
Universitá della Calabria

DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E

SISTEMISTICA

Dottorato di Ricerca in
Information and Communication Technologies

XXXI ciclo

Modelling Analysis and Implementation of
Distributed Probabilistic Timed Actors

using Theatre

Candidato:

Paolo Francesco Sciammarella
Relatore:

Prof. Libero Nigro

Correlatore:

Prof. Domenico Grimaldi

Anno Accademico 2018-2019

“That Every long lost dream led me to where you are
Others who broke my heart they were like northern stars

Pointing me on my way into your loving arms
This much I know is true

That God blessed the broken road
That led me straight to you”

Melodie Crittenden - Broken Road

Contents

Preface . 7

I Formal Modelling and Verification 9

1 Concepts of Model Verification 10

1.1 Model Checking . 11
1.2 Timed Automata Theory . 13

1.2.1 Introduction . 13
1.2.2 Formal syntax . 14
1.2.3 Labelled Transition System semantics 14
1.2.4 Bisimulation . 16
1.2.5 Symbolic semantics and Verification 17

1.3 Some Available Model Checking Environments 21
1.3.1 Java PathFinder . 21
1.3.2 SPIN and PROMELA 22

2 The Uppaal Symbolic Model Checker 24

2.1 Modelling language . 25
2.1.1 Normal, urgent and committed locations 25
2.1.2 Guarded commands . 26
2.1.3 Progress conditions . 27
2.1.4 Global time and clocks . 27

2.2 Query language . 28
2.3 Advanced features . 29

3 Probabilistic and Statistical Model Checking 32

3.1 Probabilistic Models . 33
3.1.1 Discrete-Time Markov Chains (DTMC) 33
3.1.2 Markov Decision Processes (MDPs) 35
3.1.3 Probabilistic Automata (PAs) 36
3.1.4 Continuous-Time Markov Chains (CTMCs) 36
3.1.5 Probabilistic Timed Automata (PTAs) 37

3.2 The Prism probabilistic model checker 38
3.3 Statistical Model Checking . 39

3.3.1 SMC Operation . 39

2

3.3.2 Monte Carlo simulations 40
3.3.3 Hypothesis testing . 41

3.4 Plasma Lab statistical model checker 46
3.5 VeStA and PVeStA . 47

4 The Uppaal Statistical Model Checker 48

4.1 Network of Stochastic Timed Automata 48
4.2 Query language . 49

4.2.1 Bound and number of runs 50
4.2.2 Simulation . 50
4.2.3 Statistical algorithms . 50
4.2.4 Probability Estimation . 51
4.2.5 Hypothesis testing . 51
4.2.6 Probability comparison 51
4.2.7 Value bound determination 51
4.2.8 Support for WMITL . 52
4.2.9 Additional queries . 52

4.3 SMC options . 53
4.4 Dynamic template processes . 53
4.5 Custom probability distribution functions 54
4.6 Non-deterministic vs. stochastic interpretation 55

II Distributed Probabilistic Timed Actors 56

5 Actor-based Development of Distributed Probabilistic Timed

Systems 57

5.1 Untimed actors . 57
5.2 Timed actors . 59
5.3 Actor Extensions for Real Time Modelling and Analysis 61
5.4 The Theatre infrastructure . 65

5.4.1 Basic Concepts . 65
5.4.2 Programming in-the-small concepts 66
5.4.3 Programming in-the-large concepts 67
5.4.4 Simulation applications 68
5.4.5 Development methodology and model-continuity 68
5.4.6 Implementation status . 69
5.4.7 Contributions of this dissertation 69

III Theatre in Action 71

6 Model Continuity in Cyber-Physical Systems 72

6.1 Introduction . 72
6.2 Related Work . 74
6.3 From Modelling to Implementation of a CPS 77

6.3.1 The proposed methodology 77
6.3.2 Control machines and time management 80
6.3.3 Actions and processing units 81
6.3.4 envGateway and environment control 81

6.3.5 Specializing the envGateway to work with Arduino 82
6.4 A case study using power management 83

6.4.1 Modelling the system . 85
6.4.2 Data configuration . 85
6.4.3 Analysis phase . 86
6.4.4 Preliminary execution . 87
6.4.5 Prototype implementation and real execution 89

7 Qualitative and Quantitative Model Checking of Distributed

Probabilistic Timed Actors 93

7.1 Introduction . 93
7.2 THEATRE concepts . 96

7.2.1 Architectural view . 96
7.2.2 Abstract modelling language 97
7.2.3 A modelling example . 98

7.3 An operational semantics of THEATRE 102
7.3.1 Transition rules i�! and d�! 103

7.4 A reduction of THEATRE onto UPPAAL 107
7.4.1 Scenario parameters . 107
7.4.2 Entity naming . 108
7.4.3 Message and delay pools 109
7.4.4 Asynchronous message passing and delay setting 109
7.4.5 Message delivery and arguments 110
7.4.6 The Message automaton 110
7.4.7 Delay automaton . 111
7.4.8 An actor automaton . 112
7.4.9 Preservation of THEATRE semantics 113
7.4.10 Translated UPPAAL model of the toxic gas sensing system114

7.5 Analysis of a THEATRE model reduced into UPPAAL 116
7.5.1 Qualitative non-deterministic model checking 116
7.5.2 Quantitative statistical model checking 118
7.5.3 Partitioning . 124

8 Seamless Development in Java of Distributed Real-Time Sys-

tems using Actors 125

8.1 Introduction . 125
8.2 An overview of Theatre . 125

8.2.1 Basic Java Framework . 126
8.2.2 Development Phases And Control Machines 127

8.3 A modelling example . 129
8.4 Analysis of the toxic gas system 135

8.4.1 Qualitative Experiments 135
8.4.2 First Scenario: 2 Sensors and Scientist Deadline set to 10 136
8.4.3 Second Scenario: 2 Sensors and Scientist Deadline set to 13137
8.4.4 Third Scenario: 3 Sensors vs. 1 Sensor, 95% Working . . 137
8.4.5 Fourth Scenario: Scientist Die Probability vs. Number of

Sensors . 138
8.5 Preliminary Execution of the TGS Model 138
8.6 Real time execution . 141
8.7 Theatre Implementation Status 142

8.7.1 Configuration and Bootstrap of a Distributed System . . 143
8.7.2 Actor Migration . 145

9 Case Studies 146

9.1 Asynchronous Leader Election . 146
9.1.1 Experimental results . 148

9.2 A Time Synchronization Algorithm 148
9.2.1 Modelling the Time-Synch algorithm using Theatre . . 151
9.2.2 Experimental results . 153

9.3 Actor-based NetBill Protocol . 159
9.3.1 Modelling the NetBill protocol into Uppaal SMC 161
9.3.2 Experimental results . 162

10 Modelling and Analysis of Multi-Agent Systems Using Uppaal168

10.1 Introduction . 168
10.2 Modelling the Iterated Prisoner’s Dilemma 169

10.2.1 Case study description . 170
10.2.2 An IPD actor-based model 171

10.3 A structural translation from actors to Uppaal SMC 172
10.3.1 Actor and message naming 173
10.3.2 Dynamic messages . 173
10.3.3 Actor automata . 175
10.3.4 Other global declaration 176

10.4 Experimental work . 178
10.4.1 Debugging queries . 178
10.4.2 Transient behavior . 179
10.4.3 Emergence of cooperation in the scenario-1 180
10.4.4 Emergence of cooperation in the scenario-2 181
10.4.5 Model validation . 184

11 Conclusions 186

12 List of publications and bibliography 188

IV Appendixes 212

A Formal Modelling and Analysis of Probabilistic Real-Time Sys-

tems 213

A.1 Introduction . 213
A.2 The formalism of Stochastic Time Petri Nets 214

A.2.1 Basic Concepts . 214
A.2.2 Syntax . 214
A.2.3 Semantics . 215

A.3 Mapping sTPN onto Uppaal . 216
A.3.1 Timed Automata For Transitions 217

A.4 First Example . 219
A.5 Experimental analysis . 221

A.5.1 Non-deterministic analysis 221
A.5.2 Quantitative analysis . 223

Paolo Francesco Sciammarella

A.6 Second Example . 226
A.7 Analysis of the Fisher’s protocol 227

A.7.1 Non-deterministic analysis 229
A.7.2 Stochastic Analysis . 230

A.8 Conclusions . 232

B A layered IoT-based architecture for distributed SHM 234

B.1 Introduction . 234
B.2 SHM Based On Multi-Agent IoT 235

B.2.1 Sensing layer . 237
B.2.2 Signal Processing Layer 239
B.2.3 Event Detection Layer . 239
B.2.4 Application Layer . 240
B.2.5 Remote Transmission Protocol 241
B.2.6 Experimentation validation 242

C Acknowledgements 246

Acknowledgements 246

6

Paolo Francesco Sciammarella

Paolo Francesco Sciammarella

Preface

Nowadays, the technological advances introduced e.g. by the Internet-of-Things,
motivate the development of complex software systems, which can exploit the
growing connection flexibility among different computational units and devices.
Smart objects, embedded systems and cyber-physical systems are just a few
examples of design techniques and applications fueled by this ongoing techno-
logical revolution.
From a software engineering point of view, systems that follow these design
methods and operation logic, are best known as reactive systems. Reactive
systems are computer systems that continuously react to the external stimuli
generated by the user or by a controlled environment, producing an answer as
soon as the request arrives. Such systems cover different safety and business
critical areas such as e-commerce, e-banking, air traffic control, mechanical de-
vices control for train operation or nuclear reactors and many others.
Correctness and reliability are project requirements of paramount importance
in the design of many of the above mentioned systems. In fact, an application
failure or malfunction can have severe consequences from the practical point of
view.
Traditional software validation techniques are simulation and testing. Unfortu-
nately, they are insufficient because not exhaustive. They are often manually
constructed and typically can explore only a small fraction of all the possible
computational paths. Therefore, they cannot guarantee the absence of bugs in
the left unexplored state trajectories, particularly in the presence of complex
concurrent interleavings.
In the last few decades, the alternative approach of formal verification emerged,
which is based on the exhaustive exploration of all the possible system behav-
iors. Using e.g. the model checking technique, it is possible to determine if a
(not large) system satisfies a specific behavioral property, by examining all its
reachable states. However, with not trivial systems, model checking can incur
into the state explosion problem which limits its practical applicability. A more
approximate solution to infer properties and ensure system correctness, is based
on the concept of statistical model checking. It uses a finite number of system
executions and hypothesis testing, to judge if collected samples provide a sta-
tistical evidence for the specification satisfaction or violation.
This thesis is devoted to developing methods and tools of software engineer-
ing, supporting modelling, analysis and implementation of reactive systems.

7

What makes the development of such systems very challenging is the neces-
sity of handling in combination such issues as distribution, non-determinism,
probabilistic/stochastic behavior, concurrency, timing constraints, heterogene-
ity, synchronicity and asynchronicity, which can render systems undecidable.
The Actors computational model is widely recognized as a reference point for
building reactive systems. It relies on highly modular encapsulated entities
which interact to one another by asynchronous message passing. Extensions
have been proposed to actors so as for them to be more adapt for distributed
probabilistic real-time systems. A notable project on timed and probabilistic
actors is represented by the family of Rebeca modelling languages and related
analysis tools based on McErlang, PRISM and recently IMCA.
Starting from some previous research carried out in the Software Engineering
Laboratory (www.lis.dimes.unical.it), directed by Prof. Libero Nigro, the pro-
posed work consists in enhancing a lightweight actor system called Theatre,
so as to provide a formal modelling language in the light of the inspiring Re-
beca work, together with some supporting tools for property assessment which
in a case are based on the Uppaal model checkers (qualitative analysis - detect-
ing that an event can occur - based on the non-deterministic exhaustive model
checker, and quantitative analysis - finding a quantitative measure of the prob-
ability for an event to actually occur- based on the statistical model checker).
An important part of the work consists in experimenting the use of Theatre
according to the concept of model continuity, namely transitioning, without dis-
tortions, a same model from early analysis down to design, prototyping and final
implementation in Java. The goal is trying to ensure faithfulness of a synthe-
sized system to the analyzed model.
The accomplished work on Theatre is accompanied by several concrete appli-
cations and case studies aimed at demonstrating the flexibility and potential of
Theatre features.
The thesis is structured in three parts. In the first part (chapters from 1 to 4),
the concepts of formal modelling and verification are summarized. In partic-
ular, the automated techniques of exhaustive symbolic model checking, based
on timed automata, and of probabilistic and statistical model checking are dis-
cussed. As a notable example, the Uppaal model checkers, used in this thesis,
are outlined. In the second part (chapter 5), the development issues of dis-
tributed probabilistic and timed actor systems are reviewed, together with some
relevant related works. All of this provides context for the Theatre actor sys-
tem which is the goal of this thesis. Moreover, the contributions of this work are
highlighted. In the third part (chapters from 6 to 10), the main developments
and achievements concerning the extended version of Theatre, its implemen-
tation in Java and its application to modelling and verification of selected case
studies are described. The thesis terminates by presenting conclusions and by
furnishing directions of future works. Two appendixes complete the dissertation
which refer to some additional accomplished work: that of experimenting with
modelling and analysis of Stochastic Time Petri Nets and showing a further ap-
plication of our actors to a prototypical structural health monitoring and control
system.

8

Part I

Formal Modelling and
Verification

9

Chapter 1
Concepts of Model Verification

The development of reliable hardware and software systems is a well-known
critical and crucial issue [83]. In the last decades, several tools have been devel-
oped to help to identify defects and implementation problems. Although very
often used, simulation and testing techniques [28, 133, 169] prove inadequate
for correctness assessment [94]. As shown in Fig. 1.1, testing normally works
by comparing results obtained at run-time, with the expected ones computed
on a finite set of test-cases [176]. Only a small fraction of all the computational
paths is investigated. Moreover, by using a few runs, problems such as dead-
locks or concurrency errors due to complex thread interleavings, are not easily
reproducible or detectable [261].

Figure 1.1: Schematic view of the testing workflow

Formal verifications methods [125], based on mathematical techniques, aim
to prove the correctness of a system by reasoning on an abstract model and
carrying an exhaustive exploration of all the possible reachable configurations
[166](see Fig. 1.2. Such methods combine three main components [171], that
are:

• an abstract model, that is in charge of emulating the system behaviour;

• a specification language, used to formally express system requirements and
properties of interest;

• an analysis method, that is in charge to verify the fulfilment of the require-
ments.

Modelling is a creative yet difficult activity [162] which involves experience and
abstraction, that is introducing only relevant details while omitting non-essential

10

Chapter 1. Concepts of Model Verification

others. This work claims, though, that a model should facilitate subsequent
transitioning of a model toward the design and final implementation phases.
In other words, modelling should be not so much abstract but it should admit
such issues as distribution/concurrency, probabilistic and timing aspects. By
reducing the semantic gap between modelling and synthesis, the goal is to ensure
to the large extent “faithfulness” of an implementation to its analyzed model
[235].
Several approaches to formal verification are nowadays available such as model
checking [25], that is a widespread and mostly studied technique to automate
properties verification. It differs, e.g., from theorem provers [40], which require
first a (possibly complex) mathematical formalization of the problem but not
always offer the possibility of checking timing properties.

Figure 1.2: Correctness verification by using testing or exhaustive exploration, taken
from [172]

1.1 Model Checking
Model checking was independently developed by Clarke and Emerson [81] and
Queille and Sifakis [214]. As shown in Fig 1.3 the starting points to perform
this procedure relies on two components:

• a formal description M of the model under analysis;

• a logical property ' associated with a requirement that has to be evaluated,
written in a specification language, like classical computational tree logic
(CTL) [81], linear temporal logic (LTL) [211] and their extensions.

If the given model satisfies the logical property, we write that M |= ', on the
contrary we write M 6|= ', and the model checker suggests a diagnostic trace
(counterexample), practically a path of event occurrences, where the violation
takes place.

During verification the model checker compiles the model under investigation
into a directed state-transition graph, called Kripke structure [139], consisting
of:

• nodes, each of which represents a system execution state;

11

Chapter 1. Concepts of Model Verification

Figure 1.3: Schematic view of the model checking workflow

• edges, which represent transitions between states, i.e., events that are in
charge of changing the system status.

More formally, a Kripke structure over a set A of atomic propositions (i.e.
boolean expressions), is a triple K = hS,R, Li where:

• S is the state-space that includes all the possible states as a set of true
atomic propositions, where s0 is the initial state;

• R ✓ S ⇥ S is the transitions set;

• L : S ! 2A is the labelling function that associates a set of valid atomic
propositions to each state. In particular, the notation L(s) groups together
the true propositions for the system, when it is in the state s [84].

Figure 1.4: Example of a state graph

A model checker can explore the entire state space of a system, evaluating
all the possible computational paths in order to verify if a property is satisfied.
The model checking theory, though, has a computational limit due to resources
needed in terms of time and memory for verification. When analyzing non-
trivial medium-large sized systems, in fact, the number of computational paths
tends to increase exponentially, even after adding a single variable. This leads
to the construction of a huge state graph, which cannot possibly be completed.
The problem, known as the state-space explosion, limits the use of model check-
ers and has committed researchers to an attempt to identify alternatives or
optimizations, such as symmetry reduction [99] or partial order reduction [83].

12

Chapter 1. Concepts of Model Verification

Figure 1.5: Timed Automata and Location Invariants, taken from [31]

1.2 Timed Automata Theory
Among the different modelling languages available to design systems, such as
Time Petri Nets [35], timed process algebras [219] [182], and real-time logics
[262], in this work the timed automata formalism was chosen, because it con-
stitutes the core of the input language used by Uppaal, that is the symbolic
model checker exploited for the verification.

1.2.1 Introduction
Timed automata (TA) [16] are an extension of the finite-state Büchi automata,
enriched with a set C of real number variables called clocks [27]. Intuitively,
TA are finite-state machines with clocks used to model the time elapse, accord-
ing to a dense-time notion. All the clocks values are initialized to zero, and
increased synchronously with the same rate. They and may be reset during an
execution path. A transition edge may be labelled with a guard, consisting of
a time-constraint belonging to the set B(C) of all the possible constraints built
over the clocks C, and a set of actions ranging over a finite alphabet ⌃. A guard
has the form x ⇠ k or x � y ⇠ k, where x, y 2 C are clock variables, k is a
non-negative integer and the operator ⇠2 {, <,==, >,�}, and its fulfilment
enables the edge and, if the transition is taken, the corresponding action is car-
ried out.
Figure 1.5 a) depicts an example of timed automaton, taken from [31]. Its
timed behavior depends on the value of two clocks: x, that is used to control
the self-loop in the location loop, and y, that is used to control the time elapse
of the overall model. The dynamic progress is as follow. At the beginning, the
automaton may leave the location start at any time when the y value is in the
interval [10, 20]. Then it may evolve towards the loop place, along with the
self-loop if x==1, and finally it can move to end when y is in [40, 50]. After
that, since the y value is reset, the automaton may return to start when the y is
in [10, 20]. In the TA, satisfaction of a guard on an edge is a necessary but not
sufficient condition for moving from one location to another. In the example in
figure 1.5 a), the automaton may stay forever in any location.

13

Chapter 1. Concepts of Model Verification

To ensure progress, in [16] the Büchi acceptance condition was introduced, that
is marking a set of locations as accepting, and having that the only admissi-
ble automaton executions are those that include an infinite transit from them.
Marking in figure 1.5 a) the location end as accepting, it would imply that all
the automaton executions must visit that location infinitely times, thus ensur-
ing progress. As a consequence, the location start will be left at most when
y == 20; would this not happen, the acceptance condition would be violated,
because after 20 the guard on the edge becomes invalid and the automaton will
be blocked in that location. A similar argument could be applied to the loop
location.
A simpler and more intuitive notion of progress was introduced in the Timed
Safety Automata [31]. Clock constraints in the form x ⇠ k, called invariants,
are used to label locations and give them a local view of time behaviour. An au-
tomaton can remain in a location as long as its invariant is satisfied, and forced
to exit when the invariant is up to be violated. Would no output transition be
enabled, a deadlock will occur. In figure 1.5 b) an example is shown.
In literature, Timed Automata and Timed Safety Automata most often denote
the same concept.

1.2.2 Formal syntax
Formally, a timed automaton is a tuple (L, l0, C,A,E, I), where:

• L is a finite set of locations;

• l0 2 L is the initial location;

• C is the set of clocks;

• A is a set of actions (i.e. the alphabet ⌃);

• E ✓ L ⇥ A ⇥ B(C) ⇥ 2c ⇥ L is a set of edges between locations with an
action, a guard and a set of clocks to be reset;

• I : L �! B(C) is a function that assigns invariants to locations.

An edge is also indicated as l
g,a,r���! l0 2 E where g is a guard, a is an action, r

is a set of clocks to reset.
To analyze concurrentcy systems modelled as a network of interacting TA, TA
theory rests on the product automaton built using the CCS parallel composi-
tion operator [177]. Although this operation is entirely syntactical and allows
interleaving of actions as well as hand-shake synchronizations, it has a com-
putationally expensive cost. For this reason tools such as Uppaal, generate
on-the-fly the product automaton during verification. Figure 1.6 depicts some
examples of timed automata composition. The notation associated to the case
c), i.e., the symbols ! and ? modelling hand-shake synchronization, will be clar-
ified below.

1.2.3 Labelled Transition System semantics
For verification of a single timed automaton, the model checker works on a
state-graph which is a labelled transition system (LTS), directly corresponding

14

Chapter 1. Concepts of Model Verification

Figure 1.6: Examples of product automaton: a) sychronous composition, b) asyn-
chronous composition, c) explicit synchronization composition

to the operational semantics of the automaton. A LTS consists of a collection of
states and transitions. A state is a pair (l, u) 2 L⇥RC , where l is a location id
and u is a clock valuation (u 2 R+). A state represents a specific configuration
of the model in which a set of predicates pi 2 P hold. The initial state s0 of a
LTS is (l0, 0|C|). Transitions denote all the possible ways an LTS state has to
evolve. They are labelled with actions ai 2 A, executed when the transition is
taken [247].
Formally, let A and P be sets of actions and predicates respectively. A LTS
over A and P is a triple (S,�!, |=), where:

• S is a set of states;

• �! is a set of transitions a�!✓ S ⇥⌃⇥ S, where ⌃ = R+ [{d} is the set of
moves [213];

• |=✓ S ⇥ P , indicates that a predicate p 2 P holds in state s 2 S.

To infer properties, all the possible LTS reachable paths need to be explored
and evaluated.
The transitions of a LTS can be of two types:

• a delay transition, labelled with a real number, which expresses the possi-
bility for an automaton to stay for a certain time d in a state, as long as
d does not violate the invariant:
(l, u)

d�! (l, u+ d) if (u+ d) 2 I(l) for any d 2 R+

• an action transition, labelled with elements of ⌃, which expresses the
possibility for an automaton to evolve towards another state, following an
enabled edge and possibly resetting a subset of clocks:
(l, u)

a�! (l0, u0) if l g,a,r���! l0, u 2 g, u0 = [r 7! 0]u and u0 2 I(l0)

A timed action is a pair (t, a), representing an action a 2 ⌃ executed by an
automaton after t 2 R+ time units since the beginning of the run, where t is the
absolute time, or time-stamp of the action a. A sequence (possibly infinite) of
timed actions of an automaton ⇠ = (t1, a1)(t2, a2) . . . (ti, ai) . . . , where ti ti+1

15

Chapter 1. Concepts of Model Verification

for all i � 1, is a timed trace. A run of an automaton in the corresponding LTS,
with initial state (l0, u0) and over a timed trace ⇠ = (t1, a1)(t2, a2)(t3, a3) . . . , is
defined as a sequence of transitions:

(l0, u0)
d1�! a1�! (l1, u1)

d2�! a2�! (l2, u2)
d3�! a3�! . . .

where ti = ti�1 + di for all i � 1.
The semantics of a network of TA is the associated LTS generated from the
product automaton, and it is similar to that a single automaton. To model
hand-shake synchronizations (see Figure 1.6), the action alphabet ⌃ is assumed
to consist of symbols for input actions denoted a?, output actions denoted a!,
and internal actions represented by the distinct symbol a.
The state of a LTS associated to a network of TA is a pair (l, u), where l =
l1, l2, . . . , n is a vector constituted by the current locations of each automaton of
the network and u is a clock array that summarizes the current values of clocks
of the system. The rule for delay transitions is similar to the case of a single
automaton, where the invariant of a location vector is the conjunction of the
location invariants of the processes.
Let li stand for the i�th element of a location vector l and l[l0i/li] for the vector
l with li being substituted with l0i. The transition rules are defined as follows:

• (l, u)
d�! (l, u+ d) if u 2 I(l) and (u+ d) 2 I(l), where I(l) = ^I(li)

• (l, u)
a�! (l[l0i/li], u

0) if li
g,a,r���! l0i,u 2 g, u0 = [r 7! 0]u, u0 2 I(l[l0i/li])

• (l, u)
a�! (l[l0i/li][l

0
j/lj], u

0) if there exist i 6= j such that:

– li
gi,a?,ri�����! l0i, lj

gj ,a!,rj�����! l0j and u 2 gi ^ gj , and
– u0 = [ri [rj 7! 0]u and u0 2 I(l[l0i/li][l

0
j/lj])

where u0 is obtained by resetting a subset of clocks.
It is important to note that a network is a closed system, which may not perform
any external action [31].

1.2.4 Bisimulation
The set of the all finite timed traces of a LTS A is denoted by L(A) and is
called the timed language of A. Two different LTSs A1 and A2 are timed-
language equivalent if and only if L(A1) = L(A2). In order to check behavioural
equality among processes, language equivalence is not the most suitable notion
to consider. Bisimulation equality, called bisimilarity, among different states
within a LTS or different LTSs, is the most used technique to determine and
check behavioural similarities [226].
Let (S,�!, |=) be an LTS over A and P . A bisimulation is a binary relation
R ✓ S ⇥ S over the set of states, satisfying:

• if s1 R s2 then s1 |= p, s2 |= p for all p 2 P ,

• if s1 R s2 and s1
a�! s01 with a 2 A, then there exists a transition s2

a�! s02
such that s01 R s02,

16

Chapter 1. Concepts of Model Verification

• if s1 R s2 and s2
a�! s02 with a 2 A, then there exists a transition s1

a�! s01
such that s01 R s02.

Two states s and s0 are timed bisimilar, written as s ⇠ s0, if and only if there is
a timed bisimulation that relates them.
Let g = (S, I,�!, |=) and h = (S0, I 0,�!0, |=0) be process graphs over A and P . A
bisimulation between g and h is a binary relation R ✓ S ⇥ S0, satisfying I R I 0

and the same three clauses above. g and h are bisimilar, written as g ⇠ h if
there exists a bisimulation between them [247].

Figure 1.7: Example of two processes not bisimulation equivalent, taken from [247]

Figure 1.7 shows an example of two not bisimulation equivalent processes, taken
from [247]. They accept the same language, but the choice between b and c is
made at different moment, because the two systems have different branching
structure.
Intuitively two systems are considered bisimilar if they match each other’s
moves, becoming indistinguishable from an observer. More details can be found
in [208] and [167].

1.2.5 Symbolic semantics and Verification
The reachability analysis, performed on the LTS generated from a network of
TA, is a key problem in verification, because the correctness of a model can be
verified starting from a question: a given desirable or undesirable state of the
model is reachable from its initial state [181]? Two class of algorithms can be
applied to answer this question, performing:

• the forward analysis, that consists of computing iteratively the successors
of the initial states and checking if the state we want to reach is eventually
computed or not;

• the backward analysis, that consists of computing iteratively the predeces-
sors of the states we want to reach and of checking that the initial state
is eventually computed or not.

Since to medium-sized network of TA, can be associated LTSs containing an
uncountable set of reachable states, such analysis can be difficult or not decid-
able. This is due to the fact that in a state (l, u), u represents an instantaneous
evaluation clocks. Such time granularity originates a potentially infinite state-
space, because locations with a same data part, will be included in several states
which are distinguished each other only by the potentially different infinite in-
stantaneous clock values. This limit can be overcome by partitioning the clocks
evaluations by a finitely equivalence relation. Exploiting the concept of time
abstract bisimulation, by which two configurations s and s0 are equivalent when

17

Chapter 1. Concepts of Model Verification

any action transition a (or any delay transition d) enabled by s, can be simu-
lated from s0 by an action transition a (or a delay transition d0), it is possible to
compact the representation [181]. In a LTS two configuration states (l, u) and
(l0, u0), can be considered equivalent if l = l0 and if u ⌘M u0, i.e., if:

• they exactly satisfy the same clock constraints of the TA;

• in both automata the time elapse, will lead to same integer values for the
clocks, in the same order [181].

where M is the maximal constant value appearing in the guards of the automa-
ton associated to the specific clock. Using the notation u ⌘M u0 holds whenever
for each clock x 2 X,

• u(x) > M , u0(x) > M ,

• if u(x) M , then bu(x)c = bu0(x)c, and ({u(x)} = 0 , {u0(x)} = 0),
where the operator b↵c indicates the integer part of ↵, while {↵} the
fractional part,

and for each pair of clocks (x, y),

• if u(x) M and u(y) M , then {u(x)} {u(y)}, {u0(x)} {u0(y)}.

The relation ⌘M is called region equivalence and the associated equivalence class
is called a region [15]. States placed within the same region will always evolve
into states belonging to the same region and this feature enables to characterize
(and reduce) the state-space of a LTS in terms of a finite region automaton or
region graph RA. The RA can be built starting from the initial LTS A and the
equivalence relation, following this formal semantics:

• states of the graph are pairs (l, R) where l is a location of LTS and R is a
region;

• the transitions are expressed by (l, R)
a�! (l0, R0) if there exists a transition

l
g,a,r���! l0 in A, a valuation v 2 R and d � 0 such that u + d |= I(l),

u+ d |= g, [r 0](u+ d) |= I(l0) and [r 0](u+ d) 2 R0.

The region graph size depends exponentially from the number of the involved
clocks and the maximal constant parameter value appearing in the guards. This
means that these parameters may lead to state explosions, because a large num-
ber of configurations (arising from all the possible regions), needs to be checked.
As reported in [31], figure 1.8 depicts an example of all the admissible regions
for an automaton with two clocks x and y, where the x maximum value is 3,
while the y maximum value is 2. All corner points (intersections), line segments,
and open areas are regions. Doing maths, the number of possible regions in each
location is 60. The fundamental property of RA is that it recognizes exactly
the set of words a1a2 . . . if exists a corresponding timed word (a1, t1)(a2, t2) . . .
recognized by A. This allows to check a reachability property of a location in
A, by resolving a reachability problem in its RA.
In figure 1.9 it is showed an example of a LTS A and of its own region automa-
ton RA taken from [17]. As one can see, the location l3 of A is reachable if and
only if one of the states (l3, R) with a region R is also reachable in RA. By
analyzing RA, we note that the path (l0, x = y = 0)

a�! (l1, 0 = y < x < 1)
c�!

18

Chapter 1. Concepts of Model Verification

Figure 1.8: Example of regions

(l3, 0 < y < x < 1) leads to l3. Consequently, this implies that in A exists an
execution, given by (l0, u0)

t1�! (l0, u0+ t1)
a�! (l1, u1)

t2�! (l1, u1+ t2)
c�! (l3, u2),

that leads to l3, identifiable for some value of t1 and t2.

Figure 1.9: a) A labelled transition system A b) The corresponding region graph RA.
Example taken from [17]

In practice, model checker tools avoid the construction of the region automaton,
because the region partition is too refined and not efficient to be manipulated.
To provide a more efficient representation of the symbolic state-space, in [41]
the concept of zone and zone-graph was introduced, that rely on the concept of
on-the-fly algorithms. A zone is defined as the solution set of a conjunction of
atomic clock constraints, among inequalities of the form:

xi � xj uij , li xi ui

where i, j 2 {1, . . . , n} and uij , li, ui 2 R. Compared with regions, zones offer
a more coarse and reduced representation of the state-space [96]. In fact, the
symbolic states of a zone graph that would be manipulated by the forward
and backward analysis algorithms, are defined by (l, Z), where Z 2 B(C) is a
zone defined through the union of clock constraints, that incorporates several

19

Chapter 1. Concepts of Model Verification

Figure 1.10: Example DBM taken from chapter 4 of [181]

symbolic states of the region graph, having the same data part and satisfying
the same time constraints.
Many operations can be performed using this representation [181], that simplify
the implementation of algorithms useful for testing reachability.
Zones are efficiently represented and stored in memory by Difference Bound
Matrices (DBMs) [30], that are (n+ 1)-square matrices, where n is the number
of clocks. Coefficients (mi,j)0i,jn of a DBM M are pair of values (k,�), where
k is an integer and � is either < or , representing the constraint xi�xj ki,j ,
involving the set of clocks {xi | 1 i n}. Moreover, to represent a constraint
in the form xi k a fictitious clock x0 is introduced, whose value is always 0; so
it is possible to write mi,0 = k with the associated constraint xi�x0 k. Using
an example taken from chapter 4 of [181], in figure 1.10 the zone defined by the
constraint (x1 � 3) ^ (x2 5) ^ (x1 � x2 4) can be represented through the
matrix of the coefficients M . The presence in a cell of the +1 value indicates
that there is no constraint between the clocks associated to the specified row
and column, while a negative coefficient is used to model a � constraint, in
fact, considering m0,1 = �3, the original constraint x1 � 3 can be modelled
equivalently as x0 � x1 �3.
Despite every DBM represents a zone, and every zone can be represented by a
DBM, the correspondence is not unique and a same zone can be represented by
several DBMs.
In order to reduce the computing cost of a DBM, alternative solutions known in
literature are minimization algorithm for DBMs [156], federations [87] that are
in charge to merge efficiently DBMs or clock difference diagrams (CDDs) [155].
Zones are also related to regions through the following properties:

• each region is a zone;

• if Z is a zone, then Z =
S

i ri, where each ri is a region;

• if W =
S

i Zi is convex and each Zi is a zone, then W is a zone.

To better understand the concept of zone, an example taken from [75] is shown
in figure 1.11. The model describes a simply timed automaton of a periodic
task, whose period is 6 time units. Each task instance consists of two sequential
actions, having a not deterministic duration in the range [1, 3] and [2, 3] respec-
tively. Locations L0 and L1 model action execution, while L2 is used to model
the waiting period of the next task activation. Two clock variables are used: x
that is in charge to measure actions duration and y that is used to measure the
periodic behaviour. In order to ensure the non-deterministic attendance, invari-
ant conditions coupled with appropriate guards are introduced such as x 3
attached to L0 and x � 1 on the output edge from L0 to L1. Some edges are

20

Chapter 1. Concepts of Model Verification

Figure 1.11: a) A simple of periodic timed automaton b) Associated zone state graph

equipped with clocks resetting actions, needed to allow the correct measure of
the sojourn time. For example, on the edge from L2 to L0 the values of both
clocks are set to zero, to indicate the beginning of a new instance of the task
and to count the flow of other 6 time units, while on the edge from L0 and L1

x, is reset to measure the duration of the second action.
While the zones for the locations L0 and L1 are identifiable in an easy way, the
clock constraints on L2 are not obvious and need to be clarified. On L2 the
constraints are 2 x 5 and 3 y 6, because in the best case L2 can be
reached after the sum of 1tu needed to leave L0 and 2tu to exit from L1 on y,
but after 2tu on x due to the x reset from L0 to L1, while the upper bounds
can be immediately calculated. Considering the difference y � x, doing maths,
it is deduced that 1 y � x 3, where 1 = y � x and y � x = 3, that are
respectively the remaining lines used to delimit the zone.

1.3 Some Available Model Checking Environments
Besides Uppaal, several tools are currently available (and constantly evolving),
useful for making model checking. In this section, a few of them are summarized.

1.3.1 Java PathFinder
Java PathFinder (JPF) is a model checker that has been developed as a verifica-
tion and testing environment for Java multithreaded programs [172]. It is open
source and online available and consists of a custom-made Java Virtual Machine
(JVM) that is in charge to execute a program (Java bytecode) not only once as
a normal VM, but theoretically in all the possible ways, exploring thread inter-
leaving and non-deterministic assignments, for checking property violations like
deadlocks or unhandled exceptions. For properties specification JPF uses:

• Java assertions inside the application under analysis (in this case any
violation is captured and notified to the user);

• instance of gov.nasa.jpf.Property, gov.nasa.jpf.GenericProperty, or through
the implementation of two listener classes gov.nasa.jpf.SearchListener and

21

Chapter 1. Concepts of Model Verification

Figure 1.12: Java PathFinder architecture, taken from [172]

gov.nasa.jpf.VMListener.

JPF cannot analyze Java native methods and if the system under test calls
such methods, these have to be provided within peer classes or intercepted by
listeners.
The two main features of JPF are:

• backtracking, which indicates the ability to restore previous execution
states, to see if there are unexplored choices left;

• state matching, during the execution a match is made between a new
reached status and any other previously examined. JPF can then back-
track to the nearest non-explored non-deterministic choice.

Like other model checkers, also JPF is prone to state-explosion problems. Since
concurrent actions can be executed in any arbitrary order, all their possible
interleavings can lead to a very large state space. In particular, for n threads
with m statements each, the number of possible scheduling sequences is equal
to:

K =
(nm)!

m!n
(1.1)

JPF model checking can purposely exploit two techniques:

• state abstraction, which eliminates details irrelevant to a property, obtain-
ing a simple finite model sufficient to verify the property. It can produce
false positives/negatives due to the loss of precision;

• Partial Order Reduction (POR) which basically groups all instructions in
a thread, that do not have any effects outside the thread, into a single
transition.

Other detail can be found in [42], [172] and [207].

1.3.2 SPIN and PROMELA

SPIN is a popular open-source model checker, that can be used for formal veri-
fication of multi-threaded applications and for analyzing the logical consistency
of concurrent and distributed systems [123].

22

Chapter 1. Concepts of Model Verification

The tool supports a high-level modelling language called PROMELA (PROcess
MEta LAnguage), which allows the creation of processes by using classical data
types, control flow instructions, loop structure, atomic statements, complex data
structures, and process communication through the use of shared memory or
message channels that can be synchronous (i.e., rendezvous), or asynchronous
(i.e., buffered).
SPIN has been used to trace logical design errors in distributed systems design,
such as operating systems, communications protocols, switching systems, con-
current algorithms, railway signalling protocols, control software for spacecraft,
nuclear power plants, etc. highlighting the presence of deadlocks, race condi-
tions, different types of incompleteness, and unwarranted assumptions about the
relative speeds of processes. Moreover, that tool directly supports the use of
embedded C code as part of model specifications and using the model extractor
modex, it is also possible to automatically generate a PROMELA model from
a concurrent C code.
SPIN enables the use of multi-core computers for model checking, supporting
the verification of both safety and liveness properties. It works on-the-fly, avoid-
ing the need to preconstruct a global state graph, thus making it possible the
checking of large system models. Property specification can be based on LTL,
but other alternative and efficient on-the-fly ways, for safety and liveness verifi-
cation exist. Correctness properties can also be specified as a system or process
invariants (using assertions) and as formal Büchi automata.
Spin can be used in four modalities:

• as a simulator, that allows a rapid prototyping of the model under inves-
tigation;

• as an exhaustive verifier, to demonstrate the validity of user-defined re-
quirements (using partial order reduction to optimize the search);

• as proof approximation system, that can validate very large system models,
covering the maximum state space available;

• as a driver for swarm verification, which can make optimal use of large
numbers of computing cores, to detect defects in large models.

All Spin software is written in ISO-standard C, and is portable across all versions
of Unix, Linux, cygwin, Plan9, Inferno, Solaris, Mac, and Windows.

23

Chapter 2
The Uppaal Symbolic Model

Checker

Uppaal is a popular, online available, continuously evolved, symbolic model
checker jointly developed by the Uppsala University and the Aalborg University.
It runs on the most common operating environments: Windows, Linux, Mac OS.
It is designed for the exhaustive verification of real-time systems modelled as
networks of timed automata (TA) [27]. Compared to similar tools, such as
HyTech [117] and Kronos [266], Uppaal is characterized by the adoption of
compact data structures to represent the state graph of a model, and efficient
traversal algorithms.
The main features of Uppaal which motivated its use in this work are:

• its high expressive and simplicity of modeling, through the use of a user-
friendly GUI;

• its faster verification engine;

• its extension with a statistical model checker.

In the past, Uppaal was successfully exploited for off-line verification of in-
dustrial protocols, such as the collision handling in the Philips Audio Control
Protocol (PACP) [38]. More recently, it was applied, e.g., to the on-line op-
timization of home automation and traffic control systems [157], such as the
Intelligent Control of Traffic Light (ICTL) [100], or the CASSTING project,
where the tool is used to synthesize an improved controller for a floor heating
system of a single family house [154].
The toolkit is composed by three sub-environments:

• an intuitive graphical front-end editor, written in Java, used to design a
TA model;

• a simulator, which allows to animate a model in order to observe graphi-
cally its execution;

• a verifier or server, written in C++, that implements the model checking
engine which generates the state-graph of a model and verifies the satisfac-
tion of the property queries of interest. The verifier is able to analyze all

24

Chapter 2. The Uppaal Symbolic Model Checker

the possible interleavings among the actions of the concurrent component
processes.

This chapter briefly reviews the Uppaal symbolic model checker by focusing on
the modelling capabilities and the query specification language.

2.1 Modelling language
The Uppaal modelling language extends the classical timed automata formal-
ism with the following features:

• availability of integer and boolean primitive data, together with high-level
data structures (arrays and structs);

• instantiation of parametric automata, called template processes, with pos-
sible local declarations (of integers, boolean, clock etc.);

• global declarations of integer (possibly bounded), boolean and arrays vari-
ables (of integers, boolean, clock and channels);

• two-way synchronization between processes, that is rendezvous as in CSP
[177], [122]) based on unicast channels, where ! indicates an output and
? an input operation. As in classical TA, synchronization does not carry
any data. However, any transmitted data can be simulated using global
variables;

• broadcast (multicast) channels where a single sender can synchronize with
a group of 0, 1 or multiple receivers; broadcast synchronization is always
non-blocking;

• support of C-like syntax with the possibility of introducing user-defined
functions either globally or locally to a template process.

2.1.1 Normal, urgent and committed locations
In Uppaal the term state represents a state of the whole system, obtained
through the composition of multiple automata; the term location refers to the
local state of a single automaton.
Three types of locations are recognized:

• normal, in which a TA can stay an arbitrary, possibly infinite, time;

• urgent (U) and committed (C), where no delay is allowed and from which
an automaton has to go out with no time passing.

As shown in Fig. 2.1 a) an urgent location semantically corresponds to a
location labelled with the invariant x 0. A committed location, depicted in
figure 2.1 b), introduces a more restrictive constraint. In a network of TA, the
state of the overall system is marked as committed if at least one of its TA is
in a committed location. Since delay for this configuration is not allowed, the
committed location must be left in the successor state, so only action transi-
tions starting from a committed location are allowed. This means that although
urgent and committed locations both guarantee a zero sojourn time, committed
locations have priority over the urgent ones.

25

Chapter 2. The Uppaal Symbolic Model Checker

Figure 2.1: a) Urgent semantics b) Committed Location

2.1.2 Guarded commands
A transition, (referred as an edge in Uppaal), can be labelled with an action
which, in general, consists of four optional fields, that are select, guard, synchro-
nization and update, as follows:

[select][guard][synch� i/o][update]

Each edge is enabled if the associated guard is true. If the guard is omitted,
it evaluates to true. If an edge has no label, as shown in figure 2.2 a), the
transition is said spontaneous.
The select component is useful for realizing a non-deterministic assignment,
where the value is chosen in an interval of values. In addition, the select can be
exploited for choosing a synchronization would multiple ones be ready.
The synchronization part of a command specifies one channel and an input/out-
put operation on it. As indicated in Fig. 2.3, when a synchronization over a
unicast channel is ready, with one sender and multiple receivers (or vice versa),
one receiver is chosen non-deterministically by Uppaal. However, during veri-
fication, all the possible choices are examined.
The update component is a comma-separated list of assignments, clock reset,
or function calls. The operations in an update are executed from left to right.
A guarded command constitutes the fundamental element for modelling con-
current systems in Uppaal. It represents a basic atomic action. Semantics of
Uppaal establishes that the update of the sender of a synchronization (ch!) is
executed before that of the receiver(s) (ch?). This way the transmission of some
arguments can be easily organized. In the case of a broadcast synchronization,
the order of execution of the updates of the various engaged receivers, are car-
ried out in the order in which the TA are listed in the system configuration
statement which specifies the TA to be parallel composed.

Figure 2.2: Command syntax: a) spontaneous edge b) labelled edge

26

Chapter 2. The Uppaal Symbolic Model Checker

2.1.3 Progress conditions
Besides the use of urgent and committed locations, the dwell-time in a normal
location can be bounded through an invariant, which typically consists of a
clock constraint (or conjunction of clock constraints). However, there are cir-
cumstances where it cannot be possibly anticipated the amount of staying time
in a location, but when a condition states the location should be abandoned, the
exiting should be realized without delay. Toward this, the notion of an urgent
channel (unicast or broadcast) can be exploited. If a synchronization is ready
on an urgent channel, it must be taken immediately. In particular, the use of an
urgent and broadcast channel can sometimes be preferable where, for instance,
an output operation which is heard by no other process can be used for forcing
the exit from a normal location. However, for implementation/efficiency rea-
sons, Uppaal does not allow to check clocks on a guard in combination with
a synchronization of an urgent channel. All of this, in turn, is related to the
requirement that zones of a state graph be always convex.

Figure 2.3: Unicast synchonization: a) deterministic b) non-deterministic

2.1.4 Global time and clocks
Uppaal uses a continuous time model, in which the global time value is not
directly accessible, but it can be checked through the use of clock variables.
Clocks allow to measure relative time amounts, such as the elapsed time from
a given global instant when the clock was last reset. The value of a clock
varies in dense intervals. It can be reset and compared exclusively using natural
constants. After being reset, all the clocks of a model automatically advance
with the same rate (first derivative equals to 1).
The example in figure 2.4, taken from [27], shows typical clock behavior. The
overall system is the composition of two automata, which model a user and
a lamp respectively. The user can press a button to switch on a lamp. The
first press puts the lamp in a moderate light. A subsequent press, which occurs
within 5 time units from the previous one (two consecutive close presses) causes
the lamp to bright. A next press will put off the lamp. From the low location,
if 5 or more time units elapse, the lamp gets switched off. The behavior is
regulated through setting and checking a clock variable y.

27

Chapter 2. The Uppaal Symbolic Model Checker

Figure 2.4: A simple lamp example taken from [27]

2.2 Query language
A network of TA can be inspected (i.e., tested) using the simulator component,
by launching a single execution with a random choice of the next transition to
be performed, or, it can be verified against some properties through the model
checker engine, i.e. the verifyta kernel (see Fig. 2.5).
The properties to be verified are to be formally expressed using a subset of the
Timed Computation Tree Logic (TCTL) [14]. Each query returns true when the
property is satisfied, false otherwise. Like in TCTL, the query language consists
of path formulae, that are in charge to infer properties over path or traces of
the model, and state formulae, that describe what happens in individual states.
Uppaal, though, does not allow nesting of path formulae [27]. A state formulae

Figure 2.5: Example of how in the Uppaal toolkit GUI is possible to select a sub-
environment

is an expression that can be evaluated for a state, without considering the overall
behaviour of the model. The syntax of state formulae is a superset of that of
guards, which provides for the use of logical connectors (&&, and, ||,or, !, not,
imply) and it includes:

• logical conditions on data or clock variables;

• testing if an automaton is in a particular location;

• or a logical combination of the conditions above.

A default property, which is not strictly a state formula, is expressed by the
keyword deadlock, used for checking for the possible presence of deadlocked
states.
Path formulae can be classified into three categories:

• reachability : which has the task of verifying if a certain state can be
achieved;

• safety : who is responsible for ensuring that the system does not come into
a dangerous state (such as deadlock);

28

Chapter 2. The Uppaal Symbolic Model Checker

Formula Meaning
E < > ' Possibly ': a state can be reached in which ' holds
A[] ' Invariantly (in all states) ' holds. Equivalent to: not E<> not '
E[] ' Potentially always ' (a path exists where ' holds in all reached states)
A <> ' Always eventually '. Equivalent to: not E[] not '
' –> ' always leads-to . Equivalent to: A[] (' imply A <>)

Table 2.1: Path formulae supported in Uppaal

• (bounded) liveness: whose task is to test if the system evolves towards
some state (possibly within a given finite time);

that can are always investigated in terms of reachability on the state-graph.
Reachability properties can be used to validate a model, by checking the occur-
rence of expected or unexpected behaviour. Given a state formula ', they are
in charge to verify if ' can be satisfied by any reachable state (even after an
infinite time), i.e., if there exists a path starting from the initial state, such that
' is eventually satisfied along that path. The path formula used to check these
kinds of properties is in the form E ⇧ ', while in Uppaal it can be expressed
using the syntax E<> '.
Safety properties are used to ensure that the system does not have unwanted
behaviours. In Uppaal these properties are formulated positively, i.e., in terms
of something good is invariantly true. Let ' be a state formula, it is possible to
express by using:

• A⇤' that ' should be true in all reachable states;

• E⇤' that should exist a maximal path (that is an infinite path or where
the last state has no outgoing transitions) such that ' is always true;

In Uppaal these formulae can be written as A[] ' and E[] ' respectively. Live-
ness properties aim to guarantee that the desired state will be finally reached
in the system. In its simple form, liveness is expressed with the path formula
A⇧', meaning that ' is eventually satisfied. The more useful form is the leads
to property, written as ' which is read as whenever ' is satisfied, then
inevitably will be satisfied. In Uppaal these properties are written as A<>'
and ' - - > . Note that the liveness property cannot be verified from normal
locations, where on the exit edges there are at the most normal channels, be-
cause the process can stay there for an unbounded time.
Figure 2.6 and Table 2.1 summarizes the operational meaning of the basic
queries.

When a property is not satisfied, Uppaal (if requested) can generate a
counter-example, called diagnostic trace, automatically loaded in the simulator,
which allows to see step-by-step the sequence of transitions that lead to the
problem. A diagnostic trace can also be created when an existential query gets
satisfied.

2.3 Advanced features
In latest versions of Uppaal, new features were introduced which enable the
modelling of hybrid systems, that combine discrete and continuous behaviors.

29

Chapter 2. The Uppaal Symbolic Model Checker

Figure 2.6: Path formulae supported in Uppaal, taken from [27]

Figure 2.7: Example of over-approximation

Toward these clock variables are allowed to have different rates of advancement,
regulated by putting into locations, as invariants, a first derivative of the clock
different from the 1 default value. In addition, clocks are allowed to be stopped
(stopwatches), thus retaining their values, and subsequently restarted from the
value they were last stopped. These features are, for example, of interest when
modelling preemptive real-time tasks [68, 88]. A preempted task, caused by
the arrival of a greater priority one, has the need to frozen its clock which is
measuring the execution time of the task body. All of this can be achieved by
entering a location where the invariant states the first derivative of the clock
variable is equals to zero. When the scheduler decides that a preempted task
can again be released on the cpu, it is sufficient to force the exiting from the
frozen clock location.
Unfortunately, the use of stopwatches does not come without problems. On
the other hand, hybrid systems in most cases tend to be undecidable. It can
be shown that a model with stopwatches generates not convex zones thus com-
plicating the model checking (which sometimes cannot possibly terminate). In
these cases, Uppaal resort to using the Over Approximation (OA) technique

30

Chapter 2. The Uppaal Symbolic Model Checker

[31] which is not always capable of furnishing certain results. Under OA a not
convex zone is enlarged so as to cover the original zone and become convex (see
the example in Fig. 2.7 taken from [] for the general concept of how a not con-
vex zone can be transformed into a convex one). Obviously, an enlarged zone
includes states which do not exist in the original model. Therefore, the issue of
some queries can be inconclusive. In particular, properties which are invariably
true (safety A[] queries) on the OA based model, are certainly true also on
the original model. An existential property which is satisfied on the OA based
model, can be true on states introduced by the OA which do not belong to the
modelled system. As a consequence, the concept of a property which might be
or not satisfied arises.

31

Chapter 3
Probabilistic and Statistical

Model Checking

Distributed probabilistic/stochastic timed systems represent a grand challenge
for modelling and analysis. Symbolic model checkers like Uppaal can only evalu-
ate some logical/temporal properties of these systems. In fact, when faced with
a probabilistic and timed model, Uppaal ignores probabilistic aspects and turn
probabilistic execution paths into non-deterministic paths. All of this is impor-
tant but a full characterization of the behavior of these system models requires
deriving a probability measure of event occurrences. On the other hand, exhaus-
tive verification can incur into state explosion problems. Nowadays, Probabilistic
and Statistic Model Checking represent two automated formal verification meth-
ods, that given a stochastic model M and a logical property ', can perform two
kind of analysis (possibly approximate) [153]:

• qualitative: is the probability for M to satisfy ' greater than or equal a
certain threshold k (P (') � k)?

• quantitative: what is the probability for M to satisfy ' (P=?('))?

Analysis can exploit numerical or statistical techniques. The numerical ap-
proach checks the system using symbolic methods based on boolean formulas,
or numerical methods [230]. Although accurate, this approach does not scale
well and can be computationally expensive, being centred on the construction
of a probabilistic timed system based on Markov chains and related timed vari-
ants [204], it can also be affected by state-space explosions [164]. The statis-
tical approach, instead, although potentially less accurate, does not suffer of
state-explosions, because it relies on Monte Carlo simulations. It provides a
quantitative measure (p-value) of confidence of its answer using first a sampling
phase, in which the system is simulated for a finite number of runs, e.g., estab-
lished by Wald’s hypotheses [255]. Then statistical inference is applied either
according to the hypothesis testing phase, used to infer whether the samples
provide statistical evidence for the satisfaction or violation of the specification
[263], or with an estimation phase whose aim is to determine likely values of
parameters, based on the assumption that the data are randomly drawn from

32

Chapter 3. Probabilistic and Statistical Model Checking

a specified type of distribution [9]. Intuitively, since this technique rests on a
proportion of the results extracted from the various runs (with the amount of
required memory which is linear with the model size), to obtain more accurate
results the number of samples needs to be increased, thus implying a longer
computation time.
In this chapter, first concepts of Probabilistic Model Checking are discussed,
then the operation of Statistical Model Checking (SMC) is reviewed. SMC is
chosen in this work for quantitative evaluation of distributed probabilistic and
timed systems.

3.1 Probabilistic Models
Probabilistic model checking is an extension of model checking, applied to tran-
sition systems augmented with information about the likelihood that each tran-
sition will occur [141]. The behavior of a model with a set of states S is not
specified by a transition relation on S, but through a transition function. In
order to carry out their operations, probabilistic model checkers require as input:

• a probabilistic model of the system;

• a temporal logic specification language, used to express qualitative and
quantitative properties under investigation.

Table 3.1 summarizes some probabilistic models often used to build a formal
description of a system with stochastic behavior, whose concepts are then briefly
summarized.

Time Non Deterministic Probabilistic Models

Discrete
no Discrete-time Markov Chains (DTMCs)

yes Markov Decision Processes (MDPs)
Probabilistic Automata (PAs)

Continuous
no Continuous-time Markov Chains (CTMCs)

yes Probabilistic Timed Automata (PTAs)
Priced Probabilistic Timed Automata (PPTAs)

Table 3.1: Types of probabilistic models

3.1.1 Discrete-Time Markov Chains (DTMC)
Discrete-Time Markov Chains (DTMCs) are fully probabilistic transition sys-
tems, in which the successor state of a process does not depend on the satis-
faction of a guard, but it is chosen probabilistically within a set of admissible
states. In a DTMC, transitions can occur at discrete time-step n = 0, 1, 2, . . . ,
so if the system enters a state s at time n, it stays there for one time unit and
then moves to s0 at time n+ 1 [204].
DMTCs are well suited for modelling, for example, simple random algorithms
or synchronous probabilistic systems where components evolve in lock-step.
Formally, a DTMC is a tuple M = (S, s0,M,L) where:

• S is a finite set of states;

33

Chapter 3. Probabilistic and Statistical Model Checking

• s0 2 S is the initial state;

• M : S⇥S ! [0, 1] is a transition probability function, that assigns probabil-
ities to successor states, with the requirement: s 2 S,

P
s02S M(s, s0) = 1;

• L : S ! 2AP is a labelling function, which assigns to each state s 2 S a
set L(s) of atomic propositions a 2 AP ;

A DTMC satisfies the Markovian property (absence of memory): the probabilis-
tic description of the system at time n + 1, only depends on the current state
at time n, and not on the previous history; this implies that the sojourn time
in a state is distributed according to a geometric distribution.
Graphically, a DMTC is represented:

• by an direct graph, in which states, labelled with atomic propositions, indi-
cate a specific execution circumstance of the system, and edges, weighted
with probability values, represent the eligible transitions with non-zero
probabilities;

• by a transition probability matrix, in which rows and columns are labelled
with states and the element at (i, j) represents the probabilistic weight
associated to the transition from the status si to sj .

Figure 3.1: Example of a Discrete Time Markov Chain and its transition probability
matrix

Figure 3.1 shows an example of the two ways of representing the so called ho-
mogeneous DMTC, in which the probability values associated with transitions
are costant and do not depend on the time-step n.
A run or path ⇡ in a DMTC M is defined as a sequence of states and transi-
tions s0

p0�! s1
p1�! . . .

pi�1���! si
pi�! . . . with i 2 N, si 2 S, and pi 2 R(0,1]

such that pi > 0 ^ pi = M(si, si+1) for all i � 0. It is indicated with
⇡:n = s0, s1, . . . , sn�1, sn [212]. Due to the Markovian property, transitions
between states are selected independently from each other, and the probability
of reaching a given state, following a path ⇡, is given by:

PM(⇡) =
n�1Y

i=0

M(si, si + 1) si, si+1 2 ⇡

Considering the DMTC M in figure 3.1 and the path ⇡ = s0, s0, s1, s0, s1, s2,
the probability of ⇡ is PM(⇡) = 0.5 · 0.5 · 0.6 · 0.5 · 0.2 = 0.015.
In order to carry out performance analysis on discrete-time and stochastic
model, classical Computation Tree Logic (CTL), introduced by [82], has been

34

Chapter 3. Probabilistic and Statistical Model Checking

enriched to handle and formulate probabilistic queries. The Probabilistic Com-
putation Tree Logic (PCTL) proposed by [116], provides the following syntax
for query formulation [166]:

� ::= true | a | �1 ^ �2 | ¬� | P⇠p []

 ::= X� | �1Uk�2 | �1 U �2 | F� | G�

where a is an arbitrary atomic proposition, p 2 [0, 1] a path probability value,
⇠2 {<,,�, >} one of the possible inequality operators, and k 2 N an arbi-
trary natural number. The � formula is used to verify properties on a specific
state of the model, whereas formula is used to investigate the satisfaction of
constraints over a path.
Compared to the basic CTL version, two new expressions are added:

• the formula P⇠p[], that is true in a state s 2 S when the probability that
 holds on paths starting from s exceeds a certain threshold (⇠ p);

• the bounded until operator �1Uk�2, that is true for a path ⇡ = s0, s1, . . . , sk, . . .
whenever there is a state sn+1 with n+ 1 k where �2 holds, and for all
states up to including sn, �1 holds (see equation 3.1) [9].

s0 s1 . . . sn sn+1 . . .

�1 �1 . . . �1 �2 . . .
(3.1)

3.1.2 Markov Decision Processes (MDPs)
Some aspects of a system which may not be modelled probabilistically, include:

• concurrency in the scheduling of parallel components;

• unknown environments;

• underspecification, i.e., unknown model parameters.

To model these aspects, the concept of Labelled Transition System (LTS) where
the choice of the next state is nondeterministic, can be combined with that of
DTMC where the next state is chosen probabilistically.
A Markov Decision Process (MDP) is a discrete-time state-transition system
with both nondeterministic and probabilistic behavior. As in a DTMC, tran-
sitions between states occur in discrete time-steps and a discrete set of states
represent possible configurations of the modelled system. Formally, it can be
described as a tuple M = (S, so,A, T, R(s)) where:

• S is a finite set of states;

• so are the initial states;

• A is a set of actions used to control the system state. The set of ations
that can be applied in s 2 S are labelled as A(s), where A(s) ✓ A;

• T is the transition probability function T : S ⇥ A ⇥ S ! [0, 1] that de-
scribes the probability of reaching state s0 after doing an action a in
state s: T (s, a, s0) = Pr(s0t+1|st, at). For all states s and actions a,P

s02S T (s, a, s0) = 1, i.e. T defines a probability distribution over possible
next states.

