


Abstract

The problem of programs termination is a fundamental problem in Computer

Science, and has always gained interest from research communities, due to the

challenge of dealing with a problem that has been proved to be undecidable

in general. Furthermore, there has been a great increase of interest from the

logic programming and database communities in identifying meaningful and

large fragments of the languages used, in order to guarantee termination of

inference tasks. The goal of this thesis is to study the termination problem

in the field of logic programming with function symbols and in the field of

integrity database dependencies enforced via the Chase procedure. The state

of the art for both fields is presented, identifying limitations of current works

and new approaches to overcome such limitations are proposed.
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Introduction

The problem of deciding whether a program terminates has been widely rec-

ognized as a fundamental problem in Computer Science since the ’30s, when

Alan Turing introduced its automatic machine (the Turing machine) and first

proved that problems that cannot be solved in a finite amount of time ac-

tually exist. This has been shown by proving that the problem of checking

whether a Turing machine (or any other Turing-equivalent program) always

halts, for every possible input, is undecidable (i.e., it is unsolvable). Since

then, researchers have deeply investigated the termination problem for pro-

grams encoded in many other languages and formalisms, with the aim to

identify subclasses of such languages for which the problem becomes decid-

able.

One of such languages is the language of logic programs with function sym-

bols. Function symbols are widely acknowledged as an important feature in

logic programming as they make modeling easier and increase the language’s

expressive power, but at the same time they immediately make common rea-

soning tasks undecidable. Logic programs with function symbols are a form

of declarative programming where problems are encoded with sets of implica-

tions (rules). Solutions are represented by some bottom-up based semantics

of the underlying theory defined by the rules, such as stable models [46, 43].

Example 1.1. Consider the following simple program P4.51:

nat(s(X))← nat(X).



2 1 Introduction

The program above states that if X is a natural number, then the successor

of X, s(X) (where s denotes a function symbol), is a natural number as well.

Given the fact nat(0), stating that 0 is a natural number, the (unique) stable

model of P4.51 is the set {nat(0), nat(s(0)), nat(s(s(0))), . . .}. It is easy to see

that whatever set of facts we add, the program does not admit a finite stable

model, that is, there is no terminating procedure which is able to construct

the stable model of this program. 2

In this context, [26] introduced the class of finitely-ground programs, guar-

anteeing the existence of a finite set of stable models, each of finite size which

are actually computable. However, the class is undecidable too, thus decid-

able subclasses have been proposed: ω-restricted programs [76], λ-restricted

programs [44], finite domain programs [26], argument-restricted programs [60],

A more general class is bounded programs [52]. An adornment-based approach

that can be used in conjunction with the techniques above to detect more

programs as finitely-ground has been proposed in [53].

A significant body of work has also been done on the termination of logic

programs under top-down evaluation [32, 62, 68, 30, 73, 67, 15, 12, 80] and

in the area of term rewriting [75, 9, 36]. Termination properties of query

evaluation for normal programs under tabling have been studied in [71, 72, 79].

Another approach are FDNC programs [35], which have infinite answer sets

in general, but a finite representation that can be exploited for knowledge

compilation and fast query answering.

But, unfortunately, all the works above cannot be straightforwardly ap-

plied to the setting of logic programs evaluated in a bottom-up fashion—for

a discussion on this see, e.g., [26, 6].

Another prominent class of programs for which termination is of particular

interest is the class of programs defined via logical constraints, used in the field

of database theory to enforce some desirable properties over the underlying

database. Satisfaction of such constraints is enforced via the well-known Chase

procedure.

The Chase is a well-known algorithm originally proposed for classical

database problems, such as query optimization, query containment and equiv-

alence, dependency implication, and database schema design [4, 13, 51, 61]. In

recent years, it has seen a revival of interest because of a wide range of applica-

tions where it plays a central role, such as data exchange, data cleaning and re-

pairing, data integration, and ontological reasoning [38, 14, 8, 7, 24, 31, 45, 40].
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The execution of the Chase involves the enforcement of two kind of log-

ical constraints: tuple generating and equality generating dependencies. The

Chase will insert tuples possibly with null values to satisfy a tuple generating

dependency (TGD), and will replace null values with constants or other null

values to satisfy an equality generating dependency (EGD). Specifically, the

Chase consists of applying a sequence of steps, where each step enforces a

dependency that is not satisfied by the current instance. It might well be the

case that multiple dependencies can be enforced and, in this case, the Chase

picks one nondeterministically. Different choices lead to different sequences,

some of which might be terminating, while others might not. This aspect is

illustrated in the following example.

Example 1.2. Consider the set of dependencies Σ1.2 below:

r1 : n(X)→ ∃Y e(X,Y )

r2 : e(X,Y )→ n(Y )

r3 : e(X,Y )→ X = Y

and the database D = {n(a)}. All dependencies are satisfied by D, except for

r1. Thus, the Chase enforces r1 by adding e(a, z1) to D, where z1 is a (labeled)

null value. However, this causes both r2 and r3 to be violated: r2 requires the

fact n(z1), while r3 says that a and z1 should be the same. Suppose the Chase

chooses to enforce r2, and thus n(z1) is added to the current instance. Now

r1 is not satisfied again, while r3 continues to be violated. Suppose the Chase

chooses to enforce r1. Then, similar to the first step, e(z1, z2) is added to the

current instance, and this causes r2 to become violated again. It is easy to see

that repeatedly enforcing first r1 and then r2 yields an infinite Chase sequence

that introduces an infinite number of facts: n(z2), e(z2, z3), n(z3), ....

However, by enforcing first r1 and then r3, we get a terminating Chase

sequence. Specifically, enforcing r1 adds e(a, z1) to D. Then, the application

of r3 updates the null value z1 to a. At this point, no further dependency

needs to be enforced, and the Chase terminates with the resulting database

being {n(a), e(a, a)}. 2

The importance of the Chase in many applications is due to the fact that

several problems (e.g., checking query containment under dependencies, check-

ing implication of dependencies, computing solutions in data exchange, and

computing certain answers in data integration) can be solved by exhibiting a

universal model, and the Chase computes a universal model, when it termi-
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nates [33]. Roughy speaking, a model for a database and a set of dependencies

is a finite instance that includes the database and satisfies the dependencies.

A universal model is a model that can be “mapped” to every other model—in

a sense, it represents the entire space of possible models (formal definitions

are reported in the preliminaries). Universal models are slight generalizations

of universal solutions in the data exchange setting [38], and can be used to

compute them. Moreover, the certain answers to a conjunctive query in the

presence of dependencies can be computed by evaluating the query over a

universal model (rather than considering all models). Other applications of

universal models (e.g., dependency implication and query containment under

dependencies) can be found in [33].

Thus, finding a universal model is a central problem in many applications

and, once again, the Chase is a tool to solve it, provided that it terminates.

As a consequence, checking whether the Chase terminates becomes a central

problem, but at the same time it is an undecidable one [33, 49, 47].

1.1 Contributions

The contribution of this thesis is to formally introduce the termination prob-

lem for logic programs with function symbols and for database dependencies;

present the state of the art for both fields, identifying limitations of current

works and propose new approaches to overcome such limitations by present-

ing the results published in [18, 17, 16, 21, 19, 20]. In particular, for logic

programs with function symbols, first the works from [18, 17] are presented,

in order to show how most of the techniques in the literature are not able to

actually exploit the role of function symbols in logic programs, in order to

understand that a given program is terminating, and show a way to actually

deal with function symbols in logic programs.

Then, the works from [16, 21] are presented, showing that current ap-

proaches, including the ones from [18, 17] still perform a limited analysis of

how values, propagated by means of rules, influence each other.

For the case of database dependencies, the work from [19] is discussed as

the first known effort to identify fragments of TGDs for which the termination

of the Chase is decidable. Finally, the work from [20] is presented as the first

one able to directly deal with the Chase termination problem in the presence

of both TGDs and EGDs.
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1.2 Organization

The thesis is organized as follows. Chapter 2 formally introduces syntax and

semantics of logic programs with function symbols and database dependencies,

along with the definition of the Chase algorithm and its variations. Chapter 3

discusses the termination problem for logic programs with function symbols,

currently known works and present the three contributions in this research

field. Chapter 4 presents the Chase termination problem, and how the problem

of the termination of the Chase changes when considering different variation

of the Chase. Furthermore, termination criteria known in the literature are

discussed and two contributions are introduced. Finally Chapter 5 is devoted

to conclusions and future work. All results regarding the author’s contribu-

tions have inline proofs, except for results presented in Sections 4.3 and 4.4.

Due to their length, the proofs required for these sections are included in the

appendix.
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Preliminaries

This chapter covers notions and notations used in this thesis. We will first

recall syntax and semantics for logic programs with functions symbols. Then

syntax and semantics of database dependencies are introduced along with the

Chase procedure and its variations.

2.1 Logic programs with function symbols

We assume to have (pairwise disjoint) infinite sets of logical variables, predicate

symbols, and function symbols. Logical variables are used in logic programs

and are denoted by upper-case letters.

Each predicate and function symbol g is associated with an arity arity(g),

which is a non-negative integer. Function symbols of arity 0 are called con-

stants. The set of function symbols occurring in a program P is denoted by FP .

Furthermore, F ∗P denotes the set of all strings plus the empty string (denoted

by ε) constructed by using the function symbols in FP .

A term t is either a logical variable or an expression of the form f(t1, ..., tm),

where f is a function symbol of arity m ≥ 0 and t1, ..., tm are terms; if m = 0,

t is said to be a constant. Logical variables and constants are said to be sim-

ple terms, whereas all other terms are said to be complex. We use t̄ to denote

sequences of terms.

The binary relation subterm over terms is recursively defined as follows:

every term is a subterm of itself; if t is a complex term of the form f(t1, ..., tm),

then every ti is a subterm of t for 1 ≤ i ≤ m; if t1 is a subterm of t2 and t2 is

a subterm of t3, then t1 is a subterm of t3. The depth d(u, t) of a simple term

u in a term t that contains u is recursively defined as follows:
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d(u, u) = 0,

d(u, f(t1, ..., tm)) = 1 + max
i : ti contains u

d(u, ti).

The depth of term t, denoted by d(t), is the maximal depth of all simple terms

occurring in t.

An atom is of the form p(t1, ..., tn), where p is a predicate symbol of arity

n ≥ 0 and t1, ..., tn are terms—we also call the atom a p-atom. We use pr(A)

to denote the predicate symbol (resp. set of predicate symbols) of an atom

A (resp set of atoms). A literal is either an atom A (positive literal) or its

negation ¬A (negative literal).

A rule r is of the form:

A1 ∨ ... ∨Am ← B1, ..., Bk,¬C1, ...,¬Cn

where m > 0, k ≥ 0, n ≥ 0, and A1, ..., Am, B1, ..., Bk, C1, ..., Cn are atoms.

The disjunction A1∨ ...∨Am is called the head of r and is denoted by head(r).

The conjunction B1, ..., Bk,¬C1, ...,¬Cn is called the body of r and is denoted

by body(r). Furthermore, the positive body of r, denoted as body+(r) is the

conjunction B1, ..., Bk. With a slight abuse of notation, we sometimes use

body(r) (resp. body+(r), head(r)) to also denote the set of literals appearing

in the body (resp. positive body, head) of r. If m = 1, then r is normal; in

this case, head(r) denotes the head atom. If n = 0, then r is positive.

A program is a finite set of rules. A program is normal (resp. positive) if

every rule in it is normal (resp. positive). We assume that programs are range

restricted, i.e., for every rule, every logical variable appears in some positive

body literal. A term (resp. atom, literal, rule, program) is ground if no logical

variables occur in it. A ground normal rule with an empty body is also called

a fact.

Let P be a program. The set of all predicate symbols appearing in P (resp.

appearing in the head of a rule in P) is denoted as pred(P) (resp. def (P)).

A predicate symbol p depends on a predicate q if there is a rule r in P such

that p appears in the head and q in the body, or there is a predicate s such

that p depends on s and s depends on q. A predicate p is said to be recursive

if it depends on itself, whereas two predicates p and q are said to be mutually

recursive if p depends on q and q depends on p.

Given a predicate symbol p of arity n, the i-th argument of p is an ex-

pression of the form p[i], for 1 ≤ i ≤ n. Given a set S of predicate symbols,
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args(S) denotes the set of all arguments of the predicate symbols in S. With

a slight abuse of notation ,for a program P, args(P) denotes args(pred(P)).

A substitution θ is of the form {X1/t1, ..., Xn/tn}, where X1, ..., Xn are

distinct logical variables and t1, ..., tn are terms. The result of applying θ to

an atom (or term) A, denoted Aθ, is the atom (or term) obtained from A by

simultaneously replacing each occurrence of a logical variable Xi in A with ti if

Xi/ti belongs to θ. Two atoms A1 and A2 unify if there exists a substitution

θ, called a unifier of A1 and A2, such that A1θ = A2θ. The composition

of two substitutions θ = {X1/t1, ..., Xn/tn} and ϑ = {Y1/u1, ..., Ym/um},
denoted θ ◦ ϑ, is the substitution obtained from the set {X1/t1ϑ, ..., Xn/tnϑ,

Y1/u1, ..., Ym/um} by removing every Xi/tiϑ such that Xi = tiϑ and every

Yj/uj such that Yj ∈ {X1, ..., Xn}. A substitution θ is more general than a

substitution ϑ if there exists a substitution η such that ϑ = θ ◦ η. A unifier

θ of A1 and A2 is called a most general unifier (mgu) of A1 and A2 if it is

more general than any other unifier of A1 and A2 (indeed, the mgu is unique

modulo renaming of logical variables).

Consider a program P. The Herbrand universe HP of P is the possibly

infinite set of ground terms constructible using function symbols (and thus,

also constants) appearing in P. The Herbrand base BP of P is the set of ground

atoms constructible using predicate symbols appearing in P and ground terms

of HP .

A rule (resp. atom) r′ is a ground instance of a rule (resp. atom) r in P
if r′ can be obtained from r by substituting every logical variable in r with

some ground term in HP . We use ground(r) to denote the set of all ground

instances of r and define ground(P) to denote the set of all ground instances

of the rules in P, i.e., ground(P) = ∪r∈Pground(r).

An interpretation of P is any subset I of BP . The truth value of a ground

atom A w.r.t. I, denoted valueI(A), is true if A ∈ I, false otherwise. The truth

value of ¬A w.r.t. I, denoted valueI(¬A), is true if A 6∈ I, false otherwise.

A ground rule r is satisfied by I, denoted I |= r, if there is a ground literal

L in body(r) s.t. valueI(L) = false or there is a ground atom A in head(r)

s.t. valueI(A) = true. Thus, if the body of r is empty, r is satisfied by I if

there is an atom A in head(r) s.t. valueI(A) = true. An interpretation of P
is a model of P if it satisfies every ground rule in ground(P). A model M of

P is minimal if no proper subset of M is a model of P. The set of minimal

models of P is denoted by MM(P).
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Given an interpretation I of P, let PI denote the ground positive program

derived from ground(P) by (i) removing every rule containing a negative

literal ¬A in the body with A ∈ I, and (ii) removing all negative literals

from the remaining rules. An interpretation I is a stable model of P if I ∈
MM(PI). The set of stable models of P is denoted by SM(P). It is well

known that stable models are minimal models (i.e., SM(P) ⊆ MM(P)),

and SM(P) =MM(P) for positive programs.

A positive normal program P has a unique minimal model, which, with a

slight abuse of notation, we denote as MM(P). The immediate consequence

operator of P is a function TP : 2BP → 2BP defined as follows: for every inter-

pretation I, TP(I) = {A | A ← B1, ..., Bn ∈ ground(P) and {B1, ..., Bn} ⊆
I}. The i-th iteration of TP (i ≥ 1) w.r.t. an interpretation I is defined as

follows: T 1
P(I) = TP(I) and T i

P(I) = TP(T i−1
P (I)) for i > 1. The minimal

model of P coincides with T∞P (∅).

2.2 Database dependencies and the Chase

We define the following pairwise disjoint sets of symbols: a set C of con-

stants (constitute the “normal” domain of a database), a set N of (labeled)

nulls (used as placeholders for unknown values, and thus can be also seen as

(globally) existentially quantified variables), and a set V of (regular) variables

(used in dependencies). A fixed lexicographic order is assumed on (C ∪ N)

such that every null of N follows all constants of C. We denote by X sequences

(or sets, with a slight abuse of notation) of variables or constants X1, . . . , Xk,

with k > 0. Throughout, let [n] = {1, . . . , n}, for any integer n > 1.

A (relational) schema R is a (finite) set of relational symbols (or predi-

cates), each with its associated arity arity(p). We write p/n to denote that

p is an n-ary predicate. A position p[i] (in a schema R) is identified by a

predicate p ∈ R and its i-th argument (or attribute). The set of positions of

R, denoted by pos(R), is defined as {p[i] | p/n ∈ R and i ∈ [n]}. A term t

is a constant, null or variable. An atomic formula (or simply atom) has the

form p(t), where p is a relation, and t a tuple of terms. An atom is called

a fact if all its terms belong to C ∪ N and ground if all of its terms are

constants of C. For an atom A, we refer to its predicate by pred(A), and

we denote by const(A), null(A), var(A) and pos(A) the set of its constants,

nulls, variables, and the set of its positions, respectively. Furthermore, we de-

note dom(A) = const(A) ∪ null(A) ∪ var(A). Given a set of positions Π, we
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denote by var(A,Π) the set of variables occurring in A at positions of Π.

Furthermore, given a set of variables U, pos(A,U) is the set of positions in A

at which variables of U occur. The above notations naturally extend to sets of

atoms. Conjunctions of atoms are often identified with the sets of their atoms.

An instance I is a (possibly infinite) set of atoms of the form p(t), where t

is a tuple of constants and nulls. A database D is a finite instance such that

dom(D) ⊂ C.

A substitution from a set of symbols S to a set of symbols S′ is a function

h : S → S′ defined as follows: ∅ is a substitution (empty substitution), and if

h is a substitution, then (h∪{s→ s′}) is a substitution, where (s, s′) ∈ S×S′.
The restriction of h to T ⊆ S, denoted as h|T , is the substitution h′ = {t →
h(t) | t ∈ T}. A homomorphism from a set of atoms A to a set of atoms A′ is a

substitution h : (C∪N∪V)→ (C∪N∪V) such that: t ∈ C implies h(t) = t,

and r(t1, . . . , tn) ∈ A implies h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) ∈ A′.

Example 2.1. Consider the database D = K1 = {n(a)} and the set of depen-

dencies Σ1.2 of Example 1.2.

Let h1 : dom(body(r1)) → dom(K1) be defined as follows: h1(X) = a.

Clearly, h1 is a homomorphism from the body of r1 to K1. Consider now the

instance K2 = {n(a), e(a, z1)}, and let h2 be the mapping defined as follows:

h2(X) = a and h2(Y ) = z1. It is easy to see that h2 is a homomorphism from

the body of r2 to K2. Moreover, h2 is also a homomorphism from the body

of r3 to K2. 2

Tuple generating dependencies

A tuple-generating dependency (TGD) r is a first-order formula

∀X∀Y(ϕ(X,Y)→ ∃Zψ(X,Z))

where (X ∪Y ∪ Z) ⊂ V, and ϕ,ψ are conjunctions of atoms; ϕ(X,Y) is the

body of r, denoted body(r), while ψ(X,Z) is the head of r, denoted head(r).

With a slight abuse of notation, we sometimes treat body(r) and head(r) as

sets (of atoms). A TGD is said to be universally quantified or full if all its

variables are universally quantified (i.e., Z is empty), otherwise it is existen-

tially quantified. The frontier of r, denoted fr(r), is the set of variables X,

and we define frpos(r) as the set of positions pos(head(r), fr(r)). Let also

ex (r) = Z. Assuming that head(r) = A1, . . . , Ak, let (r, i), where i ∈ [k], be

the single-head TGD body(r)→ Ai.
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A TGD r is guarded if there exists an atom A ∈ body(r) that contains

(or “guards”) all the variables of body(r) [22]. The class of guarded TGDs,

denoted G, is defined as the family of all possible sets of guarded TGDs.

Weakly-guarded TGDs extend guarded TGDs by requiring only the body-

variables that appear at affected positions, i.e., positions that can host nulls

during the Chase, to appear in the guard; for the formal inductive definition of

affected positions see [22]. The corresponding class is denoted WG. We write

guard(r) for the guard of a (weakly-)guarded TGD r. A key subclass of G are

the so-called linear TGDs [23], that is, TGDs with just one body-atom (which

is automatically a guard), and the corresponding class is denoted L. A set of

linear TGDs is called simple if there is no repetition of variables in the body

of the TGDs, and the corresponding class is denoted SL. It is straightforward

to verify that SL ⊂ L ⊂ G ⊂WG.

Equality generating dependencies

An equality generating dependency (EGD) is a (universally quantified) formula

of the form:

∀X∀Y ϕ(X,Y)→ X1 = X2

where X = X1, X2, Y is a list of variables, ϕ(X,Y) is a conjunction of atoms.

The schema of a set Σ of TGDs and EGDs, denoted sch(Σ), is defined as

the set of predicates occurring in Σ. Furthermore, we also denote pos(Σ) =

pos(sch(Σ)).

Universal Models

Given a database D and a set of dependencies Σ, a model of (D,Σ) is a finite

instance J such that D ⊆ J and J |= Σ (i.e., J satisfies all dependencies in Σ

in the standard first-order manner). A universal model of (D,Σ) is a model J

of (D,Σ) such that for every model J ′ of (D,Σ) there exists a homomorphism

from J to J ′. The set of all models (resp. universal models) of (D,Σ) will be

denoted by Mod(D,Σ) (resp. UMod(D,Σ)).

Example 2.2. Consider the set of dependencies Σ2.2 below:

r1 : p(X,Y )→ ∃Z e(X,Z)

r2 : q(X,Y )→ ∃Z e(Z, Y )
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and the database D = {p(a, b), p(c, d)}. Both J1 = D ∪ {e(a, z1), e(z2, d)}
and J2 = D ∪ {e(a, d)} are models of (D,Σ2.2). It can be shown that J1 is a

universal model, while J2 is not. Notice that an homomorphism from J1 to J2

is the mapping h defined as follows: h(z1) = d and h(z2) = a. In a sense, J2

makes the somehow arbitrary assumption that the two facts required by the

two TGDs are the same fact e(a, d), which is not part of the specification. 2

As discussed below, computing certain query answers is one of many appli-

cations where universal models play an important role, and their computation

is a central problem. Consider an instance J and a query Q. Then, (i) J↓ de-

notes the set of facts in J that do not contain labeled nulls, and (ii) Q(J)

denotes the result of evaluating Q over J .

The certain answers to a query Q over a database D and a set of depen-

dencies Σ are defined as certain(Q,D,Σ) =
⋂
{Q(J) | J ∈ Mod(D,Σ)}. The

certain answers to a union of conjunctive queries Q can be computed by evalu-

ating Q over an arbitrary universal model, that is, certain(Q,D,Σ) = Q(I)↓,

where I ∈ UMod(D,Σ). This means that to determine the certain answers

to a union of conjunctive queries Q over a database D with dependencies

Σ, it is not necessary to compute all models of (D,Σ), but it suffices to

compute just an arbitrary universal model. Therefore, the computation of a

universal model is particularly relevant. It is worth mentioning that the afore-

mentioned property has applications in query answering under dependencies,

query answering in data exchange, and query answering with incomplete and

inconsistent data [38, 22].

2.2.1 The Chase procedure

When focusing on TGDs and EGDs, an algorithm for computing universal

models does exist. The Chase takes as input a database D and a set Σ of

TGDs and EGDs, and whenever it terminates without failing, it constructs a

universal model of (D,Σ) [33, 38].

Below we define a Chase step, which consists of enforcing a TGD or an

EGD. As detailed later, the Chase step is used by different variants of the

Chase (standard, oblivious, semi-oblivious), each of which relies on a different

condition of “applicability” of the Chase step. Thus, the following definition

does not incorporate a notion of applicability, but it will be combined with

different notions of applicability to define the different variants of the Chase.

In the following we consider a particular substitution, denoted by γ as

either the empty set or a singleton {z/t}, where z is a labeled null and t is
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either a labeled null or a constant. The result of applying γ to an expression F

(e.g., term, atom, set of atoms, etc.), denoted by F γ, is F if γ = ∅, otherwise

it is the expression obtained from F by replacing every occurrence of z with

t.

Definition 2.3 (Chase step). Let K be an instance, r a TGD or EGD, and

h a homomorphism from body(r) to K. An expression of the form K
r,h,γ−→ J

is a Chase step if the following conditions hold.

1. If r is a TGD ϕ(X,Y) → ∃Zψ(X,Z) then let h′ be the homomorphism

obtained by extending h so that each variable in Z is assigned a fresh

labeled null not occurring in K. Then, J = K∪h′(ψ(X,Z)). Furthermore,

γ is the empty substitution.

2. If r is an EGD ϕ(X,Y)→ X1 = X2 then h(X1) 6= h(X2). Furthermore,

(a) If h(X1), h(X2) ∈ const, then J =⊥ and γ is the empty substitution.

(b) Otherwise, γ and J are defined as follows. If h(X1) is a labeled null,

then γ = {h(X1)/h(X2)}; otherwise, γ = {h(X2)/h(X1)}. Moreover,

J = K γ. 2

In a Chase step, the pair (r, h) is called trigger and γ is used to keep

track of the substitution performed when an EGD is enforced. Thus, when

considering sets Σ of TGDs only we will omit the empty substitution γ for

Chase steps.

Example 2.4. Consider again the database D = K1 = {n(a)} and the set of

dependencies Σ1.2 of Example 1.2. Let h1 be the homomorphism of Exam-

ple 2.1. Then, K1
r1,h1,γ1−→ K2 is a Chase step, where K2 = K1 ∪ {e(a, z1)} =

{N(a), e(a, z1)} and γ1 is the empty substitution (as r1 is a TGD). Consider

now the homomorphism h2 of Example 2.1. Then, K2
r2,h2,γ2−→ K3 is a Chase

step, where K3 = K2 ∪ {N(z1)} = {n(a), e(a, z1), n(z1)} and γ3 is the empty

substitution. Another possible Chase step starting from K2 is K2
r3,h2,γ

′
2−→ K ′3,

where γ′2 = {z1/a} and K ′3 = K2 γ
′
2 = {n(a), e(a, a)}. 2

A Chase sequence of (D,Σ) is a (possibly infinite) sequence of Chase steps

S = K1
r1,h1,γ1−→ K2

r2,h2,γ2−→ K3 · · · such that K1 = D and every ri ∈ Σ.

Standard Chase S is a standard Chase sequence if it is an exhaustive ap-

plication of Chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in S, if ri is a TGD, then

there is no extension of hi to a homomorphism h′i from body(ri)∪ head(ri) to
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Ki.

Oblivious Chase S is an oblivious Chase sequence if it is an exhaus-

tive application of Chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in S, there is no

Chase step Kj
rj ,hj ,γj−→ Kj+1 in S such that j < i, rj = ri = r, and for each

variable X occurring in the body of r we have that hi(X) = hj(X) γj · · · γi−1.

Semi-Oblivious Chase S is a semi-oblivious Chase sequence if it is an

exhaustive application of Chase steps s.t. for each Ki
ri,hi,γi−→ Ki+1 in S, there

is no Chase step Kj
rj ,hj ,γj−→ Kj+1 in S such that j < i, rj = ri = r, and for

each variable x occurring in fr(r) we have that hi(X) = hj(X) γj · · · γi−1.

Note that in the definitions above, when only TGDs are considered, the

conditions hi(X) = hj(X) γj · · · γi−1 for every variable X in body(r) and

every variable in fr(r), respectively, become as follows. Oblivious case: for

every variable X in body(r), hi(X) = hj(X) (hi = hj for short): semi-oblivious

case: for every variable X in fr(r), hi(X) = hj(X) (hi ∼r hj for short).

Example 2.5. Consider again the database D = {n(a)} and the set of depen-

dencies Σ1.2 of Example 1.2. A standard Chase sequence of D with Σ1.2 is

K1
r1,h1,γ1−→ K2

r3,h2,γ
′
2−→ K ′3, where K1 = D and h1, h2, γ1, γ

′
2,K2,K

′
3 are those

reported in Example 2.4. Notice that no further Chase steps can be added to

the sequence.

As mentioned in Example 1.2, another standard Chase sequence of D with

Σ1.2 is the (infinite) one obtained by repeatedly enforcing r1 first and then r2,

that is K1
r1,h1,γ1−→ K2

r2,h2,γ2−→ K3..., where h1, h2, γ1, γ2,K2, and K3 are those

reported in Example 2.4. 2

The following example shows the different behaviors of standard, oblivious,

and semi-oblivious Chase sequences.

Example 2.6. Consider the database D = K1 = {e(a, b)} and a set Σ2.6 con-

sisting only of the following TGD r:

e(X,Y )→ ∃Z e(X,Z)

Since D |= r, the only standard Chase sequence of D with Σ is the empty

sequence.
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A non-empty (terminating) semi-oblivious Chase sequence isK1
r,h1,γ1−→ K2,

where h1(X) = a, h1(Y ) = b, γ1 is the empty substitution, and K2 = K1 ∪
{e(a, z1)} = {e(a, b), e(a, z1)}. Notice that adding the Chase step K2

r,h2,γ2−→
K3, with h2(X) = a, h2(Y ) = z1, γ2 = ∅, and K3 = K2 ∪{e(a, z2)}, does not

result in a semi-oblivious Chase sequence, because of the presence of the Chase

step K1
r,h1,γ1−→ K2 in the same Chase sequence, with h1(X)γ1 = h2(X) = a.

As for the oblivious Chase, the infinite sequence whose first step is

K1
r,h1,γ1−→ K2 discussed above, and the i-th Chase step (i > 1) is Ki

r,hi,γi−→
Ki+1, with hi(X) = a, hi(Y ) = zi−1, γi = ∅, and Ki+1 = Ki ∪ {e(a, zi)} is

an (infinite) oblivious Chase sequence. 2

2.2.2 Computing universal models with the Chase

A standard (resp. oblivious, semi-oblivious) Chase sequence S can be finite

(when no further Chase step can be applied) or infinite (when there is always

a further Chase step that can be applied)—in the former case we also say that

the sequence is terminating. If S is finite and consists of m Chase steps, we say

thatKm is the result of S. IfKm =⊥ then S is failing, otherwise it is successful.

For instance, the first standard Chase sequence discussed in Example 2.5

is terminating, successful, and its result is K ′3. The second standard Chase

sequence in Example 2.5 is not terminating.

In the presence of TGDs only, the oblivious (resp. semi-oblivious) Chase

procedure is equivalent to the computation of the fixpoint of a particular

Skolemized version of Σ with D, where Skolemized terms are used in place

of labeled nulls. For instance, the skolemized version of dependency r in

Example 2.6 for the oblivious (resp., semi-oblivious) Chase is e(X,Y ) →
e(X, frZ(X,Y )) (resp., e(X,Y )→ e(X, frZ(X))).

It is well-known that for every database D and set of TGDs and EGDs Σ,

(1) if J is the result of some successful terminating (standard, (semi-)oblivious)

Chase sequence of D with Σ, then J is a universal model of (D,Σ), called

canonical ; (2) if some failing Chase sequence of D with Σ exists, then there

is no model of (D,Σ). We use CMod(D,Σ) to denote the set of all canonical

models of (D,Σ). In some cases, we cannot produce a universal model by the

Chase as there is no terminating sequence, although a model does exist.

Core Chase The core Chase has been proposed to identify a preferable

universal model [33, 39]. To define the core Chase, we first need to introduce

the notion of a core of an instance. Roughly speaking, the core of an instance

J is the smallest subset of J that is also a homomorphic image of J . More
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precisely, a subset C of an instance J is a core of J if there is a homomorphism

from J to C, but there is no homomorphism from J to a proper subset of C.

Cores of J are unique up to isomorphism and therefore we can talk about

“the” core of J , which is denoted as core(J).

A core Chase sequence is a sequence of core Chase steps. Roughly speaking,

a core Chase step first applies all possible standard Chase steps “in parallel”,

and then computes the core of the resulting instance. As all standard Chase

steps are applied in parallel, the core Chase eliminates the nondeterminism

of the standard Chase. More formally, given an instance K and a set of de-

pendencies Σ, a core Chase step consists of the following two sub-steps: (i)

J = ∪
K
r,h,γ−→K′

K ′, where each K
r,h,γ−→ K ′ is understood to be a standard

Chase step; (ii) J ′ = core(J). Then, J ′ is the result of the core Chase step.

[33] showed that whenever there is a universal model of (D,Σ), the core Chase

is able to construct one, that is, the core Chase is a complete procedure for

finding universal models. Moreover, every core Chase sequence of D with Σ

constructs the same (up to isomorphism) universal model.

Example 2.7. Consider the database D and the set of dependencies Σ2.6 = {r}
of Example 2.6. Recall that there is no standard Chase step involving D and

r. As the core Chase starts by applying all standard Chase steps, the only

core Chase sequence is the empty one, similar to the standard Chase case. 2

In the following, whenever a successful terminating ?-chase sequence of D

with Σ does exist, where ? ∈ {std, obl, sobl, core} stands for the standard,

oblivious, semi-oblivious, and core Chase, respectively, we use chase?(D,Σ)

to denote one of the homomorphically equivalent universal models constructed

by the ?-chase. If there is a failing ?-chase sequence of D with Σ, we write

chase?(D,Σ) =⊥.
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Termination of programs with function symbols

As discussed in the Introduction, the use of function symbols in the context

of logic programming gives rise to a powerful language, able to encode many

interesting problems in an very concise and elegant way, but at the same time,

termination of the inference process becomes undecidable. For this reason, the

logic programming community has been motivated to identify subclasses of

this powerful language for which termination of the programs evaluation is

guaranteed. This chapter is devoted to introduce the notion of limited pro-

grams, which is a more formal and general definition of terminating program,

along with some useful notions and definitions regarding the analysis of lim-

ited programs. Then, the best-known decidable classes in the literature of

limited programs are introduced along with the contributions of this thesis in

the field of logic programs termination.

