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Sommario

Il calcolo ad alte prestazioni (HPC) attualmente in un periodo di enormi
cambiamenti. Per molti anni, alte prestazioni sono state raggiunte attraverso
l’aumento della frequenze di clock, ma tale tendenza stata interrotta brus-
camente dal corrispondente aumento consumo energetico. La direzione ora
verso il miglioramento prestazioni attraverso l’aumento del parallelismo, an-
che riducendo la frequenza di clock per migliorare l’efficienza energetica.
Tuttavia, non vi ancora un chiaro consenso su quale sia la migliore ar-
chitettura per HPC. Da un lato ci sono acceleratori multi-core come GPU
e la nuova Intel Xeon Phi.. D’altra parte, abbiamo mainstream CPU Intel
/ AMD con cache molto grandi e un numero pi modesto di unit logiche
(core) ciascuna con le proprie componenti vettoriali (ad esempio AVX unit),
o i sistemi IBM BlueGene basati su una vasta rete di CPU relativamente
piccole ma ad alta efficienza energetica. Di conseguenza, alla luce di questi
sviluppi, un programmatore HPC, per ottenere alte prestazioni su diversi
hardware, costretto ad ottimizzare la propria applicazione per una deter-
minata piattaforma, allo stesso tempo, richiedendo una quantit crescente
di conoscenza specifica dell’hardware, e in alcuni casi una riscrittura com-
pleta del codice. Una possibile soluzione a questo problema l’utilizzo di
una strategia di sviluppo ad alta astrazione (HLA) basata su DSL (Domain
Specific Languages). Esempi sono OpenCAL e OPS, che sono stati specifi-
catamente proposti come librerie parallele in C / C ++ per computazione
su griglie strutturate. Lo scopo di queste librerie di semplificare e rendere
pi veloce il processo di sviluppo di modelli complessi, consentendo di im-
plementare l’applicazione e riferendosi a un modello di programmazione di
sviluppo seriale, delegando il processo di parallelizzazione alla libreria per
diverse soluzioni di calcolo parallelo. In questa tesi, ho contribuito alla pro-
gettazione e allo sviluppo di entrambi i progetti OpenCAL e OPS. In partico-
lare, il mio contributo a OpenCAL ha riguardato lo sviluppo dei componenti
single-GPU e multi-GPU / multi-nodo, ovvero OpenCAL-CL e OpenCAL-
CLM. Mentre, il mio contributo a OPS ha riguardato l’introduzione del sup-
porto OpenMP 4.0 / 4.5, in alternativa alle gi esistenti versioni OpenCL,
CUDA e OpenACC, per sfruttare i moderni sistemi di elaborazione a molti
core.
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Abstract

High performance computing (HPC) is undergoing a period of enormous
change. Due to the difficulties in increasing clock frequency indefinitely
(i.e., the breakdown of Dennard’s scaling and power wall), the current di-
rection is towards improving performance through increasing parallelism.
However, there is no clear consensus yet on the best architecture for HPC,
and different solutions are currently employed. As a consequence, appli-
cations targeting a given architecture can not be easily adapted to run on
alternative solutions, since this would require a great effort due to the need
to deal with platform-specific details. Since it is not known a priori which
HPC architecture will prevail, the Scientific Community is looking for a so-
lution that could tackle the above mentioned issue. A possible solution con-
sists in the adoption of a high-level abstraction development strategy based
on Domain Specific Languages (DSLs). Among them, OpenCAL (Open
Computing Abstraction Layer) and OPS (Oxford Parallel Structured) have
been proposed as domain specific C/C++ data parallel libraries for struc-
tured grids. The aim of these libraries is to provide an abstract computing
model able to hide any parallelization detail by targeting, at the same time,
different current (and possibly future) parallel architectures. In this The-
sis, I have contributed to the design and development of both the OpenCAL
and OPS projects. In particular, my contribution to OpenCAL has regarded
the development of the single-GPU and multi-GPU/multi-node components,
namely OpenCAL-CL and OpenCAL-CLM, while my contribution to OPS
has regarded the introduction of the OpenMP 4.0/4.5 support, as an alter-
native to OpenCL, CUDA and OpenACC, for exploiting modern many-core
computing systems. Both the improved DSLs have been tested on different
benchmarks, among which a fractal set generator, a graphics filter routine,
and three different fluid-flows applications, with more than satisfying re-
sults. In particular, OpenCAL was able to efficiently scale over larger com-
putational domains with respect to its original implementation, thanks to
the new multi-GPU/multi-node capabilities, while OPS was able to reach
near optimal performance using the high-level OpenMP 4.0/4.5 specifica-
tions on many-core accelerators with respect to the alternative low-level
CUDA-based version.
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Chapter 1

Introduction

Current High-Performance Computing (HPC) machines are large ensembles
of powerful computing nodes with heterogeneous hardware interconnected
via network. In fact, beside traditional CPUs, GPGPU (General-Purpose
Computation on Graphics Processing Unit) has become mainstream. This
trend was a consequence of the end of frequency scaling, caused by the
unsustainable energy consumption of CPUs. Consequently, current HPC
processor architectures have moved towards to massively parallel designs,
increasing computational power. The use of this recent advanced hardware
is constantly being applied in many fields of Science and Engineering. In
particular, in the field of Scientific Computing, parallel machines are used
to obtain approximate numerical solutions of differential equations which
model a physical system. In fact, the classical approach based on Calculus
often fails to solve these kinds of equations analytically, making a numerical
computer-based approach necessary. An approximate numerical solution
of a system of partial differential equations can be obtained by applying
methods such as, among others, Cellular Automata (CA) and Finite Volume
Method (FVM), which yield approximate values at a discrete number of
points over the considered domain.

Achieve optimal performance on scientific applications by exploiting mod-
ern heterogeneous machines, each one with its programming model, may re-
quire a major effort, since most of them have been developed over the years
and usually consist of many lines of code. Often, the HPC Community is
forced to use hand-tuning code, or performing architecture-specific transfor-
mations to the specific application, significantly increasing the programming
effort. The HPC Community is trying to overcome these obstacles maintain-
ing, at the same time, some important attributes to the applications, the
most important of which are: (i) code portability, which allows to exploit
the same code across current different architectures; (ii) programmability,
which provides simple features to reach performance; (iii) long-term viabil-
ity, which allows to adapt the applications to future architectures and pro-
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5

gramming models. Many solutions have been proposed to reach the above
goals. Among them, the RAJA [51, 75], Kokkos [67, 75], and FastFlow [23]
C++ template libraries have been developed at Lawrence Livermore Na-
tional Laboratory (LLNL, USA), Sandia National Laboratories (USA), and
University of Pisa (Italy), respectively, with the purpose of running mod-
els on heterogeneous parallel platforms. At the same time, other software
systems have been proposed that utilizes a high-level abstraction (HLA) de-
velopment strategy based on Domain Specific Languages (DSLs). Examples
are OpenCAL [33] and OPS [104], that were specifically proposed as domain
specific C/C++ data parallel libraries for structured grids. The aim of these
libraries is to simplify and make faster the development process of complex
models by allowing to implement the application and referring to a serial
development programming model, delegating the parallelization process to
the library for different parallel computing solutions.

In particular, OpenCAL has been developed at the University of Calabria
(Italy) and provides a C Application Programming Interface (API) expos-
ing a DSL based on the Extended Cellular Automata formalism (XCA)
[47]. Also known as Complex or Multi-Component Cellular Automata,
XCA were introduced for the modeling of macroscopic fluid-flows (see e.g.,
[35, 14, 39, 96, 38]), forest fire spreading [13], ecohydrologic dynamical sys-
tems [86, 102, 87, 37, 58, 109], besides others. Note that, since XCA are
a general structured-grid based computational paradigm, other numerical
methods are supported by OpenCAL, such as Finite Differences and Cellu-
lar Automata (of which XCA can be considered an extension). Low-level
parallel programming details can be ignored and different efficient serial,
multi-core, single-GPU, multi-GPU and cluster of GPUs applications ob-
tained. Even if quite recent, OpenCAL has already been applied in different
contexts like the generation of fractal sets [101], convolutional graphics fil-
tering [101], and the simulation of fluid [33] and particle systems [100].

The OPS system has been developed at the University of Oxford (UK)
and is a high-level abstraction framework targeting computation on multi-
block structured meshes. OPS supports both C/C++ and Fortran lan-
guages, the most widespread languages for scientific applications. The aim
of OPS is to separate the abstract definition of the computation from its par-
allel implementations and execution in order to concentrate the effort only
on the development of the sequential code, totally delegating the generation
of parallel code to the source-to-source translator. The abstract definition
of the computation is defined by a special loop API function which is au-
tomatically recognized by the source-to-source translator that generates the
appropriate translation to the specific platform. The high level abstrac-
tion approach proposed by OPS has been also utilized in many research
projects, such as OpenSBLI (Open Shock-Boundary Layer Interactions), for
solving the compressible Navier-Stokes equations [70] and HiLeMMS (High-
Level Mesoscale Modelling System), for developing a high-level mesoscale
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modelling system [4]. Moreover, an integrated collection of small software
programs (mini-apps) that model the performance of full-scale applications,
part of the Mantevo [6] software, have been implemented in OPS as bench-
mark applications. In particular, among all mini-apps, the Cloverleaf and
the Tealeaf benchmarks were imported in OPS.

In this Thesis, I have contributed to the design and development of
both the OpenCAL and OPS projects. In particular, my contribution
to OpenCAL has regarded the development of the single-GPU and multi-
GPU/multi-node components, namely OpenCAL-CL and OpenCAL-CLM.
As the names suggest, they were based on the OpenCL and MPI APIs to
accelerate the computation on many-core devices and clusters of intercon-
nected workstations, respectively. Both developed components allow sci-
entists to conceptually design the computational model at a high level of
abstraction, by referring to the Extended Cellular Automata general formal-
ism. Parallelism, as well as memory transfer operations between the involved
heterogeneous computing systems, is transparent to the user. Moreover, op-
timized algorithms, such as the active cells one (also known as quantization),
were implemented and ready to use within the library.

My contribution to OPS has regarded the introduction of the OpenMP
4.0/4.5 support, as an alternative to OpenCL, CUDA and OpenACC, for
exploiting modern many-core computing systems. In order to develop the
OpenMP4 OPS extension, a new OPS source-to-source translator has been
designed and implemented. Two C/C++ compilers were considered, which
provide support the newer OpenMP specifications, namely Clang and IBM
XL. The above cited Cloverleaf and Tealeaf mini-apps were considered for
performance assessment. Furthermore, additional analysis regarding the
registers per thread and the achieved occupancy metrics were carried out to
better characterize the new OPS source-to-source translator with respect to
the ones previously developed and targeting the same devices. The research
on OPS started during a six-month internship period I spent at the Uni-
versity of Warwick (UK), still in progress as a scientific collaboration with
the University of Calabria (Italy). Other research groups are also involved,
among which the IBM Thomas J. Watson Research Center (USA).

In the following, Chapter 2 provides a brief description of two numerical
methods widely adopted for the simulation of complex physical phenom-
ena, namely Extended Cellular Automata and Finite Volume Method. Such
methods are those considered by OpenCAL and OPS and were also taken
into account in the examples of applications considered. Chapter 3 provides
a briefly overview of modern parallel computing frameworks. In particular,
OpenCL, CUDA, OpenMP and MPI are described, which are the paral-
lel APIs considered in the development of this work. Chapter 4 describes
OpenCAL and OPS, by pointing out my specific contributions. Different ex-
amples of applications are also described. Chapter 5 presents and discusses
the computational results achieved by new OpenCAL and OPS releases.
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Eventually, Chapter 6 concludes the Thesis with a review of the carried out
work and outlines possible future developments.



Chapter 2

Numerical Methods

This Chapter provides a brief description of two numerical methods widely
adopted for the simulation of complex physical phenomena, namely Ex-
tended Cellular Automata and Finite Volume Method. Extended Cellular
Automata represent an alternative formulation of the original Cellular Au-
tomata computing paradigm, which is particularly useful in the simulation
of complex natural processes. Classic Cellular Automata, together with
some theory and applications, are also preliminary presented in this Chap-
ter. Finite Volume Method, which represents a discretization method for the
approximation of partial differential equations (PDEs) systems into integral
form, is discussed in the last Section.

2.1 Cellular Automata

Cellular Automata (CA) are computational models whose evolution is gov-
erned by laws which are purely local. In its essential definition, a CA can be
described as a d -dimensional space composed of regular cells. Each cell can
be in a finite number of states and embeds a finite automaton (fa), one of
the most simple and well known computational model in Computer Science.
A finite automaton (fa) can be seen as a system to which a state is associ-
ated which can change on the basis of an input. At time t = 0, cells are in
an arbitrary state and the CA evolves by changing the states of the cells in
discrete steps of time and by applying simultaneously to each of them the
same law, or transition function. Input for each cell is given by the states
of neighboring cells and the neighborhood conditions are determined by a
geometrical pattern, which is invariant in time and space.

Despite their simple definition, CA may give rise to extremely complex
behavior[130] at a macroscopic level. In fact, even if local laws that regulate
the dynamics of the system are known, the global behavior of the system
is very hard to be predicted [26]. In other words, the dynamics of the
system emerges in a nontrivial manner by the mutual interaction of its basic

8



2.1. CELLULAR AUTOMATA 9

components.
CA are considered universal computation models because of their equiv-

alence with Turing Machines [46, 128], as demonstrated by Codd [29] and
Thatcher [117].

CA are adapt to model and simulate systems characterized by the in-
teraction of numerous elementary constituents and they have been largely
employed in several fields of study as pattern recognition [81, 41], image
processing [106, 107, 98], cryptography [120, 22] and so on. An example of
CA application is the study of the behavior of the fluid (considered at the
microscopic level as particles systems) through Lattice Gas[115]. Other im-
portant studies are related to the consideration of CA as parallel computing
systems [118, 32, 116].

In this chapter after a brief history of CAs, a quick overview, with the
introduction of an informal and formal definition of the model, is presented.
Some theoretical aspects of CA are also reported and a brief description of
some examples of CA applications in different areas conclude the chapter.

2.1.1 A Brief History of Cellular Automata

CA was developed thanks to a study in the 1940s by John Von Neumann
and Stanis law Ulam. Von Neumann was a wide-ranging mathematician. He
studied and contributed in the set theory, in economics and in game theory.
Ulam was a mathematician. He invented the Monte Carlo simulation tech-
nique and at the same time he made contributions to number theory and
set theory. In 1948 von Neumann, after the read a paper called ”The Gen-
eral and Logical Theory of Automata”, was concerned to many challenging
questions, among them if or not it would ever be possible for a automaton
to reproduce itself. For this reason, he tried to devise an abstract model for
the features and the complexity of self-reproducing systems. The model was
created by using the idea of machines made up of multiple copies of a small
number of standardized elements, all put into a reservoir. His proof was
base on the idea that an automaton could have a blueprint for building it-
self. However, due to the complexity of the developed model, Von Neumann
couldn’t make his proof convincing. Thanks to Ulam, who was working with
von Neumann in those years, the abstract model was redesigned in way to
not considering the reservoir full of automata parts but think in terms of
an idealized space of cells that could hold finite state-numbers representing
different sorts of part. Von Neumann prematurely died in 1957 and his work
was published later in 1966, edited and completed by A.Burks [124].

Immediately after von Neumann and Ulam work, two immediate re-
search paths emerged. The first, mostly carried out in the 1960s, was
an increasingly whimsical discussion of building actual self-reproducing au-
tomata, while the second studies regarded an attempt to capture more of the
essence of self-reproduction by mathematical studies of detailed properties
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of cellular automata.
By the end of the 1950s, CA were viewed as parallel computers, and in

particular in the 1960s a sequence of increasingly detailed and technical the-
orems, often analogous to ones about Turing machines, were proved about
their formal computational capabilities. At the end of the 1960s there then
began to attempt to link cellular automata to mathematical discussions of
dynamical systems.

However, CA became famous in the 70s thanks to one of the simplest
CA application, the well-known Game of Life defined by the English math-
ematician John Horton Conway and described by Martin Gardner in his
work [55].

Figure 2.1: Example of cellular spaces: (a) one-dimensional, (b) two-
dimensional with square cells, (c) two-dimensional with hexagonal
cells, (d) three-dimensional with cubic cells.

2.1.2 Informal Definition of Cellular Automata

It is possible to identify an informal definition of cellular automaton by
simply listing its main properties:

• it is formed by a d-dimensional space (the cellular space), partitioned
into cells of uniform size (triangles, squared, hexagons, cubes) or by a
d -dimensional regular lattice (see Figure 2.1);

• the number of cell states is finite;

• the evolution occurs through discrete steps;

• each cell evolves by simultaneously changing its state by applying the
same transition function to the cellular space;

• the transition function depends on the state of the central and neigh-
boring cells;

• the relationship of closeness that defines the neighborhood of a cell is
local, uniform and invariant over time.
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2.1.2.1 Dimension and Geometry of Cellular Automata

The definition of Cellular Automata requires the discretization of the space
in cells. In the simplest situation (one-dimensional Cellular Automata),
the CA space is one-dimensional and cells are aligned next to each other.
Regarding multi-dimensional Cellular Automata, the CA space can be dis-
cretized in different ways: a two-dimensional CA can be represented, for
example, with triangle, square or hexagonal tessellation while for three-
dimensional cellular automata cubic cells are usually chosen. Figure 2.1
shows examples of different cellular spaces.

Even if a square tessellation, for two-dimensional cellular automata, can
be easily represented by a matrix structure (both for graphics and compu-
tation representation), by considering some applications it can be lead to
anisotropic problems. In these cases, it is preferable to adopt an hexagonal
tesselation.

2.1.2.2 Number of States of a Cell

The number of states of a cell is finite and it is based on the study or
application context. In first theoretical studies in which CA were considered
as abstract models [29, 117], the number of states of a cell was usually quite
small.

When the CA is adopted to describe particle systems, it is not necessary
to adopt a large number of states to model the interactions [114, 127]. In
contrast, when studying systems with a continuum of possible states, CA
may require a large number of states [47].

2.1.2.3 Relationship of Closeness

The cell’s neighbourhood relationship depends on the geometry of cells and
it has to have the following properties:

1. it must be local because only a limited number of cells near the central
one are involved;

2. it must be homogeneous because it is the same for each cell of the
cellular space;

3. it must be invariant over time;

For one-dimensional CA, usually, the neighborhood is considered in terms of
radius, r, which defines a neighborhood consisting of n = 2r + 1 cells [129].
For example, a radius r = 1 consists of n = 2r + 1 = 3 cells: the central
cell, the aligned left one and the aligned right one. Figure 2.2 shows two
different examples of neighborhood for an uni-dimensional CA.
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In the case of two-dimensional CA with square tesselation, the neighbor-
hoods most commonly used are von Neumann and Moore ones, with the first
one comprises the four cells orthogonally surrounding a central cell (north,
east, south, west) while the second also contains the north-west, northeast,
south-west, and south-east cells.

3.3 Definizione informale di Automa Cellulare 43

(a) (b)

r=1 r=2

Figura 3.2: Esempio di vicinato con raggio (a) r = 1 e (b) r = 2 per un automa

cellulare unidimensionale. Le celle in grigio scuro identificano la cella centrale,

quelle in grigio chiaro le vicine.

(a) (b) (c)

Figura 3.3: Vicinati di von Neumann (a) e di Moore (b) per un automa cellu-

lare bidimensionale con tassellazione quadrata e vicinato esagonale (c) per un au-

toma cellulare bidimensionale con tassellazione esagonale. Le celle in grigio scuro

identificano la cella centrale, quelle in grigio chiaro le vicine.

sud, sud-ovest e nord-ovest. La figura 3.3 illustra (a) il vicinato di von Neumann

e (b) quello di Moore per automi cellulari con tassellazione quadrata e (c) il tipico

vicinato per automi cellulari con tassellazione esagonale. Ovviamente è possibile

definire relazioni di vicinanza differenti da quelle illustrate. Nella simulazione della

diffusione di gas in un ambiente, ad esempio, è possibile utilizzare la relazione di

vicinanza di Margolus1 [176].

3.3.4 Funzione di transizione di stato della cella

A ogni passo dell’AC, la funzione di transizione è applicata simultaneamente a tutte

le celle dello spazio cellulare, determinando il nuovo stato di ognuna in funzione

1La relazione di vicinanza di Margolus non gode della proprietà d’invarianza temporale. Infatti

il vicinato della cella cambia a seconda del passo, pari o dispari, dell’AC. Ai passi pari il vicinato

è formato dalla cella centrale e dalle celle a nord, est, e nord-est; ai passi pari, invece, il vicinato

è formato dalla cella centrale e dalle celle a sud, ovest, e sud-ovest. Si noti, tuttavia, che un AC

che utilizzi tale relazione di vicinanza è perfettamente “legale”. E’ infatti possibile dimostrare

che, dato un AC con relazione di vicinanza di Margolus, si può costruire un AC perfettamente

equivalente che soddisfi tutte le proprietà richieste dalla definizione.

Figure 2.2: Example of neighborood with radius (a) r = 1 and (b) r = 2 for
uni-dimensional cellular automata.

Figure 2.3: von Neumann (a) and Moore (b) neighboroods for a two-
dimensional cellular automata with square cells and with exagonal
ones (c).

For exagonal two-dimensional cellular automata a typical neighborood
is composed by north, north-east, south-east, south, south-west and north-
west cells.

Figure 2.3 shows (a) the von Neumann neighborhood and (b) the Moore
one for square tesselation and (c) the one adopted for hexagonal tesselation.

It is worth to note that different neighbourhoods can be applied such as,
for example, the Margolus neighborhood widely used in simulations of gas
diffusion [119].

2.1.2.4 State-Transition Function

At each CA step, the transition function is simultaneously applied to all cells
of the cellular space, by determining the new state of each cell in function
of the state of the neighborhood cells. Parallelism and decentralization are
characteristics of the CA computation.
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When the number of states is small, usually the transition rules are
defined through a look-up table which specifies the new state of the central
cell for each possible configuration of the neighborhood [130]. Differently,
when the number of CA states is too large, the transition function is usually
defined by an algorithm [47].

2.1.3 Formal Definition of Classical Cellular Automata

The homogeneous cellular automata is defined as a quadruple:

A =< Zd, Q,X, σ > (2.1)

where:

• Zd = {i = (i1, i2, ...., id)|ik ∈ Z ∀k = 1, 2, ..., d} is the d-dimensional
cellular space;

• Q is the finite set of states of the cellular automata;

• X = {ξ0, ξ1 ...ξm−1} is the finite set of m d-dimensional vectors

ξj = {ξj1, ξj2, ...ξjd}

that define the set

V (X, i) = {i+ ξ0, i+ ξ1, ..., i+ ξm−1}

of coordinates of cells close to the generic cell i with coordintates
(i1, i2, ...id).

X is the geometrical pattern that specifies the neighborhood relation-
ship;

• σ : Qm −→ Q is the transition function for the CA.

2.1.4 Theory of Cellular Automata

In this section, some theoretical aspects of cellular automata are reported.
In particular, results on reversibility, conservation laws, universality and
topological dynamics of CA are discussed. Since most of them are related
to one-dimensional CA, it is important to first introduce some definitions.

2.1.4.1 One-dimensional Cellular Automata

The simplest forms of CA are elementary CA [129]. They are one-dimensional
CA characterized by N cells, k = 2 states (0 and 1), neighborhood radius
r = 1 and periodic boundary conditions (one-dimensional cellular space is
toroidal, seen as a ring where first and last cells are adjacent). Figure 2.4
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shows an example of a one-dimensional CA with periodic boundary condi-
tions. Representing a CA as a ring allows to define an unlimited space in
which the CA can evolve.

Figure 2.4: Example of one-dimensional cellular automata with periodic
boundary conditions. First and last cells are adjacent.

The transition function σ is defined through a look-up table. For ex-
ample, by considering the generic neighborhood’s configuration η (the num-
ber of neighborhood’s configuration is k2r+1 and for one-dimensional CA is
23 = 8), the following transition function determines the central cell new
state, s = σ(η):

η 000 001 010 011 100 101 110 111
s 0 0 1 1 0 1 1 0

By adopting this convention, any transition rule for the elementary CA
elementary can be defined by listing the central cell new states as follow:

η 000 001 010 011 100 101 110 111
σ00110110 =

s 0 0 1 1 0 1 1 0

Each possible transition rule can be identified through the decimal number
corresponding to the binary number that defines the same rule(σ000000000 =
σ0, σ000000001 = σ1, ..., σ000000001 = σ255).

If r > 1 the number of possible configuration grows rapidly. For ex-
ample, by considering (k, r) = (2, 2) the number ot total transition rules
is 232 = 4294967296 because k2r+1 = kn = 25 = 32, making impossible a
comprehensive analysis.

2.1.4.2 Universality and Complexity in Cellular Automata

Wolfram [129, 130] proposed a classification of the one-dimensional CA based
on their qualitative behavior, identifying four different complexity classes:

• class 1 Class 1 CA, nearly all initial patterns, evolve quickly into a
uniform final state. Any randomness in the initial pattern disappears;
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• class 2 Class 2 CA evolve into the final state with stable or oscillating
structures. Some of the randomness in the initial pattern remains;

• class 3 Class 3 CA are characterized by an extremely pseudo-random
or chaotic behavior. Structures that appear are quickly destroyed;

• class 4 Class 4 CA are characterized by both uniforms an chaotic
behavior. In this class structures can interact with each other in ex-
tremely complex ways;

Although other classifications have been proposed [25, 60, 84], the Wol-
fram one is certainly the most known. Examples of CA belonging to the
Wolfram four complexity classes are illustrated in Figure 2.5.

Figure 2.5: First 250 CA calculation steps with k = 3 and r = 1 for (a)σc=1014,
(b)σc=1008, (c)σc=1020, (d)σc=2043. The illustrated CA belong re-
spectively to the complexity classes 1, 2, 3 and 4. The initial con-
figuration consists of 250 cells and it is randomly generated so that
each cell can assume state 0 (white), 1 (gray) or 2 (black).

Class 4 proved to be particularly interesting for the presence of structures
(e.g., gliders) able to propagate in space and time. For this reason, Wolfram
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hypothesized that CA belonging to the class 4 can be capable of universal
computation. The CA proposed by Wolfram can be seen as calculators; the
initial configurations encode data and program, and final configuration (after
several calculation steps) encode the computation result. This means that
it is possible to represent with a CA and an appropriate transition function
every possible computational program. The hypothesis of universality for
simple CA comes from the observation that the glider can act as elaborator
of information encoded into the initial configuration. By means of the glider,
the state of a cell in a particular position of the cellular space can influence
over time the states of cells in arbitrarily distant locations. Furthermore,
the glider can interact among themselves in an extremely complex way and,
theoretically, can play as demonstrated for the Game of Life by John Horton
Conway [55] the logic gates of a universal computer.

2.1.4.3 Chaos Theory

Class 4 automata are considered as at the edge of chaos and give a good
metaphor for the idea that the interesting complexity is in equilibrium be-
tween stability and chaos. The hypothesis of Wolfram that the simple one-
dimensional CA are capable of universal computation was, subsequently,
studied by Chris Langton. He has shown that an appropriate parameteri-
zation of the space of rules allows identifying both the relationship between
the complexity classes and the regions of that space.

Langton in his paper [79] introduced the λ parameter as the fraction of
the entries in the transition rule table that are mapped do the quiescent state
qs. Langton’s major finding was that a simple measure such as correlates
with the system behavior: as goes from 0 to 1, the average behavior of the
systems goes from freezing to periodic patterns to chaos and functions with
an average λ ≈ 1/2 (please refer to [79] for a more general discussion) are
being on the edge.

