
Constraint Satisfaction: Algorithms, Complexity

Results, and Applications

by

Francesco Lupia

University of Calabria
DIMES - Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

PhD Program in Systems and Computer Engineering

Professor Francesco Scarcello, Advisor
Associate Professor Gianluigi Greco, Co-advisor

c© Francesco Lupia 2015
All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

First, I want to thank my advisors Francesco Scarcello and Gianluigi Greco. I

believe they are the best advisors I could ever desire. They complete me in many

aspects. Francesco has been an endless source of inspiration for me. His advice

goes well beyond the research and academic context to cover many aspects of my

life. Perhaps, the greatest thing that I can think of is that he constantly push

my abilities to think and reason about things in a meticulous way. He is always

willing to take time out of his busy days to help with important problems and all the

unexpected issues that come up. Thanks to Francesco I met Gianluigi. He is truly

another source of countless motivations. He constantly impresses me at how good

he is in everything he does and for his ability to be in involved in many different

things at the same time. Francesco and Gianlugi are constantly teaching me to take

a simple idea, to find generalizations and implications and to push it to the limits.

But this is only the beginning.

I thank Walter Lucia for sparking my initial interest for research and for all the

interactions that we had in the last 10 years. I am also indebted with Antonella

Guzzo and Luigi Pontieri for their priceless help in the last three years. Now let me

thank my office colleagues Valeria Fionda and Carmine Dodaro with whom during

my ”PhD days” I had a huge number of valuable discussions. A special thank you

goes to Luca Ghionna for his valuable feedback on some aspects of this dissertation.

I especially thank Domenico Saccà who worked behind the scenes to support me

iii

with the fundings and I must say thanks to Nicola Leone for allowing me to stay

and feel part of the department of Mathematics and Computer Science while I was

working with Gianluigi. Moreover I want to thank all the friends from the DIMES

and Mathematics and Computer Science departments. In the last three years, it

was not all about research and work. I especially thank Massimo and Alessandro

for being always present. And for the same reason Francesco deserves a big thank

you and our friend Antonio. I also special thank my other two cousins Pasquale

and Salvatore. Finally, I am who I am thanks to my mother, my father, my sister

Valentina and my grandmother Maria and grandfather Pasquale. I wish I will have

the opportunity to return their love and support.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

CHAPTER

1. Introduction . 1

1.1 Outline of the dissertation . 4

2. Setup and Preliminaries . 6

2.1 Constraint satisfaction problems . 6
2.2 Solving CSPs . 9

2.2.1 Backtracking search . 10
2.3 Structural properties of CSPs . 12
2.4 Structural decomposition methods . 13

2.4.1 Tree decompositions . 13
2.4.2 (Generalized) Hypertree decompositions 14
2.4.3 Tree projections . 17

2.5 Counting problems . 20
2.5.1 The Langford problem . 22
2.5.2 Configuration problems: Renault example 24

2.6 Preliminaries on Complexity Theory . 25

I CSP and Databases 27

3. Basic Definitions from Database Theory . 28

3.1 Relational structures . 28
3.2 Relational databases . 29
3.3 Conjunctive queries . 30
3.4 Relational algebra. 31
3.5 Hypergraphs and structural restrictions . 31
3.6 SQL queries . 32

4. A Weighted Structural Decomposition Technique 34

4.1 Introduction . 34

v

4.2 Monotone Greedy Tree projections . 35
4.3 Normal form . 36
4.4 An algorithm for computing greedy tree projections in normal form 38

4.4.1 Speeding-up computation through greedy coverings 40
4.5 Evaluation functions . 41
4.6 Non-monotic valuation functions . 44
4.7 Experimental results . 46

5. An Hybrid Approach for Counting Solutions 49

5.1 Introduction to Hybrid Tractability . 49
5.2 An algorithm for counting answers . 52
5.3 Implementation issues and System Architecture 55

5.3.1 Hacking PostgreSQL . 58
5.4 Some experiments . 59

5.4.1 Query 3 (Q3) on TPC-DS . 61
5.4.2 Query 4 (Q4) on TPC-DS . 63

II CSP and Game Theory 65

6. An Introduction to Game Theory . 66

6.1 Coalitional games . 67
6.2 Allocation games . 70
6.3 Solution concepts . 72

6.3.1 The Core . 73
6.3.2 The Nucleoulus . 76
6.3.3 The Kernel . 77
6.3.4 The Bargaining set . 78

6.4 The Shapley value . 79
6.4.1 The Banzhaf value . 81
6.4.2 Back to the allocation games . 82

6.5 A motivating example: The Italian Research Assessment Program (VQR) . . 83
6.5.1 Division rules . 84
6.5.2 Desiderata for division rules . 86
6.5.3 Marginal contribution . 88
6.5.4 A simple scenario . 90
6.5.5 Using the Shapley value as a division rule 92
6.5.6 Discussion . 93

7. Structural Tractability of Shapley and Banzhaf Values in Allocation Games 97

7.1 Introduction . 97
7.2 Intractability of computation . 99
7.3 Characterizations of the Shapley value . 102

7.3.1 A closer look at marginal contributions 102
7.4 Islands of tractability . 107

7.4.1 Bounded sharing . 107
7.4.2 Bounded treewidth . 110

7.5 CSP encoding (for the Banzhaf value) . 111
7.6 From the Banzhaf value to the Shapley value 117
7.7 Summary . 119

vi

III CSP and Mining 121

8. Process Mining . 122

8.1 An overview of process discovery . 123
8.2 Bottom-up vs top-down design methods . 127
8.3 Causal nets and logs . 129
8.4 Dependency graphs and process mining: basic results 135

9. Precedence Constraints: Mining Problems and Complexity 146

9.1 Introduction . 146
9.2 Syntax and Semantics . 146
9.3 Precedence Constraints . 151
9.4 Complexity Analysis . 159
9.5 An exact solution approach for computing process models 169

9.5.1 CSP encoding for precedence constraints 170
9.5.2 Structural optimization . 174

9.6 Classes of Tractable Precedence Constraints and Algorithms 175
9.6.1 Precedence constraints without negated paths 177
9.6.2 The case of negated path constraints 187

9.7 Experimental evaluation . 193
9.7.1 Case study: a product-recall process 196
9.7.2 Comparative analysis on benchmark data 206
9.7.3 Further tests on synthesized data 211

9.8 Summary . 215

10. An Application Scenario (Beyond Process Mining): Urban Congestion . . 219

10.1 Introduction . 219
10.2 Project goals . 220
10.3 Urban log mining . 221

IV Conclusions 225

11. Conclusion and Future Research . 226

11.1 Contributions . 226
11.1.1 Databases . 226
11.1.2 Game theory . 227
11.1.3 Process mining . 228

11.2 Future research directions . 230

vii

LIST OF FIGURES

Figure

2.1 A hypergraph H and a tree decomposition of H of width 3 14
2.2 A hypergraph H and a hypertree decomposition of H of width 2 16
2.3 A tree projection Ha for the pair of hypergraphs (H1,H2). 18
2.4 Langford problem . 22
2.5 A portion of hypertree decomposition of width 4 for the Renault megane configu-

ration problem . 25
4.1 Weighted candidates graph in example of Section 4.6 44
5.1 The hypergraph H(Q2) and a hypertree decomposition of H(Q2) of width 2 50
5.2 The speedup of PostgreSQL 9.3.5 compared to 9.0.2 61
5.3 Execution time for query Q3 . 62
5.4 Number of solutions against different values for the attribute inv quantity on hand 63
5.5 Execution time for query Q4 . 64
6.1 Allocation scenario A0 in Example 6.3. 70
6.2 Running example . 90
6.3 A clooser look at strategical behaviours. 94
6.4 Co-autorships at University of Calabria. Researchers against the number of co-

authored products . 95
6.5 The number of components at University of Calabria 95
6.6 An example component . 96
7.1 Illustration in the proof of Theorem 7.1: Construction of the scenario Aα based on

A. 100
7.2 Decomposition in Example 7.12—the label of the root modified as in the proof of

Theorem 7.13 is on the top. 112
7.3 CSP encoding in Section 7.5. 114
8.1 Process models in the running example. 124
8.2 A process model involving a cycle, with an example unfolding. 139
9.1 Example construction in the proof of Theorem 9.4. 149
9.2 Computation of a possibly extended causal net in Theorem 9.6. 152
9.3 Tractability frontiers. A set S ⊆ {→, , 6→, 6 } above (resp., below) the frontier

means that the corresponding problem is NP-hard (resp., feasible in polynomial
time) on C[S]. 160

9.4 Example reduction in the proof of Lemma 9.14. 162
9.5 Algorithm PCtoCSP. 171
9.6 Algorithm DG-DiscoveryToCSP. 173
9.7 Precedence graphs for the examples in Section 9.6. 179
9.8 Algorithm compute-CN (on C[{→, , 6→}]). 182
9.9 Algorithm compute-CN (on C[{6 }]). 186
9.10 Causal net of the ProductRecall process. 196
9.11 F-measure scores obtained by compute-CN when varying the percentages of posi-

tive edge/path constraints and of negative edge/path constraints, for four different
families of log samples, corresponding to 3% (a) and 6% (b) of traces in the log L,
respectively. 201

viii

9.12 Computation time spent by algorithm compute-CN with different amounts of
traces and constraints’ percentages in input. A base-2 logarithmic scale is used for
the vertical axis in both figures, as well as for the horizontal axis in the left-hand
figure. 204

9.13 Results on synthesized log data, with different degrees of parallelism (AP): ac-
curacy of discovered process models (in terms of F-measure w.r.t. real activity
dependencies), and rates of unsatisfied (negative path) constraints. Both measures
are reported for different amounts of a-priori constraints of all types (expressed as
percentages w.r.t. the sizes of their respective population). 213

10.1 A screenshot of the plug-in CNMining implementing the algorithms presented in
the paper. The causal net is drawn by exploiting the Flex interface available in
ProM, where bindings are displayed inside tooltips activated by hovering the mouse
over the corresponding node. 223

ix

LIST OF TABLES

Table

2.1 The provinces of Calabria and its colored graph . 8
2.2 Known solutions for the Langford problem. A dash (-) means that there is no

solution for the given value of n while (?) stands for unknown. 24
4.1 The time (in seconds) required to solve a number of instances generated from real-

world, academic, random and pattern problems. A dash (-) means timeout while
(+) denotes overflow . 47

4.2 Number of correctly decomposed instances and number of wins in finding the min-
imal width. 47

9.1 Process discovery algorithms used in the experiments: legend of symbols. 194
9.2 F-measure scores obtained by algorithm compute-CN and its competitors, for

different percentages of traces of process ProductRecall (Figure 9.10), without (left)
and with (right) a-priori knowledge on parallelism relationships. For both cases,
maximal scores on each trace percentage are written in bold. 199

9.3 Benchmark logs: structural characteristics and statistics (see also Weerdt et al.
[2012]). Each log consists of 300 (not necessarily distinct) traces. 206

9.4 Average conformance measures obtained, on benchmark logs, by different discov-
ery methods—including the one proposed in this thesis (Here). For each row,
the best average score(excluding ground-truth models) is underlined, while the re-
sults that were recognized as significantly better than the average of the
outcomes over the various methods (for the same metrics and setting) are in bold. 208

9.5 Statistics on the “critical” sub-log extracted for each of the benchmark logs in
Table 9.7.2. 210

9.6 Results on “critical” samples without and with background knowledge. For each
row, the best average scoreis underlined, while the results that were recognized as
significantly better than the average of the outcomes over the various methods
(for the same metrics and setting) are in bold. 211

11.1 Summary of constraint support. 229

x

ABSTRACT

Constraint Satisfaction: Algorithms, Complexity Results, and Applications

by
Francesco Lupia

A fundamental problem in the field of Artificial Intelligence and related disciplines,

in particular Database theory, is the constraint satisfaction problem (or CSP) which

comes as a unifying framework to express a wide spectrum of computational prob-

lems. Examples include graph colorability, planning, and database queries. The goal

is either to find one solution, to enumerate all solutions, or counting them. As a very

general problem, it comes with no surprise that in most settings CSPs are hard to

solve. Indeed considerable effort has been invested by the scientific community to

shed light on the computational issues of this problem, with the objective of identi-

fying easy instances (also called islands of tractability) and exploiting the knowledge

derived from their solution to help solving the harder ones.

My thesis investigates the role that structural properties play in the computational

aspects of CSPs, describes algorithms to exploit such properties, and provides a

number of specific tools to solve efficiently problems arising in database theory, game

theory, and process mining.

CHAPTER 1

Introduction

Constraint satisfaction is a very general framework to express a wide range of

computational problems. Examples include graph colorability, planning, satisfia-

bility, scheduling, and database queries. Being such a general framework, we well

expect computational issues to come up. Indeed, a great effort has been invested by

the scientific community to study the complexity of this general problem with the

objective to identify classes of easy instances known as ”islands of tractability”. It is

well known that the structure of the constraint satisfaction problem (short: CSP),

which is represented by a constraint (hyper)graph, plays a significant role in the

study of its computational complexity. Indeed, while such problems are intractable

in general, whenever the input has some kind of structures (for example, the con-

straint graph is a tree), we may compute a solution efficiently, e.g., via dynamic

programming. Moreover, by precisely understanding the structure of easy problems,

we may also be able to approximate hard problems by manipulating their structure

in a suitable way. Unlike most approaches in the CSP research community that focus

on the problem of computing just one solution to CSPs, we are mainly interested

here in finding all solutions or in counting the number of solutions efficiently (i.e.,

without actually computing them). Database queries are an important domain of

1

2

application of our techniques. Indeed, even structurally simple queries may have an

exponential number of solutions w.r.t. the input size, so that even state-of-the-art

solvers are not helpful. We believe that structural decomposition methods, besides

their theoretical interest, may find useful applications in solving real-world instances

of these problems.

The thesis also presents a further line of research where CSP techniques are em-

ployed to model and solve Process Mining problems. Such problems arise in the

study of workflow management systems that aim at supporting the execution of

business processes in various contexts. In particular, to support the (re)design and

the optimization of existing processes, it is desirable to identify the best strategies to

schedule the execution of any given set of activities, by looking at the choices made

in the past and registered in execution logs.

In summary, the thesis exploits the general CSP framework as a weapon to analyze

and to attack problems arising in different areas of research. The main results, of

both theoretical and practical interest, are listed in the next section.

1.1 Contributions

• Database theory. In this area of research, we use CSP structural techniques

for the problem of counting solutions of SQL queries involving ”COUNT” aggre-

gates, which occur very often in practice. First, we propose a novel structural

decomposition notion that extends the framework of greedy tree projections by

adding weights. Then we design, analyze, and give a polynomial time imple-

mentation of an algorithm for computing a restricted variant of such decompo-

sitions, called monotone greedy tree projections. Then, we identify a restricted

class of weighting functions for which the computation of an optimal weighted

3

decomposition is tractable. Furthermore, we propose optimization algorithms,

which exploit the novel structural framework, that can be used to boost the

performances of relational DBMS.

• Game theory. In this field we focused on coalitional games, which model situ-

ations where players can obtain higher worths by collaborating with each other,

rather than by acting in isolation. We consider resource allocation problems

and in particular the notion of Shapley value and Banzhaf value, which are two

well-known solution concepts to provide fair worths distribution. For this class

of games, is known that computing either solution concept is an intractable

problem, formally #P-hard. Motivated by these bad news, we identified large

islands of tractability for both solution concepts, by exploring the structure of

the interaction graphs among the players. We showed that tractability holds

in scenarios where each good is owned by at most two agents (independently

of their interactions). Moreover, we study allocation games where interaction

graphs have bounded treewidth: Our main result is that both the Shapley value

and the Banzhaf value can be computed in polynomial time for this class of

games. A key ingredient for the polynomial-time tractability of the problem

is a CSP encoding allowing us to exploit the CSP machinery for counting so-

lutions. Note that our restrictions capture scenarios of practical interest, such

as the allocation problem arising in the Italian Research Assessment program

promoted by ANVUR.

• Process mining. The third direction of research is devoted to the study of

workflow management systems that aim at supporting the execution of business

processes in various contexts. We design and implement a ”hybrid” approach to

process discovery. A mining method is conceived which can take into account

4

a wide variety of constraints over the causal dependencies that are available to

the analyst. This is particularly useful for circumventing problems emerging

when log completeness does not hold. We formulate algorithms in terms of rea-

soning problems over precedence constraints, and we analyze the computational

complexity of the proposed setting, by taking into account various qualitative

properties regarding the kinds of constraints being allowed, and by tracing the

tractability frontier w.r.t. them. In particular, we show that for the classes

of constraints that are not covered by our algorithms, an efficient solution al-

gorithm is unlikely to exist at all, because process discovery turns out to be

NP-hard over them.

1.2 Outline of the dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we discuss the

setting of constraint satisfaction problems, including structural decomposition meth-

ods, counting problems and preliminaries on computational complexity. In Chapter

3, we briefly review some basic concepts from database theory. In Chapter 4, we

present the novel notion of weighted monotone greedy tree projection. We analyze

the complexity of computing greedy tree projections in different settings, and we give

an algorithm that can be exploited for all problems that can be solved efficiently on

acyclic and quasi-acyclic instances. In Chapter 5 we take a first step towards de-

signing an Hybrid optimizer for counting problems. In Chapter 6 we review basic

concepts from game theory, and we discuss a real-world application modeled as a

coalitional game. In Chapter 7 we identify structural restrictions for the class of al-

location games that guarantee the tractability of computing the Shapley value. We

also strengthen some hardness result about this problem. In Chapter 8 we intro-

5

duce the framework of process mining and we discuss process-discovery methods. In

Chapter 9, we analyze the complexity of computing business process models under

precedence constraints imposed over the topology of the mined model. We chart the

frontier of tractability for this problem. We present a CSP encoding for this problem

and heuristic algorithms that however solve exactly the problem over some restricted

classes. In Chapter 10 we describe a real-world scenario that can be modeled as a

mining problem, and hence can benefit of our approaches. Finally, in Chapter 11 we

conclude by discussing further research directions.

CHAPTER 2

Setup and Preliminaries

In this chapter we review the framework of Constraint satisfaction problems

(CSPs) and we explore the structure of these problems from a complexity-theoretic

perspective exploiting the concept of decomposition. In particular, we will first

present two relevant decomposition methods for (hyper)graph based structures: the

treewidth, which is the most powerful decomposition method on graphs, and the

hypertree width, which is its natural counter-part over hypergraphs. Then we will

show that both methods are specializations of a more general decomposition scheme

called tree projection, which we will describe in Section 2.4.3. Finally we will in-

troduce counting problems in Section 2.5. Meanwhile, we need to define the basic

concepts that we will use throughout the thesis.

2.1 Constraint satisfaction problems

A fundamental problem in the field of Artificial Intelligence and related disciplines,

in particular Database theory, is the constraint satisfaction problem (or CSP) which

provides a unifying framework to express a wide spectrum of computational prob-

lems, such as graph colorability, model checking, planning, satisfiability, scheduling,

theorem proving and database queries. Crudely, the goal of a CSP is to assign one

value to each variable so that the constraints are all satisfied. While this problem

6

7

appears very general and indeed suitable to describe many problems, it is not surpris-

ing that the price to be paid for this generality is its high computational complexity.

Formally, a CSP instance is a triple I = 〈Var , U,C〉, where Var is a finite set of

variables, U is a finite domain of values, and C = {C1, C2, . . . , Cq} is a finite set of

constraints. Each constraint Cv, for 1 ≤ v ≤ q, is a pair (Sv, rv), where Sv ⊆ Var

is a set of variables called the constraint scope, and rv is a constraint relation, i.e., a

set of substitutions θ : Sv → U indicating the allowed combinations of simultaneous

values for the variables in Sv. For each variable X ∈ Var , we denote by dom(X) its

domain, i.e., the set of all elements u ∈ U for which some constraint relation con-

tains a substitution θ with θ(X) = u. In the following, a substitution from a set of

variables V ⊆ Var to U is transparently viewed as the set of pairs of the form X/u,

where θ(X) = u is the value to which X ∈ V is mapped. A substitution θ satisfies

a constraint Cv if its restriction to Sv, i.e., the set of all pairs X/u ∈ θ such that

X ∈ Sv, occurs in rv. A solution to I is a substitution θ : Var 7→ U that satisfies all

constraints. The set of all solutions is denoted by Θ(I). If W is a set of variables,

then Θ(I,W) denotes the set of all solutions in Θ(I) restricted to the variables in

W . Variables outside W can be viewed as auxiliary ones. That is, they are used for

internal encoding activities, and they are not required in the output. The problem

is either to find all solutions, one solution, or to verify that a certain substitution θ

is a solution [Dechter and Pearl, 1987]. While the last problem is easy, the first two

are NP-hard and in particular the first can be much harder than the second, as we

will discuss later in this chapter.

Example 2.1. As an example, consider the map coloring problem (i.e., graph col-

orability) reported in Figure 2.1. The goal is to assign k-colors to the provinces of

Calabria such that no two adjacent provinces have the same color. We can formulate

8

CS

KR

CZ

VV

RC

Table 2.1: The provinces of Calabria and its colored graph

this problem as CSP where we define the variables to be the provinces: {CS, CZ,

KR, VV and RC}, the domain of each variable is the set {red, green, blue} and the

constraints impose that two adjacent provinces must have different colors. A solu-

tion to this problem is a combination of simultaneous values for the variables that

satisfies all constraints. For the example above, there are many possible solutions,

such as {CS = red, CZ = green, KR = blue, VV = red, RC = blue} . C

Observe that, the problem described above is a binary constraint satisfaction prob-

lem over a finite domain, since all constraints are imposed between pairs of variables

(i.e., the arity of these constraints is just 2). In addition, it is worth noting that any

n-ary CSP can be converted to a binary CSP by means of a suitable transforma-

tion. Also note that we described the problem in terms of graph and this is not by

chance. In fact, with each CSP instance I, it is naturally to associate a constraint

(hyper)graph G(I) whose nodes are the variables and where there is a (hyper)edge

between any pair of variables appearing within the same constraint scope. Indeed,

the constraint graph describes the structure induced by the constraints on the vari-

ables and it plays a crucial role in our understanding of the complexity of CSPs. We

will come back to this in Section 2.3.

9

For the sake of completeness we show also an example of n-ary CSP.

Example 2.2. Consider the Boolean Satisfiability Problem (SAT, for short), that is,

given a Boolean formula φ in conjunctive normal form (CNF), is there an assignment

of 0s and 1s to the variables in input such that the formula returns the value 1. SAT

is a constraint satisfaction problem where the CNF formula φ corresponds to a CSP

instance I whose variables are the same variables of φ, whose domain is U = {0, 1}

and where each constraint Ci ∈ C corresponds to a clause ci ∈ φ. For example,

the clause cxyz = (x ∨ ¬y ∨ ¬z) corresponds to a constraint (Sxyz, rxyz) where rxyz is

the ternary relation {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} on

{0, 1}.

We conclude this section by observing that CSPs can be expressed via Constraint

programming, a declarative programming paradigm where users are just in charge of

specifying the problem at hand in terms of a constraint satisfaction problem, instead

of formalizing the steps needed for its solution. Constraint programming systems

exploit, indeed, general search mechanisms (such as backtracking) enriched with

powerful speed-up methods (such as constraint propagation techniques) in order to

find a solution such that meets declarative specification. We will detail how such

mechanisms work in the next section. Finally, it is worth noting that a constraint

language is tractable if we can solve the associated CSP in polynomial time.

2.2 Solving CSPs

Now that we introduced the basic terminology, we go back to the main issue of

CSP and we point out some interesting properties of this problem. When dealing

with general CSPs, the major drawback is represented by their high complexity that

often calls for heuristic methods to achieve a solution in reasonable time. Therefore,

10

much effort has been spent by the scientific community in finding an efficient solution

for the constraint satisfaction problem. Perhaps, the most important direction is the

identification of tractable classes of CSPs and taking advantage of such classes. In

fact, we can use the knowledge about solving tractable CSP classes to help the

solution of harder problems. The approaches to identify tractable CSP classes can

be divided into two main categories [Gottlob et al., 2000]:

• Tractable structural restrictions. This includes all tractable classes of CSPs that

are identified only by analyzing the structure of the constraint scopes.

• Tractability due to restricted constraint relations. This includes all classes that

are tractable as a consequence of particular properties of the constraint relations.

In this dissertation, we will focus on tractable structural restrictions. But before

we start describing the tools that help us address this issue, let us discuss what

happens in the general case. It turns out that the most commonly used algorithm

for solving CSPs is the backtracking search.

2.2.1 Backtracking search

Backtracking search is as simple as systematic. Basically it consists of the fol-

lowing steps. Given a CSP instance I = 〈Var , U,C〉, it starts in a state where no

assignment has been done for the variables in Var . Then it traverses the variables

in a predetermined order, it picks a variable, it assigns a value and if the assigment

is consistent (i.e., it satisfies all the constraints), it repeats. Eventually, if no con-

sistent assignment can be found for the next variable then the algoritm backtracks

the search tree until it finds a variable that can have its value set consistently to

something else. Backing all the way up the tree to the root, and finding no more

values means that there is no solution. A backtracking algorithm that computes one

11

solution is given below.

Algorithm 1 backtrack search

Input: I = 〈Var , U,C〉 a CSP instance
Output: TRUE if there exists a solution FALSE otherwise.

1: (F ,A) := (∅, ∅);
2: while there are unassigned var do
3: Xi := pick(Var);
4: for all v ∈ U(Xi) do
5: A := A ∪ {Xi = v};
6: if {Xi = v} ∈ Forbid then
7: continue;
8: end if
9: F := F ∪ {Xi = v};

10: A := A ∪ {Xi = v};
11: if ∃ c ∈ C s.t. c is not satisfied then
12: A := A \ {Xi = v};
13: else
14: goto 2;
15: end if
16: end for
17: unroll previous choice; . also clear F
18: if A = ∅ then
19: return FALSE
20: end if
21: end while
22: return TRUE

When we use this algorithm for finding one solution, it is natural to ask the

following questions.

• How do we chose the next variable and its value?

• Can we prune the search space, and thereby search less?

• Can we learn from our mistakes, i.e., bad variable selections?

For instance, the problem of selecting a variable and assigning a value plays a

significant role in the execution time. In fact, the easy approach that consists in

picking the next variable and next value from a static list is not always the most

efficient approach. Indeed is not easy to make the right choice and thus several

heuristic proposal have been offered by the AI community. For example we can

choose the variable with the smallest number of remaining values in its domain.

12

Another approach could be the one that chooses the variable that is part of the most

remaining unsatisfied constraints. Moreover, once we choose a variable, we select

from its domain the value that rules out the fewest choices for neighboring variables.

It turns out that Algorithm 1 is not very efficient or intelligent since it does not

use all the information available from the constraint set and the assigned variables.

In fact, we can use the value assigned to available and the contraints in order to

probe the search space, that is we restrict the available future values for the other

variables. If we empty the domain of another variable, that is we are unable to assign

a consistent value to another variable, then we know that we can backtrack without

exploring the remaining subtree below the current variable.

We conclude this section, by pointing out again that there are many situations (such

as database query answering), in which we are interested not only in finding one

solution but we require all solutions. In this setting, it easy to see that things

become computationally much harder since even the simplest constraint satisfaction

problem instance may have an exponential number of satisfying solutions. Therefore,

it is sensible to propose algorithms that generate solutions with polynomial delay.

For the remainder of this thesis, we will consider both these settings.

2.3 Structural properties of CSPs

In this section, we change our perspective by focusing on the structure of CSPs

with the objective to identify structural properties that lead to tractable classes of

CSPs. Indeed, taking advantage of the understading of such classes often increases

our abilities in solving harder problems. As we already noted, many problems aris-

ing in different areas of computer science can be described via CSPs. Often, such

problems are intractable in general, but whenever the input has a desired structure

13

(for example, the constraint graph is a tree), we can compute solution efficiently via

dynamic programming. In graph-based problems, the intractability is frequently due

to cyclicity. A natural question to ask is therefore whether the degree of cyclicity

affects the complexity of the problem. The answer to this question is ”yes”: the more

the input is tree-like the easier it becomes. In particular, it was recognized in both

AI and database theory community that the most important property in the context

of CSPs (and conjunctive database queries) is acyclicity [Gottlob et al., 2000].There-

fore, multiple effort has been made in finding a way to measure the degree of cyclicity

of graphs (and hypergraphs) with the objective to identify nearly-acyclic instances

resulting in the definition of a broad set of structural decomposition methods. De-

composition techniques work as follows: First we associate to each instance problem

I the graph G (or a hypergraph H). Then, clusters of vertices are arranged in some

tree-shape in order to obtain an acyclic data structure. Finally we can formalize the

concept of degree of cyclicity using the width of the decomposition (of the instance

problem I) that corresponds to the size of the largest cluster of vertices occurring in

the decomposition. The treewidth, which we will review more technically in the next

section, is currently the best way to measure the degree of cyclicity of a graph since

it subsumes all the other measures.

2.4 Structural decomposition methods

2.4.1 Tree decompositions

A tree decomposition [Robertson and Seymour, 1984] of a graph G is a pair 〈T, χ〉,

where T = (N,E) is a tree, and χ is a labeling function assigning to each vertex

v ∈ N a set of vertices χ(v) ⊆ nodes(G), such that the following conditions are

satisfied:

14

v1

v2
v3

v4

v5
v6

v7 v8
1, 2, 3

1, 2, 3, 6 2, 7, 8

3, 4, 5, 6

Figure 2.1: A hypergraph H and a tree decomposition of H of width 3

1. for each node Y ∈ nodes(G), there exists p ∈ N such that Y ∈ χ(p);

2. for each edge {X, Y } ∈ edges(G), there exists p ∈ N such that {X, Y } ⊆ χ(p);

3. for each node Y ∈ nodes(G), the set {p ∈ N | Y ∈ χ(p)} induces a (connected)

subtree of T .

The width of 〈T, χ〉 is the number maxp∈N(|χ(p)| − 1).

In particular, the treewidth of G is the minimum width over all the tree decom-

positions that can be constructed. Deciding whether a given graph has treewidth

bounded by a fixed natural number k is known to be feasible in linear time [Bod-

laender and Fomin, 1996]. Moreover, the treewidth of a hypergraph H is 1 if H

is acyclic, and it is equal to the treewidth of its primal graph otherwise. As an

illustrative example, consider the Figure 2.1

2.4.2 (Generalized) Hypertree decompositions

Unfortunately, there exist a number of real-world problems where very complex

relationships between objects may arise, leading to loss of information whenever these

relationships are represented as graphs. In particular, while binary relationships can

naturally be illustrated with simple graphs, general relationships are best described

15

by hypergraphs. Since hypergraphs generalize graphs, we can define the degree of

cyclicity of a hypergraph and we can carry out investigations on its properties.

A hypergraph H is a pair (V,H), where V is a finite set of nodes and H is a set

of hyperedges such that, for each h ∈ H, h ⊆ V . In the following, we denote V and

H by nodes(H) and edges(H), respectively.

A hypergraph H is acyclic (more precisely, α-acyclic [Fagin, 1983]) if, and only if,

it has a join tree [Bernstein and Goodman, 1981], i.e., a tree whose vertices are the

hyperedges of H such that, whenever a node X ∈ V occurs in two hyperedges h1 and

h2 of H, then h1 and h2 are connected in JT , and X occurs in each vertex on the

unique path linking h1 and h2. In words, the set of vertices in which X occurs induces

a connected subtree of JT . Similar to the notion of tree decomposition, there exists

the (generalized) hypertree decomposition over hypergraphs which, in turn, leads to

the associated notion of hypertree-width.

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where T = (N,E) is a rooted

tree, and χ and λ are labeling functions that associate each vertex v ∈ N with two

sets χ(v) ⊆ nodes(H) and λ(v) ⊆ edges(H).

The width of a hypertree is the size of its largest λ, i.e., maxp∈T (|λ(p)|). We denote

the set of vertices N of T by vertices(T), and the root of T by root(T). Moreover,

for any p ∈ N , Tp denotes the subtree of T rooted at p. If T ′ is a subtree of T , we

define χ(T ′) =
⋃
v∈vertices(T ′) χ(v).

A generalized hyertree decomposition of a hypergraph H is a hypertree HD =

〈T, χ, λ〉 such that: (1) for each hyperedge h ∈ edges(H), there exists p ∈ vertices(T)

such that vars(h) ∈ χ(p); (2) for each node Y ∈ nodes(H), the set {p ∈ vertices(T) |

Y ∈ χ(p)} induces a (connected) subtree of T ; (3) and finally, for each node p ∈

vertices(T), χ(p) ⊆ nodes(λ(p))

16

v1

v2
v3

v4

v5
v6

v7 v8

e1

e3

e2

e4

e5

1, 2, 3

e1

2, 7, 8

e2

1, 3, 4, 5, 6

e3, e4

Figure 2.2: A hypergraph H and a hypertree decomposition of H of width 2

In particular, the hypertree width ofH is the minimum width over all the hypertree

decompositions that can be constructed.

The hypertree decomposition HD is a complete decomposition if for each hy-

peredge h ∈ edges(H), there exists p ∈ vertices(T) such that vars(h) ∈ χ(p)

and h ∈ λ(p). Moreover, a generalized hypertree decomposition is a hypertree

decomposition if it satisfies the following special condition: for each node p ∈

vertices(T), nodes(λ(p)) ∩ χ(Tp) ⊆ χ(p).

Observe that, deciding whether a given hypergraph has hypertree width bounded

by a fixed natural number k is feasible in polynomial time (and, actually it is highly-

parallelizable) [Gottlob et al., 2002]. Moreover, it is known that for any hypergraph

H the generalized hypertree width ghw(H) is always smaller than or equal to the

hypertree width hw(H), and more precisely, ghw(H) ≤ hw(H) ≤ ghw(H) + 1 [Adler

et al., 2007].

Deciding whether a given hypergraph has generalized hypertree width bounded

by a fixed natural number k is NP-complete [Gottlob et al., 2009].

Figure 5.1 shows an example of hypertree decomposition.

17

2.4.3 Tree projections

As noted before, these methods have in common the idea of transforming a given

cyclic hypergraph (graph) into an acyclic one, by organizing its vertices (or its edges)

into a polynomial number of clusters and by arranging these clusters into a tree-

shape structure – a so-called decomposition tree. Given the decomposition tree, we

can then evaluate the original problem with a cost that is exponential in the width

of the decomposition (i.e., the cardinality of the largest cluster) but polynomial in

the combined size of the input and the output. Consequently, great effort has been

spent by the scientific community in finding the best method to identify nearly acyclic

graphs (hypergraphs) resulting in the definition of various methods that regardless

of the technical differences, are just a special case of a general framework called tree

projections. The result is the following formal definition for this general framework.

For a given pair of hypergraphs (H1,H2), a tree projection ofH1 w.r.tH2 is an acyclic

hypergraph Ha such that each hyperedge of H1 is contained in some hyperedge of

Ha, that is in turn contained in some hyperedge of H2. H2 is called the resource

hypergraph and it is arbitrary. Hence, whenever we compute H2 with some specific

method from the hypergraph H1, we obtain, as special cases, some known purely

structural decomposition methods. In fact, observe that the decomposition method

based on the submodular width [Dániel Marx, 2010], which is not purely structural,

is the only one among all the structural decomposition methods that does not fit

this framework.

LetH1,H2 be two hypergraphs. We assume w.l.o.g. that nodes(H1) = nodes(H2).

Given (H1,H2), we say that H1 ≤ H2, iff each hyperedge of H1 is contained in at

least one hyperedge of H2. Let H1 ≤ H2; then, a tree projection of H1 w.r.t H2 is an

acyclic hypergraph Ha such that H1 ≤ Ha ≤ H2. We say that Ha is a tree projection

18

Figure 2.3: A tree projection Ha for the pair of hypergraphs (H1,H2).

for the pair (H1,H2) if it exists.

In fact, by slightly abusing notation, we use the term tree projection to refer

to a join tree of such a sandwich acyclic hypergraph or, equivalently, a width-1

hypertree decomposition of Ha. More precisely, we say that a tree projection of H1

w.r.t H2 is a triple HD = 〈T, χ, λ〉 where T = (N,E) is a rooted tree; χ and λ

are labeling functions that associate each vertex v ∈ N with two sets of vertices

χ(v) ⊆ nodes(H1) and λ(v) ∈ edges(H2); and such that the following conditions

hold: (1) for each hyperedge h ∈ edges(H1), there exists vh ∈ N with h ⊆ χ(vh); (2)

for each node v ∈ nodes(H1), the set {vh ∈ N | v ∈ χ(vh)} induces a (connected)

subtree of T ;

Throughout the dissertation we assume that I is a given CSP instance, and we

shall seek to compute its solutions (possibly restricted to a desired set of output

variables) by combining the solutions of suitable sets of subproblems, available as

additional distinguished constraints called resource views. Intuitively, each original

constraint of I is associated with a new distinguished hyperedge in the resource

hypergraph. Importantly, note that a resource view in order to be a legal subproblem

must be not more restrictive than the full problem. Moreover, any resource view has

to be at least as restrictive as the original constraint associated with it.

19

Example 2.3. Consider the hypergraph H1 on the left of Figure 2.3 together with

other two hypergraphs that are discussed next. H1 represents the CSP instance I

whose variables are given by nodes(H) and where each constraint Ci ∈ C corresponds

to a hyperedge appearing in edges(H). For example, the constraint set C is given by

C := {〈A,B,C〉, 〈A,F 〉, 〈C,D〉, 〈D,E, F 〉,

〈E,F,G〉, 〈G,H, I〉, 〈I, J〉, 〈J,K〉}.

To solve I, assume that a set of resource views is available, playing the role of

additional distinguished constraints. The set of variables of each resource view is a

hyperedge in the hypergraph H2. In the middle between H1 and H2, Figure 2.3 it is

reported the hypergraph Ha which covers H1 , and which is in its turn covered by

H2 e.g., {C,D} ⊆ {A,B,C,D} ⊆ {A,B,C,D,H}. Since Ha is in addition acyclic,

Ha is a tree projection of H1 w.r.t. H2 .

Note that all the (known) structural decomposition methods can be recast as

special cases of tree projections, since they just differ in how they define the set

of views to be built for evaluating the CSP instance. For example, consider the

generalized hypertree decomposition approach. Given a hypergraph H and a natural

number k > 0, let Hk denote the hypergraph over the same set of nodes as H,

and whose set of hyperedges is given by all possible unions of k edges in H, i.e.,

edges(Hk) = {h1 ∪ h2 ∪ · · · ∪ hk | {h1, h2, . . . , hk} ⊆ edges(H)}. Then, it is well

known and easy to see that H has generalized hypertree width at most k if, and only

if, there is a tree projection for (H,Hk).

Similarly, for tree decompositions, let Htk be the hypergraph over the same set

of nodes as H, and whose set of hyperedges is given by all possible clusters B ⊆

nodes(H) of nodes such that |B| ≤ k + 1. Then, H has treewidth at most k if, and

20

only if, there is a tree projection for (H,Htk).

2.5 Counting problems

So far, we discussed how to solve CSPs exploiting its structural properties. How-

ever, in real-world applications like database query answering, often we do not con-

centrate on finding one solution or just counting the number of solutions, possibly

focusing on a restricted set of output variables (as we will discuss in Chapter 5). For

example, the ”select” part of an SQL query allows users to specify a set of output

variables, so that query answering amounts at enumerating all solutions projected

over those variables, rather than just deciding whether there is any. In [Atserias et

al., 2013], it has been shown that the enumeration problem where all variables are

output variables (i.e., ”SELECT *” queries where no variable is projected out) can

be solved in polynomial time on a class C of queries if, and only if, the number of

solutions is always polynomial, and that this is the case, if and only if, the queries

in C have bounded fractional edge cover number. Similar tight worst-case bounds

for conjunctive queries with arbitrary sets of output variables have been derived

in [Gottlob et al., 2012]. Note however that even easy instances may have an expo-

nential number of solutions. Therefore, for enumeration problems it is sensible to

propose algorithms computing solutions with polynomial delay, or even with linear

delay [Bagan et al., 2007]. Again, acyclicity has been shown to be a key for tractabil-

ity in this setting [Yannakakis, 1981; Koch, 2006; Kimelfeld and Sagiv, 2006; Bagan

et al., 2007], and generalizing these results to decomposition methods is an active

area of research (see, e.g., [Bulatov et al., 2012; Greco and Scarcello, 2013a]). Closely

related to the enumeration problem is the problem of counting the solutions of con-

straint satisfaction problems (see, e.g, [Bulatov et al., 2013; Bulatov, 2013; Gomes

21

et al., 2007; Pesant, 2005]). This problem is equivalent to counting the number of

query answers in the related field of database theory, which occurs in the presence of

SQL queries specifying ”COUNT” aggregates. Note that these queries are very often

at the basis of decision support systems examining large volumes of data in order to

get insights on critical business questions. In this thesis we analyze the well known

TPC-DS, which is a decision support benchmark,1 consisting of business-oriented

complex queries (many of them involve counting) over which structural decomposi-

tion methods can exhibit their effectiveness. Indeed, recently structural tractability

results have been generalized to counting problems, as summarized below.

Theorem 2.4 (cf. [Pichler and Skritek, 2013; Greco and Scarcello, 2014b]). Counting

the number of substitutions in Θ(I,W) is feasible in polynomial time, on classes of

CSP instances I such that the treewidth of G(I) is bounded by a constant, and the

size of the domain of each variable not in W is bounded by some constant, too.

Note that, differently from the case of the standard decision and computation

problems, the result is established under the additional condition that auxiliary vari-

ables have a bounded domain. If the condition is not met, then #P-complete in-

stances can be exhibited Pichler and Skritek [2013].

Example 2.5. As a tiny example, consider the following counting problem. We

want to count the number of PhD students that attended some Summer School about

Constraint Satisfaction. We can express this problem as a CSP: Consider the CSP in-

stance I whose variables are the set {Name,Affiliation, School, Y ear, Subject, Location},

whose domain is U = {...} and where the constraint set C is as follows.

{student〈Name,Affiliation〉, attendend〈Name, School〉,

school〈School, Y ear, Subject, Location〉, equal〈Subject, ”CS”〉}.
1http://www.tpc.org/tpcds/default.asp

22

The intended meaning is that we want to count over all solutions of this CSP the

number of distinct occurrences of any student for which there exists some school in

some year that she attended and that was about Constraint Satisfaction. Note that,

we have just one output variable that is the student’s name. All other variables are

just auxiliary (i.e, existential variables in the logic-based syntax). The objective is

to compute just the number of (desired) solutions. In fact, in counting problems

we may get wrong numbers if such variables are not properly considered. In this

example, we could get as a result the number 8 that may come from the one student

attending 3 summer school on constraint satisfaction, 3 on Game Theory and 2 on

Mining, or by 8 distinct students on constraint satisfaction. The counting problem

is quite different from the enumeration problem where even if the complexity may

change, we still have all the solutions and thus we can get the right number by just

projecting out the useless variables.

2.5.1 The Langford problem

Figure 2.4: Langford problem

Langford’s problem goes back to the Scottish mathematician C. Dudley Langford

who once observed his young boy stacking colored blocks. While he was watching, he

observed that his son piled six colored blocks in a such a way that there was one block

23

between the blue pair, two blocks between the red pair and three blocks between the

green pair. This is exemplified on the left of Figure 2.5.1. Then he added a pair of

yellow blocks and he came up with a solution like the one depicted in the right of

Figure 2.5.1. It turns out that, these solutions are unique for 3 and 4 pairs of colored

blocks. One could always reverse the order and cycling colors but this is irrelevant.

Indeed, the number of distinct solutions is just one. Then, Langford tried to find a

solution for 5 and 6 pairs of blocks but he did not succeed. Later he was able to find

a solution for 7 and 8 pairs but again he was unable to find a solution for 9 and 10

pairs. Therefore, it was natural for him to investigate more and he came up with

the following question. What values of n admit a solution? [Davies, 1959] gave an

answer to that question proving that for 5, 6, 9 and 10 there not exists a solution.

In particular he proved that it is possible to find a solution only if n is a multiple

of four or one less than a multiple of four. The study of this problem is fascinating

in that for small numbers of blocks, we are able to find a solution even without

using a computer. Indeed, we have done that for n = 3 and n = 4 in Figure 2.5.1.

Therefore, we wonder how many solutions exist for higher values of n. While finding

one solution for any number of blocks is quite easy, counting all solutions becomes

pretty hard. Just to give an idea, the exact number of distinct solutions for n ≥ 28

is not known as of today. Moreover, n = 27 was determined only in 2015. Perhaps,

we want to look at the numbers in Table 2.5.1 in order to realize how difficult are

these kinds of problems.

24

n # of solutions
1 -
2 -
3 1
4 1
5 -
6 -
7 26
8 150
9 -
10 -
11 17,792
12 108,144
13 -
14 -
15 39,809,640
16 326,721,800
17 -
18 -
19 256,814,891,280
20 2,636,337,861,200
21 -
21 -
23 3,799,455,942,515,488
24 46,845,158,056,515,936
25 -
26 -
27 111,683,606,778,027,803,456
28 ?
29 -

Table 2.2:
Known solutions for the Langford problem. A dash (-) means that there is no solution
for the given value of n while (?) stands for unknown.

2.5.2 Configuration problems: Renault example

As an interesting real-world example of counting problem, we describe the Renault

Megane configuration problem [Amilhastre et al., 2002] used in CSP competitions

as a benchmark for CSP solvers. The problem consists of 108 variables that encodes

informations about the Renault megane such as the type of engine, country, options

like air cooling, etc. with domains ranging from 2 to 43 and with a total of 858

constraints which can be compressed to 149 constraints. Furthermore, many of them

are non binary indeed arity of constraint scopes is up to 10. Finally, the constraint

25

Figure 2.5:
A portion of hypertree decomposition of width 4 for the Renault megane configuration
problem

relations comprise about 200000 tuples. We analyzed this problem by applying

our decomposition tools and despite the big numbers in play, we discovered that the

hypertree-width associated with it is just 4 as we shall see in more detail in Chapter 4.

Moreover, we observed that it is possible to find one solution for this problem very

quickly. However, if our objective is to find all the solutions, the problem becomes

much harder to solve. In Figure 2.5 we show a portion of the decomposition tree for

this problem. The total number of solutions known for this problem is 2.84 ∗ 1012.

We conclude this chapter by giving some preliminaries on complexity theory.

2.6 Preliminaries on Complexity Theory

We recall some notions of complexity theory which we will use later in this thesis,

by referring the reader to the book by [Garey and Johnson, 1979] for more on this

subject.

26

Decision problems are maps from strings (encoding the input instance over a fixed

alphabet, e.g., the binary alphabet {0, 1}) to the set {”yes”, ”no”}. We are often

interested in computations carried out by non-deterministic Turing machines. We

recall that these are Turing machines that, at some points of the computation, may

not have one single next action to perform, but a choice between several possible next

actions. A non-deterministic Turing machine answers a decision problem if, on any

input x, (i) there is at least one sequence of choices leading to halt in an accepting

state if x is a ”yes” instance (such a sequence is called accepting computation path);

and (ii) all possible sequences of choices lead to a rejecting state if x is a ”no”

instance. The class of decision problems that can be solved by non-deterministic

Turing machines in polynomial time is denoted by NP.

A decision problem A1 is polynomially reducible to a decision problem A2, if there

is a polynomial-time computable function h (called reduction) such that, for every x,

h(x) is defined and x is a ”yes” instance of A1 if and only if h(x) is a ”yes” instance

of A2. A decision problem A is NP-hard if every problem in NP is polynomially

reducible to A; if A is NP-hard and belongs to NP, then A is said to be NP-complete.

Thus, problems that are complete for NP are the most difficult problems in NP. In

particular, it is unlikely that an NP-complete problem can be solved in polynomial

time because it would entail P=NP.

27

Part I

CSP and Databases

CHAPTER 3

Basic Definitions from Database Theory

In this chapter we will discuss the connection between constraint satisfaction prob-

lems and database theory. Various important problems in the field of database the-

ory, such as the problem of evaluating Boolean Conjunctive Queries over a relational

database, or the problem of conjunctive query containment are equivalent to solving

constraint satisfaction problems as pointed out by several authors, e.g., [Gyssens et

al., 1994; Kolaitis and Vardi, 2000].

We will start with the required background of database theory by examining re-

lational structures, relational databases, the concept of conjunctive query and SQL

queries. The notions defined in this chapter will be intensely used in the next chap-

ters.

3.1 Relational structures

It is well known that constraint satisfaction problems can be recast as homo-

morphism problems for relational structures. Let U and X be disjoint infinite sets

that we call the universe of constants and the universe of variables, respectively. A

(relational) vocabulary τ (also called schema in the field of databases) consists of

a name r and a finite set of relation symbols of specified finite arities. A relational

structure A over τ (short: τ -structure) is an instance of that (relational) schema with

28

29

a specific domain. More formally, it consists of a universe A ⊆ U ∪ X and, for each

relation symbol r in τ , of a relation rA ⊆ Aρ, where ρ is the arity of r. For instance,

directed and undirected graphs are relational structures where the vocabulary has a

single binary relation E , which for digraphs corresponds to the edge relation, while

for graphs includes the pairs (x, y) and (y, x) for each edge {x, y}. In the same way

as for graphs, we can define homomorphisms of structures. Let A and B be two

τ -structures with universes A and B, respectively. A homomorphism from A to B

is a mapping h : A 7→ B such that h(c) = c for each constant c in A ∩ U , and such

that, for each relation symbol r in τ and for each tuple 〈a1, . . . , aρ〉 ∈ rA, it holds

that 〈h(a1), . . . , h(aρ)〉 ∈ rB. For any mapping h (not necessarily a homomorphism),

h(〈a1, . . . , aρ〉) is used, as usual, as a shorthand for 〈h(a1), . . . , h(aρ)〉.

A τ -structure A is a substructure of a τ -structure B if A ⊆ B and rA ⊆ rB, for

each relation symbol r in τ .

3.2 Relational databases

Let τ be a given vocabulary. A database instance (or, simply, a database) D over

D ⊆ U is a finite τ -structure D whose universe is the set D of constants. For each

relation symbol r in τ , rD is a relation instance (or, simply, relation) of D.

A database schema DS is a finite set 〈R1, ..., Rm〉) of relation schemas.

The elements of relations are called tuples. In this thesis, we will adopt the

logical representation of a database [Ullman, 1989; Abiteboul et al., 1995], where a

tuple 〈a1, ..., aρ〉 of values from D belonging to the ρ-ary relation (over symbol) r

is identified with the ground atom r(a1, ..., aρ). Accordingly, a database D can be

viewed as a set of ground atoms.

30

3.3 Conjunctive queries

Among all the classes of relational database queries, the most thoroughly analyzed

and probably the most important one is the class of Conjunctive queries.

A Conjunctive query Q is a first order formula ∃X̄Φ where Φ = r1(u1)∧...∧rm(um)

is a conjunction of atoms (relation names), r1, ..., rm (with m > 0) are relation

symbols, u1, ...,um are lists of terms (i.e., variables or constants), and X̄ = X1, ..., Xn

is the list of quantified variables of Φ. We say that the query Q is simple if every

atom is defined over a distinct relation symbol. The conjunction Φ is denoted by

form(Q), while the sets of all atoms in Q is denoted by atoms(Q). For any set A of

atoms, vars(A) is the set of all variables in A, and vars(Q) is used for short in place

of vars(atoms(Q)). Moreover, we define free(Q) = vars(Q)\ {X1, ..., Xn} as the set

of the free variables in Q.