3.1 Limited programs

Let P be a program and let B ⊆ pred(P). An argument p[i] ∈ args(P) is said

to be limited w.r.t. B, if for every finite set of facts D for which pred(D) = B
and every model M ∈ SM(P∪D) the set {ti | p(t1, . . . , tn) ∈M} is finite. P is

limited w.r.t. B if every argument in args(P) is limited w.r.t. B. Equivalently,

if P is limited w.r.t. B, it means that P ∪D admits a finite number of stable

models and each is of finite size, that is, |SM(P∪D)| is finite and every stable

model M ∈ SM(P ∪ D) is finite. Finally, given a program P, an argument

p[i] ∈ args(P) (resp. P) is limited if p[i] (resp. P) is limited w.r.t. pred(P).

If we focus on positive normal programs, the notion of limitedness can be

equivalently defined as follows. A positive normal program P is limited w.r.t.
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B ⊆ pred(P), if for every finite set of facts D for which pred(D) = B, there

is a finite natural number n such that Tn
P∪D(∅) = T∞P∪D(∅). We call such

programs terminating w.r.t. B. Furthermore, a positive normal program P is

terminating if it is terminating w.r.t. pred(P).

3.2 Analysis of limited programs

It is worth mentioning that checking limitedness of a logic program P (w.r.t.

some B ⊆ pred(P)) could be carried on by checking the termination of a

positive normal program st(P) derived from P as follows. Every rule A1 ∨
... ∨ Am ← body in P is replaced with m positive normal rules of the form

Ai ← body+ (1 ≤ i ≤ m) where body+ is obtained from body by deleting all

negative literals. In fact, the minimal model of st(P) contains every stable

model of P—whence, finiteness and computability of the minimal model of

st(P) implies that P has a finite number of stable models, each of finite size,

which can be computed [17].

Also, notice that the notion of limited (or terminating) program P w.r.t.

to B ⊆ pred(P) does not change if we focus only on finite sets of facts D

containing only constants, as every fact in D of the form b(f(c), d) can be

simulated as follows:

• replace b(f(c), d) in D with the atom b′(c, d), where b′ is a fresh new

predicate symbol;

• add a rule of the form b(f(X), Y )← b′(X,Y ) to P;

• replace each occurrence in B of the predicate symbol b, with b′.

If we denote with P ′, D′ and B′ the program, set of facts and set of predicate

symbols obtained by applying the transformation above to P, D and B, it is

easy to see that P ∪D admits a finite number of stable models and each is of

finite size iff P ′ ∪D′ admits a finite number of stable models and each is of

finite size.

Finally, notice also that given program P, if we consider B = pred(P) (i.e.

we consider simply limited programs), P is limited w.r.t. B iff the program

obtained from P by deleting all its facts is limited w.r.t. B. In some cases,

logic programs will be assumed w.l.o.g. to enjoy some (or all) of the properties

above, in order to simply the discussion.

As stated in the previous section, we are interested in finding whether a

given logic program admits a finite number of finite stable models, for every
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set of facts D. This means that whenever we are given a program P, the

analysis of its limitedness will be carried on by considering P alone, without

considering a specific set of facts. For this reason, all the complexity results

regarding checking whether a program is limited will be given w.r.t. the size

of the program itself.

Given a logic program P, we assume that constant space is used to store

each constant, logical variable, function symbol, and predicate symbol of P.

The syntactic size1 of a term t (resp. (set of) atom, rule, program), denoted

by ||t||, is the number of symbols occurring in t, except for the symbols “(”,

“)”, “,”, “.”, and “←”. Thus, in the following sections, the complexity of a

problem involving P is assumed to be w.r.t. ||P||.

3.3 Termination criteria

In the following, we present some of the most important classes of limited

logic programs with function symbols known in the literature.

3.3.1 Ω-restriction

ω-restricted programs is the simplest class of limited programs, introduced in

[76], where logic programs are admitted to be normal and with negation. The

basic idea is to identify a stratification of predicates for a given program. This

stratification generalizes classical stratification by introducing an additional

stratum, called ω-stratum, that holds all the unstratifiable predicates, that is,

all predicate symbols depending negatively on each other.

First, we need to define a particular graph used by the techinque, that we

call ω-graph.

Definition 3.1. The ω-graph Gω(P) of a program P is a labelled directed

graph whose nodes are the predicate symbols appearing in P and there is a

positive edge (q, p,+) (resp. negative edge (q, p,−)) from q to p iff there is a

rule r of P with p appearing in head(r) and q appearing in body+(r) (resp.

body−(r)). We say that a path on Gω(P) is positive if all its edges are labelled

with “+”, negative otherwise. 2

1 We use the name syntactic size to distinguish it from the notion of size introduced
in Definition 3.73.
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Fig. 3.1: ω-graph of P3.3 (left) and ω-stratification S of P (right).

Now we define the notion of ω-stratification, which generalizes classic strat-

ification by adding a new stratum, called ω-stratum.

Definition 3.2. An ω-stratification of a program P is a function S : pred(P)→
N ∪ {ω}, where by convention ∀n ∈ N ω > n, such that for every path

in Gω(P) from q to p, i) S(p) ≥ S(q) if the path is positive, and ii)

S(p) > S(q) ∨ S(p) = ω otherwise. 2

Example 3.3. Consider the following program P3.3:

number(0). ... number(n).

even(0).

r1 : odd(X + 1) ← number(X), even(X).

r2 : even(X + 1) ← number(X), odd(X).

r3 : two divides(X) ← even(X).

r4 : interesting(X) ← number(X),¬dull(X).

r5 : dull(X) ← number(X),¬interesting(X).

r6 : interesting odd(X)← odd(X), interesting(X).

WhereX+1 is a shortand for the function symbol +1 applied toX, i.e. +1(X).

The ω-graph is shown in Figure 3.1. A possible ω-stratification shown in Figure

3.1 is as follows: S(number) = 0, S(even) = S(odd) = 1, S(two divides) = 2,

S(interesting) = S(dull) = S(interesting odd) = ω. 2

It is simple to note that every normal program always admits an ω-

stratification, i.e. the stratification placing every predicate in the ω-stratum.

Now we can present the definition of ω-restricted programs.

Definition 3.4. The ω-valuation of a rule r : p(t) ← body(r) under an ω-

stratification S is the function Ω(r, S) = S(p). The ω-valuation of a vari-
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able X in a rule r under an ω-stratification S is the function Ω(X, r, S) =

min({S(q) | q(u) ∈ body+(r) ∧X occurs in u} ∪ {ω}). 2

Definition 3.5. A program P is ω-restricted iff every rule in P is ω-restricted.

A rule r of a program P is ω-restricted iff there exists an ω-stratification S of

P s.t. for every variable X occurring in r, the condition Ω(X, r, S) < Ω(r, S)

holds. The class of ω-restricted programs is denoted by ΩR 2

Example 3.6. Consider the program P3.3 and the ω-stratification S defined in

Example 3.3. The ω-valuation of rule r4 is Ω(r4, S) = S(interesting) = ω.

The ω-valuation of variable X in r4 is Ω(X, r4, S) = min(S(number), ω) =

min(0, ω) = 0. Rule r4 is ω-restricted, since Ω(X, r4, S) < Ω(r4, S), for the

unique variable X occurring in r4. Moreover, every rule in P3.3 is ω-restricted,

thus P3.3 is ω-restricted. 2

3.3.2 λ-restriction

The λ-restricted technique has been introduced by Gebser et al. in [44] as

a syntactic tool of the GrinGo system for checking the existence of a finite

ground instantiation of a given logic program. In the same way as ω-restricted,

the λ-restricted criterion has been defined over normal logic programs admit-

ting negation.

The definition of λ-restricted program is very simple and can be stated as

follows.

Definition 3.7. A program P is λ-restricted if there is a function (level map-

ping) λ : pred(P)→ N s.t. for every predicate symbol p in P:

max{max{min{
λ(q) | q(u) ∈ body+(r) ∧ X occurs in u} | X occurs in r} | r defines p} < λ(p)

The class of λ-restricted programs is denoted by λR. 2

Intuitively, this criterion tries to verify whether a given predicate p is

“bounded” in every rule which defines it by predicates in the body. Moreover,

the level mapping λ does not define a stratification of predicates like the

ω-restricted approach.

Example 3.8. Consider the following program P3.8:
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r0 : a(1).

r1 : b(X) ← a(X), c(X).

r2 : c(X) ← a(X).

r3 : c(X) ← b(X).

It easy to see that there is a level mapping λ defined as λ(a) = 0, λ(b) = 1

and λ(c) = 2 which satisfies Definition 3.7. 2

It has also been shown that λ-restricted programs strictly contain the ω-

restricted ones.

Proposition 3.9. [44] ΩR ⊂ λR 2

3.3.3 Finite-domain

The finite-domain technique was introduced in [26]. It was the first approach

working at the argument level, i.e. the positions inside predicates of the given

program. The previous approaches are defined to find a level mapping for

predicates. The finite-domain technique instead, tries to identify limited ar-

guments. If all the arguments are found to be limited, then the program is

guaranteed to be limited. This technique is defined over normal programs with

negation.

Definition 3.10. The argument graph of a program P, denoted GArg(P), is

a directed graph such that the set of nodes of GArg(P) is args(P) and there

is an edge from q[j] to p[i], denoted by (q[j], p[i]), iff there is a rule r ∈ P
such that i) an atom p(t1, ..., tn) appears in head(r), ii) an atom q(u1, ..., um)

appears in body+(r) and iii) terms ti and uj have a common variable. 2

We now show the formal definition of finite-domain programs. We say that

two arguments p[i], q[j] are recursive in GArg(P) if there is a path from p[i]

to q[j] and viceversa.

Definition 3.11. The set of finite-domain arguments (FD arguments) of a

program P is the maximal set (w.r.t. set inclusion) FD(P) of arguments q[k]

of P s.t., for every rule r with q[k] occurring in head(r), the term t of q[k] in

r is such that:

1. t is a ground term, or

2. t is a subterm of a term occurring in a FD argument p[i] of body+(r), or
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3. every variable occurring in t also occurs in the term of a FD argument

p[i] of body+(r) s.t. p[i] and q[k] are recursive in GArg(P).

P is finite-domain iff all the arguments of P are finite-domain. The class

of finite-domain programs is denoted by FD 2

Example 3.12. Consider the following program P3.12:

r0 : s(1).

r1 : p(X) ← p(f(X)).

r2 : p(f(X)) ← p(X), s(X).

It easy to see that this program is finite-domain. Computing the set of finite-

domain arguments can be done as follows: initially assume that FD(P) =

arg(P), then remove iteratively from FD(P) every argument not satisfying

Definition 3.11. In this case, FD(P) = {s[1], p[1]}. Obviously for s[1], rule r0

satisfies condition 1 of Definition 3.11; for p[1] rule r1 satisfies condition 2 and

rule r2 satisfies condition 3, since the unique variable X occurring in f(X)

occurs in s(X), s[1] is finite-domain and it is not recursive with p[1]. 2

Intuitively, every condition in the definition of finite-domain arguments

deals with a different type of rule in the input program. The first one iden-

tifies q[k] as possibly finite-domain if it is bounded directly in the program

by facts or rules with ground terms in their head that define it. The second

condition guarantees that the term associated to an FD argument p[i] in the

positive body is an “upper bound” for the term of q[k]. Finally, condition 3 is

applied to rules that could “grow” the term associated to the argument q[k].

To bound such a term, the positive body argument p[i] must be finite-domain

and not recursive with q[k]. Note that both conditions of non recursivity and

p[i] ∈ FD(P) are important, since the former prevents the actual rule to pro-

duce infinite terms and the latter prevents that even when no recursion is

found between q[k] and p[i], q[k] is not recursive with some other FD argu-

ment, unless p[i] satisfies condition 2.

It has been shown that finite-domain programs strictly contain ω-restricted

programs but are incomparable with λ-restricted ones.

Proposition 3.13. [26]

1. ΩR ⊂ FD;

2. FD and λR are incomparable. 2
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3.3.4 Argument ranking

The argument ranking of a program has been proposed in [60] to define the

class AR of argument-restricted programs. Argument-restricted programs al-

low the presence of disjunction in the head and negation in rules.

An argument ranking for a program P is a partial function φ from args(P)

to non-negative integers, called ranks, such that, for every rule r of P, every

atom p(t1, ..., tn) occurring in the head of r, and every variable X occurring

in a term ti, if φ(p[i]) is defined, then body+(r) contains an atom q(u1, ..., um)

such that X occurs in a term uj , φ(q[j]) is defined, and the following condition

is satisfied

φ(p[i])− φ(q[j]) ≥ d(X, ti)− d(X,uj). (3.1)

A program P is said to be argument-restricted if it has an argument ranking

assigning ranks to all arguments of P.

Example 3.14. Consider the following program P3.14:

r1 : p(f(X))← p(X), b(X).

r2 : t(f(X))← p(X).

r3 : s(X)← t(f(X)).

This program has an argument ranking φ, where φ(b[1])= 0, φ(p[1])= 1,

φ(t[1])= 2 and φ(s[1])= 1. Consequently, P3.14 is argument-restricted. 2

Intuitively, the rank of an argument is an estimation of the depth of terms

that may occur in it. In particular, let d1 be the rank assigned to a given

argument p[i] and let d2 be the maximal depth of terms occurring in the

facts. Then d1 + d2 gives an upper bound of the depth of terms that may

occur in p[i] during the program evaluation. Different argument rankings may

satisfy condition (3.1). A function assigning minimum ranks to arguments is

denoted by φmin.

Minimum ranking. We define a monotone operatorΩ that takes as input

a function φ over arguments and gives as output a function over arguments

that gives an upper bound of the depth of terms.

More specifically, we define Ω(φ)(p[i]) as

max(max{D(p(t1, ..., tn), r, i,X) | r ∈ P∧p(t1, ..., tn) ∈ head(r)∧X occurs in ti}, 0)

where D(p(t1, ..., tn), r, i,X) is defined as
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min{d(X, ti)− d(X,uj) + φ(q[j]) | q(u1, ..., um) ∈ body+(r)∧ X occurs in uj}.

In order to compute φmin we compute the fixpoint of Ω starting from the

function φ0 that assigns 0 to all arguments. In particular, we have:

φ0(p[i]) = 0;

φk(p[i]) = Ω(φk−1)(p[i]) = Ωk(φ0)(p[i]).

The function φmin is defined as follows:

φmin(p[i]) =

{
Ωk(φ0)(p[i]) if ∃k (finite) s.t. Ωk(φ0)(p[i]) = Ω∞(φ0)(p[i])

undefined otherwise

We denote the set of restricted arguments of P as AR(P) = {p[i] | p[i] ∈
args(P) ∧ φmin(p[i]) is defined}. Clearly, from definition of φmin, it follows

that all restricted arguments are limited. P is said to be argument-restricted

iff AR(P) = args(P). The class of argument-restricted programs is denoted

by AR.

Example 3.15. Consider again program P3.14 from Example 3.14. The follow-

ing table shows the first four iterations of Ω starting from the base ranking

function φ0:

φ0 φ1 = Ω(φ0) φ2 = Ω(φ1) φ3 = Ω(φ2) φ4 = Ω(φ3)
b[1] 0 0 0 0 0
p[1] 0 1 1 1 1
t[1] 0 1 2 2 2
s[1] 0 0 0 1 1

Since Ω(φ3) = Ω(φ2), further applications of Ω provide the same result.

Consequently, φmin coincides with φ3 and defines ranks for all arguments of

P3.14. 2

Let M = |args(P)| × dmax, where dmax is the largest depth of terms oc-

curring in the heads of rules of P. One can determine whether P is argument-

restricted by iterating Ω starting from φ0 until

- one of the values of Ωk(φ0) exceeds M , in such a case P is not argument-

restricted;
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- Ωk+1(φ0) = Ωk(φ0), in such a case φmin coincides with φk, φmin is total,

and P is argument-restricted.

Observe that if the program is not argument-restricted the first condition is

verified with k ≤M ×|args(P)| ≤M2, as at each iteration the value assigned

to at least one argument is changed. It has been shown that the class of

argument-restricted programs strictly includes ω-restricted, λ-restricted and

finite-domain programs.

Proposition 3.16. [60] T ⊂ AR, for T ∈ {ΩR, λR, FD}. 2

Unfortunately, no result was established regarding the complexity of com-

puting the set of restricted-arguments of a program.

As we will show in Section 3.5, computing the set of restricted-arguments

of a program P is feasible in PTime.

3.4 Argument-based approach: Mapping-restriction

In this section we present one of the most general techniques aimed to identify

a logic program with function symbols as terminating. In particular, it has

been shown to be the most general criterion based on the sole analysis of the

arguments of a given logic program [18]. We start by introducing notations

and terminology used hereafter.

Let P be a program. We define B̄ = pred(P) − def (P), that is the set

of predicates symbols occurring in P but not occurring in the head of some

rule of P. We will focus on the termination of logic programs P w.r.t. B̄, thus

sets of facts are understood to contain only facts whose predicate symbols

occur in B̄. Terminating programs of this form are of particular interest, as

they are able to encode database-related problems, where predicates in B̄ can

be used to define database only facts. Furthermore, due to the presence of

function symbols, as we will show later in this chapter, they are also able

model temporal phenomena.

We assume that the termination analysis is restricted to sets of facts D

and programs P such that:

• D contains only constants;

• the depth of complex terms occurring in P is at most one;

• No constants appear in P;
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There is no real restriction in such assumptions as every program P∪D could

be rewritten into an equivalent program satisfying such conditions. The first

condition is w.l.o.g. as shown in Section 3.1. The second condition can be

satisfied by rewriting rules of P of the form p(f(h(X))) ← q(X) into two

rules: p(f(X)) ← p′(X), p′(h(X)) ← q(X). For the third condition, rules of

P of the form p(a)← body(X, a), where a is a constant, could be rewritten as

p(Y )← body(X,Y ), p′(Y ) with the addition of p′(a) to D.

Thus, in the rest of this section, we assume that every program P and set

of facts D satisfy the conditions above.

Definition 3.17. Given a program P, an m-set UP is a set of pairs p[i]/s,

called mappings, such that p[i] ∈ args(P) and s ∈ F ∗P . 2

Intuitively, a pair p[i]/s means that during the evaluation of the program,

considering all possible sets of facts, the argument p[i] could take values whose

structure, in terms of nesting of function symbols, is described by s. For

instance, let p(f(g(c1)), c2) be a ground atom derivable through the evaluation

of the input program, the mappings for its arguments are p[1]/fg and p[2]/ε.

Definition 3.18. Let P be a program, D a finite set of facts instance and M

a model of P ∪D. We denote by UM the m-set derivable from M defined as

follows:

UM = {p[i]/s | p(t1, ..., tn) ∈M ∧ s ∈ strings(ti)}

where, strings(t) denotes the set of strings recursively defined as:

1. strings(t) = {ε} if t is a constant, or

2. strings(t) = {f · s | t = f(u1, ..., uk) ∧ s ∈ strings(uj) ∧ 1 ≤ j ≤ k}
otherwise. 2

Given an m-set UP and an atom p(t1, ..., tn) occurring in P, we say that

an occurrence of a variable X in ti has a mapping to a string s in UP if

p[i]/s ∈ UP ∧ti = X or p[i]/gs ∈ UP ∧ti = g(...X...). For instance, considering

an atom p(f(X)) and UP = {p[1]/fg}, the occurrence of X in f(X) has a

mapping to the string g in UP .

Definition 3.19. Let P be a program and let UP be an m-set. We say that

UP is a supported m-set of P if:

1. q[j]/ε ∈ UP for every argument q[j] ∈ args(B̄), and
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2. for every rule r ∈ P and for every variable X in r, if all occurrences of

variable X in the body of r have a mapping to a string s in UP , then all

occurrences of X in the head of r also have a mapping to s in UP . 2

Intuitively, if UP is a supported m-set of P, for every finite set of facts

D there exists a model M of P ∪ D such that UM ⊆ UP . The number of

supported m-sets for a given program P could be infinite, and there can be

supported m-sets of infinite size.

Given a program P, a supported m-set UP of P is minimal if there is no

supported m-set U ′P of P such that U ′P ⊂ UP . It is simple to note that every

program P has a unique supported minimal m-set, called minimum supported

m-set, denoted in the following by U∗P . The minimum supported m-set can be

obtained as the intersection of all supported m-sets of P.

Example 3.20. Consider the following program P3.20

r1 : p(X, f(X)) ← b(X).

r2 : p(f(X), X) ← b(X).

r3 : q(f(X), g(X))← p(X, X).

r4 : q(f(X), f(X))← q(X, X).

where B̄ = pred(P) − def (P) = {b}. If D = {b(a)}, the minimum model of

P3.20 ∪D and the corresponding m-set are

MM(P3.20 ∪D) = {b(a), p(a, f(a)), p(f(a), a)},
UMM(P3.20∪D) = {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε}.

The minimum supported m-set of this program is

U∗P3.20
= {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε, q[1]/f, q[2]/g, q[1]/ff, q[2]/gf},

that is a finite proper superset of UMM(P3.20∪D). 2

Definition 3.21. Given a program P, an argument p[i] ∈ arg(P) is mapping-

restricted ( m-restricted for short) iff U∗P contains a finite set (possibly empty)

of mappings p[i]/s. MR(P) denotes the set of all m-restricted arguments of

P. A program P is m-restricted if MR(P) = arg(P), i.e. it admits a finite

supported m-set. The set of m-restricted programs is denoted by MR. 2

From the discussion above it follows that each program whose minimum

supported m-set is finite, has a finite minimum model for every finite set of
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facts D. Moreover, it can be shown that every m-restricted argument is limited

w.r.t. B̄.

Theorem 3.22. Every program P admitting a finite supported m-set is ter-

minating w.r.t. B̄.

Proof. To prove the theorem, first we show that, given the particular set of

facts Dε = {b(ε, ..., ε) | b ∈ B̄}, UMM(P∪D) ⊆ UMM(P∪Dε), for every set of

facts D.

Let M∗ =MM(P ∪D) and Mε =MM(P ∪Dε), we have that:

1. given an argument b[i] ∈ args(B̄), if b[i]/ε ∈ UM∗ , then b[i]/ε ∈ UMε by

definition of Dε;

2. given an argument p[i] 6∈ args(B̄), if p[i]/s ∈ UM∗ , then there must be

a rule r : p(t1, ..., ti, ..., tn) ← body(r) in P and a substitution θ for all

variables occurring in r, such that all atoms in body(r)θ appear in M∗

(that is, the atom is derived using the immediate consequence operator

TP). Let θ′ be the substitution obtained from θ by replacing all constants

occurring in θ with ε. Since P is a positive program, θ′ is such that atoms

in body(r)θ′ and head(r)θ′ occur in Mε. Then, by construction of θ′, we

have that if p[i]/s ∈ UM∗ , then p[i]/s ∈ UMε
.

Now, we show that UMε
⊆ U∗P .

1. given an argument b[i] ∈ args(B̄), if b[i]/ε ∈ UMε , then b[i]/ε ∈ U∗P by

definition of Mε and U∗P ;

2. given an argument p[i] 6∈ args(B̄), if p[i]/s ∈ UMε
, then there must be

a rule r : p(t1, ..., ti, ..., tn) ← body(r) in P and a substitution θ for all

variables occurring in r, such that all atoms in body(r)θ appear in Mε.

Now, consider the substitution θ′ obtained from θ taking only the pairs

X/t ∈ θ such that X appears in ti. It is easy to see that this substitution

represents the fact that all the occurrences of X in body(r) have a mapping

to s in U∗P , and then p[i]/s ∈ U∗P .

Finally, since for every set of facts D, UM∗ ⊆ UMε
and UMε

⊆ U∗P , it

follows that UM∗ ⊆ U∗P for every set of facts D. Then, if U∗P is finite, M∗ =

MM(P ∪D) is finite. 2

Proposition 3.23. Given a program P, every m-restricted argument is lim-

ited w.r.t. B̄.
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Proof. Let p[i] be a m-restricted argument of P. By definition of m-restricted

argument, U∗P contains a finite set of mappings p[i]/s. Since, for every set

of facts D, UMM(P∪D) ⊆ U∗P , from the proof of Theorem 3.22, UMM(P∪D)

contains a finite set of mappings p[i]/s, then, the set {ti | p(t1, ..., ti, ..., tn) ∈
MM(P ∪D)} is finite, thus p[i] is limited w.r.t. B̄. 2

Detecting m-restricted arguments. In order to construct the set of m-

restricted arguments of a given program P, we introduce a program Pu ∪Du,

obtained as a transformation of P and having the following properties:

• checking whether MM(Pu ∪Du) is finite is decidable;

• U∗Pu∪Du = UM∗ , where M∗ =MM(Pu ∪Du);

• There is a bijection h from args(P) to args(Pu∪Du) s.t. h(U∗P) = U∗Pu∪Du ,

i.e. p[i]/s ∈ U∗P iff h(p[i])/s ∈ U∗Pu∪Du .

Definition 3.24. Let P be a program. Then:

• Du is the set of facts defined as {bi(0) | b[i] ∈ args(B̄)};
• Pu denotes the program derived from P as follows:

– for every rule r = p(t1, ..., tn) ← body in P, for every variable X

occurring in p(t1, ..., tn), and for every term ti where X occurs, Pu

contains a rule:

pi(t
X
i )←

∧
q(u1,...,uk) in body
∧ X occurs in uj

qj(u
X
j )

where tX is defined as follows:

tX =

X if t = X

f(X) if t = f(..., X, ...).

2

Example 3.25. Consider the following program P3.25:

p(X, X) ← b(X).

q(f(X), f(X))← p(X, X).

p(f(X), X) ← q(X, X).

The minimum supported m-set of this program is

U∗P3.25
= {b[1]/ε, p[1]/ε, p[2]/ε, q[1]/f, q[2]/f, p[1]/ff, p[2]/f}.
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The transformed unary program Pu3.25 is:

p1(X) ← b1(X).

p2(X) ← b1(X).

q1(f(X))← p1(X), p2(X).

q2(f(X))← p1(X), p2(X).

p1(f(X))← q1(X), q2(X).

p2(X) ← q1(X), q2(X).

whereas Du
3.25 = {b1(0)}.

Furthermore, we have that MM(Pu3.25 ∪ Du
3.25) = {b1(0), p1(0), p2(0),

q1(f(0)), q2(f(0)), p1(f(f(0))), p2(f(0))}, and UM∗ = {b1[1]/ε, p1[1]/ε, p2[1]/ε,

q1[1]/f, q2[1]/f, p1[1]/ff, p2[1]/f}. It is easy to see that UM∗ = U∗Pu3.25 . 2

The following proposition states that for every program P, the m-sets of

Pu and P coincide (up to a bijection h) and are derivable from the minimum

model of Pu ∪Du.

Proposition 3.26. Let P be a program and M∗ = MM(Pu ∪ Du), then

U∗Pu∪Du = UM∗ and there is a bijection h s.t. h(U∗P) = U∗Pu∪Du .

Proof. The relation U∗Pu∪Du = UM∗ is straightforward from the construction

of Pu ∪Du. The existence of h follows from Definition 3.19 of supported m-

set and the construction of Pu ∪Du: h is defined as h(p[i]) = pi[1] for every

p[i] ∈ arg(P). 2

Let us now compare the presented technique with the most general

argument-based approach: argument-restricted technique. Argument-restricted

generalizes ω-restricted, λ-restricted and finite domain.

Intuitively, the argument-restricted (AR) criterion derives the set of re-

stricted arguments estimating the depth of complex terms that can be as-

sociated with an argument during the evaluation. In particular, it considers

the depth of terms in the body and in the head of rules, but it does not test

the real possibility to activate a rule starting from a fact in the given set D

and does not distinguish different function symbols. The new MR technique

overcomes these limitations by introducing the concept of supported m-set,

which allows us to describe the form of argument values that are derivable

during the evaluation of the program, starting from any set of facts instance

and use this information to simulate the evaluation process. Furthermore, to
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compute strings associated with head arguments, the current technique also

checks that rules can be effectively activated. The following theorem states

that the class of m-restricted programs generalizes the class of argument re-

stricted programs.

Theorem 3.27. AR (MR.

Proof. Let P be an argument-restricted program, we denote by Pf the logic

program obtained from P by replacing every function symbol occurring in

P with the symbol f , admitting that a function symbol does not have fixed

arity. Note that P is argument restricted iff Pf is argument restricted. Let φ

be the minimum argument ranking (which is a total function) of both P and

Pf . We denote by sk the string of length k of the form sk = fsk−1, where

s0 = ε. Let UPf = {p[i]/sk | p[i] ∈ args(P) ∧ 0 ≤ k ≤ φ(p[i])}. Note that

such an m-set is a finite supported m-set for Pf . Assume that ∃p[i]/s ∈ U∗P
such that |s| > φ(p[i]), then, any supported m-set of Pf would contain a pair

p[i]/s′ such that |s′| > φ(p[i]), which contradicts the existence of UPf . Then,

U∗P is finite and P is in MR. In order to prove the strict inclusion, observe

that program P3.20 from Example 3.20 is in MR but not in AR. 2

The inclusion is proper even if the program contains only one function

symbol. For instance, program P3.25 from Example 3.25 is in MR but not in

AR.

It is worth noting that although both AR and MR techniques are used

to identify decidable subclasses of limited programs, they can also be used to

detect, for a given program P, subsets of limited arguments of P. The follow-

ing proposition states that, given a program P, the set AR(P) of restricted

arguments of P is a subset of the set of MR(P) of m-restricted arguments of

P.

Corollary 3.28. For any program P, AR(P) ⊆MR(P).

Proof. Straightforward from the proof of Theorem 3.27. 2

Detecting subsets of limited arguments is relevant even when the input

program is not recognized as terminating by a given criterion, as in such cases

it is possible to combine different techniques to detect the finiteness of the

minimum model.
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3.4.1 Complexity

In this section we will study the computational complexity of the problem of

computing the set MR(P) of m-restricted arguments for a given program P.

When MR(P) coincides with args(P), the program P is in MR.

From Proposition 3.26 it follows that the set MR(P) can be computed by

first transforming P into the program Pu ∪Du and next by determining the

arguments p[i] of Pu such that {ti | p(t1, . . . , tn) ∈MM(Pu ∪Du)} is finite.

We call such arguments limited in MM(Pu ∪Du).

We will show that checking whether an argument of Pu is limited in

MM(Pu ∪Du) is decidable. This comes from the fact that the transformed

program Pu ∪Du belongs to a class of logic programs called DatalognS . We

will start by introducing the class of DatalognS programs and its properties

and then will exploit such properties to provide an algorithm able to compute

the limited arguments in MM(Pu ∪Du).

Datalog [77] is the class of function-free logic programs, where predicates

are partitioned into base and derived and the only terms are constants or

variables, called data terms. Different extensions of Datalog have been studied

in the literature, including programs with stratified and general negation,

programs with disjunctive heads and programs with negation and disjunctive

heads. It is well known that the complexity of computing the minimum model

for Datalog programs is polynomial in the size of the input databases.

DatalognS (Datalog with n successors), proposed in [29], is an extension of

Datalog with a limited use of function symbols capable of representing infinite

phenomena like flow of time, state transitions, construction of plans, etc. An

example of a DatalognS program is reported below.

Example 3.29. Consider the following program P3.29:

r : meets(T + 1, Y)← follows(X, Y), meets(T, X).

where T + 1 is a shorthand for +1(T ) and +1 is a function symbol. Rule r

schedules the meetings of graduate students with their common advisor, where

meets(t, x) means that x meets her/his advisor in day t. 2

The problem of checking the finiteness of the minimum model of DatalognS
programs is decidable [29]. Predicates in DatalognS can have an arbitrary num-

ber of unary function symbols and they can appear in one fixed argument.
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This argument corresponds to a state (in Example 3.29 each state represents

a particular moment of time), whereas function symbols map a state to an-

other. Predicates containing a functional argument are called functional too.

Functional arguments contain functional terms, which are built from a dis-

tinguished functional constant 0, a distinguished functional variable T and

function symbols. For instance, in the program P3.29 of Example 3.29, terms

0, T and T + 1 are functional terms.

Other syntactical restrictions of DatalognS programs hold: i) rules are

range restricted, ii) rule bodies are nonempty, iii) rules do not contain ground

terms, and iv) functional terms in rules are of depth at most 1.

Datalog1S is a particular subclass of DatalognS admitting exactly one unary

function symbol (+1), so that functional ground terms can simply be seen as

numbers representing time. For the sake of presentation, in the following we

will briefly review the semantics of Datalog1S programs.

Example 3.30. Consider the program P3.30 obtained from P3.29 of Example

3.29 plus the rule:

meets(T, Y)← start(T, Y).

and the following database D3.30:

start(0, emma).

follows(emma, kathy).

follows(kathy, emma).

