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Abstract

Il campo di ricerca in cui il Progetto si colloca è quello dello studio termodinamico

statistico di sistemi �uidi complessi, potenzialmente ordinati. Esso ha preso spunto

dalle precedenti ricerche svolte presso il laboratorio LX-NMR S.C.An. del Dipar-

timento di Chimica e Tecnologie Chimiche dell'Università della Calabria dove, da

lungo tempo, ci si occupa di problematiche connesse ai Cristalli Liquidi, conducendo

studi che potrebbero essere de�niti di `base', miranti cioè alla comprensione delle

interessantissime proprietà molecolari di cui godono questi sistemi. La �nalità del

Progetto implica, come appena detto, uno studio della materia a livello molecolare.

Spesso, sulla base dei dati sperimentali raccolti (ad esempio, mediante le compe-

tenze NMR del Laboratorio presso il quale ha avuto luogo lo svolgimento del pre-

sente Progetto di Dottorato) si rende necessaria una `interpretazione' dei risultati

sperimentali, allo scopo di fornire una chiave di lettura dei fenomeni che avvengono

su scala molecolare, in modo da coniugare, possibilmente, aspetti microscopici e

macroscopici (provando cioè a fornire una giusti�cazione e `razionalizzazione' micro-

scopica dei comportamenti macroscopici della materia stessa). Gli approcci adottati

nel perseguire tale scopo devono necessariamente far riferimento alla Termodinam-

ica Statistica. Storicamente, presso il Gruppo di Ricerca del Laboratorio presso il

quale è stato sviluppato Progetto di Dottorato, l'approccio utilizzato è stato di tipo

Molecular Field (MF); tuttavia, nell'ultima decade, grazie alla collaborazione con

altri gruppi di Ricerca (in particolare, in collaborazione col prof. Giorgio Cinacchi∗)

ci si è avvicinati allo studio delle problematiche riguardanti le fasi parzialmente

ordinate anche per mezzo di simulazioni numeriche (tipicamente Monte Carlo, ma

non solo. . . ). Pertanto, nell'ottica di valorizzare sinergicamente quelle che possono

essere considerate due importanti chiavi di lettura dei fenomeni a livello moleco-

lare (ai quali, come Chimico-Fisici, siamo interessati), si è pensato di coniugare

sinergicamente i due approcci (MF e MC) cui si è appena accennato. Entrambe

le metodologie presentano ovviamente pregi e difetti, spesso (fortunatamente. . . )

complementari. Ad esempio, il MF ha il pregio di partire, tipicamente, da una certa

∗Departamento de Fisica Teorica de la Materia Condensada, Instituto de Fisica de la Materia
Condensada (IFIMAC) and Instituto de Ciencias de Materiales `Nicolas Cabrera', Universidad
Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
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`semplicità' descrittiva, che spesso si origina su basi intuitive (a volte, anche `ele-

mentari'), al �ne di cogliere quelle che sono le caratteristiche essenziali dei fenomeni

che si stanno investigando. Di contro, come pecca, esso risulta spesso troppo `a

grana grossa'; alle volte anche troppo essenziale nelle linee, tanto da non permettere

di cogliere pienamente i dettagli e/o gli aspetti peculiari cui si aspirerebbe. D'altro

canto, l'approccio stesso può presentare un aspetto matematico impegnativo, a causa

di calcoli di un certo rilievo che richiedono l'utilizzo di software opportuni (spesso

originali e/o commerciali), sebbene non sia strettamente necessario disporre di una

imponente potenza di calcolo. Nelle simulazioni numeriche, al contrario, l'obiettivo

è quello di costruire, partendo dalla modellizzazione delle interazioni molecolari, una

`realtà molecolare virtuale', ovviamente anch'essa in�uenzata dalla metodologia uti-

lizzata (Monte Carlo, Molecular Dynamics, ecc. . . ) che getti luce su aspetti magari

meno intuitivi del comportamento dei sistemi �uidi studiati. Per sperare di ottenere

dei dati a�dabili e realistici, però, occorre mettere in gioco una quantità di parti-

celle signi�cativa che può essere anche imponente (a seconda del fenomeno che si

sta investigando), con la possibile conseguente dilatazione dei tempi di calcolo, a

volte tali da rendere inattuabili i calcoli stessi. In tale ottica, per cogliere il meglio

di entrambe le metodologie, è necessario a nostro avviso, metterle a confronto. Ciò

che ci siamo dunque proposti per lo svolgimento del lavoro di Dottorato è stato di

provare entrambi gli approcci il più possibile `in parallelo'. Questa prospettiva risul-

tava alquanto `intrigante' e ci siamo riproposti di applicarla a quell'Universo ancora

nebuloso rappresentato delle a�ascinanti fasi termotropiche nematiche biassiali (ma

non solo. . . vide infra). L'esistenza di tale mesofase è ancora oggi oggetto di dibat-

tito, in quanto la prova ultima ed inequivocabile dell'osservazione di tali fasi non è

stata fornita al di là d'ogni ragionevole dubbio; infatti, negli anni, questa fase ha

pienamente meritato l'appellativo di fase `elusiva e sfuggente', tale da essere de�nita

da alcuni ricercatori del campo, come il `Sacro Graal' dei Cristalli Liquidi. Facendo

riferimento più in dettaglio al lavoro di Tesi, abbiamo pensato di organizzare il ma-

teriale con una Introduzione complessiva, in cui si focalizzano quelle che saranno

le �nalità del lavoro. Il Capitolo 1, invece, è dedicato ad un'impostazione teorica

generale della materia trattata, che farà da supporto anche per i successivi capitoli

(senza però dilungarci nell'ennesima e ridondante descrizione dettagliata delle fasi

liquido-cristalline, che risulta essere praticamente ubiquitaria, al �ne di non appesan-

tire eccessivamente la lettura). Nel Capitolo 2, ci si occupa di una parte consistente

dell'attività del Progetto (parte del quale è stato svolto presso l'Università Au-

tonoma di Madrid sotto la supervisione del prof. Giorgio Cinacchi. In tale periodo

ci si è dedicati prevalentemente all'apprendimento delle metodologie (con particolare

attenzione ai metodi MC), non solo teoricamente. ma anche e soprattutto dal punto

di vista pratico. In particolare, abbiamo studiato come le caratteristiche di simme-
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tria delle singole particelle componenti il sistema studiato (dunque, l'appartenenza

delle molecole a particolari point groups, quali il D2h, C2h, C2v, ecc. . . ) possano,

in linea di principio, originare regioni ove i sistemi acquisiscano, ad es., la carat-

teristica di essere orientazionalmente biassiali. Procedendo in questa disamina, nel

Capitolo 3 è illustrata una particolare applicazione di una metodologia MF (elab-

orata precedentemente dal prof. Celebre), in scenari molecolari nel cui contesto

altri approcci dello stesso tipo denotavano limiti e di�coltà. In particolare, sono

state investigate le interazioni orientazionali cosiddette `parzialmente repulsive' tra

le molecole, consentendo di `correlare' direttamente i parametri di biassialità γ e λ

che compaiono all'interno dell'espressione del potenziale orientazionale, alle propri-

età di forma delle particelle (nel caso in questione, schematizzate come mattoncini a

simmetria D2h). Ciò può consentire, in linea di principio, di esplorare le conseguenze

dell'alterazione dei parametri geometrici molecolari su caratteristiche peculiari del

sistema, come le Temperature di transizioni di fase, l'eventuale biassialità delle fasi

ecc. Nel corso dello svolgimento del Progetto di Dottorato, è sorta (anche in sinergia

con le diverse attività di ricerca all'interno del Laboratorio LX-NMR S.C.An.) una

problematica in cui l'apporto delle simulazioni numeriche poteva risultare partico-

larmente utile. L'interesse era quello di cogliere come sistemi ordinati, composti

da particelle elicoidali, potessero impartire un determinato ordine orientazionale a

dei piccoli soluti, a loro volta elicoidali, a seconda del senso di avvolgimento delle

particelle di solvente. Vista la peculiarità oggettiva (morfologica) delle particelle, i

risultati ottenuti potrebbero fungere da banco di prova per un processo di `enantiori-

conoscimento' assoluto. Dalle simulazioni abbiamo osservato che talune volte (non

sempre. . . ) è possibile discriminare senza ambiguità i due enantiomeri (trattandosi

di particelle elicoidali, essi vengono tipicamente individuati mediante i descrittori P

ed M), È stato accertato che il veri�carsi delle possibilità di enantiodiscriminazione

dipende da determinate condizioni (che vengono dettagliatamente discusse nel Capi-

tolo 4). L'idea e le simulazioni numeriche hanno altresì costituito prezioso materiale

per un modello MF del fenomeno, in grado di consentire appunto, in linea di princi-

pio, la distinzione assoluta dei due enantiomeri (assunta nota l'elicità del solvente).

Ciò è reso possibile dalla formulazione di un potenziale orientazionale sensibile alla

chiralità, capace di tenere conto del senso di avvolgimento delle particelle elicoidali

che si stanno considerando. Il modello elaborato viene presentato e discusso nel

Capitolo 5: esso sembra essere particolarmente interessante, avendo anche, a nostro

avviso, i requisiti necessari per essere, successivamente, ulteriormente migliorato e

`a�nato' per la trattazione di sistemi reali. Per concludere, l'aspetto che maggior-

mente ci preme sottolineare quale `�loso�a' che permea l'intero lavoro di Tesi, è

quello di concepire le due metodologie, Molecular Field e Simulazioni Numeriche,

come sinergiche (e pertanto non mutuamente esclusive, bensì complementari) una
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loro corretta applicazione potrebbe condurre il Ricercatore ad ampli�carne l'e�cacia

ed allo stesso tempo aumentare la possibilità di `innescare' nuove idee sulla base dei

dati ottenuti.



Introduction

For a Chemist, the creation of new materials often starts with the study of the

building blocks of the material itself: the molecules. What we hope to understand

in this work is the role of the shape of the particles of a �uid to obtain a certain

macroscopic behaviour. To pursue this goal, one of the most used theoretical tools

is, of course, the Statistical Thermodynamics, by which it is possible, for example, to

predict phase behaviours and, in particular, phase transitions starting from the for-

mulation of the molecular interactions. This kind of study is di�cult because there

are a lot of variety of phases and behaviours and the complexity of their molecular

interactions represents a hard challenge for theoreticians. The basic idea behind this

Thesis work derives from previous studies carried out in the LXNMR_S.C.An. Lab

at the University of Calabria, initially in the �eld of thermotropic nematic Liquid

Crystals (LCs), and, subsequently, in general about various kinds of partially ordered

anisotropic phases, both from the experimental point of view (LX-NMR) as well as

from the theoretical point of view (with the purpose of explaining/interpreting the

data acquired experimentally) [1�10]. The necessity of this work starts from the at-

tempt to reconcile/combine synergistically two powerful statistical thermodynamics

tools constituted by (1) the Mean Field approach (we strictly speak about Molecular

Field (MF) approaches) [11] and (2) the Computer Simulations (CS) [12,13], which

are gradually gaining ground in the study of this type of phases, also to make up

for the lack of experimental data, as well as to suggest to the experimentalists pos-

sible hypotheses of work. Even though the �eld of research on statistically ordered

liquids is not new (their discovery date back to about 120 years ago [14,15]), in the

last decades the amount of studies has been large and varied, so that we decided to

choose topics regarding speci�c contents never treated before.

For this purpose, our attention has been turned toward the study of systems poten-

tially suitable to generate the elusive thermotropic nematic biaxial phase (Nb) [16].

Regarding this mesophase, its existence was hypothesized by Freiser [2] and Stra-

ley [3]; the latter in particular, formulated a mean �eld theory for a system made up

of anisometric particles as board-like particle with D2h symmetry. Unfortunately,

the Nb has never been observed in real systems; nevertheless, it seems that another

kind of particles (bent-core shaped, boomerang-like) that possess the C2v symme-



2

try [5, 6] are able to give rise to the formation of the biaxial phase. There are,

anyway, many other possible particle symmetries that are in principle able to form

Nb phases [21�23] and among these symmetries also the C2h one. A signi�cant part

of the PhD Research project has been spent to the study of systems composed of C2h

particles, marginally or not at all treated in literature; therefore, we believed that

it was appropriate to employ CS tools for the investigation of this type of systems.

To better understand the spirit that has pushed us towards this type of research it

is good to spend a few words of premise on the various approaches that over time

have succeeded. In this regard, it is clear that to understand or, at least, to realize

which are the intermolecular forces that are responsible for the behaviour of the sys-

tem under investigation is of fundamental importance. It is possible to distinguish

two main currents of thought where a di�erent weight to short- and long- range

interactions has been attributed. The founder of theories based exclusively on the

(short-range) repulsive interactions is Onsager [24]: in his formulation the excluded

volumes play a fundamental role in inducing a nematic order. On the contrary, in

1959 Maier and Saupe [25], suggested that the (long-range) dispersion forces are

responsible of the emergence of the nematic phase. The main divergence between

the two approaches is due to the temperature dependence (T); in fact, in Onsager's

theory, it does not play any direct role (the theory is sensitive to density variations)

while, in Maier-Saupe's theory, the T has an important direct role. This, in the �eld

of thermotropic liquid crystals, is re�ected on how much the two theories can repro-

duce the experimental data. Considering the Nematic (N)→Isotropic (I) transition,

using the Onsager approach the value of the uniaxial order parameter, S (a measure

of the orientation degree of the molecules) has a value of about 0.85, about twice

with respect to that observed in real systems of typical nematics (nonetheless, this

approach continues to play a very important role in the theory of liquid crystals);

on the contrary, while using the mean-�eld approach of Maier-Saupe (MS), a value

of about S = 0.43 is obtained, which is quite close to that observed experimentally.

This description (certainly not exhaustive, but which will be resumed in more detail

in Chapter 1) leads one to notice that both the mentioned theories have strengths

and weakness points, but they share a common goal, that is to create a link between

the microscopic and macroscopic properties of the system that is under investiga-

tion. The possibility to predict the behaviour of a system could, among other things,

contribute to support the experimentalists in elaborating and designing the synthe-

sis of particular compounds with predetermined characteristics, so avoiding what

could be the waste of both material and human resources due to a `trial and error'

processes.

As said above, we have studied a system composed of C2h symmetry particles [26],

using Monte Carlo Simulation technique (up to now there are no similar issues in



3

the literature). In parallel, we have also investigated the behaviour of a D2h particle

system, using a Molecular Field method, in a region of molecular partially repulsive

interactions, not addressed and explored so widely as done in [27]. Moreover, we also

decided to address the problem of chirality [28], ubiquitous in many �elds of natural

sciences and phenomena (biological, chemical, etc ...) by using the peculiar proper-

ties of oriented systems. Our choice fell on a problem, such as chiral recognition, by

exploiting the potential of the ordered phases in inducing di�erent ordering between

the two enantiomers. The best suited situation to achieve this goal was to consider

systems made up of helical particles. Also for these systems there are various stud-

ies of various kind (DNA, proteins, etc ...); anyway, we have focused our attention

on phases composed of helical chiral solutes dissolved/dispersed in (enantiopure)

chiral solvents, in their turn formed by (concordant) helical particles [29]. For the

investigation of this system, CS have been carried out and they have highlighted in-

teresting aspects related to the orientational order and the use of order parameters

as recognition tools. The pseudo-experimental data acquired by the CS were spent

to validate a MF approach to the problem, through the formulation/proposition of

a mean-torque potential sensitive to the handedness of the helical particles (i.e. P

and M) and, therefore, potentially useful for the assignment of the absolute con�-

guration.