For a database D over D, QD denotes the set of all substitutions θ : vars(Q) 7→ D

such that for each i ∈ {1, ...,m}, θ′(rαi(ui)) ∈ D, where θ′(t) = θ(t) if t ∈ vars(Q)

and θ′(t) = t otherwise (i.e., if the term t is a constant).

Note that the conjunction form(Q) can be viewed as a relational structure Q,

whose vocabulary τQ and universe UQ are the set of relation symbols and the set of

terms occurring in its atoms, respectively. For each symbol ri ∈ τQ, the relation rQi

contains a tuple of terms u, for any atom of the form ri(u) ∈ atoms(Q) defined over

ri. In the special case of simple queries, every relation rQi of Q contains just one tuple

of terms. According to this view, elements in QD are in a one-to-one correspondence

with homomorphisms from Q to DQ, where the latter is the (maximal) substructure

of D over the (sub)vocabulary τQ. Hereinafter, for the sake of presentation, we freely

use interchangeably queries and databases with their relational structures, e.g., we

31

may use Q and D in place of Q and DQ. Moreover, ||Q|| and ||D|| denote the sizes

of the underlying relation structures, according to their standard encoding (see, e.g.,

[Grohe, 2007]).

According to the above notation, πfree(Q)(Q
D) is the set of answers of the conjunc-

tive query Q on the database D (over the output variables free(Q)). We denote by

count(Q,D) the problem of computing the cardinality of this set, i.e., the number of

(distinct) answers of Q on D.

3.4 Relational algebra.

For any set W ⊆ vars(Q) of variables and set S of substitutions, we denote

by πW (S) the set of the restrictions of the substitutions in S over the variables

in W . If θ is a substitution with domain W , then we denote by σθ(S) the set

{θ′ ∈ S | πW ({θ′}) = {θ}). If S1 and S2 are sets of substitutions with domains W1

and W2, respectively, then we denote by S1 ./ S2 the set of all substitutions θ over

W1∪W2 such that πW1({θ}) ⊆ S1 and πW2({θ}) ⊆ S2. We use S1nS2 as a shorthand

for πW1(S1 ./ S2).

3.5 Hypergraphs and structural restrictions

There is a very natural way to associate a hypergraph HV = (N,H) with any set

V of atoms: the set N of nodes consists of all variables occurring in V ; for each atom

in V , the set H of hyperedges contains a hyperedge including all its variables; and no

other hyperedge is in H. For a query Q, the hypergraph associated with atoms(Q)

is denoted by HQ.

Let Q be a conjunctive query, and let V be a set of atoms each one defined

over a specific relation symbol not occurring in Q. These atoms play the role of

additional resources that can be used to answer (counting problems on) Q, so that

32

we are abstracting here all purely structural decomposition methods proposed in the

literature, which just differ in how they define and build the set of such available

resources. Following the framework in [Greco and Scarcello, 2010], we say that V is

a view set for Q if, for each atom q ∈ atoms(Q), V contains an atom wq with the

same list of variables as q (but with a different relation symbol). Each atom in V is

called a view ; in particular, atoms of the form wq are called query views. The set of

all query views will be denoted by views(Q).

Let D be a database whose vocabulary includes all relation symbols in Q and V . In

a structural decomposition method, query views are initialized with the same tuples

as their associated query atoms while, for any other view w ∈ V , wD is initialized

by including solutions of some subquery over the variables in w. Using such views

for evaluating Q is possible whenever D is a legal database (on V w.r.t. Q), i.e., (i)

wD

q ⊆ qD holds, for each query view wq ∈ views(Q); and (ii) wD ⊇ πvars(w)(Q
D), for

each view w ∈ V . Intuitively, all original ”constraints” are there, and views are not

more restrictive than the original query.

In this thesis, we look for ”structural” restrictions to Q guaranteeing that the

problem count(Q,D) can be efficiently solved by exploiting the views in V .

3.6 SQL queries

Structured Query Language (SQL) is a declarative language used to define, query

and update data in a relational database. In SQL, which is without doubts the most

widely accepted database programming language, the user is in charge to specify

what he wants rather than how to do it. Indeed, the complex problem of generating

an efficient query plan is left to the query optimizer of the DBMS, which will decide

how to process and retrieve the data. Not only SQL is interesting due to its wide use,

33

but also because it is well known that SQL queries without nested statements and

inequality comparisons (i.e., Select/Project/Join) are equivalent in expressive power

to conjunctive queries. Therefore it is of great interest to propose efficient solutions

for SQL query execution plan.

Select/Project/Join queries are generated using the following SQL statement.

SELECT R1(u1), ..., Rm(um)

FROM R1, ..., Rm

WHERE Ri(uk) = Rj(uz)

We next focus on this kind of SQL queries and in additional functionality that

includes aggregating data (e.g., counting). We will discuss this in more detail in

Chapter 5.

CHAPTER 4

A Weighted Structural Decomposition Technique

4.1 Introduction

In this chapter we move a further step towards the understanding of the structural

tractability of constraint satisfaction problems by focusing on a general framework

based on the notion of tree projection, which generalizes all known decomposition

methods. Indeed we have seen in Chapter 2 that the tree projections unify all

purely structural decomposition methods proposed in the literature. However, it

is well known that, computing general tree projections is intractable, formally NP-

hard [Gottlob et al., 2009]. This could in principle result in a limited applicability

of the framework. Motivated by the bad news, in [Greco and Scarcello, 2010] a rele-

vant tractable class of tree projections is identified, known as the class of greedy tree

projections. In this chapter we design and implement an algorithm for a restricted

monotone variant, called monotone greedy tree projection. Up to now, our algorithm,

known as GreedyTreeProjectionDM (in short GTPDM) is the only polynomial-time

algorithm for constructing such decompositions. We note however, that in many ap-

plications, finding a purely structural decomposition is not the best we can do. For

instance, when dealing with CSP evaluation we can think of minimizing the number

of vertices of the decomposition tree having the largest width w. Equivalently, in the

34

35

related query answering problem we would like to exploit data information such as

the size of relations, the selectivity of attributes, indexes, etc. In our framework, we

address this issue by extending GTPDM with the novel notion of weighted (monotone)

greedy tree projections, in order to combine the purely structural decomposition ap-

proach with quantitative aspects. Precisely we equip the decomposition method with

an evaluation function that can be used to model many practical contexts where we

can exploit additional knowledge on the problem at hand. Therefore we aim at com-

puting greedy tree projections having the smallest weights. To this end, it is worth

nothing that, computing a minimal weighted monotone greedy tree projection may

be in general harder than computing a (purely structural) one. In this chapter, we

still show a polynomial time algorithm for the weighted setting based on a restricted

class of evaluation functions. Our results, find application in all those problems that

can be solved efficiently on acyclic and quasi-acyclic instances, and in particular, it

can be exploited immediately for solving CSPs where constraints are represented as

finite relations encoding allowed tuples of values. Finally, we discuss implementation

issues and a preliminary testing activity is performed, giving evidence of competitive

results compared to the state-of-the-art decomposition methods known in the litera-

ture. This is the first step that needs to be done in order to emphasize the practical

usefulness of structural approaches to CSP evaluation and query answering. We will

return to this in more detail in the next chapter.

4.2 Monotone Greedy Tree projections

Most structural decomposition methods can be characterized through hypergraph

games that are variations of the Robber and Cops graph game that characterizes the

notion of treewidth. In particular, decomposition trees somehow correspond to mono-

36

tone winning strategies, where the escape space of the robber on the hypergraph is

shrunk monotonically by the cops. In fact, unlike the treewidth case, there are hyper-

graphs where monotone strategies do not exist, while the robber can be captured by

means of more complex non-monotone strategies. However, these powerful strategies

do not correspond in general to valid decompositions.

In [Greco and Scarcello, 2010] it is given a general way to exploit the power of non-

monotone strategies, by allowing a disciplined form of non-monotonicity, that induces

valid decomposition trees. Moreover, it is shown that deciding the existence of a

(non-monotone) greedy winning strategy (and compute one, if any) is tractable. In

fact, greedy strategies can be computed in polynomial time. To establish the result,

a useful technical property is that greedy strategies can only involve a polynomial

number of configurations (a configuration is a pair (h,C), where h is the hyperedge

controlled by the cop, and C is a [h]-component where the Robber stands).

Thus, based on them (even on non-monotone ones) it is possible to construct,

again in polynomial time, tree projections, which are called greedy. We refer the

reader to the work done by [Greco and Scarcello, 2010] for more on this subject. In

this thesis, we give an implementation of greedy tree projections based on monotone

strategies, a restricted variant that is easier to deal with for our purposes, which

include the extension to the optimal weighted framework. Hereinafter, we write

simply greedy tree projections for monotone greedy tree projections.

4.3 Normal form

To formalize our results, let us introduce some additional definitions and nota-

tions, which we will use later. Given two hypergraphs H1 and H2, in general many

greedy tree projections with useless redundancies may exist. Hence, we would like

37

to have a suitable notion of minimality that allow us to identify the most desirable

greedy tree projection. In fact, for several structural decomposition methods, normal

forms have been defined to restrict the search space of decomposition trees, without

loosing any useful decomposition. We make this more precise in the following.

Let HD = 〈T, χ, λ〉 and HD = 〈T ′, χ′, λ′〉 be two greedy tree projections. We write

HD � HD′ if for each h ∈ H \ H ′, there is a set h′ ∈ H ′ \ H with h ⊆ h′, where

H = {χ(p) | p ∈ vertices(T)} and H ′ = {χ′(p′) | p′ ∈ vertices(T ′)}

Definition 4.1. Let HD = 〈T, χ, λ〉 be a greedy tree projection of H1 w.r.t. H2. We

say that HD is in normal form if the following conditions hold:

1. for each vertex p ∈ vertices(T), χ(Tp) ∩ λ(p) = χ(p).

2. for each tree projection HD′ of H1 w.r.t. H2 that satisfies (4), HD � HD′ holds.

Hereinafter, we denote by nfTP(H1,H2) the set of all greedy tree projections in

normal form of H1 w.r.t. H2.

Definition 4.2. Assume that a hypergraph H is given. Let V , W , and {X, Y } be

sets of nodes. Then, X is said [V]-adjacent (in H) to Y if there exists a hyperedge

h ∈ edges(H) such that {X, Y } ⊆ (h − V). A [V]-path from X to Y is a sequence

X = X0, . . . , X` = Y of nodes such that Xi is [V]-adjacent to Xi+1, for each i ∈

[0...`-1]. We say that W is [V]-connected if ∀X, Y ∈ W there is a [V]-path from X

to Y . A [V]-component (of H) is a maximal [V]-connected non-empty set of nodes

W ⊆ (nodes(H)− V).

For any [V]-component C, let edges(C) = {h ∈ edges(H) | h ∩ C 6= ∅}, and for

a set of hyperedges H ⊆ edges(H), let nodes(H) denote the set of nodes occurring

in H, that is nodes(H) =
⋃
h∈H h. For any component C of H, we denote by

Fr(C,H) the frontier of C (in H), i.e., the set nodes(edges(C)). Moreover, ∂(C,H)

38

denote the border of C (in H), i.e., the set Fr(C,H) \ C. Note that C1 ⊆ C2 entails

Fr(C1,H) ⊆ Fr(C2,H). We write simply Fr(C) or ∂(C), whenever H is clear from

the context.

With all the technical notions in place, we are now ready to present GTPDM.

4.4 An algorithm for computing greedy tree projections in normal form

As we already said in the previous sections, GTPDM is a polynomial time algorithm

for computing greedy tree projections in normal form. It is worth noting that our

algorithm finds application in all those problems that can be solved efficiently on

acyclic and quasi-acyclic instances, and it can be exploited immediately for solving

constraint satisfaction problems where constraints are represented as finite relations

encoding allowed tuples of values. GTPDM receives as input a constraint hypergraph

H1 and resource hypergraph H2 and output a greedy tree projection of H1 w.r.t. H2

if it exists. It starts by building a directed bipartite graph CG, called Candidates

Graph, that stores all the informations that we need to compute any greedy tree

projection in normal form. The nodes are partitioned in two sets which we call

Component and Resource nodes. Component nodes have the form (S,C) where

S is some hyperedge contained in H2 and C is the component which we have to

decompose using available Resource nodes. In particular, the root node is a special

Component node {(∅, nodes(H1))} which represents the entire problem. Resource

nodes have the form (R,C ′) where R is some hyperedge contained inH2 and C ′ is the

set of [R]-component that have to be decomposed. The node (R,C ′) has a number of

outgoing arcs pointing to all the nodes of the form (S,C) for which it is a candidate

solution, that is, for which Fr(C) ⊂ vars(R) and vars(R)∩∂(C) 6= ∅ holds. Moreover,

(R,C ′) has a number of incoming arcs for each [R]-component that is included in C ′,

39

as each of these nodes represents a subproblem of (R,C ′). If a node C ∈ Component

nodes has no candidate solutions, i.e., if outgoing(C) = ∅, then it is not solvable. We

immediately exploit this information by removing all of its outgoing arcs, for which

it was a subproblem. On the other hand, if it has some candidates, whenever all of

them have been completely evaluated, it can propagate this information through its

outgoing arcs. Once all nodes have been processed, the information encoded in the

candidates graph CG is enough to compute every greedy tree projection of H1 w.r.t

H2 in normal form, if any. One of these greedy tree projections is eventually selected

through the recursive procedure SelectGreedyTreeProj.

Algorithm 2 GreedyTreeProjectionDM

Input: 〈H1,H2〉 two hypergraphs
Output: HD = 〈T, χ, λ〉 a hypertree of H1 w.r.t. H2

1: NRoot ← {(∅,nodes(H1))} . Root component
2: resolve((NRoot))
3: if incoming(NRoot) ≥ 1 then
4: E← {∅} . The tree of decomposition is empty, initially
5: Select p ∈ incoming(NRoot)
6: add the edge {p,NRoot} to E
7: SelectGreedyTreeProj(p)
8: Output HD
9: else

10: Outputfailure
11: end if

12: procedure SelectGreedyTreeProj(p)
13: for all q ∈ incoming(p) do
14: Select p′ ∈ incoming(q)
15: add the edge {p′, q} to E
16: SelectGreedyTreeProj(p′)
17: end for
18: end procedure

40

Algorithm 3 Resolve(NC)

1: CandidateEdges← {hR ∈ edges(H2) | hR ∩ Fr(NC) 6= ∅};
2: for all cover ∈ covers(Fr(NC), CandidateEdges) do
3: if vars(cover) ∩ ∂(NC)) 6= ∅ then
4: NR ← (cover, vars(cover) ∩ (∂(NC) ∪ Fr(NC)))
5: NRcomps ← findComponents(∂(Nc), vars(cover))
6: for all NC′ ∈ NRcomps do
7: resolve(NC′)
8: if incoming(NC′) > 0 then
9: add an edge from NC′ to NR

10: else
11: break
12: end if
13: end for
14: if incoming(NR) = |NRcomps| then
15: add an edge from NR to NC
16: return
17: else continue
18: end if
19: else continue
20: end if
21: end for

4.4.1 Speeding-up computation through greedy coverings

In line 1 of Algorithm 3, rather than trying to decompose the component node

using all the available resources, we can restrict the search space by selecting a subset

of edges H2 such that for each R ∈ H2 we have that Fr(C) ⊂ vars(R). In addition

to this, maintaining appropriate data structures (such as a list of ”good” resources

sorted by the size of vars(R)∩ ∂(C)) allows us to quickly decompose the considered

component node.

We now examine the complexity of computing pure greedy tree projections in more

detail.

Theorem 4.3. Given a constraint hypergraphs H1 and a resource hypergraph H2,

Algoritm 2 runs in time O(nm2 logm) using dynamic programming, where n is the

number of nodes of H1 and m is the number of edges of H2.

Proof. Let H1,H2 be the constraint and the resource hypergraphs respectively. Let

41

n = nodes(H1) and m = edges(H2). Observe that, for each edge R ∈ H2 there

are at most O(n) [R]-components. Thus, since we store the component nodes, the

number of recursive calls to Algorithm 3 is bounded by O(nm). What it remains

to analyze is the number of loops in line 2 of Algorithm 3. Observe that, for any

component node C the auxiliary procedure covers computes a subset of edges H2

such that for each R ∈ covers(H2) we have that Fr(C) ⊂ vars(R). This number

is clearly bounded by m. Eventually, to speed up the computation these edges

are sorted by the size of vars(R) ∩ ∂(C). Therefore, an upper bound for the overall

complexity is given by O(nm2 logm). Importantly, note that the polynomial runtime

is guaranteed under the assumption that already visited components are stored and

reused, otherwise, the same subtree could be constructed multiple times which would

result in an exponential runtime.

4.5 Evaluation functions

In this section, we define the notion of weighted greedy tree projection, in order

to combine the power of pure greedy tree projections with quantitative approaches.

More precisely, we equip our restricted tree projections with evaluation functions

that can be used to model situations where we have further information at hand

on the given problem, besides its hypergraph representation. For instance, consider

concrete contexts like database query answering where we can use statistics such

as the size of relations, the selectivity of attributes, indexes, etc., to improve the

runtimes of join algorithms. In fact, all commercial database systems exploit such

statistics (and do not care about structural properties). In our implementation, users

can specify an evaluation function f and the algorithm will compute, if it exists, a

f -minimal greedy tree projection.

42

Now we describe evaluation functions in detail. Let D be a given domain of values,

and assume that � is a total order defined on it. An evaluation function f over D

associates an element f(V, h,S) ∈ D with each V, h ⊆ V and multiset S of elements

in D. The value of a greedy tree projection HD = 〈T, χ, λ〉, with p = root(T), under

f is inductively defined as:

f(HD) = f (χ(p), λ(p), {f(〈Ts, χ, λ〉) | s is a child of p}) .

A greedy tree projection HD ∈ nfTP(H1,H2) is f -minimal if f(HD) � f(HD′),

for each HD′ ∈ nfTP(H1,H2). Moreover, we say that an evaluation function is

valuation-monotonic if for each V, h,S,S ′, S ′ = S \ {v} ∪ {v′} with v � v′ implies

f(V, h,S) � f(V, h,S ′).

Theorem 4.4. For any valuation-monotonic function f , a f -minimal greedy tree

projection can be computed in polynomial time.

Proof. Consider the algorithm WeightedGreedyTreeProjectionDM shown below, which

returns a f -minimal greedy tree projection of a hypergraph H1 w.r.t. a hypergraph

H2. We note that, this algorithm is derived from Algorithm 2 with a simple change

in line 2 where we call Algorithm 5 in place of Algorithm 3. Algorithm 5 is in its turn

a variant of Algorithm 3 with the addition of lines 15, 16 and 17. This variant does

the same operations performed in Algorithm 2 and in addition for every successful

resource node r, it set weight(r) ← f(r). In particular, for each component node

c, we keep only the child having the minimum weight between all children. The

decomposition tree is then computed very efficiently using a branch-and-bound tech-

nique to avoid exploring solutions that are certainly not optimal. Once the weighted

candidates graph is build, all the informations that we need are in place to compute

the f -minimal greedy tree projection.

43

Algorithm 4 WeightedGreedyTreeProjectionDM

Input: 〈H1,H2〉 two hypergraphs
Output: HD = 〈T, χ, λ〉 a hypertree of H1 w.r.t. H2

1: NRoot ← {(∅,nodes(H1))} . Root component
2: RESOLVEW((NRoot))
3: if incoming(NRoot) ≥ 1 then
4: E ← {∅} . The tree of decomposition is empty, initially
5: Select a minimum weighted p ∈ incoming(NRoot)
6: add the edge {p,NRoot} to E
7: SelectWGreedyTreeProj(p)
8: Output HD
9: else

10: Outputfailure
11: end if

12: procedure SelectWGreedyTreeProj(p)
13: for all q ∈ incoming(p) do
14: Select a minimum weighted p′ ∈ incoming(q)
15: add the edge {p′, q} to E
16: SelectWGreedyTreeProj(p′)
17: end for
18: end procedure

Algorithm 5 RESOLVEW(NC)

1: CandidateEdges← {hR ∈ edges(H2) | hR ∩ Fr(NC) 6= ∅};
2: for all cover ∈ covers(Fr(NC), CandidateEdges) do
3: if vars(cover) ∩ ∂(NC)) 6= ∅ then
4: NR ← (cover, vars(cover) ∩ (∂(NC) ∪ Fr(NC)))
5: NRcomps ← findComponents(∂(Nc), vars(cover))
6: for all NC′ ∈ NRcomps do
7: RESOLVEW(NC′)
8: if incoming(NC′) > 0 then
9: add an edge from NC′ to NR

10: else
11: break
12: end if
13: end for
14: if incoming(NR) = |NRcomps| then
15: weight(NR)← f(NR)
16: if weight(NC) < weight(NR) then
17: weight(NC)← weight(NR)
18: add an edge from NR to NC
19: end if
20: else continue
21: end if
22: else continue
23: end if
24: end for

The running time of WeightedGreedyTreeProjectionDM is O(nm2 logm) from The-

44

orem 4.3, plus the time needed to compute f(r) for each resource node r. Because we

require the function f to be polynomial-time computable, it follows that Algorithm 4

can find a f -minimal greedy tree projection, if it exists, in polynomial time.

4.6 Non-monotic valuation functions

Root

R[(11, 9), (301, 0)]

C1 C2

Ri[(10, 0)] Rj[(300, 0)] Rk[(1, 0)] Rz [(300, 0)]

monotonic evaluation

non monotonic evaluation

Ri
subtree
height 9

Rj
subtree

height 299

Rz
subtree

height 299

Figure 4.1: Weighted candidates graph in example of Section 4.6

There are many practical situations where we required to process large datasets.

Example includes social networks, linked data and also biological motifs. To deal

with the complexity of processing such large data, it is usually exploited parallel

computing. However, it is known that parallelization performs bad on trees that

are unbalanced. Therefore in this setting, we aim at computing the most balanced

decomposition. We formalize this idea by defining the evaluation function as follows.

ψ(p) = (h(p), i(p)) where

45

h(p) = 1 + max
s∈children(p)

h(s),

i(p) = max
(

max
s∈children(p)

i(s),
(

max
s∈children(p)

h(s)− min
s∈children(p)

h(s)
))

Let h(p) be the height and i(p) be the imbalance of the tree T rooted at p and

consider the illustration reported in Figure 4.1 to help the intuition. Observe the

candidates graph and note that we represent resource nodes with a circle while

component nodes are represented with a rectangle. Our objective is to single out

the decomposition having the smallest height h(R). From the illustration above we

see that the children of R are C1 and C2. The weight of R therefore depends on the

costs (and hence on the domain values) of C1 and C2. Consider C1 and assume that

ψ(R) is valuation-monotonic. Therefore since Ri and Rj have the same imbalance

value, i.e., 0, at this level they are interchangeable and thus we choose Ri to solve

C1. After selecting Ri as a solution node for the subproblem node C1 we move to

C2 and we select Rk for the same reason. Thus we can compute ψ(R) with Ri and

Rk being the children of R and we get as result the domain value (11, 9) and hence

the weight(R) = 9. Now assume to select Rj in place of Ri and Rz in place of Rk.

Again at this level, from a local perspective it does not change anything since the

imbalance is always 0. However, if we compute again ψ(R) we get a domain value of

(301, 0) and hence the weight(R) = 0, which is smaller than before. It turns out that

if we assume ψ(R) to be valuation-monotonic, we fail at computing most balanced

decomposition. We can easily fix this by assuming ψ(R) to be non-monotonic. In

this case it easy to see that it can explore all the possible domain values without

getting stuck in local minima.

46

4.7 Experimental results

In this section we present the performances of our implementation compared with

those of the approaches listed in Table 4.7 which represent the state-of-the-art al-

gorithms for computing a minimal (purely structural) hypertree decomposition. In

particular, opt-k-decomp is the first polynomial time algorithm for constructing hy-

pertree decomposition of minimal width less than or equal to a given constant k.

det-k-decomp is a backtracking-based algorithm for computing hypertree decompo-

sitions of width smaller or equal than k. det-k-decomp is the best algorithm known

for this task up to date. We observe that these methods compute a hypertree de-

composition of the given CSP instance, therefore we set our general tool in hypertree

decomposition mode. Our experiments evaluate the methods on four sets of instances

involving many problems from industry and academic research. This is detailed be-

low.

Problem instance selection. To compare these algorithms, we tried to identify a

set of instances that could cover the largest number of application domains. There-

fore we identified 4 categories: real-world problems, academic, random and pattern.

We performed a random selection of instances in each category. Finally 26 instances

were considered in our benchmark.

Hardware and software configuration. Experiments have been performed on a

dedicated machine, equipped with an Intel Core i7-3770k 3.5 GHz processor with 12

GB (DDR3 1600 MHz) of RAM, and running Linux Debian Jessie. Our algorithm is

implemented in Java and the code was executed on the JDK 1.8.0 05-b13. Moreover,

we used a C++ implementation of opt-k-decomp and the source code was compiled

with GCC 4.9.3. Regarding det-k-decomp, we downloaded the binary executable

47

available from here 1. Default settings were used for the various methods. We set

a timeout of 300 seconds to the total execution time of the methods. For each in-

stance we report the average computation time (based on three runs), the number

of instances correctly decomposed and the number of wins in finding the minimal

width. Of course if a method times out we exclude the related running time from

the means. Results are reported in Table 4.7 and4.7.

Here opt-k-decomp det-k-decomp
Instance constraints variables width time width time width time

R
ea

l
w
or

ld

instExtCW-m1c-ogd-vg16-20 36 320 16 0 − − 16 0
instExtCW-m1c-ogd-vg16-29 35 304 16 0 − − 16 0
instExtCW-m1c-words-vg16-18 34 288 16 0 − − 16 0
instExtCW-m1c-words-vg16-20 36 320 16 0 − − 16 0
instExtCW-m1c-lex-vg15-17 32 255 15 0 − − 15 0
instExtCW-m1c-lex-vg16-18 34 288 16 0 − − 16 0
renault-mod-16-ext 149 111 3 0 + + 3 0
renault-mod-32-ext 154 111 5 0 + + 5 0
renault-mod-48-ext 149 108 4 0 + + 4 0
instExtlangford-2-8 128 16 8 20 + + 8 0

A
ca

de
m

ic

magicSquare-3-glb 9 9 1 0 1 1 1 0
magicSquare-20-glb 400 43 1 0 1 0 1 0
perfect-square-packing-20-20 953 800 3 0 + + 3 0
perfect-square-packing-38-38 3518 2888 3 6 + + 3 10
schurr-lemma-100-9-mod 2450 100 − − + + − −
schurr-lemma-66-4 1056 66 − − + + − −
schurr-lemma-50-9-mod 600 50 31 4 + + 30 0
schurr-lemma-23-3 210 30 9 5 + + 8 0

R
an

do
m

tightness-rand-2-40-8-753-100-80-ext 753 40 37 212 + + 31 3
tightness-rand-2-40-8-753-100-99-ext 753 40 41 69 + + 31 3
ModelRB-frb59-26-5-mgd-ext 539 59 − − + + 38 0
ModelRB-frb59-26-3-mgd-ext 547 59 − − + + 37 6
ModelB-rand-27-27-351-163-63021-ext 351 27 22 30 − − 19 4

P
at

te
rn graph-coloring-geom-40-6-ext 40 78 3 0 − − 3 0

graph-coloring-queens-5-5-5-ext 160 25 13 2 − − 10 40
graph-valiente-val49-50 1128 128 3 2 + + 3 0

Table 4.1:
The time (in seconds) required to solve a number of instances generated from real-world,
academic, random and pattern problems. A dash (-) means timeout while (+) denotes
overflow

Algorithm # of decomposed instances # number of wins
Here 22 15
opt-k-decomp 2 2
det-k-decomp 27 23

Table 4.2:
Number of correctly decomposed instances and number of wins in finding the minimal
width.

From the tables above we note that det-k-decomp, as expected, shows the best

overall performances. However GreedyTreeProjectionDM closely follows on almost all

1http://www.dbai.tuwien.ac.at/proj/hypertree/downloads.html

48

instances. opt-k-decomp is the worst one because it frequently times out on difficult

instances. We observe that our implementation is not optimized for speed. In fact,

we note that our tool is more general than those tools that implement opt-k-decomp

and det-k-decomp and in order to reduce development times we were forced to reuse

as much code as possible to implement all variants and that inevitably results in

performance limitations.

CHAPTER 5

An Hybrid Approach for Counting Solutions

5.1 Introduction to Hybrid Tractability

We have seen in Chapter 2 that the problem of counting the solutions of con-

straint satisfaction problems is equivalent to counting the number of query answers

in the related field of database theory. This problem occurs in the presence of SQL

queries specifying ”COUNT” aggregates. Note that these queries are very often at

the basis of decision support systems examining large volumes of data in order to

get insights on critical business questions. Dealing with queries processing large

amounts of data has been a crucial algorithmic challenge in relational databases. In-

deed, the definition and implementation of advanced optimization strategies for SQL

queries are topics widely discussed in the literature, but at the same time extremely

demanding in order to design efficient RDBMS [Codd, 1970]. The optimizers are

asked to calculate the best query plan, using a strategy for evaluating a query over

a relational database that provides the best performance compared to all possible

strategies. This process, however, forces traditional optimizers to find a good com-

promise between two conflicting factors [Chaudhuri, 1998]. The first factor is related

to the cost of evaluating a query that can be exponential in the length of the query

itself [Libkin, 2004]. The second factor is related to the complexity of the calculation

49

50

customer

lineitem

orders supplier

nation

region

name

regionkey

discount

extendedprice

suppkey

nationkey

orderkey

custkey

Figure 5.1: The hypergraph H(Q2) and a hypertree decomposition of H(Q2) of width 2

of the optimal query execution plan; optimizers are forced to limit the search space

to query plans with simple structures, thus avoiding a costly search. The choice of

the most promising plan, rather than optimal, is determined by a cost model based

on quantitative information on the collected data such as the size of database rela-

tions and attributes selectivity. For these reasons, traditional optimizers are based

on quantitative methods. While generally very efficient, these optimizers can not

ensure a ”bound” on the response time of a query; Furthermore, the execution plan

produced by them is often approximate and far away from the ideal plan. To cope

with the limitations of traditional optimizers and calculate an optimal query plan

that guarantees a polynomial bound on response time, it has been proposed in the

community of database theory, a completely different approach. The latter is based

on the use of the structural properties of the query, which, as we already noted, are

usually represented by the hypergraph associated with the query.

51

By exploiting these properties, one can respond to a wide class of queries effi-

ciently: this class is known as the class of acyclic queries (or more generally, of

bounded hypertree width). As an example, consider the following query Q2.

SELECT n_name,
sum(l_extendedprice*(1-l_discount)) AS revenue

FROM customer, orders, lineitem,
supplier, nation, region

WHERE c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’[REGION]’
and o_orderdate >= date ’[DATE]’
and o_orderdate < date ’[DATE]’ + interval ’1’ year

GROUP BY n_name ORDER BY revenue desc;

Observe its associated hypergraph H(Q2) that is depicted on the top of Figure

5.1 and the corresponding hypertree decomposition of H(Q2) on the bottom.

Q2 can be now answered using a two-step plan. First, one computes for each

cluster of the decomposition tree, the join of its nodes. Then, starting from the

leaves, one moves bottom-up towards the root, by performing upward semi-joins of

intermediate results.

Despite their very nice computational properties, structural decomposition meth-

ods have not had any serious impact on the design of commercial database optimizers,

and the interest for these techniques mainly remained at a theoretical level. This

is mainly because decomposition methods flatten in the query hypergraph all the

quantitative aspects of data, do not take care of the output of the variables, and do

not support aggregate operators and nested queries. Therefore, since we are dealing

with a setting where the query and the database are both given as input (neither

is constant), it is meaningful to consider decomposition techniques that are able to

exploit structural properties of the query in combination with properties of the given

data, such as functional dependencies or any other feature that may simplify the

evaluation. Intuitively, such features may induce different structural properties that

52

are not identified by the ”worst-possible database” perspective of purely structural

methods. The motivating idea is to end up with algorithms that can be practically

applied over a wide range of real world settings where, in particular, such methods

do not suffice alone.

[Pichler and Skritek, 2013] have recently proposed an algorithm for counting an-

swers to acyclic conjunctive queries, whose scaling is in the worst case exponential

w.r.t. the maximum number of tuples over the database relations, denoted by m

hereinafter. In fact, they also shown that counting query answers remains #P-hard

over this structurally simple class. Moreover, they pointed out that their algorithm

can be extended to queries that are not necessarily acyclic, but have bounded hyper-

tree width. [Greco and Scarcello 2014], moved a first step towards proposing a hybrid

decomposition method for counting problems. In the next section we analyze such

an extension. Finally we give an implementation and we discuss the issues related

to this algorithm, we also present preliminary experimental results.

Before moving to the technical details of the proposed algorithm, note that for

the sake of presentation, we mostly focus on the database setting and the query

answering problem. However, we remark that all results can immediately be applied

to all problems that can be recast as constraint satisfaction problems (as we shall

see with a tiny example).

5.2 An algorithm for counting answers

We recall that a hypertree decomposition [Gottlob et al., 2002] of a conjunctive

query Q is a generalized hypertree decomposition enjoying an additional property,

often called descendant condition. In particular, a hypertree for a query Q is a triple

〈T, χ, λ〉, where T is a rooted tree, and χ and λ are labeling functions associating

53

each vertex p of T with two sets χ(p) ⊆ vars(Q) and λ(p) ⊆ atoms(Q). The set of

the vertices of T is denoted by vertices(T), whereas its root is denoted by root(T).

Moreover, for any p ∈ N , we denote by Tp the subtree of T rooted at p (hence,

T = Troot(T)), and by χ(Tp) the set of all variables occurring in the χ labeling of Tp.

A hypertree decomposition of Q is a hypertree HD = 〈T, χ, λ〉 for Q such that:

(1) for each q ∈ atoms(Q), there exists p ∈ vertices(T) such that vars(q) ⊆ χ(p); (2)

for each X ∈ vars(Q), the set {p ∈ vertices(T) | X ∈ χ(p)} induces a (connected)

subtree of T ; (3) for each p ∈ vertices(T), χ(p) ⊆ vars(λ(p)); and (4) for each p ∈

vertices(T), vars(λ(p))∩ χ(Tp) ⊆ χ(p) (descendant condition). The decomposition

HD is said complete if for each atom q ∈ atoms(Q), there exists p ∈ vertices(T) such

that q ∈ λ(p).

This notion is a true generalization of acyclicity, as acyclic queries are precisely

those having hypertree width 1. Importantly, for any fixed natural number k ≥ 1,

deciding whether a query has hypertree width at most k is in LOGCFL, and thus it

is a tractable and highly parallelizable problem [Gottlob et al., 2002].

Finally for each vertex p of T we define rp = πχ(p)(./q∈λ(p) q
D), and δ(p) the

number of its children, which we assume to be ordered in some way; If R and R′ are

sets of sets of substitutions, then we define an ad hoc semi join as RnR′ = {SnS ′ |

S ∈ R, S ′ ∈ R′, S n S ′ 6= ∅};

54

Algorithm 6 counting-answers

Input: 〈H1,H2〉 two hypergraphs
Output: HD = 〈T, χ, λ〉 a hypertree of H1 w.r.t. H2

1: for all p ∈ vertices(T) do . (1) ——————— Initialization
2: R0

p ← {σθ(rp) | θ ∈ πfree(Q)(rp)}
3: end for
4: BU := {}; . (2) ——————— Bottom-Up
5: while BU 6= vertices(T) do
6: Let p 6∈ BU whose children q1, ..., qδ(p) are all in BU
7: BU := BU ∪ {p}
8: for α := 1 to δ(p) do
9: Let q be the αth child of p

10: with its computed Rq := R
δ(q)
q and cq = c

δ(q)
q

11: Rαp := Rα−1
p nRq;

12: cα(S) :=
∑

(∗) c
α−1
p (Sp)× cq(Sq), for each S ∈ Rαp

13: (∗) : Sp ∈ Rα−1
p , Sq ∈ Rq | S = Sp n Sq;

14: end for
15: end while
16: return

∑
S∈Rδ(r)r

c
δ(r)
r (S), where r = root(T); . (3) ——————— Finalization

With the above notation in place, consider Algorithm 6, which takes as input a

complete hypertree decomposition HD = 〈T, χ, λ〉 of a query Q, and a database D.

The algorithm works as follows: In the initialization step, for each vertex p, the set

rp (of the partial solutions over p) is partitioned according to the profiles given by

the configurations of values allowed for the free variables in χ(p). Let R0
p be the

resulting partition. In the subsequent steps, p will be associated with a set Rα
p where

α ∈ {0, 1, ..., δ(p)}, with δ(p) being the number of children of p. In particular, each of

these sets consists of a set of substitutions that are manipulated via an ad-hoc semi

join ”n” operator such that: if R and R′ are sets of sets of substitutions (hereinafter

called #-relations), then R n R′ = {S n S ′ | S ∈ R, S ′ ∈ R′, S n S ′ 6= ∅}. In the

bottom-up evaluation, upward semi joins are performed, and Rα
p is the #-relation

associated with p after that the first α children (according to some fixed ordering)

have been processed. Each set S ∈ Rα
p is associated with a value cαp (S) initialized to 1

and updated bottom-up. At the end, the value computed in the finalization phase is

returned as the desired number of solutions. The correctness of this algorithm follows

55

from the arguments in [Pichler and Skritek, 2013]. In fact, because the running time

of the algorithm in [Pichler and Skritek, 2013] is in general exponential w.r.t. m,

[Greco and Scarcello, 2014] introduced the following notion to keep under control

such a blow-up.

Definition 5.1. Let b ≥ 0 be a natural number and let HD = 〈T, χ, λ〉 be a hypertree

(not necessarily decomposition) of a query Q. We say that a database D is b-unbound

for Q w.r.t. HD if there is a vertex v of T and a substitution θ ∈ πfree(Q)(rv) such

that

|σθ(rv)| > b, where rv = πχ(v)(./q∈λ(v) q
D).

The minimum b for which D is not b-unbound is the boundness of D for Q

w.r.t. HD, and it is shortly denoted by bound(D, HD). �

Intuitively, the boundness value bound(D, HD) for Q provides an estimate on the

size of the information that is required to flow along the given hypertree decompo-

sition HD in order to answer a counting problem over D. Finally they proved the

following theorem.

Theorem 5.2. Let HD = 〈T, χ, λ〉 be a width-k hypertree decomposition of Q, and

let D be a database such that bound(D, HD) ≤ h. Then, Algorithm 6 runs in time

O(|vertices(T)| ×m2×k × 4h).

5.3 Implementation issues and System Architecture

In the last section, we discussed Algorithm 6 which can especially be exploited

to find all solutions to a counting problem by considering the whole set of variables

as output ones. However, it should be noted this high level description is of great

interest mainly from a theoretic perspective. Indeed a verbatim implementation will

56

not perform very well in practical settings where the domain of each output variable

even if bounded can still contain a very high number of values. This is especially true

when counting CSP solutions for classes of instances having not only a large domain

but also a huge number of constraints. In fact, the algorithm requires to create a

”view” for each possible tuple thus generating a terrible overhead which soon vanish

all the nice theoretical computationally properties. Therefore, in complex real-world

settings, this observation once more strengthen the choice of backtracking approaches

based on arc-consistency and propagations over the structural ones. Indeed it is not

by chance that all the CSP and SAT solvers to date completely discard decomposition

methods. In this dissertation we show how to efficiently exploit our tools both

standlone or to help reduce the search space of backtracking approaches.

We observe that when counting all solutions, at low level we do not really need

to create a ”subview” for each tuple of the relation . Indeed, it suffices to virtually

augment the relation and hence each tuple with a new attribute encoding the num-

ber of extensions of that tuple. This value is initially set to 1 for each tuple and is

then updated through an ad-hoc semi join operator in the bottom-up process. We

give details of this operation in the next section. Intuitively our idea is to exploit

the acyclicity and our semi join operator to efficiently compute the counting task.

Indeed, we focused in the database setting by designing an HybridOptmizer that

works on top of PostgreSQL (and possibly of any other DBMS) and is in charge of

computing on optimal query plan for queries specifying the ”count” aggregate. The

architecture is depicted in Figure ??. Given an SQL query, the Parser preliminary

verifies its correctness. To this aim, we exploit the syntactical analyzer J-SQLParser1

that has been further enhanced to check whether the query complies with the un-

1Available at http://jsqlparser.sourceforge.net/

57

derlying database schema. The resulting parse tree is then processed by the Query

Rewriter, which prepares all data structures needed for structural analysis and op-

timization. In particular, the module modifies the parse tree by associating each

nested SQL statement with a distinguished node storing all information to evaluate

it independently of the others, in particular by propagating join constraints on the

basis of the scope of attributes and relations. The HybridOptimizer module is the

main responsible for the structural optimization. Its implementation relies on the

decomposition technique described in Chapter 4 exploiting an evaluation function

based on the cardinality of relations and the selectivity of attributes as presented in

[Scarcello et al., 2007].

In a nutshell, the optimizer works as follow. Starting from the leaves, it navi-

gates the rewritten parse tree and calls on each node (i.e., subquery) the Subplan

Handler, which is responsible for computing a suitable optimized plan for it. The

handler preliminary invokes the Hypergraph Manager, which builds the hyper-

graph associated with the current input node. The Hypergraph Manager collects

also information about statistics of the relations and attributes appearing in the

node, by invoking the underlying system catalog. The computed hypergraph and

its associated statistics are then passed to the decomposition module that computes

a hypertree decomposition, whose width is fixed by the user at configuration time.

Note that, according to the q-decomposition strategy, described in [Scarcello et al.,

2007] we force all output variables (i.e., selected items, attributes appearing in group

by or in order by clauses) to appear in the root of the decomposition. Furthermore,

we also request that the attributes appearing in some non-join condition are covered

together by at least a cluster of the computed decomposition.

Finally, the decomposition is translated in an actual query plan by the View

58

Builder, which rephrases it in terms of a tree of SQL views, possibly materialized.

During this phase, all non-join constraints are assigned to the node of the decom-

position, for being later evaluated. The computed optimized plan is then returned

to the SubPlan Hadler and finally to the HybridOpitmizer module, which ar-

ranges the computed plan node as an element of the current query plan tree. Once

all nodes have been process, the final plan tree gives us the query rewrite. The key to

implementing this query rewrite idea is to develop a new ad-hoc physical semi-join

operator and to integrate it within the PostgreSQL database management system.

5.3.1 Hacking PostgreSQL

In this section we detail the implementation of the ad-hoc Semi Join operator.

We start by sorting the two tables and scan them looking for a match. When a

match is found, we stop moving on the outer table, we mark a pointer to the last

tuple visited, set a counter, and continue scanning inner tuples until they have a

match with the marked tuple. During this scan, we properly update the counter

at each match. When no more matches occur on the inner, we return the marked

tuple and the counter, and start again moving on the outer table. Each outer tuple

matching the same set of inner tuples of the last marked one is immediately returned

(without a rescan of the inner table) with the last computed counter. Note that we

implemented the Semi Join operator inside Postgresql 9.0.2. That is because our

work is based on the preliminary work published in ??. Thus to reduce development

times we decided to extend the implementation that was already available with the

new ideas. However, to stress the effectiveness of our approach, in the next section

we compare our hybrid 9.0.2 with the more recent 9.3.5 regular version. We are

pretty sure that if we can get good results with an older version of PostgreSQL, than

we can expect to be even more fast with the latest releases.

59

5.4 Some experiments

This section reports the results of the testing activity that we conducted in order

to evaluate the effectiveness of hybrid 9.02 compared to the regular 9.3.5. Before we

discuss the results, let us describe the methodology used.

Dataset. We evaluate the performances of on the TPC-DS benchmarks. TPC-

DS is the de-facto industry standard benchmark for measuring the performance of

modern decision support systems including, but not limited to, Big Data systems.

It models analytical workloads (reporting, data mining, iterative OLAP and so on),

including SQL queries of various complexity, i.e., performing aggregations (GROUP

BY), various joins on large amounts of data. This benchmark effectively extends

and deprecates TPC-H benchmark, improving it in multiple ways to make it broadly

representative of modern decision support systems. Firstly, it makes the schema

more complex (e.g. more tables), and uses less uniform distributions of the data

(which makes cardinality estimations way more difficult). It also increases the num-

ber of query templates from 22 to 99, and uses modern features like CTEs, window

functions and grouping sets. As recommended by TPC-DS specification we decided

to use 16GB of data, specified as a parameter to the DSGEN tool used to create

the CSV file. After loading the CSV into the database, the resulting size was 80GB

(this is probably due to overhead, indexes, etc.). System configuration. We ran the

experiments on a Core i7 Machine equipped with 12 GB of RAM and running Linux

Debian Jessie. We installed from source the three variants of the PostgreSQL DBMS:

version 9.3.5, version 9.0.2 and hybrid 9.0.2 (i.e., with structural optimization). We

used GCC 4.9.3 to compile the code. Moreover, we use the default configuration for

all the versions. Before we give the results, it is convenient to show one of the query

60

templates involved in our testing.

select

cc_call_center_id as Call_Center,

cc_name as Call_Center_Name,

cc_manager as Manager,

sum(cr_net_loss) as Returns_Loss

from

call_center,

catalog_returns,

date_dim,

customer,

customer_address,

customer_demographics,

household_demographics

where

cr_call_center_sk = cc_call_center_sk

and cr_returned_date_sk = d_date_sk

and cr_returning_customer_sk= c_customer_sk

and cd_demo_sk = c_current_cdemo_sk

and hd_demo_sk = c_current_hdemo_sk

and ca_address_sk = c_current_addr_sk

and d_year = [YEAR]

and d_moy = [MONTH]

and ((cd_marital_status = ’M’ and cd_education_status = ’Unknown’)

and hd_buy_potential like ’[BUY_POTENTIAL]%’

and ca_gmt_offset = [GMT]

group by cc_call_center_id,cc_name,cc_manager,cd_marital_status,cd_education_status

order by sum(cr_net_loss) desc;

In particular, this query template consists of a join between 6 tables and aggre-

gations. This template is of average complexity compared to others. Moreover not

all the templates are compatible with PostgreSQL. Indeed we are able to execute 41

queries out of 99. The first set of experiments compares the performance of the regu-

lar 9.0.2 version with that of 9.3.5. This preliminary test will help us to better judge

the effectiveness of our approach. Figure 5.4 shows the average computation times

of the two versions over 41 queries. The speedup of PostgreSQL 9.3.5 compared to

the regular version 9.0.2 is about 3x. This is good news for us, because things get

interesting when we turn on our structural optimization. We recall that our hybrid

approach works only for counting queries, although it can easily be extended also to

other aggregates. Therefore, we restrict the attention to queries involving only the

count aggregate.

61

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

9.0	 9.3	

co
m
pu

ta
(o

n	
(m

e	
in
	se

co
nd

s	

version	

TPC-DS/	query	performance	on	16	GB	of	data	

9.0	

9.3	

Figure 5.2: The speedup of PostgreSQL 9.3.5 compared to 9.0.2

5.4.1 Query 3 (Q3) on TPC-DS

select count(i_item_id)

from item, inventory, store_sales

where inv_item_sk = i_item_sk and inv_quantity_on_hand >= 100

and inv_quantity_on_hand <= 200 and ss_item_sk = i_item_sk

Query Q3 is a simple acyclic query consisting of three joins which asks to count all

sold item id from the store channel with an inventory quantity on-hand between 100

and 200. Note that we are not counting distinct types of item but we are counting all

the occurrences (i.e., answers). At this point, the hybrid optimizer performs the set

of operations that we discussed in the previous sections and yields to the following

query rewrite.

SELECT sum(VT1P.OUTER_COUNT)

FROM (

SELECT VT1.i_item_id,VT1.i_item_sk,VT1.OUTER_COUNT AS OUTER_COUNT,1 AS INNER_COUNT

FROM

(SELECT item.i_item_sk AS i_item_sk, item.i_item_id AS i_item_id, 1 AS OUTER_COUNT

FROM store_sales, item

WHERE item.i_item_sk=store_sales.ss_item_sk OFFSET 0

) VT1 SEMI JOIN inventory ON VT1.i_item_sk=inventory.inv_item_sk

and inventory.inv_quantity_on_hand>=100

62

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

	1-50	 1-100	 1-200	 100-150	 100-200	

Ti
m
e	
in
	se

co
nd

s	

Varying	the	amount	of	quan5ty	

Q3	execu5on	5me	on	16	GB	of	data	
	

9.0	

9.3	

hybrid_9.0.2	

Figure 5.3: Execution time for query Q3

and inventory.inv_quantity_on_hand<=200 OFFSET 0

) VT1P

We observe that in the query rewrite, we exploit the ad-hoc SEMI JOIN operator

in addition to the nested views in which we store the counters which we need to

compute the solutions. The comparison of the execution times of the three variants

is shown in Figure 5.4.1.

In order to assess, in a deeper and more systematic manner, the capability of our ap-

proach to exploit both structural and statistics information, the tests were carried out

on the same scenario while using different values for the attribute inv quantity on hand.

We observe that hybrid 9.0.2 has the lowest runtime followed closely by regular 9.3.5.

In particular a noticeably boost seems to be achieved when the number of computed

solutions increases Figure 5.4.1. The reason is that the regular optimizer produces

large intermediate results, as shown by the ”explain analyze”.

QUERY PLAN

Aggregate (cost=2732592.31..2732592.32 rows=1 width=17)

(actual time=302591.508..302591.509 rows=1 loops=1)

-> Hash Join (cost=214476.16..618195.75 rows=845758624 width=17)

(actual time=11291.097..204287.431 rows=449493233 loops=1)

Hash Cond: (inventory.inv_item_sk = item.i_item_sk)

63

[h]

0	
50000000	

100000000	
150000000	
200000000	
250000000	
300000000	
350000000	
400000000	
450000000	
500000000	

	1-50	 1-100	 1-200	 100-150	 100-200	
Values	of	inv_quan/ty_on_hand	

#solu/ons	against	different	values	of	
inv_quan/ty_on_hand	

#	solu.ons	

Figure 5.4: Number of solutions against different values for the attribute inv quantity on hand

-> Seq Scan on inventory (cost=0.00..239309.00 rows=58725 width=4)

(actual time=2.414..7619.955 rows=2241403 loops=1)

Filter: ((inv_quantity_on_hand >= 0) AND (inv_quantity_on_hand <= 200))

-> Hash (cost=160187.11..160187.11 rows=2880404 width=25)

(actual time=11282.395..11282.395 rows=2880404 loops=1)

Buckets: 2048 Batches: 256 Memory Usage: 999kB

-> Hash Join (cost=1742.00..160187.11 rows=2880404 width=25)

(actual time=112.532..8689.848 rows=2880404 loops=1)

Hash Cond: (store_sales.ss_item_sk = item.i_item_sk)

-> Seq Scan on store_sales (cost=0.00..88240.04 rows=2880404 width=4)

(actual time=1.782..4777.135 rows=2880404 loops=1)

-> Hash (cost=1411.00..1411.00 rows=18000 width=21)

(actual time=110.520..110.520 rows=18000 loops=1)

Buckets: 2048 Batches: 2 Memory Usage: 529kB

-> Seq Scan on item (cost=0.00..1411.00 rows=18000 width=21)

(actual time=1.232..89.643 rows=18000 loops=1)

Total runtime: 302591.836 ms

5.4.2 Query 4 (Q4) on TPC-DS

Query (Q4) is an example of knowledge extraction in the TPC-DS decision sup-

port workload. It asks for all the distinct goods from sales comprising both a good

of category ”Women” and a good of category ”Jewelry”.

select count(distinct i3.i_item_id)

from item i1, store_sales s1, item i2, store_sales s2, item i3, store_sales s3

where s1.ss_item_sk = i1.i_item_sk and s2.ss_item_sk = i2.i_item_sk and

s1.ss_ticket_number = s2.ss_ticket_number and i3.i_item_sk = s3.ss_item_sk

and s1.ss_ticket_number = s3.ss_ticket_number and i1.i_category=’Jewelry’

and i2.i_category=’Women’

64

152	

61	

39	

0	

20	

40	

60	

80	

100	

120	

140	

160	

9.0	 9.3	 hybrid_9.0.2	

Ti
m
e	
in
	se

co
nd

s	

Versions	

Q4	execu1on	1me	on	16	GB	of	data	
	

9.0	

9.3	

hybrid_9.0.2	

Figure 5.5: Execution time for query Q4

This query is an acyclic query involving 6 joins. The total number of distinct

answers for this query is only 8952. Figure 5.4.2 shows the performance the three

optimizers for this query. Interestingly, when counting distinct solutions, even if

the number of solutions is small, the advantage of hybrid 9.0.2 over regular 9.3.5 is

emphasized. To know why this happens, we take again a closer look at the cost of the

query plan generated by the 9.3.5 optimizer reported in Figure ?? and we see that

the bottleneck for the 9.3.5 is given by the cost to generate the large intermediate

results (i.e., item join store sales). Thus acyclicity plays a crucial role in this setting

which goes well beyond all the gains obtained from the sophisticated quantitative

machinery that traditional DBMS often perform.