In particular, the parameter λ was defined as:

λ =
kn − nq
kn

= 1− nq
kn

(2.2)

where k is the number of states of the cell, n = 2r + 1 is the number of
neighborhood cells and nq is the number of transitions that terminate in the
quiescent state. If nq = kn, all the transitions of the look-up table go to the
quiescent state and λ = 0; if nq = 0 there are no transitions that terminate
in the quiescent state and λ = 1; finally, λ = 1 − 1λ when in the look-up
table when all the states are represented by the same measure.

Langton has analyzed the behaviour of several totalistic CA with k = 4
and r = 1 with a variation range for λ of [0,0.75]. The results showed that for
small values of λ the CA behaviour is uniform, typical of complexity classes
1 and 2, while for large values the observed behaviours are chaotic, typical
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of class 3. Between these two zones (order and chaos), however, Langton
has observed a very small third zone near to the value λ = 0.45. In this
zone, defined as edge of chaos, the CA dynamics is able to generate both
static and dynamic structures that can be propagated in space and time,
typical of the class 4 of Wolfram.

Figure 2.6 shows an example of a CA at the edge of chaos. Only in the
edge of chaos zone, the encoded information in the CA initial configuration
can propagate over long distances, which is a necessary condition for the
concept of computation.

Figure 2.6: Examples of CA at the edge of chaos. Figures (a) and (b) show
the evolution of the same CA with k = 4 states and r = 1 with two
different initial conditions. The shades of gray represent the four
possible states of the cell, from with for the state 0 to black for the
state 3.

2.1.4.4 Other Theoretical Works on Cellular Automata

The studies discussed in this chapter are only a part of the whole set of
theoretical researches on CA and many different contributions have stemmed
from researchers from all parts of the world. For example, the problem of
reversibility of CA has been studied by Moore [90], Myhill [95], Di Gregorio
and Trautteur [49], Kari [72], and Toffoli and Margolus [119].

Jiménez-Morales has adopted an evolutionary approach based on GA for
the study of non-trivial collective behavior in CA [71].

Other interesting studies regard, the self-reproduction problem in the
CA. Among them, Azpeitia and Ibáñez [18] and Bilotta et al. [21] worked
in this direction.

Finally, Roli and Zambolli [105] studied the emergence of macro spatial
structures in dissipative CA seen as open systems where the environment
can influence the dynamics.
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2.1.5 CA Applications

CA are particularly suited to modeling and simulation of some classes of
complex systems characterized by the interaction of a large number of ele-
mentary components. The assumption that if a system behaviour is com-
plex, the model that describes it must necessarily be of the same complexity
is replaced by the idea that its behavior can be described, at least in some
cases, in very simple terms [130].

In some areas, the CA application gave results comparable to those ob-
tained from traditional approaches. A particularly significant example is
the CA application to modeling turbulent flows behaviour through lattice
gas and lattice Boltzmann models. Another important field of CA appli-
cation is the Artificial Life, a discipline that deals with the examination of
systems related to life, its processes, and its evolution. Moreover, in recent
years, CA have been applied with success in the modeling of natural complex
phenomena.

A brief description of some examples of CA applications in Artificial
Life, Lattice Gas and lattice Boltzmann models is described below. CA
application to modeling natural complex phenomena is discussed in the next
chapter.

2.1.5.1 Artificial Life with CA

Artificial life can be defined as the discipline that deals with the life and the
behavior of artificial systems that live in an artificial environment. It seeks
to study life not out in nature or in the laboratory, but in the computer.
Langton suggested that CAs could be an extremely effective model to study
artificial life[78]. In fact, John von Neuman since 40’s studied the reproduc-
tion in living organisms by adopting an artificial approach based on the CA
paradigm.

Subsequently, Codd at the end of the 60’s and then Langton in the
mid-80’s, have proposed a simplified model compared to the von Neumann
original one for the self-reproduction with self-replicating structures.

von Neumann was convinced that the self-reproduction should incorpo-
rate the property of universal computability; for this reason, his model was
very complex. Cood even if shared the von Neuman hypothesis proposed an
alternative model with 8 states [29].

However, Langton proposed a model with self-replicating structures (Lang-
ton’s loops) not computational equivalent to the Turing Machine, thus he
has shown that the universal computability property is a sufficient condition
for self-reproduction but not a necessary condition [77].

Chou and Reggia [28] have demonstrated, for the first time, that it is
possible to implement CA with ‘general’ transition functions in order to
emerge self-replicating structures with initial configurations completely ran-
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dom. These structures may have different characteristics and shapes and
they interact with other structures that simultaneously emerge in the cellu-
lar space.

Other interesting works that reflect the original von Neumann study
regarding the self-reproduction problem were conducted by Azpeitia and
Ibáñez [18] and Bilotta [21].

As it can be seen from the research branch related to self-reproduction,
the Artificial life has produced hypothesis and original results of extreme
interest, both from the theoretical point of view and from that of the possible
applications and, in this context, CA have played a very important role.

2.1.5.2 Lattice Gas Cellular Automata and Lattice Boltzman Mod-
els

Fluid dynamics is a branch of physics that deals with the behavior of gases
and liquids. The classical fluid dynamics is based on the Navier-Stokes
equations that formalize the laws of conservation of mass and momentum.

The non-linearity of such equations is the main cause of the difficulty to
apply them for not idealized cases [114] and for this reason, an alternative
approach to the study of fluid dynamics based on CA, namely Lattice Gas,
emerged.

2.1.5.3 Lattice Gas Cellular Automata

The basic idea of lattice gas is to model a fluid through a system of particles
that can move, with constant velocity, only along the directions of a discrete
lattice. Local laws are defined in order to ensure the invariance of the number
of particles (conservation of mass) and the conservation of momentum.

More formally, a Lattice Gas Automaton (LGA) is a lattice of cells ~r.
Each cell ~r contains z + 1 quantities ni(~r, t), i = 0, ...z where z is the coor-
dination number. Neighbors of ~r are obtained as ~r + ~vi, where ~vi are given
vectors and by convention ~v0 = 0. The LGA dynamics consist of two steps.
The first one is the interaction step where the quantities ni locally collide
and new values n

′
i are computed according to a predefined collision operator

Ωi(n). The second step regards the propagation by sending the quantity
n
′
i(~r) to the neighboring site along lattice direction ~vi.

The first lattice-gas cellular automata (LGCA) was proposed in 1973
[62] by Hardy, Pomeau and de Pazzis. It is named HPP and represents the
simplest LGCA. In particular, HPP is a two-dimensional lattice-gas cellular
automata model over a square lattice. The vectors ci(i = 1, 2, 3, 4) connect-
ing nearest neighbors are called lattice vectors. At each node there are four
cells (see Figure 2.7) each associated to a link with the nearest neighbor.
Cells may be empty or occupied by at most one particle (exclusion principle).
The evolution in time is deterministic and proceeds with local collisions and
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propagation along links to the nearest neighbors. The collision conserves
mass and momentum while changing the occupation of the cells and when
two particles enter a node from opposite directions and the other two cells
are empty a head-on collision takes place which rotates both particles by
90o in the same sense.

Figure 2.7: Example of LGA on a square lattice. In this example ni ∈ 0, 1.
The arrows directions indicate the sites with ni = 1. The lattice
direction are ~v1 = (1, 0), ~v2 = (0, 1), ~v3 = (−1, 0), ~v4 = (0,−1).

The first LGA reproducing a correct hydrodynamic behavior has been
introduced in 1986. Frish, Hasslacher and Pomeau showed that an LGCA
over a lattice with a larger symmetry group than for the square lattice yields
the Navier-Stokes equation in the macroscopic limit. This model, named
FHP, presents a hexagonal symmetry.

In particular, the properties of FHP lattice can be described as following:

• The lattice shows hexagonal symmetry (the lattice is composed of
triangles).

• Nodes are linked to six nearest neighbors located all at the same dis-
tance with respect to the central node.

• ci is the lattice vectors and it links the neighbor nodes.

ci = (cos
π

3
i, sin

π

3
i), i = 1, ..., 6 (2.3)

• A cell is associated with each link at all nodes.

• Cells can be empy or occupied by at most one particle(exclusion prin-
ciple)
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• All particles have the same mass.

• The evolution proceeds by collissions C and streaming S (propagation)
as:

ε = S ◦ C (2.4)

where ε is the evolution operator.

• The collisions are local.

As for HPP there are 2-particle head-on collisions but in contrast to HPP the
FHP model encompasses non-deterministic rules. A pseudo-random choice
is used where the rotational sense changes by chance for the whole domain
from time step to time step or the sense of rotation changes from node to
node but is constant in time.

The basic FHP model defines only two- and three-particle collisions, but
it turns out that this is sufficient to yield the desired behavior. If two par-
ticles traveling in opposite directions meet at a node, then the particle pair
is randomly rotated either clockwise or counterclockwise by sixty degrees.
If three particles meet at a node in a symmetric configuration, then they
collide in such a way that this configuration is inverted.

Please refer to [44] for a more detailed description of the FHP model.

2.1.5.4 Lattice Boltzmann Models

Lattice Boltzmann Models (LBM) have been introduced because the LGA
are plagued by several diseases for Navier-Stroker equations computation.
Lattice Boltmann equations have been applied by Frisch et al [44] in 1987
to calculate the viscosity of LGCA.

In 1988 LBM have been used by McNamara and Zanetti as a numerical
method for hydrodynamic simulations [85]. LGCA have been replaced with
LBM because the authors decided to completely eliminate the statistical
noise that plagues the usual lattice-gas simulations so the boolean fields
were replaced by continuous distributions over the FHP lattices.

Higuera and Jiménez introduced an alternative simulation procedure for
lattice hydrodynamics [65], based on the lattice Boltzmann equation instead
of on the microdynamical evolution. In particular, in this work, the collision
operator is expressed in terms of its linearized part with the introduction of
few parameters to decrease viscosity.

Koelman [76], Qian et al. [99] and others replaced the collision operator
with the Bhatnagar-Gross-Krook (BGK) approximation. This new model,
compared to lattice gases, is noise-free and collisions are not anymore defined
explicitly.
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Figure 2.8: Simulation of a flow around a thin plate with a Boltzmann Lattice
model. Figures 1 to 6 illustrate the evolution of the system.

Lattice Boltzmann models are most popular today. A significant advan-
tage of the LBM, compared to the Lattice Gas, is that only the density of
particles is taken into account so the number of components of the system
is considerably reduced.

The dynamics of a LBM [99] can be described as follows:

fi(~r + τ ~vi, t+ τ)− fi(~r, t) = Ωi(fi(~r, t)) =
1

ξ
(fi

(eq)(~r, t)− (fi(~r, t)) (2.5)

where fi(~r, t) represents the density of particles that at time t are in the cell
~r with velocity ~vi; fi

(eq)(~r, t) is the local equilibrium distribution and ξ is the
number of calculation steps to reach the equilibrium at local neighborhood
level.

The fi
(eq)(~r, t) function specifies the conditions of local equilibrium of

the system in function of density, ρ =
∑
fi and of momentum, ρ~u =

∑
fi~vi,

of fluid in the cell. The parameter ξ expresses how the system is dependent
of the fluid viscosity v = K(ξ− 1/2) where K is a constant that depends on
the lattice geometry.

Unlike the Lattice Gas Automaton, the viscosity becomes an explicit
parameter of the model. Figure 2.8 illustrates the dynamics of the BKG
model [99] in the simulation of a flow around a thin plate.

2.2 Extended Cellular Automata

As discussed in the previous Section, CAs have been applied with success in
modeling and simulating complex systems, whose dynamics can describe in
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term of local interactions. Among different fields, fluid-dynamics is one of
the most important field of application for CA and, in this research branch,
many different CA-based methods were used to simulate fluid flows. Lat-
tice Gas Automata models [43] were introduced for describing the motion
and collision of particles on a grid and it was shown that such models can
simulate fluid dynamical properties. The continuum limit of these models
leads to the Navier-Stokes equations. Lattice Gas models can be regarded
as microscopic models, as they describe the motion of fluid particles which
interact by scattering.

An advantage of Lattice Gas models is that the simplicity of particles,
and of their interactions, allow for the simulation of a large number of them,
making it therefore possible to observe the emergence of flow patterns. Fur-
thermore, since they are cellular automata systems, it makes easier to run
simulations with parallel computing. A different approach to LGA is rep-
resented by Lattice Boltzmann models [85] in which the state variables can
take continuous values, as they are supposed to represent the density of
fluid particles, endowed with certain properties, located in each cell (here
space and time are discrete, as in lattice gas models). Both Lattice Gas and
Lattice Boltzmann Models have been applied for the description of fluid
turbulence [27, 115].

Because many complex natural phenomena evolve on very large areas,
they are therefore difficult to be modeled at a microscopic level of descrip-
tion. Among these, lava flows can be considered, at the same time, one of the
most dangerous and difficult phenomena to be modeled as, for instance, the
temperature drops along the path by locally modifying the magma dynam-
ical behavior (because of the effect of the strong temperature-dependence
of viscosity). Furthermore, lava flows generally evolve on complex topogra-
phies that can change during eruptions, due to lava solidification, and are
often characterized by branching and rejoining of the flow. Extended Cellu-
lar Automata (XCA) represent a valid alternative to classical CA regarding
macroscopic phenomena.

As regards the modeling of natural complex phenomena, Crisci and co-
workers proposed a method based on an extended notion of homogeneous
CA, firstly applied to the simulation of basaltic lava flows [31], which makes
the modeling of spatially extended systems more straightforward and over-
comes some unstated limits of the classical CA, such as having few states
and look-up table transition functions [47]. Mainly for this reason, the
method is known as Extended Cellular Automata, even though it was also
known as Macroscopic Cellular Automata [112] or Multicomponent Cellular
Automata [17].

XCA were in fact adopted for the simulation of many macroscopic phe-
nomena, such as lava flows [16], debris flows [40], density currents [108],
water flux in unsaturated soils [53], soil erosion/degradation by rainfall [34]
as well as pyroclastic flows [16], bioremediation processes [48] and forest fires
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[121].

2.2.1 Informal Definition of Extended Cellular Automata

Informally, XCA compared to classical CA, are different because of the fol-
lowing reasons:

• the state of the cell must account for all the characteristics, which
are assumed to be relevant to the evolution of the system: these refer
to the space portion of the cell. Each characteristic corresponds to a
substate. The state of the cell is divided into substates and permitted
values for a substate must form a finite set. The set of the possible
states of a cell represents the global state of the cell and is given by
the Cartesian product of the sets of the substates.

• the state of the cell can be decomposed in substates and the transition
function may be split into local interactions: the elementary processes.
Each of them represents a particular aspect that rules the dynamic
of the considered phenomenon. Different elementary processes may
involve different neighborhoods. The CA neighborhood is given by
the union of all the neighborhoods associated to each process. If the
neighborhood of an elementary process is limited to a single cell, such
a process is considered as an internal transformation.

• a set of global parameters to reproduce the several different dynamic
behaviors of the considered phenomenon is defined.

• a subset of the cells is also influenced by external influences, repre-
sented by a function. External influences are used to model those
features that are difficult to describe as local interactions.

2.2.2 Formal Definition of Extended Cellular Automata

Formally, a XCA is a 7-tuple:

A =< Zd, Q,X, P, τ, E, γ > (2.6)

where:

• Zd is the d-dimensional cellular space;

• Q = Q1 ×Q2 × ....×Qn is the set of states of the cell obtained as the
Cartesian product of substates Q1×Q2×....×Qn each one representing
a particular feature of the phenomenon to be modelled;

• X is the geometrical pattern that specifies the neighbourhood rela-
tionship;
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• P = p1, p2, ...., pp is the set of CA parameters.They allow to tune
the model for reproducing different dynamical behaviours of the phe-
nomenon of interest;

• τ : Qm −→ Q is the transition function for the CA and it is splitted
in elementary processes τ1, τ2, ..., τs, each one describing a particular
aspect that rules the dynamic of the considered phenomenon.

• E = E1 ∪ E2 ∪ ... ∪ El ⊆ Zd is the set of cells of Zd that are subject
to external influences. External influences were introduced in order to
model features which are not easy to be described in terms of local
interactions;

• γ = {γ1, γ2, ..., γt} is the finite set of functions that define the external
input for the CA.

2.2.3 Modelling Surface Flows through CA

Many geological processes like lava or debris flows can be described in terms
of local interactions and thus modeled by XCA. By opportunely discretizing
the surface on which the phenomenon evolves, the dynamics of the system
can be in fact described in terms of flows of some quantity from one cell
to the neighboring ones. Moreover, as the cell dimension is a constant
value throughout the cellular space, it is possible to consider characteristics
of the cell (i.e. substates), typically expressed in terms of volume (e.g.
lava volume), in terms of thickness. This simple assumption permits to
adopt a straightforward but efficacious strategy that computes outflows from
the central cell to the neighbouring ones in order to minimize the non-
equilibrium conditions.

In the XCA approach, by considering the third dimension (the height) as
a property of the cell, outflows can be computed by procedures based on one
of distribution algorithms as the Minimisation Algorithm of the Differences
[47], briefly described in the next Section.

2.2.3.1 The Minimization Algorithm of the Differences

The Minimisation Algorithm of the Differences (MAD), proposed by Di Gre-
gorio and Serra [47], reduces the non-equilibrium conditions by minimizing
quantities between the central cell and its neighbors. In other words, out-
flows from the central cell to the other n neighbouring cells must be deter-
mined in order to minimize the differences of a quantity q in the neighboring
cells.

The MAD is based on the following assumptions:

• two parts of the considered quantity must be identified in the central
cell: these are the unmovable part, u(0), and the mobile part, m;
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• only m can be distributed to the adjacent cells. Let f(x, y) denote the
flow from cell x to cell y; m can be written as:

m =

#X∑
i=0

f(0, i) (2.7)

where f(0, 0) is the part which is not distributed, and #X is the
number of cells belonging to the X neighbourhood. It is worth to note
that this definition preserves the principle of conservation of mass for
the distributable quantity m.

• the quantities in the adjacent cells, u(i)(i = 1, 2, ...,#X) are consid-
ered unmovable;

• let c(i) = u(i) + f(0, i)(i = 0, 1, ...,#X) be the new quantity content
in the i-th neighbouring cell after the distribution and let cmin be the
minimum value of c(i)(i = 0, 1, ...,#X). The outflows are computed
in order to minimise the following expression:

m =

#X∑
i=0

(c(i)− cmin) (2.8)

Basically, the MAD operates as follows:

1. the following average is computed:

a =
m+

∑
i ∈ Au(i)

#A

where A is the set of not eliminated cells (i.e. those that can receive
a flow); note that at the first step #A = #X;

2. cells for which u(i) ≥ a(i = 0, 1, ...,#X) are eliminated from the flow
distribution and from the subsequent average computation;

3. the first two points are repeated until no cells are eliminated; finally,
the flow from the central cell towards the i-th neighbour is computed
as the difference between u(i) and the last average value a:

f(0, i) =

{
a− u(i) i ∈ A
0 i /∈ A

An example of MAD application is reported in Figure 2.9.
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Note that the simultaneous application of the minimization principle to
each cell gives rise to the global equilibrium of the system. The correctness
of the algorithm is stated in [47].
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Figure 2.9: Example of application of the Minimization Algorithm of the Dif-
ferences by considering a bidimensional CA with square cells and
Von Neumann neighborhood.

2.3 Finite Volume Method

Nowadays, Computational Fluid Dynamics (CFD) studies fluid flows by
using methods that are based a combination of physics, numerical mathe-
matics, and computer science. CFD analyzes systems involving fluid flows,
heat transfer and associated phenomena such as chemical reactions. CFD
is used in a wide range of applications such as aerodynamics of aircraft and
vehicles [80], hydrodynamics of ships [74], chemical process engineering [66],
marine engineering [50], meteorology [126], and biomedical engineering [68]
among others. The main reason for CFD spreading can be identified by
the description of fluid flows that is at the same time economical and suf-
ficiently complete. Moreover, CFD allows reducing costs and time for new
designs, at the same time permitting the study of systems that are difficult
or impossible to be simulated under safe conditions.

All phenomena that can be analyzed by CFD are governed by a system of
equations, usually partial differential equations (PDEs). The CFD method-
ological aim is to provide a numerical approximation to these equations.
Depending on the adopted scheme, the system of partial differential equa-
tions is usually approximated by a recurrence formula (implicit method) or
a system of linear equations (explicit method), and then solved at discrete
sites of the computational domain, by providing an approximation of the
analytical solution (which in most cases is unknown).

The computational domain is preliminarly discretized as a mesh (or grid)
of cells, generally defined by a number of small non-overlapping elements.
Depending on the geometry of the cells, the mesh can be structured or un-
structured, as shown in Figure 2.10. The choice of the domain discretization
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(a) (b)

Figure 2.10: Examples of two-dimensional (a) structured and (b) unstructured
meshes (from [91]).

depends on the problem to be simulated. Both structured and unstructured
meshes are widely adopted in modeling complex fluid flows. The structured
mesh generally allows for faster simulations, while unstructured meshes pro-
vide for more precise results. In certain cases, both kinds of meshes are
used together in hybrid discretization methods. One of the most important
stages of CFD is the specification of boundary conditions for the system,
which define constraints at domain boundary. For instance, the Dirichlet
condition is a value-specified constraint, while the Neumann one is related
to the flux.

A CFD application can be identified by three main stages: A pre-
processor, which provides the geometry of the computational domain, de-
fines the flow parameters and the boundary conditions; the numerical solver,
which allows solving the governing equations under the conditions provided;
a post-processor, which produces the simulation output in a readable or
graphical format.

Three main numerical solvers have been proposed and are currently
widely adopted: finite difference method (FDM), finite elements method
(FEM) and finite volume method (FVM). The FEM has become the most
popular and used method in modern Computational Solid Mechanics [30,
111, 69], whereas FVM has become one of the most popular methods in the
area of Computational Fluid Dynamics [73, 88, 59]. Both methods have sur-
passed the historical FDM and other discretization methods and nowadays,
researchers widely use such method in Science and Engineering.

The following sections present a mathematical description of fluids, the
general conservation equation, convective and diffusive phenomena. The
Finite Volume Method is therefore described and a simple application shown.

2.3.1 Mathematical Formulation of Fluid-Flow Phenomena

Fluid dynamics regards the investigation of the interactive motion of a large
number of individual particles, defined by molecules or atoms. In general,
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the density of the fluid can be defined high enough, so that it can be approx-
imated as a continuum. Even if an infinitesimally small element of the fluid
still contains a sufficient number of particles, we can specify the mean ve-
locity and mean kinetic energy of the system. With this assumption, we are
able to define velocity, pressure, temperature, density and other properties
at each point of the fluid.

The derivation of the equations of fluid dynamics is based on the dy-
namical behaviour of the fluid, determined by the following conservation
laws: conservation of mass, momentum, and energy. A generic conservation
equation for the fluid flow can be expressed in the following form:

∂φ

∂t
+∇ · F = Qφ (2.9)

where φ is the conserved quantity, F is the flux of the conserved state and
Qφ is the source term.

Example 1 Euler Equations for a Compressible Fluid.
The two-dimensional Euler Equations for a Compressible Fluid can be

formulated through the general conservation equation 2.9 by specifying the
state φ, the flux F and the source Qφ as follows:

φ =


ρ
ρu
ρv
ρE

 , F =


ρu

ρu2 + p
ρuv
ρuH

 i+


ρv
ρuv

ρv2 + p
ρvH

 j,Qφ = 0 (2.10)

where ρ is the density, u and v the velocity components along x and y direc-
tions, respectively, E the total energy per unit mass, p the static pressure,
and H the total enthalpy per unit mass, defined as H = E + p/φ.

The conserved states of the systems are the density, x- and y- momenta,
ρu and ρv, and the total energy, ρE. In particular, the first row of the
system corresponds to the conservation of the mass, the second and third to
the conservation of x and y momentum respectively, and the fourth to the
conservation of the energy. In order to solve the system, since we have four
conservation equations and a total of five dependent variables, we need to
define an equation state. Assuming an ideal gas and using the ideal gas law,
we can define the static pressure as follows:

p = (γ − 1)[ρE − 1/2ρ(u2 + v2)] (2.11)

where γ is the ratio of specific heats. Specifying the equation state of p the
system can be solved.
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2.3.1.1 Convection Equation

In many applications, the dominant physical transport phenomenon is mod-
eled as convection. To derive the convection equation using the conservation
law 2.9, the flux of the conserved state and source term can be defined as
follows:

F = ρvφ, Qφ = 0 (2.12)

where v is the velocity vector and ρ is the density. For simplicity, the source
term is set to zero. Nevertheless, a non-zero source term could be included.
Finally, the convection equation becomes:

∂φ

∂t
+ v · ∇φ = 0 (2.13)

2.3.1.2 Diffusion Equation

In other applications, the dominant physical transport phenomenon is mod-
eled as diffusion. To derive the diffusion equation using the conservation law
2.9, the flux of the conserved state can be defined as follows:

F = −Γ φ∇φ (2.14)

where Γ φ is the diffusion coefficient. Finally, the diffusion equation becomes:

∂φ

∂t
− Γ φ∇φ = Qφ (2.15)

2.3.1.3 Convection-Diffusion Problem

In most of fluid dynamic phenomena both convection and diffusion are im-
portant. For this reason, the convection-diffusion equation can be derived
from a general conservation law. The differential form is:

∂(ρφ)

∂t
+∇ · (ρvφ) = ∇ · (Γ φ∇φ) +Qφ (2.16)

The following section describes the application of the FVM to the convection-
diffusion problem.
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2.3.2 The FVM Method for Convection-Diffusion Problem

Figure 2.11: Control volume elements. (from [91])

As in other approximated approaches, in the FVM the numerical solution of
the governing equations is obtained by calculating the values of the property
φ at specific non-overlapping domain points, called control volume elements.
Figure 2.11 illustrates an example of control volume with the different terms
of the general transport equation.

Generally, there are two common approaches for the finite volume dis-
cretization:

• Cell-centred approach: the control volumes are defined by a suit-
able grid and computational nodes are assigned at the control volume
center.

• Vertex-centred approach: the location of the node is first defined
and then the control volume are constructed around them so that the
control volume faces lie midway between the nodes.

The latter approach permits an accurate resolution of the face fluxes for
all kind of meshes. Since the vertex is not necessarily at the element centroid,
it can yield a lower order accuracy of element integrations. Instead, the cell-
centred approach is the most popular with FVM, with all the variables and
the quantities stored at the centroid of the grid element.
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Figure 2.12: cell-centered and vertex-centered FVM.

Once the geometry of the domain is specified, the equation is therefore
discretized over the control volume elements. For steady-state convection-
diffusion problems, the general transport equation 2.16 loses the unsteady
term, as shown in Equation 2.17. The next stage is to integrate the obtained
equation to the control volume (Equation 2.18).

∇ · (ρvφ) = ∇ · (Γ φ∇φ) +Qφ (2.17)

∫
Vc

∇ · (ρvφ)dV =

∫
Vc

∇ · (Γ φ∇φ)dV +

∫
Vc

QφdV (2.18)

By applying the Gauss theorem it is possible to transform the volume in-
tegrals of convection and diffusion terms into surface integrals. The final
expression is thus given in Equation 2.19.∮

∂Vc

(ρvφ)dS =

∮
∂Vc

(Γ φ∇φ)dS +

∫
Vc

QφdV (2.19)

Replacing the surface integral by a summation of the flux from the face of
the elements, the diffusion, and convection terms become:

∮
S

(ρvφ)dS =

faces(Vc)∑
f

(

∫
f
(ρvφ) · dS) (2.20)

∮
S

(Γ φ∇φ)dS =

faces(Vc)∑
f

(

∫
f
(Γ φ∇φ) · dS) (2.21)

Applying to Gauss quadrature the faces integral becomes:

∮
S

(ρvφ)dS =

faces(Vc)∑
f

ip(f)∑
ip

(

∫
ip

(ρvφ) · Sf ) (2.22)
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Figure 2.13: One, two or three integration points over the element faces.