This Thesis is organized 5 chapters: The �rst chapter gives the theoretical prin-

ciples as a general support for the following chapters. In the second chapter, the

operational details of the CS will be provided on systems of C2h symmetry particles

modelled as dimers of shifted spherocylinders. In the third chapter, a Molecular

Field study carried out on D2h symmetry particles will be illustrated, where an al-

most unexplored region of intermolecular interactions has been investigated, that

can allow an important link between the microscopic and macroscopic properties of

the system. In chapters 4 and 5, the problem of chirality referred to helical particle

systems will be investigated, using CS for the prediction of virtual experimental

data, that can be used to validate a Molecular Field approach as a model of in-

terpretation of data in the cases where orientational di�erences between the two

enantiomers emerge.
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CHAPTER 1

Theoretical Background

1.1 Introduction

As said in the introduction, the creation of new materials often starts with the

study of the building blocks of the material itself: the molecules. What we hope to

understand in this work is the role of the shape of the particles of a �uid to obtain a

certain macroscopic behaviour. One way to proceed is to suggest, starting from the

molecular structure, a simpli�ed molecular model, trying to keep only those aspects

which are thought to be relevant for the macroscopic behaviour.

The simplest model that can allow to obtain a nematic phase is that where the

particles are rigid rods (cylindrical symmetry, D∞h), as shown in Figure 1.1. If we

choose a reference frame in which the Z-axis is parallel to the principal director of

the phase n (that identi�es the direction along which the particles are, on average,

aligned [1]), the orientation of every particle can be given in terms of the polar angle

ϑ that the molecular long axis (C∞), identi�ed with z) forms with the Z axis, and

of the azimuthal angle ϕ (the angle that the projection of z in the XY plane makes

with the X axis.
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Figure 1.1: (a) Geometrical features of a spherocylinder particle: D is the diameter of the particle
and L is the length of the cylinder part whose value is L = 5D (b) Description of the
orientation of a single D∞h particle (in this case, a spherocylinder) with respect to
the Laboratory system (X, Y, Z) through the polar (ϑ) and azimuthal (ϕ) angles.

It is appropriate, in this scenario, to introduce the distribution function f(ϑ, ϕ) cor-

responding to the probability density of �nding the rod in a particular orientational

state (then, the in�nitesimal probability dP of �nding the orientation of the particle

within a small solid angle dΩ = sinϑdϑdϕ will be dP = f(ϑ, ϕ) dΩ ). For a uni-

axial apolar phase, as the conventional nematics, this function has two important

properties:

1. f(ϑ, ϕ) = f(ϑ)/2π, is indipendent of ϕ (this property is strictly attribuited to

the cylindricl symmetry of the phase about the director);

2. f(ϑ) = f(π − ϑ), due to the lack of polarity of the director n (see Chapter 1)

Due to the angular dependence of the orientational distribution function, it is pos-

sible to perform a multipole expansion (in terms of Cartesian tensors [2] or, alterna-

tively, in terms of spherical tensors as Wigner rotation matrices [3], a generalization

of Spherical Harmonics), to de�ne mathematical quantities, called order parameters,

that describe the nature and the degree of orientational order of the mesophase. The

number of non-vanishing parameters strictly depend on both the symmetry of the

particles and the phase. Just to describe with an example the general meaning of

the term `order parameter' (an exhaustive discussion on the order parameters will be

successively presented in this work), for a uniaxial phase there is just one non-null

order parameter (called S), that corresponds to the average of the �rst non-trivial

term of the expansion (the quadrupolar one). It is de�ned in eq. (1.1):

S = 〈P2(cosϑ)〉 =

π∫
0

P2(cosϑ)f(ϑ)sinϑdϑ =

〈
3

2
cos2ϑ− 1

2

〉
(1.1)
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where P2(cosϑ) is the second order Legendre polynomial [3]. In practice, when the

molecules are, on average, perfectly aligned with the director, S = 1 (this happens

for ϑ = 0 and ϑ = π ). On the contrary, when S = 0, the particles are, on

average, completely randomly oriented
(〈
cos2ϑ

〉
= 1

3

)
, see Figure 1.2. Of course,

these de�nitions correspond to realistic physical situations that can be supported

and con�rmed by experimental results carried out by many techniques (LX-NMR,

SAXS, etc. . . ).

0 deg

90 deg

n

Figure 1.2: The colour of the particles is related with their orientation with respect to the director
of the phase. Isotropic phase (left); Nematic phase ϑ ' 0◦ (right).

In general, from a thermodynamic point of view one possible aim of the work is to

build a `phase diagram' of the particular system under examination, in order to pre-

dict its behaviour. The use of the order parameters, together with other quantities

(that will be discussed later), allows one not only to quantify the ordering present

in the phase, but also to locate the temperature of the phase transitions and the

physical nature of the phases present in the diagram. The challenge is to understand

which is the e�ect of changing physical and chemical properties of the constituent

molecules on the macroscopic behaviour of the system. The theoretical approaches

that allow us to achieve these results are (basically) two: (1) Mean/Molecular Field

Theories (MF) and (2) Computer Simulations (CS).

1.2 Molecular/Mean Field Theories

This kind of theories are founded on the mean �eld approximation in which, with the

aim to simplify the calculations (often, strictly speaking, `impossible' to do), we move

from a many-body to a one-body problem. The heart of a Mean Field Theory [4] is

indeed the formulation of a potential U(Ω), also called e�ective/pseudo/mean torque

potential, from which the behaviour of the system under examination depends. In

practice, instead of taking into account all the particle - particle interactions, we
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consider the interaction of the single particle with the mean �eld generated by the

other N − 1 molecules: this is the trick. A �ne but important di�erence must be

necessarily done between Mean and Molecular Field: the former, following the Lan-

dau theory [5], utilises phenomenological parameters that it is not trivial to link

with speci�c molecular properties; in other words, the parameters have to be phe-

nomenologically adjusted in order to obtain an e�ective form of the potential, able

to reproduce the physics of the studied system. On the contrary, in Molecular Field

approach, these parameters can be, in principle, linked in some way with molecular

properties. The two most important (pioneering) MFs theories in the �eld of LCs,

are those due to the studies of Onsager [6] and Maier-Saupe [7], for the theoretical

study of the transition from isotropic to nematic phase. In the Onsager Theory,

the e�ects of the anisometry of the particles (assumed to be spherocylinders) were

explored by using the so-called 'excluded volume' approximation (Figure 1.3), where

the interaction of particles is regulated by the use of a hard-core potential. In the

Onsager's approach, there is not a direct dependence on Temperature (diathermic

approach), but particular attention is paid, as said above, to the excluded volume

(i.e., the region of space of each particle that is inaccessible to the other molecules).

The free energy [6] is parametrized in terms of shape and orientations of the particles

(described as spherocylinders) composing the phase themselves. Onsager was the

�rst to predict entropy-driven phase transitions in liquid crystals. The system moves

from an isotropic state, in which the orientations and positions of the particles are

randomly distributed, to a nematic one, in which the molecules are, statistically,

aligned along one preferred direction. There are two di�erent contributions to the

entropy, the translational (packing entropy) and the orientational one. When the

rods are aligned, they lose orientational entropy but, at the same time, there is a

decrease in the excluded volume, as shown in Figure 1.3, and therefore there is a

gain in translational entropy.

Figure 1.3: Excluded volumes (shaded area) for two spherocylinders in: (left) T con�guration
and (right) Parallel con�guration.

The driving force, as stated above, is then the competition between rotational (ori-

entational) and translational entropy: it is the balance between these two contribu-
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tions to the total entropy of the system that determines the phase transitions. When

the density increases, the space in which the particles can freely moves, decreases;

therefore, the molecules prefer to align each other in order to minimize the excluded

volumes, so minimizing the Helmholtz free energy: this is the reason why, in this

approach, the order of the phase increases with the density. The Maier-Saupe The-

ory [7, 8] (MS), on the contrary, has an alternative approach: it is founded on the

contribution of the dispersion forces (long-range interactions), to the orientational

potential. According to this model every molecule experiences an e�ective potential

of the following type:

U(ϑ, S) = −A0S

(
3

2
cos2ϑ− 1

2

)
(1.2)

where A0 is a constant that depends on the sixth power of the inverse of interparticle

distance (r−6
ij ). This theory predicts that, at the clearing temperature Tc, the value

of the uniaxial order parameter is 0.43 and the transition will be classi�able like a

weak �rst order transition. In spite of a better accordance with experimental data,

with respect to the Onsager theory, this model is not free from limitations because,

as the experiments show [9] , it is important to consider orientational short-range

e�ects too.

The models discussed above allowed to study and build the basics of the phenomena

that control and determine the fascinating properties of this particular condensed

phase. The purpose of the present work is to go beyond the `conventional' LCs;

in particular, we have turned our attention to the Thermotropic Biaxial Nematic

Phase. The existence of the biaxial phase, as stated in the Introduction Section,

was �rst postulated by Freiser [10], in 1970, then by Straley [11] , in 1974. The

latter presents a formal generalization of the Maier-Saupe theory, in which, instead

of using a cylindrical symmetry, the particles are modelled as platelets possessing

D2h symmetry. The form of the potential of Maier-Saupe can be generalised to the

biaxial D2h nematic phases by using the following expression:

U = −u0{q ·Q + γ(q ·B + b ·Q) + λ(b ·B)} (1.3)

where

q = ez ⊗ ez −
1

3
I (1.4)

b = ex ⊗ ex − ey ⊗ ey (1.5)

Q = S

(
eZ ⊗ eZ −

1

3
I

)
+

1

3
P
(
eX ⊗ eX − eY ⊗ eY

)
(1.6)
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B = D

(
eZ ⊗ eZ −

1

3
I

)
+

1

3
C
(
eX ⊗ eX − eY ⊗ eY

)
(1.7)

The molecular orientation is expressed by the q and b tensors, with {ex, ey, ez}
the molecular unit vectors of the PAS. The tensors Q ≡ 〈q〉 and B ≡ 〈b〉 (where
{eX , eY , eZ} indicates the Laboratory PAS) are functions of the S, P , D, C orien-

tational order parameters. The latter can be obtained by the general expression of

the Cartesian supermatrix given in eq. (1.8), in particular, their speci�c expressions

are reported in eqs. (1.9-1.12). In order to mathematically describe these order

parameters for a phase made up by platelets (see Figure 1.4) several di�erent, but

equivalent, de�nitions of the order parameters have been used in the past by many

authors (table of correspondences can be found elsewhere [12]).

Figure 1.4: Molecular reference system (small letters) and Laboratory reference (capital letters)
with the de�nition of the Eulerian angles ϕ, ϑ, ψ.

SABab = 〈(3lablAB − δabδAB)〉/2 (1.8)

S = SZZzz =
1

2
〈3l2zZ − 1〉 =

1

2
〈3cos2ϑ− 1〉 (1.9)

D = SZZxx − SZZyy =
3

2
〈l2xZ − l2yZ〉 =

3

2
〈sin2ϑ− cos2ψ〉 (1.10)

P = SXXzz − SY Yzz =
3

2
〈l2zX − l2zY 〉 =

3

2
〈sin2ϑ− cos2ϕ〉 (1.11)

C = (SXXxx − SXXyy )− (SY Yxx − SY Yyy ) =
3

2
〈(l2xX − l2yX)− (l2xY − l2yY )〉 =

3

2
〈(1 + cos2ϑ) cos2ϕ cos2ψ − 2cosϑ sin2ϕ sin2ψ〉

(1.12)
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where laB represents the direction cosines, the capital letters denote the Lab reference

frame (PAS) and the small ones the molecular frame, �nally, the angular brackets

represent the statistical average. In an isotropic phase, all the order parameters are

zero (S = D = C = P = 0); in a uniaxial phase, only the �rst two order parameters

(S and D) will be non-zero, whereas in the biaxial phase all four order parameters

are non-zero. Following the Freiser's work, it is possible to write the Helmholtz free

energy as reported in eq. (3.4):

F =
u0

3

{
S2 +

1

3
P 2 + 2γ

(
SD +

1

3
PC

)
+ λ

(
D2 +

1

3
C2

)
− 3

β
ln

(
Z

8π2

)}
(1.13)

Z =

2π∫
ψ

2π∫
ϕ

π∫
ϑ

e−β(U/u0)sinϑ dϑdϕdψ (1.14)

where Z is the partition function, u0 a positive parameter and β = u0/kT [4].

If we were able to minimize the F free energy as a function of the orientational

order parameters, it would be possible to obtain the stable states, compatible to the

molecular �eld, for the system. To do this the expression of Z-function should be

in principle known: by this way, it would be possible, in principle, to calculate all

the thermodynamic properties of the system, by using the usual formulas provided

by the statistical thermodynamics. The problem is that Z cannot be obtained

by an exactly analytical integration of eq. (1.14). Then, one possibility is to use

numerical techniques of approximated integration of eq. (1.14) or try to obtain a

closed analytical (even though approximated) form of the partition function [13].

The choice of the study of this particular symmetry of the particles is surely due

to the fact that it represents the simplest case to deal with. However, the biaxial

phase can, in principle, exist for a widely range of symmetries other then D2h and,

from the seminal work of Boccara [14], many progress in the �eld have been done

[15, 16]. In recent years, for example, many scientists used V-shaped (bent-core)

molecules [17�19] a promising morphology to obtain the elusive researched phase.

In our Project, on the contrary, we focused our attention on C2h symmetry of the

particles, that should be able, in principle, to give a thermotropic nematic biaxial

phase one [20]. The complexity of the intermolecular interaction potential requires

the use of a more extensive and convenient basis set instead of the cartesian one:

the Wigner matrices [3], a generalization of the Spherical Harmonics functions, and

the formalism of the irreducible spherical tensors. Then the orientational potential

can be then conveniently expressed as:

U(Ω) = Uu(Ω) + UD2h
(Ω) + UC2h

(Ω) (1.15)
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where each single term of the sum is given in the eqs. (1.16-1.18)

Uu(Ω) = −[(〈R00〉+ 2γs〈R02〉 − 2γa〈I02〉)R00(Ω)+

+ (2γs〈R00〉+ 4λs〈R02〉 − 2λ0〈I02〉)R02(Ω)+

+ (−2γa〈R00〉 − 2λ0〈R02〉 − 4λa〈I02〉)I02(Ω)]

(1.16)

UD2h
(Ω) = −2{[(〈R20〉+ γs〈Rs

22〉 − γa〈Is22〉)R20(Ω)+

+ (γs〈R20〉+ λs〈Rs
22〉 −

1

2
λ0〈Is22〉)Rs

22(Ω)+

+ (−γa〈R20〉 −
1

2
λ0〈Rs

22〉 − λa〈Is22〉)Is22(Ω)]}

(1.17)

UC2h
(Ω) = −2{[(〈I20〉+ γs〈Ia22〉+ γa〈Ra

22〉)I20(Ω)+

+ (γa〈I20〉+
1

2
λ0〈Ia22〉 − λa〈Ra

22〉)Ra
22(Ω)+

+ (γs〈I20〉+ λs〈Ia22〉+
1

2
λ0〈Ra

22〉)Ia22(Ω)]}

(1.18)

where the term Uu(Ω) (eq. (1.16)) is responsible of the formation of the uniaxial

nematic phase, the UD2h
(Ω) (eq. (1.17)) accounts for the possible existence of biaxial

nematic regions with D2h symmetry and the UC2h
(Ω) (eq. (1.18)) describes the

biaxial nematic phase with C2h symmetry (it should be noticed as, in this case, it

is possible to obtain a D2h biaxial mesophase starting from C2h particles [20, 21]).