65

Part II

CSP and Game Theory

CHAPTER 6

An Introduction to Game Theory

Game theory is one of the most important field in economy and mathematics. It

is concerned with analyzing the strategic interactions that occur in systems of in-

telligent agents, both in noncooperative (where agents are pursuing their individual

goals) and in cooperative contexts (where they jointly pursue some common goal).

Noncooperative game theory, model those situations where players make individual

choices since they are unable to cooperate with other players (or without additional

benefits), and thus can apply even in situations where the interests of different agents

are not in conflict. In this context, a prominent role is assumed by the concept of

Nash equilibrium. This concept, that is certainly the most influential solution con-

cept to date in the field of game theory, model in fact the rational behavior of players

whom, having available a set of possible strategies with associated utility functions

(that establish the payoffs that each player receives), reach a stable condition where

each of them has selected an optimal strategy (with respect to the action of any

other player) and thus has no incentive to deviate from it. Again, even if she knew

what strategies the other agents were following, she would not want to change her

strategy. Deciding whether a game admits a Nash equilibrium and eventually com-

puting it efficiently, are problems of great interest to the scientific community. In

66

67

the case of games with mixed strategies, i.e., regulated by probability distributions,

the existence of an equilibrium is guaranteed by the famous Nash’s theorem, and

recently the computational complexity of computing the Nash equilibrium has been

fully characterized. However, in this thesis our studies are devoted to cooperative

games, which have been introduced by the AI community to provide a solid math-

ematical framework to study scenarios where agents can obtain higher worths by

collaborating with each other rather than by acting in isolation (see, e.g., [Nisan et

al., 2007; Osborne and Rubinstein, 1994]). However, in many real-world application,

not all the outcomes are equally fair (or rational), and as a consequence we need

suitable mechanisms for coalition formation such that no group of agents would earn

more by leaving the coalition for another potential coalition. In other words, we

require coalition formation mechanisms to enforce the agreements between agents.

In this chapter we proceed as follows. First, we formally define the most widely

used model of coalitional games and we discuss a special class of coalitional games

known as allocation games. Then we study coalition formation and we analyze how

the payoff obtained by the coalition can be divided fairly among the agents of that

coalition. This is addressed by discussing the notion of solution concepts; we describe

the most important solution concepts used in cooperative game theory by focusing

on the concept of Shapley value. We conclude the chapter with a real-world example

of allocation game.

6.1 Coalitional games

Coalitional (i.e., cooperative) games provide a rich mathematical framework to an-

alyze interactions between intelligent agents. Before we start studying these games,

it is helpful to formalize a summary of relevant concepts as follows. In abstract

68

terms, a coalitional game G is a tuple 〈N, v〉, where N is a set of agents and v is

a function associating each coalition C ⊆ N with the worth that agents in C can

guarantee to themselves. In this thesis we restrict our attention to coalition games

with transferable utilities. In the Transferable Utility (TU) setting, coalition worths

can be freely distributed within a coalition, while in the non-Transferable Utility

setting (NTU) coalitions are allowed to distribute worths only in some specified con-

figurations, called consequences [Osborne and Rubinstein, 1994]. In fact, the crucial

problem is to single out the most desirable distributions (of the worth associated with

the grand-coalition N), usually called solution concepts, which can be perceived as

fair and stable. Therefore, Coalitional games can be formalized as tuples G = 〈N, v〉

where each coalition C ⊆ N is associated with a real value v(C) meant to encode

the worth that agents in C obtain by collaborating with each other. The function v

is supermodular (resp., submodular) if v(R ∪ T) + v(R ∩ T) ≥ v(R) + v(T), (resp.,

v(R∪T)+v(R∩T) ≤ v(R)+v(T)) holds for each pair of coalitions R, T ⊆ N . After

this brief formal description, we recall that in a coalition game, we are not interested

in finding how agents within a coalition act, that is we are not concerned with the

detail of their agreements, rather we look only at the payoff taken by the coalition.

Thus we would like to answer these two basic questions:

1. Among all possible coalitions, which coalition will be formed?

2. How that coalition should distribute its worth among its members ?

Often, the answer to (1) is the ”grand coalition”, i.e, the coalition that includes all

the agents in N . However, in many situations this answer depends also on the choice

that has been made by taking into consideration (2).

Example 6.1. As an example of a coalitional game, consider the voting game. We

have a set of agents N and for each coalition C ⊆ N , C is a winning coalition (i.e.,

69

group of agents who can come together to ”win”), if it is sufficient to pass a bill into

a law. Coalitions that are not willing to pass the law are called losing coalitions. For

a winning coalition C we have v(C) = 1 , and otherwise v(C) = 0. Therefore, every

”single” agent coalition is losing while the grand coalition is winning.

Example 6.2. As another example, consider that there is a research project and

you can choose with which colleague you will work. Then a number of questions may

come to mind: for instance, do I want someone who is easy to work with or do I prefer

a talented colleague, etc.? Of course, every colleague will have the same reasoning.

Therefore, a condition that must be satisfied in order to form a coalition is that

all the agents inside that coalition are willing to stay. Since no one has an interest

to leave, we can say that the coalition that has formed is stable. It follows from

this discussion that stability is a necessary condition. A natural question is whether

stability is also a sufficient condition. We will answer this question in Section 6.4.

In coalitional game theory, an interesting property often assumed for the function

v is the notion of superadditivity. Formally v is superadditive if v(S ∪ T) ≥ v(S) +

v(T),∀S, T ⊂ N,S ∩ T = ∅. In words, this property says that cooperation leads to

higher utilities for each player than the individual action. This is true if coalitions can

work without interfering with one another. Note that, every game can be transformed

to its superadditive form with the intuition that in the worst case agents can agree

to not cooperate in order to obtain greater payoffs. Note that superadditivity has

an important implication for how agents will form coalitions. In fact, the grand

coalition will always form since its utility is higher than the utility of any other

coalition. Moreover, if coalitions can never affect one another, either positively or

negatively then we have another form of game called additive games. Formally, a

game is additive if v(S ∪ T) = v(S) + v(T),∀S, T ⊂ N,S ∩ T = ∅. In the rest of this

70

g1 g2 g3 g4

a1 a2 a3

3 2 1 1

a1 a2

3 2 1 1

a1 a3

3 2 1 1

a2 a3

3 2 1 1

a1

3 2 1 1

a2

3 2 1 1

a3

3 2 1 1

Figure 6.1: Allocation scenario A0 in Example 6.3.

chapter and in later chapters, when we refer to the function v, we will be making

the assumption that it is superadditive.

In the next section we restrict the attention to a class of coalitional games called

allocation games.

6.2 Allocation games

Among the various classes of coalitional games, we consider the class of alloca-

tion games, which is a setting to analyze fair division problems where monetary

compensations are allowed and utilities are quasi-linear [Moulin, 1992]. Allocation

games naturally arise in various application domains, ranging from house allocation

to room assignment-rent division, to (cooperative) scheduling and task allocation,

to protocols for wireless communication networks, and to queuing problems (see,

e.g., [Moulin, 1992; Maniquet, 2003; Mishra and Rangarajan, 2007; ?] and the refer-

ences therein). In this thesis, we analyze the setting where, we are given an allocation

scenario A comprising a set of goods and a set of agents, and each agent is to be

assigned at most one good she is interested in. Each good g has a value val(g) ∈ R

and the worth vA(C) associated with any coalition C ⊆ N is the maximum overall

value that can be obtained over the assignments to agents in C only, also called

allocations, hereinafter.

71

Example 6.3. As an illustrative example, consider the allocation scenario A0 that

is reported in Figure 6.1, by using an intuitive graphical notation. We have a set

{g1, g2, g3, g4} of goods that have to be allocated to three agents. Each edge connects

an agent to a good she is interested in. Edges in bold identify an optimal allocation,

i.e., a feasible allocation whose sum of values of the allocated goods is the maximum

possible one. The value of this allocation is val(g1)+val(g2)+val(g3) = 3+2+1 = 6.

For each C ⊂ {1, 2, 3} with C 6= ∅, an optimal allocation restricted to the agents

in C is also reported. Then, the associated coalitional game is GA0 = 〈{1, 2, 3}, vA0〉,

where vA0({1, 2, 3}) = 6, vA0({1, 2}) = 5, vA0({1, 3}) = vA0({2, 3}) = 4, vA0({1}) =

vA0({2}) = 3, and vA0({3}) = 1. C

Allocation Scenario. Assume that a set G of goods have to be allocated to a set

N = {1, ..., n} of agents. Each good g ∈ G is associated with a real value val(g) ∈ R,

and each agent i ∈ N can receive at most one good taken from her set of interest

Ω(i) ⊆ G. The tuple A = 〈N,G,Ω, val〉, with Ω : N → 2G and val : G → R,

is an allocation scenario. Moreover, goods are indivisible and unshareable. Hence,

an allocation for A is a function π : N → G ∪ {∅} such that: (1) for each agent

i ∈ N , π(i) 6= ∅ implies π(i) ∈ Ω(i); and (2) for each pair i, i′ ∈ N with i 6= i′,

π(i) ∩ π(i′) = ∅ holds. We denote by img(π) the set of all goods in the image of π,

i.e., img(π) = {π(i) | i ∈ N ∧ π(i) 6= ∅}.

By slightly abusing of notation, if S ⊆ G is a set of goods, then val(S) denotes

the sum of their values. Moreover, if π is an allocation, then val(π) denotes the

value of img(π). An allocation π is optimal (w.r.t. A) if val(π) ≥ val(π′) holds,

for each allocation π′. The value associated with any optimal allocation w.r.t. A is

hereinafter denoted as opt(A).

Let A = 〈N,G,Ω, val〉 be an allocation scenario and let C ⊆ N be a set of agents.

72

The restriction of A to C is the sub-scenario A[C] = 〈C,G,ΩC , val〉 where ΩC is the

restriction of Ω over C. The allocation game induced by A is the tuple GA = 〈N, vA〉,

where vA : 2N → R is such that vA(C) = opt(A[C]), for each C ⊆ N . The value of

an empty set of goods is 0. Then, the definition trivializes for C = ∅, with vA(∅) = 0.

Moreover, note that vA(C) ≥ 0 holds, for each C ⊆ N , since the allocation where no

agent receives some good is a feasible one.

We are now ready to analyze the most important solution concepts used in coali-

tional game theory. Among all the solution concepts we will focus on the Shap-

ley value, concluding the chapter with an application of this solution concept to a

real allocation problem arising in a research assessment program in Italy described

by [Greco and Scarcello, 2013b].

6.3 Solution concepts

As we said, a fundamental problem for a coalitional game G = 〈N, v〉 is to

single out the most desirable outcomes, usually called solution concepts, in terms

of appropriate notions of worth distributions, i.e., of payoff vectors of the form

(x1, ..., x|N |) ∈ R|N | where xi + · · ·+ x|N | equals the worth associated with the whole

set N of agents. A payoff vector x is called an imputation if it is individual rational

i.e., for all players i ∈ N we have xi ≥ v(i), and efficient i.e.,
∑

i∈N xi = v(N).

Efficiency in this context means that the whole available worth is distributed while

individual rationality indicates that if xi ≥ v(i) the player i opts for participating

since he would never do better going on his own. In the previous sections, we have

seen that in superadditive games, we can always expect the grand coalition to form

and thus the real issue is just that of the division of the whole available worth among

the players. Many solution concepts have been considered in the coalitional game

73

theory and thoroughly studied through the years, and among all, the most known

and widely-accepted are the core, kernel, bargaining set, nucleolus and the Shapley

value. Below, we recall the notions of core, kernel, bargaining set, and nucleolus and

we briefly discuss each of them.

6.3.1 The Core

Throughout the chapter we have emphasized the concept of stability several times.

Stability leads to the question of whether the agents would be always willing to form

the grand coalition given any payment profile. The answer to this question is given

by the concept of core [Edgeworth, 1881; Gillies, 1959]. The core of a coalitional

game is the set of all imputations x to which there not exists an objection. Formally,

it is defined as follows.

Definition 6.4. Let G = 〈N, v〉 be a coalitional game, and let x be an imputation.

An imputation x is in the core of G, if and only if

∀S ⊆ N,
∑
i∈S

xi ≥ v(S)

That is, the sum of the payoffs given to any group of agents must be always greater

or equal to the sum of the payoffs that these agents are able to obtain independently.

Consequently, we say that an imputation x in the core is ”stable” because there is

no coalition whose members will receive a higher payoff than in x by leaving the

grand-coalition.

Example 6.5. As an example, consider let G = 〈N, v〉 be a coalitional game, with

the caracheristic function v given by

74

v({a}) = 0 v({a, b}) = 20

v({b}) = 0 v({a, c}) = 30 v({a, b, c}) = 45

v({c}) = 0 v({b, b}) = 40

The set of imputations for this game are the triples (xa, xb, xc) such that xa+xb+

xc = 45 and xa ≥ 0, xb ≥ 0, xc ≥ 0. For instance, if we consider the imputation x

such that: xa = 5, xb = 15, xc = 25 it is easily seen that x is in the core of G.

Given that the core provides a concept of stability, it is a very attractive solution

concept. However, there are games for which the core is empty.

Example 6.6. Let G = 〈N, v〉 be a coalitional game, with N = {a, b, c}, v({a}) =

v({b}) = v({c}) = 0, v({a, b}) = 20, v({a, c}) = 30, v({b, c}) = 40, andv({a, b, c}) =

42. Consider the imputation x such that: xa = 4, xb = 14, and xc = 24. Since

v({b, c}) = 40 > 38 = x({b, c}) such imputation x is not in the core of G. In

particular, we can show that for this game the core is empty. In fact, observe that

v({a, b, c}) = 42 and consider the coalitions S1 = {a, b}, S2 = {a, c} and S3 = {b, c}.

Recall from the definition that an imputation xmust satisfy the following inequalities:

xa + xb ≥ 20

xa + xc ≥ 30

xb + xc ≥ 40

It follows that (xa+xb)+(xa+xc)+(xb+xc) ≥ 20+30+40, that is xa+xb+xc ≥ 45.

Thus, the grand coalition should get a payoff of 45 instead of 42 in order to satisfy

the agents. Consequently the grand coalition will never form for this game.

ε-core. While the core can be empty, sometimes we may also be happy with a set of

imputations that are approximately stable. That is, we relax the notion of core and

this leads to the definition of ε-core.

75

Definition 6.7. Let G = 〈N, v〉 be a coalitional game, and let x be an imputation.

An imputation x is in the ε-core of G, if and only if

∀S ⊆ N,
∑
i∈S

xi ≥ v(S)− ε

.

Example 6.8. Let G = 〈N, v〉 and N = {a, b, c}. Let v(S) = 1 if |S| > 1, v(S) = 0

otherwise. Then it is easy to see that (1/3, 1/3, 1/3) is an imputation and that is in

1/3-core. Therefore 1/3−core is non-empty while ε-core is empty for any ε < 1/3.

The interpretation of the ε-core is that for any coalition there is at most an ε cost

to deviate from the grand coalition. As a result, if the deficit v(S) − x(S) is less

than ε, the imputation x is still stable. Of course, we are interested in outcomes that

minimize the ε.

Least core. From the last example we note that even the ε-core may be empty for

some ε. However, there always exists some ε that is large enough to ensure that the

ε-core is non-empty. Then, the natural problem is to find the smallest ε for which

the ε-core is non-empty. This leads to the definition of the concept of the least core.

Definition 6.9. Let G = 〈N, v〉 be a coalitional game, and let x be an imputation.

An imputation x is in the ε-core of G, if and only if x is the solution the following

linear program.

minimize ε

subject to
∑

i∈S xi ≥ v(S)− ε ∀S ⊆ N

Intuitively, the least core consists of all payoffs that minimize the incentive of all

coalitions to deviate. Thus, it can be considered a refinement of the core. Observe

also that if ε is large enough, the least core is always non-empty but it may contain

76

more than one imputation. Therefore, we would like to identify the most stable point

in the least core. We pursue this objective, with the definition of the nucleolus.

6.3.2 The Nucleoulus

Given an imputation x, the least core minimize the maximum inequity ε(S, x) =

v(S) − x(S) (also called deficit or excess). This quantity is a measure of the dis-

satisfaction of S with the proposed imputation x. The nucleolus of a game G not

only minimize the worst inequity but given this, it also minimizes the second largest

inequity. Intuitively, we look first for the coalition with the maximum degree of

dissatisfaction then we try to make it smaller if possible by adjusting x. Once the

largest dissatisfaction has been made as small as possible, then we address the second

largest dissatisfaction and we try to adjust x to lower it as much as possible. This is

formalized as follows.

Definition 6.10. Let G = 〈N, v〉 be a coalitional game, and let x be an imputation.

An imputation x is in the nucleoulus of G, if and only if x is the solution to series of

optimization programs O1, O2, ..., O|N | defined as follows.

(O1) =

 minimize ε

subject to
∑

i∈S xi ≥ v(S)− ε ∀S ⊆ N

(Oi) =

minimize ε

subject to
∑

i∈S xi ≥ v(S)− ε ∀S ⊆ S1

...∑
i∈S xi ≥ v(S)− εi−1 ∀S ⊆ Si−1 Si−2∑
i∈S xi ≥ v(S)− ε ∀S ⊆ 2N Si−1

77

Theorem 6.11. For any coalitional game G(N, v), the nucleolus of G always exists

and is unique.

6.3.3 The Kernel

The kernel is a solution concept introduced by [Davis and Maschler]. Let us start

by recalling its formal definition. For any pair of players i and j of a coalitional

game G = 〈N, v〉, we denote by Ii,j the set of all coalitions containing player i but

not player j. Recall that ε(S, x) = v(S)− x(S). Define the surplus si,j(x) of player

i against player j at an imputation x as the value si, j(x) = maxS∈Ii,j e(S, x) =

maxS∈Ii,j(v(S)− x(S)).

Definition 6.12. Let G = 〈N, v〉 be a coalitional game. The kernel of G is the set

of all imputations x such that si,j(x) > sj,i(x)⇒ xj = v(j),∀i, j ∈ N, i 6= j.

Intuitively, the surplus of player i against j at x is the highest payoff that player

i can gain (or the minimal amount i can lose, if it is a negative value) without the

cooperation of j, by assuming to form coalitions with other players that are satisfied

at x; thus, si,j(x) is the weight of a possible threat of i against j. In particular,

player i has more bargaining power than j at x if si,j(x) > sj, i(x); however, player

j is immune to such threat whenever xj = v(j), since in this case j can obtain

v(j) even by operating on her own. We say that player i outweighs player j at x if

si,j(x) > sj,i(x) and xj > v(j). Therefore, the kernel is the set of all imputations

where no player outweighs another one.

Example 6.13. Let G = 〈N, v〉 be a coalitional game and let N = {a, b, c}, v({a}) =

v({b}) = v({c}) = 0, v({a, b}) = 20, v({a, c}) = 30, v({b, c}) = 40, and v({a, b, c}) =

42. It is easily verified that the imputation x such that xa = 4, xb = 14, and xc = 24

is in the kernel of G. Indeed, we note first that every player in N receives in x a payoff

78

strictly greater than what she is able to obtain by acting on her own. For this reason,

in order for x to belong to the kernel of G it must be the case that si,j(x) < sj,i(x),

for all distinct players i and j. By the definition of the worth function, the maximum

excess that a coalition S including i and excluding j can achieve is obtained by the

coalition S ∈ Ii,j such that |S| = 2. By this, si,j(x) = sj,i(x) = 2 for all pairs of

different players i, j. Thus, the imputation x is in the kernel of G.

6.3.4 The Bargaining set

The concept of bargaining set was defined by [Aumann and Maschler, 1964]. As

usual, we recall its formal definition and then we illustrate the concept with an

example.

Definition 6.14. Let G = 〈N, v〉 be a coaliitonal game , and x be an imputation.

Let S ⊆ N be a coalition, and ybe an S-feasible payoff vector (i.e., y(S) = v(S)).

The pair (y, S) is an objection of player i against player j to x if i ∈ S, j ∈ S, and

yk > xk∀k ∈ S. A counterobjection to the objection (y, S) of i against j to x is a

pair (z, T) where j ∈ T, i ∈ T , and z is a T -feasible payoff vector such that zk ≥ xk

∀k ∈ T \ S and zk ≥ yk ∀k ∈ T ∩ S. If there does not exist any counterobjection to

(y, S), we say that (y, S) is a justified objection.

The bargaining set of a calitional game G is the set of all imputations x to which

there is no justified objection.

Example 6.15. Let G = 〈N, v〉 be a coalitional game with N = {a, b, c}, v({a}) =

v({b}) = v({c}) = 0, v({a, b}) = 20, v({a, c}) = 30, v({b, c}) = 40, and v({a, b, c}) =

42. Consider the imputation x such that xa = 8, xb = 10, and xc = 24. An objection

of player c against player a to x is ((12, 28), {b, c}). Player a can counterobject to

this objection using ((8, 12), {a, b}). Another objection of player c against player a

79

to x is ((14, 26), b, c). In this case, player a cannot counterobject. The reason is

that coalition {a, b} receives a payoff 20 and this is not sufficient for player a to

counterobject since she needs at least 8 for herself and at least 14 for player b, in

order to respond to the proposal of player c. Therefore the imputation x does not

belong to B(G). The intuitive reason is that player a receives too much, according to

this profile. Consider now the imputation x′ such that x′a = 4, xb = 14, and xc = 24.

We focus on the objections of player a against player c. We note that, in order to

object, player a has to form the coalition S = {a, b}. The excess e(S, x) of S at

x is 2, hence players a and b have the possibility to distribute among themselves a

payoff of 2 to make the objection. But player c can always counterobject to player

a because she can form the coalition T = {b, c} whose excess at x is 2 and hence

she can always match the proposal made to player b by player a in order to object.

A similar argumentation holds for every objection of every player against any other.

Thus x belongs to the bargaining set of G. C

Observe that the core is the set of all imputations that do not admit an objection.

Hence core ⊆ bargaining set. To conclude our analsys on the most important

solution concepts in game theory, we have to consider the Shapley value (see, e.g.,

[Shapley, 1953]) to which we will dedicate the next section.

6.4 The Shapley value

The core defined a way to form coalition that are stable. However it does not

make fairness considerations. In fact, outcomes in the core may be really unfair. For

instance consider the following example.

Example 6.16. Let G = 〈N, v〉 be a coalitional game, with N = a, b, v(a) = v(b) =

5, v(a, b) = 20. Consider the imputation x such that: xa = 20, xb = 5. We can easily

80

check that x is in in the core of G, in fact both players cannot benefit by deviating

from the grand coalition. However, the outcome is really unfair for b since she is

perfectly symmetric with a. C

Consequently, we answer the question posed in Section 6.1 negatively. Therefore,

we would like to find a mechanism that allow us to divide the total payoff among the

members of the grand coalition in a fair way. It turns out that the answer to this

problem is given by The Shapley value [Shapley, 1953]. Crudely, the Shapley value

of each player i is given by the average marginal contribution of i over all possible

coalitions (s)he may participate in. Thus, while the core formalize the concept that

the coalition has to be stable, the Shapley value provides a unique way to distribute

coalitional payoff among agents in such a way that satisfy various fairness criteria.

Let us start by axiomatizing the concept of fairness in our context.

The Shapley Axioms for the characteristic function v.

1.
∑

i∈N vi(G) = v(N) (efficiency);

2. For any v, if i and j are such that v(S ∪ i) = v(S ∪ j) for every coalition S not

containing i and j, then φi(G) = φj(G) (simmetry);

3. For any v, if i is a dummy player then φi(G) = v(i) (dummy player);

4. If u and v are characteristic functions, then φ(u+ v) = φ(u) +φ(v) (additivity);

5. If v is supermodular, the Shapley value belongs to the core of the game (stabil-

ity);

6. If G′ = (N, v′) is a game such that v′(C) ≥ v(C),∀C ⊆ N , then φi(G
′) ≥

φi(G),∀i ∈ N (monotonicity).

Theorem 6.17. Given a coalitional game G = 〈N, v〉 , there is a unique imputation

that satisfies the Shapley axioms and it is called the Shapley value.

81

As we already stated, the Shapley value is based on the value that each player is

able to add to the possible coalitions , i.e., on its marginal contribution. Suppose we

form the grand coalition by entering the players into this coalition one at a time. As

each player enters the coalition, he receives the amount by which his entry increases

the value of the coalition he enters. The amount a player receives by this scheme

depends on the order in which the players are entered. The Shapley value is just the

average payoff to the players if the players are entered in completely random order.

Definition 6.18. It turns out that the payoff associated with each agent i ∈ N is

given by

φi(G) =
∑

C⊆N\{i}
|C|!(n−|C|−1)!

n!

(
v(C ∪ {i})− v(C)

)
, where v(C ∪ {i})− v(C)

is the marginal contribution of i to the coalition C ∪ {i}.

Example 6.19. Consider again the allocation game GA0 introduced in Example 6.3.
For agent 1, we have:

φ1(GA0) = 2!0!
3!

(
vA0({2, 3} ∪ {1})− vA0({2, 3})

)
+

1!1!
3!

(
vA0({2} ∪ {1})− vA0({2})

)
+

1!1!
3!

(
vA0({3} ∪ {1})− vA0({3})

)
+

0!2!
3!

(
vA0(∅ ∪ {1})− vA0(∅)

)
= 15

6
.

Similarly, we can derive φ2(GA0) = 15
6

and φ3(GA0) = 6
6
. C

6.4.1 The Banzhaf value

Another solution concept which is similar in spirit to the Shapley value is the

Banzhaf value (or index) (see, e.g., [Banzhaf, 1965]) for which the payoff of i is

βi(G) = 1
2n−1

∑
C⊆N\{i}

(
v(C ∪ {i})− v(C)

)
.

In the next chapter we will analyze in detail the relationship between these two

solution concepts.

82

6.4.2 Back to the allocation games

In the context of allocations games (and when monetary transfers are possible),

the prototypical solution concepts considered in the literature are the Shapley value

and the Banzhaf value, since they lead to outcomes enjoying desirable properties

such as equal treatment of equals, envy-freeness, and a stronger property called

individual-optimality guaranteeing that, for every agent, her/his utility is the max-

imum possible one over any alternative optimal allocation [?]. However, it is well

known that, in general, computing such values is intractable, formally #P-complete.

This is a serious obstruction to their applicability in allocation scenarios involving

many agents, and it motivates the design of approximation algorithms and the iden-

tification of subclasses of practical interest where exact computation can be carried

out efficiently. In Chapter 7 we focus precisely on the latter approach. But before

we do so, let us recall some basic properties about allocations games.

Basic Properties. We discuss below some properties pointed out by [?] and

[Moulin, 1992]. Let A = 〈N,G,Ω, val〉 be an allocation scenario, and let C and C ′

be two coalitions with C ′ ⊆ C ⊆ N . Then,

(allocation) monotonicity: vA(C) ≥ vA(C ′). Moreover, if π is an optimal al-

location for A[C], then there is an optimal allocation π′ for A[C ′] such that

img(π′) ⊆ img(π);

submodularity: vA(C ∪ {i})-vA(C)≤vA(C ′ ∪ {i})-vA(C ′), for each i ∈ N \ C.

Furthermore, it has be shown that, for these games, the Shapley value grants to

every coalition at least its marginal contribution to the worth of the grand-coalition.

Indeed, the Shapley value of GA is in the core of the game ḠA = 〈N, v̄A〉, where

v̄A(C) = vA(N)−vA(N \C), for each coalition C ⊆ N .1 More formally, the following

1It even holds that φi(GA) = φi(ḠA), for each i ∈ N .

83

holds.

Theorem 6.20. For each scenario A = 〈N,G,Ω, val〉, we have that:
∑

i∈N φi(GA) =

vA(N) and
∑

i∈C φi(GA) ≥ vA(N)− vA(N \ C), for each C ⊆ N .

Example 6.21. Note that φ1(GA0)+φ2(GA0)+φ3(GA0) = 36
6

= vA0({1, 2, 3}). More-

over, for each C ⊆ N , observe that
∑

i∈C φi(GA0) ≥ 6 − vA0(N \ C). For instance,

φ1(GA0) + φ3(GA0) = 21
6
≥ 6− vA0({2}) = 6− 15

6
. C

6.5 A motivating example: The Italian Research Assessment Program
(VQR)

The Italian Research Assessment Program (VQR in short) is aimed at evaluating

the results of the Italian scientific research in the period 2011-2014 carried out by

public universities, private universities, and other research institutes. The outcome of

the evaluation will be used by the National Agency for the Evaluation of Universities

and Research Institutes (ANVUR) to proportionally distribute the funds allocated by

the Ministry to universities and research institutes in order to support their research

activities in the next years (until the subsequent evaluation process). In addition to

the institutions, the VQR will also evaluate departments of universities and similar

internal structures of other research institutes. At this point, it is easy to see that

every research structure R is in competition with all other research structures, as

every structure R is then interested in selecting and submitting its best research

products (e.g., publications). The program is articulated as follows:

1. Authors affiliated to R are asked to self-evaluate their products, according to

some evaluation criteria defined by groups of experts chosen by ANVUR. We

suppose that every researcher is able to associate to each product a quality

score.

84

2. Based on the self-evaluations being collected, R is in charge of selecting the best

products to submit to ANVUR (at most) products for each one of its authors.

Note that a product cannot be allocated to two researchers.

3. ANVUR carries out its assessment on the quality of products submitted and

the quality profile (VQR score) of R is determined by the sum of the ”true”

scores associated with the products (i.e., those resulting by ANVUR actual

evaluation). Eventually, R will receive funds in the next years proportionally

to this score. Moreover, by using such products scores, ANVUR evaluates all

substructures, too (e.g., all departments, if R is a University).

It is then natural for the structure R to exploit the VQR scores of its substructures

to divide funds among them. In particular, the outcomes could be in principle used to

evaluate single researchers, too. In this chapter we will show that finding a good (fair)

division rule for scores/funds distribution is not an easy task. Moreover, we pinpoint

that, without and agreement on a fair division rule, the self-evaluation performed

at point (1) is unfeasible, and the research structure may miss the optimal possible

submission to ANVUR, hence losing funds. Before we point out how we can apply

techniques from game theory to this case study, we present the simple division rules

that are believed to be applied by the ANVUR and we show that they are unfair for

substructures.

6.5.1 Division rules

Let R be a research structure, and let R be the set of researchers affiliated with

R. For each researcher r ∈ R, let products(r, R) (or just products(r), if R is under-

stood from the context) be the set of the research products of r in the given period

20112014. An allocation for a set of researchers S ⊆ R is a function ψ mapping each

85

researcher r ∈ S to a set of publications ψ(r) ⊆ products(r) with |ψ(r)| ≤ 3 and with

ψ(r) ∩ ψ(r′) = ∅, for each r′ ∈ S \ {r}. An allocation for R is an allocation for all

researchers R, while an allocation for a substructure S of R is an allocation for the

researchers affiliated to S. In the VQR program, every research structure R has to

submit to ANVUR for its evaluation a set of products Pψ such that Pψ =
⋃
r∈R ψ(r),

for some allocation ψ for all researchers R affiliated to R. Then, for each p ∈ Pψ,

ANVUR calculates a quality score scoreVQR(p), so that R will receive funds propor-

tionally to its overall score scoreVQR(ψ) =
∑

p∈Pψ scoreVQR(p).

While the first aim of the VQR program is to evaluate the various Italian research

structures, it is known that the obtained information will be used to evaluate sub-

structures, too (e.g., University departments). Thus, following the same principle

of binding funds to VQR scores used for the main structure, it is natural to exploit

such scores for money distribution inside every research structure. It is therefore of

utmost importance the way VQR assigns scores to substructures. Nevertheless, as

already mentioned, up to date there is no official information about such an algo-

rithm. We argue that the score of any structure R should fairly be distributed over

its substructures (and possibly over individuals), in such a way to reflect their actual

contribution to the result achieved by the structure R. Formally, we need a suitable

division rule.

Definition 6.22. A division rule γ for R is a real-valued function that, given a

researcher r ∈ R and an allocation ψ for R, returns its score γψ(r, R) ≥ 0 with respect

to the allocation ψ. By slightly abusing notation, for any substructure S ⊆ R, we

denote by γψ(S, R) the value
∑

r∈S γψ(r, R). Whenever R is understood from the

context, we just write γψ(r) and γψ(S), in place of γψ(r, R) and γψ(S,R), respectively.

Hereafter, we assume that S1, . . . ,Sn are the substructures of R. They exhaus-

86

tively cover the researchers of R, i.e.,
⋃n
i=1 Si = R

Si ∩ Sj = ∅,∀i 6= j

Note that such a division rule may naturally be used for evaluating individuals,

besides substructures. In fact, we shall discuss all fairness properties with reference

to individual researchers, because all issues about individuals immediately extend to

the substructures they belong to.

6.5.2 Desiderata for division rules

In the absence of an official division rule, most researchers believe that the score

of any substructure S will be based on the naive proj rule where, for any researcher

r, projψ(r) is the sum of the VQR scores of the products allocated to r in ψ, i.e.,

projψ(r) =
∑
p∈ψ(r)

scoreVQR(p).

This rule satisfies a very basic requirement for every division rule, which we state

below.

Definition 6.23 (Budget-balance). A division rule γ must precisely distribute the

VQR score of R over all its members, i.e.,
∑

r∈R γψ(r) = scoreVQR(R). Clearly,

because the substructures of R define a partition of its researchers, this implies that

γ completely distribute the VQR score of R over all its substructures and does not

distribute more than that, i.e.,
∑n

i=1 γψ(Si) = scoreVQR(R).

However, this rule is hardly perceivable as a fair one. Indeed, proj might lead to

scenarios where some researcher r (and in turn her/his substructure) has reasonable

arguments against her/his structure because of possible alternative allocations where

87

r would get higher scores. Thus, proj fails to satisfy a basic and intuitive requirement

of fairness, which we formalize as follows.

Definition 6.24 (Fairness). Assume that ψ and ψ̄ are two allocations of the same

research products, i.e., Pψ = Pψ̄. A division rule γ must be indifferent w.r.t. the

optimal allocation being selected, i.e., for each researcher r ∈ R, γψ(r) = γψ̄(r). In

fact, this implies that, for each substructure Si, γψ(Si) = γψ̄(Si) also holds.

The above criterion is definitely desirable. However, a closer look reveals that

it is not enough, as there is a trivial way to circumvent this kind of fairness: just

consider the rule trivial assigning the overall VQR score to one fixed researcher, say

r1 (independently of its actual contribution), i.e.,

trivialψ(r) =

∑

p∈Pψ scoreVQR(p), if r = r1

0 if r ∈ R \ {r1}

A problem with this rule is that it is not symmetric, in that a researcher r2 that

has co-authored precisely the same set of products as r1 would be treated differently,

just because of her name. Avoiding these cases and guaranteing an equal treatment

of the equals is another very basic requirement, formalized as follows.

Let π : R 7→ R be a permutation of the researchers in R. Let Rπ be the re-

search structure over the researchers in R where, for each r ∈ R, products(r, Rπ) =

products(π(r), R). Moreover, if ψ is an allocation for R, then let ψπ be the allocation

such that, for each r ∈ R, ψπ(r, Rψ) = ψ(π(r), R). Thus, Rπ and ψπ are derived by

applying the permutation π, whose role is just to rename the researchers in R. With

these notions in place, we can now state the following property, which is in fact not

enjoyed by trivial.

Definition 6.25 (Impartiality). Let π be an arbitrary permutation over R. A

88

division rule γ must be such that, for each r ∈ R and each allocation ψ, γψπ(r, Rπ) =

γψ(π(r), R) holds.

Yet again this is not enough. To see that, consider the very impartial rule

uniform, where the overall ANVUR score is distributed uniformly over the vari-

ous researchers, i.e.,

uniformψ(r) =
scoreVQR(R)

|R|
.

Clearly, uniform is unsatisfying because it does not capture our intuition that a

division rule should reflect the actual contribution of each researcher to the overall

evaluation of the structure. In the rest of this section, we will elaborate on this issue

by using the notion of marginal contribution, which fits well our intuition of actual

contributions of individual or groups to the performance of a given structure.

6.5.3 Marginal contribution

Let R be a research structure and assume that ψ is the allocation selected by

the structure R, so that the set of products Pψ have been submitted and evaluated

by ANVUR. Let S ⊆ R be any set of researchers. An allocation ψS for S is ψ−

legal if ψS(r) ⊆ Pψ, for each r ∈ S. That is, any legal allocation only considers

for the assignment the products already evaluated by ANVUR. The allocation ψS

is ψ−optimal if there is no ψ− legal ψ′S such that
∑

r∈S
∑

p∈ψ′S(r) scoreVQR(p) >∑
r∈S
∑

p∈ψS(r) scoreVQR(p).

Given the above notions, we can equip S with the following score, which is meant

to assess the overall VQR score that researchers in S would have achieved if the

research structure had been constituted by them only (i.e., without caring about

their co-authors outside S)

bestψ(S) =
∑
r∈S

∑
p∈ψS(r)

scoreVQR(p),

89

where ψS is any ψ−optimal allocation.

Note that in the extreme case where S = R we just obtain bestψ(R) = scoreVQR(p)..

That is, when all researchers of R are considered, bestψ precisely coincides with the

overall VQR score.

We can now formalize the notion of marginal contribution.

Definition 6.26. Let ψ be an allocation for R. Given two sets of researchers S1,S2 ⊆

R with S1 ⊆ S2, the marginal contribution of S1 to S2 (in R and ψ) is the value:

margψ(S1,S2) = bestψ(S2)− bestψ(S2 \ S1).

Intuitively, the marginal contribution margψ(S1, S2) quantifies the loss of VQR score

for the group of researchers S2 (e.g., a substructure) if the groups of researchers S1

were not part of it. In particular,margψ({r},R) measures the loss for the whole

structure R, if the single researcher r were not part of it.

We are now ready to define the last fairness property, which takes care of the

actual contribution of individuals and groups.

Definition 6.27 (marginality). A division rule γ must be such that, for each group

of researchers S ⊆ R and each allocation ψ, γψ(S) ≥ margψ(S,R). Therefore,

every group is granted at least its marginal contribution to the performance of the

structure R.

In particular, the above property entails that groups without interactions with

other researchers, e.g., departments without collaborations with other departments

of the same university, get precisely the total scores of the products assigned to them

according to ψ. We now describe a practical example with the aim to summarize

and clarify the division rules and the issues discussed so far.

90

p5p5

r1r1 r2r2 r3r3

p6p6 p7p7 p8p8 p9p9p2p2 p3p3p1p1

7 7 6 10 7 7 8 7 7

p4p4

Figure 6.2: Running example

6.5.4 A simple scenario

Consider the simple scenario depicted in Figure 6.2 and let us exploit an in-

tuitive graphical notation based on a weighted bipartite graph, whose vertices are

the researchers and the products, and whose weights are the VQR scores of the

products. Assume that there are just three researchers, r1, r2 and r3, affiliated

to R. Moreover, consider the allocation ψ such that ψ(r1) = {p1, p2, p3}, ψ(r2) =

{p4, p5, p6} and ψ(r3) = {p7, p8, p9}. Thus, we have that Pψ = {p1, . . . , p9} is

the set of publications submitted for the evaluation. In particular, we also assume

that products(r1) ∩ Pψ = {p1, p2, p3, p4}, products(r2) ∩ Pψ = {p3, p4, p5, p6},

and products(r3) ∩ Pψ = {p3, p6, p7, p8}. Thus, p3 is co-authored by r1, r2 e r3,

while p4 is co-authored by r1 and r2. Then, according to the VQR score assigned to

each product (i.e., the weight of the corresponding vertex in Figure 6.2), we get that

productsVQR(ψ) = 66.

Suppose now that we want to use the rule proj to assign the scores. Recall that

proj is defined as follows.

projψ(r) =
∑
p∈ψ(r)

scoreVQR(p).

Then, according to proj the researchers would get projψ(r1) = 20, projψ(r2) = 24

91

and projψ(r3) = 22. This is unfair for the researcher r1 since even if she and r2 have

co-authored p3 and p4, they get a different payoff. Therefore, as we said, r1 could

complain with her structure if ψ is selected.

Now, suppose were using the rule trivial,

trivialψ(r) =

∑

p∈Pψ scoreVQR(p), if r = r1

0 if r ∈ R \ {r1}

it is easy to check that score(r1) = 66 and score(ri) = 0 ∀ri ∈ R \ {r1}. Clearly

trivial is unsatisfying.

Finally, if we consider

uniformψ(r) =
scoreVQR(R)

|R|
.

we have that each researcher gets the score 20 + 24 + 22
3

= 22, that is uniform, but it does

not capture our intuition that a division rule should reflect the actual contribution

of each researcher to the overall evaluation of the structure.

We can show that the concept of marginal contribution captures this intuition.

We proceed as follows. Initially, we compute the best scores that all the possible

groups of researches could get if they were the only one in the research structure.

• bestψ({r1}) = 24, bestψ({r2}) = 24 and bestψ({r3}) = 22;

• bestψ({r1, r2}) = 44, bestψ({r1, r3}) = 46 and bestψ({r2, r3}) = 46;

• bestψ({r1, r2, r3}) = 66.

Then, by recalling the formula of marginal contributions,

margψ(S1, S2) = bestψ(S2)− bestψ(S2 \ S1).

we compute them, first with respect to the whole set R of researchers in R, and then

with respect to all the possible pairs of researchers {ri, rj}:

92

• margψ({r1},R) = 66− 46 = 20;

• margψ({r2},R) = 66− 46 = 20;

• margψ({r3},R) = 66− 44 = 22;

• margψ({r1, r2},R) = 66− 22 = 44;

• margψ({r1, r3},R) = margψ({r2, r3},R) = 66− 24 = 42;

• margψ({r1}, {r1, r2}) = margψ({r2}, {r1, r2}) = 44− 24 = 20;

• margψ({r1}, {r1, r3}) = margψ({r2}, {r2, r3}) = 46− 22 = 24;

• margψ({r3}, {r1, r3}) = margψ({r3}, {r2, r3}) = 46− 24 = 22.

From the computed marginal contributions, we can see that researchers r1 and r2

are completely interchangeable.

6.5.5 Using the Shapley value as a division rule

In this section we show that a division rule enjoying all the above fairness proper-

ties actually exists and it is the Shapley value. Indeed, it is natural to formalize the

considered application as a coalitional game where the agents are the researchers,

and the worth of any coalition is the best result that the researchers in that coalition

may achieve if acting in isolation. Formally, for a research structure R and an alloca-

tion ψ, define the coalitional game Gψ = (R, bestψ). Then, we propose the following

division rule, which is easily seen to be precisely the Shapley value of Gψ:

γ∗ψ(r) =
∑
S⊆R

(|R| − |S|)!(|S| − 1)!

|R|!
margψ(r,S), ∀r ∈ R.

This rule, satisfies all the nice fairness properties discussed so far as the following

theorem states:

93

Theorem 6.28 (cf. [Greco and Scarcello, 2013b]). Let ψ be any allocation for a

given structure R. Then, γ∗ψ is a division rule satisfying the budget-balance, the

independence of the product allocation, the impartiality and the marginality fairness

properties.

6.5.6 Discussion

So far, we focused on a setting where an allocation is selected by the research

structure R and we are in charge of specifying a division rule γ∗ψ that enjoys all the

fairness properties discussed earlier. However, fairness depends also on the prelimi-

nary selection of the products Pψ. Indeed we cannot guarantee fairness if the given

allocation is unfair itself. In the first phase of the evaluation process, the structure

R (i.e., the department) is in charge of evaluating the scientific production of its

researchers. However, a detailed evaluation of the whole production is not an easy

task, indeed the simplest solution for R is to ask its researchers to perform a self-

evaluation of their products. Therefore, the goal of R will be achieved if authors

correctly/truthfully self-evaluate their products. But what happens if this assump-

tion is removed? It is natural at all to remove this assumption? While it is clear that

the main goal for R is to maximize the total value of the products submitted to AN-

VUR, whenever the same product has different co-authors some strategic issues come

into play, and co-authors personal interest may induce them to cheat on the quality

of their products. To see why, recall that ANVUR did not specify a division rule.

Therefore, researchers consider proj as the division rule. Thus if proj is selected,

and if (as we think) it is then used to reward R and hence researchers, co-authors

may be competitors and might want to act strategically to improve their own score.

It is clear that these kinds of manipulations, should be prevented by a good division

94

rule. Indeed this issues is addressed by a branch of game theory called Mechanism

design. Note that, proj is definetely not fair. Thus, under the assumption that this

rule will be used, researchers act strategically in order to have allocated the best

products.

r1r1 r2r2

excellent excellent good excellent good good poor

Figure 6.3: A clooser look at strategical behaviours.

This is exemplified in Figure 6.3. For example, researcher r1 could manipulate

the allocation process by being not truthful in order to get the best publications for

herself and thus forcing r2 to get the bad ones. The result is that the global optimum

for R is missed (i.e., no efficiency) and moreover there is no fairness at all. Note that

this strategic behavior is likely to happen as soon as two researchers from different

departments co-authored some work, and each of them is interested in providing as

much as contribution as possible to her/his department. For instance, in Figure 6.4

reports data about co-authorship at University of Calabria while in Figure 6.5 we

illustrate the number of research groups with their size.

From these pictures we see that a very particular interactions between researchers

emerges. Indeed 30 components out of 14 consist of only two researchers. Moreover,

for the largest component which comprise 27 researchers we discovered that treewidth

is really low Figure 6.6. We will see in the next chapter that these kinds of information

95

0

50

100

150

200

250

300

0 5 10 15 20 25 30

N
um

be
r

of
 R

es
ea

rc
he

rs

Number of publications

Co-Autorships at University of Calabria

Figure 6.4:
Co-autorships at University of Calabria. Researchers against the number of co-authored
products

30

20

7
8

3
2

4

1
2

1 1 1 1 1

2 3 4 5 6 7 8 9 10 11 12 18 24 27

N
um

be
r

of
 c

om
po

ne
nt

s

Elements in each component

Components at Univ. of Calabria

Figure 6.5: The number of components at University of Calabria

are of great interest (specifically, to the complexity of computing the Shapley value in

this setting). We conclude the section by referring the reader to [Greco and Scarcello,

2013b] for more on this subject.

96

Figure 6.6: An example component

CHAPTER 7

Structural Tractability of Shapley and Banzhaf Values in
Allocation Games

7.1 Introduction

It is often required to reward agents according to their actual contribution to the

total worth of their organization. A notable case is when a set of indivisible goods

(or tasks, or whatever) should be allocated to a given set of agents, and a monetary

compensation is possible. Coalitional games, and in particular allocation games,

properly model such applications, and the Shapley value and the Banzhaf value

are two well-known solution concepts that provide fair and hence acceptable agent

worths. Unfortunately, it turns out that their computation is a #P-hard problem,

for which only quite trivial tractable classes are known.

In this chapter we identify large islands of tractability for both solution concepts,

by exploiting the structure of the interactions among agents. The main result is

that for any class of games having interaction graphs of bounded treewidth, both the

Shapley value and the Banzhaf value are computable in polynomial time. Tractability

also holds for games where each good is owned by at most two agents (independently

of agents’ interactions). These results allow us to deal with games having hundreds of

agents in real-world applications. Moreover, we believe that the underlying technical

ingredients can be exploited for different kinds of coalitional games, too.

97

98

For a better understanding of the problem, we first strengthen the known hardness

results to the case of goods with one possible value only. Then, we look for islands

of tractability of allocations problems. To this end, we provide a characterization of

the marginal contribution of an agent to any coalition in terms of certain properties

of good allocations, which are not required to be optimal ones. Such a technical tool

allows us to point out the tractability of allocation games where every good is shared

(or claimed for) by two agents at most.

Our main result, also based on the tool discussed in Chapter 5 and on further

ingredients exploiting constraint satisfaction techniques, is a polynomial-time algo-

rithm for the computation of the Shapley value and the Banzhaf value in allocation

games where agent interactions have a tree-like structure—formally, have bounded

treewidth [Robertson and Seymour, 1984]. These games capture scenarios of practical

interest; for instance, in Chapter 6 we analyzed the data of a concrete instantiation

for the setting described by [Greco and Scarcello, 2014b]. The setting refers to an

allocation problem arising in the Italian Research Assessment program. The instanti-

ation refers to the data of the University of Calabria by discovering that the treewidth

of the associated graph, consisting of more than 500 nodes, is just 9. Moreover, the

main result and the technical tools used to get it have their own theoretical inter-

est, and the analysis of the complexity of reasoning problems related to coalitional

games over classes of instances having some useful structural property is an active

topic of research in artificial intelligence. In fact, even if we focus on the Shapley

and the Banzhaf values, the methodology we propose may have a wider spectrum of

applicability, as its salient ideas can be reused in other contexts.

99

7.2 Intractability of computation

Computing the Shapley value is a problem that has been shown to be #P-complete

on different classes of games (see, e.g., [Deng and Papadimitriou, 1994; Nagamochi

et al., 1997; Bachrach and Rosenschein, 2009; Aziz and de Keijzer, 2014]), including

the allocation games [?]. In particular, hardness has been shown to hold even on

instances whose goods have three possible values. Below, we improve the result by

showing that there is no advantage in focusing on scenarios where all goods have the

same value. To this end, we first prove the #P-hardness of computing the Banzhaf

value.

Theorem 7.1. Computing the Banzhaf value is #P-hard on allocation games (under

Turing reductions), even for scenarios A = 〈N,G,Ω, val〉 such that |{val(g) | g ∈

G}| = 1.

Proof Sketch. Let (S∪I, E) be a bipartite graph, hence with S∩I = ∅ and E ⊆ S×I.

Computing the number of subsets C ⊆ S of vertices to which all vertices in I can be

matched is #P-hard [Colbourn et al., 1995].

