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Preface

In the last years the ability to produce and gather data has increased exponen-
tially. Every day huge amounts of data are collected from several sources, such
as social networks, sensors, mobile devices. To extract helpful knowledge from
such big data, novel technologies, architectures, and algorithms have been de-
veloped by data scientists for capturing and analyzing complex and/or high
velocity data.

The goal of this thesis is studying, designing and exploiting models, tech-
nologies, tools and systems for Big Data analysis, especially on Clouds, to
support scalable distributed knowledge discovery applications. The work is
organized in two main parts. The first part focuses on methods and tools for
supporting scalable execution of distributed knowledge discovery applications
and, in general, solutions for dealing with Big Data issues. The second part
presents data analysis applications and methodologies for extracting knowl-
edge from large datasets.

As result of the first research activity, we integrated the MapReduce model
into the workflow formalism provided by the Data Mining Cloud Framework
(DMCF), a systems developed at the University of Calabria for creating and
executing scalable data analysis application on Clouds. By implementing a
DMCF data mining application whose workflow includes MapReduce com-
putations, we were able to achieve a nearly linear speedup, thanks to the
combined scalability provided by the DMCF workflows languages and by the
MapReduce framework.

The second research activity led to the design and implementation of Geo-
con, an open-source, scalable, and service-oriented middleware designed to
help developers to implement context-aware mobile applications. Geocon pro-
vides a service and a client library for storing, indexing, and retrieving infor-
mation about entities that are commonly involved in these scenarios, such as
(mobile) users, places, events and other resources (e.g., photos, media, com-
ments).

As result of the third research activity, we present G-RoI, a novel data min-
ing technique that exploits the indications contained in geotagged social media
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items to discover the boundaries of a Place-of-Interest (PoI), commonly called
Region-of-Interest (RoI). To assess the quality of the proposed technique, an
experimental evaluation was carried out on a set of PoIs located in the center
of Rome and Paris, using a large set of geotagged photos published in Flickr
over six years. The experimental results show that G-RoI is able to detect
more accurate RoIs than existing techniques, regardless of shapes, areas and
densities of PoIs, and without being influenced by the proximity of different
PoIs.

Finally, we designed a predictor of the arrival delay of scheduled flights
due to weather conditions, as several studies have shown that weather is one
of the primary causes of flight delays. Accurate prediction of flight delays is an
important problem to be addressed given the economic impact of flight delays
to both airlines and travelers. In our model, the predicted arrival delay takes
into consideration both flight information (origin airport, destination airport,
scheduled departure and arrival time) and weather conditions at origin airport
and destination airport according to the flight timetable. The results show a
high accuracy in prediction of delays and a good scalability, which means the
proposed solution identifies a very useful pattern of flight delay that may help
airlines in reducing delays.

Rende, Cosenza, Italy Loris Belcastro

February 2017



Prefazione

Negli ultimi anni la capacità di generare e collezionare dati è aumentata
in maniera esponenziale. Ogni giorno, infatti, grandi moli di dati vengono
collezionati da diverse sorgenti, tra cui social network, sensori, dispositivi mo-
bili. Questi grandi quantitativi di dati, spesso riferiti col termine “Big Data”,
presentano una serie di caratteristiche, quali la complessità e la velocità di
generazione, che li rendono estremamente difficili da gestire. Per tali ragioni,
nuove tecnologie, architetture ed algoritmi sono stati sviluppati per analizzare
grandi moli di dati ed estrarre da questi conoscenza utile

Questo lavoro di tesi ha come obiettivo lo studio e l’impiego di modelli,
tecnologie e sistemi per l’analisi di Big Data, che possono essere utilizzate, so-
prattutto in ambiente Cloud, per sviluppare applicazioni scalabili e distribuite
per la scoperta di conoscenza. Il lavoro è organizzato in due parti principali. La
prima parte si focalizza su metodi e strumenti per l’esecuzione scalabile di ap-
plicazioni distribuite per l’estrazione di conoscenza e, in generale, di soluzioni
per far fronte alle problematiche connesse ai Big Data. Nella seconda parte,
invece, vengono presentate alcune applicazioni di data analysis e metodologie
per l’estrazione di conoscenza da grandi volumi di dati.

La prima attività di ricerca ha avuto come risultato l’integrazione del
modello MapReduce all’interno del formalismo dei workflow messo a dispo-
sizione da Data Mining Cloud Framework (DMCF), un sistema, sviluppato
all’Università della Calabria, per creare ed eseguire applicazioni scalabili per
l’analisi di dati sul Cloud. Integrando operazioni MapReduce all’interno dei
workflow, in particolare, si è dimostrato come sia possibile costruire appli-
cazioni di data mining scalabili, con valori di speedup prossimi a quelli ideali.

La seconda attività di ricerca ha portato alla progettazione e all’implemen-
tazione di Geocon, un middleware orientato ai servizi, open-source e scalabile,
progettato per facilitare lo sviluppo di applicazioni mobili context-aware. Geo-
con mette a disposizione una libreria di servizio ed una libreria client per la
memorizzazione, indicizzazione ed estrazione di informazioni relative ad entità
che sono comunemente utilizzate in questi scenari, come utenti, luoghi, eventi
ed altre risorse (es. foto, media, commenti).
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Come risultato della terza attività di ricerca, presentiamo G-RoI, una
nuova tecnica di data mining che sfrutta le indicazioni contenute nel dati
geolocalizzati provenienti dai social network per estrarre regioni di interesse
(RoI), intese come i confini geografici che contraddistinguono l’area associata
ad un punto di interesse (PoI). Per validare la qualità della tecnica proposta,
è stata eseguita una valutazione sperimentale su un insieme di PoI nel centro
di Roma e Parigi, utilizzando un dataset di grandi dimensioni costituito da
foto pubblicate su Flickr in un periodo di sei anni. I risultati sperimentali
ottenuti hanno dimostrato come G-RoI sia in grado di rilevare RoI più accu-
rate rispetto alle tecniche esistenti, indipendentemente dalle caratteristiche di
forma, dimensione, densità e prossimità dei PoI considerati.

Infine, è stato progettato un predittore del ritardo di arrivo dei voli dovuto
alle condizioni meteorologiche. Diversi studi, infatti, hanno dimostrato che il
meteo è una delle cause principali del ritardo aereo. La predizione accurata
dei ritardi aerei è un problema molto importante, con un grande impatto eco-
nomico sia per le compagnie aeree che per i passeggeri. Nel nostro modello,
il ritardo predetto prende in considerazioni le informazioni del volo (es. aero-
porti di origine e di destinazione, orari previsti per la partenza e l’arrivo) e
le condizioni meteorologiche agli aeroporti di origine e di destinazione in ac-
cordo agli orari di volo programmati. I risultati hanno mostrato un’elevata
accuratezza nella predizione dei ritardi e una buona scalabilità, evidenziando
come la soluzione proposta sia in grado di fornire informazioni utili alle com-
pagnie aeree per la riduzione dei ritardi.

Rende, Cosenza, Italy Loris Belcastro

February 2017
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Introduction

In the last years the ability to produce and gather data has increased expo-
nentially. In fact, in the Internet of Things’ era, huge amounts of digital data
are generated by and collected from several sources, such as sensors, cams,
in-vehicle infotainment, smart meters, mobile devices, web applications and
services. The huge amount of data generated, the speed at which it is pro-
duced, and its heterogeneity in terms of format (e.g., video, text, xml, email),
represent a challenge to the current storage, process and analysis capabilities.
In particular, thanks to the growth of social networks (e.g., Facebook, Twit-
ter, Pinterest, Instagram, Foursquare, etc.), the widespread diffusion of mobile
phones, and the large use of location-based services, every day millions of peo-
ple access social network services and share information about their interests
and activities. Those data volumes, commonly referred as Big Data, can be
exploited to extract useful information and to produce helpful knowledge for
science, industry, public services and in general for humankind.

Although nowadays the term Big Data is often misused, it is very impor-
tant in computer science for understanding business and human activities.
In fact, Big Data is not only characterized by the large size of datasets, but
also by the complexity, by the variety, and by the velocity of data that can
be collected and processed. So, we can collect huge amounts of digital data
from sources, at a very high rate that the volume of data is overwhelming our
ability to make use of it. This situation is commonly called “data deluge”.

In science and business, people are analyzing data to extract information
and knowledge useful for making new discoveries or for supporting decision
processes. This can be done by exploiting Big Data analytics techniques and
tools. As an example, one of the leading trends today is the analysis of big
geotagged data for creating spatio-temporal sequences or trajectories tracing
user movements. Such kind of information is clearly highly valuable for science
and business: tourism agencies and municipalities can know the most visited
places by tourists, the time of year when such places are visited, and other
useful information [13][81]; transport operators can know the places and routes
where is it more likely to serve passengers[154] or crowed areas where more
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transportation resources need to be allocated[152]; city managers may exploit
social media analysis to reveal mobility insights in cities such as incident
locations[82], or to study and prevent crime events [84][57].

But it must be also considered that Twitter and Facebook produce more
then 20 TB of data every day. Then to extract value from such kind of data,
novel technologies and architectures have been developed by data scientists for
capturing and analyzing complex and/or high velocity data. In this scenario
data mining raised in the last decades as a research and technology field
that provides several different techniques and algorithms for the automatic
analysis of large datasets. The usage of sequential data mining algorithms for
analyzing large volumes of data requires a very long time for extracting useful
models and patterns. For this reason, high performance computers, such as
many and multi-core systems, Clouds, and multi-clusters, paired with parallel
and distributed algorithms are commonly used by data analysts to tackle Big
Data issues and get valuable information and knowledge in a reasonable time.

In this context, Cloud computing is probably the most valid and cost-
effective solution for supporting Big Data storage and for executing sophisti-
cated data analytic applications. In fact, thanks to elastic resources allocation
and high computing power, Cloud computing represents a compelling solution
for Big Data analytics, allowing faster data analysis, that means more timely
results and then greater data value.

The goal of this thesis is studying, designing and exploiting models, tech-
nologies, tools, and systems for Big Data analysis, especially on Clouds, to
support scalable distributed knowledge discovery applications. The work is
organized in two main parts. The first part focuses on methods and tools for
supporting scalable execution of distributed knowledge discovery applications
and, in general, solutions for dealing with Big Data issues. The second part
presents data analysis applications and methodologies for extracting knowl-
edge from large datasets.

In the first part of this thesis, two research approaches are presented: the
first one is the use of the MapReduce programming model for processing large
datasets on Clouds and, in particular, the use of the MapReduce paradigm in
combination with the workflow paradigm to enable scalable data processing
or to implement knowledge discovery applications on Clouds; the second one
is instead the design and implementation of a scalable middleware for context-
aware applications, which can be deployed on Clouds.

As a result of the first research approach, we present an extension for in-
tegrating the MapReduce model into the workflow engine provided by Data
Mining Cloud Framework (DMCF), a framework for supporting the scalable
execution of distributed knowledge discovery applications. More in detail, we
describe how workflows, created using VL4Cloud or JS4Cloud (i.e., the for-
malisms provided by DMCF for designing workflows), can include MapRe-
duce algorithms and tools, and how these workflows are executed in parallel
on DMCF to enable scalable data processing on Clouds.
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The second research approach led to the design of Geocon, an open-source
service-oriented middleware designed to help developers to implement context-
aware mobile applications. Geocon provides a service and a client library for
storing, indexing, and retrieving information about entities that are commonly
involved in these scenarios, such as (mobile) users, places, events and other
resources (e.g., photos, media, comments). To deal with very the large number
of users and resources involved in such kind of applications, Geocon is designed
to scale horizontally on a multiple nodes. Despite not being directly involved
in the data analysis process, Geocon represents a solution for improving the
capabilities of collecting, storing, indexing, and querying huge amount of data
produced by mobile context-aware applications. Data collected and stored
exploiting Geocon can be subsequently fed to a data analysis application for
extracting valuable information.

With regards to data analysis applications proposed in the second part of
this thesis work, we focused on two research topics: the first one is the use
of knowledge discovery methodologies for extracting highly valuable informa-
tion exploiting data coming from social networks; the second one is instead
the use of parallel and distributed machine learning techniques, coupled with
the MapReduce programming model, for extracting high valuable information
from large datasets.

As a result of this research topic, we present G-RoI, a novel mining tech-
nique that exploits indications contained in geotagged social media items to
discover the boundaries of a Place-of-Interest (PoI), also called Region-of-
Interest (RoI). We experimentally evaluated the accuracy of G-RoI in detect-
ing the RoIs associated to a set of PoIs in Rome and Paris, using a large set
of geotagged photos published in Flickr over six years.

The result of the second research work is a predictor of the arrival delay
of a scheduled flight due to weather conditions. This work was motivated by
the fact that several studies have shown that weather is one of the primary
causes of flight delays, with a significant economical impact (i.e., the cost
of flight delays for US economy was estimated to be more than 30 billion
in 2007). The data preparation and mining tasks have been implemented as
MapReduce programs that have been executed on a Cloud infrastructure to
achieve scalability. The results show a high accuracy in prediction of delays
and a good scalability, which means the proposed methodology identifies a
very useful pattern of flight delay that may help airlines in reducing delays.

1.1 Publications

The following publications have been produced while accomplishing this the-
sis.
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1.1.1 Journals

• L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, “Using Scalable Data Min-
ing for Predicting Flight Delays”. ACM Transactions on Intelligent Sys-
tems and Technology (ACM TIST), vol. 8, n. 1, October 2016.

• L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, “G-RoI: Automatic Region-
of-Interest detection driven by geotagged social media data”. ACM Trans-
actions on Knowledge Discovery from Data (ACM TKDD). Under review,
2016.

• L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, “A Scalable Middleware
for Context-aware Mobile Applications”. Concurrency and Computation:
Practice and Experience. Under review, 2017.

1.1.2 Book Chapters

• L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, “Big Data Analysis on
Clouds”. In: Handbook of Big Data Technologies, S. Sakr, A. Zomaya
(Editors), Springer, 2017.

1.1.3 Papers in refereed conference proceedings

• L. Belcastro, G. Di Lieto, M. Lackovic, F. Marozzo, P. Trunfio, “Geo-
con: A Middleware for Location-aware Ubiquitous Applications”. Proc. of
the First International Workshop on Ultrascale Computing for Early Re-
searchers (UCER 2016), 2016.

• L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, “Programming Visual and
Script-based Big Data Analytics Workflows on Clouds”. Post-Proc. of the
High Performance Computing Workshop 2014, Cetraro, Italy, Advances in
Parallel Computing, vol. 26, pp. 18–31, IOS Press, 2015.

1.2 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 discusses mod-
els, technologies and research trends in Big Data analysis on Clouds.

Then next two chapters discuss solutions that can be used for developing
respectively data analysis and mobile context-aware applications, also in pres-
ence of Big Data. In particular, Chapter 3 presents the Data Mining Cloud
Framework (DMCF) and discusses how its workflow paradigm has been inte-
grated with the MapReduce model, while Chapter 4 discusses the middleware
Geocon for developing mobile context-aware applications.

Next two chapters present data mining applications that made use of big
datasets for extracting useful information. Specifically, Chapter 5 presents
the G-RoI mining technique for extracting RoIs from geotagged social media
data gathered from social networks, while Chapter 6 presents a predictor
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of the arrival delay of a scheduled flight due to weather conditions. Finally,
Chapter 7 discusses conclusions and future work.
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Big Data Analysis on Clouds: models, tools
and solutions

Every day huge amounts of data are collected from several sources, such as
social networks (e.g., Facebook, Twitter, Pinterest, Instagram, Foursquare,
etc.), sensors, mobile devices. Such data volumes, commonly referred as Big
Data, can be exploited to extract useful information and to produce helpful
knowledge for science, industry, public services and in general for humankind.

However, the process of knowledge discovery from Big Data is not so easy,
mainly due to data characteristics, as size, complexity and variety that require
to address several issues. In this scenario data mining raised in the last decades
as a research and technology field that provides several different techniques
and algorithms for the automatic analysis of large datasets.

Cloud computing is a valid and cost-effective solution for supporting Big
Data storage and for executing sophisticated data mining applications. Big
Data analytics is a continuously growing field, where novel and efficient solu-
tions (i.e., in terms of platforms, programming tools, frameworks, and data
mining algorithms) spring up everyday to cope with the growing scope of
interest in Big Data.

This chapter discusses models, technologies and research trends in Big
Data analysis on Clouds. In particular, the chapter presents representative
examples of Cloud environments that can be used to implement applications
and frameworks for data analysis, and an overview of the leading software
tools and technologies that are used for developing scalable data analysis on
Clouds.

The remainder of the chapter is organized as follows. Section 2.1 provides
a brief discussion about existing Big Data definitions. Section 2.2 provides
a brief introduction to Big Data Analytics. Section 2.3 introduces the main
Cloud computing concepts. Section 2.4 describes representative examples of
Cloud environments that can be used to implement applications and frame-
works for data analysis in the Cloud. Section 2.5 provides an overview of the
leading software tools and technologies used for developing scalable data anal-
ysis on Clouds. Section 2.6 discusses some research trends and open challenges
on Big Data analysis. Finally, Section 2.7 concludes the chapter.
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2.1 Big Data definitions

Nowadays the term Big Data is often misused, but it is very important in
computer science for understanding business and human activities. Several
definitions for Big Data have been proposed in literature, but reaching a global
consensus about what it means is not easy.

Although not explicitly mentioning the term “Big Data”, the first defi-
nition was proposed by Doug Laney (an analyst of the META Group, now
Gartner) in a 2001 report, in which a three-dimensional model, also known
as the “3Vs” (Volume, Velocity, and Variety) model, is used to describe Big
Data. Many years after, this model continues to be one of the most used,
considering that much of the industry and the research (e.g., IBM [69] and
Microsoft researchers [104]) still adopt the Big Data definition provided by
Gartner [56]:“Big Data is high volume, high velocity, and/or high variety in-
formation assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and process automa-
tion”.

According to the above definition, Big Data is not only characterized by
the large size of datasets, but also by the variety (i.e., data from multiple
repositories, domains, or types), and by the velocity of data that can be col-
lected and processed. In fact, we can collect huge amounts of digital data from
several sources, at a very high rate that the volume of data is overwhelming
our ability to make use of it. This situation is commonly called “data deluge”.

Many other definitions have been proposed in literature that extended
the “3Vs” model by introducing other features, like “Value” [71][54], “Verac-
ity” [122], “Complexity” [4], etc.

About that, a 2011 report from IDC [54] provided a “4Vs” definition for
Big Data: “Big data technologies describe a new generation of technologies and
architectures, designed to economically extract value from very large volumes
of a wide variety of data, by enabling high-velocity capture, discovery, and/or
analysis”. This definition delineates a new feature of Big Data, i.e., value,
that refers to the capability to create lot of value for organizations, societies
and consumers from data analyses.

On the contrary, in 2012 Gartner [14] and IBM [68] extended the “3Vs”
model by introducing the Veracity as the fourth “V”. Veracity includes ques-
tions about quality, reliability, and uncertainty of captured data and the out-
come of analysis of that data.

Finally, the definition of Big Data provided by NIST [42] introduced a
new feature of Big Data, i.e., the variability: “Big Data consists of exten-
sive datasets – primarily in the characteristics of volume, variety, velocity,
and/or variability – that require a scalable architecture for efficient storage,
manipulation, and analysis”. Variability is defined as the changes in other
data characteristics that produce variance in data meaning, in lexicon, with
a potential huge impact on data homogenization.
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From the discussion above, it is clear that finding a common definition of
Big Data is very difficult. In this regard, a brief review on Big Data definitions
have been conducted by De Mauro, et al. [34] that aims to define a consensual
definition of Big Data.

2.2 Introduction to Big Data Analytics

Data Analytics plays a crucial role in today’s business by helping companies
to improve operational efficiency and gain competitive advantages over busi-
ness rivals. According to a very popular definition[94]: “Data Analytics is the
science of examining raw data with the purpose of drawing conclusions about
that information”.

Since 1950s, organizations were using basic data analytics techniques to
discover useful information about market trends or insights. In most cases,
such kind of analysis was essentially provided to manually examine numbers
in spreadsheets with the aim of extracting information that could be used for
future decisions. But today, to give organizations a competitive edge, data
analytics must identify insights for immediate decisions. Today, most organi-
zations collect all the data – often really huge amounts – that streams into
their businesses for extracting meaningful and valuable information for busi-
ness (e.g., for making better decisions or planning marketing strategies) and
science (e.g., verify or disprove models or theories) purposes.

Big Data Analytics refers to advanced data analytics techniques applied to
Big Data sets. These techniques include data mining, statistics, data visual-
ization, artificial intelligence, machine learning, natural language processing,
etc. The usage of Big Data Analytics produces several benefits, especially
in big companies, in terms of cost reduction for storing and querying large
amount of data, effectiveness of decision making, ability to provides services
that better meet customers’ needs. Some Big Data Analytics application fields
are discussed in the following:

• Text Analytics : it is the process of deriving information from text sources
(e.g., document, social networks, blogs, web sites) [55], which can be used
for sentiment analysis, content classification, text summarization, etc.

• Predictive analytics: it is the process of predicting future events or behav-
iors by exploiting models developed using a variety of statistical, machine
learning, data mining, and other analytical techniques [110].

• In-Memory analytics : it is the process that loads data to be analyzed
directly into systems random access memory (RAM), instead of storing
data on physical disks. In such way, in-memory analytics approach greatly
reduces queries and calculation times, allowing business intelligence appli-
cations to support faster business decisions [95].

• Graph analytics (or Network Analysis): it analyzes the behavior of vari-
ous connected components through the use of network and graph theories,
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which is useful for investigating structures in social networks [111]. Ex-
amples of graph analytics path, connectivity, community, and centrality
analysis.

• Prescriptive Analytics : it is a form of advanced analytics which examines
data or content to optimize decisions about what actions to take in order
to maximize profit, given a set of constraints and key objectives[119]. It
is characterized by techniques such as graph analysis, simulation, com-
plex event processing, neural networks, recommendation engines, heuris-
tics, and machine learning.

Despite the great benefits discussed above, dealing with big data is not
a bed of roses. In fact, the process of knowledge discovery from Big Data is
generally complex, mainly due to data characteristics, as size, complexity and
variety, that require to address several issues. Moreover, Big Data analytics is a
continuously growing field where so novel and efficient solutions (i.e., in terms
of platforms, programming tools, frameworks, and data mining algorithms)
spring up everyday to cope with the growing scope of interest in Big Data.
In this context, Cloud computing is a valid and cost-effective solution for
supporting Big Data storage and for executing sophisticated data analytics
applications.

2.3 Cloud computing

This section introduces the basic concepts of Cloud computing, which pro-
vides scalable storage and processing services that can be used for extracting
knowledge from Big Data repositories. In the following we provide basic Cloud
computing definitions (Section 2.3.1) and discuss the main service distribution
and deployment models provided by Cloud vendors (Section 2.3.2).

2.3.1 Basic concepts

In the last years, Clouds have emerged as effective computing platforms to face
the challenge of extracting knowledge from Big Data repositories in limited
time, as well as to provide effective and efficient data analysis environments
to both researchers and companies. From a client perspective, the Cloud is
an abstraction for remote, infinitely scalable provisioning of computation and
storage resources. From an implementation point of view, Cloud systems are
based on large sets of computing resources, located somewhere “in the Cloud”,
which are allocated to applications on demand [10]. Thus, Cloud computing
can be defined as a distributed computing paradigm in which all the resources,
dynamically scalable and often virtualized, are provided as services over the
Internet. As defined by NIST (National Institute of Standards and Technol-
ogy) [105] Cloud computing can be described as: “A model for enabling con-
venient, on-demand network access to a shared pool of configurable computing
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resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction”.

From the NIST definition, we can identify five essential characteristics of
Cloud computing systems, which are on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service. Cloud systems
can be classified on the basis of their service model and their deployment
model.

2.3.2 Cloud service distribution and deployment models

Cloud computing vendors provide their services according to three main dis-
tribution models:

• Software as a Service (SaaS), in which software and data are provided
through Internet to customers as ready-to-use services. Specifically, soft-
ware and associated data are hosted by providers, and customers access
them without need to use any additional hardware or software. Examples
of SaaS services are Gmail, Facebook, Twitter, Microsoft Office 365.

• Platform as a Service (PaaS), in an environment including databases, ap-
plication servers, development environment for building, testing and run-
ning custom applications. Developers can just focus on deploying of appli-
cations since Cloud providers are in charge of maintenance and optimiza-
tion of the environment and underlying infrastructure. Examples of PaaS
services areWindows Azure, Force.com, Google App Engine.

• Infrastructure as a Service (IaaS), that is an outsourcing model under
which customers rent resources like CPUs, disks, or more complex re-
sources like virtualized servers or operating systems to support their op-
erations (e.g., Amazon EC2, RackSpace Cloud). Compared to the PaaS
approach, the IaaS model has a higher system administration costs for the
user; on the other hand, IaaS allows a full customization of the execution
environment.

The most common models for providing Big Data analytics solution on
Clouds are PaaS and SaaS. IaaS is usually not used for high-level data ana-
lytics applications but mainly to handle the storage and computing needs of
data analysis processes. In fact, IaaS is the more expensive delivery model,
because it requires a greater investment of IT resources. On the contrary,
PaaS is widely used for Big Data analytics, because it provides data ana-
lysts with tools, programming suites, environments, and libraries ready to be
built, deployed and run on the Cloud platform. With the PaaS model users do
not need to care about configuring and scaling the infrastructure (e.g., a dis-
tributed and scalable Hadoop system), because the Cloud vendor will do that
for them. Finally, the SaaS model is used to offer complete Big Data analytics
applications to end users, so that they can execute analysis on large and/or
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complex datasets by exploiting Cloud scalability in storing and processing
data.

Regarding deployment models, Cloud computing services are delivered ac-
cording to three main forms:

• Public Cloud : it provides services to the general public through the In-
ternet and users have little or no control over the underlying technology
infrastructure. Vendors manage their proprietary data centers delivering
services built on top of them.

• Private Cloud : it provides services deployed over a company intranet or
in a private data center. Often, small and medium-sized IT companies
prefer this deployment model as it offers advance security and data control
solutions that are not available in the public Cloud model.

• Hybrid Cloud : it is the composition of two or more (private or public)
Clouds that remain different entities but are linked together.

As outlined in [85], users access Cloud computing services using different
client devices and interact with Cloud-based services using a Web browser
or desktop/mobile app. The business software and users data are executed
and stored on servers hosted in Cloud data centers that provide storage and
computing resources. Resources include thousands of servers and storage de-
vices connected each other through an intra-Cloud network. The transfer of
data between data center and users takes place on wide-area network. Sev-
eral technologies and standards are used by the different components of the
architecture. For example, users can interact with Cloud services through
SOAP-based or RESTful Web services [118] and Ajax technologies allow Web
interfaces to Cloud services to have look and interactivity equivalent to those
of desktop applications. Open Cloud Computing Interface (OCCI)1 specifies
how Cloud providers can deliver their compute, data, and network resources
through a standardized interface.

2.4 Cloud solutions for Big Data

At the beginning of the Big Data phenomenon, only big IT companies, such as
Facebook, Yahoo!, Twitter, Amazon, LinkedIn, invested large amounts of re-
sources in the development of proprietary or open source projects to cope with
Big Data analysis problems. But today, Big Data analysis becomes highly sig-
nificant and useful for small and medium-sized businesses. To address this in-
creasing demand a large vendor community started offering highly distributed
platforms for Big Data analysis. Among open-source projects, Apache Hadoop
is the leading open-source data-processing platform, which was contributed by
IT giants such as Facebook and Yahoo.

Since 2008, several companies, such as Cloudera, MapR, and Hortonworks,
started offering enterprise platform for Hadoop, with greats efforts to improve

1 OCCI Working Group, http://www.occi-wg.org



2.4 Cloud solutions for Big Data 13

Hadoop performances in terms of high-scalable storage and data processing.
Instead, IBM and Pivotal started offering its own customized Hadoop dis-
tribution. Other big companies decided to provide only additional softwares
and support for Hadoop platform developed by external providers: for ex-
ample, Microsoft decided to base its offer on Hortonworks platform, while
Oracle decided to resell Cloudera platform. However Hadoop is not the only
solution for Big Data analytics. Out of the Hadoop box other solutions are
emerging. In particular, in-memory analysis has become a widespread trend,
so that companies started offering tools and services for faster in-memory
analysis, such as SAP, that is considered the leading company with its Hana2

platform. Other vendors, including HP, Teradata and Actian, developed an-
alytical database tools with in-memory analysis capabilities. Moreover, some
vendors, like Microsoft, IBM, Oracle, and SAP, stand out from their peers for
offering a complete solution for data analysis, including DBMS systems, soft-
ware for data integration, stream-processing, business intelligence, in-memory
processing, and Hadoop platform.