Furthermore Ω denotes the set of angular variables (ϕ, ϑ, ψ), with Rs,a
l,m and Is,al,m

the appropriate real and imaginary parts of the Wigner matrices (symmetrical and

antisymmetric). The order parameters required to properly describe the statistical

ordering of the mesophase should amount to 25. However, for symmetry reasons [20],

their number can reduced to 9, whose expressions are reported in the eqs. (1.19-

1.27):

〈R00〉 = SZZzz (1.19)

〈R02〉 =
1√
6

(SZZxx − SZZyy ) (1.20)

〈I02〉 =

√
2

3
SZZxy (1.21)

〈R20〉 =
1√
6

(SXXzz − SY Yzz ) (1.22)

〈Rs
22〉 =

1

3
[(SXXxx − SY Yxx )− (SXXyy − SY Yyy )] (1.23)

〈Is22〉 =
2

3
(SXXxy − SY Yxy ) (1.24)
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〈Ra
22〉 =

2

3
[(SXYxy − SY Xxy )] (1.25)

〈I20〉 = −
√

2

3
SXYzz (1.26)

〈Ia22〉 = −2

3
(SXYxx − SXYyy ) (1.27)

It is interesting to note that, if the D2h phase exists then 〈R00〉 → 1,〈R20〉, 〈R02〉 → 0

and 〈Rs
22〉 → 1. On the contrary, if nematogenic molecules have C2h symmetry and

the phase has the same symmetry then 〈R00〉,〈Rs
22〉,〈Ra

22〉 are expected to be large

whereas the other parameters are expected to be small.

1.3 Computer Simulations (CS)

Computer Simulations [22] play an important role in the prediction of phase be-

haviours and, at the same time, the simulated results can be compared with those

obtained from real experiment. The double role of CS, as a bridge between mod-

els and experimental results, is very important, because often can allow to perform

useful virtual experiments, very di�cult to carry out in practice. Today, the role of

Computer Simulations is well de�ned and they �nd applications in almost all �elds

of science; of course, they become even more attractive and useful thanks to the

increase in computing power, as the Moore's law∗ suggests. It should be empha-

sized that our interest is not that of investigating the detailed properties of speci�c

molecules; on the contrary, we often have the problem of designing molecules of

which, probably, the detailed structure is not known; therefore the ultimate goal

of CS is that of sketching molecules that have not yet been synthesised and that

are, in principle, able to yield mesophases with speci�c properties of interest. This

turns possible when the characteristic of the molecules is responsible of a certain

collective behaviour is well understood. The most useful techniques for studying

and to achieve this result from a simulation point of view are: Molecular Dynamics

(MD) and Monte Carlo (MC) [22]. With the �rst method it is possible to solve

step by step classical equation of motions for all the N particles in the system: this

allows us to calculate some properties (observables) from the trajectories obtained.

The choice between MC and MD is largely determined by the phenomena under

investigation: since, in this work, the aim is to study only the e�ect of the shape

of the particles on the macroscopic behaviour of the system, we choose to use MC

which will be described more accurately.

∗ It is a famous informatic law: it establishes that every 18/24 months the number of transistors
on a chip doubles, while at the same time increasing the computing power
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MC methods allow us to calculate the properties of interest, the observables, from

equilibrium con�gurations, where a con�guration stands for a set of positions and

orientations of the molecules, generated from an appropriate algorithm. Suppose

that, in a Canonical ensemble (NVT) [23] (where the number of particles, N , the

volume of the system,V , and the Temperature T are �xed) we want to calculate the

observable 〈A〉, depending on positions and orientation of all the N particles. If we

indicate the six variables (ri, Ωi) of each particle as X, then:

ZN =

∫
dXN e(−βUN ) (1.28)

〈A〉 =
1

ZN

∫
dXN Ae(−βUN ) (1.29)

where ZN is the canonical partition function, dXN =
∏N

i=1 dXi and the volume

element in the phase space is dXi=dridΩi with dri = dxi, dyi, dzi and

dΩi=sinθidθidϕidψi. Imagine now that it is possible to take some snapshots of the

system and store them to calculate the observable of interest, replacing the previous

formula for A with the form of eq. (1.30), thanks to the ergodic hypothesis (the

long-time average of any mechanical property is equal to the average value of that

property over all the M microscopic states, M con�gurations in this case, of the

system):

〈A〉 =
1

M

M∑
j=1

Aj (1.30)

The `trick' is to calculate A in every con�guration, Aj; then, to average over the con-

�gurations themselves. Obviously, it is necessary a high number of con�gurations is

required to minimize statistical errors and �uctuations. The crucial point is the gen-

eration of these con�gurations, which represents the role of MC technique, paying

attention to the fact that this must be done respecting the physical and thermo-

dynamic conditions of the chosen ensemble. In this Project, the Metropolis [24, 25]

technique has been used, where every con�guration appears with a frequency pro-

portional to the Boltzmann factor. This is made possible thanks to the utilization

of the so-called Markov chain: the probability of occurrence of each event, k, at

time t depends only by the state of the system immediately preceding k. The basic

simulation procedure of MC method goes as follows: �rst of all, the energy of the

initial con�guration (U old) will be calculated; then, one particle is randomly chosen

and a trial move (rotation, translation) is attempted; �nally the new energy of the

system (Unew) will be evaluated. If (Unew − U old < 0) the new con�guration is

accepted; on the contrary, if this does not happen, the new con�guration will not be
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rejected immediately, but it will be accepted or not in accord with the probability

e−β(Unew−Uold), where β = 1/kT . In practice, when a random number α, randomly

generated between 0 and 1, is less then e−β(Unew−Uold) the con�guration (and thus the

trial move) is accepted (rejected otherwise and the old con�guration restored). This

procedure will be carried out several times in the simulations until the equilibrium

is reached. The working �ow of the MC method is reported in Figure 1.5:

Figure 1.5: Flow chart of a Metropolis Monte Carlo Simulations.

With the aim to apply CS to the study liquid crystal systems, two kinds of approach

are possible. The �rst is the on-lattice model, where the particles have �xed positions

at the lattice sites. One of the most famous application of this type is Lebwohl-

Lasher one [27]. Rod-like molecules can freely rotating and they are subjected to an

exclusively orientational intermolecular potential of the form reported in eq. (1.31).
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For this type of simulations, only the interactions between nearest neighbours are

taken into account:

Uij = −εijP2(cosβij) (1.31)

where εij is a positive constant, P2(...) represents the second-order Legendre poly-

nomial and βij is the angle between the orientation of the particle i and j. Despite

its simplicity, by this model it is possible to obtain quite `good' information about

the orientational states of the system under examination. Using this approach, it

is, of course, not possible to acquire information about the positional order possibly

present in the phase; then in the years, a second approach to CS of LCs became

more important, the o�-lattice model, where translational freedom is present besides

the rotational one.

The earliest work on liquid crystals using an o�-lattice model was conducted by

Viellard-Baron [28], by studying the behaviour of a system made up of hard ellip-

soid particles (Figure 1.6), while the �rst attempt to construct a phase diagram for

a three-dimensional system of the same particles is amenable to Frenkel et al [29]

(however, in his work a MD technique has been used):

Calamitic LCs can be modelized also as hard spherocylinders (as in the Onsager

Figure 1.6: (left): System composed of ellipsoidal particles; (right); shape parameters for ellip-
soidal particle.

theory), similar to the shape of various mesogenic colloids, as, for example, the to-

bacco mosaic virus. If we assume a hard-core potential in the MC simulations the

interaction energy can assumes only the values ∞ or 0, based on whether or not

there is an overlap between the particles, as reported in Figure 1.7:
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U

dσ0

¥

Figure 1.7: Potential (U) of interaction between hard-core particles, d is the distance between
them and σ is the distance at which the overlap occurs.

where d is the distance between the particles and the red dashed line represents

the distance σ at which the overlap occurs. It must be emphasised that, due to

the anisometry of the particles (non-spherical particles), the interaction potential

depends not only on the distance between the centres of the molecules but also on

their orientation d(rij,Ω). By using a hard-core particle model, only the repulsive

interactions between particles are taken into account; however, in the years, others

theories have been developed that consider the attractive interactions too, labelled

as soft-core models. The most famous and useful of these models is the Gay-Berne

(GB) potential [30] one. It can be seen as a generalised anisotropic and shifted

version of the Lennard-Jones interaction, with attractive and repulsive parts that

decrease as inverse powers of distances. Here the pair-interaction energy is:

Uij(ui, uj, rij) = 4εij(ui, uj, rij)

[
σ0

r − σ(ui, uj, rij) + σ0

]12

+

−
[

σ0

r − σ(ui, uj, rij) + σ0

]6
(1.32)

In the GB model the strength εij, and the σ parameters depend on the orientation

vectors ui and uj of the two particles and on their separation vector rij. Generally,

this potential is characterized by parameters (correlated to the shape of the model

particles, that determine the overall form of the potential), that take into account

di�erent ways to in which the particles can interact, as for example: end to end

interaction, side by side interaction and face to face interaction.
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CHAPTER 2

Computer Simulations of Biaxial Particles with

C2h Symmetry

2.1 Introduction

The quest for a truly Thermotropic Biaxial Nematic Phase, Nb, has been aptly

named the holy grail [1] of Liquid Crystals, since it has fuelled experimental and

theoretical research for more than 45 years, starting from the theoretical paper

of Freiser [2] and Straley [3]. There are scientists who claim to have found this

phase experimentally [4�6], but there are others who question these results and the

debat [7,8] is still open. This elusiveness may be due to the fact that some features

(morphology of molecules, molecular interactions, etc..) favouring the formation of

the biaxial nematic phase also favour their packing in the competing smectic (Sm)

or crystalline (K) biaxial phases; moreover, also we need to keep in mind that the

original predictions of the existence of this mesophase are based on a `simple' mean

�eld theory that sometimes makes mistakes in determining phase boundaries. The

use of Computer Simulations can help us to draw direct relations between speci�c

molecular properties (in particular, the molecular shape and its symmetry) and

macroscopic behaviour; in other words, we are speaking about Molecular Design of

Biaxial Liquid Crystals.

The fundamental questions that should be, in principle, answered are the following:

1. What are the molecular interactions able to promote the formation of the Nb

and how much is the molecular shape (and its symmetry) important/decisive?

2. How much good are the Mean/Molecular �eld models in predicting the phase

transitions?

3. What are the features that can destabilize the competing phases of the Nb

one?



24

The task of answering is mainly entrusted to the theoreticians, with the aim of

collaborating, after the engineering step, in synergy with the experimentalists by

proposing, for example, some structures (morphologies) that a molecule must have

to be a good candidate in order to obtain a stable Nb phase. The most `natural'

computational technique to make this study could seem to be the atomistic one,

where each atom (or small group of atoms) is represented by a suitable attractive-

repulsive centre, with the construction (or the use of a already existing) suitable

force �eld, by means of which the particle interactions can be modelized. Many

scientists assert that the shape [9, 10] of the particles plays a decisive role in the

formation of this particular phase. Since we share this opinion, we decided to use

a hard particle model. In our work we modelized the particles as dimers of shifted

spherocylinders with C2h symmetry, see Figure 2.1:

u

wh

shift

Figure 2.1: Image of the dimer of shifted spherocylinders with indicated: (I) the molecular ref-
erence frame represented by the triad of unit vectors {u, w, h} and (II) the shift
between the two spherocylinders.

The most important reasons about this choice are the following:

• This kind of particle symmetry has been scarcely explored, until now, by CS;

• Phases made by spherocylinders present stable positional and orientational or-

dered states; then, it should be possible, in principle, to study if some features

exist that can disfavour the formation of competing phases.
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2.2 Computational Details

It is known from thermodynamics that the Equation of State (EoS ), for a particular

system, is determined experimentally. For most of the real systems, the expression

of EoS is not known analytically; then, the description of the phase diagram and,

therefore, the prediction of the stable states of the system is quite di�cult. This

is even more true for the phase we are dealing with, not having ever, so far, been

found experimentally. Given the necessity to have at one's disposal this kind of

thermodynamic data, both to test theoretical models (e.g. Mean/Molecular theo-

ries) and/or to understand to which extent the purely shape/symmetry molecular

features are able to promote the formation of the searched phase, we have turned

our attention to the use of CS (mainly thanks to the collaboration with Prof. Gior-

gio Cinacchi∗). The study of phase behaviour has been performed by using MC

simulations (in NPT ensemble) over system size ranges from N=576 to N=2400

dimers; it should be emphasized that, in the simulations, `reduced dimensionless

units' have been used, labelled with an asterisk. Every system has been simulated

at di�erent reduced pressures P ∗ (P ∗ = PD3/kT where D is the diameter of the

spherocylinders) and, during the simulation, the density ρ∗ (ρ∗ = ρD3) has been

equilibrated , where ρ is the number density N/V (V being the volume of simulation

box of sides Lx, Ly, Lz); in practice, Pressure (Temperature) scans have been done.

Actually, a useful dimensionless quantity to be used, instead of ρ∗, is the packed

fraction φ = ρ∗ · (Vdim/D3) = ρ · Vdim where Vdim = 2π[LD
2

4
+ D3

6
] is the volume of

the dimer. The potential chosen is the `hard-core potential', whose form is given in

Chapter 1 (see Figure 1.7). To obtain equilibrated con�gurations, several MC steps

(typically of the order of 106 steps) were performed, each step consisting of N+2

attempts to: (a) translate/rotate a random chosen particle or (b) change the volume

of the simulation box, changing randomly the length of one edge at time; moreover,

simulations were performed using �xed (cubic) and variable (triclinic) boxes.

The most expensive computational part is to evaluate, move after move, if overlaps

occur between particles. An e�ective technique to reduce the computational times

of this procedure is to use the Verlet list algorithm [11], where only the interactions

of the moved particle with its nearest neighbours are taken into account. The �nal

purpose of our work is to obtain a complete phase diagram [12] for hard dimers of

shifted spherocylinders.

∗Department of Theoretical Physics of Condensed Matter, Institute of Condensed Matter Physics
(IFIMAC) and Institute of Materials Sciences `Nicolas Cabrera', Universidad Autonoma de
Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
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The �ow chart of the entire `mechanism' of the simulations is reported in Figure 2.2:
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Figure 2.2: Flow chart of the simulation process, where sh=shift, φ=volume (or packed) fraction,
N=number of particles, P=pressure, ∆ sh=incremental value of shift, the subscripts
i, w, f stay for initial, working, �nal.
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In order to obtain a correct and reliable sampling of the con�gurational space (but

also to limit calculation times) the percentage of acceptance of the random moves

must be kept in a range that varies from 10 and 30 percent; this is obtained by

adjusting the magnitude of the random moves, the maximum translation/rotation

of the particle (the software does not adjust automatically these parameters because,

doing this, could introduce `bias' so that the results could be signi�cantly a�ected

and very wrong (as reported in the literature [13]). The automatic adjustment of

the magnitude of the moves makes the probability of attempting a new trial move

dependent on the previous con�guration history (not only dependent on the last

one) thus violating the Markovian process. In addition, the correlation between the

con�gurations has, as a consequence that it is not respected the balance condition

[14, 15]. As a last part of this introduction to the computational work, it should

be emphasized that the whole MC code (routines and subroutines of analysis) is an

entirely in-house software (written in Fortran77). It represented a signi�cant part

of the Project.