Based on (S∪I, E), let us build the allocation scenarioA = 〈S∪{|S|+1}, I,Ω, val〉

where nodes in S (resp., I) are transparently viewed as the agents (resp., goods),

where val(g) = 1 for each g ∈ I, and where Ω(i) = {g ∈ I | {i, g} ∈ E} while

Ω(|S| + 1) = I. Consider then the allocation game GA = 〈N, vA〉 with N = S ∪

{|S| + 1}, and the Banzhaf value β|S|+1(GA). Observe that, for any given coalition

C ⊆ S = N \ {|S| + 1}, v(C ∪ {|S| + 1})− v(C) = 0 if, and only if, C ⊆ S is a set

of vertices to which all vertices in I can be matched. Eventually, β|S|+1(GA) × 2|S|

is the number of subsets C ⊆ S for which some vertex in I cannot be matched, and

2|S| − β|S|+1(GA)× 2|S| is the desired number, which can be computed in polynomial

100

i n+1 n+2

g1 g2 g3 gα

n+α

Figure 7.1: Illustration in the proof of Theorem 7.1: Construction of the scenario Aα based on A.

time once the Banzhaf value β|S|+1(GA) is known.

Now, we show that the Banzhaf value of allocation games can be computed in

polynomial time based on the knowledge of the Shapley value, so that this latter

concept turns out to be #P-hard too. This property was already known to hold over

(certain) simple games [Aziz et al., 2009]. For its proof, we shall exploit the fact

that, for each agent i ∈ N , the Shapley value can be rewritten as follows:

φi(GA) =
n−1∑
h=0

h!(n− h− 1)!

n!
βi(GA, h),(7.1)

where, for each h ∈ {0, ..., n− 1},

βi(GA, h) =
∑

C⊆N\{i},|C|=h

(v(C ∪ {i})− v(C)).

Theorem 7.2. Computing the Shapley value is #P-hard on allocation games (under

Turing reductions), even for scenarios A = 〈N,G,Ω, val〉 such that |{val(g) | g ∈

G}| = 1.

Proof Sketch. Assume that |{val(g) | g ∈ G}| = 1; in particular, w.l.o.g., as-

sume that val(g) = 1 holds, for each g ∈ G. Let i be an agent in N , and

for each α ∈ {1, ..., n}, consider the allocation scenario Aα = 〈{1, ..., n + α},G ∪

{g1, ..., gα},Ωα, valα〉 defined as follows:

101

• on the agents in N \{i}, Ωα coincides with Ω; moreover, Ωα(n+ j) = {gj, gj+1},

for each j ∈ {1, ..., α− 1}; Ωα(i) = Ω(i) ∪ {g1}; and Ωα(n+ α) = {gα};

• on the goods in G, valα coincides with val; moreover, valα(gj) = 1 for each

j ∈ {1, ..., α}.

Let C ⊆ N ∪ {n + 1, ..., (n + α − 1)}, and consider the illustration in Figure 7.1

to help the intuition. Observe that if {i, n + 1, ..., (n + α − 1)} 6⊆ C, then vAα(C ∪

{n + α}) − vAα(C) = 1. Otherwise, i.e., if {i, n + 1, ..., (n + α − 1)} ⊆ C, then

vAα(C∪{n+α})−vAα(C) = vA(C ′∪{i})−vA(C ′), where C ′ = C\{i, n+1, ..., n+α}.

Therefore, for each h ∈ {0, ..., (n+ α− 1)}, we have that:

βn+α(GAα , h) =

 κn+α(h) + βi(GA, h− α) if h ≥ α

κn+α(h) if h < α

where κn+α(h) is the number of coalitions C such that |C| = h and such that

{i, n+ 1, ..., (n+ α− 1)} 6⊆ C.

Note that κn+α(h) can be computed in polynomial time.

By using the above expression for βn+α(GAα , h) in Equation (7.1), we can derive

that:

φn+α(GAα) =
n+α−1∑
h=0

h!(n+ α− h− 1)!

(n+ α)!
κn+α(h) +

n−1∑
h=0

(h+ α)!(n− h− 1)!

(n+ α)!
βi(GA, h).

Eventually, by instantiating α with each value in {1, ..., n}, we get a system of

n linear equations over the variables βi(GA, 0), ..., βi(GA, n − 1). By multiplying by

(n + α)! all the terms of the corresponding equation, we get a system where (h +

α)!(n−h− 1)! is the coefficient of any term of the form βi(GA, h). Given the form of

these coefficients, the equations are easily seen to be linear independent—see [Aziz

and de Keijzer, 2014; Aziz et al., 2009].

102

Therefore, the values of βi(GA, 0), ..., βi(GA, n− 1) for which the system admits a

solution are univocally determined. Moreover, they might be computed in polynomial

time (e.g., by Bareiss’s implementation of Gaussian elimination [Bareiss, 1968]), if

we were able to compute in polynomial time φn+α(GAα), for each α ∈ {1, ..., n}. To

conclude, just notice that the Banzhaf value of agent i in GA is precisely given by

βi(GA) = 1
2n−1

∑n−1
h=0 βi(GA, h).

From these results, it turns out that acting on the values of goods does not help

very much in identifying tractable classes of instances. So, we next consider different

kinds of restrictions based on the ”interactions” that emerge among agents.

7.3 Characterizations of the Shapley value

Throughout the section, assume that an allocation scenario A = 〈N,G,Ω, val〉 is

given. Let {w1, ..., wm} = {val(g) | g ∈ G} ∪ {0} be the set of all values associated

with goods in G (plus the null value 0, if not present), and assume that w1 > w2 >

· · · > wm. W.l.o.g, assume also that wm = 0.

7.3.1 A closer look at marginal contributions

In this section, we elaborate and discuss useful characterizations of the Shapley

value of allocation games.

We start with a simple reformulation. Let i ∈ N be an agent, let h ∈ {0, ..., n−1},

let ` ∈ {1, ...,m}, and let us denote by #coli`(GA, h) the number of coalitions C such

that |C| = h and vA(C ∪ {i})− vA(C) ≥ w`. Then, the coefficients βi(GA, h) in the

expression for the Shapely value illustrated in Equation (7.1) can be rewritten as

follows.

103

Theorem 7.3. For each agent i ∈ N and h ∈ {0, ..., n− 1},

βi(GA, h) = w1 × #coli1(GA, h) +
m∑
`=2

w` ×
(
#coli`(GA, h)−#coli`−1(GA, h)

)
.

Proof. Recall that, for each i ∈ N and h ∈ {0, ..., n− 1},

βi(GA, h) =
∑

C⊆N\{i},|C|=h

(v(C ∪ {i})− v(C)).

Consider an arbitrary coalition C ⊆ N \ {i} with |C| = h. Let π̄ be an optimal

allocation for A[C ∪{i}], and observe that because of the monotonicity of allocation

games, there is an optimal allocation π̄-i for A[C] such that img(π̄-i) ⊆ img(π̄). If the

two images coincide, then we clearly have that vA(C ∪{i})− vA(C) = 0. Otherwise,

img(π̄) \ img(π̄-i) is a singleton {g}, and vA(C ∪{i})− vA(C) = val(π̄)− val(π̄-i) =

val(g). In both cases, the marginal contribution is a value w` with ` ∈ {1, ...,m}.

Then, we can rewrite the expression for the coefficients as βi(GA, h) =
∑m

`=1 w` ×

M i
`(GA, h), where M i

`(GA, h) is the number of coalitions C with |C| = h and such

that vA(C ∪ {i}) − vA(C) = w`. By definition of #colil(GA, h), we get M i
1(GA, h) =

#coli1(GA, h) and, ∀` ≥ 2, M i
l (GA, h) = #coli`(GA, h)−#coli`−1(GA, h).

Hence, counting the number of coalitions to which an agent i provides some

marginal contribution is deeply related to the computation of the Shapley (and the

Banzhaf) value of allocation games. We now further explore this specific task.

For each ”level” ` ∈ {1, ...,m} over the possible values, an agent i ∈ N is said to

be dependent at level ` (short: `-dependent) if for each g ∈ Ω(i) with val(g) ≥ w`,

there is an agent j ∈ N \ {i} such that g ∈ Ω(j). In particular, note that any agent

having goods with value at least w` and which are not shared with any other agent

is not dependent at level `; in fact, all her marginal contributions are at least w`,

independently of the coalition to be considered. Let G` = (N`, E`) be the undirected

104

graph where N` is the set of all `-dependent agents and where {i, j} ∈ E` if, and

only if, there is a good g ∈ Ω(i) ∩ Ω(j) with val(g) ≥ w`. Then, a coalition R ⊆ N`

of agents is called a component at level ` (short: `-component) if the subgraph of

G` induced by the nodes in R is connected. As a special case, if there is no good

g ∈ Ω(i) with val(g) ≥ w`, then {i} is an `-component.

Example 7.4. Consider the scenario A0 reported in Figure 6.1. We have w1 =

val(g1). Moreover, {1, 2} and {3} are the only subset-maximal components at level

1. Indeed, g1 ∈ Ω(1) ∩ Ω(2), and there is no good in Ω(3) with value w1. C

The concept of `-component plays a crucial role to characterize useful properties

of marginal contributions.

Lemma 7.5. Let R∪{i} be an `-component, with R ⊆ N` \{i}. Then, the following

statements are equivalent:

(1) vA(R ∪ {i})− vA(R) ≥ w`;

(2) there is an optimal allocation π̄ for A[R ∪ {i}] such that val(π̄) ≥ w`, for each

j ∈ R ∪ {i}.

Proof Sketch. (1)⇒(2) Assume that (2) does not hold. So, we are guaranteed about

the existence of an optimal allocation π̄ for A[R ∪ {i}] and of an agent j′ ∈ R ∪ {i}

such that val(π̄(j′)) < w`. Consider the following two possible cases.

First, assume that val(π̄(i)) < w`. Since the restriction of π̄ over the agents in

R is a feasible allocation for A[R], then we immediately get that vA(R) ≥ val(π̄)−

val(π̄(i)) > val(π̄)− w`, and hence vA(R ∪ {i})− vA(R) < w`.

Second, assume that val(π̄(i)) ≥ w`. We start by observing that, due to the

optimality of π̄, for each agent j′ ∈ R ∪ {i} with val(π̄(j′)) < w`, {g | g ∈ Ω(j′) ∧

val(g) ≥ w`} ⊆ img(π̄). That is, goods that might be in principle allocated to an

105

agent j′ ∈ R ∪ {i} with val(π̄(j′)) < w` and having value at least w` are actually

allocated to some different agent in R ∪ {i}. Given that R ∪ {i} is an `-component

(and that, in particular, each agent is `-dependent), we are guaranteed about the

existence of a succession i = j′1, j
′
2, ..., j

′
h such that π̄(j′x) ∩ Ω(j′x+1) 6= ∅, for each

x ∈ {1, ..., h-1}; and val(π(j′h)) < w`. Consider then the function π̄-i : R→ G ∪ {∅}

with π̄-i(j
′
x+1) = π̄(j′x), for each x ∈ {1, ..., h-1}; and π̄-i(j

′′) = π̄(j′′), for each

j′′ ∈ R \ {j′2, ..., j′h}. Then, π̄-i is an allocation for A[R] and we have that val(π̄-i) =

val(π̄)−val(π̄(j′h)). Hence, vA(R) ≥ val(π̄-i) = val(π̄)−val(π̄(j′h)) > val(π̄)−w`.

That is, vA(R ∪ {i})− vA(R) < w`.

In both cases, we have concluded that (1) does not hold.

(2)⇒(1) Let π̄ be an optimal allocation for A[R ∪ {i}] such that val(π̄) ≥ w`,

for each j ∈ R ∪ {i}. Because of the allocation monotonicity property, there is

an optimal allocation π̄-i for A[R] such that img(π̄-i) ⊆ img(π̄). Hence, for each

j ∈ R, val(π̄-i(j)) ≥ w`. Now, observe that vA(R∪{i}) = val(img(π̄)) and vA(R) =

val(img(π̄-i)). So, vA(R ∪ {i})− vA(R) coincides with the value of one of the goods

in img(π̄), and vA(R ∪ {i})− vA(R) ≥ w`.

Example 7.6. In our running example, {1, 2} is a component at level 1, and g1 is

the only good having value (at least) w1. So, there is no allocation π̄ for A0[{1, 2}]

satisfying condition (2) in Lemma 7.5 for ` = 1, and hence vA0({1, 2})− vA0({2}) <

w1. Eventually, by moving to the second level, the allocation for A0[{1, 2}] depicted

in Figure 6.1 witnesses, again by Lemma 7.5, that vA0({1, 2})− vA0({2}) ≥ w2. C

We now generalize Lemma 7.5 to arbitrary coalitions and allocations that are not

required to be optimal. To this end, if C ⊆ N is a coalition and i 6∈ C is an agent,

then we denote by pi`(C) the `-part of C w.r.t. i. This is defined as the emptyset

106

if i 6∈ N`; otherwise, pi`(C) is the subset-maximal (in fact, unique) `-component

R ⊆ C ∪ {i} with i ∈ R.

Theorem 7.7. Let C ⊆ N be a coalition and let i ∈ N \ C be an agent. Then, the

following statements are equivalent:

(1) vA(C ∪ {i})− vA(C) ≥ w`;

(2) there is an allocation π̄ for A[pi`(C)] such that val(π̄(j)) ≥ w`, for each j ∈

pi`(C).

Proof. Let us address preliminary the case where i 6∈ N`. In this case, pi`(C) = ∅

and (2) trivially holds. Moreover, since agent i is not `-dependent, its marginal

contribution to any coalition is at least w`. So, (1) holds trivially, too. In the

remaining, consider the case where i ∈ N`, so that i ∈ pi`(C). Let R = pi`(C) \ {i}

and let S = C \R.

(1)⇒(2) By submodularity, we know that vA(R∪{i})−vA(R) ≥ vA(R∪{i}∪S)−

vA(R∪S) holds. Hence, we get that vA(R∪{i})−vA(R) ≥ w`. Then, by Lemma 7.5,

we derive that there is an allocation π̄ for A[R ∪ {i}] such that val(π̄(j)) ≥ w`, for

each j ∈ R ∪ {i}.

(2)⇒(1) Assume that π is an allocation for A[R ∪ {i}] such that val(π(j)) ≥ w`,

for each j ∈ R ∪ {i}. We first claim that this property must hold for every optimal

allocation, too. Assume by contradiction that there is an optimal allocation π̄ for

A[R ∪ {i}] with val(π̄(j′)) < w` for some agent j′ ∈ R ∪ {i}. Because img(π̄) 6=

img(π), there exists a succession of agents j′ = j′1, j
′
2, ..., j

′
h with the assignment to the

last agent (possibly, just j′) such that π(j′h) 6∈ img(π̄) and π(j′x) = π̄(j′x+1), for each

x ∈ {1, ..., h-1}. Then, consider the function π̄∗ : R∪{i} → G∪{∅} such that π̄∗(j′x) =

π(j′x), for each x ∈ {1, ..., h}; and π̄∗(j′′) = π̄(j′′), for each j′′ ∈ (R∪{i})\{j′1, ..., j′h}.

107

Note that π̄∗ is an allocation for A[R∪ {i}] and val(π̄∗) > val(π̄), because the only

difference is that the new image contains the good π(j′h), whose value is at least w`,

instead of the good π̄(j′1) for which val(π̄(j′1)) < w` holds. However, this contradicts

the optimality of π̄.

So far, we have shown that there is an optimal allocation π̄ for A[R∪{i}] such that

val(π̄(j)) ≥ w`, for each j ∈ R∪{i}. By Lemma 7.5, this entails that vA(R∪{i})−

vA(R) ≥ w` holds. Moreover, by monotonicity, there is an optimal allocation π̄-i for

A[R] such that img(π̄-i) ⊆ img(π̄). Hence, for each j ∈ R, val(π̄-i(j)) ≥ w`. Given

these properties of the optimal allocations for A[R ∪ {i}] and A[R], and given the

definition of S, we conclude that opt(A[R∪{i}∪S]) = opt(A[R∪{i}]) +opt(A[S])

and opt(A[R ∪ S]) = opt(A[R]) + opt(A[S]). So, vA(R ∪ {i} ∪ S) − vA(R ∪ S) =

vA(R ∪ {i})− vA(R) ≥ w`.

Example 7.8. By continuing with Example 7.6, note that {1, 2} = p1
`({2, 3}) holds,

for ` ∈ {1, 2}. Therefore, the allocation for A0[{1, 2}] depicted in Figure 6.1 wit-

nesses, by Theorem 7.7, that vA0({1, 2, 3})− vA0({2, 3}) ≥ w2. C

7.4 Islands of tractability

7.4.1 Bounded sharing

Our analysis intensively uses Theorem 7.7. The first outcome is an island of

tractability based on the notion of bounded sharing. Formally, for a given level `,

define the sharing degree of an allocation scenario A, denoted by sd`(A), as the

maximum, over all goods g with val(g) ≥ w`, of |{j ∈ N | g ∈ Ω(j)}|. Intuitively, it

measures the maximum number of agents competing for the same good (with value

at least w`).

Lemma 7.9. Assume that sd`(A) ≤ 2, for a value level `. Let i be an agent in N ,

108

and let h ∈ {0, ..., n− 1}. Then,

#coli`(GA, h) =
(n− 1)!

(n− 1− h)!h!
−X , where

• X = 0, if h < |pi`(N \ {i})| − 1; or if i is not `-dependent, or the subgraph of G`

induced by the nodes in pi`(N \ {i}) contains a cycle, or there are two agents j and

j′ in pi`(N \ {i}) with |Ω(j) ∩ Ω(j′) ∩ {g | val(g) ≥ w`}| > 1.

• X =
(n−|pi`(N\{i})|)!

(n−h−1)!(h+1−|pi`(N\{i})|)!
, otherwise.

Proof Sketch. Let C ⊆ N be any coalition with i 6∈ C. We claim that: (1) vA(C ∪

{i})−vA(C) ≥ w` holds if, and only if, (2) either i is not `-dependent; or the subgraph

of G` induced by the nodes in pi`(N \ {i}) contains a cycle; or there are agents j and

j′ in pi`(N \ {i}) with |Ω(j)∩Ω(j′)∩{g | val(g) ≥ w`}| > 1; or pi`(N \ {i}) 6= pi`(C).

(1)⇒(2) Assume that (2) does not hold. So, the subgraph of G` induced by the

nodes in pi`(N \ {i}) is acyclic and pi`(N \ {i}) = pi`(C) holds, with i ∈ pi`(C).

Moreover, for each pair j, j′ of agents in pi`(C), we have |Ω(j)∩Ω(j′)∩{g | val(g) ≥

w`}| ≤ 1. Therefore, by definition of G` and given that sd`(A) ≤ 2, the goods in⋃
j∈pi`(C) Ω(j) having value at least w` have a one-to-one correspondence with the

edges of the subgraph of G` induced by the nodes in pi`(C), which is a tree. Hence,

the number of these goods is |pi`(C)| − 1. Therefore, there is no allocation π such

that val(π(j)) ≥ w`, for each j ∈ pi`(C). By Theorem 7.7, we conclude that (1) does

not hold.

(2)⇒(1) If i is not `-dependent, then it is immediate that vA(C∪{i})−vA(C) ≥ w`.

So assume that i is `-dependent.

Assume that there are two agents j′ and j′′ in pi`(C) such that Ω(j′)∩Ω(j′′)∩{g |

val(g) ≥ w`} ⊇ {g′, g′′} with g′ 6= g′′. Consider a spanning tree T of the subgraph of

G` induced by the nodes in pi`(C), and let us root it at agent j′. Consider then the

109

allocation π̄ built as follows: π̄(j′) = g′, π̄(j′′) = g′′; and for each agent jc 6= j′′ whose

parent in T is jp, let π̄(jc) be any arbitrary good in Ω(jc) ∩ Ω(jp) ∩ {g | val(g) ≥

w`}. Since sd`(A) ≤ 2, π̄ is well-defined. Moreover, π̄ satisfies condition (2) in

Theorem 7.7, and we can conclude that vA(C ∪ {i})− vA(C) ≥ w`.

In the rest, assume that for each pair j, j′ of agents in pi`(N\{i}), |Ω(j)∩Ω(j′)∩{g |

val(g) ≥ w`}| ≤ 1. Consider the case where pi`(N \ {i}) 6= pi`(C), and let j be

an agent in pi`(C) adjacent to an agent j′ ∈ pi`(N \ {i}) \ pi`(C). Consider the

spanning tree T of the subgraph of G` induced by the nodes in pi`(C), and let us

root it at agent j. Consider then the allocation π̄ built as follows: π̄(j) = g with

{g} = Ω(j) ∩ Ω(j′) ∩ {g | val(g) ≥ w`}; and for each agent jc whose parent in T is

jp, let π̄(jc) = gc with {gc} = Ω(jc)∩Ω(jp)∩ {g | val(g) ≥ w`}. Since sd`(A) ≤ 2, π̄

is well-defined. Moreover, π̄ satisfies condition (2) in Theorem 7.7, and we conclude

that vA(C ∪ {i})− vA(C) ≥ w`.

Finally, assume that pi`(N \ {i}) = pi`(C) and that for each pair j, j′ of agents in

pi`(N \ {i}), |Ω(j) ∩ Ω(j′) ∩ {g | val(g) ≥ w`}| ≤ 1. Assume that the subgraph of

G` induced by the nodes in pi`(N \ {i}) contains a cycle, say j1, ..., jk, j1. Consider

the spanning tree T of the subgraph of G` induced by the nodes in pi`(C). Assume,

w.l.o.g., that the edge (jk−1, j1) is not in T and let us root T at j1. Consider the

allocation π̄ such that: π̄(j1) = g with {g} = Ω(j1)∩Ω(jk−1)∩{g | val(g) ≥ w`}; and

for each agent jc whose parent in T is jp, let π̄(jc) = gc with {gc} = Ω(jc)∩Ω(jp)∩{g |

val(g) ≥ w`}. As above, π̄ is well-defined and we have that vA(C∪{i})−vA(C) ≥ w`.

In the light of the above relationship, observe that if i is not `-dependent, or

the subgraph of G` induced by the nodes in pi`(N \ {i}) contains a cycle, or there

are agents j and j′ in pi`(N \ {i}) with |Ω(j) ∩ Ω(j′) ∩ {g | val(g) ≥ w`}| > 1, or

h+ 1 < |pi`(N \ {i})| (so that pi`(N \ {i}) 6= pi`(C)), then any coalition C ⊆ N \ {i}

110

with |C| = h is such that vA(C ∪ {i}) − vA(C) ≥ w`. Indeed, these conditions are

independent of C. Therefore, #coli`(GA, h) just consists of the overall number of

coalitions C of cardinality h that can be built out of n− 1 agents. This is given by

(n−1)!
(n−1−h)!h!

.

It remains to consider what happens if the conditions above that are independent

of h do not hold, and the cardinality h of the considered coalitions is such that

h > |pi`(N \ {i})| − 1. In this case, for all coalitions C with |C| = h obtained by

extending pi`(N \ {i}) \ {i} with further h− (|pi`(N \ {i})|− 1) agents, vA(C ∪{i})−

vA(C) < w` holds. Therefore, #coli`(GA, h) is obtained by subtracting the number

of such coalitions from the whole number of cardinality-h coalitions without agent

i.

Because of this closed form characterization and of Theorem 7.3, the following is

immediately established.

Theorem 7.10. The Shapley value (and the Banzhaf value) of allocation games

GA can be computed in polynomial time on scenarios A = 〈N,G,Ω, val〉 such that

sd`(A) ≤ 2, for each value level `.

Assessing whether tractability still holds with higher values of sharing degree is

left as an open problem. In fact, one may recall that computing the number of

perfect matching in a graph (cf. proof of Theorem 7.1) is #P-hard even on graph

whose nodes have degree 3 [Dagum and Luby, 1992]. Hence, a negative answer to

the question would be hardly surprising.

7.4.2 Bounded treewidth

In this subsection, we analyze the complexity of the Shapley value over allocation

games where the interactions among agents have a tree-like structure. We use the

111

technical tools provided in Section 7.3, by combining them with CSP techniques that

are of interest in their own.

For any scenario A = 〈N,G,Ω, val〉, its interaction graph is the undirected graph

G(A) = (N,E) such that {i, j} ∈ E if, and only if, there is a good g ∈ Ω(i) ∩ Ω(j).

Recall that a tree decomposition of a graph G = (N,E) is a pair 〈T, χ〉, where

T = (V, F) is a tree, and χ is a function assigning to each vertex p ∈ V a set of

nodes χ(p) ⊆ N , such that the following conditions are satisfied: (1) ∀b ∈ N , ∃p ∈ V

such that b ∈ χ(p); (2) ∀{b, d} ∈ E, ∃p ∈ V such that {b, d} ⊆ χ(p); (3) ∀b ∈ N ,

the set {p ∈ V | b ∈ χ(p)} induces a connected subtree of T . The width of 〈T, χ〉 is

maxp∈V |χ(p)− 1|, and the treewidth of G (short: tw(G)) is the minimum width over

all its tree decompositions (see, e.g., [Robertson and Seymour, 1984]).

Example 7.11. Consider again the allocation scenario A0 that is reported in Fig-

ure 6.1. Then, G(A0) is a clique over the nodes in {1, 2, 3}. The treewidth of G(A0)

is 2, as it is witnessed by the tree decomposition TD0 = 〈T0, χ0〉 where T0 consists of

one vertex v only, and χ0(v) = {1, 2, 3}. C

7.5 CSP encoding (for the Banzhaf value)

Recall that, given a CSP instance I, deciding whether there is a solution (and

compute one, if any) is generally NP-hard, but it is known to be feasible in polynomial

time on classes of CSP instances I whose associated graphs have treewidth bounded

by some given constant [Gottlob et al., 2013]. In particular, we already pointed out

(in Chapter 2) that these kinds of structural tractability results have been generalized

to counting problems too Theorem 2.4.

In order to show the tractability of the Shapley value over allocation games having

associated graphs with bounded treewidth, we shall encode the computation of the

112

vg4

{1,2,3}

{1,2,3}

{1,2,3}

{3}

{1,2,3} vg3

{1,2} {2} vg2vg1

va

vb

vc

{Y1,Y2,Y3,X1,X2,X3,X1
va, X2

va, X3
va, X1

vb, X2
vb, X3

vb, X1
vg4, X2

vg4, X3
vg4}

g1 g2 g3 g4

1 2 3

3 2 1 1

Figure 7.2:
Decomposition in Example 7.12—the label of the root modified as in the proof of The-
orem 7.13 is on the top.

coefficients #coli`(GA, h)—see Theorem 7.3—in terms of a counting problem over a

suitably defined CSP instance and we shall then make use of Theorem 2.4.

We recall that the challenge to be faced is to use a constant number of possible

values for the auxiliary variables. For instance, the natural encoding where some

variable Xj (associated with an agent j ∈ N) can take as values the goods in Ω(j) is

not useful here. In fact, we propose an encoding that uses both the given allocation

scenario A and a tree decomposition TD = 〈T, χ〉 of G(A). The idea is that each

good is associated with some distinguished vertex of T , while suitable variables in

the labels of the tree encode the roadmaps to reach such goods. In particular, their

domain just contains the needed road signs (five values are enough). This is detailed

below.

We start by building a tree decomposition with certain desirable properties. Let

〈T ′, χ′〉 be a tree decomposition of G(A) whose width is k > 0. Note that, for each

good g ∈ G, we are guaranteed about the existence of a vertex v′g in T ′ such that

χ(v′g) ⊇ {j | g ∈ Ω(j)}. Indeed, the agents in {j | g ∈ Ω(j)} form a clique in G(A).

In a pre-processing step, we modify 〈T ′, χ′〉 by adding a fresh vertex vg as a child

113

of v′g, whose label is χ(vg) = χ(v′g) ∩ {j | g ∈ Ω(j)}. By iterating over all goods,

we get the desired tree where each good g is associated with a distinguished vertex

(in fact, leaf) vg labeled by the agents to whom g can be allocated. Of course,

the transformation is feasible in polynomial time. Eventually, we further transform

the decomposition by making it binary: For each vertex v with children v1, ..., vn,

we can create a novel vertex v̄ as a child of v and with its label, by subsequently

appending under it all these children but v1. Let TD = 〈T, χ〉 be the resulting tree

decomposition, having the same width as 〈T ′, χ′〉.

Example 7.12. Figure 7.2 illustrates a width-2 tree decomposition T̄D0 of G(A0), by

evidencing the vertices that are univocally associated with the goods in {g1, g2, g3, g4}.

Moreover, note that the decomposition is defined over a binary tree. C

The input to our encoding is the allocation scenario A, the agent i ∈ N , the

natural number `, and the tree decomposition TD = 〈T, χ〉. Note that, for the

moment, we do not consider the size h. Then, we define the encoding ξ such that

ξ(A, i, `, TD) is the CSP instance 〈Var , U,C〉, where

• Var =
⋃
j∈N{Xj, Yj} ∪ {Xv

j | v is in T ∧ j ∈ χ(v)};

• U = {0, 1,�,↙,↘, ↑};

and where C is defined as follows, with constraint relations being reported in tabular

form in Figure 7.3:

1. For each agent j ∈ N and vertex v in T with j ∈ χ(v), there is a constraint

(Sv,j, rv,j) with Sv,j = {Xv
j , Xj};

2. For each good g with val(g) ≥ w` and each j ∈ χ(vg), there is a constraint

(Sg,j, rg,j) such that Sg,j = {Xvg
j };

3. For each agent j ∈ N , there is a constraint (Sj, rj) such that Sj = {Yj, Xj};

114

Xvj Xj

0 0
� 1
↙ 1
↘ 1
↑ 1

if v is a vertex of the form vg , for some good g with val(g) ≥ w`
if v is not a leaf, v1 is its left child, and j ∈ χ(v1)
if v is not a leaf, v2 is its right child, and j ∈ χ(v2)
if v is not the root, p is its parent, and j ∈ χ(p)

X
vg
j

0
�
↑

Yj Xj

1 1
1 0
0 0

if j 6= i
if j 6= i

Yj Xj Xj′

1 1 1
0 0 0
0 0 1
1 0 0
1 1 0

Xvj X
v1
j X

v2
j

0 0 0
� ↑ ↑
↑ ↑ ↑
↙ ↙ ↑
↙ ↘ ↑
↙ � ↑
↘ ↑ ↙
↘ ↑ ↘
↘ ↑ �

X
vg
j X

vg

j′

∀u ∈ {0, ↑} �
∀u ∈ {0, ↑} �
∀u ∈ {0, ↑} �
∀u ∈ {0, ↑} �

� ∀u ∈ {0, ↑}
� ∀u ∈ {0, ↑}
� ∀u ∈ {0, ↑}
� ∀u ∈ {0, ↑}

∀u ∈ {0, ↑} ∀u ∈ {0, ↑}

Figure 7.3: CSP encoding in Section 7.5.

4. For each pair of agents j ∈ N and j′ ∈ N that are adjacent in G`, there is a

constraint (Sj,j′ , rj,j′) such that Sj,j′ = {Yj, Xj, Xj′};

5. For each non-leaf vertex v whose left (resp., right) child is v1 (resp., v2), and for

each j ∈ χ(v), there is a constraint (S ′v,j, r
′
v,j) such that S ′v,j = {Xv

j , X
v1
j , X

v2
j };

6. For each good g with val(g) ≥ w` and for each pair j, j′ ∈ χ(vg) with g ∈

Ω(j) ∩ Ω(j′), there is a constraint (Sg,j,j′ , rg,j,j′) such that Sg,j,j′ = {Xvg
j , X

vg
j′ };

7. No further constraint is in C.

Theorem 7.13. The following properties hold:

(a) ξ(A, i, `, TD) can be built in polynomial time;

(b) the domain of each variable in ξ(A, i, `, TD) consists of at most 5 distinct ele-

ments;

(c) tw(G(ξ(A, i, `, TD))) ≤ 5× (tw(G(A)) + 1);

(d) if θ is a solution to ξ(A, i, `, TD), then Rθ = {j | θ(Yj) = 1 ∧ j 6= i} is such that

vA(Rθ ∪ {i})−vA(Rθ) ≥ w`;

115

(e) if R ⊆ N \ {i} is such that vA(R ∪ {i})− vA(R) ≥ w`, then there is a solution

θ to ξ(A, i, `, TD) with R = Rθ;

(f)
∑n−1

h=0 #coli`(GA, h) = |Θ(ξ(A, i, `, TD), {Y1, ..., Yn})|.

Proof Sketch. Property (a) and Property (b) are immediate.

Concerning Property (c) note that, if TD = 〈T, χ〉, then the tuple 〈T, χξ〉 such

that for each vertex v in T , χξ(v) =
⋃
j∈χ(v){Xj, Yj, X

v
j }∪{X

v1
j , X

v2
j | v is not a leaf}

is a tree decomposition of G(ξ(A, i, `, TD)). Note that the decomposition does not

depend on i and `. As an example, the modified label associated with the root node

of the tree decomposition of the graph G(A0) in Example 7.11 is shown in Figure 7.2.

Concerning Property (d), assume that θ is a solution to ξ(A, i, `, TD) and let R̄θ

be the set {j | θ(Xj) = 1 ∧ j 6= i}.

Let j be any agent in R̄θ ∪ {i}. First, we claim that there is a vertex v∗ in T

such that θ(Xv∗
j)=�. By contradiction, assume there is no such vertex. Let v be the

vertex in TD that is the closest to the root with j ∈ χ(v). Because of the constraint

(Sv,j, rv,j) of type 1, we have that θ(Xv
j) ∈ {↙,↘}. If v is a non-leaf vertex, then

because of constraint (S ′v,j, r
′
v,j) of type 5, we have that θ(Xw

j) ∈ {↙,↘} holds, with

w ∈ {v1, v2} being one of its two children in T . In particular, given the constraint

of type 1, for the child w it must be the case that j ∈ χ(w) holds. Therefore, we

can apply the argument again on w, and so top-down from w we can eventually

reach a leaf v̄ such that θ(v̄) ∈ {↙,↘}. But, this is impossible by the constraint

(Sv̄,j, rv̄,j) of type 1. So, we know that for each j ∈ R̄θ ∪{i}, there is a vertex v∗ in T

such that θ(Xv∗
j)=�. Moreover, for each vertex w in the path connecting v and v∗,

θ(w) ∈ {↙,↘}. Therefore, because of constraints of type 5, for each vertex u with

j ∈ χ(u) and not occurring in this path, it is the case that θ(u) = ↑.

Hence, for each j ∈ R̄θ∪{i}, there is precisely one vertex v∗ such that θ(Xv∗
j)=�.

116

Because of the constraints of type 1 and 2, it holds that v∗ = vg, for some good

g ∈ Ω(j) with val(g) ≥ w`. Moreover, because of the constraints of type 6, there is

no other agent j′ such that θ(Xv∗

j′)=�. In the light of these properties, the function

π : N → G such that π(j) = g, for each j ∈ R̄θ ∪ {i} with θ(X
vg
j)=�, and π(j̄) = ∅,

for each other agent j̄, is well-defined and is an allocation. In particular, for each

agent j ∈ R̄θ ∪ {i}, val(π(j)) ≥ w`.

Let now Rθ = {j | θ(Yj) = 1 ∧ j 6= i}. Observe that, because of the constraints

of type 3, it holds that R̄θ ⊆ Rθ. In particular, θ(Xi) = 1. Moreover, note that

because of the constraints of type 4, whenever θ(Xj′) = 1 and θ(Yj) = 1 with j and

j′ being adjacent in G`, then θ(Xj) = 1 holds, too. Hence, R̄θ ∪ {i} ⊇ pi`(Rθ). It

follows that we can apply Theorem 7.7 on the coalition Rθ, and we conclude that

vA(Rθ ∪ {i})− vA(Rθ) ≥ w`.

Consider now Property (e). If R ⊆ N\{i} is a coalition with vA(R∪{i})−vA(R) ≥

w`, then by Theorem 7.7 there is an allocation π such that val(π(j)) ≥ w`, for each

j ∈ pi`(R). Consider the substitution θ such that: θ(Yj) = 1 iff j ∈ R∪{i}; θ(Xj) = 1

iff j ∈ pi`(R); θ(X
vg
j) = � iff π(j) = g; θ(Xv

j) = 0 iff j 6∈ R; θ(Xv
j) = ↑ iff θ(X

vg
j) = �

holds for a vertex vg that is not in the subtree of T rooted at v; θ(Xv
j) = ↙ (resp.,

θ(Xv
j) = ↘) if θ(X

vg
j) = � for a vertex vg that occurs in the subtree rooted at the

left (resp., right) child of v. By inspecting the constraints, it can be checked that θ

is in fact a solution to ξ(A, i, `, TD).

Finally, Property (f) derives by Property (d), by Property (e), by the fact that

θ(Yi) = θ(Xi) = 1 holds in any solution, and by the definition of #coli`(GA, h).

By combining Theorem 7.13 and Theorem 2.4, the following can be easilly estab-

lished.

117

Corollary 7.14. The Banzhaf value of allocation games GA can be computed in

polynomial time on scenarios A = 〈N,G,Ω, val〉 such that tw(G(A)) is bounded by

a constant.

Proof. Recall that the Banzhaf value of GA can be written as βi(GA) = 1
2n−1

∑n−1
h=0 βi(GA, h).

Given the expressions for βi(GA, h) in Theorem 7.3, to compute the Banzhaf value

in polynomial time, we need a method to efficiently evaluate
∑n−1

h=0 #coli`(GA, h), for

each agent i and level `. By Property (f) in Theorem 7.13, this is possible on sce-

narios A where tw(G(A)) is bounded by some constant k. Indeed, a width-k tree

decomposition can be computed in linear time.

7.6 From the Banzhaf value to the Shapley value

The encoding ξ discussed so far does not take h as a parameter. In fact, it just

provides us a way to compute the value
∑n−1

h=0 #coli`(GA, h) and, hence, the Banzhaf

value. In order to compute the contribution #coli`(GA, h) for each cardinality of the

coalitions (and, hence, the Shapley value by Theorem 7.3), we need a way to filter,

out of all possible solutions, those θ such that |Rθ| = h. This is not immediate (by

preserving the structural properties and the bound on the domains), so that a careful

construction is in order.

Let I be the instance 〈Var , U,C〉 with {Y1, ..., Yn} ⊆ Var , let TD′ = 〈T ′, χ′〉 be

a binary tree decomposition of G(I), and let h ∈ {0, ..., n-1}. Then, consider the

modified CSP instance ζ(I, {Y1, ..., Yn}, h, TD′) = 〈Var ′, U ′,C′〉 such that:

• Var ′ = Var ∪ {Wv | v is in T ′};

• U ′ = U ∪ {0, ..., h};

• C′ = C ∪ {(Sv, rv) | v is in T ′}.

118

In particular, for each non-leaf vertex v in T ′ with children v1 and v2, we have

Sv = χ′(v) ∪ {Wv,Wv1 ,Wv2}. Moreover, rv contains all possible substitutions θ over

the variables in Sv such that θ(Wv), θ(Wv1), θ(Wv2) ∈ {0, ..., h} and θ(Wv) − |{Yj ∈

Sv | v = cr(j) ∧ θ(Yj) = 1}| = θ(Wv1) + θ(Wv2), where cr(j) is the vertex v∗ that is

the closest to the root and such that Yj ∈ χ′(v∗). Additionally, if v is the root of T ′,

then we require that θ(Wv) = h+ 1 holds.

Instead, if v is a leaf, then Sv = χ′(v) ∪ {Wv}, and rv contains all possible

substitutions θ over Sv such that θ(Wv) = |{Yj ∈ Sv | v = cr(j) ∧ θ(Yj) = 1}|.

Theorem 7.15. Let k be a fixed natural number, and assume that TD′ has treewidth

k. Then, the following properties hold:

(a) ζ(I, {Y1, ..., Yn}, h, TD′) can be built in polynomial time;

(b) tw(G(ζ(I, {Y1, ..., Yn}, h, TD′))) ≤ k + 3;

(c) if θh is a solution to ζ(I, {Y1, ..., Yn}, h, TD′), then there is exactly one solution

θ to I with |{Yj | θ(Yj) = 1}| = h and θh ⊇ θ.

(d) if θ is a solution to I such that |{Yj | θ(Yj) = 1}| = h, then there is exactly one

solution θh to ζ(I, {Y1, ..., Yn}, h, TD′) with θh ⊇ θ;

Proof Sketch. Property (a) and Property (b) are immediate, by inspection of the con-

struction. For Property (c), just observe that if θh is a solution to ζ(I, {Y1, ..., Yn}, h, TD′),

then |{Yj | θh(Yj) = 1}| = h and its restriction to the variables in Var , say θ, is a

solution to I. Finally, concerning Property (d), note that if θ is a solution to I with

|{Yj | θ(Yj) = 1}| = h, then we can build a solution θh ⊇ θ to ζ(I, {Y1, ..., Yn}, h, TD)

in a way that, for each variable Wv ∈ (Var ′ \ Var), θh(Wv) is the number of vari-

ables Yj such that θ(Yj) = 1 and cr(j) occurs in the subtree of T rooted at v. In

particular, note that there are no further assignments for these variables leading to

119

a solution.

By combining the above result with Theorem 7.13, the following can be estab-

lished.

Theorem 7.16. The Shapley value of allocation games can be computed in polyno-

mial time on all allocation scenarios whose interaction graphs have bounded treewidth.

Proof. Consider such a class of allocation scenarios A with tw(G(A)) ≤ k, for some

fixed natural number k. Then, a width-k tree decomposition TD of G(A) and the

encoding I = ξ(A, i, `, TD) can be computed in polynomial time. Let TD′ be a tree

decomposition of G(I) whose width is bounded by 5 × (k + 1) (cf. Theorem 7.13).

For each h ∈ {0, ..., n-1}, let I ′ = ζ(I, {Y1, ..., Yn}, h + 1, TD′). Because of Theo-

rem 7.15 and again Theorem 7.13, we know that |Θ(I ′, {Y1, ..., Yn})| coincides with

the value #coli`(GA, h). We then get the Shapley value by using Theorem 7.3, and

Equation (7.1).

Unfortunately, tractability does not follow here by just using Theorem 2.4 on I ′

and {Y1, ..., Yn}, since the auxiliary variables of the form Wv do not have a bounded

domain. However, because of Property (c) and Property (d), we can add such vari-

ables to the output variables without altering the number of solutions, because

|Θ(I ′, {Y1, ..., Yn})| = |Θ(I ′, {Y1, ..., Yn} ∪ (Var ′ \ Var)| holds. Thus, we actually

apply Theorem 2.4 on I ′ with output variables {Y1, ..., Yn} ∪ (Var ′ \ Var), and we

still conclude that |Θ(I ′, {Y1, ..., Yn})| can be computed in polynomial time.

7.7 Summary

We have studied the problem of computing the Shapley value (and the Banzhaf

value) of allocation games, which are coalitional games implicitly (and succinctly)

specified in terms of an underlying allocation scenario. We have shown that the

120

problem is #P-complete, even in stringent settings. Motivated by this bad news, we

identified islands of tractability by focusing either on scenarios with sharing degree

at most 2 or such that the interactions among agents have a tree-like structure. This

way, real world applications with useful structural properties can efficiently be dealt

with, even if many agents and goods are involved. Moreover, the technical tools

used to get the results may have a wider spectrum of applicability, beyond allocation

problems.

A variant of the proposed framework considers scenarios where agents must nec-

essarily get some good. In this case, it makes sense to have goods with negative

values, too. In fact, we remark that our algorithms can be extended to manage these

cases as well, by just considering suitable negative levels. Our work leaves open the

technical question of whether tractability still holds over scenarios with sharing de-

gree bounded by some constant greater than 2 (e.g., sd`(A) ≥ 3). Moreover, it might

stimulate further research to analyze the complexity of other solution concepts over

allocation games, such as the nucleolus [Schmeidler, 1969].

121

Part III

CSP and Mining

CHAPTER 8

Process Mining

Process mining aims to discover, monitor and improve real processes by extract-

ing knowledge from the event logs that are made available by today’s information

systems van der Aalst [2011]. A prominent process mining task is process discovery,

whose goal is to facilitate the (re-)design phase and the implementation of complex

process models. Indeed, process discovery algorithms are devoted to automatically

deriving a model that can explain all the episodes recorded in an event log related

to the execution of the activities of an underlying process. An approach to accom-

plish this task is presented which can benefit from the background knowledge that,

in many cases, is available to the analysts taking care of the process (re-)design.

The approach is based on encoding the information gathered from the log and the

(possibly) given background knowledge in terms of precedence constraints, i.e., of

constraints over the topology of the resulting process models. Mining algorithms are

eventually formulated in terms of reasoning problems over precedence constraints,

and the computational complexity of such problems is thoroughly analyzed by trac-

ing their tractability frontier. Solution algorithms are proposed and their properties

analyzed. These algorithms have been implemented in a prototype system, and

results of a thorough experimental activity are discussed.

122

123

8.1 An overview of process discovery

Process discovery has emerged as a powerful approach to support the analysis and

the design of complex processes. It consists of analyzing a set of traces registering the

sequence of tasks performed along several enactments of a transactional system, in

order to build a process model that can explain all the episodes recorded over them.

Eventually, the ”mined” model can be used to design a detailed process model suited

to be supported in a workflow management system, or to shed light on the actual

process behavior for optimization purposes (for instance, by singling out deviations

between the intended conceptual model and the behavior that is actually registered).

In abstract terms, discovery algorithms carry out two different sub-tasks. First,

they analyze the traces registering the sequences of activity executions over each

enactment of the process, by mining the causal dependencies that are likely to hold

among them. In particular, they present these dependencies in form of dependency

graphs, that is, directed graphs whose nodes one-to-one correspond with the activ-

ities and where, intuitively, edges ingoing into an activity a are meant to model

that the possibility of executing a is conditioned by the execution of the activities

from which these edges originate. Second, they enrich dependency graphs with ad-

vanced facets of process enactments (such as synchronization constructs, branching

constructs, duplicate activities, and invisible activities, just to name a few) and re-

turn process models formalized in expressive modeling languages. These concepts

are next exemplified.

Example 8.1. Consider the set A = {a, b, c, d, e} of activities, and the structures

depicted in Figure 8.1. We have three dependency graphs, G0, G1, and G2, which are

meant to encode the causal relationships that hold over the activities in A. Moreover,

124

Figure 8.1: Process models in the running example.

these graphs are adorned with an intuitive notation that expresses routing constructs

over them. For instance, in G1, the flow of execution is split after a over two branches

that are to be executed in parallel, and which are eventually synchronized by the

activity d—see Section 8.3 for the formalization of the notation and of its associated

semantics.

Assume now that the two traces abcde and acbde over A are given as input to a

process discovery algorithm. Then, the graph G0 will be hardly returned as output, as

it does not model the flow associated with the trace acbde, where b is executed after

c.

Instead, G1 and G2 are good candidates for a dependency graph supporting the two

traces. The crucial observation here is that b is executed before c in one trace, while

b is executed after c in the other. This likely witnesses that the two activities are

not related by any causal dependency, and that they are executed in “parallel”, i.e.,

over different branches of the process. Moreover, one might argue that the graph G1,

125

together with the associated routing constraints, is more appropriate than G2 for being

returned as output. Indeed, there is heuristic evidence in the two given traces that b

and d are not parallel, since b seems to be a pre-requisite for the execution of d. C

Several process models can, in general, be associated with a log of traces given

as input. Ideally, one might select the most appropriate one among them under the

assumption that the log is complete, i.e., that it registers all the possible traces for

the underlying process. Indeed, in this case, if an activity always precedes another,

then we can safely discard those models where such activities can be executed over

different branches. For instance, if we assume that the traces abcde and acbde of

Example 8.1 are the only possible ones, then we can safely conclude that b and d are

not parallel activities, hence discarding the graph G2 in Figure 8.1.

Log completeness has received considerable attention in the literature, and it is a

crucial assumption under which a number of discovery methods can be proven to be

correct (see, e.g., van der Aalst et al. [2004, 2002]). In fact, process discovery is often

carried out via heuristics approaches, for which the quality of the resulting models

grows with the fraction of the traces given at hand w.r.t. all possible traces for the

process. It follows that the quality can be rather poor in those cases where logs are

far from being complete due, for instance, to the following reasons:

Temporal bias: First, two parallel activities may always appear in the same relative

order, simply because one of them always finishes after the other, due to a different

duration of them or of some of their predecessor activities. For instance, even for

a process that conforms with the schema G2, we may find no trace where d occurs

before b, just because c is time consuming, so that b is always completed before d.

Combinatorial explosion: Second, log completeness might not hold just because the

process has not been enacted a sufficient number of times. Indeed, the number

126

of possible traces grows exponentially w.r.t. the number of activities that can be

executed in parallel. For instance, for a process with n branches each one involving

m activities, we have more than n!m possible traces. Therefore, for real processes

even with just 2 branches and about 20 activities, the number of combinations

immediately leads to more than one billion enactments, which in many application

domains are definitively more than the enactments actually registered.

Access restrictions: Finally, even when logs are in principle complete, analysts might

have a restricted access to them due to a number of reasons, ranging from privacy

reasons, to specific policies adopted within the enterprise, and to issues related to

the technologic infrastructure. In particular, these latter issues often occur when

the process is not (fully) automatized within a unique environment, so that logs

are not immediately available and they need to be built by integrating the raw

data produced by different information platforms (which can be difficult, time-

consuming, or even just impossible if one of these platforms does not support

logging mechanisms). In fact, it frequently happens in real-world applications that

only a few representative traces are available (or can be reconstructed) for analysis

purposes (for instance, related to a given time range or to some specific use cases

of the overall process).

Because of the issues illustrated above, process discovery techniques are still at an

early stage of adoption within enterprises. Indeed, analysts are likely to prefer tradi-

tional ”top-down” design approaches, where models are eventually built by refining

and formalizing a number of desiderata and specifications reflecting the prior knowl-

edge they possess about the process to be automatized. For example, by a-priori

knowing that b and d are parallel activities, the analyst can immediately discard G1

in Example 8.1, even though no trace is given where d actually occurred before b.

127

8.2 Bottom-up vs top-down design methods

Several process discovery approaches have already been proposed in the literature,

differing in the mining capabilities, in their goals, in the adopted mining methods,

and in the kinds of modeling language they support. For example, processes are

often intuitively represented via pure directed graphs Agrawal et al. [1998]; Weijters

and van der Aalst [2001]; Weijters and van der Aalst [2003]; Weijters et al. [2006];

Greco et al. [2006]; Chen and Yun [2003], while more expressive representations are

used in other proposals, ranging from expression tree models Schimm [2003] and

block-structured workflow models Herbst and Karagiannis [2000, 2003]; Hammori

et al. [2006], to special classes of Petri nets van der Aalst and van Hee [2002]; van

der Aalst et al. [2002, 2004]; de Medeiros et al. [2004]; Medeiros et al. [2007]. More-

over, moving from the observation that extracting a single process model may lead

to over-generalized models mixing different usage scenarios, classical discovery al-

gorithms have been often combined with methods for clustering log traces, so that

a set of process models can be returned as output. This improves the precision of

the underlying algorithms by capturing—from an abstract perspective—constructs

that are beyond the expressiveness of the given modeling languages (cf. Greco et al.

[2006]).

Despite the technical differences that emerge from the non-exhaustive list of pro-

posals discussed above, it must be pointed out that all of them share the idea of

mining process models by gathering statistics from the data and by processing them

via heuristics. In particular, these ”bottom-up” discovery techniques are not capable

to take into account prior knowledge on the underlying process. As a result, over

logs that are not complete, mined models may well violate conceptual specifications

128

and domain-constraints (recall that, in Example 8.1, G1 would be the most probable

outcome of a discovery algorithm, but the analyst might a-priori know that b and d

are parallel activities), hence turning out to be useless in real-life applications.