35

Chapter 3. Probabilistic and Statistical Model Checking

• R is a reward function that gives a reward (a real number) for:

– performing an action in a state: R : S ⇥A! R;
– particular transitions between states: R : S ⇥A⇥ S ! R.

Rewards can be considered as a short-term utility function, which associate
events to positive or negative values, to offer a measure of the usefulness of
decisions. In a MDP is still valid the Markovian property : current state s
holds enough information for making an optimal decision (i.e., a decision with
maximum reward), and it is not important which states and actions occurred
previously [248].
The behavior in a state s is both probabilistic and nondeterministic, in fact, first
an available action (a 2 A(s)) is selected nondeterministically, then a successor
state is chosen according to the probability by T (s, a) [143].

3.1.3 Probabilistic Automata (PAs)
Probabilistic Automata (PA) [215] [209] are state machines useful for modelling
systems that at any time-step can evolve according to a probability distribution.
PA differs from an ordinary automata in the transition relation, because the
successor s0 of a state s is selected by:

• choosing non-deterministically one transition among the ones outgoing s;

• selecting the action to be performed and the state that will be reached
through a discrete probability distribution;

MDPs are closely related to PA. In fact, by identifying the controls of MDP
with the inputs of PA, the two computational models are almost identical. They
differ, though, in the way they are used. Generally PAs are adopted to study the
input acceptance sequences of a system, under different acceptance conditions.
MDPs are employed to identify control policies that maximize or minimize given
functionals [91].
Formally, a PA is a tuple of M = (S, so,A, T, L) where:

• S is a set of states;

• s0 is the initial state;

• A is a set of actions (known as the alphabet of the model);

• T is the transition probability function T : S ⇥ A ⇥ S ! [0, 1], which
associates actions with a probability weight to reach a successor state;

• L : S ! 2AP is a labelling function, which assigns each state s 2 S with a
set L(s) of atomic propositions a 2 AP .

3.1.4 Continuous-Time Markov Chains (CTMCs)
A Continuous-Time Markov Chain (CTMC) is an extension of DTMC, that
allows to incorporate real-time information. In contrast to the discrete version,
transitions are not triggered by probabilities at fixed times n = 0, 1, 2, . . . , but

36

Chapter 3. Probabilistic and Statistical Model Checking

can occur at any arbitrary time t, according to a movement rule determined by
the qij rate variables. Since the Markovian memoryless property still remains
valid, the future state of the model depends only on the current one. Conse-
quently, the sojourn time in a state si can be modeled by a sample extracted
from an exponential distribution function, whose rate is equal to the sum of the
all qij values, associated to the outgoing transitions from si:

FS(t) = 1� e�(
P

j qij)t

Formally, a CTMC is a tuple M = (S, s0, Q, L) where:

• S is a finite set of states;

• s0 2 S is the initial state;

• Q : S ⇥ S ! R�0 is the transition rate matrix, which expresses the in-
stantaneous tendency of the system (qij) to move from si to sj : qij =

lim�t!0
P (S(t+�t)=sj |S(t)=si)

�t ;

• L : S ! 2AP is a labelling function which assigns to each state s 2 S a set
L(s) of atomic propositions a 2 AP .

In general, the elements of the Q matrix are time-variant (Q(t)), but for homo-
geneous CTMCs, they are supposed to be constant.
In order to analyze a CTMC, the Continuous Stochastic Logic (CSL) specifica-
tion language is used [166]:

� ::= true | a | �1 ^ �2 | ¬� | P⇠p [] | S⇠p [�]

 ::= X� | �1U I�2 | F� | G�

where a is an arbitrary atomic proposition, p 2 [0, 1] a path probability value,
⇠2 {<,,�, >} one of the possible inequality operators, and I 2 R�0 is an
arbitrary interval of R�0. The � formula is used to verify properties on a specific
state, whereas formula is used to investigate the satisfaction of constraints
over a path.
The new expressions added by CSL are:

• S⇠p [�]: used to determine the probability that a certain (state) property
finally holds, in the long term;

• �1U I�2: used to assure that a certain property �1 holds until another
property �2 holds, which has to occur within the given time interval I.

3.1.5 Probabilistic Timed Automata (PTAs)
Probabilistic Timed Automata (PTAs) are finite-state machines with features
of TA and MDPs. They are useful for modelling systems with probabilistic,
nondeterministic and real-time aspects. As in TA, also in PTA time is dense
(t 2 R), and modelled through clocks, whose values increase simultaneously and
uniformly. Guards and invariants are assigned respectively to transitions and
states for:

• imposing a restriction on when a transition can occur;

37

Chapter 3. Probabilistic and Statistical Model Checking

• enforcing an upper bound on the instant at which certain probabilistic
choices are made, so defining how long the model can stay in a state [144].

The formalism also allows the use of internal finite-ranging data variables.
Formally, a PTA is a tuple M = (S, s0, L,X , inv, Pr, h⌧sis2S), where:

• S is a finite set of states;

• s0 is the initial state;

• L : S ! 2AP is the labelling function that assigns to each node a set of
atomic propositions;

• X is a finite set of clocks;

• inv : S ! ZX is the function that assigns to each node an invariant
condition (with ZX the set of all zones, conjunctions of clock constrains,
of X);

• Pr : S ! P (µ(S ⇥ 2X)) is a function that assigns to each node a (finite,
non-empty) set of discrete probability distributions on S ⇥ 2X ;

• a family of functions h⌧sis2S where, for any s 2 S, ⌧s : Pr(s) ! ZX
assigns to each p 2 Pr(s) an enabling condition.

During a state transition, clocks can be reset (to integer values) and data-
variables can be updated.
Discrete transitions are instantaneous and consist of two steps:

• a nondeterministic choice between the set of distributions p 2 Pr(s) whose
corresponding enabling condition ⌧s(p) is satisfied by current values of the
clocks;

• supposing that the probability distribution p is chosen, a probabilistic tran-
sition is performed according to p; that is, for any s0 2 S and X ✓ X ,
the probability that the system will make a transition to s0, and reset all
clocks in X, is p(s0, X).

Verification of PTAs addresses a wide range of quantitative properties, from
reliability to performance, like the following ([258], [200]):

• the maximum probability of an airbag failing to deploy within 0.02 sec-
onds;

• the minimum probability that a packet is correctly delivered with 1 second;

• the maximum expected time for the protocol to terminate.

3.2 The Prism probabilistic model checker
Prism is a notable general stochastic model checker, mainly developed at the
University of Oxford [144], for formal modelling and analysis of systems with
a probabilistic behaviour. It incorporates state-of-the art symbolic data struc-
tures and algorithms based on BDDs (Binary Decision Diagrams) and MTBDDs

38

Chapter 3. Probabilistic and Statistical Model Checking

(Multi-Terminal Binary Decision Diagrams). The tool supports both numer-
ic/symbolic techniques and statistical model checking. Prism is based on Java
and runs on the most common operating systems like Windows, Linux and
Mac OS, with 64-bit variants. For improved verification, Prism relies on such
techniques as quantitative abstraction refinement [58] and symmetry reduction
[141]. The Prism language, although in a textual not graphical form, recognizes
stochastic systems of the kind DTMCs, CTMCs, MDPs and PTAs. The tool
can simulate systems at the language level (on-the-fly), and hence does not need
to store complete representations in memory. The supported property specifica-
tion language incorporates the temporal logics PCTL, CSL, pLTL and PCTL⇤,
as well as extensions for quantitative specifications and costs/rewards.
The discrete-event simulation engine enables two different confidence interval
methods to carry out approximate/statistical model checking; one is based on
Chernoff bounds and the other depends on the sequential probability ratio hy-
pothesys test [59], [142].
In its current version, Prism does not support high-level data structures (e.g.,
arrays of integers) and user-defined functions which can contribute to compact
modelling in specific application domains.

3.3 Statistical Model Checking
In cases where the application of probabilistic model checking is infeasible, prob-
ability evaluation can be approximated by a statistic estimator [199]. Statistical
Model Checking (SMC) [9] is a simulation-based approach that aims to do this
by adopting Monte-Carlo like simulations. SMC does not build the state graph
of a model. Therefore, it can be applied to a larger class of systems than numer-
ical model checking algorithms, including black-box systems and infinite state
systems. SMC works on a set of independent stochastic simulation traces, ob-
tained in an easy way by simulating model execution. Such traces are then
checked with respect to a logic such as Bounded Linear Temporal Logic (BLTL)
[37] and the results are combined with statistical methods such as the hypothe-
sis testing. Moreover, being independent, traces may be generated on different
machines, so SMC can efficiently exploit modern parallel architectures.
Recently, SMC developers are engaged in a new challenge: that of allowing the
analysis of rare-events [152], that are events whose occurrence probability p is
very low. To overcome issues such as requiring an excessively large number of
samples to observe the target event, new techniques based on the Importance
Sampling (IS) and the Importance Splitting (IP) are being studied and are under
investigation [220].

3.3.1 SMC Operation
Statistical model checking operations are summarized in figure 3.2. The first
step is generating a set of samples (simulation runs) on which perform the
analysis, according to two possible strategies:

• fixed-size sampling, in which the sample size is predetermined;

• incremental or sequential testing, in which samples are collected and sta-
tistical tests performed, until a decision is reached; therefore, the number

39

Chapter 3. Probabilistic and Statistical Model Checking

of required observations need not be known beforehand.

Since taking a limited number of runs obviously offers a low guarantee about
the result, in paragraph 3.3.3 are indicated some strategies for computing the
optimal number of samples needed to obtain a given level of reliability.
Once extracted the paths, the verification phase consists in estimating if each
of them satisfies a property. In the analysis phase, the estimator is updated
with the evaluations coming from the verification phase and it will be possibly
returned to the user [199]. The result of an SMC analysis is an estimate �̃ of
the quantity � that expresses the exact measure with which the system satisfies
a property, together with a statistical statement about the potential error. A
typical guarantee is a probability � representing the confidence, any �̃ will be
within ±✏ of �, where ✏ indicates the precision. To strengthen the guarantee,
i.e. increase � or decrease ✏, more samples are needed [47].

Figure 3.2: Statistical Model Checking operation, taken from [199]

SMC verification algorithms are divided into two different classes, that are:

• quantitative algorithms that calculate a probability measure satisfying a
property;

• qualitative algorithms that decide if the probability of a requirement is
above a given threshold, choosing between two possible contrary hypothe-
ses.

3.3.2 Monte Carlo simulations
Classical Monte Carlo technique is a quantitative algorithm that uses N simu-
lation traces (wi, i 2 {1, . . . , N}), to calculate a measure:

�̃ =
NX

i=1

1(!i |= ')

N

that represents an estimation of the probability � with which the model satis-
fies a logical formula '. The operator 1(·) is a function, whose value is 1 if its
argument is true and 0 otherwise.
Using the Chernoff-Hoeffding bound [203] and setting the number N of simula-
tions to the value:

N =

⇠
ln(2)� ln(�)

2✏2

⇡

it is guaranteed that the probability of error is Pr(|�̃ � �| � ✏) �, where, as
noted previously, ✏ indicates the precision and � the confidence. Parameter � is
related to the number N of simulation, through the equation:

� = 2e�2N✏2

40

Chapter 3. Probabilistic and Statistical Model Checking

3.3.3 Hypothesis testing
The main approaches to investigate qualitative properties are based on the hy-
pothesis testing [9]. Hypothesis testing uses statistics to determine the probabil-
ity that a given hypothesis is true, where a statistical hypothesis is a statement
about the values of the parameters of a probability distribution [178].
The hypothesis testing procedure consists of the following steps:

• formulating two competing and complementary hypotheses:

– H0, called null hypothesis, that represents what it would be accepted
until it is proved otherwise and is the hypothesis that the probability
measure p of ' for a run is greater than a certain fixed threshold ⇥
(H0 : p � ⇥);

– H1, called alternative hypothesis, is the hypothesis that the probabil-
ity measure p of ' for a run is less than a certain fixed threshold ⇥
(H1 : p < ⇥);

• setting an acceptable significance value ↵, that acts as threshold for the
refusal or not of the null hypothesis;

• identifying a test statistic to use for assessing the truth of the null hypoth-
esis (reject or fail to reject H0);

• following a choice of the appropriate test for the problem, two equivalent
methods for proceeding are:

– critical test values method: it uses the ↵ value as a threshold to
decide the rejection of H0, by dividing the sample-space into two
regions:
⇤ an acceptance region, in which if the test statistic value falls

within it, H0 is accepted;
⇤ a critical region or reject region, in which if the test statistic is

enclosed in it, H0 is reject;
such regions can be an interval, or a union of two intervals, depending
on whether the test is unilateral or bilateral.

– compute the p-value p̃, which is the probability that a test statistic at
least as significant as the one observed would be obtained by assuming
the null hypothesis was true. The smaller the p-value, the stronger
is the evidence against the null hypothesis. And then compare the
p-value with ↵: if p̃ ↵, H0 is rejected and H1 accepted.

It is important to note that when a null hypothesis is not rejected, it can not
be considered as true, but only that it could be true but the samples do not
provide sufficient evidence for its refusal. Inference, in fact, represents only an
indication that the evidence of an hypothesis is supported by the available data.
Two kinds of errors may be committed when testing hypotheses:

• type I error when the null hypothesis is rejected but it is true;

• type II error when the null hypothesis is not rejected but it is false.

41

Chapter 3. Probabilistic and Statistical Model Checking

Figure 3.3: Sample-space regions for the decision rule

The probabilities of these two types of errors are:

↵ = P{type I error} = P{reject H0 | H0 is true}

� = P{type II error} = P{fail to reject H0 | H0 is false}

where ↵+� 1 and the test cannot work if ↵ = �. Figure 3.4 summarizes all the
possible outcomes and admissible combinations of hypothesis, from which one
can deduce that if the ↵ value will be small, the probability of falsely rejecting
the null hypothesis will be smaller.

Figure 3.4: Schema of errors in a statistical test

Test statistic

The test statistic is a quantity computed from the observed data, that summa-
rizes the relevant sample information for the evaluation of the likelihood of the
hypothesis. Different tests can be adopted depending on the hypothesis system
and the auxiliary assumptions, but since main problems have an already devel-
oped solution, the work becomes that of trying to bring the real problem back
to one of these standard situations.
For example, the procedure for testing an hypothesis H0 about a random vari-
able x, with unknown mean value µ:

(
H0 : µ = µ0

H1 : µ 6= µ0

consists in taking a random sample of n observations on x and compute the
statistic test Z-test [178]:

Z0 =
x� µ0

�p
n

42

Chapter 3. Probabilistic and Statistical Model Checking

and reject H0 if |Z0| > Z↵
2

where Z↵
2

is the upper ↵
2 percentage point of the

standard normal distribution (i.e., the reference distribution for the Z-test). In
some situations H0 could be rejected only if the true mean is larger than µ.
Thus, the one-sided alternative hypothesis is H1 : µ > µ0, and H0 : µ = µ0

would be rejected only if Z0 > Z↵. If rejection is desired only when µ < µ0,
then the alternative hypothesis is H1 : µ < µ0, and H0 is rejected only if
Z0 < �Z↵.
To clarify the analytics details about the functioning of this technique, in the
following a practical example is showed (taken from [178]).

Example: Computer response time
The response time of a distributed computer system is an important quality
characteristic. The system manager wants to know whether the mean response
time to a specific type of command exceeds 75 ms. From previous experience,
he knows that the standard deviation of response time is 8 ms. The type I
error if fixed at ↵ = 0.05.

The appropriate hypotheses are:
(
H0 : µ = 75

H1 : µ > 75

The command is executed 25 times (n) and the average response time is x =
79.25 ms. The value of the test statistic is:

Z0 =
x� µ
�p
n

=
79.25� 75

8p
25

= 2.66

Since ↵ = 0.05 and the test is one-sided, from the tabled values of the normal
distribution: Z↵ = Z0.05 = 1.645. Therefore, H0 : µ = 75 is rejected and it is
possible to conclude that time exceeds 75 ms.

If the �2 value is unknown an additional assumption is needed to carry out
the test. The random variable x is considered distributed according to a normal,
and the unknown variance is replaced with s, that is the variance value obtained
from the samples:

s2 =

P
(xi � x)2

n� 1

In this case the statistic test adopted is:

t0 =
x� µ0

sp
n

and the reference distribution is the t-distribution with n-1 degrees of freedom.

Confidence Interval

The information about values of the process parameters that are in a sample
can be expressed in terms of an interval estimate called a confidence interval.
An interval estimate of a parameter is the interval between two statistics that

43

Chapter 3. Probabilistic and Statistical Model Checking

includes the true value of the parameter with some probability. For example, to
construct an interval estimator of a parameter µ, two statistics L and U must
be identified, such that:

P{L µ U} = 1� ↵

and the resulting interval
L µ U

is called a 100(1 � ↵)% confidence interval (CI) for the unknown mean µ. L
and U are the lower and upper confidence limits, respectively, and 1� ↵ is the
confidence coefficient. Sometimes the half-interval width U�µ or µ�L is called
accuracy of the confidence interval.
Assuming that x is a normal random variable with unknown mean µ and un-
known variance �2, and that from a random sample of n observations, the sample
mean x and the sample variance s2 are computed. The confidence interval is
obtained by:

x� t↵
2 ,n�1

sp
n
 µ x+ t↵

2 ,n�1

Error control in hypothesis testing

Considering a property ' and the query that would be checked, written in a
PCTL-like specification language, P�⇥(). Assuming that to verify the query it
is necessary to monitor the random variable X in the simulation traces, whose
values are: Pr[X = 1] = p and Pr[X = 0] = 1 � p. The goal is to obtain
results that bound the probability of a Type I error (↵) and Type II error (�),
respectively.
Let Lp be the probability of accepting H0 in a statistical test. To provide the
desired error bounds, the test has to guarantee that whenever p < ⇥, Lp �
and whenever p � ⇥, Lp > 1 � ↵ [9]. As shown in figure 3.5 a), plotting
a theoretical trend of p for varying Lp, it emerges a critical case in which in
corrispondence of p ⇡ ⇥, Lp > 1 � ↵ and Lp � hold at the same time. This

Figure 3.5: Probability Lp of accepting H0 : p � ⇥, taken from [9]

is a problem, because to ensuring the fulfillment of both conditions, the test
requires:

• sampling more extensively;

• setting � = 1� ↵;

44

Chapter 3. Probabilistic and Statistical Model Checking

but the former constraint may be infeasible, and the latter implies that the
error probabilities for Type I and Type II errors become not independently
controllable [265].
Another solution to carry out more flexible tests, consists into the introduction
of an indifference region around the ⇥ value, whose width depends from a
parameter �. When p belongs to this area, the tests provide no error-related
guarantees.
By adding this feature, the new curve for the p-Lp relation is depicted in figure
3.5 b). To take the indifference region into account, the original hypothesis
H0 : p � ⇥ is changed to H0 : p � ⇥+� and similarly the alternative hypothesis
passes from H1 : p ⇥ to H1 : p ⇥ � �. Consequently, both hypotheses H0

and H1 are considered false when p 2 (⇥ � �,⇥ + �) and the new resulting
schema of errors is shown in the following figure [9].

Figure 3.6: Errors in a test with ↵, � and � parameters, taken from [9]

Sequential Probability Ratio Test

The Sequential Probability Ratio Test (SPRT) of Wald [255] is used to evaluate
the hypothesis of the form Pr(! |= ') ./ p where ./⇢ {,�}. For choosing
between the following H0 and H1 hypotheses:

(
H0 : Pr(! |= ') � p0

H1 : Pr(! |= ') p1

SPRT defines a Bayesian likelihood measure, called probability ratio, as:

fm =
NY

i=1

(p1)1(!i|=')(1� p1)1(!i 6|=')

(p0)1(!i|=')(1� p0)1(!i 6|=')

where N is the number of simulation traces.
The main idea behind a sequential test is to perform a simulation and to estimate
the obtained step-by-step ratio value, until the collected samples are sufficient
to end the process decision, according to the rule [114]:

fm =

(
� 1��

↵ H1 is accepted
 �

1�↵ H0 is accepted

More details concerning the statistical problems or the P=?(') and P⇠p(')
estimation are reported in [9] and [199].

45

Chapter 3. Probabilistic and Statistical Model Checking

3.4 Plasma Lab statistical model checker
Plasma Lab (Platform for Learning and Advanced Statistical Model checking
Algorithms) is a compact, efficient and flexible platform for statistical model
checking of stochastic models. It may be used as a stand-alone tool with a
graphical development environment or invoked from the command line for high-
performance applications.
The tool is written in Java for cross-platform compatibility and differs from other
SMC due to the presence of an API abstraction of the concepts of stochastic
model simulator, property checker (monitoring) and SMC algorithm, that allow
it to use external simulators or input languages [165]. The tool architecture is

Figure 3.7: Plasma Lab architecture taken from [165]

summarized in Fig 3.7. The core of Plasma Lab is a light-weight controller
entity that manages the experiments and the distribution mechanism, imple-
menting an API that allows to control the experiments either through a user
interface or external tools. The controller loads three types of plugins, that are:

• algorithms,

• checkers,

• and simulators,

that are enabled to communicate each other and with the controller.
An SMC algorithm works by collecting samples obtained from the checker com-
ponent. In turn, the checker asks the simulator to initialize a new trace, with a
state on-demand approach: new states are generated only when needed to decide
a property. Depending on the query, the checker either returns boolean or nu-
merical values. Finally, the algorithm notifies the progress and sends the results
to the user interface, through the controller API. The tool supports Bounded
LTL specifications and offers three analysis methods in the form of simple Monte
Carlo, Monte Carlo using Chernoff bounds and sequential hypothesis testing.
More information on Plasma are reported in [39], [165].

46

Chapter 3. Probabilistic and Statistical Model Checking

3.5 VeStA and PVeStA
VeStA is an on-line available SMC tool, written in Java and developed at the
University of Illinois [9]. Its simulation engine works on models generated by
using two modelling languages:

• PMaude, that is an executable algebraic specification language, which
allows to describe models in probabilistic rewriting logic dialect [140];

• a language very close to the PRISM syntax, oriented to for specifying the
system as a DTMC/CTMC model.

Properties are checked by exploiting a sequence of inter-related statistical hy-
pothesis testing, and are specified in PCTL, CSL or Quantitative Temporal
Expressions (i.e. QuaTEx). In particular, the results of a QuaTEx expression
[8] is statistically evaluated by sampling, until the size of (1�↵)100% confidence
interval gets bounded by �, where ↵ and � are provided as input.
PVeStA is an extension of the VeStA tool, with a parallel implementation,
which improves specifically the analysis execution efficiency. PVeStA includes
a client-server architecture, whose aim is to distribute and to parallelize the
execution of model checking algorithms, where as shown in Fig. 3.8:

• the client component is in charge of implementing the sequential part of
the SMC algorithm, spreading the simulation of runs to be performed,
among different Ri server components;

• the server component, instead, is in charge of performing the requested
number of simulations, by adopting a pseudo-random seed to guarantee
statistical independence of the results.

Figure 3.8: PVeStA architecture schema, taken from [13]

More details about these tools can be found in [231] and [13].

47

Chapter 4
The Uppaal Statistical Model

Checker

In last years the Uppaal toolbox was extended with a statistical model checker
(SMC) [90] to allow probabilistic modelling and verification of hybrid and stochas-
tic systems. Uppaal SMC represents systems through a network of stochastic
timed automata (NSTA) [89] which communicate each another by broadcast
synchronizations only. The success of Uppaal SMC depends on its ability to:

• provide a simple implementation of reactive systems through NSTA;

• model check properties that cannot be expressed in classical temporal
logics;

• require no extra modelling or particular specification effort.

In this chapter, the main features of Uppaal SMC, selected in this work for
quantitative evaluation of probabilistic and timed actors and more in general
for analyzing multi-agent systems, are summarized, by focusing on the query
language used to formulate and check stochastic properties. Although SMC is
potentially less accurate with respect to a probabilistic model checker based
on numerical methods and stochastic transition system, it can anyway provide,
e.g., a confidence interval adequate, from a practical engineering point of view,
to evaluate system behavior and event occurrences.

4.1 Network of Stochastic Timed Automata
A Stochastic Timed Automata (STA) combines the general structure of a timed
automaton with underlying stochastic processes [166]. STA replace non-deterministic
choices between multiple enabled transitions with probabilistic choices, as well
as non-deterministic choices of time-delays with customizable probability distri-
butions, so that the set of successors of a state is defined through a probability
measure.
An STA composition constitutes a Network of Stochastic Timed Automata (NSTA),
in which the different components are able to communicate each other by using

48

Chapter 4. The Uppaal Statistical Model Checker

broadcast synchronization channels or shared variables. The choice to restrict
communications to the broadcast type only is due to keep always components
in an unblocked state.
Uppaal SMC uses the NSTA formalism and adds the following features:

• built-in uniform or exponential distributions to model the sojourn time in
a normal location. General probability distributions, if needed, can also
be reproduced explicitly by the modeler (see later in this chapter);

• clocks with an arbitrary integer rate;

• branching edges in automata (see figure 4.1 a)) with probability weights
which provide a discrete probability distribution to transitions;

• support for double variables. A double can be used to save the value of a
clock at a given time, but also for decorating a model so as to facilitate
output collection and extraction.

Figure 4.1: Example of NSTA in Uppaal SMC

Dashed edges outgoing from a branching node (see figure 4.1 a), have a proba-
bility weight (non-negative integer) and can admit synchronization and update
fields. If pi is the probability weight of an edge, this edge will be selected with
probability:

piP
j2bpe pj

where bpe represents all the branch point edges.
For property evaluation of NSTAs, an extended version of the Metric Interval
Temporal Logic (MITL) [18] is adopted. MITL is defined as follows:

� ::= a | �1 ^ �2 | ¬� | O� | �1Ux
d�2

where a is an arbitrary atomic proposition over states of an NSTA, d 2 N is a
natural number and x is a clock variable. Besides the usual logical operators
[166], MITL offers a next-state operator O and an extended bounded-until oper-
ator �1Ux

d�2 which allows to specify a clock to be considered in the evaluation.
A bounded-until is satisfied by a run if �1 is satisfied on the run until �2 is
satisfied and this happen before the value of the clock x exceeds d [89].

4.2 Query language
Uppaal SMC supports a set of queries for stochastic analysis, evaluated by
incremental or sequential testing.

49

Chapter 4. The Uppaal Statistical Model Checker

4.2.1 Bound and number of runs
All SMC queries are evaluated according to a simulation horizon, whose width
depends on a bound variable. bound can be expressed by:

• a positive integer (<= k);

• specifying a threshold for a specific clock (x <= k);

• fixing a discrete number of steps (# <= k).

The number of runs to infer a certain property can be optionally set within the
query, through the parameter #run, alongside the bound value: (bound; #run).
When the number of runs is omitted, a default value applies which is 1 for a
simulation query, and a dynamically adjusted value for probability queries where
the number of simulations varies adaptively on the basis of the observed out-
come.
The symbols [] and < > can be used to denote which states should satisfy a
property on a path: [] indicates all states on the path, while < > means at
least one state in the path.

4.2.2 Simulation
For preliminary/functional model assessment, e.g. for debugging purposes, a
simulation run of the model can be asked, thus monitoring and having that Up-
paal SMC automatically plots, at query termination, the observed trajectories
vs. time of specified expressions of interest:

s imulate [bound] {E1 , . . . , Ek}

where bound is the simulation horizon and E1, . . . , Ek are the k expressions to
be monitored.

4.2.3 Statistical algorithms
Since, in general, it is not decidable whether the probability emerging from one
run of the model M satisfies a given threshold value, i.e. PM (') � p with p 2
[0, 1], Uppaal SMC tries to approximate the answer by using simulation-based
algorithms, by restricting the MITL cost-bounded in the form PM (⌃xC�),
according to principles of Weighted Metric Temporal Logic (WMTL) [166], where
x represents a clock variable and C 2 N is a general bound.
Accordingly, the tool is able to perform the following kinds of analysis:

Probability Evaluation: PM (⌃xC�)

Hypothesis Testing: PM (⌃xC�) � p, p 2 [0, 1]

Probability Comparison: PM (⌃xC�1) > PM (⌃xC�2)

and to infer results by performing:

• Monte-Carlo simulation for answering a quantitative question;

• sequential hypothesis testing to infer qualitative questions.

50

Chapter 4. The Uppaal Statistical Model Checker

4.2.4 Probability Estimation
To quantify the probability P () = p of a path expression being true given
that the predicate psi in probability brackets is true, Uppaal SMC uses the
probability estimation algorithm. The result is an estimated probability interval
measure [p� ✏, p+ ✏], with a confidence 1�↵. To perform this type of analysis,
the query is:

Pr [bound] (<> ps i)

where bound is the simulation horizon, psi the expression to be monitored and
the <> symbol could possibly be replaced by [].
It seems that the tool derives a confidence interval by exploiting the Clopper-
Pearson method [85] for a given ↵, performing a number of run N , evaluated
according to the Chernoff-Hoeffding bound [203]. Runs are stopped when the
confidence interval width becomes less than 2✏.

4.2.5 Hypothesis testing
By using the Wald’s sequential hypothesis testing [255], Uppaal SMC allows
to estimate if an event occurrence probability exceeds a given threshold. The
query is:

Pr[<= bound] (<> ps i) >= p_0

where bound is the simulation horizon, p0 is the comparison probability to test
for and the <>, >= symbols can be replaced with [], <= respectively.
Such a query is more efficient than that of probability estimation as it is one
sided and requires fewer simulations for the same significance level.

4.2.6 Probability comparison
Two probabilities of event occurrence can be compared, without estimating
them, through a query like this:

Pr[<= bound] (<> psi_1) >= Pr[<= bound] (<> psi_2)

where bound is the simulation horizon, while psi_1 and psi_2 are two predi-
cates over the state and the <>, >= symbols can be replaced by [] and <=
respectively.

4.2.7 Value bound determination
To estimate the expected maximum or minimum value of an expression, by
running a given number of simulations, the following query can be used:

E[<=bound ; N] (min : expr) E[<=bound ; N] (max : expr)

51

Chapter 4. The Uppaal Statistical Model Checker

4.2.8 Support for WMITL
Uppaal SMC also supports the checking of extended Weighted MITL (WMITL)
properties.
The probability of satisfying a property is estimated by the query:

Pr p s i

where corresponds to:

 ::= BExpr

| (&&) | (||)
| (U [a, b]) | (R[a, b])

| (<> [a, b]) | ([][a, b])

where a, b 2 N, a b and BExpr is a boolean expression over clocks, variables
and locations.
In WMITL the operators U (until) and R (release) are bounded to arbitrary
clocks. Informally:

• psi1 Ux
[a,b] psi2 is satisfied by a run if 1 is satisfied in the run until 2

is satisfied and this should happen before the value of the clock x exceeds
b time units, and after a time units are elapsed;

• 1 Rx
[a,b] 2 = ¬(¬ 1 Ux

[a,b] ¬ 2) is the release operator (dual of U),
indicating that 2 must be true until both 1 and 2 are true and they
should be true after a time units and before b time units. Alternatively
 2 is true from now until b time units have passed.

The following SMC query:

Pr(<>[low , upp] ([] [t1 , t2] p s i))

evaluates the probability that psi keeps true in the interval [t1, t2], being true
at some instant in the time-interval [low, upp]. Quantities low, upp, t1, t2 are
integers.
Two different ways exist in Uppaal SMC for using WMTL. For the MTL
fragment of WMTL, an MTL property can be passed directly to the engine
[48]. For the full WMTL language, the formula can be converted to an observer
automaton composed with the system [49]. The observer is guaranteed to reach
a specific location if the property is satisfied and another one if it is not satisfied.
Therefore, an optimised reachability engine of Uppaal SMC can be used to verify
WMTL. However, a problem could arise: sometimes an exact observer cannot
be constructed and only an over or under-approximation can be made [212].

4.2.9 Additional queries
Since Uppaal SMC also allows for the dynamic creation of automata [], other
constructions are available to check properties for them.
The query

f o r a l l (i : T) (p s i)

52

Chapter 4. The Uppaal Statistical Model Checker

allows to verify if psi is true for all the dynamically created instances of a T-type
template, while i may be used to refer, in psi, to a specific instance of T.
The construct

e x i s t s (i : T) (p s i)

evaluates psi as true if some i-automaton of the T-type satisfies the property.
The expression

sum (i : T) (phi)

returns an integer equals to the sum of the expression phi evaluated with i
ranging over the given type argument.

4.3 SMC options
The Uppaal SMC behavior during stochastic verification, can be configured
by setting some global statistic parameters as follows:

Figure 4.2: SMC statistical parameters settings

whose meaning refers to the implementation of statistical algorithms discussed
in the previous chapter. The probabilistic deviation values and probability of
false positives and negatives, are used for the hypothesis testing, and indicates,
respectively, the width of the indifference region and the probabilities that the
alternative hypothesis is accepted by mistake. The probability uncertainty de-
fines an interval around the determined probability value, in which the real value
falls. Finally, the lower and upper ratio bound influence the probability com-
parison step, by providing bound values for the ratio of the two probabilities,
to deduce a clear result statement [166].

4.4 Dynamic template processes
The standard Uppaal language allows to create static models, that are network
of timed automata with a fixed size, instantiated when the overall system is
bootstrapped. This is in contrast with the fact that multiprocessing systems
are able to create threads and processed when needed, in order to let programs
take advantage of concurrent execution David: Quantified2014.
Uppaal SMC enables dynamic models, through the use of Dynamic Networks of

53

Chapter 4. The Uppaal Statistical Model Checker

Stochastic Hybrid Automata, that are Timed Automata extended with a spawn-
ing and a tear-down primitive. Any automata in the model can spawn instances
of processes declared as spawnable, that operate as classical static templates,
with the difference that at any moment they could end their execution and be
removed from the model.
A template that will be dynamically spawned is defined the normal way in the
Editor window, but must be declared with the keyword dynamic in the global
declarations:

dynamic NameProcess (l i s t parameters)

where the list of parameters include only by-value parameters or reference to a
broadcast channel.
The spawn operation can be executed by a generator process, thus:

spawn NameProcess (parameters)

in the update attached to an edge. The spawned template can tear itself down,
through an update which invokes the operation:

e x i t ()

Figure 4.3 summarizes the mechanism of dynamic automata [90].

Figure 4.3: Dynamic spawning: a) global and system declaration b) Generator Tem-
plate c) Generated Template

Although potentially useful, dynamic template processes can introduce an
unacceptable performance cost in the evaluation of complex models.

4.5 Custom probability distribution functions
Stochastic behavior can be defined in a Uppaal SMC model by attaching to
normal locations the rate of a negative exponential distribution function. Each
time the model enters one such a location, a dwell-time is established by sam-
pling the exponential function. However, modelling non-Markovian systems
requires custom probability distribution functions to be managed. The follow-
ing pattern, suggested at Fig. 22 of the Uppaal SMC tutorial, can be used.
It is based on a function f() which returns the next sample of a custom dis-
tribution function, a stopwatch d (duration), and a clock x used to measure
the time elapsing in the SWait (stochastic wait) location. SWait is exited
when x reaches the value of d, which purposely is kept frozen in the meanwhile.
Although d could be replaced by a double variable, discretization and time res-
olution aspects make the solution based on the stopwatch d more efficient in the
practical case.

54

Chapter 4. The Uppaal Statistical Model Checker

x<=d &&

d'==0
x==d

SWait

d=f(),

x=0

Figure 4.4: Emulating custom probability distribution functions

4.6 Non-deterministic vs. stochastic interpreta-
tion

To some extent, an Uppaal SMC model could preliminarily be investigated
with the symbolic model checker. For this to be possible, the model has not to
depend only on double variables. Indeed, doubles and probabilistic/stochastic
aspects of the model are ignored by the symbolic model checker. Probabilistic
choices are then replaced by non-deterministic choices. Although this represents
a worst case scenario, because a high probable execution path is handled as
any other alternative path, performing a non-deterministic analysis can allow
to check safety (e.g., absence of deadlocks), (bounded) liveness and reachability
properties on the model. In particular, the non-deterministic analysis can reveal
something of interest (an event) can occur. The quantitative analysis carried by
the statistical model checker then permits to estimate a probability measure for
the event to actually occur. Therefore, when both kinds of analysis are possible,
they can be exploited in a synergic way.

55

Part II

Distributed Probabilistic
Timed Actors

56

Chapter 5
Actor-based Development of

Distributed Probabilistic Timed

Systems

The main goal of this work is to establish and to experiment with a methodol-
ogy for the development of distributed, probabilistic, timed systems belonging
to such application domains as cyber-physical systems, embedded real-time sys-
tems, wireless sensor networks, general IoT, multi-agent systems and so forth.
The methodology aims at addressing all the phases of the system lifecycle, from
modelling, to analysis and property checking (by exhaustive model checking
and/or by simulations e.g. through a statistical model checker), down to de-
sign, prototyping, implementation and real-time execution.
The chosen approach is based on actors, that are encapsulated software entities
which communicate to one another by asynchronous message passing. Many
years of experience have witnessed actors have the great potential for modu-
larizing complex and scalable distributed systems. A grand challenge has been
that of adding and ensuring, in an effective way, timing to actors, and develop-
ing tools assisting modelling and analysis so as to favor a model synthesis into a
programming language capable of guaranteeing “faithfulness” of an implemen-
tation to its specification. Different efforts are reported in the literature and are
summarized in this chapter.

5.1 Untimed actors
Actors were introduced by Hewitt in [118, 119] as active agents for Artificial
Intelligence, providing a fundamental concept combining control and data, on
top of which to achieve program structures, by relying only on the notion of
sending messages to actors. Actors were turned in a concurrent object-oriented
language by Agha [10]. Actor computation was formalized in a functional con-
text by Talcott et al. in [11, 174, 242] to serve as a basis for a theoretical
understanding of concurrency. Actors were soon recognized as a modelling and
implementation framework for general untimed distributed systems based on

57

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

asynchronous message passing.
Actors encapsulate an internal data status and expose a message interface. Re-
ceiving a message represents the basic action (see Fig. 5.1) by which an actor
can change local data variables, create new actors, send messages to known ac-
tors (acquaintances), including itself.
In its basic form, the computational model of actors associates one thread of

Figure 5.1: An actor responds to a message by (1) updating local variables (2) creating
new actors, (3) sending messages to acquaintances (picture taken from [250])

control to each actor which is responsible for message processing. Messages di-
rected to an actor get stored into an input mailbox owned by the actor, from
where they are extracted, one at a time, and processed. When the mailbox is
empty, the control thread pauses by yielding the processor.
Examples of common libraries and languages supporting actor programming in-
clude: ActorFoundy [21], Salsa [249, 250], Scala/Akka family [115, 202], Erlang
[20].The Asynchronous Agents Library (AAL) is an actor-based framework that
was added to Microsoft Visual Studio 2010. An example of a real application
which was achieved by actor programming is the Twitter message queuing sys-
tem [236].
Being based on asynchronous message passing and not on shared data, common
problems and pitfalls of multi-threaded programming [159] , e.g., data races,
misuses of locks, deadlocks and so forth, are avoided when programming with
actors. However, correctness issues raised by actors and requiring suitable analy-
sis tools [236] , are tied to non-deterministic message delivery (multiple messages
sent to a same destination actor may be received in different orders), which is a
problem similar to the basic thread non-deterministic action-interleaving which
makes it hard to analyze and predict the behavior of a concurrent application.
The tool Basset [158] is an efficient and general framework which was developed
for testing (by model checking and state space exploration) concurrent actor

58

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

programs developed according to different libraries and languages (specifically
ActorFoundry and Scala) preliminarily translated into bytecode. Basset was
achieved on top of Java PathFinder (JPF) and proved effective in detecting
bugs (e.g., undeliverable messages, deadlocks and so on) in actor systems. In
a case, it was capable of finding a bug into Scala. To improve space/time of
state exploration, Basset could be adapted to reduce dynamically the partial-
order (by pruning generated state space) in message order delivery by keeping
a Lamport “happens-before” relationship among messages. In addition, states
are compared for isomorphism (by exploiting the state comparison mechanism
already implemented in JPF) so as to reuse states as they repeat.
The Jacco toolset [267] represents an improvement w.r.t. Basset, and deals with
actor programs written in Java. It does not depend on JPF as the back-end
model checker, but directly implements the model checking procedure. This
way Jacco avoids the fine-grain interleaving at the low-level bytecode instruc-
tions, which is unrequired since the high abstraction level of actor programs
which do not share data variables (Basset recognizes the macro-step semantics,
namely executing atomically a message before proceeding with the next one,
but the use of underlying JPF and fine-grain interleaving do not avoid the inef-
ficiency). Jacco develops a new message scheduling approach which can adapt
to standard libraries like Akka, and realizes a more efficient state saving mech-
anism during state exploration which can speedup model checking. The point
of message scheduling is pragmatic: actual actor libraries ensure message order
of messages by relying on TCP communications. As a consequence, if an actor
A sends two consecutive messages m1 and m2 to B, B will receive first m1 then
m2. But Basset using a pessimistic scheduling discipline, considers that m1 and
m2 can be received in any order (non-determinism). Thus are possible mes-
sage deliveries which can raise false negative problems, which in practice do not
exist. Non-deterministic delivery is instead kept for messages sent by different
actors to a same receiver actor. Due to the implemented improvements, Jacco
was successfully applied to case studies where Basset proves inefficient or not
applicable.

5.2 Timed actors
In our opinion, classical multi-threaded actors are best suited to the develop-
ment of untimed concurrent/distributed software systems. A first attempt for
specifying timing aspects in untimed actors was the concept of RT-Synchronizer
[222, 185] [221, 184]. The idea was to separate concerns (see Fig. 5.2) of func-
tional behavior (actors) from those of temporal behavior, through a modular
specification of timing constraints existing in actor interactions. Concretely, an
RT-Synchronizer was devised as a declarative composition software agent, which
filters (by computational reflection) messages directed to actors. Messages get
buffered in the RT-Synchronizer when they do not satisfy a timing constraint
(specified by a constraint pattern); otherwise, they are transmitted to the rele-
vant actors for them to be processed. It is the principle of “safe progress; unsafe
block” in actor interactions. This way functional actors are not aware about tim-
ing issues and timing constraints are part of RT-Synchronizers, which in general
can reflect on distinct assigned groups of application actors. RT-Synchronizer
specifications were intended to be transparently weaved with regulated actors

59

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

so as to be observed during the runtime.

Figure 5.2: Separation of concerns among functional and temporal behavior operated
by an RT-Synchronizer, taken from [184]

In [192] it was experimented a framework based on the RT-Synchronizer for the
schedulability analysis of distributed real-time actor systems. The framework
is based on modelling and analysis by Colored Petri Nets. The key point of the
framework is the introduction of a control layer which reflects on timing and
regulates message exchanges.
The idea of RT-Synchronizers was at the hearth of the design of a time warp
algorithm for high-performance optimistic distributed simulations [32]. Pat-
tern constraints were embedded into the regulating control structure which is
transparent to application actors (Logical Processes-LPs). The realization was
characterized by a particularly aggressive cancellation technique which is capa-
ble of stopping as early as possible an incorrect computation, by exploiting a
coarse-grain notion of undoing messages, which proves effective in loosely cou-
pled distributed contexts. The time warp schema was extended in [33] so as to
support temporal uncertainty in distributed simulation models, whose exploita-
tion can contribute to runtime speedup. The idea is that messages normally
have a temporal interval of occurrence times and not just a punctual time. The
interval can then be exploited, especially in network communication messages,
to reduce the incidence of stragglers, i.e., messages whose occurrence time is
already past and normally trigger rollbacks and recovery in time warp. The
actor-based implementation in [33] rests on Actor Foundry as the underlying
middleware for distributed services (e.g., naming). However, for efficiency in
the network communications, a direct network concept was realized so as to
directly exploit TCP sockets.
In an important case, the RT-Synchronizer concept was specialized as a QoS-
Synchronizer [223, 252] for specifying and reasoning upon the quality of service
(QoS) in multimedia applications, that is a weak real-time context. The typi-
cal scenario consists in a multimedia session composed by multiple independent
(but time related) components (media) like audio and video. The goal of the
synchronizer is to keep synchronized the (timed) messages (frames) of audio
and video (transported, e.g., by the Real Time Protocol-RTP) so as to control
the well-known lip-synch problem. When temporarily the synchronization is
lost (because some video packets are missing) messages get buffered and the
synchronization is restored at the next possible time, so as to guarantee an
acceptable fruition of the multimedia session from the end user. A concrete re-
alization based on the QoS-Synchronizer for the lip-synch problem was described

60

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

in [107]. In [103] the concept was experimented in the design and prototyping
of real/virtual teleconferences.

5.3 Actor Extensions for Real Time Modelling
and Analysis

Whereas a concurrent actor-based program focuses mainly on what components
are to be present in the program to address its mission, the viewpoint signifi-
cantly changes in a real-time program where not only what actions (functions)
are required in the program but mostly when they are to be executed is the
essence for correctness. In [183] a distributed real-time actor language was pro-
posed which extends classical actors by defining timing constraints on message
interactions. At each message send a couple of information are specified: a re-
lease time (r) and a deadline (d) which constrain the delivery of the message to
its receiver. Such times are relatives to the invocation time of the message and
express respectively the earliest time and the latest time for message delivery.
The semantics of the language was provided by timed graphs, which are similar
to timed automata. The goal was to provide semantics independently from the
resources which will be used to support the execution of the real-time actor pro-
gram. In particular, a specification would enable different implementations, as
long as it can be quantitatively guaranteed that timing constraints are fulfilled.
However, no tool for quantitative timing analysis nor how to ensure an imple-
mentation is effectively a refinement of its specification were addressed issues.
The research ideas in [183] are the logical basis upon which the modern and no-
table actor-based modelling language Probabilistic and Timed Rebeca (PTRe-
beca) [7, 129], together with supporting analysis tools, were achieved.
The basic untimed and imperative Rebeca (Reactive Objects Language) [218,
237] modelling language remains in the tradition of classical threaded actors.
An actor is modelled as a reactive class which encapsulates local data variables,
including acquaintances. The behavioral part is expressed by a collection of
message server methods (msgsrv), each one being dedicated to the processing
of one expected message (see also [236]). Message servers are invoked asyn-
chronously using a syntax similar to the object-oriented method invocation. In
[237] a formal operational semantics for Rebeca is defined which provides a tran-
sition system for property analysis.
Rebeca is worth mentioning because it was the first attempt to add formal ver-
ification to an actor system with asynchronous message passing [236], using a
temporal logic (e.g., LTL and CTL) for specifying the properties to check. Re-
beca models are translated into the modelling language SMV [57] or Promela
[240] and then formal properties checked using an existing model checker like
NuSMV [57] and SPIN [240]. To make possible exhaustive model checking, Re-
beca models were restricted to having: bounded queues (in the basic language,
the inbox message queues of actors are unbounded), bounded data types, static
configuration (no creation of rebecs allowed during the runtime). In addition,
message parameters can be omitted by assuming, due to bounded data vari-
ables, the existence of multiple msgsrv methods each devoted to a particular
data configuration. In [237] it was also advocated a different approach to formal
verification of Rebeca models: designing a front-end tool capable of generating

61

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

the transition system corresponding to the operational semantics of a source
model and to use it to special case the translation into the modelling language
of a back-end model checker.
In [236] it is described RMC, a Rebeca Model Checker, which founds on the
Modere (Model checking engine for rebeca) tool which exploits the features of
Rebeca (e.g., atomic method execution) to provide benefits in time and space
for model checking Rebeca models. RMC enables property specification by LTL
and CTL formulas. A rebec manager component of RMC is worth mentioning.
It relies on a preliminary translation of a Rebeca source model in C++ code.
During model checking, the rebec manager can be asked to put a rebec into
a given state, to execute the rebec and returning the resulting state. In [236]
specific techniques to improve state space exploration in Rebeca models are dis-
cussed such as partial-order reduction and symmetry.
A contribution brought by the work described in [237] [236] refers to experi-
menting with the challenging compositional verification problem [238], which
amounts to decomposing a Rebeca model into components, verifying the com-
ponents separately and then inferring system properties from those checked on
the individual components. In formal terms, if the model is split into two com-
ponents P and Q whose specifications are respectively 'P and 'Q, the goal is
trying to support the rule:

P |= 'P

Q |= 'Q

'P ^ 'Q) '

������
P k Q |= '

but, as observed in [237], the problem is, for example, that 'P could not possi-
bly hold in the composition P k Q.
Composition verification aims at tackling the state explosion problem by reduc-
ing the state space by focusing on model and analysis of components. Modular-
ization of a Rebeca program around encapsulated rebec units (actors), poten-
tially helps to split a system into components. A whole Rebeca model is closed :
it is constituted by a collection of rebecs interacting to one another by message
exchanges. A component is an open subset of rebecs which need to interact
with an environment, that is the remaining external rebecs. The environment
requires a proper abstraction to allow verification of single components. In [237]
the composition minimization technique is adopted, where a component Q is re-
duced to a version Q0 which reproduces the “essential behavior” of Q as viewed
by P . Q0 is a reduced environment which improves the analysis process.
An interesting issue discussed in [236] concerns task schedulability in timed ac-
tors. In a Rebeca model, tasks are naturally associated with method (message)
invocations and can have an execution time and a deadline. Ensuring, in certain
applications, an acceptable level of QoS thus requires analyzing a Rebeca model
properly abstracted with timing. Instead of concrete algorithms in msgsrv, the
corresponding time passage can be modelled and replace implementation code.
In addition, a deadline can be attached to messages at the sending time (see
also later in this section). Studying schedulability problems also necessitates
the definition of a custom scheduling strategy of message reception in rebecs.
Whereas in standard untimed Rebeca, messages in a rebec are retrieved from

62

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

its inbox queue one at a time and in FIFO order (more precisely, the arrival
order of messages in the queue), ensuring a good level of QoS needs a different
scheduling discipline which e.g. recognizes priority or timing information. In
[236] tasks (namely msgsrv) are modelled as Timed Automata and model check-
ing tools like Uppaal [27] used for schedulability analysis.
The Rebeca modelling language was extended, in different steps, so as to mak-
ing it more suited to general distributed and timed systems. First probabilistic
aspects and timed aspects were separately added to Rebeca, and investigated,
giving rise to Probabilistic Rebeca (PRebeca) [251] and Timed Rebeca (TRe-
beca) [224]. Probabilistic Timed Rebeca (PTRebeca) is the latest version which
combines both probabilistic and timed aspects; it is the more powerful and ex-
pressive version, more challenging from the point of view of analysis. In the
following, also considering its influence on the Theatre actor system which is
the main focus of this dissertation, the PTRebeca modelling language will be
summarized, together with its supporting analysis tools. PTRebeca favors a
model-driven development methodology of distributed timed systems, based on
formal modelling and formal verification tools.
PTRebeca maintains the syntax structure of a Rebeca model, which is com-
posed of a given number of classes (rebec definitions) plus a main rebec for
bootstrapping purposes. Only integer and boolean primitive data types are
admitted. Elementary statements within the body of a msgsrv include the as-
signment v = e, the if � else (loop constructs are avoided) and the method
invocation (call) which has an asynchronous semantics. New instructions spe-
cific of PTRebeca are the non-deterministic assignment :

v =?(e1, e2, . . . , en)

which assigns to v the value of an expression ei, 1 i n, chosen non-
deterministically; and the probabilistic assignment :

v =?(p1 : e1, p2 : e2, . . . , pn : en)

where pi, 1 i n, are probabilistic weights,
Pn

i=1 pi = 1. The value of expres-
sion ei is chosen for the assignment to v with probability pi. Non-deterministic
and probabilistic assignments can be exploited for choosing a time value in a
call or delay statement, as explained in the following, thus making the behavior
of a PTRebeca model probabilistic and timed.

Sending a message to a known rebec (acquaintance) kr (the identity of the
sender rebec is implicitly transmitted with the message; the noun self identifies
the currently executing rebec) is realized by the extended call instruction:

kr.message_name([args])[after(a)][deadline(d)]

As one can see two possible times can be attached to each message invocation:
an after time (whose amount is a) and a deadline time (whose value is d).
Both are relative times with respect to the instant in time the message was
sent. The meaning is that the message cannot be delivered to its destination
before after time units are elapsed, and should be delivered within deadline
time units. Failing to dispatch the message before or at the deadline, causes
the message to be discarded. The timing information are optional. A missing

63

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

after evaluates to 0; a missing deadline evaluates to 1. A further instruction
admitted by PTRebeca is the delay:

delay(d)

which blocks the execution of the msgsrv body for d time units (duration). The
instruction is useful for expressing the duration of a code segment.
As a consequence of the timing model of PTRebeca, a major departure occurs
with respect to the semantic model of Rebeca. Whereas in Rebeca a msgsrv
body is always atomic and does not permit suspension, a msgsrv in a PTRebeca
model can introduce suspension due to the use of delay statements.
In [129] a structural operational semantics (SOS) of a PTRebeca model is given
using production rules in the style of Plotkin [210] and [132] (for an example
of an SOS description, see later in this thesis), extended with a representation
of the discrete probability distribution whose values tag each possible reachable
state. The semantic rules capture basic scheduler message dispatching, msgsrv
body execution with detailed semantics of each component statement. A partic-
ular rule concerns the time-progress, which makes an advancement of the time
when no event (either an eligible statement in a msgsrv or a scheduled message
in the bag of already sent but not yet dispatched messages) can occur at current
time. The semantic description saves the program counter of a rebec msgsrv
so as to enable the scheduler to evaluate if the time is arrived for a suspended
rebec to continue its execution.
The overall SOS of a PTRebeca model establishes a transition system in the
form of a Timed Markov Decision Process (TMDP) [129]. Transitions in a
TMDP are realized into two steps: starting from a given state, in the first step
a non-deterministic choice (of an action or delay transition) is carried out, fol-
lowed, in the second step, by a transition to a next state according to a discrete
probability distribution.
The (hopefully finite) TMDP of a PTRebeca model is automatically built by
the Afra tool [218] [129]. The resultant TMDP provides the semantics of a prob-
abilistic timed automaton PTA) with one digital clock (see below). The output
file of Afra can then be translated into the terms of the modelling language
of a back-end probabilistic model checker like PRISM [144] or, more recently,
IMCA (Interactive Markov Chain Analyzer) [112]. For efficiency of the model
checking process, the resultant final model does not rest on the parallel composi-
tion of multiple processes (one process can be associated to each distinct rebec)
but generates one single process (module) whose state transitions are directly
those of the TMDP transition system. Being a PTRebeca model discrete, the
final translated model makes use of rewards and digital clocks (a digital clock
is an integer variable which gets incremented when, e.g., a certain state transi-
tion occurs). Therefore, using in a case the PCTL temporal logic supported by
PRISM, properties can be checked related to (maximum/minimum) expected
time reachability and expected reward reachability. Actually, the IMCA trans-
lation proves more efficient than that of PRISM but, as noted in [129], there
are still problems in verifying timing properties with the IMCA.
A TMDP is an example of a timed transition system (TTS) which (implicitly)
is based on global time, uniformly viewed by all the rebecs. Global time and
arbitrary interleaving at the instruction level of the message server methods,
cause in general the state space to become very large thus complicating model
checking. In [136] the notion of a Floating Time Transition System (FTTS) is

64

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

proposed for Timed Rebeca (TRebeca) (in a TRebeca model all the instructions
of PTRebeca are allowed except the non-deterministic and the probabilistic as-
signments) which exploits intrinsic features of the actor model. Since actors
are single threaded encapsulated concurrent units (they share no data), with
non-blocking send and receive operations, and whose msgsrvs are not preemp-
tive, there is no need to model arbitrary interleaving among the instructions
of the message servers. In addition, each rebec can maintain a local time no-
tion (clock) which is advanced by the timed instructions (i.e., delay statements)
during a msgsrv execution. Rebec clocks can thus be widely apart each other.
Transitions in FTTS are associated to a complete and atomic execution of a
message server. However, as shown in [136], even under FTTS semantics, the
state space can still be large. As a consequence, a bounded FTTS (BFTTS) is
proposed which significantly can reduce the state space by reusing states. More
in particular, an equivalence relation among states is defined which is based
on a time shift operation. Two states are equivalent if they contain the same
data variable values and if all the timing information of the timed messages in
the bag of one state differ of a same time shift t (a natural number) from the
identical messages in the bag of the other state. As a consequence, one state s0

which is time shifted of t with respect to a state s, can be reduced to s, thus
shortening the state space. The theory behind BFTTS owns to Lamport’s logi-
cal time. When a timed message tmsg is sent from a rebec A to a rebec B, the
after and deadline (relative) times of tmsg are “absolutized ” according to the
clock of A. Let these values are ar (arrival time) and dl (deadline). Messages
in the bag of B are said to be enabled if they have the same and smallest ar
time. In the case multiple messages have the same ar, one of them is chosen
non-deterministically, is extracted from the bag and atomically executed. Before
execution, the clock value of B is updated thus: nowB = max(nowB, tmsg.ar).
Recall also that the execution of the message server can augment the nowB
according to the duration of a delay statement. It can be shown that BFTTS
is bisimilar to FTTS. In addition, although in the presence of not aligned rebec
clocks, the model event ordering is preserved.
Under BFTTS a TRebeca model can be verified for deadlock freedom and mes-
sage schedulability. The absence of deadlocks amounts to checking that no state
in the state graph exists which has no outgoing transitions. Schedulability anal-
ysis means assessing, for each rebec r, that in no case for an enabled message
tmsg, it happens that tmsg.dl > nowr (deadline miss).
Although BFTTS enables timed schedulability analysis and deadlock freedom,
the use of unsynchronized clocks does not permit to check more general tim-
ing properties, for example, determining the worst case of an end-to-end delay
(EED) between a stimulus and the corresponding response provided by the
model. For these cases, the use of global time can be recommended.

5.4 The Theatre infrastructure

5.4.1 Basic Concepts
Theatre (see, e.g., [192, 106, 63, 65, 64]) is an adaptive software framework and
a methodology whose aim is supporting the development of distributed proba-
bilistic timed actor systems. It is actually implemented in Java. Other languages

65

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

are possible. Theatre represents a variant of the classical Agha actors model
[10], specifically tailored to predictable time-sensitive applications. Theatre
actors are light-weight, thread-less encapsulated software entities, which do not
have a local mailbox for incoming messages. Rather, Theatre actors are truly
reactive: they are programmed to provide reactions to each received message.
An actor is at rest until a message arrives. Message processing is atomic and
cannot be suspended nor preempted.
A fundamental design aspect of Theatre concerns the separation of concerns
between the application logic (business) and a reflective control layer which,
transparently, intercepts the exchanged messages and schedules (stores) and
dispatch them according to a customizable control structure. The control layer
is responsible for time management (real-time or simulated time) and of the
enforcement of the timing constraints. It logically follows the RT-Synchronizer
concept [222].
A distributed Theatre system consists of a federation (see Fig. 5.3) of comput-
ing nodes (theatres). Each theatre hosts a subsystem of local actors, a control
machine and a transport layer. The transport layer allows messages to be com-
municated from a theatre to another through a network. A universal global
naming for theatres and actors is assumed. The name of an actor (string) is
unique and system-wide. Theatre is based on global time. The control ma-
chines of the various component theatres of a system, coordinate each other,
through the mediation of a Time Server, in order to keep synchronized the local
time notion of each theatre with global time.
Two levels of concurrency exist in a Theatre system: the intra-theatre coopera-
tive concurrency, which depends on message interleaving as ensured by the local
control machine, and the inter-theatre concurrency which can be truly paral-
lelism (e.g. by mapping theatres onto JVMs which execute on separate cores).
It is worth noting that control machine operation obeys to the macro-step se-
mantics [134]: at each moment, only one message can be under processing in a
theatre. At message processing termination, the control machine proceeds with
selecting and dispatching the next message and so forth.
The light-weight control-based design of Theatre actors can be related to the
Ptolemy modelling and analysis framework and toolbox [43]. Ptolemy supports
different models of computation in actor-based applications. In a case, Ptolemy
exposes a not thread-based notion of actors where the exchange of messages is
asynchronous and where a Director (a concept similar to the control machine of
Theatre) can supervise the actual delivery of messages to actors. The Ptolemy
toolbox is characterized by its extensive set of tools for the analysis and synthesis
of a modelled system.

5.4.2 Programming in-the-small concepts
Theatre is characterized by its open customizable design: it can be adapted not
only in the reflective control structure, but also in the timing model and behav-
ioral programming style of actors. As a common design guideline, many previ-
ous Theatre applications used actors modelled as finite state machines (FSM).
In particular, the behavior of an actor was captured into an handler(message)
method which receives the message dispatched by the control machine, and de-
cides the reaction to perform (e.g., establishing the next state in the FSM) on
the basic of the current status and the identity of arrived message (event). In

66

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

[104] the actor behavior was modelled as a statecharts for real-time systems. The
control machine directly founds on the RT-Synchronizer and its declarative pro-
gramming style. Timing constraints affecting message interactions are derived
by temporal activity diagrams (TAD) which capture causal effect relationships
on message interactions and associated timing constraints. Validation of timing
constraints relies on simulation. Statechart-based actors were also used in [66]
for modelling and performance evaluation of complex manufacturing systems.