Exactly as after a chemical synthesis, it needs to characterize what has been obtained

in order to verify whether or not the desired compound has been obtained, in the

same way, after a `virtual' CS experiment, it needs to recognize the phases virtually

emerging from the simulations; in particular, the aim is to quantify the orientational

and positional statistical order present in the obtained phases. The tools used for

this purpose were:

• Visualization (by the QMGA [16] software) of the output con�gurations;

• Evaluation of the:

a) Order parameters;

b) Correlation and distribution functions;

c) Mean square displacements (msd);

2.3 Simulated Order Parameters

For a uniaxial phase composed of N uniaxial particles, the order parameter is cal-

culated as reported in eqs. (2.1) [17], where:

Quu
α,β =

1

N

N∑
i=1

3

2
uiαuiβ −

1

2
δαβ (2.1)

with α, β = X,Y,Z the axes of the LAB reference frame, the uiα the α component

of the unit vector u (i.e. the direction) of the long molecular axis with respect to the

Z axis of the box (of the Lab) of the i-th molecule and δαβ the Kronecker symbol.
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The order parameter, denoted as S, is de�ned as the largest (in magnitude) eigen-

value of the Quu tensor, and the corresponding eigenvector identi�es the nematic

director n. In the de�nitions of the biaxial order parameters, instead, the sym-

metry of the particles (and, of course, of the phase) is of fundamental importance.

Remembering that our aim is to study a phase composed of C2h particles, as sug-

gested in literature [18], it could be possible, in principle, to think di�erent idealised

shapes [18] (in the case of board-like particles for example) possessing the desired

C2h symmetry. The �rst possible shape (see Figure 2.3, model 1) is that in which

the long molecular axis u coincide with the C2 symmetry axis of the particle [19],

anyway, other two possible choices exist: (I) a particle shape in which the two-fold

axis of the molecule coincides with the short w molecular axis, (Figure 2.3, model

2) and (II) a shape in which the two-fold axis coincide with the shortest molecular

axis h (Figure 2.3, model 3). The idealised shapes just described are shown in the

following �gure:

Figure 2.3: Idealised shapes for a C2h particle: model 1, 2 and 3 (from left to right); the red
line represents the C2 symmetry axis and w,h,u represent the molecular reference
frame.

The choice among the models 1, 2 or 3 suggests the use of di�erent forms of the

e�ective orientational potential and, as a consequence, the use of di�erent order

parameters for each case. The model 3 is that consistent and comparable with our

scenario made of dimers of spherocylinders. In this scenario, for a phase made up

of dimers, the peculiar order parameters [18] are reported, in the form in which

they are implemented into the code, in eqs. (2.2-2.4). It should be emphasized

that, in principle, for this kind of phase one can have 25 order parameters, but for

symmetry reasons [18,19] and for sake of simplicity this number is approxiamted to

just 3 `fundamental' order parameters:
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R00 =
1

N

N∑
i=1

3

2
(ui ·Z)2 − 1

2
(2.2)

R22 =
1

N

N∑
i=1

1

3

[
(wi ·X)2 + (hi · Y )2 − (wi · Y )2 − (hi ·X)2

]
(2.3)

Ra
11 =

1

N

N∑
i=1

2

3

[
(wi ·X) · (ui ·Z)− (wi ·Z)− (ui ·X)

]
(2.4)

where, wi, hi, zi are the unit vectors (i.e. the direction) of the molecular axes with

respect to the X, Y, Z axis of the box (of the Lab) of the i -th molecule. In order

to be able to calculate these quantities it is necessary to de�ne the X, Y and Z of

the Lab reference frame. This step can results often quite `ambiguous'; so, in order

to avoid confusion, we decided to introduce new molecular order parameters de�ned

as follows:

Qww
α,β =

1

N

N∑
i=1

3

2
wiαwiβ −

1

2
δαβ (2.5)

Qw⊥w⊥
α,β =

1

N

N∑
i=1

2w⊥iαw⊥iβ − δαβ (2.6)

with w⊥iα the α component of the unit vector w⊥iα, being w⊥α = (w×n)/|w×n|.
The two mathematical quantities just reported are very useful in quantifying the

biaxial order with D2h symmetry; the procedure of calculation is the same as that

of the calculation of S, where rather than taking into account the orientation of the

long molecular the orientation of the short molecular axis w is taken into account.

From the diagonalization of the two tensors given in eqs. (2.5-2.6), we have de�ned

two new orientational order parameters for a biaxial phase (possessing D2h) that

will be denoted as Sw and Sw⊥ .

As repeatedly reported, since for our simulations we are using particles with C2h

symmetry (Figure 2.1), it could be possible that the biaxial phase with C2h symmetry

appears; so, we decided to de�ne another order parameter sensitive to the formation

of this kind of symmetry of the mesophase, whose expression is reported in eq. 2.7:

PC2h
=

〈
1

N

∣∣∣∣∣
N∑
i=1

(ui · n)(w⊥i ·m)

∣∣∣∣∣
〉

(2.7)

where n and m are the principal and secondary director, both available from the

calculation of S �rst and Sw⊥ after; 〈...〉 indicating an arithmetic mean over con�gu-

rations. The order parameters just introduced are independent of external reference
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frame, since they are obtained by using exclusively the molecular reference system;

this is possible thanks to the use of CS, because, with this technique, it is possi-

ble to know the orientation of each single particle in each single instant. As said

in Chapter 1 (in the section regarding the Molecular Field), when C2h symmetry

particles are considered, it is necessary to take into account the possibility of forma-

tion of a biaxial phase possessing D2h symmetry; in our case, this could be possible

when con�gurations (schematized in Figure 2.4) occurs; if it happens: Sw⊥ → 1 and

PC2h
→ 0.

u

w

u u u

w w w

(a) (b)

Figure 2.4: Possible con�gurations of (a) C2h and (b) D2h phase.

Until now, it has been taken into account only the orientational order of the particles

but LCs can exhibit also a statistical positional order; this is peculiar for smectic

phase, for example. To identify and quantify this kind of order in our simulations,

we used the well-know positional (or translational) smectic order parameter τ [20],

whose expression is reported in eqs.(2.8-2.9):

λk(d) =
N∑
j=1

∣∣∣∣exp

(
i2πk

rj · n
d

)∣∣∣∣ (2.8)

τ = maxλk(d) (2.9)

where k is the order of the parameter, rj are the positions of the centres of mass

with respect to a �xed origin of the particles, n is the principal director and d is the

`guess' parameter: the value of d that maximize the function represent the spacing

of the smectic layers. In general, for a SmA phase ones can have a situation as shown

in Figure 2.5 where the characteristic trend of the function of eq. (2.8) for a layered

phase is shown. This parameter quantify the extent of layering of the particles:

when τ → 0 there is an absence of a layered structure and, on the contrary, τ → 1

indicates the presence of a high degree of strati�cation of the particles.
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Figure 2.5: Behaviour of smectic function of eq. (2.8), assuming k=1, for the case at P*=0.90
where the shift between the spherocylinders is set to 0.

The procedure reported above can be applied when the normal to the layers is aligned

along n is known, but unfortunately, this direction is not a priori detectable. We

have faced the problem when it was necessary to have a positional order parameter

able to detect the presence of a SmC phase. It is possible to realise that, searching

for the maximum of eq. (2.8) is nothing else than searching for the maximum of

the structure factor among the reciprocal-lattice vectors of the form k = 2π
d
n; due

to that, the layer normal can be obtained by determining the kmax at which the

structure factor S(k) shows the most prominent Bragg peak. In practice, kmax
identi�es the direction of the layer normal that allows to calculate the τC using the

same procedure adopted for the calculation of τA. In addition, the tilting angle

between the director and the layer normal is: θ = arccos[(kmax · n)/|kmax|] and it

is also possible to note that the SmA phase can be simply considered as a particular

case of SmC phase with θ = 0 and kmax = n.

It is known from literature [21] that a phase composed of calamitic particles can give

rise to the hexatic phase, therefore to take into account this, we have also calculated

the hexatic order parameter [22, 23], whose expression is reported in eq. 2.10:

ψ6 =

〈
1

N

N∑
i=1

∣∣∣∣∣ 1

ni

ni∑
j=1

exp(6iθij)

∣∣∣∣∣
〉

(2.10)

Here the inner sum runs over the nearest neighbours of particle i within a single

layer, and θij is the angle between the orientation of the line connecting the centroids

of nearby molecules, �nally 〈...〉 means an average over the con�gurations. The value

of ψ6 equals 1 in case of perfect hexatic ordering.

2.4 Correlation Functions

In order to study in detail the microstructure (short and long range order) of the

phase we calculate the correlation functions, giving a series of statistical averages
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that allow us to describe the orientation and organization of the particles within the

phase under examination, in order to be able to rationalize and link together: (1)

the display of the simulation output, (2) the value of the order parameters and, of

course, (3) the trend of the functions themselves. The expressions of the calculated

quantities and their descriptions are reported into eqs. (2.11-2.19):

g(r) =
1

N

〈
1

ρ

N∑
i=1

N∑
j 6=i

δ(r − rij)
〉

(2.11)

where ρ = N/V is the number density , rij = |rij| = |rj − ri|, δ() is the δ-function
and 〈...〉 means an arithmetic mean over con�gurations. This is the most basic posi-

tional pair correlation function, proportional to the conditional probability density

of �nding the centroid of a particle j at a distance r from the centroid of a particle

i.

Another important information is that related to the structure of the �uid along the

director and perpendicularly to it. In order to `resolve' the structure along these

two directions, the so-called parallel, eq. (2.12), and perpendicular, eq. (2.13),

correlation function have been calculated:

g(r‖) =
1

N

〈
1

ρ

N∑
i=1

N∑
j 6=i

δ(r‖ − rij · n)

〉
(2.12)

g(r⊥) =
1

N

〈
1

ρ

N∑
i=1

N∑
j 6=i

δ(r⊥ − |rij × n|)
〉

(2.13)

They represent the probability of �nding a particle j, whose distance from a central

particle i, projected along (perpendicular to) the director is r‖ (r⊥). The functions

reported until now can be called `positional' correlation functions, due to the fact

that the orientation of the particles has been neglected; however, as can be expected,

it is of fundamental importance equip ourselves with other functions that consider

the orientation too, for this purpose we have calculated the quantities g2u(r), g2ur(r),

g2w(r) and g2w⊥(r):

g2u(r) =

〈∑N
i=1

∑N
j 6=i P2(ui · uj)δ(r − rij)∑N
i=1

∑N
j 6=i δ(r − rij)

〉
(2.14)

the function gives the degree of correlation in the orientations of two particles whose

centroids are separated by a distance r ;
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The function:

g2ur(r) =

〈∑N
i=1

∑N
j 6=i P2(ui · r̂ij)δ(r − rij)∑N
i=1

∑N
j 6=i δ(r − rij)

〉
(2.15)

where r̂ij = rij/rij, measures the degree of orientational ordering of the �ctious

bond rij , established between the centroids of two particles i and j, with respect to

ui;

The functions:

g2w(r) =

〈∑N
i=1

∑N
j 6=i P2(wi ·wj)δ(r − rij)∑N
i=1

∑N
j 6=i δ(r − rij)

〉
(2.16)

and

g2w⊥(r) =

〈∑N
i=1

∑N
j 6=i
[
2 (w⊥i ·w⊥j)

2 − 1
]
δ(r − rij)∑N

i=1

∑N
j 6=i δ(r − rij)

〉
(2.17)

indicate the degree of correlation in the orientations of the w and w⊥, of two

particles, whose centroids are separated by a distance r. They are particularly

useful in obtaining information about the distribution of the short molecular axis,

that is be very useful for the recognition of an hypothetical appearance of the biaxial

or hexagonal phase; for example, for a `perfect' hexatic phase, the particles are

`organised' so that their cross-sections form hexagons, as shown in Figure 2.6:

Figure 2.6: Schematization of a hexagonal con�guration formed by spherocilinder particles.

It should be noticed that, in eqs. (2.16- 2.17), there is a squared dependence on the

unit vector of the particles; then, it is impossible to distinguish between D2h and

C2h phases. For this reason, we implemented another correlation function given in

eq. 2.18:

guw(r) =

〈∑N
i=1

∑N
j 6=i(ui · uj)(w⊥i ·w⊥j)δ(r − rij)∑N

i=1

∑N
j 6=i δ(r − rij)

〉
(2.18)

This function, can be called biaxial correlation function, because it measures the

degree of correlation (at the same time) of the orientations ui and w⊥i of two parti-
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cles separated by a distance r. Due to the linear dependence on the unit vectors ui
and ui, the information about the alignment of the particles is not lost; this could

be particularly useful in detecting the presence of long-range orientational (biaxial)

order.

It is also known that phases made up of simple spherocylinders can possess a colum-

nar structure; this can happen, in principle, also for our system. For this reason, we

have also calculated the columnar function reported in eq. (2.19):

g(rc) =
1

[D2/2]N

〈
1

ρ

N∑
i=1

N∑
j 6=i

∆ij δ(rc − rij · ui)
〉

(2.19)

where:

∆ij = Θ

[
D

2
−
√
rij − (rij · ui)2

]
(2.20)

It gives the probability of �nding a particle j in a cylinder of radius D/2, with an

axis parallel to the orientation of the particle i at a resolved (along ui) distance

rc. ∆ij assures that only the particles belonging to the column are counted (Θ

represents the step function), and this situation is schematized in Figure 2.7:

Figure 2.7: Schematization of a columnar phase. Green particle is the reference particle with
orientation ui.
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In addition to the real-space correlation functions, the reciprocal-structure factor

(precisely its orientational average S(k)) has been calculated:

S(k) =

〈
1

N

N∑
j=1

∣∣∣∣exp

(
ik · rj

)∣∣∣∣2
〉

(2.21)

where k is a reciprocal-lattice vector compatible with the computational box, k = |k|
and 〈...〉 represents a suitable orientational average over the reciprocal lattice vectors
sharing the same modulus.

2.5 Mean Square Displacement

One of the requirements that a phase must have to be de�ned as �uid is, of course,

that the particles possess a certain mobility into the phase itself. It is possible

to evaluate the mobility of the particles thanks to the calculation of their mean

square displacement (msd). In particular, it has been implemented the parallel

and perpendicular component of the msd with respect to the principal director; the

expressions are reported eq. (2.22-2.23):

msd‖(t) =

〈[
r‖(t)− r‖(t = 0)

]2〉
(2.22)

msd⊥(t) =

〈[
r⊥(t)− r⊥(t = 0)

]2〉
(2.23)

Being our MC simulations non-dynamic, the instantaneous value of the time t should

be understood as a con�guration; in other words, an `instant' is characterized by a

particular position of the centroid and orientation of the dimer; r (‖ and ⊥) are the
parallel and perpendicular component of the position of the particles with respect

to the principal director (the mobility of the particles is of course calculated starting

from the initial con�guration). In the following Figures (2.8-2.9), two characteristic

trends obtained in our simulations are reported; in particular they represent the

msd for a nematic and smectic phase.

In a nematic phase (Figure 2.8) the particles prefer to move along the direction of

n and the mobility is high (≈ 103 in terms of D); moreover the overall behaviour

of the both component of msd is linear (the y-scale in the graphs is logarithmic).