Figure 2.14: One, four or nine integration points over the source surface.

∮
S

(Γ φ∇φ)dS =

faces(Vc)∑
f

ip(f)∑
ip

(

∫
ip

(ωipΓ
φ∇φ) · Sf ) (2.23)

where φ is the fluid density, vvv the velocity vector, Sf the surface vector
and ωip is weighing function. The figure 2.13 illustrates alternative cases in
which the different number of integration points over the element faces are
considered. The order accuracy depends on the integration points used and
on the values of the weighing function ω. In case of single integration point
and a weighing function ω = 1, a second order accuracy is achieved and it
is applicable in two or three dimensions.

The Gaussian quadrature is also applied to the source term. The volume
integration of the source term becomes:

∫
V
QφdV =

ip(V )∑
ip

(QφipωipV ) (2.24)

Figure 2.14 illustrates alternative configurations with one, four and nine
integration points for the source term. As for the other terms, the order
accuracy depends on the number of integration points and on the values of
the weighing function ω. As before, in the case of a single integration point
and ω = 1, a second order accuracy is achieved and it is applicable in two
or three dimensions.
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Figure 2.15: Mesh for one-dimensional finite volume method. (from [3])

2.3.3 An example of Finite Volume Method in 1-D

As shown above, the main idea of the FVM is to subdivide the domain
into many control volumes and approximate the integral conservation law
on each of them. Figure 2.15 shows an example of one-dimensional domain
partition.
The general conservation law (Equation 2.9) can be discretized over the
control volume. The integral form of the general conservation law is shown
by Equation 2.25.

d

dt

∫ xR

xL

φdx+ F (φ)

∣∣∣∣∣
xR

− F (φ)

∣∣∣∣∣
xL

=

∫ xR

xL

Qφdx (2.25)

Applying 2.25 to the general control volume i and assuming S = 0, equation
2.25 becomes:

d

dt

∫ x+ 1
2

x− 1
2

φdx+ F (φ)

∣∣∣∣∣
x+ 1

2

− F (φ)

∣∣∣∣∣
x− 1

2

= 0 (2.26)

By defining the mean value of φ in control volume i as:

φi ≡ 1

∆xi

∫ x
i+1

2

x
i− 1

2

φdx, where ∆xi ≡ xi+ 1
2
− xi− 1

2
(2.27)

the Equation 2.30 becomes:

∆xi
dφi
dt

+ F (φ)

∣∣∣∣∣
x+ 1

2

− F (φ)

∣∣∣∣∣
x− 1

2

= 0 (2.28)

By assuming that the solution on every control volume is constant, we ob-
tain:

φ(x, t) = φi(t) for xi− 1
2
< x < xi+ 1

2
(2.29)

The Figure 2.16 shows the piecewise constant finte volume method approx-
imation.
Considering the case of convection equation 2.12, the solution convects with
the velocity v(t). So, for the initial condition after t we can consider:
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Figure 2.16: The piecewise constant finte volume method approximation (from
[3]).

φ(xi+ 1
2
, t+) =

{
φi if v(t) > 0
φi+1 if v(t) < 0

(2.30)

Where t+ = t + ξ, and ξ identifies an infinitesimal positive number. The
corrisponding flux can then calculate from this value of φ.

F (xi+ 1
2
, t+) =

{
vφi(t) if v(t) > 0
vφx+1(t) if v(t) < 0

(2.31)

Note that an alternative manner to write this flux is shown in the following
equation:

F (xi+ 1
2
, t+) =

1

2
v(t)(φi+1(t) + φi(t))−

1

2
|v(t)| (φi+1(t)− φi(t)) (2.32)

This kind of flux, which uses the upstream value of φ, is called as an upwind
flux. Eventually, a forward Euler ODE integration method can be adopted
in order to discetize Equation 2.32 in time. The final fully-discrete form of
the finite volume method is shown in Equation 2.33.

F (xn
i+ 1

2

) =
1

2
vn(φni+1 + φni )− 1

2
|vn| (φni+1 − φni ) (2.33)

Being Equation 2.33 expressed in term of recurrence formula, it can be
straightforwardly solved at each control volume, and therefore the phe-
nomenon can be numerically approximated.



Chapter 3

Brief Overview of Modern
Parallel Computing

Recent trends in Parallel Computing see GPGPU increasingly spreading in
high performance computing centers around the world, as evidenced by the
Top 500 list1. According to the latest HPC User Site Census data and ad-
ditional researches, of the 50 most popular application packages mentioned
by HPC users, 34 offer GPU support [5]. The spreading of GPUs has been
almost driven by NVIDIA, which developed a robust software ecosystem
for its hardware, introducing the CUDA language for general purpose com-
putation on proprietary devices. At the same time, other companies have
invested in HPC by providing new efficient hardware such as FPGA (field-
programmable gate array) systems or solutions base on Intel Xeon Phi many
core processors. Every company, as NVIDIA, usually provides its own pro-
gramming ecosystem, pushing the HPC community to deal with different
software tools. In order to simplify the effort required to the developer, new
cross-platform parallel standard APIs have been proposed. Among them,
two of the most important are OpenCL and OpenMP, this latter starting
from the 4.0 specifications. Instead, little has changed in the programming
of distributed memory systems in recent years, with MPI (Message Passing
Interface) still being the widely adopted solution. Since they were adopted
in this work, the above cited software systems are briefly described in the
next Sections.

3.1 Heterogeneous Computing with OpenCL

Released on December 2008 by the Kronos Group, OpenCL [57, 113, 94]
is an open standard for programming heterogeneous computers built from
CPUs, GPUs and other processors. One of the advantages of OpenCL is

1https://www.top500.org/lists/2018/06/

36

https://www.top500.org/lists/2018/06/
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that it is not restricted, as in the case of CUDA, to the use of GPUs only
but it takes each computing resource in the system as computational peer
unit, interposing a uniform set of API between them and the programmer,
easing the interfacing process with them. Moreover, OpenCL is open, free,
and cross-compatible across vendors and supported by all major hardware
producers.

An OpenCL application is subdivided in two parts, one or more running
on a compliant device (device application) and one running on the CPU (host
application). The parallel computations are identified by a small different
tasks called kernels. The kernel is a special C function, which is compiled
at runtime for each target device. The kernels are executed to the target
device by the host. Futhermore, the host manages all the devices by an
abstract container called context. To create a kernel, the host extracts a
function from a container of kernels called program, mapping all the data
to the specific kernel. All kernels that have to be executed with the relative
data are sent to the command queue, a special structure that allows to run
the kernel on the device.

Figure 3.1: OpenCL abstraction.



3.1. HETEROGENEOUS COMPUTING WITH OPENCL 38

3.1.1 Platform and Devices

In OpenCL, the hardware concept is generalized in platform and device.
In particular, the platform identifies the vendor of the target accelerator,
whereas the device identifies the device name. During the execution of the
program, the user must specify one object that is composed by the name of
the platform and the name of the device. This abstraction derives from the
heterogeneous nature of OpenCL that allows to target different device from
different vendors like AMD, NVIDIA, FPGA, Intel.

Figure 3.2: OpenCL abstraction.

The execution model is represented by different level of abstraction. The
smallest execution entity is identified by the thread, which executes the
kernel code. Threads are also called work-items and are grouped into
work-groups. A work-item is executed by one or more processing elements
as part of a work-group executing on a compute unit (Figure 3.2). A work-
item has to be considered a thread in terms of its control flow and memory
model, but the hardware and the compiler can run multiple work-items on
a single thread.

A work-group is a collection of related work-items that are executed on
a single compute unit. A work group must map to a single compute unit (a
core on a CPU, or - using CUDA terminology - a streaming multiprocessor).

Work-groups and work-items are arranged in a indexed grid-like struc-
ture. When launching the kernel for execution, the host code defines the
grid dimensions, or the global work size. The host code can also define the
partitioning to work-groups, or demand it to the implementation. During
the execution, the implementation runs a single work item for each point on
the grid (a kernel per work-item). It also groups the execution on compute
units according to the work-group size. The order of execution of work items
within a work-group, as well as the order of work-groups, is implementation-
specific (see Figure 3.3).
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Figure 3.3: OpenCL work-groups scheduling. The green boxes represent the
computing unit. The circles represent the work-groups. Blue work-
groups are waiting to be executed, pink work-groups are currently
executing and yellow work-groups have been completed. Each work
group is queued for execution and executes on a single computing
unit (a GPU multiprocessor, CPU core, etc.) Note that execution
order is not guaranteed by the standard.

Figure 3.4: OpenCL 1D,2D,3D work-items and work-groups partitioning.

Data to be processed has to be explicitly partitioned and assigned to
compute units because each work-item runs the same kernel on different
portions of data in a SIMD/SIMT fashion. For example, in case of an array
of n elements and n work-items, data can be partitioned by associating each
work item to the array element with index corresponding to the work-item
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Figure 3.5: OpenCL 2D work-items and work-groups detailed partitioning.
The computation of global index from local item and group index
is also shown.

global ID. Figure 3.4 depicts how items and groups can be arranged when
partitioned in 1D, 2D and 3D. Figure 3.5 shows a 2D decomposition with
details on global ID computation from local group and thread indices.

Work-groups can:

• Share data between the work-group’s work-items using local memory;

• Synchronize between work-items using barriers and memory fences
mechanism;

• Use special built-in functions such as work group copy.

3.1.2 Memory Hierarchy

In general, different devices, for example GPUs and FPGAs, can have dif-
ferent levels of memory. To guarantee code portability, OpenCL defines an
abstract memory model. According to this model, memory is subdivided in
four parts:

• Global memory;

• Local memory;

• Constant memory;

• Private memory.
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Global memory is used to store data passed from/to the host, and can be
accessed by all work-items. The keyword global identifies that the specific
data is stored in the global memory. A read-only memory, equivalent to the
global one in terms of latency and dimension, called constant memory, is also
available. Local memory, identified by the keyword local, can be access
only by the work-item in a work-group, different work-items from different
work-groups can not share the same space local memory. The local memory
makes it possible to have access to the local fast memories and caches (similar
to CPU L1 caches) in order to minimize the cost of read/write operations.
Local memory is generally smaller with respect to the global one, but allows
for faster access (about 100× faster on modern GPUs). Eventually, private
memory is a special, usually small but fast, portion of memory that can be
accessed by the single work-item.

The memory in which a given data is stored must be initially defined
and allocated by the host using the appropriate API calls (e.g. see Listing
3.1).

1 c lCr ea t eBu f f e r ( c l c o n t e x t context , c l mem f lags f l a g s ,
2 s i z e t s i z e , void ∗ host pt r , c l i n t ∗ e r r c o d e r e t )

Listing 3.1: OpenCL API function responsible for memory allocation.

Nevertheless, data can move among different memory levels during kernel
execution (e.g., from global to local, and vice versa).

The following Listing shows how to create a context specifying platform
and device.

1 #inc lude <CL/ c l . h>
2

3 i n t main ( ) {
4 c l p l a t f o rm i d ∗ p lat fo rms ;
5 c l u i n t num platforms ;
6

7 // get p la t fo rms number
8 c lGetPlat formIDs (1 , NULL, &num platforms ) ;
9 p lat fo rms = ( c l p l a t f o rm i d ∗) mal loc ( s i z e o f ( c l p l a t f o rm i d ) ∗

num platforms ) ;
10 // get p lat form
11 c lGetPlat formIDs ( num platforms , p lat forms , NULL) ;
12

13 c l p l a t f o rm i d f i r s t p l a t f o rm = plat fo rms [ 0 ] ;
14

15 c l d e v i c e i d ∗ dev i c e s ;
16 c l u i n t num devices ;
17

18 // get number o f dev i c e in the f i r s t p lat form



3.1. HETEROGENEOUS COMPUTING WITH OPENCL 42

19 c lGetDeviceIDs ( f i r s t p l a t f o rm , CL DEVICE TYPE ALL, 1 , NULL, &
num devices ) ;

20 dev i c e s = ( c l d e v i c e i d ∗) mal loc ( s i z e o f ( c l d e v i c e i d ) ∗
num devices ) ;

21 // get a l l d ev i c e s from the f i r s t p lat form
22 c lGetDeviceIDs ( f i r s t p l a t f o rm , CL DEVICE TYPE ALL, num devices ,

dev ice s , NULL) ;
23

24 c l c o n t e x t context ;
25

26 // c r e a t e a context
27 context = clCreateContext (NULL, 1 , dev ices , NULL, NULL, NULL) ;
28

29 re turn 0 ;
30 }

Listing 3.2: Example of OpenCL platform and defice specification.

Once platform and device have been defined, and kernels has been de-
veloped, these latter have to be grouped in the OpenCL program container,
in order to be subsequently extracted, compiled and executed on the target
device. Regarding the compilation phase, two alternative approaches can
be adopted: static or dynamic. In the static compilation the source code
is compiled by an extern compiler producing a binary file. The host reads
the binary file and makes the program. In this manner, no kernels source
code needs to be released. However, every time the source code of the kernel
changes, a new binary file must be created and distributed. On the other
hand, the dynamic compilation compiles the kernel’s source code at run
time. Accordingly, kernel source code have to be available. The following
code illustrates an example of dynamic compilation.

1 #inc lude <CL/ c l . h>
2

3 #de f i n e NUM FILES 2
4 #de f i n e PROGRAM FILE 1 ”P1 . c l ”
5 #de f i n e PROGRAM FILE 2 ”P2 . c l ”
6 #de f i n e KERNELNAME ”k1”
7

8 i n t main ( ) {
9

10 /∗
11 . . . . a l l o c a t e and i n i t i a l i z e some va r i a b l e s . . . .
12 ∗/
13

14 c l program program ;
15 FILE ∗program handle ;
16 char ∗ program buf fe r [NUM FILES ] ;
17 const char ∗ f i l e name [ ] = {PROGRAM FILE 1, PROGRAM FILE 2} ;
18 s i z e t program s ize [NUM FILES ] ;
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19

20 // read a l l k e rn e l s f unc t i on s from source f i l e s
21 f o r ( i =0; i<NUM FILES ; i++){
22 program handle = fopen ( f i l e name [ i ] , ” r ” ) ;
23 f s e e k ( program handle , 0 , SEEK END) ;
24 program s ize [ i ] = f t e l l ( program handle ) ;
25 rewind ( program handle ) ;
26 program buf fe r [ i ] = ( char ∗) mal loc ( program s ize [ i ]+1) ;
27 program buf fe r [ i ] [ p rogram s ize [ i ] ] = ’ \0 ’ ;
28 f r ead ( program buf fe r [ i ] , s i z e o f ( char ) ,
29 program s ize [ i ] , program handle ) ;
30 f c l o s e ( program handle ) ;
31 }
32

33 // c r e a t e a program
34 program = clCreateProgramWithSource ( context , NUM FILES , ( const

char ∗∗) program buf fer , program size , &e r r ) ;
35 // bu i ld a program
36 clBuildProgram ( program , 1 , &dev i ce ,NULL, NULL, NULL) ;
37 // c r e a t e a ke rne l
38 c l k e r n e l k e rne l = c lCreateKerne l ( program , KERNELNAME, NULL) ;
39

40 re turn 0 ;
41 }

Listing 3.3: OpenCL example of dynamic kernel compilation.

3.1.3 Kernel Execution

The abstract structure that allows the communication between the host
and the device is the command queue. The command queue does not only
manages the execution of the kernel on the device but also memory commu-
nication between host and device and between device and device, as shown
in Figure 3.6.
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Figure 3.6: OpenCL example of command queues.

To execute the kernel on the GPU, the number of work-items and work-
groups should be specified through the clEnqueueNDRangeKernel function.
If the number of work-item and work-group are not specified, OpenCL will
set these parameters by itself, by trying to optimize partitioning and re-
sources.
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3.2 The NVIDIA CUDA Programming Language

In 2007, NVIDIA saw an opportunity to bring GPUs into the HPC and
game world by adding an easy-to-use programming interface, called CUDA,
or Compute Unified Device Architecture. CUDA is an extension of the C
language that allows GPU code to be written in regular C. The code is either
targeted for the host processor (the CPU) or targeted at the device processor
(the GPU). The host processor spawns multithread tasks (or kernels as they
are known in CUDA) onto the GPU device. The GPU has its own internal
scheduler that will then allocate the kernels to whatever GPU hardware is
present. Provided there is enough parallelism in the task, as the number of
SMs in the GPU grows, so should the speed of the program. You have to ask
what percentage of the code can be run in parallel. The maximum speedup
possible is limited by the amount of serial code. If you have an infinite
amount of processing power and could do the parallel tasks in zero time,
you would still be left with the time from the serial code part. Therefore,
we have to consider at the outset if we can indeed parallelize a significant
amount of the workload.

3.2.1 CUDA Threads and Kernels

A GPU can be seen as a computing device that is capable of executing
an elevated number of independent threads in parallel. In addition, it can
be thought of as an additional coprocessor of the main CPU (called in the
CUDA context Host). In a typical GPU application, data parallel-like por-
tions of the main application are carried out on the device by calling a
function (called kernel) that is executed by many threads. Host and device
have their own separate DRAM memories, and data is usually copied from
one DRAM to the other by means of optimized API calls.

CUDA threads can cooperate together by sharing a common fast shared-
memory, implemented using fast DRAM memory similar to first level cache,
eventually synchronizing in some points of the kernel, within a so-called
thread-block, where each thread is identified by its thread ID as illustrated
by Figure 3.7. In order to better exploit the GPU, a thread block usually
contains from 64 up to 1024 threads, defined as a three-dimensional array
of type dim3 (containing three integers defining each dimension). A thread
can be referred to within a block by means of the built-in global variable
threadIdx. While the number of threads within a block is limited, it is pos-
sible to launch kernels with a larger total number of threads by batching
together blocks of threads by means of a grid of blocks, usually defined as a
two-dimensional array, which is also of type dim3 (with the third component
set to 1). In this case, however, thread cooperation is reduced since threads
that belong to different blocks do not share the same memory and thus can-
not synchronize and communicate with each other. As for threads, a built-in
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Figure 3.7: Grid of thread blocks

global variable, blockIdx, can be used for accessing the block index within
the grid. Threads in a block are synchronized by calling the syncthreads()
function: once all threads have reached this point, execution is resumed nor-
mally. As previously reported, one of the fundamental concepts in CUDA
is the kernel. This is nothing but a C function, which once invoked is per-
formed in parallel by all threads that the programmer has defined. To define
a kernel, the programmer uses the global qualifier before the definition
of the function. This function can be executed only by the device and can
be only called by the host. To define the dimension of the grid and blocks
on which the kernel will be launched on, the user must specify an expression
of the form <<< Grid Size,Block Size >>>, placed between the kernel
name and the argument list, such as in the following simple example 3.4:

1 // Kernel d e f i n i t i o n
2 g l o b a l void VecAdd( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C)
3 {
4 i n t i = threadIdx . x ;
5 C[ i ] = A[ i ] + B[ i ] ;
6 }
7 i n t main ( )
8 {
9 . . .

10 // Kernel i nvoca t i on with N threads
11 VecAdd<<<1, N>>>(A, B, C) ;
12 }

Listing 3.4: An Example of kernel CUDA invocation.
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The above code first defines a kernel called VectAdd which will run on
all N threads, with the aim to compute in the i-th position of the vector C,
the sum of vectors A and B. Assuming that all three vectors have dimension
N, each thread in parallel will be the sum of a position. For example, the
thread with ID = 2 will calculate the sum of A[2]+B[2] and store the result
in C[2].

3.2.2 Memory Hierarchy

In CUDA, threads can access different memory locations during execution.
Each thread has its own private memory, each block has a (limited) shared
memory that is visible to all threads in the same block and finally all threads
have access to global memory. In addition to these memory types, two other
read-only, fast on-chip memory types can be defined: texture memory and
constant memory. In CUDA, memory usage is crucial for the performance.
For example, the shared memory is much faster than the global memory
and the use of one rather than the other can dramatically increase or de-
crease performance. By adopting variable type qualifiers, the programmer
can define variables that reside in the global memory space of the device
(with device ) or variables that reside in the shared memory space (with
shared ) that are accessible only from threads within a block. Typical

latency for accessing global memory variables is 200-300 clock cycles, com-
pared with only 2-3 clock cycles for shared memory locations. In addition,
global memory suffers from coalesced access problems, meaning that access
to data should be performed in a particular fashion in order to fetch (or
store) the data in the fewest number of transactions [10]. For these reasons,
global memory access should be replaced by shared memory access whenever
possible. A CUDA C program can allocate global memory of the device in
two different ways: through the linear memory or by means of CUDA arrays.
CUDA arrays are types of memory optimized for texture management and
were not exploited in this work. The more common adopted linear mem-
ory type is allocated using the cudaMalloc() function for allocating and
cudaFree() function for memory de-allocation. Once allocated, it is possi-
ble to transfer data from the Host memory to the global device memory,
and vice-versa, by means of a special call to the cudaMemcpy() function.
Specifically, cudaMemcpy() takes as parameters four kinds of memory type
transfers: Host to Host, Host to Device, Device to Host and Device to De-
vice. Note that all of the previous functions can only be called on the host.
Figure 3.8 illustrates the GPU typical memory architecture. As shown, the
fast on-chip shared memory is shared by all threads of a block.

As expected, to improve performance, variable access should be carried
out in the shared memory rather than global memory, wherever possible.
Unfortunately, as Figure 3.8 shows, each variable or data structure allo-
cated in shared memory must first be initialized in the global memory, and
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Figure 3.8: Typical memory architecture of a Graphic Processing Unit

afterwards transferred in the shared one. This means that to copy data in
the shared memory, global memory access must be first performed. So, the
more this type of data is accessed, the more convenient is to use this type
of memory, while for few accesses it is evident that shared memory might
be somewhat degrading. As a consequence, a preliminary analysis of data
access of the considered algorithm should be performed in order to evaluate
the tradeoff and thus, convenience of using shared memory and how. As
reported later in this work, the implementation with a hybrid allocation of
variables results in an optimal performance, despite a total shared-memory
version as it may be expected.

3.2.3 Programming with CUDA C

CUDA C is an extension of C language that permits to write programs
for NVIDIA GPUs. With additional constructs and API functions, the
programmer is able to allocate and de-allocate memory on the video card
(the device), transfer the data from the host device (host), launch kernels,
etc. The CUDA C extension is built on the basis of the CUDA API driver,
a low-level library that allows one to perform all the above steps, but which
of course is much less user-friendly. On the other hand, the CUDA API
driver offers a higher degree of control and is independent of the particular
language (e.g., C, Fortran, Java), being written in assembly language. A
typical CUDA program can exploit the computing power of both the host
(CPU and RAM) and the device (the GPU and memory devices). What
follows is a classic pattern of a CUDA application:

1. Allocation and initialization of data structures in RAM memory;
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2. Allocation of data structures in the device and transfer of data from
RAM to the memory of the device;

3. Definition of the block and thread grids;

4. Performing one or more kernel;

5. Transfer of data from the device memory to Host memory.

In addition, a CUDA application has parts that are normally performed in
a serial fashion, and other parts that are performed in parallel.
Listing 3.5 shows a VecAdd problem solved by CUDA.

1 #inc lude <iostream>
2 #inc lude <cuda . h>
3 us ing namespace std ;
4

5

6

7 g l o b a l void VecAdd( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C)
8 {
9 i n t i = threadIdx . x ;

10 C[ i ] = A[ i ] ∗ B[ i ] ;
11 }
12

13 i n t main ( i n t argc , char ∗∗ argv )
14 {
15 i n t N = 100 ;
16 i n t ∗a , ∗b ;
17 i n t ∗c ;
18 i n t nBytes = N∗ s i z e o f ( f l o a t ) ;
19

20 a = ( f l o a t ∗) mal loc ( nBytes ) ;
21 b = ( f l o a t ∗) mal loc ( nBytes ) ;
22 c = ( f l o a t ∗) mal loc ( nBytes ) ;
23 i n t ∗a d ,∗ b d ,∗ c d ;
24

25 f o r ( i n t i =0; i<N; i++)
26 a [ i ]= i , b [ i ]= i ;
27

28 // Al l o ca t e memory on the dev i c e
29 cudaMalloc ( ( void ∗∗)&a d ,N∗ s i z e o f ( f l o a t ) ) ;
30 cudaMalloc ( ( void ∗∗)&b d ,N∗ s i z e o f ( f l o a t ) ) ;
31 cudaMalloc ( ( void ∗∗)&c d ,N∗ s i z e o f ( f l o a t ) ) ;
32

33 //Copy memory on the dev i c e
34 cudaMemcpy( a d , a ,N∗ s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;
35 cudaMemcpy( b d , b ,N∗ s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;
36

37 //Kerenl i nvoca t i on
38 vecAdd<<< 1 , N>>>(a d , b d , c d , n) ;
39
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40 //Kerenl synchron i za t i on
41 cudaThreadSynchronize ( ) ;
42

43 //Copy back the r e s u l t
44 cudaMemcpy( c , c d ,N∗ s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;
45

46 // f r e e dev i c e memory
47 cudaFree ( a d ) ;
48 cudaFree ( b d ) ;
49 cudaFree ( c d ) ;
50 re turn 0 ;
51 }

Listing 3.5: VecAdd problem solved by CUDA API.

3.3 OpenMP 4.0/4.5 in Clang and LLVM

The OpenMP API has been massively used by the High Performance Com-
munity in the last years. OpenMP requires little programming effort to
achieve good performance and exposes a single programming interface that
is architecture independent. Originally, OpenMP was mainly created to ex-
ploit traditional CPU technology, nevertheless nowadays high performance
accelerators, like GPUs, Xeon Phi and FPGA, have increasingly leveraged
to increase performance on data-parallel applications [89] [97]. This ten-
dency is due to fact that a single accelerator can be 100 times faster than a
traditional CPU.

In general, to obtain significant performance on current generations of
high performance devices, HPC programmers use different degree of paral-
lelism, usually by hand-tuning their code, performing architecture-specific
transformations or using a different variety of languages. This development
can be time consuming and requires a big effort from the HPC programmer.

To solve this problem, different researchers of many research centers
across EU and US have demonstrated that one solution is to utilize a high-
level abstractions (HLA) development strategy based on Embedded Domain
Specific Languages (EDSLs) [54] [103]. Here, the aim is to simplify the
development, separating what has to be computed from how is computed,
totally hiding how the parallel code is implemented.

For this reason, the new OpenMP 4.0 has been released on July 2013,
adding support for accelerators. This new release has introduced new com-
piler directives and library routines, making it easy to execute the com-
putation on modern HPC devices, with respect to the low-level program-
ming language like CUDA and OpenCL, where the HPC programmer is
language dependent and has to specify different information in order to ex-
ploit the accelerators. The new OpenMP target construct allows specifying
the code region and the data to be executed on the compliant device. The
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data-mapping is completely seamless, the programmer can transfer the data
specifying only the new map construct, delegating the transfer directly to
the embedded implementation. The following code shows an example of
OpenMP 4.0/4.5:

1 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l map( to : data [ 0 :DIM] )
2 {
3 f o r ( i n t i = 0 ; i < X CELLS ; i++)
4 f o r ( i n t j = 0 ; j < Y CELLS ; j++)
5 ke rne l ( i , j ) ;
6 }

Listing 3.6: OpenMP 4.0/4.5 example where a double nested loop is executed
on the taeget device by means of the target directive.