Figure 5.3: A distributed Theatre system

The programming model of actors was enhanced in [66, 73] by the concepts
of actions, i.e. independent programming units. The handler(message) meth-
ods can spawn actions, which have a duration, an input-parameter-list and an
output-parameter-list. Actions have no visibility to the internal data of the
spawning actor. As a consequence, (a) no interference can occur from action
execution on the actor data status, (b) actions can be naturally executed in
parallel, would sufficient resources be available. Actions and control machines
can be differently reified when moving a model along the system development
lifecycle (see also below).

5.4.3 Programming in-the-large concepts
The Theatre actor framework was experimented with different transport layers
and middleware, which provide services for inter-theatre message communica-
tion and actor migration. In [106] the socket API of Java were used to prototype
Theatre configuration in general distributed Internet-based applications. In
[33] ActorFoundry was used as a middleware for distributed simulations using
the TUTW optimistic time warp mechanism. In [64, 65] the distribution services
of the High-Level Architecture (HLA) were used as a basis for Theatre-based
distributed simulations. The APIs of HLA were exploited for time coordina-
tion among the various theatres/federates. Also HLA supported an original
development of Theatre actors for distributing Repast models [61] for high-
performance simulations, using a conservative time synchronization technique.
In [62] Terracotta [246] which provides the illusion of a shared heap memory

67

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

(Net Attached heap) among distributed programs, was used for supporting ac-
tor interactions over a network. In [67] an experience porting Theatre over the
peer-to-peer architecture of the Globus Toolkit 4 is described. A special design
and implementation in Java of the Theatre transport layer was described in
[71] which refers to multi-core clusters. The realization proved very effective
for high-performance distributed simulations. Recently, the JADE agent-based
framework [29] and its FIPA [102] adherence (e.g., the Agent Communication
Language ACL) were used as a middleware for prototyping Theatre with actions
[66, 73]. The realization enabled distributed simulations over JADE which has
no primitive support for discrete-event simulation.

5.4.4 Simulation applications
Previous applications of Theatre were mainly directed to modelling and anal-
ysis of complex systems through simulation and particularly distributed simu-
lation. Some significant experiences are reported in [64, 71, 61, 69]. Theatre
actors were also used successfully in modelling and analysis of large multi-agent
systems [65]. In [74] Theatre was exploited for modelling and performance
prediction of an original variant of the Minority Game, the Dynamic Sociality
Minority Game (DSMG), where a player can interact with a group of partners
whose composition and identity can vary dynamically.

5.4.5 Development methodology and model-continuity
A key factor of Theatre rests in its control-based character. A family of recur-
ring control machines was prototyped which includes standalone and distributed
versions of the control forms either based on real-time or simulated time. Such a
family was significantly extended with new members as part of this thesis work.
The possibility of changing the control machine of theatres (as a plug-in com-
ponent) is at the heart of what in the literature is often referred to as model
continuity (see, e.g., [124, 260]). Model continuity can be related to the faith-
fulness requirement which Marjan Sirjani (which develops with her team the
Rebeca formal modelling language) advocated in [235]. Guaranteeing that an
implementation is faithful to its analyzed model is a well-known difficult issue,
especially when the modelling language (e.g., a Petri net) is far (semantically)
from the implementation language. Model continuity means transitioning a
same model from the early analysis phase down to design, prototyping, imple-
mentation and final real-time execution phases. Theatre favors model conti-
nuity by enabling a development lifecycle which transforms in a natural way the
initial analyzed model. Assuming that the modeler has created the “right” model
for her/his system (this is obviously a fundamental aspect [163]), in terms of
Theatre the model is an abstraction where functions and timing behavior are
taken into account. Timing aspects replace concrete code and network commu-
nication/propagation issues. But even with this abstraction, a closed Theatre
model (i.e., one that includes modelling of the influencing environment) is ar-
ticulated in terms of actors and message interactions among actors. Upon this
abstract model, property analysis is responsible for assessing functional and
temporal behavior. The analysis phase of a Theatre model can be based on
simulation or, better (when it is possible) by symbolic exhaustive model check-

68

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

ing. An analyzed model can then be transformed for preliminary execution. A
preliminary control machine uses the real-time but message processing is still
abstract as in simulation. The goal of a preliminary execution is to check the
overhead of message exchanges (during analysis, message scheduling, dispatch-
ing and processing are instantaneous) and how they affect the timing behavior.
Preliminary execution can be conducted on a standalone or distributed set-
ting. In the latter case some tool for keeping real-time clocks aligned has to be
used. In [73, 79] some experience was carried out using, for clock alignment of
Windows machines, the Dimension 4 software [97]. Therefore, in preliminary
execution, the model is that of analysis, only the control machine was changed.
Moving a model toward final implementation means introducing concrete code
to implement message reactions. The control machine still is based on real-
time. Of course, code implementation can introduce errors (although the code
segment in a message reaction normally is very simple, for example it does not
use loop constructs) but in Theatre the model structure of actors and message
exchanges remains unchanged.
It is our opinion that Theatre can help producing the final implementation
of a system in a “faithful” way to the analysis phase, by transitioning, without
distortions, the same model along the system lifecycle.

5.4.6 Implementation status
Theatre concepts were first prototyped in Java in [106]. Such implementation
was completely redesigned and reworked in this thesis for supporting specifi-
cally a new version of Theatre customized according to the timing model and
programming style of PTRebeca [129]. The new implementation (described in
[79]) is characterized by:

• xml scripting and network socket parsing and automated configuration of
a Theatre system;

• minimal use of threads. One thread serves the operation of the control
machine. Other threads are associated with input/output operation of
socket connections;

• adoption of lock-free data structures in a theatre for transferring external
incoming/outgoing messages to/from the control machine without block-
ing;

• support of actor migration through a customized serialization mechanism;

• extended library of control machines which fully supports model continu-
ity. The control machines cover both analysis (by simulation), prototyping
(by preliminary execution on the target architecture) and final implemen-
tation (with real-time execution).

5.4.7 Contributions of this dissertation
Starting from previous work on Theatre carried out in the Software Engineer-
ing Laboratory, this thesis first has continued experimentation with Theatre
with actions on top of JADE, particularly for developing a cyber-physical system

69

Chapter 5. Actor-based Development of Distributed Probabilistic

Timed Systems

devoted to power management in a smart micro-grid [78], as well as prototyp-
ing distributed measurement systems for real-time control of sensor networks
[92, 53]. This experience suggested the need to improve predictability of The-
atre distributed software systems by replacing the JADE middleware with a
more efficient and native Java implementation of Theatre (also considering the
very preliminary work described in [106]. In addition, the attractive and lu-
cid on-going work about formal modelling and verification of distributed actor
systems based on the Rebeca language [218] and more exactly on its proba-
bilistic and timed extension PTRebeca [129], has inspired a customization of
Theatre centred on the timing model and programming style of PTRebeca
which structures an actor class as a collection of message servers (msgsrv) each
dedicated to processing the reaction to a distinct expected message. The new
version of Theatre was then formally described as an abstract modelling lan-
guage for distributed real-time systems and its formal semantics (transition
system) specified through a structural operational semantics (SOS) definition
[196]. The SOS semantics was systematically used to design an original reduc-
tion of the extended Theatre on top of Uppaal model checkers, thus enabling
formal verification of Theatre models. All of this improved the analysis phase
of a Theatre system model which previously was based only on simulation, by
non-deterministic exhaustive model checking and/or statistical model checking.
Another contribution is tied to an original implementation in Java [79] of the
new version of Theatre, together with the realization of a new library of control
machines plus the envGateway component [78] which interfaces a Theatre sys-
tem with peripheral devices (e.g., sensors and actuators) of e.g. a cyber-physical
system. Theatre was successfully experimented in the development of several
applications ranging from:

• modelling and formal analysis of

– emerging properties in general multi-agent systems [189];
– the time synchronization problem in complex wireless sensor net-

works [197];
– web-based and network-based protocols [193, 187];

• concrete prototyping systems in the areas of

– structural health monitoring [147];
– management of body sensor networks for health monitoring [92]

Furthermore, during the work of this thesis, some other formal language was
also considered, and some tool achieved, for modelling and analysis of timed
systems, like stochastic Time Petri nets [76, 191, 190].

70

Part III

Theatre in Action

71

Chapter 6
Model Continuity in

Cyber-Physical Systems: a

control-centered methodology

based on agents 1

A Cyber-Physical System (CPS) is given by the integration of cyber and phys-
ical components, usually with feedback loops, where physical processes affect
computations and vice versa. Design and implementation of complex CPSs is
a multidisciplinary and demanding task. Challenges arise especially for the ex-
ploitation of heterogeneous and different models during the various phases of
the system life cycle. This paper proposes an agent-based and control-centric
methodology which is well suited for the development of complex CPSs. The
approach is novel and supports model continuity which enables the use of a
unique model along all the development stages of a system ranging from anal-
ysis, by simulation, down to real-time implementation and execution. In the
paper, basic concepts of the methodology are provided together with imple-
mentation details. Effectivenesses of the approach is demonstrated through a
case study concerning a prototyped CPS devoted to the optimization of power
consumption in a smart micro-grid automation system.

6.1 Introduction
Cyber-physical systems (CPSs) [160, 137, 161, 228] integrate a physical system
with a computational part through a network infrastructure. Their exploitation
is advocated in various domains including avionics, automotive, traffic manage-
ment, health care system, mobile communications, medical technology, manu-
facturing, smart grid, procurement and logistics, industry and building automa-
tion, plant construction and engineering [45]. A correct design for CPSs is of

1The material in this chapter is related to publications [78, 76, 53, 52, 92]

72

Chapter 6. Model Continuity in Cyber-Physical Systems

great importance as they are often applied in safety or business-critical contexts
[135].

CPS development challenges arise from the necessity of adopting powerful
software engineering methods for the cyber part, capable of ensuring modularity
and evolution of a software architecture, while at the same time guaranteeing
an effective control of the runtime platform and communication network for
the fulfillment of the physical plant real-time constraints. Design difficulties
[130, 135, 98] are related, for instance, to the needs of conjoining continuous
dynamics of the physical components with the discrete-time model of the cyber
components. In addition, the use of open and public networks requires the
handling of security concerns [50] arising from the real-time operation of a CPS.

Architectural means for CPS modelling are described, for instance, in [243],
where the use of agents [259] and their interactions (events) to one another and
with the external controlled environment are the basic concepts. The adoption
of crosscutting agent coordination policies at both the local and the global/sys-
tem level emerged as a fundamental way to control the achievement of system
goals. Multi-agent systems have demonstrated their advantages as an open and
flexible software technology capable of unifying control aspects in smart grid
applications [225]. As an example, agents were used to handle the power man-
agement problem in a smart home automation system [225]. Holonic agents,
instead, are used in [254] as basic architectural building blocks for the develop-
ment of manufacturing automation systems.

In this work an original agent-based control framework [72, 73] is advocated
for CPSs, which rests on mechanisms for managing control and coordination as-
pects of agents as in [243]. Managing control aspects means that the approach
makes it possible to use, in a transparent way, different message scheduling and
dispatching policies according to a chosen time notion (real or virtual) so as to
fulfill specific application requirements. The control framework acts as an oper-
ating software solution that integrates both flexibility of an agent-based design
[225] with time-sensitive control structures which coordinate agents’ evolution.
A unique feature of the adopted framework, not supported by other existing
agent-based approaches for CPSs, is model continuity [124, 260], which consists
in the possibility of transitioning unaltered an agent model throughout the entire
development life cycle, from analysis, down to design, implementation and real-
time execution. The approach provides also a concurrency model which favours
predictability and determinacy by avoiding common pitfalls of multi-threaded
programming [159] (see section 6.3.2).

With respect to other approaches supporting model continuity [124, 260],
the proposed framework distinguishes by its abstraction mechanisms which en-
hances separation-of-concerns during the development of CPSs. In particular,
the following abstraction entities can be exploited: (i) agents to structure the
business logic of the application to realize, (ii) boundary elements to interface
the application with the external physical environment, (iii) the environment
Gateway (envGateway) taking into account aspects related to modelling, analy-
sis and implementation of the physical part of a CPS and more in general of the
external environment in which an application runs, and (iv) customisable time-
sensitive control structures suited to scheduling and dispatching system events
and message exchanges. Model continuity depends on different concretizations
of the boundary elements, the envGateway and the control-specific components.
The envGateway requires to be re-interpreted when moving from the analysis to

73

Chapter 6. Model Continuity in Cyber-Physical Systems

the implementation phase. It offers a transparent yet uniform way for dealing
with communication protocols and hardware equipments needed for sensing and
acting upon a controlled environment. During system analysis, besides the mod-
elling of single sensors and actuators, the envGateway takes also into account
the causal-effect relations tied to operations carried out on the environment. As
an example, turning on a lamp through a relay implicitly affects the value read
by a luminosity sensor, placed near the lamp itself.

During the simulation phase, the envGateway can also interface software
components like ordinary differential equations (ODEs), modelling continuous-
time behavior of a system plant. From this point of view, the proposed approach
can integrate continuos models within an overall discrete-event based framework.
As an example, such techniques as quantization [34, 138], experimented, e.g., in
the DEVS community [268], can be used.

The above mentioned agents and control framework is tailored to CPSs and
the focus will be on proposing a methodology which addresses all the develop-
ment stages of a system.

6.2 Related Work
CPS engineering challenges include the use of integrated models, facing issues
related to interoperability, reconciliation of Newtonian time of the physical part
with the discrete time of the cyber part [98], privacy protection, security, non-
functional requirements, timing constraints, humans-system cooperation and so
forth [45].

Service-oriented architectures (SOA) and multi-agent systems (MAS) are
two important software technologies which have proved their effectiveness in
general ICT systems and whose exploitation for CPS is deemed promising to
sustain a revolution in industry automation and smart factories [145, 121, 227,
93, 168, 256].

A service-based approach for developing CPS is proposed in [145] which ex-
ploits service-oriented architecture concepts and/or cloud concepts to realize
service-based CPS. The approach deals with some design challenges of CPSs
such as dynamic composition, dynamic adaptation, and high confidence CPS
management, hardware heterogeneity. Three tiers were defined: an Environ-
mental Tier for dealing with the target physical environment, a Control Tier
for making decisions for networked physical devices, and a Service Tier for
managing reusable services. The final goal is that of allowing the handling of
complex and resource-consuming processes even on downsized mobile Internet
devices which are usually involved in a CPS.

Another service-based approach is discussed in [121] where the WebMed
middleware is proposed. The goal is promoting the use of the service metaphor
for the development of CPS applications. By exploiting the service-oriented
computing, WebMed fosters the realization of loosely coupled CPS infrastruc-
tures that expose the functionality of physical devices as Web services. Exposed
functionalities can be easily integrated with other existing software components.
The middleware consists of: (i) a WebMed device adapter, aiming at hiding
heterogeneity related to the use of specific hardware, data structures and com-
munication protocols; (ii) a Web service enabler, which provides a mechanism
for the data and functionalities of a physical device to become accessible as a

74

Chapter 6. Model Continuity in Cyber-Physical Systems

Web service; (iii) a service repository ; (iv) an engine, which is the core ele-
ment providing a runtime environment for all Web services and operations in
the middleware; and (v) an application development tool providing high-level
management of interaction and composition of Web service components in the
middleware. The latter serves as user interfaces for developers, and as front-end
in order to invoke a developed Web service.

In [168] MAS and SOA are identified as strategic technologies for CPS devel-
opment and industry automation [254]. Agents contribution mainly derives from
being decentralized, autonomous and modular entities, encapsulating data and
”intelligence”, and interacting to one another (for sociality and holonic aspects
[254]) for the fulfillment of goals which could not be reached by each agent op-
erating in isolation (property emergence at the society/population level). Other
relevant agent features include robustness, flexibility, learning and adaptation,
and self re-configurability. The usage of MAS, though, can be critical from the
timeliness point of view. Therefore in [168, 254] the notion of an "industrial
agent” is envisioned where an agent is paired with a Programmable Logic Con-
troller (PLC) for low-level control and responsiveness, while ensuring, at the
higher level, intelligence and adaptation. Services are purposely combined with
agents in [168], by abstracting and exposing agent functionalities and low-level
control through services, to favor in-the-large interoperability, modularity and
composability. In [254] holonic agents interact and coordinate each other by
FIPA [3] inspired mechanisms. Various kinds of simulators, already existing or
especially developed for specific needs, are used to validate a control solution.

A methodological approach based on MAS is proposed in [93] for the analysis
and prototyping of CPS. The analysis phase is directed to MAS simulation and
CPS validation. However, that paper mainly focuses on the system requirements
elicitation, e.g., sensor measurements and effector actions, using a specialization
of SysML profile, and the assignment of requirements to behaviors of organiza-
tions which finally map on agents. The identification of organizations is helped
by a problem ontology which describes all the concepts involved in a CPS and
their relationships. The proposed methodology appears at a preliminary stage
and has to demonstrate its effectiveness in the design of real systems.

Another agent-based approach aiming at developing CPS is proposed in
[227]. A goal of the approach is that of trying to assess system behavior.
Both qualitative and quantitative system property evaluation is considered. The
quantitative evaluation, which is based on the exploitation of the INGENIAS
methodology [109], is carried out by using a multi-agent model that supports
event-driven behaviors. In the paper, the multi-agent approach is considered
as the proper one to model a CPS with dependability features. This is due to
the flexibility provided by agents as autonomous and intelligent components in
decisions support actions. Raw data-streams, collected by various devices like
sensors, video cameras, mobile phones, and measuring devices, are transmitted
to the cyber components which, by using hardware and software facilities as well
as communication connections, can provide several main functions as learning
and adapting for intelligent control, self-maintenance, and self-organization.

An agent-based framework for smart factory is proposed in [256]. The frame-
work consists of four layers, namely physical resource layer, industrial network
layer, cloud layer, and supervisory control terminal layer. The physical resources
are implemented as smart things which communicate each other through the in-
dustrial network. The integrated information system exists in the cloud which

75

Chapter 6. Model Continuity in Cyber-Physical Systems

collects massive data from the physical resource layer and interacts with people
through supervisory control terminals. All of this, actually forms a CPS where
physical objects and informational entities are deeply integrated. Furthermore,
a negotiation mechanism for agents to cooperate each other is proposed, and
four complementary strategies are designed to prevent deadlocks by improving
the agents decision making and the coordinators behaviour. Properties of the
proposed framework are assessed through simulation. A simulation program has
been developed by using the Microsoft VS integrated development environment
(IDE).

In [135, 130] it is argued that the design of CPSs strongly requires both an
integrated view and co-designing of the physical and the computational part
of a whole system. Authors of [135] suggest a model-based view to cope with
design aspects of the hardware and software components, and their interactions.
The goal is to derive relationships among the design, analysis and implementa-
tion models so as to ensure, for example, that analysis results are reflected in
the executable system. What is envisioned is an incremental, simulation-based
development approach, where initially the whole system is simulated and, sub-
sequently, simulated parts are replaced by real ones.

To summarize, CPS development is currently trying to exploit powerful
methodologies capable of systematically addressing all the CPS design issues.
Anyway, the research about models, approaches, middleware architectures or
platforms for realising CPS applications is still in its infancy [145, 121, 135].

This paper claims that model continuity [73, 124, 260] and MAS technol-
ogy are fundamental tools for CPS development. Model continuity naturally
addresses the CPS requirement of model integration [135], that is the need of
ensuring coherence between the properties assessed during model analysis with
the properties exhibited by a system during its execution. However, no ex-
perimented methodology based on the concepts of model continuity is actually
exploited for CPSs. The contribution of this paper is to propose a novel ap-
proach based on MAS and model continuity and to demonstrate its practical
usefulness through the realization of a real CPS case study.

The proposed approach mainly focusses on methodological issues embed-
ded within a discrete-event framework. The approach, though, can integrate
continuous time (CT) components and co-simulation activities as permitted,
e.g., by well-known frameworks and toolboxes supporting CPS modelling and
analysis like DEVS [268] and PTolemy II [98]. Both DEVS and Ptolemy en-
able the construction of hierarchical complex models. In addition, Ptolemy too
rests on actors as the basic building blocks. The model of computation of a
non atomic actor model can be defined so as to work with either synchronous
or asynchronous interactions. Code generators are finally in charge of trans-
forming an analyzed model into a final implementation. DEVS builds on a
discrete-event world vision and has an efficient and modular simulation struc-
ture, which is open to interact with CT components. The DEVS community
has experimented with such techniques as quantization [34, 138] for integrating
CT components with discrete-event operation. With respect to CT components,
which can be required during system analysis, the approach developed in this
paper is able to exploit the same concepts and techniques of DEVS.

76

Chapter 6. Model Continuity in Cyber-Physical Systems

6.3 From Modelling to Implementation of a CPS
The life cycle of a CPS can be viewed as composed of different transition phases.
First a model of the system is built. The model is then used to analyse its
functional and temporal behaviour both in a simulation context and in a real
execution environment. Thereafter, an analysed system can be put into opera-
tion.

In this section, a methodology is proposed which is based on the agent and
control framework introduced in [72, 73] and here specialized for its use with
CPSs. The approach relies on pure-software components, which remain un-
changed during the transition from model analysis to system implementation,
and on hybrid components which require to be concretized for actual system
implementation. The methodology furnishes also entities suitable to model ex-
ternal resources needed by the system, and to capture and abstract the inter-
actions between the system and the external environment the system operates
in. In the following, the methodology is discussed together with its related enti-
ties. Current version of the control framework is prototyped on top of the JADE
(Java Agent DEvelopment framework) open source FIPA compliant project [29],
which provides a distributed architecture supporting agent naming, creation,
execution, message passing, behaviour and mobility.

6.3.1 The proposed methodology
The development of a CPS follows four main phases, namely modelling, analysis
(e.g., by distributed simulation), preliminary execution and real execution, which
are described below.

The modelling phase

A model is built in terms of the following basic abstractions: actors (or agents),
messages, actions, processing units and the environmental gateway (envGate-
way).

Actors and messages are pure-software components which capture the busi-
ness logic of a model. Actors are thread-less agents whose behavior is patterned
by a finite state machine, and whose communication model depends on asyn-
chronous message passing (see Figure 6.1). Message processing is atomic and
consumes a negligible time. A time-stamp can be attached to a message to
specify when it has to be consigned to its recipient. If the time-stamp is not
specified the message has to be delivered at the current time.

Actions are self-contained computational entities which are submitted for
execution by actors. Following its submission, an action can run to completion
or it can be suspended/resumed or aborted [72]. Actions are hybrid-components
modelling time-consuming tasks which require external entities not owned by
actors (e.g., a document to be printed requires a printer to print it). Actions
are executed on top of processing units which also are hybrid components. An
action is ready to be executed as soon as it has been submitted. However, the
available processing units actually determine if and when a submitted action is
actually executed.

The envGateway is a hybrid component devoted to (i) modelling the exter-
nal environment the actor-based application runs in, (ii) abstracting the inter-

77

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.1: Actor structure and cross-cutting control aspects

actions of an actor with its external environment, e.g., for sensing or actuation
purposes. The envGateway plays the role of abstracting the external devices
as well as hiding the used communication protocols. For example, if a tem-
perature sensor is handled by an Arduino device [2], only the envGateway is
aware of the presence of Arduino and of the specific protocol adopted for inter-
acting with the temperature sensor. From the application viewpoint, the only
relevant thing is requiring a read operation from the sensor. In addition, the
external environment needs to be modelled, e.g., with the help of continuous
time components implementing ODEs, each time a carried out operation has a
side effect on the environment itself. For instance, let’s consider an application
which monitors the temperature in a room and, when the temperature goes be-
low a certain threshold, activates a heating system. Within the real system, the
activation of the heating system increases the temperature of the room and, as
a consequence, the increased temperature is automatically observed by the sen-
sor. During simulation, instead, the cause/effect relation existing between the
heating system and the temperature read by the sensor requires to be explicitly
considered. Such aspects are dealt with through the envGateway modelling.

The analysis phase

Properties and behaviour of a CPS actor model can be checked by simulation.
The model can be simulated in a sequential context or it can be partitioned
so as to be handled by distributed simulation, which is actually supported by
the proposed framework. Model partitioning is achieved by allocating actors
onto different computational nodes (containers or Logical Processes, LPs). Dis-
tributed simulation [105] can be required in the case a large/complex model has
to be analysed, or in the case the model refers to a system which is intrinsically
distributed.

The same model can be simulated in different conditions by simply con-
figuring a different simulation context. Setting a particular simulation context

78

Chapter 6. Model Continuity in Cyber-Physical Systems

corresponds to defining the number and the behaviour of the processing units as
well as the policy adopted for scheduling and executing submitted actions. As
an example, actions can be processed in A first-in-first-out order or in a priority-
driven way, in which low-priority actions are suspended and subsequently re-
sumed when no more high priority actions exist. The action schedulers are the
entities which are responsible for managing action scheduling issues. Properties
and behaviour of the same model vary as a different simulation context is con-
sidered. For example, if a call-centre is modelled where the calls-to-serve are
expressed through actions and the receptionists by processing units, the study of
how the number of served customers (i.e., the throughput of the model) changes
as further receptionists get available, can be carried out by simply changing the
number of the exploitable processing units, without any modification to the
model. In this phase, all the hybrid-components are configured by their simu-
lated counterpart.

During analysis, a simulated (i.e., virtual) time notion is used and, in ad-
dition, in the case of a distributed simulation, the evolution of the entire actor
model has to be time-coherent among all the distributed simulators. Ensuring
the right time notion and coordination among simulators is the responsibility of
a control machine. A control machine is also responsible for coordinating and
actualizing message delivery to recipient actors. Message scheduling, dispatch-
ing and processing do not increase the simulation time. The simulation time
augments only when a timed-message is processed or an action gets executed.

The preliminary execution phase

Preliminary execution is an intermediate stage between the simulation phase and
the real execution of a system. A notable difference between this phase and the
previous one concerns the used time notion which is no longer a simulated time
but the real time (the wall-clock time) of the system. Therefore, all the time
needed for processing messages, and for sending information through a network,
are implicitly taken into account. In fact, the execution of the business logic of
the system, e.g., the execution of a control or an optimization algorithm, can
be expensive in terms of computational and time resources, and the real time
required by the computation and communication ultimately depends on the
chosen hardware infrastructure. Such real execution time is taken into account
during the preliminary execution phase. As a consequence, this phase can be
exploited to assess if the time constraints and system performance, previously
checked in the simulation, continue to be satisfied during real-time execution
on top of the final exploitable hardware infrastructure. More in particular, the
behavioural drift existing between simulation and real-time execution, i.e., the
deviation between the actual processing of a timed message and its due time,
can be quantitatively assessed during this phase.

Analogously to the previous phase, an execution context requires to be con-
figured: the processing units and the action schedulers used in simulation must
be replaced by the corresponding entities, able to deal with real-time and phys-
ical computational resources (e.g., processing units can be mapped on Java
threads). Actions are implemented as pure resource-consuming tasks having a
time duration and being capable of keeping busy a processing unit. The en-
vGateway and all the pure software components remain exactly those used in
the analysis phase.

79

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.2: A JADE based distributed actor system

A real-time aware control machine is now required, both in a sequential or
distributed execution scenario.

The real execution phase

In this phase, the system is put into real execution onto the target physical
architecture. All the hybrid-components of the model are replaced by their real
counterpart. The control machine and the execution context coincide with those
used in the previous phase. With respect to the preliminary execution, only the
actions and the envGateway must be modified. Actions are reified so as to in-
teract with physical devices and carry out real computational tasks, whereas
the envGateway abstracts the used physical devices together with the com-
munication protocol and physical infrastructure. Obviously, the pure-software
components remain unchanged also in this phase.

6.3.2 Control machines and time management
A subsystem of actors (Logical Process or LP) is allocated for the execution
on a computing node. All the actors of a same subsystem are governed by a
local control machine, which transparently buffers exchanged messages into one
or more message queues and ultimately consigns messages, one at a time, to
recipient actors, according to a proper control structure, e.g., based on a specific
time notion (simulated or real-time). Message processing is the unit of message
dispatching (macro-step semantics). All of this determines a cooperative (i.e.,
not pre-emptive)concurrency schema for the local actors of an LP, ensured by
message interleaving, which favors time predictability [72, 73].

Multiple actor subsystems (LPs) are federated to constitute a distributed
system, using the services of a transport layer and communication protocol. Fig.
6.2 shows a distributed actor system as prototyped by using JADE. Both actors
and messages can be dynamically transferred from an LP (JADE container)
to another one. Migrating actors can be a need to ensure that an actor is
located close, e.g., to a controlled device, or it can respond to dynamic load-
balancing issues. A Time Server is responsible of maintaining a global time
notion across the entire system. In a distributed simulation setting [73], all
the control machines interact with the time server in order to negotiate time
advancements so as to evolve all together in a coherent way. The exploitable
APIs and the library of the available control machines are detailed in [72, 73].

80

Chapter 6. Model Continuity in Cyber-Physical Systems

6.3.3 Actions and processing units
By design, an action is a black box with a list of input parameters and a list
of output parameters. Actions have no visibility to the internal data variables
of the submitter actor and they do not share any data. Therefore, no mutual
exclusion mechanism is needed and no interference problem can derive from the
action parallel execution schema and message processing. An action completion
message can be generated by an action to inform its submitter actor about
action termination.

Actions are hybrid-components which have different concretizations during
the life cycle of a CPS. Simulated actions usually do not carry out any com-
putation except that used to produce output parameters. They have a time
duration, specified by an input parameter, which is an estimation of the time
duration of the associated modelled task. Real or effective actions hide a con-
crete algorithm implementing a computational task. The execution of a real
action increases the real time. Pseudo-real actions, used during a preliminary
execution, advances the real time but have no concrete computation to perform.

In the case an action interacts with physical devices, the interactions are
simulated in both the simulated and the pseudo-real actions. On the contrary,
they are concretely implemented when a real action is used. A useful feature
of actions, which is exploitable during the development of CPS, refers to the
capability of returning partially computed results at some selected time points.
The return primitive is made available for these purposes (see also the sequence
diagram in Fig. 6.3). The return statement naturally can serve for implementing
a periodic behavior within an action. In this case the time points are equally
spaced within a time window assigned to the action. At action completion, an
operation result message is issued.

An action scheduler administers the local processing units and stores actions
which find no available processing unit in pending action queues. A processing
unit is a hybrid-component: it can be a physical core or it can be realized by a
Java thread, or it is a fake object in the case of simulated actions. A detailed
description of the supported kinds of actions, related schedulers and processing
units can be found in [72, 73].

6.3.4 envGateway and environment control
During the analysis and the preliminary execution phases, the envGateway is
exploited to abstract the environment within which the system operates, in
the sense of mirroring the effects of the actuations upon the environment it-
self. In the following, a description of the implemented envGateway for the
real-execution phase, is provided (see Fig. 6.4). During real-execution, the
read/write operations are typically requested by submitted actions which, for
generality, can be executed on dedicated Java threads. In a case, one action can
be interested to get multiple sensor data, each one being related to a given time
point within an assigned time window. The envGateway maintains a collection
of data variables, which correspond to sensor/actuator devices. An In/Out layer
in the envGateway is in charge of controlling the communication links with the
physical devices and to update the data variables. In particular, the In/Out
layer is composed of input/output Java threads, which interface the commu-
nication channels with a number of I/O hardware components, e.g., Arduino

81

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.3: Message interplay during an action execution with multiple returns

[2] or similar equipments. Sensors/actuators are physically linked to the I/O
hardware. To simplify configuration and operation, each I/O hardware can be
specialized to handling a disjoint subset of sensors or actuators.

The communication channels between the envGateway and the I/O hard-
ware components, can either be based on the serial connection or on a wireless
connection. A suitable protocol requires to be established for the exchange
of information between the envGateway and the I/O hardware devices. The
protocol specifies the input/output operation, the involved physical device and
(possibly) accompanying data (in an output command).

The envGateway was implemented as a monitor, which manages the action
threads and the input/output threads, thus guaranteeing interference-free access
to the I/O device data variables. More precisely, separate concurrent hash
maps are used for handling the input (sensor) data variables and the output
(actuators) commands and data. A design issue of the envGateway is concerned
with the adoption of an anticipation schema as described in the following. The
I/O hardware components are supposed to be programmed so as to repeatedly
reading the sensors and providing the data to the envGateway. At any instant
in time, the values of the data variables represent the most recent data values.
Such values are then acquired by actions according to their own timing. For
generality concerns, an action which needs some sensor data can provide a filter
object at the request time. The filter exposes a guard method (i.e., a boolean
function) which must be satisfied by the values of involved data variables for
them to be actually returned.

Finally, it is worth noting, that correct behavior of a real execution of a CPS
system, can require that the reaction to sensed data generated by a controller
actor in the cyber part be provided within the sampling period of sensors of the
physical part.

6.3.5 Specializing the envGateway to work with Arduino
The experiments described in this paper were accomplished by using the se-
rial connection managed by the RXTX.jar Java library. The defined protocol

82

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.4: Organization of an envGateway component

between the envGateway and the I/O hardware components clarifies the in-
put/output operation, the involved physical device and (possibly) accompany-
ing data (for an output command). The envGateway was concretely interfaced
with some Arduino [2] devices. Arduino configuration is carried out in the
setup() function, where the details of pin connections with physical devices
are defined. setup() is executed only once following a reset of the device. After
that, Arduino enters its main loop(). The loop() instructions can be directed
to reading from sensors and to put the data, after some A/D conversions, onto
the communication channels towards the envGateway. At the end of the loop,
a delay statement is executed before starting the next loop iteration. Dur-
ing its loop operation, Arduino can also receive and process interrupt signals.
For example, a serialEvent interrupt which is raised whenever new data arrive
through the serial communication link (RX), can be heard and managed only
at the end of each loop iteration. The mechanism can be exploited to modify
dynamically the amount of the loop delay. An Arduino dedicated to controlling
only actuators, has an empty loop and all its output operations are delegated
to the serial interrupt handling mechanism. Each interrupt signal is expected
to be accompanied by all the command information needed for completing the
output operation.

During analysis by simulation, the In/Out and I/O hardware layers can be
transparently replaced by software agents which provide, in simulated time, pre-
generated input data to the envGateway or simply consume output commands.
Moreover, an EnvAgent can be introduced which through a mathematical model,
fuzzy logic etc., is able to reproduce the necessary changes in the environmental
variables monitored by the envGateway, implied by an actuation.

6.4 A case study using power management
A problem of electric power management [6, 131, 60], whose context can be
a domestic home or an industrial plant, is considered. Motivation behind the
problem stems from the need to exploit to the greatest extent the power gen-
erated, e.g., by a local photovoltaic panel, thus ensuring that the power loads
in the context are dynamically activated/deactivated (i.e., scheduled) so as to
optimally fit, at any instant in time, to the available generated power (reference

83

Chapter 6. Model Continuity in Cyber-Physical Systems

or threshold power signal). Indeed, it is not economically viable to sell the sur-
plus of the local produced energy to the external electric provider as it is not
properly paid.

The input for the case study is constituted by a threshold signal representing
the generated power, and by a certain number of user power loads. Each load
is characterized by a dynamic temporal behavior such as the start time and the
duration (or computation cost) in the case of one-shot load, or the start time,
the duration and a period in the case of a periodic load. Every load is tagged
with a utility measure. The scheduler gives priority to loads having a greater
utility. To avoid starvation, the utility is aged (i.e., increased) in the case a
load gets not selected by the scheduler. To capture the quality of scheduler
decisions, a fitting measure, inversely proportional to the offset between the
overall consumed power and the reference threshold signal, is also considered.
The scheduler decision takes place as soon as a variation is sensed either in
the threshold reference signal and/or in the power loads (e.g., a load notifies it
would execute, or it informs it just finished its execution).

The problem of CPS systems like the chosen case study, is to keep aligned
the Newtonian time of the physical part with the discrete time of the cyber
part. Depending on the physical dynamics of the controlled system, communi-
cation and computational delays can make a control reaction inconsistent (and
possibly useless) with the actual state of the physical plant. The development
of the case study was aimed at both assessing the timing problem and demon-
strating the application of the proposed methodology with model continuity.
The impact of the computational/communication overhead was checked by de-
signing a scheduler agent which can search for an optimal solution (i.e., optimal
load configuration), if there are any, through a full exploration of the solution
space which can be computational demanding, or it can exploit a greedy heuris-
tic which looks for a suboptimal, approximate solution, generated in a small
amount of time.

For the purpose of the case study, an optimal solution is looked for by an
iterative backtracking technique. An approximate solution, instead, is greedy
searched by examining the candidate set of active loads, preliminarily ranked
by decreasing utility and for the same utility by increasing power.

From a practical point of view, since the backtracking technique can be
applied by specifying the number of required solutions, the heuristic solution
can be generated as the first-found solution by backtracking, which operates on
the candidate set of loads ranked by decreasing utility and then by increasing
power. The backtracking process prunes, as early as possible, those partial
solutions which can be predicted they cannot become a full solution. Among
the acceptable solutions, the optimal one is selected as the one which maximizes
the overall utility of loads, and, among the solutions having the same maximal
utility, the one which optimizes the fitting measure is preferred.

In the following, the development of the case study is detailed according to
the various transition phases enabled by the approach. The provided description
highlights the achieved benefits which stem from the exploitation of the same
model during the development, to the capability of validating the correctness
of the scheduling algorithms and predicting their overhead when executed on a
real platform. Finally, it is shown how the implemented system is achievable
by concretizing only the hybrid components as described in Section 6.3. The
methodology is demonstrated without considering distribution aspects.

84

Chapter 6. Model Continuity in Cyber-Physical Systems

6.4.1 Modelling the system
The developed multi-agent model for the power control system consists of load
agents (instances of the LoadAgent class), one ThresholdAgent, one Scheduler-
Agent and the envGateway for interacting with the external environment.

The ThresholdAgent handles the samples of the generated power signal. The
ThresholdAgent helps separating the functionalities of the SchedulerAgent from
those of the envGateway. It is the ThresholdAgent which reads, through a
periodic action, the samples of the reference power signal and transmits them
to the SchedulerAgent.

Each load agent manages a single physical power load. A publish/subscribe
design pattern is adopted among the scheduler and the load agents. At its ar-
rival, a LoadAgent first registers itself at the SchedulerAgent by an Announce-
ment message (see also Fig. 6.5) which carries the identification data about the
load. Subsequently, the LoadAgent communicates with the SchedulerAgent each
time a variation in the temporal behaviour of the load occurs. Similarly, the
SchedulerAgent sends commands to load agents for activating or deactivating
the corresponding power load. When a load decides to abandon the candidate
set of loads, it detaches from the SchedulerAgent through a Detach message.
A LoadAgent is configured with the id of the controlled actuation device, the
temporal parameters which regulate the load behaviour, and the utility value of
the correlated load. The agent also holds the active/inactive status of the cor-
responding physical load. Each time a load agent receives a command from the
scheduler agent, it submits a one-shot action which implements the scheduler
command through an interaction with the envGateway. An activation command
sent to an already active load agent is simply ignored.

A load agent sends to itself a time-stamped message to step along the load
power consumption curve, according to the basic time unit (e.g., 1s). Processing
such a message causes an interaction with the SchedulerAgent, for communicat-
ing current load power level, activation/deactivation status and its actual utility
value.

By design, the scheduler algorithm of the SchedulerAgent was directly coded
in the handler() method of the agent. To avoid taking so long for the handler()
to complete its calculations about an optimal solution, the handler() of the
scheduler is kept busy only for the (minimal) time required for finding the next
solution. A Next message is sent by the scheduler to itself for starting the com-
putation of the next solution and so forth. In this way the scheduler remains
capable of quickly sensing and processing variation events, which can require
starting from scratch the scheduling process, just after one further solution was
found.

6.4.2 Data configuration
The multi-agent system model was experimented using the configuration data
reported in Table 6.1 and Table 6.2. Table 6.1 specifies the adopted threshold (or
available) power signal. The time-span of the available signal is 480 time units
(t.u.) where a time unit corresponds to 1s of Newtonian time of the physical
plant. Table 6.2 details the assumed power loads. Only the load #3 is periodic,
and, following its termination, it becomes ready again to be scheduled after 12
t.u..

85

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.5: Main interactions among model agents

Table 6.1: Reference threshold power signal

Available Power (W) Time Duration (t.u.)
750 10
900 15
1300 20
2400 60
3300 205
1800 5
3100 100
2100 25
1800 10
1100 10
600 20

6.4.3 Analysis phase
A first concern was studying in simulation the multi-agent system model. The
goal was checking both functional and non functional (temporal) properties, par-
ticularly the behaviour of the scheduling algorithm. It is worth noting that, in
simulation, message processing consumes 0 time. As a consequence, the sched-
uler algorithm, being implemented in the handler() method of the Scheduler-
Agent, either searching an optimal or suboptimal solution, is always virtually
completed in 0 time. Time advancement is mainly related to the duration of
actions, and then to stepping through the power signal samples.

The model was executed on a standalone machine with the Simulation con-
trol structure [73]. Simulated actions are used and their execution immediately
schedules the completion message or the message of the next return, which is
time-stamped with their due time. The samples of the available power signal
are pre-loaded in the envGateway. Output commands are simply logged.

When an active load is interrupted because the SchedulerAgent chooses a
different load, its completion message is invalidated and the remaining time to
completion is stored by the LoadAgent so as to be exploited at its next activation.

Fig. 6.6 portrays the scheduling effects on the total consumed power by
loads with respect to the available threshold power signal, when an optimal or

86

Chapter 6. Model Continuity in Cyber-Physical Systems

Table 6.2: Power loads parameters

Load ID Utility Power Request (W) Time duration Available at Periodic
1 3 500 300 8 No
2 2 250 380 18 No
3 4 500 400 12 Yes
4 5 750 350 0 No
5 4 250 330 0 No
6 3 250 350 0 No
7 2 250 320 0 No
8 1 250 410 0 No

a suboptimal solution is adopted.
For the assumed loads (Table 6.2), the power consumption curves in Fig.

6.6 are very similar. However, since the scheduler tends to select different loads,
differences will ultimately emerge between the two curves. At time 437 the peri-
odic load is reactivated and the consumed power suddenly raises under optimal
scheduling. Under suboptimal scheduling, instead, the same load reactivates
at time 457. This is due to the fact that the optimal scheduler is capable of
ensuring a greater power consumption in the time interval from 332 to 410 t.u..

Fig. 6.7 depicts the observed fitting, i.e., the deviation between the available
power and the total consumed power, vs. time, in the two cases optimal/sub-
optimal scheduling.

As one can see from Fig. 6.7, the two algorithms tend to behave differently
in the long time when, definitely, it seems that the optimal algorithm is out-
performed by the suboptimal algorithm. In reality, since the optimal algorithm
is capable of activating simultaneously more loads (although with a same to-
tal consumption power level) which in the considered case are almost one-shot,
in the long time the optimal scheduler has fewer loads to manage and then it
exhibits a greater deviation of the consumed power from the available power.

The above observations are confirmed by Fig. 6.8 which shows the total
observed utility of the scheduled loads vs. time, in the two scenarios. Initial
and final differences are respectively due to the ageing process of the load utility
and to the fact that definitely the optimal algorithm handles fewer loads.

6.4.4 Preliminary execution
Under preliminary execution, the model was run using the RealTime control
machine (with the time unit set to 1s) along with simulated actions and the
FirstComeFirstServedAS action scheduler [73]. No change was introduced in the
agent model. The goal was to check the effects of message processing, which now
is no longer negligible, on the scheduling process. Message processing overhead
obviously depends also on the performance of the hosting computer machine.
Fig. 6.9 depicts the total consumed power vs. time when the optimal scheduling
is used, both in the simulation and the preliminary execution scenarios. The
experiments refer to the use of a Macbook Pro Intel Core i5, 2.9GHz, 16GB,
OS X El Capitan. A delay clearly emerges in the scheduler reaction due to
the algorithm overhead. Such a delay disappears in the case the suboptimal
algorithm is adopted (picture not reported for brevity).

In order to highlight the usefulness of the preliminary execution phase, the
experiment was repeated also on a less performing (older) Macbook, Intel Core

87

Chapter 6. Model Continuity in Cyber-Physical Systems

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

 Time units [t.u.]

 P
o

w
er

 [
W

]

Power Available Power Used Opt Power Used Sub−Opt

Figure 6.6: Power available and total consumed power vs. time - optimal/suboptimal
scheduling

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

 Time units

 F
it

ti
n

g

Fitting Opt

Fitting Sub−Opt

Figure 6.7: Observed fitting vs. time

2 Duo, 2GHz, 2GB, OS X Mavericks. In this case the delay of the optimal
algorithm gets increased (see Fig. 6.10) as expected. A closer examination of
the generated logs reveals that at time 315 a reaction is required but, whereas
the simulation is capable of producing an optimal schedule by instantaneously
(although ideally) responding to the variation event, the new Macbook employs
10 time units for finding an optimal solution in preliminary execution, and the
old Macbook requires more time and it happens that a new variation event is
sensed during the scheduler operation which forces it to restart its computation
thus missing one reaction.

The worst case of observed drift, i.e., the time deviation with which a message
is processed with respect to its due time, was found to be about 101ms on the
less performing Macbook and about 48ms on the high performing Macbook. The
worst case occurs during the initialization/bootstrap of the model. Definitely,
the drift tends to be a few ms.

The documented experimental results show that the optimal algorithm, de-
spite computational and communication delays, is capable of managing loads by

88

Chapter 6. Model Continuity in Cyber-Physical Systems

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

 Time units

 U
ti

li
ty

Utility Opt

Utility Sub−Opt

Figure 6.8: Total utility vs. time

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

 Time units [t.u.]

 P
o

w
er

 [
W

]

Power Used Opt Sim

Power Used Opt Preliminary

Figure 6.9: Used power vs. time - optimal scheduling, simulation/preliminary execu-
tion

generating control actions consistent with system dynamics. However, the sub-
optimal algorithm is preferable because it favours correct temporal dynamics.
Its use, in fact, guarantees that the reaction to a variation event is computed
and actuated during the same sampling period or, in the worst case, until the
next one would a particular disalignment between the physical clock (of Ar-
duino) and the cyber clock occur. All these properties were confirmed by con-
sidering both the overhead of the scheduler algorithm and the bookkeeping of
message scheduling and dispatching, also in the case a low performing computer
is adopted.

6.4.5 Prototype implementation and real execution
The CPS power management case study was assembled in the context of an
academic electronic measurement laboratory, where loads are realized by lamps
of a basic power of 250W. Single or groups of lamps whose power is a multiple
of 250W were realized so as to be controlled by few relays. This explains the
data assumed in Table 6.2. Fig. 6.11 provides an overview of the overall CPS,
in which a group of physical loads (lamps) are controlled by corresponding load

89

Chapter 6. Model Continuity in Cyber-Physical Systems

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

3000

3500

 Time units [t.u.]

P
o

w
er

 [
W

]

Power Available Power Used Old Macbook Power Used New Macbook

Figure 6.10: Power available and total consumed power vs. time - optimal scheduling,
preliminary execution, the two Macbooks

agents, which in turn receive control commands from the SchedulerAgent which
is in charge of monitoring the reference input power signal and to adapt the
power loads accordingly. The threshold power signal was generated by Lab-
View software and loaded in the memory of an Arbitrary Waveform Generator
AWG2021, configured to generate the signal with a frequency of 10Hz. Two
Arduino Uno [2] were used as I/O hardware components, with serial communi-
cation channels. The first Arduino is devoted to reading the threshold power
signal samples. The second one serves to effecting the commands to relays
which activate/deactivate the power loads. The prototyped model implemen-
tation was executed using the RealTime control machine, effective actions and
the envGateway which provides interactions with real input and output physical
devices, controlled by the two Arduino. Except for an initialization time (due to
setting up the Arduino, opening the serial communication channels etc.), which
establishes an initial offset of about 10s, the behaviour of the available power
and used power is that observed during the preliminary execution. As a final
remark, although the case study was driven by pre-configured signals for the
generated power and the consuming loads, the agent-based solution is open and
flexible to work with, e.g., more dynamic load configurations. This is due to
the reactive character of the scheduler which is capable of intervening at each
occurrence of a variation event. In the following, a description of the used mea-
surement bench, the load subsystem, and the adopted communication protocol
is provided.

Measurement bench

The assembled measurement bench is shown in Fig. 6.12. It is composed of
an Arbitrary Waveform Generator Sony/Tektronix AWG2021, an Arduino One
board, a Digital Oscilloscope Tektronix TDS220, and a personal computer. The
personal computer interfaces the AWG2021 by a General Purpose Interface Bus
(GPIB) and runs a proper program developed in the NI LabView environment.
The output channel of the AWG2021 feeds the analog channel 0 of the Arduino
board to provide the emulated power signal. Moreover, the marker output signal
of the AWG2021 feeds the digital I/O pin 7 of the Arduino One board in order

90

Chapter 6. Model Continuity in Cyber-Physical Systems

Figure 6.11: An overview of the realized CPS

Figure 6.12: Measurement bench and controlled loads (lamps)

to synchronize the two devices. The TDS220 is connected in parallel to the
output channel of the AWG2021 in order to visualize the trend of the output
signal and then the correct shape of this signal.

Load subsystem

The load subsystem consists of one Arduino One board, 2 relay boards with
8 high voltage channels characterized by rating of 10A at 250 and 125 V AC
and 10A at 30 and 28 V DC, managed by means of 8 digital pins adapted
to work with the Arduino output operating voltage, and 12 Standard High
Pressure Mercury lamps Philips HPL-N 250 W and 12 ballasts. Each ballast is
connected to a lamp in order to regulate the current to the lamps and provides
sufficient voltage to start the lamp. The loads are obtained by connection of a
pre-established number of lamps. The digital pins of the Arduino board feed
the digital pins of the relay modules, so permitting to turn on and off the loads.

Communication protocol

The cyber and the physical subsystems interact with each other through the
exchange of character strings. Strings can express commands to be executed
by the loads, or can capture information that Arduino achieve from sensors,

91

Chapter 6. Model Continuity in Cyber-Physical Systems

ultimately destined to agents. The following clarifies the adopted format: sen-
sorId/actuatorId # message, where the content of the token message can vary.
Information about sampling the available power signal is transmitted from Ar-
duino as: watt # powerLevel where powerLevel is a double number. To change
the sampling period the following command can be sent by agents: arduinoId
#samplingTimeInMillis. To act on a relay it is necessary to send to Arduino
the load id and the type of the command to be executed. The format is: loadId
#command powerLevel in which the type of the command can be:
) A, to activate. It allows to (re)connect a load with a given power level;
) C, to change load power. It permits to change the power level of an already
connected load;
) D, to deactivate. It asks to disconnect a load (in this case no power level is
furnished).

92

Chapter 7
Qualitative and Quantitative

Model Checking of Distributed

Probabilistic Timed Actors 1

This chapter describes an evolution of the Theatre actor infrastructure whose
design aims to favoring the development of predictable time-dependent appli-
cations. Adopted actors are thread-less and their execution is transparently
regulated by a customizable control layer which has a reflective link with the
application. A Theatre system consists of a collection of interacting com-
puting nodes (theatres) each one hosting a sub system of local actors. The
control layers of the various theatre components coordinate each other so as to
enforce a common global time notion (real or simulated time). The abstract
Theatre modelling language can be reduced in a case to Uppaal, which opens
to the analysis of the functional/non-functional aspects of a distributed sys-
tem. A key factor of the reduction process concerns the possibility of making
both a non-deterministic analysis of an actor model (checking that something,
e.g., an event, can occur), and a quantitative evaluation of system behavior by
statistical model checking of the same model (e.g., estimating the probability
for an event to occur). This chapter describes the Theatre architecture and
introduces a real-time case study which is used as a running example. The
operational semantics of Theatre is provided and the proposed reduction of
Theatre actors on top of Uppaal detailed through the chosen example. Some
experimental results are reported about qualitative and quantitative analysis of
the case study. Finally, conclusions are presented with an indication of further
work.

7.1 Introduction
The described work is concerned with a model-driven methodology for the devel-
opment of distributed real-time systems such as cyber-physical systems [160, 78].

1The material in this chapter is related to publications [196, 194, 193, 188]

93

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Ensuring the correctness of such systems is challenging and strongly depends on
the use of formal tools for modelling and analyzing the system behavior earlier
in a design, so as to assess the fulfillment of functional and temporal require-
ments.
The starting point of the methodology is the Actors computational model [10]
which is a well-known formal framework [11] suited for modeling and implemen-
tation of untimed distributed systems based on asynchronous message passing.
Each actor exposes a message interface and hides an internal data status which
can only be modified by responding to messages. Incoming messages get buffered
into a local mailbox of the actor, from where they are extracted, one at a time,
by an underlying control thread of the actor, and eventually processed. Being
not based on shared variables and associated lock mechanisms for excluding
data races, the actor concurrent model is intrinsically less incline to common
pitfalls of classical multi-threaded programming [159]. However, problems are
tied to message delivery to actors which can follow complex interleaving, whose
consequences on system behavior are required to be predicted before of an im-
plementation. Non-deterministic behavior of threaded actors makes them less
suited to a time-sensitive context such as real-time, whose essence is predictabil-
ity [241], or discrete-event simulation which requires high-performance execution
[105]. For example, achieving a simulation control engine with threaded actors
typically implies the simulation engine (that is a specialized actor) delivers a
message to an applicative actor and needs an explicit message back from the
activated actor to witness message processing was completed thus the engine
can possibly advance the simulated time and proceed with the next message de-
livery and so forth. All of this introduces an obvious overhead at each message
(event) occurrence.
In the last years many efforts and tools have emerged addressing specifically the
modelling and analysis of distributed timed, possibly probabilistic, actors. A
significant state-of-the-art example is represented by the Rebeca modelling lan-
guage [234] along with its probabilistic and timed extension (PTRebeca) [129].
Rebeca represents an interpretation of the classical actors model [10], formally
defined through a structural operational semantics [129]. Different tools were
implemented for the analysis of both functional and temporal behavior of a sys-
tem. Analysis tools are based on a preliminary translation of a PTRebeca model
into the terms, e.g., of a Timed Markov Decision Process (TMDP) and its prop-
erties studied using the PRISM model checker [144] or the IMCA (Interactive
Markov Chain Analyzer) [112], or targeting the model to Erlang with the timed
McErlang tool [224] used for model checking or, to avoid state explosion prob-
lems, by statistical model checking activities [127]. Despite their value, these
efforts lack, in our opinion, of an effective link to the implementation phase of
a system.
The work described in this paper claims that a full model-driven methodol-
ogy can be established by using lightweight (thread-less) actors in a reflective
control-sensitive framework [73] which clearly separates application concerns
from crosscutting control aspects affecting message scheduling and dispatching.
The adopted actor framework is named Theatre. A system consists of a collec-
tion of computing nodes (logical processes, LPs, or theatres) where each theatre
hosts a subset of applicative actors plus a (transparent) control structure. The
control structure can be tailored to the application needs and can manage a
specific time notion (simulated or real-time). The entire system life-cycle is ad-

94

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

dressed: a same model can be transitioned without distortions (model continuity
[78]) from the analysis phase based on model checking and/or simulation, down
to design and real implementation in Java. The overall process mainly depends,
at each phase, on a different concretization of message processing and on the
replacement of the regulating control structure.
The Theatre actor framework was recently successfully applied, e.g., to the
performance evaluation of a new version of the minority game [74], to the real-
time control of power management in a smart micro grid [78], to the support
of modelling and analysis of general complex multi-agent systems [189, 188].
A library of prototyped control forms can be found in [73, 79], and includes
controls for distributed simulation and distributed real-time operation where a
time server is used to orchestrate the various theatres thus homogenizing the
local times through the achievement of a common global reference time for the
theatres.
A side benefit of the adopted control-based actor framework relates to the pos-
sibility of customizing also the programming style. For example, in [73] the
actor behavior, which in general follows the pattern of a finite state machine, is
captured in one single handler() method which receives the next message and
updates the actor status and possibly sends new messages to acquaintances.
In this paper, following the PTRebeca [129] approach, a more intuitive and
readable programming style is advocated, where messages are handled by corre-
sponding message server methods, which are reflectively activated by the control
engine. All of this corresponds to the design and realization of new specific con-
trol forms (see Section 7) inspired by the timing model of PTRebeca. The goal
is to capture the PTRebeca programming and timing model into the terms of
our control-based and time-predictable actor framework.
The original contribution of this paper consists in tailoring the abstract mod-
elling language of Theatre according to PTRebeca, providing its formal oper-
ational semantics, and defining a reduction of a Theatre model into the terms
of the Timed Automata [17] of the Uppaal popular toolbox [27, 90] so as to sup-
port, for a same model, both qualitative non deterministic analysis through the
exhaustive model checker, and quantitative simulation-based analysis through
the Statistical Model Checker [9, 90]. Current paper significantly extends the
preliminary experience described in [194] where only statistical model checking
activities were enabled. A major difference from [194] consists in the replace-
ment of dynamic message templates [90] which were used to model message ex-
changes among actors, with a statically dimensioned pool of message automata,
which are dynamically activated and, after their dispatch, are reset so as to be
reused again. In addition, the new message TA more faithfully reproduces the
timing model of PTRebeca (see later in this paper).
The paper is structured as follows. First basic concepts of Theatre, related to
both the “in-the-large” (architectural view) and the “in-the-small” (application
view) aspects are discussed. After that the abstract modelling syntax of The-
atre is furnished together with a real-time modelling example which is used as
a case study throughout the paper. The paper goes on by presenting a formal
structural operational semantics for Theatre. After that the proposed reduc-
tion process of Theatre onto the timed automata of Uppaal is presented,
using the modelling example to clarify the transformation details. Then the
paper illustrates the analysis activities which can be carried out on a reduced
model, by focusing both on the non-deterministic analysis (model checking) and

95

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

the quantitative analysis (statistical model checking) of the chosen case study,
also considering the partitioning concerns. After that the paper summarizes the
implementation status of Theatre and illustrates some methodological guide-
lines.

7.2 THEATRE concepts

7.2.1 Architectural view
A Theatre system (see also Fig. 7.1) consists of a collection of interacting the-
atres (logical processes or LPs) each allocated for execution onto a computing
node (a core or a JVM instance). A theatre hosts an application layer populated
by a subsystem of local actors, a control layer which provides to local actors
the basic services of message scheduling and dispatching, and a network layer
which interfaces the theatre with its peers using a communication network and
a reliable transport layer.

The control layer is realized by a control machine component which has a

Control
layer

Time notion

Control Machine
Scheduling & Dispatching

Subsystem of actors

theatre#1 (LP/JVM)

Control Machine
Scheduling & Dispatching

Subsystem of actors

theatre#n (LP/JVM)

Msgs
Actors

Comms network (e.g. Internet)

…

TimeServer

App layer
send

dispatch
msgs

Figure 7.1: A Theatre system

reflective link with the application layer and regulates its behaviour in a trans-
parent manner: each message send is first captured by the control machine and
put in a cloud of sent but not yet dispatched messages. Major responsibilities of
a control machine are the management of the cloud of sent messages and of a
particular time notion (real time or simulated time). A control machine repeats
a basic control loop. At each iteration, a message is selected, if there are any, in
the cloud of messages, possibly according to an application dependent strategy,
and dispatched to its destination actor. The control machine is founded on the
macro-step semantics of messages [134]. Only one message at a time, in a the-
atre, can be dispatched and processed by its recipient actor. When the message
processing is completed, the control loop is re-entered and the story continues.
Therefore, a cooperative concurrency schema, determined by message interleav-
ing, is ensured within a same theatre. Actors can instead be executed in parallel
if they belong to distinct theatres allocated, e.g., on different physical CPUs.
The transport layer can be directly based on TCP sockets (see chapter 8). How-
ever, other solutions were experimented as well. For example, in [73, 78] the
JADE agent infrastructure [29] was used as a middleware providing naming,
messaging and network services; in [62] the Terracotta services were exploited,
in [67] the Globus middleware was used etc.
A Theatre system (see Fig. 7.1) can admit a time server (allocated to a given

96

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Model ::= Env* Class*
Env ::= env T v = literal;
Class ::= actor C{VarDcl* MsgSrv*[Main]}
VarDcl ::= T < v[=literal] >+; |C <a>+;
Msgsrv ::= msgsrv m(<T v|C a>⇤){Stmt⇤}
Main ::= main() { InstanceDcl⇤ Stmt⇤}
InstanceDcl ::= a = C();
Stmt ::= v = e; |v =?(e <,e>+; |v= ? (ep:e <, ep:e >+); |

if(e){Stmt⇤}[else {Stmt⇤}] | Send | delay(v) | move(a,pu)
Send ::= a.m(<e>⇤)[after(v)][deadline(v)]

Figure 7.2: Theatre abstract modelling language

theatre) which is in charge of managing a global time notion, e.g., the common
“real time” in a cyber-physical system, of the global simulation time in a dis-
tributed simulation. A suitable protocol is defined among the theatres and the
time server for the exchange of control information.
As a final remark, it should be noted that the Theatre architecture can logi-
cally reproduce the classical Actors model [10] by allocating one actor per the-
atre.