In addition, many vendors decided to focus whole offer on the Cloud.
Among these certainly there are Amazon Web Services (AWS) and 1010data.
In particular, AWS provides a wide range of services and products on the
Cloud for Big Data analysis, including scalable database systems and solu-
tions for decision support. Other smaller vendors, including Actian, InfiniDB,
HP Vertica, Infobright, and Kognitio, focused their big-data offer on database
management systems for analytics only. Following the approach in [133], the
remainder of the section introduces representative examples of Cloud environ-
ments: Microsoft Azure as an example of public PaaS, Amazon Web Services
as the most popular public IaaS, OpenNebula and OpenStack as examples of
private IaaS. These environments can be used to implement applications and
frameworks for data analysis in the Cloud.

2.4.1 Microsoft Azure

Azure3 is the Microsoft Cloud proposal. It is environment providing a large set
of Cloud services that can be used by developers to create Cloud-oriented ap-
plications, or to enhance existing applications with Cloud-based capabilities.
The platform provides on-demand compute and storage resources exploiting
the computational and storage power of the Microsoft data centers. Azure is
designed for supporting high availability and dynamic scaling services that
match user needs with a pay-per-use pricing model. The Azure platform can
be used to perform the storage of large datasets, execute large volumes of
batch computations, and develop SaaS applications targeted towards end-
users. Microsoft Azure includes three basic components/services:

2 https://hana.sap.com
3 https://azure.microsoft.com
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• Compute is the computational environment to execute Cloud applications.
Each application is structured into roles: Web role, for Web-based appli-
cations; Worker role, for batch applications; Virtuam Machines role, for
virtual-machine images.

• Storage provides scalable storage to manage: binary and text data (Blobs),
non-relational tables (Tables), queues for asynchronous communication
between components (Queues). In addition, for relational databases, Mi-
crosoft provides its own scalable Cloud database services, called Azure
SQL Database.

• Fabric controller whose aim is to build a network of interconnected nodes
from the physical machines of a single data center. The Compute and
Storage services are built on top of this component.

Microsoft Azure provides standard interfaces that allow developers to in-
teract with its services. Moreover, developers can use IDEs like Microsoft
Visual Studio and Eclipse to easily design and publish Azure applications.

2.4.2 Amazon Web Services

Amazon offers compute and storage resources of its IT infrastructure to de-
velopers in the form of Web services. Amazon Web Services (AWS)4 is a large
set of Cloud services that can be composed by users to build their SaaS appli-
cations or integrate traditional software with Cloud capabilities. It is simple
to interact with these service since Amazon provides SDKs for the main pro-
gramming languages and platforms (e.g. Java, .Net, PHP, Android).

AWS compute solution includes Elastic Compute Cloud (EC2), for creating
and running virtual servers, and Amazon Elastic MapReduce for building and
executing MapReduce applications. The Amazon storage solution is based
on S3 Storage Service, with a range of storage classes designed to cope with
different use cases (i.e., Standard, Infrequent Access, and Glacier for long term
storage archive). A full set of database systems are also proposed: Relational
Database Service (RDS) for relational tables; DynamoDB for non-relational
tables; SimpleDB for managing small datasets; ElasticCache for caching data.
Even though Amazon is best known to be the first IaaS provider (based on its
EC2 and S3 services), it is now also a PaaS provider, with services like Elastic
Beanstalk, that allows users to quickly create, deploy, and manage applications
using a large set of AWS services, or Amazon Machine Learning, that provides
visualization tools and wizards for easily creating machine learning models.

2.4.3 OpenNebula

OpenNebula [125] is an open-source framework mainly used to build private
and hybrid Clouds. The main component of the OpenNebula architecture is

4 https://aws.amazon.com
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the Core, which creates and controls virtual machines by interconnecting them
with a virtual network environment. Moreover, the Core interacts with specific
storage, network and virtualization operations through pluggable components
called Drivers. In this way, OpenNebula is independent from the underlying
infrastructure and offers a uniform management environment. The Core also
supports the deployment of Services, which are a set of linked components
(e.g., Web server, database) executed on several virtual machines. Another
component is the Scheduler, which is responsible for allocating the virtual
machines on the physical servers. To this end, the Scheduler interacts with
the Core component through appropriate deployment commands.

OpenNebula can implement a hybrid Cloud using specific Cloud Drivers
that allow to interact with external Clouds. In this way, the local infrastruc-
ture can be supplemented with computing and storage resources from pub-
lic Clouds. Currently, OpenNebula includes drivers for using resources from
Amazon EC2 and Eucalyptus [109], another open source Cloud framework.

2.4.4 OpenStack

OpenStack5 is an open source Cloud operating system realesed under the
terms od the Apache License 2.0. It allows the management of large pools
of processing, storage, and networking resources in a datacenter through a
Web-based interface. Most decisions about its development are decided by
the community to the point that every six months there is a design sum-
mit to gather requirements and define new specifications for the upcoming
release. The modular architecture of OpenStack is composed by four main
components, as shown in Figure 2.1.

Fig. 2.1. OpenStack architecture (source: openstack.org).

OpenStack Compute provides virtual servers upon demand by managing
the pool of processing resources available in the datacenter. It supports dif-
ferent virtualization technologies (e.g., VMware, KVM) and is designed to

5 https://www.openstack.org/
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scale horizontally. OpenStack Storage provides a scalable and redundant stor-
age system. It supports Object Storage and Block Storage: the former allows
storing and retrieving objects and files in the datacenter. OpenStack Net-
working manages the networks and IP addresses. Finally, OpenStack Shared
Services are additional services provided to ease the use of the datacenter,
such as Identity Service for mapping users and services, Image Service for
managing server images, and Database Service for relational databases.

2.5 Systems for Big Data Analytics in the Cloud

In this section we describe the most used tools for developing scalable data
analysis on Clouds, such as MapReduce, Spark, workflow systems, and NoSQL
database management systems. In particular, we discuss some frameworks
commonly used to develop scalable applications that analyze big amounts of
data, such as Apache Hadoop, the best-known MapReduce implementation,
and Spark. We present also some powerful data mining programming tools
and strategies designed to be executed in the Cloud for exploiting complex
and flexible software models, such as the distributed workflows. Workflows
provide a declarative way of specifying the high-level logic of an application,
hiding the low-level details. They are also able to integrate existing software
modules, datasets, and services in complex compositions that implement dis-
covery processes. In this section we presented several data mining workflow
systems, such as the Data Mining Cloud Framework, Microsoft Azure Machine
Learning, and ClowdFlows. Moreover, we discuss about NoSQL database tech-
nology that recently became popular as an alternative or as a complement to
relational databases. In the last years, several NoSQL systems have been pro-
posed for providing more scalability and higher performance than relational
databases. We introduce the basic principles of NoSQL, described represen-
tative NoSQL systems, and outline interesting data analytics use cases where
NoSQL tools are useful. Finally, we present a brief overview of well known
visual analytics tools, that help users in analytical reasoning by interactive
visual interfaces.

2.5.1 MapReduce

MapReduce is a programming model developed by Google [35] in 2004 for
large-scale data processing to cope efficiently with the challenge of processing
enormous amounts of data generated by Internet-based applications.

Since its introduction, MapReduce has proven to be applicable to a wide
range of domains, including machine learning and data mining, social data
analysis, financial analysis, scientific simulation, image retrieval and process-
ing, blog crawling, machine translation, language modelling, and bioinformat-
ics. Today, MapReduce is widely recognized as one of the most important
programming models for Cloud computing environments, being it supported
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by Google and other leading Cloud providers such as Amazon, with its Elastic
MapReduce service6, and Microsoft, with its HDInsight7, or on top of private
Cloud infrastructures such as OpenStack, with its Sahara service8.

Hadoop9 is the most used open source MapReduce implementation for
developing parallel applications that analyze big amounts of data. It can be
adopted for developing distributed and parallel applications using many pro-
gramming languages (e.g., Java, Ruby, Python, C++). Hadoop relieves devel-
opers from having to deal with classical distributed computing issues, such as
load balancing, fault tolerance, data locality, and network bandwidth saving.

The Hadoop project is not only about the MapReduce programming model
(Hadoop MapReduce module), as it includes other modules such as:

• Hadoop Distributed File System (HDFS): a distributed file system provid-
ing fault tolerance with automatic recovery, portability across heteroge-
neous commodity hardware and operating systems, high-throughput ac-
cess and data reliability.

• Hadoop YARN : a framework for cluster resource management and job
scheduling.

• Hadoop Common: common utilities that support the other Hadoop mod-
ules.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns
from a batch processing solution into a platform for running a large variety
of data applications, such as streaming, in-memory, and graphs analysis. As
a result, Hadoop became a reference for several other frameworks, such as:
Giraph for graph analysis; Storm for streaming data analysis; Hive, which
is a data warehouse software for querying and managing large datasets; Pig,
which is as a dataflow language for exploring large datasets; Tez for exe-
cuting complex directed-acyclic graph of data processing tasks; Oozie, which
is a workflow scheduler system for managing Hadoop jobs. Besides Hadoop
and its ecosystem, several other MapReduce implementations have been im-
plemented within other systems, including GridGain, Skynet, MapSharp and
Twister [45]. One of the most popular alternative to Hadoop is Disco, which
is a lightweight, open-source framework for distributed computing. The Disco
core is written in Erlang, a functional language designed for building fault-
tolerant distributed applications. Disco has been used for a variety of purposes,
such as log analysis, text indexing, probabilistic modeling and data mining.

6 http://aws.amazon.com/elasticmapreduce/
7 http://azure.microsoft.com/services/hdinsight/
8 http://wiki.openstack.org/wiki/Sahara
9 http://hadoop.apache.org/
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2.5.2 Spark

Apache Spark10 is another Apache framework for Big Data processing. Differ-
ently from Hadoop in which intermediate data are always stored in distributed
file systems, Spark stores data in RAM memory and queries it repeatedly so
as to obtain better performance for some class of applications (e.g., iterative
machine learning algorithms) [148]. For many years, Hadoop has been con-
sidered the leading open source Big Data framework, but recently Spark has
become the more popular so that it is supported by every major Hadoop ven-
dors. In fact, for particular tasks, Spark is up to 100 times faster than Hadoop
in memory and 10 times faster on disk. Several other libraries have been built
on top of Spark: Spark SQL for dealing with SQL and DataFrames, MLlib for
machine learning, GraphX for graphs and graph-parallel computation, and
Spark Streaming to build scalable fault-tolerant streaming applications.

For these reasons, Spark is becoming the primary execution engine for
data processing and, in general, a must-have for Big Data applications. But
even though in some applications Spark can be considered a better alterna-
tive to Hadoop, in many other applications it has limitations that make it
complementary to Hadoop. The main limitation of Spark is that it does not
provide its own distributed and scalable storage system, that is a fundamental
requirement for Big Data applications that use huge and continually increas-
ing volume of data stored across a very large number of nodes. To overcome
this lack, Spark has been designed to run on top of several data sources, such
as Cloud object storage (e.g., Amazon S3 Storage, Swift Object Storage),
distributed filesystem (e.g., HDFS), no-SQL databases (e.g., HBase, Apache
Cassandra), and others. Today an increasing number of big vendors, such Mi-
crosoft Azure or Cloudera, offer Spark as well as Hadoop, so developers can
choose the most suitable framework for each data analytics application.

With respect to Hadoop, Spark loads data from data sources and executes
most of its tasks in RAM memory. In this way, Spark reduces significantly
the time spent in writing and reading from hard drives, so that the execu-
tion is far faster than Hadoop. Regarding task recovering in case of failures,
Hadoop flushes all of the data back to the storage after each operation. Simi-
larly, Spark allow recovering in case of failures by arranging data in Resilient
Distributed Datasets (RDD), which are a immutable and fault-tolerant collec-
tions of records which can be stored in the volatile memory or in a persistent
storage (e.g., HDFS, HBase). Moreover, Spark’s real-time processing capa-
bility is increasingly being used by Big Data analysts into applications that
requires to extract insights quickly from data, such as recommendation and
monitoring systems.

Several big companies and organizations use Spark for Big Data analysis
purpose: for example, Ebay uses Spark for log transaction aggregation and
analytics, Kelkoo for product recommendations, SK Telecom analyses mobile
usage patterns of customers.

10 http://spark.apache.org
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2.5.3 Mahout

Apache Mahout11 is an open-source framework that provides scalable imple-
mentations of machine learning algorithms that are applicable on big input.
Originally, the Mahout project provided implementations of machine learning
algorithms executable on the top of Apache Hadoop framework. But the com-
parison of the performance of Mahout algorithms on Hadoop with other ma-
chine learning libraries, showed that Hadoop spends the majority of the pro-
cessing time to load the state from file system at every intermediate step [123].

For these reasons, the latest version of Mahout goes beyond Hadoop and
provides several machine learning algorithms for collaborative filtering, clas-
sification, and clustering, implemented not only in Hadoop MapReduce, but
also in Spark, H2O12. Both Apache Spark and H2O process data in mem-
ory so they can achieve a significant performance gain when compared to
Hadoop framework for specific classes of applications (e.g., interactive jobs,
real-time queries, and stream data) [123]. In addition, the latest release of
Mahout introduces a new math environment, called Samsara [89], that helps
users in creating their own math providing general linear algebra and statisti-
cal operations. In the following, some examples for each algorithm’s category
are listed: analyzing user history and preferences to suggest accurate recom-
mendations (collaborative filtering), selecting whether a new input matches a
previously observed pattern or not (classification), and grouping large number
of things together into clusters that share some similarity (clustering) [112]. In
the future, Mahout will support Apache Flink13, an open source platform that
provides data distribution, communication, and fault tolerance for distributed
computations over data streams.

2.5.4 Hunk

Hunk14 is a commercial data analysis platform developed by Splunk for rapidly
exploring, analyzing and visualizing data in Hadoop and NoSQL data stores.
Hunk uses a set of high-level user and programming interfaces to offer speed
and simplicity of getting insights from large unstructured and structured
datasets. One of the key components of the Hunk architecture is the Splunk
Virtual Index. This system decouples the storage tier from the data access and
analytics tiers, so enabling Hunk to route requests to different data stores.
The analytics tier is based on Splunks Search Processing Language (SPL) de-
signed for data exploration across large, different datasets. The Hunk web
framework allows building applications on top of the Hadoop Distributed File
System (HDFS) and/or the NoSQL data store.

11 http://mahout.apache.org/
12 http://www.h2o.ai
13 https://flink.apache.org/
14 http://www.splunk.com/en us/products/hunk.html
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Developers can use Hunk to build their Big Data applications on top
of data in Hadoop using a set of well known languages and frameworks.
Indeed, the framework enables developers to integrate data and function-
ality from Hunk into enterprise Big Data applications using a web frame-
work, documented REST API and software development kits for CSharp,Java,
JavaScript, PHP and Ruby. Also common development languages such as
HTML5 and Python can be used by developers.

The Hunk framework can be deployed on on-premises Hadoop clusters or
private Clouds and it is available as a preconfigured instance on the Amazon
public Cloud using the Amazon Web Services (AWS). This public Cloud so-
lution allows Hunk users to utilize the Hunk facilities and tools from AWS,
also exploiting commodity storage on Amazon S3, according to a pay-per-use
model. Finally, the framework implements and makes available a set of ap-
plications that enable the Hunk analytics platform to explore, explore and
visualize data in NoSQL and other data stores, including Apache Accumulo,
Apache Cassandra, MongoDB and Neo4j. Hunk is also provided in combina-
tion with the Cloudera’s enterprise data hub to develop large-scale applica-
tions that can access and analyze Big Data sets.

2.5.5 Sector/Sphere

Sector/Sphere15 is a Cloud framework designed at the University of Illinois-
Chicago to implement data analysis applications involving large, geograph-
ically distributed datasets in which the data can be naturally processed in
parallel [63]. The framework includes two components: a storage service called
Sector, which manages the large distributed datasets with high reliability, high
performance IO, and a uniform access, and a compute service called Sphere,
which makes use of the Sector service to simplify data access, increase data IO
bandwidth, and exploit wide area high performance networks. Both of them
are available as open source software16. Sector is a distributed storage system
that can be deployed over a wide area network and allows users to ingest and
download large datasets from any location with a high-speed network con-
nection to the system. The system can be deployed over a large number of
commodity computers (called nodes), located either within a data center or
across data centers, which are connected by high-speed networks.

In an example scenario, nodes in the same rack are connected by 1 Gbps
networks, two racks in the same data center are connected by 10 Gbps net-
works, and two different data centers are connected by 10 Gbps networks.
Sector assumes that the datasets it stores are divided into one or more sepa-
rate files, called slices, which are replicated and distributed over the various
nodes managed by Sector.

The Sector architecture includes a Security server, a Master server and
a number of Slave nodes. The Security server maintains user accounts, file

15 http://sector.sourceforge.net/
16 http://sector.sourceforge.net
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access information, and the list of authorized slave nodes. The Master server
maintains the metadata of the files stored in the system, controls the running
of the slave nodes, and responds to users’ requests. The Slaves nodes store
the files managed by the system and process the data upon the request of a
Sector client. Sphere is a compute service built on top of Sector and provides a
set of programming interfaces to write distributed data analysis applications.
Sphere takes streams as inputs and produces streams as outputs. A stream
consists of multiple data segments that are processed by Sphere Processing
Engines (SPEs) using slave nodes. Usually there are many more segments than
SPEs. Each SPE takes a segment from a stream as an input and produces a
segment of a stream as output. These output segments can in turn be the
input segments of another Sphere process. Developers can use the Sphere
client APIs to initialize input streams, upload processing function libraries,
start Sphere processes, and read the processing results.

2.5.6 BigML

BigML17 is a system provided as a Software-as-a-Service (SaaS) for discovering
predictive models from data and it uses data classification and regression
algorithms. The distinctive feature of BigML is that predictive models are
presented to users as interactive decision trees. The decision trees can be
dynamically visualized and explored within the BigML interface, downloaded
for local usage and/or integration with applications, services, and other data
analysis tools. Recently, BigML launched its PaaS solution, called BigML
PredictServer, which is a dedicated machine image that can be deployed on
Amazon AWS. An example of BigML prediction model is shown in Figure 2.2.

Extracting and using predictive models in BigML consists in multiple
steps, as detailed as follows:

• Data source setting and dataset creation. A data source is the raw data
from which a user wants to extract a predictive model. Each data source
instance is described by a set of columns, each one representing an in-
stance feature, or field. One of the fields is considered as the feature to be
predicted. A dataset is created as a structured version of a data source in
which each field has been processed and serialized according to its type
(numeric, categorical, etc.).

• Model extraction and visualization. Given a dataset, the system generates
the number of predictive models specified by the user, who can also choose
the level of parallelism level for the task. The interface provides a visual
tree representation of each predictive model, allowing users to adjust the
support and confidence values and to observe in real time how these values
influence the model.

• Prediction making. A model can be used individually, or in a group (the
so-called ensemble, composed of multiple models extracted from different

17 https://bigml.com
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Fig. 2.2. Example of BigML prediction model for air pollution (source: bigml.com).

parts of a dataset), to make predictions on new data. The system provides
interactive forms to submit a predictive query for a new data using the
input fields from a model or ensemble. The system provides APIs to auto-
mate the generation of predictions, which is particularly useful when the
number of input fields is high.

• Models evaluation. BigML provides functionalities to evaluate the good-
ness of the predictive models extracted. This is done by generating per-
formance measures that can be applied to the kind of extracted model
(classification or regression).

2.5.7 Kognitio Analytical Platform

Kognitio Analytical Platform18, available as Cloud based service or supplied
as a pre-integrated appliance, allows users to pull very large amounts of data
from existing data storage systems into high-speed computer memory, allow-
ing complex analytical questions to be answered interactively. Although Kog-
nitio has its own internal disk subsystem, it is primarily used as an analytical

18 www.kognitio.com



2.5 Systems for Big Data Analytics in the Cloud 23

layer on top of existing storage/data processing systems, e.g., Hadoop clus-
ters and/or existing traditional disk-based data warehouse products, Cloud
storage, etc. A feature called External Tables allows persistent data to re-
side on external systems. Using this feature the system administrator, or a
privileged user, can easily setup access to data that resides in another envi-
ronment, typically a disk store such as the above-mentioned Hadoop clusters
and data warehouse systems. To a final user, the Kognitio Analytical Plat-
form looks like a relational database management system (RDBMS) similar to
many commercial databases. However, unlike these databases, Kognitio has
been designed specifically to handle analytical query workload, as opposed
to the more traditional on-line transaction processing (OLTP) workload. Key
reasons of Kognitios high performance in managing analytical query workload
are:

• Data is held in high-speed RAM using structures optimized for in-memory
analysis, which is different from a simple copy of disk-based data, like a
traditional cache.

• Massively Parallel Processing (MPP) allows scaling out across large arrays
of low-cost industry standard servers, up to thousands nodes.

• Query parallelization allows every processor core on every server to be
equally involved in every query.

• Machine code generation and advanced query plan optimization techniques
ensure every processor cycle is effectively used to its maximum capacity.

Parallelism in Kognitio Analytical Platform fully exploits the so-called shared
nothing distributed computing approach, in which none of the nodes share
memory or disk storage, and there is no single point of contention across the
system.

2.5.8 Data Analysis Workflows

A workflow consists of a series of activities, events or tasks that must be
performed to accomplish a goal and/or obtain a result. For example, a data
analysis workflow can be designed as a sequence of pre-processing, analysis,
post-processing, and interpretation steps. At a practical level, a workflow can
be implemented as a computer program and can be expressed in a program-
ming language or paradigm that allows expressing the basic workflow steps
and includes mechanisms to orchestrate them.

Workflows have emerged as an effective paradigm to address the com-
plexity of scientific and business applications. The wide availability of high-
performance computing systems, Grids and Clouds, allowed scientists and
engineers to implement more and more complex applications to access and
process large data repositories and run scientific experiments in silico on
distributed computing platforms. Most of these applications are designed as
workflows that include data analysis, scientific computation methods and com-
plex simulation techniques. The design and execution of many scientific appli-
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cations require tools and high-level mechanisms. Simple and complex work-
flows are often used to reach this goal. For this reason, in the past years, many
efforts have been devoted towards the development of distributed workflow
management systems for scientific applications. Workflows provide a declar-
ative way of specifying the high-level logic of an application, hiding the low-
level details that are not fundamental for application design. They are also
able to integrate existing software modules, datasets, and services in complex
compositions that implement scientific discovery processes.

Another important benefit of workflows is that, once defined, they can be
stored and retrieved for modifications and/or re-execution: this allows users
to define typical patterns and reuse them in different scenarios [17]. The def-
inition, creation, and execution of workflows are supported by a so-called
Workflow Management System (WMS). A key function of a WMS during the
workflow execution (or enactment) is coordinating the operations of the in-
dividual activities that constitute the workflow. There are several WMSes on
the market, most of them targeted to a specific application domain. In the fol-
lowing we focus on some well-known software tools and frameworks designed
implementing data analysis workflows on Clouds systems.

Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [96] is a software system that
we developd at University of Calabria for allowing users to design and execute
data analysis workflows on Clouds. DMCF supports a large variety of data
analysis processes, including single-task applications, parameter sweeping ap-
plications, and workflow-based applications [97].

A workflow in DMCF can be developed using a visual- or a script-based
language. The visual language, called VL4Cloud, is based on a design approach
for high-level users, e.g., domain expert analysts having a limited knowledge
of programming paradigms. The script-based language JS4Cloud is provided
as a flexible programming paradigm for skilled users who prefer to code their
workflows through scripts. Both languages implement a data-driven task par-
allelism that spawns ready-to-run tasks to Cloud resources. DMCF provides
users with a Web-based interface for composing applications and submitting
them for execution to a Cloud platform, according to a Software-as-a-Service
approach.

Recently, DMCF has been extended to include the execution of MapRe-
duce tasks [12]. Several details about DMCF and its extension for supporting
MapReduce tasks have been discussed in Chapter 3.

Microsoft Azure Machine Learning

Microsoft Azure Machine Learning (Azure ML) is a SaaS that provides a
Web-based machine learning IDE (i.e., integrated development environment)
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for creation and automation of machine learning workflows. Through its user-
friendly interface, data scientists and developers can perform several common
data analysis/mining tasks on their data and automate their workflows. Using
its drag-and-drop interface, users can import their data in the environment
or use special readers to retrieve data form several sources, such as Web URL
(HTTP), OData Web service, Azure Blob Storage, Azure SQL Database,
Azure Table. After that, users can compose their data analysis workflows
where each data processing task is represented as a block that can be con-
nected with each other through direct edges, establishing specific dependency
relationships among them. Azure ML includes a rich catalog of processing
tools that can be easily included in a workflow to prepare/transform data or
to mine data through supervised learning (regression e classification) or unsu-
pervised learning (clustering) algorithms. Optionally, users can include their
own custom scripts (e.g., in R or Python) to extend the tools catalog. When
workflows are correctly defined, users can evaluate them using some testing
dataset. An example of workflow built on Microsoft Azure Machine Learning
is shown in Figure 2.3.

Fig. 2.3. Example of Azure Machine Learning workflow (source: stu-
dio.azureml.net).

Users can easily visualize the results of the tests and find very useful
information about models accuracy, precision and recall. Finally, in order to
use their models to predict new data or perform real time predictions, users
can expose them as Web services. Always through a Web-based interface, users
can monitor the Web services load and use by time. Azure Machine Learning is
a fully managed service provided by Microsoft on its Cloud platform; users do
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not need to buy any hardware/software nor manage virtual machine manually.
One of the main advantage of working with a Cloud platform like Azure is its
auto-scaling feature: models are deployed as elastic Web services so as users
do not have to worry about scaling them if the models usage increased.

ClowdFlows

ClowdFlows [80] is an open source Cloud-based platform for the composition,
execution, and sharing of data analysis workflows. It is provided as a software
as a service that allows users to design and execute visual workflows through a
simple Web browser and so it can be run from most devices (e.g., desktop PCs,
laptops, and tablets). ClowdFlows is based on two software components: the
workflow editor (provided by a Web browser) and the server side application
that manages the execution of the application workflows and hosts a set of
stored workflows. The server side consists of methods for supporting the client-
side workflow editor in the composition and for executing workflows, and a
relational database of workflows and data. The workflow editor includes of a
workflow canvas and a widget repository. The widget repository is a list of
all available workflow components that can be added to the workflow canvas.
The repository includes a set of default widgets. Figure 2.4 shows an example
of workflow built on CloudFlow.

Fig. 2.4. Example of CloudFlow workflow (source: clowdflows.org).

According to this approach, the CloudFlows service-oriented architecture
allows users to include in their workflow the implementations of various algo-
rithms, tools and Web services as workflow elements. For example, the Weka’s
algorithms have been included and exposed as Web services and so they can
be added in a workflow application. ClowdFlows is also easily extensible by
importing third-party Web services that wrap open-source or custom data
mining algorithms. To this end, a user has only to insert the WSDL URL of a
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Web service to create a new workflow element that represents the Web service
in a workflow application.

Pegasus

Pegasus [37] is a workflow management system developed at the University
of Southern California for supporting the implementation of scientific appli-
cations also in the area of data analysis. Pegasus includes a set of software
modules to execute workflow-based applications in a number of different en-
vironments, including desktops, Clouds, clusters and grids. It has been used
in several scientific areas including bioinformatics, astronomy, earthquake sci-
ence, gravitational wave physics, and ocean science. The Pegasus workflow
management system can manage the execution of an application expressed as
a visual workflow by mapping it onto available resources and executing the
workflow tasks in the order of their dependencies. In particular, significant
activities have been recently performed on Pegasus to support the system im-
plementation on Cloud platforms and manage computational workflows in the
Cloud for developing data-intensive scientific applications (Juve et al., 2010)
(Nagavaram et al, 2011). The Pegasus system has been used with IaaS Clouds
for workflow applications and the most recent versions of Pegasus can be used
to map and execute workflows on commercial and academic IaaS Clouds such
as Amazon EC2, Nimbus, OpenNebula and Eucalyptus (Deelman et al., 2015).
The Pegasus system includes four main components:

• the Mapper, which builds an executable workflow based on an abstract
workflow provided by a user or generated by the workflow composition
system. To this end, this component finds the appropriate software, data,
and computational resources required for workflow execution. The Map-
per can also restructure the workflow in order to optimize performance,
and add transformations for data management or to generate provenance
information.

• the Execution Engine (DAGMan), which executes in appropriate order the
tasks defined in the workflow. This component relies on the compute, stor-
age and network resources defined in the executable workflow to perform
the necessary activities. It includes a local component and some remote
ones.

• the Task Manager, which is in charge of managing single workflow tasks
by supervising their execution on local and/or remote resources.