The minimal model M3.30 of this program is composed by facts

follows(emma, kathy) follows(kathy, emma)

start(0, emma) meets(0, emma)

and the following regularly repeating functional facts:

meets(1, kathy) meets(2, emma)

meets(3, kathy) meets(4, emma)

meets(5, kathy) meets(6, emma)

... ...

where 1 is an abbreviation for 0+1, 2 is an abbreviation for (0+1)+1, and so

on. 2
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Let P ∪ D be a Datalog1S program, M be the model of P ∪ D and t a

ground functional term, the state M [t] of M is M [t] = {p(a) | p(t,a) ∈ M};
the snapshot M(t) of M is M(t) = {p(t,a) | p(t,a) ∈ M}; the data part Md

of M is the set of all the data facts in M . The period of M is a pair (t1, t2),

where ground functional terms t1 and t2 are such that t1 < t2 and represent

the smallest different times with the same state. It has been shown in [29]

that M [t1 + k] = M [t2 + k] for all k ≥ 0.

Example 3.31. Consider the program P3.30 and the database D3.30 from previ-

ous examples. Let M3.30 be the minimal model of P3.30 ∪ D3.30. Examples

of state, snapshot and data part of M3.30 are M3.30[0] = {start(emma),

meets(emma)}, M3.30(0) = {start(0, emma), meets(0, emma)} and Md =

{follows(emma, kathy), follows(kathy, emma)}. Intuitively, M3.30 repeats with

period (1, 3), i.e. M3.30[1 + k] = M3.30[3 + k] for every k ≥ 0. 2

It has been shown in [29] that every Datalog1S program has a “periodic”

minimal model and the finiteness of the model of a Datalog1S program P ∪D
can be checked in polynomial space in the number of facts of D.

Observe that by construction, all predicates of Pu ∪ Du are unary and

functional, the number of facts in Du is equal to the number of arguments of

args(B̄), and the number of function symbols in P and Pu ∪Du coincide.

We consider two different cases on the base of whether the input program

P contains only one or more than one function symbols, that is whether Pu∪
Du is a Datalog1S or a DatalognS program. Thus, in this section we present

an algorithm computing the set of m-restricted arguments for a program P
containing only one function symbol, i.e. Pu ∪Du is a Datalog1S program.

We point out that, as the complexity of checking whether a DatalognS
program terminates may be higher than that of checking termination of

a Datalog1S program, we could apply a less expensive (and less general)

technique for checking program termintion, by considering a target program

Pu ∪Du where all function symbols are replaced by a single function symbol.

We start by introducing some definitions and results used hereafter to

define the complexity of our algorithms.

The following lemma shows the relation between the syntactic size of a

given program P and the syntactic size of the transformed program Pu ∪Du.

Lemma 3.32. Given a program P, ||Pu ∪Du|| = O(||P||2).
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Proof. By definition of Pu ∪ Du, the number of facts in Du is equal to the

number of arguments of args(B̄) and the number of rules in Pu is at most

n·ap ·af , where n is the number of rules, ap is the maximum arity of predicates,

and af is the maximum arity of function symbols in the program. Moreover,

the maximum number of predicates in the body of rules in Pu is p · ap, where

p is the maximum number of predicates in the body of rules. Finally, the

maximum arity of predicates and function symbols of Pu is 1. Then, we have

that ||Pu|| = O((n · ap · af ) · (p · ap)) = O(||P||2) and ||Du|| = O(||P||),
consequently ||Pu ∪Du|| = O(||P||2). 2

Programs with only one function symbol

The main function of the algorithm computing the set of m-restricted

arguments for programs containing only one function symbol is ComputeM-

Restricted. It takes as input a program P and returns as output the set of its

m-restricted arguments.

Theorem 3.33. For any program P, MR(P) = ComputeMRestricted(P). 2

The function starts by computing the transformed program Pu ∪Du (line

2). Next it computes the period (t1, t2) of the model of Pu∪Du (lines 3-15). In

particular, since Pu ∪Du is a unary Datalog1S program, the number of states

of Pu ∪Du is bounded by 2fsize, where fsize is the number of predicates in

Pu ∪Du. Note that all arguments not limited in M =MM(Pu ∪Du) occur

in predicates belonging to the states ranging from M [t1] to M [t2]. Then,

the function computes these states and deletes from the output set all the

corresponding arguments (lines 16-21).

The computation of a state M [t] of M is done by means of function Com-

puteState. It takes as input the transformation Pu ∪Du of a program P and

a ground term t and returns as output the state of the model of Pu ∪ Du

evaluated in t. Computing a state M [t] is performed by checking whether

Pu ∪Du |= p(t), for every predicate p occurring in Pu ∪Du. Function Models

is in charge of checking whether Pu ∪Du |= p(t) and it is a simplified version

of the function proposed in [28], specific for unary programs with functional

predicates only. This function is based on the following lemma: the nota-

tion P{u} denotes the program obtained by replacing every occurrence of the

functional variable T in P with a ground functional term u.

Lemma 3.34. [28] Let P∪D be a Datalog1S program, Q(t,a) a ground atomic

query. Then, M is a model of P ∪ D ∪ ¬Q(t,a) iff the following conditions

hold:
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Fig. 3.2: Function ComputeMRestricted

- D ⊆M and Q(t,a) 6∈M(t);

- M(u) ∪M(u+ 1) ∪Md |= P{u} for any ground functional term u. 2

Let us start by presenting the complexity of function Models.

Proposition 3.35. Let Pu ∪Du be the transformation of a program P with

one function symbol and Q(t) be a ground atomic query, Function Models

performs in polynomial space w.r.t. ||Pu ∪Du|| and in polylogarithmic space

w.r.t. depth(t).

Proof. The size of every state of the model M of Pu ∪ Du depends on the

number of different ground atoms that can occur in one state; this number,

denoted by fsize, is polynomial in ||Pu ∪Du||. In a similar way, a snapshot
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Fig. 3.3: Function Models

M(t) can be encoded as a pair (t,M [t]), requiring polynomial space w.r.t.

||Pu ∪ Du|| and logarithmic space w.r.t. depth(t) (recall that t is a number

that can be encoded in binary).

Function Models is a non deterministic algorithm which implements Lemma

3.34 with some simplifications due to the syntactical form of Pu ∪ Du (all

predicates are unary and functional). The application of Lemma 3.34 con-

sists in verifying whether Pu ∪Du ∪ ¬Q(t) admits a model, that is whether

Pu∪Du |= Q(t). Moreover, it first guesses the initial snapshot of the minimal

Herbrand model of Pu ∪Du. Guessing a snapshot is obviously space polyno-

mial in ||Pu∪Du|| and logarithmic space in the depth of the given term. Ver-

ifying whether CurSnap |= Du∪¬Q(t) can be done in polynomial space w.r.t.

||Pu ∪Du|| since it simply needs to check whether Du ⊆ CurSnap ∧ Q(t) 6∈
CurSnap. The cycle in the algorithm performs at most m iterations, which

is exponential in ||Pu ∪Du|| but can be encoded in binary, requiring polyno-

mial space. Moreover, the ground functional term v and the ground functional

term t appearing in the query Q can be encoded in binary too, requiring a

polynomial amount of memory for v in ||Pu∪Du|| (because v < m) and a log-

arithmic amount of space for t in depth(t). Again, at each iteration, guessing

the snapshot M(v+1) is space polynomial in ||Pu∪Du|| and logarithmic space

in depth(v+1), but since v < m, the space for storing v+1 is at most polyno-

mial in ||Pu ∪Du||. Answering to CurSnap∪NextSnap |= Pu{v}∪¬Q(t) can

be done in polynomial space in ||Pu ∪Du|| and polylogarithmic space w.r.t.



3.4 Argument-based approach: Mapping-restriction 39

Fig. 3.4: Function ComputeState

depth(t). Finally, by Savitch’s theorem, every non deterministic space poly-

nomial algorithm can be rewritten into a deterministic one which performs in

quadratically more space. 2

Since predicates in Pu ∪ Du are unary, the number of different atomic

queries to be answered in Function ComputeState is polynomial in the size

of the program. Then, computing a state has the same complexity of the

Function Models.

Lemma 3.36. Let Pu ∪ Du be the transformation of a program P with one

function symbol. Computing the state of the model of Pu ∪ Du at the given

time t requires polynomial space w.r.t. ||Pu ∪Du|| and polylogarithmic space

w.r.t. depth(t).

Proof. Straightforward from previous proposition and considerations. 2

We can now present the main complexity result stating that computing

the set of m-restricted arguments of a program P with one function symbol is

space polynomial w.r.t. ||P||.

Theorem 3.37. Given a program P containing only one function symbol, the

complexity of computing MR(P) is space polynomial w.r.t. ||P||.

Proof. In Function ComputeMRestricted, ComputePu ∪Du(P) requires poly-

nomial space in ||P||, from Lemma 3.32. The next phase of the algorithm

computes the period of the model of Pu ∪Du which is crucial for finding the

m-restricted arguments of P. The whole operation takes at most polynomial

space w.r.t. ||Pu ∪Du|| since by Lemma 3.36 ComputeState requires polyno-

mial space in ||Pu ∪ Du|| and polylogarithmic space in depth(t2). Note that
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depth(t2) is at most exponential in the maximum size of a state of Pu ∪Du

(i.e. fsize), then “polylogarithmic space in depth(t2)” means polynomial space

w.r.t. ||Pu∪Du||. Checking whether M [t′] = M [t2] requires obviously polyno-

mial space in ||Pu∪Du||. Finally, storing variables t1, t2, t
′ requires polynomial

space in ||Pu ∪Du||. From Lemma 3.32, the whole phase requires polynomial

space w.r.t. ||P||. The last phase computes the set MR(P). From the previous

considerations, the last phase requires polynomial space w.r.t. ||P|| too. 2

Corollary 3.38. Given a program P, the complexity of checking whether P ∈
MR is space polynomial w.r.t. ||P|| if P contains at most one function symbol.

Proof. Straightforward from Theorem 3.37. 2

Programs with more than one function symbol

So far we have considered programs with only one functions symbol. As

said before, whenever programs contain more than one function symbol, we

can perform a less accurate analysis, by replacing all function symbols with a

unique symbol, even if they have different arities. The resulting unary program

uses only one function symbol. This means that there could be mapping-

restricted programs which are not recognized to be in MR.

To enlarge the class of MR programs we can take into account the fact

that programs may contain more than one function symbol rewriting them

into a DatalognS program. The counterpart of this growth of expressivity is

obviously a greater computational complexity.

Indeed, as the complexity of checking whether the model of a DatalognS
program is finite is exponential, we would obtain that for any program P with

more than one function symbol, the complexity of both computing MR(P)

and checking whether P ∈MR is at most time exponential w.r.t. ||P||.

3.5 Graph-based approaches

This section presents two approaches (Γ -acyclicity and Safe programs [17])

which rely on the definition of particular graphs constructed over a logic pro-

gram. The idea behind these approaches is that if the graph constructed for

a logic program P is acyclic, for some notion of acyclicity, then P is limited.



3.5 Graph-based approaches 41

3.5.1 Γ -acyclicity

In this section we exploit the role of function symbols for checking limitedness

of logic programs. In particular, the focus will be on the termination of normal

positive programs P (thus, w.r.t. pred(P)). Recall that restricting the analysis

to normal positive programs is w.l.o.g., as shown in Section 3.1.

We also assume that if the same variable X appears in two terms occurring

in the head and body of a rule respectively, then at most one of the two terms

is a complex term and that the nesting level of complex terms is at most one.

There is no real restriction in such an assumption as every program could be

rewritten into an equivalent program satisfying such a condition.

The following example shows a program admitting a finite minimum

model, but, for example, the argument-restricted criterion is not able to detect

it. Intuitively, the definition of argument restricted programs does not take

into account the possible presence of different function symbols in the program

that may prohibit the propagation of values in some rules and, consequently,

guarantee the termination of the computation.

Example 3.39. Consider the following program P3.39:

r0 : s(X)← b(X).

r1 : r(f(X))← s(X).

r2 : q(f(X))← r(X).

r3 : s(X)← q(g(X)).

The program is not argument-restricted since the argument ranking function

φmin cannot assign any value to r[1], q[1], and s[1]. However the computation

always terminates, independently from the given set of facts. 2

In order to represent the propagation of values among arguments, we in-

troduce the concept of labeled argument graphs. Intuitively, it is an extension

of the argument graph where each edge has a label describing how the term

propagated from one argument to another changes. Arguments that are not

dependent on a cycle can propagate a finite number of values and, therefore,

are limited.

Thus, we can delete edges, from the labeled argument graph, ending in the

nodes corresponding to limited arguments. Then, the resulting graph, called

propagation graph, is deeply analyzed to identify further limited arguments.

Definition 3.40 (Labeled argument graph). Let P be a program. The

labeled argument graph GL(P) is a labeled directed graph (args(P), E) where
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Fig. 3.5: Labeled argument graphs of programs P3.39 (left) and P3.41 (right)

E is a set of labeled edges defined as follows. For each pair of nodes p[i], q[j] ∈
args(P) such that there is a rule r with head(r) = p(v1, ..., vn), q(u1, ..., um) ∈
body(r), and terms uj and vi have a common variable X, there is an edge

(q[j], p[i], α) ∈ E such that

• α = ε if uj = vi = X,

• α = f if uj = X and vi = f(..., X, ...),

• α = f if uj = f(..., X, ...) and vi = X. 2

In the definition above, the symbol ε denotes the empty label which con-

catenated to a string does not modify the string itself, that is, for any string

s, sε = εs = s.

The labeled argument graph of program P3.39 is shown in Figure 3.5 (left).

The edges of this graph represent how the propagation of values occurs. For

instance, edge (b[1], s[1], ε) states that a term t is propagated without changes

from b[1] to s[1] if rule r0 is applied; analogously, edge (s[1], r[1], f) states

that starting from a term t in s[1] we obtain f(t) in r[1] if rule r1 is applied,

whereas edge (q[1], s[1], g) states that starting from a term g(t) in q[1] we

obtain t in s[1] if rule r3 is applied.

Given a path π in GL(P) of the form (a1, b1, α1), ..., (am, bm, αm), we

denote with λ(π) the string α1 ...αm. We say that π spells a string w if λ(π) =

w. Intuitively, the string λ(π) describes a sequence of function symbols used

to compose and decompose complex terms during the propagation of values

among the arguments in π.

Example 3.41. Consider program P3.41 derived from program P3.39 of Example

3.39 by replacing rule r2 with the rule q(g(X))← r(X). The labeled argument

graph GL(P3.41) is reported in Figure 3.5 (right). Considering the cyclic path

π = (s[1], r[1], f), (r[1], q[1], g), (q[1], s[1], g), λ(π) = fgg represents the fact

that starting from a term t in s[1] we may obtain the term f(t) in r[1], then

we may obtain term g(f(t)) in q[1], and term f(t) in s[1], and so on. Since

we may obtain a larger term in s[1], the arguments depending on this cyclic

path may not be limited.
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Consider now program P3.39, whose labeled argument graph is shown

in Figure 3.5 (left), and the cyclic path π′ = (s[1], r[1], f), (r[1], q[1], f),

(q[1], s[1], g). Observe that starting from a term t in s[1] we may obtain

term f(t) in r[1] (rule r1), then we may obtain term f(f(t)) in q[1] (rule r2).

At this point the propagation in this cyclic path terminates since the head

atom of rule r2 containing term f(X) cannot match with the body atom of rule

r3 containing term g(X). The string λ(π′) = ffg represents the propagation

described above. Observe that for this program all arguments are limited. 2

Let π be a path from p[i] to q[j] in the labeled argument graph. Let λ̂(π) be

the string obtained from λ(π) by iteratively eliminating pairs of the form αα

until the resulting string cannot be further reduced. If λ̂(π) = ε, then starting

from a term t in p[i] we obtain the same term t in q[j]. Consequently, if λ̂(π)

is a non-empty sequence of function symbols fi1 , fi2 ..., fik , then starting from

a term t in p[i] we may obtain a larger term in q[j]. For instance, if k = 2

and fi1 and fi2 are of arity one, we may obtain fi2(fi1(t)) in q[j]. Based

on this intuition we introduce now a grammar ΓP in order to distinguish the

sequences of function symbols used to compose and decompose complex terms

in a program P, such that starting from a given term we obtain a larger term.

Recall that FP denotes the set of all function symbols occurring in a pro-

gram P. We denote by FP = {f | f ∈ FP} and TP = FP ∪ FP .

Definition 3.42. Let P be a program, the grammar ΓP is a 4-tuple (N,TP , R, S),

where N = {S, S1, S2} is the set of nonterminal symbols, S is the start symbol,

and R is the set of production rules defined below:

1. S → S1 fi S2, ∀fi ∈ FP ;

2. S1 → fi S1 f i S1 | ε, ∀fi ∈ FP ;

3. S2 → S1 S2 | fi S2 | ε, ∀fi ∈ FP . 2

The language L(ΓP) is the set of strings generated by ΓP .

Example 3.43. Let FP = {f, g, h} be the set of function symbols occurring in

a program P. Then strings f, fgg, ggf, fgghh, fhggh belong to L(ΓP) and

represent, assuming that f is a unary function symbol, different ways to obtain

term f(t) starting from term t. 2

Note that only if a path π spells a string w ∈ L(ΓP), then starting from

a given term in the first node of π we may obtain a larger term in the last

node of π. Moreover, if this path is cyclic, then the arguments depending on
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Fig. 3.6: Labeled argument graph (left) and propagation graph (right) of pro-
gram P3.45

it may not be limited. On the other hand, all arguments not depending on a

cyclic path π spelling a string w ∈ L(ΓP) are limited.

Given a program P and a set of arguments A recognized as limited by a

specific criterion (eg. argument-restricted, mapping-restricted), the propaga-

tion graph of P with respect to A, denoted by ∆(P,A), consists of the sub-

graph derived from GL(P) by deleting edges ending in a node of A. Although

we can consider any set A of limited arguments, in the following we assume

A = AR(P) and, for the simplicity of notation, we denote ∆(P, AR(P)) as

∆(P). Even if more general termination criteria have been defined in the lit-

erature, here we consider the AR criterion since it is the most general among

those so far proposed having polynomial time complexity.

Definition 3.44 (Γ -acyclic Arguments and Γ -acyclic Programs). Given

a program P, the set of its Γ -acyclic arguments, denoted by ΓA(P), consists

of all arguments of P not depending on a cyclic path in ∆(P) spelling a string

of L(ΓP). A program P is called Γ -acyclic if ΓA(P) = args(P), i.e. if there

is no cyclic path in ∆(P) spelling a string of L(ΓP). We denote the class of

Γ -acyclic programs ΓA. 2

Clearly, AR(P) ⊆ ΓA(P), i.e. the set of restricted arguments is contained

in the set of Γ -acyclic arguments. As a consequence, the set of argument-

restricted programs is a subset of the set of Γ -acyclic programs. Moreover,

the containment is strict, as there exist programs that are Γ -acyclic, but not

argument-restricted. For instance, program P3.39 from Example 3.39 is Γ -

acyclic, but not argument-restricted. Indeed, all cyclic paths in ∆(P3.39) do

not spell strings belonging to the language L(ΓP3.39).

The importance of considering the propagation graph instead of the labeled

argument graph in Definition 3.44 is shown in the following example.
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Example 3.45. Consider program P3.45 below obtained from P3.39 by adding

rules r4 and r5.

r0 : s(X)← b(X).

r1 : r(f(X))← s(X).

r2 : q(f(X))← r(X).

r3 : s(X)← q(g(X)).

r4 : n(f(X))← s(X), b(X).

r5 : s(X)← n(X).

The corresponding labeled argument graph GL(P3.45) and propagation graph

∆(P3.45) are reported in Figure 3.6. Observe that arguments n[1] and s[1] are

involved in the red cycle in the labeled argument graph GL(P3.45) spelling a

string of L(ΓP3.45
). At the same time this cycle is not present in the propagation

graph ∆(P3.45) since AR(P3.45) = {b[1], n[1]} and the program is Γ -acyclic. 2

Theorem 3.46. Given a program P,

1. all arguments in ΓA(P) are limited;

2. if P is Γ -acyclic, then P is terminating.

Proof. 1) As previously recalled, arguments in AR(P) are limited. Let us

now show that all arguments in ΓA(P) \ AR(P) are limited too. Suppose by

contradiction that q[k] ∈ ΓA(P)\AR(P) is not limited. Observe that depth of

terms that may occur in q[k] depends on the paths in the propagation graph

∆(P) that ends in q[k]. In particular, this depth may be infinite only if there

is a path π from an argument p[i] to q[k] (not necessarily distinct from p[i]),

such that λ̂(π) is a string of an infinite length composed by symbols in FP .

But this is possible only if this path contains a cycle spelling a string in L(ΓP).

Thus we obtain contradiction with Definition 3.44.

2) From the previous proof, it follows that every argument in the Γ -acyclic

program can take values only from a finite domain. Consequently, the set

of all possible derived ground terms is finite and every Γ -acyclic program is

terminating. 2

From the previous theorem we can also conclude that all Γ -acyclic pro-

grams admit a finite minimum model.

We conclude by observing that since the language L(ΓP) is context-free,

the analysis of paths spelling strings in L(ΓP) can be carried out using push-

down automata.
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As ΓP is context free, the language L(ΓP) can be recognized by means

of a pushdown automaton M = ({q0, qF }, TP , Λ, δ, q0, Z0, {qF }}), where q0 is

the initial state, qF is the final state, Λ = {Z0} ∪ {Fi|fi ∈ FP} is the stack

alphabet, Z0 is the initial stack symbol, and δ is the transition function defined

as follows:

1. δ(q0, fi, Z0) = (qF , FiZ0), ∀fi ∈ FP ,

2. δ(qF , fi, Fj) = (qF , FiFj), ∀fi ∈ FP ,

3. δ(qF , f j , Fj) = (qF , ε), ∀fi ∈ FP .

The input string is recognized if after having scanned the entire string the

automaton is in state qF and the stack contains at least one symbol Fi.

A path π is called:

• increasing, if λ̂(π) ∈ L(ΓP),

• flat, if λ̂(π) = ε,

• failing, otherwise.

It is worth noting that λ(π) ∈ L(ΓP) iff λ̂(π) ∈ L(ΓP) as function λ̂ emulates

the pushdown automaton used to recognize L(ΓP). More specifically, for any

path π and relative string λ(π) we have that:

• if π is increasing, then the pushdown automaton recognizes the

string λ(π) in state qF and the stack contains a sequence of symbols

corresponding to the symbols in λ̂(π) plus the initial stack symbol

Z0;

• if π is flat, then the pushdown automaton does not recognize the

string λ(π); moreover, the entire input string is scanned, but the

stack contains only the symbol Z0;

• if λ̂(π) is failing, then the pushdown automaton does not recognize

the string λ(π) as it goes in an error state.

Complexity

Concerning the complexity of checking whether a program is Γ -acyclic, we

first introduce definitions and results that will be used hereafter. We first

introduce a tighter bound for the complexity of computing AR(P).

Proposition 3.47. For any program P, the time complexity of computing

AR(P) is bounded by O(|args(P)|3).
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Proof. Assume that n = |args(P)| is the total number of arguments of P.

First, it is important to observe the connection between the behavior of oper-

ator Ω and the structure of the labeled argument graph GL(P). In particular,

if the applications of the operator Ω change the rank of an argument q[i] from

0 to k, then there is a path from an argument to q[i] in GL(P), where the

number of edges labeled with some positive function symbol minus the num-

ber of edges labeled with some negative function symbol is at least k. Given

a cycle in a labeled argument graph, let us call it affected if the number of

edges labeled with some positive function symbol is greater than the number

of edges labeled with some negative function symbol.

If an argument is not restricted, it is involved in or depends on an affected

cycle. On the other hand, if after an application of Ω the rank assigned to an

argument exceeds n, this argument is not restricted [60]. Recall that we are

assuming that dmax = 1, where dmax is the largest depth of terms occurring

in the heads of rules of P and, therefore, M = n× dmax = n.

Now let us show that after 2n2 + n iterations of Ω all not restricted argu-

ments exceed rank n. Consider an affected cycle and suppose that it contains

k arguments, whereas the number of arguments depending on this cycle, but

not belonging to it is m. Obviously, k + m ≤ n. All arguments involved in

this cycle change their rank by at least one after k iterations of Ω. Thus

their ranks will be greater than n + m after (n + m + 1) ∗ k iterations. The

arguments depending on this cycle, but not belonging to it, need at most

another m iterations to reach the rank greater than n. Thus all unrestricted

arguments exceed the rank n in (n + m + 1) ∗ k + m iterations of Ω. Since

(n + m + 1) ∗ k + m = nk + mk + (k + m) ≤ 2n2 + n, the restricted argu-

ments are those that at step 2n2 + n do not exceed rank n. It follows that

the complexity of computing AR(P) is bounded by O(n3) because we have

to do O(n2) iterations and, for each iteration we have to check the rank of n

arguments. 2

In order to study the complexity of computing Γ -acyclic arguments of

a program we introduce a directed (not labeled) graph obtained from the

propagation graph.

Definition 3.48 (Reduction of ∆(P)). Given a program P, the reduction

of ∆(P) is a directed graph ∆R(P) whose nodes are the arguments of P and

there is an edge (p[i], q[j]) in ∆R(P) iff there is a path π from p[i] to q[j] in

∆(P) such that λ̂(π) ∈ FP . 2
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(a) Propagation graph ∆(P) (b) Reduction ∆R(P) of propagation
graph ∆(P)

Fig. 3.7: Propagation and reduction graphs

The reduction ∆R(P) of the propagation graph ∆(P) from Figure 3.7a is

shown in Figure 3.7b. It is simple to note that for each path in ∆(P) from

node p[i] to node q[j] spelling a string of L(ΓP) there exists a path from p[i]

to q[j] in ∆R(P) and vice versa. As shown in the lemma below, this property

always holds.

Lemma 3.49. Given a program P and arguments p[i], q[j] ∈ args(P), there

exists a path in ∆(P) from p[i] to q[j] spelling a string of L(ΓP) iff there is a

path from p[i] to q[j] in ∆R(P).

Proof. (⇒) Suppose there is a path π from p[i] to q[j] in ∆(P) such that

λ(π) ∈ L(ΓP). Then λ̂(π) is a non-empty string, say f1...fk, where fi ∈ FP
for i ∈ [1..k]. Consequently, π can be seen as a sequence of subpaths π1, ..., πk,

such that λ̂(πi) = fi for i ∈ [1..k]. Thus, from the definition of the reduction

of ∆(P), there is a path from p[i] to q[j] in ∆R(P) whose length is equal to

|λ̂(π)|.
(⇐) Suppose there is a path (n1, n2)...(nk, nk+1) from n1 to nk+1 in ∆R(P).

From the definition of the reduction of ∆(P), for each edge (ni, ni+1) there is

a path, say πi, from ni to ni+1 in ∆(P) such that λ̂(πi) ∈ FP . Consequently,

there is a path from n1 to nk+1 in ∆(P), obtained as a sequence of paths

π1, ..., πk whose string is simply λ(π1)...λ(πk). Since λ̂(πi) ∈ FP implies that

λ(πi) ∈ L(ΓP), for every 1 ≤ i ≤ k, we have that λ(π1)...λ(πk) belongs also

to L(ΓP). 2

Proposition 3.50. Given a program P, the time complexity of computing the

reduction ∆R(P) is bounded by O(|args(P)|3 × |FP |).

Proof. The construction of ∆R(P) can be performed as follows. First, we

compute all the paths π in ∆(P) such that |λ̂(π)| ≤ 1. To do so, we use a

slight variation of the Floyd-Warshall’s transitive closure of ∆(P) which is

defined by the following recursive formula. Assume that each node of ∆(P)
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is numbered from 1 to n = |args(P)|, then we denote with path(i, j, α, k) the

existence of a path π from node i to node j in ∆(P) such that λ̂(π) = α,

|α| ≤ 1 and π may go only through nodes in {1, ..., k} (except for i and j).

The set of atoms path(i, j, α, k), for all values 1 ≤ i, j ≤ n, can be derived

iteratively as follows:

• (base case: k = 0) path(i, j, α, 0) holds if there is an edge (i, j, α)

in ∆(P),

• (inductive case: 0 < k ≤ n) path(i, j, α, k) holds if

– path(i, j, α, k − 1) holds, or

– path(i, k, α1, k−1) and path(k, j, α2, k−1) hold, α = α1α2 and

|α| ≤ 1.

Note that in order to compute all the possible atoms path(i, j, α, k), we

need to first initialize every base atom path(i, j, α, 0) with cost bounded by

O(n2 × |FP |), as this is the upper bound for the number of edges in ∆(P).

Then, for every 1 ≤ k ≤ n, we need to compute all paths path(i, j, α, k), thus

requiring a cost bounded by O(n3×|FP |) operations. The whole procedure will

require O(n3 × |FP |) operations. Since we have computed all possible paths

π in ∆(P) such that |λ̂(π)| ≤ 1, we can obtain all the edges (i, j) of ∆R(P)

(according to Definition 3.48) by simply selecting the atoms path(i, j, α, k)

with α ∈ FP , whose cost is bounded byO(n2×|FP |). Then, the time complexity

of constructing ∆R(P) is O(n3 × |FP |). 2

Theorem 3.51. The complexity of deciding whether a program P is Γ -acyclic

is bounded by O(|args(P)|3 × |FP |).

Proof. Assume that n = |args(P)| is the total number of arguments of P. To

check whether P is Γ -acyclic it is sufficient to first compute the set of restricted

arguments AR(P) which requires time O(n3) from Proposition 3.47. Then,

we need to construct the propagation graph ∆(P), for which the maximum

number of edges is n2 × (|FP | + |FP | + 1), then it can be constructed in

time O(n2 × |FP |) (recall that we are not taking into account the cost of

scanning and storing the program). Moreover, starting from ∆(P), we need

to construct ∆R(P), which requires time O(n3 × |FP |) (cf. Proposition 3.50)

and then, following Lemma 3.49, we need to check whether ∆R(P) is acylic.

Verifying whether ∆R(P) is acyclic can be done by means of a simple traversal

of ∆R(P) and checking if a node is visited more than once. The complexity

of a depth-first traversal of a graph is well-known to be O(|E|) where E is the

set of edges of the graph. Since the maximum number of edges of ∆R(P) is by
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definition n2×|FP |, the traversal of ∆R(P) can be done in time O(n2×|FP |).
Thus, the whole time complexity is still bounded by O(n3 × |FP |). 2

Corollary 3.52. For any program P, the time complexity of computing ΓA(P)

is bounded by O(|args(P)|3 × |FP |).

Proof. Straightforward from the proof of Theorem 3.51. 2

As shown in the previous theorem, the time complexity of checking whether

a program P is Γ -acyclic is bounded by O(|args(P)|3 × |FP |), which is

strictly related to the complexity of checking whether a program is argument-

restricted, which is O(|args(P)|3). In fact, the new proposed criterion per-

forms a more accurate analysis on how terms are propagated from the body

to the head of rules by taking into account the function symbols occurring in

such terms. Moreover, if a logic program P has only one function symbol, the

time complexity of checking whether P is Γ -acyclic is the same as the one

required to check if it is argument-restricted.

3.5.2 Safe programs

The Γ -acyclicity termination criterion presents some limitations, since it is not

able to detect when a rule can be fired only a finite number of times during

the evaluation of the program. The next example shows a simple terminating

program which is not recognized by the Γ -acyclicity termination criterion.

Example 3.53. Consider the following logic program P3.53:

r1 : p(X, X)← b(X).

r2 : p(f(X), g(X))← p(X, X).

As the program is standard, it has a (finite) unique minimal model, which

can can be derived using the immediate consequence operator. Moreover, in-

dependently from the set of facts D, the minimum model of P3.53 is finite and

its computation terminates. 2

Observe that the rules of program P3.53 can be fired at most n times,

where n is the number of ground b-atoms in any given set of facts D. Indeed,

the recursive rule r2 cannot fire itself since the newly generated atom is of the

form p(f(·), g(·)) and does not unify with its body.

As another example consider the recursive rule q(f(X)) ← q(X), t(X) and the
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rule p(f(X), g(Y))← p(X, Y), t(X) where t[1] is a limited argument. The firing

of these rules is limited by the cardinality of the terms occurring in t[1].

Thus, in this section, in order to define a more general termination criterion

we introduce the safety function which, by detecting rules that can be executed

only a finite number of times, derives a larger set of limited arguments of the

program. We start by analyzing how rules may fire each other.

Definition 3.54 (Firing Graph). Let P be a program and let r1 and r2 be

(not necessarily distinct) rules of P. We say that r1 fires r2 iff head(r1) and

an atom in body(r2) unify. The firing graph Σ(P) = (P, E) consists of the set

of nodes denoting the rules of P and the set of edges (ri, rj), with ri, rj ∈ P,

such that ri fires rj. 2

Example 3.55. Consider program P3.53 of Example 3.53. The firing graph of

this program contains two nodes r1 and r2 and an edge from r1 to r2. Rule r1

fires rule r2 as the head atom p(X, X) of r1 unifies with the body atom p(X, X)

of r2. Intutively, this means that the execution of the first rule may cause the

second rule to be fired. In fact, the execution of r1 starting from the set of

facts instance D = {b(a)} produces the new atom p(a, a). The presence of

this atom allows the second rule to be fired, since the body of r2 can be made

true by means of the atom p(a, a), producing the new atom p(f(a), g(a)). It

is worth noting that the second rule cannot fire itself since head(r2) does not

unify with the atom p(X, X) in body(r2). 2

The firing graph shows how rules may fire each other, and, consequently,

the possibility to propagate values from one rule to another. Clearly, the

number of terms occurring in an argument p[i] can be infinite only if p is the

head predicate of a rule that may be fired an infinite number of times. A rule

may be fired an infinite number of times only if it depends on a cycle of the

firing graph. Therefore, a rule not depending on a cycle can only propagate a

finite number of values into its head arguments. Another important aspect is

the structure of rules and the presence of limited arguments in their body and

head atoms. As discussed at the beginning of this section, rules q(f(X)) ←
q(X), t(X) and p(f(X), g(Y))← p(X, Y), t(X), where t[1] is a limited argument,

can be fired only a finite number of times. In fact, as variable X in both rules

can be substituted only by the terms occurring in t[1], which are finite in

number, the number of terms in q[1] and p[1] is finite as well, i.e. q[1] and

p[1] are limited arguments. Since q[1] is limited, the first rule can be applied

only a finite number of times. In the second rule we have predicate p of arity
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two in the head, and we know that p[1] is a limited argument. Furthermore,

note that in the second rule the domains of both head arguments p[1] and

p[2] grow together each time this rule is applied. This behaviour will be soon

formalized by the notion of direct rule. Consequently, the number of terms in

p[2] must be finite as well as the number of terms in p[1] and this rule can be

applied only a finite number of times.