7.2.2 Abstract modelling language
In the following, the “in-the-small” modelling aspects of Theatre actors are
tailored according to the PTRebeca modelling style [129]. In Fig. 7.2 it is
shown the assumed abstract modelling language.
Theatres are abstracted as processing units pu1, pu2, . . . , puN each one hosting
a disjoint set of actors. The meta symbols < · · · > embody a block of elements,
| denotes alternatives, [. . .] envelop an optional text, superscripts + and ⇤ re-
spectively mean repetition of the left symbol one or more times, and zero or
more times. Furthermore, the notation < e >⇤ or < e >+ subsumes a comma
separated list of elements e. T is a primitive type (int or boolean); C is a class
name; v is a variable or value; a denotes an actor instance; pu denotes a pro-
cessing unit; e means either an arithmetic or boolean expression; m is a method
name.
A Theatre model can admit environmental declarations which introduce sce-

nario parameters. For the rest it consists of a collection of actor classes. An
actor class, besides encapsulated local variables, including acquaintances, spec-
ifies the message servers (msgsrv) which provide reactions to corresponding
messages. An actor can be a main actor if it defines the main method which
is used for bootstrapping purposes. The main instantiates actors and puts a
model into operation.
For generality, the initialization of actors does not rely on a built-in construc-
tor but is delegated to a first message like init, which carries the initialization
data (both acquaintance actors and primitive data values). The main actor can
receive an acknowledgment message (e.g., a done message) from actors to state
the initialization is terminated. In a typical setting, the main is launched on
a default processing unit (pu) which is then inherited by created actors. Fol-
lowing the initialization, actors can be moved to different pus, using the move

97

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

operation.
The asynchronous send operation can optionally be tagged by an after and a
deadline time. Such values are relative to the instant in time the send was is-
sued. When missing, after evaluates to 0, whereas deadline defaults to 1. In
a message server, self identifies the executing actor. The predefined function
now() returns the current time. As in PTRebeca, all the time quantities are
assumed to be int.
Statements include a delay operation which expresses a duration of (a code seg-
ment of) a message server. Also a delay time parameter is an int and is relative
to the current time value.
Both a non-deterministic v =?(e1 , e2 , . . . , en) and a probabilistic v =?(p1 :
e1, p2 : e2, . . . , pn : en) assignment are available. pi are probabilistic weights
with the constraint

P
pi = 1 . The result of expression ei is assigned to v with

probability pi . In the non-deterministic assignment, the probabilistic weights
are implicitly equal to 1/n.
It is worth noting that a Theatre model can be straightforwardly be expressed
in Java syntax, where actors are programmed as classes inheriting, directly or
indirectly, from an Actor base class (see chapter 8) which exposes all the funda-
mental services: send, now(), etc. Actor classes rely only of the default language
constructor implicitly used at each actor creation.

7.2.3 A modelling example
Fig. 7.3 depicts a Theatre model of a dependable real-time toxic gas sensing
system (TGSS), adapted from [129]. The system is devoted to controlling a lab
environment wherein there is a working scientist. In the environment a toxic
gas level, changing with time, can assume a critical level thus putting the life of
the scientist to a severe risk. One or more sensors in the lab periodically mea-
sure the gas toxicity, and transmit the gas level to a controller for a decision.
Periodically, the controller checks if the scientist life can have a danger, in which
case the scientist is asked to immediately abandon the lab. The scientist must
acknowledge in a timely manner a danger signaling message. Not receiving the
expected ack, the controller requires the intervention of a rescue team. If the
rescue reaches in time the lab, it informs the controller that the scientist was
saved. If the controller does not receive this notification, it means the scientist
is dead. The model consists of 6 types of actors: Environment, Sensor, Scientist,
Rescue, Controller and Main, together with some scenario parameters (see Fig.
7.3) which affect actor operation. Fig. 7.4 summarizes the message exchanges
among the actors.
The TGSS model is configured by the Main which creates the remaining ac-
tors and sends them an init message with initialization parameters (e.g., the
acquaintances for each actor). After that, each actor is moved to a specific the-
atre (processing unit) thus establishing, as an example, a maximum parallelism
setup. Every actor replies to the Main with a done message. When all the
replies are received (see the done() msgsrv in Fig. 7.3), the main actor starts
model execution by sending a changeGasLevel() to the environment actor with
CHANGING_PERIOD as the after time, a checkGasLevel() to each sensor
(Fig. 7.3 considers only one sensor) and a checkSensors() to the controller.
The periodic arrival of a checkGasLevel() message causes the environment to
randomly change the gas level (with probability 0.98 the normal level 2 is kept,

98

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

but in the 2% of the cases the abnormal value 4 is established). If a dangerous
level occurs, a die() message is sent to the scientist with an after time of SCI-
ENTIST_DEADLINE, which is the assumed amount of time within which the
scientist should be saved. The controller gets regularly informed of the gas level
by the sensor(s) which periodically ask the environment for the current gas level
through a giveGas() message.

// scenario parameters
env int SCIENTIST_DEADLINE =14;
env int SCI_ACK_DEADLINE =3;
env int RESCUE_DEADLINE =5
env int NET_DELAY =1;
env int CONTROLLER_CHECK_DELAY =3;
env int SENSOR_PERIOD =2;
env int CHANGING_PERIOD =5;
env int RESCUE_DELAY =2;
env int NR_SENSORS =1;

actor Environment{
// acquaintances
Scientist sc;
//state vars
int gasLevel =2; //4 is dangerous
bool meetDangerousLevel=false;
msgsrv init(Main m, Scientist s){

sc=s; m.done();
}//init
msgsrv changeGasLevel (){

if(gasLevel ==2)
gasLevel =?(0.98:2 ,0.02:4)

;
if(gasLevel >2 &&

!meetDangerousLevel){
sc.die()
after(SCIENTIST_DEADLINE)

;
meetDangerousLevel=true;

}
self.changeGasLevel ()

after(CHANGING_PERIOD);
}// changeGasLevel
msgsrv giveGas(Sensor sender){

sender.doReport(gasLevel);
}// giveGas

}// Environment

actor Sensor{
// acquaintances
Environment en;
Controller co;
msgsrv init(Main m, Environment
e, Controller c){

en=e; co=c; m.done();
}//init
msgsrv checkGasLevel (){

en.giveGas(self);
}// checkGasLevel
msgsrv doReport(int gasL){

if (?(0.99: true , 0.01: false)){

co.report(gasL)
after(NET_DELAY);

self.checkGasLevel ()
after(SENSOR_PERIOD);

}
}// doReport

}// Sensor

actor Scientist{
// acquaintances
Controller co;
//state vars
bool isDead=false;
bool isOutEnv=false;
msgsrv init(Main m, Controller c
){

co=c; m.done();}
msgsrv leftEnv (){

if(! isDead) isOutEnv=true;
else isOutEnv=false;

}// leftEnv
msgsrv abortPlan (){

if (?(0.90: true , 0.10: false)){
if(! isOutEnv && !isDead){

isOutEnv=true;
co.ack() after(

NET_DELAY);
}

}
}// abortPlan
msgsrv die(){
if(! isOutEnv) isDead=true;
else isDead=false; }//die

}// Scientist

actor Rescue{
// acquaintance
Controller co;
msgsrv init(Main m, Controller c)
{

co=c; m.done(); }//init
msgsrv go(){

delay(RESCUE_DELAY);
co.rescueReach ()
after(NET_DELAY+RESCUE_DELAY)
deadline(RESCUE_DEADLINE -

NET_DELAY
+RESCUE_DELAY)

}//go
}// Rescue

99

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

actor Controller{

// acquaintances

Scientist sc;

Rescue re;

//state vars

bool danger=false;

bool abortSent=false;

bool sciAlive=false;

msgsrv init(Main m,

Scientist s, Rescue r){

sc=s; re=r; m.done();

}//init

msgsrv report(int value){

if(value >2)

danger=true;

}// report

msgsrv rescueReach (){

sciAlive=true;

sc.leftEnv ();

}// rescueReach

msgsrv checkSensors (){

if(! sciAlive){

if(danger){

if(! abortSent){

sc.abortPlan ()

after(NET_DELAY);

self.checkScientistAck ()

after(SCI_ACK_DEADLINE);

abortSent=true;

}

}

self.checkSensors () after(

CONTROLLER_CHECK_DELAY);

}

}// checkSensors

msgsrv ack(){ sciAlive=true; }

msgsrv checkScientistAck (){

if(! sciAlive)

re.go() after(NET_DELAY);

}// checkScientistAck

}// Controller

actor Main{

Environment en;

Scientist sc;

Rescue re;

Controller co;

Sensor se1;

int cnt =0;

msgsrv done(){

cnt ++;

if(cnt ==1){

move(en ,1);

sc.init(self ,co); }

else if(cnt ==2){

move(sc ,2);

re.init(self ,co); }

else if(cnt ==3){

move(re ,3);

co.init(self ,sc,re); }

else if(cnt ==4){

move(co ,4);

se1(self ,en,co); }

else if(cnt ==5){

move(se1 ,5);

en.changeGasLevel () after

(

CHANGING_PERIOD);

se1.checkGasLevel ();

co.checkSensors ();

}

}//done

msgsrv main(){

move(self ,0);

// create actors

en=Environment ();

sc=Scientist ();

re=Rescue ();

co=Controller ();

se1=Sensor ();

en.init(self , sc);

}//main

}//Main

Figure 7.3: A Theatre model for the toxic gas sensing system, adapted from [129]

After that the sensor receives a doReport() message from the environment with
the gas level and transmits it to the controller through a report() message. The
controller periodically checks the sensor(s) and in the case a dangerous situation
is sensed, it sends an abortPlan() message to the scientist with NET_DELAY
as the after time so as to “immediately” ask the scientist to abandon the lab.
The scientist is expected to send back to the controller an ack() message. The
controller checks the arrival of the scientist ack by sending to itself a checkSci-

100

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

init

Environment Scien!st

Sensor Controller

Rescue

die

giveGasdoReport

changeGasLevel

report

ack le"Env abortPlan

go rescueReach

checkSensors

checkScien!stAck

Main

done

changeGasLevel
checkGasLevel

checkSensors

checkGasLevel

Figure 7.4: Message exchanges in the toxic gas sensing system model

entistAck() message whose after time is SCI_ACK_DEADLINE, i.e., the max-
imum time allowed to the scientist for replying. In the case the ack() message
is not received in time, the controller delegates the rescue team to go to the
lab to try to save the scientist. The sciAlive variable in the controller is put to
true as soon as an ack from the scientist is received or when the rescue com-
municates it reached the scientist. A true value of sciAlive only indicates that
possibly the scientist is saved. The problem is that message delivery times and
non-deterministic/random aspects of the model can imply, e.g., the rescue team
arrives late and find the scientist already dead. For example, a sensor which
receives a doReport() message from the environment, can be found working in
99% of the cases, but in 1% of the cases the sensor is not working and then it
cannot inform the controller about a dangerous gas level. The scientist model
includes a probabilistic behavior when it receives an abortPlan() message. The
abortPlan() can be perceived with a probability of 0.90. This in turn can force
the controller to activate the rescue team because it raises the probability of
violating the SCI_ACK_DEADLINE.
Besides any similarity with the PTRebeca modelling syntax [129], significant
semantics differences are due to the operational and timing model of Theatre
(more details in the next section) where, e.g., global time is assumed and mes-
sage servers cannot be preempted nor suspended. In PTRebeca each actor owns
its local notion of time. The existence of global time simplifies and makes it uni-
form the interpretation of message time constraints across actors. In addition,
whereas a delay(d) statement blocks the actor thread for d time units to express,
during modelling and analysis, the duration of a code segment, in Theatre a
delay request is just another asynchronous operation like the non-blocking send.
A delay(d) operation causes the corresponding processing unit of the requesting
actor to become occupied for d time units. No messages can be delivered to
actors sharing an occupied processing unit. The processing unit becomes again
free at the end of the delay duration. Therefore, the delay duration parameter
has to be added, during modeling and analysis phases, to any following send
operation in the message server (see the go() msgsrv in the Rescue actor in Fig.
7.3). Further details about the semantics of Theatre are given in the next

101

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

section.

7.3 An operational semantics of THEATRE
As in [129], a structural operational semantics of Theatre in the style of the
transition rules of Plotkin [210] and Kahn [132] is provided in the following.
First some basic data structures are introduced.

• E, a set of environments (an environment maps variable names to their
values);

• M , an unordered bag of messages (cloud of sent but not yet dispatched
messages);

• D, an unordered bag of delays (cloud of set but not yet expired delays);

• C, configuration, a set of N theatres abstracted as a set of processing units
pu1, pu2, . . . , puN , paired with their associated free or occupied (delayed)
status. Each pu consists of a set of actors which share the pu for the
execution: pui\puj = ?, i 6= j. The function pu(a) returns the processing
unit of the actor a. A particular configuration associates one pu (theatre)
to each distinct actor (maximal parallelism);

• now, a variable holding the current global time.

Typically, E is the union of all the local stores of the actors Ai : [⇢Ai. A local
store also holds the predefined name (noun) self which denotes the currently
executing actor.
A sent message, i.e., an item of M , is a tuple: < receiver,m, args,AF,DL >
where

• receiver is an actor name;

• m is a message name of the receiver, which identifies a method/msgsrv
which handles the message;

• args is the list of arguments of m;

• AF and DL are the absolutized values of the after and deadline timing
attributes of the message, that is: AF = now + after, and DL = now +
deadline. It is recalled that after and deadline are relative to the send
time. When omitted, after amounts to 0, and deadline to 1.

It is worth noting that in the case a message server needs to know the identity of
the sender actor, the sender information is assumed to be explicitly transmitted
as an argument.
A delay object, i.e., an item of D, is a tuple < receiver, ET > where

• receiver is the actor name who is delaying;

• ET is the absolutized expire time of the delay, that is: ET = now +
duration where duration is the amount of the delay.

102

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

The configuration C maps processing units to their statuses: C[pu B free],
C[pu B occupied]. In the default configuration, at the creation of a new ac-
tor bound to varname in current store of actor self , it occurs: C[pu(self) =
pu(self) [{varname}], that is the new actor is grouped together with the self
actor. A move operation such as move(a, pu0) is equivalent (see also later in
this section) to pu(self) = pu(self) \ {a}

V
pu0 = pu0 [{a}.

A system state is a tuple: < E,M,D,C, now >. The stepwise evolution of a
theatre system is characterized by a relation ! thus: < E,M,D,C, now >!
< E0,M 0, D0, C 0, now0 > . Basic steps correspond to a message dispatch or to a
delay expiration, both of which are executed by the scheduler (control machine).
Each step is then realized by an atomic block of micro-steps which correspond,
e.g., to the statements which compose a msgsrv method, and which consume no
time.
Due to the use of probabilistic constructs in a Theatre model (see the assign-
ment operations in Fig. 7.2 which can affect the temporal behavior of an actor
by probabilistically defining the time duration of an after or deadline or of a
delay clause) the transition relation evolves in general a system state accord-
ing to a probability distribution which assigns probability values to reachable
states. In the following, though, such a probability distribution is only han-
dled implicitly, i.e., the probability weight of transitions is not specified but left
implicitly defined by the executing steps. Reasons for doing this are simplic-
ity and the chosen goal of analyzing a Theatre model through the Uppaal
SMC [90] Statistical Model Checker, hence through simulations, and not by a
Probabilistic Model Checker which would require, e.g., a Timed Markov Deci-
sion Processes model, as advocated in PTRebeca using the IMCA (Interactive
Markov Chain Analyzer) tool [129]. On the other hand, probabilities are ignored
and turned into non-determinism when a Theatre model is analyzed through
an exhaustive symbolic model checker like Uppaal [90, 27]. Anyway, the pro-
vided semantic rules could be extended to specify the probability distribution
of transitions using an approach similar to that shown in [129].
The representation of the step-wise evolution of a Theatre model can con-
cretely be based on two specific relations: i�! and d�! , the first one being con-
cerned with an instantaneous pure-action state change, the second one with a
pure time-advancement operation, needed to reach the time of the (or one of
the) next most imminent event in the system, that is either a msg-dispatch or
a delay-expiration.

7.3.1 Transition rules i�! and d�!
The transition relation i�! specifies an instantaneous action transition (it con-
sumes no time). Two important occurrences of this transition are the selection
and dispatching of an eligible message (see Fig. 7.5) and the execution of the
associated message server in the receiver actor, or the processing of an expired
delay which makes again free a given processing unit (Fig. 7.6).

A message dispatch is eligible as soon as its processing unit (pu) becomes
free and now has reached its AF but it is not beyond its DL. When multiple
messages are eligible for dispatch and/or multiple delays are ready to expire, one
event is chosen non-deterministically, therefore executing the message-dispatch
or delay-expiration rule. As a consequence of a message-dispatch, E0,M 0, D0

103

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

(msg � dispatch)
⇢Ai /2 E (Ai,m, args,AF,DL) /2 M now DL now � AF C[pu(Ai) B free]

⇢Ai(m), ⇢Ai[par = args], E,M,D,C, now)
i�! (⇢0Ai, E

0,M 0, D0, C0[pu(Ai) . occupied], now)

({⇢Ai} [E, (Ai,m, args,AF,DL) [M,D,C, now)
i�! ({⇢0Ai

} [E0,M 0, C0, now)

the local store ⇢Ai and the dispatch message (Ai,m, args,AF,DL) are supposed to be
extracted respectively from E and from M for clarity of presentation

Figure 7.5: Message dispatch rule

(delay � expiration)

(Ai, ET) /2 D now == ET C[pu(Ai) . occupied]
(E,M,D,C, now)

i�! (E,M,D,C 0[pu(Ai) . free], now)

(E,M, (Ai, ET) [D,C, now)
i�! (E,M,D,C 0, now)

for clarity the delay object (Ai, ET) is supposed extracted from D

Figure 7.6: Delay expiration rule

and C 0 are the result of the following changes: (i) modification to the local store
⇢Ai, as an effect of the execution of assignment statements in the message server
body, (ii) new sent messages scheduled in M , (iii) some delays scheduled in D,
(iv) new actors created whose local store is added to E and whose configuration
(execution location or processing unit) is reflected in C. Moreover, in the new
C the processing unit of Ai is occupied.

As a consequence of the delay � expiration rule in Fig. 7.6, the configura-
tion C will be changed to C 0 = C[pu(Ai) B free] thus (possibly) enabling the
dispatch of messages in M whose receiver is Ai or any other actor belonging to
pu(Ai). It should be noted that, for a selected expiring delay, the value of now
is certainly now == ET .

This is a consequence of the fact that the execution of a msgsrv is supposed
(during analysis) to be instantaneous and that the duration of a delay is estab-
lished as an asynchronous event.
The time � progress rule in Fig. 7.7 is responsible for the time advancement
(now update).
It is ensured that the advancement of the global time can occur only when no
eligible event exists. Therefore, the minimum occurrence time of the (or one

(time � progress)

d1 = minM{AF � now} d2 = minD{ET � now} d = min{d1, d2}
now < minM{AF} now < minD{ET}

(E,M,D,C, now)
d�! (E,M,D,C, now0 = now + d)

(E,M,D,C, now)
d�! (E,M,D,C, now0)

Figure 7.7: Time progress rule

104

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

(send)

(varname.m(args) after(a) deadline(d), ⇢self , E,M,D,C, now)
i�!

(⇢self , E, {(⇢self (varname),m, eval(args, ⇢self), AF = a+ now,
DL = d+ now)} [M,D,C, now)

(delay)
(delay(d), ⇢self , E,M,D,C, now)

i�! (⇢self , E,M, {(self,
ET = now + d)} [D,C[pu(self) B occupied)]

(assignment)

(x = e, ⇢self , E,M,D,C, now)
i�! (⇢0self [x = eval(e, ⇢self)] [E,M,D,C, now)

(non deterministic� assignment)

(x =?(e1, e2, . . . , en), ⇢self , E,M,D,C, now)
i�! (⇢0self [x = eval(el, ⇢self)

l 2 [1, n]] [E,M,D,C, now)

(probabilistic � assignment)

(x =?(p1 : e1, p2 : e2, . . . , pn : en), ⇢self , E,M,D,C, now)
i�! (⇢0self [↵ 2 [0, 1), x =

eval(el, ⇢self , ↵ 2 [
Pl�1

j=0 pj ,
Pl

j=0 pj), p0 = 0,Pn
j=0 pj = 1] [E,M,D,C, now)

(create)

(varname = A(), ⇢self , E,M,D,C, now)
i�!

(⇢self [varname = a] [E,M,D,C[pu(self) = pu(self) [{a}], now)

(move)

(move(a, put), E,M,D,C, now)
i�!

(E,M,D,C[pu(a) = pu(a) \ {a}, put = put [{a}], now)

Figure 7.8: Statement rules - 1st part

105

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

(cond1)

eval(e, ⇢self) = true (S1, ⇢self , E,M,D,C, now)
i�! (⇢0self , E

0,M 0, D0, C 0, now)

(if(e) then S1 else S2, ⇢self , E,M,D,C, now)
i�! (⇢0self , E

0,M 0, D0, C 0, now)

(cond2)

eval(e, ⇢self) = false (S2, ⇢self , E,M,D,C, now)
i�! (⇢0self , E

0,M 0, D0, C 0, now)

(if(e) then S1 else S2, ⇢self , E,M,D,C, now)
i�! (⇢0self , E

0,M 0, D0, C 0, now)

(sequence)

(S1, ⇢self , E,M,D,C, now)
i�! (⇢0self , E

0,M 0, D0, C 0, now),

(S2, ⇢
0
self , E

0,M 0, D0, C 0, now)
i�! (⇢00self , E

00,M 00, D00, C 00, now)

(S1;S2, ⇢self , E,M,D,C, now)
i�! (⇢00self , E

00,M 00, D00, C 00, now)

(msgsrv � end)

(self, ?) /2 D

< E,M,D,C, now >
i�!< E,M,D,C[pu(self) B free], now >

< E,M,D,C, now >
i�!< E,M,D,C 0, now >

Figure 7.9: Statement rules - 2nd part

of) most imminent message dispatch or delay expiration is evaluated and now
is advanced of that minimum.
The message dispatch rule implies the atomic and instantaneous execution of
the message server body which is effectively carried through multiple i�! rela-
tions. Each such a transition is devoted to the execution of a single statement
(micro-step) of the msgsrv body. As a consequence, different relations are pro-
vided in Fig. 7.8 and Fig. 7.9, each corresponding to a distinct basic action
admitted by the Theatre modelling language (see Fig. 7.2).
The probabilistic � assignment rule in Fig. 7.8 deserves some further com-
ment. The probability interval [0 , 1) is first split into n sub-intervals (slots):
[0, p1),[p1, p1 + p2), [p1 + p2, p1 + p2 + p3), ..., [p1 + p2 + ...+ pn�1, 1), which are
respectively associated to the expressions e1, e2, ..., en. Then a random value ↵
in [0 , 1) is generated using a common uniform random generator. The slot to
which ↵ belongs selects the expression whose value is assigned to the left-hand
variable.
In the non deterministic � assignment rule (see Fig. 7.8) any expression e1 , e2 ,
. . . , en has the same chance to be selected for the assignment. Its meaning is
equivalent to that of the probabilistic � assignment rule where the probabilistic
weights are all equal to 1/n.
It should be noted that a processing unit is occupied at the time a message
dispatch occurs, directed to an actor assigned to the processing unit (see the
msg � dispatch rule in Fig. 7.5), and it is freed at the message server end (see

106

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

the msgsrv � end rule in Fig. 7.9) provided no delay operation was raised dur-
ing the message server. All of this ensures the macro-step semantics of messages
within a same theatre.

7.4 A reduction of THEATRE onto UPPAAL
The structural operational semantics of the previous section was interpreted
in a case in the context of the Uppaal toolbox [27, 90] using timed automata
(TA) [17]. Uppaal was chosen because its powerful modelling language provides
clocks to measure relative times (durations), atomic actions, normal locations
where an automaton can stay an arbitrary time or a limited time constrained
by an invariant, urgent/committed locations which have to abandoned without
passage of time (with the committed which have priority over the urgent loca-
tions), (possibly urgent) unicast/broadcast channels, integer and boolean data
variables, double variables (recognized only by the SMC), C-like data structures
and functions, etc., which facilitate the translation of actors. Table 1 recapitu-
lates basic correspondences.
The micro-step statements of a message server can easily be achieved by atomic
actions attached to the edges outgoing from a committed location (see, e.g.,
Fig. 7.12). For example, a probabilistic assignment is reproduced by a branch
point whose dashed exiting edges (Fig. 7.12) are labelled by the probabilistic
weights which drive the selection. The mapping of actors, messages and delays
on (possibly stochastic) timed automata (TA) could be based on the use of dy-
namic timed automata as permitted by latest version of Uppaal [90]. Dynamic
automata were experimented, e.g., in [194]. However, they are only supported
by the statistical model checker. As a consequence, a different and more efficient
solution is proposed in this paper which consists in the use of a static configured
pool of TA, where each automaton instance can dynamically be activated by a
channel synchronization and, after its termination, it is reset so as to be reused
again. In the toxic gas sensing system, a fixed number of non-terminating actors
is considered, and dynamic “creation/consumption” operations are tied respec-
tively to the non-blocking message send and message delivery to actors, and to
the setup and expiration of a delay.
A critical point concerns the attainment of the control-based message schedul-
ing and dispatching capable of ensuring the macro-step semantics of messages
on a processing unit (see section 7.2.1).
Concrete steps of the reduction process from Theatre to Uppaal will be de-
tailed by considering the translation of the toxic gas sensing system modelled
in section 7.2.3.

7.4.1 Scenario parameters
The environmental scenario parameters are easily handled by corresponding
global constants of the Uppaal model.

// scenario parameters

const int SCIENTIST_DEADLINE =14, SCI_ACK_DEADLINE =3, RESCUE_DEADLINE =5,

NET_DELAY=1,

CONTROLLER_CHECK_DELAY =3, SENSOR_PERIOD =2, CHANGING_PERIOD =5, RESCUE_DELAY =2,

NR_SENSORS =1;

107

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Table 7.1: Main mappings from Theatre to Uppaal

Theatre Uppaal

actor (stochastic) timed automaton
message timed automaton
delay timed automaton

timing constraint clock invariant on a normal location
(in a message or delay)

message reception (in an actor) normal location without an invariant
message delivery broadcast channel synchronization

asynchronous message send broadcast channel synchronization
delay setup broadcast channel synchronization

message server cascade of committed locations
control machine established by timed and non-deterministic

behaviour of sent message and set delay TA

7.4.2 Entity naming
A fundamental step is to assign a unique identifier to each existing actor, mes-
sage, delay and processing unit. All of this can be achieved by introducing some
sub-range integer types as follows. Sub-range types are also a key for implicit
instantiation of actors, messages and delays at system configuration time.
const int EN=0,SC=1,RE=2,CO=3,MAIN =4;

const int N=5+ NR_SENSORS; // number of actors

//actor subrange types

typedef int[EN ,EN] env_id;

typedef int[SC ,SC] scie_id;

typedef int[RE ,RE] resc_id;

typedef int[CO ,CO] cntr_id;

typedef int[MAIN ,MAIN] main_id;

typedef int[MAIN+1,N-1] sens_id;

typedef int[0,N-1] aid;

// message identifiers

const int INIT=0, CHANGE_GAS_LEVEL =1, GIVE_GAS=2, CHECK_GAS_LEVEL =3,

DO_REPORT=4,

DIE=5, ABORT_PLAN =6, LEFT_ENV=7, GO=8, REPORT=9, RESCUE_REACH =10,

CHECK_SENSORS =11,

ACK=12, CHECK_SCIENTIST_ACK =13, DONE =14;

const int MSG =15; // number of distinct messages

typedef int[0,MSG -1] msg_id; // possible message ids

//delay identifiers

const int DELAY =1; // number of distinct delays

typedef int[0,DELAY -1] did; //delay ids

//PU resources

const int NPU=N; // number of PUs - maximal parallelism

typedef int[0,NPU -1] pu_id; //pu identifiers

bool avail[pu_id]; // availability status of pus

pu_id pu[aid]; // actors to pus mapping

The bool avail[pu_id] array stores the status (true!free, false! occupied)
of each processing unit. The array pu[aid] specifies the processing unit upon
which a given actor is allocated. The configuration is established by move()

108

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

operations.

7.4.3 Message and delay pools
Depending on the fact if messages carry or not arguments, the two classes of
Message and VoidMessage are distinguished. A corresponding pool must then
be introduced with a statically defined dimension. For the case study translated
model the following declarations hold. It should be noted that the main actor
purposely initializes every actor and expects its done message before proceeding
with the next initialization.

const int MI=NR_SENSORS; // number of Message instantiations

typedef int[0,MI -1] mid; //msg instance ids

const int VMI=N; // number of VoidMessage instantiations

typedef int[0,VMI -1] vmid; //vmsg instance ids

const int DI=1; // number of delay instantiations

typedef int [0,DI -1] did; //delay instance ids

bool avVM[VMI]; //pool of void messages

bool avM[MI]; //pool of messages

bool avD[DI]; //pool of delays

Pools are assumed to be initialized to all true. When a (void)message (or a
delay) is requested, the first available message (or delay) in the relevant pool is
returned. Functions nVM() and nM() respectively return the index of the first
available message in the corresponding pool. Similarly, the function nD() returns
the index of the next available delay instance. Would a pool be exhausted, �1
is returned instead, which causes an obvious runtime array access error which
stops the operation of the model checker. The occurrence of such one error
clearly indicates a pool was insufficiently dimensioned.

7.4.4 Asynchronous message passing and delay setting
The following broadcast channel arrays make it possible to send (schedule) a
message directed to a given target actor, carrying (send[]) or not (vSend[]) argu-
ments. The channel synchronization has the effect of activating a corresponding
automaton instance.

broadcast chan send[mid];

broadcast chan vSend[vmid];

meta aid A; //actor id

meta msg_id M; // message id

meta int AFTER , DEADLINE , DELAY; // timing attributes of a message send

A send operation needs an index in the relevant pool of messages, the name
(aid) of the destination actor, the specification of the involved message id, and
the after and deadline relative times of the message send. The message index
in the pool is typically achieved by invoking either the nM() (for a Message
instance) or nVM() (for a VoidMessage instance) function. The remaining in-
formation are provided to the send operation by using the meta variables [27] A
(for the actor id) M (for the message id) and AFTER and DEADLINE. Meta
variables do not take part to the data component of the states of the model
state graph. They thus can contribute to the efficiency of the model checking

109

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

process. However, values of meta variables are significant only during a chan-
nel synchronization. After the synchronization, they are undefined. The two
functions lb(after), ub(after,deadline) are provided for defining respectively the
value of AFTER when DEADLINE is missing (infinite), or the values of both
variables.
In a similar way, the asynchronous setting of a delay can be achieved by syn-
chronization on a delay channel:

broadcast chan delay[did];

A delay channel is identified by the index of an available delay instance (typi-
cally provided by the nD() function). Setting a delay instance requires also the
identity of the actor requesting the delay, and the duration of the delay. The A
meta variable is used for the actor id, the DELAY meta variable provides the
amount of the delay. The function d(delay) can be used to assign a value to the
DELAY variable.

7.4.5 Message delivery and arguments
The following global declarations support the delivery of a message to an actor,
along with some possible carried arguments.

broadcast chan msgsrv[aid];
const int MAX_ARGS =3;
int args[MAX_ARGS]; // buffer of msg arguments

An output synchronization on a channel like msgsrv[a]! causes the delivery
of the message specified by meta variable M to actor a, thus activating the
corresponding message server. Carried arguments of message M can be retrieved
from the args[] buffer.

7.4.6 The Message automaton
Fig. 7.10 shows the Message automaton (parameterized as: const mid mi) which
is provided of arguments transmitted through the args[] buffer. Message uses
a local clock x. A Message instance is activated through a send operation. As
a consequence, the automaton passes from the idle location to the scheduled
location, and it is flagged as unavailable into its belonging pool. The function
getParams() copies the global args[] buffer onto a local params[] buffer. Function
putParams(), at final dispatching time, copies back the local params[] on to the
args[] buffer from which they are finally retrieved by the target actor. From
the AFTER and DEADLINE variables the Message instance gets the after and
deadline times of the message. The message cannot be delivered before after
time units are elapsed from the sending time. Such a time is awaited in the
scheduled location through an invariant based on the after time. When the
after time is elapsed, the automaton moves to the delivery location. However,
for the dispatching to occur it is necessary that the message becomes eligible (see
section 7.3), that is the processing unit of the destination actor is free and the
time is not greater than the deadline time. As soon as the message automaton
finds the processing unit is available, it abandons the delivery location and
moves to the dispatch location where one of three events can occur: (a) the
current time is found beyond the message deadline and therefore the message is

110

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

send[mi]?

deadline!=INF && x>deadline

!avail[pu[dest]] &&

(deadline==INF || x<=deadline)

dest=A,msg=M,after=AFTER,

deadline=DEADLINE,getParams(),

x=0,avM[mi]=false

msgsrv[dest]!

check!

M=msg,putParams(),avM[mi]=true

avail[pu[dest]]x>=after

avail[pu[dest]] && (deadline==INF || x<=deadline)

dispatchscheduled

deadline_missavM[mi]=true

x<=after

deliveryidle

Figure 7.10: The Message timed automaton

no longer valid and must be discarded (the deadline_miss location is reached);
(b) for non-determinism, a different message is dispatched whose processing
occupies the processing unit, and the automaton must come back to the delivery
location; (c) the message is found effectively eligible and a synchronization over
the msgsrv[dest] channel is generated toward the destination actor (the identity
of the message msg is assigned to the meta variable M). Message dispatching
causes the “consumed” message instance to be returned to its pool and the idle
location is re-entered.
A subtle point in Fig. 7.10 concerns the transfer from delivery to dispatch. In
order to ensure the dispatch location is immediately entered as the processing
unit becomes free, the following urgent and broadcast channel check is used:

urgent broadcast chan check;

The synchronization signal check! obliges, due to the urgent character of the
channel, the automaton to immediately exit from delivery.
Another subtle point in the design of Fig. 7.10 regards the dispatch location
which was made urgent but not committed. This way, the automaton can re-
main in delivery (without passage of time) would a message server of a different
actor be triggered into execution on the same processing unit. Recall (see also
Table 1) that a message server is realized by a cascade of committed locations
which have priority on urgent locations, and consume no time. At the end of
this alternate message server, the message instance in dispatch can still proceed
with its own dispatching or it is forced to come back to delivery if the processing
unit was just occupied by a delay operation.
As a final remark, the timed automaton of Fig. 7.10, rests on the relative time
model of Uppaal: the after and deadline times of a message are directly used
as relative times. This is due to the use of clock x which measures the time
elapsed since its last reset (see the edge from idle to scheduled in Fig. 7.10).
The VoidMessage automaton, not shown for brevity, is identical to Message
except that it does not manage any arguments, so it does not use the get-
Params()/putParams() functions and does not have a local params[] array.

7.4.7 Delay automaton
A delay is scheduled through a synchronization on a delay[did] channel which
activates a Delay instance. The Delay timed automaton in Fig. 7.11 admits the
parameter: const did di. It uses a local clock x which is reset when the delay

111

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

is set, and measures the elapsed time until expiration. During the delay, the
processing unit of the requesting actor is kept occupied. Time is awaited in the
scheduled location in Fig. 11 through an invariant on the delay amount. When

x<=d

scheduledidle

x>=d

delay[di]?
a=A,avail[pu[a]]=false,

d=DELAY,avD[di]=false,x=0

avail[pu[a]]=true,avD[di]=true

Figure 7.11: The Delay automaton

the delay expires, the automaton must move from scheduled to idle. It should
be observed, though, that at the last time of the delay expiration the scheduled
location becomes equivalent to an urgent location: it must be exited before time
can go on, but it has no priority with respect to another urgent location.

7.4.8 An actor automaton
The model of an actor (see, for example, the Environment automaton of the
toxic gas sensing system in Fig. 7.12 which is parameterized as: const env_id
self) can easily be built in Uppaal around two basic locations: Receive and Se-
lect. Receive is often also the initial location. It is a normal location, meaning
the actor can stay in Receive an arbitrary amount of time until the reception of
the next message.
When a message arrives, that is, a synchronization over the channel msgsrv[self]
is received, with the message id being communicated through the M meta vari-
able, the actor moves to the Select location which is committed. From Select,
the particular arrived message is checked, and its processing (message server)
launched through, in general, a cascade of committed locations. When the pro-
cessing of the message server is complete, the automaton comes back to Receive
for it to be ready for a next message to be received, and so forth. As one
can see from Fig. 7.12, the execution of a message server (message reaction)
can exploit branch points for a probabilistic behaviour. For instance, when
a CHANGE_GAS_LEVEL message is received, and the gasLevel is currently
equals to 2 (normal level), with 98% of probability it remains to 2, but with
2% of probability it is raised to 4 (abnormal level). INIT and GIVE_GAS are
two examples of messages carrying some arguments. When INIT is received, in
args[0] is transmitted the identity of the Main actor, and in args[1] the identity
of the scientist actor (acquaintance) is specified. The Environment actor di-
rectly sends to args[0] a reply DONE message, and stores into its local variable
sc the identity of the scientist. Similarly, when receiving a GIVE_GAS message,
sent by a sensor, in args[0] is contained the sender identity. The message server
replies by sending a DO_REPORT message to the sender sensor and puts into
args[0] the current value of the gas level.

Each message server (i.e., message response or reaction) can directly be
achieved from the abstract model of the actor. Since a message server is atomic
and consumes no time, multiple data updates can be put on a same edge of the
message server. The exact composition of the message server depends on the

112

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

gasLevel>2 &&

!meetDangerousLevel

msg==INIT

gasLevel>2 &&

meetDangerousLevel ||

gasLevel==2
gasLevel==2

msgsrv[self]?

gasLevel>2

SelectReceive

send[nM()]!
A=args[0],M=DO_REPORT,lb(0),

args[0]=gasLevel

A=sc,M=DIE,

lb(SCIENTIST_DEADLINE),

meetDangerousLevel=true,z=0

msg=M

2

msg==CHANGE_GAS_LEVEL

msg==GIVE_GAS

A=self,M=CHANGE_GAS_LEVEL,lb(CHANGING_PERIOD)

gasLevel=4

A=args[0],M=DONE,lb(0),

sc=args[1],gasLevel=2
98

vSend[nVM()]!

vSend[nVM()]!

vSend[nVM()]!

Figure 7.12: The Environment actor automaton

number of messages which are sent within it. Indeed, only one message send
(channel synchronization) can be specified per edge.

7.4.9 Preservation of THEATRE semantics
Into a reduced Uppaal model of a Theatre system, the cloud of sent messages
(see the M data structure in section 7.3) is represented, at any instant in time,
by all the activated message automata. Similarly, the cloud of delays (see the D
data structure in section 7.3) is composed by all the delay instances which were
activated but are not yet expired. The reduction process, and in particular the
design of message, actor and delay timed automata, directly complies with the
structural operational semantics of Theatre. In fact:

• it there exists a notion of global time, implicitly advanced by Uppaal;

• at each instant in time, the most imminent event (message dispatch or
delay expiration) occurs;

• when multiple events exist which can occur at the same time, one of them
is chosen non-deterministically.

A key point of the reduction process is concerned with the attainment of the
macro-step semantics (see section 7.2.1), i.e., no new message can be dispatched
in a theatre (i.e., processing unit) before the current dispatch is completely
processed. Toward this it should be noted that:

• an event occurrence (message dispatch or delay expiration) is always pro-
vided by an urgent location of an automaton;

• a message server, in an actor, is achieved by a cascade of committed
locations.

As a consequence, a message server is atomic and instantaneous. In addition,
the use of committed locations guarantees message server termination before

113

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Receive

Working

NotWorking

msg==INIT

msgsrv[self]?
Select

send[nM()]!

send[nM()]!

A=co,M=REPORT,

lb(NET_DELAY)

msg=M

1

msg==CHECK_GAS_LEVEL

msg==DO_REPORT

A=en,M=GIVE_GAS,

lb(0),args[0]=self

A=self,M=CHECK_GAS_LEVEL,

lb(SENSOR_PERIOD)

A=args[0],M=DONE,lb(0),

en=args[1],co=args[2]

99

vSend[nVM()]!

vSend[nVM()]!

Figure 7.13: The Sensor actor automa-
ton

msg==DIE

!isOutEnv && !isDead

msg==

ABORT_PLAN

msg==INIT

Receive

isOutEnv||isDead

msg==LEFT_ENV

Select

A=args[0],M=DONE,lb(0),

co=args[1]

msg=M

10
isOutEnv=!isDead?true:false,z=0

z=0

isDead=

!isOutEnv?

true:false,z=0

A=co,M=ACK,

lb(NET_DELAY),

isOutEnv=true,z=0

90

SafeByAbort

vSend[nVM()]!

vSend[nVM()]!

msgsrv[self]?

Figure 7.14: The Scientist actor automa-
ton

any new event (message dispatch or delay expiration) can occur. Whereas this
result does not impede message server parallelism (i.e., message dispatches oc-
curring at the same time, although they are executed one at a time) into distinct
processing units, it genuinely ensures, in a same theatre, the macro-step seman-
tics of messages.
As a further remark, there is no need to explicitly occupy the processing unit
during a message server execution (see the msg � dispatch rule in section 7.3).
The processing unit, in fact, remains unavailable during the message server as
a consequence of the use of committed locations. The processing unit needs to
be occupied explicitly only in response to a delay operation.
In the light of the above observations, it emerges that the proposed reduction
process automatically realizes the behaviour of the control machine components
of a Theatre model.

7.4.10 Translated UPPAAL model of the toxic gas sensing
system

Fig. 7.13 to Fig. 7.17 show all the remaining Uppaal actor timed automata for
the case study (the Environment automaton is shown in Fig. 7.12). Each actor
model is parameterized with only one parameter of its corresponding sub_range
type (see section 7.4.2).
In the Sensor model, the arrival of a DO_REPORT message from the Environ-
ment, is accompanied by the gas level as an argument in args[0]. Such a value is
not stored locally. In the case the sensor is correctly working, the args[0] value
is then transmitted as part of a REPORT message sent to the controller. Care
was taken in the model in Fig 7.3 and its Uppaal reduction toward avoiding the
introduction of unnecessary data variables which would complicate the model
checker exhaustive verification activities.

It is worth noting, in the Main automaton, that sensor ids range from
MAIN + 1 to MAIN +NR_SENSORS.
The following is the system configuration line:

system Environment ,Sensor ,Scientist ,Rescue ,Controller ,Main ,

114

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

danger!danger

!abortSent

msg==CHECK_SCIENTIST_ACK

sciAlive

!sciAlive

msg==ACK

msgsrv[self]?

vSend[nVM()]!

vSend[nVM()]! abortSent

Receive

NoAck

Select

vSend[nVM()]!
A=sc,M=LEFT_ENV,lb(0),

sciAlive=true

sciAlive=true

A=re,M=GO,

lb(NET_DELAY)

msg=M

A=self,M=CHECK_SENSORS,

lb(CONTROLLER_CHECK_DELAY)

danger=args[0]>2?true:

danger

msg==RESCUE_REACH

!sciAlive

msg==CHECK_SENSORS

sciAlive

A=self,M=CHECK_SCIENTIST_ACK,

lb(SCI_ACK_DEADLINE)

A=sc,M=ABORT_PLAN,

lb(NET_DELAY),

abortSent=true

msg==REPORT

msg==INIT
A=args[0],M=DONE,lb(0),

sc=args[1],re=args[2]

vSend[nVM()]!

vSend[nVM()]!

vSend[nVM()]!

Figure 7.15: The Controller actor automaton

Receive
msg==GO

Select

RescueReach
vSend[nVM()]!

msg=M

msg==INIT

A=args[0],M=DONE,

lb(0),co=args[1]

A=self,

d(RESCUE_DELAY)

A=co,M=RESCUE_REACH,

ub(RESCUE_DELAY+NET_DELAY,

RESCUE_DELAY+RESCUE_DEADLINE-

NET_DELAY)

msgsrv[self]?

vSend[nVM()]!

delay[nD()]!

Figure 7.16: The Rescue actor automaton

cnt==4

cnt==5

Start

cnt==3

cnt==2

cnt==1

msgsrv[self]?

send[nM()]!

Select

vSend[nVM()]!

Receive

send[nM()]!

A=SC,M=INIT,lb(0),move(EN,1),

args[0]=self,args[1]=CO

A=RE,M=INIT,lb(0),move(SC,2),

args[0]=self,args[1]=CO

A=CO,M=INIT,lb(0),move(RE,3),

args[0]=self,args[1]=SC,args[2]=RE

cnt++msg=M
msg==DONE

setup(),

move(self,0)

A=MAIN+1,M=CHECK_GAS_LEVEL,

lb(0)

A=MAIN+1,M=INIT,lb(0),

move(CO,4),args[0]=self,

args[1]=EN,args[2]=CO

move(MAIN+1,5)

A=CO,

M=CHECK_SENSORS,

lb(0)

A=EN,M=CHANGE_GAS_LEVEL,

lb(CHANGING_PERIOD)

A=EN,M=INIT,lb(0),

args[0]=self,

args[1]=SC

send[nM()]!

vSend[nVM()]!
send[nM()]!

vSend[nVM()]!
vSend[nVM()]!

Figure 7.17: The Main actor automaton

115

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Message ,VoidMessage ,Delay;

Of each template automaton a number of instances is automatically created as
determined by the corresponding sub-range type (see section 7.4.2). The Main
automaton can easily be adapted to work with a different number of sensors, or
with a different grouping of actors to processing units.

7.5 Analysis of a THEATRE model reduced into
UPPAAL

In general, the verification of a real-time Theatre model aims to check safety
properties (i.e., a bad state is never reached), liveness properties (i.e., a good
state is eventually reached, possibly within a timing constraint), and reacha-
bility properties (i.e., assessing that a certain state is reachable in the model
behaviour). In the following, the toxic gas sensing system (TGSS) model re-
duced in to Uppaal will be thoroughly analysed by both non deterministic
analysis, that is qualitative evaluation of system properties through exhaustive
model checking, and by simulation, that is quantitative evaluation of system
properties through statistical model checking. Each kind of analysis exploits
a corresponding temporal logic language for the formal expression of system
properties (specification) to check. The exhaustive model checker of Uppaal
relies on a subset of the Timed Computation Tree Logic (TCTL) [27] which
does not admit formula nesting. The statistical model checker of Uppaal uses,
instead, an extended version of the Metric Interval Temporal Logic (MITL)
[18]. All the experiments were carried out on a Linux machine, Intel Xeon
CPUE5� 1603@2.80GHz, 32GB, using Uppaal 4.1.19 64bit.

7.5.1 Qualitative non-deterministic model checking
In this case the complete state graph of a reduced Theatre model is built and
queries are verified on the state graph. A preliminary concern was to check
the absence of deadlocks in all the states of the TGSS model, under maximal
parallelism, through the query:

A[] !deadlock

which is satisfied. This in turn guarantees the number of generated message and
delay instances (of the Message, VoidMessage and Delay template automata, see
section 7.4.3) is sufficient to cope with the model needs. An insufficient number
of such instances would cause the model checker to immediately stop its opera-
tion for an illegal access to a non-existent array position. Another critical issue
is concerned with the possible loss of a message when the time goes beyond
the message deadline, which can be unacceptable in the context of a real-time
application. The following queries were used.

E <> exists(m : mid)Message(m).deadline_miss

E <> exists(m : vmid)V oidMessage(m).deadline_miss

They respectively check for the existence of at least one state of the state
graph where a message instance can be found in the deadline_miss location
(see Fig. 7.10). Both queries terminate by saying they are not satisfied.
Due to the asynchronous message exchanges among actors, a reduced Theatre

116

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Table 7.2: Space/time demands of the A[] !deadlock query on the TGSS model

Number of sensors WCT (sec) RAM Peak (MB)

1 4 38
2 2244 10842

model can easily suffer of scalability problems for state explosions. Table 2 col-
lects some space/time demands of the TGSS model when one or two sensors
are used. The wall clock time (WCT) and peak memory usage observed when
checking deadlock absence are shown.
In the following, the TGSS model with one sensor will be used for the remaining
verification work. A fundamental time parameter is the SCIENTIST_DEADLINE
(see section 7.2.3) which constrains, following a detected dangerous level of the
toxic gas, the end-to-end delay (response time) within which the scientist could
be saved. Such a value mainly depends on the sensor period and the sensor
correct behavior. Since during the exhaustive verification, any probabilistic
behavior is turned into a non-deterministic one, to properly check the SCIEN-
TIST_DEADLINE, the TGSS model was slightly modified to ensure the sensor
is always correctly working (if the sensor could not work, it would there exists
a path in the model state graph in which the sensor is always not working and
then there would be no upper bound for the SCIENTIST_DEADLINE capa-
ble of saving the scientist), and the scientist was observed both in the case it
always perceives an ABORT_PLAN message sent by the controller, and in the
case it, non-deterministically, can perceive or not this message thus (possibly)
triggering the intervention of the rescue team. More in particular, during this
verification phase, the SCIENTIST_DEADLINE was set to an over estimated
value (e.g., 50), the SENSOR_PERIOD was varied from 1 to 20, and the re-
maining scenario parameters set as shown in Fig. 7.3. In addition, a decoration
clock z was introduced which is reset when the environment detects a danger-
ous gas level, and then checked when a scientist critical event occurs, that is an
ABORT_PLAN, a LEFT_ENV or a DIE message is received. The following
query, based on the leads-to operator, was used to determine the best case value
(lower bound lb) of the response time:

Environment(EN).gasLevel > 2 &&

!Environment(EN).meetDangerousLevel !
(!Scientist(SC).isOutEnv && !Scientist(SC).isDead

&& (Scientist(SC).SafeByAbort||(Scientist(SC).Select

&& msg == LEFT_ENV))) && z � lb

where the value lb is the highest value which satisfies the query, and represents
the minimum time required for saving the scientist. The query permits to check
the time amount which elapses from the time instant the environment changes
the gas level to a toxic value (starting or premise state), to the time instant the
scientist is alerted about the dangerous situation (inevitable consequent state).
Changing the clock constraint to z ub where ub is the lowest value which
satisfies the query, allows one to find the upper bound of the response time.
Fig. 7.18 shows the [lb, ub] emerged time windows for the scientist to be saved
in the case an ABORT_PLAN message would not be perceived. As expected,
as the sensor period increases, the upper bound of the response time augments
because the controller gets late informed about a dangerous gas level.

117

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Sensor Period

R
es

p
o
n
se

 T
im

e

Lower Bound

Upper bound

Figure 7.18: Response time windows when the scientist can perceive an
ABORT_PLAN

It is interesting to note, that under the assumed operating conditions, the
scientist is always saved, either by an ABORT_PLAN message or through a
LEFT_ENV message. In fact, the following query

A[] !Scientist(SC).isDead

which checks that in no case the scientist dies, is satisfied.
Fig. 7.19 depicts the observed time windows when the scientist, optimistically,
is always capable of perceiving an ABORT_PLAN (in Fig. 7.14 the two dashed
arcs are pointed to the SaveByAbort location). In this case, the scientist is
always saved and the rescue team is never contacted as witnessed by the (not
satisfied) query:

E <> Rescue(RE).RescueReach

With respect to Fig. 7.18, the lower bounds of the response time in Fig. 7.19 are
obviously the same, and the upper bounds are lower because an ABORT_PLAN
message gets heard soon by the scientist, and there is no rescue team involve-
ment.
By enabling the full model behavior, that is the sensor can fail and the scientist
can or not perceive an ABORT_PLAN, the following query:

E <> Scientist(SC).isDead

is satisfied thus testifying, as expected, that the scientist can die.

7.5.2 Quantitative statistical model checking
The importance of this second analysis phase can derive, in general, from an
impossibility of making an exhaustive verification on a given complex model,
and from the necessity to quantify the rate or likelihood with which selected
events can occur in the system. From the latter point of view, whereas the
qualitative non-deterministic analysis can suggest that “something can occur ”,

118

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Sensor Period

R
es

p
o
n
se

 T
im

e

Lower Bound

Upper bound

Figure 7.19: Response time windows when the scientist always perceives an
ABORT_PLAN

e.g., the “scientist can die” following a dangerous gas level, it is of great interest
from the practical point of view knowing how is the probability of the event to
happen. Therefore, qualitative and quantitative analysis are synergic to each
other and both contribute to a full characterization of the system behavior.
On the other hand, a Statistical Model Checker (SMC) does not build the
model state graph but relies on simulation runs and statistical techniques, such
as Monte Carlo-methods and sequential hypothesis testing [9], for estimating
properties of the simulated model. As a consequence, the memory usage during
SMC is linear with the model.
A series of experiments were carried out on the toxic gas sensing system (TGSS)
model using Uppaal SMC, under the general behavior of the scientist which
can or not perceive an ABORT_PLAN message, and of the sensor which can
or not be working thus possibly not transmitting to the controller the gasLevel.
No changes are required by the model except for some new decoration variables
which, although unnecessary under exhaustive model checking, can be useful to
gather information from the simulations. As a preliminary test, Fig. 7.20 shows
30 simulation traces of the TGSS model, using 2 as the sensor period, 14 as
the SCIENTIST_DEADLINE (1 more of the upper bound of the response time
emerged during exhaustive verification) and keeping the values of the other
scenario parameters as in Fig. 3. In Fig. 7.20 the monitored values of the
gasLevel managed by the environment and of the isOutEnv and isDead variables
of the scientist, are depicted. The picture is directly achieved from Uppaal SMC
as part of the query:

simulate 30 [<= 1000] {Environment(EN).gasLevel,

Scientist(SC).isOutEnv, Scientist(SC).isDead}

As one can see from Fig. 7.20, 1000 time units enable the environment to
generate, in many cases, a toxic gas level. Furthermore, the picture confirms
that there are cases where the scientist is rescued and others where he dies.
For example, it was observed that the dangerous gas level generated at time

119

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

Figure 7.20: Traces of 30 simulations monitoring the gasLevel, isOutEnv and isDead
variables

635 is followed by the scientist which gets saved at 640, thus strictly within its
deadline. But at time 785 the toxic gas level is followed by the scientist which
dies at time 800, i.e., one time beyond the allowed deadline.

Fig. 7.21 shows the estimated probability with which the scientist can die
following a toxic gas level, when the sensor period is varied from 1 to 20. For
each sensor period, the SCIENTIST_DEADLINE parameter is set to the cor-
responding value determined during exhaustive verification, augmented by 1 for
safety reasons. In particular, Fig. 7.21 depicts the bounds of the confidence
intervals proposed after launching the query:

Pr[<= 5000](<> (Scientist(SC).isDead))

The default values of Uppaal SMC statistical parameters were used, e.g., 95%
of confidence degree with a confidence interval error ✏ = 0.05. Each confidence
interval emerges after a number of simulation runs which ranges between 300
and 400. The probability decreases as the sensor period augments. Indeed, low
values of the sensor period imply a high value of the sensor activation frequency
and then the higher is the probability for the sensor to become not working.
Vice versa, a high value of the sensor period diminishes the number of times
the sensor is activated and also the probability of being not working. Therefore,
in these cases the controller can be informed late about a dangerous gas level.
However, the use of a larger SCIENTIST_DEADLINE value (see Fig. 7.18)
ensures in many cases the scientist can be rescued.

The time bound of 5000 proved sufficient for injecting in the system the
event of a dangerous gas level. In fact, the query:

Pr[<= 5000](<> Environment(EN).gasLevel > 2

&& !Environment(EN).meetDangerousLevel)

120

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor Period

P
ro

b
ab

il
it

y
 t

h
e

sc
ie

n
ti

st
 d

ie
s

Lower Bound

Upper bound

Figure 7.21: Probability of the scientist to die vs. sensor period, when only one sensor
is used

proposes, after 29 runs, a confidence interval of [0.901855,1], thus confirming
the event has a great occurrence probability.
The results in Fig. 7.21 are also a consequence of the transformation of a
non-deterministic behavior into a true probabilistic one guided by the adopted
probabilistic weights. For example, whereas during non-deterministic analysis
perceiving or not an ABORT_PLAN message by the scientist is a matter of a
non-deterministic choice (see Fig. 7.14), during SMC analysis perception is an
event whose occurrence probability is 0.90, thus in many cases the scientist is
saved by an ABORT_PLAN message. All of this was controlled by the following
queries, in extended MITL, based on the until operator U [18]. First it was
checked that the probability of saving the scientist (with SENSOR_PERIOD=2
and SCIENTIST_DEADLINE=14) is almost the complement of that of the
scientist dying in the same operating conditions (Fig. 7.21) thus:

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] Scientist(SC).isOutEnv))

The query asks to quantify the event occurrence: “assuming that at an instant
in time in [0,5000] a dangerous gas level occurs, what is the probability that
within the next 14 time units the scientist is saved?”. Uppaal SMC uses 738
runs and suggests a probability confidence interval of [0.384959,0,484959] with
confidence 95%.
The following query estimates, in particular, the probability of saving the sci-
entist through an ABORT_PLAN message:

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] Scientist.SafeByAbort))

In this case, always by 738 runs, a confidence interval is proposed of [0.355149,0.455149].
Finally, the query

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 14] msg == LEFT_ENV))

quantifies the probability of saving the scientist through the rescue team (LEFT_ENV
message). Uppaal SMC proposes, after 738 runs, a confidence interval of [0,0.0920054]
to testify the event has a very low occurrence probability. The stochastic be-

121

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor Period

P
ro

b
ab

il
it

y
 t

h
e

sc
ie

n
ti

st
 d

ie
s

Lower Bound #1

Upper bound#1

Lower Bound#3

Upper bound#3

Figure 7.22: Probability of the scientist to die vs. sensor period, when one or three
sensors are used and the probability for a sensor to be working is 95%, and not be
working is 5%

havior of the TGSS model was also checked when more sensors are used. In
these cases it is expected that whereas a sensor can possibly be not working,
another one can be working so as to guarantee the controller gets informed of
a dangerous gas level. However, as expected and confirmed experimentally, the
use of probability weights 99 and 1 (see Fig. 7.13) for the sensor to be respec-
tively working or not, would imply a not real benefit can be gained by the use
of multiple sensors. Therefore, some experiments were performed by changing
the probabilistic weights to 95 and 5.
Fig. 7.22 shows the probability for the scientist to die when one or three sensors
are used. The sensor period is varied from 1 to 20, the SCIENTIST_DEADLINE
is set to 1 more of the value detected during model checking for the same sensor
period, and the other scenario parameters are left unmodified. As one can see
from Fig. 7.22, the probability is greater than that shown in Fig. 7.21 when
only one sensor is used and the probability weight for the sensor to be worked
is diminished from 99 to 95. Moreover, it clearly emerges from Fig. 7.22, that
the probability value significantly decreases when 3 sensors are used.
Finally, in Fig. 7.23 and Fig. 7.24 the probability of the scientist to die is shown
when the model is that of Fig. 7.3, only one sensor is used, the sensor period is
varied from 1 to 20, and the SCIENTIST_DEADLINE is kept fixed in all the
experiments (a safety requirement). In particular, Fig. 7.23 refers to the case
the SCIENTIST_DEADLINE is 10 and in Fig. 7.24 it is 12. The following
query was used for Fig. 7.23. Each point is the result of 738 runs. The until
interval is turned to [0,12] for Fig. 7.24.

