Ci contains both normal and anomalous be-
haviours generated by users from Ci. The test set of the class Ci not only contains
unseen normal and anomalous behaviours related to Ci, but also behaviours that are
indistinguishable from those generated by users from Cj . With this addition we can
simulate sneaky anomalies. The second setting of the experiment concerns ML-AC
when it ignores the classes of interaction. The training set is made of normal and
anomalous behaviours from both the classes. The test set contains unseen normal
and anomalous behaviours and also sneaky anomalies from both the classes. We
expect ML-AC to struggle in recognising the true nature of such behaviours, in this
setting. At last, the third setting is very similar to the second one, in that the test set
is the same while the training set contains only normal behaviours. We computed
the ROC curve for each experimental setting, in order to evaluate the accuracy of the
approaches. Figure 6.5 shows the results of the experiment. As can be seen, ML-AC
achieves the best performances, hence the role of additional contextual knowledge
about the classes of interaction is of paramount importance. The curve associated
to ML-ACnok is significantly worse. By ignoring the additinal knowledge, the AUC
drops from circa 99% to circa 87%. The performances of BBNAC are comparable
to those of ML-ACnok, its AUC is about 85%. More in details, both BBNAC and
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FIGURE 6.5: Comparison among ML-AC, BBNAC and ML-ACnok

ML-ACnok have no problem in classifying the normal instances, their lower accu-
racy is mainly due to the fact that they consider the majority of the sneaky anomalies
as normal behaviours, because they are indistinguishable from the normal samples.

6.7 Summary

In this chapter we described a machine learning solution thought to refine and up-
date access policies in a dynamic fashion, with the goal of preventing insider threats
and enabling automated policy administration. The approach, called MLAC, gen-
erates new access control rules based on runtime user behaviours. These rules are
used to detect legitimate users with malicious intentions. In addition, MLAC ex-
ploits association rule mining to detect policy inconsistencies.
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Chapter 7

Using Virtual Environments for the
Assessment of Cybersecurity
Issues in IoT Scenarios

This chapter presents the work conducted on the Internet of Things or IoT.
During the last few years, Internet applications are still increasing and, in par-

ticular, an outstanding number of highly heterogeneous networked objects (things),
many of which characterized by small size and low power consumption [148] are be-
coming part of Internet, e.g. implantable medical devices, smart thermostats, smart
meters, or any object that has the ability to transfer data over a network. This trend
has been widely recognized as the next main step in the evolution of Internet which
is commonly referred to as the Internet of Things (IoT). IoT is showing the potential
for impacting several domains, ranging from personal to enterprise environments
[18]. Examples of domains and possible applications include, but are not limited to,
smart cities, for lowering energy costs and reducing pollution, and smart homes, for
which energy companies are building systems to increase energy savings and safety.

Despite the goals of IoT applications are directed to improve most aspects of both
business and common people’s life, such emerging technology has become an attrac-
tive target for cybercriminals. The more are the Internet connected devices the more
are the potential attack vectors and the vulnerabilities that malicious entities may
exploit. Estimates on the number of devices that will be connected to the Internet by
2020 range from 20.8 billion [86], to 30 billion [194] devices. As reported by [8], by
2016 cybersecurity risks have received little attention. Recently, positive signs have
been observed, starting from the growing attention received from governments [65]
to the announcement of bug bounty programs for the discovery of vulnerabilities.

In spite of the greater degree of attention, there are still manufacturers that do not
properly take into account the security aspects of their products: the services pro-
vided by the devices get almost all the attention, while security aspects receives little
consideration [114]. This means that the security state of smart devices is low, it is
then easier to observe more vulnerabilities and, as a consequence, there can be more
attack vectors to be exploited by cyber criminals. An important factor behind this
problem is the presence of manufacturers that lack prior experience with networked
devices: in an attempt to place into the market their devices and get the newest and
attractive functions at the lowest cost, as quickly as possible, they end up neglecting
the design and implementation of security features for hardware and software.

It is of utmost importance giving to security a high priority during the devel-
opment process of IoT, otherwise, in the near future, the number of security risks
for consumers and businesses will increase exponentially, leading to disastrous sit-
uations for both sides. Therefore, security should not be an artefact added at the
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end of the development, but it must be an integral part of the entire process. Conse-
quently, the devices placed in the markets, should be equipped with built-in security
mechanisms and ensure greater protection for their users.

To address the security vulnerabilities of IoT devices created so far, researchers
are focusing on the evaluation of security properties [159]. The goal of this analysis
is to identify and understand the security issues of currently deployed devices and
help manufacturers to solve the detected problems, by providing them with guide-
lines and recommendations for improving the security of future software updates
and/or version of the devices. Towards this objective, computer simulation tech-
niques along with novel cloud based virtualization platforms represent a very good
combination for achieving suitable cybersecurity analysis and assessment platforms.
Virtual environments are systems in which realistic scenarios can be reproduced, by
exploiting computer and network virtualization technologies and agent-based simu-
lation [49, 51]. They find applications in many domains including military, medical,
educational and recently also in cybersecurity [82].

We show how virtual environments can be a valuable tool to assess security
properties and discover vulnerabilities of IoT devices, in realistic scenarios. Specif-
ically, the SMALLWORLD platform is proposed for the development of intelligent
virtual environments in which the agent paradigm is used to simulate malicious
and legal behaviours, both of machines and human beings. SMALLWORLD has be-
ing developed to be scalable by design. It introduces an abstraction layer and a set
of API which make it able to run on different hypervisor technologies ranging from
single machine solution (e.g. VirtualBox) to state of art cloud solution.

With this contribution we propose a solution that on one hand helps to miti-
gate the presence of security holes in IoT devices to prevent anomalous actions from
taking advantage of them for malicious purposes. On the other hand, the solution
allows the collection of data that can be analysed to evaluate the security properties
of the devices of interest.

The rest of the chapter is organized as follows. Section 7.1 gives an overview of
the related work. Section 7.2 discusses the main security issues affecting IoT tech-
nologies and devices as they are currently developed, implemented and deployed.
Section 7.3 describes the use of virtual environments as a security analysis assess-
ment tool. Section 7.4 presents a case study involving smart home applications.
Finally, Section 7.5 summarises the work.