We now introduce the notions of direct rules and limited term, that will

be used to define a function, called safety function, that takes as input a set

of limited arguments and derives a new set of limited arguments in P.

Definition 3.56 (Direct rule). Given a program P and a rule r ∈ P, we

say that r is direct if there exists an atom B in body(r), denoted as drb(r),

such that:

• B is the only atom in body(r) such that pred(B) is mutually recursive with

pred(head(r));

• pred(B) = pred(head(r));

• every other rule r′ ∈ P with pred(head(r′)) = pred(head(r)) has no body

atom B′ such that pred(B′) is mutually recursive with pred(head(r′)). 2

Intuitively, the domains of the head arguments of a direct rule change

together each time this rule is fired.

Definition 3.57 (Limited terms). Given a rule r = q(t1, ..., tm)← body(r) ∈
P and a set A of limited arguments, we say that ti is limited in r (or r limits

ti) w.r.t. A if one of the following conditions holds:

1. every variable X appearing in ti also appears in an argument in body(r)

belonging to A, or

2. r is a direct rule such that:

a) for every atom p(u1, ..., un) ∈ head(r) ∪ {drb(r)},
all terms u1, ..., un are either simple or complex;

b) the set of variables in head(r) and drb(r) coincide,

c) there is an argument q[j] ∈ A. 2

Definition 3.58 (Safety Function). For any program P, let A be a set of

limited arguments of P and let Σ(P) be the firing graph of P. The safety

function Ψ(A) denotes the set of arguments q[i] ∈ args(P) such that for all

rules r = q(t1, ..., tm) ← body(r) ∈ P, either r does not depend on a cycle π

of Σ(P) or ti is limited in r w.r.t. A. 2
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Fig. 3.8: Firing (left) and propagation (right) graphs of program P3.59.

Example 3.59. Consider the following program P3.59:

r1 : p(f(X), g(Y))← p(X, Y), b(X).

r2 : q(f(Y))← p(X, Y), q(Y).

Let A = ΓA(P) = {b[1], p[1]}. The firing and the propagation graphs of this

program are reported in Figure 3.8. The application of the safety function to

the set of limited arguments A gives Ψ(A) = {b[1], p[1], p[2]}. Indeed:

• b[1] ∈ Ψ(A) since b does not appear in the head of any rule; consequently

all the rules with b in the head (i.e. the empty set) trivially satisfy the

conditions of Definition 3.58.

• p[1] ∈ Ψ(A) because the unique rule with p in the head (i.e. r1) satisfies

the first condition of Definition 3.57, that is, r1 limits the term f(X) w.r.t.

A in the head of rule r1 corresponding to argument p[1].

• Since r1 is direct and the second condition of Definition 3.57 is satisfied,

p[2] ∈ Ψ(A) as well. 2

The following proposition shows that the safety function can be used to

derive further limited arguments.

Proposition 3.60. Let P be a program and let A be a set of limited arguments

of P. Then, all arguments in Ψ(A) are also limited.

Proof. Consider an argument q[i] ∈ Ψ(A), then for every rule r = q(t1, ..., tn)←
body(r) either r does not depend on a cycle of Σ(P) or ti is limited in r w.r.t.

A.

Clearly, if r does not depend on a cycle of Σ(P), it can be fired a finite

number of times as it is not ’effectively recursive’ and does not depend on

rules which are effectively recursive.

Moreover, if ti is limited in r w.r.t. A, we have that either:

1) The first condition of Definition 3.57 is satisfied (i.e. every variable X ap-

pearing in ti also appears in an argument in body(r) belonging to A). This
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Fig. 3.9: Firing Graph of program P3.61

means that variables in ti can be replaced by a finite number of values.

2) The second condition of Definition 3.57 is satisfied. Let p(t1, ..., tn) =

head(r), the condition that all terms t1, ..., tn must be simple or complex

guarantees that, if terms in head(r) grow, then they grow all together (condi-

tions 2.a and 2.b). Moreover, if the growth of a term tj is blocked (Condition

2.c), the growth of all terms (including ti) is blocked too.

Therefore, if one of the two condition is satisfied for all rules defining q, the

number of terms in q[i] is finite. 2

Unfortunately, as shown in the following example, the relationship A ⊆
Ψ(A) does not always hold for a generic set of arguments A, even if the

arguments in A are limited.

Example 3.61. Consider the following program P3.61:

r1 : p(f(X), Y)← q(X), r(Y).

r2 : q(X)← p(X, Y).

r3 : t(Y)← r(Y).

r4 : s(Y)← t(Y).

r5 : r(Y)← s(Y).

Its firing graph Σ(P3.61) is shown in Figure 3.9, whereas the set of restricted

arguments is AR(P3.61) = ΓA(P3.61) = {r[1], t[1], s[1], p[2]}. Considering the

set A = {p[2]}, we have that the safety function Ψ({p[2]}) = ∅. Therefore,

the relation A ⊆ Ψ(A) does not hold for A = {p[2]}.
Moreover, regarding the set A′ = ΓA(P3.61) = {r[1], t[1], s[1], p[2]}, we

have Ψ(A′) = {r[1], t[1], s[1], p[2]} = A′, i.e. the relation A′ ⊆ Ψ(A′) holds. 2

The following proposition states that if we consider the set A of Γ -acyclic

arguments of a given program P, the relation A ⊆ Ψ(A) holds.

Proposition 3.62. For any logic program P:

1. ΓA(P) ⊆ Ψ(ΓA(P));
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2. Ψ i(ΓA(P)) ⊆ Ψ i+1(ΓA(P)) for i > 0.

Proof. 1) Suppose that q[k] ∈ ΓA(P). Then q[k] ∈ AR(P) or q[k] does not

depend on a cycle in ∆(P) spelling a string of L(ΓP). In both cases q[k]

can depend only on arguments in ΓA(P). If q[k] does not depend on any

argument, then it does not appear in the head of any rule and, consequently,

q[k] ∈ Ψ(ΓA(P)). Otherwise, the first condition of Definition 3.57 is satisfied

and q[k] ∈ Ψ(ΓA(P)).

2) We prove that Ψ i(ΓA(P)) ⊆ Ψ i+1(ΓA(P)) for i > 0 by induction. We start

by showing that Ψ i(ΓA(P)) ⊆ Ψ i+1(ΓA(P)) for i = 1, i.e. that the relation

Ψ(ΓA(P)) ⊆ Ψ(Ψ(ΓA(P))) holds. In order to show this relation we must show

that for every argument q[k] ∈ P if q[k] ∈ Ψ(ΓA(P)), then q[k] ∈ Ψ(Ψ(ΓA(P)).

Consider q[k] ∈ Ψ(ΓA(P)). Then, q[k] satisfies Definition 3.58 w.r.t. A =

ΓA(P). From comma one of this proof it follows that ΓA(P) ⊆ Ψ(ΓA(P)),

consequently q[k] satisfies Definition 3.58 w.r.t. A = Ψ(ΓA(P)) too and so,

q[k] ∈ Ψ(Ψ(ΓA(P))).

Suppose that Ψk(ΓA(P)) ⊆ Ψk+1(ΓA(P)) for k > 0. In order to show

that Ψk+1(ΓA(P)) ⊆ Ψk+2(ΓA(P)) we must show that for every argu-

ment q[k] ∈ P if q[k] ∈ Ψk+1(ΓA(P)), then q[k] ∈ Ψk+2(ΓA(P)). Consider

q[k] ∈ Ψk+1(ΓA(P)). Then q[k] satisfies Definition 3.58 w.r.t. A = Ψk(ΓA(P)).

Since Ψk(ΓA(P)) ⊆ Ψk+1(ΓA(P)), q[k] satisfies Definition 3.58 w.r.t. A =

Ψk+1(ΓA(P)) too. Consequently, q[k] ∈ Ψk+2(ΓA(P)). 2

Observe that we can prove in a similar way that AR(P) ⊆ Ψ(AR(P)) and

that Ψ i(AR(P)) ⊆ Ψ i+1(AR(P)) for i > 0.

Definition 3.63 (Safe Arguments and Safe Programs). For any pro-

gram P, safe(P) = Ψ∞(ΓA(P)) denotes the set of safe arguments of P. A

program P is said to be safe if all arguments are safe. The class of safe pro-

grams will be denoted by SP. 2

Clearly, for any set of arguments A ⊆ ΓA(P), Ψ i(A) ⊆ Ψ i(ΓA(P)). More-

over, as shown in Proposition 3.62, when the starting set is ΓA(P), the

sequence ΓA(P), Ψ(ΓA(P)), Ψ2(ΓA(P)), ... is monotone and there is a fi-

nite n = O(|args(P)|) such that Ψn(ΓA(P)) = Ψ∞(ΓA(P)). We can also

define the inflactionary version of Ψ as Ψ̂(A) = A ∪ Ψ(A), obtaining that

Ψ̂ i(ΓA(P)) = Ψ i(ΓA(P)), for all natural numbers i. The introduction of the

inflactionary version guarantees that the sequence A, Ψ̂(A), Ψ̂2(A), ... is

monotone for every set A of limited arguments. This would allow us to derive
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a (possibly) larger set of limited arguments starting from any set of limited

arguments.

Example 3.64. Consider again program P3.53 of Example 3.53.

Although AR(P3.53) = ∅, the program P3.53 is safe as Σ(P3.53) is acyclic.

Consider now the program P3.59 of Example 3.59. As already shown in Ex-

ample 3.59, the first application of the safety function to the set of Γ -

acyclic arguments of P3.59 gives Ψ(ΓA(P3.59)) = {b[1], p[1], p[2]}. The ap-

plication of the safety function to the obtained set gives Ψ(Ψ(ΓA(P3.59))) =

{b[1], p[1], p[2], q[1]}. In fact, in the unique rule defining q, term f(Y), corre-

sponding to the argument q[1], is limited in r w.r.t. {b[1], p[1], p[2]} (i.e. the

variable Y appears in body(r) in a term corresponding to argument p[2] and

argument p[2], belonging to the input set, is limited). At this point, all ar-

guments of P3.59 belong to the resulting set. Thus, safe(P3.59) = args(P3.59),

and we have that program P3.59 is safe. 2

We now show results on the expressivity of the class SP of safe programs.

Theorem 3.65. The class SP of safe programs strictly includes the class

ΓA of Γ -acyclic programs and is strictly contained in the class of terminating

programs.

Proof. (ΓA ( SP). From Proposition 3.62 it follows that ΓA ⊆ SP. More-

over, ΓA ( SP as program P3.59 is safe but not Γ -acyclic.

(SP ( Gf ). From Proposition 3.60 it follows that every argument in the safe

program can take values only from a finite domain. Consequently, the set of

all possible derived ground terms is finite and the program is terminating.

Moreover, we have that the program program:

r1 : p(X, X)← b(X).

r2 : q(f(X), g(X))← p(X, X).

r3 : p(X, Y)← q(X, Y).

is terminating, but not safe. 2

As a consequence of Theorem 3.65, every safe program admits a finite

minimum model.

Complexity

We start by introducing a bound on the complexity of constructing the firing

graph.
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Proposition 3.66. For any program P, the firing graph Σ(P) can be con-

structed in time O(n2
r × nb × (ap × af )2), where nr is the number of rules of

P, nb is the maximum number of body atoms in a rule, ap is the maximum

arity of predicate symbols and af is the maximum arity of function symbols.

Proof. To check whether a rule ri fires a rule rj we have to determine if an

atom B in body(rj) unifies with the head-atom A of ri. This can be done in

time O(nb×u), where u is the cost of deciding whether two atoms unify, which

is quadratic in the size of the two atoms [78], that is u = O((ap×af )2) as the

size of atoms is bounded by ap× af (recall that the maximum depth of terms

is 1). In order to construct the firing graph we have to consider all pairs of

rules and for each pair we have to check if the first rule fires the second one.

Therefore, the global complexity is O(n2
r×nb×u) = O(n2

r×nb×(ap×af )2). 2

We recall that given two atoms A and B, the size of a m.g.u. θ for {A,B}
can be, in the worst case, exponential in the size of A and B, but the com-

plexity of deciding whether a unifier for A and B exists is quadratic in the

size of A and B [78].

Proposition 3.67. The complexity of deciding whether a program P is safe

is O((size(P))2 + |args(P)|3 × |FP |).

Proof. The construction of the firing graph Σ(P) can be done in time O(n2
r×

nb × (ap × af )2), where nr is the number of rules of P, nb is the maximum

number of body atoms in a rule, ap is the maximum arity of predicate symbols

and af is the maximum arity of function symbols (cf. Proposition 3.66).

The complexity of computing ΓA(P) is bounded by O(|args(P)|3 × |FP |)
(cf. Theorem 3.51).

From Definition 3.58 and Proposition 3.62 it follows that the sequence

ΓA(P), Ψ(ΓA(P)), Ψ2(ΓA(P)), ... is monotone and converges in a finite num-

ber of steps bounded by the cardinality of the set args(P). The complexity of

determining rules not depending on cycles in the firing graph Σ(P) is bounded

by O(n2
r), as it can be done by means of a depth-first traversal of Σ(P), which

is linear in the number of its edges. Since checking whether the conditions of

Definition 3.57 hold for all arguments in P is in O(size(P)), checking such

conditions for at most |args(P)| steps is O(|args(P)| × size(P)). Thus, the

complexity of checking all the conditions of Definition 3.58 for all steps is

O(n2
r + |args(P)| × size(P)).
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Since, n2
r × nb × (ap × af )2 = O((size(P))2), |args(P)| = O(size(P))

and n2
r = O((size(P))2), the complexity of deciding whether P is safe is

O((size(P))2 + |args(P)|3 × |FP |). 2

3.6 Constraints-based approaches

This section will pinpoint the main limitations of the techniques presented so

far, and will present a radically different approach to the problem of checking

whether a logic program is limited by making use of linear constraints solving

[16, 21]. In particular, the idea is to construct, for a given program P a set of

linear constraints such that if there exists a solution to such set of constraints,

then P is limited. This approach allows to identify many logic programs of

practical use that are not identified as limited by previously presented tech-

niques, like mapping-restriction, Γ -acyclic and safe programs.

3.6.1 Rule-bounded programs

We start by presenting rule-bounded and cycle-bounded programs [17], two

classes of programs which are guaranteed to be limited and for which checking

membership in the class is decidable.

Their definition relies on a novel technique which uses linear constraints

to measure terms and atoms’ sizes and checks if the size of the head of a rule

is always bounded by the size of a mutually recursive body atom, which is not

to be confused with mutually recursive predicate symbols (we will formally

define what “mutually recursive” means in Definition 3.71 below).

Example 3.68. Consider the following program P3.68 implementing the bubble

sort algorithm:

r0 : bub(L, [ ], [ ])← input(L).

r1 : bub([Y|T], [X|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), X ≤ Y.

r2 : bub([X|T], [Y|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), Y < X.

r3 : bub(Cur, [ ], [X|Sol])← bub([X|[ ]], Cur, Sol).

where [·|·] is a shortand for the list contruction function symbol lc(Head, Tail).

The list to be sorted is given by means of a fact of the form input([a1, ..., an]).

The evaluation of this program always terminates for any input list. The or-

dered list Sol can be obtained from the atom bub([ ], [ ], Sol) in the program’s

minimal model. 2
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Although the P3.68 is terminating, none of the termination criteria pre-

sented so far is able to realize it. One problem with them is that when they

analyze how terms are propagated from the body to the head of rules, they

look at arguments individually. For instance, in rule r1 above, the simple fact

that the second argument of bub has a size in the head greater than the one in

the body prevents several techniques from realizing termination of the bottom-

up evaluation of P3.68. More general classes such as mapping-restricted and

bounded programs are able to do a more complex (yet limited) analysis of

how some groups of arguments affect each other. Still, all current termination

criteria are not able to realize that in every rule of P3.68 the overall size of

the terms in the head does not increase w.r.t. the overall size of the terms in

the body. One of the novelties of the technique proposed in this paper is the

capability of doing this kind of analysis, thereby identifying programs (whose

evaluation terminates) that none of the current techniques include.

The technique proposed in this paper easily realizes that the evaluation

of P3.68 always terminates for any input list. In particular, this is done using

linear constraints which measure the size of terms and atoms in order to

check if the rules’ head sizes are bounded by the size of some body atom

when propagation occurs. Thus, this technique can understand that, in every

rule, the overall size of the terms in the body does not increase during their

propagation to the head, as there is only a simple redistribution of terms.

Many practical programs dealing with lists and tree-like structures satisfy

this property—below are two examples. However, this technique is not limited

only to this kind of programs.

Example 3.69. Consider the program P3.69 below, performing a depth-first

traversal of an input tree:

r0 : visit(Tree, [ ], [ ])← input(Tree).

r1 : visit(Left, [Root|Visited], [Right|ToVisit])←
visit(tree(Root, Left, Right), Visited, ToVisit).

r2 : visit(Next, Visited, ToVisit)← visit(null, Visited, [Next|ToVisit]).

The input tree is given with of facts like input(tree(value, left, right))

where tree is a ternary function symbol used to represent tree structures.

The program visits the nodes of the tree and puts them in a list following

a depth-first search. The list L of visited elements can be obtained from the

atom visit(null, L, [ ]) in the program’s minimal model. For instance, if the

input tree is
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input(tree(a, tree(c, null, tree(d, null, null)), tree(b, null, null))).

the program produces the list [b, d, c, a] containing the nodes of the tree in

opposite order w.r.t. the traversal. 2

Also in the case above, even if the program evaluation terminates for every

input tree, none of the previously shown techniques is able to detect it.

Example 3.70. Finally, consider also the following program P3.70 computing

the concatenation of two lists:

r0 : reverse(L1, [ ]) ← input1(L1).

r1 : reverse(L1, [X|L2]) ← reverse([X|L1], L2).
r2 : append(L1, L2) ← reverse([ ], L1), input2(L2).

r3 : append(L1, [X|L2]) ← append([X|L1], L2).

Here input1 and input2 are used to store the lists L1 and L2 to be concate-

nated. The result list L can be retrieved from the atom append([ ], L) in the

minimal model of P3.70. Clearly, the program is terminating. 2

As already done with previous sections, we restrict our attention, w.l.o.g.,

to normal positive programs. Furthermore, we also assume that for any given

program P, no facts occur in P. This assumption is w.l.o.g. as well, since rule-

bounded programs are limited w.r.t. B = pred(P) (see Section 3.1). We also

assume that no rules in a program P share logical variables and we assume

that to each logical variable X occurring in P, there corresponds a (unique)

integer variable x (denoted by the same letter in lower case) which may occur

in linear constraints.

In order to define the class of rule-bounded programs, we will make use

of the firing graph introduced in Section 3.5. As an example, the firing graph

Σ(P3.68) of program P3.68 of Example 3.68 is depicted in Figure 3.10.

We say that a rule r depends on a rule r′ if r can be reached from r′ through

the edges of Σ(P). A strongly connected component (SCC) of a directed graph

G is a maximal set C of nodes of G s.t. every node of C can be reached from

every node of C (through the edges in G). We say that an SCC C is non-trivial

if there exists at least one edge in G between two not necessarily distinct nodes

of C. For instance, the firing graph in Figure 3.10 has two SCCs, C1 = {r0}
and C2 = {r1, r2, r3}, but only C2 is non-trivial. Given a program P and an

SCC C of Σ(P), pred(C) denotes the set of predicate symbols defined by the
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r1 r2 r3

r0

Fig. 3.10: Firing graph of P3.68.

rules in C. We now define when the head atom and a body atom of a rule are

mutually recursive.

Definition 3.71 (Mutually recursive atoms). Let P be a program and

r a rule in P. The head atom A = head(r) and an atom B ∈ body(r) are

mutually recursive if there is an SCC C of Σ(P) s.t.:

1. C contains r, and

2. C contains a rule r′ (possibly equal to r) s.t. head(r′) and B unify. 2

In the previous definition, when r = r′ we assume that r and r′ are two

“copies” that do not share any logical variable. Intuitively, the head atom

A of a rule r and an atom B in the body of r are mutually recursive when

there might be an actual propagation of terms from A to B (through the

application of a sequence of rules). As a very simple example, if we have an

SCC consisting only of the rule p(f(X)) ← p(X), p(g(X)), the first body atom

is mutually recursive with the head, while the second one is not as it does not

unify with the head atom.

Given a rule r, we use rbody(r) to denote the set of atoms in body(r)

which are mutually recursive with head(r). Moreover, we define sbody(r) as

the set consisting of every atom in body(r) that contains all logical variables

appearing in head(r), and define srbody(r) = rbody(r) ∩ sbody(r).

We say that a rule r in a program P is relevant if it is not a fact and

the set of atoms body(r) \ rbody(r) does not contain all logical variables in

head(r). Roughly speaking, a non-relevant rule will be ignored because either

it cannot propagate terms or its head size is bounded by body atoms which

are not mutually recursive with the head. We illustrate the notions introduced

so far in the following example.

Example 3.72. Consider the following program P3.72:
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r1 : s(f(X), Y)︸ ︷︷ ︸
A

← q(X, f(Y))︸ ︷︷ ︸
B

, s(Z, f(Y))︸ ︷︷ ︸
C

.

r2 : q(f(U), V)︸ ︷︷ ︸
D

← s(U, f(V))︸ ︷︷ ︸
E

.

The firing graph consists of the edges 〈r1, r1〉, 〈r1, r2〉, 〈r2, r1〉. Thus, there

is only one SCC C = {r1, r2}, which is non-trivial, and pred(C) = {q, s}.
Atoms A and B (resp. A and C, D and E) are mutually recursive. Moreover,

rbody(r1) = {B,C}, srbody(r1) = {B}, rbody(r2) = srbody(r2) = {E}. Both

r1 and r2 are relevant. 2

We use N to denote the set of natural numbers {1, 2, 3, ...} and N0 to denote

the set of natural numbers including the zero. Moreover, Nk = {(v1, ..., vk) |
vi ∈ N for 1 ≤ i ≤ k} and Nk0 = {(v1, ..., vk) | vi ∈ N0 for 1 ≤ i ≤ k}. Given

a k-vector v = (v1, ..., vk) in Nk0 , we use v[i] to refer to vi, for 1 ≤ i ≤ k.

Given two k-vectors v = (v1, ..., vk) and w = (w1, ..., wk) in Nk0 , we use v · w
to denote the classical scalar product, i.e., v · w =

∑k
i=1 vi · wi.

As mentioned earlier, the basic idea of the proposed technique is to measure

the size of terms and atoms in order to check if the rules’ head sizes are

bounded when propagation occurs. Thus, we introduce the notions of term

and atom size.

Definition 3.73. Let t be a term. The size of t is recursively defined as fol-

lows:

size(t) =


x if t is a logical variable X;

m+
m∑
i=1

size(ti) if t = f(t1, ..., tm).

where x is an integer variable. The size of an atom A = p(t1, ..., pn), denoted

size(A), is the n-vector (size(t1), ..., size(tn)). 2

In the definition above, an integer variable x intuitively represents the

possible sizes that the logical variable X can have during the evaluation. The

size of a term of the form f(t1, ..., tm) is defined by summing up the size of

its terms ti’s plus the arity m of f . Note that from the definition above, the

size of every constant is 0.

Example 3.74. Consider rule r1 of program P3.68 (see Example 3.68). Using

lc to denote the list constructor operator “|”, the rule can be rewritten as

follows:

bub(lc(Y, T), lc(X, Cur), Sol)← bub(lc(X, lc(Y, T)), Cur, Sol), X ≤ Y.
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Let A (resp. B) be the atom in the head (resp. the first atom in the body).

Then,

size(A) = (2 + y + t, 2 + x+ cur, sol)

size(B) = (2 + [x+ (2 + y + t)], cur, sol)

2

We are now ready to define rule-bounded programs.

Definition 3.75 (Rule-bounded programs). Let P be a program, C a non-

trivial SCC of Σ(P), and pred(C) = {p1, ..., pk}. We say that C is rule-

bounded if there exist k vectors αph ∈ Narity(ph), 1 ≤ h ≤ k, such that for

every relevant rule r ∈ C with A = head(r) = pi(t1, ..., tn), there exists an

atom B = pj(u1, ..., um) in srbody(r) s.t. the following inequality is satisfied

αpj · size(B)− αpi · size(A) ≥ 0

for every non-negative value of the integer variables in size(B) and size(A).

We say that P is rule-bounded if every non-trivial SCC of Σ(P) is rule-

bounded. 2

Intuitively, for every relevant rule of a non-trivial SCC of Σ(P), Definition

3.75 checks if the size of the head atom is bounded by the size of a mutually

recursive body atom for all possible sizes the terms can assume.

Example 3.76. Consider again program P3.72 of Example 3.72. Recall that

the only non-trivial SCC of Σ(P3.72) is C = {r1, r2}, and both r1 and r2 are

relevant. To determine if the program is rule-bounded we need to check if C is

rule-bounded. Thus, we need to find αq, αs ∈ N2 such that there is an atom

in srbody(r1) and an atom in srbody(r2) which satisfy the two inequalities

derived from r1 and r2 for all non-negative values of the integer variables

therein. Since both srbody(r1) and srbody(r2) contain only one element, we

have only one choice, namely the one where B is selected for r1 and E is

selected for r2.

Thus, we need to check if there exist αq, αs ∈ N2 s.t. the following linear

constraints are satisfied for all non-negative values of the integer variables

appearing in them:αq · size(B)− αs · size(A) ≥ 0

αs · size(E)− αq · size(D) ≥ 0
⇒

αq · (x, 1 + y)− αs · (1 + x, y) ≥ 0

αs · (u, 1 + v)− αq · (1 + u, v) ≥ 0
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By expanding the scalar products and isolating every integer variable we ob-

tain: (αq[1]− αs[1]) · x+ (αq[2]− αs[2]) · y + (αq[2]− αs[1]) ≥ 0

(αs[1]− αq[1]) · u+ (αs[2]− αq[2]) · v + (αs[2]− αq[1]) ≥ 0

The previous inequalities must hold for all x, y, u, v ∈ N0; it is easy to see that

this is the case iff the following system admits a solution:αq[1]− αs[1] ≥ 0, αq[2]− αs[2] ≥ 0, αq[2]− αs[1] ≥ 0,

αs[1]− αq[1] ≥ 0, αs[2]− αq[2] ≥ 0, αs[2]− αq[1] ≥ 0

Since a solution does exist, e.g. αs[1] = αs[2] = αq[1] = αq[2] = 1 (recall that

every α[i] must be greater than 0), the SCC C is rule-bounded, and so is the

program. 2

The method in the previous example to find vectors αp for all p ∈ pred(C)
can always be applied. That is, we can always isolate the integer variables in

the original inequalities and then derive one inequality for each expression that

multiplies an integer variable plus the one for the constant term, imposing that

all such expressions must be greater than or equal to 0—we precisely state

this property in Lemma 3.99.

It is worth noting that the proposed technique can easily recognize many

terminating practical programs where terms are simply exchanged from the

body to the head of rules (e.g., see Examples 3.68, 3.69, and 3.70).

Example 3.77. Consider program P3.68 of Example 3.68. Recall that the only

non-trivial SCC of Σ(P3.68) is {r1, r2, r3} (see Figure 3.10) and all rules in

it are relevant. Since |srbody(ri)| = 1 for every ri in the SCC, we have only

one set of inequalities, which is the following one after isolating integer vari-

ables(we assume that the empty list is represented by a simple constant):
(αb[1]− αb[2]) · x1 + (2αb[1]− 2αb[2]) ≥ 0

(αb[1]− αb[2]) · y2 + (2αb[1]− 2αb[2]) ≥ 0

(αb[1]− αb[3]) · x3 + (αb[2]− αb[1]) · cur3 + (2αb[1]− 2αb[3]) ≥ 0

where subscript b stands for predicate symbol bub, whereas subscripts asso-

ciated with integer variables are used to refer to the occurrences of logical

variables in different rules (e.g., y2 is the integer variable associated to the
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logical variable Y in rule r2). A possible solution is α
b

= (1, 1, 1) and thus

P3.68 is rule-bounded.

Considering program P3.69 of Example 3.69, we obtain the following con-

straints:(αv[1]− αv[2]) · root1 + (αv[1]− αv[3]) · right1 + (3αv[1]− 2αv[2]− 2αv[3]) ≥ 0

(αv[3]− αv[1]) · next2 + 2αv[3] ≥ 0

where subscript v stands for predicate symbol visit. By setting αv = (2, 1, 2),

we get positive integer values of αv[1], αv[2], αv[3] s.t. the inequalities above

are satisfied for all root1, right1, next2 ∈ N0. Thus, P3.69 is rule-bounded.

The firing graph of program P3.70 of Example 3.70 has two non-trivial

SCCs C1 = {r1} and C2 = {r3}. The constraints for C1 are:{
(αr[1]− αr[2]) · x1 + (2αr[1]− 2αr[2]) ≥ 0

where subscript r stands for predicate symbol reverse. It is easy to see that

by choosing any (positive integer) values of αr[1] and αr[2] such that αr[1] ≥
αr[2], the inequality above holds for all x1 ∈ N0. Likewise, the constraints for

C2 are {
(αa[1]− αa[2]) · x3 + (2αa[1]− 2αa[2]) ≥ 0

where subscript a stands for predicate symbol append. By choosing any (pos-

itive integer) values of αa[1] and αa[2] such that αa[1] ≥ αa[2], the inequality

above holds for all x3 ∈ N0. Thus, P3.70 is rule-bounded. 2

Correctness and expressiveness

In this section, we show that every rule-bounded program is terminating and

provide results on the relative expressiveness of rule-bounded programs and

other criteria.

Note that every program P can be partitioned into an ordered sequence of

sub-programs P1, ...,Pn, called stratification, such that, for every 1 ≤ i ≤ n,

every rule r in Pi depends only on rules belonging to some sub-program Pj
with 1 ≤ j ≤ i. Recall that a rule r depends on a rule r′ if r can be reached

from r′ through the edges of the firing graph. Moreover, there always exists a

stratification where every sub-program Pi is either a non-trivial SCC or a set

of trivial SCCs. Given a set of facts D, it is well known thatMM(P ∪D) can

be defined in terms of the minimal model of the Pi’s following the order of



66 3 Termination of programs with function symbols

the partition as follows: if M0 = D and Mi =MM(Pi ∪Mi−1) for 1 ≤ i ≤ n,

then Mn =MM(P ∪D).

Lemma 3.78. A program P is terminating iff every non-trivial SCC of Σ(P)

is terminating.

Proof. (⇒) Clearly, if there is an SCC which is not terminating, then P is not

terminating.

(⇐) Assume now that P does not terminate and all its non-trivial SCCs

terminates. This means that there is a set of facts D such that the fixpoint of

P∪D is not finite. Since P∪D can be partitioned into (P1, ...,Pn), there must

be a non-trivial (i.e. recursive) SCC Pi such that Pi∪Mi−1 does not terminate.

This contradicts the hypothesis that all non-trivial SCCs terminate. Indeed

if Pi terminates, then for every set of facts D′ including the facts in Mi−1,

the fixpoint of Pi ∪ D′ terminates and, therefore, the fixpoint of Pi ∪Mi−1

terminates as well. 2

We now refine the previous lemma by showing that to see if a program P
is terminating it is not necessary to analyze every non-trivial SCC entirely,

but we can focus on its relevant rules. Henceforth, for every set of rules C, we

use Rel(C) to denote the set of relevant rules of C.

Lemma 3.79. Let P be a program and let C be an SCC of Σ(P). Then, C is

terminating iff Rel(C) is terminating.

Proof. It follows from the fact that we can derive only a finite number of

ground atoms using the rules in ground(C) \ ground(Rel(C)) starting from

a finite set of facts—recall that, by definition, every non-relevant rule has a

set of atoms in the body that are not mutually recursive with the head and

contain all variables in the head. 2

To show the correctness of our approach, we first show that every rule-

bounded program can be rewritten into an “equivalent” program belonging

to a simpler class of programs, called unary-size-restricted. Then, we prove

that unary-size-restricted programs are terminating and this entails that rule-

bounded programs are terminating as well.

Definition 3.80 (Program expansion). Let P be a program and let ω =

{ωp1 , ..., ωpn} be a set of vectors such that ωpi ∈ Narity(pi) and pi ∈ pred(P)

for 1 ≤ i ≤ n. For any atom A = p(t1, ..., tm) occurring in P, we define

ex(A,ω) = A, if p 6∈ pred(P), otherwise ex(A,ω) = p(t1, ..., tm), where each
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tj is the sequence tj , ..., tj of length ωp[j]. Finally, Pω denotes the program

derived from P by replacing every atom A with ex(A,ω). 2

Intuitively, the expansion of a program is obtained from the original pro-

gram by increasing the arity of each predicate symbol according to ω. Below

is an example.