Pr(<> [0, 5000](Environment(EN).gasLevel > 2 U [0, 10] Scientist(SC).isDead))

It emerges that for small values of the sensor period, the probability to die
is high because the sensor more likely can be not working. Similarly, for high
values of the sensor period the probability is again high because the sensor,
although now is more likely to be found working, could detect late the change
in the environment, causing a delay in the start of the rescue operations.
Both figures 7.18 and 7.19 confirm there is a value for the sensor period where

122

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor Period

P
ro

b
ab

il
it

y
 t

h
e

sc
ie

n
ti

st
 d

ie
s

Lower Bound

Upper bound

Figure 7.23: Probability of the scientist to die vs. sensor period, when the SCIEN-
TIST_DEADLINE is 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sensor Period

P
ro

b
ab

il
it

y
 t

h
e

sc
ie

n
ti

st
 d

ie
s

Lower Bound

Upper bound

Figure 7.24: Probability of the scientist to die vs. sensor period, when the SCIEN-
TIST_DEADLINE is 12

123

Chapter 7. Qualitative and Quantitative Model Checking of

Distributed Probabilistic Timed Actors

the probability gets to a minimum. In the case of Fig. 7.23 this occurs at
abscissa 5, whereas it shifts to 10 in Fig. 7.24, due to the greater value of the
SCIENTIST_DEADLINE. In reality, in fig. 7.23 there are more local minima.
This is due to a parameters alignments configuration in the proposed scenario.
Setting the SCIENTIST_DEADLINE=10, it happens that when the sensor
period moves to multiples of the CHANGING_PERIOD=5, it can perceive a
dangerous gas level contextually with the environment change or with a delay
that, in these cases, leaves more time to complete the rescue operations. In Fig.
7.24 there is only one minimum, because the widest SCIENTIST_DEADLINE
already offers time units sufficient to act the saving operations, and the die
probability curve has lower levels.

7.5.3 Partitioning
A key factor of a Theatre model is the possibility of modulating the number
of processing units/theatres (i.e., the parallelism degree) upon which the appli-
cation actors can be partitioned. From this point of view, although the TGSS
example was modelled and analyzed using the maximal parallelism hypothesis
(i.e., by using 6 processing units (PUs) when only one sensor is involved), it
can as well be studied and implemented using a different partitioning schema
which uses less resources. In particular, from the model interactions (see Fig.
7.3) one can infer that a configuration with 3 PUs is sufficient to cope with
the distribution requirements of the system. In fact, the Environment, Sensor,
Scientist and Main can be grouped together onto one PU, and the Controller
and the Rescue assigned each to a distinct PU. The TGSS model can easily be
adapted to work with 3 PUs by varying the number of available processing units
(constant NPU in the section 7.4.2), (possibly) adapting the required number
of Message instances and, finally, adjusting the move() operations in the main
automaton (see Fig. 7.17).
It is worth noting that the TGSS temporal behavior, e.g., the scientist deadline
values when the sensor period is varied from 1 to 20, emerged unchanged also
when only three PUs are used. For demonstration purposes it was also verified
that the timeliness of the system rests confirmed even when all the actors are
put on to one PU.

124

Chapter 8
Seamless Development in Java of

Distributed Real-Time Systems

using Actors 1

8.1 Introduction
This chapter describes a full implementation in Java of Theatre, extended
with PTRebeca timing model and programming style. Java is used in all the
development phases of the system lifecycle. This makes it possible to model
and analyze a system and then seamlessly implement it for real-time execu-
tion. The solution is self-contained and no third-party middleware is required
or used. This represents a major extension of previous work exploited in chap-
ter 6. Pre-existing Theatre was based on the distribution services provided by
such middleware as JADE [78, 29]. From [78] it is retained the runtime infras-
tructure for controlling the input/output devices (sensors and actuators) of a
cyber-physical system. Moreover, with this new Theatre scheme the execution
can be easily distributed across several computers rather than being limited to
just one, as in [78].

8.2 An overview of Theatre
A Theatre distributed system (see Fig. 7.1) consists of a federation of comput-
ing nodes (theatres or logical processes LPs). Each theatre is organized around
four functional layers: the application layer (AL), the control layer (CL), the
transport layer (TL) and the time server layer (TS). AL is made up of a collec-
tion of local actors assigned to the theatre for execution. CL is a fundamental
layer which keeps a reflective link with AL so as to (transparently) regulate the
evolution of local actors, e.g., according to a given time notion (real or simu-
lated). CL mainly is devoted to message scheduling and dispatching. TL opens
the theatre to remote interactions with peers reached through a communication

1The material in this chapter is related to publications [79, 80]

125

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

network. TL is normally based on a reliable transport layer like TCP sockets.
The TS layer, finally, is responsible to guaranteeing a common global time no-
tion in a system.
The source of flexibility for customizations stems from the possibility of special-
izing the programming style in AL, and the services implemented in CL and TS
which can be tailored to work with simulated time or real-time or a combination
of the two.
Time predictability is the result of having local actors which are reactive in
character: they are at rest until a message arrives. No mailbox and no built-in
thread exists within an actor. Messages sent are ultimately captured, buffered,
managed and dispatched by the control machine component of CL. Message
processing is atomic: it cannot be preempted nor suspended. The control ma-
chine repeats a basic loop: at each iteration, one pending message, if there are
any, is selected according to a given strategy, and delivered to its recipient actor
thus triggering a reaction. At the end of message processing, the control ma-
chine loop is re-entered and proceeds with the next message and so forth.
Within a theatre a cooperative (not preemptive) concurrency schema exists,
ensured by interleaving of message dispatches. Actors belonging to distinct the-
atres can instead be executed in true parallelism.

8.2.1 Basic Java Framework
The Theatre vision is enforced by some basic classes implemented in Java. A
fundamental class is the Actor abstract class which exposes the basic services
to actors. A programmer defined actor class derives directly or indirectly from
Actor. ControlMachine is the base and abstract class which has to be extended
for achieving a custom control structure. Actor and ControlMachine are syn-
ergic to each other: the services provided by Actor are ultimately handled by
a specific control machine class. Behind the scene classes capture the structure
of local and remote transmitted messages among actors. A universal naming
schema is adopted for actors which relies on unique system-wide strings. Unique
identifiers are also used for theatres.
The Actor class is currently shaped according to the PTRebeca [224, 127] pro-
gramming style and timing model. Message reactions in an actor class are pro-
grammed as void methods which can have parameters, annotated as message
servers (msgsrv):

@Msgsrv pub l i c void messageName ([params]){ msgsrv body }

Basic services of Actor are the non-blocking send, the time service now() which
returns the current time, the delay(d) operation expressing the duration of a
code segment within a message server, and a move(theatreName) operation
which migrates an actor to a given theatre. Three versions of the send op-
eration are provided:

void send ("messageName" , Object . . . a rgs) ;
void send (a f t e r , "messageName" , Object . . . a rgs) ;
void send (a f t e r , dead l ine , "messageName" , Object . . . a rgs) ;

A message send can be untimed (first version) or it can be equipped by one or
two (relative) time values: after and deadline. It is intended that the message
cannot be dispatched before after time units are elapsed from the sending time,

126

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

but it should be dispatched within its deadline. Beyond the deadline, a message
can no longer be dispatched and it is lost. When not specified, after defaults
to 0 and deadline to 1. For generality reasons, time values are assumed to be
specified as double quantities. Java reflection is used to link a message send with
an underlying message object along with a message server method invocation.
Normal Java methods, not annotated by @Msgsrv, cannot be asynchronously
invoked by a send operation. They, though, can be useful to structure the body
of a msgsrv.
The delay(d) operation is mainly useful during modelling and analysis when a
message server is obviously not concrete and an estimation of (or a part of) its
duration can be anticipated. Also the duration d is a relative amount of time.
The following control classes were developed. Specific control forms were de-
signed to sustain the advocated methodological phases of a Theatre system.
Some simulation control machines, though, are useful for general discrete-event
stochastic, high-performance simulations. Control machines come normally in
pairs: a standalone version referring to one single theatre, and a distributed
version which exploits a partitioning of the actors over a collection of theatres.
In this case, a time server component (see Fig. 7.1) should be used.
Concurrent, DConcurrent - Control machines supporting the execution of gen-
eral untimed actor applications.
Simulation, DSimulation - Control machines specialized to simulation and per-
formance prediction of discrete-event stochastic systems. DSimulation should
be used in the case of large and scalable models, and depends on a conservative
synchronization algorithm [105] for the advancement of the global time.
AbstractSimulator - A control machine dedicated to the simulation on a stan-
dalone workstation of a Theatre distributed real-time model. It serves for early
assessment of functional and timing behavior of a system.
Preliminary, DPreliminary - Control machines which use real time on an ab-
stract model. They are useful to check the overhead introduced by message
scheduling and dispatching which have a zero duration during analysis.
RealTime, DRealTime - Control machines based on real time. They regulate
the evolution of a concrete Theatre model, partitioned to run over one the-
atre or multiple theatres, where effective algorithms are adopted in the message
servers.
Other classes of the Java framework (see also later in this paper) are specialized
to interfacing theatres to network services and to the management of global
time by a time server through the exchange of special control messages.

8.2.2 Development Phases And Control Machines
Modelling and Analysis

A development starts by constructing an abstract model of a system for analysis
purposes. Abstractions refer to message server methods in actors, that initially,
necessarily, can only be characterized by timing information and not by detailed
code, and to the distribution issues. By default, message scheduling and dis-
patching are assumed, during analysis, to consume no time. Moreover (see also
below in this section) message servers, despite the use of delay operations, are
considered atomic and instantaneous. Multiple theatres are abstracted by cor-
responding processing units (PUs). A PU serves a group of assigned (moved)

127

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

actors. A PU can be occupied (e.g., during the execution of a delay operation
issued in a message server of an assigned actor) or free. A message can be
dispatched to an actor, provided the corresponding PU is free. An abstract
model can be simulated for property checking by the AbstractSimulator con-
trol machine. A subtle semantic point concerns the interpretation of the delay
operations during analysis. Since adopted actors are not thread-based, a delay
operation has an asynchronous meaning: it asks occupying the corresponding
PU for a time amount equal to the delay. When the delay is expired, the PU
comes back to the free state. As a consequence, during modelling and analysis,
the after/deadline times of any message send which textually follows a delay
operation, must include the delay amount (see Fig. 8.4). The following points
recapitulate the behavior of the AbstractSimulator engine.

• At each message send the after and deadline relative times get absolutized:
after+now(), deadline+now().

• Similarly, the duration time d of a delay is absolutized to an expiration
time: d+now().

• When multiple events (message dispatches and/or delay expirations) can
occur at the current time, one of them is chosen non-deterministically and
executed (a message server is activated or the status of a PU is turned to
be free).

• If no event can occur at the current time, the simulation clock is first
advanced to the minimum occurring time of next events.

• The execution continues until a termination condition holds (e.g., a max-
imum number of time units are elapsed).

Preliminary execution

It is important to note that an abstract model represents an almost complete
Theatre model where actors and their interactions are fully detailed. After
modelling, the next development step aims at correcting some assumptions of
the abstract model regarding the temporal overhead of message exchanges which
in a real execution cannot be ignored and which can have an impact upon the
timing constraints of the system. The so-called preliminary development phase
is assisted by control machines (Preliminary/DPreliminary) which still act on
an abstract model but use instead of the real-time not the simulated time. In a
sense, both simulated and real time are employed. Event occurrences follow the
same rules explained for the AbstractSimulator. The difference is that now when
no event is eligible to occur at the current time, the control loop is void iterated
only to allow the real-time to advance. The Preliminary control form executes
the model on a single machine. It is useful to observe the deviations in time of
message delivery with respect to their due times. During preliminary execution,
processing units (PUs) are turned to be fake thread objects upon which the delay
operations are executed as sleep operations. The DPreliminary control machine
executes a model physically split among concrete theatres (JVM instances). It
permits to monitor the overhead introduced by network communications. As for
a real-time distributed execution, the clocks of the various theatres/cores can

128

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

be required to be kept aligned through some algorithm/tool (for an example see
[73]).

Real-time execution

The last development phase is based on a concrete version of the Theatre model.
In particular, message servers are detailed, delay operations are replaced by a
concrete code, and a real-time control machine is used. Message dispatches
occur as in the preliminary execution. Depending on the partitioning require-
ments, a concrete model can be run on a single theatre (see the RealTime control
machine), or it can be configured to run in a distributed context (the DRealTime
control machine is used). Distributed execution necessitates of real-time clock
alignment of the involved machines on a regular basis. The use of Dimension4
[97] was successfully experimented in [73].
It is important to stress that a Theatre model, consisting of actors and message
interactions, flows almost unchanged from a development phase to the next one.
What changes are the exploited control machine and the adopted time notion.
All of this tends to reduce the semantic gap existing from an implementation
and its modelling counterpart which in different approaches can be far each
other.

Message ordering and non-determinism

It has been said that control machines, see e.g. the simulated ones, depend
on a non-deterministic selection when multiple events can occur at the same
time. Non-determinism can be a natural hypothesis (which complies with the
general Actors model [10]) when, instead of simulation, one would consider a
model checker for property analysis. In addition, non-determinism can influence
the modelling activity because one cannot rely on a particular order of message
dispatches, e.g., respectful of causal/effect relationships.
However, both within a same theatre and also when actors which are belonging
to physically distinct theatres interact through a FIFO transport layer, it is
natural to assume that if an actor A sends to an actor B a sequence of concur-
rent messages < m1,m2, · · · >, B should receive the messages in the sending
order. Non-determinism could apply, instead, to different senders which trans-
mit messages to a common destination. In the actual implementation of the
control machines provisions were taken to ensure that, at the same time, mes-
sages are received in the sending order. Each message is time-stamped with
a Lamport logical clock (LC) [151] which counts message generations within a
same theatre. LCs are adjusted when messages cross the theatre boundaries. At
the same time, the message with the lowest LC is chosen. Obviously, this choice
is perfectly compliant with non-determinism which would imply any selection
to be correct among concurrent events.

8.3 A modelling example
In the following, the dependable real-time modelling example of the Toxic Gas
System (TGS) shown in the Chapter 7 and adapted from [129], is directly pro-
grammed, checked and prototyped in Java. There is a research lab wherein a

129

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

scientist is working. In the lab environment a toxic gas level can accumulate
to the point to require the scientist to immediately abandon the lab to avoid a
fatal consequence.
The model consists of six actors: Environment, Sensor, Scientist, Rescue, Con-
troller and the Main, whose behavioral specification is described in the Section
7.2.3. Java actor modelling is shown in the Fig. from 8.2 to Fig. 8.6). Global
constants acting as scenario parameters are depicted in Fig. 8.2.
The Environment (Fig. 8.2) has a changing period after which a normal gas

Figure 8.1: Class of scenario parameters

level (value 2) can be changed, with 0.98 probability, to a dangerous level (value
4). As soon as a dangerous level occurs, the Environment sends a die() mes-
sage to the scientist whose after time reflects the maximum time within which
the scientist should be saved (see the constant SCIENTIST_DEADLINE
in Fig. 8.1).

Figure 8.2: Environment actor class

The Sensor (Fig. 8.3a) periodically (see the SENSOR_PERIOD in Fig.
8.1) asks the gas level to the Environment and then transmits it to the Con-
troller for a decision. The sensor, though, can possibly be not working (with
probability 0.01) in which case it cannot transmit the gas level to the Controller.
When a dangerous gas level is received by the Controller (see Fig. 8.5), it first

130

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

(a) Sensor actor class

(b) Scientist actor class

Figure 8.3: Sensor and Scientist classes

131

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

alerts the Scientist (Fig. 8.3b) to exit the lab environment through an abort-
Plan() message, a reply of which the Controller expects within a maximum
allowed deadline (SCI_ACK_DEADLINE constant in Fig. 8.1). Would the
ack not arrive in time, the Controller proceeds by asking the rescue team to go
physically to the lab and try to save the scientist. The Rescue (Fig. 8.4) informs
the Controller when it reaches the scientist (see the rescueReach() message). For
the example to be more realistic, the Rescue can experiment some delay (due
to encountering some obstacles) when going to the lab, and the Scientist can
(with 0.90 probability) or not perceive an abortPlan() from the Controller. The

Figure 8.4: Rescue actor class

problem is to characterize quantitatively the model so as to predict the expected
probability, under different operating conditions, with which the scientist would
die or (hopefully) is saved in time.
In the Controller class (Fig. 8.5), the sciAlive instance variable reflects some

status information received from the scientist. Its true value following an ack()
message would testify the scientist was saved by the previously sent abortMes-
sage(). However, its true value following the reception of a rescueReach() sent
by the rescue when it reaches the scientist, only potentially expresses the fact
that the scientist was rescued. In any case, the values of isDead and isOutEnv
variables of the Scientist (see Fig. 8.3b) reflect the resultant scientist status.
The scenario parameters class in Fig. 8.1, is statically imported by each actor

class so that constant values are immediately accessible. The UML sequence
diagram in Fig. 8.7, summarizes some message exchanges among the actors of
the TGS model in a situation where, following a dangerous gas level, the sci-
entist does not perceive the abortP lan() and does not sent the ack() message
(dashed line) to the controller. The scientist, though, gets finally saved thanks
to the intervention of the rescue team.
The Main (Fig. 8.6) is modelled as a normal actor which can receive messages
from the other application actors. It contains the main() method which con-
figures the actor model and launches its execution. First actor instances are
created. As one can see in the Fig. from 8.2 to Fig. 8.5, actor classes rely only
on the default constructor. For the initialization, each actor expects an init(...)
(or similar) message which carries any required initialization data. After the
initialization, the model execution is started by sending a changeGasLevel()
message to the environment, a checkGasLevel() to the sensor(s), and a check-
Sensors() to the controller.

132

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.5: Controller actor class

Figure 8.6: Main actor class

133

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

In Fig. 8.6 an instance of the AbstractSimulator control machine is created.
AbstractSimulator receives the number of used processing units and the time
limit for the simulation experiment. The control loop of AbstractSimulator is
actually started by invoking on it the controller() method.
By default, all the created actors are assigned to one processing unit (PU) as-
sociated to the Main. The use, though, of move() operations before any send
operation, permits to establish a different configuration and partitioning of the
actors to multiple PUs. In Fig. 8.6, the maximal parallelism configuration is
defined where each actor is allocated onto a distinct PU. However, instead of 6
PUs, 3 PUs could also be used, by grouping together the Main, Environment,
Sensor and Scientist on one PU, whereas the Controller and the Rescue are
moved to two distinct PUs. All of this emerges from the message exchanges
among actors, which is some cases have NET_DELAY as their after time,
that is the assumed network communication delay.
The main() method can easily be adapted for executing a batch of simulation
runs. At each simulation, the model can be re-created and model information
(e.g., the number of times the scientist was found dead in the simulation runs,
or the number of times the scientist was saved by an abortP lan() message (then
without the recourse to the rescue team) or by a leftEnv() message sent by the
Controller following the intervention of the rescue) can be stored into a few ad-
ditional decoration variables which can be put, e.g., in the ScenarioParameters
class.

Figure 8.7: A pattern of message exchanges in the toxic gas system

134

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

8.4 Analysis of the toxic gas system
The abstract model of TGS was extensively analyzed in simulation using the
AbstractSimulator control machine, e.g., under the maximal parallelism assump-
tion.

8.4.1 Qualitative Experiments
30 simulation runs were preliminarily carried out using only one sensor with
SENSOR_PERIOD = 8, SCIENTIST_DEADLINE = 10 and the other
parameters set as in Fig. 8.1. Such parameter values were chosen by taking
into account uncertainty and timed behavior of the system. Each simulation
experiment lasts 1000 time units.
Fig. 8.8 shows the observed times the scientist dies after a dangerous toxic gas
level, or it gets saved. The grey height of the columns reflects the instant in time
the dangerous gas level occurs into each experiment. The top of each column
then registers the corresponding scientist outcome.
The results can mirror the general cases where the controller is not informed
of a dangerous level because the sensor was not working, and cases when the
controller gets informed late about the danger and it is not possible to save the
scientist within the remaining portion of the SCIENTIST_DEADLINE.
Choosing 8 as the sensor period reduces the risk of the sensor to become not
working (a sensor with a lesser sampling frequency has a higher probability to
be working at each period). On the other hand, the controller acquires late a
dangerous stimulus when the gas level change occurs immediately after (1 time
unit after) the last reading of the sensor. As a consequence, the sensor will per-
ceive the dangerous gas level at the next period and then informs the controller
which starts the reaction. As one can see from Fig. 8.8, 1000 time units are

Figure 8.8: Trace of 30 simulation runs observing the scientist rescue

sufficient to trigger the occurrence of a toxic gas level. In addition, it clearly
emerges that the scientist can die.
The next step was then to deepen quantitatively the timing behavior of the TGS
model under various operating conditions. Critical parameters for the TGS
model are the SCIENTIST_DEADLINE, the SENSOR_PERIOD, and
the probability for a sensor to be working The value of the SCIENTIST_DEADLINE

135

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

can be dictated from the physical system, that is the lethal characteristics of
the toxic gas. In the following, the performance curves refer to an experimental
frame where the time limit for each simulation is tEnd=5000 time units. Each
execution consists of a batch of 5000 simulation runs and the scientist die prob-
ability is inferred by Monte Carlo-like techniques.

8.4.2 First Scenario: 2 Sensors and Scientist Deadline set
to 10

The first scenario uses 2 instances of the Sensor actor (Fig. 8.3a), and estimates
the probability of the scientist to die or to be saved, when the sensor period is
varied from 1 to 20 and the SCIENTIST_DEADLINE is 10.
Fig. 8.9 shows the observed probabilities. Both the probability to die (red
curve) and the complementary probability to be saved, distinguished in the
two components of first level intervention of the controller through an abort-
Plan() message (blue curve), or through a leftEnv() message which follows to a
rescueReach() message (green curve) sent by the Rescue to the controller, are
depicted.
From Fig. 8.9 it emerges that when the scientist is saved it mainly occurs with-
out the intervention of the rescue team (the green probability curve remains
always very low).

Figure 8.9: Scientist probabilities in the first scenario

An interesting and not obvious behavior in Fig. 8.9 concerns the evolution
of the die probability of the scientist (red curve) or, dually, its complement of
the saving probability (see the blue curve) of the scientist. The die probability
is high when the sensor period is low. This is due to the fact that despite the use
of two sensors, a high frequency of reading raises the probability for sensors to
be not working. As the sensor period increases, the die probability diminishes
by reaching a minimum at the abscissa 5. After the minimum, the die probabil-
ity tends to augment as the sensor period continues to be increased. For higher
sensor periods, the die probability is again high because of the problem of late
informing the controller about a dangerous gas level, although a great sensor
period reduces the risk for the sensors to become not working.

136

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

In reality, in Fig. 8.9 different local minima exist for the die probability. They
correspond to points where the sensor period is a multiple of the environment
CHANGING_PERIOD which is 5, that is at abscissas 10, 15 and 20. In these
points, it becomes possible for the sensor(s) to read a dangerous gas level as it oc-
curs in the environment and to promptly transmit it to the controller. Of course,
as the sensor period increases from 10, to 15, to 20, there is the problem of hav-
ing less time to respond with respect to the SCIENTIST_DEADLINE.

8.4.3 Second Scenario: 2 Sensors and Scientist Deadline
set to 13

The same experiments used for deriving Fig. 8.9 were repeated when the
SCIENTIST_DEADLINE is raised from 10 to 13. The results are shown in
Fig. 8.10.

Figure 8.10: Scientist probabilities in the second scenario

Fig. 8.10 conserves the same trend observed in Fig. 8.9 but now the die
probability values are smaller because there is more time for the controller to
respond to the environmental critical stimulus. The minimum of the die prob-
ability moves from 5 to 10 as the sensor period. For the sensor period 5 the
behavior is not significantly different form near values of the sensor period, al-
ways due to the greater value of the SCIENTIST_DEADLINE. As the die
probability diminishes, the saving probability by first (abortPlan()) or second
(rescueReach()) intervention obviously increases.

8.4.4 Third Scenario: 3 Sensors vs. 1 Sensor, 95% Work-
ing

In order to study the effects of using multiple sensors, the TGS model was
investigated by using 3 sensors vs. 1 sensor but lowering from 99% (see Fig.
8.3a) to 95% the probability for a sensor to continue to be working, and in-
creasing from 1% to 5% the probability of becoming not working. The used
SCIENTIST_DEADLINE is 16. Fig. 8.11 shows the collected results.

Fig. 8.11 confirms the expectation that 3 sensors allows the TGS model to
behave better than the case where 1 sensor is used, even when the probability of

137

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.11: Scientist probabilities when 3 vs. 1 sensors are used, 95% working

becoming not working is raised from 1% to 5%. In fact, although the not working
probability is higher, the probability that all the 3 sensors are simultaneously
out-of-order is low.
As one can see from Fig. 8.11, the probability of saving the scientist through
the rescue team is not significantly different when passing from 1 to 3 sensors.
The minimum for the die probability now occurs when the sensor period 15 is
used.

8.4.5 Fourth Scenario: Scientist Die Probability vs. Num-
ber of Sensors

Since it is of utmost importance rescuing the scientist when a dangerous gas level
occurs, also considering the very low cost, today, of sensor devices, in this sce-
nario the SCIENTIST_DEADLINE was kept to 15, the SENSOR_PERIOD
was set to 4 with the working probability being 99% as in Fig. 8.3a, and the
number of sensors was varied from 1 to 20 and then 30. The gathered scientist
die probability results are portrayed in Fig. 8.12.
It emerges from Fig. 8.12, that when the number of sensors is increased, the die
probability for the scientist sharply decreases. With 30 sensors, the observed
die probability is less than 1% (about 0.005).
As a final remark, all the documented experimental results achieved with the
maximum parallelism, were also confirmed with a fewer number of PUs.
For example, when only one sensor is involved, three PUs were configured as

in the following:

m. move (0) ; en . move (0) ; se1 . move (0) ;
sc . move (0) ; re . move (1) ; co . move (2) ;

8.5 Preliminary Execution of the TGS Model
After modelling and analysis, the proposed methodology continues by check-
ing, in real time, the effects of the inevitable overheads introduced by message

138

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.12: Scientist die probability vs. number of sensors

scheduling, dispatching, network communications and message server execu-
tions, on the model timing constraints.
The TGS model was evaluated using the DPreliminary control machine on a
concrete distributed context constituted by three theatres configured (see the
next section for the configuration details) for the execution on two computing
nodes (High Sierra OS, MacBookPro Retina 2.9GHz 16GB and MacBookAir
Retina 2.4GHz 8GB) in the presence of a wireless communication network shar-
ing Internet traffic, nominally operating at 5Gb per second. The Main, environ-
ment, sensor and scientist are put on one theatre. The controller and the rescue
are each allocated on a distinct remaining theatre. The two involved physical
machines are initially time aligned and the execution of each experiment started
at an absolute date/time.
The time behavior of the TGS model was first observed in real time execution by
setting the NET_DELAY scenario parameter (see Fig. 8.1) to 0, so as to affect
the model by real communication delays. A number of runs were carried to mon-
itor specifically the scientist die probability. Each real experiment lasts on the
average 15 minutes. Only one sensor was used, with a SENSOR_PERIOD of
4 and a SCIENTIST_DEADLINE of 15. After 30 runs of real execution (1
time unit=1 sec) it emerged a die probability of 0.41, confirming the previously
achieved value shown in Fig. 8.12. After all, despite the involvement of real
communications, the timing of the model is exactly that considered during the
analysis phase in simulation.
In order to better qualify/quantify the effects of the message overheads on the
overall system timing, some experiments with DPreliminary were also performed
using two different configurations. The goal was capturing the time deviations,
that is the drifts with which messages are finally dispatched in real-time with
respect to their due time (absolutized after times). Time deviations include
the network delays, message server body executions, bookkeeping times of the
control machine and message interleaving within a same theatre.
In Fig. 8.13 the monitored deviations are reported when (first case) exactly the
abstract model is executed over the chosen physical architecture. As one can
see from Fig. 8.13, the great majority of messages were found to be “unaffected”
by time deviations (it should be noted that on common operating systems, 1ms
is the time resolution, so lower times are virtually 0). Only in one case the

139

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.13: Time deviations - First case

worst case measured drift was about 212ms. In a few cases the drift was found
to be virtually negative. These cases correspond to clock misalignment among
the computing machines. From the experimental log it emerged that the great
drifts are related to network messages received by the less performing machine.
In the second scenario the TGS model was run on the same actor/theatre con-
figuration as in the first scenario, but now the parameter NET_DELAY (see
Fig. 8.1) was set to 0 (thus converting network messages to instantaneous mes-
sages). The goal was to observe the impact of real communication delays on
the model time behavior. Fig. 8.14 depicts the monitored drifts in the second
case. In Fig 8.14, the number of messages with a 0 drift is lesser than that in

Figure 8.14: Time deviations - Second case

Fig. 8.13, because messages with the original NET_DELAY = 1 = 1000ms
naturally hide the execution drift within their absolute dispatch time, whereas
when they are converted into instantaneous messages the drifts are inevitable
shown because of the immediate dispatch.
In the third case (see Fig. 8.15) the environment actor is moved to the same the-
atre of the controller and the net delays mirror the real communication delays.
In this configuration the number of messages sent across the network increases.
As a consequence, the number of messages with a 0 drift remains almost the
same as in Fig. 8.14, but the intermediate values of time deviations are greater
than those observed in Fig. 8.14. The documented results in the figures from
15 to 17 confirm that the observed drifts on a real physical architecture remain

140

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.15: Time deviations - Third case

less than 1/4 of the time unit assumed in the TGS model. In other terms, the
time deviations do not impair the system timing constraints.

8.6 Real time execution
For the purposes of the chosen case study, the preliminary execution is indicative
of what happens when a Theatre model is put into real-execution. Transform-
ing the TGS model for final implementation requires concretization of message
servers and the use, e.g., of the DRealTime control machine with a time server
in charge of keeping regularly aligned the clocks of the physical machines host-
ing the theatre nodes (an experience is reported in [73]). However, besides any
change to the model structure (the Environment actor could be omitted by hav-
ing those sensors directly and periodically read from the physical environment)
an important concern is interfacing the cyber software part of a system with the
sensors/actuators devices of the controlled physical plant, and keeping aligned
(a challenging issue) the Newtonian time of the physical part with the discrete
time of the cyber part.
In [73] the concept of an EnvGateway was proposed to properly abstract the
cyber part from the details of contacting and carrying read/write operations
and associated protocols on the input/output devices of the physical part.
In particular, the operations of interfacing and managing peripheral devices
(such as sending signals to actuators, triggering the sensing operations or mak-
ing available the sensed data) are entrusted into IOHardware components such
as Arduino, Raspberry Pi and other similar boards. Using wired or wireless com-
munication protocols, these boards allow the bidirectional information transfer,
also providing the routing and transformation of the high-level commands com-
ing from the EnvGateway to a specific device, into signals compatible with its
functioning.
The EnvGateway works according to an anticipative schema. It asynchronously
receives sensors data (as programmed, e.g., in the periodic loop of Arduino
[151]) and store them into corresponding variables (precisely, in a Concurren-
tHashMap) of the EnvGateway. Such values are subsequently retrieved by actors
of the cyber part according to the application timing model. It is guaranteed
that application actors always get the more recent read values and not stale
values.

141

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

As a final remark, it is worth noting that being the chosen case study a modified
version of a similar example described in [129], it was not possible to directly
compare the experimental results reported in this paper with those of [129].
Moreover, whereas the approach proposed in this paper addresses all the devel-
opment phases and includes preliminary and real-time execution of a system,
the work described in [129] seems more related to only modelling and analysis
aspects without an explicit indication to the design and implementation phases.
For validation purposes, the modelling case study was reduced into Uppaal (see
[196] for details of the reduction process) and the analysis results re-achieved
using the Statistical Model Checker of Uppaal [90].

8.7 Theatre Implementation Status
Theatre is currently implemented in standard Java as a framework (see Fig.
8.16), that is a collection of classes plus an event flow which means that a
programmer-defined class directly or indirectly inheriting from the Actor base
class automatically and implicitly participates to the event flow. The event flow
is realized in a control machine (a class specializing the base class ControlMa-
chine) and consists in the activation of message servers (message dispatches)
in user-defined actors through reflection (method activation service). Message

Figure 8.16: A Theatre UML Class Diagram

sends are specified to occur among acquaintance actors but in reality message
objects, reflectively built behind the scene of a theatre through the services of
the Actor class, get captured and managed (scheduled) by the control machine
chosen for regulating the local actors. Control machines act as plug-in compo-
nents: they are transparently installed in the various theatres. The Actor class
loaded in the JVM of a given theatre, knows the adopted control machine. The
design logic of the provided control machines tailored to the PTRebeca timing
model [224, 127], was anticipated in section 8.2. In the following some in-the-
large aspects, that are related to theatre configuration, bootstrap execution,
and (possibly) dynamic re-location of actors, are summarized.

142

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

8.7.1 Configuration and Bootstrap of a Distributed Sys-
tem

A distributed Theatre system is configured through an XML file like the one
reported in Fig. 8.17. The file contains, among other, information about the
list of the theatres composing the system. For each theatre the following data
are specified: (i) its unique name, (ii) its IP address and port number; (iii) the
type of the required control machine; (iv) a boolean value indicating whether
the theatre should provide the time server (at most one time server can exist
in a system), and (v) the class name (a string value) of the Main (see Fig. 8.6)
which will be executed by the master theatre in order to startup the application
(one single master is admitted in a system).
Beside the above information, the XML file also contains the address of the
class server hosting the Java classes of the application to execute, and a date in-
formation indicating when the configured application has to startup. This date
information can be exploited, for synchronization purposes, by control machines
that use a real time notion (i.e., Preliminary, DPreliminary, Realtime and the
DRealtime control machines, see Fig. 8.16).
The class server is a network repository from which Java classes can be retrieved
at runtime.
The Theatre configuration file is feed to each theatre so as to permit system
bootstrap. System bootstrap consists of the following phases: (a) each the-
atre begins by properly establishing socket connections with all the peers listed
in the configuration file. Managing such connections is a responsibility of the
TrasportLayers components (see Fig. 8.16); (b) all the control machines are
created and, in the case a virtual time notion is used (see DSimulation in Fig.
8.16), the time server is instantiated too; (c) the master theatre executes the
Main which creates/configures/migrates applicative actors so as to startup the
application. The time server can also be required in a distributed real-time
application (see DPreliminary and DRealTime control machines in Fig. 8.16)
to supervise clock alignment of the various theatres.
In particular, during the socket network setting up phase, theatres will play,

following directions of the master theatre, the server or client socket role for
establishing the socket connections. Moreover, separate input/output threads
are associated to each socket connection (see Fig. 8.18). Concurrency control
problems among the input/output threads and the control machine thread are
avoided by the adoption of lock-free data structures. Incoming messages get
stored into one input buffer from where they are extracted at each iteration of
the control loop of the control machine. External Output messages are stored
into output buffers, one per socket connection, with the final transmission being
responsibility of the socket thread.
A protocol based on special/control messages (see Fig. 8.18) is defined for com-
munications among control machines and the time server in order to ensure
correct advancement of the global time. For example, the protocol adopted by
DSimulation rests on a conservative synchronization algorithm [105], which ex-
ploits, for each theatre, the counter values of sent/received messages/actors for
detecting possibly ongoing transmissions. All the actors, either created or mi-
grated to a given theatre, are automatically added to the so called Local Actor
Table (LAT), that is the local registry for actors. System bootstrap completes as
the Main ends its execution. Fig. 8.18 summarizes a running distributed The-

143

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

Figure 8.17: Example of a theatre-config.xml file

atre system consisting of N theatres. The figure highlights connections among
theatres, messages in transit across the network, and the actors in the system.
More in particular, black circles denote actors executing in a given theatre,
white circles correspond to actors that have leaved an originating theatre, and
gray circles show actors that are in the phase of migrating toward a destination
theatre. More details about actor migration are provided in the next subsection.

Figure 8.18: Multi-theatre configuration with socket channels

144

Chapter 8. Seamless Development in Java of Distributed

Real-Time Systems using Actors

8.7.2 Actor Migration
During its life cycle, an actor can move from one theatre to another. For exam-
ple, during initial configuration an actor can be moved to a particular theatre
where some physical devices are attached so as to be locally and directly con-
trolled. In addition, more in general, dynamic re-configuration can be required
for load-balancing issues.
When an actor leaves a theatre it is not definitively removed from the theatre.
Rather, the actor gets automatically turned into a proxy version of itself. A
proxy actor is a place holder of the original one and acts as a message for-
warder. It keeps information about the last known destination theatre toward
which the actor moved when leaving the current one. When a message is di-
rected to a proxy actor, the message is transparently forwarded, through the
network, to the remote theatre indicated in the proxy. Since potentially an ac-
tor can move multiple times, different proxies can exist, at a given time, of the
same actor on different theatres, and multiple hops can be required to deliver
the message to the migrated actor. During its movements, if an actor comes
back to a theatre where a proxy version of itself exists, the corresponding proxy
is upgraded to the normal version, and its state transparently replaced with the
one carried by the incoming actor.
To specify operations that an actor should perform just before leaving a theatre
and immediately after it reached the destination one, the Actor abstract class
makes it possible to override the beforeMove() and afterMove() methods, which
are automatically invoked by the Theatre runtime system.
Actor mobility rests on a weak migration semantics [26]. Since an actor does not
have an internal thread, its move() operation reduces to Java serialization/de-
serialization of its state variables.
In order to avoid a move() operation to interfere with current message process-
ing, a migration request is implemented by scheduling an instantaneous Move
control message, that is subsequently dispatched by the control machine.

145

Chapter 9
Case Studies1

This chapter reports some case studies about modelling and verification of The-
atre systems. The first two examples are based on the use of Uppaal SMC
only. In particular, the first one models messages through dynamic template
processes. The third example applies Theatre to formal modelling and rea-
soning on knowledge and commitments in general multi-agent systems.

9.1 Asynchronous Leader Election
The problem is considered of electing a leader in a ring of N not distinguishable
processor nodes. A solution is challenging when nodes behave asynchronously
[126]. The following illustrates an untimed actor model adapted from [251],
which elects a leader probabilistically, i.e., the leader can be elected with a
certain probability. As a scenario parameter, the number N of the nodes com-
posing the ring is established by an declaration (see Fig. 9.1).
Each node knows only its right neighbor in the ring, communicated at the ini-
tialization time, and can send messages only to it. Two basic messages are elect
and leaderElect. During the trying process of leader election, the elect mes-
sage is exchanged between neighbor nodes. As soon as a leader emerges, the
leaderElect message circulates instead in the ring, to terminate the algorithm.
A node can be active or not active. Initially, all the nodes are active. Node be-
havior starts by flipping a coin (false is head, true is tail) and sending its result
to the right partner through an elect message. If a node achieves a head and
its predecessor got a tail, the node ceases to be active. Otherwise, the flipping
process is repeated. An inactive node simply forwards received messages to its
right neighbor.
Fundamental to the model operation is keeping up to date the counter of active
nodes in the ring. Initially, each node sets its nActive local variable to N . Sub-
sequently, on receiving an elect message, which carries the flipping result and
the active count of which the predecessor is aware, a node which finds the value
of its nActive is 1, becomes the leader and starts circulating the leaderElected
message. Otherwise, the node (possibly) updates its nActive from the prede-

1The material in this chapter is related to publications [193, 197, 196, 186]

146

Chapter 9. Case Studies

cessor value or it decrements its counter if it becomes not active due to the
flipping process. In the latter case the new value of nActive is transmitted to
the right partner. The model is completed by a Main actor which creates N
Node instances and initializes them according to the ring topology. Other de-
tails should be self-explanatory from Fig. 9.1.

Figure 9.1: A Theatre asynchronous leader election model [251]

Fig. 9.2 shows the Node actor template, developed by using Uppaal SMC,
parameterized by const aid self . Since the analysis depends on the evalua-

Figure 9.2: Node actor template for the Asynchronous Leader Election model

tion of only stochastic queries, exchanged messages are modelled as dynamic
automata scheduled by a spawn command, whose global declarations is illus-
trated in Fig. 9.3. It should be noted that a reaction could be fully realized in a
local function (see the FLIP message and the flip() function in Fig. 9.4 which

147

Chapter 9. Case Studies

Figure 9.3: Basic global declarations of the Asynchronous Leader Election model

realizes a non-deterministic assignment) of the automaton. However, since the
tool forbids a spawn command to be put in a function, it can be necessary to
split the reaction in a sequence of committed locations, as for the ELECT and
LEADER_ELECT messages.

Figure 9.4: The flip() function used in Fig. 9.2

9.1.1 Experimental results
The model was analyzed under maximal parallelism hypothesis. Being untimed,
the model was checked by a given number (#) of steps (or transitions). The
following query was used to check that the leader, if elected, is at most one:

Pr[#<=50000](<> (sum(i : a id)Node (i) . l e ad e r)>1)

This query, in particular, asks to quantify the probability of the event that
multiple nodes have their leader field which becomes true (a safety property).
Uppaal SMC, through 36 runs, responds that such probability has a confidence
interval (CI) of [0, 0.0973938] with a confidence degree of 95%. Therefore, the
event has a very low occurrence probability. After that, the probability of
electing a leader was estimated with the query:

Pr[#<=50000](<> (sum(i : a id)Node (i) . l e ad e r)>0)

Such a query was launched for N varying from 2 to 6 and the corresponding
lower and upper bounds of the emerged CI 95% are as shown in Fig. 9.5.
As expected, for N = 2 the leader election is almost certain. The probability
diminishes as N increases. The worst case number of required simulation runs
was 400 and relates to N = 4.

9.2 A Time Synchronization Algorithm
Due to technological advances, miniaturization, low power and a favorable func-
tion/cost ratio, more and more wireless sensor networks (WSNs) [239, 229] get
employed for monitoring purposes of a given environment/territory. Tasks as-
signed to a WSN include: object tracking, temperature and climate control, data
fusion and more in general measurement and sensing applications. However, for
proper operation, the sensor nodes of a WSN require to be time synchronized,

148

Chapter 9. Case Studies

Figure 9.5: Probability of leader election vs. the number N of nodes

that is a global common time notion to be enforced.
Each node is typically equipped with a given energy (battery), radio support
for communications, and hardware clock which is characterized by its frequency
and phase. The use of sensor nodes always aims at prolonging to the largest ex-
tent the network lifetime, e.g., by node sleep periods and wakeups. The various
hardware clocks are unsynchronized each other and can experiment the known
phenomena of frequency drifts and/or differences in their offsets.
The clock synchronization problem [239, 216] refers to building and maintaining
a software clock synchronization, that is a reference logical global clock which
can guide sensor operation. The reference time can help to identify causal rela-
tionships between events of the physical world, identify and remove redundant
data, synchronize sleep periods and so forth. More in general, it is commonly
accepted that for it to be useful, sensor data should be accompanied by sensor
position and timestamp.
Different algorithms are described in the literature for clock synchronization
[239, 216]which can be roughly classified as hierarchical or fully distributed. In
a hierarchical solution, the nodes of a WSN are tree-structured and child-parent
relationships are exploited to compensate clock drifts (skew) and offsets. How-
ever, hierarchical solutions suffer from node failures. In the case a parent node
becomes unreachable, a subnet can be excluded from the clock synchronization
until a new organization of the WSN is re-established.
Fully distributed solutions tend to be more robust with respect to topology
changes, that is node exiting and entering at the runtime the WSN. In addition,
distributed solutions are normally based on asynchronous messages for carry-
ing the clock adjustment operations. Only when a message is received from a
neighbour, a given node updates its logical (software) clock.
Available solutions to clock synchronization can be characterized by their syn-
chronization accuracy, robustness to message losses and so forth.
In this work, a simulation approach is advocated for deep analysis of an algo-
rithm for clock synchronization in WSNs. The chosen algorithm [229, 150] is
fully distributed and has a natural multi-agent semantic interpretation. Clock
synchronization represents an emerging property of the WSN. An adaptation of
the selected algorithm is proposed which tries to conserve energy during time
re-synchronizations.

149

Chapter 9. Case Studies

Synchronization algorithms are generally based on a virtual clock concept. In
fact, although each node owns an internal clock, determined by the number of
the crystal oscillations, and increased periodically as:

clkhw(tk) = bftkc+ o (9.1)

where f is the oscillation frequency and o is the offset due to the uncertainty
of f , hardware clocks synchronization it is not feasible because the pair (f, o) is
non-tunable, is time varying and is different from node to node.
The Average TimeSynch (ATS) algorithm, proposed in [229, 150], bases its
synchronization procedure on a software clock tuning, using the linear function:

clksw(tk) = a(tk)clkhw(tk) + b(tk) (9.2)

where (a(tk), b(tk)) are corrector parameters, adapted following a synchroniza-
tion message received from another node of the network. It has been proved
that the ATS converges within a certain finite time t, whose amount depends on
the network topology used. The ATS algorithm is totally asynchronous, fully

Figure 9.6: Block scheme of the ATS algorithm performed by each node

distributed and based on the consensus procedures [229, 150]. No centralized
node is required to manage the operations, because each node adapts its own
clksw value using information coming from its neighbors, without other medi-
ations. Moreover, ATS is resilient to packet loss, node failure, replacement or
relocation and requires minimal memory and computational resources.
Fig. 9.6 summarizes the synchronization procedure under the hypothesis that:

• each node has a unique identifier (id);

• each node is equipped with an omnidirectional radio antenna, that sup-
ports broadcast message sending;

• each message communicated through the network is supposed to be in-
stantaneous: no transmission and propagation delays are considered;

• the period Tsynch, used by each node to trigger the synchronization mes-
sage exchange, is fixed.

150

Chapter 9. Case Studies

The ATS algorithm works by updating the software clock values, by applying
into each node the equation 9.2 every time one of two possible events occurs:

• the hardware clock value is increased;

• a synchronization message is received and processed.

When the software clock reaches a value that is a multiple of the synchronization
period, i.e.:

clksw(tk) = nTsynch n 2 N (9.3)

the node reacts by broadcasting a synchronization message with data the neigh-
bors require to correct their (a(tk), b(tk)) parameters. The initial values of these
parameters are (1,0). The data transmitted by a sender node (s) are: ids, as(t),
bs(t), clkhws(t). When a receiver node (r) receives a synchronization message
from a sender (s), it updates its corrector parameters. The a parameter is
modified as follows:

ar(t
+
k) = ⇢ar(tk) + (1� ⇢) clkhws(tk)� clkhws(tk�1)

clkhwr (tk)� clkhwr (tk�1)
as(tk) (9.4)

The contribution of the neighbors’ node clocks to the overall alignment is due
to the ratio part of 9.2, between the hardware clock skew of the sender and the
hardware clock skew of the receiver, evaluated at the instant of reception of the
current tk and previous tk�1 synchronization message. The ⇢ constant, whose
value belongs to the range [0, 1], is in charge of modulating the weight of the
correction influence due to the values of the sender node data.
As implied by 9.2, every node can store the parameters coming from each distinct
neighbor in a row of a local matrix.
The b paramater value is updated according to the equation:

br(t
+
k) = br(tk) + (1� ⇢)(clksws(tk)� clkswr (tk))� (ar(t

+
k)� ar(tk)))clkhwr (tk)

(9.5)
In this case the contribution of a neighbor’ sender node clock to the correction,
is specified by the software clock skew clksws(tk) � clkswr (tk) between sender
and receiver. To reduce the amount of the exchanged data, the clksws(tk) is
evaluated by the receiver using the 9.2.
After the achievement of the first WSN clock alignment, an adaptation of the
ATS algorithm is introduced for energy saving, that dynamically evolves the
Tsynch parameter so as to reduce the amount of exchanged messages.

9.2.1 Modelling the Time-Synch algorithm using Theatre

The ATS algorithm was modelled as shown in Fig. 9.7, which refers to a single
WSN node, under the hypothesis of maximal parallelism (one actor node per
theatre/PU). The model is flexible enough to work with different WSN topolo-
gies, by specifying (into a matrix) the neighbors for each node. The full mesh
topology can be defined by connecting each node to the remaining N �1 nodes,
if N if the network size.
The WSN model is bootstrapped by the Main actor (see Fig. 9.8) which ini-
tially moves each node onto its PU and sends them the INIT_HW message
which simulates the physical activation of the nodes. Each node responds to
INIT_HW by self-sending an OFFSET message which really activates the

151

Chapter 9. Case Studies

node after a random time within 2000ms. Function nM() reserves and returns
the id of the first free message instance in the message pool.
As one can see in Fig. 9.7, the design of the Node automaton (whose only param-
eter is its id) is organized into three logical sub-parts associated respectively with
the update of the hardware clock, software clock and adaptation mechanism.
These sub-parts are mainly triggered into execution through self-sent messages.
The hardware clock increases its value according to the HW_PERIOD which
is set to 1ms. The updating operations of the software clock are triggered either
when a hardware clock update occurs (see the notify message HW_UPDATE
which follows an HW_PERIOD dispatch) or a SY NCH_UPDATE message
is received from a neighbor, which adjusts the corrector parameters a and b. The
periodicity of software clock synchronization operations is TSynch = 1000ms.
TSynch defines the after attribute of the SY NCH_PERIOD message. Pro-
cessing a SY NCH_PERIOD causes a broadcast send of SY NCH_UPDATE
to all the neighbor nodes.
A subtle point is concerned with the interpretation of the next scheduled TSynch,
which obviously is related to the (under evolving) software clock value owned
by the node. Care was used into the model in Fig. 9.7 to dynamically adjust
the after attribute of the current SY NCH_PERIOD message so as to mir-
ror the time distance existing between the new value of the software clock and
the current TSynch’s after. In the case the value of the new software clock
is beyond the currently scheduled TSynch, current synchronization phase gets
lost. Purposely, though, to avoid scheduling of a new message, the existing
SY NCH_PERIOD is simply time redefined.
Modelling the radio antenna in Fig. 9.7 implies that multiple synchronization

Figure 9.7: The actor Node automaton

messages arriving to a node at the same time (and thus conflicting each other)

152

Chapter 9. Case Studies

get discarded (packet loss) except for the first one. Toward this, a global clock
is introduced which provides the system absolute time.
It is worth noting that all clock comparisons (double values) in the Uppaal
SMC model of Fig. 9.7 are actually constrained, for precision granularity, to
only two fractional digits.
The model in Fig. 9.7 admits two operating modes controlled by the adaptation
boolean variable. The first (synch) mode, implied by the preceding discussion,
aims at estimating the global time required for clock alignment.
Unfortunately, clock synchronization is an emerging property of the WSN model
and it is unknown to each node. Subsequently, when the alignment_interval
was estimated, a switch occurs, for energy saving, to the adaptation mode which
reduces the burden of exchanged radio synchronization messages.
For the adaptation mode, the WSN is partitioned in pairs of master-slave
nodes. In addition, an ADAPT_PERIOD message is initially scheduled to
occur at the time of (supposed known or set to a very high value otherwise)
alignment_interval value. After the arrival of the first ADAPT_PERIOD
message, it gets re-scheduled according to the adapt_interval time, e.g., set to
5000ms. The adaptation idea stems from the fact that after the time synch,
the TSynch value can reasonably be relaxed, e.g., changing it from 1000ms
to 10000ms. Moreover, since node clocks inevitably tend again to misalign,
the proposed mechanism captures the symptom of misalignment in the pairs
of nodes. Then misaligned pairs, which are identified when the relevant soft-
ware clocks differ of about 0.8ms, react locally by resetting TSynch to 1000ms
thus starting re-alignment, whose achievement causes TSynch to come back to
10000ms and so forth.
A master node sends a NEIGH_ADAPT_PERIOD message to its slave,

Figure 9.8: The Main automaton

passing the value of its software clock. The slave evaluates the difference be-
tween master and slave software clocks and possibly adjusts its TSynch.
In any case the slave node replies to the master with an ACK message carrying
the slave software clock, which will allow the master to possibly modify its own
TSynch.
It is ensured that (a) pairs which do not sense a misalignment, do not start
a local re-synchronization and then do not send network messages; (b) all the
network is eventually re-synchronized as a consequence of local re-alignments.

9.2.2 Experimental results
A WSN of 16 nodes with full mesh topology was used for the experimental work.
The model in Fig. 9.7 was decorated with auxiliary variables and functions to

153

Chapter 9. Case Studies

help collecting and depicting information from the simulation runs.
Fig. 9.10a shows the basic behavior of the time-synch algorithm which effectively
converges, after some global time, to software clocks alignment. The experiment
was conducted for 3x104ms using the query:

s imulate [<=30000] {clk_sw [0] , clk_sw [1] , . . . , clk_sw [1 5] }

It emerged that after 1.6x104ms the synchronization accuracy is about 1ms.
In a similar way, queries were prepared for revealing other aspects of the time-

Figure 9.9: Software clocks alignment vs. time

synch model. Fig. 9.10b gives more light in the synchronization process, by
depicting a fitness value vs. time. Fitness is computed, at each time instant, as
the deviation between the average value of software clocks and each particular
software clock. Fig. 9.11a portrays software clocks skew, i.e., the difference, on
a time span of 6x104ms (this time span was chosen to allow comparison with
the adaptation mechanism shown later in this section), between the maximum
and minimum values of the software clocks.

Of course, the time-synch algorithm requires an amount of exchanged mes-
sages among the actor nodes, which directly impacts on the energy consumption
and network lifetime. Fig. 9.11b reports the measured number of network mes-
sages vs. time. It is to be recalled that in the initial time interval [0,⇠ 2000]ms
the network gets activated and that the first synchronization phase occurs after
next 1000ms. As stated also in Fig. 9.11a, before 9000ms the software clocks
are highly misaligned, therefore conflicts among network messages sent at a
“same” time are actually not existing.
The above described behavior is also confirmed in Fig. 9.12a by the measured
number of cumulative packet losses vs. time. Packet losses reveal themselves
as soon as the synchronization starts to be attained which occurs at 10000ms
considering the TSynch which must elapse since 9000ms.
It is useful to note that the size of the Theatre cloud of messages sent but not
yet delivered registers a maximum value of 78 messages at about 4x104ms, with
an average of about 32 pending messages which correspond to the scheduled
HW_PERIOD and SY NCH_PERIOD messages (see Fig. 9.7).
Subsequent experiments were carried out to monitor the adaptive behavior
which is triggered following the achievement of the time synchronization, i.e.,

154

Chapter 9. Case Studies

(a) Software clocks alignment vs. time

(b) Software clocks fitness vs. time

Figure 9.10: Software clocks simulations

155

Chapter 9. Case Studies

(a) Software clocks skew vs. time

(b) Number of exchanged network messages vs. time

Figure 9.11: Simulation results

156

Chapter 9. Case Studies

after 1.6x104ms for the considered WSN topology and size. Therefore, experi-
ments were extended to 6x104ms in order to observe clock misalignments which
occur after the first synchronization phase was reached.
First it was quantified the probability of the clock alignment to be maintained

(a) Packet loss vs. time

(b) Software clocks skew vs. time with synch-period adapta-

tion

through the query:

Pr [<=60000] ([] (g loba l <=16000 | | ! e x i s t sPa i rM i s a l i gn ed ()))

which checks if after 16000ms never exists a master-slave pair of nodes whose
clock misalignment exceeds 1.3ms. Uppaal SMC proposes, after 29 runs, a
confidence interval of [0, 0.0981446] with a confidence degree 95%, thus stating
the event has a very low probability of occurrence, i.e., effectively clocks tend
to misalign again. This, in turn, motivates the need to run the adaption mech-
anism.
Fig. 9.12b is analogous of Fig. 9.11a about observed software clocks skew when
the adaptation mechanism is active. The curve called changed shows the num-
ber of nodes that switch their TSynch from 1000ms to 10000ms. As one can
see, the number of changed nodes definitely is greater than zero (e.g., 12 at
about 3.6x104ms) to testify that only a few nodes register a clock misalignment

157

Chapter 9. Case Studies

which is promptly reacted.
Fig. 9.12a reports the number of exchanged network messages when the adap-
tation mechanism is enabled. It is confirmed the same number shown in Fig.
9.11b up to 1.6x104ms. Such number sharply decreases as an effect of having
achieved the synchronization state. The fewer exchanged messages (at 6x104ms
it is 1/3 of those observed in Fig. 9.11b) positively affect the node energy saving.
The benefits of the adaptation mechanism can also be watched in Fig. 9.12b

(a) Number of network messages vs. time with

synch-period adaptation

(b) Packet loss vs. time with synch-period adapta-

tion

where a fewer number of packet loss is reported. At 6x104ms, the number of
packet loss reduced from about 580 (see Fig. 9.12a) to about 170.
For completeness, the peak size of the cloud of pending messages within The-
atre was found to be 67 with an average value of 40. The increased value of
the average is due to the schedule of ADAPT_PERIOD messages required by
the adaption mechanism.
The model in Fig. 9.7 was also checked with other topologies of the WSN with
16 nodes, including a graph-based (see Fig. 9.12) and a star-based one.
For the graph-based topology, it emerged that the global time required for the
first clock alignment is about 105ms with an accuracy of about 1.26ms. For the
star-based topology, 7x104ms are required for the first clock alignment with an
accuracy of 1.39ms.
Experiments were carried out on a Win10 Pro workstation with Intel Core
i7-7700 CPU@3.60 GHz, 16 GB Ram, using the development version Uppaal-

158

Chapter 9. Case Studies

Figure 9.12: Graph-based WSN topology

4.1.20.beta10.

9.3 Actor-based NetBill Protocol
This example focuses on modelling and analysis of knowledge and commitments
in MAS which naturally arise in business web-based protocols and applications.
Commitments represent the willingness for agents to do something (e.g., paying
for an accepted offer of a good over the Internet). Commitments have a status
which can transition from creation, to fulfillment, to discharge, to cancellation.
Knowledge denotes the epistemic relation of agents being aware about the sta-
tus of a commitment.
Reasoning on knowledge and commitments in MAS is typically carried out, in
the literature, through the development of a special temporal logic language like
CTLKC+ [12] whose models can be verified through a reduction to an existing
model checker. In the work of [12], the use of the NuSMV model checker is
demonstrated with the overall approach which proves to be efficient and scal-
able.
In the following, the use of Theatre actors is shown for modelling and analysis
of multi-agent systems. Instead of shared variables and dedicated communica-
tion channels as in [12], commitments are naturally tied to actor interactions
(message exchanges). Knowledge relationships can be checked during analysis.
The approach is illustrated by modelling and analysis of the NetBill protocol
[233, 12]. The example confirms that more simple, not-nested queries can be
used for checking properties of a MAS.
The NetBill protocol is played by a customer agent (cus) and a merchant agent
(mer). The message conversation relates to buying and selling an encrypted
software good over the Internet.
Two commitments are handled in the protocol: Ccus!merPay and Cmer!cusDeliver.
The Pay commitment is raised by the customer toward the merchant to testify
the customer intention, after having accepted an offer from the merchant, to
proceed with the payment of the good. The Deliver commitment is played by
the merchant toward the customer, to express its willingness to deliver to it
the required (and paid) good. However, uncertainty in the agent behaviors can
change the course of expected actions following the initial intention to commit,
as witnessed in the Figures 9.15 and 9.16. The NetBill model is composed of
three types of actors: Customer, Merchant and Main. Different configura-
tions (i.e., number of pairs < cus,mer >) can be established by adapting the
behavior of the Main actor (Fig. 9.16). Main creates and initializes actors by
sending them an init() message. Each actor informs the Main with a done()

159

Chapter 9. Case Studies

Figure 9.13: Model constants

message when its initialization is completed. As an example, in Fig. 9.16 each
pair < cus,mer > is allocated to a distinct PU .
Customer and Merchant are modelled as finite state machines (see Fig. 9.14
and 9.15). After being started, the Customer sends a request() to the Merchant
and awaits for a quote() (in state S1). After that, the customer can (probabilis-
tically) reject or accept the offer by sending a corresponding message to the
Merchant. Being not thread-based, proactive behavior is achieved by self-
sending a message like next(). In the case the customer accepts the offer, it

Figure 9.14: The Customer model

moves towards commitment (payment) by self-sending a commit() message.
Following a commit(), though, the customer can proceed, again probabilisti-
cally, with the payment or it can choose not to make the payment by informing
the merchant about its decision. After a payment, another source of uncertainty
exists: it can follow a deliver() or a notDeliver() message from the merchant. In
the case of a delivery() a receipt() message must follow (in state S7). Instead,
after a notDelivery() message the customer awaits (in state S6) a refund()
from the merchant.
A dual behavior is observed by the Merchant and can be easily traced in Fig.
9.15. A common issue of the two actors is concerned with message order. As a
consequence of the assumption of non-deterministic delivery of concurrent mes-
sages, to ensure correct behavior of the model some messages are scheduled to
occur after 1 time unit. As an example, in the Customer model in Fig. 9.14,
after sending an accept() message to the Merchant, the commit() message is

160

Chapter 9. Case Studies

self-sent with 1 time unit as the after time. All of this guarantees that in no
case the Merchant can receive a notPayment() before of an accept(). Simi-
lar provisions were taken in the Merchant model in Fig. 9.15. In [12] a social

Figure 9.15: The Merchant model

commitment implies a communication between the customer and the merchant
in order to reflect the status of the commitment in shared variables of the two
agents. Such a communication can be naturally expressed by an explicit message
exchange in the proposed actor modelling which does not admit data sharing.
However, the accept() message itself serves the purpose of transmitting to the
merchant the customer intention to (possibly) proceed with the payment, then
it plays also the role of communicating that the PAY commitment was issued.
Similarly, when transmitting a payment() message to the merchant, the PAY
commitment is automatically fulfilled in the customer behavior.
The status of a commitment cm is supposed to be updated by the functions
co(cm, req), fu(cm, req) and fail(cm, req) which respectively set the status of
cm, as viewed by the requestor actor req, to QillingToDo, Fulfilled, V iolated.
Knowledge of commitments will be checked during model analysis.