7.1 Related work

A model-based security toolkit, SecKit [159], has been proposed to enable the protec-
tion of user data by supporting specification and efficient evaluation of security poli-
cies. SecKit is integrated into a generic management framework for IoT devices. It
has been designed to support the modeling of IoT systems and to specify, in an inte-
grated way, security requirements, usage control policies, threat scenarios and trust
relationships. These issues are addressed by means of meta models and a policy
rule language. In particular, the adoption of trust models enables the specification
of trust relationships, of various types, by which governing the trust relationships in
the IoT interactions. The use of SecKit was experimented in [159] under two scenar-
ios, regarding smart home and city.

In [149], the authors present ASTo (Apparatus Software Tool), a software tool
designed for analysing security properties of IoT systems. The analysis can be per-
formed during the design and the implementation phases of the system. The tool
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uses a domain specific modelling language to visualise IoT systems in terms of hard-
ware, software and social concepts, along with security concepts. By analysing the
attributes and relationships of the constructs provided by the language, security is-
sues can be identified.

A framework for modeling and assessing security in the IoT is described in [87].
Specifically, the objectives of the framework are to graphically represent all possi-
ble attack paths in an IoT network, whose configuration is provided as input by a
security decision maker, in order to evaluate the effectiveness of possible defence
strategies. The use of the framework has been experimented in the domain of per-
vasive healthcare monitoring and of environment monitoring. However, its main
limitation is due to the fact that it requires a sensor networks of identical nodes
which is very unlikely to occur in real IoT settings. In addition it is not able to take
into account the mobility of devices.

Another general security assessment framework for IoT services is discussed
in [167]. The proposed approach uses integrated fuzzy multi-criteria decision-making
methods. It exploits a combination of a fuzzy analytic network process (ANP) and of
the fuzzy decision-making trial and evaluation laboratory (DEMATEL). The former
is used to assign a weight to each IoT security requirement, the latter is employed to
derive cause-and-effect interrelationships between the security criteria. The frame-
work aims at handling both qualitative and quantitative security criteria.

Security issues regarding the use of IoT in the field of eHealth applications are
considered in the work described in [139] where a framework for the assessment
of context-aware adaptive security solutions is applied in this context. A set of IoT-
eHealth scenarios is provided and it is considered for the evaluation of the approach.
Further, the framework employs linear and logarithmic approaches to assess and
quantify the security and QoS requirements of the applications, in an adaptive se-
curity system. The evaluation methodology is based on a comparison between re-
sults from laboratory experiments and simulations and the assessment by human
observers. The work presented in [139] is complemented by that discussed in [6],
where, in addition to QoS and security requirements, user preferences and device
capabilities are also taken into account.

A metric-based approach to assess the security level of IoT connected Critical In-
frastructures (CI) is proposed in [89]. The authors introduce a set of suitable security
metrics on the basis of which the satisfaction of security requirements is checked.
The metrics are employed to define Service Level Agreements (SLAs) in which the
requirements and the penalties that must be applied in case of violations are defined.
The approach is evaluated in the context of a financial infrastructure, however, the
approach is generic and can also be applied to other CIs. A discussion on the specific
security issues related to IoT applications for the Smart Grid is reported in [26].

While the above described approaches have their merits in the view of design of
secure IoT applications, they are mostly based on theoretical models from which
evaluation framework are derived and, as a consequence, they tend to overlook
some practical details which may hide serious security holes that can be lately dis-
covered only when IoT systems are put into operation. In order to fill this gap, the
availability of a platform allowing to reproduce in a realistic way (part of) an IoT
infrastructure accounting for low level operation details (e.g. operating system and
employed library versions, specific hardware and software components, network
topology, firewall rules, etc.) is of critical importance. To the best of our knowledge,
this work is the first proposing the combined use of virtual environments, agent-
based simulation and real devices in order to allow accurate evaluation and assess-
ment of realistic IoT deployment scenarios which may involve complex networking
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infrastructures.

7.2 Security concerns

IoT has brought interesting opportunities both for consumers and businesses, how-
ever it came together with vast repertoire of new security challenges. IoT technolo-
gies are embedded into and extend the Internet ecosystem and, as a consequence,
they inherit all the Internet related security problems and pose new specific issues.
Because of the pervasive nature of IoT devices and applications, these security prob-
lems are of a greater importance and, in some cases, tend even to become critical.
To cite one example, a group of researchers, in 2008, showed how it was possible to
extract personal information from a pacemaker or even to threat the life of a patient
by altering the behaviour of the device [96].

Similarly to the Internet, the IoT can be subject to a high number of threats, such
as attacks that target diverse communication channels, physical threats, denial of
service, identity fabrication, and others [23]. Unlike the Internet, in the IoT the at-
tack surface increases exponentially given the high number of interconnected de-
vices. The current state of IoT is also characterized by the absence of standards and
the extremely heterogeneous nature of the devices, in the hardware, software and
adopted communication protocols (Wi-Fi, Z-Wave and ZigBee, to name a few). All
these conditions introduce considerable complexity into the design process of the
general security solutions. Moreover, in a typical Internet scenario the connected
resources, e.g. desktop computers, have enough computing power to run software
tools, e.g. antivirus, that can protect them from some threat sources. In the IoT
instead, the devices have limited resources and because of this the use of existing
technologies such as antivirus is often impracticable.

Having said that, it is clear how important it is to pay special attention to the
security topic in the IoT. Unfortunately, it would seem that the IoT is retracing the
same steps of the Internet in its infancy. Decades ago, when the Internet was going
through its early stages of evolution, those who devoted themselves to its design and
development were focused on technical issues with the aim of being able to transfer
information quickly and reliably. These people were shortsighted about information
security, they primarily took into account military threats, but they failed to under-
stand that the same Internet users a day might become threats. This led to a situation
in which it was necessary to introduce ex post information security solutions in re-
sponse to a very high number, with variable severity, of threats. It is desirable to
undertake a change of direction, i.e. by stopping to neglect the security aspect and
by investing resources to design the devices taking into account the possible security
issues that may afflict them in the future. In this way, devices with built-in security
will be introduced in the market, offering a better protection to the customers. IoT
only recently has received a significant amount of attention from a security perspec-
tive. In a study conducted by HP [8], it was found that the security topic in the IoT
has had a very weak presence in industrial and academic conferences in 2014 and
2015, with respect to other application domains. Nowadays, IoT has attracted atten-
tion from governments [65] and there are bug bounty programs thought to discover
vulnerabilities in IoT products. Nonetheless, there are still manufacturers that are
devoting much of their attention to the development of capabilities and technolo-
gies with the objective of achieving long-awaited services and get a rapid spread in
the IoT market [114]. Therefore, devices with a security holes get sold and put in
operation. An example of security hole that has caused significant problems is the
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availability of the telnet service. Malwares like Mirai [14] and Bashlite [113] have
taken advantage of the telnet protocol to build botnets made of compromised IoT
devices with the ultimate goal of launching DDoS attacks [71].