Example 3.81. Consider program P3.72 of Example 3.72 and the set of vectors

ω = {ωs, ωq} where ωs = (2, 3) and ωq = (2, 1). The program ex(P3.72, ω) is

as follows:

r1 : s(f(X), f(X), Y, Y, Y)← q(X, X, f(Y)), s(Z, Z, f(Y), f(Y), f(Y)).

r2 : q(f(U), f(U), V) ← s(U, U, f(V), f(V), f(V)).

2

We now show that for every program P and every set of vectors ω, P is

terminating iff ex(P, ω) is terminating. In the following, for every program P,

we define ω(P) = { {ωp1 , ..., ωpn} | pi ∈ pred(P) ∧ ωpi ∈ Narity(pi)}.

Lemma 3.82. For every program P and every ω ∈ ω(P), P is terminating

iff ex(P, ω) is terminating.

Proof. For every atom Aω occurring in ex(P, ω) let A be the corresponding

atom in P. The claim follows from the observation that whenever there is a

instance D such that T∞P∪D(∅) is infinite, it is always possible to construct

the instance ex(D,ω) which guarantees that T∞ex(P,ω)∪ex(D,ω)(∅) is infinite as

well.

Conversely, for every instance Dω of ex(P, ω), if T∞ex(P,ω)∪Dω (∅) is infinite,

then we can always construct the instance D guaranteeing that T∞P∪D(∅) is

infinite as well. 2

We now introduce the class of unary-size-restricted programs and show

that such programs are terminating. To this aim, we define the total size of

an atom A = p(t1, ..., tn) as tsize(A) =
n∑
i=1

size(ti).

Definition 3.83 (Unary-size-restricted program). A program P is said

to be unary-size-restricted if for every rule r ∈ P which is not a fact,

there is an atom B in sbody(r) such that tsize(B) ≥ tsize(head(r)) for

every non-negative value of the integer variables occurring in tsize(B) and

tsize(head(r)). 2
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Theorem 3.84. Every unary-size-restricted program is terminating.

Proof. Let P be a unary-size-restricted program and D a finite set of facts,

we consider only rules in P having a non-empty body. Given an atom A and

a ground instance A′ of A, let θ be the mgu of A and A′. Notice that θ is of

the form {X1/t1, ..., Xn/tn} where the Xi’s are exactly the logical variables

occurring in A and all the tj ’s are ground terms. It can be easily verified that

tsize(A′) can be obtained from tsize(A) by replacing every integer variable

xi in tsize(A) with size(ti).

We now show that for every ground rule r′ ∈ ground(P) there is an atom

B′ ∈ body(r′) such that tsize(B′) ≥ tsize(head(r′)). Consider a rule r in P
of the form A ← B1, ..., Bk and a ground rule r′ ∈ ground(r) of the form

A′ ← B′1, ..., B
′
k. Since P is unary-size-restricted, there exists an atom Bj in

sbody(r) such that tsize(Bj) ≥ tsize(A) for every non-negative value of the

integer variables occurring in the inequality. Notice every logical variable in A

appears also in Bj by definition of sbody. Let {X1/t1, ..., Xn/tn} be the mgu

of Bj and B′j . As tsize(Bj) ≥ tsize(A) holds for all non-negative value of its

integer variables, it also holds when every integer variable xi is replaced with

size(ti), for 1 ≤ i ≤ n. Thus, tsize(B′j) ≥ tsize(A′).
Let us denote T i

P∪D(∅) as Mi for every i ≥ 1 and let tsizemax =

max{tsize(B) | B ← is a fact in P ∪ D}. We show that for every i ≥ 1

and every ground atom A in Mi the following holds tsizemax ≥ tsize(A). The

proof is by induction on i.

• Base case (i=1). It follows from the fact that M1={B | B← is a fact in P ∪
D}.
• Inductive step (i→ i+ 1). Let r′ be a ground rule in ground(P) such that

body(r′) ⊆Mi. Then, as shown above, there is an atom B in body(r′) such that

tsize(B) ≥ tsize(head(r′)). By the induction hypothesis, tsizemax ≥ tsize(B)

and thus tsizemax ≥ tsize(head(r′)).

Thus, for every i ≥ 1 and every ground atom A in Mi, we have that

tsize(A) is bounded by tsizemax. Since programs are range-restricted, atoms

in ∪i≥1Mi are built from constants and function symbols appearing in P ∪D,

which are finitely many. These observations and the definition of tsize imply

that we can have only finitely many ground atoms in ∪i≥1Mi. Hence, P is

terminating. 2

We are now ready to show the correctness of the rule-bounded technique.

Theorem 3.85. Every rule-bounded program is terminating.
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Proof. Let P be a rule-bounded program and C a non-trivial SCC of Σ(P).

Since P is rule-bounded, then there exists ω ∈ ω(C) which satisfies the condi-

tion of Definition 3.75, that is, C is rule-bounded. This implies that Rel(C)ω

is unary-size-restricted. Thus, Rel(C)ω is terminating by Theorem 3.121.

Lemma 3.118 implies that Rel(C) is terminating and Lemma 3.79 in turn

implies that C is terminating. Finally, by Lemma 3.78, we can conclude that

P is terminating. 2

The class of rule-bounded programs is incomparable with different termi-

nation criteria in the literature, including the most general ones.

Theorem 3.86. Rule-bounded programs are incomparable with argument-re-

stricted, mapping-restricted, and bounded programs.

Proof. Recall that both bounded and mapping-restricted programs include

argument-restricted programs. To prove the claim we show that (i) there is a

program which is rule-bounded but is neither mapping-restricted nor bounded,

and (ii) there is a program which is argument-restricted but not rule-bounded.

(i) As already shown, program P3.68 of Example 3.68 is rule-bounded; how-

ever, it can be easily verified that P3.68 is neither mapping-restricted nor

bounded. (ii) Consider the program consisting of the rules p(f(X))← q(X) and

q(Y)← p(f(Y)). This program is argument-restricted (and thus also mapping-

restricted and bounded) but is not rule-bounded. 2

Regarding the termination criteria mentioned in Theorem 3.86, we recall

that mapping restriction (MR) and bounded programs (BP ) are incompa-

rable and both extend argument restriction (AR). Concerning the computa-

tional complexity, while AR is polynomial time, both MR and BP are expo-

nential. As a remark, it is interesting to note that the above result highlights

the fact that our technique analyzes logic programs from a radically different

point of view w.r.t. previously defined approaches, which analyze how complex

terms are propagated among arguments.

3.6.2 Cycle-bounded Programs

As saw in the previous section, to determine if a program is rule-bounded we

check through linear constraints if the size of the head atom is bounded by

the size of a body atom for every relevant rule in a non-trivial SCC of the

firing graph (cf. Definition 3.75). Looking at each rule individually has its

limitations, as shown by the following example.
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Example 3.87. Consider the following simple program P3.87:

r1 : p(X, Y) ← q(f(X), Y).

r2 : q(W, f(Z))← p(W, Z).

It is easy to see that the program above is terminating, but it is not rule-

bounded. The linear inequalities for the program are (cf. Definition 3.75):(αq[1]− αp[1]) · x+ (αq[2]− αp[2]) · y + αq[1] ≥ 0

(αp[1]− αq[1]) · w + (αp[2]− αq[2]) · z − αq[2] ≥ 0

It can be easily verified that there are no positive integer values for αp[1], αp[2],

αq[1], αq[2] such that the inequalities hold for all x, y, w, z ∈ N0. The reason is

the presence of the expression −αq[2] in the second inequality. Intuitively, this

is because the size of the head atom increases w.r.t. the size of the body atom

in r2. However, notice that the cycle involving r1 and r2 does not increase the

overall size of propagated terms. This suggests we can check if an entire cycle

(rather than each individual rule) propagates terms of bounded size. 2

To deal with programs like the one shown in the previous example, we

introduce the class of cycle-bounded programs, which is able to perform an

analysis of how terms propagate through a group of rules, rather than looking

at rules individually as done by the rule-bounded criterion.

Given a program P, a cyclic path π of Σ(P) is a sequence of edges

〈r1, r2〉, 〈r2, r3〉, ..., 〈rn, r1〉. Moreover a cyclic path π is basic if every edge

π does not occur more than once. We say that π is relevant if every ri is

relevant, for 1 ≤ i ≤ n.

In the following, we first present the cycle-bounded criterion for linear

programs and then show how it can be applied to non-linear ones.

Dealing with linear programs. A program P is linear if every rule in

P is linear. A rule r is linear if |rbody(r)| ≤ 1. Notice that rbody(r) contains

exactly one atom B for every linear rule r in a non-trivial SCC of the firing

graph; thus, with a slight abuse of notation, we use rbody(r) to refer to B.

Definition 3.88 (Cycle constraints). Let P be a linear program and let

π = 〈r1, r2〉, ..., 〈rn, r1〉 be a basic cyclic path of Σ(P). For every mgu θi of

head(ri) and rbody(ri+1) (1 ≤ i < n)2, we define the set of (linear) equalities

eq(θi) = {x = size(t) | X/t ∈ θi}. Then, we define eq(π) =
⋃

1≤i<n
eq(θi). 2

2 Note that such θi’s always exist by definition of firing graph.
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Example 3.89. Consider the program P3.87 and the two basic cyclic paths π1 =

〈r1, r2〉 〈r2, r1〉 and π2 = 〈r2, r1〉 〈r1, r2〉 of Σ(P3.87). The mgu of head(r1) and

rbody(r2) is θ = {X/W, Y/Z} and thus eq(π1) = {x = w, y = z}. Furthermore,

the mgu of head(r2) and rbody(r1) is θ = {W/f(X), Y/f(Z)} and thus eq(π2) =

{w = 1 + x, y = 1 + z}. 2

Definition 3.90 (Linear cycle-bounded programs). Let P be a linear

program, π = 〈r1, r2〉 ... 〈rn, r1〉 be a basic cyclic path of Σ(P) and p be the

predicate defined by rn. We say that π is cycle-bounded if eq(π) is satisfiable

for some non-negative value of its integer variables and there exists a vector

αp ∈ Narity(p) such that the constraint

αp · size(rbody(r1))− αp · size(head(rn)) ≥ 0

is satisfied for every non-negative value of its integer variables that satisfy

eq(π). We say that P is cycle-bounded if every relevant basic cyclic path of

Σ(P) is cycle-bounded. 2

In the definition above, we assume that distinct basic cyclic paths do not

share any logical variable.

Example 3.91. Consider again program P3.87 of Example 3.87. The program

is clearly linear and Σ(P3.87) has only two relevant basic cyclic paths π1 =

〈r1, r2〉〈r2, r1〉 and π2 = 〈r2, r1〉〈r1, r2〉. To check if P3.87 is cycle-bounded, we

need to check if eq(π1) = {x1 = w1, y1 = z1} and eq(π2) = {w2 = 1+x2, y2 =

1 + z2} admit a solution and if there exist αp, αq ∈ N2 s.t. the constraints:

αq · (x1 + 1, y1) − αq · (w1, z1 + 1) ≥ 0,

αp · (w2, z2) − αp · (x2, y2) ≥ 0

are satisfied for all x1, y1, w1, z1 ∈ N0 and all x2, y2, w2, z2 ∈ N0 that satisfy

eq(π1) and eq(π2).

By applying the equality conditions eq(π1) and eq(π2) to the above con-

straints we get the below inequalities for the basic cyclic paths π1 and π2:

(αq[1], αq[2]) · (x1 + 1, z1) − (αq[1], αq[2])) · (x1, z1 + 1) ≥ 0,

(αp[1], αp[2])) · (x2 + 1, z2) − (αp[1], αp[2])) · (x2, z2 + 1) ≥ 0

It is easy to see that the first constraint (resp. the second) is satisfied

for every vector αp ∈ N2 (resp. αq ∈ N2) such that αp[1] ≥ αp[2] (resp.

αq[1] ≥ αq[2]). Thus, P3.87 is cycle-bounded. 2
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To prove the correctness of our approach, we introduce a simpler class of

terminating programs, as we did in the case of rule-bounded programs.

Definition 3.92 (Linear cycle-size-bounded programs). Let P be a lin-

ear program. We say that P is cycle-size-bounded if for every relevant basic

cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of Σ(P), eq(π) is satisfiable for some non-

negative value of its integer variables and the constraint

tsize(rbody(r1))− tsize(head(rn)) ≥ 0

is satisfied for every non-negative value of its integer variables that satisfy

eq(π). 2

Theorem 3.93. Every linear cycle-size-bounded program is terminating.

Proof. Let P be a cycle-size-bounded program and D a finite set of facts.

Consider a relevant basic cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of Σ(P). Let

r′1, ..., r
′
n be ground rules s.t. r′i ∈ ground(ri) for 1 ≤ i ≤ n and head(r′i) =

rbody(r′i+1) for 1 ≤ i < n. For 1 ≤ i ≤ n, let θhi be the mgu of head(ri) and

head(r′i), and θbi the mgu of rbody(ri) and rbody(r′i). Then,

• tsize(head(r′i)) can be obtained from tsize(head(ri)) by replacing every

integer variable x in tsize(head(ri)) with size(t) provided that X/t ∈ θhi , for

1 ≤ i ≤ n;

• tsize(rbody(r′i)) can be obtained from tsize(rbody(ri)) by replacing every

integer variable x in tsize(rbody(ri)) with size(t) provided that X/t ∈ θbi , for

1 ≤ i ≤ n;

• if we replace every integer variable x in eq(π) with size(t) iff X/t belongs

to ∪ni=1(θhi ∪ θbi ), then eq(π) is satisfied.

The items above entail that tsize(rbody(r′1))− tsize(head(r′n)) ≥ 0. This

means that we cannot derive atoms of increasing size through the cyclic ap-

plication of rules and thus P ∪D is terminating. 2

Theorem 3.94 (Soundness). Every linear cycle-bounded program is termi-

nating.

Proof. The proof is similar to the one presented for rule-bounded programs.

Given a linear cycle-bounded program P, we are going to construct an

equivalent program (like ex(P, ω)) to P as follows: for every relevant ba-

sic cyclic path π = 〈r1, r2〉 ... 〈rn, r1〉 of Σ(P), let αp be the vector such

that αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0. Then, remove rules
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r1 and rn from P and insert the rules head(r1) ← ex(rbody(r1), αp) and

ex(head(rn), αp) ← rbody(rn) respectively. Finally, in order to preserve

the firing of rules in the obtained program, for every pair of basic cyclic

paths π1 = 〈r1, r2〉 ... 〈rn, r1〉, π2 = 〈s1, s2〉 ... 〈sm, s1〉, where p is the pred-

icate defined by rn and sn with arity k, add to P a rule of the form

ex(A,αp) ← ex(A, βp), where A is the atom p(X1, ..., Xk) and αp, βp are

the vectors such that αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0 and

βp ·size(rbody(s1))−βp ·size(head(sm)) ≥ 0 respectively. It is not difficult to

show that the obtained program is terminating iff P is terminating. Moreover,

since P is cycle-bounded the new program is consequently cycle-size-bounded.

From Theorem 3.93, we get that the new program is terminating and so it is

P. 2

Dealing with non-linear programs. The application of the cycle-

bounded criterion to arbitrary programs consists in applying the technique

to a set of linear programs derived from the original one. Given a rule r, the

set of linear versions of r is defined as the set of rules `(r) = {head(r) ←
B | B ∈ rbody(r)}. Given a program P = {r1, ..., rn}, the set of linear ver-

sions of P is defined as the set of linear programs `(P) = {{r′1, ..., r′n} | r′i ∈
`(ri) for 1 ≤ i ≤ n}.

Definition 3.95 (Cycle-bounded programs). A (possibly non-linear) pro-

gram P is cycle-bounded if every (linear) program in `(P) is cycle-bounded. 2

Theorem 3.96. Every cycle-bounded program is terminating.

Proof. Notice that every linear version P ′ ∈ `(P) of P is such that for every

set of facts D,MM(D ∪P) ⊆MM(D ∪P ′). Thus, if every linear version of

P is cycle-bounded then for every set of facts D, MM(D ∪ P) is finite. 2

Theorem 3.97 (Expressivity). Cycle-bounded programs are incomparable

with rule-bounded, argument-restricted, mapping-restricted and bounded pro-

grams.

Proof. As shown in Example 3.87, program P3.87 is cycle-bounded, but

it can be easily verified that it is neither mapping-restricted (and thus

not argument-restricted) nor rule-bounded. Moreover, the one rule program

{p(X, Y, f(Z, W))← p(f(Z, Y), X, W).} is cycle-bounded but it is not bounded.

Conversely, the program {p(f(X))← p(f(f(X))), p(X).} is rule-bounded,

argument-restricted (and thus mapping-restricted) and bounded but not

cycle-bounded. 2
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3.6.3 Complexity

In this section, we provide upper bounds for the time complexity of checking

whether a program is rule-bounded or cycle-bounded.

Lemma 3.98. Given a program P, constructing Σ(P) is in PTIME.

Proof. The construction of Σ(P) requires checking, for every atom A in the

head of a rule and every atom B in the body of a rule, if A and B unify. Since

we need to check |P| ×
∑
r∈P |body(r)| times if two atoms unify and checking

whether two atoms A and B unify can be done in quadratic time w.r.t. ||A||
and ||B|| [78], then the construction of Σ(P) is in PTIME . 2

It is worth noting that the number of SCCs is bounded by O(|P|) and

that after having built Σ(P), the cost of checking whether a SSC is trivial

or nontrivial is constant, whereas the cost of checking whether a rule is rele-

vant is bounded by O(||P||). Inequalities associated with basic cycles can be

rewritten by grouping terms with respect to integer coefficients (also called

α-coefficients) or with respect to integer variables. Therefore, in the following

we assume that inequalities grouped with respect to integer variables are of

the form γ1 · x1,+ · · · + γn · xn + γ0 ≥ 0, where each γi, for 0 ≤ i ≤ n, is

an arithmetic expression built by using α-coefficients and natural numbers,

whereas inequalities grouped with respect to integer coefficients are of the

form α1 · w1,+ · · · + αm · wm ≥ 0, where each wj , for 1 ≤ i ≤ m, is an

arithmetic expression built by using integer variables and natural numbers.

Obviously, each γi can be considered an integer coefficient, whereas each wj

can be considered an integer variable.

Lemma 3.99. Consider a linear inequality of the form

γ1 · x1 + ... + γn · xn + γ0 ≥ 0

where the γi’s are integer coefficients and the xj’s are integer variables. The

inequality is satisfied for every non-negative value of the xj’s iff γi ≥ 0 for

every 0 ≤ i ≤ n.

Proof. (⇐) Straightforward. (⇒) By contradiction, assume that the inequality

is satisfied for every non-negative value of the integer variables occurring in it,

but there exists 0 ≤ i ≤ n such that γi < 0. If 1 ≤ i ≤ n, then the inequality

is not satisfied when xi = babs(γn+1/γi)c + 1 and xj = 0 for every j 6= i. If

i = 0, then the inequality is not satisfied when xj = 0 for every 1 ≤ j ≤ n. 2
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Theorem 3.100. Checking whether a program P is rule-bounded is in NP.

Proof. In order to check whether P is rule-bounded we need to: 1) construct

the firing graph Σ(P) of P, 2) compute the SCCs of Σ(P), and 3) check if

every non-trivial SCC is rule-bounded.

1) The construction of the firing graph is in PTIME by Lemma 3.98.

2) It is well known that computing the SCCs of a directed graph can be done

in linear time w.r.t. the number of nodes and edges. Since the number of

nodes of Σ(P) is |P| and the maximum number of edges of Σ(P) is |P|2, then

computing all the SCCs is clearly in PTIME .

3) Let C be a non-trivial SCC of Σ(P), n = O(|P|) the number of relevant

rules in C, v the maximum number of distinct variables occurring in the head

atoms of the relevant rules in C, and a the maximum arity of the predicate

symbols in pred(C). Since it is always possible to rewrite the constraints as

in Definition 3.75 in the form presented by Lemma 3.99, given a fixed choice

of one atom in srbody(r) for every relevant rule r of C, checking whether C is

rule-bounded according to that choice can be done by solving a set of at most

n× (v+ 1) linear constraints with at most 2× a non-negative coefficients per

constraint—clearly, the size of the set of constraints is bounded by O(||P||)
and if the set of constraints admit a solution, then there is a solution where

the size of the α-coefficients is polynomial in the size of ||P|| (bounded by

O(v × n × k), where k is the maximum constant appearing in the set of

inequalities). As checking if such a set of linear constraints admits a solution

can be done in non-deterministic polynomial time [70], it follows from the

above discussion that this can be checked in polynomial time.

Hence, checking whether P is rule-bounded is in NP . 2

We discuss now the complexity of checking whether a program is cycle-

bounded. To this aim, we first introduce a technical lemma similar to Lemma

3.99.

Lemma 3.101. Consider a linear inequality of the form

α1 · w1 + ... + αn · wn < 0 (3.2)

where the wi’s are integer variables and the αj’s positive integer coefficients.

The inequality is satisfied iff wi ≤ 0 for every 1 ≤ i ≤ n and wj < 0 for some

1 ≤ j ≤ n.
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Proof. (⇐) It follows straightforwardly from the fact that each αj > 0 for

every j ∈ [1, n].

(⇒) By contradiction, assume that (3.2) is satisfied for every αj > 0, where

j ∈ [1, n], but either there is i ∈ [1, n] such that wi > 0 or wi ≤ 0 for every

i ∈ [1, n] but none of such inequalities is strict. If there is i ∈ [1, n], (i = 1,

for example) such that w1 > 0, then, since αj > 0 for each j ∈ [1, n], any

assignment of α1, ..., αn > 0 such that α1 > |α2 · w2 + ... + αn · wn| will not

satisfy (3.2). In the case whether no wi ≤ 0 is strict, then wi = 0 for every

i ∈ [1, n] and thus α1 · w1 + ... + αn · wn will be zero, which does not satisfy

(3.2). 2

The next result says that checking if a program P is cycle-bounded is

in coNP . We recall that a given a set of linear constraints depending on

some integer variables is satisfiable if there exist non-negative integer values

of its integer variables that satisfy the constraints. A solution of such linear

constraints is any assignment for their integer variables to some non-negative

integer values satisfying the constraints.

Theorem 3.102. Checking whether a program P is cycle-bounded is in coNP.

Proof. In order to prove the claim, we focus on the complement of our prob-

lem. By definition, a program P is not cycle-bounded if there exists a lin-

ear version P ′ of P which is not cycle-bounded, which means that a rel-

evant basic cyclic path π = 〈r1, r2〉...〈rn, r1〉 of Σ(P ′) is such that either

eq(π) is not satisfiable or there is a solution of eq(π) for which the in-

equality αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0 is false, for every

αp ∈ Narity(p). Checking the statement above can be carried out by the fol-

lowing non-deterministic procedure.

Guess a linear version P ′ of P and a basic cyclic path π of Σ(P ′) and check

If π is relevant. if it is not, then reject (i.e., the program is cycle-bounded).

Then, check if eq(π) is satisfiable, if it is not then accept (i.e., the program is

not cycle-bounded). Now, it remains to check whether there is a solution of

eq(π) such that αp · size(rbody(r1)) − αp · size(head(rn)) ≥ 0 is false for all

αp ∈ Narity(p). To accomplish the aforementioned task, we can check wheher

αp ·size(rbody(r1))−αp ·size(head(rn)) < 0 is true. Moreover, isolating every

term αp[i] (1 ≤ i ≤ arity(p)) in the inequality, we get an expression of the

form αp[1] ·w1 + ... + αp[arity(p)] ·warity(p) < 0, where each wi depends only

on variables occurring in eq(π). Since from Lemma 3.101, this is equivalent
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to check whether wi ≤ 0 for i ∈ [1, n] and there is j ∈ [1, n] such that wj < 0,

checking whether there is a solution of eq(π) such that αp · size(rbody(r1))−
αp · size(head(rn)) ≥ 0 is false for all αp ∈ Narity(p) is equivalent to guessing

a j ∈ [1, n] and check that the set of linear constraints eq(π) ∪ {w1 ≤ 0} ∪
· · · ∪ {wj < 0} ∪ · · · ∪ {wn ≤ 0} is satisfiable. The input program is not

cycle-bounded iff the previous set of linear constraints is satisfiable.

To show the desired upper bound, note that guessing a linear version

P ′ of P and a basic cyclic path of Σ(P ′) can be done in non-deterministic

polynomial time, since |P ′| = |P| and the maximum length of a basic cyclic

path coincides with the number of edges of Σ(P ′). Moreover, as previously

stated, constructing the firing graph is feasible in deterministic polynomial

time. Furthermore, the construction of eq(π) can be carried on in polynomial

time too, by using a polynomially sized representation of the mgu’s of the

rules occurring in π [78]. Finally, as shown in [70], checking whether the set

of linear constraints eq(π) ∪ {w1 ≤ 0} ∪ · · · ∪ {wj < 0} ∪ · · · ∪ {wn ≤ 0} is

satisfiable is in NP . 2

3.6.4 Extending rule boundedness: Size-restriction

In this section we will point out the limitations of the rule-bounded technique

by means of examples and then introduce a refined version of the approach,

giving rise to the class of size-restricted programs [21], which is a wider class of

practical logic programs. Also in this case, we restrict our attention to normal

positive logic programs.

Example 3.103. Consider the following program P4.51:

p(f(X, X), Y, Z)← p(X, g(Z), g(Y)).

The program evaluation always terminates whatever finite set of facts is added

to the program—however, this program is neither rule-bounded nor cycle-

bounded. 2

The reason why the rule-bounded (or cycle-bounded) criterion is not able

to identify the program above as terminating is because of the fact that it an-

alyzes atoms in a whole, thus not understanding that the growth of the term

in p[1] is bounded by the shrinking of terms in p[2], p[3]. For the opposite rea-

son, previous techniques which analyze programs only at the argument level,

cannot understand the relation between p[1] and the arguments p[2], p[3].
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To provide a practical example, below we report a general program which

recognizes strings of the language corresponding to an arbitrary LR(1) gram-

mar.

Example 3.104. Consider the following program P3.104:

par(T, [S1|[Sym|[St|L]]]) ← par([Sym|T], [St|L]),

act(St, Sym, shift(S1)).

red([Sym|T], [St|L], A, B) ← par([Sym|T], [St|L]),

act(St, Sym, reduce(A, B)).

red(I, L, A, T) ← red(I, [S|[X|L]], A, [Y|T]).

par(I, [S1|[A|[St|L]]]) ← red(I, [St|L], A, []),

act(St, A, goto(S1)).

where we use the classical syntax [H|T] for a list. LR(1) grammars can be

encoded in a standard form using an action table defined by facts of the form

act(〈state〉, 〈symbol〉, 〈operation〉).
Specifically, given the current parsing state 〈state〉 and a symbol 〈symbol〉

to be parsed, 〈operation〉 describes one of the following four parsing oper-

ations: shift(〈newstate〉), i.e., the next token is read from the input and

pushed to the parsing stack along with the new parsing state 〈newstate〉;
reduce(A, B), i.e., there is a production rule A → B in the grammar and the

top of the parsing stack contains B (according to 〈state〉), which must be

replaced with A; goto(〈newstate〉), i.e., once the reduce operation is com-

plete, the parsing state changes accordingly; accept, i.e., the input string is

accepted. The computation starts by providing as input the action table and a

fact of the form par([a1, ..., an, $], [s0]), where [a1, ..., an, $] is the input string,

followed by the “end of string symbol” $, and [s0] is the parsing stack contain-

ing the initial state s0. The string is accepted iff the program model contains

two atoms of the form par([$], [s|L]) and act(s, $, accept). 2

Once again, the program above terminates for every finite set of facts.

While none of the previously presented approaches is able to realize it, the

new technique detects the program as terminating.

To overcome the limitations presented above, we will adopt an hybrid

approach where arguments can be grouped in an arbitrary way, in order to

find possible relations between them. At the same time, this will allow us

to drop the all-or-nothing approach of rule-bounded and cycle-bounded pro-

grams (either we can say that the program is terminating or we cannot say
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anything), and identify arguments that are “limited” even when the program

is not entirely recognized as terminating. Furthermore, as we will see next,

the technique will also be able to leverage external information about limited

arguments.

We start by generalizing the notion of relevant rule, seen in Section 3.6.1.

Given a program P and a set A of limited arguments of P, we say that a

rule r ∈ P is A-relevant if head(r) contains at least one variable which does

not appear in body(r) \ rbody(r) and does not appear in a term ti of a body

atom p(t1, ..., tn) such that p[i] ∈ A. Rules that are not A-relevant will not be

considered in the analysis of an SCC (Definition 3.107) because they cannot

infinitely propagate terms (when the SCC is considered in isolation), as all

head variables appear in either a body atom which is not mutually recursive

with the head or in correspondence of a limited argument. The following

example illustrates the aforementioned notions.

Example 3.105. Consider the following program P3.105:

r1 : p(f(X), Y)︸ ︷︷ ︸
A

← p(X, f(Y))︸ ︷︷ ︸
B

, b(X, Z)︸ ︷︷ ︸
C

.

r2 : p(X, g(Y))︸ ︷︷ ︸
D

← p(f(X), Y)︸ ︷︷ ︸
E

.

Given the set of limited arguments A = {p[2]}, rule r2 is A-relevant, since

variable X occurring in D appears only in the mutually recursive body atom

E inside argument p[1], which is not in A. Conversely, r1 is not A-relevant,

since variables X, Y appearing in A occur in the body respectively in the non-

mutually recursive atom C and inside p[2] ∈ A of atom B. 2

As mentioned before, one of the features of this technique is the capability

of leveraging information about arguments that are known to be limited.

In order to enable the technique to exploit this kind of information, several

notions introduced in the following are defined w.r.t. a set A of arguments,

to be read as the set of arguments that are known to be limited when our

criterion is applied to a given program.

Definition 3.106 (Argument/predicate domain). Given a program P
and a set of arguments A, the domain of an argument p[i] ∈ args(P) w.r.t. A,

denoted DA(p[i]), is Z if p[i] ∈ A, and N otherwise. The domain of a predicate

symbol p of arity n is DA(p) = DA(p[1])× · · · × DA(p[n]). 2
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Below we define when an argument is A-size-restricted in an SCC of a

program—as shown in the following, this ensures that the argument is limited

when the SCC is considered in isolation. Then, in Definition 3.112, we will

define how to combine the information coming from all the SCCs in order

to determine whether or not an argument is A-size-restricted in the entire

program.

Definition 3.107 (Size-restricted arguments in an SCC). Consider a

program P and a set A of limited arguments of P. Let C be an SCC of P with

pred(C) = {p1, ..., pn}. We say that an argument pi[j] of C is A-size-restricted

in C iff

1. for every rule r ∈ C such that head(r) = pi(t1, ..., tm) the following con-

dition holds: for every variable X occurring in tj, there exists a term uk

of a body atom q(u1, ..., um′) s.t. X occurs in uk and q[k] ∈ A; or

2. there exist n vectors αh ∈ DA(ph), 1 ≤ h ≤ n, such that for every

A-relevant rule r ∈ C there exists an atom B in body(r) such that if

pr(head(r)) = pk and pr(B) = pl, then the following conditions hold:

a) the constraint

αl · size(B) ≥ αk · size(head(r))

is satisfied for every non-negative value of the integer variables in it;

and

b) if pk = pi then either αi[j] 6= 0 or the constraint

αl · size(B) > αi · size(head(r))

is satisfied for every non-negative value of the integer variables in it. 2

Condition 1 of the definition above simply checks if pi[j] isA-size-restricted

because for every rule of C having pi in the head, all variables appearing in

correspondence of pi[j] appear in the body in correspondence of a limited

argument.

As for Condition 2, roughly speaking, Definition 3.107 says that an argu-

ment pi[j] is A-size-restricted in an SCC if, for every (relevant) rule, the size

of part of the head is always bounded by the size of part of a body atom,

to within a constant factor. When αi[j] = 0, a stricter inequality must be

satisfied for the rules having pi in the head. When other coefficients are 0,

we are considering only parts of atoms in the analysis—e.g., assuming that

αk[1] = 0, this means that the first term in every pk-atom is ignored in the
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analysis. Notice that only the coefficients associated with limited arguments

can assume arbitrary values in Z. We notice that while the rule-bounded cri-

terion allows positive coefficients only, here we allow coefficients to be zero

and take negative values (this last case applies to limited arguments only).

Example 3.108. Consider program P4.51 of Example 4.51, reported below:

p(f(X, X), Y, Z)← p(X, g(Z), g(Y)).