On the contrary, in a smectic phase the mobility along and perpendicularly with

respect to the director is very di�erent (Figure 2.9); this is because the intra-layer

mobility of the particles is favourite with respect to the inter-layer one. What has

just been said can be even more so appreciated, by looking at the behaviour of

the msd vs t(con�gurations) shown in Figure 2.9. In fact, whereas the behaviour
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Figure 2.8: msd for a nematic phase in wich the particles forming the dimer are shifted by 1D,
note that the y-scale is logarithmic;
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Figure 2.9: msd for a smectic phase in wich the particles forming the dimer are unshifted; note
that the y-scale is logarithmic.

of the perpendicular component of msd⊥ is still linear, the parallel trend is more

peculiar. At the beginning, it grows steeply until it reaches a plateau: this is due to

the fact that, when a particle leaves a smectic layer and then moves on to the next

one, it slows down (roughly speaking). This happens because: (a) the trapping cage

e�ect [24,25] exercised by the other particles and (b) the barrier e�ect [24,25], due

to the formation of the smectic layers. All the numerical results of the calculated

order parameters, some of the most representative phase diagrams and, �nally, some

snapshots of the investigated systems can be consulted in Appendix A and Appendix

B.
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2.6 Results and comments of the systematic inves-

tigation of a single-component system made up

of C2h hard particles

We investigated several values of shift (s), s ∈ [0, 3]: in this section, the results

will be shown; anyway, as mentioned above, rather than presenting and discussing

every single shift, we have chosen to discuss the whole �nal phase diagram, shown in

Figure 2.10, where all the �ndings emerged are included (for the interested reader,

some individual phase diagrams are reported in Appendix A).

f

shift

Isotropic fluid

nematic fluid

SmA(2)
SmA(2)

SmA SmC
SmC

hexatic solid

unachievable

qSmB

qSmB

qSmH qC qSmH

Figure 2.10: Phase diagram (φ vs s) of the single-component system made up of hard sphero-
cylinder dimers. Each colour corresponds to a particular mesophase and the white
regions de�ne the co-existence zones.

The liquid-crystalline phases are enclosed between the Isotropic phase, at low values

of φ, and the various solid phases at high values of φ. In general, the latter presents

a monomeric hexatic order, in function of s it can be: quasi SmB (qSmB) at s→ 0

and s → 3; quasi SmH (qSmH) [27] for values slightly bigger than 0 and slightly

smaller than 3; quasi columnar (qC) for intermediate values of φ. The adjective quasi
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has been chosen because the mesophases just mentioned are referable to the single

hard spherocylinders composing our dimers. As regards the dense packing of hard

dimers of spherocylinders the upper limit has been �xed at a 0.856, corresponding

to a packing of hard spherocylinder monomers hexagonally arranged on a plane

with them exactly on top of one other. Occasionally the densest packing fraction

has been �xed at 0.883, the value of φ of the densest Bravais lattice packing, or

at least the densest-known [28, 29]). The region up to φ = 1 is not accessible

due to the fact the the hard spherocylinders are not space-�llers. It is intriguing

to note how the graph is almost symmetrical around s = 1.5, in particular, it

can be observed how the SmA phase is present both at the ends of the graph and

at the centre, where it forms a sort of `eye-shaped pocket'. It should be noticed

that, for values of s < 1.5, the layer spacing has a value comparable to that of

the length of the dimer particles, whereas for s ≥ 1.5, the distance between the

layers is smaller than L of the dimer (the regions where this occurs are indicated

as SmA2). Going from the ends toward the centre of the phase diagram, the SmA

phase gradually gives rise to the SmC phase. The lack of a `perfect' symmetry

of the diagram is mainly due to two reasons: (1) In the surroundings of s = 0

there is not a nematic phase; on the contrary, a direct transition from I to SmA

occurs. This was quite surprising because, by `glueling' two spherocylinders (so

forming the biaxial version of the single spherocylinder) potentially suitable for the

formation of the biaxial nematic mesophase, no nematic phases emerge. At the

other extreme, s = 3, the uniaxial nematic phase is present in a wide interval of φ.

(2) As s increases, the co-existence region gently declines as e�ect of the enhancing

of the lenght-to-width ratio. From the extensive investigation performed we can

assert that for values s ' 1 and s ' 2 the only stable mesophase is the uniaxial

nematic one; unfortunately, no evidence of the appearance of the biaxial nematic has

been detected. Nonetheless, the destabilization of the smectic mesophase using this

(realistic) model has been demonstrated: we think that is a good result, because it

can be considered a new starting point for both theoretical and experimental studies.

In fact, from the theoretical point of view, one can investigate a system made up, for

example, of trimers, using the optimal values of shift, in order to observe, hopefully,

the biaxial nematic phase. On the other hand, the experimentalists should try to

test molecules having shapes similar to that of dimers exhibiting the optimal shift

observed in the simulations.
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CHAPTER 3

Molecular Field study of the orientational behaviour

of a system made up of board-like particles in the

`partially repulsive' region of interaction

3.1 Introduction

Designing a material with speci�c properties necessarily requires to link molecular

and macroscopic properties, in some way. This step, very often, is quite `deceptive',

because it is not ever possible to make this connection unambiguously by suitable

experiments. In these cases, it is useful to have additional tools and/or techniques

(as CS for example) able to achieve the aim just said; in this chapter, a work [1] is

discussed where a system composed of board-like particles with D2h symmetry [2]

has been investigated by using a Molecular Field approach in the partially repulsive

regime of orientational interactions. The orientational potential can be written (as

already said in Chapter 2) as follows:

U = −u0{q ·Q + γ(q ·B + b ·Q) + λ(b ·B)} (3.1)

where the parameters that weight, in some way, the orientational biaxiality are γ and

λ. Since, as said above, the partially repulsive regime of orientational interactions

is considered, γ and λ can be given by the expressions of eqs. (3.2-3.3), obtained by

assuming excluded volume interactions only [3, 4]:

λ =
L[(B −W )2]

[2(B(W 2 + L2) +W (B2 + L2))− (L(W 2 +B2) + 6LBW )]
(3.2)

γ =
(L2 −WB)(B −W )

[2(B(W 2 + L2) +W (B2 + L2))− (L(W 2 +B2) + 6LBW )]
(3.3)
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Eqs. (3.2-3.3) establish a clear physical (molecular) meaning for the λ and γ, be-

cause they �x a direct relation between the biaxial parameters and the geometrical

parameters characterizing the shape of a board-like particle (see Figure 3.1):

L

B W

Figure 3.1: Model of board-like particles with D2h symmetry (L=lenght ; B=breadth and
W=width).

As a matter of fact, when the fully attractive interactions are considered (λ ≥ γ2 ),

the biaxial parameters cannot be linked unambiguously and explicitly with any

particle property; on the contrary, considering the partially repulsive interactions

(λ > 0 ∧ λ < γ2 ∧ λ− |2γ|+ 1 > 0 [5]) it is possible to make this link in order to

hopefully relate micro and macro properties of the system under examination. In

order to avoid redundancy, we limited the studied cases to the region of the so-called

essential triangle [5] reported in Figure (3.2):

PARTIALLY REPULSIVE REGION

Figure 3.2: Investigated region of the essential triangle corresponding to the partially repulsive
interactions, with 0 ≤ λ ≤ 0.11 and 0 ≤ γ ≤ 1

2 .

Having de�ned the boundary conditions for our problem, we can move to the cal-
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culation of the possible di�erent phase diagrams (depending on the choice of λ and

γ couples). This requires to found the stable states of the studied systems (phases

composed of particles sketched in Figure 3.1). When the fully attractive interactions

are considered, the minimization of the Helmholtz free energy F (eq. 3.4) leads to

the stable thermodynamic states of the studied �uid [6]:

F =
u0

3

{
S2 +

1

3
P 2 + 2γ

(
SD +

1

3
PC

)
+ λ

(
D2 +

1

3
C2

)
− 3

β
ln

(
Z

8π2

)}
(3.4)

where:

Z =

2π∫
ψ

2π∫
ϕ

π∫
ϑ

e−β(U/u0)sinϑ dϑdϕdψ (3.5)

On the contrary, this is not true when the partially repulsive interactions are taken

into account: in fact, in this case it is necessary to adopt the Minimax [5, 7�9]

algorithm, because the stable states of the system are saddle points of the free

energy surface. To solve the problem, we have implemented the Minimax method,

following the �ow chart shown in Figure 3.3, by using Mathematica R© 11 software [10]

for the calculations:

Figure 3.3: Flow diagram of the Minimax algorithm (S, D, P, C represent the order parameters).
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The possibility to have the partition function available in an analytical form, allows

us the analytical calculation of the derivatives mentioned in Figure 3.3, instead of

using a numerical approach. The subsequent step after the implementation of the

algorithm, has been to test the reliability of the obtained results. This has been

done by comparing our obtained results with 4 cases, treated in literature: in the

following sections this comparison will be discussed.

3.2 Comparison with the pioneering Mean Field study

carried out by Straley

As said above, we tested our results (obtained for the studied cases represented

by the black points in Figure 3.4) with respect to those presented by Straley [2].

In ref. [2], a molecular �eld approach (based on the Onsager's theory) has been

taken into account, involving the excluded volumes between board-like particles

with di�erent orientations. We have calculated the phase diagram (B vs. β−1 =

(kBT/u0), reported in Figure 3.5) obtained for the investigated black points of Figure

3.4.

Figure 3.4: Studied cases in the partially repulsive region of the essential triangle: each point
corresponds to precise values of γ and λ that are related to the shape of D2h particles
by means of L, B, W.

The comparison, by inspection, of our Figure 3.4 with Figure 2 of [2], allowed us

to state that our results are in excellent agreement (basically, the same) with the

Straley ones.
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Figure 3.5: Phase diagram B vs. β−1 = (kBT/u0) obtained (�xing W=1 and L=10) from the
black point of Figure 3.4. Note that the B scale is logarithmic.

3.3 Comparison of our procedure solutions with nu-

merical solutions obtained by Molecular Field

approaches

The analytical approach used by us is alternative to the numerical one [8]; then, we

tested if our approach lead to the same suggestions. To answer to this question, we

compared our results with those obtained by Bisi, Romano and Virga [8]. In their

work, they investigated, in particular, two points in the partially repulsive region of

the essential triangle, called G (λ = 1/18 and γ = 1/3, virtually corresponding to

L=12.2, B=3 and W=1) and R (λ = 7/6− 2
√

3/3 and γ =
√

3/3− 5/12, virtually

corresponding to L=8.6, B=1.6 and W=1) points, see Figure 3.6. We calculated

the trends of the orientational order parameters, reported in Figures (3.7-3.8), with

respect to the reduced temperature Tred=T/TNU−I .

Point G

Point R

Figure 3.6: Point G and R in the partially repulsive region of the essential triangle: each point
corresponds to precise values of the couple (γ, λ) of eqs. (3.2-3.3) that are related to
the molecular shape by means of L, B, W.
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Figure 3.7: Behaviours of (S, D, P, C) orientational order parameters vs Tred for G point of
ref. [8];

Figure 3.8: Behaviours of (S, D, P, C) orientational order parameters vs Tred for R point of
ref. [8].

The results obtained for the G point, Figure 3.7, are in agreement with the `reference'

cases of [8]. In particular, the transition temperature between Nu and Nb phases

(Tred=0.38) is quite well reproduced; on the contrary, our C order parameter is

underestimated: this is probably due to the approximations used to obtain a closed

form of the partition function.

For the R point, Figure 3.8, the trends of the order parameters are similar to those

reported in [8] and the values of the transition temperature between Nu and Nb

phases is well reproduced (Tred = 0.08 in our work instead of Tred = 0.089).
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3.4 Comparison with Monte Carlo simulations:

studying the aspect ratio contribution

It is well-known that the thermotropic biaxial nematic phase (for a system made

up of D2h particles) has never been found (unambiguously) experimentally; then,

the only way to compare our results with self-consistent and reliable data is to

use the CS, since in practice they produce virtual experimental data. The shape

anisotropy [12,13] of the particles plays a decisive role in the formation of the desired

phase: this is true both in the MF and CS approaches. In the latter, this parameter

is quanti�ed by the so-called aspect ratio di�erence ν [12, 14], whose expression is

reported in eq. (3.6):

ν =
L

B
− B

W
(3.6)

In this comparison, our aim is to investigate how this parameters a�ects the (pos-

sible) formation of the Nb and, at the same time, if we reproduce, in some way, by

our method the data obtained by the MC simulations. We consider several di�erent

cases (Figure 3.9):

Figure 3.9: The red triangles sample the region between L
W > 9 and 2.6 < B

W < 3.73. The choice
fallen within these values due to the fact that in this region the simulations [12, 13]
predict the highest possibility of �nding the biaxial nematic phase; the blue crosses
sample the region investigated in [12].

Also in this case we have calculated the phase diagram showed in Figure 3.10 :
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Figure 3.10: Phase diagram, L vs. β−1 = (kBT/u0) obtained from our results (red triangles) of
Figure 3.9 where W=1 and B=3.25 have been �xed; note that L scale is logarithmic.

Comparing our results with respect to what obtained in [12] and [13], we can assert

that:

I. The range of stability of the Nu increases with the ν (as expected); indeed,

when this value increases the particles become more elongated and tapered;

II. The Nb emerges, as can be seen in Figure 3.10, in the regions predicted by

MC simulations of [13].

III. Contrary to what predicted by MC simulations in [12] we obtained the biaxial

phase also for the blue cross at λ = 0.07 and γ = 0.34;

3.5 Virtual mesophase composed of goethite-shaped

particles

As previously said many times in this Thesis, the existence of the thermotropic Nb

is a debate that involved scientists for about 45 years and even today we are asking

us about its possible existence. Anyway, it seems that for lyotropic systems the

existence is out of any doubt, and in this context there is a �eld of research, re-

garding the so called Mineral Liquid Crystals [16], that re�ects in a perfect way the

close connection between the theories (MF and CS) and the real experiments. This

topic is very interesting because di�erent kind of particles of various shapes can be

synthesized, and it has been reported several times in this thesis that the morphol-

ogy of the particles plays a decisive role in the formation (or not) of a particular

mesophase. From the MF and CS studies it is known very well that, in order to ob-

serve a Nb phase, a possible choice is that the dimensions of the particles should be

chosen to have about L/W ' B/W. Goethite particles demonstrated unambiguously
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that a phase composed of these particles (we should de�ne it as colloidal suspen-

sions [17, 18] in water) give rise to a lyotropic nematic biaxial phase. Then, our

last comparison was to compare our results with those observed experimentally [15];

in fact, we used the same geometrical parameters characterizing the particles that

compose the mesophase under examination. The treated case is represented by the

yellow square in the Figure 3.11:

Figure 3.11: The case treated for the goethite-shaped particles is represented by the yellow square
in the graph. The parallelism with the experimental work [15] has been made using:
L=254 nm, B=83 nm, W=28 nm that correspond to λ = 0.082 and γ = 0.366;

Figure 3.12: Trends of (S, D, P, C) orientational order parameters for goethite-shaped particles.

It is interesting to note that the existence of the uniaxial and biaxial nematic regions,

using our procedure, has been observed when the ratios L/B and B/W are not so
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far from the so-called dual shape [12] ν = 0 (that corresponds to the Landau point).

The tests and comparisons carried out assured us about the reliability of the method,

so that we decided to extend our study to 14 new cases (all in the partially repulsive

region) never investigated before.