• The Monitoring Component, which monitors the workflow execution, ana-
lyzes the workflow and job logs and stores them into a workflow database
used to collect runtime provenance information. This component sends no-
tifications back to users notifying them of events like failures, success and
completion of workflows and jobs.

The Pegasus software architecture includes also an error recovery system
that attempts to recover from failures by retrying tasks or an entire workflow,
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re-mapping portions of the workflow, providing workflow-level checkpointing,
and using alternative data sources, when possible. The Pegasus system records
provenance information including the locations of data used and produced,
and which software was used with which parameters. This feature is useful
when a workflow must be reproduced.

Swift

Swift [144] is a implicitly parallel scripting language that runs workflows across
several distributed systems, like clusters, Clouds, grids, and supercomputers.
The Swift language has been designed at the University of Chicago and at the
Argonne National Lab to provide users with a workflow-based language for
grid computing. Recently has been ported on Clouds and exascale systems.
Swift separates the application workflow logic from runtime configuration.
This approach allows a flexible development model.

As the DMCF programming interface, the Swift language allows invocation
and running of external application code and allows binding with application
execution environments without extra coding from the user. Swift/K is the
previous version of the Swift language that runs on the Karajan grid workflow
engine across wide area resources. Swift/T is a new implementation of the
Swift language for high-performance computing. In this implementation, a
Swift program is translated into an MPI program that uses the Turbine and
ADLB runtime libraries for scalable dataflow processing over MPI. The Swift-
Turbine Compiler (STC) is an optimizing compiler for Swift/T and the Swift
Turbine runtime is a distributed engine that maps the load of Swift workflow
tasks across multiple computing nodes. Users can also use Galaxy [59] to
provide a visual interface for Swift.

The Swift language provides a functional programming paradigm where
workflows are designed as a set of code invocations with their associated
command-line arguments and input and output files. Swift is based on a C-
like syntax and uses an implicit data-driven task parallelism [146]. In fact,
it looks like a sequential language, but being a dataflow language, all vari-
ables are futures, thus execution is based on data availability. When input
data is ready, functions are executed in parallel. Moreover, parallelism can be
exploited through the use of the foreach statement. The Turbine runtime com-
prises a set of services that implement the parallel execution of Swift scripts
exploiting the maximal concurrency permitted by data dependencies within a
script and by external resource availability. Swift has been used for develop-
ing several scientific data analysis applications, such as prediction of protein
structures, modeling the molecular structure of new materials, and decision
making in climate and energy policy.

2.5.9 NoSQL Models for Data Analytics

With the exponential growth of data to be stored in distributed network
scenarios, relational databases exhibit scalability limitations that significantly
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reduce the efficiency of querying and analysis [1]. In fact, most relational
databases have little ability to scale horizontally over many servers, which
makes challenging storing and managing the huge amounts of data produced
everyday by many applications.

The NoSQL or non-relational database approach became popular in the
last years as an alternative or as a complement to relational databases, in
order to ensure horizontal scalability of simple read/write database opera-
tions distributed over many servers [24]. Compared to relational databases,
NoSQL databases are generally more flexible and scalable, as they are capa-
ble of taking advantage of new nodes transparently, without requiring manual
distribution of information or additional database management [128]. Since
database management may be a challenging task with huge amounts of data,
NoSQL databases are designed to ensure automatic data distribution and fault
tolerance [53]. In the remainder of this section, we describe some representa-
tive NoSQL systems, and discuss some use cases for NoSQL databases, with
a focus on data analytics.

NoSQL databases provide ways to store scalar values (e.g., numbers,
strings), binary objects (e.g., images, videos), or more complex values. Ac-
cording to their data model, NoSQL databases can be grouped into three
main categories [24]: Key-value stores, Document stores, Extensible Record
stores.

Key-value stores provide mechanisms to store data as (key, value) pairs
over multiple servers. In such kind of databases a distributed hash table (DHT)
can be used to implement a scalable indexing structure, where data retrieval
is performed by using key to find value [24].

Document stores are designed to manage data stored in documents that
use different formats (e.g., JSON), where each document is assigned a unique
key that is used to identify and retrieve the document. Therefore, document
stores extend key-value stores because they provide for storing, retrieving, and
managing semi-structured information, rather than single values. Unlike the
key-value stores, document stores generally support secondary indexes and
multiple types of documents per database, and provide mechanisms to query
collections based on multiple attribute value constraints [24].

Finally, Extensible Record stores (also known as Column-oriented data
stores) provide mechanisms to store extensible records that can be partitioned
across multiple servers. In this type of database, records are said to be exten-
sible because new attributes can be added on a per-record basis. Extensible
record stores provide both horizontal partitioning (storing records on different
nodes) and vertical partitioning (storing parts of a single record on different
servers). In some systems, columns of a table can be distributed over multi-
ple servers by using column groups, where pre-defined groups indicate which
columns are best stored together.

A brief comparison of noSQL databases is shown in Table 2.1. For a more
detailed comparison see also [66][86][107].
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DynamoDB Cassandra Hbase Redis CouchDB BigTable MongoDB Neo4j

Type KV Col Col KV Doc Col Doc Graph

Data
Storage

MEM
FS

HDFS
CFS

HDFS
MEM
FS

MEM
FS

GFS
MEM
FS

MEM
FS

MapReduce yes yes yes no yes yes yes no

Persistence yes yes yes yes19 yes yes yes yes

Replication yes yes yes yes yes yes yes yes

Scalability high high high high high high high high

Performance high high high high high high high
high,

variable
High
availability

yes yes yes yes yes yes yes yes

Language Java Java Java Ansi-C Erlang

Java
Python
Go

Ruby

C++ Java

License Prop. Apache2 Apache2 BSD Apache2 Prop. AGPL3 GPL3

Legend: FS=File System; MEM=In-Memory; KV=Key-Value; Doc=Document; Col=Column;

Table 2.1. Comparison of some NoSQL databases.

Google Bigtable

Google Bigtable20 is a popular table store. Built above the Google File System,
it is able to store up to petabytes of data and supporting tables with billions
of rows and thousands of columns. Thanks to its high read and write through-
put at low latency, Bigtable it is an ideal data source for batch MapReduce
operations [27] and other applications oriented to the processing and analysis
of large volumes of data.

Data in Bigtable are stored in sparse, distributed, persistent, multi-
dimensional tables composed of rows and columns. Each row is indexed by a
single row key, and a set of columns that are grouped together into sets called
column families. Instead, a generic column is identified by a column family
and a column qualifier, which is a unique name within the column family. Each
value in the table is indexed by a tuple (row key, column key, timestamp).
To improve scalability and to balance the query workload, data are ordered
by row key and the row range for a table is dynamically partitioned into con-
tiguous blocks, called tablets. These tablets are distributed among different
Bigtable cluster’s nodes (i.e., Tablet Servers). To improve load balancing, the
Bigtable master is able to split larger and merge smaller tablets, redistributing

19 With limits due to the fact that last queries can be lost as explained in
http://redis.io/topics/persistence

20 https://cloud.google.com/bigtable/
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them across nodes as needed. To ensure data durability, Bigtable stores data
on Google File System (GFS) and protects it from disaster events through
data replication and backup. Bigtable can be used into applications through
multiple clients, including Cloud Bigtable HBase, a customized version of the
standard client for the industry-standard Apache HBase.

Apache Cassandra

Apache Cassandra21 is a distributed database management system providing
high availability with no single point of failure. Born at Facebook and inspired
by Amazon Dynamo and Google BigTable, Apache Cassandra is designed
for managing large amount of data across multiple data centers and Cloud
availability zones.

Cassandra uses a masterless ring architecture, where all nodes play an
identical role, that allows any authorized user to connect to any node in any
data center. This is a really simple and flexible architecture that allows to add
nodes without service downtime. The process of data distribution across nodes
is very simple and no programmatic operations are needed by the developers.

Since all nodes communicate each other equally, Cassandra has no single
point of failure, that ensures continuous data availability and service uptime.
Moreover, Cassandra provides very customizable data replication service that
allows to replicate data across nodes that participate in a ring. In this manner,
in case of node failure, one or more copies of the needed data are available on
other nodes.

Cassandra also provides built-in and customizable replication, which stores
redundant copies of data across nodes that participate in a Cassandra ring.
This means that if a node in a cluster goes down, one or more copies of data
stored on that node is available on other machines in the cluster. Replication
can be configured to work across one data center, many data centers, and
multiple Cloud availability zones. Focusing on performance and scalability,
Cassandra reaches a quite linear speedup, that means the OPS (Operations
Per Second) capacity can be increased by adding new nodes (e.g., if 2 nodes
can handle 10,000 OPS, 4 nodes will support 20,000 OPS, and so on).

Many companies have successfully deployed and benefited from Apache
Cassandra including some large companies such as: Apple (75,000 nodes stor-
ing over 10 PB of data), Chinese search engine Easou (270 nodes, 300 TB,
over 800 million reqests per day), and eBay (over 100 nodes, 250 TB), Netflix
(2,500 nodes, 420 TB, over 1 trillion requests per day), Instagram, Spotify,
eBay, Rackspace, and many more.

Neo4j Graph Database

If we need to take into account real time data relationships (e.g. create queries
using data relationships), NoSQL databases are not the best choice. In fact,

21 http://cassandra.apache.org/
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relationship-based or graph databases has been created for naturally support-
ing operations on data that use data relationships. Graph databases provide
a novel and powerful data modeling technique that does not store data in ta-
bles, but in graph models [120], with several benefits in storing and retrieving
data connected by complex relationships.

There are several graph data models, such as Neo4j, OrientDB, Virtuoso,
Allegro, Stardog, InfiniteGraph. Among all we focus on Neo4j. Neo4j is an
open-source NoSQL graph database implemented in Java and Scala that is
considered the most popular graph database used today. The Neo4j source
code and issue tracking are available on GitHub, with a large support com-
munity. It is used today by a very large number of organizations working
in different sectors, including software analytics, scientific research, project
management, recommendations, and social networks.

In the Neo4j graph model, each node contains a list of relationship records
that refer to other nodes, and additional attributes (e.g. timestamp, meta-
data, key-value pairs, and more). Each relationship record must have a name,
a direction, a start node and an end node, and can contains additional prop-
erties. One o more labels can be assigned both to nodes and relationships. In
particular, such labels can be used for representing the roles a node plays in
the graph (e.g., user, address, company, and so on) or for associating indexes
and constraints to groups of nodes. Figure 2.5 shows an example of a graph
model used for detecting bank fraud.

Fig. 2.5. Example of Bank Fraud Graph Dataset (source: neo4j.com).

Moreover, Neo4j clusters are designed for high availability and horizontal
read scaling using master-slave replication. Focusing on performance, Neo4j
is thousands of times faster than SQL in executing traversal operation. The
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traversal operation consists of visiting a set of nodes in the graph by moving
along relationships (e.g., find potential friends in social network from user
friendship). With such kind of operations, graph models allow to take into
account only the data that is required, without d oing expensive grouping
operations as done by relational database during join operations [139]. Queries
in Neo4j are written using Cypher, a declarative and SQL-based language for
describing patterns in graphs. Cypher is a relative simple but very powerful
language, that allows to execute queries in a easy way on a very complex
graph database.

2.5.10 Visual Analytics

A primary problem in data analysis is to interpret results easily. To overcome
this problem, in the last years, great progress has been made in the field of vi-
sual analytics. As defined by [135], visual analytics is the science of analytical
reasoning facilitated by interactive visual interfaces. Nowadays, people use vi-
sual analytics tools and methodologies to extract synthetic information from
often confusing data and use them in further analysis or business operations.
The power of visual analytics techniques relies on human brain capabilities
to process graphics faster than text. In particular, through a graphical data
presentation, the human brain could be able to find complex and often hidden
patterns and relationships in data that are difficult to discover using automatic
methods. Also in the Big Data context, the tools used to visualize results and
to interact with data play a key role. Thus, in order to support data presen-
tation and interaction also in presence of Big Data, innovative methodologies
(e.g, interactive charts, animations, diagrams, and much more) have been de-
veloped.

In particular, to ride the wave of visual analytics technologies, several
big IT company, such as Microsoft, Google, and SAS, developed advanced
data presentation and data visualization tools able to interact with existent
Big Data platforms, including Hadoop-based ones. For example, Microsoft
extended Excel functions to allow integration with its Big Data solution. In
particular, Excel’s users can be connected to Azure Storage associated to an
Hadoop HDInsight cluster using the Microsoft Power Query for Excel add-in.
Once data has been retrieved, users can exploit Excel functions to make more
interesting charts or graphs.

Google Fusion Tables22 is an other alternative for turning data into graph-
ics in a very easy way. It allows to load tabular data, filter and summarize
across hundreds of thousands of rows, and create geo maps, heat maps, graphs,
charts, animations, and more. Also Google Charts23 are a powerful Javascript
library for making interactive charts for browsers and mobile devices. Google
Charts allows to create several types of charts, from simple line charts to

22 https://tables.googlelabs.com
23 https://developers.google.com/chart
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complex hierarchical tree maps. In the field of maps and location-based appli-
cations, advanced platforms, such as Google Maps24, Mapbox25, can be used
to create interactive and dynamic maps, display additional layers on a map or
generate routes. In the field of visual data analysis, several Big Data start-ups
spring up in the last years. Tableau26, for example, is a Big Data company
from Stanford with multinational operations in fifteen cities, and more than
39,000 customer accounts in 150 countries. It developed software solutions for
easily creating complex charts from huge amount of data. In fact, thanks to
its Cloud analytics platform, Tableau allows users to manipulate data through
a simple web control panel. In this way, users can interact directly with data
to find interesting insights. Among all the competitors in this field, SAS27

probably stands out among its peers.
SAS Visual Analytics, in fact, represents a complete solution for advanced

data visualization and exploratory analyses. Thanks to its drag-and-drop ca-
pabilities and no code requirements, it allows users to easily solve complex
issues using several sophisticated techniques for data analysis (e.g. decision
trees, network diagrams, scenario analysis, path analysis, sentiment analysis)
and business intelligence. In addition, exploiting in-memory processing, SAS
software makes analytics applications faster.

2.5.11 Big Data funding projects

Open-source projects discussed in the previous sections (e.g., Hadoop, Spark,
and NoSQL databases) have been widely used in several public funding
projects. As examples:

• BigFoot project28 is a cloud-based solution featuring scalable and opti-
mized engines to store, process and interact with Big Data. It has received
funding from the European Union’s Horizon 2020 program.

• Optique29 is a EU funding project with a total budget of about 14 million
EUR. It is aims to provide a novel end-to-end OBDA (Ontology-Based
Data Access) [106][22] solution for improving Big Data access. In particu-
lar, Optique platform allows to quickly formulate intuitive queries exploit-
ing user vocabularies and conceptualizations, and executing them using
massive parallelism.

Also government agencies invested large amount of money on Big Data
technologies in many public sector fields, such as intelligence, defense, weather
forecasting, crime prediction and prevention, and scientific research.

24 https://www.google.com/maps
25 https://www.mapbox.com/
26 http://www.tableau.com
27 https://www.sas.com
28 http://bigfootproject.eu/
29 http://optique-project.eu
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As example, US Administration invested more that 250 million USD for
Big Data research and development initiative across multiple agencies and
departments. Moreover, in 2014 UK government decided to invest about 73
million GBP in Big Data and other analytics technologies with the goals of
creating 58,000 new jobs in Britain by 2017, contributing 216 billion GBP to
the countrys economy.

2.5.12 Historical review

In this section a brief historical review of Big Data is presented. Undoubtedly,
main events in Big Data evolution are due to big IT and Internet companies,
like Google and Yahoo, who faced first the need of new solutions for tackling
the rise of Big Data. A significant role in this context has been played by
Hadoop and its related projects, that made Big Data analytics accessible also
to a larger number of organizations.

Hadoop was created by Doug Cutting and it has its origins in Apache
Nutch (2002), an open source web search engine, itself a part of the Lucene
project (2000). After Google released the Google File System (GFS) paper
(October 2003) and the MapReduce paper (December 2004), Cutting went to
work with Yahoo and decided to build open source frameworks based on them:
in 2006 Yahoo! created Hadoop based on GFS and MapReduce, and one year
later, it started using Hadoop on a 1000 node cluster. In 2006, Yahoo Labs
created Pig based on Hadoop, and then donated it to the Apache Software
Foundation (ASF). In few years, several other projects was created around
Hadoop and, in a short time, graduated to a Apache Top Level Project: HBase
(2008), Hive (2008), Cassandra (2008), Storm (2011), Giraph (2011), and so
on. At the same time, many Hadoop distributor was founded, such as Cloudera
(2008), MapR (2009), Hortonworks (2011). A short history of Hadoop and
related project is shown in Figure 2.6.

Fig. 2.6. A short Hadoop ecosystem’s history.
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Spark represents another milestone in Big Data analytics. Spark was ini-
tially created at UC Berkeley’s AMPLab in 2009, open sourced in 2010 under
a BSD license, and donated to the ASF in 2013. Finally, in February 2014,
Spark became a Top-Level Apache Project and declared the most active ASF
project. As discussed before, Spark is nowadays considered the primary execu-
tion engine for several Big Data applications, sometimes used to complement
Hadoop.

2.5.13 Summary

It is not easy to summarize all the features of the systems discussed till now
or to do a proof comparison among them. Some of those systems have com-
mon features and, in some cases, using one rather than another is an hard
choice. In fact, given a specific data analytics task, such as a machine learning
application, it is possible to use several tools. Some of those are widely used
commercial tools, provided through cloud services, that can be easily used by
no skilled people (e.g., Azure Machine Learning or Amazon Machine Learn-
ing); other are open-source frameworks that require skilled users who prefer
to program their application using a more technical approach. In addition,
choosing the best solution for developing a data analytics application may de-
pend on many other factors, such as budget (e.g., often high-level services are
easy-to-use but more expensive than low-level solutions), data format, data
source, the amount of data to be analyze and its velocity, and so on. Table 2.2
presents a brief comparison of the Big Data analytics systems.

Hadoop represents the most used framework for developing distributed
Big Data analytics applications. In fact, Hadoop-ecosystem is undoubtedly
the most complete solution for any kind of problem, but at the same time it is
thought for high skilled users. On the other hand, many other solutions are de-
signed for low-skilled users or for low-medium organizations that do not want
to spend resources in developing and maintaining enterprise data analytics
solutions (e.g., Microsoft Azure Machine Learning, Amazon Machine Learn-
ing, Data Mining Cloud Framework, Kognitio Analytical, or BigML). Finally,
other solutions have been created mainly for scientific research purposes and,
for this reason, they are poorly used for developing business applications (e.g.,
Sector/Sphere, Pegasus).

Choosing the best database solution for creating a Big Data application
is another key-step, so several aspects need to be considered. To decide what
kind of database to adopt, the first aspect to be considered is probably the
classes of queries will be run. So graph databases are probably the best solution
for representing and querying highly connected data (e.g., data gathered from
social network) or that have complex relationships and/or dynamic schema.
In any other case, when non-graph data are analyzed, graph databases could
result in really bad performance. About that, summary considerations on
graph databases are presented in Table 2.3.
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Analytics
Systems/

Tools Streaming Graph In-Memory
Machine
Learning

SQL
Data
flow

Data
processing

Workflow
Open-
source

Cloud
model

Hadoop x x x x x x x IaaS
Spark x x x x x x x IaaS
Mahout x x x IaaS
Oozie x x IaaS
Tez x x IaaS
Giraph x x IaaS
Storm x x IaaS
Hive x x IaaS
Pig x x IaaS
Hunk SaaS
Sector
/Sphere

x x SaaS

BigML x
SaaS,
PaaS

Kognitio
Analytical

x x PaaS

DMCF x x x x
SaaS,
PaaS

Microsoft
Azure ML

x x x SaaS

Amazon ML x x x x SaaS
Pegasus x x IaaS
ClowdFlows x x PaaS
Swift x x IaaS

Table 2.2. A brief comparison of most common Big Data analytics systems.

Another aspect to be considered in choosing the best database solution
should be the CAP (Consistency, Availability, and Partition) capabilities of-
fered, because distributed NoSQL database systems can’t be fully CAP com-
pliant. In fact, the CAP theorem, also named Brewer’s theorem[60], states that
a distributed system can’t simultaneously guarantee all three of the following
properties:

• Consistency (C), that means all nodes see the same data at the same time;
• Availability (A), that means every request will receive a response within

a reasonable amount of time;
• Partition (P) tolerance, that means the system continues to function also

if arbitrary network partitions occur due to failures.

Thus if a distributed database system guarantees Consistency and Parti-
tioning, it can never ensure Availability. Similarly, if you need a full Availabil-
ity and Partition tolerance, you can’t have Consistency, anyway not immedi-
ately. In fact, on a distributed environment, data changes on one node need
some time to be propagated to the other nodes. During that time the copies
will be mutually inconsistent, that may lead to the possibility of reading not
updated data. To try to overcome this limitation, the Eventual Consistency
property is usually provided: it ensures that the system, sooner or later, will
become consistent. This is a weak property, so if the adopted database system
only provides eventual consistency, the developer must be aware that exists
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the possibility of reading inconsistent data. NoSQL databases usually offer a
balance among CAP properties, which is the key difference among the differ-
ent available solutions. For each database family, some summary considera-
tions are also provided for Key-Value databases (Table 2.4), Column-oriented
(Table 2.5), and Document-oriented databases (Table 2.6).

Graph databases

Horizontal scaling Poor horizontal scaling.

When to use
For storing objects without a fixed schema and linked together by
relationships; when users can done naturally their reasoning about
data via graph traversals instead of using complex SQL queries.

CAP tradeoff Usually prefer availability over consistency

Pros
Powerful data modeling and relationships representation;
locally indexed connected data; easy to query.

Cons
Highly specialized query capabilities that make them the best for
graph data, but not suitable for non-graph data.

Table 2.3. Summary considerations about graph databases.

Key-value databases

Horizontal scaling Very high scale provided via sharding.

When to use
When you have a very simple data schema
or extreme speed scenario (like real-time)

CAP tradeoff Most solutions prefer consistency over availability.

Pros
Simple data model; very high scalability,
data can be accessed using query language like SQL.

Cons
Some queries could be inefficient or limited due to sharding
(e.g., join operations across shards); no API standardization;
maintenance is difficult; poor for complex data.

Table 2.4. Summary considerations about Key-Value databases.

2.6 Research Trends

Big Data analysis is a very active research area with significant impact on
industrial and scientific domains where is important to analyze very large and
complex data repositories. In particular, in many cases data to be analyzed are
stored in Cloud platforms and elastic computing Clouds facilities are exploited
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Column-oriented databases

Horizontal scaling Very high scale capabilities.

When to use
When you need consistency and higher scalability performance
than a single machine (i.e., usually using more than 1,000 nodes),
without using indexed caching front end.

CAP tradeoff Most solutions prefer consistency over availability.

Pros
Higher throughput and stronger concurrency when it is possible to
partition data; multi-attribute queries; data is naturally indexed by
columns; support semi-structured data.

Cons
More complex than the document stores;
poor for interconnected data.

Table 2.5. Summary considerations about Column-oriented databases.

Document-oriented databases

Horizontal scaling Scale provided via replication or replication and sharding.

When to use
When your record structure is relatively small and it is possible
to store all of its related properties in a single doc.

CAP tradeoff In most cases prefer consistency over availability.

Pros

High scalability and simple data model;
generally support secondary indexes, multiple types of documents
per database, and nested documents or lists;
MapReduce support for adhoc querying.

Cons
Eventually consistent model with limited atomicity and isolation;
poor for interconnected data;
query model is limited to keys and indexes.

Table 2.6. Summary considerations about Document-oriented databases.

to speedup the analysis. This section outlines and discusses main research
trends in Big Data analytics and Cloud systems for managing and mining
large-scale data repositories.

As we discussed, scalable data analytics requires high-level, easy-to-use
design tools for programming large applications dealing with huge, distributed
data sources. Moreover, Clouds are widely adopted by many organizations,
however several existing issues remain to be addressed, so that Cloud solutions
can improve their efficiency and competitiveness at each business size, from
medium to large companies. This requires further research and development
in several key areas such as:

• Programming models for Big Data analytics. Big Data analytics program-
ming tools require novel complex abstract structures. The MapReduce
model is often used on clusters and Clouds, but more research is needed
to develop scalable higher-level models and tools. State-of-the-art solu-
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tions generated major success stories, however they are not mature and
suffer several problems from data transfer bottlenecks to performance un-
predictability. Several other processing models have been proposed as al-
ternative to MapReduce, such as Dryad [70] or Pregel [92], but they have
never been widely used by developers.

• Data storage scalability. The increasing amount of data generated needs
even more scalable data storage systems. As discussed in the previously,
traditional RDBMS systems are not the best choice for supporting Big
Data applications in the Cloud, and that leads to the popularity of noSQL
platforms[24]. Several noSQL solutions have been proposed, with good
experimental results in term of performance gain, but several other im-
provements are still needed [141][129]. In fact, RDBMS systems have been
around for a long time, are quite stable and offers lots of features. In
the other hand, most noSQL systems are in its early version and several
additional features have yet to be improved or implemented, such as in-
tegrating capabilities from DBMS (e.g., indexing techniques), facilities for
ad-hoc queries, and more.

• Data availability. Cloud service provides have to deal with the problem
of granting service and data availability. Especially in presence of huge
amounts of data, granting high-quality service is an opened challenge.
Several solutions have been proposed for improving exploitation, such as
using a cooperative multi-Cloud model to support Big Data accessibility
in emergency cases [83], but more studies are still needed to handle the
continue increasing demand for more real time and broad network access
to Cloud services.

• Data and tool interoperability and openness. Interoperability is a main
issue in large-scale applications that use resources such as data and com-
puting nodes. Standard formats and models are needed to support inter-
operability and ease cooperation among teams using different data formats
and tools. The National Institute of Standards and Technology (NIST) just
released the Big Data interoperability framework30, a collection of docu-
ments, organized in 7 volumes, which aim to define some standards for Big
Data.

• Data quality and usability. Big Data sets are often arranged by gathering
data from several heterogeneous and often not well-known sources. This
leads to a poor data quality that is a big problem for data analysts. In fact,
due to the lack of a common format, inconsistent and useless data can be
produced as a result of joining data from heterogeneous sources. Defining
some common and widely adopted format would lead to data that are con-
sistent with data from other sources, that means high quality data. Since
real-world data is highly susceptible to inconsistency, incompleteness, and
noise, finding effective methodologies for data preprocessing is still an open
challenge for improve data quality and the analysis results [28]. In this re-

30 http://www.nist.gov/itl/bigdata/bigdatainfo.cfm
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gard, an interesting discussion about challenges of data quality in the Big
Data has been presented in [20].

• Integration of Big Data analytics frameworks. The service-oriented paradigm
allows running large-scale distributed workflows on heterogeneous plat-
forms along with software components developed using different program-
ming languages or tools. Scalable software architectures for fine grain in-
memory data access and analysis. Exascale processors and storage devices
must be exploited with fine-grain runtime models. Software solutions for
handling many cores and scalable processor-to-processor communications
have to be designed to exploit exascale hardware [103][41].

• Tools for massive social network analysis. The effective analysis of social
network data on a large scale requires new software tools for real-time
data extraction and mining, using Cloud services and high-performance
computing approaches [93][102]. Social data streaming analysis tools rep-
resent very useful technologies to understand collective behaviors from so-
cial media data. Tools for data exploration and models visualization. New
approaches to data exploration and models visualization are necessary
taking into account the size of data and the complexity of the knowledge
extracted. As data are bigger and bigger, visualization tools will be more
useful to summarize and show data patterns and trends in a compact and
easy-to-see way.

• Local mining and distributed model combination. As Big Data applications
often involve several local sources and distributed coordination, collecting
distributed data sources to a centralized server for analysis is not practical
or in some cases possible. Scalable data analysis systems have to enable
local mining of data sources and model exchange and fusion mechanisms to
compose the results produced in the distributed nodes [147]. According to
this approach the global analysis can be performed by distributing the local
mining and supporting the global combination of every local knowledge to
generate the complete model.

• In-memory analysis. Most of the data analysis tools query data sources
on disks while, differently from those, in-memory analytics query data
in main memory (RAM). This approach brings many benefits in terms of
query speed up and faster decisions. In-memory databases are, for example,
very effective in real-time data analysis, but they require high-performance
hardware support and fine-grain parallel algorithms [134][155]. New 64-bit
operating systems allow to address memory up to one terabyte, so making
realistic to cache very large amount of data in RAM. This is why this
research area is very promising.