Let us consider A = ∅. The program has only one SCC C consisting of the

rule above, which is A-relevant. The vector αp = (0, 1, 1) allows us to say that

all arguments are A-size-restricted in C. In fact, when arguments p[2] and p[3]

are considered, Condition 2(a) of Definition 3.107 holds since

(0, 1, 1) · (x, z + 1, y + 1) ≥ (0, 1, 1) · (2x+ 2, y, z)

is satisfied for all non-negative values of the integer variables, and Condi-

tion 2(b) is trivially satisfied because both αp[2] and αp[3] are not 0. When

argument p[1] is considered, Condition 2(a) is the same as before and thus is

satisfied, and Condition 2(b) holds too since the constraint above with a strict

inequality is still satisfied for all non-negative values of the integer variables. 2

Example 3.109. Consider again program P3.104 of Example 3.104, which has

only one SCC C coinciding with P3.104 itself. Let us consider A = ∅. All rules

are A-relevant. We now show that every argument is A-size-restricted in C. In

particular, consider the inequalities associated with the rules of P3.104 when

the act-atoms are selected in the body of the first, second, and fourth rule,

and the red-atom is selected for the third rule:
αact ·(st, sym, 1+s1) ≥ αpar ·(t, 6+s1+sym+st+l)

αact ·(st, sym, 2+a+b)≥ αred ·(2+sym+t, 2+st+l, a, b)

αred ·(i, 4+s+x+l, a, 2+y+t) ≥ αred · (i, l, a, t)

αact ·(st, a, 1+s1) ≥ αpar ·(i, 6+s1+a+st+l)

By incorporating the vectors αact = (1, 1, 1), αpar = (0, 0), αred = (0, 0, 1, 1)

into the constraints above, we obtain:
st+ sym+ s1 + 1 ≥ 0

st+ sym+ a+ b+ 2 ≥ a+ b

a+ y + t+ 2 ≥ a+ t

st+ a+ s1 + 1 ≥ 0
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It is easy to see that the constraints above are satisfied for every st, sym, s1, a,

b, y, t ∈ N, and thus Condition 2(a) of Definition 3.107 holds for all arguments.

Moreover, since αact[1], αact[2], αact[3], αred[3], and αred[4] are all different

from 0, we can say that arguments act[1], act[2], act[3], red[3], and red[4]

are A-size-restricted in C, as Condition 2(b) is also satisfied. For arguments

par[1], par[2], red[1], and red[2] (whose coefficients are 0), we have to check

if the constraints associated with the rules having predicate symbol par (resp.

red) in the head, namely the first and the last one (resp. the second and third

one), are satisfied with a strict inequality. As this is the case, Condition 2(b)

holds, and arguments par[1], par[2], red[1], and red[2] are A-size-restricted

in C. 2

We now define how to determine if an argument is A-size-restricted in

the entire program. This is done by combining the information obtained from

the individual analysis of the SCCs. We start by introducing some additional

notions.

Given a program P, we assume an arbitrary but fixed numbering C1, ..., Cn
of its SCCs. We also define ex -args(P) as the set {p[i/j] | Cj is an SCC of P
and p[i] ∈ args(Cj)}. Each element of ex -args(P) is called an extended ar-

gument of P. The next tool is called extended argument graph—a directed

graph keeping track of the propagation of terms between arguments. It is a

refinement of the argument graph of [26] and it leverages the firing graph

to perform a component-wise analysis of how terms are propagated between

arguments and to get rid of propagation (between arguments) that cannot

really occur.

Definition 3.110 (Extended argument graph). The extended argument

graph of a program P, denoted ∆(P), is a directed graph whose set of nodes

is ex-args(P) and where there is an edge 〈q[j/k], p[i/l]〉 iff

• k = l and there is a rule r ∈ Ck such that (1) head(r) is a p-atom, (2)

there is a q-atom B in body(r), (3) the i-th term of head(r) and j-th term

of B have a common variable, and (4) there is a rule r′ ∈ P such that

head(r′) and B unify; or

• k 6= l and p = q, i = j, and there are two rules r1 ∈ Ck and r2 ∈ Cl such

that pr(head(r1)) = p and 〈r1, r2〉 is an edge of Σ(P). 2

Intuitively, an edge 〈q[j/k], p[i/l]〉 of ∆(P) means that there can be a

propagation of terms from q[j] in component Ck to p[i] in component Cl. We
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p[1/1] p[2/1]

p[1/2] p[2/2]

b[1/1] b[2/1]

Fig. 3.11: Extended argument graph of P3.105.

say that an extended argument p[i/l] depends on an extended argument q[j/k]

if there is a path from the latter to the former in ∆(P).

Example 3.111. Consider again program P3.105 of Example 3.105. Figure 3.11

illustrates ∆(P3.105). 2

We are now ready to define when an argument is A-size-restricted in a

program.

Definition 3.112 (A-size-restricted arguments/programs). Let P be a

program and A be a set of limited arguments of P. An argument p[i] is A-

size-restricted in P if for every SCC Cl of P such that p ∈ pred(Cl),

1. p[i] is A-size-restricted in Cl, and

2. p[i/l] depends only on extended arguments q[j/k] such that q[j] is A-size-

restricted in Ck.

We denote by RA(P) the set of all A-size-restricted arguments in P. We say

that P is A-size-restricted iff args(P) = A ∪RA(P). 2

Example 3.113. Consider program P3.105 of Example 3.105, whose extended

argument graph is shown in Figure 3.11 and let A = {p[2]}. Below we show

that p[1] is A-size-restricted in P3.105. Since p ∈ pred(C1) and p ∈ pred(C2), we

first need to check if p[1] is A-size-restricted in C1 and C2. Since C1 = {r1} and

r1 is not A-relevant, we can easily conclude that p[1] is A-size-restricted in C1.

In the case of C2 = {r2}, where r2 is A-relevant, we consider the (only) linear

constraint associated with r2, which is αp · (1 + x, y) ≥ αp · (x, 1 + y). Given

αp = (1, 1), the constraint is satisfied for all x, y ∈ N, and since αp[1] 6= 0,

then p[1] is A-size-restricted also in C2.

We now just need to check if for every SCC Cl such that p ∈ pred(Cl),
p[1/l] only depends on extended arguments q[j/k] such that q[j] is A-size-

restricted in Ck. Considering C1, we have that p[1/1] depends only on itself

(see Figure 3.11). Concerning C2, we have that p[1/2] depends on itself and
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p[1/1]. Since p[1] is A-size-restricted in both C1 and C2, we can conclude that

p[1] is A-size-restricted in P3.105.

Likewise, it can be easily verified that all other arguments of P3.105 are

A-size-restricted in P3.105 as well. 2

Correctness

The main goal of this section is to prove the following desired result of sound-

ness.

Theorem 3.114. Let P be a program and A be a set of limited arguments of

P. Every A-size-restricted argument of P is limited. If P is A-size-restricted

then it is limited. 2

We start by introducing some notation. Recall that for normal positive

programs P, the notion of limitedness of P (i.e. when P is terminating) can

be equivalently defined by considering the immediate consequence operator

TP . In particular, P is terminating if for every finite set of facts D, there is a

finite natural number n such that Tn
P∪D(∅) = T∞P∪D(∅).

We will denote T i
P(∅) simply as T i

P , for every i ≥ 1. A labeling for a

predicate symbol p of arity n is a string λ = λ1...λn, where each λi ∈ {0, 1}.
The projection of an atom A = p(t1, ..., tn) on λ is the atom obtained from

A by replacing p with pλ and by deleting every term ti such that λi = 0,

for 1 ≤ i ≤ n. For instance, the projection of p(X, f(X), a, Y ) on 0101 is

p0101(f(X), Y ).

A labeling for a program P is a function Λ that associates every p in

pred(P) with a labeling for p. The projection of an atom A of the form

p(t1, ..., tn) on Λ, denoted AΛ, simply is the projection of A on Λ(p). The

projection of a program P (resp. set of atoms I) on Λ, denoted PΛ (resp. IΛ),

is the program (resp. set) obtained from P (resp. I) by replacing every atom

A with AΛ.

Consider an argument p[i] ∈ args(P) with Λ(p) = λ = λ1...λn. Notice that

if λi (1 ≤ i ≤ n) is the j-th 1 in λ, then pλ[j] is an argument in args(PΛ); we

say that p[i] is the argument of P corresponding to argument pλ[j] of PΛ, and

vice versa, denoted as p[i]
 pλ[j]. As an example, if p is a predicate symbol

of P of arity 4 and Λ(p) = 0101, then p[2]
 p0101[1] and p[4]
 p0101[2].

Proposition 3.115. Let P be a program and Λ a labeling for P. For every

finite set of facts D, if M = MM(P ∪D) and N = MM((P ∪D)Λ), then

MΛ ⊆ N .
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Proof. We show that (T i
P∪D)Λ ⊆ T i

(P∪D)Λ for every i ≥ 1. The proof is by

induction on i.

Base case (i = 1). It straightforwardly follows from the observation that both

T 1
P∪D and T 1

(P∪D)Λ contain only the facts’ head.

Inductive step (i → i + 1). Consider an atom A ∈ T i+1
P∪D. By definition

of TP∪D, there is a (ground) rule A ← B1, ..., Bn in ground(P ∪ D) s.t.

{B1, ..., Bn} ⊆ T i
P∪D. By the induction hypothesis, {BΛ1 , ..., BΛn } ⊆ T i

(P∪D)Λ .

Also, notice that AΛ ← BΛ1 , ..., B
Λ
n is a (ground) rule in ground((P ∪ D)Λ).

Hence, AΛ ∈ T i+1
(P∪D)Λ

. 2

Corollary 3.116. Let P be a program and Λ a labeling for P. If PΛ is termi-

nating, then for every argument p[i] ∈ args(P), if there exists pλ[j] ∈ args(PΛ)

such that p[i]
 pλ[j], then p[i] is limited.

Proof. Suppose PΛ is terminating. Let D be a finite set of facts, M =

MM(P ∪ D), and N = MM((P ∪ D)Λ). Since PΛ is terminating, then

N is finite. By Proposition 3.115, we have that MΛ ⊆ N , whence the claim

follows. 2

We now extend the notion of program expansion introduced in Sec-

tion 3.6.1. Given a program P, we define ω(P) = { {ωp1 , ..., ωpn} | pred(P) =

{p1, ..., pn} and ωpi ∈ Zarity(pi) for every 1 ≤ i ≤ n}.

Definition 3.117 (Program expansion). Let P be a program and ω ∈
ω(P). Given an atom A = p(t1, ..., tm) occurring in P, we define ex(A,ω) =

p(t1, ..., tm), where each tj is the sequence tj , ..., tj of length |ωp[j]|+1. More-

over, ex(P, ω) denotes the program derived from P by replacing every atom

A with ex(A,ω). 2

Lemma 3.118. For every program P and every ω ∈ ω(P), P is terminating

iff ex(P, ω) is terminating.

Proof. Straightforward from Definition 3.117 and Lemma 3.118. 2

Consider a program P and a set A of limited arguments of P. Let C be

an SCC of P. We first show that if an argument of C is A-size-restricted in

C then it is a limited argument of C (i.e., when C is considered in isolation

as a program). Then, we will show correctness of the technique for an entire

program.

Given a program P and set of limited arguments A, we use Rel(P,A) to

denote the set of all A-relevant rules in P.
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Lemma 3.119. Let P be a program and A be a set of limited arguments of

P. Let C be an SCC of Σ(P). An argument is limited in C iff it is limited in

Rel(C,A).

Proof. The claim follows from the fact that we can derive only a finite number

of ground atoms using the rules in ground(C)\ground(Rel(C,A)) starting from

a finite set of facts—recall that, by definition, all the variables in the head

of a non-relevant rule can take only a finite number of values because they

appear in the body in correspondence of limited arguments or in atoms that

are not mutually recursive with the head. 2

Consider a program P and a set A of limited arguments of P. Let C be

an SCC of P. Also, let p[i] be an A-size-restricted argument in C satisfying

Condition 2 of Definition 3.107, and let α be a set of vectors satisfying such

a condition. Recall that α contains one vector αq for each q ∈ pred(C).
We define the labeling Λα for C as follows:

• Λ(p) = λ1...λn where λi = 1, and for every j 6= i, λj = 0 if αp[j] = 0,

otherwise λj = 1 (1 ≤ j ≤ n);

• for every q ∈ (pred(C)−{p}), then Λ(q) = λ1...λm where λj = 0 if αq[j] =

0, otherwise λj = 1 (1 ≤ j ≤ m).

We also define Aα = {pλ[j] | pλ[j] ∈ args(CΛα) and there exists p[i] ∈
A s.t. p[i]
 pλ[j]}.

Lemma 3.120. Consider a program P and a set A of limited arguments of P.

Consider an SCC C of P. Suppose p[i] is an A-size-restricted argument in C
because of Condition 2 of Definition 3.107, and α is a set of vectors satisfying

the condition of Definition 3.107. The argument pλ[j] of CΛα s.t. p[i]
 pλ[j]

is an Aα-size-restricted argument in CΛα .

Proof. Consider the argument pλ[j] of CΛα such that p[i]
 pλ[j]. Recall that

α contains one vector αq for each q ∈ pred(C). Notice that for every q[k] ∈
args(C), if q[k] 6= p[i] and there does not exist an argument qλ[l] ∈ args(CΛα)

s.t. q[k]
 qλ[l], then αq[k] = 0. It can be easily verified that if we get rid of

all such αq[k]’s (which equal 0) from the constraints of Definition 3.107, then

we get the set of constraints needed to check if pλ[j] is an Aα-size-restricted

argument of CΛα and such constraints are obviously satisfied (because p[i] is

an A-size-restricted argument of C). 2
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Let P be a program and A be a set of limited arguments of P. The unary

domain of an argument p[i] ∈ args(P) w.r.t. A, denoted UA(p[i]), is {−1, 1}
if p[i] ∈ A, and {1} otherwise. The unary domain of a predicate symbol p of

arity n is UA(p) = UA(p[1])× · · · × UA(p[n]). 2

An A-unary-size-restricted argument p[i] in an SCC is defined in the same

way as an A-size-restricted argument in an SCC (cf. Definition 3.107) except

that UA(q) is used in place of DA(q) and UA(p[i]) = {−1, 0, 1}.
The global size of an atom A = p(t1, ..., tn), denoted gs(A), is

∑n
i=1 size(ti).

Lemma 3.121. Let P be a program and A be a set of limited arguments of P.

Consider an SCC C of P. If an argument p[i] of C is A-unary-size-restricted

in C, then p[i] is limited in C.

Proof. If p[i] is A-unary-size-restricted in C because Condition 1 of Defini-

tion 3.107 is satisfied, then p[i] is limited in C simply because for every rule in

C having p in the head the values that can be propagated in correspondence

of p[i] are taken from limited arguments and thus there is only a finite number

of values p[i] can take.

Let us consider now the (more involved) case that p[i] is A-unary-size-

restricted in C because of Condition 2 of Definition 3.107, and let α be a set of

vectors satisfying the condition. Recall that α contains one vector αq for each

q ∈ pred(C). Recall also that for each rule, one body atom has been selected

to satisfy the inequalities—we call such an atom the selected body atom. Below

we show that C is terminating (which in turn implies that p[i] is limited in C).
Given an atom A and a ground instance A′ of A, let θ be a unifier of A

and A′ of the form {X1/t1, ..., Xm/tm} where the Xj ’s are exactly the logical

variables occurring in A and all the tj ’s are ground terms. It is easy to see that

size(A′) can be obtained from size(A) by replacing every integer variable xj

in size(A) with size(tj)—obviously, in the same way we can get gs(A′) from

gs(A). As a consequence, since p[i] is A-unary-size-restricted, then for every

ground rule r ∈ ground(C), there is an atom B in body(r) s.t. if pr(head(r)) =

q and pr(body(r)) = s, then αs · size(B) ≥ αq · size(head(r)); furthermore,

if q = p and αp[i] = 0 then the (stricter) constraint αs · size(body(r)) >

αp · size(head(r)) holds.

Suppose by contradiction that C is not terminating. Then, there must exist

a finite set of facts D and an infinite sequence of ground atoms φ = A1, A2, ...

containing infinitely many distinct atoms s.t. A1 ∈ D and for every j ≥ 1,

there is a ground rule Aj+1 ← body in ground(C∪D) s.t. body ⊆MM(C∪D),



88 3 Termination of programs with function symbols

Aj ∈ body, and Aj is the selected body atom. This means that there is an

infinite subsequence ϕ = A′1, A
′
2, ... of φ s.t. all atoms have the same predicate

symbol q and there exists an m that satisfies the following condition: for every

atom A′j with j > m there is an atom A′k s.t. k ≤ m and A′k has the same terms

of A′j on the arguments of q in A. Let A′j = q(t1, ..., tn) and A′k = q(u1, ..., un).

Two cases may occur: either (a) αp[i] 6= 0 or (b) αp[i] = 0.

(a) We define gsmax = max{gs(A′l) | l ≤ m}. Then,

αq · size(A′k) ≥ αq · size(A′j) (3.3)
n∑
l=1

αq[l] · size(ul) ≥
n∑
l=1

αq[l] · size(tl) (3.4)∑
1≤l≤n∧q[l]/∈A

αq[l] · size(ul) ≥
∑

1≤l≤n∧q[l]/∈A

αq[l] · size(tl) (3.5)

∑
1≤l≤n∧q[l]/∈A

size(ul) ≥
∑

1≤l≤n∧q[l]/∈A

size(tl) (3.6)

Inequality (3.3) holds as a consequence of the observations made at the

beginning of the proof. Then, inequality (3.3) can be rewritten as (3.4). Then,

inequality (3.5) follows from the fact that tl = ul if q[l] ∈ A—recall that A′k
and A′j have the same terms on the arguments of q in A. Finally, inequal-

ity (3.6) holds because αq[l] = 1 if q[l] /∈ A. As tl = ul for every q[l] ∈ A, then

gs(A′k) ≥ gs(A′j). Hence, gsmax ≥ gs(A′j).

Thus, for every atom A′j with j > m, it is the case that gsmax ≥ gs(A′j).

Since programs are range-restricted, then all ground atoms in MM(C ∪ D)

are built from constants and function symbols appearing in C ∪D, which are

finitely many. These observations and the definition of gs imply that we can

have only finitely many ground q-atoms in MM(C ∪ D), which is a contra-

diction.

(b) The same reasoning of case (a) applies if there is no p-atom between

A′j and A′k in φ. Otherwise, for the same reasons of case (a), the following

inequality holds: ∑
1≤l≤n∧q[l]/∈A

size(ul) >
∑

1≤l≤n∧q[l]/∈A

size(tl)

If q 6= p, then the same reasoning of case (a) can be applied. Suppose q = p.

Let gsmax = max{
∑

1≤h≤n∧h 6=i∧q[h]/∈A
size(vh) | A′l = p(v1, ..., vn) ∧ l ≤ m}.
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Observe that ϕ contains an infinite subsequence σ of distinct atoms with

the same values on the limited arguments.

For every pair of atoms A`1 = p(v1, ..., vn) and A`2 = p(v′1, ..., v
′
n) in σ s.t.

`2 > `1 > m, the following holds:∑
1≤l≤n∧l 6=i∧q[l]/∈A

size(v′l) >
∑

1≤l≤n∧l 6=i∧q[l]/∈A

size(vl) > gsmax

which means that, for every atom p(s1, ..., sn) in σ the summation∑
1≤l≤n∧l 6=i∧q[l]/∈A size(sl) strictly decreases w.r.t. the previous atoms in the

sequence σ and thus the number of atoms in σ is bounded by gsmax, and thus

finite, which is a contradiction. Hence, C is terminating, which in turn implies

that p[i] is limited in C. 2

Lemma 3.122. Let P be a program and A be a set of limited arguments of

P. Consider an SCC C of P. If an argument p[i] of C is A-size-restricted in

C, then p[i] is limited in C.

Proof. If p[i] is A-size-restricted in C because Condition 1 of Definition 3.107

is satisfied, then p[i] is limited in C simply because for every rule in C having

p in the head the values that can be propagated in correspondence of p[i] are

taken from limited arguments and thus there is only a finite number of values

p[i] can take.

Let us consider now the case that p[i] is A-size-restricted in C because

of Condition 2 of Definition 3.107, and let α be a set of vectors satisfy-

ing the condition. Then, Rel(C,A) satisfies the condition as well. Let pλ[j]

be the argument of Rel(C,A)Λα s.t. p[i] 
 pλ[j]. By Lemma 3.120, pλ[j]

is an Aα-size-restricted argument of Rel(C,A)Λα . Then, pλ[j] is unary-size-

restricted in ex(Rel(C,A)Λα , α). As shown in the proof of Lemma 3.121,

ex(Rel(C,A)Λα , α) is terminating. By Lemma 3.118, Rel(C,A)Λα is termi-

nating. By Corollary 3.116, p[i] is limited in Rel(C,A). By Lemma 3.119, p[i]

is limited in C. 2

Complexity and Expressivity

In this section, we provide results on the complexity and the expressivity of

the class of A-size-restricted programs.

We start by showing that checking if an argument is A-size-restricted in

an SCC is in NP .
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Theorem 3.123. Let P be a program and A be a set of limited arguments

of P. Given an SCC C of P, checking whether an argument of C is A-size-

restricted in C is in NP.

Proof. We will first show that the NP bound holds for programs whose rules

have at most one atom in the body. Then, the result is naturally extended to

general programs.

Let p[i] be an argument of C for which we want to check if it is A-size-

restricted and let R = R1 ∪R2 = {r1, ..., rm} be the set of A-relevant rules of

C where r ∈ R1 iff pred(head(r)) = p. By following Definition 3.107, we can

check if p[i] is A-size-restricted in C by either checking Condition 1 or checking

Condition 2. Condition 1 requires to verify for every rule r ∈ C (which are

linear in number w.r.t. ||P||) with head(r) = p(t1, ..., tk), if tj has a variable

in some body argument belonging to A. This check can be trivially carried on

by a linear scanning of the rule’s symbols and the elements of A. Considering

Condition 2, for each 1 ≤ k ≤ m, let Bk = body(rk), Hk = head(rk), and let

lcrk(�) be the linear constraint associated to rk of the form

αpred(Bk) · size(Bk) � αpred(Hk) · size(Hk)

where � ∈ {>,≥}. In order to check whether Condition 2 is satisfied, we need

to find an assigment, for each q ∈ pred(C), to vector αq, such that αq ∈ DA(q)

and such that lcrk(≥) is satisfied for every 1 ≤ k ≤ m. Then, we verify whether

either αp[i] 6= 0 or lcrk(>) is satisfied whenever pred(head(rk)) = p. We now

introduce some results that will allow us to rewrite the above problem into

an equivalent one, which is more suitable for our discussion.

First, note that every constraint lcrk(�) can be rewritten in the form

γk1 · x1 + ... + γkl · xl + γk0 � 0, where the xj ’s are the integer variables

occurring in lcrk(�) and each γkj is an integer only depending on vectors

αpred(Bk) and αpred(Hk).

Moreover, an important property of such constraints holds.

Lemma 3.124. Let γ0, ..., γn ∈ Z and let � ∈ {>,≥}. The inequality γ1 ·x1 +

... + γn · xn + γ0 � 0 is satisfied for every x1, ..., xn ∈ N iff for 1 ≤ j ≤ n,

γj ≥ 0 and γ0 � 0.

Proof.

(⇐) Straightforward.

(⇒) Note that γ0 �0 must be true, since in the case where xj = 0, 1 ≤ j ≤ n,
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the inequality coincides with γ0 � 0. Then, assume that γj < 0, for some

1 ≤ j ≤ n, then the inequality is not satisfied for xh = 0 for all h 6= j and

xj = babs(γ0γj )c+ 1. 2

The lemma above allows us to rewrite every constraint of the form

lcrk(�) = γk1 · x1 + ... + γkl · xl + γk0 � 0 into an equivalent set of constraints

conrk(�) = {γk1 ≥ 0, ..., γkl ≥ 0, γk0 � 0}

Furthermore, for each q ∈ pred(C), DA(q[j]) (1 ≤ j ≤ arityq) is either the

set N or the set Z. Thus, every expression αq ∈ DA(q) can be rewritten into

an equivalent set of arityq linear constraints where, for 1 ≤ j ≤ arityq, the

constraint is αq[j] ≥ 0 if DA(q[j]) = N, otherwise the constraint is αq[j] R 0

(i.e., the j-th component is free). Let Dom be the set of all linear constraints

obtained by rewriting every expression αq ∈ DA(q), for each q ∈ pred(C).
With the result above and Lemma 3.124 the problem of checking whether

p[i] is A-size-restricted in C is equivalent to finding a solution for one of the

following three sets of linear constraints.

1. Con1 =
m⋃
k=1

conrk(≥) ∪Dom ∪ {αp[i] > 0};

2. Con2 =
m⋃
k=1

conrk(≥) ∪Dom ∪ {αp[i] < 0};

3. Con3 =
⋃

r∈R1

conr(>) ∪
⋃

r∈R2

conr(≥) ∪Dom;

where the only unknowns are the components of vectors αq, for each q ∈
pred(C).

It is easy to see that p[i] is A-size-restricted in C iff Con1, Con2 or Con3

admit a solution. In particular, the first set Con1 represents the case when

every linear constraint lcrk(≥) is satisfied and αp[i] 6= 0, more specifically,

αp[i] > 0. The second set Con2, is identical, but it takes into account the case

where αpi [j] < 0. These two constraint essentially check for Condition 2(a) and

the first part of Condition 2(b) of Definition 3.107. The last set Con3, instead,

takes into account the case where αp[i] could be zero, but for every rule r in

R1 (i.e., the rules defining p), the constraints lcr(>) Must be satisfied. In a

nutshell, Con3 checks for Condition 2(a) and the second part of Condition 2(b)

of Definition 3.107.

What remains to show is the complexity of constructing the above sets and

the complexity of checking whether one of such sets admit a solution. Note

that if v is the maximum number of distinct variables occurring in a rule in
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R and a is the number of arguments in pred(C), for every rule r ∈ R, the set

conr(�) has at most v + 1 constraints and the set Dom has a constraints.

Thus, each Conj has at most m · (v + 1) + a + 1 linear constraints, with at

most 2 · a unknowns per constraint. Clearly, the size of each Conj is bounded

by O(||P||). Regarding the complexity of finding a solution to one of the sets

Conj , note that the constraints in each Conj are always of one of the following

four forms: >,<,≥,R. It is well known that constraints of the form < and R

can be rewritten to constraints of the form > and of the form ≥ respectively by

(linearly) increasing the number of unknowns. Finally, checking whether a set

of linear constraints of the form >,≥ admits a solution, where the unknowns

are restricted to be integers, is in NP [41].

In the case of general programs, we can exploit the following non deter-

ministic polynomial time procedure: given the argument p[i], either check in

deterministic polynomial time if it satisfies Condition 1 of Definition 3.107

or guess a body atom Br for each rule r ∈ R and construct the program

C′ =
⋃
r∈R
{head(r) ← Br}. Then, check whether Condition 2 is satisfied in

non-deterministic polynomial time, as shown for programs whose rules have

only one atom in the body. 2

From the theorem above, we obtain that checking whether a program is

A-size-restricted is in NP .

Theorem 3.125. Let P be a program and A be a set of limited arguments of

P. Checking whether (an argument of) P is A-size-restricted (in P) is in NP.

Proof. As in proof of Theorem 4.67, we first assume that our program P only

contains rules with one atom in the body. To show the NP upper-bound we

present the following procedure:

1. Construct the firing graph of P and compute the SCCs C1, ..., Cn of P;

2. Construct the extended argument graph of P;

3. Let Q = {q[j/k] | p[i/l] depends on q[j/k], 1 ≤ l ≤ n} be the set of

extended arguments on which every p[i/l] depends on;

4. Construct for each SCC Cj (1 ≤ j ≤ n), the corresponding sets Con1,

Con2, Con3 of linear constraints, as shown in the proof of Theorem 4.67.

Then rewrite Con1,Con2,Con3 to the three sets Conj1, Con
j
2, Con

j
3, where

their vectors αb ∈ DA(b) are renamed to αjb.

5. Non-deterministically choose, for each 1 ≤ j ≤ n, one of the three sets

of constraints Conjhj (1 ≤ hj ≤ 3). For each 1 ≤ j ≤ n and for each

b ∈ pred(Cj), non-deterministically choose an assignment to vectors αjb;
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6. Verify that p[i], for each 1 ≤ j ≤ n such that p ∈ pred(Cj), either satisfies

Condition 1 of Definition 3.107 w.r.t. Cj or that the vectors αjb satisfy

Condition 2 of Definition 3.107 w.r.t. Cj .
7. Finally, check whether for every every q[j/k] ∈ Q, q[j] either satisfies

Condition 1 of Definition 3.107 w.r.t. Ck or that the vectors αkb satisfy

Condition 2 of Definition 3.107 w.r.t. Ck.

The firing graph can be constructed in polynomial time [16] and the SCCs

of P can be obtained by means of the well-known polynomial time Tarjan’s

algorithm. The extended argument graph can be constructed in polynomial

time as well, since the maximum number of edges (q[j/k], b[h/l]) is bounded

by (a · n)2, where a is the maximum arity of the predicate symbols of P.

Moreover, according to the definition of extended argument graph, checking

whether an edge (q[j/k], b[h/l]) belongs to the extended argument graph is

trivially feasible in polynomial time (recall that checking whether two atoms

unify is in polynomial time too [78]). As shown in the proof of Theorem 4.67,

also the construction of the sets Con1, Con2, Con2 can be accomplished in

polynomial time. Step 5 requires non-deterministic polynomial time, since

the satisfiability problem of the constraints Conjhj is in NP , as shown in the

proof of Theorem 4.67. The last two steps simply verify the conditions of

Definition 3.107, which has already been shown to be feasible in polynomial

time as well. 2

Recall that AR, BP , RB, and SR denote, respectively, the set of all

argument-restricted [60], bounded [52], rule-bounded [16], and ∅-size-restricted

programs. Moreover, given two sets A and B, we use A ∦ B as a shorthand

for A 6⊆ B ∧B 6⊆ A. The following theorem compares the new approach with

well-known terminating classes previously proposed.

Theorem 3.126. AR ∦ SR, RB ( SR, and BP ∦ SR

Proof. To show that AR ∦ SR (resp. BP ∦ SR) it suffices to show that there

exists a program which is in AR (resp. BP ) but not in SR and vice versa.

The program P = {q(X)← p(f(X)). p(f(X))← q(X).} is in AR (resp. BP ) but

it is not in SR. Conversely, the program P4.51 of Example 4.51 is in SR but

it is not in AR (resp. BP ).

We now show that RB ⊆ SR. We say that an SCC C of a program P is

non-trivial if there exists at least one edge in Σ(P) between two (not nec-

essarily distinct) nodes of C. An SCC is trivial if it is not non-trivial. More-
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over, a rule r ∈ P is relevant if the set of atoms body(r) \ rbody(r) does not

contain all logical variables in head(r).3 Let P be a rule-bounded program,

then every non-trivial SCC P is rule-bounded [16], where a non-trivial SCC

C of P, with pred(C) = {p1, ..., pm}, is rule-bounded if there exist m vectors

αph ∈ (N \ {0})arityph (1 ≤ h ≤ m) such that, for every relevant rule r ∈ C,
with H = head(r) = pi(t1, ..., tk), there exists an atom B = pj(u1, ..., ul) in

body(r) such that

αpj · size(B) ≥ αpi · size(H) (3.7)

holds for every non-negative value of the integer variables in size(B), size(H).

We show that P is ∅-size-restricted by induction on the number of SCCs

of P.

Base case (n = 1): P is rule-bounded and has only one SCC C. If C is trivial,

then, it contains only one rule, and this rule is non-relevant, and then it is

also not ∅-relevant, which implies that P is trivially ∅-size-restricted. If C is

non trivial, since each vector αph , 1 ≤ h ≤ n has only strictly positive com-

ponents, and all the constraints in (3.7) are satisfied, every argument of C is

∅-size-restricted in C (Condition 1 of Definition 3.112). Since the arguments

of P are only the ones of C, Condition 2 of Definition 3.112 is satisfied too

and thus, P is ∅-size-restricted.

Inductive step (n > 1): Let C(n−1) be a rule-bounded program and let

C1, ..., Cn−1 be its SCCs, where each non-trivial SCC is rule-bounded. As-

sume that C(n−1) is ∅-size-restricted by inductive hypothesis. We now add

either a trivial or a non-trivial rule-bounded SCC Cn to C(n−1), obtaining

the program C(n). In either case, C(n) is still rule-bounded. If Cn is trivial,

since C(n−1) is ∅-size-restricted by hypothesis, with a similar reasoning of

the base step, we conclude that C(n) is ∅-size-restricted. If Cn is non-trivial,

since Cn is rule-bounded, every argument in Cn is ∅-size-restricted in Cn, as

shown in the base step. Moreover, by inductive hypothesis, every argument

in C(n−1) is ∅-size-restricted in C(n−1). With the addition of Cn to C(n−1),

all the extended arguments ph[i/l] (1 ≤ l ≤ n − 1) may now depend on the

extended arguments pk[j/n], but they are such that the arguments pk[j] are

∅-size-restricted in Cn, by construction of Cn. In turn, every extended argu-

ment pk[j/n] may now depend on arguments ph[i/l] (1 ≤ l ≤ n − 1), but

they are such that the arguments ph[i] are ∅-size-restricted in their respective

3 The notion of relevance coincides with the notion of A-relevance, when A = ∅.
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SCCs, by inductive hypothesis. We can then conclude that every argument

in C(n) is ∅-size-restricted in C(n), and thus C(n) is ∅-size-restricted. To show

the proper inclusion, please note that the program P4.51 of Example 4.51 is

in Size−Restricted but not in RB. 2

Note that the new technique strictly generalizes the rule-bounded criterion

even when the set of limited arguments A is empty. Looking at the size of

parts of multiple atoms, as opposed to the entire size of a single atom like the

rule-bounded criterion does, allows our criterion to include more programs.

By combining our technique with the argument-restricted or bounded cri-

terion we can recognize more limited programs than by using any of them

alone. We use AR + SR (resp. BP + SR) to denote the set of all A-size-

restricted programs where, for each program, A is the set of its argument-

restricted (resp. bounded) arguments.