Here, in particular, the new teams construct creates a league of thread
teams (i.e., CUDA blocks) and the master thread of each team executes
the region, while the distribute directive distributes the iterations to the
master thread of each team.

The new OpenMP 4.5 has been implemented in different C/C++ com-
pilers such as Clang, IBM XL, gcc. In this work, we focused on the Clang
compiler, developed by Carlo Bertolli at the Thomas J. Watson Reaserch
Center [9] [8] [42] and is based on LLVM . In addition, the code developed for
Clang was adapted to the IBM XL compiler for the POWER 8 architecture.

The following sections describe the design of the Clang implementation
of OpenMP, focusing on the libomptarget offloading library.

3.3.1 Inside the Driver

In the C/C++ LLVM Clang compiler, the main entry point for the applica-
tion is the driver. The driver is responsible for selecting the right commands
from the appropriate tool chains given by the information inside the input
files passed by the user. Furthermore, the complexity of the driver is ex-
tended by the OpenMP offloading support. The driver implementation has
to invoke different tool chains from the same set of input files, and, at the
same time, give a fully functional binary file containing host and device
executable images.

Clang’s driver implementation can be divided into two components. The
first component is mainly target agnostic, which is in charge of identifying
the right sequence of commands and dependency between the input files
and the user requests (linking, assembling, etc.). The other component
contains all the tool chain data used by the given device. The Target-
Agnostic component introduces the new notion of action and job. The
driver represents the compilation phases and their dependencies, by a graph
of supported actions (Preprocess, Compile, Assembly, Linking, etc). Each
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Figure 3.9: Action graphs from a compilation of two source files and the related
dependences between host and device actions [12].

action identifies a node of the graph. There may be a single graph or one
for each input file, depending on the user request. Once all the graphs are
produced, the driver scans the graphs from root to leaves, and generates a
sequence of jobs, representing a pattern of actions. A job is charactered by
the tool, the input files, and other target-specific arguments. At the end of
the process, a final command is generated to execute the user request.

In general, different target devices may have different tools (assemblers,
linkers, etc). In order to use the right tools, the driver memorizes the tool
chains and tools information inside the target-dependent part of the driver
implementation. Every time a job is created, the target-dependent part is
queried.

The OpenMP4 CUDA driver implementation has many parts in com-
mon with the already existing CUDA implementation for the compilation of
native CUDA language. Nevertheless, the new OpenMP4 needs to support
devices from different brands, forcing the development to a more generic
implementation. Therefore, the new OpenMP4 proposes a generic offload
action, managing offloads from different programming models. The offload
actions are used to specify a host dependence to the device compile ac-
tion and to specify a device dependence to the host link action. Figure
3.9 presents the action graph generated by the driver when compiling two
source files with OpenMP offloading support for host and a single device.
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Figure 3.10: Clang OpenMP4 generated application binary. From [12].

The OpenMP4 offloading allows the user to specify to the tool chain, which
programming model use, and which device to refer to. The flag compilation
is defined as -f 〈programming model〉-target=〈target triple〉. For example, if
the user wants to target a CUDA device with a OpenMP 4 target, the user
should use -fopenmp-target=nvptx64-nvidia-cuda.

3.3.2 Runtime Library for Generic Offloading on NVIDIA
GPUs

When Clang meets a target offload construct, it generates a set of calls to
the runtime library. The runtime library, called libomptarget, contains all
the necessary entry points generated by the code pragma transformation.
The aim of the runtime library is to separate the code generation from the
compiler device-specific architecture. The runtime library is designed on
a fat binary organization, where the binary can contain different generated
code from different OpenMP architectures. The runtime library is composed
by three components: the device-agnostic, the device-specific and device
library/driver. The device-agnostic is the first components meeting the code.
The device-specific is an interface from the calls generated by the device-
agnostic and their implementation inside the device library/driver. This
double layer of abstraction separates the device-agnostic from the specific
device implementation, allowing to easily manage different architectures (cf.
figure 3.10).

One of most time expensive tasks in parallel applications is data map-
ping. Clang OpenMP4 manages data mapping in the first two components of
the runtime library, the device-agnostic and the device-specific. To avoid un-
necessary data transfer, OpenMP uses a mechanism called reference counts.
It can be considered as an integer value, zero meaning that the data is not
yet passed to the target device, while positive values meaning than the data
is already copied. For targeting a CUDA device the data mapping is imple-
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Figure 3.11: Clang OpenMP4 compilation process.

mented through the CUDA device library. Initial data mapping is imple-
mented using cuMemAlloc, copying with cuMemcpyHtoD and cuMemcpyDtoH,
and de-allocation with cuMemFree. While for the data mapping for Generic
ELF-enabled Devices, the main used function are: malloc for the data al-
location, memcpy for the copies between host and device, and free for the
data de-allocation.

As shown before, when Clang compiles a source file it generates a fat
binary, containing the compiled code both for the host and device. The
compilation of the host and the target region are parallel compiled. For
the CUDA target, first Clang LLVM compiles and links for NVIDIA GPUs,
generating the PTX code (a low-level parallel thread execution), an interme-
diate representation of the code, and still not executable by the GPU. The
final code translation is computed by two NVIDIA tools: ptxas and nvlink.
The output of the process produces a cubin object that will be embedded
in the fat binary. The compilation is illustrated by 3.11.
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3.4 Brief Overview of MPI

In general, there are two main classifications based on memory layout of
parallel computers: distributed memory and shared memory. A distributed
memory computer can be defined as a collection of nodes, where each node
uses its own local memory and can communicate via messages. Through
the message passing mechanism, nodes can work together to solve a spe-
cific problem. Instead, a shared memory computer can be defined by a
single node with multiple processing elements that share a common mem-
ory space. The most popular parallel programming model for distributed
memory architectures is MPI (Message Passing Interface). MPI is used to
send/receive data between processes and can be adopted on either shared or
distributed memory architectures. The following Section describes a brief
overview of the basic concepts of MPI.

3.4.1 What is MPI

MPI is a library that provides the most optimal message-passing features
that have been developed over years, by also supplying a standard de-facto
to the Scientific Community. MPI allows to use the provided API to ex-
change data by sending and receiving messages, without knowledge of the
adopted back-end message mechanisms. In fact, the MPI advantage is to
hide message mechanisms and its implementation and leaving the program-
mer free of these specifications, allowing to benefit the interoperability and
portability of the code. The MPI API does not depend on any programming
language, and can be used with the most diffused programming languages
such as C, C++, Fortran, Java and Python.

3.4.2 Communication mechanisms in MPI

In the message-passing model, the processes executing in parallel have a
separate address space. The communication mechanism, when invocated,
copies a portion of the address space to another address space. In MPI, the
Communication is cooperative, meaning that when the first process invokes
a send then the second process invokes a receive operation.

In MPI every process belongs to a group and are identified by a rank,
which are integers from 0 to n - 1, where n is the total number of processes.
Another important object in the MPI environment is the Communicator
which describes a group of processes and as such must be specified in most
point-to-point and collective operations.

The basic (blocking) send API operation is illustrated in Listing 3.7.

1 MPI Send ( address , count , datatype , de s t i na t i on , tag , comm)

Listing 3.7: MPI function used to send a blocking message to a specific process.
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Figure 3.12: MPI broadcast mechanisms.

where the sender process needs to specify the address of the buffer, the
number of elements in the buffer, the datatype of the buffer, the rank of
the destination, the message tag and the communicator. The correspondent
receiving API function is shown in Listing 3.8.

1 MPI Recv ( address , count , datatype , source , tag , comm, s t a tu s )

Listing 3.8: MPI function used to receive a message from a specific process.

where the source specifies the sender process and the status holds infor-
mation of the message. Besides, MPI also provides non-blocking functions
that permit asynchronous communications between processes. In this case,
specific MPI API functions (e.g., MPI Test(MPI Request *request, int

*flag, MPI Status * status)) can be used to check if the communica-
tion has completed.

MPI also allows for collective communications. The most common API
function used for this purpose probably is the MPI Bcast (see Listings 3.9).
As the name suggests,it allows the sender process to broadcast the same
data to all processes (belonging to the specified communicator). Figure 3.14
illustrates the broadcast mechanism.

1 MPI Bcast ( void ∗ data , i n t count , MPI Datatype datatype , i n t root
, MPI Comm communicator )

Listing 3.9: MPI function used to broadcast a message to other processes in
the specidied communicator.

Another important MPI API communication function is MPI Scatter

(Listings 3.10). The difference between MPI Bcast and MPI Scatter is that
the latter sends different portions of the data to the corresponding processes,
while the broadcast communication sends the same data.
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Figure 3.13: MPI scatter mechanisms.

Figure 3.14: MPI gather mechanisms.

1 MPI Scatter ( void ∗ send data , i n t send count , MPI Datatype
send datatype , void ∗ recv data , i n t recv count , MPI Datatype
recv datatype , i n t root , MPI Comm communicator )

Listing 3.10: MPI function to broadcast a portion data to the processes.

Another important MPI API communication function is MPI Gather,
corresponding to the inverse of MPI Scatter. It allows to take elements
from many processes and gathers them to one single process. With this
function, only the master process receives all the data in one buffer. Usually,
the MPI Gather is used in final part of an MPI program where the results
of the problem need to be reconstructed for output purposes.

Listings 3.11 shows the scatter MPI API function.

1 MPI Gather ( void ∗ send data , i n t send count , MPI Datatype
send datatype , void ∗ recv data , i n t recv count , MPI Datatype
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recv datatype , i n t root , MPI Comm communicator )

Listing 3.11: MPI API gather function.

3.4.3 The MPI+X programming models

Modern HPC hardware is usually composed by a large number of nodes with
multi-core CPUs and some attached accelerators. In order to achieve best
performances, the use of only MPI is usually not sufficient, and other pro-
gramming models should be adopted simultaneously. Over the past 20 years,
the combination of MPI and OpenMP has lead the parallel programming
model, maintaining a good level of performance. However, the program-
ming of next-generation HPC systems will drive to more hybrid model called
MPI+X, where X is one of following programming models: OpenMP, Ope-
nACC, OpenMP 4, OpenCL, CUDA or Vulkan. One the main disadvantages
of the MPI+X techniques is the conversion from a combination of program-
ming models to another, which can be very hard and time consuming. This
is due to many factors, i.e., in-depth knowledge of the machine topology
and memory hierarchy, compute-memory synchronization, vendor program-
ming language dependence and other system characteristics. These kinds of
limitations bring the programmers to tradeoffs between performance, pro-
ductivity and portability.

The next HPC frontier is to overcome these obstacles. To reach this
goal, a high level portable programming strategy has been introduced by
many HPC research centers over the world. MPI will remain the primary
message passing library to exploit cluster architectures together with other
programming models. The main goal is not to force the user to rewrite the
code for different architectures, requiring low-level or explicit programming
models to obtain the best performance. Indeed, the user should only choose
which hardware to exploit, such as multi-core, multi-node or many cores
architectures, and delegating the management of optimized parallel code to
the high level model. This alternative approach will be discussed later in
the next Section.



Chapter 4

Domain Specific Languages
for Parallel Computing

Software development for HPC systems is still hard and error prone, though
standard APIs have been proposed as shown in Chapter 3. For instance,
OpenMP4/OpenCL have become the standard to accelerate computation
on multi- and many-core devices, while MPI for parallel computation on
clusters of workstations. Although considerable progress has been made with
respect to proprietary software solutions, developers are still forced to use
different languages/APIs (each one characterized by a different underlying
conceptual model), resulting in a big effort during both development and
long-term management/improvement of the source code, with a consequent
waste of resources and time. In addition, Scientist/Engineers would take
a great advantage if they could exploit the computational power of moder
parallel computers without being forced to deal with parallel programming
details.

One possible solution to the above issues is offered by high-level ab-
straction (HLA) development strategy based on Domain Specific Languages
(DSLs). Here, the aim is to simplify and make faster the development pro-
cess by allowing to implement the application by referring to a serial de-
velopment model, delegating the parallelization process to the library for
different parallel computing solutions. Specifically, this Chapter introduces
two DSLs that I have contributed to, namely OpenCAL (Open Computing
Abstraction Layer) and OPS (Oxford Parallel library for Structured grid
computation). The development of OpenCAL was mainly carried out at
the University of Calabria (Italy). My contribution is related to the design
and implementation of the OpenCL and MPI based components, namely
OpenCAL-CL and OpenCAL-CLM, while my contribution to OPS has con-
cerned in the introduction of the new OpenMP4 programming model. The
OPS research was mainly carried out during a six-month internship period
at the University of Warwick (UK), under the supervision of Prof. Gihan

59
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Figure 4.1: OpenCAL architecture. At the higher level of abstraction, the
model, together with the simulation process and possible optimiza-
tions, is designed. The OpenCAL libraries can be found at the
implementation abstraction layer, allowing for a straightforward
implementation of the designed computational model. OpenCAL-
based applications can be therefore executed at the hardware level
on both multi-core CPUs and many-core devices. The execution
on distributed memory systems is currently under development.

Mudalige and Dr. Carlo Bertolli from the IBM Thomas J. Watson Research
Center (USA). Different examples of application are also described, which
were taken into account for evaluating permformances on different hardware
configurations. In particular, a Sobel graphics edge detection filter, a Jiulia
set fractal generator and the SciddicaT slow-moving fluid flow simulation
model were implemented in OpenCAL, while the Cloverleaf and Tealeaf
benchmarks in OPS.

4.1 OpenCAL

In this section we describe the software architecture, main structures and
underlying algorithms of the OpenCAL library, besides a first example of
application to highlight how easy model development is. The serial version
of the library will be simply referred as OpenCAL in the following, while
OpenCAL-OMP and OpenCAL-CL will refer to the OpenMP- and OpenCL-
based parallelizations, respectively. Eventually, the distributed memory ver-
sion of OpenCAL will be referred as OpenCAL-CLM. The main API data
types and functions specifications are here presented. A full API description
can be found in the OpenCAL user guide on GitHub().
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4.1.1 Software Architecture

The OpenCAL architecture is depicted in Figure 4.1. At the higher level
of abstraction, the Scientist conceptually designs the computational model,
by referring to the Extended Cellular Automata general formalism. Struc-
tured grid-based models whose evolution is determined by local rules, as
well as by global laws or even by a combination of local and global oper-
ations, are therefore fully supported. At this level, domain topology and
extent, boundary conditions, substates (each of them representing the set
of admissible values of a given characteristic assumed to be relevant for the
modeled system and its evolution), neighborhood (defining the pattern over
which local rules are applied) and elementary processes (defining the local
rules of evolution) are formalized. The simulation process is also designed at
this level, by specifying the initial conditions of the system, optional global
operations (e.g., steering or global reductions), and a termination criterion
to stop the system evolution. Note that, being supported by OpenCAL,
at this stage some specific optimizations can be applied. Specifically, the
explicit updating feature allows to both redefine the elementary processes
application order and to selectively update substates after the application
of each elementary process, while the active cells optimization, also known
as quantization, allows to restrict the computation to a subset of the whole
computational domain, by excluding stationary cells.

The different versions of OpenCAL can be found in the implementa-
tion level. Since they provide high-level data structures and algorithms
that match the higher abstraction level components, all of them allow for a
straightforward implementation of the previously designed computational
model, by also allowing to ignore low-level issues like memory manage-
ment and I/O operations. All OpenCAL versions are written in C for the
maximum efficiency and, as pointed out by the language/library level, the
OpenMP and OpenCL APIs were considered for implementing the corre-
sponding parallel versions of OpenCAL. Finally, at the hardware level, de-
pending on the adopted version of the library, execution can be performed on
single- and multi-core CPUs, as well as on many-core accelerators like GPUs,
transparently to the user. Figure 4.1 also shows hybrid MPI/OpenMP and
MPI/OpenCL parallel implementations of OpenCAL. The latter, a prelim-
inary implementation of which is in an advanced development state, is that
we will refer as OpenCAL-CLM in this paper.

4.1.2 OpenCAL Domain Specific API Abstractions

The OpenCAL API was designed to be clear and easy to use. For this
purpose, it follows some naming conventions, the most important of which
are listed below:

• CALbyte, CALint, and CALreal redefine the char, int and double C
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native scalar types, respectively;

• Derived data types start with the CAL prefix (or CALCL for some specific
OpenCAL-CL data types), followed by a type identifier formed by one
or more capitalized keywords, an optional suffix identifying the model
dimension (e.g., 2D or 3D), and an eventual optional suffix specifying
the basic scalar type, which can be b, i, or r, for CALbyte, CALint and
CALreal derived types, respectively (e.g., CALSubstate3Dr represents
an example of three-dimensional double precision-based data type - cf.
below);

• Constants and enumerals start with the CAL_ prefix, followed by one
or more uppercase keywords separated by the _ character (e.g., the
CAL_TRUE and CAL_FALSE Boolean enumerals);

• Functions are characterized by the cal prefix (or calcl for some spe-
cific OpenCAL-CL functions), followed by at least one capitalized key-
word, and end with a suffix specifying the model dimension and the
basic datatype (e.g., calSet2Di represents an example of an API func-
tion acting on a bi-dimensional integer based data type).

In the following, the {arg1|arg2|...|argn} and [arg1|arg2|...|argn]

conventions will be adopted: the first one identifies a list of n mutually
exclusive arguments, where one of the arguments is needed; the second is
used to identify a set of n non-mutually exclusive optional arguments. As
an example, calGet[X]{2D|3D}{b|i|r}() function actually identifies a set
of API functions with one optional and two mandatory suffixes: the first
one, if present, indicates that the function is able to access neighborhood
data (X is the symbol commonly used in the XCA formalism to refer to the
neighborhood), while the other two indicate the domain dimension and the
basic type of the data to be accessed, respectively.

One of the most important API objects is the model, which is the im-
plementation level object corresponding to the XCA model formalized at
the design level. It is simply declared as a pointer to the CALModel{2D|3D}

built-in data type, and can straightforwardly be defined by means of the
calCADef{2D|3D}() function. The model object essentially allows to define
the domain dimensions (2D and 3D models are natively supported, even if
1D models can be defined as degenerate case of the 2D one), the size of
each of them, the cell geometry (square, rectangular and hexagonal cells are
supported), the domain topology (e.g., if a 2D domain has to be consid-
ered as bounded or as a torus) and the neighborhood pattern, besides em-
bedding a built-in data structure needed by the quantization optimization
algorithm (cf. below in this Section). As regards neighborhoods, a set of pre-
defined patterns is provided (e.g., the CAL_MOORE_NEIGHBORHOOD_{2D|3D}

enumeral refers to the Moore pattern), even if generic neighborhoods can be
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explicitly defined (by using the CAL_CUSTOM_NEIGHBORHOOD_{2D|3D} enu-
meral at definition time and then the calAddNeighbor{2D|3D}() function
to add neighbors to the initially empty set). Besides the predefined Moore
neighborhood, the von Neumann one and 2D-specific hexagonal neighbor-
hoods are also provided by the API. The model object seamlessly man-
ages both the data, mainly represented by substates (which are declared as
CALSubstate{2D|3D}{b|i|r} objects), and the local rules of evolution for
the system (i.e., the automaton transition function), expressed in terms of
elementary processes (that are defined as callback functions or OpenCL
kernels, depending on the specific OpenCAL implementation). For this
purpose, both substates and elementary processes must be registered to
the model object (by means of the calAddSubstate{2D|3D}{b|i|r}() and
calAddElementaryProcess{2D|3D}() functions, respectively), which in this
way can store pointers to each of them for subsequent seamless indirect ac-
cess. Note that, a further device-side model object ( CALCLModel{2D|3D})
is provided by the OpenCAL-CL API, which makes data transfer and par-
allel execution on OpenCL compliant devices transparent to the user. This
latter object is declared as a pointer to CALCLModel{2D|3D}, and defined
by means of the calclCADef{2D|3D}() function. Specifically, data transfer
from the host to the device global memory is performed at definition time,
while data is seamlessly copied back to the host at the end of the simula-
tion process, by minimizing in this way time consuming host to/from device
data movements during the computation. To further speed-up the device-
side execution, the library also provides the calclGlobaltoLocal[X]() API
function that can be used within the kernels to transfer data (i.e., central
cell and neighborhoods states) from the global to the faster local memory.

According to the XCA computational paradigm, substates define spe-
cific characteristics considered to be relevant for the system initial state
definition and its evolution. For instance, in a fluid-dynamic computational
model, different substates can be used for modeling mass, viscosity and ve-
locity field components. Each substate object has the same extent of the
whole computational domain, so that each cell is characterized by specific
substates values. Implicitly, this leads to a SoA (Structure of Arrays) ap-
proach, which proved to be the most effective in the case of parallel pro-
gramming on GPUs (see e.g., [10]). For efficient access due to memory co-
alescence issues, substates objects are implemented by means of linearized
arrays. Nevertheless, internal format is transparent to the user, which can
access data by means of multidimensional indices and neighborhoods identi-
fiers (e.g., the calGet[X]{2D|3D}() function allows to retrieve the current
state of the central cell and - if the X optional suffix is present - its neigh-
bors, while the calSet{2D|3D}() one permits to update the central cell’s
state). Behind the scene, substates are defined by means of two computa-
tional layers: the current layer represents a read-only memory and is used
for retrieving central and neighboring cells current states, while the next
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one is used only for updating the new value of the central cell. Once all
new states have been written to the next layer, the substate is seamlessly
updated (even if the update phase can be made explicit by means of the
calUpdateSubstate{2D|3D}{b|i|r} function - cf. below in this Section),
i.e. the next layer is copied into the current one, and the substate ob-
ject is ready for further processing. Note that, as already stated, in the
case of OpenCAL-CL, substates are updated device-side, by allowing to
perform the whole computation process on the device. Eventually, each
OpenCAL implementation also provides single layer substates, which only
consist of the current computational layer. They are declared as standard
double-layered objects, even if the next layer is lost at registration time,
where the calAddSingleLayerSubstate{2D|3D}{b|i|r}() function must
be used (instead of the calAddSubstate{2D|3D}{b|i|r}() one). Single
layer substates can be considered for internal transformations processing,
i.e. for those modeling specific rules which determine the substate change
within the cell as a function of the central cell state only. Not needing to be
updated, they represent a lighter memory and more efficient alternative to
double-layer substates.

The system evolution is obtained by applying the elementary processes
composing the transition function in the same order in which they have been
registered to the model object (even if the predefined order can be overrid-
den - cf. below in this Section) and, after the application of each of them,
by updating the involved double-layer substates. As anticipated, elementary
processes are implemented by means of callback functions or OpenCL ker-
nels and their execution is transparently performed by the library (even if, in
case of host-side execution, elementary processes application, and also sub-
states updating, can be made explicit - cf. below in this Section). According
to the XCA paradigm, each cell must appear to be updated simultaneously
to each other (implicit parallelism). For this purpose, a pool of concurrent
threads/work-items should apply the elementary process simultaneously to
each cell of the computational domain. However, depending on the domain
dimensions, this is not always possible, even in the case of parallel execution
on many-core devices. Nevertheless, implicit parallelism is guaranteed in
each OpenCAL implementation thanks to double-layer substates. In fact,
by using the current layer as read only memory and the next one for updat-
ing purposes only, cells appear to be simultaneously updated with respect
to each other, even in the case of serial computation. In this respect, an
elementary process is equivalent to a parallel for loop, which transpar-
ently applies its local rule of evolution simultaneously to each cell of the
computational domain. In the case of parallel execution, a data parallel
approach is adopted. In particular, the domain is decomposed in uniform
chunks in the case of OpenCAL-OMP, while a one cell/one work-item de-
composition is adopted in OpenCAL-CL. OpenCAL-CLM currently adopts
a classical chunk-based domain decomposition with seamless halos exchange,
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Figure 4.2: An example of OpenCAL-OMP parallel application of an elemen-
tary process to a substate Q and its subsequent parallel updating.
The computational domain is initially partitioned by means of a
pool of three threads (fork phase). These latter concurrently apply
the elementary process by reading state values from the current
layer and by updating new values to the next one. At the end of
the elementary process application, threads implicitly synchronize
by joining into the master one (join phase), and the parallel up-
date phase starts. As before, a pool of threads concurrently copies
the next layer into the current one and the new configuration of
Q is obtained. A join phase eventually occurs, which ensures data
consistency before the application of another elementary process.
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and also a one cell/one work-item model at GPU level. Note that double
layer substates allow for a lock-free parallelization in all cases. In fact, no
race conditions can occur since, in particular, the update phase is limited
by definition of the XCA computational paradigm to the memory location
associated with the central cell. An example is shown in Figure 4.2 for the
case of OpenCAL-OMP, where a pool of three threads concurrently process
an uniformly partitioned domain for both elementary processes application
and substates updating. In this case, the third thread is completely wasted,
since it only processes a subset of stationary cells, and therefore a load un-
balance occurs. In such a case, a dynamic scheduling is seamlessly adopted
in OpenCAL-OMP to mitigate the unbalance among chunks. Regarding the
OpenCAL-CL specific case, a grid of OpenCL work-items is adopted for a
SIMD-based parallelization. Depending on the dimension of the computa-
tional model, two- or three-dimensional OpenCL index spaces (i.e. OpenCL
NDRanges) are transparently considered, while a one-dimensional one is
adopted in the case the quantization optimization is exploited (cf. below
in this Section). The number of work-items to be adopted is evaluated for
each model dimension by preliminary querying OpenCL for the (device-
dependent) preferred work-group size multiple ws (i.e. the warp/wavefront
size in NVIDIA/AMD GPUs), and therefore by considering the smallest
multiple of ws which is greater than or equal to the model dimension. For
instance, if ws = 32 and the first dimension of the domain is 2000, the
number of work-items in that dimension will be 2016, i.e. the first multiple
of 32 which is greater than or equal to 2000, thus resulting in 16 redun-
dant work-items. However, since redundant work-items do not map any cell
of the computational domain, they immediately terminate their execution.
Moreover, according to OpenCL, work-items are grouped in work-groups.
The choice of the number of work-groups to be considered (and therefore
the work-group size) depends on the device architecture and can be both
transparently determined (default setting), or explicitly set for finer tuning.

In case of host-side execution, i.e. when OpenCAL and OpenCAL-OMP
are considered, simulation execution is managed by a specific simulation ob-
ject, that must be declared as a pointer to the CALRun{2D|3D} data type
and then defined by means of the calRunDef{2D|3D}() function. Never-
theless, in the case of device-side execution, i.e. when OpenCAL-CL is
considered, the role of the simulation object is played by the device-side
model. Among others, the simulation object defines the substates updating
policy: in case of implicit scheme, the built-in transition function is applied
(i.e. elementary processes are applied in the same order in which they have
been registered to the model and all registered substates are updated after
the application of each of them); when the explicit policy is adopted, the
transition function must be overridden and elementary processes explicitly
applied, as well as substates explicitly updated. Allowing to avoid the up-
date of unmodified substates (therefore unneeded memory copy operations)
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the OpenCAL implicit naive approach, which is provided as first instance to
allow the developer to completely ignore underlying data structures issues,
can be overcome. For this and other purposes, the simulation object can
optionally register one or more global callback functions, listed below:

• init(): It is executed once before the simulation loop and can be used
used to set the initial conditions of the system.

• globalTransition(): It overrides the built-in transition function and
can be used to redefine the execution order of the registered elementary
processes and to perform selective substates updating. The function
also allows to perform global operations over the computational do-
main, e.g., reductions. Built-in reductions allow to compute global
minimum, maximum, sum, product, as well as logical and bit-wise
AND, OR and NOT operations on the registered substates.