Recently, the need of defining process discovery algorithms that can take ad-

vantage of prior knowledge has been pointed out by [Goedertier et al., 2009]. In

particular, they presented the AGNEs (Artificial Generation of Negative Events)

technique, which is a mining algorithm founding on an Inductive Logic Program-

ming (ILP) classification-oriented learner. The algorithm is articulated in four steps:

first, temporal constraints are extracted from the input log, in order to capture local

dependencies, non-local dependencies, and parallelism relationships. Second, the in-

put log and the temporal constraints are used to generate negative examples, i.e., for

each prefix of any trace, negative events are generated stating which activities are

not allowed to be executed later on in that trace. Third, by using input log traces

(as positive examples) together with the artificial negative events, a logic program is

induced to predict whether any given activity is allowed to occur at a given position

of a given sequence. Finally, the logic program is translated into a Petri net. An

important peculiarity of AGNEs is that the first of the above four phases allows

experts to define a ”top-down” partial specification of the process, in terms of back-

ground knowledge that will be subsequently used to guide the mining algorithm. In

particular, it is possible to state that two activities are parallel (resp., not parallel),

and that one precedes/succeeds (resp., does not precede/succeed) the other.

Another process discovery method (partially) taking into account domain knowl-

edge has been proposed by [van der Werf et al., 2009]. As a reference model, again

Petri nets are considered—moreover, the user can specify that the mined model must

belong to some desired subclass of Petri nets (for instance, avoiding self loops or with

129

a fixed upper bound on the number of places/transitions). Starting with the most

liberal (and overgeneralized) net for a given log, with as many transitions as the

process activities and with no place, a more refined process model is obtained by

iteratively adding a new place for restricting the allowed behavior. Each place is

chosen greedily, by solving a system of integer linear inequalities, asking for a place

with a minimal (resp., maximal) number of incoming edges (resp., outgoing edges).

To curb the growth of the mined model, the search of the places is guided by the

causal dependencies derived from the log (by using the metrics of [van der Aalst

et al., 2004]). Moreover, in its implementation in the ProM framework [van Don-

gen et al., 2005], users are allowed to enforce finer grain constraints, by manually

modifying the basic activity dependencies extracted from the log, prior to deriving

a novel (refined) workflow model. By this way, the learning process can benefit from

”top-down” specifications made available as domain knowledge expressed in terms of

edge constraints and of constraints enforcing parallelism between pairs of activities.

8.3 Causal nets and logs

Several languages have been proposed in the literature which are tailored to the

design and the analysis of processes, such as Petri nets [van der Aalst, 1998] or

event driven process chains EPCs [van der Aalst et al., 2002]. Given the focus of

the thesis, it is convenient to adopt a language that is closer to the needs of process

mining applications. Accordingly, our choice is to consider the language of causal

nets [van der Aalst et al., 2011], providing a favorable representational bias for such

applications while having the same expressiveness as Petri nets.

Let us hereinafter assume that A is a given alphabet of symbols, univocally identi-

fying the activities of some underlying process. The set A contains two distinguished

130

activities a⊥ and a> , called the starting and the terminating activity, respectively.

A dependency graph (over A) is a directed graph G = (V,E) whose nodes are the

activities in the set V ⊆ A, with V ⊇ {a⊥ , a>}, and whose edges in E ⊆ V × V

encode the causal relationships that hold over them. In particular, for each activity

a ∈ V \ {a⊥ , a>}, it must be the case that a occurs in some path from a⊥ to a> .

Moreover, a⊥ and a> have no ingoing and outgoing edges, respectively.

Example 8.2. Consider again the three graphs G0, G1, and G2 depicted in Figure 8.1.

It is immediate to check that they are dependency graphs over the set A = {a, b, c, d, e}

of activities. In particular, a (resp., e) is the starting (resp., terminating) activity. C

A causal net (over A) is a tuple C = 〈G, I,O〉 where G = (V,E) is a dependency

graph and where I and O are two functions such that:

• I maps each activity a ∈ V to the set I(a) of the input bindings for a. For any

a ∈ V \ {a⊥}, an input binding ib ∈ I(a) is a non-empty set of edges such that

ib ⊆ {(x, a) | (x, a) ∈ E}, while the empty set ∅ is the only input binding for

a⊥ , i.e., I(a⊥) = {∅}. For each a ∈ V ,
⋃

ib∈I(a) ib = {(x, a) | (x, a) ∈ E} must

hold.

• O maps each activity a ∈ V to the set O(a) of the output bindings for a. For

any a ∈ V \{a>}, an output binding ob ∈ O(a) is a non-empty set of edges such

that ob ⊆ {(a, y) | (a, y) ∈ E}, while the empty set ∅ is the only output binding

for a> , i.e., O(a>) = {∅}. For each a ∈ V ,
⋃

ob∈O(a) ob = {(a, y) | (a, y) ∈ E}

must hold.

Intuitively, input bindings are meant to encode the pre-conditions for the exe-

cution of an activity, while output bindings are meant to encode the effects of this

execution.

131

Example 8.3. Consider the causal net C0 = 〈G0, I0,O0〉, where G0 = ({a, b, c, d,

e}, E0) is the graph in Figure 8.1, and where I0(z) = {ibz} and O0(z) = {obz} are

such that ibz = {(x, z) | (x, z) ∈ E0} and obz = {(z, y) | (z, y) ∈ E0}, for each

z ∈ {a, b, c, d, e}. The causal net models that the execution of z can start as soon

as its predecessor activity in G0 is completed—of course, this is immaterial for the

starting activity a, which is such that iba = ∅. In fact, after its execution and if

z 6= e, we have that z enables the execution of its unique successor in G0.

Similarly, consider the causal net C1 = 〈G1, I1,O1〉, where G1 = ({a, b, c, d, e}, E1)

is the graph in Figure 8.1, and where I1(z) = {ib ′z} and O1(z) = {ob ′z}, for each

activity z, are such that: ib ′a = ∅, ib ′b = {(a, b)}, ib ′c = {(a, c)}, ib ′d = {(b, d), (c, d)},

ib ′e = {(d, e)}, ob ′a = {(a, b), (a, c)}, ob ′b = {(b, d)}, ob ′c = {(c, d)}, ob ′d = {(d, e)},

and ob ′e = ∅. Note that, after its execution, the activity a enables both b and c (in

parallel), and that the flow is synchronized by d, which can be executed only once b

and c are both completed.

Note also that the symbols adorning the edges of the graphs in Figure 8.1 precisely

correspond to the input and the output bindings. Formally, if 〈G, I,O〉 is a causal net,

then each input binding ib ∈ I(z) (resp., output binding ob ∈ O(z)) is represented

by marking the edges in ib (resp., in ob) and by linking all such markings with a

line. For instance, in the graph G1, the edges (a, b) and (a, c) are marked, and these

markings are linked together, hence meaning that the output binding {(a, b), (a, c)}

occurs in O(a).

For completeness, we point out that any given activity can be associated with more

than one input/output binding, in general. As an example, consider the causal net

C2 = 〈G2, I2,O2〉 associated with the graph G2 shown in Figure 8.1. Then, we may

note, for instance, that O3(a) = {{(a, b)}, {(a, c)}, {(a, b), (a, c)}} holds. Indeed, the

132

edges (a, b) and (a, c) are linked together as in the case of G1, but we additionally

have the singleton markings now. Thus, a can either activate b, or c, or even both

of them. C

Formally, the semantics of causal nets is next given in terms of which instantiations

are ”globally valid”. This is different from the operational semantics of design-

oriented modeling languages, such as the token-game semantics of Petri nets.

A binding activity for the causal net C is a tuple 〈a, ib, ob〉, where a ∈ V is an

activity and such that ib ∈ I(a) and ob ∈ O(a) hold. A sequence σ of binding

activities 〈a1 = a⊥ , ib1, ob1〉, ..., 〈an = a> , ibn, obn〉 is called a binding sequence. The

state Sσj of C at the j-th step of σ is defined inductively as the multi-set1 of edges

such that Sσ0 = ∅, and Sσj = Sσj−1 ∪ obj \ ibj, for each j ∈ {1, ..., n}. The sequence σ

is valid w.r.t. C if Sσn = ∅ and ibj ⊆ Sσj−1, for each j ∈ {1, ..., n}.

Example 8.4. Consider the net C1 discussed in Example 8.3, and the binding sequence

σ = σ1σ2...σ5 such that: σ1 = 〈a, {}, {(a, b), (a, c)}〉, σ2 = 〈b, {(a, b)}, {(b, d)}〉, σ3 =

〈c, {(a, c)}, {(c, d)}〉, σ4 = 〈d, {(b, d), (c, d)}, {(d, e)}〉, and σ5 = 〈e, {(d, e)}, {}〉. Note

that Sσ0 = ∅, Sσ1 = {(a, b), (a, c)}, Sσ2 = {(a, c), (b, d)}, Sσ3 = {(b, d), (c, d)}, Sσ4 =

{(d, e)}, and Sσ5 = ∅. In fact, σ is valid w.r.t. C1. C

Transactional systems store partial information about binding sequences, by trac-

ing the events related to the execution of the various activities. Formally, a trace

t (over A) has the form t[1]t[2]...t[n], with t[i] ∈ A being an activity, for each

i ∈ {1, ..., n}, and with n being the length of t. W.l.o.g., we shall hereinafter assume

that t[1] = a⊥ , t[n] = a> , and that for each i ∈ {2, ..., n − 1}, t[i] ∩ {a⊥ , a>} = ∅.

Indeed, we may possibly view a⊥ and a> as two virtual activities, which we add to

t in order to satisfy this requirement. The length of t is also denoted as len(t). A

1Hereinafter, set operations are transparently applied to multi-sets with the usual intended meaning.

133

multi-set L of traces is hereinafter just called a log, and the set of all the activities

occurring over the traces in L is denoted by A(L).

Note that, as commonly done in the literature, we are considering here an ab-

stract view of a log, by focusing on what order the various activities were executed

(specifically, completed) and by getting rid of all information about (i) timings (e.g.,

starting times and durations) and about (ii) the data involved in them.

Concerning the first assumption, note that our process modeling language is not

capable to support temporal information. In fact, very few mining approaches have

been proposed that are able to discover timed models, like stochastic Petri nets (see,

e.g, Anastasiou et al. [2011]; Hu et al. [2011]). Therefore, in our setting, information

about timings in the log can be helpful to a limited extent only. For instance, we can

immediately conclude that two activities are parallel if one starts after the other, but

before the completion of it. Moreover, for two activities a and b that are not parallel,

in order to assess how likely a is a pre-requisite for the execution of b, in addition of

their relative positions (see Section 9.6), we can consider the time elapsed between

the completion of a and the starting of b. In the paper, however, we will not expand

on these standard heuristics (conceived for models that do not support temporal

information), by referring the interested reader, e.g., to the work by [Wen et al.,

2009]. Here, we stress instead that it is an interesting avenue for further research to

extend the features of causal nets by directly incorporating timing information and

to explore how our techniques can be modified as to deal with the resulting model.

Concerning the second assumption, we point out that even the adaptation of

basic process discovery algorithms to multi-dimensional settings, where modeling

languages have again to be extended (in this latter case in order to deal with data

about activity executions), has been only partially explored in the literature (see,

134

e.g., Greco et al. [2007]). In fact, this is still largely an open research issue, so that

exporting our results to such richer settings is outside the scope of the paper, while

constituting another interesting avenue for further research.

Now that we have clarified the assumptions underlying our setting, we can proceed

to formalize when a log can be considered as the result of the enactments of a given

process model. To this end, we say that a causal net C supports a trace t if there

is a binding sequence σ that is valid w.r.t. C and where the j-th binding activity

〈aj, ibj, obj〉 of σ, for each j ∈ {1, ..., len(t)}, is such that aj = t[j]. Moreover, we say

that the causal net C supports a log L, denoted by C ` L, if C supports each trace

t ∈ L.

Example 8.5. The causal net C1 discussed in Example 8.3 supports the trace abcde,

as it is witnessed by the binding sequence σ illustrated in Example 8.4. Moreover,

it can be checked that C1 also supports the trace acbde, and that no further trace is

supported.

Consider instead the causal net C2, again discussed in Example 8.3. Recall that a

can activate either b, or c, or both of them. Moreover, by looking at the dependency

graph G2 depicted in Figure 8.1, observe that b and d are parallel activities. Thus,

the traces that C2 supports are abe, acde, abcde, acbde, and acdbe. C

We leave the section by pointing out that a useful extension of causal nets consists

in allowing input and output bindings to be multi-sets, rather than just sets. With

this extended model, for instance, an activity x can activate two different instances

of an activity y, for which (x, y) is an edge in the underlying dependency graph.2 A

causal net enriched with this capability will be hereinafter called an extended causal

2Alternatively, we might think that input and output bindings are sets as usual, but that x activates two hidden
activities, say h1 and h2, which both activate y in their turn. While hidden activities play a role in the enactments,
they are not registered in the log. In fact, in process discovery applications, hidden activities are frequently used to
enrich the basic expressivity of the process modeling languages.

135

net.

8.4 Dependency graphs and process mining: basic results

In process mining, a log L is given and the goal is to derive a process model

supporting its traces. We next show that the main task for achieving this goal is

essentially the discovery of the underlying dependency graph. In fact, based on

this property, we can contextually show that the whole semantics of causal nets can

be recast in simple graph-theoretic terms, which is convenient for our subsequent

elaborations.

Definition 8.6. Let L be a log. A dependency graph G acyclically supports L, denoted

by G à L, if for each trace t ∈ L, there is a subgraph Gt of G such that:

• Gt is an acyclic dependency graph over A({t}), and

• t is a topologic sort of Gt, i.e., for each edge (t[i], t[j]) in Gt, we have that i < j.

�

Example 8.7. Consider again the graph G2 in Figure 8.1, and note that G2 à {abe,

acde, abcde, acbde, acdbe}. For instance, given the trace abe, the subgraph of G2 in-

duced over the activities {a, b, e} is an acyclic dependency graph and abe is a topologic

sort of it. Moreover, for any log L including a trace not in {abe, acde, abcde, acbde, acdbe},

we can check that G2 à L does not hold. C

At this point, it is interesting to observe that the set of traces supported by the

causal net C2 (see Example 8.5) precisely coincides with the set of traces acyclically

supported by the dependency graph G2 on top of which C2 was built. This is not by

chance, and is intimately related to the fact that none of the given traces contains

repetitions of the same activity. We next formalize this property.

First, we recall that a log L is linear if there is no trace in L containing repetitions

136

of the same activity, i.e., for each t ∈ L and for each i, j ∈ {1, ..., len(t)} with i 6= j,

t[i] 6= t[j] holds. Then, we derive the following result.

Theorem 8.8. Let L be a linear log, and let G be a dependency graph. Then, G à L

if, and only if, there is a causal net C = 〈G, I,O〉 such that C ` L.

Proof. (if part). Let C = 〈G, I,O〉 be a causal net such that C ` L. Let t be

any trace in L. Let Gt = (Vt, Et) be the subgraph of G = (V,E) such that Vt =

{t[1], ..., t[len(t)]} and Et = {(t[i], t[j]) ∈ E | 1 ≤ i < j ≤ len(t)}. Hence, Gt is

the subgraph of G induced over the activities occurring in t, where we keep those

edges of E that conform with the ordering of the activities in t. Since L is linear,

Gt is acyclic and t is a topologic sort of it. According to Definition 8.6, to conclude,

it is then sufficient to prove that Gt is a dependency graph. In fact, a⊥ and a>

have no ingoing and outgoing edges, respectively, by construction of Gt. The final

requirement to be checked is now that, for each activity a ∈ V \ {a⊥ , a>}, it must be

the case that a occurs in some path from a⊥ to a> . In particular, since Gt is acyclic,

we can equivalently check that each activity a ∈ V \ {a>} (resp., a ∈ V \ {a⊥}) has

at least one outgoing (resp., ingoing) edge.

Let σ be a valid binding sequence such that σj = 〈t[j], ibj, obj〉 is the j-th binding

activity of σ, for each j ∈ {1, ..., len(t)}. Note that σ exists, since C ` L. Consider

first an activity a ∈ V \ {a>}, i.e, a = t[j] where j ∈ {1, ..., len(t) − 1}. As σ

is a binding sequence, obj ∈ O(t[j]) holds and hence we have that obj 6= ∅. In

particular, there is an edge (t[j], y) ∈ obj such that (t[j], y) ∈ Sσj = Sσj−1 ∪ obj \ ibj.

Moreover, again because σ is valid, Sσlen(t) = ∅ holds, and hence there is an index

i ∈ {j + 1, ..., len(t)} such that (t[j], y) ∈ ibi. It follows that y = t[i] and thus

(t[j], t[i]) belongs to E (hence, to Et since j < i). So, each activity a ∈ V \ {a>} has

at least one outgoing edge.

137

We conclude by claiming that, for each j ∈ {2, ..., len(t)}, there is an index i ∈

{1, ..., j−1} such that (t[i], t[j]) is in E (hence, in Et). In order to prove the claim, let

again σ be a valid binding sequence such that σj = 〈t[j], ibj, obj〉 is the j-th binding

activity of σ, for each j ∈ {1, ..., len(t)}. By definition of binding sequence, we know

that Sσj ⊆ Sσj−1∪obj holds, for each j ∈ {1, ..., len(t)}. In particular, since σ is valid,

Sσ0 = ∅ holds, and hence Sσj ⊆
⋃j
h=1 obh, for each j ∈ {1, ..., len(t)}. Recall now from

the definition of causal net that obj ∈ O(t[j]) implies obj ⊆ {(t[j], y) | (t[j], y) ∈ E}.

Therefore, we conclude that:

Sσj ⊆
j⋃

h=1

{(t[h], y) | (t[h], y) ∈ E}, for each j ∈ {1, ..., len(t)}.(8.1)

Let us exploit again the fact that σ is valid, in order to derive that ibj ⊆ Sσj−1

holds, for each j ∈ {1, ..., len(t)}. Let now j be an index in the set {2, ..., len(t)}.

Observe that, by definition of causal net, ibj ∈ I(t[j]) implies that ibj ⊆ {(x, t[j]) |

(x, t[j]) ∈ E}, with ibj being, in particular, non empty. Therefore, by looking again

at Equation 8.1 above and recalling that ibj ⊆ Sσj−1, we can eventually conclude that

an index i ∈ {1, ..., j − 1} exists such that (t[i], t[j]) occurs in E.

(only-if part). Assume that, for each trace t ∈ L, there is a subgraph Gt of

G = (V,E) such that Gt is an acyclic dependency graph and t is a topologic sort

of Gt. For each trace t in L and for each index j ∈ {1, ..., len(t)}, define the input

binding ibt,j = {(x, t[j]) ∈ E | x ∈ {t[1], ..., t[j − 1]}} and the output binding obt,j =

{(t[j], y) ∈ E | y ∈ {t[j + 1], ..., t[len(t)]}}. Note that, for each j ∈ {2, ..., len(t)},

ibt,j 6= ∅ holds. Indeed, as Gt is a dependency graph, for each j ∈ {2, ..., len(t)}, t[j]

has at least one ingoing edge (x, t[j]) in Gt. Moreover, since t is a topologic sort of

Gt, we actually have that x ∈ {t[1], ..., t[j − 1]}. Similarly, it can be seen that, for

each j ∈ {1, ..., len(t) − 1}, obt,j 6= ∅ holds. Finally, it is immediate to check that

138

ibt,1 = obt,len(t) = ∅.

Now, consider the functions I and O such that, for each a ∈ V ,

• I(a) =
⋃
t∈L,j|t[j]=a ibt,j ∪ Ia, where Ia = {(x, a) | (x, a) ∈ E};

• O(a) =
⋃
t∈L,j|t[j]=a obt,j ∪Oa, where Oa = {(a, y) | (a, y) ∈ E}.

Since G is a dependency graph and given the definition of Ia and Oa, for each

a ∈ V , it is immediate to check that C = 〈G, I,O〉 is a causal net. It remains to show

that C ` L, i.e., that for each trace t in L, there is a valid binding sequence σ such

that 〈t[j], ibj, obj〉 is the j-th binding activity of σ, for each j ∈ {1, ..., len(t)}. Let

t[1]...t[n] be a trace, and consider the sequence σ = 〈t[1], ibt,1, obt,1〉, ..., 〈t[n], ibt,n, obt,n〉.

We have to show that Sσn = ∅ and ibt,j ⊆ Sσj−1, for each j ∈ {1, ..., n}.

To prove the result, we first claim that, for each j ∈ {0, 1, ..., n}, Sσj =
⋃j
i=1{(t[i], t[i′]) |

(t[i], t[i′]) ∈ E, i′ > j}. In fact, the base case holds because Sσ0 = ∅, by definition of

the state of a causal net. Now, assume that the property holds up to the index h < j.

We have to show that Sσh+1 =
⋃h+1
i=1 {(t[i], t[i′]) ∈ E | i′ > h + 1}. To this end, recall

that Sσh+1 = Sσh ∪ obt,h+1 \ ibt,h+1, so that Sσh+1 =
⋃h
i=1{(t[i], t[i′]) ∈ E | i′ > h} ∪

obt,h+1 \ ibt,h+1 holds, by inductive hypothesis. Eventually, the result derives by the

above expression and the fact that obt,h+1 = {(t[h+1], y) ∈ E | y ∈ {t[h+2], ..., t[n]}}

and ibt,h+1 = {(x, t[h+ 1]) ∈ E | x ∈ {t[1], ..., t[h]}}.

Armed with the above property, we can now resume the proof. First, we have to

show that Sσn = ∅. In fact, we have that Sσn =
⋃n
i=1{(t[i], t[i′]) ∈ E | i′ > n}, which

coincides with the empty set as n is the length of t. Second, we have to show that

ibt,j ⊆ Sσj−1, for each j ∈ {1, ..., n}. To this end, recall that ibt,j = {(x, t[j]) ∈ E |

x ∈ {t[1], ..., t[j − 1]}}, and eventually just check that ibt,j ⊆
⋃j−1
i=1{(t[i], t[i′]) ∈ E |

i′ > j − 1} = Sσj−1.

139

t

Figure 8.2: A process model involving a cycle, with an example unfolding.

To deal with arbitrary logs, we next introduce a mechanism for virtually unfolding

cycles. For each trace t, let unfold(t) denote the trace obtained from t by substi-

tuting the i-th occurrence in t of any activity a with the fresh (virtual) activity a〈i〉.

Moreover, let unfold(A) denote the (infinite) set of all virtual activities that can be

built based on A. The starting and terminating activity in unfold(A) are a〈1〉
⊥

and

a〈1〉
>

, respectively.

If L is a log, then we define unfold(L) as the linear log {unfold(t) | t ∈ L}.

Moreover, if Ḡ = (V̄ , Ē) is a graph where V̄ ⊆ unfold(A), then we define the folding

of Ḡ as the directed graph fold(Ḡ) = (V,E) such that V = {x ∈ A | ∃x〈i〉 ∈

unfold(A) s.t. x〈i〉 ∈ V̄ } and E = {(x, y) ∈ A×A | ∃x〈i〉, y〈j〉 ∈ unfold(A) s.t.

(x〈i〉, y〈j〉) ∈ Ē}.

Definition 8.9. Let L be a log. A dependency graph G supports L, denoted by G ` L,

140

if for each trace t ∈ L, there is a graph Ḡt such that fold(Ḡt) is a subgraph of G,

Ḡt à {unfold(t)}, and the following two conditions hold:

(1) there is no pair of edges (x〈i〉, y〈j〉), (x〈i〉, y〈j
′〉) in Ḡt such that j 6= j′, and

(2) there is no pair of edges (x〈i〉, y〈j〉), (x〈i
′〉, y〈j〉) in Ḡt such that i 6= i′. �

Example 8.10. Consider the log consisting of the trace t = acdcde, and note that

unfold(acdcde) = a〈1〉c〈1〉d〈1〉c〈2〉d〈2〉e〈1〉. Moreover, check that the graph Ḡt depicted

on the right part of Figure 8.2 is such that Ḡt à {unfold(acdcde)}. In fact, fold(Ḡ)

is a subgraph of the graph G3 depicted in the left part of the figure, and it is easily

seen that conditions (1) and (2) of Definition 8.9 hold on Ḡt. Hence, G3 ` {acdcde}

holds.

Consider now the trace t′ = abbe and unfold(abbe) = a〈1〉b〈1〉b〈2〉e〈1〉. Let Ḡt′ be

the graph consisting of the edges (a〈1〉, b〈1〉), (a〈1〉, b〈2〉), (b〈1〉, e〈1〉), and (b〈2〉, e〈1〉).

Then, Ḡt′ à {unfold(abbe)}, and fold(Ḡt′) is a subgraph of G3. However, Ḡt′ violates

conditions (1) and (2) in Definition 8.9. Therefore, G3 does not support {abbe}. C

Note that whenever the log L is linear, the above definition reduces to Defini-

tion 8.6 and, in particular, conditions (1) and (2) are immaterial. More formally, in

this case, G ` L holds if, and only if, G à L holds. Hence, for linear logs, we are in

the position of applying Theorem 8.8 with ‘`’ in place of ‘ à’. More generally, the

following result is established in order to relate the notion of support over depen-

dency graphs with the notion of support over causal nets. The result is of interest in

its own, as it allows to restate the semantics of causal nets in pure graph-theoretic

terms. In fact, it will play an important role in our subsequent elaborations.

Theorem 8.11. Let L be a log, and let G be a dependency graph. Then, G ` L if,

and only if, there is a causal net C = 〈G, I,O〉 such that C ` L.

141

Proof. (if part). Let C = 〈G, I,O〉 be a causal net such that C ` L, with G = (N,E).

This means that, for each trace t in L, there is a binding sequence σ such that

σ is valid w.r.t. C, and the j-th element of σ has the form 〈t[j], ibj, obj〉, for each

j ∈ {1, ..., len(t)}. Let Sσj denote the state of C at the j-th step of σ, and consider the

sequence σ̄ having the same length len(t) as σ and whose j-th element 〈āj, ībj, ōbj〉,

for each j ∈ {1, ..., len(t)}, is obtained from 〈t[j], ibj, obj〉 as follows:

• āj is the virtual activity t[j]〈k〉, where k is the number of occurrences of the

activity t[j] in t[1]...t[j], i.e., the number of binding activities defined over t[j]

in the first j elements of σ;

• For each output binding (t[j], y) ∈ obj, let αy denote the number of binding

activities occurring up to the j-th step of σ where (t[j], y) occurs as an element

of the output binding. Note that, since σ is a valid sequence w.r.t. C (and since

bindings are sets, i.e., multiple occurrences are not allowed), we are guaranteed

about the existence of αy binding activities where these output bindings are

consumed, i.e., where they are taken as input. Let next(j, y) be the index of the

αy-th activity binding of this kind, hence, in particular with (t[j], y) ∈ ibnext(j,y),

and note that next(j, y) > j. Then, we define ōbj = {(āj, ānext(j,y)) | (t[j], y) ∈

obj}.

• For each input binding (x, t[j]) ∈ ibj, let βy denote the number of binding

activities occurring up to the j-th step of σ, where (x, t[j]) is taken as input.

Note that, since σ is a valid sequence w.r.t. C, we are guaranteed about the

existence of βy binding activities where these input bindings are produced. Let

prev(j, x) be the index of the βy-th activity binding of this kind, hence, in

particular with (x, t[j]) ∈ obprev(j,x), and note that prev(j, x) < j. Then, we

define ībj = {(āprev(j,x), āj) | (x, t[j]) ∈ ibj}.

142

Define now Ḡt = (V̄t, Ēt) as the graph where V̄t = A({unfold(t)}) and where Ēt =⋃len(t)
j=1 (ībj∪ōbj). We claim that Ḡt is a dependency graph. Indeed, note first that Ḡt is

acyclic because each edge in Ēt has the form (āi, āj), with i < j. In particular, t[1]〈1〉

and t[len(t)]〈1〉 play the role of the starting and the terminating activity, respectively.

Then, consider an activity āj ∈ V̄t \ {t[1]〈1〉} (resp., āj ∈ V̄t \ {t[len(t)]〈1〉}). Note

that āj has at least one ingoing (resp., outgoing) edge in Ēt, because there is at

least an edge of the form (x, t[j]) (resp., (t[j], y)) in ibj (resp., obj), by the fact that

C = 〈G, I,O〉 is a causal net (hence, ibj 6= ∅ and obj 6= ∅ hold) and that σ is a

binding sequence. Since Ḡt is acyclic, the above properties entail that āj occurs in a

path from t[1]〈1〉 to t[len(t)]〈1〉.

Consider now the functions Īt and Ōt such that Īt(āj) = {ībj} and Ōt(āj) = {ōbj},

for each āj ∈ V̄t. Since Ḡt is a dependency graph and given the construction of its

edges, we derive that 〈Ḡt, Īt, Ōt〉 is a causal net (over A({unfold(t)})). Moreover, we

claim that σ̄ is valid w.r.t. 〈Ḡt, Īt, Ōt〉. To prove the claim, note first that, given the

above construction for σ̄, if i = prev(j, x) (resp., i = next(j, y)), then x = t[i] (resp.,

y = t[j]) and j = next(i, t[j]) (resp., j = prev(i, t[j])). Then, consider the state Sσ̄j

of 〈Ḡt, Īt, Ōt〉 at the j-th step of σ̄, and observe that the following properties hold.

• For each j ∈ {1, ..., len(t)}, ībj ⊆ Sσ̄j−1. Indeed, consider an element (āprev(j,x), āj)

in ībj, let i = prev(j, x), and recall that (āprev(j,x), āj) = (āi, ānext(i,t[i])). There-

fore, (āprev(j,x), āj) occurs in ōbi and, hence, in Sσ̄i = Sσ̄i−1∪ōbi\ībi. Eventually, as

āj occurs only at the j-th step of σ̄ and i < j, we have that (āprev(j,x), āj) ∈ Sσ̄j−1.

• Sσ̄len(t) = ∅. Indeed, assume by contradiction that (x̄, ȳ) occurs in Sσ̄len(t). Then,

there is an index j such that x̄ = āj and (āj, ȳ) occurs in ōbj. By construction,

we therefore have that (x̄, ȳ) = (āj, ānext(j,y)). However, by letting i = next(j, y),

we can write that (āj, ānext(j,y)) = (āprev(i,t[j]), āi) ∈ ībi. Since i > j, it follows

143

that (x̄, ȳ) 6∈ Sσ̄i , as x̄ occurs only at the j-th step of σ̄. We conclude that

(x̄, ȳ) 6∈ Sσ̄len(t). Contradiction.

By putting together the above results, we have so far shown that 〈Ḡt, Īt, Ōt〉 is

a causal net with 〈Ḡt, Īt, Ōt〉 ` {unfold(t)}, for each t in L. It follows that we can

apply Theorem 8.8 on 〈Ḡt, Īt, Ōt〉, and we derive that Ḡt à {unfold(t)} holds, for

each t in L.

Finally, consider the graph Ḡt and note that conditions (1) and (2) in Definition 8.9

are trivially satisfied, by construction of its edges. Indeed, all edges outgoing from āj,

with j ∈ {1, ..., len(t)}, have the form (āj, ānext(j,y)), where (t[j], y) ∈ obj. In particu-

lar, (āj, ānext(j,y)) is univocally determined by y, so that (āj, ānext(j,y)) 6= (āj, ānext(j,y′))

implies that y 6= y′ and hence ānext(j,y) and ānext(j,y′) are virtual activities built from

different true activities. A similar line of reasoning applies to the edges incoming into

āj. Moreover, fold(Ḡt) is a subgraph of G. Indeed, Ēt is the union of all bindings in

〈Ḡt, Īt, Ōt〉, and any element in these bindings is of the form (x〈i〉, y〈j〉), where (x, y)

occurs in a binding of I or O and, hence, is an edge in E. Therefore, according to

Definition 8.9, we have shown that G ` L holds.

(only-if part). Assume that G ` L holds, with G = (V,E). Thus, for each

trace t ∈ L, there is a graph Ḡt = (V̄t, Ēt) such that fold(Ḡt) is a subgraph of G,

Ḡt à {unfold(t)}, and the following two conditions hold:

(1) there is no pair of edges (x〈i〉, y〈j〉), (x〈i〉, y〈j
′〉) in Ḡt such that j 6= j′, and

(2) there is no pair of edges (x〈i〉, y〈j〉), (x〈i
′〉, y〈j〉) in Ḡt such that i 6= i′.

By Theorem 8.8 applied on the fact that Ḡt à {unfold(t)} holds, we derive that

there is a causal net C̄t = 〈Ḡt, Īt, Ōt〉 such that C̄t ` {unfold(t)} holds. This means

that there is binding sequence σ̄ that is valid w.r.t. C̄ and where the j-th binding

144

activity 〈āj, ībj, ōbj〉 of σ̄, for each j ∈ {1, ..., len(t)}, is such that āj is the symbol

t[j]〈k〉, with k being the number of occurrences of t[j] in t[1]...t[j].

Let It (resp., Ot) be the function such that, for each node z in fold(Ḡt), It(z) =

{ibz | exists j s.t. ībz ∈ Īt(z〈j〉)} (resp., Ot(z) = {obz | exists i s.t. ōbz ∈ Ōt(z〈i〉)}),

where ibz (resp., obz) is the binding obtained from ībz (resp., ōbz) by stripping off

the instantiation numbers of the virtual symbols. Similarly, define σ as the sequence

obtained from σ̄ by stripping off the instantiation numbers of the virtual symbols.

Note that because of the conditions (1) and (2) above, and since bindings are defined

over the edges of Ḡt, |ībz| = |ibz| and |ōbz| = |obz| hold, for each activity z. There-

fore, if Sσ̄j is the state of C̄t at the j-th step of σ̄, then the state Sσj of Ct at the j-th

step of σ can be obtained from Sσ̄j by just stripping off the instantiation numbers of

the symbols it contains. Hence, since σ̄ is valid w.r.t. C̄t, we can conclude that σ is

valid w.r.t. Ct = 〈fold(Ḡt), It,Ot〉. This witnesses that Ct ` {t} holds.

Let now Ḡ = (V̄ , Ē) be the graph such that V̄ =
⋃
t∈L V̄t and Ē =

⋃
t∈L Ēt, and

let I and O be the functions such that I(z) =
⋃
t∈L It(z) and O(z) =

⋃
t∈LOt(z), for

each z in fold(Ḡ). Note that fold(Ḡ) is a subgraph of G, and that C = 〈fold(Ḡ), I,O〉

is a causal net such that C ` L. Therefore, in the case where fold(Ḡ) = G, then we

have derived that there is a causal net C = 〈G, I,O〉 such that C ` L. To conclude

the proof, the only remaining case to be analyzed is when fold(Ḡ) = (Vf , Ef) is

a proper subgraph of G. In this case, consider the functions I ′ and O′ such that,

for each z ∈ V ∩ Vf , I ′(z) = I(z) ∪ Iz and O′(z) = O′(z) ∪ Oz, and for each

z ∈ V \ Vf , I ′(z) = Iz and O′(Z) = Oz, where Iz = {{(x, z)} | (x, z) ∈ E} and

Oz = {{(z, y)} | (z, y) ∈ E}. As G is a dependency graph, by construction of I ′ and

O′, we trivially have that 〈G, I ′,O′〉 is a causal net, which generalizes the behavior of

C = 〈fold(Ḡ), I,O〉 over the nodes and the edges in G that do not occur in fold(Ḡ).

145

Since C ` L, we conclude that 〈G, I ′,O′〉 ` L. Indeed, if σ is a sequence valid w.r.t.

C, then it is also valid w.r.t.〈G, I ′,O′〉.

Example 8.12. Consider the causal net C3 = 〈G3, I3,O3〉, where G3 is the dependency

graph shown in Figure 8.2, and where I3 and O3 are the functions such that: I3(a) =

{∅}, I3(b) = {{(a, b)}}, I3(c) = {{(b, c)}, {d, c}}, I3(d) = {{(c, d)}}, I3(e) =

{{(b, e)}, {(c, e)}, {(b, e), (c, e)}}, O3(a) = {{(a, b), (a, c)}, {(a, b}, {(a, c)}}, O3(b) =

{{(b, d)}}, O3(c) = {{(c, d)}}, O3(d) = {{(d, e)}}, and O3(e) = {∅}. Note that

C3 ` {acdcde} holds. Hence, by the above result, we can conclude that G3 ` {acdcde}

also holds, as we have in fact already observed in Example 8.10. C

Note that if conditions (1) and (2) in Definition 8.9 are not guaranteed to hold,

then a weaker variant of Theorem 8.11 can be still established.

Theorem 8.13. Let L be a log, and let G be a dependency graph such that for

each trace t ∈ L, there is a graph Ḡt such that fold(Ḡt) is a subgraph of G and

Ḡt à {unfold(t)}. Then, there is a possibly extended causal net C = 〈G, I,O〉 such

that C ` L.

Proof. In the case where conditions (1) and (2) in Definition 8.9 are not guaranteed to

hold, by inspecting the proof of the only-if part of Theorem 8.11, it can be checked

that the structure C built there over G is still such that C ` L holds. The only

difference is that C might be an extended causal net.

CHAPTER 9

Precedence Constraints: Mining Problems and Complexity

9.1 Introduction

In this chapter, we propose and analyze a framework to specify additional prop-

erties on the process models that can be produced as output by process discovery

algorithms. In particular, we formalize the concept of precedence constraints, discuss

their application to the problem of mining causal nets, and analyze their complexity.

9.2 Syntax and Semantics

A precedence constraint is an assertion aimed at expressing a relationship of prece-

dence among some of the activities in the underlying set A. The language of prece-

dence constraints is next defined in order to smoothly allow the formalization of the

kinds of prior knowledge that are usually available to the analyst, such as, parallelism,

locality, or exclusivity of activities (cf. Goedertier et al. [2009]).

Definition 9.1. A positive precedence constraint π over A is either

• an expression of the form S → T , called edge constraint, or

• an expression of the form S T , called path constraint,

where S, T ⊆ A, with |S| ≥ 1 and |T | ≥ 1, are non-empty sets of activities.

For a positive constraint π, ¬(π) is a negative precedence constraint. �

146

147

Precedence constraints are interpreted over directed graphs as follows.

Definition 9.2. Let G = (V,E) be a directed graph such that V ⊆ A. Then,

(1) G satisfies an edge constraint S → T , if there is an edge (x, y) ∈ E with x ∈ S

and y ∈ T ;

(2) G satisfies a path constraint S T , if there is a sequence x = a0, a1, ..., an = y,

with n > 0, such that x ∈ S, y ∈ T and (ai, ai+1) ∈ E, for each i ∈ {0, ..., n− 1};

(3) G satisfies ¬(π), if G does not satisfy π.

If G satisfies each constraint in a set Π of precedence constraints, then G is a

model of Π, denoted by G |= Π. The set of all activities occurring in the constraints

in Π is hereinafter denoted by A(Π). �

A foundational task in process mining consists in automatically building a model

that can explain the behavior registered in all the traces of some log L given as input.

In this context, precedence constraints can formalize additional requirements that

the model discovered from L has to satisfy. This gives rise to the following “Causal

Net Mining” (short: CN-Mining) problem.

CN-Mining: Given a set A of activities, a log L with A(L) ⊆ A, and a set Π of

precedence constraints with A(Π) ⊆ A, compute a possibly extended causal net

C = 〈G, I,O〉 over A such that C ` L and G |= Π, or check that no net with these

properties exists.

Note that, for Π = ∅, the problem above reduces to the standard one considered

in the literature. Moreover, observe that we are not considering (for the moment)

quality measures for the resulting net. This issue will be explored later on. Finally,

note that extended causal nets are allowed as solutions to the problem. In fact,

148

throughout the chapter, we shall explicitly discuss and show how our results extend

to the more stringent setting where the focus is on (standard) causal nets.

Example 9.3. Consider the set Π = { ¬({b} {d}),¬({d} {b})} of precedence

constraints. We have two negative path constraints, stating that b and d must be

executed over “parallel” branches of the given process.

Consider then the traces abcde and acbde within the setting of Example 8.1, plus

the causal nets C1 and C2 discussed in Example 8.3 and depicted in Figure 8.1. With-

out additional constraints, we have already noticed that C1 and C2 are such that

C1 ` {abcde, acbde} and C2 ` {abcde, acbde}. However, the dependency graph G2

(associated with C2) is a model of Π, while G1 is not, as it violates the constraint

¬({b} {d}). Thus, C2 is a solution to CN-Mining on input {abcde, acbde} and

Π. C

As a further remark, note that a solution to the mining problem might involve

activities that do not occur in the log and in the constraints, i.e., in A \ A(L) \

A(Π). As an example, consider the set {¬({a} → {b}), {a} {b}} of constraints

prescribing the existence of a path from a to b, but forbidding the existence of a

direct connection. If the log provided as input is empty, then any solution has to be

defined over some “fresh” activities (at least one) ensuring the existence of a path

from a to b of this kind. However, according to the formulation of CN-Mining,

any “fresh” activity (in A \ A(L) \ A(Π)) has to be explicitly provided as input

to the mining problem, too. Therefore, one might wonder whether scenarios exist

where all solutions need exponentially many fresh activities (w.r.t. |A(L) ∪ A(Π)|),

so that explicitly listing all of them would artificially blow up the size of the input.

We next show that this is not possible, since a “small” solution always exists if the

problem admits any solution. Hence, there is no loss of generality, but rather we gain

149

flexibility, by taking as input the set A possibly implicitly, i.e., by just specifying

the upper bound on the number of activities that is defined in the statement of the

result below.

Theorem 9.4. Let L be a log, let Π be a set of precedence constraints, and let

C = 〈G, I,O〉 be a causal net (resp., an extended causal net) with C ` L and G |= Π.

Then, a causal net (resp., an extended causal net) C ′ = 〈G ′, I ′,O′〉 exists such that

C ′ ` L, G ′ |= Π, and |V ′| ≤ |A(L) ∪ A(Π)|2 + |A(L) ∪ A(Π)|, with V ′ being the set

of nodes of G ′. Moreover, if G is acyclic, then G ′ is acyclic, too.

Figure 9.1: Example construction in the proof of Theorem 9.4.

Proof. Let C = 〈G, I,O〉, with G = (V,E), be a (resp., an extended) causal net such

that C ` L and G |= Π. Consider the graph G ′ = (V ′, E ′1 ∪ E ′2) built as follows. The

set V ′ consists of all the activities in A(L) ∪A(Π) plus a fresh activity ax,y for each

pair of activities x, y ∈ A(L)∪A(Π) such that there is a path in G from x to y. The

set E ′1 consists of all the edges in E defined over the activities in A(L) ∪ A(Π), i.e.,

E ′1 = {(x, y) ∈ E | {x, y} ⊆ A(L) ∪ A(Π)}. The set E ′2 contains the edges (x, ax,y)

and (ax,y, y), for each fresh activity ax,y ∈ V ′ (hence, ax,y 6∈ V), and no further edge

is in E ′2.

150

As an example, consider the graph G reported on the left of Figure 9.1. The

graph is defined over the activities in A(L)∪A(Π) = {a⊥ , a> , x, y} plus 6 additional

activities, which are depicted as circles. The graph G ′ that is built based on G is

illustrated on the right part of the same figure. All nodes in G ′ that do not occur in G

are depicted as black circles. In particular, observe that the node ax,y is responsible

for preserving the connectivity that is supported in G by the nodes not occurring in

A(L) ∪ A(Π).

Let us now analyze the properties of G ′. First, note that the activities a⊥ and a>

are in V ′, as in fact they occur in A(L). Moreover, since G is a dependency graph,

no edge ingoing into a⊥ (resp., outgoing from a>) occurs in E ′2. Hence, given the

construction of the edges in E ′1, we conclude that a⊥ and a> have no ingoing and

outgoing edges in G ′.

Now, we claim that for each pair of activities x, y ∈ A(L)∪A(Π), there is a path

from x to y in G if, and only if, there is a path from x to y in G ′. Indeed, if there is a

path from x to y in G, then the edges (x, ax,y) and (ax,y, y) occur in E ′2. Conversely,

assume that there is a path π from x to y in G ′, and for the sake of contradiction

that there is no path from x to y in G. As all edges of E defined over the activities

in A(L)∪A(Π) are in E ′1, it must be the case that two edges occur in E ′2 having the

form (x̄, ax̄,ȳ) and (ax̄,ȳ, ȳ) and such that there is no path from x̄ to ȳ in G. However,

this is impossible given the construction of the edges in E ′2.

In the light of the above property, it follows that if G is acyclic, then G ′ is acyclic,

too. Indeed, just notice that any cycle in G ′ must necessarily include a node in

A(L) ∪ A(Π). Moreover, we can conclude that each activity a ∈ A(L) ∪ A(Π) \

{a⊥ , a>} is in a path in G ′ from a⊥ to a> . Consider then an activity of the form

ax,y, which occurs in V ′ \ V . Since x (resp., y) either coincides with a⊥ (resp., a>)

151

or it is reachable from a⊥ (can reach a>) in G ′, because this property holds in fact

on G, we also conclude that ax,y is in a path in G ′ from a⊥ to a> . By putting the

above observations together, it follows that G ′ is a dependency graph over the set V ′

of activities. Moreover, |V ′| ≤ |A(L) ∪ A(Π)|2 + |A(L) ∪ A(Π)|.

Recall now that G ′ preserves all the edges defined over the activities in A(L),

and that C = 〈G, I,O〉 is a causal net (resp., extended causal net) such that C ` L.

It follows that there is a (resp., an extended) causal net C ′ = 〈G ′, I ′,O′〉 such that

C ′ ` L, where I ′ and O′ just extend I and O as to include, for each given activity,

a binding defined over the whole set of its ingoing and outgoing edges, respectively.

Note that C ′ supports all the traces in L, even without using such fresh bindings.

In fact, the construction of I ′ and O′ is just required to ensure that C ′ is formally a

(possibly extended) causal net.

In order to conclude, we have then to show that G ′ |= Π. To this end, note

that edge constraints and negated edge constraints are satisfied by G ′, because they

are satisfied by G and since the two graphs coincide over the activities in A(Π).

Eventually, recall that, for each pair of activities x, y ∈ A(L) ∪ A(Π), there is a

path from x to y in G if, and only if, there is a path from x to y in G ′. Hence, also

path constraints and negated path constraints are satisfied by G ′, because they are

satisfied by G. That is, G ′ |= Π.

9.3 Precedence Constraints

From a conceptual viewpoint, the problem defined above comprises a mining task,

i.e., mining a process model supporting a given log, and a reasoning task, i.e., to

check whether the model additionally satisfies some precedence constraints. We next

show that even the mining task can be declaratively formulated in terms of reasoning

152

Function computeBindings(G, L), with G = (A, E);

∀a ∈ A, I(a) := Ia and O(a) := Oa, where
Ia = {(x, a) | (x, a) ∈ E} and Oa = {(a, y) | (a, y) ∈ E};

for each trace t in L, and for each i ∈ {1, ..., len(t)} do
I(t[i]) := I(t[i]) ∪ {(t[j], t[i]) ∈ E | j < i}; (*treated as multi-sets*)
O(t[i]) := O(t[i]) ∪ {(t[i], t[j]) ∈ E | i < j}; (*treated as multi-sets*)

end for
return 〈G, I,O〉;

Figure 9.2: Computation of a possibly extended causal net in Theorem 9.6.

about precedence constraints. In other words, the language of precedence constraints

is enough expressive as to capture the semantics of causal nets.

Definition 9.5. Let L be a log. For each trace t ∈ L, the set of precedence constraints

induced by t is defined as follows:

π(t) = { {t[1], ..., t[i− 1]} → {t[i]} | 1 < i ≤ len(t) }∪

{ {t[i]} → {t[i+ 1], ..., t[len(t)]} | 1 ≤ i < len(t) }.

The set of precedence constraints induced by L is defined as π(L) =
⋃
t∈L π(t). �

Intuitively, we have stated that each activity in t can be directly reached by at

least one of its predecessors in t, and it can directly reach at least one of its successors.

Based on this definition, we establish the following crucial result.

Theorem 9.6. Let G be a dependency graph over a set A of activities, let L be a log

with A(L) ⊆ A, and let Π be a set of precedence constraints with A(Π) ⊆ A. The

following statements are equivalent:

(1) The graph G is a model of Π ∪ π(L).

(2) There is a possibly extended causal net C = 〈G, I,O〉 that is a solution to CN-

Mining on input A, L, and Π.

Moreover, input and output bindings witnessing that the “ (1)⇒(2)”-part holds can

be built via the function reported in Figure 9.2. In particular, if there is no trace in

153

L containing repetitions of the same activity (for short, we hereinafter say that L is

linear), then the function actually builds a (standard) causal net.

Since the proof is rather involved, as a base case we show that the result holds in

absence of user-defined constraints and when the focus is on linear logs only. Note

that in Chapter 8 we have introduced a number of technical ingredients which will

use in this proof.

Theorem 9.7. Let L be a linear log and let G be a dependency graph. Then, G |=

π(L) if, and only if, G à L.

Proof. (if part). Assume that G à L, i.e., for each t ∈ L, there is a subgraph Gt =

(Vt, Et) of G = (V,E) such that Gt is an acyclic dependency graph, and t is a topologic

sort of Gt. Therefore, for each i ∈ {2, ..., len(t)} (resp., i ∈ {1, ..., len(t)−1}), there is

a path from t[1] (resp., t[i]) to t[i] (resp., t[len(t)]) in Gt, by definition of dependency

graph. In particular, since t is a topologic sort of Gt, we are guaranteed about

the existence of an edge in Et (and then in E) having the form (t[j], t[i]) (resp.,

(t[i], t[j′])) and such that j < i (resp., i < j′) holds. Hence, the set π(t) of the

precedence constraints induced by t are satisfied by G, for each trace t in L. That

is, G |= π(L).

(only-if part). Assume that G |= π(L), with G = (V,E). Let t be a trace in

L, and let Gt = (Vt, Et) be the graph such that Vt = {t[1], ..., t[len(t)]} and Et =

{(t[i], t[j]) ∈ E | 1 ≤ i < j ≤ len(t)}. Since L is linear, we can note that Gt is acyclic,

that t[1] = a⊥ has no ingoing edges, and that t[len(t)] = a> has no outgoing edges.

We now claim that each activity t[i] ∈ Vt\{t[1]} can be reached from t[1]. The above

property can be shown by induction on the index i > 1. In the case where i = 2,

(t[1], t[2]) must belong to E (and hence to Et), in order to satisfy the constraint

154

{t[1]} → {t[2]} in π(t). Assume now that the activities in the set {t[2], ..., t[i − 1]}

can be reached from t[1]. Then, because of the constraint {t[1], ..., t[i−1]} → {t[i]} in

π(t), we again have that t[i] can be reached from t[1]. Similarly, it can be checked that

the terminating activity t[len(t)] can be reached by each activity t[i] ∈ Vt\{t[len(t)]},

by using this time the fact that {t[i]} → {t[i+ 1], ..., t[len(t)]} is in π(t). Hence, Gt is

an acyclic dependency graph. Moreover, for each edge (t[i], t[j]) in Et, we have that

i < j holds by construction. Thus, t is a topologic sort of Gt. As Gt is a subgraph of

G, we then have G à L.

Theorem 9.7 and Theorem 8.8 imply the following corollary, where process mining

over linear logs is restated in terms of reasoning about precedence constraints.

Corollary 9.8. Let G be a dependency graph over a setA of activities, let L be a linear

log with A(L) ⊆ A, and let Π be a set of precedence constraints with A(Π) ⊆ A.

Then, the followings are equivalent: (1) The graph G is a model of Π ∪ π(L); (2)

There is a causal net C = 〈G, I,O〉 that is a solution to CN-Mining on input A, L,

and Π.