3.6 Investigation of the dependence of the transi-

tion temperature TNb-Nu on the biaxial param-

eters γ and λ

We decided to carry out a systematic investigation of our system made up of board-

like particles, changing the morphology of them thanks to the parameters γ and

λ (eqs. 3.2-3.3). In this way we are able to `map' in which way a microscopic

property of the particles (the shape) a�ects the macroscopic behaviour of the phase

(the mesophases obtained). The map (and its sliced version) of the 14 cases studied

are shown in Figure (3.13-3.14):

Figure 3.13: The black crosses represent the studied points, never investigated before, in the
partially repulsive region.
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Figure 3.14: Sliced version of the graph shown in Figure 3.13: (a) λ ∼ 0.005 and γ going from
∼ 0.145 to ∼ 0.46; (b) λ ∼ 0.015 and γ going from ∼ 0.24 to ∼ 0.43; (c) λ ∼ 0.025
and γ going from ∼ 0.27 to ∼ 0.40; (d) λ ∼ 0.04 and γ going from ∼ 0.35 to ∼ 0.40.
The particle shape is related to the chosen couple of λ and γ via eqs. (3.2-3.3).
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Analysing the single panels of Figure 3.14 we can say that:

(a) As shown in the panel (a), our calculations suggest that �xing a small value

of λ and increasing γ means increasing the length of the particle (L) with

respect to its relative �atness (B) and thickness (W). It is intuitive to think

that (roughly speaking) the biaxiality of the molecule decreases as γ increases;

indeed, a phase made up of this tapered particles does not give rise to the Nb;

(b) Moving to the panel (b), the breadth (B) of the particles has been enhanced

by increasing the value of λ , as clearly visible in Figure 3.14; here, at TNb-Nu≈
0.1, for the �rst time the Nb phase emerges;

(c) From the panel (c) we can observe that, for λ ∼ 0.025, the relative breadth

B/L become not negligible and here the transition Nb-Nu occurs at TNb-Nu≈
0.16-0.18;

(d) the same consideration made for the previous point can also be extended of

panel (d) where the transition occurs at TNb-Nu≈ 0.26-0.29.

Moreover, we investigated other two situations (not reported in the Figure 3.14)

corresponding to λ ∼ 0.05 ; γ ∼ 0.38 and λ ∼ 0.06 ; γ ∼ 0.37 where the transition

occurs respectively, at about TNb-Nu=0.36 and TNb-Nu=0.43.

The information acquired allows us to maintain that, at values of λ ≥ 0.01, the

�atness of the particles is enough to predict, in the regime of partially repulsive

interactions, the existence of the elusive thermotropic biaxial nematic phase. The

�atness of the particles plays a decisive role (at least, most important of L and W)

in the formation of the biaxial mesophase, which means that is λ the dominant

biaxial parameter, as already observed in [11]. Interestingly, we observed a linear

correlation between the reduced temperature and the λ parameter, as shown in

Figure 3.15. The correlation found for the λ parameter con�rms quantitatively

what had been (only qualitatively) predicted in [11]. On the contrary, plotting the

reduced transition temperatures vs γ not revealed any correlations and, therefore,

any physical relationship between this two quantities, as clearly visible in Figure

3.16:
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Figure 3.15: Linear dependence of the transition temperatures
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TNu−NI
as a function of λ.
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vs γ.
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CHAPTER 4

Chirality dependence of the orientational order of

small helical solutes dispersed in helical nematic

solvents: a Monte Carlo study

4.1 Introduction

The idea at the basis of the work [1] presented in this chapter was to address a

problem about chirality [2], a topic of primary interest in chemistry in all its facets

(materials, drug design, etc...). More in detail, the aim was to understand if it was

possible, in some way, to discriminate unambiguously between two enantiomers.

Di�erent techniques exist (UV-Vis [3], mass spectrometry [4], vibrational circular

dichroism [5], etc...) able to give information about chiral recognition; anyway, an-

other potentially very e�ective technique is represented by LX-NMR (Liquid Crystal

NMR) [6, 7]. In general, when two enantiomers of a chiral molecule (assumed rigid

for semplicity) are dissolved in a Chiral Non-Racemic Aligning Solvent (CNRAS), as

for example the PBLG (poly-γ-benzyl-L-glutamate [8�10]), it is possible to observe

that they give di�erent NMR spectra: this is due to the fact that they experience

a di�erent statistical orientational order in the medium. From the spectra, some

experimental parameters W obs (as for example chemical shift, dipolar couplings,

quadrupolar splitting [11]) can be obtained:

W obs ≡ 〈Wzz〉 = W iso +W aniso =
1

3

x,y,z∑
a

Waa +
2

3

x,y,z∑
a,b

Sα,ωab Wab (4.1)

Sα,ωab =

〈
1

2

(
3 cosθα,ωZ,a cosθ

α,ω
Z,b − δ

α,ω
ab

)〉
(4.2)

where θaZ is the angle between the Z-lab axis and the molecular axis a, δab is the

Kronecker delta, the average 〈...〉 is taken over the reorientational motions of the
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molecule and α and ω represent the two di�erent enantiomers. It is obvious that the

orientational order of the particles a�ects the anisotropic term of the macroscopic

observable(as shown in eq. 4.2): this could lead, in principle, to discriminate between

the two enantiomers. On the other hand, the only chirality descriptors that take

into account a real, morphological property of the particles are P (Plus, clockwise)

and M (Minus, counter-clockwise), representing the handedness of a helical particle.

For this kind of systems experimental data are not available; therefore we decided

to turn our attention to the CS technique as generator of virtual experimental data.

Our idea is to investigate, via MC simulations, di�erent phases made up of helicoidal

solutes and solvent particles then to study if the morphology of the particles can

acts as a discriminating factor for the enantiorecognition.

4.2 Computational Details

To carry out our MC simulations, the helicoidal particles have been `built' using the

model of fused sphere where each helix is composed by a number, ns, of hard spheres

of diameter D, equidistantly arranged along a chord of lenght L, radius r and pitch

p, both in D units (see Figure 4.1a and Figure 4.1b).

(a)

(b)

Figure 4.1: (a): Geometrical parameters of a helical particles made up of hard-fused spheres; (b)
r0 is the centroid of the helical particle, (w,v,u) is the triad of mutually perpendic-
ularly unit vectors that could be right- or left handed; u is along the long molecular
axis and w is along the C2 symmetry axis.
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Changing r and p values makes possible to modify the morphology of the helical

particles; in particular, it is possible to obtain slender or curly particles: in some way,

this allow us to mimic di�erent virtual mesophases and di�erent possible solutes.

In our simulations, we considered two types of solvents: one, made up of slendered

molecules (rΣ = 0.2; pΣ = 9.92) and one composed of curly particles (rΣ = 0.4; pΣ =

4); in both cases, the helices are assumed to be right-handed with L=10D and

composed of 15 partially overlapping fused spheres. The schematization of this two

types of helix particle is shown in Figure 4.2:

Figure 4.2: (a) the slender solvent particle (rΣ = 0.2; pΣ = 9.92) (b) the curly solvent particle
with (rΣ = 0.4; pΣ = 4).

In these solvents we virtually disperse right- or left- handed (one kind at a time)

solute particles, that di�er for the values of r and p couples: (rσ = 0.2; pσ =

9.92); (rσ = 0.2; pσ = 4); (rσ = 0.4; pσ = 4); (rσ = 0.2; pσ = 4) and by ns =

3, 5, 7, 9, 11, 13, 15 partially overlapping hard spheres of diameter D with

L = (5/7)(ns − 1)D. The simulation has been carried out in the NPT ensemble

[12�14] and using orthorhombic boundary conditions. We considered 500 particles

of solvent (assumed, as said before, right-handed in all the simulations) whose con-

�gurations have been obtained by previous numerical simulation performed in [15].

In particular:

• The con�guration of the slender solvent has been obtained at P*=0.5 (being

P ∗ = PD3/kT ) and ρD3=0.044;

• The con�guration of the curly solvent has been obtained at P*=0.8 (being

P ∗ = PD3/kT ) and ρD3=0.051;

In order to simulate our solute-solvent systems, 10 solvent particles have been re-

placed by 10 solute particles, paying particular attention to avoiding overlaps be-

tween the particles, the con�guration so obtained was the starting point of the new
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simulations. Being interested in monitoring the orientational order, we calculated

the Saupe order matrix [6,7] of both solute (σ) and solvent (Σ), whose elements are

given by eq. (4.3):

Slαβ =

〈
3

2
(α · n)(β · n)− 1

2
δαβ

〉
(4.3)

where l = σ,Σ; α,β = w,v,u; δ is the Kronecker delta and 〈...〉 means an average

over the particles and con�gurations.

To study the (micro-) structure of the system, the positional (eq. 4.4) and orienta-

tional (eq. 4.5) correlation functions have been also calculated:

gl,k(r) =
1

Nl

〈
1

ρk

Nl∑
i=1

Nk∑
j=1 ; j 6=i

δ(r − rij)

〉
(4.4)

gl,k1,w(r‖) =

〈∑Nl
i=1

∑Nk
j=1 ; j 6=i(wi ·wj)δ(r‖ − rij · n)∑Nl

i=1

∑Nk
j=1 ; j 6=i δ(r‖ − rij · n)

〉
(4.5)

where Nl is the number of particles of the species l, ρk is the number density of

species k, the speci�cation j 6= i occurs when l = k and δ is the δ-function, rij is the

modulus of the distance rij between the centroids i and j, and, �nally, 〈...〉 represents
an arithmetic average over the con�gurations. The positional correlation function

(eq. 4.4) is useful to assess the nematic character of the phase under examination.

Furthermore, to monitor the degree of correlation of the unit vectors w as a function

of the projection of the distance between the centroids of the particles along n, the

calculation of the orientational correlation function (eq. 4.5) turn particularly useful;

indeed, in this way, we can observe if a certain degree of `resonance' between solute

and solvent particles exists.

4.3 Comments on the obtained results

In the following Figures (4.3 and 4.4) the behaviour of the uniaxial order parameters

(Figure 4.3), and the behaviour of the orientational correlation functions (Figure 4.4)

for the examined cases, are shown:
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r
Σ
=0.2 p

Σ
=9.92 r

Σ
=0.4 p

Σ
=4

Figure 4.3: Behaviours of the uniaxial order parameter Suu for the right-(blue square) and left-
(red triangle) handed helical solute particles. In the left panels the solvent is the
slender one (rΣ = 0.2; pΣ = 9.92) and in the right panels the solvent is the curly
one (rΣ = 0.4; pΣ = 4). ns is the number of hard fused spheres forming the solute
particles.
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Figure 4.4: The topmost panel represents the gΣ,Σ
1,w (r‖) of the solvent with rΣ = 0.4; pΣ = 4, fur-

thermore in each panel the corresponding trend of the gl,k1,w(r‖) is reported: ns=3(red);
5(orange); 7(green; 9(cyan); 11(blue); 13(indigo); 15(violet).
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From the data just reported we can assert that:

I. As it could be expected, the morphology of the solvent is a parameter that

has a decisive role (in this context) in enantiomeric discrimination;

II. When the solute and solvent particles are in tune (i.e they possess similar

and comparable geometrical parameters; in particular, the value of the pitch

p plays a decisive role) the behaviours of the order parameters for the two

di�erent enantiomers are very di�erent, so that is possible to discriminate

unambiguously between the enantiomers P and M;

III. The solute particles of the right- and left- handed enantiomers need to be

su�ciently elongated (ns ≥ 7) in order to experience an appreciable di�erent

orientational order.

The three conditions reported above are respected in the middle panels on the right

of Figure 4.3, (rσ = 0.4; pσ = 4) and (rσ = 0.2; pσ = 4), where it is possible to

observe that the orientational order experienced by the two enantiomers is di�erent;

in particular the solute particles having the same handedness of the right-handed

solvent particles exhibit a larger degree of order, re�ected in the value of the uniaxial

order parameter. It is interesting to note also (always considering the middle panels

on the right) that, when the solute and solvent particles are in tune, the orientational

correlation function is in `resonance' with respect to the function (the topmost panel

of Figure 4.4) calculated only for the solvent particles. At the same time, it is

possible to observe that, as the ns increases, the degree of correlation between the

solute and solvent particles is enhanced: this is justi�ed by the high value reached by

the gσ,Σ1,w(r‖). Finally, there is also a situation where it is not possible to distinguish

between the two enantiomers, due to the fact that the behaviour of the uniaxial

order parameter, Figure 4.3 (rσ = 0.4; pσ = 2), is more or less scattered.

The results obtained are encouraging, especially regarding the possibility of using

suitable helical nematic phase (as for example the screw-like nematic phase [16,17])

as nematic solvent in the LX-NMR experiments, in order to possibly discriminate

between the two chiral species.
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CHAPTER 5

The assignment of the absolute con�guration of

enantiomers: formulation of a mean torque

potential sensitive to P and M chirality

5.1 Introduction

In the light of what observed in chapter 4, the following inference was proposed:

based simply on the handedness of the particles that made up the phase, one could

hypothesize that, if the helical solute and solvent particles have the same handed-

ness, the order experienced by the solute should be higher with respect to the case

in which the solute and solvent particles possess opposite handednesses. In the �rst

case there would be a stabilizing contribution of the solute-solvent orientational

interaction energy because there should be a certain degree of `a�nity' between

the particles; on the contrary, if the solute and solvent particles have an opposite

handedness, the orientational interaction energy would bring a destabilizing contri-

bution. Due to the lack of experimental data, for this kind of systems the results

obtained from CS technique have been used as test-bench for the formulation of a

MF model based on the attempting to build a chiral mean-torque potential sen-

sitive to (able to distinguish unambiguously) the P/M form of the solutes. The

model chosen for the description of the helical particles (whose morphology and ge-

ometrical parameters have been shown in Figure 5.1 and Figure 5.2 respectively) is

the bond-representation, proposed originally by D.J. Photinos, E.T. Samulski and

coworkers [2�5]. In practice, our idea is to consider segmental additive interactions

to build a `chiral' energy term to be added to the achiral part of the potential that

describe the solute-solvent interactions.
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Figure 5.1: the blue helix is the P enantiomer (right-handed) and the red one is the M enantiomer
(left-handed) [1].

Figure 5.2: Euclidean lenght (Λ); pitch (p) and radius (R) of a helix particle [1].