2.7 Conclusions

In the last years the ability to gather data has increased exponentially. Ad-
vances and pervasiveness of computers have been the main driver of the very
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huge amounts of digital data that today are collected and stored in digital
repositories. Those data volumes can be analyzed to extract useful informa-
tion and producing helpful knowledge for science, industry, public services and
in general for humankind. However, the huge amount of data generated, the
speed at which it is produced, and its heterogeneity, represent a challenge to
the current storage, process and analysis capabilities. Then to extract value
from such kind of data, novel technologies and architectures have been de-
veloped by data scientists for capturing and analyzing complex and/or high
velocity data. In this scenario was born also the Big Data mining field as a dis-
cipline that today provides several different techniques and algorithms for the
automatic analysis of large datasets. But, the process of knowledge discovery
from Big Data is not so easy, mainly due to data characteristics, and to get
valuable information and knowledge in shorter time, high performance and
scalable computing systems are needed. In many cases, Big Data are stored
and analyzed in Cloud platforms.

Clouds provide scalable storage and processing services that can be used
for extracting knowledge from Big Data repositories, as well as software plat-
forms for developing and running data analysis environments on top of such
services. In this chapter we provided an overview of Cloud technologies by
describing the main service models (SaaS, PaaS, and IaaS) and deployment
models (public, private or hybrid Clouds) adopted by Cloud providers. We also
described representative examples of Cloud environments (Microsoft Azure,
Amazon Web Services, OpenNebula and OpenStack) that can be used to
implement applications and frameworks for data analysis in the Cloud. The
development of data analysis applications on Cloud computing systems is a
complex task that needs to exploit smart software solutions and innovative
technologies. In this chapter we presented the leading software tools and tech-
nologies used for developing scalable data analysis on Clouds, such as MapRe-
duce, Spark, workflow systems, and NoSQL database management systems.
In particular, we particularly focused on Hadoop, the best-known MapRe-
duce implementation, that is commonly used to develop scalable applications
that analyze big amounts of data. As we discussed, Hadoop is also a refer-
ence tool for several other frameworks, such as Storm, Hive, Oozie and Spark.
Moreover, besides Hadoop and its ecosystem, several other MapReduce imple-
mentations have been implemented within other systems, including GridGain,
Skynet, MapSharp, and Disco.

As such Cloud platforms become available, researchers are increasingly
porting powerful data mining programming tools and strategies to the Cloud
to exploit complex and flexible software models, such as the distributed work-
flow paradigm. Workflows provide a declarative way of specifying the high-
level logic of an application, hiding the low-level details. They are also able to
integrate existing software modules, datasets, and services in complex com-
positions that implement discovery processes. In this chapter we presented
several data mining workflow systems, such as Data Mining Cloud Frame-
work, Microsoft Azure Machine Learning, ClowdFlows.
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Then we also discussed NoSQL database technology that became popular
in the latest years as an alternative or as a complement to relational databases.
In fact, NoSQL systems in several application scenarios are more scalable
and provide higher performance than relational databases. We introduced
the basic principles of NoSQL, described representative NoSQL systems, and
outlined interesting data analytics use cases where NoSQL tools are useful.
Finally, some research trends and open challenges on Big Data analysis has
been discussed, such as scalable data analytics requirements of high-level,
easy-to-use design tools for programming large applications dealing with huge
distributed data sources.





3

Workflows and MapReduce: Integration on
Clouds

Cloud computing systems provide large-scale computing infrastructures for
complex high-performance applications, such as those that use advanced data
analytics techniques for extracting useful information from large, complex
datasets. However, combining Big Data analytics techniques with scalable
computing systems will produce new insights in a shorter time [132].

Although a few Cloud-based analytics platforms are available today, cur-
rent research work foresees that they will become common within a few years.
As discussed in Chapter 2, some current solutions are open source systems
such as Apache Hadoop and ClowdFlows, while others are proprietary solu-
tions provided by companies such as Google, IBM, Microsoft, EMC, BigML,
Hunk, and Kognitio. As such platforms become available, researchers are in-
creasingly porting powerful data mining programming tools and strategies
to the Cloud to exploit complex and flexible software models, such as the
distributed workflow paradigm. Over the last years, data analysis workflows
became really effective in expressing task coordination and they can be de-
signed through visual- and script-based programming paradigms.

Moreover, the increasing use of service-oriented computing in many ap-
plication domains is accelerating this trend. Developers and researchers can
adopt the Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS) models to distribute Big Data analytics ap-
plications as high-level services on Clouds. This approach creates a new way
to deliver data analysis software that is called Data Analytics-as-a-Service
(DAaaS).

This chapter describes the Data Mining Cloud Framework (DMCF) that
was developed at the University of Calabria according to this approach. In
the DMCF, data analysis workflows can be designed through a visual- or
a script-based formalism. The visual formalism, called VL4Cloud, is a very
effective design approach for high-level users, e.g., domain expert analysts
having a limited knowledge of programming languages. As an alternative,
the script-based language, called JS4Cloud, offers a flexible programming ap-
proach for skilled users who prefer to program their workflows using a more
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technical approach. The DMCF’s workflow model has been integrated with
the MapReduce paradigm. In such way, VL4Cloud/JS4Cloud workflows can
include MapReduce tasks and can be executed in parallel to support scalable
data analysis on Clouds.

The remainder of the chapter is organized as follows. Section 3.1 presents
the DMCF by introducing its architecture, the parallel execution model
and the workflow-based programming paradigm offered by VL4Cloud and
JS4Cloud. Section 3.2 describes how the VL4Cloud and JS4Cloud languages
have been extended to integrate with the MapReduce model. Section 3.2.3 de-
scribes a data mining application implemented using the proposed approach.
Section 3.3 discusses related work. Finally, Section 3.4 concludes the chapter.

3.1 Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) is a software system developed
for allowing users to design and execute data analysis workflows on Clouds.
DMCF supports a large variety of data analysis processes, including single-
task applications, parameter sweeping applications, and workflow-based ap-
plications. A Web-based user interface allows users to compose their applica-
tions and to submit them for execution to a Cloud platform, according to a
Software-as-a-Service approach.

Fig. 3.1. Architecture of Data Mining Cloud Framework.

The DMCF’s architecture includes a set of components that can be clas-
sified as storage and compute components [96] (see Figure 3.1).

The storage components include:

• A Data Folder that contains data sources and the results of knowledge dis-
covery processes. Similarly, a Tool folder contains libraries and executable
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files for data selection, pre-processing, transformation, data mining, and
results evaluation.

• The Data Table, Tool Table and Task Table that contain metadata infor-
mation associated with data, tools, and tasks.

• The Task Queue that manages the tasks to be executed.

The compute components are:

• A pool of Virtual Compute Servers, which are in charge of executing the
data mining tasks.

• A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides three functionalities:

i) App submission, which allows users to submit single-task, parameter
sweeping, or workflow-based applications;

ii) App monitoring, which is used to monitor the status and access results
of the submitted applications;

iii) Data/Tool management, which allows users to manage input/output data
and tools.

The DMCF’s architecture has been designed as a reference architecture to
be implemented on different Cloud systems. However, a first implementation
of the framework has been carried out on the Microsoft Azure Cloud platform1

and has been evaluated through a set of data analysis applications executed
on a Microsoft Cloud data center.

The DMCF takes advantage of cloud computing features, such as elasticity
of resources provisioning. In DMCF, at least one Virtual Web Server runs
continuously in the Cloud, as it serves as user front-end. In addition, users
specify the minimum and maximum number of Virtual Compute Servers. The
DMCF can exploit the auto-scaling features of Microsoft Azure that allows
dynamic spinning up or shutting down Virtual Compute Servers, based on
the number of tasks ready for execution in the DMCF’s Task Queue. Since
storage is managed by the Cloud platform, the number of storage servers is
transparent to the user.

The remainder of the section outlines applications execution in the DMCF,
and describes the DMCF’s visual- and script-based formalisms used to imple-
ment workflow applications.

3.1.1 Applications execution

For designing and executing a knowledge discovery application, users interact
with the system performing the following steps:

1. The Website is used to design an application (either single-task, parameter
sweeping, or workflow-based) through a Web-based interface that offers
both the visual programming interface and the script.

1 https://azure.microsoft.com/
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2. When a user submits an application, the system creates a set of tasks
and inserts them into the Task Queue on the basis of the application
requirements.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and
concurrently executes it.

4. Each Virtual Compute Server gets the input dataset from the location
specified by the application. To this end, file transfer is performed from
the Data Folder where the dataset is located, to the local storage of the
Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on
the Data Folder.

6. The Website notifies users as soon as their task(s) have completed, and
allows them to access the results.

The set of tasks created on the second step depends on the type of appli-
cation submitted by a user. In the case of a single-task application, just one
data mining task is inserted into the Task Queue. If users submit a parameter
sweeping application, a set of tasks corresponding to the combinations of the
input parameters values are executed in parallel. If a workflow-based applica-
tion has to be executed, the set of tasks created depends on how many data
analysis tools are invoked within the workflow. Initially, only the workflow
tasks without dependencies are inserted into the Task Queue [3].

3.1.2 Workflow formalisms

The DMCF allows creating data mining and knowledge discovery applications
using workflow formalisms. Workflows may encompass all the steps of discov-
ery based on the execution of complex algorithms and the access and analy-
sis of scientific data. In data-driven discovery processes, knowledge discovery
workflows can produce results that can confirm real experiments or provide
insights that cannot be achieved in laboratories. In particular, DMCF allows
to program workflow applications using two languages:

i) VL4Cloud (Visual Language for Cloud), a visual programming language
that lets users develop applications by programming the workflow com-
ponents graphically[98].

ii) JS4Cloud (JavaScript for Cloud), a scripting language for programming
data analysis workflows based on JavaScript[101].

Both languages use two key programming abstractions:

i) Data elements denote input files or storage elements (e.g., a dataset to be
analyzed) or output files or stored elements (e.g., a data mining model).

ii) Tool elements denote algorithms, software tools or complex applications
performing any kind of operation that can be applied to a data element
(data mining, filtering, partitioning, etc.).
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Another common element is the task concept, which represents the unit
of parallelism in our model. A task is a Tool, invoked in the workflow, which
is intended to run in parallel with other tasks on a set of Cloud resources.
According to this approach, VL4Cloud and JS4Cloud implement a data-driven
task parallelism. This means that, as soon as a task does not depend on any
other task in the same workflow, the runtime asynchronously spawns it to
the first available virtual machine. A task Tj does not depend on a task Ti

belonging to the same workflow (with i ̸= j), if Tj during its execution does
not read any data element created by Ti.

In VL4Cloud, workflows are directed acyclic graphs whose nodes repre-
sent data and tools elements. The nodes can be connected with each other
through direct edges, establishing specific dependency relationships among
them. When an edge is being created between two nodes, a label is auto-
matically attached to it representing the type of relationship between the
two nodes. Data and Tool nodes can be added to the workflow singularly or
in array form. A data array is an ordered collection of input/output data
elements, while a tool array represents multiple instances of the same tool.
Figure 3.2 shows an example of data analysis workflow developed using the
visual workflow formalism of DMCF[99].

Fig. 3.2. Example of data analysis application designed using VL4Cloud.

In JS4Cloud, workflows are defined with a JavaScript code that interacts
with Data and Tool elements through three functions:

i) Data Access, for accessing a Data element stored in the Cloud;
ii) Data Definition, to define a new Data element that will be created at

runtime as a result of a Tool execution;
iii) Tool Execution, to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter
translates the workflow into a set of concurrent tasks by analysing the ex-
isting dependencies in the code. The main benefits of JS4Cloud are:

1. it extends the well-known JavaScript language while using only its basic
functions (arrays, functions, loops);
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2. it implements both a data-driven task parallelism that automatically
spawns ready-to-run tasks to the Cloud resources, and data parallelism
through an array-based formalism;

3. these two types of parallelism are exploited implicitly so that workflows
can be programmed in a totally sequential way, which frees users from
duties like work partitioning, synchronization and communication.

Figure 3.3 shows the script-based workflow version of the visual workflow
shown in Figure 3.2. In this example, parallelism is exploited in the for loop at
line 7, where up to 16 instances of the J48 classifier are executed in parallel on
16 different partitions of the training sets, and in the for loop at line 10, where
up to 16 instances of the Predictor tool are executed in parallel to classify the
test set using 16 different classification models.

Fig. 3.3. Example of data analysis application designed using JS4Cloud.

Figure 3.3 shows a snapshot of the parallel classification workflow taken
during its execution in the DMCF’s user interface. Beside each code line num-
ber, a colored circle indicates the status of execution. This feature allows user
to monitor the status of the workflow execution. Green circles at lines 3 and
5 indicate that the two partitioners have completed their execution; the blue
circle at line 8 indicates that J48 tasks are still running; the orange circles
at lines 11 and 13 indicate that the corresponding tasks are waiting to be
executed.

3.2 Extending VS4Cloud/JS4Cloud with MapReduce

In this section, we describe how the DMCF has been extended to include
the execution of MapReduce tasks. In particular, we describe the MapReduce
programming model, why it is widely used by data specialists, and how the
DMCF’s languages have been extended to support MapReduce applications.
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3.2.1 Motivations

As introduced in Chapter 2, MapReduce and its best-known implementation
Hadoop2 have become widely used by data specialists to develop parallel ap-
plications that analyze big amount of data. Hadoop is designed to scale up
from a single server to tens of thousands of servers, and has become the focus
of several other projects, including Spark3 for in-memory machine learning
and data analysis, Storm4 for streaming data analysis, Hive5 as data ware-
house software to query and manage large datasets, and Pig6 as dataflow
language for exploring large datasets.

Algorithms and applications written using MapReduce are automatically
parallelized and executed on a large number of servers. Consequently, MapRe-
duce has been widely used to implement data mining algorithms in parallel.
Chu et al. [30] offer an overview of how several learning algorithms can be ef-
ficiently implemented using MapReduce. More in details, the authors demon-
strate that MapReduce shows basically a linear speedup with an increasing
number of processors on a variety of learning algorithms such as K-means,
neural networks and Expectation-Maximization probabilistic clustering. Ri-
cardo project [33] is a platform that integrate R7 statistical tools and Hadoop
to support parallel data analysis. The use of MapReduce for data intensive sci-
entific analysis and bioinformatics is deeply analyzed in [46]. For the reasons
discussed above and for the large number of MapReduce algorithms and ap-
plications available online, we designed an extension of the DMCF’s workflow
formalism to support also the execution of MapReduce tools.

3.2.2 Integration model

In DMCF, a Tool represents a software tool or service performing any kind of
process that can be applied to a data element (data mining, filtering, parti-
tioning, etc.).

As shown in Figure 3.4, three different types of Tools can be used in a
DCMF workflow:

i) A Batch Tool is used to execute an algorithm or a software tool on a
Virtual Compute Server without user interaction. All input parameters
are passed as command-line arguments.

ii) A Web Service Tool is used to insert into a workflow a Web service
invocation. It is possible to integrate both REST and SOAP-based Web
services [113].

2 https://hadoop.apache.org/
3 https://spark.apache.org/
4 https://storm.apache.org/
5 https://spark.apache.org/
6 https://pig.apache.org/
7 https://www.r-project.org/
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Fig. 3.4. Types of Tools available in DMCF.

iii) A MapReduce Tool is used to insert into a workflow the execution of
a MapReduce algorithm or application running on a cluster of virtual
servers.

For each Tool in a workflow, a Tool descriptor includes a reference to its
executable, the required libraries, and the list of input and output parame-
ters. Each parameter is characterized by name, description, type, and can be
mandatory or optional. In more detail, a MapReduce Tool descriptor is com-
posed by two groups of parameters: generic parameters, which are parameters
used by the MapReduce runtime, and applications parameters, which are pa-
rameters associated to specific MapReduce applications. In the following, we
list a few examples of generic parameters:

• mapreduce.job.reduces: the number of reduce tasks per job;
• mapreduce.job.maps : the number of map tasks per job;
• mapreduce.input.fileinputformat.split.minsize: the minimum size of chunk

that map input should be split into;
• mapreduce.input.fileinputformat.split.maxsize: the maximum size of chunk

that map input should be split into;
• mapreduce.map.output.compress : enable the compression of the interme-

diate mapper outputs before being sent to the reducers.

Figure 3.5 shows an example of MapReduce Tool descriptor for an imple-
mentation of the Random Forest algorithm. As shown by the descriptor, the
algorithm can be configured with the following parameters: a set of input files
(dataInput), the number of trees that will be generated (nTrees), the minimum
number of elements for node split (minSplitNum), the column containing the
class labels (classColumn), and the output models (dataOutput). The DMCF
uses this descriptor to allow the inclusion of a RandonForest algorithm in a
workflow, and to execute it on a MapReduce cluster.
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Fig. 3.5. Example of MapReduce descriptor in JSON format.

3.2.3 A Data Mining Application Case

In this section, we describe a DMCF data mining application whose workflow
includes MapReduce computations. Through this example, we show how the
MapReduce paradigm has been integrated into DMCF workflows, and how it
can be used to exploit the inherent parallelism of the application.

The goal of this application is to implement a predictor of the arrival
delay of scheduled flights due to weather conditions. The predicted arrival
delay takes into consideration both implicit flight information (origin airport,
destination airport, scheduled departure time, scheduled arrival time) and
weather forecast at origin and destination airports. In particular, we consider
the closest weather observation at origin and destination airports based on
scheduled flight departure and arrival time. If the predicted arrival delay of
a scheduled flight is less than a given threshold, it is classified as an on-time
flight; otherwise, it is classified as a delayed flight.



54 3 Workflows and MapReduce: Integration on Clouds

Two open datasets of airline flights and weather observations have been
used. The first dataset is the Airline On-Time Performance (AOTP) pro-
vided by RITA - Bureau of Transportation Statistics8, which contains data
for domestic US flights by major air carriers. The second one is the Qual-
ity Controlled Local Climatological Data (QCLCD) dataset available from the
National Climatic Data Center9, which contains hourly weather observations
from about 1,600 U.S. stations. For data classification, a MapReduce version
of the Random Forest (RF) algorithm has been used.

More details about the methodology and algorithms used for developing
the flight delay predictor can be found in Chapter 6.

Fig. 3.6. Flight delay analysis workflow using DMCF with MapReduce.

Using DMCF, we created a workflow for the whole data analysis process
(see Figure 3.6). The workflow begins by pre-processing the AOTP and the
QCLCD datasets using two instances of PreProc Tool. These steps look for
possible wrong data, treating missing values, and filtering out diverted and
cancelled flights and weather observations not related to airport locations.
Then, a Joiner Tool executes a relational join between Flights and Weather
Observations data in parallel using a MapReduce algorithm. The result is a
JointTable. Then, a PartionerTT Tool creates five pairs of ⟨Trainset, Testset⟩
using different delay threshold values. The five instances of training set and
test set are represented in the workflow as two data array nodes, labelled as
Trainset[5] and Testset[5].

Then, five instances of the RandomForest Tool analyze in parallel the five
instances of Trainset to generate five models (Model[5]). For each model, an
instance of the Evaluator Tool generates the confusion matrix (EvalModel),
which is a commonly used method to measure the quality of classification.
Starting from the set of confusion matrices obtained, these tools calculate
some metrics, e.g., accuracy, precision, recall, which can be used to select the
best model.

8 http://www.transtats.bts.gov
9 http://cdo.ncdc.noaa.gov/qclcd/QCLCD



3.3 Related work 55

3.3 Related work

Several systems have been proposed to design and execute workflow-based
applications[131], but only some of them currently work on the Cloud and
support visual or script-based workflow programming. The most known sys-
tems are Taverna [145], Orange4WS [114][38], Kepler [87], E-Science Cen-
tral (e-SC) [67], ClowdFlows [80], Pegasus [36][73], WS-PGRADE [74] and
Swift [144].

In particular, Swift is a parallel scripting language that executes workflows
across several distributed systems, like clusters, Clouds, grids, and supercom-
puters. It provides a functional language in which workflows are modelled as
a set of program invocations with their associated command-line arguments,
input and output files. Swift uses a C-like syntax consisting of function defini-
tions and expressions that provide a data-driven task parallelism. The runtime
includes a set of services that implement the parallel execution of Swift scripts
exploiting the maximal concurrency permitted by data dependencies within
a script and by external resource availability. Swift users can use Galaxy [59]
to provide a visual interface for Swift [90].

For comparison purposes, we distinguish two types of parallelism levels:
workflow parallelism, which refers to the ability of executing multiple work-
flows concurrently; and task parallelism, which is the ability of executing
multiple tasks of the same workflow concurrently. Most systems, including
DMCF, support both workflow and task parallelisms, except for ClowdFlows
and E-Science Central that focus on workflow parallelism only. Most sys-
tems are provided according with the SaaS model (e.g., E-Science Central,
ClowdFlows, Pegasus, WS-PGRADE, Swift+Galaxy and DMCF), whereas
Taverna, Kepler and Orange4WS are implemented as desktop applications
that can invoke Cloud software exposed as Web Services. All the SaaS sys-
tems are implemented on top of Infrastructure-as-a-Service (IaaS) Clouds,
except for DMCF that is designed to run on top of Platform-as-a-Service
(PaaS) Clouds. DMCF is one of the few SaaS systems featuring both work-
flow/task parallelism and support to data/tool arrays. However, differently
from the data/tool array formalisms provided by the other systems, DMCF’s
arrays make explicit the parallelism level of each workflow node, i.e., the num-
ber of input/output datasets (in case of data arrays) and the number of tools
to be concurrently executed (in case of tool arrays). Furthermore, DMCF
is the only system designed to run on top of a PaaS. A key advantage of
this approach is the independence from the infrastructure layer. In fact, the
DMCF’s components are mapped into PaaS services, which in turn are imple-
mented on infrastructure components. Changes to the Cloud infrastructure
affect only the infrastructure/platform interface, which is managed by the
Cloud provider, and therefore DMCF’s implementation and functionality are
not influenced. In addition, the PaaS approach facilitates the implementation
of the system on a public Cloud, which free final users and organizations from
any hardware and OS management duties.
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3.4 Conclusions

Data analysis applications often involve big data and complex software sys-
tems in which multiple data processing tools are executed in a coordinated
way. Big data refers to massive, heterogeneous, and often unstructured digital
content that is difficult to process using traditional data management tools
and technique. Cloud computing systems provide elastic services, high perfor-
mance and scalable data storage, which can be used as large-scale computing
infrastructures for complex high-performance data mining applications.

Data analysis workflows are effective in expressing task coordination and
can be designed through visual and script-based formalisms. According to
this approach, we described the Data Mining Cloud Framework (DMCF), a
system supporting the scalable execution of data analysis computations on
Cloud platforms. A workflow in DMCF can be defined using a visual or a
script-based formalism, in both cases implementing a data-driven task par-
allelism that spawns ready-to-run tasks to Cloud resources. In this chapter,
we presented how the DMCF workflow paradigm has been integrated with
the MapReduce model. In particular, we described how VL4Cloud/JS4Cloud
workflows can include MapReduce algorithms and tools, and how these work-
flows are executed in parallel on DMCF to enable scalable data processing on
Clouds. Finally, we described a workflow application example that exploits
the support to MapReduce provided by DMCF.
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A scalable middleware for context-aware
applications

Thanks to the large diffusion of mobile technologies and location-based ser-
vices, it is possible to provide ubiquitous access to context-aware information.
Mobile context-aware computing is a paradigm in which mobile applications
can discover and take advantage of contextual information (e.g., date and time,
user position, nearby users) [121, 39]. Some examples of context-aware mobile
applications are: interactive trolleys to help shoppers finding groceries [15],
monitors to remind medication for elderly [3], location-aware telephone call
forwarding [142], and targeted advertisement based on social group informa-
tion [2].

A core functionality of any context-aware ubiquitous system is storing, in-
dexing, and retrieving information about entities that are commonly involved
in these scenarios, such as (mobile) users, places, events and other resources
(e.g., photos, media, comments). The goal of this chapter is to design and
provide a service-oriented middleware, called Geocon, which can be used by
mobile application developers to implement such functionality. Geocon can be
used to discover location-aware content, to share context-related information,
and to facilitate interaction among users of mobile apps. Some examples of
services that can be implemented in a mobile app using Geocon are: i) dis-
covery of cultural places to be visited during a trip; ii) publication of user
reviews about hotels and restaurants; iii) find nearby free-time activities of
a user and his/her friends; iv) sharing of real-time information about events,
traffic, etc.

A key benefit for developers using Geocon is the possibility to focus on the
front-end functionality provided by their mobile application, without the need
of implementing by scratch back-end components for data storing, indexing
and searching, since they are provided by the middleware. In order to represent
information about users, places, events and resources of mobile context-aware
applications, Geocon defines a metadata model that can be extended to match
most application requirements [11]. The widely-used JavaScript Object Nota-
tion (JSON) format is employed to represent such metadata. The architecture
of the middleware includes a geocon-service that exposes methods for storing,
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searching and selecting metadata about users, resources, events and places of
interest, and a geocon-client library that allows mobile applications to inter-
act with the service through the invocation of local methods. The interaction
between service and client is based on the REST model.

Given the huge number of users, places, events and resources that may
be involved in context-aware ubiquitous applications, scalability plays a fun-
damental role [100]. Geocon was designed to ensure scalability through the
use of a NoSQL indexing and search engine, Elasticsearch [61], that can scale
horizontally on multiple nodes as the system load increases. Elasticsearch may
be used in combination with an external NoSQL database (e.g. MongoDB),
which is more focused on constraints, correctness and robustness.

Compared to related work, Geocon is the only publicly available (and
open source) Cloud-oriented system that provides a scalable middleware for
context-aware mobile applications. Geocon was designed to be deployed on a
public/private Cloud infrastructure, thus allowing an elastic resource alloca-
tion in a pay-per-use manner [132]. To assess the scalability of Geocon in a
real case scenario, we used it to develop a location-aware mobile application,
called GeoconView. The application allows users to share information about
events exploiting the Geocon middleware for storing, indexing, and retrieving
such information.

We evaluated the performance of Geocon varying the number of Cloud
machines used to run the Geocon software components, the number of events
stored in the middleware, and the number of queries submitted to the system.
The Geocon software components have been deployed on Microsoft Azure,
a public Cloud platform that provides on-demand computing and storage
resources [99]. The experimental results show that the latency speedup is ba-
sically independent from the number of queries per second, but is significantly
higher when the system stores a larger number of events (e.g., 2000k vs 500k).
For instance, when the system stores 2000k events, with 15 queries per second,
the latency speedup passes from 1.74 using 2 data nodes, to 4.74 using 8 data
nodes.

The remainder of the chapter is organized as follows. Section 4.1 discusses
related work. Section 4.2 describes the metadata model. Section 4.3 describes
the middleware architecture and components. Section 4.4 describes the per-
formance experiments carried out to assess the scalability of Geocon. Finally,
Section 4.5 concludes the chapter.

4.1 Related Work

Several research projects and software systems have been proposed to support
the implementation of context-aware mobile applications.

CRUMPET [115] (Creation of User-Friendly Mobile Services Personalised
for Tourism) was a European research project aimed to deal with issues re-
lated to the mobility of tourists. In particular, the system provides tourists
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with information filtered by mobile users’ positions and interests. Yu and
Chang [153] extended CRUMPET to overcome the limitations of handheld
devices regarding the screen size and transmitting bandwidth.

The COMPASS system [136] (Context-aware Mobile Personal Assistant)
was developed to provide users with relevant information and services. The
relevance is determined exploiting information extracted from the user pro-
file (e.g., preferences, interests, locations visited). COMPASS uses two search
criteria for selecting relevant services/information: i) strict criteria, for dis-
carding irrelevant results; and ii) soft criteria, for sorting and assigning a
score to remaining results.

Driver and Clarke [43] proposed a framework to support the development
of mobile trails-based applications. A trail is a scheduled collection of activi-
ties, such as to-do lists, that can be properly reordered when context change.
The framework supports context-based activity schedule composition, iden-
tification of whether or not schedule reordering is required following context
change and subsequent automatic schedule reordering as appropriate.

MobiSoC [64] is a service-oriented middleware for capturing, managing,
and sharing the social state of physical communities. This state is composed of
people profiles, place profiles, people-to-people affinities, and people-to-places
affinities. The middleware provides real-time recommendations about people,
places, and events, and delivers customized information based on users’ geo-
social context. The latency time of MobiSoC has been evaluated varying the
query type and the number of users, showing the limitation of having a fixed
number of computing nodes.

Context Toolkit [40] is a framework designed to support the development
of context-aware applications. It consists in a set of widgets, which are software
components with a common interface used to separate applications from con-
text acquisition issues. The toolkit provides developers different components
responsible for acquiring, aggregating and interpreting context information.

CaMWAF [88] is a framework designed to support the development of
context-aware mobile applications and simplify the exchange of context in-
formation in heterogeneous environments. It allows developers to easily cre-
ate cross-platform context-aware applications using common web technologies
(e.g., HTML5, CSS3, JavaScript). To deal with the resource limitation of mo-
bile devices, CaMWAF delegates the execution of intensive tasks to the server.