Corollary 3.127. AR ( AR + SR, SR ( AR + SR, BP ( BP + SR,

SR ( BP + SR.

Proof. First of all, recall that for every program P, given a set A of lim-

ited arguments of P, P is A-size-restricted iff args(P) = A ∪ RA(P).

Thus, T ⊆ T+SR, where T ∈ {AR,BP}, is straightforward. The prop-

erty SR ⊆ T+SR, where T ∈ {AR,BP}, follows from the fact that that

if A ⊆ A′ then RA(P) ⊆ SRA′P. To show that T ⊂ T+SR and SR ⊂ T+SR

(T ∈ {AR,BP}), consider the program P = P1∪{s(X)← q(f(X)); q(f(X))←
s(X); p(X, g(X), g(X))← q(X)}. This program is neither in T nor in SR, but it

is in T+SR (T ∈ {AR,BP}). 2

Iterated Criterion

The size-restricted technique presented in the previous section starts from a

(possibly empty) set of limited arguments A and gives as output a new set of

limited arguments A′. The question is whether the technique, starting from

the resulting set of limited arguments A′, could compute a new set of limited

arguments A′′ ⊃ A′. As shown by the next example, the answer is positive

and thus our technique can benefit from an iterative application of itself.

Example 3.128. Consider the following program P3.128.

p(f(X), f(Y)) ← p(X, Y), b(X).
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The program has only one SCC consisting of the rule above. Assume that

A = ∅. By choosing the first body atom of the rule, we get the following

inequality:

αp · (x, y) ≥ αp · (x+1, y+1)

The vectors αp = (0, 0) and αb = (1) satisfy the conditions of Definition 3.107.

Therefore, the resulting set of A-size-restricted arguments is A′ = {b[1]}.
Now, considering A′ as the starting set of limited arguments, we determine

that p[1] is limited too, by Condition 1 of Definition 3.107. The new set

of limited arguments is A′′ = A′ ∪ {p[1]}. Finally, considering the vectors

αp = (−1, 1) (recall that p[1] ∈ A′′) and αb = (0), the constraint is satisfied

for all non-negative values of its integer variables. Then, p[2] is limited, A′′′ =

A′′ ∪ {p[2]}, and hence P3.128 is limited. 2

Thus, we introduce a simple operator that iteratively applies the size-

restricted criterion by using at each iteration the limited arguments derived

at previous iterations.

Definition 3.129. Let P be a program and A be a set of limited arguments

of P. We define the operator ΨP (A) = A ∪ RA(P). For i ≥ 1, we define the

i-th iteration of ΨP as follows:

Ψ1
P

(A) = ΨP (A)

Ψ i+1
P

(A) = ΨP (Ψ i
P

(A)), for i > 1.

2

Obviously, Ψ i
P

(A) ⊆ Ψ i+1
P

(A) for every i ≥ 1 and since the number of

arguments of P is finite, then there always exists a finite n ≤ |args(P)| such

that Ψn
P

(A) = Ψn+1
P

(A); we denote Ψn
P

(A) as Ψ∞
P

(A).

Corollary 3.130. Let P be a program and A be a set of limited arguments of

P. Every argument in Ψ∞
P

(A) is limited.

Proof. Straightforward. 2
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Termination of the Chase

In this chapter, we cover the problem of verifying whether whatever some vari-

ation of the Chase procedure terminates when a set of TGDs or TGDs and

EGDs is given. As already stated, the problem of deciding whether some vari-

ation of the Chase terminates is undecidable, in general. Thus, to tackle the

problem we can rely on two different approaches. One is to identify subclasses

of TGDs and EGDs for which checking termination of the Chase becomes

decidable; the other approach is to provide sufficient-only criteria which given

a set of TGDs and EGDs Σ, are able to conclude that some variation of the

Chase terminates when the set Σ is given.

In the rest of this chapter we formalize the problem of the termination of

the Chase, we present the most important sufficient-only criteria known in the

literature and in Section 4.3 and Section 4.4 a decidable class of TGDs and

a more general sufficient-only condition over TGDs and EGDs are presented,

respectively.

4.1 The Chase termination problem

We denote by CT?∀, with ? ∈ {std, obl, sobl, core}, the class of sets of TGDs and

EGDs Σ such that for every database D all ?-chase sequences of D with Σ are

terminating. Analogously, we denote by CT?∃ the class of sets of dependencies

Σ such that for every database D there is a terminating ?-chase sequence of

D with Σ.

Even focusing on TGDs only, the problem of verifying whether a set of

dependencies belongs to CT?∀ or CT?∃, for ? ∈ {std, obl, sobl, core}, is undecid-

able [47, 49].
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For sets of TGDs only, it has already been shown in [65, 69] that:

CTobl
∀ =CTobl

∃ ( CTsobl
∀ =CTsobl

∃ ( CTstd
∀ (CTstd

∃ ( CTcore
∀ =CTcore

∃

The above hierarchy is relevant because if we determine that a set of TGDs

belongs to CT?q with q ∈ {∀,∃} and ? ∈ {obl, sobl}, then Σ belongs to CTstd
∀

(and, of course, CTstd
∃ ), and, in some cases, the analysis of the oblivious or

semi-oblivious Chase is easier. In fact, the importance of these Chase variants

has been widely recognized and their behavior has been studied in different

works [19, 50, 56, 63, 65]. Thus, hereafter we will focus on the following (semi-

)oblivious Chase termination problems.

∀-Sequence ?-Chase Termination:

Instance: A set Σ of TGDs and EGDs.

Question: Does Σ ∈ CT?∀?

∃-Sequence ?-Chase Termination:

Instance: A set Σ of TGDs and EGDs.

Question: Does Σ ∈ CT?∃?

As shown above, recall that for TGDs only CTobl
∀ = CTobl

∃ ⊂ CTsobl
∀ =

CTsobl
∃ [49]. This implies that when only TGDs are considered, the preceding

decision problems coincide for the (semi-)oblivious Chase. Thus, when the

termination analysis is carried on TGDs only, we will refer to just the ?-chase

termination problem, and we write CT? for the classes CT?∀ and CT?∃, where

? ∈ {obl, sobl}.
Another useful notion for our later analysis is the so-called critical database

for a set of TGDs [63]. Formally, the critical database for a schema R is the

database Dc(R) = {p(c, . . . , c) | p ∈ R and c ∈ C}. The critical database for

a set Σ of TGDs is defined as the database Dc(sch(Σ)); for brevity, we will

refer to Dc(sch(Σ)) by Dc(Σ). As shown in [63], to check for the termination

of the (semi-)oblivious Chase (thus for TGDs only) it suffices to focus on the

critical database.



4.2 State of the art 99

Fig. 4.1: (Extended) dependency graph of Example 4.2.

4.2 State of the art

4.2.1 Weak acyclicity

The class of weakly acyclic TGDs, defined in [38], is one of the first classes of

TGDs defined in the literature belonging to CTstd
∀ . It is defined via an acyclicity

condition on a graph, which encodes how terms are propagated among the

positions of the underlying schema during the Chase. In fact, weak-acyclicity

uses the well-known dependency graph.

Definition 4.1. The dependency graph of a set Σ of TGDs is a labeled,

directed multigraph DG(Σ) = (N,E, λ), where N = pos(sch(Σ)), λ : E →
Σ × N, and the edge-set E is as follows: for each r ∈ Σ, for each V ∈ fr(r),

and for each π ∈ pos(body(r), V ), with head(r) = A1, . . . , Ak: (1) for each

i ∈ [k], and for each π′ ∈ pos(Ai, V ), there is a normal edge e = (π, π′) ∈ E
with λ(e) = (r, i); (2) for each W ∈ ex(r,), for each i ∈ [k], and for each

π′ ∈ pos(Ai,W ), there is a special edge e = (π, π′) ∈ E with λ(e) = (r, i); (3)

no other edges are in E. 2

A set Σ of TGDs is weakly-acyclic (resp., richly-acyclic) if no cycle in

DG(Σ) contains a special edge. The class of weakly acyclic TGDs is denoted

by WA.

Intuitively, a normal edge (π, π′) in the dependency graph keeps track of

the fact that a term may propagate from π to π′ during the Chase. Moreover,

a special edge (π, π′′) keeps track of the fact that propagation of a value from

π to π′ also creates a null value at position π′′.

Example 4.2. Consider the set Σ consisting of the TGD

r = p(X,Y ) → ∃Z s(X,Z), p(X,Z).
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The graph DG(Σ) is depicted in Figure 4.1(a), where the dashed arrows rep-

resent special edges. Observe that the normal edges occur due to the variable

X, while the special edges due to the existentially quantified variable Z. 2

4.2.2 Rich Acyclicity

Rich acyclic TGDs is the class of TGDs defined in [58], for which the oblivious

Chase is guaranteed to terminate, that is sets of TGDs in this class belong to

CTobl
∀ = CTobl

∃ . The class is defined over the extended dependency graph.

The extended dependency graph of a set Σ of TGDs, introduced in [58], is

obtained from the dependency graph of Σ by adding some additional special

edges from the positions where non-frontier variables occur to the positions

where existentially quantified variables appear.

A set Σ of TGDs is richly-acyclic if no cycle in EDG(G) contains a special

edge. The class of richly acyclic TGDs is denoted by RA. It is easy to verify

that RA ⊂WA.

The extended dependency graph of Σ given in Example 4.1 is shown in

Figure 4.1(b); the additional special edges (dashed arrows) are due to the

non-frontier variable Y .

4.2.3 (C-)Stratification

The first extension of weak acyclicity is the stratification criterion, proposed

by [33] and aimed to identify classes of TGDs and EGDs belonging to CTstd
∃ .

The idea behind stratification is to decompose a set of TGDs and EGDs into

independent subsets, where each subset consists of constraints that may fire

each other, and to check each component separately for weak acyclicity.

Definition 4.3 (Precedence relation). [33] Given a set of TGDs and

EGDs Σ and given two dependencies r1 and r2 in Σ, we write r1 ≺ r2 iff

there exist an instance K, an instance J , a homomorphism h1 from body(r1)

to K, and a homomorphism h2 from body(r2) to J , such that:

• K |= h2(r2),

• K
r1,h1,γ1−→ J is a standard Chase step (for some γ1), and

• J 6|= h2(r2). 2

The Chase graph G(Σ) of a set of dependencies Σ is a directed graph

(Σ,E) containing an edge (r1, r2) iff r1 ≺ r2. Then, Σ is stratified (Str) iff

every cycle of G(Σ) is weakly acyclic.

Intuitively, r1 ≺ r2 means that firing r1 can cause the firing of r2.
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Definition 4.4 (Stratified constraints). [33] The Chase graph G(Σ) =

(Σ,E) of a set of constraints Σ contains a directed edge (r1, r2) between two

constraints iff r1 ≺ r2. We say that Σ is stratified iff the constraints in every

cycle of G(Σ) are weakly acyclic. 2

The class of stratified TGDs and EGDs is denoted by Str.
A variation of stratification, called c-stratification, has been proposed by

[64] in order to understand whether a set of TGDs and EGDs belong to

CTstd
∀ . Basically, c-stratification defines a different Chase graph and applies a

constraint whenever its body is satisfied (i.e. it uses the oblivious Chase).

Definition 4.5 (C-Stratified constraints). Given two constraints r1, r2 ∈
Σ, we say that r1 ≺c r2 iff there exists a relational database instance K and

two homomorphisms h1 and h2 such that:

i) K →∗,r1,h1J ,

ii) J 6|= h2(r2), and

iii)K |= h2(r2).

The c-Chase graph Gc(Σ) = (Σ,E) of a set of dependencies Σ contains

a directed edge (r1, r2) between two constraints iff r1 ≺c r2. We say that Σ is

c-stratified iff the dependencies in every cycle of Gc(Σ) are weakly acyclic. 2

The class of c-stratified dependencies is denoted by CStr.
Since c-stratification guarantees the termination of all standard Chase se-

quences (in contrast to stratification), the class of c-stratified constraints is

strictly included in the set of stratified ones (CStr ( Str).

4.2.4 Safety

An extension of weak acyclicity, called safety, which takes into account only

affected positions has been proposed in [66]. An affected position denotes a

position which could be associated with null values.

Definition 4.6 (Affected positions). Let Σ be a set of TGDs. The set of

affected positions aff(Σ) of Σ is defined as follows. Let Ri be a position

occurring in the head of some TGD r ∈ Σ, then

• if an existentially quantified variable appears in Ri, then Ri ∈ aff(Σ);

• if the same universally quantified variable X appears both in position Ri

and only in affected positions in the body of r, then Ri ∈ aff(Σ). 2
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Definition 4.7 (Safe set of TGDs). [66] Let Σ be a set of TGDs, then

prop(Σ) = (aff(Σ), E) denotes the propagation graph of Σ defined as follows.

For every TGD φ(X,Z)→ ∃Y ψ(X,Y) and for every X in X occurring in φ

in position Ri then

• if X occurs only in affected positions in φ then for every occurrence of X

in ψ in position Sj there is an edge Ri → Sj in E;

• if X occurs only in affected positions in φ then, for every Y in Y and for

every occurrence of Y in ψ in position Sj there is a special edge Ri →∗ Sj
in E.

A set of constraints Σ is said to be safe if the corresponding propagation graph

prop(Σ) has no cycles going through a special edge. 2

The class of safe sets of TGDs is denoted by SC.

4.2.5 Super weak acyclicity

Super-weak acyclicity [63] is a proper extension of safety (and thus weak

acyclicity), and its aim is to identify sets of TGDs belonging to CTsobl
∀ = CTsobl

∃ .

It builds upon a trigger graph Υ (Σ) = (Σ,E) where edges define relations

among TGDs. An edge ri  rj means that a null value introduced by a TGD

ri is propagated (directly or indirectly) into the head of rj .

Let Σ be a set of TGDs and let LP(Σ) be the logic program obtained by

replacing every TGD ∀X∀Zφ(X,Z) → ∃Yψ(X,Y) with its corresponding

skolemized version for the semi-oblivious Chase (see Section 2.2.2).

A place is a pair (a, i) where a is an atom of LP(Σ) and 0 ≤ i ≤ arity(a).

Given a TGD r and an existential variable Y in the head of r, Out(r, Y )

denotes the set of places (called output places) in the head of LP(r) where a

term of the form frY (X) occurs. Let r be a TGD r and let X be a universal

variable of r, In(r,X) denotes the set of places (called input places) in the

body of r where X occurs.

Two places (a, i) and (a′, i) are unifiable, denoted as (a, i) ∼ (a′, i), iff

there exist two substitutions θ and θ′ of (respectively) the variables a and a′

such that θ, θ′ map variables of a and a′ to constants or slkolem terms, and

θ(a) = θ′(a′). Given two sets of places Q and Q′, we write Q v Q′ iff for all

q ∈ Q there exists some q′ ∈ Q′ such that q ∼ q′.
For any set Q of places, Move(Σ,Q) denotes the smallest set of places Q′

such that Q ⊆ Q′, and for every constraint r = Br → Hr in LP(Σ) and every
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variable X, if ΠX(Br) v Q′ then ΠX(Hr) ⊆ Q′, where ΠX(Br) and ΠXHr)

denote the sets of places in Br and Hr where X occurs.

Definition 4.8 (Trigger graph and Super-weak Acyclicity). [63] Given

a set Σ of TGDs and two TGDs r, r′ ∈ Σ, we say that r triggers r′ in Σ,

and we write r  r′, iff there exists an existential variable Y in the head of

r, and a universal variable X ′ occurring both in the body and head of r′ such

that In(r′, X ′) vMove(Σ,Out(r, Y )). A set of constraints Σ is super-weakly

acyclic iff the trigger graph Υ (Σ) = (Σ, {(r1, r2)|r1  r2}) is acyclic. 2

The class of super-weakly acyclic sets of TGDs is denoted by SwA.

4.2.6 Safe restriction and Inductive restriction

A more refined extension of both c-stratification and safety has been proposed

under the name of safe restriction [66, 64], working on TGDs and EGDs.

Basically, safe restriction refines stratification by considering constraint firing

and possible propagation of null values together.

In order to introduce this concept we need some further definitions. For

any set of positions P and a TGD r, aff(r, P ) denotes the set of positions π

from the head of r such that i) for every universally quantified variable X in

π, X occurs in the body of r only in positions from P or ii) π contains an

existentially quantified variable.

For any r1, r2 ∈ Σ and P ⊆ pos(Σ), r1 ≺P r2 if

1. r1 ≺c r2 (i.e. there exists an instance K and two homomorphisms h1 and

h2 such that i) K →r1,h1J , ii) J 6|= h2(r2) and iii) K |= h2(r2)), and

2. there is null value propagated from the body to the head of h2(r2) such

that it occurs in K only in positions from P .

Definition 4.9 (Safe restriction). A 2-restriction system is a pair (G′(Σ), P ),

where G′(Σ) = (Σ,E) is a directed graph and P ⊆ pos(Σ) such that:

1. for all (r1, r2) ∈ E: if r1 is a TGD, then aff(r1, P )∩pos(Σ) ⊆ P , whereas

if r2 is a TGD, then aff(r2, P ) ∩ pos(Σ) ⊆ P , and

2. r1 ≺P r2 ⇒ (r1, r2) ∈ E.

Σ is called safely restricted if and only if there is a restriction system

(G′(Σ), P ) for Σ such that every strongly connected component in G′(Σ) is

safe. 2
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A 2-restriction system is minimal if it is obtained from ((Σ,∅),∅) by a

repeated application of conditions 1 and 2 of Definition 4.9 (until both condi-

tions hold considering all constraints) such that, in case Condition 1 is applied,

P is extended only by those positions that are required to satisfy the condi-

tion. [65] has shown that Σ is safely restricted if and only if every strongly

connected component in G′(Σ) is safe, where (G′(Σ), P ) is the minimal 2-

restriction system for Σ.

Safely restriction has been further extended into a criterion called induc-

tive restriction, whose main idea is to decompose a given set of TGDs and

EGDs into smaller subsets (in a more refined way than safe restriction). In

particular, IR first computes the system (G′(Σ), P ) and partitions Σ into

Σ1, ..., Σn, where each Σi is a set of dependencies defining a strongly con-

nected component in G′(Σ), next, if n = 1 the safety criterion is applied to

Σ, otherwise the inductive restriction criterion is applied inductively to each

Σi. The class of inductive restricted dependencies is denoted by IR.

The problem of checking whether a set of dependencies is inductively re-

stricted is in co-NP . As well as c-stratification and safety, inductive restriction

guarantees that for every database D there exists a polynomial in the size of

D that bounds the length of every Chase sequence of D with Σ [64]

Inductive restriction has been further extended by considering not only

the relationships among pairs of constraints, but general sequences of m con-

straints, with m ≥ 2 [66]. The use of sequences of m ≥ 2 constraints allows

a hierarchy of classes where each class is characterized by m and denoted by

T [m], with T [2] = IR and T [m] ( T [m+ 1].

4.2.7 Local Stratification

In [55], an extension of both IR and SwA was proposed. We start by introduc-

ing a notion of fireable place. We say that a place q appearing in the body of a

dependency r could be fired by a place q′ appearing in the head of constraint

r′, denoted by q′ < q, if q ∼ q′ and r′ < r. Given two sets of places Q and Q′,

we say that Q could be fired by Q′, denoted by Q′ < Q, iff for all q ∈ Q there

exists some q′ ∈ Q′ such that q′ < q.

Given a set Q of places, we define MOV E(Σ,Q) as the smallest set of

places Q′ such that: i) Q ⊆ Q′, and ii) for every constraint r = Br → Hr

in sk(Σ) and every variable X, if Q′ < ΠX(Br), then ΠX(Hr) ⊆ Q′. Here

ΠX(Br) and ΠX(Hr) denote the sets of places in Br and Hr where X occurs.
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With respect to the function Move, the new function MOVE here con-

sidered takes into account the firing of places and not only the unification of

places.

Definition 4.10 (Local Stratification). Given a set Σ of TGDs and two

TGDs r1, r2 ∈ Σ, we say that r1 triggers r2 in Σ and write r1 ↪→ r2 iff there

exists an existential variable Y in the head of r1, and a universal variable X

occurring both in the body and head of r2 such that MOVE(Σ,Out(r1, Y )) <

In(r2, x). A set of constraints Σ is locally stratified iff the trigger graph

∆(Σ) = {(r1, r2)|r1 ↪→ r2} is acyclic. 2

The class of locally stratified constraints is denoted by LS.

4.2.8 Model-faithful acyclicity

In [50], the classes of model-faithful acyclic (MFA) and model-summarising

acyclic (MSA) TGDs have been proposed. The idea is to run the oblivious

(or semi-oblivious) Chase and then use sufficient checks to identify cyclic

computations. Since no sufficient, necessary, and computable test can be given

for the latter, [50] adopted an approach of “raising the alarm” and stop the

process if a “cyclic” term f(t) is derived, i.e., where f occurs in t. This is

done in a declarative way by extending a given set of dependencies Σ into a

new set Σ′, and then checking whether Σ′ does not entail a special predicate.

The two aforementioned techniques are defined for TGDs only, as EGDs are

assumed to be emulated through substitution-free simulation (discussed in

Section 4.4).

4.2.9 Rewriting technique

Rewriting techniques for checking Chase termination have been proposed

in [54, 55, 56]. They consist in rewriting a set of TGDs Σ into a new set

Σα with the aim of verifying structural properties for Chase termination on

Σα rather than Σ. These techniques have been defined for TGDs only and

perform an analysis of the semi-oblivious Chase. [56] showed that most of the

termination criteria improve if we consider rewritten TGDs rather than the

original ones. The rewriting approach has also been used to define the class

AC of acyclic TGDs.
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4.3 Termination of Guarded rules

Although the Chase termination problem is undecidable in general, the proof

given in [47] does not show the undecidability of the problem for TGDs that

enjoy some structural conditions, which in turn guarantee favorable model-

theoretic properties. Such a key condition is guardedness, a well-accepted

paradigm that gives rise to robust rule-based languages [11, 22, 23] that

capture important databases constraints such as inclusion dependencies, and

lightweight description logics such as DL-Lite [27] and EL [10].

Guardedness guarantees the tree-likeness of the underlying models, and

thus the decidability of central database problems such as query answering

and containment under constraints. The question that comes up is whether

guardedness has the same positive impact on the Chase termination problem:

Question 1: Given a set Σ of guarded TGDs, is it possible to decide whether,

for every database D, the Chase on D and Σ terminates?

Of course, if the answer to the above question is positive, then the next

step is to understand how complex is the problem of determining whether the

Chase terminates:

Question 2: Given a set Σ of guarded TGDs, what is the exact complexity

of deciding whether, for every database D, the Chase on D and Σ termi-

nates?

Our main goal in this section is to study in depth the Chase termination

problem for guarded TGDs, and give answers to the above fundamental ques-

tions. In fact, we focus on the (semi-)oblivious versions of the Chase, and we

show that deciding termination for guarded TGDs is decidable [19]. This is

the first contribution that establishes positive results for the (semi-)oblivious

Chase termination problem.

4.3.1 Linearity

We proceed to investigate the (semi-)oblivious Chase termination problem

for (simple) linear TGDs. The goal of this section is twofold: for every ? ∈
{obl, sobl},

1. Syntactically characterize the classes (CT? ∩ SL) and (CT? ∩ L); and

2. Pinpoint the complexity of the ?-chase termination problem for sets of

TGDs of (S)L.
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For our first goal, we are going to exploit existing syntactic conditions that

guarantee the termination of every (semi-)oblivious Chase sequence on all

databases; in fact, our analysis will build on rich-acyclicity [58] and weak-

acyclicity [38]. More precisely, we are going to show that for simple lin-

ear TGDs rich-acyclicity (resp., weak-acyclicity) is enough for characterizing

(CTobl∩SL) (resp., (CTsobl∩SL)). However, for (non-simple) linear TGDs this

is not the case, and we need to carefully extend rich- and weak-acyclicity. The

above syntactic characterizations, apart from being interesting in their own

right, allow us to obtain optimal upper bounds for the ?-chase termination

problem for (S)L, and thus achieving our second goal — we simply need to

analyze the complexity of deciding whether a set of (simple) linear TGDs

enjoys the above acyclicity-based conditions.

In the sequel, we assume a fixed order on the head-atoms of TGDs.

Characterizing (CTobl ∩ SL) and (CTsobl ∩ SL)

Oblivious Chase

We start our investigation by showing that rich-acyclicity characterizes

the fragment of SL that guarantees the termination of the oblivious Chase. In

particular, we prove that:

Theorem 4.11. (CTobl ∩ SL) = (RA ∩ SL). 2

To establish the above theorem it suffices to show that, for an arbitrary set

of TGDs Σ ∈ SL, Σ ∈ CTobl iff Σ ∈ RA. The “if” direction has been shown

in [58]. Assume now that Σ 6∈ RA. We are going to show that there exists a

database D, and a non-terminating obl-chase sequence of D w.r.t. Σ, which

immediately implies that Σ 6∈ CTobl. But let us first introduce our generic

technical tool, which will be used also for the semi-oblivious Chase, and all

the other languages that we treat in this work. Given a TGD r, �?r is defined

as 6=, if ? = obl, and 6∼r, if ? = sobl.

Definition 4.12. We say that a set Σ of TGDs admits an infinite ?-chase

derivation, where ? ∈ {obl, sobl}, if there exist infinite sequences I0, I1, . . . and

(r0, h0), (r1, h1), . . ., where r0, r1, . . . ∈ Σ, such that

1. for each i > 0, Ii
ri,hi→ Ii+1; and

2. for each i 6= j > 0, ri = rj = r implies hi �?r hj. 2
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It is possible to show that the ?-chase termination problem, where ? ∈
{obl, sobl}, is tantamount to the problem of deciding whether a set of TGDs

admits an infinite ?-chase derivation.

Proposition 4.13. Consider a set Σ of TGDs. Σ 6∈ CT? iff Σ admits an

infinite ?-chase derivation, where ? ∈ {obl, sobl}. 2

The “only-if” direction is trivial. For the “if” direction, it suffices to show

that there exists a database D, and a non-terminating ?-chase sequence of D

w.r.t. Σ. By hypothesis, we have sequences I0, I1, . . . and (r0, h0), (r1, h1), . . .

as in Definition 4.12. A non-terminating ?-chase sequence of I0 w.r.t. Σ is

J0, J
1
0 , . . . , J

k0
0 , J1, J

1
1 , . . . , J

k1
1 , J2, . . .

where,

- J0 = I0;

- for each i > 0, there exists a trigger (r, h) for Σ on Ji such that Ji〈r, h〉J1
i ;

- for each i > 0 and 1 6 j < ki, there exists a trigger (r, h) for Σ on Ji such

that Jji 〈r, h〉J
j+1
i ;

- for each i > 0, Jkii 〈ri, hi〉Ji+1; recall that (ri, hi) is a trigger occurring in

the sequence obtained by hypothesis;

- for each pair of triggers (r, h) and (r′, h′) considered above, r = r′ implies

h �?r h′; and

- for each i > 0, ki > 0 is the maximal integer such that the above conditions

hold.

Intuitively speaking, the above Chase sequence constructs the Chase in a

level-by-level fashion, where level zero is defined as J0, and the atoms of level

i are obtained by applying TGDs on atoms of level i − 1, by giving priority

to the triggers (r0, h0), (r1, h1), . . .. Therefore, Proposition 4.13 follows.

We proceed now with the proof of Theorem 4.11. Recall that we need

to show the following: for the set Σ ∈ SL, Σ 6∈ RA implies Σ 6∈ CTobl. By

Proposition 4.13, it suffices to show that, if Σ 6∈ RA, then Σ admits an infinite

obl-chase derivation. The rest of this section is devoted to establish that indeed

Σ admits an infinite obl-chase derivation.

By hypothesis, there exists a cycle in EDG(Σ) that contains a spe-

cial edge; let (v0, v1), (v1, v2), . . . , (vn−1, vn) be such a cycle (v0 = vn) with

λ((vi, vi+1)) = (ri, ki), for each 0 6 i < n. In the sequel, we refer to the above

cycle by C. One may claim that, starting from a database D that triggers the
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Fig. 4.2: Cycles for Examples 4.14 and 4.15.

TGD r0, the cycle C will give rise to an infinite obl-chase derivation, which in

turn implies that Σ admits an infinite obl-chase derivation, as needed. How-

ever, such a derivation may be invalid due to the fact that the involved triggers

are not distinct. In other words, there is no guarantee that the edges of C that

are labeled with the same TGD give rise to different triggers.

Example 4.14. Consider the set Σ′ ∈ SL consisting of

ρ1 = p(X,Y )→ ∃Z s(Z,Z)

ρ2 = s(X,Y )→ p(Y,X)

ρ3 = p(X,Y )→ s(X,Y ).

It is easy to verify that the cycle depicted in Figure 4.2(a), where the

dashed arrow represents a special edge, occurs in EDG(Σ′). Starting from

I0 = {p(c, c)}, where c ∈ C, if we apply the TGDs as dictated by this cycle,

we get an infinite sequence of instances I0, I1, . . . with

I1 = I0 ∪ {s(z1, z1)}
I2 = I3 = I4 = I1 ∪ {p(z1, z1)}
I5 = I4 ∪ {s(z2, z2)}
I6 = I7 = I8 = I5 ∪ {p(z2, z2)}
. . .

where z1, z2, . . . are nulls. However, this sequence is not a valid obl-chase

derivation since, for each i ∈ {1, 5, 9, 13, . . .}, assuming that Ii
ρ2,h→ Ii+1 and

Ii+2
ρ2,h

′

→ Ii+3, h = h′ = {X2 → zd i4 e, Y2 → zd i4 e}. Thus, (ρ2, h), (ρ2, h
′) are

not distinct, as required by an infinite obl-chase derivation. 2

Although C does not necessarily encode a valid infinite obl-chase deriva-

tion, it is possible to show that in EDG(Σ) there exists a cycle C ′, whose

length is less or equal than the length of C, which encodes a valid infinite

obl-chase derivation. Intuitively speaking, if we avoid to reapply the repeated

triggers that are involved in the infinite sequence of instances obtained due to
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C, then we get a valid obl-chase derivation, which corresponds to C ′. In fact,

C ′ is one of the shortest cycles in EDG(Σ) that contains a special edge. Let

us illustrate this via an example that builds on Example 4.14.

Example 4.15. Consider the set Σ′ given in Example 4.14. As already dis-

cussed above, starting from I0 = {p(c, c)}, and applying the TGDs as dic-

tated by the cycle of EDG(Σ) shown in Figure 4.2(a), we obtain an infinite

sequence of instances that is not a valid obl-chase derivation, since some of

the involved triggers are repeated. If we avoid to reapply those triggers, then

we get an infinite sequence of instances J0 = I0, J1, . . . with

J1 = J0 ∪ {s(z1, z1)} J2 = J1 ∪ {p(z1, z1)}
J3 = J2 ∪ {s(z2, z2)} J4 = J3 ∪ {p(z2, z2)}
. . .

where z1, z2, . . . are nulls of N. It is easy to verify that J0, J1, . . . is a valid

infinite obl-chase derivation, and that this derivation corresponds to the cycle

of EDG(Σ′) depicted in Figure 4.2(b). This cycle is of length two, and there

is no shorter cycle that contains a special edge. 2

From the above discussion, one can exploit the minimal cycles in the ex-

tended dependency graph, and show that:

Lemma 4.16. For every set Σ ∈ SL, if Σ 6∈ RA, then Σ admits an infinite

obl-chase derivation. 2

By Proposition 4.13 and Lemma 4.16, we immediately get that Σ 6∈ CTobl,

and Theorem 4.11 follows.

Semi-Oblivious Chase

By following a similar approach, we can characterize the fragment of SL

that guarantees the termination of the semi-oblivious Chase. Clearly, for a set

of TGDs Σ, Σ ∈ (RA∩SL) implies Σ ∈ (CTobl∩SL), which in turn implies Σ ∈
(CTsobl ∩ SL). However, the other direction is, in general, not true. Consider

the set Σ given in Example 4.2. It is easy to verify that Σ ∈ (CTsobl ∩ SL),

but Σ 6∈ (RA∩SL), since in its extended dependency graph, which is depicted

in Figure 4.1, there exists a cycle that contains a special edge.

The main reason why rich-acyclicity is not enough for characterizing

(CTsobl ∩ SL), is the existence (in the extended dependency graph) of the
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special edges from the positions where non-frontier variables occur to the po-

sitions where existentially quantified variables appear. In fact, those edges

encode erroneous propagations of nulls that do not take place during the

construction of the semi-oblivious Chase. Recall that after eliminating those

problematic special edges, we get a graph structure that coincides with the

dependency graph. This observation led us to conjecture that weak-acyclicity

is enough for characterizing (CTsobl ∩SL). By giving a proof similar to that of

Lemma 4.16, with the difference that we exploit the dependency graph instead

of the extended dependency graph, we show that:

Lemma 4.17. For every set Σ ∈ SL, if Σ 6∈ WA, then Σ admits an infinite

sobl-chase derivation. 2

By Proposition 4.13 and Lemma 4.17, we immediately get that Σ 6∈ WA

implies Σ 6∈ CTsobl. Notice that the other direction is implicit in [63], where

the same has been shown for a superclass of WA, and the next result follows:

Theorem 4.18. (CTsobl ∩ SL) = (WA ∩ SL). 2

Consequences to Other Formalisms

Despite their simplicity, simple linear TGDs are powerful enough for captur-

ing prominent database dependencies, and in particular inclusion dependen-

cies; see, e.g., [5]. It is well-known that inclusion dependencies correspond to

simple linear (constant-free) TGDs with just one head-atom without repeti-

tion of variables, and we refer to this formalism by ID. Furthermore, simple

linear TGDs generalize prominent ontology languages, and in particular DL-

LiteR [27]. In fact, DL-LiteR (ignoring disjointness and non-membership ax-

ioms) corresponds to simple linear (constant-free) TGDs that use only unary

and binary predicates; we refer to this formalism by DL-LiteTGD. It is evi-

dent that our preceding results on simple linear TGDs immediately imply the

following:

Corollary 4.19. It holds that,

1. (CT? ∩ ID) = ( L(?) ∩ ID),

2. (CT? ∩ DL-LiteTGD) = ( L(?) ∩ DL-LiteTGD),

where ? ∈ {obl, sobl},  L(obl) = RA, and  L(sobl) = WA. 2
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Fig. 4.3: Extended dependency graphs of Examples 4.20 and 4.23.