5.2 Molecular Field model and calculations

Starting from the suggestions reported in refs [6�8], two orientational contributions

to the potential (one achiral and one chiral) were taken into account as reported in

eq 5.1:

Utotal = Uachiral + Uchiral (5.1)

with

Uachiral = −w0
Σ · Λσ · P2(aσ · n) (5.2)
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where Σ and σ stay for solvent and solute particle respectively, P2(...) is the second-

order Legendre polynomial, aσ represents the unit apolar vector of the helical axis

of the solute's particle and w0
Σ gives the strength of the orientational interaction

between the long molecular axis and the director; furthermore the expression of the

Euclidean length Λσ is reported in eq. 5.3

Λσ = Lσ

√√√√ 1

1 + 4π2
(
Rσ
pσ

)2 (5.3)

For the chiral contribution Uchiral of eq. 5.1, we suggest the following form as an

assumption which seems reasonable from the data available:

Uchiral = (∓)Σ w
c
Σ Lσ

(
RΣ

pΣ

)m (
Rσ

pσ

)n
Ψσ P2(aσ · n) (5.4)

with

Ψσ = (Uχ · ρ1,N)σ (5.5)

where

Uχ =
N−1∑
i=1

(bi · bi+1)(bi × bi+1) (5.6)

with bi the segmental bond/group unit vectors and

σ1,N =

∑N−1
i=1 r(i,i+1)∣∣∣∑N−1
i=1 r(i,i+1)

∣∣∣ (5.7)

σ1,N represents the unit vector giving the direction of the line that joins the �rst

and last segments constituting the solute molecule. Substituing the eq. (5.2) and

eq. (5.4) in eq. (5.1) we obtained the following expression:

Utotal = −w0
Σ · Λσ · P2(aσ · n)

√√√√ 1

1 + 4π2
(
Rσ
pσ

)2 ± wχΨσ

 (5.8)

where

wχ =
wcΣ
w0

Σ

(
RΣ

pΣ

)m (
Rσ

pσ

)n
(5.9)
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The handedness of the helicoidal particles has been taken into account thanks to

the eq. (5.5); indeed Ψσ, a pseudoscalar [6�8], has the following properties:

I. Ψσ = 0 → Utotal = Uachiral : it means that the system is achiral (or a racemic

mixture, 50:50, is present), only the achiral term survives;

II. Ψσ 6= 0: the system is chiral and, due to the mathematical form of the pseu-

doscalar term, it can be Ψσ > 0 if the particles are right-handed (P) and

Ψσ < 0 if left-handed (M).

Based on the hypothesis discussed in the introduction to this chapter, it should occur

that when the solute and the enantiopure solvent (whose handedness is known) share

the same handedness, the orientational order experienced by the solute should be

larger than the order experienced by a solute that has a handedness opposite to

that of the solvent. Obviously, to test our model experimental data are needed but,

unfortunately, for this kind of systems experimental data are not available. Once

again, it is possible to use CS reliable data in order to test the results obtained by

MF calculations. In ref. [9] the authors observed that it possible to distinguish the

two enantiomers when they are dispersed in a curly solvent, RΣ = 0.4D ; pΣ = 4D

(Figure 4.2b of Chapter 4), and when the solute and solvent particles are in tune;

it happens for two particular solute cases called A→ (Rσ = 0.2D ; pσ = 4D)

and B→ (Rσ = 0.4D ; pσ = 4D). From the simulated data the Sachzz have been

calculated simply averaging SPzz and S
M
zz (the uniaxial order parameter for the right-

and left- handed solute particles), and the values of the pseudoscalar Ψσ (varying

Lσ and Λσ to investigate all the solutes considered) have been obtained. Being the

system uniaxial, an analytical form of Szz can be obtained, that is function of Lσ,

Ψσ,
(
RΣ

pΣ

)
,
(
Rσ
pσ

)
, w0

Σ and wcΣ. At the end of this procedure, the best couple of the

`w ' parameters have been adjusted in order to obtain the best �t (simultaneous �t

of Sachzz , SPzz and SMzz ) between MF and CS data in order to minimize the sum of

the squares between the data sets. In practice, a non linear least-squares �t by

means of the tool FindFit of Mathematica R© [10], using the Levenberg-Marquardt

optimization [11�13] method, has been used.

5.3 Analysis and comments on the results obtained

The CS and MF results are shown in Figure 5.3. From the �tting procedure, de-

scribed in the previous section, the best values of w0
Σ, w

c
Σ and for the adimensional

parameter wχ result to be: w0
Σ = 0.60 kT/D; wcΣ = 11.96 kT/D; wχ(A) = 0.10;

wχ(A) = 0.20.
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Figure 5.3: The full-�lled symbols represents the CS data and the empty symbols the MF one.

The behaviour of the uniaxial order parameter for the achiral (raceme mixture) (Sachzz )
and enantiopure chiral compounds (P: SPzz) and (M: SMzz ) for (top) the A system
(Rσ = 0.2D ; pσ = 4D) and for the B system (bottom) (Rσ = 0.4D ; pσ = 4D) have
been shown.

It is interesting to note that our inference was con�rmed both by `virtual' exper-

imental data and by our MF model. Being the solvent right-handed the P solute

particles have the higher orientational stabilization (higher order parameter). It

is also important to analyse, in some way, the physical meaning of wχ; indeed, it

re�ects the sensitivity of the system to the chiral interactions, as mathematically
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shown in eq. (5.9). In the investigated case we have observed that wχ(B) > wχ(A):

according to us, it makes sense because in the B case the solute particles are more

in tune with respect to the solvent particles and than feel better the `tortuosity' of

the solvent (promoting the diastereoisomeric-like interactions). The results obtained

also suggest that in a hypothetical real experiment it would be possible, in princi-

ple, discriminate unambiguously between the two enantiomers on the basis of the

orientational order experienced by helical solute particles dissolved/dispersed in a

(enantiopure) helical solvent. In our opinion, to us the formulation of this chiral sen-

sitive mean torque potential seems promising as a tool for the absolute assignment

of helical solutes molecules.
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APPENDIX A

Numerical results for the extensive investigation of

single-component system made up of C2h

hard-particles

� L = 5D ; D = 1 → geometrical parameters of the spherocylinder;

� Lsf = L+D ; Ldimer = Lsf + (2shift);

� Phase = phase of the system;

� vb= simulation carried out using a triclinic box (variable box);

� vbo= simulation carried out using a triclinic box and starting from an ordered

con�guration (i.e. all the particles aligned along the same direction);

� P ∗ = PD3/kT ;

� φ = ρVdim → Vdim = 8, 901D3 and ρ the number density;

� S = uniaxial order parameter;

� Sw = D2h biaxial order parameter (calculated using w);

� Sw⊥ = D2h biaxial order parameter (calculated using w⊥);

� PC2h = C2h biaxial order parameter;

� τ = positional order parameter (k=1);

� τ2 = positional order parameter (k=2);

� τC = positional order parameter peculiar for the SmC phase;

� θ = tilt angle (degree) between the normal layer and the principal director.
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shift=0

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.198 0.023 0.020 0.022 0.008 0.049 0.055
I 0.20 0.259 0.027 0.021 0.022 0.008 0.048 0.055
I 0.30 0.300 0.030 0.021 0.023 0.009 0.047 0.054
I 0.40 0.331 0.036 0.024 0.025 0.009 0.050 0.059
I 0.50 0.357 0.043 0.025 0.027 0.010 0.050 0.056
I 0.60 0.378 0.048 0.025 0.025 0.009 0.047 0.054
I 0.70 0.400 0.064 0.030 0.029 0.009 0.046 0.053

SmA 0.80 0.483 0.951 0.256 0.027 0.015 0.879 0.621
SmA 0.90 0.507 0.969 0.257 0.021 0.012 0.913 0.698
SmA 1.00 0.527 0.976 0.262 0.026 0.015 0.927 0.740
SmA 1.10 0.543 0.981 0.264 0.026 0.014 0.940 0.782
SmA 1.20 0.558 0.984 0.261 0.021 0.011 0.949 0.810
SmA 1.30 0.571 0.987 0.262 0.021 0.012 0.954 0.830
SmA 1.40 0.584 0.989 0.264 0.022 0.011 0.961 0.852
SmA 1.50 0.596 0.991 0.264 0.022 0.011 0.966 0.870
SmA 1.60 0.607 0.992 0.264 0.022 0.011 0.969 0.883
qSmB 1.70 0.647 0.996 0.264 0.020 0.012 0.979 0.919
qSmB 1.80 0.657 0.996 0.277 0.037 0.012 0.978 0.916
qSmB 1.90 0.665 0.997 0.310 0.081 0.012 0.942 0.785
qSmB 2.00 0.669 0.997 0.329 0.106 0.012 0.980 0.921
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shift=0.15

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.197 0.033 0.029 0.031 0.012 0.066 0.075
I 0.20 0.258 0.038 0.029 0.031 0.012 0.064 0.074
I 0.30 0.299 0.042 0.029 0.031 0.012 0.063 0.073
I 0.40 0.330 0.048 0.031 0.033 0.012 0.063 0.072
I 0.50 0.355 0.056 0.032 0.033 0.012 0.062 0.073
I 0.60 0.378 0.068 0.035 0.036 0.012 0.063 0.072
I 0.70 0.400 0.091 0.042 0.039 0.013 0.063 0.072

SmA 0.80 0.477 0.949 0.263 0.037 0.021 0.839 0.514
SmA 0.90 0.500 0.964 0.267 0.036 0.021 0.881 0.608
SmA 1.00 0.518 0.971 0.270 0.038 0.020 0.899 0.657
SmA 1.10 0.534 0.977 0.271 0.036 0.021 0.917 0.708
SmA 1.20 0.549 0.981 0.272 0.037 0.022 0.925 0.733
SmA 1.30 0.562 0.984 0.272 0.035 0.021 0.933 0.759
SmA 1.40 0.575 0.987 0.275 0.038 0.020 0.938 0.775
SmA 1.50 0.586 0.989 0.272 0.034 0.021 0.943 0.792
SmA 1.60 0.596 0.990 0.275 0.037 0.022 0.947 0.805
SmA 1.70 0.607 0.991 0.274 0.036 0.021 0.951 0.817
qSmB 1.80 0.639 0.994 0.293 0.060 0.023 0.954 0.828
qSmB 1.90 0.649 0.994 0.285 0.050 0.022 0.958 0.841
qSmB 2.00 0.653 0.994 0.291 0.057 0.021 0.959 0.846
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shift=0.25

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.196 0.034 0.028 0.031 0.012 0.066 0.075
I 0.20 0.257 0.038 0.029 0.031 0.012 0.064 0.074
I 0.30 0.298 0.044 0.030 0.032 0.012 0.063 0.073
I 0.40 0.329 0.050 0.031 0.032 0.012 0.063 0.073
I 0.50 0.354 0.060 0.033 0.034 0.013 0.063 0.073
I 0.60 0.377 0.077 0.037 0.035 0.013 0.063 0.072
I 0.70 0.398 0.105 0.044 0.040 0.013 0.063 0.072

SmA 0.80 0.467 0.937 0.259 0.037 0.021 0.778 0.403
SmA 0.90 0.490 0.958 0.265 0.036 0.021 0.840 0.508
SmA 1.00 0.510 0.969 0.268 0.036 0.021 0.867 0.568
SmA 1.10 0.526 0.976 0.271 0.037 0.021 0.884 0.613
SmA 1.20 0.540 0.979 0.272 0.038 0.022 0.898 0.651
SmA 1.30 0.553 0.982 0.274 0.038 0.021 0.903 0.667
SmA 1.40 0.565 0.984 0.275 0.039 0.021 0.912 0.692
SmA 1.50 0.577 0.987 0.274 0.036 0.021 0.920 0.717
SmA 1.60 0.587 0.989 0.274 0.036 0.021 0.921 0.719
qSmB 1.70 0.623 0.993 0.326 0.104 0.024 0.899 0.653
qSmB 1.80 0.633 0.994 0.290 0.056 0.021 0.918 0.710
qSmB 1.90 0.638 0.993 0.274 0.034 0.020 0.928 0.742
qSmB 2.00 0.649 0.995 0.278 0.040 0.022 0.921 0.720
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shift=0.35

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.1 0.195 0.034 0.029 0.031 0.012 0.066 0.075
I 0.2 0.256 0.039 0.029 0.031 0.012 0.065 0.074
I 0.3 0.296 0.045 0.03 0.031 0.012 0.063 0.073
I 0.4 0.327 0.053 0.031 0.032 0.012 0.063 0.073
I 0.5 0.352 0.069 0.035 0.034 0.012 0.062 0.072
I 0.6 0.375 0.095 0.041 0.037 0.013 0.063 0.072
I 0.7 0.396 0.171 0.058 0.04 0.013 0.064 0.072
Nu 0.8 0.422 0.6 0.157 0.037 0.019 0.078 0.074
SmA 0.9 0.481 0.951 0.262 0.036 0.021 0.785 0.397
SmA 1 0.501 0.967 0.268 0.037 0.021 0.826 0.471
SmA 1.1 0.518 0.975 0.27 0.037 0.021 0.844 0.517
SmA 1.2 0.532 0.979 0.271 0.036 0.02 0.85 0.525
SmA 1.3 0.545 0.982 0.272 0.037 0.023 0.861 0.552
SmA 1.4 0.557 0.984 0.274 0.039 0.02 0.863 0.556
SmA 1.5 0.569 0.987 0.027 0.037 0.021 0.861 0.548
SmA 1.6 0.624 0.995 0.293 0.059 0.022 0.846 0.513

qSmB,qSmH 1.7 0.63 0.997 0.287 0.051 0.179 0.147 0.107
qSmB,qSmH 1.8 0.636 0.996 0.31 0.081 0.017 0.842 0.503
qSmB,qSmH 1.9 0.654 0.998 0.618 0.491 0.394 0.347 0.132
qSmB,qSmH 2 0.665 0.998 0.732 0.644 0.645 0.213 0.113

shift=0.35-vb

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

SmA 1.50 0.570 0.987 0.277 0.042 0.023 0.874 0.584
SmA 1.60 0.581 0.989 0.275 0.038 0.034 0.842 0.504

qSmB,qSmH 1.70 0.626 0.995 0.292 0.058 0.028 0.797 0.406
qSmB,qSmH 1.80 0.635 0.996 0.271 0.030 0.017 0.807 0.425
qSmB,qSmH 1.90 0.640 0.996 0.260 0.015 0.021 0.909 0.685
qSmB,qSmH 2.00 0.651 0.997 0.345 0.128 0.257 0.103 0.076
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shift=0.50

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2 τC ϑ
I 0.10 0.192 0.040 0.033 0.036 0.014 0.077 0.088
I 0.20 0.253 0.047 0.034 0.036 0.015 0.075 0.086
I 0.30 0.293 0.057 0.036 0.037 0.015 0.075 0.085
I 0.40 0.324 0.072 0.039 0.040 0.015 0.073 0.085
I 0.50 0.349 0.097 0.044 0.042 0.015 0.074 0.085
I 0.60 0.372 0.173 0.061 0.045 0.016 0.074 0.085
Nu 0.70 0.400 0.620 0.017 0.043 0.022 0.080 0.084
Nu 0.80 0.422 0.738 0.020 0.044 0.025 0.091 0.086
Nu 0.90 0.442 0.813 0.225 0.046 0.026 0.107 0.085
SmA 1.00 0.488 0.959 0.271 0.044 0.026 0.728 0.313 0.726 1.300
SmA 1.10 0.506 0.972 0.276 0.046 0.026 0.753 0.341 0.747 0.888
SmC 1.20 0.520 0.978 0.279 0.047 0.114 0.205 0.125 0.760 14.501
SmC 1.30 0.534 0.980 0.278 0.044 0.152 0.188 0.117 0.757 17.045
SmC 1.40 0.549 0.985 0.296 0.067 0.386 0.124 0.094 0.811 29.702
SmC 1.50 0.563 0.990 0.315 0.090 0.440 0.120 0.092 0.821 30.435
Hex 1.60 0.609 0.994 0.373 0.166 0.581 0.064 0.082 0.876 39.293
Hex 1.70 0.620 0.996 0.330 0.107 0.513 0.101 0.082 0.591 36.807
Hex 1.80 0.623 0.997 0.322 0.097 0.530 0.100 0.085 0.883 38.927
Hex 1.90 0.629 0.993 0.297 0.064 0.534 0.080 0.083 0.867 38.113
Hex 2.00 0.636 0.992 0.329 0.106 0.587 0.077 0.084 0.376 36.526
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shift=0.75