Example 9.9. Let Π be the set of constraints in Example 9.3, and consider the novel

set Π′ = Π ∪ π({abcde, acbde}). It can be checked that the dependency graph G2 in

Figure 8.2 is a model of Π′. Thus, by Corollary 9.8, we are guaranteed about the

existence of a causal net that can be defined on top of G2 and that is a solution to

CN-Mining on input {abcde, acbde} and Π. In fact, we already know that the causal

net C2 defined in Example 8.3 is a solution. C

Note that, the above result completely characterizes the cases where the problem

CN-Mining admit solutions. Indeed, point (2) above can be equivalently restated

as the existence of a possibly extended causal net that is a solution to the mining

155

problem. This is because of the following fact, which trivially holds since the ability

of extended nets to activate multiple instances of the same activity is useless over

linear logs.

Fact 9.10. Over linear logs, CN-Mining admits a solution if, and only if, it admits

a causal net as a solution.

Moreover, it is useful to remark that the ‘(1)⇒(2)’-part of Corollary 9.8 can be

stated constructively. That is, the causal net 〈G, I,O〉 can be efficiently built given

the graph G. The method is just based on inspecting the proofs for the results

in Section 8.4, and in fact it coincides with the one algorithmically reported in

Figure 9.2.

At this point, the natural question is whether we can extend Theorem 9.7 to deal

with arbitrary logs. An answer, which is however only partially positive, is stated

below.

Theorem 9.11. Let L be a log and let G be a dependency graph. Then, G ` L

implies that G |= π(L).

Proof. Assume that G ` L holds, with G = (V,E). By Definition 8.9, for each trace

t ∈ L, there is a graph Ḡt = (V̄t, Ēt) such that, in particular, fold(Ḡt) is a subgraph

of G = (Vt, Et) and Ḡt à {unfold(t)}. Then, we apply Theorem 9.7 on Ḡt, and

we conclude that Ḡt |= π(unfold(t)). Moreover, we note that fold(Ḡt) |= π(t) also

holds. Indeed, for each i ∈ {1, ..., len(t)}, whenever (unfold(t)[j], unfold(t)[i]) (resp.,

(unfold(t)[i], unfold(t)[h])) is in Ēt, then (t[j], t[i]) (resp., (t[i], t[h])) is an edge of

fold(Ḡt) with j < i (resp., h > i). Finally, define Ḡ = (
⋃
t∈L V̄t,

⋃
t∈L Ēt). Then, we

claim that fold(Ḡ) |= π(L). Indeed, the constraints induced by L are positive ones,

so that, since fold(Ḡt) |= π(t), the graph fold(Ḡ) (of which fold(Ḡt) is a subgraph) is

156

still such that fold(Ḡ) |= π(t). To conclude, we can eventually observe that fold(Ḡ)

is a subgraph of G, and hence G |= π(L).

This is the best one can hope to do. Indeed, we can see that G |= π(L) does not

imply G ` L, by just looking again at Example 8.10. There, we have noticed that the

graph G3 does not support {abbe}. However, it can be checked that G3 |= π({abbe})

holds.

Despite the above limitation, the counterpart of Corollary 9.8 for arbitrary logs

can still be obtained by moving to possibly extended causal nets—as with Corol-

lary 9.8, the ‘(1)⇒(2)’-part below is formalized algorithmically in Figure 9.2.

Theorem 9.12. Let G be a dependency graph over a set A of activities, let L be a

log with A(L) ⊆ A, and let Π be a set of precedence constraints with A(Π) ⊆ A. The

followings are equivalent: (1) The graph G is a model of Π ∪ π(L); (2) There is a

possibly extended causal net C = 〈G, I,O〉 that is a solution to CN-Mining on input

A, L, and Π.

Proof. (1)⇒(2). Assume that G is a model of Π ∪ π(L), with G = (V,E). Let

Ḡ = (V̄ , Ē) be the graph such that V̄ = A(unfold(L)) and Ē = {(x〈i〉 , y〈j〉) | (x, y) ∈

E, x〈i〉 ∈ V̄ , y〈j〉 ∈ V̄ }. Since G is a dependency graph, it is also the case that Ḡ is a

dependency graph (over A(unfold(L))). Moreover, Ḡ |= π(unfold(L)) holds. Indeed,

just note that for each trace t ∈ L and for each i ∈ {1, ..., len(t)}, if (t[j], t[i]) (resp.,

(t[i], t[h])) is in E with j < i (resp., h > i), then (unfold(t)[j], unfold(t)[i]) (resp.,

(unfold(t)[i], unfold(t)[h])) is in Ē by construction. Thus, we can apply Theorem 9.7

in order to conclude that Ḡ à unfold(L). Eventually, we observe that fold(Ḡ) is

clearly a subgraph of G. Then, we distinguish two cases. In the case where Ḡ

satisfies conditions (1) and (2) in Definition 8.9, then we can apply Theorem 8.11

157

and conclude that a causal net C can be built over G such that C ` L. Instead, in the

case where one of the above conditions does not hold, we can apply Theorem 8.13

and conclude that there is a possibly extended causal net C built over G and such

that C ` L.

(2)⇒(1). Assume that C = 〈G, I,O〉 is a solution to CN-Mining on input A, L,

and Π, and that, for the sake of contradiction, G is not a model of Π ∪ π(L). The

fact that G is not a model of Π is trivially impossible. Thus, assume that G is not a

model of π(L), i.e., there is a trace t ∈ L such that G does not satisfy the constraints

in π(t). According to Definition 9.5, there are two possible cases: (a) there is an

index i ∈ {2, ..., len(t)} such that there is no edge in G from one of the activities in

{t[1], ..., t[i− 1]} to t[i]; (b) there is an index i ∈ {1, ..., len(t)− 1} such that there is

no edge in G from t[i] to one of the activities in {t[i+ 1], ..., t[len(t)]}.

Now, as C is a solution, it must be the case that C supports the trace t, i.e., there

is a binding sequence σ that is valid w.r.t. C and where the j-th binding activity

〈aj, ibj, obj〉 of σ, for each j ∈ {1, ..., len(t)}, is such that aj = t[j]. In particular, the

i-th activity is 〈t[i], ibi, obi〉. In the case (a) above, the set ibi, which is a non-empty

set of edges ingoing into t[i], is a subset of the set {(x, t[i]) | x 6∈ {t[1], ..., t[i− 1]}},

while the state Sσi−1 of the causal net consists of edges having the form (x′, y), with

x′ ∈ {t[1], ..., t[i − 1]}. It follows that ibi is not contained in Sσi−1, and σ is not

valid, which is impossible as σ is valid. In the case (b), the set obi, which is a

non-empty set of edges outgoing from t[i], is included in the set {(t[i], y) | y 6∈

{t[1 + 1], ..., t[len(t)]}}. Thus, Sσi necessarily includes an element having the form

(t[i], y), with y 6∈ {t[1 + 1], ..., t[len(t)]}. However, as there is no edge in G from t[i]

to one of the activities in {t[i + 1], ..., t[len(t)]}, this element will occur at the last

step of the execution of σ, i.e., Sσlen(t) 6= ∅, which again is impossible.

158

By combining the above result with Corollary 9.8, we have established the re-

sult in Theorem 9.6. In particular, the constructive “(1)⇒(2)”-part is seen to hold

by inspecting the construction in the proofs and by observing that input and out-

put bindings are constructed there precisely according to the function reported in

Figure 9.2.

As an example application, since G3 |= π({abbe}) holds, we are guaranteed that a

net supporting this trace can be built on top of G3. To be concrete, we can consider

the extended causal net C ′3 = 〈G3, I ′3,O′3〉 where I ′3(a) = {∅}, I ′3(b) = {{(a, b)}},

I ′3(e) = {{(b, e), (b, e)}}, O′3(a) = {{(a, b), (a, b)}}, O′3(b) = {{(b, e)}}, and O′3(e) =

{∅}—the specification of the bindings over the activities c and d is irrelevant here.

Note that Theorem 9.6 reformulates the mining problem and the dynamics of

causal nets in purely ”static” terms, i.e., in terms of reasoning about the satisfac-

tion of precedence constraints with no reference to the concepts of bindings and of

trace/log support. This will be very useful for designing our algorithms and for con-

ducting the complexity analysis. Moreover, the result has an immediate concrete

application. Indeed, the reasoning problem can be easily encoded via a “standard”

constraints satisfaction problem, CSP for short (see, e.g., Dechter [1992]), so that

existing constraint programming platforms can be reused to compute solutions, in

the spirit of the works by [De Raedt et al., 2008] and [Nijssen et al., 2009]. A prelim-

inary version of this approach was discussed by [Greco et al., 2012], however it was

not designed to deal with causal nets (i.e., with full process models), but its focus

was on the discovery of the underlying dependence graphs only.

An advantage of the CSP-based framework is that it can transparently handle

arbitrary sets of precedence constraints. The price to be paid, however, is that com-

puting a solution might be very challenging from a computational viewpoint, as we

159

shall formally illustrate in Section 9.4. In this dissertation, we decided therefore

to propose solution algorithms that are specific for some classes of constraints (over

which solutions can be efficiently computed), as well as methods that handle the gen-

eral setting heuristically. In fact, from our experimentation, the heuristics methods

emerged to be definitively much faster (orders of magnitude) than the CSP-based

method, while being capable to end up with an exact solution in most cases. Ac-

cordingly, for those cases where a heuristic solution is acceptable (i.e., where some

constraints might be violated), our earlier approach has to be considered as pragmat-

ically superseded by the methods proposed here. However, it is an interesting avenue

of further research to define different encodings (possibly, still CSP-based ones).

9.4 Complexity Analysis

We now complete the picture by studying the computational complexity of the

problem CN-Mining, which is an important step towards developing effective al-

gorithms for its solution. In the analysis that follows, we take into account various

qualitative properties regarding the kinds of constraint being allowed, by tracing the

tractability frontier w.r.t. them. Formally, let S be a subset of the following set of

symbols {→, , 6→, 6 }. Let C[S] denote all the possible constraints that can be built

in a way that if→6∈ S (resp., 6∈ S, 6→6∈ S, 6 6∈ S), then no edge (resp., path, negated

edge, negated path) constraint is in C[S]). Let CN-Mining[S] denote the restriction

of the problem over any set Π of precedence constraints such that Π ⊆ C[S]. And,

finally, let CN-Existence[S] be the decision version of this problem, where we have

just to decide whether a solution exist at all, and we are not asked to compute a

solution, if any. Then, our results can be summarized as it is stated next (see also

Figure 9.3).

160

Figure 9.3:
Tractability frontiers. A set S ⊆ {→, , 6→, 6 } above (resp., below) the frontier means
that the corresponding problem is NP-hard (resp., feasible in polynomial time) on C[S].

Theorem 9.13. If S ⊆ {→, , 6→} or S ⊆ {6 }, then CN-Mining[S] is feasible in

polynomial time. Otherwise, it is even intractable to check whether there is a solution

at all (formally, the problem CN-Existence[S] is NP-complete).

We now provide the proof of the hardness results in Theorem 9.13. Note that

these proofs are based on linear logs only. Hence, according to Fact 9.10, for these

results it is immaterial whether CN-Mining is defined over extended causal nets or

over (standard) causal nets.

For the analysis that follows, we find convenient to introduce a variant of the prob-

lem CN-Mining, which we call Acyclic-CN-Mining. Given a set A of activities,

a log L with A(L) ⊆ A, and a set Π of precedence constraints with A(Π) ⊆ A, the

problem asks to compute a possibly extended causal net C = 〈G, I,O〉 over A such

that G is acyclic, C ` L, and G |= Π, or to check that no net with these properties

exists.

We start the proofs of the hardness results stated in Theorem 9.13, by focusing

161

on edge and path constraints imposed over the problem Acyclic-CN-Existence.

Lemma 9.14. Acyclic-CN-Existence[{→}] is NP-hard.

Proof. Consider the monotone one-in-three 3SAT problem defined as follows. We

are given as input a Boolean formula in conjunctive normal form Φ = c1 ∧ . . . ∧ cm

over the variables X1, . . . , Xn, where each clause cj, with j ∈ {1, ...,m}, has the form

(tj,1 ∨ tj,2 ∨ tj,3), and tj,1, tj,2, and tj,3 are three distinct variables. Note that Φ is

always satisfiable by the truth assignment where all variables evaluate true. In fact,

the problem asks whether there is a satisfying truth assignment where each clause

has exactly one variable evaluating true (and hence two variables evaluating false).

This problem is known to be NP-complete Schaefer [1978].

Based on any formula Φ as above, we build the set A(Φ) consisting of the vari-

ables in Φ, which are transparently viewed as activities, plus the three distinguished

activities c, a⊥ and a> , where a⊥ and a> are as usual the starting and the terminating

activity, respectively. So, we formally have A(Φ) = {c} ∪ {X1, ..., Xn} ∪ {a⊥ , a>}.

Moreover, we build the set Π(Φ) ⊆ C[{→}] of edge constraints as follows. For

each clause cj, Π(Φ) contains the constraints {tj,1, tj,2, tj,3} → {c}, {c} → {tj,1, tj,2},

{c} → {tj,1, tj,3}, and {c} → {tj,2, tj,3}. No further constraint is in Π(Φ).

We now claim that: There is a satisfying truth assignment to the variables of Φ

such that each clause has exactly one variable evaluating true ⇔ there is an acyclic

dependency graph G (over A(Φ)) such that G |= Π(Φ).

(⇒) Assume that σ is a satisfying truth assignment such that each clause has exactly

one variable evaluating true. Consider the graph G(Φ, σ) = (A(Φ), E) whose set

of edges is defined as follows. For each variable Xh, with h ∈ {1, ..., n}, the edges

(a⊥ , Xh) and (Xh, a⊥) are in E. For each clause cj and each variable tj,i evaluating

162

Figure 9.4: Example reduction in the proof of Lemma 9.14.

true (resp., false) in σ, the edge (tj,i, c) (resp., (c, tj,i)) is in E. The edges (a⊥ , c)

and (c, a>) are in E, and no further edge is in E. As an example, the graph G(Φ, σ)

associated with the formula Φ = (X1 ∨X2 ∨X3) ∧ (X3 ∨X4 ∨X5) and the truth

assignment σ, where X1 and X4 are the only variables evaluating true, is reported

in Figure 9.4. In particular, note that the edges whose definition depend on σ are

depicted in bold.

We first show that G(Φ, σ) is a dependency graph. Indeed, a⊥ and a> have no

ingoing and outgoing edges, respectively. Moreover, for each activity a ∈ A(Φ) \

{a⊥ , a>}, the edges (a⊥ , a) and (a, a>) are in E, so that a occurs in a path from a⊥

to a> .

Then, we show that G(Φ, σ) satisfies all the constraints in Π(Φ). Recall that

σ is a satisfying truth assignment such that each clause has exactly one variable

evaluating true. Thus, for each clause cj, with j ∈ {1, ...,m}, by construction there

is an edge of the form (tj,i, c), so that the constraint {tj,1, tj,2, tj,3} → {c} is satisfied.

Moreover, there are also two edges of the form (c, tj,i′) and (c, tj,i′′), where i′ 6= i,

163

i′′ 6= i, i′ 6= i′′, and {i′, i′′} ⊆ {1, 2, 3}. Thus, the constraints {c} → {tj,1, tj,2},

{c} → {tj,1, tj,3}, and {c} → {tj,2, tj,3} are also satisfied, for each clause cj. It

follows that all constraints in Π(Φ) are satisfied by G(Φ, σ), i.e., G(Φ, σ) |= Π(Φ).

In order to conclude, we now just need to point out that G(Φ, σ) is acyclic.

To this end, assume for the sake of contradiction that a cycle exists in G(Φ, σ).

Note that this cycle is necessarily defined over the variables and the distinguished

activity c. Therefore, the set E of edges must contain an edge of the form (c,Xh)

and an edge of the form (Xh, c). By construction, the existence of the edge (c,Xh)

implies that Xh is a variable evaluating false in σ. However, the existence of the

edge (Xh, c) implies that Xh is a variable evaluating true in σ. Contradiction.

(⇐) Assume that G = (V,E) is an acyclic dependency graph satisfying all the con-

straints in Π(Φ), and define the truth assignment σG such that Xh evaluates true

if, and only if, the edge (Xh, c) occurs in E. We first show that σG is satisfying.

Indeed, for each clause cj, with j ∈ {1, ...,m}, consider the associated constraint

{tj,1, tj,2, tj,3} → {c}, and note that since G |= Π(Φ), we are guaranteed about the

existence of an edge from one of the variables in {tj,1, tj,2, tj,3} to c. Hence, for

each clause cj, at least one of the variables occurring in cj evaluates true in σG, by

definition of this assignment, which is therefore satisfying.

Now, we show that σG is a such that each clause has exactly one variable evalu-

ating true. Assume, for the sake of contradiction, that a clause cj exists such that

two variables, say tj,i′ and tj,i′′ with i′ 6= i′′, evaluate true in σG. Thus, the edges

(tj,i′ , c) and (tj,i′′ , c) are both in E. Consider then the constraint {c} → {tj,i′ , tj,i′′}

associated with the clause cj, and note that it prescribes that at least one of the

edges in {(c, tj,i′), (c, tj,i′′)} occurs in E. Assume, w.l.o.g., that (c, tj,i′) is in E and

observe that we have eventually a cycle over c and tj,i′ . Contradiction.

164

By Corollary 9.8 and Fact 9.10, the above entails that Acyclic-CN-Mining[{→}]

on input A(Φ), the empty log, and the set Π(Φ) has a solution if, and only if, there is

a satisfying truth assignment to the variables of Φ such that each clause has exactly

one variable evaluating true. As the reduction is feasible in polynomial time, it

follows that Acyclic-CN-Existence[{→}] is NP-hard.

A straightforward adaptation of the above proof, where each edge constraint is

replaced by a path constraint over the same sets of activities, can be used to show

that the problem remains intractable if we consider path constraints in place of edge

constraints. The proof is reported below, for the sake of completeness.

Lemma 9.15. Acyclic-CN-Existence[{ }] is NP-hard.

Proof. Consider again the setting in the proof of Lemma 9.14 and, for any formula

Φ, define Π′(Φ) ⊆ C[{ }] as the set of constraints obtained from Π(Φ) by replacing

each edge constraint with the analogous path constraint. Therefore, for each clause

cj, Π′(Φ) contains the constraints {tj,1, tj,2, tj,3} {c}, {c} {tj,1, tj,2}, {c}

{tj,1, tj,3}, and {c} {tj,2, tj,3}. We now claim that: There is a satisfying truth

assignment to the variables of Φ such that each clause has exactly one variable

evaluating true ⇔ there is an acyclic dependency graph G (over A(Φ)) such that

G |= Π′(Φ).

(⇒) Assume that σ is a satisfying truth assignment such that each clause has exactly

one variable evaluating true, and consider the graph G = (Φ, σ) built in the proof

of Lemma 9.14. Recall that G |= Π(Φ). Hence, we trivially have that G |= Π′(Φ),

in particular because all path constraints are satisfied by direct connections.

(⇐) Assume that G = (V,E) is an acyclic dependency graph satisfying all the con-

straints in Π′(Φ), and define the truth assignment σ′G such that Xh evaluates true

165

if, and only if, there is a path from Xh to c in E. Because of the constraints

{tj,1, tj,2, tj,3} {c} occurring in Π′(Φ) and associated with the clause cj, for each

j ∈ {1, ...,m}, σ′G is satisfying. In order to conclude, we need to show that σ′G is

a such that each clause has exactly one variable evaluating true. Assume, for the

sake of contradiction, that a clause cj exists such that two variables, say tj,i′ and

tj,i′′ with i′ 6= i′′, evaluate true in σG. Thus, there is a path from tj,i′ to c and a

path from tj,i′′ to c are both in E. Consider then the constraint {c} {tj,i′ , tj,i′′}

associated with the clause cj, and note that it prescribes that there is a path from

c to at least one of the nodes in {tj,i′ , tj,i′′}. Assume, w.l.o.g., that a path from c to

tj,i′ exists. Then, we have a cycle involving the activities c and tj,i′ . Contradiction.

By the above result, Corollary 9.8, Fact 9.10, and the fact that the reduction is

feasible in polynomial time, it follows that Acyclic-CN-Existence[{ }] is NP-

hard.

Let us now turn to the case of negated edge constraints, but still focusing on the

acyclic variant of the mining problem.

Lemma 9.16. Acyclic-CN-Existence[{6→}] is NP-hard.

Proof. Let Π = {{b1
i , ..., b

ki
i } → {a1

i , ..., a
hi
i } | i ∈ {1, ...,m}} ⊆ C[{→}] be a (non-

empty) set of edge constraints, such that {b1
i , ..., b

ki
i } ∩ {a1

i , ..., a
hi
i } = ∅, for each

i ∈ {1, ...,m}. For each i ∈ {1, ...,m}, let ci denote a fresh activity not in A(Π).

Moreover, let a⊥ and a> be two activities not in A(Π) playing the role of the starting

and terminating activity, respectively. Then, consider the log L(Π) = {t1, ..., tm}

such that ti = a⊥b
1
i ...b

ki
i cia

1
i ...a

hi
i a> , for each i ∈ {1, ...,m}. Moreover, consider the

set Π¬ of negated edge constraints such that Π¬ = {¬({a⊥} → {ci}),¬({ci} →

{a>}) | i ∈ {1, ...,m}}.

166

We claim that: There is an acyclic dependency graph G over the set A(Π) ∪

{a⊥ , a>} of activities and such that G |= Π ⇔ there is an acyclic dependency graph

G ′ over the setA(Π)∪{a⊥ , a>}∪{c1, ..., cm} of activities and such that G ′ |= π(L(Π))∪

Π¬.

(⇒) Assume that G = (V,E) is an acyclic dependency graph over the set A(Π) ∪

{a⊥ , a>} of activities and such that G |= Π. Consider the graph G ′ = (V ′, E ∪E ′1 ∪

E ′2) where V ′ = V ∪ {c1, ..., cm} and whose set of edges is built as follows. The

set E ′1 contains the edges (a⊥ , a) and (a, a>), for each activity a ∈ A(Π), and no

further edge is in E ′1. Moreover, for each i ∈ {1, ...,m}, and for each edge (x, y) ∈ E

such that x ∈ {b1
i , ..., b

ki
i } and y ∈ {a1

i , ..., a
hi
i }, E ′2 includes the edges (x, ci) and

(ci, y). No further edge is in E ′2. It is immediately checked that G ′ is an acyclic

dependency graph.

Now, we first claim that G ′ |= Π¬. Indeed, {a⊥ , a>} ∩A(Π) = ∅, so that E ′2 does

not include any edge of the form (a⊥ , ci) or of the form (ci, a>), with i ∈ {1, ...,m}.

Let now ti be a trace in L(Π), with i ∈ {1, ...,m}. Consider the set π(ti) of

constraints derived from ti according to Definition 9.5. Because of the edges in

E ′1, all constraints in π(ti) are trivially satisfied by G ′, but the two constraints

{a⊥ , b1
i , ..., b

ki
i } → {ci} and {ci} → {a1

i , ..., a
hi
i , a>}, because there is no edge in G ′

from a⊥ to ci, and from ci to a> . Now, recall that G satisfies Π and hence, an edge

(x, y) occurs in E such that x ∈ {b1
i , ..., b

ki
i } and y ∈ {a1

i , ..., a
hi
i }. By construction

of the edges in E ′2, we therefore have that (x, ci) and (ci, y) are edges of G ′, which

proves that the two constraints are satisfied, too. Hence, G ′ |= π(L(Π)).

(⇐) Assume there is an acyclic dependency graph G ′ = (V ′, E ′) over the set A(Π)∪

{a⊥ , a>}∪{c1, ..., cm} of activities and such that G ′ |= π(L(Π))∪Π¬. Let ti be a trace

in L(Π), with i ∈ {1, ...,m}, and consider the two constraints {a⊥ , b1
i , ..., b

ki
i } → {ci}

167

and {ci} → {a1
i , ..., a

hi
i , a>} in the set π(ti), which are satisfied by G ′. Since G ′ |= Π¬,

from the above we conclude that G ′ |= {{b1
i , ..., b

ki
i } → {ci}, {ci} → {a1

i , ..., a
hi
i }}

holds.

Consider now the graph G = (V,E) where V = V ′ \{c1, ..., cm} and where the set

of edges is defined as follows. The set E contains the edges (a⊥ , a) and (a, a>), for

each activity a ∈ V . Moreover, for each i ∈ {1, ...,m}, E includes all edges of the

form (x, y) such that {(x, ci), (ci, y)} ⊆ E ′, x ∈ {b1
i , ..., b

ki
i }, and y ∈ {a1

i , ..., a
hi
i }.

Note that, in the light of the above observation, at least one edge of this kind is

included in E, so that G |= Π holds. Note also that G is a dependency graph.

Eventually, to conclude the proof, just note that G is acyclic, as the existence of a

cycle in G would immediately entail the existence of a cycle in G ′.

Observe now that the log L(Π) is linear, so that we are in the position of applying

Corollary 9.8 and Fact 9.10 on the result proven above. By this way, we conclude

that Acyclic-CN-Mining[{→}] on input A(Π) ∪ {a⊥ , a>}, the empty log, and the

set Π has a solution if, and only if, Acyclic-CN-Mining[{6→}] on input A(Π) ∪

{a⊥ , a>} ∪ {c1, ..., cm}, the log L(Π), and the set Π¬ has a solution. Eventually, by

inspecting the proof of Lemma 9.14, note that the constraints used to prove the NP-

hardness of Acyclic-CN-Mining[{→}] are precisely of the form considered here for

the set Π, and that the result is established even for logs that are empty. Therefore,

we have reduced Acyclic-CN-Mining[{6→}] to Acyclic-CN-Mining[{→}], so that

the problem is hence shown to be NP-hard, too.

To complete the picture, we now move to the case of arbitrary process models,

i.e., of models that are not required to be acyclic. In this context, the picture is

easily completed, as negated path constraints can be used to enforce acyclicity.

168

Theorem 9.17. The problems CN-Mining[{→, 6 }], CN-Mining[{ , 6 }], and CN-

Mining[{6→, 6 }] are NP-hard.

Proof. Let Π be a set of constraints in C[{→}] (resp., C[{ }], C[{6→}]). Based on

Π, we build the set Π′ of constraints including all the constraints in Π, plus the

novel constraint ¬({a} 6 {a}), for each activity a taken from the underlying set

of symbols A. Of course, Π′ belongs to C[{→, 6 }] (resp., C[{ , 6 }], C[{6→, 6 }]).

In particular, the novel constraints just enforce that the resulting process model

is acyclic. Then, Acyclic-CN-Mining[{→}] (resp., Acyclic-CN-Mining[{ }],

Acyclic-CN-Mining[{6→}]) has a solution on input the set A of activities, a log

L, and the set Π of constraints if, and only if, CN-Mining[{→, 6 }] (resp., CN-

Mining[{ , 6 }], CN-Mining[{6→, 6 }]) has a solution on input A, L, and Π′. The

result therefore follows from Lemma 9.14, Lemma 9.15, and Lemma 9.16.

We now show that the decision version belongs to the complexity class NP. Com-

bined with the NP-hardness results, this entails the corresponding NP-completeness

results.

Theorem 9.18. CN-Existence[S] is in NP, for each set S ⊆ {→, , 6→, 6 }.

Proof. We need to decide about the existence of an extended causal net C = 〈G, I,O〉

over A such that C ` L and G |= Π, where L and Π are the log and the set of con-

straints, respectively, provided as input. Thus, we can build a non-deterministic Tur-

ing machine that guesses a graph G = (V,E), with V ⊆ A, and checks that G |= Π.

Moreover, for each trace t ∈ L, the machine guesses a sequence σt of binding activities

〈t[1], ib1, ob1〉, ..., 〈t[len(t)], ibn, obn〉 and checks that σt is valid w.r.t. C. By Theo-

rem 9.4, we can assume w.l.o.g. that the size of G is polynomially bounded. Thus,

the overall size of the structures guessed by the machine is polynomially bounded.

169

Moreover, the operations performed on them are feasible in polynomial time. Hence,

the problem belongs to NP. For completeness, note that if one restricts the problem

to causal nets only, then the problem is still feasible in NP, as the machine has just

to additionally check that I and O are sets rather than multi-sets as in the extended

model.

9.5 An exact solution approach for computing process models

The complexity analysis we have conducted evidenced that polynomial time al-

gorithms are unlikely to exists for the problem of computing models (and minimal

models) of sets of precedence constraints. This bad news calls for the design of

sophisticated exact solution approaches that perform well in practice, and of heuris-

tic methods that further speed up the computation These complementary solution

approaches will be explored in the following two sections.

In this section, we start by considering the issue of designing exact solution ap-

proaches. To this end, we propose to encode precedence constraints in terms of

”standard” constraints satisfaction problems (short: CSPs) and to reuse existing

constraint programming platforms to compute models of them. Indeed, such plat-

forms have been developed to solve NP-hard problems declaratively specified in terms

of CSPs, and embody sophisticated solution algorithms (see, e.g., Apt . [2003]) al-

lowing them to scale over large datasets, as their application in data mining contexts

have already demonstrated De Raedt et al. [2008]; Nijssen et al. [2009].

Various kinds of constraints are supported by constraint programming systems in

the literature. To our ends, we just need to consider two kinds of constraints defined

over binary domains. Let X1, ..., Xn be n variables in Var , let U(Xi) = {0, 1}, and

let w1, ..., wn, γ be n+ 1 real numbers. Then,

170

(1) A summation constraint is an expression of the form
∑n

i=1wi × Xi ≥ γ. The

constraint is satisfied by an assignment θ if
∑n

i=1wi × θ(Xi) ≥ γ holds.

(2) A reified (summation) constraint is an expression of the form
∑n

i=1wi × Xi ≥

θ ↔ X, where X is a variables such that U(X) = {0, 1}. The constraint

is satisfied by an assignment θ if
∑n

i=1wi × θ(Xi) ≥ γ holds if, and only, if

θ(X) = 1.

In some cases, among all the possible solutions, we are interested in the one opti-

mizing some given criterium. This gives rise to a constraint satisfaction optimization

problem (short: CSOP) instance, that is, a quadruple (Var , U, C, f) where (Var , U, C)

is the underlying CSP instance, and where f is a valuation function assigning a real

number f(θ) to each solution θ to (Var , U, C). A solution θ to the CSOP instance

is then a solution to the CSP instance such that f(θ) ≤ f(θ′), for each other CSP

solution θ′.

In several constraint programming platforms, the function f can be specified in

terms of a linear minimization constraint. Let X1, ..., Xn be n variables in Var , let

U(Xi) = {0, 1}, and let w1, ..., wn be n real numbers. Then, a linear minimization

constraint is an expression of the form
∑n

i=1wi×Xi. Under this function, the value

associated with a CSP solution θ is f(θ) =
∑n

i=1 wi × θ(Xi).

9.5.1 CSP encoding for precedence constraints

Let A = {a1, ..., an} be any set of activities, and let Π be any set of precedence

constraints such that A(Π) ⊆ A. Figure 9.5 illustrates an algorithm, named PC-

toCSP, to encode A and Π into a CSP instance (Var , U, C). The instance defined

by the algorithm is such that, for each pair ai and aj of activities taken from A,

Var contains an ”edge” variable, denoted as e[ai, aj], plus n + n2 ”path” variables,

171

Input: A set A = {a1, ..., an} of activities,
a set Π of precedence constraints with A(Π) ⊆ A, and
the type ∈ {arbitrary, acyclic} of the problem;

Output: A CSP instance (Var , U, C);

1. let Var = {e[ai, aj], p[ai, aj]`, p[ai, ak, aj]` | ai, aj , ak ∈ A, ` ∈ {1, ..., n}};
2. let U(X) = {0, 1} for each X ∈ Var ;
3. let C = ∅;
4. for each edge constraint S → aj in Π do

C := C ∪ {
∑
ai∈S

e[ai, aj] ≥ 1};
5. for each path constraint S aj in Π do

C := C ∪ {
∑
ai∈S

p[ai, aj]
n ≥ 1};

6. for each negated edge constraint ¬S → aj in Π do
C := C ∪ {e[ai, aj] = 0 | ai ∈ S};

7. for each negated path constraint ¬S aj in Π do
C := C ∪ {p[ai, aj]n = 0 | ai ∈ S};

8. if type=acyclic then
C := C ∪ {p[ai, aj]n + p[aj , ai]

n ≤ 1 | {ai, aj} ⊆ A};
9. for each pair of distinct activities ai and aj do

C := C ∪ {e[ai, aj] ≥ 1↔ p[ai, aj]
1};

C := C ∪ {e[ai, ak] + p[ak, aj]
`−1 ≥ 2↔ p[ai, ak, aj]

` | ak ∈ A, ` ∈ {2, ..., n}};
C := C ∪ {

∑
k p[ai, ak, aj]

` ≥ 1↔ p[ai, aj]
` | ` ∈ {2, ..., n}};

10. for each activity ai, with i /∈ {1, n} do
C := C ∪ {p[a1, ai]n + p[ai, an]n ≥ 2};

11. C := C ∪ {
∑
ak∈A

p[ak, a1]n +
∑
ak∈A

p[a1, ak]n ≤ 0};
12. return (Var , U, C);

Figure 9.5: Algorithm PCtoCSP.

denoted as p[ai, aj]
` and p[ai, ak, aj]

`, with ak ∈ A and ` ∈ {1, ..., n}. All variables

are defined over the binary domain {0, 1}.

To help the intuition, we anticipate that e[ai, aj] is meant to encode the existence

of an edge from ai to aj, while p[ai, aj]
` is meant to encode the existence of a path

of length at most `.

Steps 4, 5, 6, and 7 in the algorithm in Figure 9.5 encode in a straightfor-

ward manner edge, path, negated edge, and negated path constraints of Π, respec-

tively. For example, for each edge constraint S → T occurring in Π, the constraint∑
ai∈S

∑
aj∈T e[ai, aj] ≥ 1 is added to C stating that at least one of the edge variables

from any activity in S to any activity in T must be mapped to 1.

Step 8 is responsible of enforcing acyclicity if the additional input parameter type

is acyclic. Indeed the constraint states that for each pair of distinct activities ai

and aj, at most one path variable in {p[ai, aj]n, p[aj, ai]n} can be set to 1.

Step 9, is responsible of providing the semantics to the variable of the form

p[ai, aj]
n. Indeed, it enforces that p[ai, aj]

n is mapped to 1 if, and only if, e[ai, aj] is

mapped to 1 or there is an intermediate activity ak with e[ai, ak] + p[ak, aj]
n−1 ≥ 1.

172

Note that, the definition is recursive, and is explicitly unfolded in the encoding as

the maximum length of any path is n. The base case occurs for variables of the form

p[ai, aj]
1, whose value coincides with that of the corresponding edge variables. More

generally, the definition exploits the auxiliary variables having the form p[ai, ak, aj]
`,

encoding the existence of an edge from ai to ak and of a path of length `− 1 at most

from ak to aj.

Finally, step 10 and 11 enforce the conditions required to hold over dependency

graphs, where a1 and an play the role of the starting and terminating activity, re-

spectively. In particular, each activity ai must occur in a path connecting a1 and an,

and a1 (resp., an) does not have ingoing (resp., outgoing) edges.

To analyze the algorithm, for any solution θ to the CSP (Var , U, C) computed by

PCtoCSP (on input A,Π and type), let Gθ = (A, E) be the graph such that (ai, aj)

is in E if, and only if, θ(e[ai, aj]) = 1. With this notation, the crucial properties of

the encodings are stated below.

Theorem 9.19. Let θ be a solution to (Var , U, C). Then, Gθ is a dependency graph

such that Gθ |= Π. Moreover, if type=acyclic, then G is acyclic.

Theorem 9.20. Let G be a dependency graph (resp., acyclic dependency graph) such

that G |= Π. If type=arbitrary (resp., acyclic), then there is a solution θ to

(Var , U, C) such that G = Gθ.

By combining Theorem 9.19, Theorem 9.20 and Corollary 9.8 (with the function

computeBindings discussed in the previous section), we get that PCtoCSP is an

effective method to solve CN-Mining and Acyclic-CN-Mining over linear logs.

In order to deal with arbitrary logs, we need and extension of the algorithm illustrated

in Figure 9.5. This extension is the algorithm DGToCSP illustrated in Figure 9.6.

173

Input: A log L, a set Π of precedence constraints over A(L) = {a1, ..., an}, and
the type of the problem;

Output: A CSP instance (Var , U, C);

1. let (Var1 , U1, C1) be the output of PCtoCSP(π(L̄),acyclic);
2. let (Var2 , U2, C2) be the output of PCtoCSP(Π,type);
3. let Var = Var1 ∪ Var2 ∪ {eProjected[ai, aj] | ai, aj ∈ A};
4. let U(X) = {0, 1} for each X ∈ Var ;
5. let C = C1 ∪ C2;
6. for each pair of distinct activities ai and aj do

C := C ∪ {e[ai, aj] ≥ 1↔ eProjected[ai, aj]};
C := C ∪ {

∑
h,k e[ai〈h〉, aj〈k〉] ≥ 1↔ eProjected[ai, aj]};

7. return (Var , U, C);

Figure 9.6: Algorithm DG-DiscoveryToCSP.

Corollary 9.21. Let L be a log where no trace contains multiple occurrences of the

same activity. Let G be a graph (resp., acyclic graph) over A(L), and Π be a set of

precedence constraints over A(L). Then, the followings are equivalent:

(1) G is a solution to CN-Mining (resp., Acyclic-CN-Mining) on input L and

Π.

(2) G = Gθ where θ is a solution to the CSP computed by PCtoCSP on input

π(L) ∪ Π with type=arbitrary (resp., acyclic).

The algorithm receives as input a set A of activities, a log L with A(L) ⊂ A, a

set Π of precedence constraints with A(Π) ⊂ A, and a type.

First, it computes the CSP instances (Var1 , U1, C1) and (Var2 , U2, C2) produced

by PCtoCSP on input (A(unfold(L)), Π(unfold(L)),acyclic) and (A,Π,type),

respectively. Then, a novel CSP instance (VAR,U , C) is defined as the union of

these two instances, and the set C of constraints is eventually enlarged by including

some constraints that server to relate the variables in Var1 with the variables in

Var2 . In particular, observe that the CSP instance (Var1 , U1, C1) is build given as

input the set A(unfold(L)) of fresh virtual activities, and recall from section 8.4 that

any activity in A(unfold(L)) has the form where a is an activity in A and k is the

number of its occurrences in some trace of the log (up to some given position). Then

the constraints added in step 6 guarantee that the variable e[ai, aj] ∈ Var2 is mapped

to 1, for each pair of activities ai and aj if, and only if, there is at least one variable

174

of the form e[ai〈h〉, aj〈k〉] ∈ Var1 being mapped to 1. In words, variables in Var2

are defined as the ”projection” of the corresponding variables in Var1 , i.e., by just

stripping off the subscripts denoting the number of occurrences.

Proposition 9.22. Let L be a log, let G be a graph over A(L), and let Π be a set of

precedence constraints over A. Then, the followings are equivalent:

(1) G is a solution to CN-Mining (resp., Acyclic-CN-Mining) on input L and

Π.

(2) G = Gθ where θ is a solution to the CSP computed by DG-DiscoveryToCSP

on input L, Π, and Type=arbitrary (resp., acyclic).

Proof. Note that the constraints in step 6 guarantees that Gθ is the folding of

the graph Ḡθ, for each solution θ. Thus, the result follows from the correctness

of algorithm PCtoCSP (cf. Theorem 9.19 and Theorem 9.20) guaranteeing that

Ḡθ |= π(L̄), and by the application of Corollary 9.8.

9.5.2 Structural optimization

Several process models (in principle, up to exponentially many) might be built

as solutions to CN-Mining and Acyclic-CN-Mining given a log and a set of

precedence constraints provided as input. Returning an arbitrary one is usually not

enough in practical applications, and we might rather want to formalize an objective

function over the candidate solutions, as compute the best one over them. In order

to formalize an optimality criterium, we next propose to focus on those models whose

dependencies are maximal w.r.t. some (reflexive and transitive) order Let A denote,

as usual, a given set of activities. Moreover, assume that a weighting function w :

A×A 7−→ R is given, which associates a value w(e) ∈ R with each element e ∈ A×A,

Then, for any pair of directed graphs G = (V,E) and G ′ = (V ′, E ′) over A, we write

175

G vw G ′ if
∑

e∈E w(e) ≤
∑

e′∈E′ w(e′). Hence, G vw G ′ means that the overall

weight associated with G is at most the overall weight associated with G ′, A solution

C = 〈G, I,O〉 to CN-Mining (resp., Acyclic-CN-Mining) is vw −maximal if, for

each other solution C ′ = 〈G ′, I ′,O′〉 to CN-Mining (resp., Acyclic-CN-Mining),

it holds that G ′ vw G. In words, by considering vw −maximal solutions, we look

for dependency graphs having associated the maximum total weight.

Example 9.23. As a very simple weighting function, one might consider the constant

function 1 : A×A 7−→ {−1} assigning a unitary negative weight to each element in

A×A. Then, v1 −maximal solutions are those with the minimum possible number

of edges. Consider, for instance, the graphs G2 and G3 depicted in Figure 8.1. It is

easily seen that G3 v1 G2, because G2 consists of 5 edges, while G3 consists of 6 edges.

As a further example, consider the graph G1 depicted in Figure 8.1, which consists

of 5 edges. Therefore, G1 v1 G2 and G2 v1 G1 hold. C

By using linear maximization constraints on top of the rewriting in Figure 9.6,

we may compute vw −maximal solutions. In particular, if we consider solutions θ

to the CSOP (Var , U, C,
∑

ai,aj
w((ai, aj)) × e[ai, aj]), where (Var , U, C) is the CSP

computed by DG-DiscoveryToCSP, then solutions in point (2) of Theorem 9.6

are vw −maximal ones. In fact, this is a simple consequence of the semantics of

linear maximization constraints. Eventually, we stress that as a useful weighting

function, we might want to consider here the causal score defined in Section 9.6.

9.6 Classes of Tractable Precedence Constraints and Algorithms

In this section, we define two algorithms for efficiently solving CN-Mining over

the classes C[{→, , 6→}] and C[{6 }], respectively. The algorithms have been conceived

as to make them still applicable over larger classes of constraints, by providing heuris-

176

tic solution methods in these (NP-hard) cases. The efficiency of the methods and

their efficacy as heuristics will be eventually assessed in Section 9.7.

Hereinafter, we assume that a set A of activities is given, together with a log L

such that A(L) ⊆ A and with a set Π of precedence constraints such that A(Π) ⊆ A.

Accordingly, to simplify the notation, we shall omit to indicateA, L, and Π, unless we

want to explicitly point out some dependency on some of them. Moreover, we shall

denote by Π→ and Π (resp., Π 6→ and Π6) the sets of all positive (resp., negated)

edge and path constraints in Π, respectively.

Both algorithms are based on a succession of graph manipulations, i.e., insertions

and deletions of edges, starting with an initial (dependency) graph built from the

log. In order to facilitate reasoning about such graph manipulations, for any directed

graph G = (V,E) and for any set E ′ ⊆ V ×V of edges, we define G⊕E ′ as the graph

(V,E ∪ E ′), and G 	 E ′ as the graph (V,E \ E ′). Moreover, we observe that, while

performing these operations, it is practically relevant to (resp., exclude) only those

edges that very likely (resp., hardly) witness the existence of true causal relationships.

In order to provide a formal measure of the ‘quality’ of an edge, we consider here the

notion of causal score inspired by the works of [Weijters and van der Aalst, 2001],

[Weijters and van der Aalst, 2003], and [Weijters et al., 2006].

Let δ be a real number with 0 < δ < 1. Then, the causal score (w.r.t. δ) is defined

as the function csδ : A × A 7→ R such that csδ(ai, aj) = D(ai, aj)/|{t ∈ L | ai =

t[k], for some index k}|, and where:

D(ai, aj) =
∑

t∈L|aiprecedes aj in t

δcs
+(t,ai,aj) −

∑
t∈L|ajprecedes ai in t

δcs
−(t,ai,aj),

with

• cs+(t, ai, aj) = min{k−h−1 | ai = t[h]∧aj = t[k]∧h < k} being the minimum

177

number of symbols between an occurrence of ai and a subsequent occurrence of

aj, and

• cs−(t, ai, aj) = max{k−h−1 | ai = t[k]∧aj = t[h]∧h < k} being the minimum

number of symbols between an occurrence of aj and a subsequent occurrence of

ai.

To illustrate the above definition, note that, for each trace t[1]...t[n], D(ai, aj) is

incremented by a term δk−h−1 if ai occurs k − h positions before an occurrence of

aj (and this is the minimum distance between the symbols in the given order), and

decremented by the same term (in absolute value) if ai occurs k − h positions after

an occurrence of aj (again, with this distance being the minimum one). Moreover,

the positive and the negative terms exponentially decrease at the growing of the

distance between ai and aj in the traces. Note that −1 ≤ csδ(ai, aj) ≤ 1 holds, since

0 < δ < 1.

9.6.1 Precedence constraints without negated paths

We start by illustrating an algorithm to solve CN-Mining over C[{→, , 6→}]. The

algorithm is designed so that, over linear logs (cf. Theorem 9.6), a causal net is

always returned, whenever a solution in fact exists. Instead, over arbitrary logs, the

algorithm might well return an extended causal net.

Conceptually the algorithm is organized in three main phases:

• First, a dependency graph is built by guaranteeing that each trace in the given

log can be supported by properly enriching the graph with suitable bindings.

While doing so, we avoid to make use of edges that are forbidden because of

negated edge constraints. If this is not possible, then (we shall show that) no

solution exists at all.

178

• Second, we incrementally add to the dependency graph edges that are not for-

bidden, until all positive edge and path constraints are satisfied. Note that, in

principle, all edges that are not forbidden might be added to the dependency

graph (and if some constraint is still violated, then we are again guaranteed

that no solution exists). Therefore, in order to minimize the size of the result-

ing model (and the probability of introducing spurious dependencies), edges are

selected in the algorithm based on their causal scores.

• Finally, the dependency graph resulting from the above manipulations is equipped

with bindings guaranteeing that all the traces can be supported. This leads to

a causal net that is returned as output.

These steps are now detailed in the rest of the section.

Precedence Graphs

The starting point of the algorithm is the construction of the precedence graph

PG(L,Π) over A(L). This graph is built by avoiding the inclusion of the edges that

are forbidden because of negated edge constraints in Π, i.e., the edges in FE(Π) =

{(x, y) | x ∈ S, y ∈ T,¬(S → T) ∈ Π 6→}. We start with an exemplification.

Example 9.24. Consider a log L including only the trace abcde, and assume that

Π = {¬({c} → {d})}. The precedence graph PG(L,Π) is illustrated in the left part of

Figure 9.7. Intuitively, each activity x ∈ {a, b, c, d, e} has an edge incoming (resp.,

outgoing) to any activity that precedes (resp., follows) x in some trace. However,

we avoid the edges that are forbidden according to the constraints. In particular, the

graph does not contain the edge (c, d), and the connectivity of d is guaranteed via the

edge (b, d), i.e., d is reached by the node closest to it in the trace abcde and for which

no violation in Π 6→ occurs. Moreover, c can reach the final activity via the edge (c, e).

179

Figure 9.7: Precedence graphs for the examples in Section 9.6.

C

Formally, PG(L,Π) = (V,E) is defined as the directed graph where V = A(L) and

where the set E of its edges is built as follows. For each trace t ∈ L and for each

i ∈ {2, ..., len(t)} (resp., i ∈ {1, ..., len(t)− 1}), if there is an index j ∈ {1, ..., i− 1}

(resp., h ∈ {i+ 1, ..., len(t)}) such that (t[j], t[i]) 6∈ FE(Π) (resp., (t[i], t[h]) 6∈ FE(Π)),

then E contains the edge (t[j∗], t[i]) (resp., (t[i], t[h∗])) witnessing that the property

holds (i.e., (t[j∗], t[i]) 6∈ FE(Π) (resp., (t[i], t[h∗]) 6∈ FE(Π))) and having the highest

causal score.1 No further edge is in E.

Lemma 9.25. Assume that PG(L,Π) 6|= π(L) holds. Then, there is no dependency

graph G such that G |= π(L) ∪Π. Otherwise, i.e., if PG(L,Π) |= π(L), then PG(L,Π)

is a dependency graph over A(L) such that PG(L,Π) |= Π6→.

Proof. Assume that PG(L,Π) 6|= π(L). Then, there is a trace t ∈ L such that

PG(L,Π) 6|= π(t). By Definition 9.5, there are two possible cases. First, there might

be an index i ∈ {2, ..., len(t)} such that {t[1], ..., t[i− 1]} → {t[i]} is not satisfied by

1We will say that the edges (t[j∗], t[i]) and (t[i], t[h∗]) are supported by t.

180

PG(L,Π). By construction of PG(L,Π), this means that (t[j], t[i]) ∈ FE(Π) holds, for

each j ∈ {1, ..., i − 1}. Consider then a dependency graph G such that G |= π(L).

Note that G must include an edge (t[j∗], t[i]), with j∗ ∈ {1, ..., i − 1}, in order to

satisfy the above constraint. However, (t[j∗], t[i]) is in FE(Π), and there is a negated

edge constraint ¬(S → T) ∈ Π such that t[j∗] ∈ S and t[i] ∈ T . So, if G |= π(L),

then G 6|= Π.

Assume now that PG(L,Π) |= π(L). We first observe that PG(L,Π) contains the

two activities a⊥ and a> , playing the role of the starting and terminating activity. In

particular, a⊥ and a> have no ingoing and outgoing edges, respectively. Consider then

any other activity a occurring in PG(L,Π), and note that there is a trace t ∈ L and

an index i ∈ {2, ..., len(t)−1} such that t[i] = a. Since PG(L,Π) |= π(L), we are then

guaranteed about the existence of two edges having the form (t[j], t[i]) and (t[i], t[h]),

with j ∈ {1, ..., i−1} and h ∈ {i+1, ..., len(t)}. By structural induction on the index

i, it then follows that t[i] occurs in a path connecting t[1] = a⊥ to t[len(t)] = a> .

Hence, PG(L,Π) satisfies all the conditions for being a dependency graph over A(L).

Then, in order to conclude the proof, we need to show that PG(L,Π) |= Π6→. Indeed,

assume by contradiction that a negated edge constraint ¬(S → T) exists in Π such

that x ∈ S, y ∈ T , and the edge (x, y) is in PG(L,Π). Hence, (x, y) ∈ FE(Π), which

is impossible as all edges of PG(L,Π) do not belong to FE(Π), by construction.

Positive Precedence Constraints

According to the above result, precedence graphs can be used as a preliminary rep-

resentation of inter-activity dependencies. However, these graphs do not guarantee

that positive constraints are satisfied. Therefore, we define a method for identifying

the edges needed to satisfy positive constraints in Π.