Malcher et al. [91] proposed a client middleware for developing context-
and location-aware applications with capabilities of data sharing, dynamic de-
ployment of new components, and combination of basic collaboration services.
Given its client-side approach, the middleware does not take into account the
server side architecture and related scalability issues.

SALES [31] is a middleware for contextual data dissemination in heteroge-
neous wireless communication networks. It proposes a hierarchical distributed
architecture, some caching techniques for reducing context data traffic (e.g., a
locality-based policy to speed up accesses to context data strictly related with
locality), and two models for representing data (i.e., key-value and object-
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based model). Concerning data representation, the key-value model allows
reducing management overhead, especially in terms of required bandwidth,
while the object-oriented model facilitates development by supporting ex-
tendibility.

CARISMA [23] is a mobile computing middleware that exploits the reflec-
tion principle for enhancing the development of adaptive and context-aware
mobile applications. It provides developers with a set of primitives for de-
scribing how context changes should be handled using policies. Such policies
use a micro-economic approach, which relies on a particular type of sealed-bid
auction to take decision during application execution.

EgoSpaces [72] is an agent-based middleware for developing applications in
ad-hoc mobile environments. It proposes an agent-centered notion of context,
called a view, which is a collection of relevant data (or context). Each agent
can operate over multiple views (which can be redefined over time as needs
change) that include data/resources associated with the agent.

Table 4.1 summarizes the main features of the related systems discussed
above, in comparison with Geocon’s features. For each system, the table in-
dicates: (i) the main goal of the system; (ii) whether or not the system was
designed to be deployed on the Cloud; (iii) whether or not the server side
focuses on scalability; (iv) whether or not the system is publicly available.

System Goal Cloud Scalable
Publicly
available

CRUMPET [115]
Content filtering based on
mobile user’s position

No No No

COMPASS [136]
Services and information filtering
on user’s preferences and interests

No No No

Driver and Clarke [43]
Context-aware management
of user activities

No No No

MobiSoC [64]
Middleware for developing
mobile social applications

No Yes Yes

Context Toolkit [40]
Composition of widgets for
accessing context information

No No Yes

CaMWAF [88]
Context-aware applications
using HTML5, CSS3 and JS

No No No

Malcher et al. [91]
Client middleware for
local and remote data exchange

No No No

SALES [31]
Contextual data dissemination in
heterogeneous wireless networks

No Yes No

CARISMA [23]
Context-aware applications exploiting
reflection and micro-economic policies

No Yes No

EgoSpaces [72]
Agent-based middleware for applications
in ad-hoc mobile environments

No No Yes

Geocon
Scalable middleware for
context-aware mobile applications

Yes Yes Yes

Table 4.1. Comparison with related systems.
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As shown in the table, Geocon is the only system explicitly designed for
a Cloud, with a set of back-end components for data storing, indexing and
searching, that can be easily deployed on any public/private Cloud infrastruc-
tures. Moreover, Geocon provides ad hoc scalability mechanisms, which are
fundamental to provide satisfactory services as the amount of users and/or
data to be managed grow. The test results demonstrate that Geocon scales
well, thus allowing the development of mobile applications with a large number
of users. It is worth noticing that three related works ([64] [31] [23]) highlight
the importance of the scalability problem, but do not provide experimental
evaluations on this aspect.

In summary, Geocon is the only publicly available (and open source)
Cloud-oriented system that provides a scalable middleware for context-aware
mobile applications. An important added value, not highlighted in the table,
is the methodology provided by Geocon that defines an expendable metadata
model supported by scalable set of back-end components for data storing,
indexing and searching. This allows developers to focus on the front-end func-
tionality provided by their mobile applications, without worrying on low-level
back-end aspects and scalability issues that are managed transparently by
Geocon.

4.2 Metadata Model

We defined a metadata model for representing information about users, places,
events and resources of mobile context-aware applications. The model identi-
fies a number of categories for indexing items in the domain of interest, which
are generic enough to satisfy most of the application contexts. In particular,
the metadata model is divided into four categories:

• User : defines basic information about a user (e.g., name, surname, e-mail).
• Place: describes a place of interest (e.g., square, restaurant, airport), in-

cluding its geographical coordinates.
• Event : describes an event (e.g., concert, exhibition, conference), with in-

formation about time and location.
• Resource: defines a resource (e.g., photo, video, web site, web service)

associated to a given place and/or event, including its Uniform Resource
Identifier (URI).

Tables 4.2-4.5 present the basic metadata fields for each of the four cate-
gories listed above. Metadata are meant to be extensible, i.e., it is possible to
include additional fields based on the specific application. For example, the
user schema may be extended to include birth date, city, linked social network
accounts, etc.

To represent metadata, the JavaScript Object Notation (JSON) is used.
JSON is a widely-used text format for the serialization of structured data
that is derived from the object literals of JavaScript [44]. Figure 4.1 shows
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Table 4.2. Basic User metadata.

Name Type Description

id String Unique user identifier
name String Given name
surname String Family name
email String E-mail
token String Authentication token

Table 4.3. Basic Place metadata.

Name Type Description

id String Unique place identifier
name String Name of the place
description String Textual description of the place
latitude Real Latitude of the place
longitude Real Longitude of the place
address String Full address of the place
user id String Id of the user who created the place

Table 4.4. Basic Event metadata.

Name Type Description

id String Unique event identifier
name String Name of the event
description String Textual description of the event
start date String Date and time when the event begins
end date String Date and time when the event ends
place id String Id of the place where the event is held
user id String Id of the user who created the event

Table 4.5. Basic Resource metadata.

Name Type Description

id String Unique resource identifier
name String Name of the resource
description String Textual description of the resource
URI String Link to the resource

place id String
Id of the place to which the resource
is associated

event id String
Id of the event to which the resource
is associated

user id String Id of the user who created the resource

an example of JSON metadata describing a User. Beyond the basic metadata
(id, name, etc.), it includes some additional fields (city, linked accounts and
food preferences).

Figure 4.2 shows an example of Place metadata, regarding the “Kabuki”
restaurant in Washington, DC, USA, which is tagged as a Japanese and sushi
specialties restaurant using an additional “tags” field.
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{ "id": "jdoe",
"name": "John",
"surname": "Doe",
"email": "john.doe@example.com",
"token": "19800308",
"city": "New York, NY, USA",
"linked-accounts": [
{"name":"facebook", "token":"424911363"},
{"name":"google", "key":"23467223454"}
],
"food-preferences": ["sushi", "pizza"],
"date-created": "2016-03-27T08:05:43.511Z"}

Fig. 4.1. Example of User metadata in JSON.

{ "id": "534",
"name": "Kabuki",
"description": "Japanese Restaurant",
"latidude": "38.897683",
"longitude": "-77.006081",
"address": "Union Station 50, Washington, DC, USA",
"user_id": "jdoe",
"tags": ["Japanese", "sushi"]}

Fig. 4.2. Example of Place metadata in JSON.

4.3 Middleware

This section describes the software components of the Geocon middleware and
how these components are deployed within a distributed architecture.

4.3.1 Software components

Figure 4.3 shows the software structure of the middleware, which includes two
main components:

• geocon-service, which contains a central registry for indexing users, re-
sources, events and places of interest, and exposes methods for storing,
searching and selecting metadata about these entities.

• geocon-client, which is a client-side library allowing mobile applications to
interact with geocon-service through the invocation of local methods.

The interaction between service and client is based on the RESTmodel [118].
To this end, a complete support to CRUD (Create, Read, Update, and Delete)
operations on the metadata has been defined through Java APIs.
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Fig. 4.3. Software components of the Geocon middleware.

Geocon-service

The geocon-service has been implemented as a RESTful Web service and
exposed via the Web service container Grizzly1, which is deployed on a dis-
tributed platform to ensures scalability as discussed later in this section.

The framework used in our implementation to develop RESTful Web ser-
vices is Jersey2, an open source framework that implements JAX-RS (Java
API for RESTful Web Services) using annotations to map a Java class to a
Web resource, and natively supports JSON representations through the inte-
grated library Jackson3.

The core component of geocon-service is the indexing and search en-
gine, which has been implemented using Elasticsearch4. Elasticsearch is an
open-source, distributed, scalable, and highly available search server based
on Apache Lucene5, and provides a RESTful web interface. Elasticsearch has
been chosen because of several benefits, including:

• it is document-oriented, which means that entities can be structured as
JSON documents;

• it is schema-free, which means it is able to detect the data structure au-
tomatically without need to specify a schema before indexing documents;

1 https://grizzly.java.net
2 http://jersey.java.net/
3 http://jackson.codehaus.org/
4 https://www.elastic.co/
5 https://lucene.apache.org/
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• it is horizontally scalable: if more power is needed, other nodes can be
added and Elasticsearch will reconfigure itself automatically;

• it has APIs for several programming languages, including Java, which
makes it easily integrable with other systems.

Geocon-service uses the query language provided by Elasticsearch, which
is a full Query DSL (Domain Specific Language) based on JSON. Therefore,
queries can be defined through the following main commands:

• term: returns all the documents whose specified field contains a given
term. The following example returns all the documents whose field name
contains the word “Mary”:

{"term" : { "name" : "Mary" }}

• prefix : returns all the documents whose specified field contains a term
beginning with a given prefix. The following example returns all the doc-
uments whose field surname begins with “Ro”:

{"prefix" : { "surname" : "Ro" }}

• bool : returns all the documents containing a boolean combination of
queries. It is built using one or more boolean clauses (i.e., must, must not,
should, and the parameter minimum should match that is the minimum
number of clauses to be met). The following example returns all the users
whose name is “Mary”, that are not between 10 and 20 years old, and
that like eating sushi or pizza:

{"bool" : {
"must" : { "term" : { "name" : "Mary" } },
"must_not" : {
"range" : {"age" : { "from" : 10, "to" : 20 }}
},
"should" : [
{ "term" : { "food-preferences" : "sushi" } },
{ "term" : { "food-preferences" : "pizza" } }
],
"minimum_should_match" : 1
}}

• filter : returns all the documents filtered according to a given condition.
The following example returns all the documents whose field location falls
within 50km from the center of Los Angeles sorting by distance.

{"query": {
"filtered" : {
"filter" : {
"geo_distance" : { "distance" : "50km",
"location" : {"lat" : 34.052235, , "lon" : -118.243683
}}}}},
"sort": [{
"_geo_distance": {
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"location": { "lat" : 34.052235, "lon" : -118.243683},
"order": "asc", "unit": "m", "distance_type": "plane"}}]
}

Geocon-client

Geocon-client is the library used by mobile applications to interact with
geocon-service. The library aims to facilitate communication with the geocon-
service methods, hiding some low-level details (e.g., authentication, REST
invocation, etc.) and providing users with a complete set of functions for ex-
ecuting CRUD operations. These functions are implemented using a set of
objects and methods provided by the client library to the application layer.

Geocon-client consists of five classes: four classes are used to represent
the metadata categories (User, Place, Event and Resource), while a fifth
class (SearchEngine) is used to expose the methods for storing and searching
data on geocon-service. For each class representing a metadata category, the
SearchEngine class provides a set of CRUD methods: register, get, update,
and delete. As an example, Table 4.6 shows the CRUD methods provided to
register, get, update and delete Resource elements in the service.

Table 4.6. CRUD methods for Resource elements.

Method Description

register (Resource r) Registers a resource to the service
get (Resource r) Returns the metadata of a resource
update (Resource r) Updates the metadata of a resource
delete (Resource r) Deletes a resource

4.3.2 Distributed architecture

This section describes how the Geocon components are deployed within a
distributed architecture. As described above, Geocon exploits Elasticsearch
(ES) as indexing and search engine that can scale horizontally on a very large
number of nodes as the system load increases. ES implements a clustered
architecture that uses partitioning to distribute data across multiple nodes,
and replication to provide high availability.

There are three types of ES nodes: i) ES Data nodes, which can hold one
or more partitions containing index data; ii) ES Client nodes, that do not hold
index data but handle incoming requests made by client applications to the
appropriate data node; and iii) ES Master node that performs cluster man-
agement operations, such as maintaining routing information, coordinating
recovery after node failure, relocating data partitions among nodes.

As shown in Figure 4.4, four types of nodes are present in the distributed
Geocon architecture:
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• Mobile devices, which interact with the geocon-service using the geocon-
client library.

• Load Balancer, which evenly distributes requests from mobile devices to a
pool of server nodes.

• Server nodes, which are a pool of virtual machines handling the mobile
devices’ requests. Each request is managed by a geocon-service instance
that translates it into an Elasticsearch query. The query is processed by an
ES Client node that interacts with the appropriate ES Data nodes. One
of Server nodes hosts the ES Master node.

• Data nodes, which are a pool of virtual machines running the ES Data
nodes, which process the queries upon request of the ES Client nodes.

Fig. 4.4. Distributed architecture of the Geocon middleware.

4.4 Performance evaluation

An experimental performance evaluation was carried out to assess the scala-
bility of the Geocon middleware in a real case scenario. The section is struc-
tured into three parts: i) introduction to the mobile application used as real
case; ii) description of experimental setup and performance parameters; iii)
presentation and discussion of the performance results.

4.4.1 Mobile application

In order to assess the scalability of Geocon in a real case scenario, we developed
a location-aware mobile application, called GeoconView, which allows users to
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share information about events, exploiting the Geocon middleware for storing,
indexing, and retrieving such information. More in detail, a GeoconView user
can share events characterized by the following features: (i) place: the place
where the event will happen; (ii) images: one or more photos representing
the event; (iii) datetimes: the range of dates and times when the event will
occur; (iv) tags: a set of keywords describing the event; and (v) comments:
user comments and ratings about the event.

Figure 4.5 shows some screenshots of GeoconView. In particular, Fig-
ure 4.5(a) visualizes a number of GeoconView’s events on a map. Figure 4.5(b)
shows a preview of the Arco Magno’s sunset, a daily event that occurs on a
beach in San Nicola Arcella (Italy). Figure 4.5(c) provides full details about
this event. Figure 4.5(d) shows a second event describing the arrival of grey
herons in Tarsia (Italy) in December.

(a) Geotagged
events on a map.

(b) Arco Magno’s
sunset (preview).

(c) Arco Magno’s
sunset (details).

(d) Grey herons
arrival (details).

Fig. 4.5. GeoconView: A location-aware mobile application based on the Geocon
middleware.

To implement the GeoconView application, the basic Event metadata
scheme has been extended with additional fields to store URLs of images, de-
scriptive tags, and information about the periodicity (e.g., weekly, monthly,
yearly) of the events. Comments and ratings associated to the events have
been stored as Resource metadata instances.

4.4.2 Experimental setup and performance parameters

The distributed architecture used for the evaluation is composed of 9 cloud
machines hosted by the Microsoft Azure platform. Each machine is equipped
with a single-core 1.66 GHz CPU, 3.5 GB of memory, and 50 GB of disk space.
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Table 4.7 shows the system parameters that have been used during the
evaluation. As shown in the table, we used from 1 to 8 Data nodes, each
one running on a separate cloud machine. An additional cloud machine was
used to run a Server node. The number of geo-located events stored in the
Geocon middleware ranges from 250k to 2000k. A varying number of queries
per second (from 15 to 120) was submitted to the system, so as to evaluate its
performance under different load levels. Every query asks for the ten active
events that are closest to a location that changes randomly from query to
query.

For executing the load tests and measuring the performance of the system
we used Apache JMeter6. The following performance parameters have been
evaluated:

• Latency time: the average amount of time elapsed from query submission
to query answer;

• Speed-up: the ratio of the latency time using 1 data node to the latency
time using n data nodes, which measures how much performance gain is
achieved by distributing data over an increasing number of cloud machines;

• Scale-up: the latency time when the problem size is increased linearly with
the number of data nodes, which quantifies the capability of the system
to handle increasing loads when machines are added to accommodate that
growth.

4.4.3 Performance results

Figure 4.6 shows how the latency time changes using a fixed number of data
nodes and varying the number of events stored and the number of queries per
second submitted to the system. Figure 4.6(a) presents the results obtained
using 2 data nodes. For the smallest number of events (250k), the latency
time increases from 0.078 seconds with 15q/s, to 0.373 seconds with 120 q/s.
For the largest number of events (2000k) the latency time ranges from 0.457
seconds to 1.651 seconds. Figure 4.6(b) shows the results obtained using 8
data nodes. For 250k events, the latency time ranges from 0.063 seconds with
15q/s, to 0.300 seconds with 120 q/s, while for 2000k events the latency time
increases from 0.168 seconds to 0.621 seconds. In both cases, the latency time
increases linearly with the number of requests per second, independently from
the number of events stored in the system.

Table 4.7. System parameters.

Description Values

Number of data nodes 1, 2, 4, 8
Number of events 250k, 500k, 1000k, 2000k
Queries per second 15q/s, 30q/s, 60q/s, 120q/s

6 http://jmeter.apache.org/
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Fig. 4.6. Latency time vs number of queries per second, for different numbers of
events stored in the system, using: a) 2 data nodes; b) 8 data nodes.

The scalability of Geocon can be evaluated through Figure 4.7, which
shows the speedup obtained varying the number of data nodes and the number
of queries per second submitted to the system.

Figure 4.7(a) presents the results obtained with 500k events stored in the
system. With a load of 15 queries per second, the speedup increases from 1.54
using 2 data nodes, to 2.29 using 8 data nodes. With the highest load (120
q/s) the speedup passes from 1.62 using 2 nodes, to 2.79 using 8 nodes. Fig-
ure 4.7(b) shows the results obtained when the number of events is increased
to 2000k. With 15 queries per second, the speedup passes from 1.74 using
2 data nodes, to 4.74 using 8 data nodes. With 120 queries per second, the
speedup passes from 1.45 using 2 nodes, to 3.86 using 8 nodes. As expected,
the speedup is basically independent from the number of queries per second,
but is significantly higher when the system stores a larger number of events
(e.g., 2000k vs 500k).

Figure 4.8 measures the application scaleup by showing the latency times
obtained when the number of events stored in the system increases propor-
tionally to the number of data nodes used (i.e., from 250k events stored on 1
data node, to 2000k events stored on 8 data nodes). The results show that, for
any number of queries per second submitted to the system, the latency time
is almost constant. This demonstrates that the amount of data that can be
managed increases, almost linearly, with the number of data nodes available.

4.5 Conclusions

Geocon is a service-oriented middleware designed to help developers to im-
plement context-aware mobile applications. Geocon provides a service and a
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Fig. 4.7. Speedup vs number of data nodes, for different numbers of queries per
second, using: a) 500k events; b) 2000k events.
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different numbers of queries per second.

client library for storing, indexing, and retrieving information about entities
that are commonly involved in these scenarios, such as (mobile) users, places,
events and other resources (e.g., photos, media, comments). A key benefit for
developers using Geocon is the possibility to focus on the front-end function-
ality provided by their mobile application, without the need of implementing
by scratch back-end components for data management and querying, which
are provided by the middleware.

Geocon defines a metadata model to represent information about users,
places, events and resources of mobile context-aware applications, which can
be easily extended to match specific application requirements. In order to
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ensure a high level of decoupling and efficient communication between client
and service, the REST model has been adopted. Moreover, given the huge
number of users, places, events and resources that may be involved in context-
aware mobile applications, Geocon uses the Elasticsearch engine that can scale
horizontally on a multiple nodes.

To assess the scalability of Geocon in a real-world scenario, we developed a
location-aware mobile application, called GeoconView. The application allows
users to share information about events exploiting the Geocon middleware for
storing, indexing, and retrieving such information. The experimental results
show that the latency speedup is basically independent from the number of
queries per second, but is significantly higher when the system stores a larger
number of events (e.g., 2000k vs 500k). For instance, when the system stores
2000k events, with 15 queries per second, the latency speedup passes from
1.74 using 2 data nodes, to 4.74 using 8 data nodes. The Geocon middleware
is available as open-source software at https://github.com/SCAlabUnical/
Geocon.

As future works
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Analysis of geotagged social data

The widespread use of social media makes it possible to extract very useful
information to understand the behavior of large groups of people. This is fos-
tered by the large use of mobile phones and location-based services, through
which millions of people every day access social media services and share
information about the places they visit. In fact, data gathered from social
media, such as posts from Twitter and Facebook or photos from Instagram
and Flickr, are frequently geotagged. Geotagging is the process of adding ge-
ographic metadata (e.g., longitude/latitude coordinates) to text, photos or
videos. It allows to locate the exact physical origin of shared information.
Exploiting geotagged social data it is possible to extract high-value informa-
tion that may impact many areas, such as travel recommendations, urban
planning, intelligent traffic management, health monitoring, and security.

One of the leading trends in social media research is the analysis of geo-
tagged data to determine if users visited or not interesting locations (e.g.,
touristic attractions, shopping malls, squares, parks), often called Places-of-
Interest (PoIs). Since a PoI is generally identified by the geographical coordi-
nates of a single point, it is hard to match it with user trajectories. For this
reason, it is useful to define the so-called Region-of-Interest (RoI ) representing
the boundaries of the PoI’s area [62].

The analysis of user trajectories through RoIs is highly valuable in many
scenarios, e.g.: tourism agencies and municipalities can discover the most vis-
ited touristic places and the time of year when such places are visited [13][81];
transport operators can discover the places and routes where is it more likely
to serve passengers [154] and crowed areas where more transport facilities
need to be allocated [152]. However, compared to trajectory pattern mining
from GPS data [58], extracting trajectories from social network data is more
challenging because data from social networks are often sparse and irregu-
lar, in contrast to GPS traces of mobile devices that are highly available and
sampled at regular time intervals [132].

RoI mining techniques are aimed at discovering Regions-of-Interest from
PoIs and other data. Existing RoI mining techniques can be grouped into
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three main approaches: predefined shapes [62], density-based clustering [156]
and grid-based aggregation [19]. Predefined shapes techniques use fixed shapes,
such as circles or rectangles, to represent RoIs. In many cases, the use of a pre-
defined shape represents a näıve solution to the RoI mining problem, because
a predefined shape is not able to handle PoIs having RoIs with different sizes
and shapes. Density-based clustering techniques identify RoIs by clustering
the data points according to a density criterion (i.e., number of data points
per unit area). Such kind of algorithms are widely used because they are able
to reach good results in many cases. However, density-based techniques may
fail to distinguish regions that are very close to each other or that have differ-
ent density. Grid-based aggregation techniques discretize the area in a regular
grid and then aggregate the grid cells so as to form a RoI. The grid cells can
be aggregate using different aggregation policies. Such kind of algorithms is
very sensitive to parameters setting. Thus, may be hard to find a setting for
identifying multiple RoIs with different characteristics in the same area.

This chapter presents a novel RoI mining technique, called G-RoI, which
differs from the existing approaches mentioned earlier as it exploits the indi-
cations contained in geotagged social media items (e.g. tweets, posts, photos
or videos with geospatial information) to discover the RoI of a PoI with a
high accuracy. Given a PoI p identified by a set of keywords, a geotagged item
is associated to p if its text or tags contain at least one of those keywords.
Starting from the coordinates of all the geotagged items associated to p, G-
RoI calculates an initial convex polygon enclosing all such coordinates, and
then iteratively reduces the area using a density-based criterion. Then, from
all the convex polygons obtained at each reduction step, G-RoI adopts an
area-variation criterion to choose the polygon representing the RoI for p.

Many experiments have been performed to assess the accuracy of G-RoI
over real geotagged items extracted from Flickr, one of the most popular
photo-sharing social media. The experimental results show that G-RoI is more
accurate in identifying RoIs than existing techniques. Over a set of 24 PoIs
in Rome, G-RoI achieves better results than existing techniques in 19 cases,
with a mean precision of 0.78, a mean recall of 0.82, and a mean F1 score
of 0.77. In particular, the mean F1 score of G-RoI is 0.34 higher than that
obtained with the well-known DBSCAN algorithm. Further experiments have
been performed over a set of 24 PoIs in Paris. Also in this case, G-RoI achieved
best results in 18 cases, with a mean precision of 0.81, a mean recall of 0.66,
and a mean F1 score of 0.70 (0.23 higher than that obtained with DBSCAN).
For the purpose of reproducibility, an open-source version of G-RoI and all
the input data used in the experiments are available at https://github.com/
scalabunical/G-RoI.

The remainder of the chapter is organized as follows. Section 5.1 introduces
the main concepts and the problem statement. Section 5.2 discusses related
work. Section 5.3 describes the proposed methodology. Section 5.4 compares
the performance of G-RoI with the main techniques in literature. Finally,
Section 5.5 concludes the chapter.
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5.1 Problem definition

A Place-of-Interest (PoI ) is a specific location that someone finds useful or
interesting. Generally, PoIs refer to business locations (e.g., shopping malls)
or tourist attractions (e.g., squares, museums, theaters, bridges). PoIs are also
named as Point-of-Interest.

For analyzing users’ behavior, it is useful to understand whether a user
visited or not a PoI. Since information on a PoI is generally limited to an
address or to GPS coordinates, it is hard to match trajectories with PoIs.
For this reason, it is useful to define the so-called Region-of-Interest (RoI )
representing the boundaries of the PoI’s area [62].

RoIs can be defined as “spatial extents in geographical space where at least
a certain number of user trajectories pass through” [58]. Thus, RoIs represent
a way to partition the space into meaningful areas and, correspondingly, to
associate a label to a place. In literature, RoIs are also named as regions of
attraction [156] or frequent (dense) regions [7].

A geotagged item is a piece of information (e.g. tweet, post, photograph or
video) to which geospatial information were added. Specifically, a geotagged
item g includes the following features:

- text, containing a textual description of g.
- tags, containing the tags associated to g.
- coordinates consists of latitude and longitude of the place from where p

was created.
- userId, identifying the user who created g.
- timestamp, indicating date and time when g was created.

A geotagged item can be associated to a PoI P if its text or tags refer to P.
The goal of G-RoI is finding a suitable RoI R that describes the boundaries
of P’s area, by analyzing a set of geotagged items associated to P.

5.2 Related work

Existing techniques to find RoIs can be grouped into three main approaches:
predefined shapes, density-based clustering and grid-based aggregation. Table
5.1 reports approaches, algorithms, and goals of the main related work.

Predefined shapes. This approach uses predefined shapes (circles, rectan-
gles, etc.) to represent RoIs. For example, Kisilevich et al. [75] define RoIs
as circles of fixed radius centered on a set of PoIs whose center coordinates
are known. Spyrou and Mylonas [126] used circular RoIs to extract popular
touristic routes from Flickr. Specifically, circular shapes are used to translate
a trajectory of geospatial points into a sequence of RoIs. Cesario et al. [25]
used rectangles to define RoIs representing stadiums for a trajectory mining
study. In particular, the RoI of a stadium is the smallest rectangle enclosing
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the stadium’s area. De Graaff et al. [62] use Voronoi tessellations [138] to
define RoIs starting from a set of geographical coordinates representing PoIs.

Density-based clustering. With this approach, RoIs are obtained by cluster-
ing a set of geographical locations. For instance, Crandall et al. [32] used the
Mean shift clustering algorithm [29] to group the locations of a set of Flickr
photos. The RoI is the polygon enclosing the cluster points. Zheng et al. [156]
used DBSCAN [47] to discover tourist attraction areas from a set of Flickr
photos. DBSCAN was adopted for three main reasons: i) it tends to identify
regions of dense data points as clusters; ii) it supports clusters with arbitrary
shape; iii) it has a good efficiency on large-scale data. DBSCAN was also used
by Altomare et al. [7], with the goal of detecting the regions that are more
densely visited based on data from GPS-equipped taxis. Kisilevich et al. [76]
used a variant of DBSCAN, named P-DBSCAN, to cluster photos taking into
account the neighborhood density (i.e., the number of distinct photo owners
in the neighborhood) and exploiting the notion of adaptive density for fast
convergence towards high density regions. Density-based approaches need a
method to assign a meaning to each RoI found. There are different ways to
perform this task. Zheng et al. [156] and Yin et al. [151] assign a name to each
cluster by taking the most frequent keyword in the geotagged items. Ferrari
et al. [49] automatically associate to each RoI the zip code of the data points
in the cluster center.

Grid-based aggregation. This approach discretizes the area under analysis
in a regular grid and extract RoIs by aggregating the grid cells. For example,
Giannotti et al. [58] divide an area into grid cells and then count the trajec-
tories passing through each cell. Grid cells whose counters are above a certain
threshold are expanded to form rectangular shaped RoIs. Cai et al. [19] argued
that rectangular expansion produces RoIs that may contain uninteresting low-
density cells. For this reason, they proposed a hybrid grid-based algorithm,
called Slope RoI, to mine arbitrary RoI shapes from trajectory data. Cesario
et al. [26] split the EXPO 2015 area in a grid and associated grid cells to PoIs
representing pavilions, in order to discover the behavior and mobility patterns
of users inside the exhibition. Shi et al. [124] map geotagged data into grid
cells, and then group the cells taking into account spatial proximity and social
relationship between places.