• steering(): It is executed at the end of each computational step and
can be used to perform generic global operations, as well as global
reductions.

• stopCondition(): It is checked after the steering function (if defined)
at the end of each computational step and can be used to define a
stopping criterion for the simulation. Differently to the other callbacks,
which do not return any value, the function returns a Boolean value:
true if the termination criterion is satisfied, false in the other case.

Algorithm 1 outlines the OpenCAL implicit simulation process, that ap-
plies the default model transition function if not differently specified. In
the other case, the globalTransition() function is applied. The init()

function, if defined, is called first and subsequently active cells (if quanti-
zation is enabled - cf. below in this Section) and substates are updated.
Moreover, the step counter and the halt variable, that is used to check
the simulation termination condition, are set to the initial step and to false,
respectively. The main simulation loop follows, which is triggered by the
calRun{2D|3D}() or calclRun{2D|3D}() function call, depending on the
adopted OpenCAL implementation. At each step, after the application of
each elementary process to each cell of the computational domain, active
cells (if the quantization optimization is used) and substates are updated. If
defined, the steering() global function is therefore called and active cells
and substates again updated. The stopCondition() function is eventually
called and the step counter increased. The simulation loop continues while
the halt variable, whose value is set by the stopCondition() function, is
false or the final step of computation is met.
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Algorithm 1: OpenCAL main implicit simulation process.

init() // Call the init() global function

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

step← initial step
halt← false
while ¬halt ∧ (step ≤ final step ∨ final step = CAL RUN LOOP) do

forall e of σ do
forall (A 6= ∅ ∧ i ∈ A)∨ i ∈ R do

e(i) // Apply the elementary process e to the cell

i

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

steering() // Call the steering() global function

if quantization then
update (A) // Update the array of active cells

forall q ∈ Q do
update (q) // Update the substate q

halt← stopCondition() // Check the stop condition

step← step+ 1

return
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4.1.3 The Quantization Optimization

In many grid-based simulations, system’s dynamics only affects a small re-
gion of the whole computational domain. For instance, this is the case of
topologically connected phenomena, like debris or lava flows. In these cases,
a naive approach where the overall domain is processed can lead to a con-
siderable waste of computational resources, even in the case stationary cells
(i.e. those cells that do not change their state in the next computational
step) are only checked and the application of the evolution rules skipped.

Different approaches have been proposed to improve the efficiency of the
naive approach. Among them, the hyper-rectangular bounding box (HRBB)
optimization, consisting in surrounding the simulated phenomenon by means
of a fitting rectangle (or a parallelepiped, in the case of a 3D model), by
contextually restricting the computation to this specific sub-region, proved
to be a simple but effective approach in different cases (see e.g., [36]). How-
ever, HRBB demonstrated its limit in the simulation of scattered phenom-
ena, where the hyper-rectangle can easily grow up and include the whole
domain, embedding a considerable number of inactive cells.

A more effective approach, which is also able to optimally distribute the
computational load in case of parallel execution, consists in maintaining a
dynamic set of coordinates only of the active cells during the simulation, by
restricting the computation only to this set (see e.g., [45]). The activation
state for a cell generally depends on the specific system to be simulated. In
many cases, for instance in computational fluid-dynamics, a threshold-based
criterion can be adopted. For this reason, this latter approach is commonly
known as quantization. Even if more complex to be implemented, in many
cases it outperforms the HRBB approach and, for this reason, was considered
in OpenCAL.

Its implementation is based on a compacted array, A, containing the
computational domain’s active cells coordinates. A, which is initially empty,
is generally defined at the system initialization stage. For this purpose, and
also to maintain A updated, the activation value must be explicitly set (to
true, which means that the cell is active, or to false, on the other hand)
only for the cells that change state during the current computational step (a
Boolean working array F is updated in this preliminary step). An efficient
stream compaction algorithm (as implemented in [52]) is therefore trans-
parently applied at the end of each computational step to update the set
A, based on the activation states stored in F . For illustrative purposes, an
example of application of the OpenCAL-CL stream compaction algorithm
is described in Figure 4.3. Note that, in this way, domain-sized data is pro-
cessed only once during the stream compaction phase, while only the subset
of cells belonging to A is involved in the remaining actual computation. The
quantization optimization clearly introduces an overhead. However, depend-
ing on the domain dimension and the affected area (or volume), as well as
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Figure 4.3: An example of application of the OpenCAL-CL parallel stream
compaction algorithm. Active cells are represented in gray within
a two-dimensional 4x4 matrix of flags, implemented as a linearized
array, F . The parallel stream compaction algorithm processes F
and produces the compacted array A as output, containing the
coordinates of the active cells in its first part. A grid of work-items
therefore processes data by adopting the one thread/one active cell
policy. The process is therefore repeated at the next computational
step.
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on the computational intensity of the model, it can produce a considerably
speed-up of the overall computational process.

Using the quantization optimization is quite straightforward. Firstly, it
must be enabled at model definition time by the calCADef{2D|3D}() func-
tion. Subsequently, the calAddActiveCell[X]{2D|3D}() function can be
used to mark the central cell and its neighbors (if the X version of the function
is considered) to be added to A, while the calRemoveActiveCell{2D|3D}()
to mark the central cell to be removed. All these functions essentially write
a 8-bit long Boolean value to F and, for this reason, there is no risk to ob-
tain a corrupted value, even in the case of parallel execution (i.e. in the case
two threads/work-items attempt to store their own value to the same mem-
ory word at the same time). Even in the case of OpenCAL-CL, if the same
instruction is executed by more than one work-item (even belonging to differ-
ent work-groups) to the same location in global memory (where F is stored),
the access is serialized and at least one access is guaranteed (even if the ac-
tual thread performing the operation is undefined - cf. e.g., [11]). Eventually,
in case of explicit update scheme, the calUpdateActiveCells{2D|3D} func-
tion must be explicitly invoked to update A after each add/remove phase is
complete.

Note that, since the API allows to modify the neighboring cells activa-
tion state, the quantization optimization can lead to race conditions. Nev-
ertheless, to avoid them it is sufficient to keep the add and remove phases
disjoint, i.e. performed by different elementary processes. In fact, if the
same elementary process could both add and remove cells to/from A, two
different (central) cells could update the same (neighboring) cell to different
activation states, and the resulting value in F before the stream compaction
execution would depend on the application order of the elementary process
to the cells.

4.1.4 Conways Game of Life in OpenCAL

As a first illustrative example of the library, we here present the OpenCAL
implementation of the Turing complete Conway’s Game of Life (simply Life
in the following), one of the most simple, yet powerful example of CA [56].
It can be thought as an infinite two-dimensional grid of square cells, each of
them being in one of two possible states, dead or alive. Every cell interacts
with the eight adjacent neighbors belonging to the Moore neighborhood. At
each time step, one of the following transitions occur:

1. Any alive cell with fewer than two alive neighbors dies, as if by lone-
liness;

2. Any alive cell with more than three alive neighbors dies, as if by over-
crowding;
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3. Any alive cell with two or three alive neighbors lives, unchanged, to
the next generation;

4. Any dead cell with exactly three alive neighbors comes to life.

Formally, Life can be defined as:

Life =< R,X,Q, σ >

where

1. R is the set of points, with integer coordinates, which defines a two-
dimensional toroidal cellular space;

2. X = {(0, 0), (−1, 0), (0,−1), (0, 1), (1, 0), (−1,−1), (1,−1), (1, 1),
(−1, 1)} is the Moore neighborhood, i.e. the set of relative coordi-
nates that, when added to the coordinate vector of the central cell,
give the absolute coordinates of the neighboring cells;

3. Q = {0, 1} is the set of cell states, 0 representing the dead state, 1 the
alive;

4. σ : Q9 → Q is the deterministic cell transition function. It is composed
by one elementary process, which implements the aforementioned tran-
sition rules.

In the following, two OpenCAL/OpenCAL-OMP and OpenCAL-CL im-
plementations of Life are presented and commented. The program in List-
ings 4.5, containing the main application, and 4.2, containing the transition
function, shows a possible OpenCAL/OpenCAL-OMP implementation of
Life.

1 #inc lude <OpenCAL/cal2D . h> //#inc lude <OpenCAL−OMP/cal2D . h>
2 #inc lude <OpenCAL/cal2DIO . h> //#inc lude <OpenCAL−OMP/cal2D . h>
3 #inc lude <OpenCAL/cal2DRun . h> //#inc lude <OpenCAL−OMP/cal2D . h>
4 #inc lude <s t d l i b . h>
5

6 s t r u c t CALModel2D∗ l i f e ;
7 s t r u c t CALSubstate2Di∗ Q;
8 s t r u c t CALRun2D∗ l i f e s im u l a t i o n ;
9

10 void l i f eT r an s i t i o nFunc t i on ( s t r u c t CALModel2D∗ l i f e , i n t i , i n t
j ) ;

11

12 i n t main ( ) {
13 l i f e = calCADef2D (8 , 16 , CALMOORENEIGHBORHOOD 2D,

CAL SPACE TOROIDAL, CAL NO OPT) ;
14 l i f e s im u l a t i o n = calRunDef2D ( l i f e , 1 , 1 , CAL UPDATE IMPLICIT)

;
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15

16 Q = calAddSubstate2Di ( l i f e ) ;
17 calAddElementaryProcess2D ( l i f e , l i f eT r an s i t i o nFunc t i on ) ;
18

19 ca l I n i t Sub s t a t e 2D i ( l i f e , Q, 0) ;
20 c a l I n i t 2D i ( l i f e , Q, 0 , 2 , 1) ;
21 c a l I n i t 2D i ( l i f e , Q, 1 , 0 , 1) ;
22 c a l I n i t 2D i ( l i f e , Q, 1 , 2 , 1) ;
23 c a l I n i t 2D i ( l i f e , Q, 2 , 1 , 1) ;
24 c a l I n i t 2D i ( l i f e , Q, 2 , 2 , 1) ;
25

26 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i f e 0 0 0 0 . txt ” ) ;
27 calRun2D ( l i f e s im u l a t i o n ) ;
28 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i fe LAST . txt ” ) ;
29

30 calRunFinal ize2D ( l i f e s im u l a t i o n ) ;
31 ca lF ina l i z e2D ( l i f e ) ;
32 re turn 0 ;
33 }

Listing 4.1: An OpenCAL/OpenCAL-OMP implementation of Conway’s
Game of Life.

Concerning the main application, header files are included at lines 1-3
that allow to define the required 2D model and substate, besides provid-
ing some basic I/O facilities. The model object, life, is declared at line
6, while lines 7 and 8 declare the required substate, Q, and simulation ob-
ject, life_simulation, respectively. These objects are defined later in the
main function at lines 13-14. In particular, the model definition function,
calCADef2D(), takes the domain dimensions (an 8 rows × 16 columns do-
main is considered here), the neighborhood pattern (Moore in this case),
the boundary topology (a toroidal domain is considered in the example to
account for an unlimited domain) and the optimization to be used (the
quantization optimization is not adopted in the example). Furthermore, the
simulation object definition function, calRunDef2D(), requires the address
of a model object to be evolved (which is life in this example), the initial
and final simulation steps (set both to one to perform a single computational
step), and eventually the substates update policy (here set to implicit) as
parameters. Line 16 allocates memory and registers the integer-based Q
substate to the model object by means of the calAddSubstate2Di() func-
tion, while line 17 registers an elementary process to life by means of the
calAddElementaryProcess2D() function. Here, lifeTransitionFunction
is a developer-defined callback function implementing the model local rules.
At this aim, the calGet[X]2Di() and calSet2Di() API functions are used
for reading and updating purposes at cell level (cf. Listing 4.2).
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1 void l i f eT r an s i t i o nFunc t i on ( s t r u c t CALModel2D∗ l i f e , i n t i , i n t
j ) {

2 i n t sum = 0 , n ;
3 f o r (n=1; n< l i f e −>s i z e o f X ; n++)
4 sum += calGetX2Di ( l i f e , Q, i , j , n ) ;
5

6 i f ( ( sum == 3) | | (sum == 2 && calGet2Di ( l i f e , Q, i , j ) == 1) )
7 ca lSet2Di ( l i f e , Q, i , j , 1) ;
8 e l s e
9 ca lSet2Di ( l i f e , Q, i , j , 0) ;

10 }
Listing 4.2: The OpenCAL/OpenCAL-OMP callback function implementing

the elementary process of Game of Life application shown in Listing
4.5.

The calInitSubstate2Di() function at line 19 initializes the Q substate
to 0 (for both the current and next layers), while lines 20-24 define a
so called glider pattern by means of the calInit2Di() function. The
calSaveSubstate2Di() function at line 26 saves the Q substate to file,
while the subsequent call to calRun2D() enters the simulation process (ac-
tually, only one computational step in this example), and returns to the main
function when the simulation is terminated. The calSaveSubstate2Di() is
called again at line 28 to save the new (last) system configuration, while the
last two API calls release memory previously allocated by OpenCAL. The
return statement at line 32 ends the program.

1 #inc lude <OpenCAL−CL/ ca lc l2D . h>
2 #inc lude <OpenCAL/cal2DIO . h>
3

4 #de f i n e KERNEL SRC ” . / ke rne l ”
5 #de f i n e KERNEL LIFE TRANSITION FUNCTION ” l i f eT r an s i t i o nFunc t i on ”
6 #de f i n e PLATFORMNUM 0
7 #de f i n e DEVICE NUM 0
8 #de f i n e DEVICE Q 0
9 s t r u c t CALModel2D∗ l i f e ;

10 s t r u c t CALSubstate2Di∗ Q;
11

12 i n t main ( ) {
13 s t r u c t CALCLDeviceManager∗ ca l c l d ev i c e manage r =

calc lCreateManager ( ) ;
14 ca l c lPr intPlat fo rmsAndDev ices ( ca l c l d ev i c e manage r ) ;
15 CALCLdevice dev i c e = ca l c lGetDev i ce ( ca l c l dev i c e manage r ,

PLATFORMNUM, DEVICE NUM) ;
16 CALCLcontext context = ca l c lCreateContext (&dev i ce ) ;
17 CALCLprogram program = calclLoadProgram2D ( context , device ,

KERNEL SRC, NULL) ;
18 // <Missing >: Here source code as in l i n e s 12−24 from L i s t i n g

1
19
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20 s t r u c t CALCLModel2D∗ l i f e d e v i c e = calclCADef2D ( l i f e , context ,
program , dev i c e ) ;

21

22 CALCLkernel l i f e t r a n s i t i o n f u n c t i o n =
calclGetKernelFromProgram(&program , LIFE TRANSITION FUNCTION)
;

23 calclAddElementaryProcess2D ( l i f e d e v i c e , &
l i f e t r a n s i t i o n f u n c t i o n ) ;

24

25 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i f e 0 0 0 0 . txt ” ) ;
26 calclRun2D ( l i f e d e v i c e , 1 , 1) ;
27 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i fe LAST . txt ” ) ;
28

29 ca l c lF ina l i z eManage r ( ca l c l d ev i c e manage r ) ;
30 c a l c lF i n a l i z e 2D ( l i f e d e v i c e ) ;
31 ca lF ina l i z e2D ( l i f e ) ;
32 re turn 0 ;
33 }

Listing 4.3: An OpenCAL-CL implementation of Conway’s Game of Life.

According to OpenCL, a possible OpenCAL-CL implementation of Life
is subdivided in two different parts: a device- and a host-side application.
The host-side application, running on the CPU and controlling the compu-
tation on the compliant device (e.g., a GPU), is shown in Listing 4.3. The
calcl2D.h header file is included at lines 1-2, together with the OpenCAL
cal2DIO.h header for I/O purposes. The path of the directory containing
the transition function elementary processes (implemented as OpenCL ker-
nels) is defined at line 4, while the name of the only kernel required at line
5. Lines 6-7 define the OpenCL identifiers for the platform and device to be
used. Note that OpenCAL-CL can query the system for platforms and com-
pliant devices, by allowing the user to select them at run time. However, for
the sake of simplicity, in this example the first device belonging to the first
platform is set. The substate numerical handle Q is also defined at line 8, as
it is required to refer to the object from both the host and device applica-
tion. Lines 13-16 are needed to select the compliant device and to create an
OpenCL context. These statements widely simplify the device management
and can be considered as a kind of template to be used in each OpenCAL-
CL application. Line 17 reads kernels (just one in this example) from file
(contained in the directory specified at line 4), compile and groups them into
an OpenCL program, to be used later to extract kernels for execution. The
host-side object definition follows, together with the substate and its initial-
ization (cf. line 18). Line 20 defines the life_device device-side object by
means of the calclCADef2D() function, also by performing host to device
data transfer transparently to the user. The elementary process (which ac-
tually is an OpenCL kernel) is therefore extracted from the previously com-
piled program by means of the calclGetKernelFromProgram() function at
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line 22. It returns an OpenCL kernel, which is subsequently registered to
the device-side model by means of the calclAddElementaryProcess2D()

function at line 23. Lines 25 and 27 are used to save the CA state before
and after simulation execution, respectively. The CA simulation is executed
by means of the calclRun2D() function at line 26. In this example, the only
elementary process defined is executed in parallel on the compliant device
in a transparently way to the user. Eventually, lines 29-31 perform memory
deallocation for the previously defined objects. The return statement at line
32 terminates the program.

1 #inc lude <OpenCAL−CL/ ca lc l2D . h>
2 #de f i n e DEVICE Q 0
3

4 k e r n e l void l i f eT r an s i t i o nFunc t i on ( CALCL MODEL 2D) {
5 calclThreadCheck2D ( ) ;
6 i n t i = calc lGlobalRow ( ) ;
7 i n t j = calc lGlobalColumn ( ) ;
8 CALint s i z e o f X = calc lGetNe ighborhoodSize ( ) ;
9

10 i n t sum = 0 , n ;
11 f o r (n=1; n<s i z e o f X ; n++)
12 sum += calclGetX2Di (MODEL 2D, DEVICE Q, i , j , n ) ;
13

14 i f ( ( sum==3) | | (sum==2 && ca lc lGet2Di (MODEL 2D, DEVICE Q, i ,
j )==1))

15 c a l c l S e t 2D i (MODEL 2D, DEVICE Q, i , j , 1) ;
16 e l s e
17 c a l c l S e t 2D i (MODEL 2D, DEVICE Q, i , j , 0) ;
18 }

Listing 4.4: The OpenCAL-CL kernel implementing the elementary process of
the Game of Life application shown in Listing 4.3.

The device-side kernel implemeting the Life transition function is shown
in Listing 4.4. The calcl2D.h header is included at line 1, and a numeric
handle defined at line 2 to refer the Q substate device-side (this is needed
to access the correct buffer in the device global memory - cf. The Open-
CAL User Guide on GitHub). The transition rules are implemented as an
OpenCL kernel at lines 4-18. In particular, line 5 checks for redundant work-
items, while lines 6-7 get the indices corresponding to the integer coordinates
of the cell that the kernel is going to process. Similarly, line 8 retrieves the
neighborhood size by means of the calclGetNeighborhoodSize() func-
tion. Eventually, lines 10-17 implement the transition rules by using the
calclGet[X]2Di() and calclSet2Di() functions for reading and updating
purposes, respectively.
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1 #inc lude <OpenCAL/cal2D . h> //#inc lude <OpenCAL−OMP/cal2D . h>
2 #inc lude <OpenCAL/cal2DIO . h> //#inc lude <OpenCAL−OMP/cal2D . h>
3 #inc lude <OpenCAL/cal2DRun . h> //#inc lude <OpenCAL−OMP/cal2D . h>
4 #inc lude <s t d l i b . h>
5

6 s t r u c t CALModel2D∗ l i f e ;
7 s t r u c t CALSubstate2Di∗ Q;
8 s t r u c t CALRun2D∗ l i f e s im u l a t i o n ;
9

10 void l i f eT r an s i t i o nFunc t i on ( s t r u c t CALModel2D∗ l i f e , i n t i , i n t
j ) ;

11

12 i n t main ( ) {
13 l i f e = calCADef2D (8 , 16 , CALMOORENEIGHBORHOOD 2D,

CAL SPACE TOROIDAL, CAL NO OPT) ;
14 l i f e s im u l a t i o n = calRunDef2D ( l i f e , 1 , 1 , CAL UPDATE IMPLICIT)

;
15

16 Q = calAddSubstate2Di ( l i f e ) ;
17 calAddElementaryProcess2D ( l i f e , l i f eT r an s i t i o nFunc t i on ) ;
18

19 ca l I n i t Sub s t a t e 2D i ( l i f e , Q, 0) ;
20 c a l I n i t 2D i ( l i f e , Q, 0 , 2 , 1) ;
21 c a l I n i t 2D i ( l i f e , Q, 1 , 0 , 1) ;
22 c a l I n i t 2D i ( l i f e , Q, 1 , 2 , 1) ;
23 c a l I n i t 2D i ( l i f e , Q, 2 , 1 , 1) ;
24 c a l I n i t 2D i ( l i f e , Q, 2 , 2 , 1) ;
25

26 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i f e 0 0 0 0 . txt ” ) ;
27 calRun2D ( l i f e s im u l a t i o n ) ;
28 ca lSaveSubstate2Di ( l i f e , Q, ” . / l i fe LAST . txt ” ) ;
29

30 calRunFinal ize2D ( l i f e s im u l a t i o n ) ;
31 ca lF ina l i z e2D ( l i f e ) ;
32 re turn 0 ;
33 }

Listing 4.5: An OpenCAL implementation of the Conway’s Game of Life.
To obtain the equivalent OpenCAL-OMP implementation it is
sufficient to consider the (currently commented) OpenCAL-OMP
header files instead of the OpenCAL ones (cf. lines 1-3).

4.1.5 The Multi-GPU/Multi-Node Implementation of Open-
CAL

In its first release [33], described in Section 4.1, the OpenCAL OpenMP- and
OpenCL-based components were released, permitting to exploit multi-core
CPUs and many-core GPUs, respectively. Parallelism was almost completely
made transparent and the quantization optimization built in to accelerate
the computation in case of topologically connected phenomena (e.g., the
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simulation of a bounded fluid flow developing over a wide topographic sur-
face). In fact, quantization permits to avoid to compute the next state of
stationary cells. Based on user-defined criteria, a set of active cells, A, is
maintained updated by the system, and the transition function application
restricted to it.

The current OpenCAL software architecture can provide four differ-
ent components at the implementation level, namely OpenCAL (serial ref-
erence version), OpenCAL-OMP (OpenMP-based multi-thread implemen-
tation), OpenCAL-CL (OpenCL-based component) and OpenCAL-CLM
(MPI-based implementation for single and multiple OpenCL instances). In
this section, we show the extension of OpenCAL-CL to support single-
node/multi-GPU workstations (for a pure multi-GPU execution) and to
introduce the new OpenCAL-CLM component to support clusters of multi-
GPU nodes. Note that, this latter component also permits to run single-
GPU instances of OpenCAL-CL within a multi-GPU workstation (for a
hybrid MPI/OpenCL multi-GPU execution).The library and hardware lev-
els complete the OpenCAL general architecture pointing out the underlying
parallel APIs and computing system targets.

The first implementation of the OpenCAL-CL/CLM components was
deliberately straightforward and permitted to build the new components on
top of the existing OpenCAL-CL one. In particular: A classic data-parallel
decomposition scheme was adopted; Halos exchange was scheduled to take
place after the execution of each elementary process (i.e., after at least a
substate was updated); A different halo was considered for each defined
substate (even for those substates that were not affected by the elementary
process).

Figure 4.4 shows an example of the data-parallel domain decomposition
scheme adopted by OpenCAL-CL/CLM for the case of a two-dimensional
domain and a dual-node system with two GPUs per node. Periodic bound-
ary conditions are assumed for the sake of simplicity. The domain is de-
composed along the rows and preliminarily assigned to the available nodes.
This phase is managed by the OpenCAL-CLM component through MPI
over the interconnection network. In turn, each sub-domain is further parti-
tioned among the available GPUs by considering a similar data partitioning
scheme, relying on OpenCL (for the pure multi-GPU implementation) or on
MPI (for the hybrid MPI/OpenCL solution on the single node). Note that
the library permits for non-uniform domain partitioning (e.g., the user can
assign more rows to more performing GPU devices) in order to balance the
workload among nodes/GPUs with different computational capabilities.

Halos exchange is transparently managed by OpenCAL-CL/CLM, by
exploiting the PCI Express bus (in case of halos residing on two or more
GPUs on the same node) and/or the interconnection network. Preliminarily,
substates’s halos are packed in order to reduce communication latency and
to maximize the bandwidth. Nevertheless, communication time can sensibly
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Figure 4.4: Domain decomposition adopted by the multi-node/multi-GPU re-
lease of OpenCAL. The figure shows the adopted row-major order
decomposition of a two-dimensional computational domain for the
case of a dual-node cluster, with two GPUs per node. MPI is
adopted for halo exchange over the interconnection network. Each
sub-domain can be further partitioned among the available GPUs
within the node by considering the same partitioning scheme. At
node level, either OpenCL (for a pure multi-GPU implementation)
or MPI (for a hybrid OpenCL/MPI multi-GPU implementation)
can be used for halo exchange. In this example, a homogeneous
computing system is assumed, therefore data is equally partitioned
among the available GPUs. However, in real systems, non-uniform
partitions can be adopted.
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grow according to number and type of involved substates. In summary, for
a halo exchange to take place, it is necessary to:

1. Pack and upload boundary data of all defined substates to the CPU
(device to host memory transfer);

2. If the GPUs involved in the communications are controlled by different
nodes, an extra communication step over the network is performed
between the two nodes;

3. Unpack and upload boundary data to the receiving GPU (host to
device memory transfer).

Note that, if multi-GPU execution entirely relies on OpenCAL-CL, the
host application is involved in the halo exchange among the GPUs, as usually
occurs in OpenCL applications. In this case, the process is serialized host-
side, as for the OpenCL API specifications, even if non-blocking enqueueing
read/write calls are considered. As known, the same host-side serial policy
can be found in the OpenGL graphics API and represents one of the rea-
sons that led Khronos Group (i.e. the consortium that defines the OpenCL
and OpenGL API specifications, beside others) to propose the new Vulkan
compute/graphics unified API, which can exploit the parallelism both host-
and device-side. As a consequence, non-optimal exploitation of host-side
resources could be achieved by OpenCAL-CL in multi-GPU systems. Nev-
ertheless, the previously mentioned hybrid approach can be alternatively
adopted to exploit parallelism also at CPU level, where OpenCAL-CLM
can be used to run a single-GPU OpenCAL-CL process for each GPU in the
node.
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4.2 OPS

OPS (Oxford Parallel library for Structured grid computation), developed
by the University of Oxford (UK), is a high-level abstraction framework
based on DSL (Domain Specific active Library), targeting computation on
multi-block structured meshes. OPS supports both C/C++ and Fortran
languages, the most widespread languages on scientific applications. The
main aim of OPS is to separate the abstract definition of the computation
from its parallel implementations and execution. The OPS abstraction per-
mits to concentrate the effort only on the development of the sequential
code, totally delegating the generation of parallel code to the library. To
exploit different parallel architectures and to organize execution and data
movement, OPS uses a combination of two fundamental techniques: code
generation and back-end logic. The code generation (defined also as the
source-to-source translator) transforms the sequential OPS application to
different parallel implementations and the back-end logic is used to organize
the execution and the communication in order to satisfy data dependencies
and to improve parallelism, locality or resilience [104]. The OPS workflow
is described by Figure 4.5. Initially, the developer implements a structured
mesh application using the OPS C/C++ API. Subsequently, the code gen-
erator automatically creates the platform specific optimized parallel imple-
mentations. The generated code is compiled by the corresponding compiler
architecture, such as icc, gcc or nvcc, and linked against the platform spe-
cific back-end. At the end of the process, the application is executed on the
target architecture(s).