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.189 0.028 0.020 0.021 0.008 0.044 0.051
I 0.20 0.249 0.028 0.020 0.021 0.081 0.045 0.051
I 0.30 0.289 0.035 0.021 0.021 0.079 0.043 0.050
I 0.40 0.318 0.045 0.023 0.023 0.083 0.043 0.050
I 0.50 0.346 0.117 0.039 0.027 0.083 0.043 0.050
Nu 0.60 0.378 0.670 0.168 0.023 0.013 0.046 0.050
Nu 0.70 0.401 0.763 0.195 0.024 0.013 0.061 0.051
Nu 0.80 0.419 0.817 0.211 0.024 0.014 0.048 0.050
Nu 0.90 0.437 0.854 0.223 0.025 0.015 0.048 0.050
Nu 1.00 0.454 0.888 0.234 0.025 0.016 0.054 0.050
SmC 1.10 0.483 0.959 0.257 0.027 0.018 0.147 0.067
SmC 1.20 0.505 0.978 0.263 0.026 0.028 0.138 0.073
SmC 1.30 0.522 0.985 0.269 0.031 0.019 0.193 0.076
Hex 1.40 0.605 0.997 0.815 0.755 0.833 0.099 0.062
Hex 1.50 0.617 0.998 0.738 0.652 0.809 0.098 0.062
Hex 1.60 0.630 0.998 0.832 0.778 0.896 0.103 0.064
Hex 1.70 0.640 0.998 0.880 0.842 0.911 0.094 0.066
Hex 1.80 0.649 0.998 0.890 0.855 0.922 0.093 0.066
Hex 1.90 0.655 0.998 0.873 0.832 0.912 0.098 0.068
Hex 2.00 0.660 0.998 0.849 0.800 0.917 0.097 0.068
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shift=1.0

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.185 0.042 0.034 0.038 0.014 0.077 0.088
I 0.20 0.244 0.051 0.035 0.037 0.015 0.075 0.086
I 0.30 0.283 0.063 0.038 0.038 0.015 0.075 0.086
I 0.40 0.313 0.088 0.045 0.042 0.015 0.074 0.085
Nu 0.50 0.352 0.665 0.179 0.040 0.022 0.079 0.087
Nu 0.60 0.379 0.784 0.214 0.041 0.023 0.083 0.087
Nu 0.70 0.400 0.837 0.230 0.041 0.025 0.086 0.086
Nu 0.80 0.419 0.876 0.242 0.042 0.025 0.078 0.086
Nu 0.90 0.436 0.901 0.252 0.045 0.029 0.081 0.088
Nu 1.00 0.452 0.921 0.581 0.045 0.029 0.084 0.090
Nu 1.10 0.468 0.942 0.313 0.048 0.031 0.087 0.093
Nu 1.20 0.493 0.970 0.352 0.050 0.056 0.145 0.128
Nu 1.30 0.509 0.979 0.294 0.068 0.140 0.150 0.145
Hex 1.40 0.590 0.997 0.479 0.306 0.633 0.120 0.116
Hex 1.50 0.592 0.997 0.415 0.221 0.544 0.168 0.168
Hex 1.60 0.604 0.997 0.421 0.229 0.588 0.119 0.122
Hex 1.70 0.606 0.996 0.402 0.204 0.607 0.135 0.131
Hex 1.80 0.618 0.997 0.451 0.269 0.646 0.151 0.149
Hex 1.90 0.619 0.996 0.470 0.295 0.640 0.209 0.209
Hex 2.00 0.629 0.996 0.429 0.241 0.621 0.114 0.110

shift=1.0-vbo

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

Hex 1.50 0.067 0.998 0.412 0.216 0.526 0.149 0.148
Hex 1.60 0.068 0.997 0.450 0.268 0.589 0.157 0.155
Hex 1.70 0.069 0.997 0.391 0.190 0.587 0.128 0.130
Hex 1.80 0.071 0.998 0.440 0.254 0.598 0.133 0.128
Hex 1.90 0.071 0.997 0.465 0.289 0.617 0.203 0.205
Hex 2.00 0.071 0.996 0.437 0.252 0.595 0.137 0.132
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shift=1.5

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.178 0.043 0.034 0.036 0.014 0.077 0.088
I 0.20 0.236 0.053 0.036 0.037 0.014 0.075 0.086
I 0.30 0.274 0.074 0.041 0.039 0.015 0.074 0.085
Nu 0.40 0.325 0.683 0.187 0.039 0.021 0.077 0.085
Nu 0.50 0.354 0.826 0.228 0.040 0.025 0.077 0.085
Nu 0.60 0.378 0.871 0.241 0.039 0.026 0.081 0.088
Nu 0.70 0.400 0.906 0.252 0.040 0.026 0.087 0.093
Nu 0.80 0.422 0.932 0.261 0.043 0.024 0.109 0.112
Nu 0.90 0.445 0.958 0.272 0.047 0.029 0.210 0.209
SmA 1.00 0.472 0.974 0.276 0.046 0.027 0.505 0.505
SmA 1.10 0.492 0.982 0.283 0.051 0.032 0.669 0.669
SmA 1.20 0.521 0.991 0.289 0.055 0.041 0.768 0.768
Hex 1.30 0.578 0.997 0.277 0.037 0.272 0.201 0.206
Hex 1.40 0.589 0.998 0.445 0.261 0.454 0.203 0.200
Hex 1.50 0.600 0.998 0.367 0.157 0.457 0.230 0.228
Hex 1.60 0.611 0.998 0.392 0.189 0.513 0.236 0.237
Hex 1.70 0.618 0.998 0.495 0.327 0.604 0.207 0.214
Hex 1.80 0.623 0.998 0.488 0.318 0.599 0.142 0.128
Hex 1.90 0.624 0.997 0.606 0.476 0.671 0.206 0.207
Hex 2.00 0.641 0.999 0.539 0.385 0.686 0.110 0.105
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shift=2.00

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.172 0.047 0.037 0.040 0.015 0.081 0.093
I 0.20 0.229 0.058 0.039 0.040 0.016 0.081 0.092
I 0.30 0.268 0.089 0.048 0.044 0.016 0.079 0.090
Nu 0.40 0.322 0.821 0.229 0.040 0.024 0.084 0.092
Nu 0.50 0.352 0.877 0.245 0.041 0.025 0.089 0.093
Nu 0.60 0.377 0.912 0.256 0.042 0.027 0.108 0.097
Nu 0.70 0.398 0.935 0.264 0.044 0.028 0.087 0.094
Nu 0.80 0.420 0.952 0.269 0.044 0.030 0.100 0.099
Nu 0.90 0.448 0.969 0.337 0.128 0.161 0.115 0.111
Hex 1.00 0.549 0.996 0.875 0.834 0.955 0.160 0.167
Hex 1.10 0.573 0.998 0.933 0.911 0.976 0.131 0.133
Hex 1.20 0.588 0.998 0.933 0.911 0.976 0.110 0.123
Hex 1.30 0.602 0.998 0.945 0.928 0.981 0.141 0.153
Hex 1.40 0.612 0.998 0.910 0.881 0.967 0.133 0.151
Hex 1.50 0.625 0.999 0.783 0.712 0.922 0.148 0.163
Hex 1.60 0.635 0.999 0.920 0.893 0.970 0.159 0.174
Hex 1.70 0.648 0.999 0.884 0.846 0.956 0.140 0.157
Hex 1.80 0.657 0.999 0.721 0.628 0.901 0.172 0.197
Hex 1.90 0.664 0.999 0.731 0.642 0.904 0.144 0.256
Hex 2.00 0.670 0.999 0.750 0.667 0.909 0.205 0.227
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shift=2.0-vbo

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

Nu 1.00 0.458 0.976 0.278 0.046 0.038 0.104 0.106
Nu 1.10 0.479 0.984 0.052 0.052 0.035 0.109 0.111
Hex 1.20 0.551 0.997 0.298 0.064 0.092 0.100 0.099
Hex 1.30 0.563 0.997 0.275 0.034 0.054 0.117 0.116
Hex 1.40 0.573 0.997 0.318 0.091 0.041 0.085 0.099
Hex 1.50 0.571 0.996 0.286 0.050 0.034 0.092 0.102
Hex 1.60 0.587 0.997 0.380 0.017 0.060 0.094 0.105
Hex 1.70 0.595 0.998 0.288 0.051 0.054 0.108 0.099
Hex 1.80 0.596 0.998 0.264 0.020 0.052 0.117 0.123
Hex 1.90 0.591 0.996 0.288 0.052 0.055 0.104 0.112
Hex 2.00 0.602 0.997 0.286 0.049 0.011 0.105 0.107

shift=2.0-vb-point to point compression

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

Hex 1.50 0.585 0.998 0.329 0.106 0.030 0.096 0.101
Hex 1.60 0.595 0.998 0.327 0.103 0.035 0.097 0.102
Hex 1.70 0.603 0.999 0.341 0.121 0.041 0.095 0.101
Hex 1.80 0.612 0.999 0.335 0.113 0.036 0.087 0.096
Hex 1.90 0.620 0.999 0.344 0.125 0.040 0.080 0.090
Hex 2.00 0.626 0.999 0.339 0.119 0.040 0.084 0.090
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shift=2.5

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10 0.166 0.031 0.025 0.026 0.010 0.055 0.062
I 0.20 0.222 0.040 0.027 0.027 0.099 0.054 0.061
I 0.25 0.243 0.054 0.031 0.029 0.010 0.054 0.061
Nu 0.28 0.269 0.691 0.186 0.026 0.015 0.054 0.061
Nu 0.30 0.283 0.769 0.205 0.026 0.015 0.055 0.060
Nu 0.35 0.303 0.831 0.223 0.027 0.016 0.054 0.060
Nu 0.40 0.320 0.865 0.232 0.027 0.016 0.054 0.060
Nu 0.50 0.351 0.909 0.245 0.027 0.017 0.054 0.060
Nu 0.60 0.376 0.935 0.252 0.027 0.017 0.056 0.060
Nu 0.70 0.400 0.955 0.258 0.027 0.019 0.058 0.061
Nu 0.80 0.423 0.969 0.263 0.029 0.020 0.061 0.060
Nu 0.90 0.449 0.981 0.267 0.030 0.032 0.069 0.066
SmC 1.00 0.476 0.988 0.275 0.038 0.089 0.089 0.067
SmC 1.10 0.495 0.991 0.274 0.036 0.034 0.095 0.088
SmC 1.20 0.517 0.994 0.288 0.053 0.050 0.128 0.076
Hex 1.30 0.568 0.998 0.287 0.050 0.125 0.058 0.068
Hex 1.40 0.579 0.998 0.287 0.500 0.019 0.634 0.073
Hex 1.50 0.589 0.998 0.284 0.046 0.018 0.088 0.089
Hex 1.60 0.597 0.998 0.279 0.039 0.010 0.065 0.074
Hex 1.70 0.605 0.998 0.284 0.046 0.094 0.072 0.075
Hex 1.80 0.615 0.999 0.029 0.049 0.013 0.072 0.079
Hex 1.90 0.620 0.999 0.288 0.051 0.057 0.079 0.084
Hex 2.00 0.627 0.999 0.288 0.051 0.013 0.076 0.081
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shift=3.0

Phase P ∗ φ S Sw Sw⊥ PC2h τ τ2

I 0.10
I 0.20 0.216 0.054 0.035 0.034 0.012 0.068 0.075
Nu 0.30 0.283 0.834 0.230 0.033 0.019 0.073 0.074
Nu 0.40 0.321 0.904 0.248 0.032 0.022 0.074 0.076
Nu 0.50 0.361 0.949 0.261 0.033 0.022 0.179 0.094
SmA 0.60 0.416 0.981 0.272 0.036 0.025 0.802 0.447
SmA 0.70 0.447 0.987 0.273 0.035 0.023 0.876 0.598
SmA 0.80 0.473 0.990 0.274 0.035 0.029 0.909 0.685
SmA 0.90 0.494 0.992 0.274 0.036 0.027 0.929 0.747
SmA 1.00 0.513 0.994 0.275 0.035 0.026 0.945 0.796
SmA 1.10 0.529 0.995 0.275 0.035 0.028 0.952 0.822
SmA 1.20 0.545 0.996 0.276 0.036 0.034 0.937 0.772
SmA 1.30 0.558 0.997 0.278 0.038 0.029 0.960 0.851
SmA 1.40 0.572 0.997 0.278 0.038 0.037 0.958 0.842
Hex 1.50 0.610 0.999 0.274 0.033 0.061 0.752 0.279
Hex 1.60 0.613 0.998 0.271 0.029 0.013 0.866 0.547
Hex 1.70 0.619 0.999 0.283 0.044 0.041 0.828 0.442
Hex 1.80 0.622 0.998 0.271 0.029 0.080 0.845 0.477
Hex 1.90 0.634 0.998 0.273 0.031 0.092 0.871 0.557
Hex 2.00 0.645 0.999 0.265 0.020 0.084 0.868 0.556



APPENDIX B

Phase diagrams and phase sequences of the system

made up of hard dimer of shifted spherocylinders

In this appendix the most representative phase diagrams (PD3/kT vs φ) and the

snapshots of the systems (made up of dimer of shifted spherocylinders) have been

reported. The phases have been identi�ed using the following notation and colour

code:

� I= Isotropic

� Nu= Uniaxial Nematic

� SmA= smectic A

� SmC= smectic C

� qSmB= quasi smectic B

� qSmH= quasi smectic H

� Hex= hexagonal

In the phase diagrams the co-existence and the unachievable regions are represented

by the shaded and dashed area respectively. In the snapshots we did not used the

subscripts for the identi�cation of the mesophases for graphic reasons. The colour

code used for the snapshot is sensible to the orientation of the long molecular axis

with respect to the principal director (i.e shades of blue ϑ ' 0◦ ; shades of red

ϑ ' 90◦).
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Figure B.1: Phase diagram of the D2h system made up of dimer where the spherocylinders are
shifted by 0D.
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Figure B.2: Snaphosts of the D2h system, with shift=0, at PD3

kT = 0.30 ; 0.80 and 1.70.
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Figure B.3: Phase diagram of the C2h system made up of dimer where the spherocylinders are
shifted by 0.5D.
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Figure B.4: Snaphosts of the C2h system, with shift=0.50, at PD3

kT = 0.60; 0.70; 1.00; 1.60 and
2.00.
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Figure B.5: Phase diagram of the C2h system made up of dimer where the spherocylinders are
shifted by 1.0D.
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Figure B.6: Snaphosts of the C2h system, with shift=1.0, at PD3

kT = 0.40; 0.60; 1.70.
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Figure B.7: Phase diagram of the C2h system made up of dimer where the spherocylinders are
shifted by 1.5D.
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Figure B.8: Snaphosts of the C2h system, with shift=1.50, at PD3

kT = 0.20; 0.50; 1.10 and 1.60.
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Figure B.9: Snaphosts of the C2h system, with shift=2.0, at PD3

kT = 0.20; 0.50 and 1.60.
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Figure B.10: Snaphosts of the C2h system, with shift=2.5, at PD3

kT = 0.10; 0.40; 1.10 and 1.60.
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Figure B.11: Phase diagram of the C2h system made up of dimer where the spherocylinders are
shifted by 3.0D.
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Figure B.12: Snaphosts of the C2h system, with shift=3.0, at PD3

kT = 0.20; 0.40; 1.00 and 1.70.
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