The proposed G-RoI technique does not belong to the approaches de-
scribed earlier and it differs from them in three main respects:

- Differently from approaches using predefined shapes, G-RoI defines RoIs
as polygons that are more accurate to model the variety of shapes a PoI
can have.

- Density- and grid-based approaches may have troubles in distinguishing
RoIs associated to PoIs that are very close to each other [19]. In fact,
these approaches cluster data points (or aggregate cells) based on their
proximity, even if they belong to different PoIs that are close to each
other. As a result, two or more adjacent PoIs may be associated to the
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Table 5.1. Comparison with related algorithms.

Related work Approach Algorithm Goal

Kisilevich et al. [75] Pred. shapes Circle with fixed radius
Mine travel sequences from
Flickr photos

Spyrou-Mylonas [126] Pred. shapes Circle with fixed radius
Extract popular touristic
routes from Flickr photos

Cesario et al. [25] Pred. shapes Rectangle enclosing PoIs
Trajectory mining
from Twitter data

De Graaff et al. [62] Pred. shapes Voronoi tessellations
RoI extraction from
cadastral data

Crandall et al. [32] Density Mean shift clustering
Organize a large collection
of geotagged Flickr photos

Zheng et al. [156] Density DBSCAN
Discover interesting
places from Flickr photos

Altomare et al. [7] Density DBSCAN
Detect RoIs based on data
from GPS-equipped taxis

Kisilevich et al. [76] Density P-DBSCAN
Discover attractive areas from
collections of Flickr photos

Giannotti et al. [58] Grid Popular Regions
Mine rectangular RoI shapes
from trajectory data

Cai et al. [19] Grid Slope RoI mining
Mine arbitrary RoI shapes
from Flickr trajectory data

Cesario et al. [26] Grid Grid cell aggregation
Discover mobility patterns
from Instagram photos

Shi et al. [124] Grid DCPGS-G
Mine RoIs from historical
geo-social networks

same RoI. In contrast, G-RoI accurately identifies different RoIs even in
the presence of adjacent PoIs, as demonstrated by the experimental results
presented in Section 5.4.

- Density- and grid-based approaches algorithms strongly depend on pa-
rameters setting (e.g., eps and minNumPoints for DBSCAN, cell size and
minimum support for Slope RoI), and it is hard to find parameters that
produce accurate RoIs over multiple locations with a variety of shapes and
data points distributions. In contrast, as demonstrated in Section 5.4, G-
RoI is accurate in identifying RoIs over locations characterized by a large
variety of shapes and data points distributions, using always the same
value for its configuration parameter (a distance threshold between 0 and
1).

5.3 Methodology

Let a PoI P be identified by one or more keywords K = {k1, k2, ...}. Let
Gall be a set of geotagged items. Let G = {g0, g1, ...} be the subset of Gall

associated to P, i.e., the text or tags of each gi ∈ G contains at least one
keyword in K. Let C = {c0, c1, ...} be a set of coordinates, where ci represents
the coordinates of gi ∈ G. Thus, every ci ∈ C represents the coordinates of



78 5 Analysis of geotagged social data

a location from which a user has created a geotagged item referring to P.
Let cp0 be a convex polygon enclosing all the coordinates in C, obtained by
running the convex hull algorithm [9] on C, described by a set of vertices
{v0, v1, ...}.

To find the RoI R for P, the G-RoI algorithm is composed by two proce-
dures:

• G-RoI reduction. Starting from cp0, it iteratively reduces the area of the
current convex polygon by deleting one of its vertex. A density-based cri-
terion is adopted to choose the next vertex to be deleted. The density of
a polygon is the ratio between the number of geotagged items enclosed by
the polygon, and its area. At each step, the procedure deletes the vertex
that produces the polygon with highest density, among all the possible
polygons. The procedure ends when it cannot further reduce the current
polygon, and returns the set of convex polygons CP = {cp0, ..., cpn} ob-
tained after the n steps that have been performed.

• G-RoI selection. It analyses the set of convex polygons CP returned by the
G-RoI reduction procedure, and selects the polygon representing RoIR for
PoI P. An area-variation criterion is adopted to choose R from CP . Given
CP , the procedure identifies two subsets: a first subset {cp0, ..., cpcut−1}
such that the area of any cpi is significantly larger than the area of cpi+1;
a second subset {cpcut, ..., cpn} such that the area of any cpi is not signif-
icantly larger than the area of cpi+1. The procedure returns cpcut as RoI
R. This corresponds to choosing cpcut as the corner point of a discrete
L-curve [65] obtained by plotting the areas of all the convex polygons in
CP on a Cartesian plane, as detailed later in this section.

5.3.1 Example

For the sake of clarity and for the reader’s convenience, before going into
algorithmic details, we describe how the two G-RoI procedures work through
a real example. We collected a small sample of 200 geotagged items from
different social networks (Flickr, Twitter, Instagram and Facebook), referring
to the Colosseum in Rome and posted at a maximum distance of 500m from
it.

In their posts and photos, the social network users identify the Colosseum
with different keywords. The Geonames website1 reports the names used in dif-
ferent languages to identify the Colosseum, such as Coliseum, Coliseo, Colise,
and synonymous such as Flavian Amphitheatre or Amphitheatrum Flavium.
All the geotagged items in our sample contain at least one of such keywords.
From these items, the 200 coordinates shown in Figure 5.1(a) are extracted.
Given the coordinates, the G-RoI reduction procedure calculates the initial
convex polygon cp0 (shown Figure 5.1(b)), and then iteratively reduces the

1 http://geonames.org/
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(a) Collection of geotagged items.

(b) Initial convex polygon
cp0.

(c) Generating cp1 by
deleting one vertex from
cp0.

(d) Generating cp2 by
deleting one vertex from
cp1.

Fig. 5.1. G-RoI reduction on Colosseum’s geotagged items.

area. Figure 5.1(c) shows polygon cp1 obtained after the first step by delet-
ing one of the vertices from cp0. Similarly, Figure 5.1(d) shows polygon cp2
obtained after cp1. The G-RoI reduction procedures iterates until it cannot
further reduce the current polygon. The output of the procedure is the set
of convex polygons CP = {cp0, cp1, ..., cpn} obtained at each step. Figure 5.2
shows with different colors all the convex polygons in CP , including the one
chosen as RoI R by the subsequent G-RoI selection procedure.

The G-RoI selection procedure analyses CP to choose RoI R among all
the convex polygons in it. To this end, the procedure extracts from CP an
ordered set of Cartesian points P = {(0, A0), (1, A1), ..., (n,An)}.

An element pi ∈ P is a point (i, Ai), where i is the step in which cpi was
generated, and Ai is the area of cpi. Figure 5.3(a) plots all the points in P in
our example. The graph shows how much the area decreases with the steps
performed by the G-RoI reduction procedure. The graph can be divided in
two parts:
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Fig. 5.2. Set of convex polygons in CP identified by the RoI reduction procedure,
with indication of RoI R chosen by the RoI selection procedure.

• The first part, from step 0 to a cut-off point pcut (not included), decreases
quickly, because at each step the G-RoI reduction procedure cuts a signif-
icant portion of area.

• The second part, from pcut to step n, decreases slowly, because at each
step the G-RoI reduction procedure cuts only a small portion of area.

The G-RoI selection procedure identifies the point pcut that is located at
the maximum distance (distmax) from the reference line joining the first point
and the last point under analysis (p0 and pn), as shown in Figure 5.3(a). If
the set of points {pcut, ..., pn} follows a linear trend as shown in Figure 5.3(b),
i.e., there is no point below a threshold line at distance th from the reference
line joining the points pcut and pn, then the procedure returns the polygon
corresponding to pcut as RoI R (see Figure 5.3(c)). Otherwise, the G-RoI
selection procedure iterates by finding a new cut-off point from the set of
points on the right of pcut, as detailed in the next section.

5.3.2 Algorithmic details

Algorithm 1 shows the pseudo-code of the G-RoI reduction procedure. The
input is a set of coordinates C and the output is a set of convex polygons CP .
Starting from C, the procedure calculates the initial convex polygon cp0 (line
1). Then, cp0 is added to CP and is taken as current convex polygon cp (lines
2-3). A do-while block performs the area reduction steps (lines 4-22). At each
step, the area of the current convex polygon cp is reduced by deleting one of
its vertices. The algorithm ends when it cannot further reduce cp.

At the beginning of each reduction step, the current maximum density
ρmax is set to zero (line 5), while the convex polygon with maximum density
cpmax and the vertex to be deleted vdel are initialized to null (lines 6-7).
At each reduction step, for choosing the vertex to be deleted from cp, the
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Fig. 5.3. G-RoI selection from Colosseum’s convex polygons.

algorithm iterates (lines 8-17) on each vertex v ∈ cp performing the following
operations:

- creates a temporary set of coordinates Ctmp obtained by deleting v from
C (line 9);

- calculates the convex polygon cptmp from Ctmp (line 10);
- calculates the area Atmp of cptmp (line 11);
- if Atmp is greater than zero (line 12), the density ρtmp of cptmp is calculated

as the number of coordinates in Ctmp divided by Atmp (line 13);
- if ρtmp is greater than ρmax (line 14), ρtmp is assigned to ρmax (line 15),

cptmp is assigned to cpmax (line 16), and v is assigned to the vertex to be
deleted vdel (line 17).
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Algorithm 1: G-RoI reduction.

Input : Set of coordinates C
Output: Set of convex polygons CP

1 cp0 ← convexHull(C); /* Initial convex polygon */
2 CP ← {cp0}; /* Set of convex polygons */
3 cp← cp0; /* Current convex polygon */
4 do
5 ρmax ← 0; /* Current maximum density */
6 cpmax ← ⊢; /* Convex polygon with density = ρmax */

7 vdel ← ⊢; /* Vertex to be deleted */
8 for v ∈ cp do
9 Ctmp ← C − v;

10 cptmp ← convexHull(Ctmp);
11 Atmp ← Area(cptmp);
12 if Atmp > 0 then
13 ρtmp ← |Ctmp| /Atmp;
14 if ρtmp > ρmax then
15 ρmax ← ρtmp;
16 cpmax ← cptmp;

17 vdel ← v;

18 if ρmax > 0 then
19 CP ← CP ∪ {cpmax};
20 cp← cpmax;

21 C ← C − vdel;

22 while ρmax > 0;
23 return CP

After having iterated on all vertices, if ρmax is greater than zero (i.e.,
at least one polygon was found) (line 18), the algorithm adds cpmax to CP
(line 19), assigns cpmax to cp (line 20), and deletes vdel from C (line 21).
Finally, when the current reduction step does not change ρmax, and so it
remains equal to zero, which means that the current convex polygon cannot
be further reduced (line 22), the algorithm returns the set of convex polygons
CP generated (line 23).

Algorithm 2 shows the pseudo-code of the G-RoI selection procedure. The
input is a set of convex polygons CP and a threshold th ∈ (0, 1). Given CP ,
the algorithm creates a set of Cartesian points P , where each point pi is a
pair (i, Ai), with i identifying the step in which cpi has been generated and
Ai representing the area of cpi (lines 1-4).

Then, the index of the cut-off point cut is set to zero (line 5). At each
iteration (lines 6-19) the algorithm tries to find a cut-off point pcut that is at
the maximum distance from the line y = 1− x (which links the first and last
normalized points in CP ), and which is located below the line y = 1− th− x
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(i.e., within a threshold distance th from the line y = 1 − x). Thus, at the
beginning of each iteration, the maximum distance distmax is set to zero (line
7), and the index of the point with maximum distance imax is set to cut (line
8).

Algorithm 2: G-RoI selection.

Input : Set of convex polygons CP ; Threshold th ∈ (0, 1)
Output: Region of Interest R.

1 P ← ∅; /* Set of Cartesian points */
2 for cpi ∈ CP do
3 Ai ← Area(cpi);
4 P ← P ∪ {(i, Ai)};
5 cut← 0; /* Index of the cut-off point */
6 do
7 distmax ← 0; /* Current maximum distance from y=1-x */
8 imax ← cut; /* Index of the point with distmax */
9 for i← cut+ 1 to n− 1 do /* Where n = |CP |− 1 */

10 xnorm = (Pi.x− Pcut.x)/(Pn.x− Pcut.x);
11 ynorm = (Pi.y − Pn.y)/(Pcut.y − Pn.y);
12 if ynorm < 1− th− xnorm then
13 disttmp = (1− ynorm − xnorm) ·

√
2/2;

14 if disttmp ≥ distmax then
15 distmax ← disttmp;
16 imax ← i;

17 if distmax > 0 then
18 cut← imax;

19 while distmax > 0;
20 return cpcut

The algorithm iterates (lines 9-16) on each point pi ∈ (pcut, pn) performing
the following operations:

- normalizes pi.x with respect to [pcut.x, pn.x] and stores such value in xnorm

(line 10);
- normalizes pi.y with respect to [pn.y, pcut.y] and stores such value in ynorm

(line 11);
- if the normalized point (xnorm, ynorm) is below the line y = 1− th−x (line

12), disttmp is calculated as the distance of that point from y = 1−x (line
13).

- if disttmp is greater than distmax (line 14), distmax is updated to disttmp

(line 15) and imax is updated to i (line 16).

After having iterated on all points in {pcut, ..., pn}, if distmax is greater
than zero (i.e. a new cut-off point was found) (line 17), cut is updated to imax
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(line 18). Finally, when distmax is equal to zero (i.e., there are no points below
y = 1− th− x) (line 19), the algorithm returns the convex polygons cpcut as
RoI R (line 20).
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(c) Iteration 3: No cut-off point found.

Fig. 5.4. G-RoI selection procedure: An example with three iterations.

Figure 5.4 shows an example in which G-RoI selection procedure iterates
three times to find the cut-off point. At the first iteration, the algorithm
analyses the points in {p0, ..., pn} and finds the first cut-off point pcut1 (see
Figure 5.4(a)). At the second iteration, the algorithm analyses the points in
{pcut1, ..., pn} and finds a new cut-off point pcut2 (see Figure 5.4(b)). At the
third iteration, the algorithm analyses the points in {pcut2, ..., pn} but it does
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not find any cut-off point (see Figure 5.4(c)). Therefore, the algorithm returns
as RoI R the convex polygon corresponding to pcut2.

5.4 Evaluation

We experimentally evaluated the accuracy of G-RoI in detecting the RoIs
associated to a set of PoIs, comparing it with three existing techniques: Cir-
cle [126] (representative of the predefined-shapes approach), DBSCAN [156]
(density-based clustering), and Slope [19] (grid-based aggregation). The anal-
ysis was carried out on 24 PoIs located in the center of Rome (St. Peter’s
Basilica, Colosseum, Circus Maximus, etc.) and 24 PoIs located in the center
of Paris (Louvre Museum, Eiffel Tower, etc.) using about 2.3 millions geo-
tagged items published in Flickr from January 2006 to May 2016 in the areas
under analysis.

5.4.1 Performance metrics

To measure the accuracy of the algorithms in detecting RoIs, we use precision
and recall metrics. As in [62], let roireal be the real RoI for a PoI, and let
roifound be the RoI found by an algorithm. Let us define the true positive area
roiTP as the intersection of roifound and roireal. Precision Prec and recall
Rec are defined as:

Prec =
Area(roiTP )

Area(roifound)
(5.1)

Rec =
Area(roiTP )

Area(roireal)
(5.2)

A roifound larger than roireal produces a high recall and a low precision,
whereas roifound smaller than roireal produces a low recall and a high preci-
sion. To rank the results, we combine precision and recall using the F1 score:

F1 =
2 · Prec ·Rec

Prec+Rec
(5.3)

5.4.2 Data source

The evaluation has been performed on geotagged data collected from Flickr2,
which is one of the most used social networks for photo sharing. Flickr shares
more than one billion of photos that can be gathered using public APIs, which
allow to retrieve metadata about all the photos matching the provided search
criteria, e.g. the photos taken in a radius from a given geographical point.

2 http://flickr.com
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Using the APIs, we collected metadata about 2.3 millions geotagged items
published in Flickr from January 2006 to May 2016 in the central areas of
Rome and Paris. For each photo matching the search criteria, the Flickr APIs
returned a metadata element such as the one shown in Figure 5.5.

{ "id":"987654321",
"owner":{"id":"123456789@N00","username":"FlickrUser"},
"dateTaken":"May 3, 2015 4:39:24 PM",
"tags":[
{"value":"italy"},{"value":"rome"},{"value":"piazzadispagna"},
{"value":"itali"},{"value":"spanishteps"}
],
"title":"Night at Piazza di Spagna",
"description": "In the Piazza di Spagna, just

below the Spanish Steps",
"geoData":{ "longitude":12.482045, "latitude":41.905888}
...
}

Fig. 5.5. An example of metadata element returned by the Flickr APIs.

Each metadata element was parsed to extract the relevant features asso-
ciated to geotagged items introduced in Section 5.1 (text, tags, coordinates,
userId, timestamp).

5.4.3 Experimental results

The techniques under analysis need some parameters to work. We made sev-
eral preliminary tests to find parameter values that perform effectively in all
the scenarios, taking into account that the various PoIs are characterized by
significant variability of shape, area and density (number of Flickr photos di-
vided by area). For the Circle technique, the radius was set to 260 meters.
With DBSCAN, the maximum distance between points is 10 meters and the
minimum number of cluster points is 150. For the Slope technique, the square
cell side is 55 meters and the minimum cell support is 150. For G-RoI, the
threshold th was set to 0.27. The next two sections present the results obtained
on 24 representative PoIs in Rome and 24 PoIs in Paris, respectively.

Rome

Figure 5.6 reports a graphical view of six (out of the 24 analyzed) representa-
tive PoIs in Rome (St. Peter’s Basilica, Circus Maximus, Colosseum, Roman
Forum, Arch of Constantine and Trevi Fountain): i) purple lines represent
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the RoIs found by Circle; ii) orange lines represent the RoIs identified by DB-
SCAN; ii) red lines the RoIs found by Slope RoI; iii) blue lines those found
using G-RoI; iv) black dotted lines the real RoIs.

As shown in the figure, the RoIs identified by the Circle technique are
very approximative compared to the real ones. This is due to two reasons: i)
circles cannot be used to represent elongated shapes (e.g. Circus Maximus);
ii) with a given radius it is difficult to represent well places with very different
areas (e.g., Colosseum vs Trevi Fountain). DBSCAN produced accurate results
with St. Peter’s Basilica and Colosseum, but failed in finding RoIs of places
with low density (e.g., Circus Maximus) or very close to a another big place
(e.g., Arch of Constantine, which is close to Colosseum). Also Slope failed
in distinguishing RoIs from two adjacent places (e.g., Colosseum and Roman
Forum) that do not present significant density variations. Moreover, Slope fails
in finding good RoIs for places with low density (e.g., with Circus Maximus
it found a very small RoI compared to the real one). Differently from the
previous techniques, G-RoI is able to represent PoIs characterized by different
shapes, areas and densities. In fact, G-RoI works well with both compact and
elongated shapes (e.g., Trevi Fountain and Circus Maximus), with both small
and large areas (e.g., Arch of Constantine and Roman Forum), and with
various densities (from Circus Maximus to Colosseum). In addition, G-RoI
accurately distinguishes RoIs of adjacent PoIs (e.g., Arch of Constantine and
Colosseum).

Table 5.2 illustrates the performance (Precision, Recall, F1 score) of the
four techniques, for all the 24 PoIs that have been considered. The last row
of the table reports mean values computed over the 24 PoIs.

The results reported in the table confirm that using a predefined shape
(the Circle) does not bring to accurate results. In fact, in most cases the Circle
produces a very high recall with a low precision (which result in a mean F1

score of 0.26), which means that the RoI identified by the technique is too
large compared to the real one.

DBSCAN achieves the best results (F1 score ranging from 0.74 to 0.91)
with four PoIs - St. Peter’s Basilica, Colosseum, Piazza Navona and Mau-
soleum of Hadrian - which are characterized by a similar density. On average,
the precision of DBSCAN was 0.69 and the recall was 0.54, which leads to a
mean F1 score of 0.43. The fact that the precision is higher than the recall,
means that the RoIs identified by DBSCAN are too small compared to the
real ones.

Slope identifies the best RoI only with one PoI, Palazzo Montecitorio,
with an F1 score of 0.67. On the mean, the precision of Slope was 0.48 and
the recall was 0.66, with a mean F1 score of 0.38. In this case, the precision is
lower than the recall, which means that the RoIs identified by this techniques
are on average larger than the real ones.

Finally, G-RoI outperformed the other RoI mining techniques in 19 out
of 24 PoIs, with a mean precision of 0.78, a mean recall of 0.82, and a mean
F1 score of 0.77 (0.34 higher than the F1 score of DBSCAN). These results
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(a) St. Peter’s Basilica. (b) Circus Maximus.

(c) Colosseum. (d) Roman Forum.

(e) Arch of Constantine. (f) Trevi Fountain.

Fig. 5.6. RoIs identified by different techniques: Circle (purple lines), DBSCAN
(orange), Slope (red), G-RoI (blue). Real RoIs shown as black dotted lines.

confirm the ability of G-RoI to accurately identify RoIs regardless of shapes,
areas and densities of PoIs, and without being influenced by the proximity of
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PoI
Circle DBSCAN Slope G-RoI

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

St. Peter’s Basilica 0.39 1.00 0.56 0.96 0.86 0.91 0.56 0.50 0.53 0.92 0.78 0.84
Circus Maximus 0.39 0.84 0.53 0.00 0.00 0.00 0.81 0.13 0.22 0.95 0.94 0.94
Colosseum 0.33 1.00 0.50 0.90 0.75 0.82 0.27 0.83 0.40 0.61 1.00 0.76
Roman Forum 0.62 0.85 0.71 0.61 0.25 0.00 0.44 0.62 0.51 0.95 0.80 0.87
Arch of Constantine 0.00 1.00 0.01 0.01 1.00 0.02 0.06 1.00 0.11 0.53 0.85 0.65
Trevi Fountain 0.01 1.00 0.03 0.42 1.00 0.59 0.14 1.00 0.24 0.49 1.00 0.66
Piazza Colonna 0.02 1.00 0.05 0.93 0.52 0.67 0.18 1.00 0.31 0.92 0.82 0.87
Tiber Island 0.14 1.00 0.24 1.00 0.02 0.03 0.40 0.26 0.31 0.72 0.81 0.76
Mausoleum of Hadrian 0.11 1.00 0.20 0.86 0.65 0.74 0.63 0.59 0.61 0.77 0.59 0.67
Piazza del Popolo 0.11 1.00 0.20 0.98 0.58 0.73 0.60 0.88 0.71 0.60 0.98 0.74
Villa Borghese 1.00 0.24 0.38 1.00 0.00 0.00 1.00 0.00 0.01 1.00 0.44 0.61
Piazza di Spagna 0.11 1.00 0.20 0.72 0.65 0.68 0.41 0.77 0.54 0.87 0.84 0.86
Piazza Venezia 0.09 1.00 0.17 0.57 0.78 0.66 0.13 0.99 0.22 0.52 0.96 0.68
Piazza Navona 0.06 1.00 0.11 0.71 0.96 0.81 0.23 1.00 0.38 0.49 0.99 0.66
Trastevere 1.00 0.36 0.53 1.00 0.01 0.02 1.00 0.04 0.08 1.00 0.55 0.71
Our Lady in Trastev. 0.02 1.00 0.03 0.62 0.98 0.76 0.14 1.00 0.25 0.83 0.94 0.88
Capitoline Hill 0.09 1.00 0.17 0.31 1.00 0.47 0.45 0.43 0.44 0.94 0.93 0.94
Vatican Museums 0.41 1.00 0.58 0.75 0.51 0.00 0.55 0.78 0.65 0.65 0.87 0.75
Pantheon 0.04 1.00 0.09 0.58 0.93 0.72 0.17 1.00 0.29 0.71 0.98 0.82
The Mouth of Truth 0.03 1.00 0.06 0.98 0.24 0.38 0.38 0.90 0.54 0.75 0.88 0.81
Palazzo Montecitorio 0.04 1.00 0.08 1.00 0.15 0.26 0.79 0.58 0.67 0.98 0.42 0.59
Campo de’ Fiori 0.02 1.00 0.04 0.56 1.00 0.72 0.24 0.98 0.39 0.77 0.96 0.85
St Mary Major 0.12 1.00 0.22 1.00 0.21 0.35 0.88 0.53 0.66 0.86 0.65 0.74
Janiculum 0.59 0.70 0.64 0.00 0.00 0.00 1.00 0.03 0.07 0.94 0.78 0.85
Mean values 0.24 0.92 0.26 0.69 0.54 0.43 0.48 0.66 0.38 0.78 0.82 0.77

Table 5.2. Precision, Recall, and F1 score of Circle, DBSCAN, Slope and G-RoI
over 24 PoIs in Rome. For each row, the best F1 score is indicated in bold.

different PoIs. For a complete view of the results produced by G-RoI, Figure
5.7 shows all the 24 RoIs of Rome found by G-RoI, compared with the real
ones.

Paris

Figure 5.8 presents a graphical view of six (out of the 24 analyzed) represen-
tative PoIs in Paris (Louvre Museum, Eiffel Tower, Champs-Élysées, Notre-
Dame, Pompidou Centre, Pont des Arts), while Table 5.3 presents the perfor-
mance of the four techniques (Circle, DBSCAN, Slope and G-RoI), for all the
24 PoIs that have been considered in Paris.

The experimental results confirm the behavior observed in Rome RoIs.
Also in this case, Circle does not compute accurate results, producing a very
high recall with a low precision (which results in a mean F1 score of 0.23).

DBSCAN achieves the best results only with four PoIs (i.e., Notre-Dame,
Moulin Rouge, Paris Opera, and Arc de Triomphe). On the mean, the pre-
cision of DBSCAN was 0.85 and the recall was 0.42, which means that the
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Fig. 5.7. City of Rome: RoIs identified by G-RoI (blue lines) compared with real
ones (black dotted lines).

RoIs identified by this techniques are on average smaller than the real ones.
Furthermore, Slope identifies the best RoI only for two PoIs (i.e. Eiffel Tower
and Place de la Concorde). On average, the precision of Slope was 0.45 and
the recall was 0.64, with an average F1 score of 0.44. In this case, the pre-
cision is lower than the recall, which means that the RoIs identified by this
techniques are on average larger than the real ones.

Finally, G-RoI outperformed the other RoI mining techniques in 18 out of
24 PoIs, with a mean precision of 0.81, a mean recall of 0.66, and a mean F1

score of 0.70 (0.23 higher than the mean F1 score of DBSCAN). In particular,
G-RoI results to be the only technique able to identify an accurate RoI for the
Champs-Élysées that are characterized by a very elongated shape, achieving a
very high F1 score (0.77). The behavior of G-RoI for the Eiffel Tower deserves
to be discussed: differently from the other techniques, G-RoI produces a larger
RoI with an elongated shape. This is due to the fact that anyone who wants
to take a picture of the Eiffel Tower does not come strictly under it, but at
some distance in front of it or behind it. Specifically, most geotagged items on
this subject are located at Trocadéro, commonly considered the best place to
take picture with Eiffel Tower in background. Overall, also the results on Paris
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(a) Louvre Museum. (b) Eiffel Tower.

(c) Champs-Élysées. (d) Notre-Dame.

(e) Pompidou Centre. (f) Pont des Arts.