Figure 9.16: A Main actor

9.3.1 Modelling the NetBill protocol into Uppaal SMC
A set of constants and sub-range types are introduced, which give dimension to
each entity category (actors, messages, delays, PUs, etc.) and provide unique

161

Chapter 9. Case Studies

ids to each category instance. In addition to the other parameters introduced in

Figure 9.17: Global declarations of the transformed NetBill model

section 7.4, useful for modeling the message exchanges, Fig. 9.18 depicts other
global declarations, including the possible states of Customer and Merchant
and the commitment and knowledge declarations.

Figures 9.19 and 9.20 depict respectively the TA for the Customer and

Figure 9.18: Other global declarations

Merchant, and the Main actor of the NetBill model. The template processes
admit only one parameter self , whose type is respectively cus_id, mer_id and
main_id.

9.3.2 Experimental results
The following analysis claims that it is not always necessary to write complex
and unreadable specifications. Simple, not nested queries in the TCTL subset
supported by Uppaal are sufficient for property checking of MAS models like the
NetBill protocol. In addition, Theatre modelling also opens to the use of the
Statistical Model Checker of Uppaal which permits quantitative evaluation,
that is estimating probability measures for event occurrence, in probabilistic
models not considered in [12].

Non-deterministic analysis

The Uppaal reduced NetBill protocol was first exhaustively verified by the
symbolic model checker, which builds the (hopefully finite) model state graph.
This qualitative analysis is very important because it allows to check general
properties like the absence of deadlocks, various kinds of liveness issues etc. The
NetBill model with one single pair < cus,mer > (N = 1) was verified through
the following queries. The status of a commitment c, as known to an actor a,
can be checked by the epistemic (Knowledge) function: K(c, a).

162

Chapter 9. Case Studies

Figure 9.19: Actor automaton

Figure 9.20: A Main actor automaton

163

Chapter 9. Case Studies

It is worth noting (see Fig. 9.17) that customer with id 0 interacts with merchant
id N and so forth.

1) A[]!deadlock (satisfied)

The model has no deadlocked state.

2) Customer(0).cs! = S0�� > Customer(0).cs == S0 (satisfied)

Merchant(N).cs! = S0�� > Merchant(N).cs == S0 (satisfied)

After being started, actors regularly come back to their home state.

3) A[]Customer(0).cs == S0&&Merchant(N).cs == S0 imply now <= 2

(satisfied; but it is not satisfied with now<=1)

Customer and Merchant come back to their home state after at most 2 time
units. This in turn anticipates the duration of a simulation experiment.

4) Merchant(N).cs == S6�� > K(DELIV ER,N) == Fulfilled

&&K(DELIV ER, 0) == Fulfilled

(satisfied) (satisfied)

When the merchant is in state S6, it necessarily follows that both actors know
the DELIV ER commitment is fulfilled.

5) K(DELIV ER, 0) == Fulfilled�� > K(DELIV ER,N) == Fulfilled (satisfied)

If the Customer knows DELIV ER is fulfilled, it necessarily happens the same
for the Merchant.

6) E <> K(DELIV ER, 0) == Fulfilled (satisfied)

It can happen that the customer knows the DELIV ER commitment is fulfilled.

7) K(PAY, 0) == Fulfilled�� > K(DELIV ER, 0) == Fulfilled (not satisfied)

Even after payment, the customer is not guaranteed that the DELIV ER com-
mitment gets fulfilled.
The above queries confirmed their results when, e.g., each actor is assigned to
a distinct processing unit (PU)(maximal parallelism), when all the actors are
allocated to the same PU , and when each pair of < cus,mer > is assigned to a
distinct and the Main runs on a separate PU .
To give an idea of the model checking performance, Table 9.1 collects the wall-
clock time and the RAM memory peak observed when launching the A[]!deadlock
query on some number N of pairs < cus,mer > when only one PU is used. With
N = 3 there is state explosion. Obviously, even one single pair < cus,mer >
enables the protocol to be analyzed.
Experiments refer to a Linux machine, Intel Xeon CPU E5-1603@2.80GHz, 32
GB, using Uppaal 4.1.19 64 bit which allows to exploit as much RAM is avail-
able.

164

Chapter 9. Case Studies

Table 9.1: Observed CIs with adaptation errors, ✏ = 0.01

N Wall-clock time (sec) RAM Memory Peak (MB)
1 ⇡ 0 7.6
2 4.55 72

Quantitative analysis

From the non-deterministic analysis it emerged that it can happen that the cus-
tomer eventually knows the DELIV ER commitment is fulfilled (query 6)). In
addition (see query 7)), even after the payment, the product is not guaranteed
to be received. This is a consequence of the model uncertainty expressed by
probabilistic behavior. As a consequence, it is interesting to estimate the prob-
ability with which events can occur.
In the following, the use of Uppaal default statistical options is assumed, which
means, e.g., the uncertainty error of a confidence interval is ✏ = 0.05, 95% of
confidence degree.
The query:

8) simulate[<= 100]Customer(0).cs

makes one simulation of the model lasting 100 time units and asks to monitor
the changes with time of the Customer current state variable cs. The generated
Fig. 9.21 confirms functional behavior already observed during the exhaustive
model checking. The customer, after its operation, regularly returns to its home
state S0 (= 1). From Fig. 9.21 one can see that sometimes the customer takes
the S9 state (= 10) to which corresponds the fulfillment of the DELIV ER
commitment (see also Fig. 9.14).
The qualitative behavior of the DELIV ER commitment as observed from the

Figure 9.21: Evolution of the Customer state following query 8)

Customer viewpoint is specifically collected and shown in Fig. 9.22 generated
by the query:

9) simulate[<= 50]K(DELIV ER, 0)

Fig. 9.22 testifies there are cases when the DELIV ER commitment can effec-
tively be fulfilled (Fulfilled = 2) for the Customer.

165

Chapter 9. Case Studies

The following query asks to estimate, through a certain number of simulation ex-
periments (each one lasting in 2 time units), the probability for the DELIV ER
commitment to be fulfilled as perceived by the Customer:

10) Pr[<= 3](<> K(DELIV ER, 0) == Fulfilled)

Uppaal SMC, after 339 runs, proposes a confidence interval (CI) of [0.650287, 0.750272]
with 95% confidence. The MITL query:

Figure 9.22: Monitored K(DELIV ER, 0) values with query 9)

11) Pr(<> [0, 3](K(PAY, 0) == FulfilledU [0, 1]K(DELIV ER, 0) == Fulfilled))

estimates the probability of the event: “assuming that at an instant in [0, 3]
the PAY commitment is fulfilled for the customer, what is the probability that
within 1 time unit the DELIV ER commitment gets fulfilled for the customer? ”.
Using 738 runs Uppaal SMC proposes a CI of [0.647832, 0.747832] with 95%
confidence.

The results of queries 10) and 11) were further validated by decorating the

Figure 9.23: Direct estimation of K(DELIV ER, 0) fulfillment probability

NetBill protocol model with two double variables nr and sr which respectively

166

Chapter 9. Case Studies

counts the total number of iterations of the customer and the number of suc-
cessful iterations when the customer receives the Delivery message, switches to
state S7 and fulfills the DELIV ER commitment. The function deliver_pr()
returns initially 0.0 then it returns the instantaneous value of the ratio sr/nr
which gives an estimation of the fulfillment probability of the DELIV ER com-
mitment. Fig. 9.23 was generated by Uppaal SMC through the query:

12) simulate[<= 5000]deliver_pr()

which plots the values of deliver_pr() vs. time, which are in good agree with
the results of queries 10) and 11).

167

Chapter 10
Modelling and Analysis of

Multi-Agent Systems Using

Uppaal SMC 1

This chapter proposes a novel approach to modelling and analysis of complex
multi-agent systems. The approach is based on actors and asynchronous mes-
sage passing, and exploits the Uppaal Statistical Model Checker (SMC) for the
experiments. Uppaal SMC is interesting because it automates simulations by
predicting the number of executions capable of ensuring a required output ac-
curacy, uses statistical techniques (Monte Carlo-like simulations and sequential
hypothesis testing) for extracting quantitative measures from the simulation
runs, and offers a temporal logic query language to express property queries
tailored to the application needs. The paper describes the approach, clarifies
its structural translation on top of Uppaal SMC and demonstrates its prac-
tical usefulness through modelling and analysis of a large scale and adaptive
version of the Iterated Prisoner’s Dilemma (IPD) problem. The case study con-
firms known properties, namely the emergence of cooperation under context
preservation, that is when the player interaction links are preserved during the
game, but it also suggests some new quantitative measures about the temporal
behavior which were not previously pointed out.

10.1 Introduction
Multi-agent systems (MAS) [259]are widely recognized as an important paradigm
for modelling and analysis through simulation (M&S) of complex and adaptive
systems [201, 74]. Power and flexibility of MAS derive from their ability of mod-
elling both the individual behavior of agents and their social interactions, i.e.,
the exchanges of information, and then the possibility of observing the emer-
gence of properties at the society/population level. Agents are characterized by
their basic abilities [259] of autonomy, sociality, pro-activity, “intelligence” for

1The material in this chapter is related to publications [189]

168

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

deliberative behavior, learning and adaptation mechanisms, and so forth.
In this work a minimal yet efficient actor computation model [10, 73] is adopted
for supporting MAS, which addresses complex models. A key feature of this
framework is a light-weight notion of actors which (i) are thread-less agents, (ii)
hide an internal data status, and (iii) communicate each other by asynchronous
message passing. Message exchanges are ultimately regulated by a customizable
control structure which can reason on time (simulated or real-time). The actor
framework can be effectively hosted by popular languages like Java.
An original contribution is a structural translation of a MAS actor model into
the terms of Uppaal SMC [90]. Challenging is an effective support of asyn-
chronous timed message passing. Main motivations underlying the proposed
work are the following (i) using a formal modelling tool based on Timed Au-
tomata [17] to capture, in a natural way, actor behaviors and message exchanges;
(ii) expressing in the associated temporal logic language, model specific proper-
ties to be checked on the MAS model by simulations; (iii) exploiting statistical
model checking techniques [264, 153], that is automatizing multiple executions
of a MAS model, estimating the required number of simulation runs, and using
statistical properties (Monte Carlo-like simulations and sequential hypothesis
testing) to infer system properties from the observables of the various runs.
Uppaal SMC was chosen among other competitive tools like PRISM [120],
Plasma LAB [4] etc., because it is a popular and efficient toolbox based on a
stochastic extension of Timed Automata [17, 90], it supports graphical, intuitive
modelling and offers high-level data structures and functions which improve the
modelling of complex systems. As for PRISM (see e.g. [128, 129]), Uppaal
SMC can also be exploited for modelling and quantitative assessment of timing
constraints in probabilistic real-time systems [194].
To the best of authors’ knowledge, this is a first attempt to support general
actor-based MAS models and their quantitative evaluation using Uppaal SMC,
with the approach which can be concretely used by modelling and simulation
practitioners and engineers.
The approach proposed in this paper is practically demonstrated through a case
study concerned with a complex and adaptive model based on the Iterated Pris-
oner’s Dilemma (IPD) game [23]. The model is challenging and aims at studying
the emergence of cooperation among competitive agents in the presence of dif-
ferent social interaction networks. SMC results confirm previous indications of
Axelrod et al. work, that is that cooperation is possible among players when
their interaction links are preserved during the game execution. In addition,
the accomplished detailed probabilistic analysis permits to observe some new
properties not previously revealed.

10.2 Modelling the Iterated Prisoner’s Dilemma
The following considers, as a case study, a modelling of the Iterated Prisoner’s
Dilemma which is a variant of the basic Prisoner’s Dilemma (PD) game [24, 259].
PD is a binary game in which two players have to decide independently and with-
out any form of communication, between two alternative choices: to defect (D
, e.g., 0) or to cooperate (C , e.g., 1). The decision implies that each player
gets a payoff as follows: (D,D) ! (P, P), (D,C) ! (T, S), (C,D) ! (S, T),
(C,C) ! (R,R), where P means punishment for mutual defect, T temptation

169

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

to defect, S sucker’s payoff, and R reward for mutual cooperation. Classi-
cally T > R > P > S and R > (S + T)/2. Common adopted values are
S = 0, P = 1, R = 3, T = 5.
Under the uncertainty of partner decision, players acting rationally direct them-
selves to defect in order to optimize their payoff, with (D,D) being the Nash
equilibrium of the game. Indeed, players spontaneously are driven by selfish
behavior due to the suspect about the opponent decision. In this situation, it
would be extremely risky to decide C. In fact, if the partner choses D, the first
player would achieve a 0 payoff and the partner the maximum reward of 5.
But if the one shot game admits only the outcome of (D,D), things are not
determinate in the case the game is long iterated, with the number of iterations
being unknown to players. The Axelrod book [24] triggered much interest in the
social science toward studying conditions under which cooperation can emerge.
In the basic Iterated Prisoner’s Dilemma (IPD) (see Axelrod tournaments [24,
23] a certain number of players N , each equipped with a suitable strategy, re-
peatedly plays in turn with each of the other N � 1 partners and the payoff
is accumulated so as to detect some dominant strategy. Each player has the
memory of what the opponent did in the previous move. The winner of the first
tournament was the strategy Tit-for-Tat (TFT) proposed by Anatol Rapaport.
TFT cooperates on the first move (i.e., it is a nice strategy) and then mimics
the opponent decision taken in the previous move. Also in the second Axel-
rod tournament, with more competing strategies, TFT emerged as the winner
strategy, but in addition the experiment revealed that “altruistic” strategies in-
stead of “selfish” and “greedy” behavior, in the long time can do better toward
cooperation, particularly if strategies can evolve and adapt, thus learning from
the experience, during the iterated game.
In [86, 23] the IPD was studied from a different perspective, to investigate the
role of a social interaction network upon player behavior. In particular, the goal
was to check the influence of link persistence (also said context preservation) on
the emergence of cooperation, in the presence of learning and evolution of the
strategies. The study confirms cooperation is possible under link persistence.

10.2.1 Case study description
The case study consists of a time step simulation of a large MAS of N = 256
players, where each agent plays PD with four neighbors whose identity varies
with the adopted interaction network. Three cases are investigated:

• PTG - a persistent toroidal 16 ⇥ 16 grid with neighbors established ac-
cording to the Manhattan neighborhood (NEWS - North, East, South and
West);

• PRN - a persistent random network, where neighbors are established
randomly once at the start of each run;

• TRN - a temporary random network, where neighbors are re-defined at
each step (also said period).

At the beginning of each simulation run, each player is assigned a strategy
(y, p, q) of three probability values in [0, 1], where y is the probability of choosing
C at the first period, p is the probability of choosing C when the partner’s last

170

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

move was C, and q is the probability of choosing C when the partner’s last
move was D. The space of strategies includes the binary strategies ALL � C
(y = p = q = 1), TFT (y = p = 1, q = 0), anti TFT (aTFT : y = p = 0, q = 1)
and ALL �D (y = p = q = 0). The model initially configures the population
of shuffled agents by an even distribution of strategies where y = p and p and q
can assume the sixteen probability values in the vector [1/32, 3/32, . . . , 31/32].
At each period, each player plays 4 times the PD game separately with each of
its neighbors, and the payoff is accumulated (and finally normalized) and the
last move recorded, move by move, for both the player and its neighbors.
At the end of each period, following the PD moves, each player A adapts its
behavior by copying (imitation) the strategy of the best performing neighbor
(say it B), would the payoff of B be strictly greater than the period payoff
of A. In addition, since the adaptation process can realistically be affected by
errors (a comparison error can occur during the selection of the best performing
neighbor, and a copying error can introduce a noise during the copying process)
the following hypothesis are made. At each adaptation time, there exists a 10%
chance that the comparison between A and B payoffs is wrongly performed and
the best payoff misunderstood. Moreover, even in the case the strategy of A was
not replaced with that of B, there is 10% chance that each “gene” of A strategy,
i.e., the parameters y, p, q, be affected by a Gaussian noise with mean 0 and
standard deviation 0.4.
The main goal of the case study is to monitor the fitness of the model vs.
time, using a number T of 2500 steps or periods. First the average payoff per
period is determined by adding all the period payoff of players and dividing the
total period payoff by the population size N . Then the fitness is extracted by
accumulating, at each time t, all the population average payoffs up to t, and
dividing this sum by t. Other observables are the average values at each time
of the probabilities p and q, averaged over all the population, so as to monitor
the trend of strategy adaptation. Of course, a fitness value definitely moving
toward 1 mirrors the emergence of defection, whereas its tendency to 3 (actually
to a value greater than 2) testifies cooperation. The above described observables
must be checked in all the possible model configurations.

10.2.2 An IPD actor-based model
The model (see Fig. 10.1) consists of N + 1 actors: one Manager actor who
directs the games, and N players who actually do the game actions.
A minimal Main program is responsible for creating the actors and sending an

Figure 10.1: IPD actor model

init() message to initialize the Manager. The Manager continues by initializing
all the players by sending to each of them an init() message. After initialization,

171

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

the Manager enters its main cycle of operations. Each cycle begins by the
Manager which sends to itself a next() message (see also Fig. 10.2) which lasts
one time units, thus realizing the basic step or period. On receiving next()
the Manager sends to all the players a play() message. Each player reacts by
executing the 4 moves with each of its neighbors and accumulates the period
playoff. After that, a done() message is sent to the Manager. When all the
done messages are received, the Manager broadcasts an adapt() message to
all the players so as to trigger the learning-and-adaptation phase. Finally, the
players send a done() message to the Manager. When all the N done messages
are received, the Manager starts the next cycle and so forth. It should be
noted that the initialization messages are sent with a 0 delay. Since the next()
message is received after one time unit is elapsed, it is guaranteed the model
has finished the initialization phase before the first cycle begins. This explains
why done messages are avoided during the IPD initialization.
When the interaction network is persistent during the whole game, each player
establishes its neighborhood at the initialization time. In the case of a temporary
network, links are re-defined just before starting the next cycle of operations.

Figure 10.2: Message exchanges during IPD operation

10.3 A structural translation from actors to Up-
paal SMC

Actors as finite state machines, can be naturally mapped onto Uppaal SMC
template automata. The subtle point of the translation is the achievement of
dynamic asynchronous message passing and the control machine design which
is in charge of collecting sent messages in a cloud of messages and dispatching
them, one at a time, to the relevant receivers thus ensuring the macro-step
semantics: only one message can be under processing at any instant in time, and
its execution is atomic. The next message will be selected and dispatched only
at the end of the current message reaction. Concurrent messages, i.e., messages
which are scheduled to occur at the same time, are selected and dispatched

172

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

in a non-deterministic way. Details of the translation will be provided in the
following using the IPD model as an example.

10.3.1 Actor and message naming
Actors and messages are supposed to be identified by unique integer names
which ultimately depend from the model at hand. The idea is to introduce
distinct integer subrange types for all the model actors and separately for the
instances of each particular actor type. For the IPD model, the following global
declarations can be introduced:

const i n t N= 256 ; // p laye r populat ion
const i n t dim=16; // sq r t (N)
typede f i n t [0 ,N�1] pid ; // p laye r i d s subrange type
typede f i n t [N,N] mid ; // manager i d s subrange type
typede f i n t [0 ,N] a id ; // agent i d s subrange type

Using a const pid a parameter for the Player automaton (see Fig. 10.5b),
and a const mid m parameter for the Manager automaton (see Fig. 10.5a)
guarantees N instances will be created of the Player template automaton, with
the ids ranging from 0 to N�1, and only one instance for the Manager template
automaton whose id is N . Messages of the IPD model can be classified as follows:

\\message i d s
const i n t INIT= 0 ;
const i n t PLAY= 1 ;
const i n t ADAPT= 2 ;
const i n t NEXT= 3 ;
const i n t DONE= 4 ;

Then the following sub-range type can be introduced:

const i n t MSG= 5 ;
typede f i n t [0 ,MSG�1] msg_id ;

To allow the control machine to dispatch a message to an actor automaton, the
following matrix of channels (it should be recalled that Uppaal SMC permits
only broadcast synchronizations among automata) is used:

broadcast chan msgsrv [a id] [msg_id] ;

where the first index is the id of the recipient actor and the second index iden-
tifies the delivered message. Although msgsrv[·][·] channels are broadcast, the
use of a specific actor id and message id restricts the potential actor receivers
to only the message destination actor.

10.3.2 Dynamic messages
A straightforward and elegant solution for dealing with dynamic message instan-
tiation (send operation) and scheduling can be directly based on the dynamic
automata which Uppaal SMC supports. A dynamic automaton must be an-
nounced in the global declarations thus:

dynamic tName(params) ; // only i n t params admitted

173

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) Immediate message (b) Timed message

Figure 10.3: Message automata

and its behavior specified as for the regular timed automata. The dynamic
automaton can then be instantiated in the update of a command with a spawn
expression:

spawn tName(args) ;

Similarly, it can be terminated by an exit() expression in the update of a com-
mand in the tName template process.
Two typical examples of message dynamic templates, respectively for an instan-
taneous (or immediate) message and a timed message, are shown in the Fig.
10.3a and 10.3b.

Message automata, here tailored to the IPD model, start in an urgent loca-
tion and admit two key locations: scheduled and delivered. The scheduled can
be time-sensitive (possibly stochastic). In Fig. 10.3b the message cannot be
delivered before 1 time unit is elapsed from the send time. In Fig. 10.3a the
scheduled message must be immediately delivered. Delivering is achieved by
sending a synchronization over the msgsrv channel corresponding to the desti-
nation actor and the involved message id. Dynamic instantiation of a message
automaton occurs in an actor automaton and it is supposed to transmit as pa-
rameter the identity of the recipient actor (see the a parameter in Fig. 10.3a).
Although dynamic messages are a flexible and elegant mechanism, a penalty in
the execution performance can practically prohibit its exploitation, especially
in large MAS models like the IPD model. In preliminary work [195], the IPD
model was completely prototyped using only dynamic message instantiations.
The consequence was that a single simulation of 2500 time steps required about
6 hours of wall-clock time (WCT) to complete.
In this paper a more efficient solution is adopted which is based on statically
pre-allocated automata for all the messages involved in the IPD model. Mes-
sage automata are dynamically activated by specific synchronization channels.
When a message is eventually dispatched, the corresponding automaton resets
its behavior so as to be subsequently re-used and so forth. After a careful ex-
amination of the IPD model, two static automata were designed as depicted in
Fig. 10.4a and 10.4b, along with the following global declarations:

typede f i n t [INIT ,ADAPT] player_msg ;// p laye r message i d s
broadcast chan next , done [pid] , bSend [player_msg] ;

The parameterless StepMessage template automaton exists in one instance
only. It is activated by a synchronization over the scalar next channel. The

174

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) Immediate Message automaton (b) Timed StepMessage automa-

ton

Figure 10.4: Message automata

Message automaton, instead, is designed so as to preallocate N instances of
immediate messages. Towards this it is sufficient to parameterize the Message
template with the only parameter const pid p. The N instances of Message
serve all the purposes in the IPD model, and are continually re-used. The
Manager actor (see Fig. 10.5a) activates all the N instances of Message
through a broadcast send (see the bSend[] channel array) which specifies the
particular message to be sent to players among: INIT , PLAY and ADAPT .
On the other hand, following a PLAY or ADAPT message, a player sends
back to Manager (which has the id N) a done reply using the particular done[·]
channel indexed by the player id p. This way, the synchronization is heard only
by the certainly free Message instance corresponding to p.
To give an idea of the practical impact of the new message design, a simulation
of 2500 time steps now lasts in than 17 minutes of wall-clock time.

10.3.3 Actor automata
Figures 10.5a and 10.5b portray respectively the automaton of the Manager and
that of the Player. An actor automaton receives a message server invocation
from a normal location, and then processes it through (in general) a cascade of
committed locations which ends in a normal location too.
A Main automaton is avoided by having that initially the Manager starts
its execution by initializing itself and then by broadcasting (through a bSend
channel) an INIT message to all the players. Then a next synchronization
is sent which causes the StepMessage (see Fig. 10.4b) to be activated. On
receiving a NEXT message, the Manager executes its basic cycle of operations
as stated in Fig. 10.2. As one can see from Fig. 10.5a, in the normal locations
WaitDone1 and WaitDone2, the N done messages from the players are awaited
and counted.
The finite state machine of the Player automaton in Fig. 10.5b, first waits
for an INIT message, then it expects a PLAY and then an ADAPT message.
The response actions are purposely confined in the functions init_player(),
do_play() and do_adapt(). After a PLAY or ADAPT , a DONE message is
sent to the Manager.
Both automata in Fig. 10.5a and Fig. 10.5b are finite state machines. In

175

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

reality, only the Manager needs a finite state machine behavior. Since the
Manager asks the player reactions in the right order (first for INIT , then
for PLAY and then for ADAPT repeatedly) the Player automaton can more
easily be modelled according to the “pure reactive” style of agents shown in Fig.
10.5c. This version of the actor illustrates the “input determinism” principle
required by Uppaal SMC: from a location only one edge can exit with the
next received message. As a general rule, a pure reactive actor model can be
organized according to a couple of locations such as Receive and Select. To the
edge outgoing Receive is attached a command with a non-deterministic selection
of the received message id in an input msgsrv synchronization. Then in the
committed Select location, the particular message id is checked and a cascade
of committed locations is entered, which realizes the corresponding reaction. At
the reaction end, the Receive location is re-entered.

10.3.4 Other global declaration
The following are some other global declarations useful for the operation of the
IPD model.

const i n t north=0, ea s t =1, south=2, west=3; // l i n k s
typede f i n t [north , west] l i n k ;
pid ngh [pid [[l i n k] ; // agent ne ighbors
const i n t D=0, C=1;
typede f i n t [D, C] d e c i s i o n ;
const i n t MOVES = 4 ; //nr o f moves per pa i r o f p l aye r s per time step
const i n t NONE=�1;
i n t [NONE, C] l a s t [pid] [l i n k] ;
double y [pid] , p [pid] , q [pid] ; // agent s t r a t e g i e s
i n t [NONE, 20] payo f f [pid] [l i n k] ;
double per iod_payof f [pid] ;
double t o tpayo f f =0.0 ; // t o t a l accumulated payo f f per time step
const i n t [0 , 5] PAYOFF[d e c i s i o n] [d e c i s i o n]=
{{1 ,5} ,//{DD,DC}
{0 ,3}} ;//{CD,CC}
c l o ck now ; // cur rent s imulated time

Player links are conventionally named according to the Manhattan neighbor-
hood. However, only for the persistent toroidal grid (PTG) the four players
stored in the neighbor matrix ngh[pid][link] effectively mirror the partners of
a given player at north, east, south and west positions in the grid. In the
case of a random network topology (PRN -Persistent Random Network, and
TRN -Temporary Random Network), the four links are in reality established
randomly, but avoiding duplicate neighbors and having the player as a neighbor
of itself. The array last[pid][link] stores the last move taken by a player with
respect to a certain link.
At the initialization time (see the initialize() function of Manager in Fig.
10.5a) last is set to undefined (the NONE value is used). The matrix payoff [pid][link]
stores the payoff of a player following the four moves with each partner at the
four links. The period_payoff [pid] holds the average payoff of a given player
along its four links. The scalar totpayoff accumulates the payoff averaged over
the entire population. The constant PAY OFF matrix furnishes the earned

176

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) The Manager actor automaton

(b) The P layer actor automaton

(c) A pure reactive Manager automaton

Figure 10.5: Message automata

177

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

payoff of each partner of a pair of competing players.
Variables like totpayoff and period_payoff are examples of “decoration vari-
ables”, useful for extracting interesting properties of the model. At the start of
each Manager cycle (see the reset() function in Fig. 10.5a), the payoff values
of each player along its four links are set to NONE. All of this is a key to
handle “reciprocity”, i.e., the fact that if A is playing against B, both A and B
have to store their achieved result. This in turn avoids to repeat unnecessary
moves of B vs. A. The reset() function also updates the totpayoff variable by
adding to it the average payoff computed over the entire population. At each
time step, the ratio between the totpayoff with current time now (except for
the case when now is 0.0) furnishes the instantaneous fitness value of the IPD
model (see Fig. 10.6).

Figure 10.6: Fitness value at current time step

10.4 Experimental work
The IPD model was thoroughly investigated, using the MITL temporal logic,
about its functional and temporal behavior. For simplicity, default statistical
options of Uppaal SMC were used where, e.g., the uncertainty probability is
✏ = 0.05. A lower value for ✏ would ensure a more accurate confidence interval
estimation at the cost of increasing significantly the number of required runs
and the corresponding wall clock time.

10.4.1 Debugging queries
Some queries were preliminarily issued to check specifically the functional be-
havior of the model. In particular, the following query was used to check that
effectively, after the Manager broadcasts a PLAY message to all the players,
the Manager then will receive N DONE messages, stating that all the player
actors have completed their moves at current time.

Pr[<=5](<> Manager (N) . WaitDone1 && Manager (N) . p==N�1)

Uppaal SMC responds with runs and with a probability estimation having a
confidence interval (CI) of [0.902606, 1] with 95% of confidence. Therefore, the
event is almost certain. The same query was issued with reference to WaitDone2
and Uppaal SMC responds with the same probability estimation. For demon-
stration purposes, the following query was also used to confirm the prediction
about WaitDone2:

Pr [< >[1 ,1] (Manager (N) . WaitDone2 U[0 , 0] Manager (N) . p==N�1))

This query asks about the probability that being at time 1 the state predicate
Manager(N).WaitDone2 true, following this, and in 0 time (as required by
the until time interval [0, 0]), it would occur that the p counter of the Manager

178

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

reaches the value N � 1. Uppaal SMC responds, after 738 runs, with a CI of
[0.95, 1] with 95% of confidence.
The following query was used to check that effectively, after a PLAY message,
a player will receive, at the same time, an ADAPT message from the Manager.
As an example, the query was directed to the process instance Player(0).

Pr [< >[1 ,1] (Player (0) . msg==PLAY U[0 , 0] Player (0) . msg==ADAPT))

Again, Uppaal SMC proposes a CI of [0.95, 1] 95%, after 738 runs.

10.4.2 Transient behavior
Some experiments were devoted to observing the shape of the average period-
payoff in the first few time steps. The following query was used:

s imulate [<=50]{ avg_payoff ()}

to show the value of the average payoff in the first 50 steps. Results for the
PTG model in the presence of adaptation errors are shown in Fig. 10.7. In
reality, the basic behavior holds with or without adaptation errors and also for
PRN and TRN topologies. Fig. 10.7 confirms the indications in [86] at pages
24 and 42. The average payoff starts at 2.25 then sharply decreases, after which
it will tend to a final possible regime. The initial value is due to an equivalent
average strategy (y, p, q) of (.5, .5, .5) being randomly initially distributed. The
sharp decline is due to the presence of akin ALL�C strategies which play with
akin ALL�D strategies. As a consequence, ALL�D tends to dominate, but
as ALL�D plays with other ALL�D it causes a sudden decrease in the payoff.

Figure 10.7: Average payoff in the first 50 steps - with adaptation errors

The steady-state analysis was directed to studying the possible emergence
of a cooperation regime in two cases: (a) scenario-1 - each game per period
consists of the 4 moves and the last move is recorded and influences the next
move in the same game. Of course, strategy adaptations are propagated from a
period to the next one; (b) scenario-2 - the last move of a game affects the first
move in the next period. In the scenario- 1 the array last (see section 10.3.4) is
reset at each period. In the scenario-2 the array last is never reset.

179

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

10.4.3 Emergence of cooperation in the scenario-1
The six models PTG, PRN and TRN with and without adaptation errors, were
repeatedly studied using the query:

s imulate [<=2500]{ avg_payoff () , f i t n e s s () , avg_p () , avg_q ()}

where the average payoff at the population level, the fitness and the average
values of the agent probabilities p and q are monitored. Figures from 10.8a to
10.9a refer to the case no adaptation errors are introduced. Figures from 10.9b
to 10.9d depict collected results when adaptation errors plus noise are possible
at each period.
As expected, the evolution of IPD without errors tends to have small fluctuations
and to stabilize soon depending on the initial random distribution of strategies
to agents and ultimately on “who talks with whom”. As a consequence, both
the attainment of a cooperative regime (see Fig. 10.8a) or of a defective regime
(see Fig. 10.8b) is possible for a persistent interaction network. For a transitory
network like TRN , instead, the defective regime was always observed.

(a) PTG fitness() vs. time, no errors

(b) PRN fitness() vs. time, no errors

Figure 10.8: Experimental results for the scenario 1

In the case adaptation errors are admitted, both persistent interaction networks
PTG (Fig. 10.9b) and (Fig. 10.9c) testify the attainment of a cooperative
regime with a steady state fitness() value of about 2.5. The TRN network,
though, always confirm the achievement of a defective regime. As shown in Fig.

180

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

Table 10.1: Observed CIs with adaptation errors, ✏ = 0.01

Model) Confidence Interval (95%) Number of runs
PTG [0.980044,1] 183
PRN [0.980044,1] 183
TRN [0, 0.019956] 183

from 10.9b to 10.9d, the adaptation errors imply a greater fluctuation in the
payoff values, caused by the dynamic creation of (y, p, q) new strategies in the
agent population.

The attainment of a cooperative regime in the presence of adaptation errors,
was further checked by using the query:

Pr [<=2500] ([] (now<2000 | | f i t n e s s () >= 2 . 3))

which estimates the probability that after 2000 time steps a strictly cooperative
fitness() value would emerge. The threshold of 2.3 was chosen according to
[23] page 343, as a minimal expectation following the value of 2.25 of an initial
random population.
For both PTG and PRN networks, after 36 runs, it emerged a confidence
interval of [0.902606, 1] with of confidence 95%, indicating a high occurrence
probability. For the TRN network, instead, a CI of [0, 0.0973938] 95% was
proposed, thus witnessing the event has a very low probability of occurrence.
Changing the probability uncertainty from ✏ = 0.05 (default) to ✏ = 0.01, implies
Uppaal SMC uses more runs and proposes the confidence intervals shown in
Table 10.1, thus even better mirroring the event of achievement of a cooperative
regime is almost guaranteed for persistent networks. The CI for TRN testifies
the attainment of a defective regime.
In the case of absence of adaptation errors, the query

Pr [<=2500] ([] (now<2000 | | f i t n e s s () >= 2 . 3))

proposes for PTG, after 376 runs, a CI of [0.300046, 0.399964] 95%, and for
PRN , after 383 runs, a CI of [0.339927, 0.43987] 95%. All of this indicates
that in the case of no errors, cooperation is possible although with a smaller
probability of occurrence.

It is worth noting that the above presented detailed probability estimations
are not part of previous work, e.g., in [23] .

10.4.4 Emergence of cooperation in the scenario-2
The same experiments discussed in the previous subsection were repeated in
the case of scenario-2, where the last move of the game of a player in a given
period, is exploited and affects the first move of the game of the player in
the next period. Such kind of exploration was not covered in [23] . However,
these experiments too are capable of drawing some light about the emergence
of cooperation in a different context of application of IPD. For simplicity, in the
Figures from 10.10a to 10.10c only the fitness() behavior, with the adaptation
errors allowed, is reported.

As one can see from Fig. 10.10a and Fig. 10.10b also in the scenario-2 a
cooperation regime can ultimately be reached for the PTG and PRN networks,
although now with a more modest cooperation level (about). The TRN network

181

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) TRN fitness() vs. time, no errors

(b) PTG fitness() vs. time, no errors

(c) PRN fitness() vs. time, no errors

(d) TRN fitness() vs. time, no errors

Figure 10.9: Experimental results for the scenario 1

182

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) PTG fitness() vs. time, no errors

(b) PRN fitness() vs. time, no errors

(c) TRN fitness() vs. time, no errors

Figure 10.10: Experimental results for the scenario 2

183

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

Table 10.2: Observed CIs in the presence of adaptation errors

Model) Confidence Interval (95%) Number of runs
PTG [0.902606,1] 36
PRN [0.87865,0.978536] 118
TRN [0, 0.0973938] 36

Table 10.3: Observed CIs without adaptation errors

Model) Confidence Interval (95%) Number of runs
PTG [0.18312,0.282947] 291
PRN [0.222444,0.322213] 322
TRN [0, 0.0973938] 36

continues to exhibit only the defective regime (Fig. 10.10c). In particular, the
query:

Pr [<=2500] ([] (now<1800 | | f i t n e s s () >= 2 . 0))

proposes the confidence intervals reported in the Table 10.2.
The same query, launched on the models without adaptation errors, sug-

gested the confidence intervals shown in Table 10.2.
Table 10.2 confirms also in the scenario-2 a cooperation regime can be finally

attained, when adaptation errors are admitted. Without errors (see Table 10.3)
a cooperation regime cannot be excluded, but has a lower occurrence probability.
Such probabilities are also smaller than the same probabilities observed in the
scenario-1 under the same setting.

10.4.5 Model validation
The Uppaal SMC models were validated mostly by referring to previous Ax-
elrod work. In particular, experimental results concerning the scenario-1 (no
memory between consecutive periods of the last move of players) are in good
agreement with the results documented in [86][23] . Further derived results in
this paper about scenario-2 (there is the memory of the last move of players
between consecutive periods) represent a more challenging application context
which anyway follows the shape of the results monitored in the scenario-1 al-
though with a smaller level of the achievable cooperation.

The Uppaal SMC models were also implemented in Java as another source
of validation. Figure 10.11a and 10.11b show the observed fitness() from the
Java models respectively in the scenario-1 and in the scenario-2, with adapta-
tion errors included. The curves are the average of 100 runs.
The developed IPD models and the obtained experimental results confirm the
intuition that link persistence, i.e., playing with the same partners throughout
the game, is the key for cooperation because it favors players trustiness. All of
this has an obvious interpretation nowadays when one considers people interac-
tions through a social network.
Experiments were carried out on a Linux machine, Intel Xeon CPU E5-1603@2.80GHz,
32GB, using Uppaal 4.1.19 64bit.

184

Chapter 10. Modelling and Analysis of Multi-Agent Systems Using

Uppaal

(a) fitness() vs. time, scenario-1

(b) fitness() vs. time, scenario-2

Figure 10.11: Observed fitness()

185

Chapter 11
Conclusions

The work described in this thesis focusses on the development and application of
the Theatre actor system [196]. Theatre is a mature control-based software
engineering framework, which favors the construction of predictable distributed
probabilistic and timed systems based on thread-less actors and asynchronous
message passing. Theatre makes it possible to structure a system as a fed-
eration of theatres (computing nodes or Logical Processes-LPs). Each theatre
hosts a collection of local actors whose evolution is regulated by a customizable
control form which manages a time notion and reflectively controls the message
exchanges (scheduling and dispatching) among actors. Starting from a prelimi-
nary prototype of Theatre which was achieved on top of Jade [78], the goal
was implementing a more efficient version directly upon the built-in mechanisms
of Java. In particular, an effective use of network sockets was realized which
improves distributed execution and enables migration of actors from a theatre
to another. In the course of this thesis, Theatre was adapted to work with
the programming style and timing model of Probabilistic and Timed Rebeca
(PTRebeca) [129], that is a well-established formal modelling language suited
to specifying and checking properties of complex probabilistic and timed actor
systems. A library of control forms was developed for the extended version of
Theatre, which supports both standalone and distributed versions of concur-
rent, simulation and real-time applications. Original contributions of this thesis
are as follows.

• Providing formal semantics to Theatre models, using a structural oper-
ational semantic approach [196, 129, 210].

• Defining a reduction of Theatre onto Uppaal model checkers, which
permits qualitative, non-deterministic analysis by exhaustive model check-
ing, and quantitative evaluation of model properties by statistical model
checking.

• Establishing a development methodology centered on the concept of model
continuity, that is transitioning, without distortions, a same model from
early analysis down to design and implementation, thus contributing to
the faithfulness of a final system synthesis to the analyzed model.

186

Chapter 11. Conclusions

• Experimenting with the use of Theatre in several case studies thus
demonstrating its effectiveness for formal modelling, verification, proto-
typing and implementation of time-dependent systems.

The described research work can be continued in the following directions.

• Improving formal verification of Theatre models by:

– Optimizing the Uppaal reduction of Theatre by, e.g., (a) avoiding
explicit message arguments transmission and emulating it by repli-
cated message servers in actor definition; (b) exploiting symmetry
reduction techniques [99].

– Implementing a tool similar to Afra for Rebeca [1] (or possibly di-
rectly adapting Afra to Theatre) which starting from the transition
system of a Theatre model formal operational semantics, can auto-
mate the generation of a single automaton process (or module) which
can be specialized either for Uppaal or for probabilistic model check-
ers such as PRISM or IMCA [129]. By avoiding the parallel composi-
tion of multiple components, the approach could ensure better model
scalability.

– Representing a Theatre model into the terms of some more ab-
stract modelling language like stochastic Time Petri Nets, which can
facilitate formal modelling and verification. Preliminary experience
is reported in [190, 191].

• Continuing experiments with the use of Theatre for studying and imple-
menting time-synchronization algorithms in large wireless sensor networks
[197], with a focus on energy saving. Clock alignment in these scenarios
can be essential for proper interpretation of large collection of data.

• Specializing the use of Theatre for cyber-physical systems design and
implementation with the possibility of including, during analysis, contin-
uous time components. Preliminary steps towards the development of
an hybrid version of Theatre, which separates in a clear way the as-
pects of a CPS model concerning the dynamical laws of the external en-
vironment (expressed by continuous modes), from their interaction with
the discrete-time, discrete-event actor-based controlling software, are de-
scribed in [198]. The experience treated in [78] based on the introduction
of a specialized component (envGateway) for interfacing the system envi-
ronment, appears as an interesting starting point for this endeavor.

• Exploiting Theatre actors for embedded real-time systems, IoT-based
applications and structural health monitoring and control systems [147].

187

Chapter 12
List of publications

International Conferences:

1. F. Cicirelli, L. Nigro, P.F. Sciammarella. “Agent-based Model Continuity
of Stochastic Time Petri nets”, in Proc. of 30th ECMS 2016, Regensburg,
Germany, May 31th - June 3rd, 2016.

2. F. Cicirelli, L. Nigro, P.F. Sciammarella. “Model Checking Mutual Ex-
clusion Algorithms Using UPPAAL”, Advances in Intelligent Systems and
Computing - ISSN 2194-5357, pp. 203-215, Springer, 2016.

3. F. Cicirelli, L. Nigro, P.F. Sciammarella.“Agents+Control: A Methodol-
ogy for CPSs”, in Proc. of IEEE/ACM 20th Int. Symp. on Distributed
Simulation and Real Time Application, 21-23 September, pp. 45-52, 2016.

4. D. L. Carní, D. Grimaldi, F. Lamonaca, P. F. Sciammarella, V. Spagnuolo.
“Setting-up of PPG scaling factors for SpO2% evaluation by smartphone”,
in Proc. of IEEE International Symposium on Medical Measurements and
Applications (MeMeA 2016), Benevento, Italy, May 15-18, 2016.

5. D. L. Carní, D. Grimaldi, F. Lamonaca, A. Nastro, P. F. Sciammarella, M.
Vasile. “Measurement technique for the healty and carious teeth based on
thermal analysis”, in Proc. of IEEE International Symposium on Medical
Measurements and Applications (MeMeA 2016), Benevento, Italy, May
15-18, 2016.

6. D.L. Carní, F. Cicirelli, D. Grimaldi, L. Nigro, P. F. Sciammarella. “Ex-
ploiting Model Continuity in Agent-based Cyber-Physical Systems”, Ad-
vances in Intelligent Systems and Computing, ISSN 2194-5357, Springer,
2017.

7. D.L. Carní, F. Cicirelli, D. Grimaldi, L. Nigro, P. F. Sciammarella. “Agent-
based Software Architecture for Distributed Measurement Systems and
Cyber-Physical Systems Design”, in Proc. of IEEE Int. Instrumentation
and Measurement Technology Conference (I2MTC 2017), Torino, May
22-25, 2017.

188

Paolo Francesco Sciammarella

Chapter 12. List of publications

8. L. Nigro, P. F. Sciammarella. “Statistical Model Checking of Multi-Agent
Systems”, in Proc. of 31st European Conference on Modelling and Simu-
lation (ECMS 2017), Budapest, May 23-26, 2017.

9. L. Nigro, P. F. Sciammarella. “Modelling and Analysis of Distributed
Asynchronous Actor Systems using Theatre”, Advances in Intelligent Sys-
tems and Computing, Springer, 2017.

10. L. Nigro, P. F. Sciammarella. “Statistical Model Checking of Distributed
Real-Time Actor Systems”, In Proceedings of 21st IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real-Time Applications
(DS-RT’17), Rome, October 18-20, 2017.

11. D. L. Carní, L. De Vito, F. Lamonaca, G. Mazzilli, M. Riccio, P.F. Sci-
ammarella. “An IoT-enabled Multi-Sensor Multi-user System for Human
Motion Measurements”, in Proc. of IEEE International Symposium on
Medical Measurements and Applications (MeMeA 2017), Rochester, USA,
May 7-10, 2017.

12. D. L. Carní, D. Grimaldi, F. Lamonaca, L. Martirano, P. F. Sciammarella.
“Towards a unified approach for Distributed Measurement System Tech-
nologies”, in Proc. Of IEEE International Conference on Environment and
Electrical Engineering (EEEIC 2017), Milan, Italy, June 6-9, 2017.

13. D.L. Carní, D. Grimaldi, F. Lamonaca, P. F. Sciammarella. “Mobile Ob-
ject to Speed Up the Synchronization of IoT Network”, in Proc. Of IEEE
International Workshop on Measurement and Networking (M&N 2017),
2017.

14. C. Nigro, L. Nigro, P. F. Sciammarella. “Model checking knowledge and
committments in multi-agent systems using actors and Uppaal”, 32nd Eu-
ropean Conf. on Modelling and Simulation (ECMS 2018), May 22-25,
Wilhelmshaven, Germany.

15. F. Cicirelli, L. Nigro, P. F. Sciammarella. “Seamless Development in Java
of Distributed Real-Time Systems using Actors”, Int. Symposium Simula-
tion and Process Modelling (ISSPM 2018), July 21-22, Shenyang, Liaon-
ing, China.

16. L. Nigro, P. F. Sciammarella. “Time synchronization in wireless sensor
networks: A modelling and analysis experience using Theatre”, The 22nd
International Symposium on Distributed Simulation and Real Time Ap-
plications (IEEE/ACM DS-RT 2018), October 15-17, Madrid, Spain.

17. D. L. Carní, F. Lamonaca, C. Scuro, P. F. Sciammarella, R. Olivito. “Syn-
chronization of IoT Layers for Structural Health Monitoring”, 2018 Work-
shop on Metrology for Industry 4.0 and IoT. IEEE, Brescia, Italy, April
16-18, 2018.

18. D. L. Carní, F. Lamonaca, C. Scuro, P. F. Sciammarella, R. Olivito. “In-
ternet of Things for Structural Health Monitoring”, 2018 Workshop on
Metrology for Industry 4.0 and IoT. IEEE, Brescia, Italy, April 16-18,
2018.

189

Paolo Francesco Sciammarella

Chapter 12. List of publications

19. C. Nigro, L. Nigro, P. F. Sciammarella. “Formal modelling and analysis of
probabilistic real-time systems”, Int. Congress on Information and Com-
munication Technology (ICICT 2019); Best paper award; London (UK),
25-26 February, Springer, Advances in Intelligent Systems and Computing,
ISBN Number - 2194-53572018, 2019.

20. C. Nigro, L. Nigro, P. F. Sciammarella. “Modelling and Analysis of Par-
tially Stochastic Time Petri Nets using UPPAAL Model Checkers”, In
Proc. of Computing Conference (CC 2019) London (UK), 16-17 July,
Springer, Advances in Intelligent Systems and Computing, 2019.

21. L. Nigro, P. F. Sciammarella. “Statistical Model Checking of Cyber-
Physical Systems using Hybrid Theatre”, In Proc. of Inteligent Systems
Conference (IntelliSys) 2019 London (UK), 5-6 September, Springer, Ad-
vances in Intelligent Systems and Computing, 2019.

22. L. Nigro, P. F. Sciammarella. “Verification of a Smart Power Control
Systems using Hybrid Actors”, IEEE WorldS4, 30-31 July, London, 2019.

Journals:

1. C. Nigro, L. Nigro, P. F. Sciammarella. “Modelling and Analysis of Multi-
Agent Systems Using Uppaal SMC”, Int. J. of Simulation and Process
Modelling, Vol. 13, No. 1, pp. 73-87, 2018.

2. F. Cicirelli, L. Nigro, P. F. Sciammarella. “Model continuity in Cyber-
Physical Systems: A control centered methodology based on Agents”,
Simulation Modelling Practice and Theory, Vol. 83, pp. 93-107, 2018,
doi 10.1016/j.simpat.2017.12.008.

3. L. Nigro, P. F. Sciammarella. “Qualitative and quantitative model check-
ing of distributed probabilistic timed actors”, Simulation Modelling Prac-
tice and Theory, doi 10.1016/j.simpat.2018.07.011, vol. 87 (September
2018), pp. 343-368.

4. F. Cicirelli, L. Nigro, P. F. Sciammarella. “Seamless Development in Java
of Distributed Real-Time Systems using Actors”, Int. J. of Simulation and
Process Modeling (IJSPM), in press, 2019.

5. D. L. Carní, D. Grimaldi, F. Lamonaca, L. Nigro, P. F. Sciammarella.
“From Distributed Measurement Systems To Cyber-Physical Systems: A
Design Approach”, International Journal of Computing, [S.l.], pp. 66-73,
June 2017. ISSN 2312-5381.

6. D. L. Carní, F. Lamonaca, C. Scuro, P. F. Sciammarella, R. Olivito. “In-
ternet of Things for Structural Health Monitoring”, IEEE Instrumentation
and Measurement Magazine, In press, 2019.

7. D. L. Carní, D. Grimaldi, F. Lamonaca, R. Olivito, C. Scuro, P. F. Sci-
ammarella. “A layered IoT-based architecture for distributed Structural
Health Monitoring System”, Acta Imeko, to appear, 2019.

8. C. Nigro, L. Nigro, P. F. Sciammarella. “Formal reasoning on knowledge
and commitments in multi-agent systems using theatre”, Journal of Sim-
ulation, submitted.

190

Paolo Francesco Sciammarella

Bibliography

[1] Afra: a system verifier. http://ece.ut.ac.ir/FML/afra.html.

[2] Arduino, web-site. https://www.arduino.cc.

[3] Foundation for intelligent physical agents, online. http://www.fipa.org.

[4] Plasma lab, web-site. https://project.inria.fr/plasma-lab/.

[5] Wireshark, web-site. http://www.wireshark.org.

[6] Shadi Abras, Stephane Ploix, Sylvie Pesty, and Mireille Jacomino. A
Multi-agent Home Automation System for Power Management, pages 59–
68. Springer Berlin Heidelberg, 2008.

[7] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Arni Hermann Reynisson,
Steinar Hugi Sigurdarson, and Marjan Sirjani. Modelling and simulation
of asynchronous real-time systems using timed rebeca. arXiv preprint
arXiv:1108.0228, 2011.

[8] Gul Agha, Carl Gunter, Michael Greenwald, Sanjeev Khanna, Jose
Meseguer, Koushik Sen, and Prasanna Thati. Formal modeling and analy-
sis of dos using probabilistic rewrite theories. In Workshop on Foundations
of Computer Security (FCS’05), volume 20, 2005.

[9] Gul Agha and Karl Palmskog. A survey of statistical model checking.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
28(1):6, 2018.

[10] Gul A Agha. Actors: A model of concurrent computation in distributed
systems. Technical report, MASSACHUSETTS INST OF TECH CAM-
BRIDGE ARTIFICIAL INTELLIGENCE LAB, 1985.

[11] Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A
foundation for actor computation. Journal of Functional Programming,
7(1):1–72, 1997.

[12] Faisal Al-Saqqar, Jamal Bentahar, Khalid Sultan, Wei Wan, and
Ehsan Khosrowshahi Asl. Model checking temporal knowledge and com-
mitments in multi-agent systems using reduction. Simulation Modelling
Practice and Theory, 51:45–68, 2015.

191

Bibliography

[13] Musab AlTurki and José Meseguer. Pvesta: A parallel statistical model
checking and quantitative analysis tool. In International Conference on
Algebra and Coalgebra in Computer Science, pages 386–392. Springer,
2011.

[14] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Logic in Computer Science, 1990. LICS’90, Pro-
ceedings., Fifth Annual IEEE Symposium on e, pages 414–425. IEEE,
1990.

[15] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in
dense real-time. Information and computation, 104(1):2–34, 1993.

[16] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In International Colloquium on Automata, Languages, and Programming,
pages 322–335. Springer, 1990.

[17] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[18] Rajeev Alur, Tomás Feder, and Thomas A Henzinger. The benefits of
relaxing punctuality. Journal of the ACM (JACM), 43(1):116–146, 1996.

[19] A Anastasopoulos, D Kourousis, S Botten, and G Wang. Acoustic emis-
sion monitoring for detecting structural defects in vessels and offshore
structures. Ships and Offshore Structures, 4(4):363–372, 2009.

[20] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams.
Concurrent programming in erlang. 1993.

[21] Mark Astley. The actor foundry: A java-based actor programming en-
vironment. University of Illinois at Urbana-Champaign: Open Systems
Laboratory, 1998.

[22] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787–2805, 2010.

[23] Robert Axelrod, Gerald R Ford, Rick L Riolo, and Michael D Cohen. Be-
yond geography: Cooperation with persistent links in the absence of clus-
tered neighborhoods. Personality and social psychology review, 6(4):341–
346, 2002.

[24] Robert Axelrod and William Donald Hamilton. The evolution of cooper-
ation. science, 211(4489):1390–1396, 1981.

[25] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[26] Joachim Baumann, Fritz Hohl, Kurt Rothermel, and Markus Straßer.
Mole–concepts of a mobile agent system. world wide web, 1(3):123–137,
1998.

[27] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on
uppaal. In Formal methods for the design of real-time systems, pages
200–236. Springer, 2004.

192

Bibliography

[28] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[29] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. De-
veloping multi-agent systems with JADE, volume 7. John Wiley & Sons,
2007.

[30] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[31] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Advanced Course on Petri Nets, pages 87–124. Springer,
2003.

[32] Roberto Beraldi and Libero Nigro. Distributed simulation of timed petri
nets. a modular approach using actors and time warp. IEEE Concurrency,
7(4):52–62, 1999.

[33] Roberto Beraldi, Libero Nigro, and Antonino Orlando. Temporal uncer-
tainty time warp: an implementation based on java and actorfoundry.
Simulation, 79(10):581–597, 2003.

[34] Herbert Praehofer Bernard P. Zeigler, Hessam Sarjoughian. Theory of
quantized systems: Devs simulation of perceiving agents. Cybernetics and
Systems, 31(6):611–647, 2000.

[35] Bernard Berthomieu and Michel Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE transactions on software
engineering, 17(3):259–273, 1991.

[36] Bernard Berthomieu and Michel Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE transactions on software
engineering, 17(3):259–273, 1991.

[37] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor
Schuppan. Linear encodings of bounded ltl model checking. arXiv preprint
cs/0611029, 2006.

[38] Doeko JB Bosscher, Indra Polak, and Frits W Vaandrager. Verification
of an audio control protocol. In Theories and experiences for real-time
system development, pages 147–176. World Scientific, 1994.

[39] Benoit Boyer, Kevin Corre, Axel Legay, and Sean Sedwards. Plasma-lab:
A flexible, distributable statistical model checking library. In Interna-
tional Conference on Quantitative Evaluation of Systems, pages 160–164.
Springer, 2013.

[40] Robert S Boyer and J Strother Moore. Integrating decision procedures into
heuristic theorem provers: A case study of linear arithmetic. In Machine
intelligence. Citeseer, 1985.

[41] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-checking tool for real-time
systems. In International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 298–302. Springer, 1998.

193

Bibliography

[42] Guillaume Brat, Klaus Havelund, SeungJoon Park, and Willem Visser.
Java pathfinder-second generation of a java model checker. In In Proceed-
ings of the Workshop on Advances in Verification. Citeseer, 2000.

[43] Christopher Brooks, Edward A Lee, Xiaojun Liu, Stephen Neuendorf-
fer, Yang Zhao, Haiyang Zheng, Shuvra S Bhattacharyya, Elaine Cheong,
II Davis, Mudit Goel, et al. Heterogeneous concurrent modeling and de-
sign in java (volume 1: Introduction to ptolemy ii). Technical report,
2008.

[44] James MW Brownjohn. Structural health monitoring of civil infrastruc-
ture. Philosophical Transactions of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences, 365(1851):589–622, 2007.

[45] Manfred Broy, María Victoria Cengarle, and Eva Geisberger. Cyber-
Physical Systems: Imminent Challenges, pages 1–28. Springer Berlin Hei-
delberg, 2012.

[46] Giacomo Bucci, Laura Carnevali, Lorenzo Ridi, and Enrico Vicario. Oris:
a tool for modeling, verification and evaluation of real-time systems. Inter-
national journal on software tools for technology transfer, 12(5):391–403,
2010.

[47] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sed-
wards. A statistical model checker for nondeterminism and rare events.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 340–358. Springer International Publishing, 2018.

[48] Peter Bulychev, Alexandre David, Kim G Larsen, Axel Legay, Guangyuan
Li, and Danny Bøgsted Poulsen. Rewrite-based statistical model checking
of wmtl. In International Conference on Runtime Verification, pages 260–
275. Springer, 2012.

[49] Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay,
Guangyuan Li, Danny Bøgsted Poulsen, and Amelie Stainer. Monitor-
based statistical model checking for weighted metric temporal logic. In
International Conference on Logic for Programming Artificial Intelligence
and Reasoning, pages 168–182. Springer, 2012.

[50] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian
Perrig, and Shankar Sastry. Challenges for securing cyber physical sys-
tems. In Workshop on Future Directions in Cyber-physical Systems Secu-
rity, July 2009.

[51] Laura Carnevali, Leonardo Grassi, and Enrico Vicario. State-density func-
tions over dbm domains in the analysis of non-markovian models. IEEE
Transactions on Software Engineering, 35(2):178–194, 2009.

[52] D. L. Carní, F. Cicirelli, D. Grimaldi, L. Nigro, and P. F. Sciammarella.
Exploiting model continuity in agent-based cyber-physical systems. In
Advances in Intelligent Systems and Computing. Springer, 2017.

194

Bibliography

[53] D L Carní, D Grimaldi, L Nigro, PF Sciammarella, and F Cicirelli.
Agent-based software architecture for distributed measurement systems
and cyber-physical systems design. In Instrumentation and Measurement
Technology Conference (I2MTC), 2017 IEEE International, pages 1–6.
IEEE, 2017.

[54] DL Carnì, D Grimaldi, G Guglielmelli, and F Lamonaca. Synchronization
of measurement instruments co-operating into the w-dms. In Instrumen-
tation and Measurement Technology Conference Proceedings, 2007. IMTC
2007. IEEE, pages 1–6. IEEE, 2007.

[55] Domenico Luca Carnì, Carmelo Scuro, Francesco Lamonaca, Renato Sante
Olivito, and Domenico Grimaldi. Damage analysis of concrete structures
by means of acoustic emissions technique. Composites Part B: Engineer-
ing, 115:79–86, 2017.

[56] Luigi Carullo, Angelo Furfaro, Libero Nigro, and Francesco Pupo. Mod-
elling and simulation of complex systems using tpn designer. Simulation
Modelling Practice and Theory, 11(7-8):503–532, 2003.

[57] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin
Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and Andrei
Tchaltsev. Nusmv 2.4 user manual. CMU and ITC-irst, 2005.

[58] Pavol Cerny, Thomas A Henzinger, and Arjun Radhakrishna. Quantita-
tive abstraction refinement. In ACM SIGPLAN Notices, volume 48, pages
115–128. ACM, 2013.

[59] Milan Češka, Petr Pilař, Nicola Paoletti, Luboš Brim, and Marta
Kwiatkowska. Prism-psy: precise gpu-accelerated parameter synthesis for
stochastic systems. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 367–384. Springer,
2016.

[60] F. Cicirelli, D. Grimaldi, A. Furfaro, L. Nigro, and F. Pupo. Madams:
a software architecture for the management of networked measurement
services. Computer Standards & Interfaces, 28(4):396–411, 2006.