The following subsections provide more information on the security landscape
of IoT. Specifically, they describe what are the main threats for the IoT, what are the
motivations that push malicious users to act, what types of attack patterns can be
observed and some examples of exploits.

7.2.1 Threat Sources

IoT devices manage a huge quantity of information, related e.g. to lifestyle habits
of a consumer, and they are capillary distributed in every industry [28]. This as-
pect is the main reason why the IoT security is threatened. Criminals, government
entities, and hacktivists are just few examples of actors who harbour interests with
respect to these data. For example, a group of criminals might be interested in steal-
ing sensitive information by hacking specific devices. In this scenario it becomes
potentially easier also to observe cases where a person, for personal reasons, may
disturb the daily life of another person, by altering the normal functioning of the
devices installed in the victim’s home.

Three main categories of malicious entities threatening IoT can be identified [17]:
i) external attackers, ii) malicious users and iii) bad manufacturers.

An external attacker is an entity that does not have permission to access a system
or a device. He usually remotely target a device (or set of devices) by exploiting its
vulnerabilities and he can have various goals, e.g. stealing sensitive data, causing
malfunctions or financial damages.

A malicious user is identifiable as the owner of a device from which he wants
to extract data relating to secrets of a manufacturer, or gain access to features not
accessible to the user. One of its objectives could be to sell secrets to a third party,
e.g. in the case of a former employee of a company, driven by resentment.

As malicious users may be interested in obtaining sensitive information from a
manufacturer of a certain device also the opposite situation could happen. A bad
manufacturer might be interested in gathering information about its general users or
about a specific user’s habits. To achieve this result it could deliberately introduce
security holes, by means of which it is possible to gain access to user data, violating
his privacy. A manufacturer could also be interested in seeking information on other
IoT devices or it might even try to attack other devices, produced by competitor
firms, in order to damage their reputation.

7.2.2 IoT exploit scenarios

This section reports two cases of IoT device exploits in order to make clear the impact
that the presence of vulnerabilities in smart devices can have on people’s lives. Dur-
ing the 2015 edition of the Black Hat USA security conference, Miller and Valasek
showed how they were able to compromise a smart car, specifically a Chrysler’s
Jeep [152]. The two researchers explained that there were two ways to perpetrate
the attack. In one case, the victim must had to be subscribed to the wireless con-
nection service from the manufacturer. They found out how the Wi-Fi password is
generated, i.e. based on the default system time plus a few seconds due to the boot
procedure of the head unit. The date corresponded to January 01 2013 00.00

GMT, and in the specific case study to 00.00.32 GMT. The number of combinations
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to be generated was small, therefore, little effort were required to guess the pass-
word. Once a connection was established with the Jeep’s head unit, it was possible
to find a way to hack the multimedia computer, which runs on a Linux operating
system. They managed to take control of the head unit of the system by exploiting
some pretty guessable flaws in the software. Of course, not all consumers can be in-
terested in signing the service offered by the manufacturer. In the second case study,
they shown that it was possible to obtain control of the system, leveraging the con-
nection that all head units had with the Sprint cellular network. More details can be
found in the article published by Miller and Valasek.

Any type of device may be part of the IoT, including dolls. In 2013 Mattel has put
on the market Hello Barbie, a doll which uses Wi-Fi to transmit what children say to
it to remote servers that process the speeches and build suitable replies. Researchers
showed that the doll had few insecurities. Studies conducted on Android and iOS
applications associated with the doll, revealed the presence of serious defects by
which an attacker is able to eavesdrop on communications between the cloud server
and the doll [181]. Furthermore it was showed that the application will automati-
cally connect to any Wi-Fi network whose name includes “Barbie”. These flaws were
exploited to gain access to system information, Wi-Fi network names, internal MAC
addresses, account IDs and MP3 files. Furthermore, these data can be used to find
someone’s house and access personal information.

7.2.3 Attack vectors/models

In the world of IoT, old and new attack patterns arise. When IoT will have reached
full maturity, smart devices will be everywhere, e.g. in our homes and offices. This
will allow an attacker to be able to get physical access to a device, i.e. the highest
level of access. Although it may seem hard to believe, physical access will be a
plausible attack vector. Just think of a guy who still has access to the home of a
former girlfriend, he will have access to the devices and try to reconfigure them to
spy on the movements of the victim. The attacker could exploit the physical access to
capture a device and extract the information contained in it or alter its configuration,
an attack pattern called node capture [168]. It would therefore be possible to reset
the device in an attempt to restore its original settings, or install a custom Secure
Socket Layer certificate for directing traffic to a server under his control. It is also
conceivable that an attacker compromises a device in his possession and resells it
to spy on other people. This new attack vector also allows to conduct a Denial of
Service attack. Indeed, if the attacker is able to access a device, it might make it
unusable, by destroying it.

The above mentioned Denial of Service (DoS) attack is another serious threat to
IoT. A DoS attack is defined as any event that diminishes or eliminates a network
capacity to perform its expected function, degrading the quality of the services of-
fered to its users [16]. These attacks can be initialized from remote places with mere
commands, combined with advanced tools. Distributed DoS attacks may also be
performed, which are more effective in exhausting the networks’ resources. In the
IoT one of the primary objectives for this threat is the wireless communication infras-
tructure. By using attacks like Jamming [213], which is a special case of DoS attacks
which interferes with the radio frequencies used by sensor nodes, an attacker may
prevent communications between smart devices, making it impossible for exchang-
ing information, a vital aspect in the IoT.

Another longtime threat reoccurring in the IoT is the malware spread. The first
malware in the Internet of things was discovered by Symantec in 2013, and was
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named Linux.Darlloz [189]. Malwares are a very powerful means to compromise
a device. It can be exploited to reach another device that contains the data of interest.
Unfortunately the limited resources available to the devices, make it hard to deal
with this threat. It is not possible to use tools like antivirus, in order to recognize
malwares in real time, because they would require an unsustainable strain on the
device.