Example 9.26. Consider the precedence graph PG(L,Π) discussed in Example 9.24

181

and assume that Π also contains the constraint {d} {b}. Note that PG(L,Π) does

not satisfy the positive constraint {d} {b}. Thus, we have to update the graph

by including a path starting from d and terminating into b and where the edge (c, d)

does not occur in it. Of course, in this case we can just simply add an edge from d

to b, as it is shown in the central part of Figure 9.7. C

Let G = (V,E) be a dependency graph with V ⊇ A(Π). For each pair of nodes

x, y ∈ V , define the weight of (x, y) for G w.r.t. δ, as the real number wδ(G, x, y)

such that2:

wδ(G, x, y) =

0 if (x, y) ∈ E

+∞ if x = a> ; or y = a⊥ ; or x ∈ S, y ∈ T , and ¬(S → T) ∈ Π

2− csδ(x, y) in the remaining cases

If a1, ..., ah is a sequence of nodes forming a path in G, with h ≥ 2, then we define

its weight wδ(G, a1, ..., ah) as the value
∑h−1

i=1 wδ(G, ai, ai+1). Note that wδ(G, a1, ..., ah) ≥

0, because csδ(x, y) ≤ 1 holds, for each pair x, y. Moreover, for each path constraint

S T (resp., edge constraint S → T) in Π, we define BestPathδ(G, S T) =

a1, ..., ah (resp. BestEdgeδ(G, S → T) = a1, a2) as the minimum-weight path (resp.,

minimum-weight edge) such that a1 ∈ S and ah ∈ T . Note that, if there is a prece-

dence constraint S T (resp., S → T) such that the weight of BestPathδ(G, S T)

(resp., BestEdgeδ(G, S → T)) is +∞, then all the paths (resp., edges) connecting

any activity in S to any activity in T must include an edge that cannot occur in a

model of Π6→. Hence, the following is immediately established.

Lemma 9.27. Let G be a graph such that G |= Π6→. If there is a path constraint

S T (resp., edge constraint S → T) such that the weight of BestPathδ(G, S T)

(resp., BestEdgeδ(G, S → T)) is +∞, then CN-Mining has no solution (on A, L,

2Here, +∞ stands for any large enough positive real number, e.g., +∞ > |A|2 ×max(x,y)∈E csδ(x, y).

182

Input: A set A of activities, with a⊥ (a>) being the starting (terminating) one,
a log L with A(L) ⊆ A, and
a set Π ∈ C[{→, , 6→}] of precedence constraints with A(Π) ⊆ A;

Parameters: Real numbers 1 > δ > 0 and 1 ≥ τ ≥ 0;
Output: A triple 〈G, I,O〉, or ‘no’;

1. Π := Π ∪ {{a⊥} {a}, {a} {a>} | a ∈ A \ A(L)};
2. if PG(L,Π) 6|= π(L) then return ‘no’ (and HALT);
3. let G1 = (A, E1) be the graph where E1 consists of the edges in PG(L,Π), k := 1;
4. G1 := G1 	 {(x, y) | (x, y) is supported by (at least) τ × |L| traces}; (*see Footnote 1*)
5. F := {S → T ∈ Π | Gk 6|= S → T};
6. while F 6= ∅ do
7. let S → T be in F , and let BestEdgeδ(Gk, S, T) = a1, a2;
8. if wδ(Gk, a1, a2) ≥ +∞ then return ‘no’ (and HALT);
9. Gk+1 := Gk ⊕ {(a1, a2)}, k := k + 1;

10. F := {S → T ∈ Π | Gk 6|= S → T};
11. end while
12. F := {S → T ∈ Π | Gk 6|= S T};
13. while F 6= ∅ do
14. let S T be in F , and let BestPathδ(Gk, S T) = a1, ..., ah;
15. if wδ(Gk, a1, ..., ah) ≥ +∞ then return ‘no’ (and HALT);
16. Gk+1 := Gk ⊕ {(ai, ai+1) | i ∈ {1, ..., h− 1}}, k := k + 1;
17. F := {S T ∈ Π | Gk 6|= S T};
18. end while
19. return computeBindings(Gk,L); (* see Figure 9.2*)

Figure 9.8: Algorithm compute-CN (on C[{→, , 6→}]).

and Π).

If the hypothesis in the above lemma does not hold, in order to satisfy a path

constraint S T (resp., edge constraint S → T) we can just update the graph G as

to include BestPathδ(G, S T) (resp., BestEdgeδ(G, S → T)) as a path (resp., an

edge).

Putting Things Together

Now that we have discussed all the salient ingredients, we can illustrate the algo-

rithm compute-CN shown in Figure 9.8.

The algorithm starts in step 1 by adding to Π a set of path constraints stating

that each activity a ∈ A \ A(L), i.e., not occurring in the log, has still to occur in

a path from the starting activity to the terminating one. Step 2 is responsible for

checking whether the precedence graph “supports” the log. Note that we directly

183

check the satisfaction of the constraints induced by the log. Indeed, if this graph

does not satisfy the condition, then we report that no solution exists at all.

In step 3, a graph G1 is initially built over the nodes in A and the edges in

PG(L,Π). In the subsequent steps, Gk denotes the graph obtained from G1 after

having performed k − 1 manipulations on it. In fact, the process starts with step 4,

which is a heuristic step that removes any edge that is not supported by a sufficient

number of traces, i.e., by τ×|L| traces, where τ is a threshold received as an additional

input parameter. In fact, it can be checked that for τ = 0, this is immaterial and the

graph remains unchanged. Then, step 5–11 (resp., 12–18) are responsible for adding

a number of edges to the precedence graph, as to satisfy all edge constraints (resp.,

path constraints), according to the strategy described in Section 9.6.1. A failure in

this step leads the algorithm to exit while reporting that no solution exists at all.

Finally, a (possibly extended) causal net 〈G, I,O〉 is built and returned as output.

This latter step is carried out by the function in Figure 9.2 that just implements the

strategy of including an input (resp., output) binding for each trace t, and of defining

this binding with all predecessor (resp., successor) activities in t. Moreover, in order

to formally guarantee that 〈G, I,O〉 is a (possibly extended) causal net, we add the

binding Ia (resp., Oa) to I(a) (resp., O(a)), for each activity a in G, being defined

as the union of all incoming (resp., outgoing) edges.

The correctness of the whole algorithm is stated next. Note that the result ex-

plicitly differentiates the case when L is a linear log from the case when L is not

linear. In the former case we are guaranteed that the output 〈G, I,O〉 returned by

the algorithm is a causal net, whereas in the latter case, 〈G, I,O〉 might well be an

extended causal net. In both cases, however, 〈G, I,O〉 ` L and G |= Π hold.

Theorem 9.28. The following properties hold on compute-CN, receiving as input

184

A, L, Π ∈ C[{→, , 6→}], the parameter δ, and for τ = 0:

• if it returns ‘no’, then there is no solution;

• if it returns 〈G, I,O〉 and L is (resp., is not) a linear log, then 〈G, I,O〉 is a

(resp., a possibly extended) causal net such that 〈G, I,O〉 ` L and G |= Π.

Proof. By Lemma 9.25 and Theorem 9.6, if the algorithm returns ‘no’ at step 2, then

we are guaranteed that there is no solution. Assume that we are not in this case.

Then, by Lemma 9.25, we know that PG(L,Π) is a dependency graph over A(L) with

PG(L,Π) |= π(L) and PG(L,Π) |= Π6→. So, G1 is such that G1 |= π(L) and G1 |= Π6→.

Consider now the steps 5–18. Note that whenever the current graph Gk is updated

(in steps 9 and 16), we are guaranteed that any edge (x, y) that is inserted does not

violate any negated edge constraint, for otherwise the weight of BestEdgeδ(G, S → T)

or BestPathδ(G, S T) would be +∞. Moreover, in the remaining steps, no edge is

added. Therefore, Gk |= Π 6→ holds, for each k ≥ 1. In fact, steps 6–18 try to enforce

the satisfaction of the edge and the path constraints. By Lemma 9.27 and since

Gk |= Π6→ holds, for each k ≥ 1, we derive that if the algorithm returns ‘no’, then we

are guaranteed that no solution exists at all. Again, let us assume that this is not

the case, in order to complete the analysis. So, we have now reached step 19, where

we are guaranteed that the current graph Gk is such that Gk |= Π. Moreover, as we

have just added edges (with no edge incoming into the starting activity or outgoing

from the terminating one) and initially G1 |= π(L) holds, then Gk |= π(L) holds, too.

In particular, the subgraph of Gk induced over the nodes in A(L) is a dependency

graph. Moreover, because of the constraints added in step 1, every other activity in

a ∈ A \ A(L) is also in a path from the starting to the terminating activity. Hence,

Gk is a dependency graph.

Finally, step 19 invokes a function that equips Gk with the sets I and O. The

185

reader may check that the function coincides with the constructive implementation

stated in Theorem 9.6. Therefore, the tuple C = 〈Gk, I,O〉 returned as output is

such that C ` L and Gk |= Π \Π6 . Hence, if Π ∈ C[{→, , 6→}], then we have actually

computed a solution, which is a (standard) causal net when L is linear.

Implementation issues and computation time analysis Let nt = |L| and na = |A| be

the number of traces and activities in input, respectively, and let lt be the maximal

trace length. Let n→ (resp., n 6→, n) be the number of constraints of type C[{→

}] (resp., C[{6→}], C[{ }]) given as input. Moreover, let nc be the total number of

input constraints (independently of the type), and let k be the maximum number of

elements in either side of them all, i.e., the maximum size of all their associated sets

S and T .

In the implementation, constraints are indexed with a number in {1, . . . , nc},

and two arrays of lists of activity identifiers are used to keep trace of the activities

appearing in the left and right sides, respectively, of each constraint. Causal scores,

forbidden edges, and dependency graphs are all represented via na×na matrices. The

initialization of these structures and steps 1-5 can be done in O(nt× l2t +nc×k+n2
a)

time, where in particular the leftmost term corresponds to computing the causal

score matrix and PG(L,Π) plus assessing whether this latter satisfies π(L).

The cost of the first loop (steps 6-11) is O(n→ × k2). This accounts for checking

the satisfaction of all positive edge constraints, and for the cost of computing the

“best edge” for each of them. Since no edge is removed, each constraint is considered

at most in one iteration, and will remain satisfied in the subsequent ones. The second

loop (steps 13-18) resembles the first one, except for the focus on computing “best

paths” rather than “best edges”. For each constraint, the task can be carried out via

186

Input: A set A of activities, with a⊥ (a>) being the starting (terminating) one,
a log L with A(L) ⊆ A, and
a set Π ∈ C[{6 }] of precedence constraints with A(Π) ⊆ A;

Parameters: Real numbers 1 > δ > 0, and 1 ≥ τ ≥ 0;
Output: A triple 〈G, I,O〉, or ‘no’;

1. G1 := PG(L, ∅);
2. G1 := G1 	 {(x, y) | (x, y) is supported by (at least) τ × |L| traces}, k := 1, removed := ∅;
3. while FakeEdge(Gk) 6= ∅ do
4. (x∗, y∗) := arg min(x,y)∈FakeEdge(Gk){csδ(x, y)}, removed := removed ∪ {(x∗, y∗)};
5. let z, w be any pair of nodes in Gk such that

(c1) z ∈ succ(Gk, x∗), w ∈ pred(Gk, y∗), {(x∗, z), (w, y∗)} ∩ removed = ∅;
(c2) ∀z′, w′ satisfying (c1), csδ(x

∗, z) + csδ(w, y
∗) ≥ csδ(x

∗, z′) + csδ(w
′, y∗);

6. Gk+1 := Gk ⊕ {(x∗, z), (w, y∗)} 	 {(x∗, y∗)}, k := k + 1;
7. end while

8. if Gk 6|= Π6 then return ‘no’ (and HALT);
9. return computeBindings(Gk,L);

Figure 9.9: Algorithm compute-CN (on C[{6 }]).

the classical Djikstra algorithm (possibly provided with an artificial “super”-source

node, linked to all activities in the lefthand set of the constraint), with a cost O(n2
a).

Since k ≤ na and we have n constraints, the overall cost is O(n × n2
a).

Finally, the input and output bindings of each activity can be stored in two

dictionaries, whose entries are multi-sets of activities, with each activity identifying

the other vertex of an associated incoming/outgoing edge. Such multi-sets (which

reduce to sets in the case of pure causal nets) are simply stored as vectors, encoding

edges’ multiplicity. Regarding such vectors as strings of length na (i.e., the sequence

of occurrence counts, one per edge), these dictionaries can be implemented as tries

(i.e., prefix trees), which can be built in O(nt × lt × na). This cost accounts for

(i) scanning each input trace s in both directions (forward and backward) with an

index, say i, while incrementally building the multi-set of all activities in its first

(resp., last) i positions, and for (ii) generating the resulting multi-set and adding it

to the input (resp., output) bindings of s[i]. In total, we get O(nt× lt×max(lt, na)+

n2
a × (1 + n) + n→ × k2 + n6→ × k).

187

9.6.2 The case of negated path constraints

We now present an algorithm to solve CN-Mining on the class C[{6 }], which is

illustrated in Figure 9.9. Most of the ingredients discussed so far will still play a

role, but the approach is substantially different. The algorithm starts again with the

construction of the precedence graph, but this time without taking care of negated

edge constraints—as usual, note that edges with low causal scores are removed. That

is, we start with the graph PG(L, ∅), whose main properties are stated below and are

easily seen to hold by inspecting the proof of Lemma 9.25.

Lemma 9.29. PG(L, ∅) is a dependency graph over A(L) and PG(L, ∅) |= π(L).

The algorithm subsequently breaks any path that witnesses a violation of the

negated path constraints in Π. Formally, if G = (V,E) is a dependency graph

over A, then the set of all fake edges is defined as FakeEdge(G) = {(x, y) ∈ E |

(x, y) occurs in a path from an activity in S to an activity in T , with ¬(S T) ∈

Π} \ {(x, y) ∈ E | x = a⊥ or y = a>}. Note that edges outgoing from the starting

activity and incoming to the terminating one are treated differently. Intuitively, we

would like to remove all fake edges from the graph. However, while doing so we

might miss the ability of supporting the log L, so that we might need to repair the

connectivity.

Let G = (V,E) be a graph overA, and let y be an activity in V . The set pred(G, y)

of the causal predecessors of y in L is defined as the set of all the activities w ∈ V such

that there is a path from a⊥ to w in G \{(x′, y) | (x′, y) ∈ E} or a⊥ = w, and for each

trace t ∈ L where y occurs, i.e., y = t[i] for some i ∈ {1, ..., len(t)}, then w also occurs

in t before y, i.e., w = t[j] where j < i holds. Symmetrically, let x be an activity in

V . The set succ(G, x) of the causal successors of x in L is the set of all the activities

188

z ∈ V such that there is a path from z to a> in G \ {(x, y′) | (x, y′) ∈ E} or a> = z,

and for each trace t ∈ L where x occurs, i.e., x = t[i] for some i ∈ {1, ..., len(t)}, then

z also occurs in t after x, i.e., z = t[j] where j > i holds. Note that the following is

immediate.

Lemma 9.30. Let G = (V,E) be a dependency graph such that G |= π(L), and

let (x, y) be in E, hence with x 6= a> and y 6= a⊥ . Then, a⊥ ∈ pred(G, y) and

a> ∈ succ(G, x).

Proof. Note first that, since G is a dependency graph, it must be the case that

x 6= a> and y 6= a⊥ . Moreover, it can be also established that w ∩ {y, a>} = ∅ and

z ∩ {x, a⊥} = ∅, by definition of causal predecessor and successor. Therefore, the

graph G ′ = G⊕{(w, y), (x, z)}	{(x, y)} is such that the starting activity a⊥ and the

terminating activity a> have no ingoing and outgoing edges, respectively. Consider

now an activity a ∈ V \ {a⊥ , a>}. Note that, since G is a dependency graph, either

(i) there is a path in G 	 {(x, y)} from a⊥ to a, or (ii) the edge (x, y) occurs in each

path in G from a⊥ to a. In the case (i), we immediately conclude that there is a

path from a⊥ to a in G ′, too. Hence, let us focus on case (ii). Recall that in G ′ we

have the edge (w, y) where w 6= x. In particular, there is a path from a⊥ to w in

G \ {(x′, y) | (x′, y) ∈ E}, or w = a⊥ . Hence, we have derived that there is a path

from a⊥ to a in G ′, too. By symmetric arguments, we derive also that there is a path

from a to a> in G ′. Hence, G ′ is a dependency graph.

In order to conclude the proof, we have now to show that G ′ |= π(L), too. Indeed,

assume by contradiction that a trace t exists in L such that G ′ does not model

π(t). Given the differences between G and G ′ and since the constraints induced by

the traces are only positive ones, it must be the case that the removal of the edge

(x, y) is the source of the violation. Formally, we can be in one of the following two

189

scenarios:

(1) It holds that y = t[i] and x = t[j], with j < i, and G ′ does not satisfy the

constraint {t[1], ..., t[i−1]} → {y}, which is instead satisfied by G precisely because

of the edge (x, y). However, we recall that the edge (w, y) occurs in G ′ and that

w occurs before y in any trace where y occurs. That is, there is an index j′ ∈

{1, ..., i−1} such that w = t[j′] where j′ < i holds. Hence, G ′ satisfies the constraint.

Contradiction.

(2) It holds that x = t[i] and y = t[j], with i < j, and G ′ does not satisfy the

constraint {x} → {t[i + 1], ..., t[len(t)]}, which is instead satisfied by G precisely

because of the edge (x, y). However, we recall that the edge (x, z) occurs in Ḡ ′

and that z occurs after x in any trace where x occurs. That is, there is an index

j′ ∈ {i+ 1, ..., len(t)} such that z = t[j′] where j′ > i holds. Hence, G ′ satisfies the

constraint. Contradiction.

Therefore, G ′ |= π(L) holds.

Lemma 9.31. Let G = (V,E) be a dependency graph such that G |= π(L), let (x, y) be

in E, and let w 6= x and z 6= y be in pred(G, y) and succ(G, x), respectively. Then,

G ′ = G ⊕ {(w, y), (x, z)} 	 {(x, y)} is a dependency graph such that G ′ |= π(L).

Example 9.32. Consider the trace abcde and the constraints ¬({c} {d}) and

¬({b} {d}). In this setting, for the dependency graph PG({abcde}, ∅), the edges

(c, d) and (b, c) are fake ones. The left part of Figure 9.7 evidences how the graph has

to be updated when removing the edge (c, d)—in fact, this coincides with the graph

built when the edge (c, d) is forbidden, as we already discussed in Example 9.24. In

the resulting graph, (b, c) is no longer fake. However, the graph does not still satisfy

the constraints, and (b, d) is a fake edge. On the right part of Figure 9.7, a further

190

update is reported accommodating the deletion of (b, d). C

The specific strategy adopted to select causal predecessors and causal successors

is formalized in the steps 3–7. Eventually we return the causal net built on top of Gk

via the function computeBindings. The correctness of the whole approach is shown

below. Note that, similarly to Theorem 9.28, the result explicitly differentiates the

case when L is a linear log from the case when L is not linear. As usual, in the

former case, 〈G, I,O〉 is a causal net, while in the latter case it might be an extended

causal net.

Theorem 9.33. The following properties hold on compute-CN, receiving as input

A, L, Π ∈ C[{6 }], the parameter δ, and for τ = 0:

• if it returns ‘no’, then there is no solution;

• if it returns 〈G, I,O〉 and L is (resp., is not) a linear log, then 〈G, I,O〉 is a

(resp., possibly extended) causal net such that 〈G, I,O〉 ` L and G |= Π.

Proof. Because of Lemma 9.29, we know that G1 is a dependency graph over A(L)

and G1 |= π(L). Consider then all the update operations performed in the steps

3–7. Because of Lemma 9.30, these operations are well-defined: for each fake edge

detected, we can always find a predecessor and a successor (coinciding, at most,

with the starting and terminating activities, respectively) that allow for removing it.

Moreover, by Lemma 9.31, the graph Gk is still a dependency graph with Gk |= π(L).

Let us now focus on step 8. Note that when all fake edges are removed, the

only edges that remain and that can violate a negated path constraints have the

form (a⊥ , a), (a, a>), or (a⊥ , a>). However, if there is a constraint preventing the

existence of a path from a⊥ to a, or from a to a> , or from a⊥ to a> , then there can

be no solution because of the definition of dependency graph. Hence, it is correct

191

that the algorithm halts there. Otherwise, for the analysis of the last step, recall

that the function computeBindings is a constructive implementation of the proof of

Theorem 9.6, in order to build a possibly extended causal net from the given graph

Gk. In particular, whenever L is linear, we end up with a causal net.

Implementation issues and computation time analysis In addition to the notation

used to analyze the costs of the algorithm of Figure 9.8, let us denote by n 6 the

number of constraints of type C[{6 }] that are taken as input, and by m6 the number

of (distinct) paths prohibited by them, i.e., m6 = |{(x, y) ∈ A × A | ∃ ¬(S 6

T) such that x ∈ S and y ∈ T}|. Note that typically m6 is much smaller than k2,

where k still denotes the maximum number of elements appearing in either side of

any constraint.

The data structures are the same as those discussed for the algorithm of Figure 9.8.

In order to speed up the calculation of pred(Gk, x) and succ(Gk, x), for each activity

x, we precompute a relaxed version of both sets, denoted by pred(x) and succ(x),

only accounting for the ordering of activities in the log traces. More precisely, for

any activity y, we have y ∈ succ(x) (resp., y ∈ pred(x)) if, and only if, for each

trace t ∈ L where x occurs, then y also occurs in t after (resp., before) x. All such

sets of (potential) successors and predecessors are stored as boolean vectors, one for

each activity.

Initializing the data structures and performing the first two steps in the algorithm

takes O(nt × l2t + n 6 × k + n2
a) time.

The loop spanning over steps 3-7 can be iterated m6 times at most, seeing as

each iteration removes at least one of the fake edges and one of the paths violating

some constraint—which are n2
a and m6 , at most, respectively (with m6 ≤ k2 ≤ n2

a).

192

The computation of all fake edges, at the beginning of each iteration, can be

accomplished in O(n 6 × n2
a) time as follows. For each constraint that is still unsat-

isfied, two symmetric multiple-source visits of Gk are carried out, starting from all

the activities in its left and right sides, respectively; in particular, in the latter case,

edges are considered as they were reversed. By reckoning all edges traversed in both

directions as fake edges, we compute that with the minimum causal score—(x∗, y∗)

in the figure.

We can then compute the transitive closure G+
k of the current dependency graph

via a matrix-multiplication method, in O(nωa) time, and materialize it into a matrix.

In our current implementation, based on the famous Strassen’s method, it is ω =

2.8074. Anyway, answering path queries against G+
k , in O(na) time we can find the

nodes z and w mentioned in step 5. To this end, we can simply select the activity

in succ(x∗) (resp., in pred(y∗)) with the maximal score csδ(x
∗, z) (resp., csδ(w, y

∗)),

among those satisfying all involved path constraints—involving the existence of a

path from z to a> (resp., from a⊥ to w), which is a required property of causal

successors (resp., predecessors). Therefore, the overall cost of the loop in Figure 9.9

is O((nωa + n2
a × n6)×m6).

A cost ofO(na) is enough for accomplishing all remaining (edge update) operations

in the loop. The same result holds for step 8, where we just need to check whether

all constraints are marked as satisfied. As explained previously, a O(nt × lt × na)

cost is needed for computing all bindings (while storing them in a concise form).

In conclusion, we get a total cost of O(nt× lt×max(lt, na)+(nωa +n2
a×n 6)×m6).

193

9.7 Experimental evaluation

The algorithms proposed in this chapter have been implemented as a plug-in for

the well-known process mining suite ProM van Dongen et al. [2005]. The plug-

in receives as input a log file in the (standard) MXML or XES format3 plus the

constraints that users can define by using an intuitive XML-based specification lan-

guage. As output, it produces a (possibly extended) causal net that, according

to the philosophy of ProM, is made available and can be re-used in the suite for

subsequent elaborations. In fact, ProM does not natively support bindings de-

fined as multisets, and therefore the mined models are made available by flatten-

ing all multisets into standard sets. This means that, when logs are not linear

(cf. Theorem 9.28 and Theorem 9.33), some loss of information might occur when

re-using in ProM the models mined with our plug-in. However, the true mined

models are always exported into a file encoding dependencies and bindings (again)

via an XML-based specification language. The plug-in together with documentation

on its usage, plus all datasets illustrated in this section are publicly available at

http://staff.icar.cnr.it/wfmining/http/public html/cnmining/.

Internally, the plug-in combines the computation schemes described in Figure 9.8

and Figure 9.9. In particular, the latter scheme is adopted when user-defined con-

straints belong to the class C[{6 }], whereas the former has been slightly generalized,4

in order to provide a heuristic solution approach in all remaining cases (while still

being an exact solution approach over the class C[{→, 6→, }]). The generalization con-

sists of a post-processing procedure applied to the discovered causal net returned by

step 19 in Figure 9.8. The procedure removes ”useless” edges with the intended goal

3See http://www.processmining.org for details on the mining suite and on its usage.
4We also implemented a generalization of the algorithm in Figure 9.9, but results of experimentation evidenced

that its efficacy as a heuristic was not satisfying.

194

Symbol Meaning

ILP The ILP-based mining algorithm defined in van der Werf et al. [2009]
AGNEs The AGNEs mining algorithm in Goedertier et al. [2009]
α The α mining algorithm defined in van der Aalst et al. [2004]
HM The Heuristics mining algorithm defined in Weijters et al. [2006]
GM The Genetics mining algorithm defined in Medeiros et al. [2007]
Here The compute-CN algorithm defined in Figure 9.8 and Figure 9.9

Table 9.1: Process discovery algorithms used in the experiments: legend of symbols.

of returning a more compact model, by increasing the chances of satisfying negated

path constraints. Moreover, note that the removal of edges is consistently reflected

by suitably updating the associated bindings where they occur.

Formally, the procedure iteratively removes the edge with the lowest causal score

over all the edges (x, y) satisfying the following three conditions:

(i) none of the input (resp., output) bindings associated with y (resp., x) coincides

with {(x, y)}, i.e., the edge does not appear as a singleton binding;

(ii) the removal of (x, y) will not violate any user-defined precedence constraint;

(iii) csδ(x,y)
min{csδ(x,y∗),csδ(x∗,y)} < τr2b, where (x, y∗) (resp., (x∗, y)) is the outgoing edge of x

(resp., the incoming edge of y) with the highest causal score. Notice that τr2b is

used here as a relative (lower) threshold to check the strength of any edge (x, y),

relatively to those of the best y’s predecessor and of the best x’s successor—it is

similar to the “relative to best” threshold proposed in Weijters et al. [2006].

In the tests described in the remainder of the chapter, we fixed the values δ = 0.9,

τ = 0.05, and τr2b = 0.75. These values were chosen pragmatically based on a series

of tests conducted on a wide range of synthesized data.

The performances of our implementation have been compared with those of the

approaches listed in Table 9.7. Note that we considered the approaches proposed

by [van der Werf et al., 2009] (ILP) and [Goedertier et al., 2009] (AGNEs), which we

have already discussed in Section 8.2 and which can in fact incorporate a-priori knowl-

195

edge on the existence of activity dependencies. Moreover, we considered some classi-

cal discovery approaches, very popular in the Process Mining community: “Heuristics

Miner” Weijters et al. [2006] (HM), “Genetic Miner” Medeiros et al. [2007] (GM), and

the algorithm α van der Aalst et al. [2004]. The performances of these methods are

discussed here just to delineate baselines suitable for assessing the gain that can be

obtained by empowering mining methods with the capability to exploit knowledge

on the real structure of the process under analysis. In fact, it will come with no sur-

prise that these ”traditional” methods are outperformed in presence of background

knowledge (that they are not able to exploit). Hence, it is not sensible to consider a

wider range of methods of this kind in the analysis that follows.

In order to test the competitors, we exploited their implementations available in

the release 6.3 of the ProM framework van Dongen et al. [2005]. In fact, for AGNEs,

ILP, and GM the implementations in the version 5.2 were used. Indeed, AGNEs is only

available up to this earlier version, while the implementation of ILP in the latest

release lacks of the ability of improving the models discovered by expressing paral-

lelism and direct dependency relationships (which is the feature we are interested in).

Concerning GM, we just obtained better performances with the version 5.2. Moreover,

since an earlier implementation of α in the version 5.2 of ProM also allows users to

express relationships of parallelism and direct dependencies, we have included this

method too in all the tests performed in presence of background knowledge. Default

settings were used for the various methods. For GM, we took the best model de-

rived from an initial population of 100 models by means of 100 iterations (of genetic

operations).

In the rest of the section, we shall illustrate results of experimental activity con-

ducted over our method and its competitors. In particular, in Section 9.7.1 we

196

Arrange_disposal

Complete_recall

EPILOGUE

Complete_optional_actions

Consider_optional_actions

Prepare_to_destory_or_modify Stop_production Identify_remedies

Keep_records

Notify_third_parties

PROLOGUE

Start_recall

Stop_distribution

Figure 9.10: Causal net of the ProductRecall process.

consider an archetypical application scenario, in Section 9.7.2 we illustrate results on

benchmark logs, and in Section 9.7.3 we present results on synthesized logs. A usage

scenario (not directly related to process mining) is discussed in Section ??. Exper-

iments have been performed on a dedicated machine, equipped with an Intel core

i7-3770k 3.5 GHz processor with 12 GB (DDR3 1600 MHz) of RAM, and running

Windows 8 Professional.

9.7.1 Case study: a product-recall process

Let us consider the product recall process defined by [Wynn et al., 2009], in accor-

dance to the guidelines established by several public institutions (e.g., in Australia,

New Zealand, USA, and EU). This is an archetypical application scenario, and its

discussion is meant here to assess the importance of having background knowledge

when an incomplete sample of the possible traces is given at hand.

197

Testbed Description

The process concerns the main activities that must be performed by a recall spon-

sor (usually the manufacturer of a suspect product), in response to a recall incident,

which can be possibly triggered by consumer complaints, supplier notifications, or

failed quality tests. Specifically, the reported problem has to be investigated and a

comprehensive risk analysis must be done (macro-activity PROLOGUE—see Wynn et

al. [2009] for details on the sequence of activities comprised in it), in order to decide

whether the product should be recalled or not. The model associated with the activ-

ities occurring in the former case is reported in Figure 9.10: after starting the recall

procedure, a case can proceed along a number of concurrent threads, including the

following tasks: (i) stopping the distribution of the product, (ii) identifying reme-

dies, (iii) arranging the disposal of items already distributed, (iv) keeping records for

subsequent monitoring and analysis purposes, and (v) notifying third parties about

the recall. In addition, depending on the kinds of product and of defect involved,

it can be necessary to halt the production of the product and to destroy/modify

other products that might have been contaminated. Once these recall actions have

been completed, a sequence of finalizing activities must be performed (macro-activity

EPILOGUE), ranging from monitoring the effectiveness of the process, to implementing

changes to prevent similar problems in the future, to preparing reports for regula-

tory authorities and/or other third parties. Notice that, as pointed out by [Wynn

et al., 2009], the need of handling product recall operations, while taking care of

traceability and notification issues, arises in a wide variety of real applications.

198

Evaluation Setting

In order to assess the quality of findings, we contrast the set Dout of causal de-

pendencies discovered by the mining methods towards the set Din of the real depen-

dencies existing in the a-priori known process model, by resorting to the classical

F-measure metric, defined as 2×P×R
P+R

, where P (standing for precision) is the frac-

tion of the dependencies in the mined model that do exist in the real model, i.e.,

P = |Dout ∩Din|/|Dout|, whereas R (standing for Recall) is the fraction of real de-

pendencies captured by the mined model, i.e., R = |Dout ∩Din|/|Din|.

Test with variable amounts of log traces

First, we generated a log (of 10000 traces) that covers a significant number of all

the possible behaviors and over which the various mining methods are able to per-

fectly reconstruct the process model for this case study. This step was just meant to

check that all methods can be in principle effective to face the given scenario. Then,

we progressively filtered the log, by therefore increasing its level of incompleteness.

We stopped the process with a resulting log L of about 250 traces (of which about

200 are distinct ones), over which HM (the simplest discovery method) is still able

to perfectly reconstruct the underlying model based on them. Experiments have

been conducted over logs that are obtained from L by taking x% of its traces, for

x ∈ {10, 20, ..., 100}. In particular, for each x, we built 10 samples. Each sample

has been built by (uniformly at random) removing one trace, until a sub-log of the

desired size of x
100
× |L| is obtained. Experiments are performed on each of them,

so that average values (for any given value of x) will be discussed in our analysis.

Table 9.7.1 summarizes our findings.

Let us first consider the columns reporting results for the scenario where no con-

199

trace without constraints with constraints
% HM α GM ILP AGNEs Here α ILP AGNEs Here

10 0.657 0.733 0.553 0.848 0.674 0.929 0.772 0.848 0.667 0.956
20 0.869 0.871 0.578 0.924 0.727 0.987 0.899 0.924 0.736 0.992
30 0.901 0.925 0.603 0.914 0.677 0.984 0.950 0.914 0.720 1.000
40 0.927 0.944 0.658 0.914 0.720 0.992 0.983 0.914 0.730 1.000
50 0.964 0.969 0.591 0.904 0.748 1.000 0.968 0.904 0.727 1.000
60 0.974 0.968 0.628 0.903 0.745 1.000 0.970 0.903 0.774 1.000
70 0.979 0.990 0.584 0.882 0.774 1.000 0.990 0.882 0.763 1.000
80 0.982 0.993 0.629 0.893 0.763 1.000 0.993 0.893 0.779 1.000
90 1.000 1.000 0.652 0.882 0.763 1.000 1.000 0.882 0.779 1.000
100 1.000 1.000 0.684 0.882 0.763 1.000 1.000 0.882 0.782 1.000

Avg 0.911 0.939 0.616 0.897 0.735 0.989 0.952 0.897 0.752 0.995

Table 9.2:
F-measure scores obtained by algorithm compute-CN and its competitors, for different
percentages of traces of process ProductRecall (Figure 9.10), without (left) and with
(right) a-priori knowledge on parallelism relationships. For both cases, maximal scores
on each trace percentage are written in bold.

straints are provided as input. It is easily seen that the performances of all methods

are rather poor against very small log samples, and tend to improve when augment-

ing the number of input traces. Such an effect is evident in the case of the classical

methods HM and α, which get full accuracy when provided with at least 90% of the

log traces. Interestingly, our approach managed to reconstruct the real set of task

dependencies already with 50% samples of the log, hence outperforming the competi-

tors even without being provided as input with additional background knowledge.

This confirms the validity of the processing scheme of Figure 9.8 and Figure 9.9 and

the efficacy of the post-processing method illustrated in this section, where different

heuristics (mainly considered in isolation in earlier approaches) are synergically inte-

grated and exploited within an original computation scheme. In particular, note that

in most of the classical approaches, a dependency from an activity x to an activity y

can be added to the model only when x is a direct predecessor of y in some trace and

the pair (x, y) is associated with a high causal score value. Our algorithms, instead,

are more liberal because the definition of precedence graphs (see Section 9.6.1) is

200

entirely based on causal scores, so that a dependency from x to y can be added even

when x never occurs as a direct predecessor of y. On the other hand, recall that

dependencies are then pruned based on their support in the log with the threshold

τ and by using the “relative to best” threshold proposed in Weijters et al. [2006].

The results in Table 9.7.1 evidence the efficacy of the combined usage of these in-

gredients. In fact, opposed to these good news related to our method, it emerges

that low quality scores (with no evident gain w.r.t. the given percentage of traces)

are achieved when using ILP and AGNEs, which are to be seen as our more direct

competitors.

The four rightmost columns in Table 9.7.1 report the results obtained by pro-

viding domain knowledge to the discovery methods. To this end, we assumed that

the analyst knows that the activity Complete optional actions is parallel with

each of the activities in {Identify remedies, Keep records, Stop distribution,

Arrange disposal, Notify third parties}. Note that this knowledge can be in-

corporated in the two competitors AGNEs, and ILP, as well as in the α algorithm, so

that we are not exploiting for the moment the richer expressiveness of our frame-

work. By looking at the table, it emerges that our method is able to fully exploit

these constraints, by getting impressive accuracy results even on very small samples.

Instead, the benefits of the background knowledge are lower for α and especially for

AGNEs. Moreover, note that ILP is unable to exploit at all the given knowledge. In

fact, in our experiments, we have noticed that the method is quite often not capable

to benefit from knowledge about parallelism, while significant improvements can be

obtained in presence of knowledge about relationships of precedences, as we shall see

later.

201

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0 10 20 30 40 50

F
m

e
a
s
u
re

Percentage of constraints

constr. type

P
NP

E
NE

(a) F-measure scores on 3% log samples

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0 10 20 30 40 50

F
m

e
a
s
u
re

Percentage of constraints

constr. type

P
NP

E
NE

(b) F-measure scores on 6% log samples

Figure 9.11:
F-measure scores obtained by compute-CN when varying the percentages of positive
edge/path constraints and of negative edge/path constraints, for four different families
of log samples, corresponding to 3% (a) and 6% (b) of traces in the log L, respectively.

Varying the quantity and type of background knowledge

In order to assess, in a deeper and more systematic manner, the capability of our

approach to exploit a-priori knowledge, further tests were carried out on the same

scenario while using different amounts of precedence constraints. The focus is to

understand the impact of each of the types of precedence constraints on the quality

of the mining results. Therefore, only very small portions of the log were used,

containing 3% and 6% of the traces of the log L (of about 250 traces). For each

trace percentage x% (with x ∈ {3, 6}), four samples were generated (as discussed in

Section 9.7.1) and, as usual, average results are discussed.

Different inter-activity dependencies were extracted directly from the known model

of the process, shown in Figure 9.10. Regarding this model as a dependency graph,

four relations over its activities can be defined and computed trivially, each encoding

some basic kind of (singleton body/head) precedence constraints: edges and paths

(i.e., pairs of activities, where the second one depends on the first either directly or

indirectly, respectively), and the associated complementary (w.r.t. all possible activ-

202

ity pairs) relations of negative edges and negative paths. These sets are denoted in

the figures discussed below by E, P, NE, and NP, respectively. And, they consists of

19, 46, 150, and 123 different constraints, respectively. Then, in order to automati-

cally generate different sets of precedence constraints, while controlling the relative

amount of each type of them, a sample of elements is extracted randomly from each

of the core relations discussed above, by using some given percentage value for each

of them. In fact, five samples were generated and results were averaged over them.

Figure 9.11 reports the average F-measure scores obtained by our solution ap-

proach against the different percentages of log traces, while using one of the above

described kinds of pairwise constraints per time. For each kind of constraints, dif-

ferent amounts were considered, ranging from 0 to 50% of its whole population. It

clearly emerges that the use of the background knowledge improves the performances

of the algorithm. Indeed, higher F-measure scores are achieved when increasing the

amount of whichever kind of constraints. However, a noticeably boost seems to be

given to the accuracy when increasing the percentage of negative (edge or path)

constraints, no matter of how many traces are taken as input. Conversely, lower

improvements are obtained when only positive constraints are used, especially when

these are expressed on paths. Intuitively, this is due to the fact that negative con-

straints are able to reduce the number of spurious flows of execution, which negatively

impact on the quality of the resulting process model. This finding was confirmed

over all our tests. Hence, as a practical guideline, the users of our plug-in are en-

couraged to introduce as much as possible negated constraints in the specification of

the mining problem.

Note that Figure 9.11 evidences that the level of improvement is neatly higher

when working on smaller log samples (hardly capturing all actual process behaviors).

203

Moreover, note that even in absence of constraints and with very few traces at hand

(3%), our method is capable of achieving good performances in reconstructing the

underlying model. This is in line with our findings discussed in Section 9.7.1.

Rate of unsatisfied constraints

So far our algorithm has been tested in scenarios where precedence constraints of

different kinds are not mixed together. Therefore, according to the results discussed

in Section 9.6, it provides an exact solution in these cases, i.e., no constraint can

be violated by the resulting process model. Hence, in order to study the efficacy of

the method as a heuristic, we performed an additional series of experiments with

heterogeneous combinations of precedence constraints, mixing up negative path con-

straints with other kinds of constraints. To this end, we applied our algorithm to the

same log samples built as in the previous subsection, while providing it with variable

amounts of negative path constraints, and fixing the percentage of any other kind of

constraints to 25%. Note that, given the adaptation discussed at the beginning of this

section, the algorithm returns a process model that still satisfies all positive edge con-

straints, path constraints, and negated edge constraints. However, the satisfaction

of negated path constraints is just greedily enforced by the post-processing phase,

and it is therefore not guaranteed. In fact, we computed the rate of negated path

constraints left unsatisfied by our approach, in correspondence of different amounts

of distinct traces and of negated path constraints provided as input (expressed as

percentages w.r.t. the size of their respective populations). In the worst case, just

0.8% of all negated path constraints given as input were not satisfied, in the average.

This rate shrinked of about a half when using either 10% samples or 50% samples of

negative paths. A similar trend was observed for trace samples with a 6% of distinct

process traces. The amount of violated constraints became negligible when bigger

204

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

1000 4000 1600 64000

C
o
m

p
u
ta

ti
o
n
 T

im
e

 (
m

s
e
c
)

Number of traces

constr. type

None
P

NP
E

NE

(a) Computation Time vs Log Size

 4

 16

 64

 256

 1024

 4096

 16384

 0 10 20 30 40 50

C
o
m

p
u
ta

ti
o
n
 T

im
e

 (
m

s
e
c
)

Percentage of constraints

trace nr.

1000
4000

16000
64000

(b) Computation Time vs Constraints’ Amounts

Figure 9.12:
Computation time spent by algorithm compute-CN with different amounts of traces
and constraints’ percentages in input. A base-2 logarithmic scale is used for the vertical
axis in both figures, as well as for the horizontal axis in the left-hand figure.

samples of log traces (we tested both 12% or 24%), no matter how many negated

paths are passed to the algorithm.

Running time

As we have pointed out in the Introduction, it often happens in real process

mining applications that only a “small” set of (representative) traces are available

for analysis purposes. For this reason, scalability plays generally a secondary role in

the design of process mining algorithms, and many works just omit at all this kind of

analysis. Nonetheless, we feel that it is relevant to complete the picture by providing

the reader with a general idea of the scaling of our algorithms, hence complementing

the theoretical analysis carried out in Section 9.6. To this end, we performed a series

of tests on logs of different sizes. Logs were generated again with a variable level of

completeness, by extracting different amounts of distinct traces out of the original

log. First of all, we randomly extracted a sample of (distinct) traces out of the

complete log, to produce different logs with size s ∈ {1000, 4000, 16000, 64000}. In

particular, when traces have to be added to obtain a log bigger than the original

205

one, we simply duplicated the original traces in a balanced way (i.e., all traces are

replicated approximatively the same number of times).5

Figure 9.12 reports the computation time (measured in milliseconds) when varying

the amounts of traces and constraints in input. In particular, on the left, it shows

results grouped according to the different kinds of constraints we have considered

(i.e., E, P, NE, NP) and averaged over the samples built when considering p%, with

p ∈ {0, 10, 20, 30, 40, 50}, of constraints derived from the population of the given kind

(within the same setting as in Section 9.7.1).

On the right, results are reported where, for each particular percentage p% of

constraints, all the sets of different constraints built for p have been merged to-

gether. For each value of p, five different heterogeneous sets of constraints were

generated, containing p% constraints for each constraint type, extracted at random

from their respective populations. Four trials were performed over different logs built

as discussed above, and as usual average measures are reported. Notably, whatever

percentage is chosen, the computation time scales basically linearly with respect to

the number of input traces. On the other hand, a positive correlation seems to ex-

ist as well between the overall running time and the quantity of constraints taken

as input—if ignoring the case of 1000-sized logs, where the times measured are too

low to safely infer any general significant trend of behavior. Anyway, the impact of

constraints on times is negligible if compared with that of the log size.

Finally, we notice that the computation time of algorithm compute-CN is com-

parable to that of the standard process mining methods α, ILP, and HM, and neatly

lower than those spent by GM, AGNEs. Indeed, the latter method took about 600

times longer than compute-CN to compute a model, in the average, while the

5Duplicated traces might be processed efficiently by “weighting” each trace with the number of its occurrences in
the log. We avoid this trick, as we want to test the algorithms at the varying of the log size.

206

log distinct pairs of || control-flow distinct log
name activities activities constructs traces size

parallel5 10 10 − 107 3000
a10skip 12 1 skip 6 2665
a12 14 2 − 5 2492
a5 7 1 loop 13 2189
a6nfc 8 1 nf-choice 3 2040
a7 9 4 − 14 2023
a8 10 1 − 4 1803
choice 12 0 − 16 2400
driversLicense 9 0 − 2 2100
herbstF ig3p4 12 3 loop 32 5637
herbstF ig6p18 7 0 loop 153 9844
herbstF ig6p36 12 0 nf-choice 2 3000
herbstF ig6p37 16 36 − 132 4800
herbstF ig6p41 16 4 − 12 3600
herbstF ig6p45 8 4 − 12 2400
l2l 6 0 loop 10 4932
l2lOptional 6 0 loop, skip 9 2622
l2lSkip 6 0 loop 8 4554

Table 9.3:
Benchmark logs: structural characteristics and statistics (see also Weerdt et al. [2012]).
Each log consists of 300 (not necessarily distinct) traces.

computation time of GM was about 4500 times that of compute-CN when using the

default population size of 1000 (the ratio only decreased to 600:1 with 100-model

populations).

9.7.2 Comparative analysis on benchmark data

In order to assess the capability of our approach to discover a good-quality process

model in a wider range of settings, we performed a series of tests on some benchmark

logs, while measuring the accuracy of each discovered model by way of several “log-

conformance” metrics, very popular in the fields of Process Mining and Business

Process Analysis. Differently from the pure (edge-oriented) F-measure employed in

the previous section, to contrast a discovered model to the true (a-priori known) one,

these metrics allow for evaluating how much the behaviors registered in a given log

comply with those allowed by the model under analysis.

Testbed: logs and conformance metrics

Our experimental activities were carried out over some of the benchmark logs pro-

vided with the ProM framework van Dongen et al. [2005], which have been widely

used in the literature (see, e.g., Medeiros et al. [2007]; Goedertier et al. [2009];

207

De Weerdt et al. [2011]; Weerdt et al. [2012]) in order to evaluate process min-

ing approaches—this benchmark is also congenial to our ends, since the underlying

“true” models are available, and can be used both for comparison purposes and for

automatically extracting background knowledge. In particular, owing to our special

interest toward incompleteness issues, we focused on those logs exhibiting the highest

degree of non-determinism and concurrency. The logs were generated from models

including a number of routing constructs/patterns, such as (non free) choices, skips,

and loops—the reader interested in expanding on these concepts is referred to the

above literature. Table 9.7.2 summarizes their features, by reporting in particular

the number of distinct activities composing the process, the number of pairs of ac-

tivities belonging to different parallel branches (“parallel || pairs”), the presence of

special constructs, the number of traces, and the log size measured as the number

of episodes stored in it, i.e., as the sum of the occurrences of the activities over all

traces. Note that six logs derive from process models that contains loops, and in fact

they are not linear logs as they contain traces with multiple occurrences of the same

activity.

In order to assess the capability of a process model to accurately capture the

behavior recorded in a given log, several alternative conformance metrics have been

proposed in the literature. In our analysis, given the focus of our approach, we

consider precision metrics and recall metrics. Precision metrics attempt to estimate

the amount of the “extra” (unseen and likely unwanted) behavior allowed by the

model, with respect to that actually registered in the log, whereas recall metrics try

to evaluate how much of the behavior recorded in a log is really captured by the

model. All these metrics range over the real interval [0, 1] and have been defined in

the literature for Petri-net models. In order to use them with a model represented

208

Metric True AGNEs α GM HM ILP Here

Fitness Rozinat and van der Aalst [2008] 1.000 0.995 0.988 1.000 0.994 1.000 0.994
Alignment Based Fitness Adriansyah et al. [2011] 1.000 0.968 0.830 0.978 0.958 0.889 0.995
Behavioral Recall Goedertier et al. [2009] 0.997 0.992 0.978 0.989 0.846 1.000 0.989
Proper Completion Rozinat and van der Aalst [2008] 1.000 0.938 0.851 0.999 0.933 1.000 0.931
Adv. Behav. Appropriateness Rozinat and van der Aalst [2008] 0.814 0.823 0.854 0.802 0.783 0.856 0.809
Alignment Based Precision van der Aalst et al. [2012] 0.921 0.926 0.948 0.874 0.871 0.912 0.939
Behavioral Specificity Goedertier et al. [2009] 1.000 0.992 0.978 0.997 0.990 1.000 0.986
(Wtd) Behavioral Precision De Weerdt et al. [2011] 0.915 0.884 0.882 0.890 0.748 0.891 0.887
Negative Event Precision Goedertier et al. [2009] 0.970 0.927 0.927 0.953 0.943 0.934 0.937

Table 9.4:
Average conformance measures obtained, on benchmark logs, by different discov-
ery methods—including the one proposed in this thesis (Here). For each row,
the best average score (excluding ground-truth models) is underlined, while the results
that were recognized as significantly better than the average of the outcomes
over the various methods (for the same metrics and setting) are in bold.

in another language (for instance, a causal net), we preliminary translated the given

model into a Petri net, with the help of suitable conversion plug-ins available in

the ProM framework. The actual computation of the metrics was carried out by

taking advantage of the CoBeFra tool, recently proposed van den Broucke et al.

[2013] as a practical support to conformance analysis. In fact, we noticed that slight

different measures can be obtained over different runs of the tool (but deviations are

very limited), so that hereinafter we refer to measures averaged over three runs. A

summary of all the considered metrics is reported in the first column of Table 9.7.2.

Results

For each of the conformance metrics described above, Table 9.7.2 reports the

average value obtained by applying each of the methods to each of the logs in Ta-

ble 9.7.2. As a term of comparison, column True reports the conformance results

obtained for the process models that were actually used to generate the logs (which

are all available). Since many methods got very similar results over several metrics,

a statistical testing procedure was carried out, in order to check whether their be-

haviors are really different. To this end, for each of the considered metrics, a paired

one-tail Student’s test was applied to compare the outcomes of each method with the

average of those obtained by all the methods. Notably, for each of the metrics, we did

209

not find significantly enough differences, apart from a small number of cases, which

are emphasized in bold in the table—in almost all cases we could not reject (with a

95% level of confidence) the null hypothesis that a method behaves identically to the

“average” one, rather than improving the latter. In fact, since all methods achieve

good performances and differences are not statistically relevant, it is not informative

to devote further space to analytically illustrate these performances over each of the

logs. Accordingly, we just focus below on illustrating Table 9.7.2, where a synthectic

picture is depicted by averaging the results over the whole family of benchmark logs.

“Traditional” approaches are able to reconstruct the originating models with high

levels of precision and recall (this is hardly surprising given that these methods have

been designed precisely to face the challenges in such kinds of benchmarks logs).

However, AGNEs, ILP, and our method also exhibit good performances over these

logs, and in some cases they perform better than the competitors even though no

background knowledge is available. In any case, we observe that our evaluation

procedure tends to disadvantage a model that was not originally built as a Petri

net (as in our case), because the conversion plug-ins often produce results with

hidden/duplicated transitions, which are considered as a source of extra-log behaviors

by certain metrics.6

As a further comment, we stress here that, in terms of computation time, our

approach is in line with the most efficient process discovery techniques, and definitely

faster than both AGNEs and GM. The average values and standard deviations computed

over running times (in milliseconds) are: 21851.2 ± 12334.6 for AGNEs, 341012.2 ±

385997.7 for GM, 95.6 ± 73.4 for HM, 203.1 ± 53.4 for ILP, and 138.2 ± 85.3 for our

approach.

6In fact, since even the original models are not available as Petri nets, they get lower scores, for some metrics,
than those obtained for methods returning true Petri nets.

210

original (%) of traces in
benchmark log the sub-log

herbstFig3p4 41%
herbstFig6p37 4%
herbstFig6p41 23%
herbstFig6p45 18%
parallel5 3%

Table 9.5:
Statistics on the “critical” sub-log extracted for each of the benchmark logs in Table 9.7.2.