The reached near-optimal OPS performance and the handled wide range
of parallel architectures have been achieved by a good level of abstraction.
In particular, the OPS abstraction is composed of four principal elements:

1. Blocks: defined by a dimensionality, is a collection of structured grid
blocks.

2. Datasets: data on the blocks, identifies by a size.

3. Halos: description of the interface between datasets defined on differ-
ent blocks.

4. Computations: description of a computation operation to grid points.

The definition of blocks, datasets, halos, and computations are assisted
by the OPS API, facilitating the definition of the abstract model. One of
the aims of OPS is to improve the long-term maintenance of the code. For
this reason, the user programs only a traditional single-threaded sequential
application, defining at a high level the data and the computation. The
principal OPS API is illustrated by the following functions:
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Figure 4.5: OPS workflow (from [92]).

• ops block ops decl block(num dims, ...) defines a structured
block.

• ops dat ops decl dat(block, size, ...) defines a dataset on a
given block with a specific size.

• ops halo ops decl halo(...) defines a halo between the datasets
on different blocks.

• void ops par loop(void (*kernel)(...), block, ndim, range[],

arg1, ... ,argN) defines a parallel loop on a given block, compu-
tating the user kernel kernel on the grid point.

• ops arg ops arg dat(dataset, stencil) defines the data for the
computation and the stencil which defined the way how to access
the data on the grid.

• ops arg ops arg gbl(data, size, type, access) defines global data
that are independent from the datasets and blocks.

Listing 4.6 shows how to declare a two-dimensional block with a dataset of
2 × 6 size.

1 ops b lock block = op s d e c l b l o c k (2 , ” block ” ) ;
2

3 i n t ha lo neg [ ] ={0 ,0} ;
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4 i n t ha lo pos [ ] = {1 ,0} ;
5 i n t s i z e [ ] = {2 ,6} ;
6 i n t base [ ] = {0 ,0} ;
7

8 ops dat datase t = ops de c l da ta ( block , 1 , s i z e , base , ha lo pos ,
halo neg , ” double ” , ” datase t ” ) ;

Listing 4.6: Block and data defition in OPS.

The definition of the computation, through the OPS API, can be im-
plemented by the ops par loop function that represents an interface where
the user defines the grid points to apply the user kernel. Moreover, data is
defined by the ops arg dat function, specifying the type, the access speci-
fication, and the stencil points. Listing 4.7 shows a classical sequential loop
for the computation on a domain defined by the dim array. Listing 4.8 points
out the definition of the same computation with OPS API. In particular,
the user kernel is identified by the compute function, the variable a and b

are the pointers to the dataset, where a one-point and a three-point stencil
have been applied, respectively, and the OPS ACC macros are used to the
index offset to access the different point stencil.

1 i n t dim [ 4 ] = {23 ,45 ,23 ,45} ;
2 f o r ( i n t j = dim [ 2 ] ; j < dim [ 3 ] ; j++)

3 f o r ( i n t i = dim [ 0 ] ; i < dim [ 1 ] ; i++)

4 {
5 a [ j ] [ i ] = b [ j ] [ i ]

6 + b [ j +1] [ i ]

7 + b [ j ] [ i +1] ;

8 }

Listing 4.7: Example of
sequential
computation in
C++.

1 void compute ( double∗ a , double∗ b){
2 a [OPS ACC0(0 ,0 ) ] = b [OPS ACC1(0 ,0 ) ]

3 + b [OPS ACC1(0 ,1 ) ]

4 + b [OPS ACC1(1 ,0 ) ] ;

5 }
6
7 . . .

8
9 i n t dim [ 4 ] = {23 ,45 ,23 ,45} ;

10
11 ops par l oop ( compute , block , 2 , dim ,

12 ops arg dat (a , S2D 0 , ”double ” ,

OPS WRITE) ,

13 ops arg dat (b , S2D 1 , ”double ” ,
OPS READ) ) ;

Listing 4.8: OPS
implementation
of the example in
Listing 4.7.

4.2.1 Code Generation

Once the development of the sequential application has been implemented
in OPS, the user can generate the parallel code. Figure 4.6 illustrates the
genaration process. The OPS source-to-source translator takes as input the
sequential code, then the API calls in the application are parsed and a mod-
ified parallel program is generated. The source-to-source code translator is
written in Python and only needs to recognize OPS API calls. Moreover, the
code generator is human readable which helps with maintenance, longterm
support and the introduction of new optimisations. Currently, OPS parallel
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Figure 4.6: Genaration process of a OPS application.

code generation supports:

• single threaded vectorized CPUs;

• multi-threaded CPUs/SMPs using OpenMP;

• single GPUs (OpenCL, OpenMP 4, CUDA);

• distributed memory clusters of GPUs(OpenCL, CUDA) using MPI;

• distributed memory clusters of single threaded CPUs using MPI;

• a cluster of multi-threaded CPUs using MPI and OpenMP.

4.2.2 The Cloverleaf Benchmark in OPS

Developed by AWE (Atomic Weapons Establishment) [1], Cloverleaf 4.3.2.1
is a hydrodynamics simulator. It is part of the Mantevo software suite [6],
an integrated collection of small software programs (mini-apps) that model
the performance of full-scale applications. Many companies have been part
of the Mantevo projects such as Intel, IBM, NVIDIA, AMD, Cray along
with other universities and laboratories. The scope of the Mantevo project
was to use the collection of mini-apps for rapid design-space exploration in
the development of the next generation of high-performance computers. In
general, scientific applications are composed of a thousand of lines of code,
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usually not easy to read, and with only a few lines of code which impacts on
the performance. For this reason, the Mantevo mini-app has been split in
small fragments, keeping the same performance profile and pointing out the
most time consuming computational operations. The provided re-designed
applications allowed the high-performance community to develop tools to
accelerate and improve the design of high-performance computers [64].

This section illustrates the porting of Cloverleaf in OPS by describing
the main development stages. As discussed in 4.2, OPS separates the ab-
stract definition of the computation from its parallel implementations and
execution. Thus, the specification of the problem can be split into four dis-
tinct parts: (1) structured blocks, (2) data defined on blocks, (3) stencils
defining how data is accessed and (4) operations over blocks [93]. The first
step defines, by using the ops decl block API call, the dimensionality of
the regular mesh where the computation will be carried out. Since Cloverleaf
works on many data arrays (e.g., density, energy, x and y velocities of the
fluid), the ops decl dat API call is used to declare the density0,energy0,
..., pressure and vol ops dats variables. Defining the ops dat, the user
totally delegates OPS framework for data management. OPS automatically
will arrange the optimal memory layout to gain the best performance on the
execution hardware. Listing 4.9 illustrates the OPS Cloverleaf code for the
definition of the ops block and ops dat variables.

1 i n t dims [ 2 ] = { x c e l l s +5, y c e l l s +5};
2

3 /∗ Declare a s i n g l e s t ruc tu r ed block ∗/
4 ops b lock c l g r i d = op s d e c l b l o c k (2 , dims , ” c l o v e r g r id ” ) ;
5

6 i n t d p [ 2 ] = {−2,−2};
7 i n t d m [ 2 ] = {−2,−2};
8 i n t s i z e [ 2 ] = { x c e l l s +5, y c e l l s +5};
9

10 double ∗ dat = NULL;
11

12 /∗ Declare data on block ∗/
13 ops dat dens i ty0 = ops de c l da t ( c l g r i d , 1 , s i z e , d m , d p , dat , ”

double ” , ” dens i ty0 ” ) ;
14 ops dat energy0 = op s de c l da t ( c l g r i d , 1 , s i z e , d m , d p , dat , ”

double ” , ” energy0 ” ) ;
15 . . .
16 . . .
17 ops dat p r e s su r e = op s de c l da t ( c l g r i d , 1 , s i z e , d m , d p , dat , ”

double ” , ” p r e s su r e ” ) ;
18 ops dat volume = ops de c l da t ( c l g r i d , 1 , s i z e , d m , d p , dat , ” double

” , ”volume” ) ;

Listing 4.9: Definition of block and data in the OPS implementation of
Cloverleaf.
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Generally, an intensive computation over a structure grid mesh appli-
cation can be defined as operations over a specific block. Thus, this corre-
sponds to a loop over the defined block, accessing the data through a stencil,
performing the computation and at the end, writing back the results the de-
fined data arrays. For example, examining the ideal gas kernel from the
Fortran code, a computation over each point of the structured mesh is ex-
ecuted (Figure 4.11) [92]. The computation loop can be defined in OPS
using the ops par loop API call, specifying the computation by a pointer
function, the block ranges and the ops arg dat data arrays where the com-
putation will be applied. The figure below represents the definition of the
ideal gas kernel in OPS.

1 DO k=y min , y max
2 DO j=x min , x max
3 v=1.0/ dens i ty ( j , k )
4 pre s su r e ( j , k ) =(1.4−1.0)∗ dens i ty ( j , k ) ∗ energy ( j , k )
5 pressurebyenergy =(1.4−1.0)∗ dens i ty ( j , k )
6 pressurebyvolume=−dens i ty ( j , k ) ∗ pre s su r e ( j , k )
7 sound speed squared=v∗v∗( p r e s su r e ( j , k ) ∗pressurebyenergy

−pressurebyvolume )
8 soundspeed ( j , k )=SQRT( sound speed squared )
9 ENDDO

10 ENDDO

Listing 4.10: CloverLeaf ideal gas kernel as implemented in Fortran.

1 /∗ i d e a l g a s user ke rne l ∗/
2 void i d e a l g a s k e r n e l ( const double ∗ dens i ty , const double ∗

energy ,
3 double ∗ pressure , double ∗ soundspeed ) {
4

5 double sound speed squared , v , pressurebyenergy ,
pressurebyvolume ;

6

7 v = 1.0/ dens i ty [OPS ACC0(0 , 0 ) ] ;
8 pre s su r e [OPS ACC2(0 , 0 ) ] = (1 .4 −1 .0) ∗ dens i ty [OPS ACC0(0 , 0 ) ]∗

energy [OPS ACC1(0 , 0 ) ] ;
9 pressurebyenergy = (1.4 −1 .0) ∗ dens i ty [OPS ACC0(0 , 0 ) ] ;

10 pressurebyvolume = −dens i ty [OPS ACC0(0 , 0 ) ]∗ pre s su r e [OPS ACC2
(0 , 0 ) ] ;

11 sound speed squared = v∗v∗( p r e s su r e [OPS ACC2(0 , 0 ) ]∗
pressurebyenergy−pressurebyvolume ) ;

12 soundspeed [OPS ACC3(0 , 0 ) ] = sq r t ( sound speed squared ) ;
13 }
14

15 i n t rangexy inner [ ] = {x min , x max , y min , y max } ; //mesh
execut ion range
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16

17 /∗ s i n g l e po int s t e n c i l ∗/
18 i n t s2D 00 [ ] = {0 ,0} ;
19 o p s s t e n c i l S2D 00 = o p s d e c l s t e n c i l ( 2 , 1 , s2D 00 , ”00” ) ; //

de c l a r e an o p s s t e n c i l
20

21 /∗ example 4 po int s t e n c i l ∗/
22 i n t s2D 4POINT [ ] = {0 ,1 , 1 ,0 , −1 ,0 , 0 ,−1} ;
23 o p s s t e n c i l S2D 4POINT = op s d e c l s t e n c i l ( 2 , 1 , s2D 4POINT , ”

0 ,0 :1 ,0 :−1 ,0 :0 ,−1 ” ) ;
24

25 /∗ example o f s t r i d ed s t e n c i l in y∗/
26 i n t str2D y [ ] = {0 ,1} ;
27 o p s s t e n c i l S2D STRIDE Y = op s d e c l s t r i d e d s t e n c i l ( 2 , 4 ,

s2D 00 , str2D y , ” s 2D 00 s t r i d e y ” ) ;
28

29 /∗ i d e a l g a s loop ∗/
30 ops pa r l oop ( i d e a l g a s k e r n e l , ” i d e a l g a s k e r n e l ” , c l o v e r g r i d ,

2 , rangexy inner ,
31 ops a rg dat ( dens i ty0 , S2D 00 , ” double ” , OPS READ) ,
32 ops a rg dat ( energy0 , S2D 00 , ” double ” , OPS READ) ,
33 ops a rg dat ( pres sure , S2D 00 , ” double ” , OPS WRITE) ,
34 ops a rg dat ( soundspeed , S2D 00 , ” double ” , OPS WRITE) ) ;

Listing 4.11: CloverLeaf ideal gas kernel as implemented in OPS.

In particular, the macros OPS ACC0, OPS ACC1, OPS ACC2, etc. will be re-
solved to the relevant array index to access the data stored in density0,

energy0, pressure, etc. arrays. The OPS READ specifies the data as read-
only, thus avoiding useless memory update. In this example, only ops arg dat

variables are used, but a similar function ops arg gbl can be use to indi-
cate global reductions. The code below shows an example of OPS reduction
through the defintion of the ops arg reduce and specifying the OPS MIN

parameter to obtain the global minimum and store the result inside the
local dt variable.

1 op s pa r l o op c a l c d t k e r n e l m i n (
2 ” c a l c d t k e rn e l m in ” , c l o v e r g r i d , 2 , rangexy inner ,
3 ops a rg dat ( work array1 , 1 , S2D 00 , ” double ” , OPS READ) ,
4 ops a rg r educe ( l o c a l d t , 1 , ” double ” , OPS MIN) ) ;

Listing 4.12: An ops par loop using ops arg reduce.

4.2.3 Cloverleaf Porting Effort

The main porting effort was performed manually, by extracting the user
kernels, keeping the naming conventions of routines and files as similar to
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the original as possible [93]. The converted OPS Cloverleaf was composed
by 80 ops pas loop with about 7000 lines of code. After the conversion, the
application was validated with a single thread execution, linking the OPS
back-end library and using conventional compilers (such as gcc, clang).

As known, the development of a sequential application is simpler to
debug and validate respect to a parallel one. Moreover, OPS does not re-
quire any parallel knowledge from the user, the only effort resides on the
development of the serial application. The user programming cost is re-
warded by the benefits of the different automatic parallel generated ap-
plications. The current parallel computing models implemented in OPS
are: single threaded vectorized CPUs, multi-threaded CPUs/SMPs using
OpenMP, NVIDIA GPUs using CUDA and OpenACC, OpenCL devices
such as AMD GPUs, the Intel XeonPhi, etc. distributed memory clusters
of single threaded CPUs using MPI a cluster of multi-threaded CPUs using
MPI and OpenMP and a cluster of GPUs using MPI and CUDA.

The user can generate the parallel code just calling the code generator
and passing the source files. The following code 4.13 illustrates the call of
the source-to-source translator for the Cloverleaf application:

1 . . / . . / . . / o p s t r a n s l a t o r /c/ops . py c l o v e r l e a f . cpp r ev e r t . cpp
r e s e t f i e l d . cpp i d e a l g a s . cpp PdV. cpp a c c e l e r a t e . cpp
adv e c c e l l . cpp a c c e l e r a t e . cpp advec mom . cpp c a l c d t . cpp
f ie ld summary . cpp f l u x c a l c . cpp v i s c o s i t y . cpp
i n i t i a l i s e c h u n k . cpp generate . cpp update ha lo . cpp

Listing 4.13: Command for the OPS code generator invocation.

The code is automatically parsed by every parallel computing Python
model, creating in the same application location, different folders containing
the generated parallel code. The main advantage of OPS DSL library is the
drawing up to the future architectures. In fact, a new parallel model can be
added to OPS just developing a new parallel computing model.

4.2.4 The CUDA Parallel Model in OPS

As all other parallel programming models, the CUDA code is automatically
generated by the source-to-source translator, parsing every ops par loop

and generating a *.cu file containing the host and device code. Through
the ops dec dat function, OPS allocates the data on both CPU and GPU
side. Moreover, OPS has been designed to avoid the performance bottle-
neck produced by the PCIe bus, preventing unnecessary data passing. Fur-
thermore, a specific code is also generated to handle global reduction and
global constants [92]. OPS reduct h and OPS reduct d are host and device
pointers pointing to the memory reserved for the reductions. The kernel
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function ops reduction<OPS MIN>(...) performs the reduction on each
thread-block. Eventaully, the global constants on the GPU required spe-
cial handling, as they were declared on the GPUs constant memory and
for access via the GPUs read-only cache. Listing 4.14 shows the CUDA
code generated from the OPS source-to-source translator of the Cloverleaf
ideal gas kernel function.

1 // user ke rne l
2 d e v i c e void i d e a l g a s k e r n e l ( const double ∗dens ity , const double ∗energy ,
3 double ∗pressure , double ∗ soundspeed ) {
4
5 double sound speed squared , v , pressurebyenergy , pressurebyvolume ;
6 v = 1 .0 / dens i ty [OPS ACC0(0 ,0 ) ] ;
7 p r e s su r e [OPS ACC2(0 ,0 ) ] = (1 . 4 − 1 . 0 ) ∗ dens i ty [OPS ACC0(0 ,0 ) ] ∗ energy [OPS ACC1

(0 ,0 ) ] ;
8 pressurebyenergy = (1 . 4 − 1 . 0 ) ∗ dens i ty [OPS ACC0(0 ,0 ) ] ;
9 pressurebyvolume = −∗dens i ty [OPS ACC0(0 ,0 ) ] ∗ pre s su r e [OPS ACC2(0 ,0 ) ] ;

10 sound speed squared = v∗v∗( p r e s su r e [OPS ACC2(0 ,0 ) ] ∗ pressurebyenergy−
pressurebyvolume ) ;

11 soundspeed [OPS ACC3(0 ,0 ) ] = sq r t ( sound speed squared ) ;
12 }
13
14
15
16 g l o b a l void o p s i d e a l g a s k e r n e l (
17 const double∗ r e s t r i c t arg0 , const double∗ r e s t r i c t arg1 , double∗ r e s t r i c t

arg2 , double∗ r e s t r i c t arg3 , i n t s i z e0 , i n t s i z e 1 ){
18 in t idx y = blockDim . y ∗ blockIdx . y + threadIdx . y ;
19 i n t idx x = blockDim . x ∗ blockIdx . x + threadIdx . x ;
20 arg0 += idx x ∗ 1 + idx y ∗ 1 ∗ xd im0 id ea l g a s k e rn e l ;
21 arg1 += idx x ∗ 1 + idx y ∗ 1 ∗ xd im1 id ea l g a s k e rn e l ;
22 arg2 += idx x ∗ 1 + idx y ∗ 1 ∗ xd im2 id ea l g a s k e rn e l ;
23 arg3 += idx x ∗ 1 + idx y ∗ 1 ∗ xd im3 id ea l g a s k e rn e l ;
24
25 i f ( idx x < s i z e 0 && idx y < s i z e 1 ) {
26 i d e a l g a s k e r n e l ( arg0 , arg1 , arg2 , arg3 ) ;
27 }
28 }
29
30
31
32 // host stub func t i on
33 void o p s p a r l o o p i d e a l g a s k e r n e l ( char const ∗name , ops b lock Block , i n t dim ,

i n t ∗ range ,
34 ops arg arg0 , ops arg arg1 , ops arg arg2 , ops arg arg3 ) {
35 . . .
36 . . .
37 i n t x s i z e = end [0]− s t a r t [ 0 ] ;
38 i n t y s i z e = end [1]− s t a r t [ 1 ] ;
39 . . .
40 . . .
41 dim3 gr id ( ( x s i z e −1)/OPS block s i ze x+ 1 , ( y s i z e −1)/OPS block s i ze y + 1 ,

1) ;
42 dim3 block ( OPS block s ize x , OPS block s ize y , 1 ) ;
43 . . .
44 . . .
45 ops H D exchanges cuda ( args , 4) ;
46
47 // c a l l k e rne l wrapper funct ion , pass ing in po in t e r s to data
48 op s i d e a l g a s k e r n e l <<<gr id , b lock >>> ( ( double ∗) p a [ 0 ] , ( double ∗) p a [ 1 ] ,
49 ( double ∗) p a [ 2 ] , ( double ∗) p a [ 3 ] , x s i z e , y s i z e ) ;
50
51 op s s e t d i r t y b i t c ud a ( args , 4) ;
52 . . .
53 . . .
54 }

Listing 4.14: Ideal gas kernel in OPS CUDA.
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4.2.5 The Developed OpenMP4 Based Version of OPS

In order to develop the OpenMP4 OPS extension, a new OPS source-to-
source translator was implemented. As explained in Section 4.2, OPS au-
tomatic parallelization is based on computation abstraction. In particular,
through the definition of the ops par loop, the user specifies the data do-
main and the computation. Since OPS is based on DSL, every OPS version
(such as CUDA, OpenCL, OpenACC, etc) interprets the ops par loop with
their own specific paradigms. In fact, to target modern high performance
architectures and to reach elevated performances, it is not sufficient to use a
single programming language. On the contrary, it is necessary to use a spe-
cific language related to the target device. The OpenMP4 aim is to simplify
the user programming effort, avoiding to switch to many programming lan-
guages and delegating the appropriate parallel translation to the compiler,
according to the chosen target device.

During the development of the OpenMP4 version of OPS, two C/C++
compilers were considered, which provide support the newer OpenMP spec-
ifications, namely Clang and IBM XL. Among them, Clang was considered
in the main development and tuning phases, while a subsequent porting was
performed to XL.

As specifically regard the use of Clang, two levels of optimizations were
exploited: compiler optimization and source code optimization. Regarding
the compiler optimization, the combined construct directive was exploited
[20]. It represents an optimized alternative to the default OpenMP code
generator that allows to obtain more efficient parallel code. The example
shown in Listing 4.15 presents a target region that can achieve the best
performance by the Clang combined construct, since it is characterized by
the following features:

• There is no team master only region, except the distribution of loop
blocks to team masters;

• There is no data sharing within a team;

• There are no function calls and, as such, no possible nested OpenMP
pragmas.

1 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r schedu le ( s t a t i c
, 1 )

2 f o r ( i n t i = 0 ; i< n ; i++)
3 a [ i ]=b [ i ]+c [ i ] ;

Listing 4.15: Example of combined contruct directive.
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Under these conditions, the generated parallel code is highly efficient, as
shown in Listing 4.16. The generated code uses a CUDA-like notation. The
implementation has no calls to the OpenMP runtime and it has no needs
to coordinate threads over an OpenMP region. It has been determined that
the combined construct should give the best performance for the NVIDIA
target device, by minimizing the number of register occupancy [63].

1 f o r ( i n t idx = threadsIdx . x + blockId . x ∗ blockDim . x ; idx < n ;
idx += blockDim . x∗gridDim . x )

2 a [ idx ] = b [ idx ] + c [ idx ] ;

Listing 4.16: Clang CUDA-like generated parallel code of Listing 4.15.

Another important Clang optimization regarded the number of adopted
registers per thread, which can have a significant impact on performances
[11]. Generally, the compiler attempts to minimize the number of regis-
ter usage and, at the same time, keep the register spilling and number of
instructions to the minimum. During the development of the OpenMP4 ver-
sion of OPS, the number of registers was identified as one of the responsible
for performance degradation. Since the number of registers per thread is
closely linked to both the number of variables and instructions in the kernel
code, the number of OPS variables and instructions were reduced by dele-
gating the C pre-processor for some preliminary evaluations. For instance,
the source code of the OPS ACC function (that computes the index offsets
required to access the different stencil points) was replaced by a C macro,
by reducing both variables and instructions to be executed at run time.

Listing 4.17 shows the OpenMP4 translation of the calc dt min Clover-
leaf kernel.

1 #inc lude ” . /OpenMP4/ c lover l ea f common . h”
2 #inc lude <omp . h>
3 #de f i n e OPS GPU
4

5 extern i n t xd im0 ca l c d t ke rne l m in ;
6

7 #undef OPS ACC0
8

9 #de f i n e OPS ACC0(x , y )
\

10 ( n x ∗ 1 ∗ 1 + n y ∗ xd im0 ca l c d t ke rne l m in ∗ 1 ∗ 1 + x +
\

11 xd im0 ca l c d t ke rne l m in ∗ ( y ) )
12

13 // user func t i on
14

15 void ca l c d t k e rn e l m in c wrappe r ( double ∗p a0 , double ∗p a1 ,



4.2. OPS 92

i n t x s i z e ,
16 i n t y s i z e ) {
17 double p a1 0 = p a1 [ 0 ] ;
18 #i f d e f OPS GPU
19

20 #pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r map( tofrom :
p a1 0 ) \

21 r educt ion (min : p a1 0 )
22 #end i f
23 f o r ( i n t i = 0 ; i < y s i z e ∗ x s i z e ; i++) {
24 const i n t id = omp get num threads ( ) ∗
25 omp get team num () + omp get thread num ( ) ;
26 const i n t n x = id % x s i z e ;
27 const i n t n y = id / x s i z e ;
28 const double ∗dt min = p a0 ;
29

30 double ∗ dt min va l = &p a1 0 ;
31

32 ∗ dt min va l = MIN(∗ dt min val , dt min [OPS ACC0(0 , 0) ] ) ;
33 }
34 p a1 [ 0 ] = p a1 0 ;
35 }
36 #undef OPS ACC0

Listing 4.17: calc dt min kernel in OPS OpenMP4

In particular, the #pragma omp target teams distribute parallel for

exploited the Clang combined construct, by allowing to obtain efficient par-
allel code. The original double-nested kernel loop was collapsed in a single
for of x size*y size iterations and an explicit index calculation was per-
formed. The map(tofrom:p a1 0) clause was used to move the reduction
variable p a1 0 to and from the device, whereas the reduction(min:p a1 0)

clause was considered to compute the minimum value over the given data.
Memory operations have been also optimized, minimizing the communi-

cations between host and device, thus reducing the PCIe bottleneck between
CPU and GPU. At the begin, data is passed to the device using #pragma

omp target enter data map(to:*) directives, making the data available
to the all following target loops. Only the reduction variables are passed
back to the host at the end of each target directive, through the tofrom:*

option of the map clause. It is worth noticing that the user can not choose in
which kind of memory the data will transfer (global or local) to the GPU.
The OpenMP 4.5 implementation will choose which kind of memory use for
the transfer, usually the global one.

Moreover, many tests have been performed in order to find out the best
directive configuration to be adopted during the source-to-source transla-
tion. As known, the same directive configuration of a OpenMP program
may result in different perfomance depending on the considered compiler.
In fact, each compiler adopts its own OpenMP back-end. For instance, I no-
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ticed that the IBM XL compiler requires an additional and explicit map(to:)
before every target region, whereas Clang does not need it. These different
back-end implementations force the programmer to use different clauses and
techniques to adapt the code to the specific compiler, increasing effort to
gain the best performance with the same code. Therefore, to avoid loss of
performances in the OpenMP4 implementation of OPS with respect to the
Clang and XL compilers, I designed the source-to-source code generator to
adopt the best translation depending on the considered compiler. In order
to obtain the best result, the OPS COMPILER environment variable must be
set to the name of the compiler to use for the compilation. Listing 4.18
shows a snippet code from the source-to-source translator where is evident
the different management reserved to Clang and XL, while Listing 4.19 and
4.20 the generated code of the Cloverleaf calc dt kernel min kernel by the
Clang and XL compilers, respectively.