In the following we report a number of works that propose solutions to various
problems. To cite one example, the work published in [143] copes with the presence
of loopholes in device security and data integrity, by proposing an access control
and authentication mechanism. The method requires that a user has to authenticate
in order to access a device and asks for permission from a Registration Authority.
The Authority, in turn, sends the user a challenge, if the answer is positive, then the
user is authenticated and can access the device. Unfortunately, the proposed solu-
tion cannot prevent systems from being very vulnerable to Man in the Middle and
Eavesdropping attacks. Other solutions are discussed in [134]. For each proposal,
the authors examine what are the issues that are addressed and the corresponding
limitations.

7.3 Virtual environments

Modelling and simulation techniques are essential engineering tools allowing hu-
man beings to study, analyse, understand and predict the behaviour of often com-
plex real phenomena. It is of critical importance the ability to achieve suitable math-
ematical models which: are accurate enough to describe the entities under inves-
tigation, are computer executable and abstract away from superfluous details. By
composing models of different entities it is possible to design new complex systems
which, once implemented, will interact with the real world. Simulation allows to
take important decisions at design time, e.g. on the basis of the results of what-if
analysis coming from the playing of different scenarios.

In the literature, two are the main categories of simulation applications that have
been identified [81]: analytic simulations and virtual environments. The first includes
traditional applications of computer simulations whose main goal is to achieve quan-
titative evaluations about what is being simulated and which during the execution
include little or no interaction with the real world (human beings and/or physi-
cal devices). Analytic simulations are run as fast as possible and must supply re-
producible results. Virtual Environments (VE), are systems able to simulate highly
realistic environments with which people, physical devices and other systems may
interact. As a consequence, a fundamental requirement for a VE is that its state must
evolve at the same pace as it would in the real world so that external entities can
perceive realistic feedback to their interactions with the VE. Virtual Environments
are used in many areas including: military, medical, educational, emergency man-
agement and gaming. During last few years VE started to be used in the field of
cybersecurity [82, 175]

VEs can reuse most of the techniques that have first been devised for analytic
simulations, e.g. discrete-event [81] and agent-based [49] simulations, by synchro-
nizing the simulated time with the wallclock time.

Agents are entities able to reproduce complex human or system behaviour into
a scenario (real or simulated). They can operate without human interaction and
perceive the environment around them. The behaviour of the agents can be defined
by a finite state machine [50], a Petri net or can be established by equipping the agent
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whit artificial intelligence algorithms [210]. Agents generally are able to cooperate
and coordinate with each other in order to achieve a common goal. As will be shown
in the following sections, agents are used to animate IoT scenarios by playing the
roles of legal/malicious entities.

In the last few years, high-performance hardware virtualization [97, 7] technolo-
gies allowed to realize complex computer networks whose nodes are virtual ma-
chines, each executing its own OS, applications and services. These technologies in
turn allowed the development and diffusion of software defined networking [132]
(SDN) which is currently exploited by cloud services vendors like Amazon and
Google. All of this has been possible because software and protocols implemen-
tations are mathematical objects [90] and then they can be used as models of them-
selves.

The combined use of hardware virtualization, agent-based simulation and real
devices (e.g. IoT devices) allows the realization of VEs that are suitable for the as-
sessment of complex infrastructures in the field of Information and Communication
Technology (ICT) and, in particular, cybersecurity related aspects. Entire ICT infras-
tructures or relevant parts can be deployed in such a VE along with agents running
on suitable simulation engines deployed on some VMs.

In this area some critical infrastructures like banking systems now have a high
degree of dependence on ICT. This bound carries with it substantial advantages,
e.g. automation of processes, but, on the other hand, introduces problems including
security vulnerabilities. These vulnerabilities arise for several reasons, such as poor
code quality. Unfortunately, many of these vulnerabilities are difficult to find, due
to the systems complexity.

Different approaches have been studied in order to identify the vulnerabilities,
including penetration testing. For example, a malware could be injected in a set
of interconnected nodes, in order to study its propagation within the network and
possible mutations. Unfortunately, this approach presents considerable risks, due to
the unpredictability of the behaviour of the test, which could lead to inconsistent and
perhaps irreversible states of the system. A similar problem can be observed when
studying the resilience of critical systems, another important research topic [88].

Researchers can rely on emulation for such analysis, especially approaches based
on Emulab software [179]. Emulab is a network testbed, in which a great variety of
experimental environments can be reproduced, that enable the development, testing
and assessment of complex systems. In this way, the exposure of the real system to
high loads and extreme conditions is avoided.

However emulators suffer from several shortcomings. The agent paradigm is not
applicable, therefore the use of these software components must be reproduced by
means of human intervention. It is not possible to create a distributed environment,
unless the installation of a number of emulators equal to the number of nodes of the
system to be analysed is performed. Finally, one of the major difficulties in the use of
emulators is due to the need of obtaining specific software or hardware components
for the system to study.

For the reasons exposed above, emulators could not be considered a suitable
solution for those experimental settings, that require agents or distributed configu-
rations.

Simulation based on virtual environments is a more effective approach especially
when used in conjunction with agent-based and hardware virtualization technolo-
gies that allow to abstract physical resources and specific software components.
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FIGURE 7.1: SMALLWORLD Architecture

The next subsection summarizes the main features of SMALLWORLD [82], a state-
of-the-art virtual environment platform purposely designed for security assessment
and education activities in the field of cybersecurity.

7.3.1 SMALLWORLD

SMALLWORLD is a software platform that has been devised in order to support the
assessment, teaching and learning of security-related issues in various domains [82].
SMALLWORLD is based on state-of-the-art virtualization and cloud technologies for
reproducing in a realistic setting a hybrid environment where large distributed com-
puter systems can be deployed and from where they can interact with real life en-
tities (users, software and hardware). SMALLWORLD enables security analysts and
practitioners to design and enact complex scenarios which are dynamic and reac-
tive and where a number of autonomous software agents can be deployed. SMALL-
WORLD agents are able to reproduce the behaviours of active entities of a given sce-
nario, e.g. human users and/or malicious applications. This allows to the software
components deployed into the virtual environment to behave and interact in a very
realistic way with the actual real environment. For example, by suitably crafting the
agents’ behaviour, the scenario may evolve over time and produce unexpected and
unpredictable events that are interesting to study and analyse through simulation
logs.

Figure 7.1 depicts the SMALLWORLD architecture which is composed of five lay-
ers and has been designed to be extensible and hypervisor-independent.

The Physical layer hosts computational, storage and networking hardware config-
ured in a suitable way in order to offer fault tolerance, business continuity and data
replication mechanisms services for proper and scalable operation of the hypervisor.