[61] Franco Cicirelli, Angelo Furfaro, Andrea Giordano, and Libero Nigro.
Hla actor repast: An approach to distributing repast models for high-
performance simulations. Simulation Modelling Practice and Theory,
19(1):283–300, 2011.

[62] Franco Cicirelli, Angelo Furfaro, Andrea Giordano, and Libero Nigro. Per-
formance of a multi-agent system over a multi-core cluster managed by
terracotta. In Proceedings of the 2011 Symposium on Theory of Model-
ing & Simulation: DEVS Integrative M&S Symposium, pages 125–133.
Society for Computer Simulation International, 2011.

[63] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Exploiting agents
for modelling and simulation of coverage control protocols in large sensor
networks. Journal of Systems and Software, 80(11):1817–1832, 2007.

195

Bibliography

[64] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Actor-based simulation
of pdevs systems over hla. In Simulation Symposium, 2008. ANSS 2008.
41st Annual, pages 229–236. IEEE, 2008.

[65] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. An agent infrastruc-
ture over hla for distributed simulation of reconfigurable systems and its
application to uav coordination. Simulation, 85(1):17–32, 2009.

[66] Franco Cicirelli, Angelo Furfaro, and Libero Nigro. Modelling and sim-
ulation of complex manufacturing systems using statechart-based actors.
Simulation Modelling Practice and Theory, 19(2):685–703, 2011.

[67] Franco Cicirelli, Angelo Furfaro, Libero Nigro, and Francesco Pupo.
Agents over the grid: An experience using the globus toolkit 4. In ECMS,
pages 78–85, 2012.

[68] Franco Cicirelli, Angelo Furfaro, Libero Nigro, and Francesco Pupo. De-
velopment of a schedulability analysis framework based on ptpn and up-
paal with stopwatches. In Proceedings of the 2012 IEEE/ACM 16th In-
ternational Symposium on Distributed Simulation and Real Time Appli-
cations, pages 57–64. IEEE Computer Society, 2012.

[69] Franco Cicirelli, Andrea Giordano, and Libero Nigro. Efficient environ-
ment management for distributed simulation of large-scale situated multi-
agent systems. Concurrency and Computation: Practice and Experience,
27(3):610–632, 2015.

[70] Franco Cicirelli, Christian Nigro, and Libero Nigro. Qualitative and quan-
titative evaluation of stochastic time petri nets. In Computer Science
and Information Systems (FedCSIS), 2015 Federated Conference on, pages
763–772. IEEE, 2015.

[71] Franco Cicirelli and Libero Nigro. An agent framework for high perfor-
mance simulations over multi-core clusters. In Asian Simulation Confer-
ence, pages 49–60. Springer, 2013.

[72] Franco Cicirelli and Libero Nigro. Control aspects in multiagent systems.
In Intelligent Agents in Data-intensive Computing, pages 27–50. Springer,
2016.

[73] Franco Cicirelli and Libero Nigro. Control centric framework for model
continuity in time-dependent multi-agent systems. Concurrency and Com-
putation: Practice and Experience, 28(12):3333–3356, 2016.

[74] Franco Cicirelli and Libero Nigro. Exploiting social capabilities in the
minority game. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 27(1):6, 2016.

[75] Franco Cicirelli and Libero Nigro. Modelling and verification of mutual
exclusion algorithms. In Proceedings of the 20th International Symposium
on Distributed Simulation and Real-Time Applications, pages 136–144.
IEEE Press, 2016.

196

Bibliography

[76] Franco Cicirelli, Libero Nigro, and Paolo F Sciammarella. Agent-based
model continuity of stochastic time petri nets. In ECMS, pages 18–24,
2016.

[77] Franco Cicirelli, Libero Nigro, and Paolo F Sciammarella. Model checking
mutual exclusion algorithms using u ppaal. In Software Engineering Per-
spectives and Application in Intelligent Systems, pages 203–215. Springer,
2016.

[78] Franco Cicirelli, Libero Nigro, and Paolo F Sciammarella. Model continu-
ity in cyber-physical systems: A control-centered methodology based on
agents. Simulation Modelling Practice and Theory, 83:93–107, 2018.

[79] Franco Cicirelli, Libero Nigro, and Paolo Francesco Sciammarella. Seam-
less development in java of distributed real-time systems using actors. In
Int. Symposium Simulation and Process Modelling (ISSPM 2018), 2018.

[80] Franco Cicirelli, Libero Nigro, and Paolo Francesco Sciammarella. Seam-
less development in java of distributed real-time systems using actors.
International Journal of Simulation and Process Modelling, 13(1):73–87,
2018.

[81] Edmund M Clarke and E Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. In Workshop
on Logic of Programs, pages 52–71. Springer, 1981.

[82] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic
verification of finite-state concurrent systems using temporal logic spec-
ifications. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244–263, 1986.

[83] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[84] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P
Bloem. Handbook of model checking. Springer, 2016.

[85] Charles J Clopper and Egon S Pearson. The use of confidence or fiducial
limits illustrated in the case of the binomial. Biometrika, 26(4):404–413,
1934.

[86] Michael D Cohen, Rick L Riolo, Robert Axelrod, et al. The emergence of
social organization in the prisoner’s dilemma: How context-preservation
and other factors promote cooperation. Technical report, 1999.

[87] Alexandre David. Merging dbms efficiently. In 17th Nordic Workshop
on Programming Theory, pages 54–56. DIKU, University of Copenhagen,
2005.

[88] Alexandre David, Jacob Illum, Kim G Larsen, and Arne Skou. Model-
based framework for schedulability analysis using uppaal 4.1. In Model-
based design for embedded systems, pages 117–144. CRC Press, 2009.

197

Bibliography

[89] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. Uppaal smc tutorial. International Journal on
Software Tools for Technology Transfer, 2018.

[90] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikuvcionis, and
Danny Bogsted Poulsen. Uppaal smc tutorial. International Journal on
Software Tools for Technology Transfer, 17(4):397–415, 2015.

[91] Luca De Alfaro. Formal verification of probabilistic systems. Number
1601. Citeseer, 1997.

[92] Luca De Vito, Francesco Lamonaca, Gianluca Mazzilli, Maria Riccio,
Domenico Luca Carnì, and Paolo F Sciammarella. An iot-enabled multi-
sensor multi-user system for human motion measurements. In Medical
Measurements and Applications (MeMeA), 2017 IEEE International Sym-
posium on, pages 210–215. IEEE, 2017.

[93] Samuel Deniaud, Philippe Descamps, Vincent Hilaire, Olivier Lamotte,
and Sebastian Rodriguez. An analysis and prototyping approach for cyber-
physical systems. Procedia Computer Science, 56:520–525, 2015.

[94] Edsger W Dijkstra. The humble programmer. Communications of the
ACM, 15(10):859–866, 1972.

[95] Edsger W Dijkstra. Solution of a problem in concurrent programming
control. In Pioneers and Their Contributions to Software Engineering,
pages 289–294. Springer, 2001.

[96] David L Dill. Timing assumptions and verification of finite-state concur-
rent systems. In International Conference on Computer Aided Verifica-
tion, pages 197–212. Springer, 1989.

[97] Dimension4. Project website. http://www.thinkman.com/dimension4/.

[98] Johan Eker, Jorn W Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming
heterogeneity: the ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, 2003.

[99] E Allen Emerson, Somesh Jha, and Doron Peled. Combining partial or-
der and symmetry reductions. In International Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, pages 19–34.
Springer, 1997.

[100] Andreas Berre Eriksen, Chao Huang, Jan Kildebogaard, Harry Lahrmann,
Kim G Larsen, Marco Muniz, and Jakob Haahr Taankvist. Uppaal strat-
ego for intelligent traffic lights. In 12th ITS European Congress, 2017.

[101] Richard D Finlayson, Mark Friesel, Mark Carlos, P Cole, and JC Lenain.
Health monitoring of aerospace structures with acoustic emission and
acousto-ultrasonics. Insight-Wigston then Northampton-, 43(3):155–158,
2001.

[102] ACL Fipa and ACL FIPA. Message structure specification. 2002.

198

Bibliography

[103] Giancarlo Fortino and Libero Nigro. Qos centred java and actor based
framework for real/virtual teleconferences. Proc. of SCS EuroMedia, 98:4–
6, 1998.

[104] Giancarlo Fortino, Libero Nigro, Francesco Pupo, and D Spezzano. Su-
per actors for real time. In Object-Oriented Real-Time Dependable Sys-
tems, 2001. Proceedings. Sixth International Workshop on, pages 142–149.
IEEE, 2001.

[105] Richard M. Fujimoto. Parallel and Distribution Simulation Systems. John
Wiley & Sons, New York, NY, USA, 1st edition, 1999.

[106] Angelo Furfaro, Libero Nigro, and Francesco Pupo. Actorserver: a java
middleware for programming distributed applications over the internet. In
of the Third International Network Conference (INC 2002), pages 433–40,
2002.

[107] Angelo Furfaro, Libero Nigro, and Francesco Pupo. Multimedia synchro-
nization based on aspect oriented programming. Microprocessors and Mi-
crosystems, 28(2):47–56, 2004.

[108] Eli Gafni and Michael Mitzenmacher. Analysis of timing-based mutual
exclusion with random times. SIAM Journal on Computing, 31(3):816–
837, 2001.

[109] Jorge J. Gomez-Sanz. Ten Years of the INGENIAS Methodology, pages
193–209. Springer Berlin Heidelberg, 2014.

[110] C Grosse, H Reinhardt, and Torsten Dahm. Localization and classifi-
cation of fracture types in concrete with quantitative acoustic emission
measurement techniques. NDT & E International, 30(4):223–230, 1997.

[111] Christian U Grosse and Markus Krüger. Wireless acoustic emission sensor
networks for structural health monitoring in civil engineering. In Proc.
European Conf. on Non-Destructive Testing (ECNDT), DGZfP BB-103-
CD. Citeseer, 2006.

[112] Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R
Neuhausser. Quantitative timed analysis of interactive markov chains.
In NASA Formal Methods Symposium, pages 8–23. Springer, 2012.

[113] Beno Gutenberg and Charles Francis Richter. Magnitude and energy of
earthquakes. Science, 83(2147):183–185, 1936.

[114] Benjamin M Gyori and Daniel Paulin. Hypothesis testing for markov
chain monte carlo. Statistics and Computing, 26(6):1281–1292, 2016.

[115] Philipp Haller and Martin Odersky. Actors that unify threads and events.
In International Conference on Coordination Languages and Models, pages
171–190. Springer, 2007.

[116] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal aspects of computing, 6(5):512–535, 1994.

199

Bibliography

[117] Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A
model checker for hybrid systems. International Journal on Software Tools
for Technology Transfer, 1(1-2):110–122, 1997.

[118] Carl Hewitt. Description and theoretical analysis (using schemata) of
planner: A language for proving theorems and manipulating models in a
robot. Technical report, Massachussetts inst of tech Cambridge artificial
intelligence lab, 1972.

[119] Carl Hewitt, Peter Bishop, and Richard Steiger. Session 8 formalisms
for artificial intelligence a universal modular actor formalism for artificial
intelligence. In Advance Papers of the Conference, volume 3, page 235.
Stanford Research Institute, 1973.

[120] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker.
Prism: A tool for automatic verification of probabilistic systems. In In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 441–444. Springer, 2006.

[121] Dat Dac Hoang, Hye-Young Paik, and Chae-Kyu Kim. Service-oriented
middleware architectures for cyber-physical systems. International Jour-
nal of Computer Science and Network Security, 12(1):79–87, 2012.

[122] Charles Antony Richard Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[123] Gerard J Holzmann. The SPIN model checker: Primer and reference
manual, volume 1003. Addison-Wesley Reading, 2004.

[124] Xiaolin Hu and Bernard P. Zeigler. Model continuity to support software
development for distributed robotic systems: A team formation example.
J. Intell. Robotics Syst., 39(1):71–87, 2004.

[125] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
reasoning about systems. Cambridge university press, 2004.

[126] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks.
Information and Computation, 88(1):60–87, 1990.

[127] Ali Jafari, Ehsan Khamespanah, Haukur Kristinsson, Marjan Sirjani, and
Brynjar Magnusson. Statistical model checking of timed rebeca models.
Computer Languages, Systems & Structures, 45:53–79, 2016.

[128] Ali Jafari, Ehsan Khamespanah, Marjan Sirjani, and Holger Hermanns.
Performance analysis of distributed and asynchronous systems using prob-
abilistic timed actors. Electronic Communications of the EASST, 70, 2014.

[129] Ali Jafari, Ehsan Khamespanah, Marjan Sirjani, Holger Hermanns, and
Matteo Cimini. Ptrebeca: Modeling and analysis of distributed and asyn-
chronous systems. Science of Computer Programming, 128:22–50, 2016.

[130] J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design methodol-
ogy for cyber-physical systems. In 2011 7th International Wireless Com-
munications and Mobile Computing Conference, pages 1666–1671, July
2011.

200

Bibliography

[131] Hussein Joumaa, Stephane Ploix, Shadi Abras, and Gregory De Oliveira.
A mas integrated into home automation system, for the resolution of power
management problem in smart homes. Energy Procedia, 6:786–794, 2011.

[132] Gilles Kahn. Natural semantics. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 22–39. Springer, 1987.

[133] Cem Kaner, Jack Falk, and Hung Quoc Nguyen. Testing Computer Soft-
ware Second Edition. Dreamtech Press, 2000.

[134] Rajesh K. Karmani and Gul Agha. Actors, pages 1–11. Springer US,
Boston, MA, 2011.

[135] Gabor Karsai and Janos Sztipanovits. Model-integrated development of
cyber-physical systems. In Proceedings of the 6th IFIP WG 10.2 Interna-
tional Workshop on Software Technologies for Embedded and Ubiquitous
Systems, pages 46–54. Springer-Verlag, 2008.

[136] Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan, and Ramtin
Khosravi. Floating time transition system: more efficient analysis of timed
actors. In International Workshop on Formal Aspects of Component Soft-
ware, pages 237–255. Springer, 2015.

[137] K. D. Kim and P. R. Kumar. Cyber physical systems: A perspective at
the centennial. Proceedings of the IEEE, 100:1287–1308, May 2012.

[138] E. Kofman and S. Junco. Quantized state systems. a devs approach for
continuous system simulation. Transactions of SCS, 18(3):123–132, 2001.

[139] Saul A Kripke. A completeness theorem in modal logic. The journal of
symbolic logic, 24(1):1–14, 1959.

[140] Nirman Kumar, Koushik Sen, José Meseguer, and Gul Agha. A rewriting
based model for probabilistic distributed object systems. In International
Conference on Formal Methods for Open Object-Based Distributed Sys-
tems, pages 32–46. Springer, 2003.

[141] Marta Kwiatkowska, Gethin Norman, and David Parker. Symmetry re-
duction for probabilistic model checking. In International Conference on
Computer Aided Verification, pages 234–248. Springer, 2006.

[142] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochastic
model checking. In International School on Formal Methods for the De-
sign of Computer, Communication and Software Systems, pages 220–270.
Springer, 2007.

[143] Marta Kwiatkowska, Gethin Norman, and David Parker. A framework
for verification of software with time and probabilities. In International
Conference on Formal Modeling and Analysis of Timed Systems, pages
25–45. Springer, 2010.

[144] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Ver-
ification of probabilistic real-time systems. In International conference on
computer aided verification, pages 585–591. Springer, 2011.

201

Bibliography

[145] H. J. La and S. D. Kim. A service-based approach to designing cyber
physical systems. In 9th International Conference on Computer and In-
formation Science, pages 895–900, 2010.

[146] F Lamonaca, D Grimaldi, R Morello, and A Nastro. Sub-µs synchroniza-
tion accuracy in distributed measurement system by pda and pc triggers
realignement. In Instrumentation and Measurement Technology Confer-
ence (I2MTC), 2013 IEEE International, pages 801–806. IEEE, 2013.

[147] F Lamonaca, PF Sciammarella, C Scuro, DL Carnì, and RS Olivito. Syn-
chronization of iot layers for structural health monitoring. In 2018 Work-
shop on Metrology for Industry 4.0 and IoT, pages 89–94. IEEE, 2018.

[148] Francesco Lamonaca, Domenico Luca Carnì, Maria Riccio, Domenico
Grimaldi, and Gregorio Andria. Preserving synchronization accuracy
from the plug-in of nonsynchronized nodes in a wireless sensor network.
IEEE Transactions on Instrumentation and Measurement, 66(5):1058–
1066, 2017.

[149] Francesco Lamonaca, Antonio Carrozzini, Domenico Grimaldi, and Re-
nato S Olivito. Improved monitoring of acoustic emissions in concrete
structures by multi-triggering and adaptive acquisition time interval. Mea-
surement, 59:227–236, 2015.

[150] Francesco Lamonaca, Andrea Gasparri, Emanuele Garone, and Domenico
Grimaldi. Clock synchronization in wireless sensor network with selective
convergence rate for event driven measurement applications. IEEE Trans-
actions on Instrumentation and Measurement, 63(9):2279–2287, 2014.

[151] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[152] Kim G Larsen and Axel Legay. Statistical model checking past, present,
and future. In International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation, pages 135–142. Springer,
2014.

[153] Kim G Larsen and Axel Legay. On the power of statistical model check-
ing. In International Symposium on Leveraging Applications of Formal
Methods, pages 843–862. Springer, 2016.

[154] Kim G Larsen, Marius Mikučionis, Marco Muniz, Jiří Srba, and
Jakob Haahr Taankvist. Online and compositional learning of controllers
with application to floor heating. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 244–
259. Springer, 2016.

[155] Kim G Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clock dif-
ference diagrams. Nord. J. Comput., 6(3):271–298, 1999.

[156] Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Efficient verification of real-time systems: compact data structure and
state-space reduction. In Real-Time Systems Symposium, 1997. Proceed-
ings., The 18th IEEE, pages 14–24. IEEE, 1997.

202

Bibliography

[157] Kim Guldstrand Larsen, Florian Lorber, and Brian Nielsen. 20 years of
real real time model validation. In International Symposium on Formal
Methods, pages 22–36. Springer, 2018.

[158] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A frame-
work for state-space exploration of java-based actor programs. In Pro-
ceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 468–479. IEEE Computer Society, 2009.

[159] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[160] Edward A Lee. Cyber physical systems: Design challenges. In 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pages 363–369. IEEE, 2008.

[161] Edward A. Lee. The past, present and future of cyber-physical systems:
A focus on models. Sensors, 15(3):4837–4869, 2015.

[162] Edward A Lee and Marjan Sirjani. What good are models? In Interna-
tional Conference on Formal Aspects of Component Software, pages 3–31.
Springer, 2018.

[163] Edward A Lee and Marjan Sirjani. What good are models? In Interna-
tional Conference on Formal Aspects of Component Software, pages 3–31.
Springer, 2018.

[164] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In International conference on runtime verifica-
tion, pages 122–135. Springer, 2010.

[165] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Plasma lab: a
modular statistical model checking platform. In International Symposium
on Leveraging Applications of Formal Methods, pages 77–93. Springer,
2016.

[166] Sascha Lehmann, Schupp Sibylle, and Ma M Sc Xintao. Online model
checking with uppaal smc. 2016.

[167] James J Leifer and Robin Milner. Deriving bisimulation congruences for
reactive systems. In International Conference on Concurrency Theory,
pages 243–258. Springer, 2000.

[168] Paulo Leitao, Armando Walter Colombo, and Stamatis Karnouskos. In-
dustrial automation based on cyber-physical systems technologies: Proto-
type implementations and challenges. Computers in Industry, 81:11 – 25,
2016. Emerging ICT concepts for smart, safe and sustainable industrial
systems.

[169] Lu Luo. Software testing techniques: technology maturation and research
strategy. Class report for, 2001.

[170] Jerome P Lynch and Kenneth J Loh. A summary review of wireless sensors
and sensor networks for structural health monitoring. Shock and Vibration
Digest, 38(2):91–130, 2006.

203

Bibliography

[171] Zohar Manna and Amir Pnueli. The temporal logic of reactive and con-
current systems: Specification. Springer Science & Business Media, 2012.

[172] Masoud Mansouri-Samani, Peter C Mehlitz, Corina S Pasareanu, John J
Penix, Guillaume P Brat, Lawrence Z Markosian, Owen O’Malley,
Thomas T Pressburger, and Willem C Visser. Program model checking–a
practitioner’s guide. 2008.

[173] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Do-
natelli, and Giuliana Franceschinis. Modelling with generalized stochastic
Petri nets. John Wiley & Sons, Inc., 1994.

[174] Ian A Mason and Carolyn L Talcott. Actor languages their syntax,
semantics, translation, and equivalence. Theoretical Computer Science,
220(2):409–467, 1999.

[175] Philip Merlin and David Farber. Recoverability of communication
protocols–implications of a theoretical study. IEEE transactions on Com-
munications, 24(9):1036–1043, 1976.

[176] EF Miller. Introduction to software testing technology. Tutorial: Soft-
ware Testing & Validation Techniques, Second Edition, IEEE Catalog No.
EHO, 1981.

[177] Robin Milner. Communication and concurrency, volume 84. Prentice hall
New York etc., 1989.

[178] Douglas C. Montgomery. Introduction to statistical quality control. Wiley,
2009.

[179] R Morello, C De Capua, and A Meduri. Remote monitoring of building
structural integrity by a smart wireless sensor network. In Instrumentation
and Measurement Technology Conference (I2MTC), 2010 IEEE, pages
1150–1154. IEEE, 2010.

[180] Tadao Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541–580, 1989.

[181] Nicolas Navet and Stephan Merz. Modeling and verification of real-time
Systems: formalisms and software tools. John Wiley & Sons, 2013.

[182] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp:
Theory and application. Information and Computation, 114(1):131, 1994.

[183] Brian Nielsen and Gul Agha. Semantics for an actor-based real-time lan-
guage. In Parallel and Distributed Real-Time Systems, 1996. Proceedings
of the 4th International Workshop on, pages 223–228. IEEE, 1996.

[184] Brian Nielsen and Gul Agha. Towards reusable real-time objects. Annals
of Software Engineering, 7(1-4):257–282, 1999.

[185] Brian Nielsen, Shangping Ren, and Gul Agha. Specification of real-time
interaction constraints. In Object-Oriented Real-time Distributed Comput-
ing, 1998.(ISORC 98) Proceedings. 1998 First International Symposium
on, pages 206–214. IEEE, 1998.

204

Bibliography

[186] Christian Nigro, Libero Nigro, and Paolo F Sciammarella. Formal reason-
ing on knowledge and commitments in multi-agent systems using theatre.
Submitted.

[187] Christian Nigro, Libero Nigro, and Paolo F Sciammarella. Model check-
ing knowledge and commitments in multi-agent systems using actors and
uppaal. In ECMS, pages 136–142, 2018.

[188] Christian Nigro, Libero Nigro, and Paolo F. Sciammarella. Model-
checking knowledge and commitments in multi-agent systems using actors
and uppaal. In 32nd European Conference on Modelling and Simulation
(ECMS 2018), Wilhelmshaven, Germany, pages 136–142, May 2018.

[189] Christian Nigro, Libero Nigro, and Paolo F Sciammarella. Modelling and
analysis of multi-agent systems using uppaal smc. International Journal
of Simulation and Process Modelling, 13(1):73–87, 2018.

[190] Christian Nigro, Libero Nigro, and Paolo F Sciammarella. Formal mod-
elling and analysis of probabilistic real-time systems. In Int. Congress on
Information and Communication Technology (ICICT2019), 2019.

[191] Christian Nigro, Libero Nigro, and Paolo F Sciammarella. Modelling and
analysis of partially stochastic time petri nets using Uppaal model check-
ers. In Int. Congress on Information and Communication Technology
(ICICT2019), 2019.

[192] Libero Nigro and Francesco Pupo. Schedulability analysis of real time
actor systems using coloured petri nets. In Concurrent object-oriented
programming and petri nets, pages 493–513. Springer, 2001.

[193] Libero Nigro and Paolo F Sciammarella. Modelling and analysis of dis-
tributed asynchronous actor systems using theatre. In Proceedings of
the Computational Methods in Systems and Software, pages 150–162.
Springer, 2017.

[194] Libero Nigro and Paolo F. Sciammarella. Statistical model checking of
distributed real-time actor systems. In 21st IEEE/ACM International
Symposium on Distributed Simulation and Real Time Applications, DS-
RT 2017, Rome, Italy, October 18-20, 2017, pages 188–195, 2017.

[195] Libero Nigro and Paolo F Sciammarella. Statistical model checking of
multi-agent systems. In Proceedings of 31 st European Conference on
Modelling and Simulation (ECMS’17), pages 11–17, 2017.

[196] Libero Nigro and Paolo F Sciammarella. Qualitative and quantitative
model checking of distributed probabilistic timed actors. Simulation Mod-
elling Practice and Theory, 87:343–368, 2018.

[197] Libero Nigro and Paolo F Sciammarella. Time synchronization in wire-
less sensor networks: A modelling and analysis experience using theatre.
In Distributed Simulation and Real Time Applications (DS-RT), 2018
IEEE/ACM 22th International Symposium on. IEEE, 2018.

205

Bibliography

[198] Libero Nigro and Paolo F Sciammarella. Statistical model checking of
cyber-physical systems using hybrid theatre. In Proceedings of Inteligent
Systems Conference (IntelliSys) 2019, 2019.

[199] Vincent Nimal. Statistical approaches for probabilistic model checking.
PhD thesis, University of Oxford, 2010.

[200] Gethin Norman, David Parker, and Jeremy Sproston. Model checking
for probabilistic timed automata. Formal Methods in System Design,
43(2):164–190, 2013.

[201] Michael J North and Charles M Macal. Managing business complexity:
discovering strategic solutions with agent-based modeling and simulation.
Oxford University Press, 2007.

[202] Martin Odersky. The scala programming language. http://www. scala-
lang. org/, 2003.

[203] Masashi Okamoto. Some inequalities relating to the partial sum of bi-
nomial probabilities. Annals of the institute of Statistical Mathematics,
10(1):29–35, 1959.

[204] HA Oldenkamp. Probabilistic model checking: A comparison of tools.
Master’s thesis, University of Twente, 2007.

[205] Jason Maximino C Ongpeng, Andres Winston C Oreta, and Sohichi Hi-
rose. Monitoring damage using acoustic emission source location and
computational geometry in reinforced concrete beams. Applied Sciences,
8(2):189, 2018.

[206] Marco Paolieri, Andras Horvath, and Enrico Vicario. Probabilistic model
checking of regenerative concurrent systems. IEEE Transactions on Soft-
ware Engineering, 42(2):153–169, 2016.

[207] Pavel Parizek, Frantisek Plasil, and Jan Kofron. Model checking of
software components: Combining java pathfinder and behavior protocol
model checker. In Software Engineering Workshop, 2006. SEW’06. 30th
Annual IEEE/NASA, pages 133–141. IEEE, 2006.

[208] David Park. Concurrency and automata on infinite sequences. In Theo-
retical computer science, pages 167–183. Springer, 1981.

[209] Azaria Paz. Some aspects of probabilistic automata. Information and
Control, 9(1):26–60, 1966.

[210] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[211] Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

[212] Danny Bogsted Poulsen. Statistical Model Checking of Rich Models and
Properties. Phd dissertation, Aalborg University, 2015.

[213] Anuj Puri. Dynamical properties of timed automata. Discrete Event
Dynamic Systems, 10(1-2):87–113, 2000.

206

Bibliography

[214] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in cesar. In International Symposium on programming,
pages 337–351. Springer, 1982.

[215] Michael O Rabin. Probabilistic automata. Information and control,
6(3):230–245, 1963.

[216] Prakash Ranganathan and Kendall Nygard. Time synchronization in wire-
less sensor networks: a survey. International journal of ubicomp, 1(2):92–
102, 2010.

[217] MVMS Rao and KJ Prasanna Lakshmi. Analysis of b-value and improved
b-value of acoustic emissions accompanying rock fracture. Current Sci-
ence, pages 1577–1582, 2005.

[218] Rebeca. Project website. http://rebeca-lang.org/.

[219] George M Reed and A William Roscoe. A timed model for communi-
cating sequential processes. In International Colloquium on Automata,
Languages, and Programming, pages 314–323. Springer, 1986.

[220] Daniël Reijsbergen, Pieter-Tjerk de Boer, and Werner Scheinhardt. Hy-
pothesis testing for rare-event simulation: limitations and possibilities. In
International Symposium on Leveraging Applications of Formal Methods,
pages 16–26. Springer, 2016.

[221] Shangping Ren and Gul A Agha. Rtsynchronizer: language support for
real-time specifications in distributed systems. ACM Sigplan Notices,
30(11):50–59, 1995.

[222] Shangping Ren, Gul A Agha, and Masahiko Saito. A modular approach
for programming distributed real-time systems. Urbana, 51:61801, 1996.

[223] Shangping Ren, Nalini Venkatasubramanian, and Gul Agha. Formalizing
multimedia qos constraints using actors. In Formal Methods for Open
Object-based Distributed Systems, pages 139–153. Springer, 1997.

[224] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali
Jafari, Anna Ingólfsdóttir, and Steinar Hugi Sigurdarson. Modelling and
simulation of asynchronous real-time systems using timed rebeca. Science
of Computer Programming, 89:41–68, 2014.

[225] Gregor Rohbogner, Ulf Hahnel, Pascal Benoit, and Simon Fey. Multi-
agent systems’ asset for smart grid applications. Comput. Sci. Inf. Syst.,
10(4):1799–1822, 2013.

[226] Davide Sangiorgi. On the origins of bisimulation and coinduction.
ACM Transactions on Programming Languages and Systems (TOPLAS),
31(4):15, 2009.

[227] T. Sanislav and L. Miclea. An agent-oriented approach for cyber-physical
system with dependability features. In Proceedings of 2012 IEEE Inter-
national Conference on Automation, Quality and Testing, Robotics, pages
356–361, May 2012.

207

Bibliography

[228] Teodora Sanislav and Liviu Miclea. Cyber-physical systems-concept, chal-
lenges and research areas. Journal of Control Engineering and Applied
Informatics, 14(2):28–33, 2012.

[229] Luca Schenato and Federico Fiorentin. Average timesynch: A consensus-
based protocol for clock synchronization in wireless sensor networks. Au-
tomatica, 47(9):1878–1886, 2011.

[230] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model
checking of black-box probabilistic systems. In International Conference
on Computer Aided Verification, pages 202–215. Springer, 2004.

[231] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Vesta: A statisti-
cal model-checker and analyzer for probabilistic systems. In Quantita-
tive Evaluation of Systems, 2005. Second International Conference on the,
pages 251–252. IEEE, 2005.

[232] Giulio Siracusano, Francesco Lamonaca, Riccardo Tomasello, Francesca
Garescì, Aurelio La Corte, Domenico Luca Carnì, Mario Carpentieri,
Domenico Grimaldi, and Giovanni Finocchio. A framework for the damage
evaluation of acoustic emission signals through hilbert–huang transform.
Mechanical Systems and Signal Processing, 75:109–122, 2016.

[233] Marvin A Sirbu. Credits and debits on the internet. IEEE spectrum,
34(2):23–29, 1997.

[234] Marjan Sirjani. Rebeca: Theory, applications, and tools. In Formal Meth-
ods for Components and Objects, 5th International Symposium, FMCO
2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lec-
tures, pages 102–126, 2006.

[235] Marjan Sirjani. Power is overrated, go for friendliness! expressiveness,
faithfulness and usability in modeling-the actor experience. Principles of
Modeling-Essays dedicated to Edward A. Lee on the Occasion of his 60th
Birtday, 2017.

[236] Marjan Sirjani and Mohammad Mahdi Jaghoori. Ten years of analyzing
actors: Rebeca experience. In Formal Modeling: Actors, Open Systems,
Biological Systems, pages 20–56. Springer, 2011.

[237] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S De Boer. Modeling
and verification of reactive systems using rebeca. Fundamenta Informati-
cae, 63(4):385–410, 2004.

[238] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S de Boer. Model
checking, automated abstraction, and compositional verification of rebeca
models. J. UCS, 11(6):1054–1082, 2005.

[239] Fikret Sivrikaya and Bülent Yener. Time synchronization in sensor net-
works: a survey. IEEE network, 18(4):45–50, 2004.

[240] SPIN. Project website. http://spinroot.com/spin/whatispin.html, 2018.

[241] John A. Stankovic and Krithi Ramamritham. What is predictability for
real-time systems? Real-Time Systems, 2:247–254, 1990.

208

Bibliography

[242] Carolyn Talcott. Actor theories in rewriting logic. Theoretical Computer
Science, 285(2):441–485, 2002.

[243] Carolyn Talcott. Cyber-physical systems and events. In Software-Intensive
Systems and New Computing Paradigms, pages 101–115. Springer, 2008.

[244] Konglong Tang, Yong Wang, Hao Liu, Yanxiu Sheng, Xi Wang, and
Zhiqiang Wei. Design and implementation of push notification system
based on the mqtt protocol. In International Conference on Information
Science and Computer Applications (ISCA 2013), pages 116–119, 2013.

[245] RC Tennyson, AA Mufti, S Rizkalla, G Tadros, and B Benmokrane. Struc-
tural health monitoring of innovative bridges in canada with fiber optic
sensors. Smart materials and Structures, 10(3):560, 2001.

[246] Inc Terracotta et al. The Definitive Guide to Terracotta: Cluster the JVM
for Spring, Hibernate and POJO Scalability: Cluster the JVM for Spring,
Hibernate and POJO Scalability. Apress, 2008.

[247] Robert J van Glabbeek. Bisimulation. In Encyclopedia of parallel com-
puting, pages 136–139. Springer, 2011.

[248] Martijn Van Otterlo. Markov decision processes: Concepts and algo-
rithms. Course on Learning and Reasoning, 2009.

[249] Carlos Varela and Gul Agha. Programming dynamically reconfigurable
open systems with salsa. ACM SIGPLAN Notices, 36(12):20–34, 2001.

[250] Carlos A Varela. Programming Distributed Computing Systems: A Foun-
dational Approach. MIT Press, 2013.

[251] Mahsa Varshosaz and Ramtin Khosravi. Modeling and verification of
probabilistic actor systems using prebeca. In International Conference on
Formal Engineering Methods, pages 135–150. Springer, 2012.

[252] Nalini Venkatasubramanian, Carolyn Talcott, and Gul A Agha. A formal
model for reasoning about adaptive qos-enabled middleware. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 13(1):86–
147, 2004.

[253] Enrico Vicario, Luigi Sassoli, and Laura Carnevali. Using stochastic state
classes in quantitative evaluation of dense-time reactive systems. IEEE
Transactions on Software Engineering, 35(5):703–719, 2009.

[254] P. Vrba, P. Tichy, V. Mar, K. H. Hall, R. J. Staron, F. P. Maturana, and
P. Kadera. Rockwell automation’s holonic and multiagent control systems
compendium. Trans. Sys. Man Cyber Part C, 41(1):14–30, 2011.

[255] Abraham Wald. Sequential tests of statistical hypotheses. The annals of
mathematical statistics, 16(2):117–186, 1945.

[256] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang.
Towards smart factory for industry 4.0: a self-organized multi-agent sys-
tem with big data based feedback and coordination. Computer Networks,
101:158 – 168, 2016. Industrial Technologies and Applications for the
Internet of Things.

209

Bibliography

[257] GT Webb, PJ Vardanega, and CR Middleton. Categories of shm de-
ployments: technologies and capabilities. Journal of Bridge Engineering,
20(11):04014118, 2014.

[258] Simon Wimmer and Johannes Holzl. Mdp+ ta= pta: Probabilistic timed
automata, formalized (short paper). In International Conference on In-
teractive Theorem Proving, pages 597–603. Springer, 2018.

[259] M. Wooldridge. An introduction to multi-agent systems. John Wiley &
Sons, second edition, 2009.

[260] X.Hu and B.P. Zeigler. A simulation-based virtual environment to study
cooperative robotic system. Integrated Computer-Aided Engineering,
12(4):353–367, 2005.

[261] Cheer-Sun D Yang, Amie L Souter, and Lori L Pollock. All du path
coverage for parallel programs. In ACM SIGSOFT Software Engineering
Notes, pages 153–162. ACM, 1998.

[262] Wang Yi. Ccs+ time= an interleaving model for real time systems. In
International Colloquium on Automata, Languages, and Programming,
pages 217–228. Springer, 1991.

[263] Haakan LS Younes and Reid G Simmons. Probabilistic verification of
discrete event systems using acceptance sampling. In International Con-
ference on Computer Aided Verification, pages 223–235. Springer, 2002.

[264] Håkan LS Younes, Marta Kwiatkowska, Gethin Norman, and David
Parker. Numerical vs. statistical probabilistic model checking. Interna-
tional Journal on Software Tools for Technology Transfer, 8(3):216–228,
2006.

[265] Håkan LS Younes and Reid G Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and Com-
putation, 204(9):1368, 2006.

[266] Sergio Yovine. Kronos: A verification tool for real-time systems. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):123–133,
1997.

[267] Arvin Zakeriyan, Ehsan Khamespanah, Marjan Sirjani, and Ramtin Khos-
ravi. Jacco: More efficient model checking toolset for java actor programs.
In Proceedings of the 5th International Workshop on Programming Based
on Actors, Agents, and Decentralized Control, pages 37–44. ACM, 2015.

[268] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation (second ed.). Academic Press, New York, 2000.

210

Part IV

Appendixes

The following appendixes report some further work carried during
the PhD studies. In particular, the use of the Stochastic Time Petri
Nets formalism, together with an its support in Uppaal, is exploited
as a more abstract modelling language for checking Theatre ac-
tor systems. In addition, as a more specific application domain for
Theatre, a practical example of structural health monitoring and
analysis is shown.

208

Paolo Francesco Sciammarella

Paolo Francesco Sciammarella
211

Appendix A
Formal Modelling and Analysis of

Probabilistic Real-Time Systems 1

This appendix considers formal modelling and analysis of distributed timed and
stochastic real-time systems. The approach is based on Stochastic Time Petri
Nets (sTPN) which offer a readable yet powerful modelling language. sTPN
are supported by special case tools which can ensure accuracy in the results by
numerical methods and the enumeration of stochastic state classes. These tech-
niques, though, can suffer of state explosion problems when facing large models.
In this work, a reduction of sTPN onto the popular Uppaal model checkers is
developed which permits both exhaustive non-deterministic analysis, which ig-
nores stochastic aspects and it is useful for functional and temporal assessment
of system behavior, and quantitative analysis through statistical model check-
ing, useful for estimating by automated simulation runs probability measures of
event occurrence. The appendix provides the formal definition of sTPN and its
embedding into Uppaal. Two case studies are proposed as running examples
throughout the paper to demonstrate the practical applicability of the approach.

A.1 Introduction
Many software systems built today are concurrent/distributed in character and
have timed and probabilistic/stochastic aspects. For proper operation of these
systems, both functional and non-functional (e.g., reliability, timing constraints)
correctness has to be checked early in a development. Building a system with
a timing violation, in fact, can have severe consequences in the practical case.
Therefore, the use of formal tools both for modelling and property analysis is
strongly recommended [129, 196].
In this paper, the Stochastic Time Petri Nets (sTPN) formalism [253, 70] is
adopted for abstracting the behavior of a timed and probabilistic system. The
modelling language is supported as a special case by the Oris toolbox [46] which
admits generally distributed timers for transitions (activities), that is not nec-
essarily Markovian, and can exploit numerical methods and the enumeration of

1The material in this chapter is related to publications [190, 191]

213

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

stochastic state classes (state graph or transition system) [253, 51] for quanti-
tative analysis. The approach, although accurate in the estimation of system
properties, can suffer of state explosion problems when facing complex realistic
systems.
The work described in this paper claims that a more practical yet general so-
lution for supporting sTPN is possible by using the popular and efficient Up-
paal model checkers, in particular the symbolic model checker [27], for non-
deterministic analysis and/or the statistical model checker (SMC) [90, 9], for
quantitative evaluation of probability measures of event occurrences. Uppaal
SMC does not build the model state graph but rather depends on simulation
runs which are automated according to the desired level of accuracy in the re-
sults. Therefore, the memory consumption is linear with the model size, and
thus large systems can be modelled and analyzed. Although potentially less
accurate than a method which uses numerical techniques, the SMC approach
is anyway capable of generating results which are of value from the engineering
practical point of view.

A.2 The formalism of Stochastic Time Petri Nets

A.2.1 Basic Concepts
As in classical Petri nets [180], an [253, 51, 196] is composed of a set of places
(circles in Fig. A.2), a set of transitions (bars in Fig. A.2) and arcs (arrows in
Fig. A.2) connecting places to transitions or transitions to places only. A place
is an input or output place of a transition, depending on if an arc exists which
goes from the place to the transition (input arc), or vice versa (output arc). All
the net objects have attributes. Places can have tokens (small black dots in Fig.
A.2), arcs have weights (natural numbers, by default 1) to condition transition
enabling on the basis of the tokens into the input places, and transitions have
temporal and probabilistic/stochastic information which constrain their firing.
A transition is enabled if sufficient tokens exist in its input places, as required
by the input arc weights. When a transition is enabled, it can fire. At the fire
time, a number of tokens are withdrawn from the input places according to the
input arc weights, and a number of tokens are deposited into the output places,
always in a measure stated by the output arc weights. The firing of a transition
is an atomic event and can influence the enabling status of the other transitions
in the net model.

A.2.2 Syntax
An sTPN is a tuple (P, T,B, F, Inh,m0, EFT, LFT,⇡, F) where P is a set of
places; T a set of transitions, with P [T 6= ; and P \ T = ;; B is the back-
ward function: B : P ⇥ T ! N+ which associates an input arc (p, t) 2 B
with its natural (not zero) weight (default is 1); F is the forward function:
F : T ⇥ P ! N+ which associates to an output arc (t, p) 2 F its natural (not
zero) weight (default 1); Inh is the set of inhibitor arcs (input arcs ending with
a black dot in Fig. A.2): , which have an implicit weight of 0. m0 is the initial
marking of the sTPN model, which assigns a number of tokens (also 0) to each

214

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

place: m0 : P ! N . EFT and LFT are respectively the earliest firing time and
the latest firing time of a transition, as in the basic Time Petri nets [175, 36]:
EFT : T ! Q+, where Q+ is the set of positive rational numbers including
0, LFT : T ! Q+ [{1}, with EFT LFT . The set of transitions consists
of two disjoint subsets: T = Ti [Ts, Ti \ Ts = ;, where Ti is the set of im-
mediate transitions (black bars in Fig. A.2), is the set of stochastic transitions
(white bars in Fig. A.2). Immediate transitions are implicitly associated with
the times EFT = LFT = 0. In addition, ⇡ is a function which associates to
each immediate transition a probabilistic weight : ⇡ : Ti ! [0, 1], where [0, 1]
is the dense interval of real numbers between 0 and 1. F is a function which
associates to each stochastic transition a probability distribution function (pdf),
which is constrained in the timing interval [EFT,LFT] which acts as the sup-
port for the pdf: F : Ts ! pdf . By default, the pdf of a stochastic transition
is the uniform distribution function defined on the support [EFT,LFT] of the
transition. The pdf can be an exponential distribution function (EXP) defined
by its rate parameter �, or it can be a generally distributed non-Markovian pdf.
The sTPN formalism adopted differs from the definitions in [253, 51] because
arcs can have an arbitrary weight. Moreover, our sTPN language clearly dis-
tinguishes the immediate from the timed/stochastic transitions. Only to im-
mediate transitions a probabilistic weight can be attached, whereas in [253, 51]
each transition can have its weight.

A.2.3 Semantics
Enabling

A transition t is enabled in a marking m, denoted by: m[t >, iff:

8p 2 P, (p, t) 2 Inh)M(p) = 0 ^B(p, t) > 0)M(p) � B(p, t)

Firing

An enabled transition can fire. When t 2 T fires, it modifies the current marking
m into a new marking m0 as follows:

m̃(p) = m(p)�B(p, t) (withdraw sub-phase)

m0(p) = m̃(p) + F (p, t) (deposit sub-phase)

where m̃ is the intermediate marking determined by the withdrawal sub-phase.
The two sub-phases (withdraw and deposit) are executed atomically. They are
explicitly indicated because the firing of t can change the enabling status (from
not enabled to enabled or vice versa) of other transitions in the model, due to the
sharing of some input places (conflict situations), both just after the withdraw
or after the deposit sub-phase (also considering the existence of inhibitor arcs).
A transition t0 is said persistent to the firing of t iff: m[t0 > ^m̃[t0 >. Transition
t0 is said newly enabled, since the firing of t, if: m0[t0 >. sTPN assumes that
transitions are regulated by single server firing semantics. In other terms, each
transition will fire its enablings one at a time, sequentially.
Immediate transitions always are fired before stochastic transitions. Let Cm

i be

215

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

the candidate set of immediate transitions enabled in marking m : Cm
i = {ti 2

Ti|m[ti >} . Transition ti is chosen for firing with probability:

⇡(ti)P
tj2Cm

i
⇡(tj)

Fireability of timed/stochastic transitions

The firing process of transitions in a sTPN model is now described in more
details. Each transition, except for the immediate transitions, has a built-in
timer which is reset at its enabling and automatically advances toward the fir-
ing time. An sTPN model rests on global time and on the fact that all the
timers increase at the same rate.
Under non-deterministic semantics, as in classic Time Petri Nets [175, 36], prob-
abilistic weights and pdfs are ignored, and a transition is said fireable as long
as the timer value is within the [EFT,LFT] interval of the transition. There-
fore, the transition cannot fire when timer < EFT , but it should fire when the
timer has reached the EFT and it is less than or equal to the LFT (last time
point). It is worth noting that, due to conflicts, an enabled transition can lose
its enabling at any instant of the timer and even at the last time LFT . It is
not possible for a continually enabled transition, to fire beyond the LFT (strong
firing model). In the case multiple transitions are fireable, one of them is chosen
non-deterministically and fires.
Under stochastic semantics, at its enabling, a transition gets a sample d (dura-
tion) from its associated pdf which must be: EFT d EFT , then it resets
its timer. The transition is fireable when the timer == d, provided the tran-
sition does not loose its enabling in the meanwhile. When multiple stochastic
transitions are fireable, one of them is chosen non-deterministically and it is
fired.

A.3 Mapping sTPN onto Uppaal
sTPN are supported by the TPN Designer toolbox [56]. This way an sTPN
model can be graphically edited and preliminarily simulated. An sTPN model
can then be translated into the terms of the timed automata of Uppaal for
model checking. A translated sTPN model can be decorated for it to be more
convenient for the analysis.
The availability of a high-level modelling language with basic types (int and
bool), arrays and structures of basic types (under statistical model checking is
also permitted the type double), and C-like functions, greatly facilitated the
reduction process. The main points of the translation are summarized in the
following:

• The number of places (P) and the number of transitions (T) are deter-
mined. In particular the number ST of stochastic transitions and the
number IT of immediate transitions are defined, with T = ST + IT . In
addition, constant names for places and transitions are introduced as in
the source model.

216

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

• The B and F functions of formal syntax are realized by two corresponding
constant matrices whose elements are pairs of a place id and its associated
weight of the input arc or output arc. An inhibitor arc has weight 0.

• The [EFT,LFT] intervals of all the transitions are collected into a (con-
stant) matrix I : T ⇥ 2. If t is a transition id, I[t][0] holds the EFT and
I[t][1] stores the LFT of t. An infinite bound for LFT is coded by the
constant INF = �1.

• The pdf of timed transitions are implemented in a double f(stid) which
receives the id of a stochastic transition and returns a sample of the cor-
responding pdf , constrained into the associated [EFT,LFT] support in-
terval.

• The random switch in a not empty candidate set Cm
i of enabled immedi-

ate transitions in current marking, is realized by a function rank() which
returns the id of the Next Immediate Transition (NIT) to fire. A stochas-
tic transition can fire provided NIT == NONE, that is there are no
immediate transitions to fire.

• The enabling, withdraw and deposit operations of transitions are respec-
tively implemented by the bool enabled(const tid t), void withdraw(const
tid t), and void deposit(const tid t) functions. Such fundamental functions
receive as parameter the id of a generic transition.

A.3.1 Timed Automata For Transitions
The active part of a reduced sTPN model into Uppaal is constituted by timed
automata each one corresponding to a distinct transition. Basic automata are:
ndTransition(consttidt), sTransition(conststidt) and iT ransition(constitidt)
whose parameter is the unique id of the transition. The ndTransition is used
when an sTPN model is analyzed by the exhaustive symbolic model checker of
Uppaal. The stTransition and iT ransition are instead used when an sTPN
model is evaluated with the statistical model checker.
Fig. A.1a depicts the ndTransition automaton of a non-deterministic Time
Petri Net transition [175], which captures the basic behavior of any sTPN
transition. An ndTransition owns a locally declared clock x which implements
the timer explained above. The transition starts in the N (Not enabled) loca-
tion. From N it moves to the F (under Firing) location as soon as the transition
finds itself enabled. When moving from N to F the clock x is reset to measure
the time-to-fire. In F the transition can stay as permitted by the LFT time.
In the case LFT is infinite, the dwell-time in F is arbitrary. A finite stay in F
is imposed by the invariant x <= I[t][1] attached to F , in the case of a strict
[EFT,LFT] interval. At any instant in time, the transition moves from F to
N as it finds itself disabled.
As soon as the clock x reaches the earliest firing time EFT , and the transition
keeps continually enabled, the transition can terminate its firing by initiating
the withdraw sub-phase and switching to the W location. The complete firing
process is achieved by a pair of synchronizations using the end_fire broadcast
channel, raised respectively from the committed locations W and D (a com-
mitted location has to be left immediately, without time passage; committed

217

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

locations have priority over urgent locations, for example, the F locations of
transitions which have reached the LFT time). Being broadcast, end_fire is
heard by all the remaining transitions in the model, which thus can evaluate
their enabling status following, respectively, the withdraw and the deposit sub-
phase of the transition which is completing its firing.
A subtle point in Fig. A.1a refers to the fact that at the first end_fire syn-
chronization (following the withdraw sub-phase), all the remaining transitions
call enabled() as a guard and check effectively their enabling status in the in-
termediate marking established by the withdrawal of tokens. In the second
end_fire synchronization, the influenced transitions evaluate their status in
the final marking reached after the deposit sub-phase. From D the transition
will move to N if it is not enabled, or come back to F , by resetting the clock x,
would it be still enabled.
For bootstrapping purposes, a Starter automaton (see Fig. A.1b) is used which
initially launches a first end_fire synchronization and let transitions to reach
the F location or remain in the N location would they be respectively enabled
or disabled in the initial marking. After entering the S1 location, the Starter
will take no further part in the model behavior.

(a) The ndTransition automaton (b) The Starter automaton

(c) The iTransition automaton (d) The sTransition automaton

Figure A.1: Transition template

Fig. A.1c and Fig. A.1d show respectively the iT ransition and the sTransition
automata whose basic behavior coincides with that described for the ndTransition.
The F location in iT ransition is a committed location, meaning that an enabled

218

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

immediate transition has to complete its firing without time passage. In order
to guarantee the atomicity of the firing process of a stochastic transition st, it
is fundamental to forbid immediate transitions to exit F before the completion
of the firing process of st. The global bool fire variable is set to true by a
transition st at its exiting from F (see Fig. A.1d) and put to false at the end of
the firing. But an immediate transition can conclude its firing only when it is
selected by the rank() function which applies probability weights and realizes
the random switch. The automata in Fig. A.1c and A.1d assume that transition
conflicts are always homogeneous, that is they are composed by the same type
of transitions: immediate or stochastic.
The stTransition uses two clocks: x and d (delay). The clock d is assigned
the next sample of the pdf of the stochastic transition, returned by the f(t)
function. In F the transition remains until x reaches d. During this time, the
clock d is frozen by putting its first derivative to 0. The pattern exploited in
Fig. A.1d is suggested at page 13, Fig. 22, of the Uppaal SMC tutorial [90].
Since Uppaal SMC can have problems exiting the F location of a stochastic
transition whose pdf is, e.g., deterministic, a force_firing urgent broadcast
channel is used in Fig. A.1d. This way as soon as the delay is elapsed, F
is forced to be exited. The force_firing broadcast synchronization is non-
blocking and it is heard by no one. Only its urgent character is exploited. Both
designs in Fig. A.1c and Fig. A.1d improve the work described in [70].
The automata in Fig. A.1c and Fig. A.1d implement in a natural way the
semantics of transitions above discussed.

A.4 First Example
In the following, the realistic distributed probabilistic and timed system de-
scribed in Section 7.2.3, adapted from [196, 129] and concerning the behavior of
a sensor network, is considered. In [196, 129] the model was achieved by timed
actors and asynchronous message passing.
There is a lab wherein a scientist is working. In the environment of the lab a
gas level can grow so as to become toxic. One or multiple sensors are used to
monitor the gas level. In the case a toxic gas level is sensed, the life of the scien-
tist is threatened and thus she/he has to be immediately asked to abandon the
lab. However, due to non-deterministic and probabilistic behavior, the request
to abandon the lab can possibly not occur at all (the sensor can be faulty), or
even that the dangerous situation is correctly sensed, the scientist can be in a
position of not hearing the request. As a consequence, following a given dead-
line for the scientist to acknowledge the request-to-abandon the lab, a rescue
team is asked to go and reach the lab so as to possibly save the scientist. There
is a deadline, tied to the dangerous character of the gas, measured from the
time a toxic gas level occurs, for the scientist to be saved. Failing to rescue the
scientist, in a way or another, within the deadline causes the scientist to die.
The case study was modelled as an sTPN as shown in Fig. A.2 together with

its initial marking. Black bars denote immediate transitions. White bars indi-
cate timed/stochastic transitions. In the model in Fig. A.2 all the stochastic
transitions are deterministic. The model was designed to be a good abstraction
[163] of the chosen system, in the sense that only the relevant actions are re-
produced. Not essential aspects are omitted. In particular, the model focusses

219

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Figure A.2: An sTPN model for a sensor network real-time system

on the reaction of the system to one single toxic gas level. The model consists
of the following components: the Environment, the Sensor (can be multiple
instantiated), the Controller and the Rescue and the Scientist. Each compo-
nent is mirrored by a distinct place (Env, Sen, Cnt, Sci and Res) whose token
represents its ability to perform actions.
At each period tE , the environment choices if the gas level is ok or not ok. In
the case the gas is not ok, one token is generated in the place ToxicEnv and in
the place SciT imeout. Transition SciDie, with time tDIE , activates the main
deadline for the scientist saving process. Would SciDie fire, the scientist dies
(one token is generated in the place SciDied). The Sensor, with period tS ,
samples the environment gas. However, with probability swp (sensor working
probability) the sensor is actually working, and with probability 1� swp it can
become not working. A not working sensor remains faulty forever and will not
be able to inform the controller about a toxic gas. All of this was achieved by
a random switch between the conflicting SenWorking and SenNotWorking
immediate transitions of the sensor. In a similar way, the environment decides
between gas ok or gas not ok during its operation. It should be noted, though,
that following the first firing of GasNotOk, the transition will no longer become
enabled. A toxic gas level is reported by the sensor to the controller through
a firing of the ToxicLevel transition (which can fire only one time), which is
followed by a firing of the DoReport transition whose timing expresses the net
communication delay (tND). One token in the ReportAlarm place, causes an
alarm event to be signalled to the controller. However, also the controller has a
cyclic behavior with period tC . Hence, an Alarm is actually heard at the next
period of the controller. Only one firing of the Alarm transition can occur dur-
ing a model reaction. Alarm deposits one token in the AbortP lanReq which,

220

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

after one net delay, triggers an AbortP lan event thus depositing one token in
the AP place and in the WaitingAck place. Following a tACK time, the con-
troller knows the scientist was not responding to the abort request. Therefore,
the rescue is alerted to go and reach the scientist (the GoAndReach transition
fires). For realistic modelling, the scientist can hear a request to abort plan with
probability shp and with probability 1� shp she/he cannot hear the request. If
the scientist is hearing, then an ack is sent to the controller through the transi-
tion SendAck which definitely causes the rescue team to be not activated. In
addition, hearing the abort plan request, determines the scientist to generate
one token in the IsOutEnv which mirrors the scientist exited the lab and she/he
is saved. In the case the scientist is not hearing, the rescue will try to save the
scientist by a firing of the TrySave transition. Such a transition does not fire if
the scientist was already saved or she/he died. As a subtle point, TrySave was
made timed with [0, 0] time interval, to give priority to the event of responding
to the abort plan request (see NotRescue) would the ack be generated at the
same time.
As a final remark, generating one token in SciDied or IsOutEnv terminates
the response of the system to the environmental stimulus of a gas toxic level.
The model in Fig. A.2 can easily be extended to accommodate multiple sen-
sors. It is sufficient to replicate the SenSample transition and to adjust the
initial marking of the Sen place to reflect the required number of sensors. All
the SenSample transitions share Sen as the input place and SenChoice as the
output place.

A.5 Experimental analysis
A model like that in Fig. A.2 naturally requires to be quantitatively analyzed,
e.g., by a statistical model checker [9] in order to estimate, for example, the
probability for the scientist to be not saved in time when a toxic gas level oc-
curs, when some scenario parameters like those shown in Table A.1 are assumed.
It is important to note that the EFT and LFT bounds of transitions must be
integral values when the non-deterministic model checker of Uppaal is used.
Some preliminary experiments were carried out using the non-deterministic sym-
bolic model checker of Uppaal [27], which ignores probability and pdfs. A
perfect sensor was assumed (the SenNotWorking transition in Fig. A.2 was
omitted). However, the scientist was kept capable of perceiving or not an abort
plan request, as well as the environment can choice at each period if the gas level
is ok or not. It is worthy of note that by ignoring probability weights, alternate
model paths which could occur with very different probabilities, are handled
non-deterministically, in the sense that the model checker considers and visits
them as occurring with the same probability.

A.5.1 Non-deterministic analysis
The sTPN model of Fig. A.2 reduced to Uppaal, and with a perfect never
faulty sensor, was configured using only the ndTransition template of Fig. A.1a
as follows (implicit instantiations of processes occur):

system Star te r , ndTrans i t ion ;

221

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Table A.1: Scenario parameters for the sTPN model of Fig. A.2

Parameter Name Value
Sensor period tS 2

Controller period tC 3
Environment period tE 5

Scientist saving period tDIE 14
Network delay tND 1

Scientist ack deadline tACK 2
Rescue time tR 3

Sensor working probability swp 0.99
Gas ok probability gop 0.98

Scientist hearing probability shp 0.90

Then the exhaustive model checker of Uppaal was used which relies on the
construc- tion of the model state graph. Properties are specified in the supported
subset of the TCTL temporal logic [27].
An important concern was checking that the system does not admit deadlock
states:

A [] ! deadlock

This query was found satisfied. This in turn also proved that the model is 2-
bounded. In fact, except for the EnvChoice place of the Environment, all the
other places will have at most 1 token during system evolution. This property
was checked by the (sat- isfied) query:

A [] f o r a l l (p : pid) (p==EnvChoice | | M[p]<=1)

Since the use of a not faulty sensor, the next checked property was knowing if
the intrinsic timing behavior of the model (see parameters in Table A.1) can
guarantee the scientist can always be saved when a toxic gas level occurs. The
following queries (both satisfied) were used:

ndTrans i t ion (GasNotOk) .W ��> M[isOutEnv]==1

A[] M[SciDied] == 0

The first one, based on the leads� to operator, checks if starting from a firing of
the GasNotOk transition, it inevitably follows that one token will be generated
in the place IsOutEnv (i.e., the scientist is saved). The second query, similarly,
checks if invariantly, that is in all the states of the state graph, the marking of
the SciDied place is without tokens.
Since in the assumed operating conditions, the scientist gets saved, the following
query (satisfied) was used to assess that the saving is effectively performed by
the AbortP lan request or through the rescue team (see the TrySave transition
in Fig. A.2):

ndTrans i t ion (GasNotOk) .W ��> ndTrans i t ion (SciHear) .W
| | ndTrans i t ion (TrySave) .W

A critical issue in the scenario parameters in Table A.1 is the scientist die
deadline (tDIE) which obviously depends e.g. on the sensor period. Therefore,
by changing the sensor period from 1 to 15, and keeping unchanged all the other
parameters except for the tDIE value which was set to 30, it was determined

222

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

the maximum end-to-end delay (EED) between the occurrence of a toxic gas
level and the completion of the system reaction which saves the scientist. To
this purposes, a decoration clock z was added to the Uppaal model, which is
reset (in the deposit(tid) function) when the GasNotOk transition concludes its
firing. Then the clock z was checked when either the SciHear or the TrySave
transition concludes its firing, by a query like the following:

A [] (ndTrans i t ion (SciHear) .W | | ndTrans i t ion (TrySave) .W) &&
(M[SciDied]==0 && M[IsOutEnv]==0) imply z op bound

where op can be >= or <= and the corresponding bound is the lower bound
or the upper bound of the EED. More precisely, the lower bound (best case
response time) is assessed by the greatest value lb which satisfies the above query
with the constraint z >= lb. Similarly, the lowest value ub which satisfies the
above query with the constraint z <= ub, establishes the upper bound (worst
case response time). Fig. A.3 shows the observed lb and ub values for the
monitored EED. The results coincide with those achieved in [196] using actors
for modelling the case study.
Some further checks were carried on the non-deterministic model with the sensor
which can fail, and thus is not able to inform the Controller about a toxic gas
level. It is observed that it is the logic of exhaustive verification that of checking
all the state paths, then also the path where the sensor fails:

E<> ndTrans i t ion (SenNotWorking) .W

This query is satisfied. As one expected, even assuming a tDIE value greater
than the worst case value of the EED emerged, for a given sensor period, in
the analysis on the optimistic model, the scientist can now die.
The query:

E<> M[SciDied]==1

is satisfied and clearly indicates that exists at least one state where the place
SciDied holds one token. For correctness of the model, the following query was
also used to check that in no case the scientist can be both saved and died:

E<> M[SciDied]==1 && M[IsOutEnv]==1

Such query is not satisfied. From the non-deterministic analysis it emerges that
the sTPN model of the case study is compliant with the actor model developed
in [196]. This in turn talks about correctness of the sTPN reduction into
Uppaal.
The analysis confirms the scientist can possibly be not saved in the event of
a dangerous gas level. This fact raises the important concern of estimating
a probability measure for the scientist to be effectively saved under different
operating conditions.