1 . . .
2
3 i f compi ler == ” clang ” :
4 l i n e = ”#pragma omp ta rg e t teams d i s t r i b u t e p a r a l l e l f o r ”
5 f o r n in range (0 , nargs ) :
6 i f a rg typ [ n ] == ’ op s a r g gb l ’ :
7 i f accs [ n ] <> OPS READ:
8 l i n e = l i n e + ’ map( tofrom : ’
9 l i n e = l i n e + ’ p a ’+s t r (n)+’ ’+s t r (d)+’ , ’

10 l i n e = l i n e [:−1]+ ’ ) ’
11 f o r n in range (0 , nargs ) :
12 i f arg typ [ n ] == ’ op s a r g gb l ’ :
13 i f accs [ n ] == OPS MIN:
14 f o r d in range (0 , i n t ( dims [ n ] ) ) :
15 l i n e = l i n e + ’ reduct ion (min : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
16 i f accs [ n ] == OPS MAX:
17 f o r d in range (0 , i n t ( dims [ n ] ) ) :
18 l i n e = l i n e + ’ reduct ion (max : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
19 i f accs [ n ] == OPS INC :
20 f o r d in range (0 , i n t ( dims [ n ] ) ) :
21 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
22 i f accs [ n ] == OPS WRITE: #th i s may not be c o r r e c t
23 f o r d in range (0 , i n t ( dims [ n ] ) ) :
24 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
25
26 i f compi ler == ” x l ” :
27 l i n e = ’#pragma omp ta rg e t teams ’
28 l i n e += ’map( to : ’
29 f o r n in range (0 , nargs ) :
30 i f arg typ [ n ] == ’ ops a rg dat ’ :
31 l i n e = l i n e + ’ p a ’+s t r (n)+’ [ 0 : to t ’+s t r (n)+’ ] , ’
32 i f arg typ [ n ] == ’ op s a r g gb l ’ :
33 i f accs [ n ] == OPS READ and ( not dims [ n ] . i s d i g i t ( ) or i n t ( dims [ n ] ) >1) :
34 l i n e = l i n e + ’ p a ’+s t r (n)+’ [ 0 : to t ’+s t r (n)+’ ] , ’
35 l i n e = l i n e [:−1]+ ’ ) ’
36 f o r n in range (0 , nargs ) :
37 i f arg typ [ n ] == ’ op s a r g gb l ’ :
38 i f accs [ n ] <> OPS READ:
39 l i n e = l i n e + ’ map( tofrom : ’
40 l i n e = l i n e + ’ p a ’+s t r (n)+’ ’+s t r (d)+’ , ’
41 l i n e = l i n e [:−1]+ ’ ) ’
42 l i n e = l i n e + ’map( to : ’
43 f o r nc in range (0 , l en ( cons t s ) ) :
44 i f re . search ( ’ [ a−zA−Z ] ’ , cons t s [ nc ] [ ’ dim ’ ] ) or ( i n t ( cons t s [ nc ] [ ’ dim ’ ] ) !=

1) :
45 num = s t r ( cons t s [ nc ] [ ’ dim ’ ] )
46 l i n e = l i n e + s t r ( cons t s [ nc ] [ ’name ’ ] ) . r ep l a c e ( ’ ” ’ , ’ ’ )+’ [ 0 : ’+num+’ ] , ’
47 l i n e = l i n e [:−1]+ ’ ) ’
48 f o r n in range (0 , nargs ) :
49 i f arg typ [ n ] == ’ op s a r g gb l ’ :
50 i f accs [ n ] == OPS MIN:
51 f o r d in range (0 , i n t ( dims [ n ] ) ) :
52 l i n e = l i n e + ’ reduct ion (min : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
53 i f accs [ n ] == OPS MAX:
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54 f o r d in range (0 , i n t ( dims [ n ] ) ) :
55 l i n e = l i n e + ’ reduct ion (max : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
56 i f accs [ n ] == OPS INC :
57 f o r d in range (0 , i n t ( dims [ n ] ) ) :
58 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
59 i f accs [ n ] == OPS WRITE: #th i s may not be c o r r e c t
60 f o r d in range (0 , i n t ( dims [ n ] ) ) :
61 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
62 l i n e = l i n e + ”\n#pragma omp d i s t r i b u t e p a r a l l e l f o r schedu le ( s t a t i c , 1) ”
63
64 f o r n in range (0 , nargs ) :
65 i f arg typ [ n ] == ’ op s a r g gb l ’ :
66 i f accs [ n ] == OPS MIN:
67 f o r d in range (0 , i n t ( dims [ n ] ) ) :
68 l i n e = l i n e + ’ reduct ion (min : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
69 i f accs [ n ] == OPS MAX:
70 f o r d in range (0 , i n t ( dims [ n ] ) ) :
71 l i n e = l i n e + ’ reduct ion (max : p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
72 i f accs [ n ] == OPS INC :
73 f o r d in range (0 , i n t ( dims [ n ] ) ) :
74 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
75 i f accs [ n ] == OPS WRITE: #th i s may not be c o r r e c t
76 f o r d in range (0 , i n t ( dims [ n ] ) ) :
77 l i n e = l i n e + ’ reduct ion (+: p a ’+s t r (n)+’ ’+s t r (d)+’ ) ’
78
79 . . .

Listing 4.18: Code snipped from the source-to-source translator where the code
generator adapts the best pragma configurations for the clang and
IBM XL compiler.
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1 #inc lude ” . /OpenMP4/ c lover lea f common .
h”

2 #inc lude <omp . h>
3 #de f i n e OPS GPU
4
5 extern in t xd im0 ca l c d t ke rne l min ;
6
7 #undef OPS ACC0
8
9 #de f i n e OPS ACC0(x , y )

\
10 ( n x ∗ 1 ∗ 1 + n y ∗

xd im0 ca l c d t ke rne l min ∗ 1 ∗ 1 +
x + \

11 xd im0 ca l c d t ke rne l min ∗ (y ) )
12
13 // user func t i on
14
15 void ca l c d t ke rne l m in c wrappe r (

double ∗p a0 , double ∗p a1 , i n t
x s i z e ,

16 i n t
y s i z e ) {

17 double p a1 0 = p a1 [ 0 ] ;
18 #i f d e f OPS GPU
19
20 #pragma omp ta rge t teams d i s t r i b u t e

p a r a l l e l f o r map( tofrom : p a1 0 )
reduct ion (min : p a1 0 )

21 #end i f
22 f o r ( i n t i = 0 ; i < y s i z e ∗ x s i z e ;

i++) {
23 const i n t id = omp get num threads

( ) ∗ omp get team num () +
omp get thread num () ;

24 const i n t n x = id % x s i z e ;
25 const i n t n y = id / x s i z e ;
26 const double ∗dt min = p a0 ;
27
28 double ∗dt min va l = &p a1 0 ;
29
30 ∗dt min va l = MIN(∗ dt min val ,

dt min [OPS ACC0(0 , 0) ] ) ;
31 }
32 p a1 [ 0 ] = p a1 0 ;
33 }
34 #undef OPS ACC0

Listing 4.19: Genereted code for
Clang compiler.

1 #inc lude ” . /OpenMP4/ c lover lea f common .
h”

2 #inc lude <omp . h>
3 #de f i n e OPS GPU
4
5 extern in t xd im0 ca l c d t ke rne l min ;
6
7 #undef OPS ACC0
8
9 #de f i n e OPS ACC0(x , y )

\
10 ( n x ∗ 1 ∗ 1 + n y ∗

xd im0 ca l c d t ke rne l min ∗ 1 ∗ 1 +
x + \

11 xd im0 ca l c d t ke rne l min ∗ (y ) )
12
13 // user funct i on
14
15 void ca l c d t ke rne l m in c wrappe r (

double ∗p a0 , i n t base0 , i n t tot0 ,
16

double ∗p a1 , i n t x s i z e , i n t
y s i z e ) {

17 double p a1 0 = p a1 [ 0 ] ;
18 #i f d e f OPS GPU
19
20 #pragma omp ta rge t teams map( to : p a0

[ 0 : tot0 ] ) map( tofrom : p a1 0 )
map( to : s t a t e s [ 0 :
number o f s ta te s ] ) r educt ion (min :
p a1 0 )

21 #pragma omp d i s t r i b u t e p a r a l l e l f o r
schedule ( s t a t i c , 1) reduct ion (min
: p a1 0 )

22 #end i f
23 f o r ( i n t i = 0 ; i < y s i z e ∗ x s i z e ;

i++) {
24 const i n t id = omp get num threads

( ) ∗ omp get team num () +
omp get thread num () ;

25 const i n t n x = id % x s i z e ;
26 const i n t n y = id / x s i z e ;
27 const double ∗dt min = p a0 + base0

;
28
29 double ∗dt min va l = &p a1 0 ;
30
31 ∗dt min va l = MIN(∗ dt min val ,

dt min [OPS ACC0(0 , 0) ] ) ;
32 }
33 p a1 [ 0 ] = p a1 0 ;
34 }
35 #undef OPS ACC0

Listing 4.20: Genereted code for
IBM XL compiler.

4.3 Applications

In the following, a series of HPC applications are illustrated, which were
adopted for benchmarking the considered DSLs in this thesis. The related
computational results are discussed in detail in Chapter 5.

4.3.1 OpenCAL Benchmarks

4.3.1.1 The Sobel Edge Detection Filter

The Sobel edge detection filter belongs to the wide family of convolutional
graphics filters [110, 61], commonly used to modify the spatial frequency
characteristics of an image. In general, the filtering is applied to each point of
the domain (i.e., to each pixel of the image) and consists of determining the
new value of the point as the weighted summation of its neighbors. For this
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(a) (b)

Figure 4.7: Example of application of the Sobel edge detection convolutional
graphics filter. (a) Original bitmap (https://en.wikipedia.org/
wiki/Sobel_operator). (b) Result after the application of the
Sobel filtering process.

purpose, a (usually small square) matrix K, called kernel of the convolution,
defining the weights to be used, is considered. Formally, convolution can be
expressed by the following formula:

f ′ij =
n−1∑
i′=0

m−1∑
j′=0

f(i+i′−n/2)(j+j′−m/2)k(i′−n/2)(j′−m/2) (4.1)

where fij and f ′ij are the old and new value of the point at coordinate (i, j),
respectively, m and n the vertical and horizontal size of the kernel, while kij
is the value of kernel at location (i, j).

In the case of the Sobel edge detection filter, a two-step process is con-
sidered, one per each (horizontal and vertical) direction. Accordingly, the
following two kernels are adopted:

Kx =

 −1 0 1
−2 0 2
−1 0 1

 Ky =

 1 2 1
0 0 0
−1 −2 −1


and applied separately to produce separate measurements, Gxij and Gyij ,
of the gradient component in each orientation, by applying Equation 4.1.
These values are eventually combined to find the absolute magnitude of the

gradient at each point as f ′ij =
√
G2
xij +G2

yij .

Figure 4.7 shows an example of an application of the Sobel edge detection
filter to the red channel of a sample image. For the purpose of this work,
however, the filter, as implemented in OpenCAL, was applied to the single
channel of the gray-scale image in Figure 4.8 (cmp. Section 4.3.1.2).

https://en.wikipedia.org/wiki/Sobel_operator
https://en.wikipedia.org/wiki/Sobel_operator
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Figure 4.8: A Julia fractal set consisting of 15,000 x 15,000 pixels. Divergent
pixels are in gray tones, with clearer tones identifying points di-
verging faster, while convergent pixels are in black.

4.3.1.2 The Julia Set Fractal Generator

Julia sets [24] are examples of fractals generated by mapping the discrete
points (or pixels) of a grid C = {(x, y) | 0 ≤ x < Sx, 0 ≤ y < Sy} to a
rectangular region of the complex plane by applying the rule z0 = z0(x, y) =
Re(x) + Im(y)i, where i2 = −1 and Re(x) and Re(y) are functions of the
x and y coordinates, respectively. Subsequently, z0 is iteratively updated
by considering a recurrence formula of the kind zn+1 = z2n + c, where c
is a complex parameter. By changing c, different Julia sets are obtained.
The iterative process ends when the z module becomes greater than a given
threshold T ∈ R (in this case the point (x, y) is said to be divergent and does
not belong to the set), or after a predefined number of iterations N (in this
case the point is said to be convergent and belongs to the set). Formally,
the Julia set of the grid C can be defined as:

J(C) = {z ∈ C : |zn| < T, ∀n ≤ N}

Figure 4.8 shows the fractal considered in this work. It was obtained by
considering c = −0.391 +−0.587i, and by mapping the discrete points of a
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15, 000× 15, 000 grid (i.e. Sx = Sy = 15, 000) as:

Re(z) =
3(x− Sx

2 )

KSx

Im(z) =
2(y − Sy

2 )

KSy

where the zoom factor K was set to 3. Eventually, the theshold T was set
to the value 103 and N = 104 iterations were considered to evaluate the
process of convergence.

4.3.1.3 The SciddicaT Landslide Simulation Model

SciddicaT is a classic example of Extended Cellular Automata model for
simulating fluid-flows [15]. The model is extremely simple and fast. Nev-
ertheless, it demonstrated to be able to properly simulate non inertial real
phenomena like landslides on complex topographic surfaces. In brief, six
information layers account for main system’s characteristics, while three el-
ementary processes determine its dynamical evolution. In the XCA formal-
ism, information layers are expressed in terms of substates (i.e., as double
buffered matrices, used alternatively for read and write access and swapped
after the application of each elementary process). Specifically, they are: Qz,
which stores the information about the cell’s altitude, Qh representing the
fluid thickness, and Q4

o being the outflows from the central cell to the four
neighbors (belonging to the von Neumann neighborhood). The system’s
evolution is thus obtained by applying the following elementary processes
simultaneously to each cell of the computational domain:

• σ1 : (Qz × Qh)5 × pε × pr → Q4
o computes outflows from the central

cell to the four neighbors by applying the minimization algorithm of
the differences [47]. A preliminary control avoids the computation of
negligible outflows (i.e., if the fluid thickness is smaller than or equal to
a predefined threshold pε). If this is not the case, the outflows are given
by qo(0,m) = f(0,m)·pr (m = 0, . . . , 3), were f(0,m) are the outgoing
flows towards the 4 adjacent cells, as evaluated by the minimization
algorithm, and pr ∈ ]0, 1] a relaxation rate factor considered to damp
outflows in order to obtain a smoother convergence to the system’s
global equilibrium. The Q4

o substates are updated accordingly with
the values of the computed outflows.

• σ2 : Qh × (Q4
o)

5 → Qh evaluates the new value of fluid thickness
inside the cell by considering mass exchange in the cell’s neighborhood:
ht+1(0) = ht(0) +

∑3
m=0(qo(0,m)− qo(m, 0)). Here, ht(0) and ht+1(0)

are the mass thickness inside the cell at the t and t+ 1 computational
steps, respectively, while qo(m, 0) represents the inflow from the n =
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(m+1)th neighbor. The Qh substate is updated accordingly to account
for the mass balance within the cell.

• σ3 : Q4
o → Q4

o resets the outflow substates (i.e., sets them to zero) for
the next computational step.

Figure 4.9: SciddicaT simulation of 100 flows over a 3,593 rows per 3,730
columns wide surface with square cells of 10 m side.

According to [15], the model parameters pε and pr were set to the values
0.001 and 0.5, respectively, and 100 flows were simulated for a total of 4,000
computational steps over a wide surface represented by a 3, 593 × 3, 730
DEM (Digital Elevation Model), with square cells of 10 m side. Outcomes
are shown in Figure 4.9.
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4.3.2 OPS Benchmarks

4.3.2.1 The Cloverleaf Hydrodynamics Model

As anticipated, CloverLeaf is part of the R&D Top 100 award winning Man-
tevo software suite [6]. The Mantevo hydrodynamics application investigate
the behavior and responses of materials when applied with varying levels of
stress. In particular, CloverLeaf uses a Lagrangian-Eulerian scheme to solve
Euler’s equations of compressible fluid dynamics in two spatial dimensions.
A system of three partial differential equations permits the conservation of
mass, energy and momentum. A fourth auxiliary equation of state is used to
close the system; CloverLeaf uses the ideal gas equation of state to achieve
this [82]. The equations are solved on a staggered grid (Figure 4.10 (a)) in
which each cell centre stores three quantities: energy, density and pressure;
and each node stores a velocity vector.

To solve the equations with second-order accuracy, an explicit Finite-
volume method has been used. The system is hyperbolic, meaning that the
equations can be solved using explicit numerical methods, without the need
to invert a matrix. Currently only single material cells are simulated by
CloverLeaf.

(a) (b) (c)

Figure 4.10: (a) Staggered grid. (b) Langrangian Step. (c) Advective remap.
Figure from [83]

The solution is advanced forward in time repeatedly until the desired
end time is reached. Unlike the computational grid, the solution in time
is not staggered, with both the vertex and cell data being advanced to the
same point in time by the end of each computational step. One iteration,
or timestep, of CloverLeaf proceeds as follows [82]:

1. A Lagrangian step advances the solution in time using a predictor-
corrector scheme, with the cells becoming distorted as the vertices
move due to the fluid flow;

2. An advection step restores the cells to their original positions and
calculates the amount of material which passed through each cell face.
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This procedure is accomplished using two sweeps, one in the horizontal
dimension and the other in the vertical, using the van Leer advection [122].
The direction of the initial sweep in each step alternates in order to preserve
second order accuracy. The computational mesh is spatially decomposed
into rectangular mesh chunks and distributed across processes within the
application, in a manner which attempts to minimise the communication
surface area between processes. Whilst simultaneously attempting to assign
a similar number of cells to each process to balance computational load.

(a) (b)

(c) (d)

Figure 4.11: Graphical view of Cloverleaf application. [2]

Data exchanges occur multiple times during each timestep, between log-
ically neighbouring processes within the decomposition. A global reduction
operation is required by the algorithm during the calculation of the mini-
mum stable timestep, which is calculated once per iteration.
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4.3.2.2 Tealeaf

TeaLeaf is a mini-app that solves the linear heat conduction equation on
a spatially decomposed regularly grid using a 5 point stencil with implicit
solvers. The temperatures are stored at the cell centres while a conduction
coefficient is calculated that is equal to the cell centred density or the recip-
rocal of the density. An implicit method has been used to solve the problem
due to the severe timestep limitations imposed by the stability criteria of an
explicit solution for a parabolic partial differential equation. As the approch
of mantevo projects, the computation has been broken down into “kernels”,
low level building blocks with minimal complexity. Each kernel loops over
the entire grid and updates the relevant mesh variables. Memory is sacrified
in order to increase performance, and any updates to variables that would
introduce dependencies between loop iterations are written into copies of
the mesh [7].



Chapter 5

Computational Results and
Discussion

This chapter presents the computational results achieved by the OpenCAL
and OPS releases. For this purpose, I considered the applications described
in Chapter 4, specifically a Sobel graphics edge detection filter, a Jiulia set
fractal generator and the SciddicaT slow-moving fluid flow simulation model
for OpenCAL. Instead, Tealeaf and Cloverleaf in two- and three-dimension
were considered for the OPS library. In particular, a single GPU/multi GPU
and single-Node/multi-GPU versions have been considered for OpenCAL
tests, using three different GPUs, such as NVIDIA K40, GTX 980 and Titan
Xp. Eventually, only a single GPU execution has been considered in OPS
experiments, exploiting a NVIDIA K40 and P100 GPUs and considering
different compilers such as Clang, IBM XL, OpenACC and nvcc.

5.1 OpenCAL Computational Results

The JPDM-SS dual node test cluster was adopted for evaluating the perfor-
mances of the OpenCAL-CL/CLM components. The cluster nodes, namely
JPDM-1 and JPDM-2, were interconnected by a Cisco Catalyst 3750 Series
switch via standard Gigabit Ethernet (with a theoretical bandwidth of 820
Gbit/s). JPDM-1 was equipped with two Intel E5-2650 Xeon CPUs, two
GTX 980 and one Tesla K40 Nvidia GPUs, while JPDM-2 with two E5440
Xeon processors and two Titan Xp Nvidia GPUs. In particular, the GTX
980 and the Titan Xp are game oriented graphics devices, while the Tesla
K40 is a compute-dedicated solution. This is confirmed by the theoretical
peak performances in single (fp32) and double (fp64) precision floating-point
operations. Specifically, the GTX 980 reaches 4.98 TFLOPS in fp32, which
drops to 0.156 TFLOPS in fp64. Similarly, the Titan Xp reaches the the-
oretical performance of 12.1 TFLOPS in single precision, value that drops
to only 0.378 TFLOPS in double precision. On the contrary, theoretical

103
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better fp64 performance characterizes the Tesla K40 solution, which pro-
vides 4.3 TFLOPS in fp32 and 1.43 TFLOPS in double precision. Other
specifications of the above many-core devices are: the GTX 980 (Maxwell
architecture) has 2048 CUDA cores, 4 GB global memory and 112 GB/s the-
oretical bandwidth communication for double precision data between CPU
and GPU, the Titan Xp (Pascal Architecture) device has 3840 cores, 12 GB
global memory and 273.85 GB/s bandwidth, while the Tesla K40 has 2880
cores, 12 GB global memory and 144 GB/s bandwidth.

A total of ten simulations were executed for each of the considered bench-
marks (cf. Section 4.3) by considering different hardware configurations,
ranging from single-node/single-GPU to multi-node/multi-GPU systems.
Integer values were adopted for the Sobel benchmark, while double-precision
floating point values were considered for the others, and speed-up evaluated
with respect to the elapsed times of the corresponding OpenCAL-based se-
rial implementation (as executed on the - more performing - Intel E5-2650
Xeon processor), by taking into account the minimum recorded times.

The compute/memory bound nature of the benchmarks was preliminar-
ily investigated. For this purpose, the algorithmic instruction/byte ratio r
was considered and compared with the so-called device-dependent balanced
instruction/byte ratio rd, this latter typically representing the number of
fp32 operations per byte issued in order to obtain peak compute and band-
width performance [123]. More specifically, if I (expressed in GInst/s) and
M (expressed in GB/s) are the peak instruction and memory throughput,
respectively, the balanced instruction/byte ratio is defined as rd = I/M .

Accordingly, by considering that the Tesla K40 has a total of 2880 cores,
each one with a frequency of 0.745 GHz, and by assuming that a fp32 opera-
tion is completed in 3 clock cycles, the theoretical fp32 instruction through-
put is I = 0.745 ∗ 2880/3 = 715.2 GInstr/s. By also considering that its
fp32 theoretical bandwidth is M = 288 GB/s, the fp32 theoretical balanced

ratio for the Tesla K40 is r
(fp32)
K40 = 715.2/288 = 2.83. This value is reduced

by one third in case of fp64 operations, since the number of double precision
units of the K40 is 960 (i.e., one third of the total amount of single precision
units which are 2880) [125]. The balanced ratio in case of fp64 is there-

fore r
(fp64)
K40 = 0.94. As for the Tesla K40, the same evaluations allowed to

evaluate the theoretical balanced ratios: r
(fp32)
GTX = 3.43, r

(fp64)
GTX = 0.1 (since

the fp64 units of the GTX 980 GPU are 1/32 of the fp32 ones). Moreover,

regarding the Titan Xp, we obtained: r
(fp32)
T itan = 3.7, r

(fp64)
Titan = 0.12 (since

fp64 units are 1/32 of the fp32 ones even for the Titan Xp). Eventually, we

assume r
(int)
∗ = r

(fp32)
∗ , where the * character is used as wildcard to indicate

any GPU here considered. The above evaluations are summarized in Table
5.1.

In order to evaluate the compute/memory bound nature of the developed
benchmarks, we assumed that an algorithm is considered as compute bound
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for a given GPU if its instruction/byte ratio r is greater than the device
balanced ratio rd, while it is memory bound in the other case.

rd fp32 fp64 int

GTX 980 3.43 0.1 3.43
Titan Xp 3.7 0.12 3.7
Tesla K40 2.83 0.94 2.83

Table 5.1: Balanced instruction/byte ratio for the GPUs adopted in this work.

By considering the N = 104 iterations adopted for evaluating the con-
vergence condition within the Julia elementary process, with a total of
4 calls to math instructions per iteration and only two memory accesses,
the instruction/byte ratio for the Julia benchmark was evaluated to be

r ≈ 13.333 · 103 >> r
(fp64)
∗ . The different orders of magnitude of the in-

struction/byte ratio with respect to the balanced one of all the considered
devices suggest that the benchmark can significantly take advantage of a
compute dedicated device.

In the case of Sobel, by considering that the only defined elementary
process executes 36 integer operations against a total of 21 memory accesses
(substate updating included), the instruction/byte ratio was evaluated to

be r ≈ 1.71 < r
(int)
∗ , pointing out a similar memory bound nature of the

benchmark with respect to the considered devices. Accordingly, computa-
tional devices with more recent architectures are expected to perform better
on this benchmark.

Eventually, SciddicaT exposed both kinds of bounds within its elemen-
tary processes. In particular, σ1 instruction/byte ratio was evaluated to be
about r = 1.4. This value was obtained by considering that the elemen-
tary process requires in average 21 fp64 operations and 15 memory accesses.
However, since a preliminary (optimization) control is applied, its applica-
tion is skipped for those cells with a negligible amount of fluid (cf. Section
4.3), being fully applied to about only the 3.9% of the domain cells during
the whole simulation (cf. also [33]). On the contrary, σ2 and σ3 were char-
acterized by a instruction/byte ratio of 0.8 and 0.0, respectively (i.e., no fp
operations are performed by σ3), thus resulting compute bound. By consid-
ering also the 36 memory accesses needed for updating purposes at the end
of each elementary process, the overall SciddicaT instruction/memory ratio
was evaluated to be r ≈ 0.17. In this case, the algorithm resulted compute
bound for the GTX 980 and the Titan Xp GPUs in a slight measure (since

r ≈ r(fp64)GTX ≈ r(fp64)T itan ), while more memory bound for the Tesla K40. Accord-
ingly, devices more similar in terms of fp64 balanced ratio, like the adopted
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Figure 5.1: Speed-ups achieved by the different OpenCAL-CL single-GPU ex-
ecutions of the Sobel, Julia and SciddicaT benchmarks. Elapsed
times in seconds are also shown on top of each speed-up bar. The
sequential reference times were taken on the JPDM-1 workstation
and are 1,431 s, 4,758 s and 5,015 s for the Sobel, Julia and Scid-
dicaT, respectively. The adopted GPUs are an Nvidia GTX 980,
Nvidia Titan Xp and Nvidia Tesla K40.

game-oriented GPUs, should run SciddicaT at almost their best, while the
compute dedicated Tesla k40 device should perform sub-optimally.

In the remaining part of this Section, computational results are pre-
sented, with reference to the adopted computing systems.

5.1.1 Single-Node/Single-GPU and Single-Node/Multi-GPU
Computational Results

The speed-up achieved by the three developed benchmarks on the three
available GPUs are shown in Figure 5.1. The figure reports also the elapsed
times in seconds on top of each speed-up bar. The Titan Xp outperformed
the GTX 980 in all tests, while the compute dedicated Tesla K40 performed
better on the Julia benchmark in absolute terms. Compared with its sequen-
tial implementation (as executed on JPDM-1, which is equipped with the
more performing CPUs), Julia ran about 89 times faster on the Tesla K40,
11 times faster on the GTX 980 and 36 times faster on the Titan Xp. On
the contrary, the other benchmarks performed better on the game-oriented
GPUs, as expected for the above consideration.