Fig. 5.8. RoIs identified by different techniques in Paris: Circle (purple lines), DB-
SCAN (orange), Slope (red), G-RoI (blue). Real RoIs shown as black dotted lines.

confirm the ability of G-RoI in identifying RoIs characterized by a variety of
shapes, areas and densities of PoIs.
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PoI
Circle DBSCAN Slope G-RoI

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Louvre Museum 0.66 0.72 0.69 1.00 0.36 0.53 0.74 0.49 0.59 0.94 0.69 0.79
Tour Eiffel 0.28 1.00 0.44 1.00 0.38 0.55 0.56 0.98 0.72 0.46 0.57 0.51
Champs-Élysées 0.18 0.26 0.22 1.00 0.01 0.02 0.65 0.08 0.14 0.95 0.64 0.77
Notre-Dame 0.18 1.00 0.30 0.76 0.84 0.79 0.32 0.84 0.46 0.53 0.90 0.67
Pompidou Centre 0.13 1.00 0.23 0.82 0.66 0.73 0.37 0.98 0.54 0.78 0.98 0.87
Pont des Arts 0.01 1.00 0.02 0.31 1.00 0.48 0.11 0.75 0.19 0.42 1.00 0.59
Place de la Concorde 0.26 1.00 0.41 1.00 0.15 0.26 0.74 0.79 0.77 0.99 0.43 0.60
Moulin Rouge 0.02 1.00 0.04 0.81 0.86 0.84 0.00 0.00 0.00 0.72 0.62 0.67
Place de la Bastille 0.07 1.00 0.13 1.00 0.24 0.39 0.62 0.87 0.73 0.95 0.69 0.80
Sacré-Cœur Basilica 0.05 1.00 0.09 0.48 0.90 0.63 0.02 0.01 0.01 0.81 0.63 0.71
Jardin des Plantes 0.77 0.79 0.78 1.00 0.00 0.01 1.00 0.09 0.16 0.97 0.84 0.90
Saint-Sulpice 0.06 1.00 0.11 1.00 0.09 0.17 0.59 0.57 0.58 0.96 0.48 0.64
Pantheon 0.11 1.00 0.19 1.00 0.29 0.45 0.62 0.82 0.70 0.74 0.78 0.76
Trocadéro 0.20 1.00 0.34 1.00 0.28 0.43 0.83 0.52 0.64 0.89 0.70 0.78
Place de la République 0.08 1.00 0.14 0.97 0.46 0.62 0.58 0.77 0.66 0.98 0.59 0.74
Musée de l’Orangerie 0.02 1.00 0.05 1.00 0.52 0.68 0.24 0.88 0.38 0.91 0.70 0.79
Galeries Lafayette 0.07 1.00 0.12 0.92 0.26 0.41 0.36 0.83 0.50 0.87 0.76 0.81
Arab World Institute 0.04 1.00 0.07 0.96 0.49 0.65 0.28 0.99 0.44 0.96 0.55 0.70
Grand Palais 0.17 1.00 0.30 1.00 0.38 0.55 0.61 0.94 0.74 0.83 0.85 0.84
Petit Palais 0.05 1.00 0.10 1.00 0.36 0.53 0.07 0.33 0.11 0.78 0.59 0.67
Paris Opera 0.07 1.00 0.13 0.90 0.56 0.69 0.37 0.84 0.52 0.93 0.49 0.64
Pont Neuf 0.04 1.00 0.08 0.83 0.18 0.30 0.16 0.74 0.27 0.55 0.59 0.57
Arc de Triomphe 0.05 1.00 0.10 0.55 0.77 0.64 0.30 1.00 0.46 0.50 0.35 0.41
Sorbonne 0.20 1.00 0.33 0.00 0.00 0.00 0.75 0.21 0.33 0.99 0.47 0.64
Mean values 0.16 0.95 0.23 0.85 0.42 0.47 0.45 0.64 0.44 0.81 0.66 0.70

Table 5.3. Precision, Recall, and F1 score of Circle, DBSCAN, Slope and G-RoI
over 24 PoIs in Paris. For each row, the best F1 score is indicated in bold.

5.5 Conclusions

RoI mining techniques are aimed at discovering Regions-of-Interest (RoIs)
from Places-of-Interest (PoIs) and other data. Existing RoI mining techniques
are based on the use of predefined shapes, density-based clustering or grid-
based aggregation. In this chapter we presented G-RoI, a novel RoI mining
technique that exploits the indications contained in geotagged social media
items to discover the RoI of a PoI with a high accuracy.

We experimentally evaluated the accuracy of G-RoI in detecting the RoIs
associated to a set of PoIs, comparing it with three existing techniques: Circle
(predefined-shapes approach), DBSCAN (density-based clustering), and Slope
(grid-based aggregation). The analysis was carried out on a set of PoIs located
in the center of Rome, characterized by different shapes, areas and densities,
using a large set of geotagged photos published in Flickr over six years. The
experimental results show that G-RoI is able to detect more accurate RoIs
than existing techniques. Over a set of 24 PoIs in Rome, G-RoI achieved
better results than related techniques based on the three classes of existing
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algorithms in 19 cases, with a mean precision of 0.78, a mean recall of 0.82,
and a mean F1 score of 0.77. In particular, the F1 score of G-RoI is 0.34 higher
than that obtained with the well-known DBSCAN algorithm.

To better assess the accuracy of G-RoI, further experiments have been run
over an additional set of 24 PoIs in Paris. Also in this case, G-RoI achieved best
results in 18 cases, with a mean precision of 0.81, a mean recall of 0.66, and a
mean F1 score of 0.70 (0.23 higher than that obtained with DBSCAN). These
results confirm the ability of G-RoI to accurately identify RoIs regardless
of shapes, areas and densities of PoIs, and without being influenced by the
proximity of different PoIs. For the purpose of reproducibility, an open-source
version of G-RoI and all the input data used in the experiments are available
at https://github.com/scalabunical/G-RoI.





6

A scalable data mining technique for flight
delay prediction

A viable approach to implement complex algorithms for Big Data analysis is
based on the development of machine learning techniques on scalable parallel
computing systems. In fact, parallel machine learning algorithms coupled with
scalable computing and storage infrastructures can offer an effective way to
mine very large and complex datasets by the exploitation of artificial intelli-
gence approaches able to obtain usable results in reasonable time [132].

Advanced machine learning techniques and associated data mining tools
can help to understand and predict several complex phenomena and attack
many problems in different application areas. This approach can be useful in
enabling businesses and research collaborations alike to make informed deci-
sions. In this chapter we describe how to exploit parallel computing techniques
coupled with Cloud computing systems to solve a Big Data analytics problem
with a significant economical impact: flight delay prediction. Every year ap-
proximately 20% of airline flights are delayed or canceled mainly due to bad
weather, carrier equipment or technical airport problems. These delays result
in significant cost to both airlines and passengers. For instance, the cost of
flight delays for US economy was estimated to be $32.9 billion in 2007 [8] and
more than half of it was charged to passengers.

The work we present in this chapter aimed at implementing a predictor
of the arrival delay of a scheduled flight due to weather conditions, as several
studies have shown that weather is one of the primary causes of flight delays
[6]. The predicted arrival delay takes into consideration both flight informa-
tion (origin airport, destination airport, scheduled departure time, scheduled
arrival time) and weather conditions at origin airport and destination airport
according to the flight timetable.

Two open datasets of airline flights and weather observations have been
collected and exploratory data analysis has been performed to discover ini-
tial insights, evaluate the quality of data, and identify potentially interesting
subsets. Then, data preprocessing and transformation (joining and balancing
operations) have been performed to make data ready for modeling. Finally, a
parallel version of the Random Forest data classification algorithm has been
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implemented, iteratively calibrating its settings to optimize results in terms
of accuracy and recall. The data preparation and mining tasks have been im-
plemented as MapReduce programs [35] that have been executed on a Cloud
infrastructure. Other than providing the necessary computing resources for
our experiments, the Cloud makes the proposed process more general: in fact,
if the amount of data increases (e.g., by extending the analysis to many years
of flight and weather data), the Cloud can provide the required resources with
a high level of elasticity, reliability, and scalability.

The results show a high accuracy in prediction of delays above a given
threshold. For instance, with a delay threshold of 15 minutes we achieve an
accuracy of 74.2% and a delay recall of 71.8%, while with a threshold of 60
minutes the accuracy is 85.8% and the delay recall is 86.9%. An interesting
result of our work is that, even without considering weather conditions, the
model achieves an accuracy of 69.1%. This means that there is a persisting
pattern of flight delay that is identified by the proposed methodology, which
can be used to inform airlines what they should improve in terms of flight
schedule to reduce delays. Moreover, the experimental results show the scala-
bility obtained by executing in parallel on the Cloud, using MapReduce, both
data preparation and data mining tasks.

The predictions provided by the developed system could be used as a
weather-related component in a recommender system for passengers, airlines,
airports, and websites specialized in booking flights. Considering delays due
to weather conditions, passengers and airlines could estimate whether a flight
will be delayed or not; airports could utilize the predictor to assist decision-
making in air traffic management; websites allowing to book a single or multi-
stop flight could use the system for suggesting the most reliable flight, i.e.
the flight having the best likelihood to arrive on time. This is even true for
multi-stop flights in which a single delay can lead to the cancellation of the
whole flight.

Our approach significantly differs from the system employed by the Fed-
eral Aviation Administration (FAA). In fact, FAA uses the Weather Impacted
Traffic Index (WITI) [21] to estimate the total delay in a given airport, based
on weather information and actual traffic (i.e., queuing delay reflecting excess
traffic demand versus capacity). In contrast, our system is able to predict the
delay of individual flights, using specific flight information (origin airport, des-
tination airport, scheduled departure and arrival time), in addition to weather
conditions at origin and destination airport. Predicting individual flight delays
is an important feature that could be used to extend or complement current
FAA’s system. Another result of our research that could be used to improve
the performance of existing prediction tools, including FAA’s system, is that
accuracy of prediction significantly improves when several weather observa-
tions before scheduled flight time are considered, rather than just a single
one.

The remainder of the chapter is organized as follows. Section 6.1 intro-
duces the main concepts, briefly describes the datasets used in this work, and
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outlines the performance metrics used to assess the quality of results. Section
6.2 explores the large collection of flight data available to identify the subsets
of data that are suitable for analysis. Section 6.3 describes the data analysis
process implemented to generate the flight delay prediction models, starting
from the input data. Section 6.4 presents an evaluation of the obtained results.
Section 6.5 discusses related work. Finally, Section 6.6 concludes the chapter.

6.1 Problem definition

This section provides a definition of the main concepts underlying the problem
addressed in this work. Moreover, the section provides a short description of
the used datasets, and introduces the performance metrics used to assess
quality of the results.

6.1.1 Preliminary definitions

Definition 6.1. (Flight). A Flight F is a tuple ⟨Ao, Ad, tsd, tad, tsa, taa⟩, where
Ao is the origin airport, Ad is the destination airport, tsd is the scheduled de-
parture time, tad is the actual departure time, tsa is the scheduled arrival time
to gate, and taa is the actual arrival time to gate, all times include dates,
hours and minutes.

Definition 6.2. (Airport Weather Observation). An Airport Weather Obser-
vation O is a tuple ⟨A, t, T,H,Wd,Ws, P, S, V,D⟩, where A is the airport, t is
the observation time (including date, hours and minutes), T is the tempera-
ture, H is the humidity, Wd is the wind direction, Ws is the wind speed, P
is the barometric pressure, S is the sky condition, V is the visibility and D is
the weather phenomena descriptor.

Definition 6.3. (Arrival Delay). The Arrival Delay of a Flight F , denoted
AD(F ), is the difference between its actual and scheduled arrival times to
gate, i.e. AD(F ) = F.taa-F.tsa, where the dot notation is used to get the
different fields of a tuple (e.g. F.taa refers to taa of flight F )

Definition 6.4. (On-time Flight). Given a flight F and a threshold Th, F is
an On-time Flight if AD(F ) < Th.

Definition 6.5. (Delayed Flight). Given a flight F and a threshold Th, F is
a Delayed Flight if AD(F ) ≥ Th.

6.1.2 Problem statement

As mentioned before, the goal of this work is to predict the arrival delay of a
scheduled flight due to weather conditions. The predicted arrival delay takes
into consideration both flight information (origin airport, destination airport,
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scheduled departure time, scheduled arrival time) and weather conditions at
origin airport and destination airport according to the flight timetable. The
predicted arrival delay of any flight F scheduled to depart from airport Ao

at time tsd, and to arrive at airport Ad at time tsa, is an estimate of the
arrival delay AD(F ). If the predicted arrival delay of a scheduled flight F is
less than a given threshold, it is classified as an on-time flight; otherwise, it
is classified as a delayed flight. We do not take into account en-route weather
conditions because it is not trivial to infer the weather along a flight trajectory.
In fact, given the different positions of an aircraft, it is difficult to combine
measurements of nearby weather stations, considering that the altitude of the
aircraft should also be taken into account [130].

6.1.3 Data sources

The results presented in this chater have been obtained using the Airline
On-Time Performance (AOTP) dataset provided by RITA - Bureau of Trans-
portation Statistics1 for the five-year period beginning January 2009 and end-
ing December 2013. The AOTP dataset contains data for domestic US flights
by major air carriers, providing for each flight detailed information such as
origin and destination airports, scheduled and actual departure and arrival
times, air time, and non-stop distance.

The second data source used in this work is the Quality Controlled Local
Climatological Data (QCLCD) dataset available from the National Climatic
Data Center2, considering the same five-year period (January 2009 - December
2013). The large period considered ensures that the inferred model is able to
predict delays due to almost every condition, as are excluded only those rare
events that did not happen in the large time frame considered. The QCLDC
dataset contains hourly weather observations from about 1,600 U.S. stations.
Each weather observation includes data about temperature, humidity, wind
direction and speed, barometric pressure, sky condition, visibility and weather
phenomena descriptor. According to the METAR format [48], the phenomena
descriptor (precipitation, obscuration, or other) might be preceded by one
or two qualifiers (intensity or proximity to the station and descriptor). For
instance, +SN indicates a heavy snow phenomena and TSGR a thunderstorm
with hail.

Table 6.1 reports size, number of tuples and number of columns of the
datasets used in this work.

6.1.4 Performance metrics

A confusion matrix is a common method used to measure the quality of a
classification. It contains information about the instances in an actual and a

1 http://www.transtats.bts.gov/
2 http://cdo.ncdc.noaa.gov/qclcd/QCLCD
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Name Size (GB) N. of tuples N. of columns

AOTP 13.37 31 millions 109
QCLCD 27.68 233 millions 44

Table 6.1. Datasets specifications.

predicted class. In particular, each row of a confusion matrix represents the
instances in an actual class, while each column represents the instances in a
predicted class.

Table 6.2 shows the confusion matrix for the problem we addressed. Flights
that are correctly predicted as on-time are counted as True Positive (TP ),
whereas flights that are predicted as on-time but are actually delayed are
counted as False Positive (FP ). Similarly, flights that are correctly predicted
as delayed are counted as True Negative (TN), whereas flights that are pre-
dicted as delayed but are actually on-time are counted as False Negative (FN).

On-time (predicted) Delayed (predicted)

On-time (actual) True Positive (TP) False Negative (FN)

Delayed (actual) False Positive (FP) True Negative (TN)

Table 6.2. Confusion matrix.

Starting from the confusion matrix we can calculate some metrics. One of
the most frequently used evaluation metrics in machine learning is accuracy,
denoted Acc, which measures the fraction of all instances that are correctly
classified.

Acc =
TP + TN

TP + TN + FP + FN
(6.1)

Accuracy provides an overall quality measure of a classifier, but it does not
provide information about the goodness of a classifier in predicting a specific
class. Therefore, recall metrics are often used to measure the quality of a
classifier with respect to a given class.

We define on-time recall, denoted Reco, the ratio between the number of
flights correctly classified as on-time (TP ), and the total number of flights
actually on-time (TP + FN). Similarly, the delayed recall, denoted Recd, is
the ratio between the number of flights correctly classified as delayed (TN),
and the total number of flights actually delayed (TN + FP ).

Reco =
TP

TP + FN
Recd =

TN

TN + FP
(6.2)
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6.2 Data understanding

In this section, we study in depth the airline flights dataset (AOTP) to un-
derstand how to filter flights that are really delayed by weather conditions.

As described above, the AOTP dataset contains data on US flights by ma-
jor air carriers. Table 6.3 reports the percentage of flights per year that have
been on time, delayed, canceled or diverted. The Federal Aviation Adminis-
tration (FAA) considers a flight as delayed when it is 15 minutes later than
its scheduled time. A canceled flight is when the airline does not operate the
flight at all for a certain reason. A diverted flight is one that has been routed
from its original arrival destination to a new arrival destination.

Year Flights Ontime Delayed Cancelled Diverted

2009 6,450,285 79.5% 18.9% 1.4% 0.2%
2010 6,450,117 79.8% 18.2% 1.8% 0.2%
2011 6,085,281 79.6% 18.2% 1.9% 0.2%
2012 6,096,762 81.9% 16.7% 1.3% 0.2%
2013 6,369,482 78.3% 19.9% 1.5% 0.2%

Table 6.3. Analysis of flight on-time performance by year.

Since June 2003, US airlines report information about their flights to Bu-
reau of Transportation Statistics (BTS)3. In case of delay (or cancellation)
the airlines report the causes of delay in five broad categories:

• Air carrier : The cause of delay was due to circumstances within the air-
line’s control (e.g. maintenance or crew problems, aircraft cleaning, bag-
gage loading, fueling).

• Late-arriving aircraft : A previous flight with the same aircraft arrived late,
so causing the present flight to depart late.

• National Aviation System (NAS): Delays due to the National Aviation
System that refer to a large set of conditions, such as non-extreme weather
conditions, airport operations, heavy traffic volume, and air traffic control.

• Extreme weather : Significant meteorological conditions (actual or forecast)
that, in the judgment of the carrier, delays or prevents the operation of a
flight such as tornado, blizzard or hurricane.

• Security : Delays caused by evacuation of a terminal, re-boarding of aircraft
because of security breach, inoperative screening equipment and/or long
lines in excess of 29 minutes at screening areas.

Notice that, a delayed flight can be assigned to a single or multiple delay
broad categories. Table 6.4 shows the percentage of delayed flights assigned
to each broad categories divided by year. When multiple causes are assigned
to one delayed flight, each cause is prorated based on delayed minutes it is
responsible for.

3 http://www.rita.dot.gov/bts/



6.3 Data analysis 101

Year
Air

carrier
Late-arriving

aircraft
NAS

Extreme
weather

Security

2009 26.6% 32.8% 37.0% 3.4% 0.2%
2010 28.9% 35.8% 32.1% 3.1% 0.3%
2011 28.2% 37.0% 31.8% 2.8% 0.2%
2012 29.8% 37.6% 29.6% 2.8% 0.2%
2013 27.8% 38.8% 30.3% 2.9% 0.2%

Table 6.4. Analysis of flight delay causes by year.

Following the Understanding the Reporting of Causes of Flight Delays and
Cancellations4 report from BTS, the number of weather-related delayed flights
is the sum of: i) all delays due to extreme weather; ii) the percentage of
NAS delays that FAA considered due to weather (e.g., during 2013, 58.3% of
NAS delays were due to weather); and iii) the late-arriving aircraft related to
weather that can be calculated using the proportion of weather related-delays
and total flights in the other categories. Table 6.5 reports the percentage of
delayed flights assigned to extreme weather, NAS related to weather, late-
arriving aircraft related to weather and the total weather delay.

Year
Extreme
weather

NAS related
to weather

Late-arriving aircraft
related to weather

Total weather

2009 3.4% 24.3% 14.5% 42.3%
2010 3.1% 20.4% 14.0% 37.4%
2011 2.8% 20.1% 14.3% 37.2%
2012 2.8% 17.4% 12.6% 32.8%
2013 2.9% 17.7% 14.1% 34.6%

Table 6.5. Analysis of delayed flights due to weather conditions by year.

Figure 6.1 depicts the percentage of delayed flights associated to a single
delay cause or a combination of them. For example 13.2% of delayed flights
are only due to air carrier delays, 11.9% due to combination of late-arriving
aircraft and NAS, or 8.9% due to combination of air carrier delay, late-arriving
aircraft and NAS.

Tables 6.4-6.5 and Figure 6.1 helped us to create training datasets con-
taining flights really delayed by weather and to evaluate the goodness of the
classification models obtained.

6.3 Data analysis

This section describes the data analysis process implemented to generate flight
delay prediction models, starting from the input data. The overall process, rep-

4 http://www.rita.dot.gov/bts/help/aviation/html/understanding.html
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Fig. 6.1. Delayed flights due to a single delay cause or a combination of them.

resented in Figure 6.2, is composed of three main phases: 1) data preprocessing
and transformation; 2) target data creation; 3) modeling.

Data 
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Data 
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Data 
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QCLCD

FT
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Fig. 6.2. Data analysis process.

6.3.1 Data preprocessing and transformation

As a first operation, data preprocessing was carried out on both flight dataset
(AOTP) and the weather dataset (QCLCD) to look for possible wrong data
and to treat missing values. Moreover, since our focus is on delayed flights
only, we filtered out diverted and canceled flights from the AOTP dataset,
obtaining a table referred to as Flight Table (FT ). From the QCLCD dataset
we removed all the weather observations not related to airport locations, ob-
taining a Weather Observations Table (OT ).

Data transformation mostly refers to the operation of creating a Joint
Table (JT ) by joining the Flight Table and the Weather Observations Table.
In particular, for each flight F in FT , the join operation creates in JT a tuple
{F,Wo,Wd, C}, where:
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• F is an array containing flight information (origin airport, destination
airport, etc.);

• Wo = ⟨O(Ao, tsd), O(Ao, tsd − 1h), . . . , O(Ao, tsd − 12h)⟩ is an array con-
taining weather observations at origin airport (Ao) from the scheduled
departure time (tsd) back to 12 hours before (tsd − 12h) with intervals of
1 hour;

• Wd = ⟨O(Ad, tsa), O(Ad, tsa − 1h), . . . , O(Ad, tsa − 12h)⟩ is an array con-
taining weather observations at destination airport (Ad) from the sched-
uled arrival time (tsa) back to 12 hours before (tsa − 12h) with intervals
of 1 hour;

• C is the class attribute that indicates if F is on-time or delayed according
to a given threshold Th.

In particular, the join operation is split in two steps: the first join step
combines flight information with weather observations at origin airport, and
the second join step combines the output of the first step with the weather
observations at destination airport. This has been done by modifying the im-
proved repartition join algorithm [16] and implementing it by two MapReduce
tasks.

The improved repartition join performs a relational join between two ta-
bles, that we refer here as A and B. Each map task processes a partition of
either A or B. To identify which table a tuple is from, each map task emits a
composite key, consisting of a join key and a table tag. The join key is used
during the partitioning step to assign tuples with the same join key to the
same reduce task. The table tag is used during the sorting step to put the
tuples from A before those from B. Thus, for each join key, the reducer pro-
cesses first the tuples from A to hold them in memory, and then processes the
tuples from B to make the join.

Our modified version of the improved repartition join works as follows. In
the first join step, we use a join key ⟨A,D⟩, which is the combination of an
airport A and a date D. If the mapper receives a tuple from OT , it generates
⟨O.A,Date(O.t)⟩ as a join key. Otherwise, if the mapper receives a tuple from
FT , it generates ⟨F.Ao, Date(F.tsd)⟩ as a join key. In this way, a reducer
receives all the departure flights and the weather observations of an airport
A in a given date D. As table tag we use the table name (“OT” or “FT”).
Therefore, the reducer encounters first the weather observations and store
them in an array ordered by time. Then, the reducer processes the flights,
adding to each of them an array containing the weather observations at origin
airport from the scheduled departure time back to 12 hours before. Since that
the weather dataset provides hourly weather observations at variable times,
we take the closest one to the weather observation time requested.

The second join step is analogous to the first one, with the difference that
we take the weather observations at destination instead of origin airports.
Figure 6.3 shows an example of data flow (input, intermediate and output
tuples) of the first join step.
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Fig. 6.3. Data flow of the first join step.

The MapReduce pseudo-code of the join process is shown in Algorithm
34.

6.3.2 Target data creation

Since our goal is to predict delayed flights by considering both flight and
weather information at origin and destination, we try to select flights that are
strictly related to this task. As explained in Section 6.2, selection of delayed
flights due to weather conditions is not trivial, because they are distributed
in three of the five broad categories (see Table 6.5) and each delay flight can
be assigned to multiple broad categories (see Figure 6.1).

Thus, ideally, our target dataset should contain all delayed flights due to
extreme weather and NAS related to weather. We do not take into account
late-arriving aircraft related to weather because such delays do not depend on
weather information at origin and destination airports, but they are due to
delay propagation of previous flights originated by the same aircraft. To reach
our aim, for each delay threshold considered, four target datasets have been
created:

• D1 contains delayed flights due only to extreme weather or NAS, or a
combination of them.

• D2 includes delayed flights affected by extreme weather, plus those ones
for which NAS delay is greater than or equal to the delay threshold.

• D3 includes delayed flights affected by extreme weather or NAS, even if
not exclusively (i.e., they might be also affected by other causes).

• D4 contains all delayed flights.

The first three datasets (D1, D2 and D3) are strictly related to our task
as defined above, but have been created using different types of filtering. The
last dataset contains all delayed tuples and has been created as a reference
dataset.
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Algorithm 3: MapReduce pseudo-code for the first join step.

1 Map(K: null, V : a tuple from a split of either OT or FT )
2 if V is a tuple from OT then
3 join key ← ⟨V.A,Date(V.t)⟩
4 table tag ← “OT”
5 tagged tuple← add a tag “OT” to V
6 composite key ← ⟨join key, table tag⟩
7 emit(composite key, tagged tuple)

8 else
9 join key ← ⟨V.Ao, Date(V.tsd)⟩

10 table tag ← “FT”
11 tagged tuple← add a tag “FT” to V
12 composite key ← ⟨join key, table tag⟩
13 emit(composite key, tagged tuple)
14 if Date(V.tsd).plusHours(12) is Date(V.tsd).plusDays(1) then
15 join key ← ⟨V.Ao, Date(V.tsd).plusDays(1)⟩
16 composite key ← ⟨join key, table tag⟩
17 emit(composite key, tagged tuple)

18 end

19 end

20

21 Partition(K′: a composite key)
22 hashcode← hash function(K′.join key)
23 return hashcode mod #reducers

24

25 Reduce(K′: a composite key, LIST V ′: a list of tagged tuples for K′ first from
OT then FT )

26 create an array of observations AO ordered by time
27 create a temporary array of observations AT

28 for each OT tuple o in LIST V ′ do
29 put o in AO

30 end
31 for each FT tuple f in LIST V ′ do
32 AT ← get hourly observations(AO, f.tsd)
33 emit(null,merge(f,AT ))

34 end

From a set-theoretic point of view, saidDid the tuples representing delayed
flights in Di, where 1 ≤ i ≤ 4, the following rule holds:

(D1d ∪D2d) ⊆ D3d ⊆ D4d.

Table 6.6 summarizes the features of the four datasets and the percentage
of delayed tuples contained when delay thresholds of 15 and 60 minutes are
used.

It is worth noticing that the AOTP dataset is unbalanced because the two
classes, on-time and delayed, are not equally represented. For example, during
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Dataset
ID

% Delayed tuples
selected

% Delayed
tuples
(Th = 15min)

# Delayed
tuples
(Th = 15min)

% Delayed
tuples
(Th = 60min)

# Delayed
tuples
(Th = 60min)

D1

Solo Extreme U

Solo NAS U

Solo (Extreme
and NAS)

22.9% 1.3M 15.4% 257k

D2 Extreme U NAS≥ Th 37.1% 2.1M 25.9% 433k
D3 Extreme U NAS 58.9% 3.4M 56.8% 950k
D4 All 100.0% 5.8M 100.0% 1.7M

Table 6.6. Features of target datasets.

year 2013, 78.3% of the total flights were on-time while 19.9% were delayed
(see Table 6.3). Therefore, also the Joint Table JT is unbalanced, as most of
its tuples are related to on-time flights. In order to get accurate prediction
models and to correctly evaluate them, we need to use balanced training sets
and test sets in which half the flights are on-time and half are delayed.

To this purpose, we used the random under-sampling algorithm [79], which
balances class distribution through random discarding of major class tuples
as described in Figure 6.4. In our case, for each target dataset we first di-
vided tuples in on-time and delayed. Then, delayed tuples were randomly
added to the training and test sets with a 3:1 ratio. Finally, on-time instances
were randomly added, without repetition, until the number of delayed and
on-time instances were the same. At the end of this process we obtain a
⟨trainingset, testset⟩ pair ready for modeling and evaluation.

On-time
(81%)

Delayed
(19%)

Other
on-time 

Delayed train

Delayed test

On-time train

On-time test

25% Delayed

75% Delayed

25% Delayed

75% Delayed

(Shuffling)

Fig. 6.4. Method used for creating balanced training and test sets.
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6.3.3 Modeling

The modeling step is crucial for obtaining accurate data classification. Ma-
chine learning and statistics provide several techniques for data modeling.
Statistics measures uncertainty in data and to do that it usually uses small
and accurate data samples, while machine learning analyzes large datasets
without any notion of uncertainty and no prior assumption.

In this work, different machine learning techniques have been studied to
evaluate their appropriateness in the considered domain. To this end, we run
a series of preliminary experiments on sample datasets to evaluate the per-
formance of different classification algorithms (C4.5, SVM, Random Forest,
Stochastic Gradient Descent, Naive Bayes, Logistic Regression). Based on the
results of these experiments, the Random Forests (RF) algorithm [18] was se-
lected as it achieved the best performance in terms of accuracy and recall, with
limited build time of the model. Other research works exploited RF for flight
delay prediction due to its high level of accuracy (e.g., see [117] discussed in
Section 6.5).