Tests on (critical) sublogs

In order to test all discovery methods in a more challenging setting, we extracted

a critical sample out of each log, defined as an incomplete collection of traces, cov-

ering a limited portion of the whole variety of the behaviors in the original log. An

empirical iterative procedure was devised to this purpose, where increasing amounts

of traces are randomly removed from a given benchmark log, until we register a loss

of 15% in the F-measure of the models discovered with algorithm HM. In order to

further emphasize the effect of log incompleteness, we focused our attention on a

subset of the logs in Table 9.7.2, which allowed all the tested discovery methods to

perfectly rediscover the associated model (i.e., to achieve a maximal value of 1 over

both F-measure and all of the recall metrics). The number of traces of each of these

sub-logs is reported in the Table 9.7.2.

Given the incompleteness of the resulting logs, experiments were conducted also

in the presence of background knowledge. In this case, for each critical sub-log and

for each of the tested methods, we considered the background knowledge consisting

of the three constraints extracted from the given true model that allow us to obtain

the best performances w.r.t. the F-measure. Note that here we exploit the full

expressiveness of our approach. In fact, it emerged that the best results are obtained

in presence of negative constraints only.

Results for these tests are reported in Table 9.7.2, whose precision and recall scores

211

without constraints with constraints
Metric AGNEs α GM HM ILP Here α AGNEs ILP Here

Fitness 0.900 0.852 0.950 0.882 0.941 0.951 0.865 0.950 0.969 1.000
Behavioral Recall 0.903 0.792 0.948 0.881 0.945 0.939 0.806 0.955 0.972 1.000
Alignment Based Fitness 0.858 0.744 0.948 0.834 0.945 0.948 0.799 0.919 0.572 1.000
Proper Completion 0.081 0.102 0.523 0.081 0.459 0.543 0.340 0.400 0.655 1.000
Adv. Behav. Appropriateness 0.625 0.711 0.901 0.580 0.828 0.910 0.788 0.579 0.880 0.928
Alignment Based Precision 0.952 0.957 0.966 0.956 0.963 0.965 0.967 0.966 0.973 0.972
Behavioral Specificity 0.903 0.792 0.948 0.881 0.945 0.949 0.806 0.955 0.972 1.000
(Wtd) Behavioral Precision 0.634 0.701 0.794 0.615 0.794 0.776 0.764 0.843 0.788 0.966
Negative Event Precision 0.678 0.746 0.827 0.658 0.833 0.822 0.815 0.872 0.816 0.976
F-measure 0.741 0.730 0.855 0.735 0.831 0.852 0.806 0.941 0.915 1.000

Table 9.6:
Results on “critical” samples without and with background knowledge. For each row,
the best average score is underlined, while the results that were recognized as signif-
icantly better than the average of the outcomes over the various methods (for the
same metrics and setting) are in bold.

were computed by comparing each model discovered (from the sub-logs described

above) with the respective (entire) benchmark log. Moreover, the F-measure values

are also reported (see Section 9.7.1). As above, a one-tail Student’s test was carried

out to assess the significance of the performance differences. The results obtained

in absence of background knowledge further confirm the validity of our approach

and, in particular, the effectiveness of its underlying (causal-score driven) heuristics

for pruning useless/unlikely edges. The advantage of using additional background

knowledge clearly emerges. In particular, our method perfectly reconstructs the true

models of all benchmark logs (see the lowermost row), and achieves full recall without

incurring into overgeneralization.

9.7.3 Further tests on synthesized data

Another series of tests was conducted on different synthesized logs, in order to

assess the effectiveness of the proposed approach against logs following different data

distributions, as far as concerns the structure of the processes producing them.

Generation of process models

The data used in this experimentation were produced with the help of a log

generator (based upon the one described in Burattin and Sperduti [2011]), which

212

allows for both constructing a process model randomly, and generating a log of

random execution traces out of it. The synthesis of the model is carried out via an

incremental block-oriented procedure, where an initially empty model is extended

iteratively by adding a new subprocess, until a given number of elementary activities

is obtained. Each subprocess can be either an elementary activity, a sequence of

activities, or a more complex control-flow block. The whole procedure is governed

by a combination of gaussian and multinomial probability distributions, and it can

be controlled by way of a number of parameters, which are listed below:

• Task Number (TN): the number of elementary activities to be generated;

• Branching Factor (BF): the number of branches in any branching structure;

• Singleton Probability (SP): probability that any current subprocess will be in-

stantiated with just one activity;

• Fork Probability (FP): probability that the subprocess is a “fork” structure (i.e.,

a number of subprocesses that can be executed in parallel or that are mutually

exclusive), given that it is not an elementary activity;

• AND Probability (AP): probability that the branches of any fork structure are

in parallel, rather than in mutual exclusion.

In order to prevent models from having an excessively unbalanced shape, one

further parameter can be set, named the Maximum Nesting Depth (MND), stating

the maximum level of nesting of any activity with respect to all the control-flow

blocks it is enclosed within—precisely, whenever the nesting level of a subprocess

equals MND, the subprocess is forced to take the form of a single activity (i.e., it

cannot give rise to a complex control-flow block).

213

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50

F
m

e
a
s
u
re

Percentage of constraints

AP

0.0
0.5
1.0

(a) Accuracy w.r.t. true dependencies

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 15 20 25 30 35 40 45 50

U
n
s
a
ti
s
fi
e
d
 N

e
g
.
P

a
th

 C
o
n
s
tr

a
in

ts
 (

%
)

Percentage of constraints in input (%)

AP

0.0
0.5
1.0

(b) Rate of unsatisfied neg. path constraints

Figure 9.13:
Results on synthesized log data, with different degrees of parallelism (AP): accuracy
of discovered process models (in terms of F-measure w.r.t. real activity dependencies),
and rates of unsatisfied (negative path) constraints. Both measures are reported for
different amounts of a-priori constraints of all types (expressed as percentages w.r.t.
the sizes of their respective population).

In our experiments, we fixed SP = 0.1 and MND = 4, and simulated three

different levels of concurrency, hinged on different values of the parameter AP ∈

{0.0, 0.5, 1.0}. In order to consider a wide enough variety of process schemas, the

remaining parameters were chosen in a random manner. Specifically, we picked up

TN from a truncated normal distribution ranging between 10 and 30, with location

25 and scale 8. Instead, BF and FP were extracted from two uniform distributions

ranging over the sets {2, 4, 6} and {10, 20, . . . , 80}, respectively. Overall, we gener-

ated 25 different schemas, and produced 4 logs for each of them, by simulating 1000

random enactments of the schema for each of them (as in Burattin and Sperduti

[2011]). In this way, 100 different logs were eventually obtained, each one consisting

of 1000 traces.

Results

Figure 9.13 reports the results of tests performed by applying our approach to

the logs described above, while providing it with heterogenous sets of precedence

214

constraints, and hence expressing partial information on real activity relationships.

As in Section 9.7.1, these constraints were randomly extracted from the model which

generated the log, according to different levels of coverage (w.r.t. the entire popu-

lation of constraints that can be derived from the model), expressed in terms of a

percentage p ∈ {0, 10, 20, ..., 50}. In more details, for each log L and each value of p,

we randomly generated 5 sets of constraints, by sampling p% pair from each of the

binary relations (of the form E, P, NE, NP) extracted from the a-priori known model

of L. Note that the binary relations E, P, NE, and NP vary depending on the specific

model from which they have been extracted. As discussed above, we have considered

25 different schemas. Their sizes, averaged over the 25 different scenarios, are of 24,

140, 440, and 324 elements, respectively. The maximum (resp., minimum) sizes over

the scenarios are 32, 251, 752, and 533 (resp., 14, 48, 130, and 94), respectively.

Each value was computed by averaging all the results obtained when using (i) any

log generated with the given value of AP , and (ii) any constraint set covering p% of

each (positive/negative direct/indirect) precedence relation. Clearly, higher levels of

concurrency (i.e., higher values of AP) tend to lead to lower accuracy results, as far as

concerns the recognition of real activity dependencies. Providing increasing amounts

of constraints definitely helps to improve the average accuracy of the resulting models.

As a further effectiveness indicator (connected with the capability of our approach

to really satisfy the constraints it was provided with), we finally present, in the

right side of Figure 9.13, the rate of unsatisfied negative path constraints, i.e., the

percentage of constraints of this kind that were taken as input in some run of the

algorithm, but were not fulfilled by the causal net discovered in the same run—recall

that all other constraints are necessarily satisfied. Again, these results are reported

for different values of both p and AP . It is good news that the rates of unsatisfied

215

negative path constraints are always relatively small, especially in the case of low

concurrency levels. In fact, all the models that were induced from concurrency-free

logs do not violate any constraint at all. Higher violation rates affect the models

extracted from choice-free logs (AP = 1), i.e., logs produced by a model where all

the branches going out of a fork node are always executed concurrently. However,

even in such an extreme case, the rate is quite low, reaching at most 15%, precisely

when p% = 10%. Therefore, the absolute number of constraints violated is still very

small, and only represents a 0.15% of all possible constraints associated with the

underlying models. Moreover, note that increasing the amount of input constraints

seems to help our approach reduce violation rates. This can be explained by observing

that, as the availability of more background knowledge makes each discovered model

more similar to the true one, it is more likely that the former will eventually satisfy

a higher amount of all the a-priori constraints associated with the latter.

9.8 Summary

Current research is rather active in proposing process mining techniques support-

ing increasingly expressive modeling languages. However, most of the approaches

proposed in the literature mine the causal dependencies that hold over the activities,

while completely ignoring the prior knowledge that in many cases is available to

the analyst. This dissertation moves a systematic step to fill the gap, by proposing

and analyzing a constraint-based framework for process mining, where background

knowledge can be encoded in the form of precedence constraints. The computational

complexity of the framework has been studied, and the whole approach has been

implemented in a prototype system, which has been tested on different log data.

Note that the use of constraints is currently gaining attention in a different con-

216

text, yet still related to process management, namely in the context of developing

declarative approaches to support business automation. In fact, traditional modeling

languages, such as Petri nets or causal nets, are procedural ones for they explicitly

represent all the allowed behavior of the process, according to a “closed world” as-

sumption. Opposed to this approach, recent research focused on developing declar-

ative models where any possible enactment is allowed unless a constraint (expressed

in some suitable formal logic) is known to hold and explicitly forbids it (see, e.g., van

der Aalst et al. [2009]; Sadiq et al. [2005]; Reichert et al. [2009]). Following a num-

ber of earlier attempts to use logic-based languages for the specification of business

processes (see, e.g., Bonner [1999]; Senkul et al. [2002]; Dourish et al. [1996]; Joeris

[2000]; Wainer and de Lima Bezerra [2003]; Lu et al. [2006]; Attie et al. [1996]), De-

clare Pesic et al. [2009] is nowadays the most solid platform adopting a declarative

perspective for process modeling, where the semantics of each constraint is provided

in terms of an associated Linear Temporal Logic (short: LTL) formula, whose (finite)

models are precisely the set of all the allowed traces Pesic et al. [2007, 2010].

Interestingly, the problem of automatically inferring a process model from a given

log available at hand has been considered within these declarative frameworks for

process management, too. In particular, techniques specifically designed to infer

Declare constraints have been presented by [Maggi et al., 2011] and [Maggi et al.,

2012] and subsequently enhanced by [Maggi et al., 2013], in order to discover data-

aware models. Another approach has been proposed by [Di Ciccio and Mecella, 2012],

where constraints are eventually expressed in terms of regular expressions rather than

in terms of LTL formulas. By sharing the spirit of the above proposals, but focusing

on a slightly different problem, [Chesani et al., 2009] proposed a methodology to

analyze a log whose traces are labeled as compliant or non-compliant, and whose goal

217

is to learn a classification model defined as a set of rules/constraints expressed in the

SCIFF Alberti et al. [2008] language (eventually mapped in the Declare notation).

Other approaches to building rule-based classification models have been proposed,

for instance, by [Bellodi et al., 2010] and [Ferreira and Ferreira, 2006].

By looking at the above body of literature, it clearly emerges that the use of

constraints in these works is completely different from ours. Indeed, in these declar-

ative frameworks, constraints are used to specify which traces are allowed, while in

our approach they help define the set of those possible process models that are of

interest to the analyst. In fact, our perspective is the traditional one where the

analyst wants to end up with a procedural model, and where constraints are used

to prune the search space of all the models that could be induced from a given log.

Accordingly, we adopted a language to specify topological constraints on the process

model, rather than a language (such as LTL) tailored to define constraints on traces.

Even though the two approaches are completely orthogonal, we stress however

that the research reported in this thesis might have also an impact in the context of

developing mining approaches for declarative process models. Indeed, in this setting,

the idea of incorporating a-priori knowledge in the mining phase has been largely un-

explored, and constitutes a promising avenue of further research. Currently, analysts

are provided with the rules induced via mining methods and might refine them to

incorporate their knowledge in a post-processing phase. Instead, it would be inter-

esting to define approaches where analysts can a-priori formalize their knowledge and

where rule/constraints adhering with it are automatically inferred from the available

log.

Finally, we recall from Section 8.3 that logs have been viewed in the chapter as

multi-set of traces, by disregarding the data involved over the activities. Therefore,

218

it is natural to look for extensions of the proposed mining techniques that could

deal with context information (about, e.g., parameters and functional features of

the activities) and process ontologies. Moreover, we observe that we have implicitly

considered throughout the chapter a setting such that, whenever an activity is exe-

cuted, then the corresponding event is registered in the log. In some cases, however,

we might have to deal with hidden activities, i.e., activities that exist in the process

model but that are not registered in the log. This is very often the case for activ-

ities corresponding to routing constructs, which therefore give rise to logs that are

”incomplete” in a sense that is completely orthogonal to the one we have considered

in this thesis. Indeed, algorithms tailored to deal with hidden activities have been

also proposed in the literature, such as the α# algorithm Wen et al. [2010], which

however assumes (as usual) that the log registers all the possible traces for the under-

lying process. In our experiments, we have considered α# too, and we observed that

it is outperformed by the standard α algorithm—this is not surprising given that

our experimental setting does not consider models with hidden activities (where α#

might be more effective). In fact, extending our approach with techniques inspired

by α# and conducting experimentations over process models with hidden activities

are further interesting avenues of research.

CHAPTER 10

An Application Scenario (Beyond Process Mining): Urban
Congestion

10.1 Introduction

So far, we have analyzed our algorithms within standard process mining settings,

but it is not difficult to envisage that they have wider applicability. In this chapter,

we complete the picture by discussing a different kind of application motivated by

the TETRis research project,1 funded by the Italian Ministry of Education, Univer-

sity and Research and within the general frame of reference ”Internet of Things”

supporting Smart City/Smart Territory, in which the acquisition of data by objects

can be applied to large territorial areas by the widespread availability of commu-

nication networks [European Commission, 2012], [http://www.internet- of-things-

research.eu/documents.htm]. In more detail, the activities described in this chapter

are related to the identification of scenarios for the realization of innovative services

aimed at an intelligent management of a urban and suburban territory.

Within these activities innovative solutions and technology platforms have been

identified in order to enable a new way of working for the business entities of the

area of interest (municipalities, provinces, regions, universities, etc.) and for citizens

and operators involved. Infact, its extended and enhanced the wealth of information

1PON Project 01 00451.

219

220

acquired on the territory through the use of sensors and devices interconnected by

local and remote communications systems that support high added value services

to improve the quality of the territory itself in terms of livability and sustainability

through the involvement of citizens who become the main tutors of the territory,

the so-called ”social sensors”, for the detection of critical situations related to the

context in which they live.

10.2 Project goals

TETRis project main objective is to create high added value services within Smart

City and Smart Territory context [Kanter and Litow, 2009], [Komninos et al, 2011]

also extending, wherever possible, the functions of TETRA communication system

and acting along three main axes: The evolution and the opening of the application

fields of TETRA communication system in order to define new information services

for operators, exploiting new models and open source tools for the interconnection of

TETRA with other networks and the identification of new type of devices obtained

through TETRA system interoperability with existing sensors and sensor networks;

The modeling and prototyping of an Open Source framework that allows to define

a Smart Objects cooperation model and a Smart Objects management within the

related Smart Environments; The identification of scenarios and application models

in the perspective of Smart City/Smart territory services through the definition of

Smart Environments and high added value Open Source services applied to territory

monitoring, emergency management, urban and suburban mobility and services to

citizens.

The specific objectives of TETRis project can be read as follows: Bring economic

and social benefits to the community through more targeted and effective actions by

221

Public Administration and Public Security operators in different application scenar-

ios such as emergency management, environmental protection, mobility and services

to citizens, with the contribution of the same citizens through the sharing of informa-

tion and the use of innovative tools for social networking; Extend the pervasiveness

and effectiveness of public administration services, instrumental bodies, local police,

health operators, transport companies in the reference areas; Improving the quality

of life and the sense of safety of citizens through the spreading of safe and reliable

technology infrastructures ”always on”.

10.3 Urban log mining

Within this project, the goal of our application is to discover knowledge about

congestion dynamics in a urban transportation network. The analysis was performed

on data extracted from a large collection of raw mobility records, concerning the

circulation of buses (basically, over non-preferential roads/streets) across a network

of two neighboring Italian cities (Cosenza and Rende) during year 2012. Each of these

records registers the fact that a certain bus (following a certain route) occupied a

given geographical position (identified via GPS coordinates) at a certain time.

The analysis of congestion dynamics was carried out by preliminary converting

such raw data in the form of a process log, as explained next. First, we transformed

the original data into a collection of bus moves, each indicating the transfer of a

bus from one bus stop to the subsequent one. For any move m, let posfrom(m)

and posto(m) denote its initial and final positions (i.e., bus stops), respectively, let

time(m) be the time when the move was completed, and let duration(m) be the

travel time of m. The set of all the pairs 〈posfrom(m), posto(m)〉 over all the moves m

constitutes the alphabet of the symbols for the log we are going to construct. Each

222

pair is also called a route segment. For each bus, the sequence of route segments

associated with the movements of the bus in a given day constitutes one trace in a

base version of the log.

The base version is subsequently filtered by removing from each trace the segments

that are not associated with an abnormally long travel time. In particular, a move

m is considered as an anomalous event if duration(m) is greater than 1.3 times the

average duration of the moves over the same segment. Note that while removing

the moves that are not anomalous, it might happen that two consecutive moves m1

and m2 in a trace result to be completely unrelated, in that either posfrom(m2) 6=

posto(m1), or time(m2)− duration(m2)− time(m1) > ∆t, with ∆t being a threshold

fixed to 15 minutes in our experiments. In these cases, the trace is broken in two

sub-traces, one ending with m1 and the other starting with m2, and the analysis is

repeated until a fixed point is reached. Eventually, two additional dummy activities

are placed at the beginning and at the end of each trace.

Starting with a setting with about 300000 moves and 3000 segments, by exploiting

the procedure described above, we obtained a non-linear log over 1743 activities and

2883 traces. Note that the log is focused on the segments over which abnormal

travel times have been registered (which witness some traffic congestion) and, in

particular, each trace is meant to report the propagation of the congestion across

the transportation network. In fact, by analyzing the resulting log with a process

mining method, it is now easily seen that one can derive a (conceptual) process model

representing how congestions “flow” over the network. In fact, the approach is close

in the spirit to the work by [Liu et al., 2011]. The main difference is that in our

setting the resulting flow model is not limited to a tree as in Liu et al. [2011] (which

basically covers only branching constructs modeling scenarios where a congestion

223

Figure 10.1:
A screenshot of the plug-in CNMining implementing the algorithms presented in the
paper. The causal net is drawn by exploiting the Flex interface available in ProM,
where bindings are displayed inside tooltips activated by hovering the mouse over the
corresponding node.

is split over two streets), but it can be an arbitrary process model with different

routing constructs (in particular, synchronizing constructs modeling scenarios where

congestions with different origins are merged together).

Figure 10.1 shows (portions of) one causal net discovered from the events recorded

during April and May 2012, within a specific geographical area with diameter of

about 8 Km—in this case, we have 108 activities and 52 traces. Each node in the

model of Figure 10.1 is labeled with the names of the two bus stops it identifies.

According to a process-oriented interpretation of anomaly traces, an edge in the

model indicates that a delay in one route segment (the origin of the edge) is likely to

propagate to another segment (the ending point). Therefore, in order to be adherent

to this semantics, there cannot be an edge in the model from a segment to a subse-

quent adjacent segment along the same (oriented) route. Similarly, there cannot be

an edge from a segment to a non-adjacent one. For these reasons, it comes with no

surprise that standard approaches to process discovery might be not appropriate in

224

this application scenario, as they are not able to properly accommodate this kind of

background knowledge.

Instead, after they were equipped with this knowledge, our algorithms produced

models that truly reflect the semantics of the congestions. Moreover, discovered

models emerged to highlight the problems inherent to the network. Actually, in this

case, there is no “true” congestion model to be used to quantify the quality of the

findings and to conduct experiments on the measures reported in Table 9.7.2. On the

other hand, the setting is congenial to stress the scalability of the algorithms w.r.t. the

number of the activities (which is large differently from classical applications of

process mining). Indeed, recall from Section 9.6 that a factor in the scaling is nt ×

na× lt, where nt is the number of traces, na the number of activities, and lt the trace

length. While in general lt might linearly grow with na,
2 the scaling we registered

(when varying the diameter of the area) was actually linear w.r.t. na, too. The reason

is that even over the whole original log, 90% of the traces have length 6 at most, so

that lt acts as a fixed constant. This comes with no surprise, as we are considering

causal correlations over anomalies.

2The quadratic scaling w.r.t. the number of activities is intrinsic to the computation of the causal scores, and
hence characterizes most of the process discovery algorithms in the literature. In general, it might be avoided by
considering less accurate heuristics (fixing the size of a sliding window over the trace), or decomposition approaches
as the one recently proposed by [van der Aalst, 2012].

225

Part IV

Conclusions

CHAPTER 11

Conclusion and Future Research

11.1 Contributions

In this dissertation we studied Constraint satisfaction as a general framework

that allows us to describe many computational problems arising in various areas

of research, such as database theory, game theory and process mining. We look

for classes of instances where such problems are tractable (islands of tractability),

as well as for heuristics that are able to deal with real-world instances, possibly

exploiting suitable properties of the instance structure. We summarize next the

main contributions discussed in the dissertation.

11.1.1 Databases

In this area of research, we studied the problem of counting solutions in SQL

queries specifying ”COUNT” aggregates. We proposed a novel structural decomposi-

tion notion that extends the framework of greedy tree projections by adding weights.

An experimental evaluation of the implementation is conducted, where the algorithm

is contrasted with the available algorithms for computing hypertree decompositions

(because there are no further algorithms dealing with the general framework). We

also designed optimization algorithms which exploit our novel structural notion to

identify classes of queries that are structurally tractable. We integrated our hybrid

226

227

optimizer inside a well-known relational DBMS and we compared the performances

of our approach with those of the traditional optimizer. The results evidenced the

effectiveness of our tool.

11.1.2 Game theory

We study coalitional game theory, which provides a solid mathematical framework

to analyze scenarios where agents con obtain higher payoffs by collaborating with

each other rather than by acting in isolation. In particular, we consider the class of

allocation games, which has been originally defined by [Moulin, 1992] as a way to

analyze fair division problems where monetary compensations are allowed and utili-

ties are quasi-linear. In these contexts (and when monetary transfers are possible),

the prototypical solution concept for them is the Shapley value, whose computation

is known to be intractable, formally #P-complete. Motivated by this bad news, the

dissertation investigates structural requirements that can be used to isolate islands

of tractability. We study parameters of the underlying allocation scenarios which

allow us to single out islands of tractability. In more detail, we show that comput-

ing the Shapley value, as well as the related concept of Banzhaf value, is feasible in

polynomial time when each good is of interest for at most two agents, or when inter-

actions among agents have a tree-like structure. We observe that these games capture

scenarios of practical interest. For instance, we analyzed the data of one concrete

instantiation for the setting described by [Greco and Scarcello, 2014b]. The setting

refers to an allocation problem arising in the Italian Research Assessment program.

The instantiation refers to the data of the University of Calabria, by discovering that

the treewidth of the associated graph, consisting of more than 500 nodes, is 9 only.

Moreover, the result has its own theoretical interest, as the analysis of the complexity

of reasoning problems (even specifically related to coalitional games) over structures

228

of bounded treewidth is an active topic of research in artificial intelligence. Note

that the tractability result has been established by encoding the problem of com-

puting the Shapley value of allocation games GA in terms of counting problems over

suitably defined CSP instances [Dechter, 2003], and by using known tractability re-

sults for CSP instances having bounded treewidth. Indeed, based on the notion of

treewidth, islands of tractability for counting problems have been recently singled

out [Pichler and Skritek, 2013]. Our results evidence that subtle issues come into

play when trying to reuse such recent results. In fact, while being focused on the

Shapley value, the methodology we propose has a wider spectrum of applicability,

and its salient ideas might be profitably reused in other contexts. Part of this work

appeared as: Gianluigi Greco, Francesco Lupia and Francesco Scarcello Structural

Tractability of Shapley and Banzhaf Values in Allocation Games in the Proceed-

ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence

(IJCAI-15).

11.1.3 Process mining

While studying process mining applications, it emerged from our analysis that top-

down design methods and bottom-up process discovery techniques have been almost

separate worlds, so far. Indeed, while the use of background knowledge for improving

the quality of results has already been considered in a number of traditional data

mining tasks (on relational data and on sequence data) including pattern mining

and clustering (see, e.g., [Guns et al., 2011; de Amo and Furtado, 2007]), designing

counter-parts of such techniques in the context of process discovery is still largely an

open issue. In this thesis, we move a further step to synergically integrate top-down

design methods and bottom-up process discovery techniques. Indeed, we propose a

”hybrid” approach to process discovery, where a mining method is conceived which

229

Traditional Goedertier et al. [2009] van der Werf et al. [2009] Here

edge constraints � � � �
path constraints � � � �
constraints for parallelism � � � �
constraints over sets � � � �

Table 11.1: Summary of constraint support.

can take into account a wide variety of constraints over the causal dependencies that

are possibly available to the analyst. This is particularly useful for circumventing

the problems emerging when log completeness does not hold. In more detail,

(1) We propose a formal framework to specify additional properties on the process

models that can be produced as output by process discovery algorithms. The

framework is based on defining a set of precedence constraints over the activities,

and it supports the kind of prior knowledge that is usually available to the analyst.

Table 11.1.3 summarizes the features of our framework, by comparing them with

those supported (to some extent) by earlier approaches in the literature. Note that

“traditional” process discovery methods do not provide any support to deal with

prior knowledge.

(2) In the light of our formulation, process discovery can be conceptually viewed as a

mining task (i.e., building all possible models for a given input log) followed by a

reasoning task (i.e., filtering out those models that do not satisfy the precedence

constraints defined by the analyst). However, exponentially many process models

might be built in general as a result of the mining phase, hence a literal imple-

mentation of such a two-phase approach is unfeasible. In fact, we identify relevant

classes of constraints where the two tasks can be addressed synergically, and we

propose efficient algorithms to deal with them.

(3) We analyze the computational complexity of the proposed setting, by taking into

account various qualitative properties regarding the kinds of constraints being al-

230

lowed, and by tracing the tractability frontier w.r.t. them. In particular, we show

that for the classes of constraints that are not covered by the algorithms discussed

in the point (2) above, an efficient solution algorithm is unlikely to exist at all,

because process discovery turns out to be NP-hard over them.

(4) All the algorithms discussed in the thesis have been implemented and integrated

in a prototype system, which is made available as a plug-in for the well-known

process mining suite ProM van Dongen et al. [2005]. In particular, to face the

above intractability results, our efficient solution algorithms (originally conceived

for special cases only) are generalized by making them applicable as heuristic so-

lution approaches for arbitrary classes of constraints. Case studies are illustrated.

Results for the experimental activity we have conducted in order to validate the

effectiveness of the proposed approach are also reported.

Part of this work has appeared as: Gianluigi Greco, Antonella Guzzo, Francesco

Lupia and Luigi Pontieri. Process Discovery under Precedence Constraints. ACM

Transactions on Knowledge Discovery from Data, 9(4): 32 (2015).

11.2 Future research directions

The arguments discussed in this dissertation give us natural directions for future

research. In general, our idea is that is possible to develop new hybrid solvers that

can effectively use structural properties to address the problem of computing all

solutions to CSPs efficiently. In more detail, the most important direction for future

research and applications to the database setting, is the one that integrates structural

approaches with new developments in join processing, see, e.g., [Ngo et al., 2014].

In the field of game theory, and in particular in coalitional games, a future research

of direction consists in extending our structural tractability results to other solutions

231

concept such as the nucleolus.

Finally in process mining, an important direction for future research consists in

extending the framework of precedence constraints in the setting of block-structured

process models.

Bibliography

A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational

joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant

delay enumeration. In Proc. of CSL’07, pp. 208–222, 2007.

A. Bulatov, V. Dalmau, M. Grohe, and D. Marx. Enumerating Homomorphisms.

Journal of Computer and System Sciences, 78(2): 638–650, 2012.

Isolde Adler. Tree-related widths of graphs and hypergraphs. SIAM J. Discret.

Math., 22(1):102–123, February 2008.

Martin Grohe. The complexity of homomorphism and constraint satisfaction prob-

lems seen from the other side. Journal of the ACM, 54(1), Article 1, 2007.

G. Greco and F. Scarcello. Structural tractability of enumerating CSP solutions.

Constraints, 18(1):8–74, 2013.

Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: New developments

in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, February 2014.

Francesco Scarcello, Gianluigi Greco, and Nicola Leone. Weighted hypertree decom-

positions and optimal query plans. J. Comput. Syst. Sci., 73(3):475–506, 2007.

232

233

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-

lems. Artif. Intell., 34(1):1–38, December 1987.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural

CSP decomposition methods. Artificial Intelligence, 124(2):243 – 282, 2000.

G. Greco and F. Scarcello. Fair division rules for funds distribution: The case of

the italian research assessment program (vqr 2004-2010). Intelligenza artificiale, 7

(1):45–56, 2013.

G. Greco and F. Scarcello. The power of tree projections: Local consistency, greedy

algorithms, and larger islands of tractability. In Proceedings of the Twenty-ninth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS ’10, pages 327–338, New York, NY, USA, 2010. ACM.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries.

In Proceedings of the Forty-second ACM Symposium on Theory of Computing,

STOC ’10, pages 735–744, New York, NY, USA, 2010. ACM.

H.L. Bodlaender and F.V. Fomin. A Linear-Time Algorithm for Finding Tree Decom-

positions of Small Treewidth. SIAM Journal on Computing, 25(6), pp. 1305–1317,

1996.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions

and tractable queries. Journal of Computer and System Sciences, 64(3):579 – 627,

2002.

Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree width and related hy-

pergraph invariants. European Journal of Combinatorics, 28(8):2167 – 2181, 2007.

234

EuroComb 05 - Combinatorics, Graph Theory and ApplicationsEuroComb 05 -

Combinatorics, Graph Theory and Applications.

Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree de-

compositions: Np-hardness and tractable variants. J. ACM, 56(6):30:1–30:32,

September 2009.

P.A. Bernstein and N. Goodman. The power of natural semijoins. SIAM Journal on

Computing, 10(4), pp. 751–771, 1981.

R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.

Journal of the ACM, 30(3):514–550, 1983.

Leonid Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer

Science. An Eatcs Series). SpringerVerlag, 2004.

Surajit Chaudhuri. An overview of query optimization in relational systems. In

Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, PODS ’98, pages 34–43, New York, NY, USA,

1998. ACM.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377–387, June 1970.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.

J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer

Science Press, 1989.

Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and con-

straint satisfaction. J. Comput. Syst. Sci., 61(2):302–332, October 2000.

235

Marc Gyssens, Peter G. Jeavons, and David A. Cohen. Decomposing constraint

satisfaction problems using database techniques. Artif. Intell., 66(1):57–89, March

1994.

H. Aziz and B. de Keijzer. Shapley meets shapley. In Proc. of STACS’14, pp. 99–111.

H. Aziz, O. Lachish, M. Paterson, and R. Savani. Power indices in spanning connec-

tivity games. In Proc. of AAIM’09, pp. 55–67.

Y. Bachrach and Y. S. Rosenschein. Power in threshold network flow games. pages

106–132, 2009.

J.F. Banzhaf. Weighted Voting Doesn’t Work: A Mathematical Analysis. Rutgers

Law Rev., 19:317–343, 1965.

E. H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elim-

ination. Mathematics of Computation, 22:565–565, 1968.

C. J. Colbourn, J.S. Provan, and D. Vertigan. The complexity of computing the

tutte polynomial on transversal matroids. Combinatorica, 15(1):1–10, 1995.

P. Dagum and M. Luby. Approximating the permanent of graphs with large factors.

Theor. Comput. Sci., 102(2):283–305, 1992.

Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative

solution concepts. Mathematics of Operations Research, 19:257–266, May 1994.

G. Gottlob, G. Greco, and F. Scarcello. Treewidth and hypertree width. In Tractabil-

ity: Practical Approaches to Hard Problems. Cambridge University Press, 2013.

G. Gottlob, S. Tien Lee, G. Valiant, and P. Valiant. Size and Treewidth Bounds for

Conjunctive Queries. Journal of the ACM, 59(3), 2012.

236

G. Greco and F. Scarcello. Counting solutions to conjunctive queries: structural and

hybrid tractability. In Proc. of PODS’14, pp. 132–143.

G. Greco and F. Scarcello. Mechanisms for fair allocation problems: No-punishment

payment rules in verifiable settings. Journal of Artificial Intelligence Research,

49:403–449, 2014.

F. Maniquet. A characterization of the Shapley value in queueing problems. Journal

of Economic Theory, 109(1):90–103, 2003.

D. Mishra and B. Rangarajan. Cost sharing in a job scheduling problem. Social

Choice and Welfare, 29(3):369–382, 2007.

H. Moulin. An application of the Shapley value to fair division with money. Econo-

metrica, 60(6):1331–49, 1992.

H. Nagamochi, D.-Z. Zeng, N. Kabutoya, and T. Ibaraki. Complexity of the minimum

base game on matroids. Mathematics of Operations Research, 22:146–164, 1997.

N. Nisan, T. Roughgarden, É. Tardos, and V. V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, Cambridge, UK, 2007.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,

Cambridge, MA, USA, 1994.

R. Pichler and S. Skritek. Tractable counting of the answers to conjunctive queries.

Journal of Computer and System Sciences, 79(6):984–1001, 2013.

G. Pesant. Counting solutions of CSPs: a structural approach. In Proc. of IJCAI’05,

pp. 260–265, 2005.

N. Robertson and P.D. Seymour. Graph minors iii: Planar tree-width. Journal of

Combinatorial Theory, Series B, 36(1):49–64, 1984.

237

D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of

Applied Mathematics, 17(6):1163–1170, 1969.

L. S. Shapley. A value for n-person games. Contributions to the theory of games,

2:307–317, 1953.

Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. 2011.

Conformance Checking Using Cost-Based Fitness Analysis. In Proc. of EDOC’11.

55–64.

Rakesh Agrawal, Dimitrios Gunopulos, Frank Leymann. 1998. Mining process models

from workflow logs. In Proc. of EDBT’98. 469–483.

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and

Paolo Torroni. 2008. Verifiable agent interaction in abductive logic programming:

The SCIFF framework. ACM Transactions on Computational Logic 9 (2008), 29:1–

29:43. Issue 4.

Nikolas Anastasiou, Tzu-Ching Horng, and William Knottenbelt. 2011. Deriving

generalised stochastic Petri net performance models from high-precision location

tracking data. In Proc. of ValueTools’11. 91–100.

Krzysztof Apt. 2003. Principles of Constraint Programming. Cambridge University

Press, New York, NY, USA, 2003.

Paul C. Attie, Munindar P. Singh, E. Allen Emerson, Amit P. Sheth, and Marek

Rusinkiewicz. 1996. Scheduling workflows by enforcing intertask dependencies.

Distributed Systems Engineering 3, (1996), 222–238.

Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma. 2010. Probabilistic Declarative

Process Mining. In Proc. of KSEM’10. 292–303.

238

Anthony J. Bonner. 1999. Workflow, Transactions, and Datalog. In Proc. of

PODS’99. 294–305.

A.A. Bulatov, M. Dyer, L.A. Goldberg, M. Jerrum, and C. Mcquillan. The express-

ibility of functions on the boolean domain, with applications to counting CSPs.

Journal of the ACM, 60(5), Article 32, 2013.

A.A. Bulatov. The complexity of the counting constraint satisfaction problem. Jour-

nal of the ACM, 60(5), Article 34, 2013.

Andrea Burattin and Alessandro Sperduti. 2011. PLG: A Framework for the Gener-

ation of Business Process Models and Their Execution Logs. In BPM Workshops.

214–219.

Kevin C. W. Chen, David Y. Y. Yun. 2003. Discovering Process Models from Exe-

cution History by Graph Matching. In Proc. of IDEAL’03. 887–892.

Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi,

and Sergio Storari. 2009. Exploiting Inductive Logic Programming Techniques

for Declarative Process Mining. Transactions on Petri Nets and Other Models of

Concurrency 2 (2009), 278–295.

Sandra de Amo and Daniel A. Furtado. 2007. First-order temporal pattern mining

with regular expression constraints. Data & Knowledge Engineering 62 (2007),

401–420. Issue 3.

Ana Karla Alves de Medeiros, Boudewijn F. van Dongen, Wil M. P. van der Aalst,

and A. J. M. M. Weijters. 2004. Process Mining: Extending the α-algorithm to

Mine Short Loops. Technical Report. University of Technology, Eindhoven.

239

Ana Karla Alves de Medeiros, A.J.M.M. Weijters, and Wil M. P. van der Aalst. 2007.

Genetic process mining: an experimental evaluation. Data Mining and Knowledge

Discovery 14 (2007), 245–304.

Luc De Raedt, Tias Guns, and Siegfried Nijssen. 2008. Constraint programming for

itemset mining. In Proc. of KDD’08. 204–212.

Jochen De Weerdt, Manu De Backer, Jan Vanthienen and Bart Baesens. 2011. A

robust F-measure for evaluating discovered process models. In Proc. of CIDM’11.

148–155.

Jochen De Weerdt, Manu De Backer, Jan Vanthienen, and Bart Baesens. 2012.

A multi-dimensional quality assessment of state-of-the-art process discovery al-

gorithms using real-life event logs. Information Systems 37, 7 (2012), 654 – 676.

Rina Dechter. 1992. Constraint networks. Encyclopedia of Artificial Intelligence

(1992), 276–285.

Claudio Di Ciccio and Massimo Mecella. 2012. Mining Constraints for Artful Pro-

cesses. In Proc. of BIS’12. 11–23.

Paul Dourish, Jim Holmes, Allan MacLean, Pernille Marqvardsen, and Alex Zbyslaw.

1996. Freeflow: Mediating Between Representation and Action in Workflow Sys-

tems. In Proc of CSCW’96. 190–198.

Hugo M. Ferreira and Diogo R. Ferreira. 2006. An Integrated Life Cycle for Workflow

Management Based on Learning and Planning. International Journal on Cooper-

ative Information Systems 15, 4 (2006), 485–505.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability. A

Guide to the Theory of NP-completeness. Freeman and Comp., NY, USA.

240

Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. 2009. Robust

Process Discovery with Artificial Negative Events. Journal of Machine Learning

Research 10 (2009), 1305–1340.

Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2007. An Information-

Theoretic Framework for Process Structure and Data Mining. International Jour-

nal of Data Warehousing and Mining 3, 4 (2007), 99–119.

Gianluigi Greco, Antonella Guzzo, and Luigi Pontieri. 2012. Process Discovery via

Precedence Constraints. In Proc. of ECAI’12. 366–371.

Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and Domenico Saccà. 2006. Dis-

covering Expressive Process Models by Clustering Log Traces. IEEE Transactions

on Knowledge and Data Engineering 18, 8 (2006), 1010–1027.

C.P. Gomes, W.J. Van Hoeve, A. Sabharwal, and B. Selman. Counting CSP solutions

using generalized XOR constraints. In Proc. of AAAI’07, pp. 204–209, 2007.

Tias Guns, Siegfried Nijssen, and Luc De Raedt. 2011. Itemset mining: A constraint

programming perspective. Artificial Intelligence 175 (2011), 1951–1983.

Markus Hammoria, Joachim Herbsta, and Niko Kleinerb. 2006. Interactive work-

flow mining – requirements, concepts and implementation. Data & Knowledge

Engineering 56, 1 (2006), 41–63.

Joachim Herbst and Dimitris Karagiannis. 2000. Integrating Machine Learning and

Workflow Management to Support Acquisition and Adaptation of Workflow Mod-

els. Journal of Intelligent Systems in Accounting, Finance and Management 9

(2000), 67–92.

241

Joachim Herbst and Dimitris Karagiannis. 2003. Workflow mining with InWoLvE.

Computers in Industry. Special Issue: Process/Workflow Mining 53, 3 (2003), 245–

264.

Haiyang Hu, Jianen Xie, and Hua Hu. 2011. A Novel Approach for Mining Stochas-

tic Process Model from Workflow Logs. Journal of Computational Information

Systems 7, 9 (2011), 3113–3126.

C. Koch. Processing queries on tree-structured data efficiently. In Proc. of PODS’06,

pp. 213–224, 2006.

B. Kimelfeld and Y. Sagiv. Incrementally computing ordered answers of acyclic

conjunctive formulas. In Proc. of NGITS’06, pp. 33–38, 2006.

Gregor Joeris. 2000. Decentralized and Flexible Workflow Enactment Based on Task

Coordination Agents. In Proc. of AOIS’00+CAiSE’00. 41–62.

Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yua and Xie Xing. 2011. Discovering

spatio-temporal causal interactions in traffic data streams. In Proc. of KDD’11.

1010–1018.

Ruopeng Lu, Shazia Sadiq, Vineet Padmanabhan, and Guido Governatori. 2006.

Using a Temporal Constraint Network for Business Process Execution. In Proc. of

ADC’06. 157–166.

Fabrizio Maria Maggi, R. P. Jagadeesh Chandra Bose, and Wil M. P. van der Aalst.

2012. Efficient Discovery of Understandable Declarative Process Models from Event

Logs. In Proc. of CAiSE’12. 270–285.

Fabrizio Maria Maggi, Marlon Dumas, Luciano Garcia-Banuelos, and Marco Montali.

242

2013. Discovering Data-Aware Declarative Process Models from Event Logs. In

Proc. of BPM’13. 81–96.

Fabrizio Maria Maggi, Arjan J. Mooij, and Wil M. P. van der Aalst. 2011. User-

guided discovery of declarative process models. In Proc. of CIDM’11. 192–199.

Siegfried Nijssen, Tias Guns, and Luc De Raedt. 2009. Correlated itemset mining in

ROC space: a constraint programming approach. In Proc. of KDD’09. 647–656.

Maja Pesic, Dragan Bosnacki, and Wil M. P. van der Aalst. 2010. Enacting Declara-

tive Languages Using LTL: Avoiding Errors and Improving Performance. In Proc.

of SPIN’10. 146–161.

Maja Pesic, Helen Schonenberg, and Wil M. P. van der Aalst. 2009. DECLARE

Demo: A Constraint-based Workflow Management System. In Proc. of BPM’09

(Demos).

Maja Pesic, M. H. Schonenberg, Natalia Sidorova, and Wil M. P. van der Aalst. 2007.

Constraint-Based Workflow Models: Change Made Easy. In Proc. of OTM’07. 77–

94.

Manfred Reichert, Stefanie Rinderle-Ma, and Peter Dadam. 2009. Transactions on

Petri Nets and Other Models of Concurrency II. Springer-Verlag, Berlin, Heidel-

berg, Chapter Flexibility in Process-Aware Information Systems, 115–135.

Anna Rozinat and Wil M. P. van der Aalst. 2008. Conformance checking of processes

based on monitoring real behavior. Information Systems 33, 1 (2008), 64–95.

Shazia Wasim Sadiq, Maria E. Orlowska, and Wasim Sadiq. 2005. Specification and

validation of process constraints for flexible workflows. Information Systems 30, 5

(2005), 349–378.

243

Thomas J. Schaefer. 1978. The complexity of satisfiability problems. In Proce. of

STOC’78. 216–226.

Guido Schimm. 2003. Mining Most Specific Workflow Models from Event-Based

Data. In Proc. of BPM’03. 25–40.

Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. 2002. A logical Framework

for Scheduling Workflows Under Resource Allocation Constraints. In Proc. of

VLDB’02. 694–702.

Seppe K.L.M. van den Broucke, Jochen De Weerdt, Jan Vanthienen, and Bart Bae-

sens. 2013. A comprehensive benchmarking framework (CoBeFra) for conformance

analysis between procedural process models and event logs in ProM. In Proc. of

CIDM’13. 254–261.

Wil M. P. van der Aalst. 1998. The Application of Petri Nets to Worflow Manage-

ment. Journal of Circuits, Systems, and Computers 8, 1 (1998), 21–66.

Wil M. P. van der Aalst. 2011. Process Mining: Discovery, Conformance and En-

hancement of Business Processes (1st ed.). Springer Publishing Company, Incor-

porated.

Wil M. P. van der Aalst. 2012. Decomposing Process Mining Problems Using Pas-

sages. In Proc. of ICATPN’12. 72–91.

Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Replaying

history on process models for conformance checking and performance analysis.

Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2, 2 (2012), 182–

192.

244

Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. 2011.

Causal nets: a modeling language tailored towards process discovery. In Proc. of

CONCUR’11. 28–42.

Wil M. P. van der Aalst, Jörg Desel, and Ekkart Kindler. 2002. On the Semantics

of EPCs: A Vicious Circle. In Proc. of EPK’02. 71–80.

Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. 2009. Declarative

workflows: Balancing between flexibility and support. Computer Science - R&D

23, 2 (2009), 99–113.

Wil M. P. van der Aalst, Boudewijn F. van Dongen, Joachim Herbst, Laura Maruster,

Guido Schimm, and A.J.M.M. Weijters. 2003. Workflow Mining: A Survey of Issues

and Approaches. Data & Knowledge Engineering 47, 2 (2003), 237–267.

Wil M. P. van der Aalst and Kees M. van Hee. 2002. Workflow Management: Models,

Methods, and Systems. MIT Press.

Wil M. P. van der Aalst, A.J.M.M. Weijters, and Laura Maruster. 2004. Workflow

Mining: Discovering Process Models from Event Logs. IEEE Transactions on

Knowledge and Data Engineering 16, 9 (2004), 1128–1142.

Jan Martijn van der Werf, Boudewijn F. van Dongen, Cor A. J. Hurkens, and Alexan-

der Serebrenik. 2009. Process Discovery using Integer Linear Programming. Fun-

damenta Informaticae 94 (2009), 387–412. Issue 3-4.

Boudewijn F. van Dongen, Ana Karla Alves de Medeiros, H.M.W. Verbeek, A.J.M.M.

Weijters, and Wil M. P. van der Aalst. 2005. The ProM Framework: A New Era

in Process Mining Tool Support. In Proc. of ATPN’05, 1105–1116.

245

Jacques Wainer and Fabio de Lima Bezerra. 2003. Constraint-Based Flexible Work-

flows. In Proc. of CRIWG’03, 151–158.

A.J.M.M. Weijters and Wil M. P. van der Aalst. 2001. Process Mining: Discovering

Workflow Models from Event-Based Data. In Proc. of BNAIC’01. 283–290.

A.J.M.M. Weijters, Wil M. P. van der Aalst, and Ana Karla Alves de Medeiros. 2006.

Process Mining with the HeuristicsMiner Algorithm. Technical Report. Eindhoven

University of Technology, Eindhoven.

A.J.M.M. Weijters and Wil M. P. van der Aalst. 2003. Rediscovering workflow models

from event-based data using Little Thumb. Integrated Computer-Aided Engineering

10, 2 (2003), 151–162.

Lijie Wen, Jianmin Wang, Wil M. P. van der Aalst, Biqing Huang, and Jiaguang Sun.

2009. A novel approach for process mining based on event types. J. on Intelligent

Information Systems 32, 2 (2009), 163–190.

Lijie Wen, Jianmin Wang, Wil M. P. van der Aalst, Biqing Huang, and Jiaguang

Sun. 2010. A novel approach for process mining based on event types. Data &

Knowledge Engineering 69, 10 (2010), 999–1021.

Moe Thandar Wynn, Chun Ouyang, Arthur H.M. ter Hofstede, and Colin J. Fidge.

2009. Workflow Support for Product Recall Coordination. Technical Report. BPM-

center.org.

M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of VLDB’81, pp.

82–94, 1981.

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Outline of the dissertation

	Setup and Preliminaries
	Constraint satisfaction problems
	Solving CSPs
	Backtracking search

	Structural properties of CSPs
	Structural decomposition methods
	Tree decompositions
	(Generalized) Hypertree decompositions
	Tree projections

	Counting problems
	The Langford problem
	Configuration problems: Renault example

	Preliminaries on Complexity Theory

	I CSP and Databases
	Basic Definitions from Database Theory
	Relational structures
	Relational databases
	Conjunctive queries
	Relational algebra.
	Hypergraphs and structural restrictions
	SQL queries

	A Weighted Structural Decomposition Technique
	Introduction
	Monotone Greedy Tree projections
	Normal form
	An algorithm for computing greedy tree projections in normal form
	Speeding-up computation through greedy coverings

	Evaluation functions
	Non-monotic valuation functions
	Experimental results

	An Hybrid Approach for Counting Solutions
	Introduction to Hybrid Tractability
	An algorithm for counting answers
	Implementation issues and System Architecture
	Hacking PostgreSQL

	Some experiments
	Query 3 (Q3) on TPC-DS
	Query 4 (Q4) on TPC-DS

	II CSP and Game Theory
	An Introduction to Game Theory
	Coalitional games
	Allocation games
	Solution concepts
	The Core
	The Nucleoulus
	The Kernel
	The Bargaining set

	The Shapley value
	The Banzhaf value
	Back to the allocation games

	A motivating example: The Italian Research Assessment Program (VQR)
	Division rules
	Desiderata for division rules
	Marginal contribution
	A simple scenario
	Using the Shapley value as a division rule
	Discussion

	Structural Tractability of Shapley and Banzhaf Values in Allocation Games
	Introduction
	Intractability of computation
	Characterizations of the Shapley value
	A closer look at marginal contributions

	Islands of tractability
	Bounded sharing
	Bounded treewidth

	CSP encoding (for the Banzhaf value)
	From the Banzhaf value to the Shapley value
	Summary

	III CSP and Mining
	Process Mining
	An overview of process discovery
	Bottom-up vs top-down design methods
	Causal nets and logs
	Dependency graphs and process mining: basic results

	Precedence Constraints: Mining Problems and Complexity
	Introduction
	Syntax and Semantics
	Precedence Constraints
	Complexity Analysis
	An exact solution approach for computing process models
	CSP encoding for precedence constraints
	Structural optimization

	Classes of Tractable Precedence Constraints and Algorithms
	Precedence constraints without negated paths
	Precedence Graphs
	Positive Precedence Constraints
	Putting Things Together

	The case of negated path constraints

	Experimental evaluation
	Case study: a product-recall process
	Testbed Description
	Evaluation Setting
	Test with variable amounts of log traces
	Varying the quantity and type of background knowledge
	Rate of unsatisfied constraints
	Running time

	Comparative analysis on benchmark data
	Testbed: logs and conformance metrics
	Results
	Tests on (critical) sublogs

	Further tests on synthesized data
	Generation of process models
	Results

	Summary

	An Application Scenario (Beyond Process Mining): Urban Congestion
	Introduction
	Project goals
	Urban log mining

	IV Conclusions
	Conclusion and Future Research
	Contributions
	Databases
	Game theory
	Process mining

	Future research directions