5.1. OPENCAL COMPUTATIONAL RESULTS 107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Sobel Julia SciddicaT

S
p
ee

d
-u

p
2 GTX 980 - multi-GPU

24.204

217.162

198.411

2 GTX 980 - 2 MPI procs

24.228

224.884

165.97

(a)

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

Sobel Julia SciddicaT

S
p
ee

d
-u

p

2 Titan Xp - multi-GPU

6.077

71.286

117.476

2 Titan Xp - 2 MPI procs

6.136

70.883

98.165

(b)

Figure 5.2: Speed-ups achieved by the different single-node/multi-GPU execu-
tions of the Sobel, Julia and SciddicaT benchmarks. Elapsed times
in seconds are also shown on top of each speed-up bar. The se-
quential reference times were taken on the JPDM-1 workstation
and are 1,431 s, 4,758 s and 5,015 s for the Sobel, Julia and Scid-
dicaT, respectively. An equal partitioning of the domain for each
benchmark was considered. (a) Results referred to the JPDM-1
node consisting of two GTX 980 GPUs. (b) Results referred to the
JPDM-2 node consisting of two Titan Xp GPUs.
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The second series of tests regarded the single-node/dual-GPU execution
on the JPDM-1 and JPDM-2 workstations. The Tesla K40 GPU was not
considered in these tests to maintain the dual-GPU systems perfectly bal-
anced. Accordingly, an equal partitioning of the computational domains
was adopted, by assigning an equal number of rows to each GPU. More-
over, two different types of execution were considered: a first one based on
a pure multi-GPU approach, where halos were directly exchanged by means
of OpenCL read/write buffer enqueueing operations on the PCI Express
bus, a second by a hybrid OpenCL/MPI approach, where two MPI pro-
cesses were considered for running two single-GPU OpenCAL-CL instances
and for halos management (which however occurred still on the PCI Ex-
press bus). It is worth to note that both the pure and hybrid execution
policies were obtained by simply changing few parameters in the (so-called)
OpenCAL cluster configuration file, with no changes required at source code
level. Figures 5.2-a and 5.2-b show the results achieved on aforementioned
workstations. The figures report also the elapsed times in seconds on top
of each speed-up bar. Superlinear effects were here observed for the Sobel
and SciddicaT benchmarks, probably due to typical cache issues effects. In
fact, the algorithms require the access to neighboring cells’ data, that can be
prefetched in cache. This is implicitly confirmed by the fact that the Julia
benchmark, which does not require the access to data besides the one refer-
ring the central cell, did not show superlinear speed-up. In absolute terms,
the dual Titan Xp system (JPDM-2) performed considerably better than
the dual GTX 980 one, with the (integer-based) Sobel application running
about four times faster. The other (double precision) benchmarks resulted
roughly two times faster on JPDM-2 with respect to JPDM-1.

It is worth to note that, independently from the workstation considered,
both types of execution produced similar results for the Sobel and Julia
models, while SciddicaT evidences an about 17% discrepancy in favor of the
OpenCL/MPI hybrid execution policy. The reason beneath these results can
be imputed to the host-side serial nature of OpenCL, as already discussed
in Section 4.1.5. The problem did not emerge for the Julia benchmark
since it did not require communications to take place during the compu-
tation, while it was of negligible entity for Sobel, where a low amount of
data and few messages were needed for each computational step. Eventu-
ally, the aforementioned discrepancy resulted with major evidence for the
SciddicaT model since the halos have bigger size and are also exchanged
more frequently (three times per step). Specifically, each Sobel communi-
cation required a total of 120 KB (only one integer substate is defined in
Sobel), while 358.08 KB were necessary for SciddicaT (six double-precision
subtates are defined in SciddicaT). Moreover, Sobel halo management re-
quired 8 read/write operations, versus the 48 ones required by SciddicaT.
These messages were managed by the host application serially in the pure
OpenCL-based execution policy (even if nonblocking OpenCL calls were
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used), while they were executed in parallel when the hybrid OpenCL/MPI
policy was considered. On the contrary, in case of hybrid execution, the two
MPI processes performed the halo management in parallel. In this manner,
the single process was devoted to only 24 halo exchanges for the case of
SciddicaT, by reducing the overall time spent in this process.

5.1.2 Multi-Node Multi-GPU Computational Results

Eventually, the dual-node JPDM-SS cluster was adopted for the final speed-
up tests with a total of four GPUs. Two execution policies were considered,
as for the single-node case. In the first one, MPI was considered for messages
that take place only between nodes, while OpenCL execution at multi-GPU
level, including halo exchange between the GPUs in the node. In the second,
MPI was considered for both for messages between the nodes and for halo
exchange at node level. Eventually, different domain partitionings where
considered between nodes to account for their different computational capa-
bilities, while the same amount of rows were assigned to the GPUs within
each node.
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Figure 5.3: Speed-ups achieved by the different multi-node/multi-GPU execu-
tions of the Sobel, Julia and SciddicaT benchmarks. Elapsed times
in seconds are also shown on top of each speed-up bar. The sequen-
tial reference times were taken on the JPDM-1 workstation and are
1,431 s, 4,758 s and 5,015 s for the Sobel, Julia and SciddicaT, re-
spectively. Non uniform domain partitionings was adopted in order
to balace the workload between the nodes. Optimal partitioning
corresponded to maximun network bandwidth (cf. Figure 5.4).
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Figure 5.3 shows the achieved speed-ups, together with the correspond-
ing execution times.The best results were achieved in correspondence of the
data partitioning that permitted to maximize the network bandwidth, as
expected. As an example, Figure 5.4 shows the bandwidth measured dur-
ing the SciddicaT execution on the different data partitions considered. In
relative terms, JPDM-SS exhibited better results with respect to its single
nodes for the Sobel and Julia benchmarks. The greater improvement was
registered for Sobel, which evidenced a speed-up of about 1.4 with respect to
JPDM-2 (i.e., the fastest node). Only SciddicaT showed a slight slow-down,
nevertheless performing 1.57 times better than JPDM-1. In this case, the
analysis of the obtained result is more difficult, due to the presence of the
interconnection network. The registered peak bandwidth of 41.3 MiB/s (cf.
5.4) does not saturate the Gigabit channel and therefore did not represent a
bottleneck in the SciddicaT execution. Nevertheless, as already asserted in
[33], the SciddicaT behavior on JPDM-SS can be attributed to the memory-
bound nature of the algorithm which requires a fast interconnection network
to minimize GPUs idle time.
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5.2 OPS Computational Results

This section shows the performance achieved by the new OpenMP4 based
version of OPS that I have designed and implemented. For this purpose,
the Cloverleaf (described in Section 4.3.2.1) and Tealeaf (described Section
4.3.2.2) applications were considered.

The Clang and IBM XL compilers have been taken into account to
buid both the library and the considered examples. Moreover, results have
been compared with those obtained by considering the OPS OpenACC and
CUDA versions. All tests have been performed on NVIDIA P100 and K40
GPUs. Table 5.2 illustrates the specifications of the adopted GPUs. Even-
tually, the compilers flags reported in Table 5.3 were considered.

Products Tesla K40 Tesla P100

GPU / Form Factor Kepler Pascal

SMs 15 56

TPCs 15 28

FP32 CUDA Cores / SM 192 64

FP32 CUDA Cores / GPU 2880 3584

FP64 CUDA Cores / SM 64 32

FP64 CUDA Cores / GPU 960 1792

Base Clock 745 MHz 1126 MHz

GPU Boost Clock 810/875 MHz 1303 MHz

FP32 GFLOPs 5040 9340

FP64 GFLOP 1680 4670

Texture Units 240 224

Memory Interface 384-bit GDDR5 4096-bit HBM2

Memory Bandwidth 288 GB/s 732 GB/s

Memory Size Up to 12 GB 16 GB

L2 Cache Size 1536 KB 4096 KB

Register File Size / SM 256 KB 256 KB

Register File Size / GPU 3840 KB 14336 KB

TDP 235 Watts 250 Watts

Transistors 7.1 billion 15.3 billion

GPU Die Size 551 mm 610 mm

Manufacturing Process 28-nm 16-nm

Table 5.2: Specifications of the Tesla K40 and P100 GPUs.
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Compiler Version Flags

PGI 17.1 -O3 -ta=nvidia,cc35 -Mcuda=fastmath -
Minline=reshape (-acc for OpenACC)

XL 13.1.6 -O3 -qsmp=omp -qthreaded -
qmaxmem=-1 -qoffload -Xptxas -v

clang for
OpenMP4

4.0 -O3 -ffast-math -fopenmp=libomp
-Rpass-analysis -fopenmp-
targets=nvptx64-nvidia-cuda -fopenmp-
nonaliased-maps -ffp-contract=fast

nvcc 8.5 -O3 -gencode arch=compute 35,code=sm
35 use fast math

Table 5.3: Compiler, version and flags adopted in the performed tests.

5.2.1 Cloverleaf Results

The Cloverleaf domain was discretized by considering a regular grid of 960
rows and 960 columns, for a total of 921,600 cells, whereas the total number
of iterations was set to 87. Moreover, the nvcc, Clang, XL and OpenACC
compilers were considered for the execution on the Tesla K40, while only
nvcc, clang and OpenACC have been taken into account for the P100, since
this GPU was installed on a non IBM based workstation (the IBM Power
architecture is needed by XL).

The elapsed times of the performed tests on the K40 and P100 GPUs
for the Cloverleaf 2D and Cloverleaf 3D applications are shown in Figures
5.5 and 5.6, respectively. Here, as expected, nvcc always outperformed the
other compilers. Nevertheless, Clang achieved almost optimal performance.
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Figure 5.5: Cloverleaf 2 D measured run times of versions on the K40 and P100
GPUs.
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Figure 5.6: Cloverleaf 3 D measured run times of versions on the K40 and P100
GPUs.

In particular, the Clang Cloverleaf 2D execution was about 5,8% slower than
the corresponding nvcc version on the K40 and about the 10,1% slower on
the P100. Similarly, the Clang compiled Cloverleaf 3D performance was the
6,7% slower than the corresponding nvcc on the K40 and the 5,9% on the
P100. These results can be considered more than satisfying in consideration
of the fact that they were achieved by a high level eDSL, with a acceptable
performance gap with respect to the native CUDA low-level (thus more
difficult to exploit) API. The other compilers (IBM XL and OpenACC)
evidenced worst performance with respect to both nvcc and Clang in all
Cloverleaf benchmarks and on all GPUs.
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In order to better understand the reason of this performance degradation,
a further analysis was carried out. In particular, the nvprof profiler was used
to collect information such as the number of registers per threads and the
achieved occupancy on the device. Tables 5.4, 5.5, 5.6 and 5.7 show the
collected information for the Cloverleaf 2D and Cloverleaf 3D benchmarks.
Since Cloverleaf benchmarks are composed by 87 kernels, only the most
six time consuming ones were analysed. From the collected data, the IBM
XL and OpenACC compilers resulted to use a higher number of registers
per thread with respect to Clang, resulting in a worst exploitation of the
computational devices.

There have been studies on the effect of tuning the number of registers
per thread on many applications and compilers [19]. They have shown that
in some cases tuning manually the number of registers at compiler time
(using the maxrregcount compilation option) can change the performance.
In this work, further tests have been carried out by modifying the number
of registers at compilation time. Nevertheless, the best performance have
been achieved by the default value set by the compiler. Moreover, Clang has
always a higher number of registers per threads than nvcc with both applica-
tions for the K40 GPU. Instead, for some kernels, such as PdV nopredict,

PdV predic, accelerate with Cloverleaf 2D, Clang used a lower number
of registers than nvcc for the P100, achieving a better occupancy. Only
the advec mom z nonvector kernel with Cloverleaf 3D on the P100 used
a lower number of registers in the Clang version than the nvcc one. This
confirms the difficulty behind the development of a back-end code generator
in reaching the optimal number of registers per thread, since this metric
depends on various factors such as hardware architecture, source code and
compiler.

Kernel Name
nvcc
CUDA

clang
OpenMP4

XL
OpenMP4

PGI
OpenACC

PdV
nopredict

36 (71.5 %) 42 (58.3 %) 80 (34.2 %) 63 (46.4 %)

viscosity 43 (59.9 %) 53 (53.9 %) 88 (29.2 %) 63 (44.7 %)

PdV
predict

36 (71.1 %) 40 (68.7 %) 80 (34.2 %) 63 (46.7 %)

accelerate 42 (59.2 %) 44 (57.6 %) 62 (44.1 %) 63 (47.4 %)

advec cell
ydir

32 (90.4 %) 61 (47.2 %) 72 (39.3 %) 63 (52.3 %)

advec cell
xdir

30 (88.7 %) 61 (46.0 %) 64 (43.6 %) 54 (46.5 %)

Table 5.4: Register counts of the six most time consuming Cloverleaf 2D kernel
on K40 GPU.
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Kernel Name
nvcc
CUDA

clang
OpenMP4

XL
OpenMP4

PGI
OpenACC

viscosity 65 (42.0 %) 152 (16.7 %) 152 (16.6 %) 63 (27.6 %)

accelerate 65 (40.8 %) 69 (41.0 %) 69 (23.5 %) 63 (39.4%)

PdV
nopredict

38 (72.0 %) 44 (58.6 %) 44 (23.6 %) 63 (29.6 %)

advec mom
y nonvector

18 (68.5 %) 48 (57.1 %) 48 (46.7 %) 63 (35.6 %)

advec mom
z nonvector

18 (68.0 %) 48 (56.8 %) 48 (46.4 %) 63 (36.0 %)

advec mom
x nonvector

22 (68.1 %) 48 (56.3 %) 48 (46.4 %) 63 (36.0 %)

Table 5.5: Register counts of the six most time consuming Cloverleaf 3D kernel
on K40 GPU.

Kernel Name
nvcc
CUDA

clang
OpenMP4

PGI
OpenACC

PdV
nopredict

48 (59.1 %) 32 (92.8 %) 64 (46.3 %)

advec cell
ydir

33 (70.6 %) 64 (45.1 %) 56 (52.1 %)

advec cell
xdir

34 (70.7 %) 64 (45.0 %) 54 (52.2 %)

PdV
predict

38 (71.0 %) 32 (92.7 %) 63 (46.7 %)

accelerate 36 (71.2 %) 32 (91.9 %) 64 (47.5 %)

advec mom
post pre
advec x

30 (90.7 %) 32 (90.2 %) 40 (62.6 %)

Table 5.6: Register counts of the six most time consuming Cloverleaf 2D kernel
on P100 GPU.

Kernel Name
nvcc
CUDA

clang
OpenMP4

PGI
OpenACC

PdV
nopredict

96 (29.5 %) 152 (16.2 %) 64 (10.1 %)

accelerate 21 (88.5 %) 28 (88.9 %) 64 (8.1 %)

viscosity 21 (88.7 %) 28 (88.8 %) 64 (10.9 %)

PdV
predict

21 (88.6 %) 28 (88.8 %) 64 (7.3 %)

advec mom
z nonvector

54 (52.7 %) 40 (72.0 %) 64 (8.0 %)

advec mom
y nonvector

56 (52.0 %) 62 (46.8 %) 64 (10.2 %)

Table 5.7: Register counts of the six most time consuming Cloverleaf 3D kernel
on P100 GPU.
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5.2.2 Tealeaf Results

The test domain and number of total iteration of Tealeaf has been set to
500*500, for a total of 250000 cells, and to 10. The same considerations
that were pointed out for the Cloverleaf applcation can be extended to the
Tealeaf benchmark. However, in this benchmark all three compilers have
achieved near optimal performance respect to the nvcc compiler. More in
detail, for the K40, the clang and the IBM XL compilers are about 2%
slower than CUDA, whereas for the P100 the OpenACC and OpenMP4
compiler achieved the best performance respect to CUDA. Table 5.7 shows
the computational results obtained. Further analysis have been carried out
for Tealeaf. Table 5.7 and 5.9 shown the number of registers and the achieved
occupancy for the six most time consuming kernel on the K40 and P100
GPUs, respectively. The close performance achieved by OpenACC, clang
anf IBM XL for Tealeaf benchmark respect to the more pronounced gap
for Cloverleaf benchmark could be explained by the different computational
intensive of the application. In fact, Cloverleaf is composed by 87 kernels,
instead Tealeaf only 29.
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Figure 5.7: Tealeaf measured run times of versions on the K40 and P100 GPUs.
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Kernel Name
nvcc
CUDA

clang
OpenMP4

XL
OpenMP4

PGI
OpenACC

cg calc
w reduce

30 (49.8 %) 38 (70.0 %) 38 (49.7 %) 41 (41.6 %)

cg calc
ur r reduce

16 (44.8 %) 19 (90.8 %) 19 (96.3 %) 28 (8.8 %)

axpby 10 (84.8 %) 12 (82.3 %) 12 (84.6 %) 18 (85.3 %)

axpy 8 (85.4 %) 12 (82.9 %) 12 (84.3 %) 22 (85.8 %)

common
residual

28 (89.6 %) 34 (66.3 %) 34 (89.7 %) 41 (55.2 %)

common init 30 (88.3 %) 34 (66.2 %) 34 (91.3 %) 55 (65.9 %)

Table 5.8: Register counts of the six most time consuming Tealeaf kernel on
K40 GPU.

Kernel Name
nvcc
CUDA

clang
OpenMP4

PGI
OpenACC

cg calc
w reduce

32 (77.5 %) 32 (86.2 %) 40 (8.7 %)

cg calc
ur r reduce

16 (68.5 %) 15 (82.8 %) 22 (50.5 %)

axpy 8 (77.6 %) 13 (78.1 %) 16 (49.9 %)

axpby 10 (77.6 %) 13 (78.5 %) 14 (50.0 %)

common
residual

32 (85.2 %) 30 (84.9 %) 44 (51.8 %)

common init 28 (82.5 %) 29 (81.8 %) 40 (51.5 %)

Table 5.9: Register counts of the six most time consuming Tealeaf kernel on
P100 GPU.



Chapter 6

Conclusions

To exploit new available HPC hardware, several programming languages
have been developed. Some of them are fine-grained, such as CUDA and
OpenCL, since they provide a low-level programming approach, while oth-
ers are coarse-grained, such as OpenMP and OpenACC, since they allow
to ignore most of hardware details, providing a high-level programming
paradigm. However, to achieve optimal performance from heterogeneous
high-performance accelerators, it is usually not sufficient to refer to a sin-
gle language. The effort required to learn and to become familiar with this
complex programming context is often excessive for Scientists who, in addi-
tion, are not willing to rewrite code from scratch each time a new language
is released. At the contrary, they would prefer to rely on a solution that
allows them to considerably reduce the implementation effort and to permit
long-term code maintenance. Domain Specific Languages (DSLs) represent
a possible solution, since they allow to exploit heterogeneous HPC hardware
with a minor effort, by often hiding most parallel implementation detail to
the user, providing a high level of abstraction, and to allow to convert ex-
isting (even serial) code straightforwardly.

This work has involved the design and development of different aspects of
two DSLs specifically proposed for grid-based modeling, namely OpenCAL
and OPS. The first one is an open source project developed at University of
Calabria (Italy) and represents a computing abstraction layer providing Ex-
tended Cellular Automata as a formal computational paradigm. It allows to
write the model to be implemented in a serial manner, and to easily obtain
parallel versions for heterogeneous devices referring its specific components.
Currently, multi-core, many-core accelerators like GPUs, and clusters of
many-core accelerators can be exploited. Similarly, OPS is an open-source
DSL for structured grid modeling able to run on heterogeneous devices,
originally developed at the University of Oxford (UK), currently also sup-
ported by other research centers, among which the University of Warwick
(UK). The approach is a bit different with respect to the one adopted by
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OpenCAL. Specifically, OPS relies on a source-to-source translator, which
permits to obtain different parallel versions from the serial code. Current
support includes multi-core and many-core accelerators, as well as clusters
of workstations.

Concerning OpenCAL, I have contributed to the design and implementa-
tion of its multi-GPU and multi-node components. In particular, the exist-
ing OpenCL-based OpenCAL-CL module was extended to allow for multi-
GPU inter-node execution on PCI Express interconnected GPUs. Moreover,
I have extended the preliminary version of the MPI-based OpenCAL-CLM
component in order to allow OpenCAL to run multiple OpenCAL-CL in-
stances both on inter-node and distributed memory computing solutions.
More specifically, regarding OpenCAL-CL, I started working by considering
its single-GPU version, which I had contributed to during my Master Degree
Thesis. This version has been now improved by introducing the possibility
to subdivide the computational domain in different chunks, by demanding
to the available GPUs for their elaboration. Both uniform and non-uniform
partitioning can be straightforwardly defined, by hiding data transfer de-
tails to the user. Similarly, regarding the OpenCAL-CLM component, I
also started contributing from the beginning both at design and implemen-
tation level. At design level, the same scheme adopted for the multi-GPU
OpenCAL component has been considered at inter-node level. Accordingly,
the computational domain can be decomposed in uniform or non-uniform
chunks and seamlessly distributed to the available nodes to be processed by
OpenCAL-CL running instances.

In order to evaluate the performance of the resulting new OpenCAL ver-
sion, a Sobel graphics edge detection filter, a Julia set fractal generator and
the SciddicaT slow-moving fluid flow simulation model benchmarks were
considered. A dual node cluster was considered for the tests, with nodes
equipped with multi-GPU hardware. In particular, one node, called JPDM-
2, adopted 2 Nvidia GTX 980, while two Titan Xp and a Tesla K40 Nvidia
devices were installed on the other, called JPDM-1. Moreover, a single-
node/single-GPU, single-node/multi-GPU and multi-node/multi-GPU sys-
tems were considered. The single-GPU performed tests pointed out that
the Titan Xp outperformed the GTX 980 in all tests, while the compute
dedicated Tesla K40 performed better on the Julia benchmark in absolute
terms. The second series of tests regarded the single-node/dual-GPU execu-
tion on the JPDM-1 and JPDM-2 workstations. Two execution policies were
considered, one based on the pure multi-GPU implementation, the other on
a hybrid approach where MPI was considered for running two single-GPU
instances in parallel. In all cases, superlinear effects were observed due to
cache issues, except for the Julia benchmark that showed a almost linear
scalability due to its pronounced compute bound nature. Eventually, the
JPDM-SS cluster was employed for multi-node/multi-GPU tests. Even in
this case, the above two execution policies were considered. Due to the non-
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optimal interconnection network and to the unfavorable instruction/byte
ratio of the adopted algorithms, sub-linear speed-ups were registered with
respect to those achieved on the (most performing) JPDM-2 node, with
SciddicaT showing even a slow-down. However, it is worth to note that
SciddicaT was the most penalized algorithm on the distributed memory
configuration. In fact, the optimization adopted in its more compute bound
elementary process σ1 actually reduced its application to only the 3.9% of
the computational domain, undermining the scalability of the whole algo-
rithm. Nevertheless, SciddicaT performed better on JPDM-SS than on its
slower JPDM-1 node.

Regarding OPS, I have contributed to the design and implementation
of a new source-to-source translator module based on the OpenMP 4.0/4.5
specifications. In particular, the new translator allows to automatically
recognize the serial OPS API data and functions and generates the paral-
lel OpenMP4 code for two different compilers, namely clang and IBM XL.
The obtained generated code can run on many-core devices like GPUs, and
represent an alternative to the already existing source-to-source translators
based on CUDA, OpenCL and OpenACC. Specifically, the main effort has
regarded the implementation of the translator for the clang compiler. Here,
a thorough study has been performed to investigate different kind of opti-
mizations at both source code and compiler level, in order to allow the code
generator to reach a satisfying level of performance. Once the code gener-
ator was consolidated with respect to the clang compiler, a porting to XL
has been performed. In this phase, many OpenMP4 directives have been
introduced as alternatives to the ones already defined for clang. This was
necessary since the considered compilers have different OpenMP back-end
implementations, which can exhibit different behavior and therefore also
different performances.

Single-GPU benchmark executions were considered for testing the new
OPS translator on NVIDIA devices. In particular, a Tesla K40 and a Tesla
P100 have been adopted. The state of art nvcc compiler for the NVIDIA
hardware and the PGI OpenACC compilers were considered to compare the
achieved OPS OpenMP4-based perfomance. The hydrodynamics Cloverleaf
and Tealeaf mini-app benchmarks were considered for the tests. The tests
pointed out that the nvcc compiler always outperformed the other compilers.
Nevertheless, clang achieved an almost optimal performance. In particular,
the Cloverleaf 2D execution was about 5,8% slower than the corresponding
nvcc version on the K40 and about the 10,1% slower on the P100. Similarly,
the Cloverleaf 3D performance was the 6,7% slower than the corresponding
nvcc on the K40 and the 5,9% on the P100. Considering the Tealeaf bench-
marks, all three compilers achieved near optimal performance with respect
to the nvcc compiler. More in detail, for the K40, the clang and the IBM
XL compilers are about 2% slower than CUDA, whereas, for the P100, the
OpenACC and OpenMP4 compiler achieved the near optimal, very close to
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the CUDA one. For both applications, further analysis were carried out. In
particular, the number of registers per thread and the achieved occupancy
for the six most time consuming kernel were considered. These analyses
showed that clang always exploited a higher number of registers per thread
than nvcc for the K40 GPU, whereas clang was able to use a lower number
of registers than nvcc in some kernels on tests performed on the P100 GPU.
These results showed up the difficulty behind the development of a back-
end code generator in reaching the optimal performance in terms of number
registers used per thread, depending on various factors such as hardware ar-
chitecture, source code, and adopted compiler. Nevertheless, overall results
can be considered more than satisfying in consideration of the fact that they
were achieved by a high level embedded DSL, i.e. OpenMP4, with a more
than acceptable performance gap with respect to the native CUDA low-level
language.

Even if they provided more than satisfying results, the OpenCAL compo-
nents designed and implemented in this work have to be considered prelimi-
nary. Future improvements will regard different design and implementation
aspects. Among them, the next release of OpenCAL will provide different
domain decomposition alternatives, currently restricted to only row-major
partitioning. Moreover, OpenCAL will be also improved to allow a more
flexible computation, giving the possibility to compute over specific subdo-
mains. Furthermore, a preliminary implementation of SciddicaT model has
been imported in OPS. Additional analysis, on both OPS and OpenCAL will
be carried out on this model, in order to compare the performance of the two
DSLs on parallel hardware such as many-core and multi-GPU/multi-node
systems. This analysis will allow us to better understand the limits of the
two software systems and also to study advantages and disadvantages of one
with respect to the other.
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4.1 OpenCAL architecture. At the higher level of abstraction,
the model, together with the simulation process and possible
optimizations, is designed. The OpenCAL libraries can be
found at the implementation abstraction layer, allowing for
a straightforward implementation of the designed computa-
tional model. OpenCAL-based applications can be therefore
executed at the hardware level on both multi-core CPUs and
many-core devices. The execution on distributed memory
systems is currently under development. . . . . . . . . . . . . 60

4.2 An example of OpenCAL-OMP parallel application of an el-
ementary process to a substate Q and its subsequent parallel
updating. The computational domain is initially partitioned
by means of a pool of three threads (fork phase). These latter
concurrently apply the elementary process by reading state
values from the current layer and by updating new values to
the next one. At the end of the elementary process applica-
tion, threads implicitly synchronize by joining into the master
one (join phase), and the parallel update phase starts. As be-
fore, a pool of threads concurrently copies the next layer into
the current one and the new configuration of Q is obtained. A
join phase eventually occurs, which ensures data consistency
before the application of another elementary process. . . . . . 65

4.3 An example of application of the OpenCAL-CL parallel stream
compaction algorithm. Active cells are represented in gray
within a two-dimensional 4x4 matrix of flags, implemented
as a linearized array, F . The parallel stream compaction al-
gorithm processes F and produces the compacted array A as
output, containing the coordinates of the active cells in its
first part. A grid of work-items therefore processes data by
adopting the one thread/one active cell policy. The process
is therefore repeated at the next computational step. . . . . . 70
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4.4 Domain decomposition adopted by the multi-node/multi-GPU
release of OpenCAL. The figure shows the adopted row-major
order decomposition of a two-dimensional computational do-
main for the case of a dual-node cluster, with two GPUs per
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