The good performance of the RF technique mainly derives from the fact
that this learning technique uses a distributed intelligence approach. The RF
approach is based on the creation of several classification trees built on dif-
ferent subsets of data using random subsections of available variables. The
global result of this approach is the creation and refinement of a set of valid
theories and hypotheses, represented by trees, and the combination of the
trees into “a forest of classifiers” whose final decision is based on the votes of
the different decision trees. An additional powerful feature of this approach
is that is based on decentralized collective behavior without any centralized
or hierarchical learning structure. In fact, Random Forest implement a form
of emergent artificial intelligence strategy that maximizes the value of data
and knowledge through a sort of concurrent learning that combine different
models (theories). The Random Forest algorithm is a useful example of a set
of cooperating reasoning processes that complement each other to reach a
coordinated learning model.

In particular, RF is an ensemble learning method for classification. It cre-
ates a collection of different decision trees called forest. Each forest tree is
built starting from a training dataset obtained applying bagging on the orig-
inal training set. To enhance the ensemble diversity, further randomness is
introduced: at each step, during the best attribute selection, only a small
random attributes subset is considered. This set of procedures leads to an
ensemble classifier with good performance compared with other classification
algorithms [137]. Once forest trees are created, the classification of an unla-
beled tuple is performed by aggregating the predictions of the different trees
through majority voting.

Since the sequential version of Random Forest is not able to deal with
large datasets, we used a parallel version implemented in MapReduce. Model
creation is performed in three steps, as described in Figure 6.5(a): i) the
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training dataset is split into several data partitions, each one is sent to a
processing node; ii) each processing node builds multiple decision trees from
its data partition and store them on a different output file; and iii) finally, all
the output files generated are merged to form the Random Forest model.

Also prediction, whose goal is estimating the class associated with an un-
classified dataset, is composed by three steps (see Figure 6.5(b)): i) the un-
classified dataset is split into different data partitions, each one is sent to a
processing node; ii) each processing node uploads the Random Forest model
and predicts the class of each tuple in its data partition generating a classified
partition; and iii) finally, all the classified partitions are merged together to
form the classified dataset.

Training 
dataset

Partitions Decision
trees

Random 
Forest model

(a) Model creation.

+

+

+

Unclassified
dataset

Partitions + 
Random Forest model

Classified
partitions

Classified
dataset

C

C

C

C

(b) Prediction.

Fig. 6.5. Parallel version of Random Forest implemented in MapReduce.
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Focusing on predicting the class (on-time or delayed) of a scheduled flight
Fs, the predictor takes as input the following data:

• Fs = ⟨Ao, Ad, tsd, tsa⟩, where Ao is the origin airport, Ad is the destination
airport, tsd is the scheduled departure time, and tsa is the scheduled arrival
time.

• An array Wo = ⟨O(Ao, tsd), O(Ao, tsd − 1h), . . . , O(Ao, tsd − (m − 1)h)⟩
containing weather forecasts at origin airport (Ao) from the scheduled
departure time (tsd) back to m − 1 hours before (tsd − (m − 1)h) with
intervals of 1 hour.

• An array Wd = ⟨O(Ad, tsa), O(Ad, tsa − 1h), . . . , O(Ad, tsa − (n − 1)h)⟩
containing weather forecasts at destination airport (Ad) from the scheduled
arrival time (tsa) back to n− 1 hours before (tsa− (n− 1)h) with intervals
of 1 hour.

• A delay threshold d ∈ {Th1, Th2, ....Thz}.

A set of models M is assumed to be available to the predictor. A generic
element in M , denoted as Mi,j,k, represents the model trained using a delay
threshold i, considering j weather observations at origin airport, and k weather
observations at destination airport.

Therefore, in order to estimate the class associated with Fs, the predictor
proceeds as follows: first loads model Md,m,n from M ; then provides Fs, Wo

and Wd data to Md,m,n; finally, returns the class assigned by Md,m,n. Since
weather forecast data (arrays Wo and Wd) are an important part of the input
of the predictor and we can have them several days in advance, using them,
the system is able to make predictions in the same time frame.

Given the predictor built on historical data, it is possible to use it to predict
the delay of future flight using weather forecasts. However, the outcome of the
predictor will be influenced by the accuracy of the forecasts. Of course, the
more reliable weather forecasts, the more accurate the predictions. Today the
accuracy of weather forecasts done some days in advance is high. In fact, the
major weather services available online report an accuracy ranging from about
75% (three days in advance) to about 90% (one day in advance). Evaluating
how the accuracy of forecasts affects the accuracy of predictions would be
interesting. However, given the high values of whether prediction accuracy
some days in advance and the same day of the flight, the predictor results are
highly accurate.

6.4 Evaluation

We evaluated the accuracy of our models in predicting flight delays above a
given time threshold. Moreover, we evaluated the scalability achieved carrying
out the whole data analysis and evaluation process as a collection of MapRe-
duce tasks on a Cloud platform. Specifically, we used HDInsight, a service that
deploys an Apache Hadoop [143] MapReduce cluster on Microsoft Windows
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Azure5. Our cluster was equipped with 1 head node having eight 2.2 GHz
CPU cores and 14 GB of memory, and 12 worker nodes having four 2.2 GHz
CPU cores and 7 GB of memory.

Table 6.7 shows the parameters used for the evaluation tests: i) target
datasets (⟨trainingset, testset⟩ pairs), as described in Section 6.3.2; ii) delay
threshold in minutes; iii) number of hourly weather observations considered
at origin airport; and iv) number of hourly weather observations considered at
destination airport. Each test has been performed ten times by regenerating
disjoint ⟨trainingset, testset⟩ pairs for assessing the results. In order to vary
the number of weather observations considered at origin and destination air-
port, in each experiment we asked the classification algorithm to train a new
model considering a given subset of features in arrays Wo and Wd, as defined
in Section 6.3.1. When we ask the algorithm to consider m observations at
origin and n observations at destination, the algorithm trains the model con-
sidering the first m observations from Wo (i.e., O(Ao, tsd), O(Ao, tsd−1h), . . .,
O(Ao, tsd − (m− 1)h) and the first n observations from Wd (i.e., O(Ad, tsa),
O(Ad, tsa−1h), . . ., O(Ad, tsa−(n−1)h). As performance indicators, we used
the accuracy (Acc), the on-time recall (Reco) and delayed recall (Recd). The
goal is to maximize Acc with a balanced values of Reco and Recd.

Parameter Values

Target dataset D1, D2, D3, D4
Delay threshold 15, 30, 45, 60, 90
# of hourly weather observations considered at origin airport 0, 1, 3, 5, 7, 9, 11
# of hourly weather observations considered at destination airport 0, 1, 3, 5, 7, 9, 11

Table 6.7. Evaluation parameters.

The first set of experiments helped us to understand how many hourly
weather observations have to be considered at origin and destination airport.
Figure 6.6-a shows accuracy, on-time and delay recall values obtained varying
from 0 to 11 the number of weather observations considered at origin airport,
and 0 observations considered at destination airport. Similarly, Figure 6.6-b
shows the performance indicators considering from 0 to 11 weather obser-
vations at destination airport, and 0 observations at origin airport. In both
cases, we used D2 as target dataset and 60 minutes as delay threshold.

As expected, the performance indicators improve with the increase of
weather observations considered. For example, Figure 6.6-a shows that the
accuracy passes from 69.1% without using any weather information, to 80.5%
when we consider 11 weather observations at origin airport. In the same way,
Figure 6.6-b shows that the accuracy increases from 69.1% to 79.8% passing
from 0 to 11 weather observations at destination airport.

5 http://azure.microsoft.com/en-us/services/hdinsight
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Fig. 6.6. Performance indicators vs number of weather observations considered at
origin (a) and destination (b) airport.

As illustrated in Figure 6.6-a, the classifier shows a strongly balanced
behavior on both prediction classes considering only weather observations at
origin airport. In fact, Reco and Recd are very close for every number of
weather observation considered. On the contrary, Figure 6.6-b shows that we
get a slightly lower accuracy and a less balanced behavior in terms of recall
considering only weather observations at destination airport. In particular, in
this case the model tends to perform better with the on-time class, but worse
with the delayed class, in contrast to the performance shown in Figure 6.6-a
where Reco and Recd are always very close.

As an additional remark on the results described above, the improvement
that we get by accounting for more than three hours of weather observations
prior to the schedule departure/arrival time is limited but valued. Regarding
the causality between weather and delay, the results indicate that adverse
weather conditions take effect several hours after they end, very likely due to
cascading delay effects.

Then, we studied the predictor performance using the same number of
weather observations at origin and destination airports (see Figure 6.7-a).

As we expected, combining weather information at origin and destination
airports leads to an improvement of the accuracy with a balanced behavior
on both prediction classes. As shown in Figure 6.7-a, using 7 weather obser-
vations at origin and destination airports the predictors reaches an accuracy
of 85.8%, an on-time recall of 84.7% and a delay recall of 86.9%. Figure 6.7-
b shows the Receiver Operating Characteristic (ROC) curves for the seven
models (obtained varying the number of weather observations at origin and
destinations) whose performances are shown in Figure 6.7-a. The ROC curves
show that all the models are much more accurate than a random classifier.
As expected, this good behavior improves considering a higher number of ob-
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Fig. 6.7. Performance indicators vs number of weather observations at origin and
destination airports (a) and ROC curves (b).

servations, but using more than 7 observations does not lead to significant
increase of performance.

As an additional remark on Figures 6.6 and 6.7, we can note that even
without considering weather conditions (i.e., with zero observations at origin
and destination airports), the model achieves an accuracy of 69.1%. This is
due to the fact that the classification algorithm is able to infer frequent delay
patterns from flight information stored in the AOTP dataset, like origin and
destination airports (some airports are more subject to delays than others
and the algorithm learns that), day of week (delays vary during the week),
departure and arrival block time (e.g., delays on early morning flights are less
frequent).

We also trained models using weather observations taken every 3 hours,
rather than every hour. Table 6.8 reports the predictor performance obtained
using 3 observations at both origin and destination airports with 3-hour steps
(i.e., at scheduled time, 3 and 6 hours before), compared with that obtained
using 7 hourly observations at both origin and destination airports. As shown
in the table, using observations every 3 hours does not significantly reduce
the predictor performance.

Weather observation considered Acc Reco Recd

3 w.o. at origin (0,3,6) + 3 w.o. at destination (0,3,6) 84.8% 84.3% 85.2%
7 w.o. at origin (0-6) + 7 w.o. at destination (0-6) 85.8% 84.7% 86.9%

Table 6.8. Predictor performance obtained using: 3 observations with 3-hour step
(first row); 7 observations every hour (second row).



6.4 Evaluation 113

A second set of experiments was carried out to evaluate the predictor
performance by varying the delay threshold. Figure 6.8-a shows the results,
obtained using D2 as input dataset and considering 7 weather observations
at both origin and destination airports.

 60

 65

 70

 75

 80

 85

 90

15 30 45 60 90

P
e
rc

e
n
ta

g
e
 o

f

Delay threshold (min.)

Acc
Reco
Recd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

T
ru

e
 p

o
si

tiv
e
 r

a
te

False positive rate

Delay Th=15min
Delay Th=30min
Delay Th=45min
Delay Th=60min
Delay Th=90min

Random Classifier

(a) (b)

Fig. 6.8. Performance indicators vs delay threshold (a) and ROC curves (b).

In this case, all the performance indicators improve as the delay threshold
increases. For instance, the accuracy passes from 74.2% with a threshold of
15 minutes, to 81.6% with a threshold of 30 minutes, up to 86.6% with a
threshold of 90 minutes. Figure 6.8-b shows the ROC curves for five models
obtained with D2 as input dataset using five delay thresholds (15, 30, 45, 60
and 90 minutes). Also in this case, the ROC curves show that all the models
are much more accurate than a random classifier. As expected, this good
behavior improves using models with higher delay thresholds.

A third set of experiments was carried out to study the predictor behavior
varying the target dataset. Figure 6.9-a shows the results, obtained using 60
minutes as delay threshold and 7 weather observations at both origin and
destination airports. Figure 6.9-b provides ROC curves for the models whose
performance are shown in Figure 6.9-a. In this case, the ROC curves show that
the models trained using D1 and D2 are much more accurate than a random
classifier, but that also using D3 and D4 leads to better performances than
the baseline.

Using D1 and D2, the predictor achieves almost the same performance,
whereas D2 includes a greater number of delayed tuples, as described in Table
6.6. Using D3 and D4, the predictor worsens its performance because they
are not appropriate since these target datasets include a greater number of
delayed tuples not related to weather.
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Fig. 6.9. Performance indicators vs target dataset (a) and ROC curves (b).

Finally, Table 6.9 reports turnaround times and speedup values of the
four data mining phases (data preprocessing and transformation, target data
creation, modeling, evaluation) when 2, 4, 8 and 12 MapReduce workers are
used. The speedup is calculated with respect to the results obtained using 2
workers (i.e., “2x” refers to the use of 4 workers, “4x” to 8 workers and “6x”
to 12 workers).

For the data preprocessing and transformation phase, the turnaround time
decreases from about 3 hours using two workers, to about 35 minutes using 12
workers. Thus, increasing the workers from 2 to 4 (2x), the obtained speedup
is 1.9, and it is equal to 5.5 using 12 (6x) workers. For the target data creation
phase, the turnaround time varies from 2.2 hours using two workers, to 23
minutes using 12 workers. Then the speedup increases respectively from 2 to
5.8. For the modeling phase, the turnaround time decreases from 2.5 hours to
25 minutes (with speedup values from 2 to 6), while for the evaluation phase,
turnaround time decreases from 4.3 hours to 49 minutes (speedup from 1.9 to
5.3). Taking into account the whole data mining process, the turnaround time
decreases from 12.2 hours using 2 workers, to 2.2 hours using 12 workers, with
a speedup that is very close to linear values (see Figure 6.10). This behavior
shows the scalability of the implemented solution that is able to exploit the
high-performance features of the Cloud platform.

6.5 Related work

Due to the significant costs for airlines, passengers and society, the analysis
and prediction of flight delays have been studied by several research teams. In
the following, we discuss the most representative related work and systems.

Some research teams studied and modeled the delay propagation phenom-
ena within an airport network. [51] modeled the US airport network in order
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1x (2 workers) 2x (4 workers) 4x (8 workers) 6x (12 workers)

Operation
Turn.
time

Speed
up

Turn.
time

Speed
up

Turn.
time

Speed
up

Turn.
time

Speed
up

Data preprocessing
and transformation

03.08.55 - 01:40:52 1.9 00:49:16 3.8 00:34:39 5.5

Target data creation 02:14:06 - 01:06:59 2.0 00:33:19 4.0 00:23:16 5.8
Modeling 02.29.20 - 01:13:12 2.0 00:37:35 4.0 00:24:44 6.0
Evaluation 04.19.28 - 02:14:17 1.9 01:08:51 3.8 00:49:18 5.3

Total 12:11:49 - 06:15:20 1.9 03:09:01 3.9 02:11:57 5.5

Table 6.9. Turnaround time and relative speedup values (calculated with respect
to 2 workers) of the four data mining phases.
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Fig. 6.10. Relative speedup of the whole data mining process.

to study how operational and meteorological issues generate delays that can
propagate in the network. The authors developed a simulator to evaluate the
effects of airport operations before applying them. Their work highlights that
passengers and crew connectivity is a relevant factor that contribute to net-
work congestion. The same authors proposed a similar approach to study
delay propagation dynamics in presence of severe meteorological conditions
[50]. [116] presented a queuing model for the propagation of delays within a
large network of airports, considering the stochastic nature of airports demand
and capacity. The goal of the work is to reproduce the trends and behaviors
observed in an airport network. [149] used a Bayesian network to estimate
the delay propagation in an airport network. Specifically, the authors have
investigated and quantified how a flight delay propagates from an airport
to others. [5] studied the relationship between the scheduling of the aircraft
and crew members and the delay propagation. This work emphasizes how the
maximization of aircraft utilization by air-carriers increases the probability of
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delay propagation. The main result of this work is a tool for building more
robust airline plans.

Another group of related studies investigated how to estimate individual
or aggregate variables related to delay for supporting decision making.

[127] described a model to estimate the number of flight delays in an air-
port at a given time. The authors made use of the WITI system [21], which
estimates the total delay in a given airport, based on weather information
and actual traffic. [77] applied the WITI metric to the entire NAS, creat-
ing the NAS Weather Index (NWX). [108] proposed an aggregate model to
analyze departure, en-route and arrival delay for ten major airports in the
United States. The work provides several aggregated delay metrics generated
averaging the results over 21 days. [150] presented a tool for predicting the
generated and absorbed delays at airports. This tool may be used to perform a
“what if” analysis by making changes in input factors and observing the pre-
dicted effects. [140] presented some machine learning methods to predict the
Ground-Delay Programs (GDP) time for a given airport. The GDP is a traffic
flow procedure implemented to control the air traffic volume in airports where
the airport’s acceptance rate being reduced for some reason, such as adverse
weather or low visibility. The aim of this work is to improve the planning of
GDP duration for supporting air traffic flow management activities.

Our work, differently from those reported here, developed a system able
to predict individual flight delay due to weather conditions using information
available at the time of prediction. Indeed, the related work discussed above
focused on predicting delay propagation in airport network or variables related
to delay but not predicting individual flight delay. In addition, some related
work like that of [149] use variables that are only available at flight time and
not before (i.e., at prediction time).

The work of [117] modeled the US airport network for predicting air traf-
fic delays. Their goal is to predict future departure delays on a particular
origin-destination link for a given forecast horizon between 2 and 24 hours.
The predictor uses as input variables the delay states of the most influential
airports and the global delay state of the entire National Airspace System. As
in our work, their predictor uses only variables that are available at time of
prediction and the evaluation tests have been performed on balanced datasets
where half data are on-time and half delayed flights. However, the system by
Rebollo and Balakrishnan, differently from ours, does not use weather data to
achieve its goal, which is predicting delay propagation in the airport network
independently from cause.

While Rebollo’s work focuses on predicting aggregate delays, we focus
on predicting individual flight delays. In addition, the prevision horizon of
Rebollo’s work is limited to a maximum of 24 hours because their predictor
needs information about the status of the entire airport network. On the
contrary, our work allows a longer prevision horizon because weather forecasts
can be available several days in advance (e.g., most online services provide 5-
days hourly weather forecasts). Information provided by our predictor could
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be used by air traffic management to assist decision, taking into account that
accurate weather forecasts are necessary for the reliability of predictions and
would be likely to have a strong impact on the efficiency of aviation resulting in
costs reduction [78]. About performance, with a delay threshold of 60 minutes
and with a balanced dataset, Rebollo et al. work reaches an accuracy of 81%
and a delay recall of 76.4%, while our model achieves an accuracy of 85.8%
and a delay recall of 86.9%.

Finally, we mention FlightCaster, a commercial tool that aims to predict
individual flight delays. There are not scientific papers about this tool, but
as declared by the founders [52], it seems to reach an 85% of precision and
60% of recall without class balancing, which represent a weak performance if
compared to our results.

Table 6.10 summarizes the features of the last two related systems in
comparison with our predictor (last row in the table). For each work, the
table indicates: (i) which is goal of the work; (ii) on which data is based the
prediction; (iii) the performance obtained in the classification problem. As
shown in the table, our system achieves a better level of accuracy and delay
recall using a balanced dataset.

Related work Goal Input data Performance

Rebollo and
Balakrishnan[117]

Delay Propagation
in airport network

Aggregate variables
presently available

Acc = 81%
Recd = 76.4%
(balanced dataset)

FlightCaster [52]
Delay prediction
of individual flight

Historical data and
weather information

Pre = 85%
Rec = 60%
(unbalanced dataset)

Our work
Delay prediction
of individual flight

Historical data and
weather information

Acc = 85.8%
Recd = 86.9%
(balanced dataset)

Table 6.10. Related work comparison.

6.6 Conclusions

The main goal of the work presented in this chapter is to predict several days
in advance the arrival delay of a scheduled flight due to weather conditions.
Accurate prediction of flight delays is an important problem to be addressed
given the economic impact of flight delays to both airlines and travelers. In
our model, the predicted arrival delay takes into consideration both flight
information (origin airport, destination airport, scheduled departure and ar-
rival time) and weather conditions at origin airport and destination airport
according to the flight timetable.
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Two open datasets of airline flights and weather observations have been
analyzed to discover initial insights, evaluate the quality of data, and iden-
tify potentially interesting subsets. Then, data cleaning and transformation
(joining and balancing operations) have been performed to make data ready
for modeling. Finally, a scalable parallel version of the Random Forest data
classification algorithm has been developed, iteratively calibrating its settings
to optimize results in terms of accuracy and recall. The data preparation and
mining tasks have been implemented as MapReduce programs that have been
executed on a Cloud infrastructure to achieve scalability.

The results show a high accuracy in prediction of delays above a given
threshold. For instance, with a delay threshold of 60 minutes we achieve an
accuracy 85.8% and a delay recall of 86.9%. We have obtained such good per-
formance results considering different weather observations at origin and des-
tination airports and selecting flights that are really delayed by weather con-
ditions. Moreover, if weather conditions are not considered the model achieves
an accuracy of 69.1%. Therefore, the proposed methodology identifies a very
useful pattern of flight delay that may help airlines in reducing delays.



7

Conclusions

In science and business, scientits and professionals analyze huge amounts of
data, commonly called Big Data, to extract information and knowledge useful
for making new discoveries or for supporting decision processes. This can be
done by exploiting Big Data analytics techniques and tools. But it must be
also considered that to extract value from such kind of data, novel technolo-
gies and architectures have been developed by data scientists for capturing
and analyzing data, particularly when large datasets are involved or real-time
evaluation is needed. In this scenario, high performance computers, Clouds,
and multi-clusters, coupled with parallel and distributed algorithms are com-
monly to tackle Big Data issues and get valuable information and knowledge
in a reasonable time. Cloud computing is probably the most valid and cost-
effective solution for high-performance computing on massive number of pro-
cessors, for supporting Big Data storage and for executing sophisticated data
analytic applications. In fact, thanks to elastic resource allocation and high
computing power, Cloud computing represents a compelling solution for Big
Data analytics, allowing faster data analysis, that means more timely results
and then greater data value.

The goal of this thesis was studying, designing and exploiting models,
tools, and systems for Big Data analysis, especially on Clouds, to support
scalable and distributed knowledge discovery applications. The first part fo-
cused on methods and tools for supporting scalable execution of distributed
knowledge discovery applications and, in general, solutions for dealing with
Big Data issues. The second part presented data analysis applications and
methodologies for extracting knowledge from large datasets.

As a first result, we presented an extension for integrating the MapReduce
model into the workflow engine provided by Data Mining Cloud Framework
(DMCF). More in detail, we described how workflows created using VL4Cloud
or JS4Cloud, i.e., the formalisms provided by DMCF for designing workflows,
can include MapReduce algorithms and tools. We also described how these
workflows are executed in parallel on DMCF to enable scalable data processing
on Clouds. By implementing a study case application whose workflow includes
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MapReduce computations, we shown how DMCF can be used to easily cre-
ate workflows that exploit the combined scalability provided by the DMCF
workflow languages and by the MapReduce framework.

As a second result, we presented Geocon, an open-source service-oriented
middleware designed to help developers to implement context-aware mobile
applications. Geocon provides a service and a client library for storing, in-
dexing, and retrieving information about entities that are commonly involved
in these scenarios, such as (mobile) users, places, events and other resources
(e.g., photos, media, comments). In order to ensure a high level of decoupling
and efficient communication between client and service, the REST model has
been adopted. Moreover, given the huge number of users, places, events and
resources that may be involved in context-aware mobile applications, Geo-
con architecture has been designed to scale horizontally on a multiple nodes.
To assess the scalability of Geocon in a real-world scenario, we developed a
location-aware mobile application, called GeoconView, which made use of Geo-
con for managing information about events. The experimental results show
that the latency speedup is basically independent from the number of queries
per second, but is significantly higher when the system stores a larger number
of events.

As a third result of this thesis work, we presented G-RoI, a novel mining
technique that exploits the indications contained in geotagged social media
items to discover the boundaries of a Place-of-Interest (PoI), commonly called
Region-of-Interest (RoI), with a high accuracy. We experimentally evaluated
the accuracy of G-RoI in detecting the RoIs, comparing it with three exist-
ing techniques: Circle (predefined-shapes approach), DBSCAN (density-based
clustering), and Slope (grid-based aggregation). The analysis was carried out
on a set of PoIs located in the center of Rome and Paris, characterized by
different shapes, areas and densities. The experimental results shown that G-
RoI is able to detect more accurate RoIs than existing techniques, regardless
of shapes, areas and densities of PoIs, and without being influenced by the
proximity of different PoIs.

Finally, we described a predictor of the arrival delay of a scheduled flight
due to weather conditions, which is an important problem to be addressed
given the economic impact of flight delays to both airlines and travelers. In
our model, the predicted arrival delay takes into consideration both flight in-
formation (origin airport, destination airport, scheduled departure and arrival
time) and weather conditions at origin airport and destination airport accord-
ing to the flight timetable. Two open datasets of airline flights and weather
observations have been analyzed to discover initial insights, evaluate the qual-
ity of data, and identify potentially interesting subsets. The data preparation
and mining tasks have been implemented as MapReduce programs that have
been executed on a Cloud infrastructure to achieve scalability. In particular,
a scalable parallel version of the Random Forest data classification algorithm
has been developed, iteratively calibrating its settings to optimize results in
terms of accuracy and recall. The experimental evaluations shown a high ac-



7 Conclusions 121

curacy in prediction of delays and a good scalability, with a speedup that is
very close to linear values. That means the proposed methodology identifies
a very useful pattern of flight delay that may help airlines in reducing delays.
With regard to this research, there is still much needed. In particular, it could
be interesting to evaluate how the accuracy of weather forecast influences the
accuracy of the prediction. Moreover, the possibility to improve the accuracy
of our predictor could be investigated by integrating it with other models for
predicting delay propagation in the airport network.





References

1. Abramova, V., Bernardino, J., Furtado, P.: Which nosql database? a perfor-
mance overview. Open Journal of Databases (OJDB) 1(2), 17–24 (2014)

2. Adams, P.: Grouped: How small groups of friends are the key to influence on
the social web. New Riders (2011)

3. Agarawala, A., Greenberg, S., Ho, G.: The context-aware pill bottle and med-
ication monitor. In: Video Proceedings and Proceedings supplement of the
Sixth International Conference on Ubiquitous Computing. University of Cal-
gary (2004)

4. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M.,
Gehrke, J., Haas, L., Halevy, A., Han, J., et al.: Challenges and opportuni-
ties with big data. a community white paper developed by leading researchers
across the united states. Computing Research Association, Washington (2012)

5. AhmadBeygi, S., Cohn, A., Guan, Y., Belobaba, P.: Analysis of the potential
for delay propagation in passenger airline networks. Journal of air transport
management 14(5), 221–236 (2008)

6. Allan, S., Beesley, J., Evans, J., Gaddy, S.: Analysis of delay causality at newark
international airport. In: 4th USA/Europe Air Traffic Management R&D Sem-
inar. Santa Fe, USA (2001)

7. Altomare, A., Cesario, E., Comito, C., Marozzo, F., Talia, D.: Trajectory pat-
tern mining for urban computing in the cloud. Transactions on Parallel and
Distributed Systems (IEEE TPDS) (2016)

8. Ball, M., Barnhart, C., Dresner, M., Hansen, M., Neels, K., Odoni, A., Peter-
son, E., Sherry, L., Trani, A.A., Zou, B.: Total delay impact study: a compre-
hensive assessment of the costs and impacts of flight delay in the united states
(2010)

9. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for con-
vex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

10. Barga, R., Gannon, D., Reed, D.: The client and the cloud: Democratizing
research computing. Internet Computing, IEEE 15(1), 72–75 (2011)

11. Belcastro, L., Di Lieto, G., Lackovic, M., Marozzo, F., Trunfio, P.: Geo-
con: A Middleware for Location-Aware Ubiquitous Applications, pp. 234–243.
Springer International Publishing, Cham (2016)

12. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Programming visual and
script-based big data analytics workflows on clouds. In: Big Data and High



124 References

Performance Computing, Advances in Parallel Computing, vol. 26, pp. 18–31.
IOS Press (2015)

13. Bermingham, L., Lee, I.: Spatio-temporal sequential pattern mining for tourism
sciences. Procedia Computer Science 29(0), 379 – 389 (2014). 2014 Interna-
tional Conference on Computational Science

14. Beyer, M.A., Laney, D.: The importance of big data: a definition. Stamford,
CT: Gartner pp. 2014–2018 (2012)

15. Black, D., Clemmensen, N.J., Skov, M.B.: Pervasive computing in the super-
market: Designing a context-aware shopping trolley. Int. J. Mob. Hum. Com-
put. Interact. 2(3), 31–43 (2010)

16. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A
comparison of join algorithms for log processing in mapreduce. In: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
pp. 975–986. ACM (2010)
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