The Abstraction layer virtualizes and hides hardware details which can then be
easily changed/improved for scalability purposes without impacting on the overall
system operations. This layer hosts the virtual machine monitor and the network
hypervisor, which respectively enable to define via software the virtual computa-
tional nodes, along with the above operating systems and software layers (software
defined systems) and the virtual network infrastructure (software-defined network-
ing). There are many off-the-shelf hypervisor solutions that offers these features and
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that can be employed in this layer. The current prototype of SMALLWORLD relies on
Openstack [19, 177], however other implementations, i.e. VirtualBox [124], Open-
Nebula [153], are planned.

The Core Service Layer hosts the main software components that implement the
core SMALLWORLD features which are then exposed by the overlying API layer. The
blocks depicted inside this layer correspond to software components which realize
specific SMALLWORLD functionalities. The Network Linker communicates with the
underlying network hypervisor and introduces facilities to manage the networking
services (i.e. routing, switching, bandwidth shaping, firewalling, policies). The Pub-
lisher is responsible to install applications (e.g. vulnerable software, malware, etc. )
and agents in a given scenario. The Datastore Engine handles information that must
be stored into suitable databases on the basis of the data type. This component does
not use the abstraction layer. Data kept by the datastore engine are retrieved by
the Query Engine and used by the Management and Control Layer to gather and com-
pute statistics about the platform usage, e.g. users’ and agents’ activities, network
bandwidth usage, traffic logs and other information.

The Agent Engine is basically an agent based [20, 210, 50] real-time simulation en-
gine. It performs four main functions: (i) translates Agent Behaviour from a suitable
agent description language (ADL) format to executable code; (ii) provides an API
for deploying and planning all simulation steps; (iii) executes agents’ behaviours in
cooperation with each other providing an efficient messages delivery system; (iv)
exposes an interface to extract efficiently simulation logs. A Controller entity permits
to add worker nodes to the simulation each of which handles the execution of a little
cluster of agents. The Controller orchestrates the behaviours of worker nodes.

The API Layer introduces a platform independent API which exposes the SMALL-
WORLD interface. This API is used for the implementation of the applications of the
Management and Control Layer and it is fundamental for allowing the design and
the development of reusable SMALLWORLD scenarios independently from the soft-
ware technologies used in the underlying layers. The API is made available both as
a Java framework and as a set of REST services.

The Management and Control Layer hosts a set of applications which ease the de-
velopment and the management of SMALLWORLD scenarios and allow users and
administrators to gather information about the status of the platform. In particular,
the current version of SMALLWORLD provides the following tools. A Dashboard, en-
abling the management of scenarios, agents and virtual-machines. It also allows to
display system usage and statics, set scenario parameters, handle user access and ac-
count management. A Report tool, which provides statistical data about the running
scenarios. A set of Development Tools which include an agent development applica-
tion and a scenario design tool.

SMALLWORLD can be exploited in various contexts and can be adapted to the
specific available computational resources. Indeed, it provides different kinds of ac-
cess and two type of installation: in site or in cloud. For example, an enterprise
that has to deal with a large amount of data (e.g. VM images, system logs, etc.)
into SMALLWORLD or does not want to expose private data and can afford a suit-
able hardware investment may opt for a in site deployment solution. The features
to deliver to the client, and the respective cost, are fully customizable thanks to the
modular design of the environment. On the other hand, SMALLWORLD can also be
deployed on a cloud environment and made available as a service. This last solu-
tion allows the user to have immediate access to SMALLWORLD avoiding hardware
investment and configuration efforts.
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FIGURE 7.2: A typical insecure Smart Home scenario

7.4 Case study

This section illustrates three IoT scenarios that have been employed to investigate
about the exploration and exploitation of common smart objects vulnerabilities. The
scenarios were built by using the features of SMALLWORLD. The combined use of
real devices interacting with a virtual environment allowed to analyse these IoT sce-
narios, assess their cybersecurity issues and conduct a suitable risk evaluation.

In particular, three variants of the same scenario were considered for studying
the exposure to data leakage attacks and evaluate the effectiveness of two potential
solutions.

The basic scenario is depicted in Figure 7.2 and it is typical of a smart home set-
ting. The SMALLWORLD virtual environment hosts some nodes that interact with
the real world outside through three distinct interfaces, two of which are connected
to the Internet, and one to the local network of the smart home. A malicious node
runs in a virtual machine and it is connected to the Internet through the first inter-
face. Albeit it is located inside the virtual environment, it has no direct access to
the other virtualized nodes which are connected to a trunk of the smart home LAN.
The other nodes running in VMs are: a Personal Computer intended to be used
for typical users’s on-line activities (e.g. browsing web-pages ) and to access the
video surveillance system; a multimedia system and a Tablet. The tablet is emulated
within the virtual environment through the use of a virtualized Android OS. These
three nodes can access the Internet, through a switch which is in turn connected to
a router acting as a gateway. They can also access the Smart Home LAN. For the
purposes of the experiments, the connection to the switch is modelled as a cable
connection (in a real setting it would have been a wireless connection), however this
does not represent a limitation for the sake of the type of security assessment for
which the scenario has been devised. Reproducing the behaviour of a wirelesses
connection would have been useful only in the case of evaluation of attacks such as
eavesdropping or sniffing on the physical channel.

The real devices involved in the scenario are: a smart surveillance camera and
an infected Android smartphone. The camera is directly connected to the home
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LAN. The smartphone can exploit two connections: one to the LAN through a WiFi
access point and one to the Internet through a mobile network subscription (e.g.
GSM/UMTS/LTE).

Finally, in order to animate the virtual portion of the scenario, two agents have
been injected inside it: one in the VM running the Personal Computer and another
in the malicious node. The former is in charge of browsing web pages and access-
ing the video surveillance system, the latter communicates with the infected devices
sending them commands to accomplish and receiving the stolen information. The
behaviours of these two agents were specified by means of state machines described
in the SMALLWORLD agent description language. These state machines were de-
signed and crafted on the basis of a domain expert’s knowledge. In general the
specification of agents behaviour come from a preliminary analysis of the entities
they simulate. This holds in particular for malware applications that have to be first
captured and then reverse engineered [39] or their behaviour inferred performing
process mining activities on the logs of infected systems.