A.5.2 Quantitative analysis
The statistical model checker (SMC) of Uppaal rests on a stochastic interpre-
tation of timed automata. Properties are specified using the Metric Interval
Temporal Logic (MITL) and its weighted extension (WMITL) [90]. An sTPN
model can be naturally analyzed under SMC because it depends on broadcast
synchronizations only [90].

223

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Figure A.3: Observed EED vs. sensor period

Basically, SMC uses simulation runs whose number is dynamically adjusted
according to the property to check. Important is the number of time units as-
signed to each experiment for reaching a conclusion. Such time units should
guarantee a dangerous gas level occurs in the environment and sufficient time
exists to produce a system response, a sensor not working can happen and the
scientist receiving an abort plan request can possibly be not hearing it. The
sTPN model in Fig. A.2 was configured to exploit stochastic and immediate
transitions, thus:

system Star te r , sTrans i t i on , iT r an s i t i o n ;

The following query:

Pr[<=1000] (<> iTran s i t i o n (GasNotOk) .W)

asks to quantify the probability of occurrence of a toxic gas by using a certain
number of experiments each one lasting after (at maximum) 1000 time units
(tu). Each run is actually stopped as soon as the event occurs. By setting the
uncertainty error of a confidence interval (CI) as ✏ = 0.005, 3013 runs were used
with parameters as in Table A.1. Then the following CI (0.95 confidence degree)
was proposed [0.975932, 0.98593] which confirms the expected probability of the
event. The query:

Pr[<=1000] (<> M[SciDied]==1 && M[IsOutEnv]==1)

checks that never should happen that the scientist can be found (absurd) both
saved and died. After 368 runs, Uppaal SMC suggests a CI of [0, 0.00997405]
thus witnessing the event is almost impossible. For the sake of simplicity, in the
subsequent SMC analysis work, the default error of ✏ = 0.05 was adopted, which
implies fewer runs but anyway an acceptable level of accuracy in the results.
In the hypothesis that the toxic gas requires the scientist to be saved within
a deadline of 10 tu, the following query based on the until operator [90], with
the sensor period varied from 1 to 15 and other parameters as in Table A.1,
was used to estimate the probability of the event: “Would an instant in time
in [0, 1000] exists where a token is deposited in the SciT imeout place and no

224

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

token is present in the IsOutEnv place, will it happen that a token is put in the
IsOutEnv place within the next 10 time units?”.

Pr [<=1000] ((M[ScTimeout]==1 && M[IsOutEnv]==0)
U[0 , 1 0] M[IsOutEnv]==1))

Each execution of the query uses 738 runs. The observed confidence interval
bounds, when only one sensor is used, are collected in Fig. A.4 and are in good
agreement with similar results reported in [196].
As one can see from Fig. A.4, the scientist saving probability is low for small
and for high sensor periods. In fact, the more frequent is the sensor sampling
the more likely the sensor can be faulty, and thus unable to notify the controller
about a dangerous gas level. On the other hand, a sensor with a high period
can capture late a toxic gas level thus delaying the controller intervention and
putting at a severe risk the life of the scientist. The scientist saving probability

Figure A.4: Scientist saving probability vs. sensor period (one sensor)

increases as the sensor period augments by taking a maximum when the period
reaches the value 5. Other local maxima occur at 10 and 15 and so forth. These
maximum points correspond to parameter alignment situations (the sensor pe-
riod is a multiple of the environment changing period tE , see Table A.1), also
observed in [196], when the sensor can perceive a bad gas level at the same mo-
ment the environment signals it. Near to local maxima, the saving probability
keeps high because although the sensor can capture with a small delay a toxic
gas, sufficient time remains for the controller to execute the rescue operations.
Fig. A.5 portrays the scientist saving probability when two sensors are used.
This experiment was not carried in [196]. Fig. A.5 confirms the expectation
that the more are the sensors, the less likely is the circumstance that all the sen-
sors become faulty simultaneously. The same behavior with multiple maxima
observed in Fig. A.4 is also present in Fig. A.5 although now the scientist saving
probability is higher. The following queries evaluate specifically the probability
that the rescue operations are completed respectively by the abort plan request
of the controller or through the rescue team intervention. The model is config-
ured with two sensors, the sensor period is tS = 5 and the scientist die deadline
is tDIE = 10. All the other parameters are as in Table A.1.

225

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Figure A.5: Scientist saving probability vs. sensor period (two sensors)

Pr (< >[0 ,1000]((M[SciTimeout]==1 && M[IsOutEnv]==0)
U[0 , 10 iT r an s i t i o n (SciHear) .W))

Pr (< >[0 ,1000]((M[SciTimeout]==1 && M[IsOutEnv]==0)
U[0 , 10 sTran s i t i on (TrySave) .W))

The first query, after 738 runs, generates a CI of [0.645122, 0.745122]. The
second query proposes a CI of [0, 0.0838753] thus confirming that the scientist
is mostly saved through the first abort plan request issued by the controller.
All the experiments were carried out on a Win 7 station with 4GB RAM using
the Uppaal version 4.1.19 and the 4.1.20.beta25 development version.

A.6 Second Example
In the following an sTPN model of the Fisher’s time-based mutual exclusion
protocol [108] is shown. The formalism adopted is a light extension of the
one reported previously, in which three functions are supposed to be available
(Enabling, Withdraw and Deposit), that allows to investigate if in a place in-
stead of token, there is a number (and eventually, its own value).
The model was adapted from [206] and retains the same timing information for
validation purposes. In Fig. A.6 three processes are assumed, whose id are 1,
2 and 3. Shared place id holds an integer as its token, whose value can be 0
when no process is interested in entering its critical section. The value of id
is i = 1, 2 or 3 when process i intends to enter its critical section. Place id is
handled through the ExtE, ExtW , and ExtD functions.
The Arrivali transition has an interval [0,1] and its pdf is an exponential
distribution whose parameter � is 0.01s�1. All the other transitions have, by
default, a uniform distribution in the associated temporal interval. In particu-
lar, ReadEmptyi, ReadSelfi, Reseti, ReadOtheri and Waiti have a pdf which
reduces to a deterministic constant value which is 1.1 for Waiti and 0 for the
other transitions.
Initially, each process is in its non-critical section (NCS) modelled by one token

226

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

in the Idlei place. The dwell-time in NCS is arbitrary as reflected by the [0,1]
time interval of the Arrivali transition. After a firing of Arrivali, the process
raises its interest to compete for entering its critical section by putting one token
in the Readyi place. After that, the process continues by reading the value in
the id place. In the case id == 0 the process can go on. If id 6= 0, another pro-
cess assigned its id to the shared place id, and the current process has to remain
in the ready status (transition ReadEmptyi is not enabled). When id == 0
the process continues by tentatively writing its id to the shared place id. The
writing time (W) was supposed to be a non-deterministic value in the interval
[0, 1]. A key point of the protocol consists now in forcing the process to wait
for a time just greater than W . In Fig. A.6 the waiting time is the constant
1.1. After the waiting phase, the process checks again (reading phase) if its id
is still in the id place or not. A different value would testify another process
attempted the same writing concurrently and succeeded. Therefore the process
has to come back into its ready status by a firing of the ReadOtheri transition.
When its own id is found in id, the process (through a firing of ReadSelfi) even-
tually enters its critical section (one token is deposited in the CSi place). The
duration of the critical section is modelled by the time interval of the Servicei
transition. After its firing, Servicei puts one token in the Completedi place and
then, through Reseti, the process frees the shared place id by putting 0 in it,
and returns to its non-critical section (Idlei place).
The number of times the ReadOtheri transition fires represents the cases where
this process is overtaken by competing processes. Hopefully, the competing time
before entering the critical section should be bounded.
The following properties should be checked when proving the correctness of a
mutual exclusion, in general untimed, algorithm (see e.g. [75]):

• The algorithm should be deadlock free (safety);

• Only one process at a time can be in its critical section (safety);

• The waiting time due to competing should be bounded (absence of star-
vation, bounded liveness);

• A not-competing process should not forbid a competing one to enter its
critical section (liveness);

• No hypothesis should be made about the relative speed of the processes.

It is worth noting that in the literature there are mutual exclusion algorithms
which e.g. satisfy the constraint 2, but not the constraint 3. A notable example
is the Dijkstra’s untimed mutual exclusion algorithm for N processes [95] which
it can be proved it does not satisfy the constraint bullet 3.
The analysis work described later aims at showing the interplay between non-
deterministic behavior and the stochastic one, by confirming, in particular, that
the stochastic behavior can positively contribute to the proper operation of the
Fisher’s algorithm.

A.7 Analysis of the Fisher’s protocol
The Fisher’s algorithm in Fig. A.6 was used in [206]for an in-depth analysis of its
stochastic behavior, using numerical methods and stochastic state enumeration.

227

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Figure A.6: An sTPN model for the Fisher’s timed-based mutual exclusion algorithm,
adapted from [206]

228

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

The reduction of the psTPN version of the Fisher model in Uppaal can be
thoroughly analyzed under both the non-deterministic interpretation and the
stochastic interpretation. Non-deterministic analysis ignores stochasticity and
exploits the symbolic model checker of Uppaal which builds the (hopefully
finite) model state graph and permits exhaustively to investigate properties
specified in the subset of the TCTL temporal logic language supported by the
toolbox [27]. Stochastic analysis depends on the Uppaal Statistical Model
Checker (SMC) which does not build the state graph and uses simulation runs
and statistical inference for quantitatively estimating probability measures of
event occurrences. The SMC rests on a weighted extension of the Metric Interval
Temporal Logic (MITL) for formally specifying system properties.

A.7.1 Non-deterministic analysis
The non-deterministic version of the psTPN Fisher model, adapted so as to
convert temporal interval bounds of transitions to integer constants, was exten-
sively studied for qualitative behavior: detecting that something can happen.
Since the three processes are identical, properties can be checked with a refer-
ence to one process, e.g. the process 1.
A first concern was to check for the absence of deadlocks in any execution state,
with the query:

A [] ! deadlock

The property is satisfied. Then, the mutual exclusion property was verified as
follows:

A [] M[CS1]+M[CS2]+M[CS3] <= 1

This property too is satisfied. Other equivalent queries could be used to assess
the mutual exclusion, e.g.:

A [] M[CS1]==1 imply M[CS2]==0 && M[CS3] == 0

which ensures that if process 1 is in its critical section, necessarily the other
processes are not in their critical section. The property is satisfied.
As a further check, the following query gets not satisfied:

E<> M[CS1]+M[CS2]+M[CS3] > 1

The last queries need to be accompanied by checks which can guarantee that
effectively each process can possibly enter its critical section:

E<> M[CS1]==1

Such existential query is satisfied. The next query checks the property that
processes which are in the non-critical-section do not forbid another process to
enter its critical section:

E<> M[CS1]==1 && M[Id l e 2]==1 && M[Id l e 3]==1

The query is satisfied. Finally, the absence of starvation was checked with the
queries:

E<> M[Ready1]==1 s a t i s f i e d
M[Ready1]==1 ��> M[CS1]==1 not s a t i s f i e d

229

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

The last query makes use of the leads-to operator �� >, which asks if starting
from a marking where process 1 is competing, inevitably follows that the process
effectively enters its critical section. Unfortunately, Uppaal says the property
is not satisfied. Therefore, a competing process can experiment unbounded
waiting. This property was not verified in [206].
Considering that during model checking Uppaal investigates exhaustively all
the process interleavings, it can be concluded that the Fisher model, under non-
deterministic analysis, satisfies all the requirements stated at the end of Section
A.6, except for the constraint 3, about starvation which is not fulfilled.
It is useful to note that although each ndTransition owns its local clock, the
complexity of model checking does not depend on the total number of clocks
but, time to time, on the number of active clocks. An active clock is one that,
after being reset, is actively referenced in guards or invariants. Therefore, it is
the parallelism degree, i.e., the number of simultaneous under firing transitions,
which really affects the efficiency of the model checking procedure on a psTPN
model.

A.7.2 Stochastic Analysis
Whereas the non-deterministic analysis can indicate something can happen, the
stochastic analysis can be used to quantify a probability measure of event oc-
currence. In particular, since the chosen Fisher model does not exclude the
starvation of a waiting/competing process, it is interesting to have a quanti-
tative measure of the waiting time for processes wishing to enter their critical
section.
As discussed in [206], the stochastic aspects of a model like that of Fisher can
positively contribute to improving the properties of the algorithm.
As a preparatory phase of a model to be studied with statistical model checking
(SMC), the duration of each experiment (a simulation run) should be estimated.
SMC will execute, and also adapt, a number of experiments in order to ensure a
certain degree of accuracy in the results. Roughly speaking, the SMC evaluates
the number of experiments in which an event occurs and extrapolates a proba-
bility measure by a proportion. As soon as the event occurs, the experiment is
interrupted.
A first query was used to estimate the mean arrival time of a process, that is the
mean time to abandon the non-critical section (place Idlei). Such a time has
obviously to tend to the mean time of the exponential distribution of rate 0.1,
which is 1/0.1 = 10 time units. The Fisher model was first decorated by adding
a double variable s which accumulates the samples generated by the distribu-
tion (in the f(t) function) and also counting the number of samples in another
variable ns. The decoration function mean() was then prepared to furnish, time
by time, the ratio s/ns (at the time 0, when ns == 0, mean() returns 0). The
following query shows the trend of the mean() value:

s imulate [<=50000] { mean () }

The picture in Fig. A.7 was directly proposed by Uppaal SMC and confirms
that 5⇥104 is a sufficient time for the exponential to converge to its mean time.
As a consequence 5 ⇥ 104 was used as the limit time of experiments. Liveness
and safety properties of the Fisher model were re-checked with SMC as follows:

Pr [<=50000] (<>M[CS1]==1)

230

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Figure A.7: Monitored mean arrival time of processes

Uppaal SMC, using 299 runs, proposes a confidence interval (CI) for the event
“process 1 possibly enters its critical section” of [0.990031, 1] with confidence
0.95. The result was achieved by setting the option ✏ = 0.005 as the error in
the evaluation of a probability (the default value is 0.05). The result confirms
the event is “almost certain”. This option was kept also for the other queries.

Pr [<=50000] (<>M[CS1]+M[CS2]+M[CS3]>1)

Again using 299 runs, Uppaal SMC proposes a CI of [0, 0.00996915] 95% con-
fidence, to suggest the event is “almost impossible” to occur.
To check specifically the fairness of the model, the following decorations were
introduced in the model:

• a clock z which is reset at each firing of an Arrival1 transition and each
firing of the corresponding ReadSelf1 (when process 1 definitely enters its
critical section). Such reset operations are purposely accomplished in the
deposit(tid) function;

• a double variable wt to annotate the waiting time when process 1 is com-
peting; more in particular, at each firing of ReadSelf1, the value of clock
z is assigned to wt (this type of operation is only allowed in the SMC)
before being reset;

• a double variable mwt which is updated, during each experiment, with
the maximum value of the observed waiting time held by wt.

The query

E[5 0 000 ; 1 0 0] (max :mwt)

asks the SMC to estimate the maximum value of mwt, using 100 experiments
each lasting 50000 time units. It is worth noting that in this case, each exper-
iment executes completely for the 50000 time units. Uppaal suggests a value
of about 15.868± 0.433615. This result implicitly emerges also in the work de-
scribed in [206]. It confirms that the stochastic behavior of the Fisher protocol
helps toward fairness and starvation absence.

231

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Table A.2: Service pdf types used in Fig. A.8b

Service type Service Uniform pdf
1 [0, 2]
2 [0, 3]
3 [0, 4]
4 [1, 4]
5 [2, 4]
6 [3, 4]

Fairness was also studied from a different perspective. The model was further
decorated by adding a boolean variable competing which takes the value true
at the firing of Arrival1, and the value false at the firing of ReadSelf1. The
following query estimates (using extended weighted MITL) the probability of
the event that within the time window [0, 50000], it there exists an instant from
which competing remains true for at most 13 consecutive time units:

Pr (< >[0 ,50000] ([] [0 , 1 3] competing))

Uppaal proposes a CI of [0.897154, 0.997154] 95% confidence.
Other experiments were carried out to observe how the estimation of the max-
imum waiting time (mwt) changes when the parameter � of the exponential
distribution of the Arrival transitions, is varied from 0.1, 0.2, 0.3, 0.4 and 0.5.
As expected, a greater process contention caused by higher values of �, aug-
ments the waiting time as shown in Fig. A.8a.
Fig. A.8b shows how mwt varies when the service uniform pdf, which provides
the sojourn time in the critical section, is varied from type 1 to type 6 as in-
dicated in the Table A.2. In this scenario too, augmenting the average service
time causes an increase in the mwt.

In the light of the reported stochastic analysis, it appears that the chosen

(a) Maximum waiting time vs. � (b) Maximum waiting time vs. service pdf

Figure A.8: Query results

Fisher model now fulfills all the requirements of a mutual exclusion algorithm.

A.8 Conclusions
Modelling and formal verification are fundamental tools for the development
of distributed and probabilistic timed systems [129, 196]. In this appendix, the

232

Appendix A. Formal Modelling and Analysis of Probabilistic

Real-Time Systems

Stochastic Time Petri Nets (sTPN) modelling language [253, 51, 70] is adopted.
A reduction of sTPN onto the Uppaal model checkers [27, 90] is developed
which enables both non-deterministic ex- haustive analysis, and quantitative
evaluation of system properties through statistical model checking [9].
Two non-trivial case study concerning a distributed and dependable real-time
sensor network and a mutual exclusion protocol are introduced, modelled in
sTPN , and thoroughly verified in the paper.
Prosecution of the research aims to:

• Building and making available in Uppaal SMC, a library of recurrent
pdfs.

• Developing a structural approach to the operational semantics [210] of
sTPN (see, e.g., [129, 196]) and formally showing the correctness of the
sTPN reduction into Uppaal.

• Exploiting sTPN for performance prediction of general complex timed
and stochastic systems. In fact, the particular adopted syntax of sTPN
is close to the Generalized Stochastic Petri Nets (GSPN) formalism [173],
when the default sup- port interval [0,1] is attached to each timed tran-
sition and a general distribution probability function (pdf) is chosen.

• Establishing a formal transformation of distributed probabilistic timed
actors [129, 196] into sTPN so as to leverage the modelling and verification
activities afford- ed by Uppaal. A transformed timed actor model, indeed,
as demonstrated through the case study presented in this paper, can be
more amenable to analysis due to its abstraction level [163] and greater
efficiency and scalability during verification.

233

Appendix B
A layered IoT-based architecture

for distributed Structural Health

Monitoring System 1

Structural Health Monitoring (SHM) is in charge to identify techniques and
to prototype systems performing a state diagnosis of structures. Its aim is to
prevent a sudden civil infrastructures failures as a result of several not visible
damages. Since structural damages often are caused by ground phenomena
involving circumscribed geographical areas, it becomes useful to extend the
SHM systems to allow the exchange of information among nearby buildings and
then to increase the timeliness of the alerts. In this appendix a SHM based on
the Internet-of-Things paradigm is proposed (SHM-IoT). SHM-IoT carries out
both a localized monitoring, on a single building, that using information collected
by several sensors correlated in time aims to identify a potentially dangerous
damage, and to perform a wider monitoring on a group of building in order
to alert a larger number of peoples. Hardware and software architectures are
presented together whit the synchronization requirements and the methods to
satisfy them. Experimental results, obtained are implemented in real scenarios,
to validate the proposed system.

B.1 Introduction
The structural collapse of buildings can be caused by the sum of minor dam-
ages caused by ageing phenomena prolonged pressure to the structural load
curve limit, and much other stress causes that if promptly identified, could
prevent loss of human life [232]. With this aim, several inspections, and build-
ings maintenance programmes are carried out and regulated by law, depending
on importance, ownership, use, risk and hazard [44]. These solutions are not
sufficient to guarantee high safety levels, because the periodicity of the human
inspections carried out are generally unrelated with the unpredictable time with

1The material in this chapter is related to publications [147]

234

Appendix B. A layered IoT-based architecture for distributed SHM

which the structure damage events can occur.
The need to carry out continuous and more accurate monitoring has led to
the development of the Structural Health Monitoring (SHM) research field
[111, 179]. It is in charge to develop methods, techniques and systems voted
to perform real-time and automated monitoring of buildings [257] detecting the
occurrence of structural damaging events, such as a crack in a concrete pillar,
that could provoke the structural failure.
The sensing part of an SHM system is generally constituted by a set of wired
or wireless sensors, typically based on the fibre Bragg gratings [245] or MEMS
(Micro-Electro-Mechanical-Systems) [44]. Both estimate the impact of static
and dynamic loads on a pillar, measuring the structural vibration response.
Nowadays, techniques based on the use of the Acoustic Emission (AEs) associ-
ated with a crack event shows interesting results in the pillar damage detection.
AEs are elastic radiations generated by the release of energy within the mate-
rial [101], converted to voltage signals through the use of piezoelectric sensors,
applied on the different faces of the pillar. The acquired signal contains infor-
mation about fracture and plastic deformations, impacts, friction, corrosive film
rupture, and other ageing processes [55, 205].
The overall system, that represents an improvement of [149], can be decomposed
into two sub-sections: the first deals with the monitoring of the state of a single
structure, the second, instead, is in charge to send a notification alarm not only
within the building but also to the competent authorities and to the other build-
ings within the neighbourhood. In fact, if a subsoil event has involved a certain
area, it is likely that more than a single building may have been damaged. The
communication among structures is a feature useful to improve the reliability of
the SHM system by cover possible failures in the detection of damaging events
occurring in the building. In fact, if a structure receives a critical event notifi-
cation from a neighbour, the preventive alert is performed, even if its sensing
part have not detected any event.
According to the Internet-of-Things (IoT) paradigm [22], the proposed SHM
system is designed as a distributed measurement system, that follows a layered
implementation. Each layer has a specific role and requires the fulfilment of
specific temporal constraints to work properly, depending on the goals that it
has to achieve.

B.2 SHM Based On Multi-Agent IoT
The proposed system considers the SHM system as a network of interconnected
Smart Objects (SO), that can be installed in a non-invasive way on the pillars
of a structure, to carry out the real-time structural monitoring. Each SO is
modelled following a hierarchical layered architecture (see Fig. B.1), which is
given by the composition of:

• a physical part that includes all the sensors and actuators;

• a cyber part that includes all the algorithm and software protocols.

Challenging in this design is to ensure that all the time constraints on the syn-
chronization accuracy, required by each layer to work properly, are satisfied.

235

Appendix B. A layered IoT-based architecture for distributed SHM

Figure B.1: Hierarchical layered implementation of a SHM system

Moreover, although going up in the hierarchy the growing level of abstraction
is coupled with the relaxing of the time constraints, problems could arise from
the synchronization functioning among different layers (for example, in opera-
tions such as data exchange), which limit the reactivity of the overall system,
highlighting a separate block, non-holistic functioning.
By collecting, processing and combining the information coming from the indi-

vidual SOs, it is possible to realize complex monitoring applications, which are
not only in charge of structural damage detection. In particular, the operation
computed by each SO, are grouped into two groups. The first group includes
all the tasks finalized to the local detection of a damage, such as:

• acquisition of AE signals;

• processing of acquired signals to classify them as associated with a critical
event or not;

• correlation of multiple critical events, to infer if a dangerous damage event
has occurred.

After the identification of a critical event or the reception of a dangerous event
notification, the second group of tasks performs operations aimed at guarantee-
ing people’s safety. Exploiting the IoT paradigm, SOs can communicate with
each other through the network [170] and the actions performed include:

• the propagation of an alarm throughout the building in order to evacuate
it;

• the sending of a remote message to advise the competent authorities;

• the sending of a remote notification to the other buildings included in a
fixed neighbourhood, to suggest their evacuation.

The last feature described, is introduced to increase the reliability of a group
of SO installed on the same building and to extend the implementation of an
SHM system on a set of structures. In fact, since events generated in the sub-
soil generally affect a wide geographic area, it is probably that not only a single
structure has been damaged, but also its neighbours. So if a building detects
its own damage, it spreads the news towards its neighbours, to propose their
preventive evacuation, useful to avoid risks due to the eventual failure in the
detection of a dangerous event.

236

Appendix B. A layered IoT-based architecture for distributed SHM

All local and remote communication operations performed by the SOs, are car-
ried out exploiting the agent programming paradigm. An agent, as defined in
[259], is a software entity capable to perform the autonomous operation in order
to reach an established behavioural goal. Each SO is equipped with an agent
that, through its properties such as reactivity and proactiveness [259], super-
vises and manages the monitoring operations, choosing autonomously when it
is necessary to interact with other SOs. The main properties that agents offer,
useful to model the functioning and the dynamics of a distributed system [259],
are:

• sociality and mobility, that simplify the implementation of data exchange
and offer a distributed view of the application;

• concurrent data processing that permits to obtain a high computational
throughput;

• extensibility that permits the addition of new features to the application
or updates the technologies used, avoiding any redesign cost;

• easy detection of malfunctions by simple problem isolation;

• roles decomposition that permits to scale the system.

The whole SHM system can be seen as a federation of interacting agents, also
called Multi Agent System (MAS). In this kind of system, critical aspects regard
the implementation and synchronization issues related to the developing of a
single SO. These aspects, based on Theatre actors (see chapters 7. and 8.),
will be addressed by analysing in detail each layer of Fig. B.1.

B.2.1 Sensing layer
To detect the structural damage, avoiding the use of invasive techniques, as well
known in literature, the proposed architecture uses the measurement of the AE
generated in a pillar. As shown in Fig. B.2 if a pillar is over-stressed, a set
of micro-cracks will be generated within it. If the pressure exceeds for a long
time, or if it increases its intensity, these micro-cracks tend to be generated at
multiple points inside the pillar. Consequently, if that micro-crack will couple
each other, a very critical damage can be originated inside the pillar, that can
be recognized detecting the occurrence of the crack in a time window.
As shown in Fig. B.1 the lowest level of the proposed hierarchy is the Sensing
Layer. That layer is in charge of carrying out a continuous real-time monitoring
of the structure and to spread the alarm if a critical event occurs, exploiting the
different SOs installed on the different pillars. The low-level AEs acquisition
is achieved through the use of a set of piezoelectric sensors (PSs), equipped on
each SO. The main problems resolved in this layer concern with:

• the identification of the signals of interest, distinguishing it among envi-
ronmental noise and sounds produced by mini-crack;

• the storage and acquisition only of signals associated to potentially critical
events, in order to save computational resource;

• the synchronization of measurements coming from different SO, in order
to ensure that they are related to the same phenomenon.

237

Appendix B. A layered IoT-based architecture for distributed SHM

Figure B.2: Example of crack generation

As shown in Fig. B.3, in the proposed architecture, all these issues have been
solved in hardware, including the Logic Flat Amplifier and Trigger (L-FAT)
component, described in [149]. L-FAT works coupled with the Data AcQuisition
system (DAQ) extending its capabilities, and guarantying no loss of signal and
no waste of storage memory.
The L-FAT component is in charge to condition the input signals coming from
PSs, amplifying their values, and to manage the beginning of the acquisition
operations by sending a trigger to the DAQ. That trigger is generated only
when one of the signals perceived on the input channels, exceed an experimental
fixed threshold. By appropriately calibrating that threshold, it is possible to
store and process only signals associated with a potential event of interest. To
avoid the loss of signal of interest samples due to the trigger propagation delay
(estimated in the order of ns), it is possible to set DAQ functioning in a pre-
trigger mode. In this way, the board is enabled to acquire a fixed number of
samples before the trigger occurs, estimated for the AEs using the Hsu-Nielsen
test [19]. All the operations involved in the acquisition phase are time-critical
and a synchronization accuracy in the order of the µs, is needed to establish
that the different measurements are related to a same event/phenomenon. The
parallel channels architecture of the L-FAT component is able to satisfy that
constraint, introducing a propagation delay among the acquired signal estimated
in the order of 20 ns, with an uncertainty of few ns [149] and can be considered
as negligible.

Figure B.3: Distributed Structural Health Monitoring Architecture

238

Appendix B. A layered IoT-based architecture for distributed SHM

B.2.2 Signal Processing Layer
Processing Layer includes the algorithms needed to perform a low-level pro-
cessing of the acquired signal. In particular, while the Sensing Layer using the
L-FAT acquires the signals related to crack, this level acts as a filter, discarding
among the signals received all those with an intensity not sufficient to be con-
sidered associated to the occurrence of dangerous events.
To achieve this goal, the Signal Processing Layer implements all the mathemat-
ical operations and the procedures finalized to:

• realize the processing of the acquired signals;

• make available to the higher software levels, the information about the
number of the crack identified as dangerous.

Exploiting the similarity, known in literature [217], among the crack AE signals
and those associated to earthquakes, it is possible to use the Gutenberg Richter
(GBR) law, in order to estimate the crack intensity and to determine the level
damage. Using a variant of the GBR law [113], reported in the equation (1),
critical cracks are characterized by a value of b in the neighbor of 1 [55]

Log(N) = a� bAdm (B.1)

where N is the number of the hits higher than the threshold noise, experimen-
tally fixed at 40dB. The Adm variable represents the maximum amplitude peak
of AE signal. The a and b parameters are two constants fixed experimentally,
using techniques reported in [55].
Since that signal law-processing is only a set of algorithmic operations, the pro-
cessing time cannot be estimated, because it depends on the available computing
power.
As shown in Fig. B.4, the Signal Processing Layer keeps track of the number
of potentially dangerous cracks, within a Counter Variable (CV), appropriately
increased. The value of CV is needed by the higher software level into the
hierarchy, to carry out its own operations. To make the system as reactive as
possible, the decoupling among the updating time of the Signal Processing Layer
(depending from the event occurrence) from the periodicity associated to the
Event Detection Layer is required. To perform the data exchange non-blocking
mechanism are used, in particular to increase the parallelism and to improve the
performances, the CV variable is stored in a shared memory location, accessible
in Windows using different software, using the dynamic-link library. Conse-
quently, the main problem in this layer lies in synchronizing the read and write
access, between the different software components, to that the shared variable.
To overcome this issue, the Dekker mutual exclusion algorithm was used [77].

B.2.3 Event Detection Layer
Continuing to rise in the hierarchy of Fig. B.1, the next level is occupied by
the Event Detection Layer. It represents a front-end between the functioning of
the single Smart Object and the remaining part of the system and implements
operations:

• that allow to identify the occurrence of an effective dangerous damage in
the pillar monitored locally by the specific SO;

239

Appendix B. A layered IoT-based architecture for distributed SHM

Figure B.4: Layer interactions to perform the low-level crack identification

• that send, through the LAN, of a notification to the node hosting the
Application Layer.

Figure B.5: Event Detection Layer functioning

The operation of this tier and the algorithms needed to achieve its goals are im-
plemented within the behaviour of a software entity called the Event Detection
Agent (EDA). Each SO is equipped with one and only one EDA, that exploits
the agent message passing protocol to exchange data with the next layer. To
detect a dangerous damage within a pillar, the first operation that the EDA
algorithm performs is the continuous monitoring of the CV value, according to
an observation period TO=1s. This periodicity is acceptable and it is not re-
quired a greater resolution, because TO is compatible with the time constraints
needed by the higher layer, to perform its operations. Since recent literature
[110] assesses that the structure can be considered dangerously damaged, if in a
time interval of 60s are detected at least 3 events of interest, if the EDA detects
a CV variation equals to 3, it automatically realizes the situation risk and sends
the appropriate notifications.

B.2.4 Application Layer
When the Event Detection Layer identifies a dangerous damage, it sends a mes-
sage to the Monitoring Agent (MA), that implements the high-level operations
of the Application Layer (see Fig. B.5). That agent is in charge to:

• enable the actuators (such as alarms) to command the evacuation of the
building, sending an alert message to all the SOs widespread in the struc-
ture, using the LAN;

240

Appendix B. A layered IoT-based architecture for distributed SHM

• send two kinds of remote notifications using the WAN:

– the first to the authorities (such as firefighters), to require their in-
tervention

– the second to the Monitoring Agents installed on the structures in-
cluded in the neighbourhood.

No strict time constraints are required to implement the notification mechanism
via LAN, and globally, via WAN, because any propagation delay, estimated in
hundreds of ms [110], is negligible. The reaction-actions that will be performed,
in fact, do not require hard the fulfilment of hard real-time constraint. In fact,
the addition of a few ms has no impact on the time needed to carry out an
evacuation or the implementation or on the arrival of the authorities for the
inspection.
The only critical constraint that must be satisfied, is to ensure that both remote
and local notification messages will arrive at their destination.
In order to implement the propagation of the warning also to nearby structures,
it is necessary that the MA knows and can contact the MAs installed on them.
To solve this problem, the proposed SHM system offers two types of solutions.
Using the first, each MA statically memorizes information about the neighbours’
IPs in a map, appropriately initialized during configuration. The advantage of
this type of solution lies in the fact that no further network communication is
required to discover the neighbourhood. The disadvantage lies in the fact that
if a new structure is built, or if the neighbourhood radius would be extented, a
manual reconfiguration is needed. The second proposed solution is a compromise
among the two previous considerations. Following the agent philosophy, a single
MA can periodically update its list of neighbouring nodes, requesting it to a
yellow pages service, that acts as a directory facilitator. Issues concerning fault
tolerance and possible reduction of incoming traffic on the node that offers this
service, are resolved with node replication mechanisms.

B.2.5 Remote Transmission Protocol
If all the agents are on a same SO, they can exchange information locally ex-
ploiting their sociality propriety, through the local message passing. Instead, if
they are deployed on different SOs, the data exchange requires the use of the
network and mechanisms that support the correct message delivery in a dis-
tributed environment.
The MAS architecture proposed in [78] includes the Gateway component, which
has the task of managing the distributed data exchange, exploiting different pro-
tocols. In particular, it exposes to the agents the basic read and write operations
needed to interact with physical devices or other remote cyber components, hid-
ing all the details about the communication protocols used. To develop the pro-
posed SHM, the Gateway component has been improved with the introduction
of a new module, that enables the data exchange through the Internet.
According to the IoT paradigm, to avoid the active waiting due to the polling
cycle between sender and receiver agents (i.e. different MAs or among EDA and
MA) and to guarantee the no loss of packets in a distributed communication, the
Message Queue Telemetry Transport protocol (MQTT) is used [244]. MQTT
is based on the publish-subscribe communication paradigm. The architecture

241

Appendix B. A layered IoT-based architecture for distributed SHM

does not allow a direct data exchange between publisher and subscriber, but
provide an entity called broker, which acts as a mediator. Subscribers register
themselves to the broker, specifying the topic of the data that they want to re-
ceive. When the publisher makes available a data it dispatches that information
to the broker, adding a topic string label, that summarizes their content. When
the broker receives the data it forwards and delivers them to the appropriate
receivers if and only if the associated topic is the same as the one requested. It
is worth to note that through the use of the broker, publishers ignore details
related to the subscribers’ location and vice-versa, guaranteeing the operations
a-synchronicity.
MQTT was also chosen because it is designed for networks with low bandwidth
and high latency. It uses reduced header and payload for the packet transmis-
sion, estimating the transmission upper bounds delays in the order of 56 ms
[92]. Furthermore, MQTT offers also three Quality-of-Service (QoS) levels for
the reliability of message delivery, summarized as follow:

• Level 0: it guarantees the best effort performance, because a message is
delivered at most once and no acknowledgement of reception is required.
This level ensures lower transmission times, but no reliability of delivery;

• Level 1: every message is delivered at least once to the receiver and con-
firmation of message reception is required. This level ensures that the
message arrives to the receiver but duplicates can occur;

• Level 2: through a four-way handshake mechanism this level guarantees
that each message is received only once by the receiver. It is the safest and
also the slowest quality of service level and ensures that delivery occurs
avoiding network congestion and packets duplication.

Figure B.6: Application Layer communication

B.2.6 Experimentation validation
Experiments were carried out to validate the proposed SHM system. Fig. B.7a,
shows the experimental test bed. It is composed by:

• Compression system:

– Matest high stiffness compression machines with load control (Mod.
YIMC109NS);

242

Appendix B. A layered IoT-based architecture for distributed SHM

– PC

• Monitoring system:

– Sensing Layer:
⇤ four AE transducers R15↵, operating in the frequency range
[50, 200] kHz, with a peak sensitivity of 69V/(m/s), resonant
frequency 150kHz, and directionality ±1.5 dB; item the L-FAT
component with four input channels;

⇤ the data acquisition board DAQ is the NI 6110 PCI, allowing
a sampling frequency of 5MS/s for each input channel and a
resolution of 12-bit;

– Signal Processing Layer:
⇤ Hp PC-Desktop, 2Gb, Windows XP, equipped with the DAQ;

– Application Layer:
⇤ Hp PC-Desktop, 2Gb, Windows XP, equipped with the DAQ;
⇤ Macbook Pro Intel Core i5, 2.9GHz, 16GB, OS High Sierra.

Fig. B.7b shows the detail of the sensors positioning over the concrete specimen.
In particular, the four sensors were placed on the free faces of the specimen. Ac-
cording to [54] the b-value acceptability parameter, for the detection algorithm,
is selected in the range [0.9 � 1.2]. The threshold of the L-FAT to send the

(a) Overview (b) Details of the sensors positioning over

the concrete specimen

Figure B.7: Experimental test bed

acquisition trigger is established with the Hsu-Nielsen [19] test and it is 0.7 V.
The number of pre-trigger samples settled in the DAQ is 1000.
Tests were conducted on six specimens, four are characterized by typical resis-
tance used in concrete structures. Two of them are characterized by a very high
resistance with respect to the typical values. The results show that, in the case
of typical resistance, the three dangerous cracks in the time interval of 60 s have
been detected around the 80% of the maximum load curve (Fig. 8). In the
other two cases, however, the ISHM system identified only two cracks, instead
of three. This may be due to the a and b value used in the identification of the
events that are established on the basis of typical resistance values.
The validation of the sensing layer respect to the time constraint is performed by
comparing, for each event, the delay among the p-wave of the signals acquired

243

Appendix B. A layered IoT-based architecture for distributed SHM

by the four sensors and by verifying that, according to the speed of the wave
in the concrete, this delay is compatible with a position of the crack inside the
specimen.
In order to evaluate the one-way delay from publisher to subscriber, it is con-
sidered that the IoT devices operate in the same LAN. In this scenario, the
one-way delay is evaluated by executing multiple instances of MQTT publishers
and subscribers. The subscribers provide multiple messages that flow through
the broker to the subscribers.
Fig. B.9 depicts the architecture of the testbed. Several instances of MQTT

Figure B.8: Load vs Time. Round marker highlights the 80% of the load and triangular
marker indicates the maximum load

publishers run on the HP computer. One instance of the selected MQTT bro-
ker (Mosquitto) is executed on PC#2. Several instances of MQTT subscribers
run on MAC computer. The delay measurement system has been installed on
PC#4. The delay measurement system deploys the open source network anal-
yser tool Wireshark [5] to: (i) capture network packets in real time, (ii) select
only the packet exchanged by the agents running on the HP and MAC comput-
ers, (iii) saving the acquired information, in human-readable format, together
with the acquisition timestamp, and (iv) evaluating the one-way delay from
the transmission of a packets up to its reception. It is worth to note that the
packets are timestamped by Wireshark by using the clock equipping PC#4.
This solution does not require the use of protocols to synchronize the clocks
equipping the HP and MAC computers to evaluate the packet delay [54]. As a
consequence, it is avoided that the synchronization uncertainty characterizing
the actual realization of such protocols would degrade the accuracy of the packet
delay measurement [146, 148]. All computers in the testbed are connected to-
gether to a network hub. This choice allows to capture each packet as soon as
it is sent by HP and MAC computers and then to consider the one-way delay
values as function of the message flows, only.
Diring the test, HP computer has been used for all the publishers and the
Macbook computer for all the subscribers. This does not happen in the ac-
tual applicative scenario, where a dedicated computer is typically used for each
publisher and subscriber. However, this represents a worst case because: (i) all
the publishers/subscribers, share the same computational resources, and (ii) the
messages sent by all the publishers are enqueued to the same network interface.
Table B.1 shows the results obtained by the experimental testbed considering
different numbers of message flows produced by the publishers and received by
the subscribers.

244

Appendix B. A layered IoT-based architecture for distributed SHM

Figure B.9: Application Layer communication

As expected, the values of mean µ and standard deviation � increase by in-

#Publisher #Subscriber Max[ms] Min[ms] µ[ms] �[ms]
1 1 14.62 0.01 0.09 0.82
1 3 13.25 0.01 0.04 0.59
3 3 13.05 0.01 0.43 2.07
5 10 24.38 0.01 3.59 4.39
10 5 21.04 0.01 5.27 4.38
10 10 20.52 0.01 7.41 6.30

Table B.1: Packet delays with respect to multiple publishers and subscribers

creasing the number of message flows. Maximum delay in the order of tens
ms is acceptable to correlate in time dangerous events registered on different
components of the same structure. The evaluation of the one-way delay from
publisher to a subscriber through the Internet is not useful since it is related
to human reaction in the case of an event. So delay in the order of some sec-
onds, typically in the case internet is used, are fully acceptable at this level.
Vice versa, the guarantee of the reception of the alarm by the authorities is a
requirement. Such need is satisfied by using the MQTT with acknowledgement.

245

Appendix C
Acknowledgements

“E mancano sempre le giuste parole, peró ci sarebbe parecchio da dire. Se vivi
la vita in punta di piedi, d’accordo non corri, peró quasi voli”.
Si dice che la musica possa aiutare ad esprimere il groviglio di emozioni che ci
si porta dentro, cui spesso non si riesce a dare un nome. Condivido a pieno.
Questo verso, tratto da una canzone di Marco Mengoni, riassume perfettamente
ció che provo qui di fronte questa pagina bianca, che attende solo di essere riem-
pita.
Mi piacerebbe scrivere qualcosa di leggero, capace di associare a quest’altra
tappa del dottorato, la stessa semplicitá e naturalezza vissuta nei precedenti
traguardi accademici, ma sarebbe una bugia. Al termine di un percorso parti-
colarmente intenso, guardando a me stesso, mi rendo conto di quanto il Paolo
di oggi, sia molto diverso da quello di quasi quattro anni fa. Si cresce e si in-
vecchia, fa parte della biologia, ma i processi di maturazione sono altra cosa e,
talvolta, per essere innescati, bisogna percorrere strade cosí improbabili, che lí
per lí non ci si riesce a spiegare o dargli un senso, ma che col senno del poi, si
riesce ad apprezzare. Un discorso degno di chi si sta avvicinando ai 30 anni,
non c’é che dire, ma lo scrivo perché lo penso. Veramente. Per quanto mi
sia sempre piaciuto guardare il cielo e le nuvole, ho capito che bisogna essere
ben provvisti anche di praticitá e disincanto, perché, altrimenti, camminando
per strada, stando troppo con il naso all’insú, si finirebbe inevitabilmente dritti
contro un palo. In questo senso, ho avuto conferme del fatto che la pretesa
ingegneristica dell’associare una logicitá a tutto, puó essere decisamente fuori
portata: l’essere umano é complicato ed imprevedibile, gli equilibri nelle re-
lazioni non sono sempre chiarissimi (specialmente quando entrano in gioco di-
verse sensibilitá) ed a volte puó bastare anche l’innocente citofonata del postino,
per rendere una giornata storta. E quando vivi determinate cose, se non vuoi
commiserarti o lasciarti schiacciare dal peso delle prove, davanti hai solo una
scelta: uscire fuori un po’ di carattere, resistere. Non abbiamo un libretto di
istruzioni per non rimanerci male, cosí come non abbiamo la garanzia che ci
giri sempre bene. Eppure, anche se stanchi, ho capito che ci si puó comunque
ritenere fortunati, se ad affrontare le giornate ed i pensieri non si é lasciati da
soli, ma si ha qualcuno a fianco. Anche se la vita é simile a delle porte girevoli,
con annesso continuo andirivieni di gente, in questi anni mi sono scoperto ricco,

246

Paolo Francesco Sciammarella

Appendix C. Acknowledgements

perché ho la consapevolezza di avere avuto accanto persone di valore, capaci di
volermi bene, rinforzarmi, sostenermi, darmi l’esempio. Dunque, ecco che dopo
questo lungo preambolo, arriva il momento di ringraziare uno per uno, chi a suo
modo ho ritenuto determinante per farmi fare quest’ulteriore balzo in avanti.
Ci vorranno diverse righe, quindi armatevi di pazienza e... cominciamo!
Alla mia famiglia; perché nonostante sarebbe stato facile disgregarsi a fronte
del susseguirsi di eventi degli ultimi due anni, non solo non si é sfilacciata, ma
mi ha insegnato che basta non mettere in discussione il bene che ci si vuole
l’un l’altro, per trovare sempre il modo di rialzarsi e rimettersi in carreggiata,
anche quando la notte puó essere particolarmente buia, o il sole eclissarsi dietro
qualche nuvola.
A Mamma perché tra tutti forse é quella che ha dovuto fare un po’ piú di lavoro
su se stessa, non solo per capirmi, ma anche per imparare a lasciarmi andare.
L’amore vero non trattiene e gioisce del fatto che l’altro trovi il suo posto nel
mondo, anche se questo dovesse portarlo lontano, ma costa fatica. Tanta. Vi-
vere questo proposito dopo che per 25 anni hai avuto tra le scatole uno che da
mattina a sera ti annoiava con domande, ripetizioni di interrogazioni/lezioni/e-
sami e musica a tutto volume, infatti, non é facile, perché ti ritrovi a dover fare
i conti con un improvviso silenzio, che a poco a poco si trasforma in vuoti ed
una nuova routine, cui puó essere difficile abituarsi (chi l’avrebbe mai detto che
saresti stata capace di andare a dormire guardando Striscia la notizia?!). Gra-
zie perché con la libertá che hai saputo accordarmi (conquistata dopo qualche
discussione/incomprensione), mi hai ridato un’altra volta la vita e la possibilitá
di tracciare una nuova strada, mia.
A Babbo perché mi ha insegnato concretamente cosa significhi non tirarsi indi-
etro, quando per il bene di chi ami ti ritrovi a dover fare ció che é necessario
(compreso ingoiare dei rospi), ma che non coincide con quello che vorresti. So
che da tifoso del Napoli sei abituato a molta sofferenza e gioie solo sfiorate, ma
vedere la serenitá con cui porti avanti i tuoi impegni e la responsabilitá che
ti anima ed aiuta a vincere quella stanchezza che logorerebbe chiunque al tuo
posto, mi é di prezioso esempio, per coltivare la determinazione necessaria per
spendermi in ció in cui credo, senza lasciare che vada sciupato. Grazie, perché
mi hai trasmesso “serietá” e spirito di sacrificio, fondamentali nel passaggio da
ragazzino ad uomo.
A Pomí perché é sempre stata piú felice ed orgogliosa dei miei successi, di quanto
lo fossi io stesso. É bello avere una “tifosa”, ma lo é ancora di piú se l’orgoglio
e la stima che nutre sono sinceri. Con percorsi ed esperienze diverse, siamo
cresciuti entrambi ed ormai non siamo piú i bambini che la notte a cavallo tra
5 e 6 gennaio, si davano continuamente il cambio, in attesa di trovare nel cor-
ridoio i tanto sospirati regali portati dalla befana. Tuttavia, mi auguro che tu
riesca a conservare un po’ di quella sana ingenuitá, necessaria per continuare
a sognare. Il tuo esempio mi ha aiutato a capire quanto la vita possa essere
difficile, ma tu stessa sei la prova che con un po’ di coraggio, ci si puó sempre
rialzare. Ci sono eventi particolari che custodiremo sempre dentro di noi; alcuni
li hai anche trasformati in tatuaggi, ma non dimenticare che dai diamanti non
nasce niente,é dal letame che nascono i fiori. Sei la persona che mi convince
ancora a credere alle seconde possibilitá; non fermarti mai.
A p. Ciro perché oltre ad essermi stato di aiuto e sostegno in piú circostanze,
ha saputo essere piú sognatore e lungimirante di me nei confronti di questo
dottorato, spronandomi sia a coglierne il valore, che a non interromperlo pre-

247

Paolo Francesco Sciammarella

Appendix C. Acknowledgements

maturamente. Avevi ragione, é stata un’esperienza fruttuosa, non solo perché
mi ha aiutato a sviluppare capacitá che effettivamente sono parte di me, ma, so-
prattutto, perché mi ha messo in condizione di imparare cose banali, che prima
non sarei stato in grado di fare, come muovermi da solo in una capitale europea,
armato del mio mezzo e sgangherato inglese. Ci sarebbe tanto altro da dire, ma
gran parte lo tralascio ed il resto provo a condensarlo in una battuta. Grazie per
avermi insegnato l’arte della disponibilitá, anche quando essa costa tempo, sac-
rifici ed incomprensioni; grazie per avermi fatto capire che per quanto si possa
essere circondati di persone, la solitudine é un sentimento umano da tenere in
conto e con cui presto o tardi ci si deve misurare; grazie per aver rafforzato ancor
di piú la convinzione di quanto sia importante fare la propria parte (anche a
costo di consumarsi), pur di voler far funzionare ció cui si dá valore, vincendo la
pigrizia del “ma chi me lo fa fare!”, con il “sono stanco” di chi ne ha viste tante,
ma non si é tirato indietro.
A questo punto, primo colpo di scena: grazie a Davide Perri, perché oltre ad es-
sere stato coinquilino generoso e premuroso (di quelli che all’improvviso entrano
in stanza e ti offrono la cioccolata, o che prima di andare a dormire, a fine gior-
nata bussano alla tua porta per darti la buonanotte e chiedere com’é andata),
é stato amico sincero, di quelli capaci di intravedere quella piccola macchia, che
magari cerchi di nascondere ai piú dietro ad un sorriso. Mi ritengo fortunato
ad averti conosciuto, nonostante dopo le 23:30 di sera, sia sempre stato molto
difficile discutere insieme in maniera lucida. Adesso studia e laureati... cosí
capisci quanta fatica ci vuole per trovare queste parole, che spero ti abbiano
strappato un qualcosa a metá tra un sorriso ed una lacrimuccia.
Al Prof. Libero Nigro perché oltre che tutor e riferimento nel mondo acca-
demico, mi ha insegnato una cosa importantissima: l’amore e la passione per
quel che si fa. Sembrerá sciocco, ma porteró sempre nel cuore gli scambi di
mail dopo mezzanotte, quando ci aggiornavamo sui risultati o sulle ultime cor-
rezioni delle bozze dei vari paper: chi al suo posto l’avrebbe fatto? Grazie per
questo esempio, che mi ha spinto ad interrogarmi molto anche circa il mio fu-
turo; qualunque strada percorreró spero di riuscire a mettere sempre il 100% di
me stesso, proprio come fa lei. Ah, ultima nota (non meno rilevante di quanto
detto): grazie per il bene paterno dimostratomi e per tutta la stima che ha
sempre riposto in me. Spero di esserne stato all’altezza.
Al Prof. Domenico Grimaldi che purtroppo non é piú qui, e non puó vedere
il completamento di questo lavoro. Mi auguro che da lassú sia orgoglioso di
quanto scritto, anche se sono certo che qualche modifica all’inglese l’avrebbe
data :) ! Grazie anche a lei per avermi fatto sentire figlio e per l’opportunitá
che mi ha dato di lavorare “alla pari”, offrendomi sempre occasione e modo di
dire la mia, nella massima libertá, senza timori. Mi ha sempre messo a mio
agio, facendomi capire che con educazione é giusto far sentire la propria voce,
a prescindere dal chi si ha davanti, perché nessuno é da meno degli altri, anche
se ti puó capitare il saccente di turno che voglia convincerti del contrario (pro-
prio la fiducia nei propri mezzi ed il non lasciarsi impressionare dagli altri, era
stato il succo del discorso che mi aveva fatto, qualche giorno prima della mia
primissima conferenza!). Grazie anche per avermi spronato a fare l’esercitatore
(nonostante qualche mio timore), dandomi carta bianca su tutta la gestione: é
stato un segno di fiducia, che ho apprezzato molto ed é stata l’occasione per
scoprire (e confermare) una cosa di cui ero mezzo consapevole: insegnare mi
piace.

248

Paolo Francesco Sciammarella

Appendix C. Acknowledgements

Grazie a Luca e Lavinia che con la loro presenza hanno riempito il mio ufficio,
facendolo sembrare meno vuoto, rallegrandomi le giornate.
Agli amici del Santuario (Viviana, Jessica, Giovanni, Lucrezia, Sonia, Gerardo,
Federica, Davide, Luca, Daniele e tutti gli altri), perché da semplice gruppo “pu
4 magg”, siamo diventati compagni di viaggio ed abbiamo condiviso esperienze
cui spero riusciate a dare seguito (no, non mi riferisco alle nostre emozionanti
performance nel presepe vivente o alla sfilata dei carri di carnevale, né alle man-
giate o ai nostri bans... penso piú a cose belle come il tempo che abbiamo
passato alla Stella del Mare). Avete un gran cuore, oltre che belle capacitá:
fatele fruttificare!
Ai Giovanissimi (anzi, ormai giovani) della parrocchia San Paolo apostolo di
Rende, perché sono stati la “prima volta” in cui mi sono dovuto prendere cura
di qualcuno, nelle vesti di educatore/fratello maggiore. Grazie a voi ho sia
gustato quanto possa riempire il cuore vedere qualcuno cui vuoi bene crescere,
maturare e fare le scelte giuste; che imparato quanto possa essere complicato
l’affetto, nel momento in cui si é chiamati a doversi fare da parte, pur di lasciare
l’altro libero, facendogli fare con tranquillitá il suo percorso.
In particolare, grazie a Simone e Lollo perché hanno cercato di capire il mio
silenzio, oltre che continuato a farmi sorprese e visite, nonostante le vicissitu-
dini ci avessero un po’ separato.
Alla comunitá dei Padri Dehoniani di Roma per l’accoglienza datami e l’avermi
fatto sentire fin da subito a casa. Grazie per il nuovo inizio e la disponibilitá al
volermi conoscere, oltre che all’avermi dato la giusta serenitá nell’ultima parte
di questo percorso universitario, sopportando le mie ripetizioni avanti e indietro
nel corridoio ed in sala tv.
Ai giovani della parrocchia Ascensione di N.S.G.C. perché in poco tempo mi
hanno accolto tra loro, dimostrandomi un affetto tutt’altro che scontato o
prevedibile. Benché li conosca da poco, da loro ho giá potuto imparare tre
cose: non cedere alle scelte apparentemente piú convenienti, ma che portano a
corromperti; il valore del lavoro e della fatica pur di non gravare/campare sulle
spalle di mammina e papino; il fatto che ci si puó distinguere da ció che ci cir-
conda, senza dover per forza lasciarsene assorbire. Siete capitati nel momento
giusto e con la vostra spontaneitá, mi state anche aiutando a smussare qual-
cosina di me stesso (PS: grazie anche per avermi fatto mettere a frutto le mie
conoscenze, con ripetizioni, interrogazioni e cose del genere: non ci crederete,
ma mi state aiutando a trovare dei perché a tutto un percorso fatto, di cui non
avevo capito il senso).
A Rosa e Mimmo perché é vero che la stima faccia sempre piacere, ma avere
qualcuno che addirittura sceglie concretamente di rimanere al tuo fianco in un
periodo buio (anche quando non sarebbe tenuto a farlo!), perché crede since-
ramente nel buono che c’é in te, é qualcosa di incredibile ed inestimabile. Le
telefonate scambiate sono state importantissime e mai banali, perché sempre
utili a vedere il bicchiere mezzo pieno. Grazie per la discrezione, l’affetto e...
l’essere "davvero contenti per me”, che mi avete ripetuto piú volte con voce
convita e carica di gioia; so che é sempre stato sincero. E Non é poco.
A Francesco Lamonaca perché se non si fosse messo nelle orecchie, l’idea del
dottorato non mi sarebbe passata per la mente. Grazie per aver creduto nelle
mie capacitá ed essermi stato amico/confidente in qualche momento delicato.
Peccato per la distanza.
A Domenico Luca Carní perché é stato il migliore vicino d’ufficio che mi potesse

249

Paolo Francesco Sciammarella

Appendix C. Acknowledgements

capitare. Grazie per il buonumore, la pazienza e l’avermi messo a mio agio.
Peró sii sincero: non ti mancherá neanche un po’ il mio romperti le scatole?!
A Vincenzo Inzillo collega ed amico in questo percorso di dottorato, nonché
uomo del “senti ci facciamo una passeggiata?”. Grazie per le pause, i confronti,
il non avermi lasciato annegare nelle scartoffie burocratiche e nei moduli da
compilare e per avermi dato ospitalitá in quel di Malaga! Ti auguro il meglio
perché te lo meriti e sei un grande: nelle tue stesse condizioni, non credo che
avrei reso quanto hai reso tu.
A Scogny perché essere amici non significa vedersi/sentirsi necessariamente tutti
i giorni, ma esserci. E chi l’avrebbe mai detto che una di Bologna, conosciuta
per caso in una lontana estate del 2013, sarebbe stata a distanza un riferimento?
A p. Luigi per l’inaspettata (ma super piacevole) premura avuta, nello starmi
vicino in uno dei periodi piú difficili della mia vita. Forse abbiamo perso un po’
di tempo ed occasioni, ma ci rifaremo.
A Trenitalia per la grande compagnia che ha saputo farmi con i suoi mezzi e le
sue risorse. Le stazioni sono crocevia di storie e speranze ed hanno molto da
raccontare agli occhi di chi seduto in attesa del treno, con le cuffie nelle orecchie,
é lí a guardare. Ed anche lí ho saputo prendere ció che c’era di buono: dalla
mamma che con cura pulisce il viso della figlia sporco di gelato, alla coppia di
fidanzati che fa la corsa per arrivare in tempo al binario, salvo poi sciogliersi in
un abbraccio nel vedere sullo schermo quei 7 minuti di ritardo, passando per la
coppia di anziani, dove il marito si china per cambiare le scarpe alla moglie, che
con il bastone non riusciva a reggersi in piedi, mettendole le ciabatte per farla
stare piú comoda.
Alla Comunitá dei padri dehoniani di Rende, per l’ospitalitá datami nei primi
due anni di dottorato e la fiducia accordatami nel portare avanti diversi impegni,
che mi é servita per imparare a gestirmi, dividendomi tra mondo accademico e
resto della mia vita.
In ultimo, non per importanza, ma piú come “meglio da conservare per la fine”,
proprio come si fa con il dessert ad un pranzo o con le patatine fritte mischiate ad
altri cibi in uno stesso piatto, a Dio perché in questi ultimi anni si é dimostrato
essere particolarmente creativo e capace di stupirmi. Ti sono grato per la forza
che mi hai aiutato a sviluppare e per la tranquillitá, mista a leggerezza ed ab-
bandono, con cui mi hai fatto vivere questa esperienza ed insegnato a far fronte
alle tensioni ed ai problemi. Grazie per avermi aiutato a preferire il diventare
costruttore, piú che distruttore ed avermi fatto aprire gli occhi, per capire cosa
non diventare. Tu che sei Padre, continua a farmi sentire figlio, perché il bello
deve ancora venire.

250

Paolo Francesco Sciammarella