7.4.1 Attacking the video surveillance system

Smartphones are among the most common IoT devices and, because of their charac-
teristics and features, represent a suitable attack vector. Such kind of devices interact
everyday with different environments and establish connections not only with the
home area network but also with dangerous access points as may be found in public
networks. This situation, in some ways, mirrors the evolution of security on other
platforms like the desktop PC, where, early attacks focused on the network layer
and then migrated to the OS. An infected smartphone, which have access to a LAN
of a smart home, can be easily used as the entry point to launch an attack, take
control of other vulnerable IoT devices and perform malicious activities. There are
many publicly available exploits for both iOS [56] and Android [9, 200] devices. It
is possible to unlock both Apple iPhones, by means of so called Jailbreaks [115], and
Android smartphones, by suitable rooting procedures [178], and then to install vul-
nerable software on them. In this work, Android has been chosen because it is easier
to configure the OS components due to its open-source nature and to the size of the
developer community.

In the proposed scenario the remote attacker exploits the Android Stagefright
Integer Overflow vulnerability (described in [67]) in order to execute remote com-
mands. To conduct a successful attack he adds to the payload of a multimedia mes-
sage the binary code of a backdoor [15, 165]. The malicious code is sent to the victim
by email, MMS, any other kind of instant messaging application or just as a link to
a web page. Once the code is downloaded, it is executed as a background telnet

service listening on port 1035 which performs tasks intended to steal information
stored on the phone without the user being aware of it. The attacker remotely con-
trols the malicious application by connecting to the backdoor port through which he
can access a command shell prompt.

In the proposed scenario, when the infected smartphone connects to the home
network, it starts a network scan in order to find the other IoT devices, gathering
information like device model and firmware version. Such information are sent to a
malicious Command and Control (c&c) server, which processes them in order to find
exploitable vulnerabilities. The target of this experiment will be the Video Surveil-
lance System, with the intent to retrieve sensitive information or to take control of
it.
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FIGURE 7.3: Scenario configuration with: (a) firewall, (b) separate
VLANs

As the attack occurs in a LAN network, the attacker will instruct the compro-
mised device to send spoofed Address Resolution Protocol (ARP) messages. The
aim of this first phase of the attack is to associate the smartphone MAC address with
the IP address of the default gateway, causing any traffic on the LAN to be sent to
the attacker. Now, the attacker is able to inspect the packets and gather information,
while forwarding the traffic to the actual default gateway to avoid discovery.

When the software agent placed on the personal computer try to access to the
surveillance system through the web interface, it sends the credentials over the net-
work without https encryption and the bad gateway can easily steal the credentials.

At this point the attacker, acting through the compromised device, can access the
surveillance system and edit its configuration in order to make it accessible from the
Internet. Considering that it is very common to find a telnet server running on such
systems, often based on GNU/Linux distributions, the attacker can also login it with
the stolen credentials and spawn a backdoor exploiting the ever-present netcat
service [195].

Playing this scenario has shown how the attacker might gain sensitive informa-
tion hurting the victim’s privacy by means of which he can carry out criminal activ-
ities such as a blackmail. Moreover, having the control of the surveillance system,
the attacker could study the victim’s habits, understand when he is away from home
and lead a successful robbery by turning off the home surveillance system.

7.4.2 Securing the smart home

The previous subsection has shown, thanks to the combined use of a virtual envi-
ronment, software agents and real devices, how it is possible to reproduce a typical
smart home scenario. This allowed to play inside it a real attack and to identify the
security holes which are manly due to the malware ability to access the home LAN
and, as a consequence, all the connected devices.

A first step towards securing the home network consists in the installation of a
suitable configured firewall as depicted in Figure 7.3a. A simple provision consists
in disallowing connections to the LAN which are initiated from the external. In this
case the malware is confined inside the local network. It can perform the network
scan as before but the Command and Control server cannot connect to the backdoor.
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However, the smartphone does not only operates within the delimited zone.
It can also access to the Internet through the mobile (GSM/UMTS/LTE) network.
When the device is connected in such a way, the firewall is bypassed and the mali-
cious application can send data to the malicious server in order to receive the com-
mands that it will subsequently execute inside the LAN. This way, the attack contin-
ues as before with the difference that the attacker sends commands to and receives
data from the smartphone when the device is connected to the mobile network. In
addition, the malware application must enable a rule on the firewall in order to al-
low the attacker to exploit the backdoor. The experiments conducted showed that
this countermeasure is not adequate to properly address this attack.

A third scenario has been considered for evaluating a suitable countermeasure
to the described attack. The following steps can be considered as common best prac-
tices [126] to achieve a basilar home-protection:

• identify which devices need to be protected;

• group devices into logical groups;

• identify critical and not-critical groups;

• isolate each group in a separate sub-network and monitor activities that occur
among them.

Each of the considered devices should be evaluated independently in order to
find which one is part of critical assets. Being able to make such a separation, in
many cases, is not an easy task. Indeed, the identification of critical devices is not
only linked to critical assets to which they have direct access, but also to the logi-
cal dependencies that exist among them. Logical dependencies have a key role in
this task, and if they are not suitably handled they can easily become Trojan horses
through which access to critical assets can be gained. Based on such type of analysis,
a logical separation among the devices, ensuring a suitable level of security, can be
derived.

Following these guidelines it is easy to identify the surveillance system as the
most critical device. As a consequence, it must necessarily be placed in a sepa-
rate group and must have the least possible interaction with other devices. Another
group is represented by non mobile devices, which in our scenario are confined exclu-
sively within the home, i.e. the multimedia system, the tablet and the PC. Devices
that can connect to other networks, such as the smartphone in the considered setting,
must be part of a separate group because they are potential attack vectors. Another
group, not present in this scenario, could be one reserved to host devices.

To isolate the logical groups identified in the previous phase, the home network
is divided into three sub-networks, by resorting to the use of Virtual LANs, cor-
responding to the above-described devices groups. Using this configuration, the
smartphone, which is the main attack vector, is isolated and cannot perform scan-
ning in the whole network in order to discover the devices inside the smart home.

7.5 Summary

The pervasive diffusion of smart devices is going to change many aspects of our
daily lives and also the way how most business activities will be accomplished in
the next future. Just think how the smartphone already changed the way people
communicate, make their appointments and plan their travels. The next step will
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be to deal with the consequences of the worldwide spread of IoT devices. Because
human beings are going to delegate many (critical) activities to smart devices, it is
of utmost importance to suitably cope with cybersecurity issues threatening IoT. In
this chapter we showed how simulation technologies can be effectively used for the
assessment of cybersecurity scenarios involving IoT settings. In particular, the com-
bined use of novel virtual environments, able to exploit state-of-the-art hardware
virtualization technologies and cloud computing, agent-based simulation and real
devices allow to design and evaluate, in a controlled way, IoT technologies (appli-
cations, protocols, device prototypes) and related security issues before releasing
them in production. The effectiveness of the proposed approach was demonstrated
through a case study regarding a typical smart home setting which was evaluated
by means of the SMALLWORLD platform.
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Conclusions

The cyber security landscape is affected by a lot of significant problems, from devel-
opers that do not properly follow guidelines for the development of secure coding
best practices to worldwide diffusion of malware toolkits that allow even users with
little expertise to perform a cyber attack. A lot of efforts are required in order to lead
the cyber security towards a better state, and that means adapting existing security
solutions in response to the ever-changing security landscape and devising new so-
lutions when needed. The research activities that we presented in this thesis find
their place in this complex scenario.

Here we summarise the contributions, draw the conclusions of our work and
discuss the future work. The chapter is concluded with the list of publications done
during the Ph.D.

8.1 Summary of Conclusions

The research activity presented in this thesis aims at improving aspects of cyber
security related to Hybrid Anomaly Detection Systems, Intrusion Detection Systems,
Access Control Systems and Internet of Things, from a data analysis perspective and
with particular emphasis on the concept of anomaly.

In Chapter 3 we presented HALF, a generic framework for anomaly detection.
The framework has been designed to accommodate multiple mining algorithms of
a specific domain by organizing them in a hierarchical structure in order to offer an
higher and flexible detection capability. HALF can be easily employed in different
application domains such as fraud detection, speech recognition and intrusion de-
tection for cybersecurity, due to its generality. The framework fully supports the
entire data analysis process, from the training and data collection phases to the ex-
ecution of data analysis algorithms. Moreover, we introduced a learning module
to handle the concept drift. We showed how HALF can be exploited in practice to
implement a Network Intrusion Detection System and a Steganalysis tool, through
two case studies. We explained the steps that need to be undertaken in order to ver-
ticalise the framework in the chosen application domain, from developing a module
for parsing the data units to deploying and linking the chosen techniques. For the
first case study we developed a system that can detect anomalies in network traffic
of separate hosts and send e-mails to a network administrator to notify the detected
attacks. In the second case study we configured the framework as a hybrid steganal-
ysis tool able to find hidden content and report suspicious images.

In Chapter 4 we presented a novel anomaly-based intrusion detection technique,
called PCkAD. PCkAD exploits the spatial distribution of the n-grams to model le-
gitimate traffic. The technique learns the n-gram distribution in a semi-supervised
fashion, in that it only requires legitimate samples for the training phase. Moreover,
it uses four criteria to distinguish between different types of legitimate traffic. For
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each type of traffic PCkAD builds a separate model to better capture the relation-
ship between size and content inherent in the network traffic. A large experimental
campaign was conducted to assess the performances and reliability against evasion
attacks of PCkAD, whose main results are described in the following:

• The sensitivity analysis concerning the effect of the parameters’ values on PCkAD
confirmed that i) taking into account chunks is beneficial to the quality of the
detection; ii) very short and long n-grams may lead to unsatisfactory perfor-
mances, due to low discriminating power and higher risk of overfitting, re-
spectively; iii) PCkAD is more robust to threshold variations when employing
chunks with the values that guarantees the best performances.

• PCkAD was compared with other two IDS techniques based on n-grams on
a variety of datasets. Our technique outperforms the other two in every case
and obtains an AUC very close to 1. We believe that such results are due to
the amount of structural information that PCkAD exploits to model network
traffic.

• We evaluated the reliability of PCkAD against blending attacks and the ex-
perimental results show that the technique gets a significantly better accuracy
when employing chunks, which means that it can guarantee a reliable detec-
tion.

We further investigated the usage of the n-gram technique in Chapter 5, where
we discussed an approach for compressing n-gram-based classification models, in
the context of intrusion detection. Specifically, our goal was to build compressed
models that can classify content-based attacks in a satisfactory way. We explained
the process that we employ the compressed model. The first step is to build a model
containing all the n-grams learned from the training data and then compress it by
resorting to the k-centre problem. We then compute the n-gram distribution within
the legitimate relevant payloads, for each centre. During the classification phase,
the anomaly score of a packet is computed by means of the concept of byte cover-
age. We evaluated our approach on a real word dataset to assess the performances
of compressed models. We investigated the performances with respect to a few pa-
rameters, such as the compression level. The results are promising, we achieved
satisfactory performances with significant configurations. In particular, a number
of compressed models with a compression level less or equal than 10% obtained an
AUC greater than 90% and even 95%.

In Chapter 6 we presented ML-AC, a machine learning empowered access con-
trol system designed to refine and update access policies in a dynamic fashion. The
goal of ML-AC is to prevent insider threats and enable automated policy adminis-
tration. The approach uses decision trees to generates new policy rules that capture
runtime aspects concerning access control, in the form of user behaviours. These
rules are exploited to detect legitimate users with malicious intentions. The rules
are keep up-to-date by employing algorithms that can handle the concept drift. In
addition, ML-AC resorts to association rule mining for detecting policy inconsisten-
cies. We presented a case study to demonstrate how ML-AC works. The case study
consists of four different scenarios that highlight the capabilities of our proposal. We
then presented an experiment to show the impact of the classes of interaction when
it comes to detect anomalous behaviours.

At last, in Chapter 7 we focused on a worrisome aspect of IoT, i.e. the world-
wide spread of vulnerable smart devices. These devices are designed without prop-
erly taking security problems into account and, as a consequence, they have security
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holes that allows malicious users to easily perpetrate attacks. This problem is caused
by the presence of manufacturers that lack prior experience with networked devices
and try to place their products into the market as soon as possible. In order to accom-
plish their goal they end up focusing only on the functionalities of the devices and
overlooking security problems. In an effort to address the diffusion of vulnerable
devices, researchers are focusing on the evaluation of security properties. Follow-
ing this direction, we showed that by combining novel virtual environments, able to
exploit state-of-the-art hardware virtualization technologies and cloud computing,
agent-based simulation and real devices we can effectively assess cyber security sce-
narios involving IoT settings. We discussed a case study regarding a typical smart
home setting to demonstrate the effectiveness of the proposed approach. Specifi-
cally, the SMALLWORLD platform was used for the evaluation. We considered three
variants of the same scenario for studying the exposure to data leakage attacks and
evaluate the effectiveness of two potential solutions. The first scenario presented
represents a typical smart home setting consisting of both virtual and real devices.
A malicious node is also present as a virtual device. The node is connected to the
Internet through which it tries to compromise one or more devices that are part of
the smart home network. In this scenario the remote attacker manages to compro-
mise a vulnerable Android smartphone, by exploiting the Android Stagefright Inte-
ger Overflow vulnerability, and ultimately take control of the surveillance system.
In the second scenario we evaluated a new network setting in which a firewall is
installed and configured to prevent a remote user from initiating a connection from
the external. However, the malicious user can still take advantage of the smartphone
when it is connected to a mobile network. In the third and last scenario the smart
home devices are placed in separate sub-networks, based on their logical dependen-
cies and the level of criticality of the assets they can access to, in order to limit their
interaction. As a result, the malicious user can no longer exploit the smartphone to
access to the surveillance system.

8.2 Summary of contributions

In this section we recap the thesis contributions:

• We presented a flexible multi-domain framework, called HALF, that general-
izes the problem of anomaly detection. The framework is designed to embrace
both signature-based and anomaly-based techniques. It also allows the combi-
nation of different models for the analysis of data, by exploiting a hierarchical
structure. HALF can process any kind of data and is not bound to any specific
application domain, due to its generality. We described two case studies to
show how the framework can be exploited in practice.

• We proposed a novel anomaly-based intrusion detection technique, called PCkAD.
Unlike existing approaches, PCkAD builds models of legitimate traffic by learn-
ing the spatial distribution of the n-grams occurring in the relevant payloads
of normal traffic. The strategy adopted makes the technique resilient to a well-
known evasion attack, called blending, indeed we proved that performing
such attack against PCkAD turns out to be NP-hard. PCkAD is also able to
achieve a high detection rate with a very low false positive rate on a variety of
datasets.
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• We developed an approach to reduce the size of n-gram-based classification
models, in the context of intrusion detection. The approach resorts to the k-
center problem to select a representative subset of all the n-grams of a given
model. A post training phase is then employed to capture the distribution
of the n-grams in the training set. We then introduced the concept of byte
coverage which is used to compute the anomaly score of a network packet.
Experiments conducted on a real-world dataset show promising results.

• We designed a system, called ML-AC, which integrates ABAC with machine
learning to autonomously refine and update access control policies. ML-AC
exploits well-known machine learning techniques to automate generation and
update of behavioural rules. We analysed a case study consisting of four dif-
ferent scenarios to show the capabilities of ML-AC.

• We proposed the combination of virtual environments, agent-based simulation
and real devices as a mean to accurately evaluate and assess realistic IoT de-
ployment scenarios which may involve complex networking infrastructures.
We presented a case study describing a typical smart home setting to demon-
strate the effectiveness of the proposed approach.

8.3 Open issues and future work

In what follows we discuss future work directions that arise from this thesis:

• HALF is steadily under development. We aim at providing new additional
packages to support other domains and developing tools for monitoring and
collection of statistics. Moreover, we want to finalise the development of the
learning module that we introduced. The module is very important in that its
goal is to handle the concept drift and makes techniques that work with static
models suitable for contexts where the nature of data change over time. We
also intend to conduct an extensive campaign of experiments to validate the
effectiveness of the framework.

• Concerning the compression of n-gram-based models, a number of interest-
ing research directions can be explored. We intend to investigate an ensemble
approach based on these models in order to get even better performances. In-
deed, such models can be seen as weak classifiers when compared to the origi-
nal ones. We would like to explore new strategies to compute both the n-gram
distribution for each centre and the anomaly score. We also aim at evaluat-
ing the compressed models on other datasets and exploring the impact of the
compressed models on the processing speed of the approach.

• Another research direction of interest is the evaluation of the model compres-
sion in PCkAD. In this case, the problem seems to be harder because PCkAD
relies on the spatial distribution of the n-grams. The payloads are split in
chunks, so it is not clear how the set of centres should be built. We want to
make sure that all the chunks are properly represented by the centres. If there
were chunks whose n-grams are not represented there would be a consider-
able information loss. It would be also interesting to investigate how to take
advantage of the n-gram spatial distribution to discover patterns that char-
acterise malicious observations and turn them into signatures that could be
stored in the knowledge base of a signature-based IDS.
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• Regarding ML-AC, there are a number of interesting aspects to address. ML-
AC still lacks a toolchain to automate the policy rule generation. This addition
is our highest priority as a future work. We also intend to perform more exten-
sive esperiments with a real-life dataset to evaluate the effectiveness of ML-
AC. Another aspect concerns the classes of interaction. It might not always
be possible to clearly define the classes based only on the knowledge derived
from the context and the access control policies. There may be some classes
that should be merged or split, hence we are considering to design a prepro-
cessing step whose goal is to support the classes definition process. ML-AC
employs different machine learning algorithms to achieve its goals, therefore
it may incur in the risk of being subject to adversarial attacks. We would like
to study the adversarial attacker models that might hinder the normal opera-
tional state of ML-AC to devise practical mitigation strategies against them.

8.4 List of publications

This section describes the publications and contributions to journals and conferences
that has resulted from the research work done during the Ph.D.

8.4.1 Journals

• Furfaro, A., Argento, L., Parise, A., & Piccolo, A. (2017). Using virtual environ-
ments for the assessment of cybersecurity issues in IoT scenarios. Simulation
Modelling Practice and Theory, 73, 43-54.

• Angiulli, F., Argento, L., & Angelo, F. (2017). Exploiting content spatial distri-
bution to improve detection of intrusions. Accepted on September 15th 2017, in
ACM Transactions on Internet Technology.

• Furfaro, A., Parise, A., Argento, L., Piccolo, A., & Sacca‘, D (2017). A Cloud-
based Platform for the Emulation of Complex Cybersecurity Scenarios. Under
review.

• Angiulli, F., Argento, L., Furfaro, A., & Parise, A. (2018). A Hierarchical Hy-
brid Framework for Modelling Anomalous Behaviours. Simulation Modelling
Practice and Theory, 82, 103-115.

8.4.2 Conferences

• Argento, L., & Furfaro, A. (2015, May). A multi-protocol framework for the
development of collaborative virtual environments. In Computer Supported Co-
operative Work in Design (CSCWD), 2015 IEEE 19th International Conference on
(pp. 449-454). IEEE.

• Angiulli, F., Argento, L., & Furfaro, A. (2015, November). Exploiting n-gram
location for intrusion detection. In Tools with Artificial Intelligence (ICTAI), 2015
IEEE 27th International Conference on (pp. 1093-1098). IEEE.
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