Characterizing (CTobl ∩ L) and (CTsobl ∩ L)

Oblivious Chase

We proceed with the characterization of the fragment of L that guaran-

tees the termination of the oblivious Chase. Let us first expose, by means of

simple examples, the two reasons for which rich-acyclicity is not enough for

our purposes.

Example 4.20. Consider the set Σ ∈ L consisting of

r1 = p(X,X)→ ∃Z s(Z,X)

r2 = s(X,X)→ ∃Z p(Z,X).

It is easy to verify that in the extended dependency graph of Σ, depicted in

Figure 4.3(a), there exists a cycle that contains a special edge. However, for

every database D, every obl-chase sequence of D w.r.t. Σ is terminating. 2

As shown by the above example, the first reason why rich-acyclicity is not

enough for characterizing (CTobl ∩ L), is the fact that a cycle in the extended

dependency graph does not necessarily encode a Chase derivation. Consider,

for example, the cycle (p[1], s[1]), (s[1], p[1]), where the first edge is labeled by

r1, and the second edge by r2. One expects that, after applying r1 during the

Chase, the obtained atom A may trigger r2. However, this is not the case, since

the atom A is necessarily of the form s(t, t′), where t 6= t′, which means that

there is no homomorphism from body(r2) to A. The atom A is of the above

form since, in the head-atom of r1, at position s[1] we have an existentially

quantified variable, while at position s[2] a frontier variable.

The above informal discussion, demonstrates the need of finding an effec-

tive way for guaranteeing that a cycle in the extended dependency graph can

indeed be traversed during the construction of the Chase, in which case is

called active. To this end, we need to understand when, for two single-head

linear TGDs r1 and r2, the atom obtained by applying r1 may trigger r2.
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Notice that we focus on single-head TGDs, since, by definition, the edges of

the extended dependency graph are labeled by single-head TGDs. The above

property is captured by the notion of compatibility. In the sequel, we assume

the reader is familiar with the notion of unification. Given two atoms A and

B that unify, we denote by MGU(A,B) their most general unifier.

Definition 4.21. Let r1 and r2 be single-head linear TGDs. Then, r1 is

compatible with r2 if: head(r1) and body(r2) unify, and for each X ∈
var(body(r2)), assuming that Π = pos(body(r2), {X}), either var(head(r1), Π)

⊆ fr(r1), or, var(head(r1), Π) = {Z}, for some Z ∈ ex(r1,). 2

Notice that, in Example 4.20, r1 is not compatible with r2, and vice-versa.

Having the notion of compatibility in place, one may be tempted to claim

that a sequence of single-head linear TGDs r1, . . . , rn is active if, for each

i ∈ [n − 1], ri is compatible with ri+1. However, this does not capture our

intention. Instead, we need to ensure that the resolvent of such a sequence,

which is actually a single-head linear TGD that simulates the behavior of

r1, . . . , rn, exists.

Definition 4.22. The resolvent of a sequence r1, . . . , rn of single-head lin-

ear TGDs, denoted R(r1, . . . , rn), is inductively defined as follows (for conve-

nience, we write ρ for R(r1, . . . , rn−1)):

1. R(r1) = r1; and

2. R(r1, . . . , rn) = θ(body(ρ)) → θ(head(rn)), where θ = MGU(head(ρ),

body(rn)) if ρ 6= ⊥ and ρ is compatible with rn; otherwise, R(r1, . . . , rn) =

⊥.

The sequence r1, . . . , rn is active if R(r1, . . . , rn) 6= ⊥. 2

Apparently, in order to achieve our goal, we need to extend rich-acyclicity

to active-rich-acyclicity, by allowing cycles with special edges to appear in

the extended dependency graph, as long as they do not give rise to active

sequences of single-head linear TGDs. Unfortunately, active-rich-acyclicity is

still not expressive enough for characterizing the fragment of linear TGDs

that guarantees the termination of the oblivious Chase.

Example 4.23. Consider the set Σ ∈ L consisting of

r1 = p(X,Y, Z)→ s(X,Y, Z)

r2 = s(X,Y,X)→ ∃Z p(Y, Z,X).
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It is easy to verify that in EDG(Σ), depicted in Figure 4.3(b), there exists an

active cycle that contains a special edge. For example, C = (p[2], s[2]), (s[2], p[2])

gives rise to the sequence r1, r2. Since r1 is compatible with r2, we get that

R(r1, r2) 6= ⊥, which in turn implies that C is active. Even if Σ is not actively-

richly-acyclic, we can show that, for every D, every obl-chase sequence of D

w.r.t. Σ is terminating. To this aim, it suffices to verify that every obl-chase

sequence of the critical database Dc({p, s}) w.r.t. Σ is terminating. 2

The above example exposes the second reason why rich-acyclicity is not

expressive enough for characterizing (CTobl
∀ ∩L). In particular, even if a cycle in

the extended dependency graph is active, which means that it can be traversed

at least once during the construction of the Chase, it is not guaranteed that

it can be traversed infinitely many times, and thus give rise to an infinite

Chase derivation. Consider, for example, the cycle C = (p[2], s[2]), (s[2], p[2]),

where the first edge is labeled by r1, and the second edge by r2. Since C is

active, one expects that, starting from p(c, c, c), where p is the predicate of

body(r1), we can apply r1, r2, r1, . . . infinitely many times during the Chase.

However, after applying r1, r2, r1, r2, r1, we obtain an atom A = s(t, t′, c),

where t 6= t′, and thus there is no homomorphism from body(r2) to A. In

other words, the cycle C can be traversed twice, but during its third traversal

r2 is not triggered. The reason for this behavior is the fact that the sequence

R(r1, r2),R(r1, r2),R(r1, r2) of length three — recall that the Chase derivation

is blocked during the third traversal of C — is not active.

It is clear that we need an effective way for ensuring that an active cycle in

the extended dependency graph can be traversed infinitely many times during

the construction of the Chase. In particular, assuming that an active cycle is

labeled by the TGDs r1, . . . , rn, we need to ensure that, for every k > 0,

if ρ = R(r1, . . . , rn), the sequence ρ, . . . , ρ of length k is active, in which

case r1, . . . , rn is critical. Interestingly, as we shall see below, for ensuring the

above criticality condition, we only need to consider sequences of length up to

(ωr1 + 1), where ωr1 is the arity of the predicate of body(r1). This leads to the

following definition of critical sequences. Henceforth, rk denotes the sequence

r, . . . , r of length k:

Definition 4.24. A sequence r1, . . . , rn of single-head linear TGDs is critical

if:

1. It is active; and
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2. For each k ∈ [ωr1 + 1], the sequence ρk, where ρ = R(r1, . . . , rn), is ac-

tive. 2

We are now ready to extend rich-acyclicity to critical-rich-acyclicity, which,

as we shall see, is the formalism that characterizes (CTobl ∩ L).

Definition 4.25. Consider a set Σ ∈ L, and let EDG(Σ) = (N,E, λ). A

cycle (v0, v1), . . . , (vn−1, vn) in EDG(Σ) is called critical, if λ((v0, v1)), . . . ,

λ((vn−1, vn)) is critical. We say that Σ is critically-richly-acyclic, if no crit-

ical cycle in EDG(Σ) contains a special edge, and the corresponding class is

denoted LCriticalRA. 2

The main result of this section follows:

Theorem 4.26. (CTobl ∩ L) = LCriticalRA. 2

The “if” direction of the above result is shown by giving a proof similar

to the one given in [58] for showing that Σ ∈ RA implies Σ ∈ CTobl. The

interesting part is to show that, for a set Σ ∈ L, Σ 6∈ LCriticalRA implies

Σ 6∈ CTobl. By Proposition 4.13, it suffices to show that, if Σ 6∈ LCriticalRA,

then Σ admits an infinite obl-chase derivation. This is a rather non-trivial

task, which requires some intermediate results.

The equality type of an atom is a set of equalities among positions

that perfectly describe its shape. Formally, given a (constant-free) atom

A = p(X1, . . . , Xn), the equality type of A is defined as the set eqtype(A) =

{p[i] = p[j] | Xi = Xj}. For a linear TGD r, let eqtype(r) = eqtype(body(r)).

The following lemma establishes a useful property about active sequences and

equality types:

Lemma 4.27. Let r be a single-head linear TGD such that ri and ri+1 are

active, for some integer i > 0, and eqtype(R(ri)) = eqtype(R(ri+1)). Then,

ri+2 is active, and eqtype(R(ri+1)) = eqtype(R(ri+2)). 2

The above result allows us to show that critical cycles can be traversed

infinitely many times during the construction of the Chase, starting from the

critical database.

Consider a critical sequence r1, . . . , rn of single-head linear TGDs, and let

ρ = R(r1, . . . , rn). It is not difficult to show that there exists i ∈ [ωr1 + 1]

such that ρi and ρi+1 are active, and eqtype(R(ρi)) = eqtype(R(ρi+1)). By

recursively applying Lemma 4.27, we conclude that, for every k > [ωr1 + 1],

ρk is active. Moreover, since r1, . . . , rn is critical, for every k ∈ [ωr1 + 1], ρk is

active. From the above discussion, we get the following crucial result:
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Lemma 4.28. Let r1, . . . , rn be a critical sequence of single-head linear TGDs.

Then, for every k > 0, ρk, where ρ = R(r1, . . . , rn), is active. 2

By using Lemma 4.28, and the fact that the resolvent of an active sequence

of single-head linear TGDs mimics the behavior of the sequence during the

Chase, starting from the critical database (this can be easily shown by induc-

tion on the length of the sequence), we can establish that a minimal critical

cycle that contains a special edge gives rise to an infinite Chase derivation,

which in turn implies the following:

Lemma 4.29. For every set Σ ∈ L, if Σ 6∈ LCriticalRA, then Σ admits an

infinite obl-chase derivation. 2

By Proposition 4.13 and Lemma 4.29, we get that Σ 6∈ LCriticalRA implies

Σ 6∈ CTobl, and Theorem 4.26 follows.

Semi-Oblivious Chase

By applying similar techniques, we can characterize the fragment of L that

guarantees the termination of the semi-oblivious Chase. Towards this direc-

tion, we first need to introduce the notion of critical-weak-acyclicity, which is

defined as critical-rich-acyclicity, with the difference that the desired condi-

tion is posed on the dependency graph, and not on the extended dependency

graph.

Definition 4.30. A set Σ ∈ L is critically-weakly-acyclic, if no critical cycle

in DG(Σ) contains a special edge, and the corresponding class is denoted

LCriticalWA. 2

As already discussed in Section 4.3.1, the extended dependency graph

encodes propagations of nulls that do not take place during the construction

of the semi-oblivious Chase, and this is exactly the reason why we need to rely

on the dependency graph for the characterization of (CTsobl ∩ L). By giving a

proof similar to that of Lemma 4.29, with the difference that we exploit the

dependency graph instead of the extended dependency graph, we show that:

Lemma 4.31. For every set Σ ∈ L, if Σ 6∈ LCriticalWA, then Σ admits an

infinite sobl-chase derivation. 2

By Proposition 4.13 and Lemma 4.31, Σ 6∈ LCriticalWA implies Σ 6∈ CTsobl.

The proof of the other direction is along the lines of the proof given in [38]

for showing that weak-acyclicity guarantees the termination of the standard

Chase, and we get that:
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Theorem 4.32. (CTsobl ∩ L) = LCriticalWA. 2

Complexity

Let us now proceed with our second goal, that is, to pinpoint the com-

plexity of the ?-chase termination problem for sets of TGDs of (S)L, where

? ∈ {obl, sobl}.

Simple Linear TGDs

We first focus on simple linear TGDs, and we show the following:

Theorem 4.33. Consider a set Σ ∈ SL. The problem of deciding whether

Σ ∈ CT?, where ? ∈ {obl, sobl}, is nl-complete, even for unary and binary

predicates. 2

Upper Bound. To obtain the upper bound, by Theorems 4.11 and 4.18,

it suffices to show that deciding whether Σ is richly-acyclic (or weakly-acyclic)

is in nl.

Lemma 4.34. Consider Σ ∈ SL. The problem of deciding if Σ ∈  L, where

 L ∈ {RA,WA}, is in NSPACE(log(ω · |sch(Σ)|)), where ω is the maximum

arity of sch(Σ). 2

The complement of the problem under consideration can be seen as an

instance of graph reachability. In fact, we need to decide whether there exists

a node v in the (extended) dependency graph of Σ that is reachable from

itself, with the additional condition that the path from v to itself contains

at least one special edge. This can be done via a nondeterministic procedure,

where at each step needs to remember two consecutive edges of the graph (i.e.,

three positions of sch(Σ)), the origin of the traversed cycle (i.e, the position

v), and a binary value indicating whether a special edge has been visited or

not. All the above elements can be maintained in O(log(ω · |sch(Σ)|)) space.

Lower Bound. Let us now proceed with the nl-hardness. We first intro-

duce the so-called looping operator, which will allow us to establish a generic

complexity tool for proving lower bounds for the Chase termination problem.

Notice that this tool will be used, not only for simple linear TGDs, but also for

all the other languages considered in this work. In fact, the goal of the looping

operator is to provide a generic reduction from propositional atom entailment

to the complement of Chase termination. Recall that an instance of propo-

sitional atom entailment consists of a database D, a set Σ of TGDs, and a
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propositional (i.e., 0-ary) predicate q, and the question is whether D∪Σ |= q,

or, equivalently, whether q belongs to the result of the Chase of D w.r.t. Σ.

Let (D,Σ, q) be an instance of propositional atom entailment. Given an

atom A = p(t), where t = (t1, . . . , tn), occurring either in D (i.e., t ∈ Cn) or

in Σ (i.e., t ∈ Vn), we define, for some Y ∈ V not in Σ, the atomic formula

AYΣ =


∃Xt1 . . . ∃Xtn p(Y,Xt1 , . . . , Xtn), t ∈ Cn,

p(Y, t1, . . . , tn), t ∈ Vn,

where Xt1 , . . . , Xtn ∈ V do not appear in Σ. Let ΦYD,Σ = (
∧
A∈D A

Y
Σ), and

ΣY be the set of TGDs obtained by replacing each atom A occurring in Σ

with AYΣ . We are now ready to define the looping operator.

Definition 4.35. Consider an instance (D,Σ, q) of propositional atom en-

tailment. The application of the looping operator on (D,Σ, q) returns the set

of TGDs

Loop(D,Σ, q) =

{loop(X,Y )→ ΦYD,Σ} ∪ΣY ∪ {q(Y )→ ∃Z loop(Y, Z)},

where loop 6∈ sch(Σ). A class of TGDs  L is closed under looping if, for

every instance (D,Σ, q) of propositional atom entailment, where Σ ∈  L,

Loop(D,Σ, q) ∈  L. 2

By using the looping operator, we can transfer, in a uniform way, lower

bounds from propositional atom entailment to Chase termination. Our generic

complexity result follows:

Proposition 4.36. Let  L be a class of TGDs that is closed under looping,

such that propositional atom entailment for (CT? ∩  L), where ? ∈ {obl, sobl},
is C-hard, for a complexity class C that is closed under log-space reductions.

For a set Σ ∈  L, deciding whether Σ ∈ CT? is coC-hard. 2

To establish the above generic result, it suffices to reduce propositional

atom entailment under (CT? ∩  L) to the complement of Chase termination

under  L. In particular, given a (non-empty) database D, a set Σ ∈ (CT? ∩  L),

and a propositional predicate q, we need to construct in log-space a set Σ′ ∈  L

such that, D∪Σ |= q iff there exists a database D′ such that a non-terminating
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?-chase sequence of D′ w.r.t. Σ′ exists. It can be shown that the above equiv-

alence holds for Σ′ = Loop(D,Σ, q). The key idea underlying the looping op-

erator can be sketchily described as follows. Consider the simple linear TGD

r = loop(X,Y )→ ∃Z loop(Y, Z). It is easy to verify that there exists only one

?-chase sequence of {loop(a, b)} w.r.t. {r}, which is non-terminating. Our in-

tention is to mimic the behavior of r using Σ′, with the key difference that an

atom of the form loop(t′, t′′) is obtained by applying r on an atom loop(t, t′)

only if D∪Σ |= q. This is achieved by “plugging” between body(r) and head(r)

the set ΣY , which, by hypothesis, guarantees the termination of the Chase.

The given database D is generated by the TGD loop(X,Y )→ ΦYD,Σ , while the

check whether q is entailed is performed by q(Y ) → ∃Z loop(Y,Z). Since, by

assumption,  L is closed under looping, Σ′ ∈  L, and Proposition 4.36 follows.

By the Immerman-Szelepcsényi theorem, conl = nl. Thus, to obtain the

nl-hardness for the Chase termination problem under simple linear TGDs,

since SL is closed under looping, by Proposition 4.36, it suffices to show that

propositional atom entailment under (CT?∩SL) is nl-hard, even for unary and

binary predicates. This is shown by giving a reduction from graph reachability.

Given a directed graph G = (N,E) and two nodes s, t ∈ N , we construct a

database D, a set Σ ∈ SL, and a propositional predicate q such that D∪Σ |= q

iff t is reachable from s. The idea is to construct Σ in such a way that its

predicate graph coincides with G, while D stores the node s, and q represents

the node t. The next result follows:

Lemma 4.37. Propositional atom entailment under (CT? ∩ SL), where ? ∈
{obl, sobl}, is nl-hard, even for unary and binary predicates. 2

Theorem 4.33 follows from Proposition 4.36, and Lemmas 4.34 and 4.37.

It is interesting to say that Loop(D,Σ, q) belongs to ID and DL-LiteTGD, and

thus Theorem 4.33 holds also for inclusion dependencies and DL-LiteR.

Linear TGDs

We now focus on arbitrary linear TGDs, and we show the following:

Theorem 4.38. Consider a set Σ ∈ L. The problem of deciding whether

Σ ∈ CT?, where ? ∈ {obl, sobl}, is pspace-complete, and nl-complete for

predicates of bounded arity. 2

Upper Bound. By Theorems 4.26 and 4.32, it suffices to show that the

problem of deciding whether Σ is critically-richly-acyclic (or critically-weakly-
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acyclic) can be solved in polynomial space, in general, and in nondeterministic

logarithmic space, in case of predicates of bounded arity.

Lemma 4.39. Consider a set Σ ∈ L. The problem of deciding if Σ ∈  L, where

 L ∈ {LCriticalRA, LCriticalWA}, is in NSPACE(ω log(ω · |sch(Σ)|) + ω log(ω ·
|Σ|)), where ω is the maximum arity over all predicates of sch(Σ). 2

The above technical lemma is shown by conceiving the complement of our

problem as an extended version of graph reachability. In particular, we need

to decide whether there exists a node v in the (extended) dependency graph

of Σ that is reachable from itself via a critical cycle that contains a special

edge. As for Lemma 4.34, this can be done via a nondeterministic procedure.

However, in order to check for the criticality of the traversed cycle, apart from

the two consecutive edges, the origin of the cycle, and the binary flag, we also

need to remember the resolvent of the TGDs that label the visited edges.

Such a resolvent can be computed and maintained in O(ω log(ω · |sch(Σ)|) +

ω log(ω · |Σ|)) space, and its criticality can be checked using the same space.

Lower Bound. The nl-hardness is immediately inherited from Theo-

rem 4.33. Concerning the pspace-hardness, since L is closed under looping,

by Proposition 4.36, it suffices to show that propositional atom entailment

under (CT? ∩ L) is pspace-hard. This is shown by a reduction from the ac-

ceptance problem of a polynomial space Turing machine M .

Lemma 4.40. Propositional atom entailment under (CT? ∩ L), where ? ∈
{obl, sobl}, is pspace-hard. 2

Theorem 4.38 follows from Proposition 4.36, and Lemmas 4.39 and 4.40.

4.3.2 (Weak-)Guardedness

We proceed to investigate the (semi-)oblivious Chase termination problem

for guarded and weakly-guarded TGDs. Although there is no way (at least

an obvious one) to syntactically characterize the classes (CT? ∩ WG) and

(CT? ∩ G), where ? ∈ {obl, sobl}, via rich- and weak-acyclicity, as we did for

(simple) linear TGDs, it is possible to show that the problem of recognizing

the above classes is decidable.

For technical reasons, we focus on standard databases, that is, databases

that have at least two constants, let’s say 0 and 1, that are available via the

unary predicates 0(·) and 1(·), respectively. The results presented below, unless

stated otherwise, hold only for standard databases. We show the following:
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Fig. 4.4: Infinite Chase derivation

Theorem 4.41. Consider a set Σ ∈ WG. The problem of deciding whether

Σ ∈ CT?, where ? ∈ {obl, sobl}, is 2exptime-complete, and exptime-

complete for predicates of bounded arity. The same holds even if Σ ∈ G. 2

The goal of this section is to establish the above result.

Infinite Chase Derivations

We first focus our attention on weakly-guarded TGDs, and show that the

Chase termination problem is decidable; this implies that the problem is de-

cidable also for guarded TGDs.

By Proposition 4.13, given a set Σ ∈WG, to decide whether Σ 6∈ CT? (re-

call that we focus on standard databases), where ? ∈ {obl, sobl}, is tantamount

to the problem of deciding whether Σ admits an infinite ?-chase derivation

that starts from a standard database i.e., there exist sequences I0, I1, . . . and

(r0, h0), (r1, h1), . . . as in Definition 4.12 with I0 be a standard database. In

what follows, we show that the latter is a decidable problem by presenting an

alternating algorithm, called ?-InfiniteDerivation.

A General Description. One may be tempted to claim that a set of

TGDs Σ admits an infinite ?-chase derivation that starts from a standard

database iffΣ admits an infinite ?-chase derivation that starts from the critical

database Dc(Σ). However, this is not true since Dc(Σ) is not a standard

database. Nevertheless, the notion of the critical database can be naturally

extended to the critical standard database, which is the standard database
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consisting of all possible atoms that can be formed using predicates of sch(Σ)

and the constants 0 and 1. Formally, the critical standard database for a set

Σ of TGDs (not necessarily weakly-guarded), denoted Dstd(Σ), is defined as

the database

{0(0), 1(1)} ∪ {p(t) | p/n ∈ sch(Σ), t ∈ {0, 1}n}.

It is clear that the size of Dstd(Σ) is exponential in general, and polynomial

when the maximum arity over all predicates of sch(Σ) is fixed. By giving a

proof similar to the one in [63] for the critical database, we show the following:

Lemma 4.42. Consider a set Σ of TGDs. It holds that, Σ admits an infinite

?-chase derivation that starts from a standard database, where ? ∈ {obl, sobl},
iff Σ admits an infinite ?-chase derivation that starts from Dstd(Σ). 2

Our alternating algorithm, starting from an atom of Dstd(Σ), and apply-

ing nondeterministically Chase steps, identifies a finite basic block of a Chase

derivation (if it exists), which can then be repeated and give rise to an infi-

nite Chase derivation; this is graphically illustrated in Figure 4.4(a). In other

words, the algorithm tries to identify an atom A0 from which, after applying

some valid (depending on the version of the Chase) triggers, an atom A1 iso-

morphic to A0 is obtained — by isomorphism we mean that, starting from A0

and A1, we obtain isomorphic atoms. The segment of the derivation between

A0 and A1 is the basic block that we can repeat infinitely many times, and

obtain an infinite Chase derivation. Before giving the technical details about

our algorithm, we need to briefly recall some auxiliary notions and results.

Auxiliary Notions and Results. It is well-known that a set Σ ∈ WG

can be effectively transformed into a set Σ′ ∈ WG such that all the TGDs

of Σ′ are single-head [22]. It is not difficult to verify that this transformation

preserves Chase termination, i.e., Σ ∈ CT? iff Σ′ ∈ CT?, where ? ∈ {obl, sobl}.
Henceforth, for technical clarity, we focus on TGDs with just one atom in the

head. Let D be a database, and Σ a set of TGDs. Fix a ?-chase sequence

I0 = D, I1, . . . of D w.r.t. Σ, for ? ∈ {obl, sobl}. The instance ∪i>0Ii, denoted

?-chase(D,Σ), can be naturally represented as a labeled directed graph G =

(N,E, λ) as follows: (1) for each atom A ∈ ?-chase(D,Σ), there exists v ∈ N
such that λ(v) = A; (2) for each i > 0, with Ii〈r, h〉Ii+1, and for each atom A ∈
h(body(r)), there exists (v, u) ∈ E such that λ(v) = A and {λ(u)} = Ii+1 \ Ii;
and (3) there are no other nodes and edges in G. The guarded Chase forest of

D and Σ, denoted gcf(D,Σ), is the forest obtained from G by keeping only
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the nodes associated with guard atoms, and their children; for more details,

we refer the reader to [22].

Lemma 4.42 implies that our algorithm has to identify an infinite path in

gcf(Dstd(Σ), Σ). This is achieved by constructing nondeterministically such

a path, starting from an atom of Dstd(Σ), until a basic block that can be

repeated is identified. During this process, our algorithm exploits two key re-

sults established in [22], where the problem of query answering under (weakly-

)guarded TGDs is investigated. Let us recall those results, and explain how

they are applied; let D be an arbitrary database:

1. The subtree of gcf(D,Σ) rooted at some atom A is determined by the

so-called cloud of A (modulo renaming of nulls) [22, Theorem 5.16]. The

cloud of A w.r.t. D and Σ, denoted cloud(A,D,Σ), is defined as

{B | B ∈ ?-chase(D,Σ) and dom(B) ⊆ (dom(D) ∪ dom(A))},

i.e., the atoms occurring in the result of the Chase with constants from

D and terms from A. This result allows us to build the relevant path

of gcf(D,Σ). In fact, an atom A on this path can be generated by con-

sidering only its parent atom A′ and the cloud of A′ w.r.t. D and Σ.

Whenever a new atom is This result allows us to build the relevant path

of gcf(Dc(Σ), Σ). In fact, an atom A on this path can be generated by

considering only its parent atom A′ and the cloud of A′ w.r.t. Dc(Σ) and

Σ. Whenever a new atom is generated, we nondeterministically guess its

cloud, and verify in a parallel universal computation of our algorithm that

indeed belongs to the result of the Chase.

2. There exists a bound δ, which is double-exponential in the maximum arity

ω of sch(Σ) (and only ω appears in the second exponent), up to which we

have to construct the relevant path of gcf(Dc(Σ), Σ) in order to guarantee

that all the obtained atoms are non-isomorphic. This implies that, for our

purposes, we simply need to construct the path up to depth (2 · δ). We

use this fact to ensure that our algorithm terminates.

Let us clarify that in [22] only the oblivious Chase has been considered,

and the above results have been explicitly established for the oblivious Chase.

Nevertheless, it is not difficult to extend these results to the semi-oblivious

Chase.
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The Alternating Algorithm. We have now all the ingredients in place

that are needed to define our algorithm. Given a set Σ = {r1, . . . , rn} as input,

?-InfiniteDerivation(Σ) consists of the following steps:

1. Cl := Dc(Σ), Hri := ∅, for each i ∈ [n], flag := 0 and ctr := 0.

2. Guess an atom A ∈ Dstd(Σ).

3. Guess a TGD r ∈ Σ, and a trigger (r, h) for Σ on Cl , where h(guard(r)) =

A and h �?r h′, for each h′ ∈ Hr; if there is no such a trigger, then reject .

4. Let A be the atom obtained by applying (r, h) to Cl , and guess the cloud

Cl of A w.r.t. Dstd(Σ) and Σ.

5. Universally goto steps 6 and 7.

6. If Cl is a valid cloud, then accept ; otherwise, reject .

7. Hr := (Hr ∪ {h}) \Hr,A, where Hr,A ⊆ Hr is the set of homomorphisms

that map at least one variable of var(body(r)) to a term not in dom(A).

8. If flag = 0, then guess to apply or skip the following:
a) loop := (r,A,Cl) and flag := 1.

b) nulls := invent(A), where the latter is the set of nulls invented in A;

if nulls = ∅, the reject .

c) Goto step 10.

9. If flag = 1, then do the following:
a) nulls := (dom(A) ∩ nulls) ∪ invent(A).

b) If (dom(A) ∩ nulls) = ∅, then reject .

c) If (r,A,Cl) and loop are the same (modulo bijective null renaming),

then accept .

10. If ctr = (2 · δ), then reject ; otherwise, ctr := ctr + 1 and goto step 3.

By construction, ?-InfiniteDerivation(Σ), starting from an atomA ∈ Dstd(Σ),

identifies a basic block on a path P in the subtree of gcf(Dstd(Σ), Σ) rooted

at A, which can be repeated infinitely many times. This allows us to safely

conclude that P is an infinite path (or Chase derivation), and the algorithm

accepts; if such a derivation does not exist, the algorithm terminates and re-

jects. It remains to explain why this derivation is a valid one, i.e., it does not

contain conflicting triggers (depending on the version of the Chase).

Consider two triggers (r, h) and (r′, h′) occurring in the obtained infinite ?-

chase derivation. There are two possible cases: either they occur in the same

or in different basic blocks; this is illustrated in Figure 4.4(b). In the first

case, h �?r h′ is guaranteed by construction; this is the reason why the set

Hr is maintained during the execution of the algorithm, which stores all the

“dangerous” homomorphisms that have been used to trigger r. In the second
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case, h �?r h′ is guaranteed since the atom h′(guard(r)) necessarily contains a

null that does not appear in the atom h(guard(r)); this is why the set nulls is

maintained, which actually stores the nulls that can only appear in the atoms

of a certain basic block. From the above discussion, we get the desired result:

Proposition 4.43. Consider a set Σ ∈ WG. It holds that, Σ admits an

infinite ?-chase derivation that starts from a standard database, where ? ∈
{obl, sobl}, iff ?-InfiniteDerivation(Σ) accepts. 2

Complexity

Upper Bounds. By Propositions 4.13 and 4.43, we get that, for a set

Σ ∈ WG, Σ 6∈ CT? iff ?-InfiniteDerivation(Σ) accepts, where ? ∈ {obl, sobl}.
Therefore, to establish the desired upper bounds, it suffices to show that our

alternating algorithm runs in exponential space, in general, and in polynomial

space, in the case of predicates of bounded arity; recall that aexpspace =

2exptime and apspace = exptime. To this end, we show that the space

required for the following tasks is exponential in the maximum arity ω of

sch(Σ), and polynomial in all the other parameters of the input: (1) maintain

Dstd(Σ) and the cloud of an atom; (2) maintain the set Hr, where r ∈ Σ;

(3) maintain the integer value of ctr ; and (4) verify that the guessed cloud is

valid.

Lemma 4.44. The algorithm ?-InfiniteDerivation, where ? ∈ {obl, sobl}, runs

in double-exponential time, in general, and in exponential time, for predicates

of bounded arity. 2

The upper bounds of Theorem 4.41 follow from Propositions 4.13 and 4.43,

and Lemma 4.44.

Lower Bounds. To establish the desired lower bounds, since G is closed

under looping, by Proposition 4.36, it suffices to show the following:

Lemma 4.45. Propositional atom entailment under (CT? ∩ G), where ? ∈
{obl, sobl}, is 2exptime-hard, and exptime-hard for predicates of bounded

arity. 2

The 2exptime-hardness is obtained by a significant modification of the

proof of Theorem 6.2 in [22], which shows the 2exptime-hardness of propo-

sitional atom entailment under arbitrary guarded TGDs (not necessarily in

CT?). That proof simulates an aexpspace Turing machine that uses no more
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than 2n worktape cells; this assumption can be made without affecting the

generality of the proof. For proving Lemma 4.45, we make, w.l.o.g., an ad-

ditional assumption: we assume the machine contains a counter of 2n−1 bits

(i.e., the second half of the tape) that is initialized to zero and can count from

0 up to (22n−1 −1). The counter is incremented by one until either the Turing

machine stops, or it reaches the maximal value of (22n−1 − 1), in which case

the machine is forced to stop in a rejecting state. This makes sure that the

machine cannot cycle and always stops within O(22n) steps. Adding counters

to Turing machines, giving rise to the concept of clocked Turing machines, is a

well-known technique; see [59, 74]. The fact that we consider a clocked Turing

machine, together with the fact that we focus on standard databases, allows

us to construct the double-exponentially many configurations of the machine

using a set of TGDs that ensures the termination of the Chase, which is not

the case in the proof of Theorem 6.2 of [22]. By following a similar approach,

we can also show the exptime-hardness in the case of predicates of bounded

arity, and Lemma 4.45 follows.

Non-Standard Databases

From the above discussion, it is clear that standard databases are crucial for

establishing the lower bounds in Proposition 4.45; in particular, to guarantee

that the sets of guarded TGDs employed in the reductions are indeed members

of (CT? ∩ G), where ? ∈ {obl, sobl}. Interestingly, the upper bounds stated in

Theorem 4.41 hold also for non-standard databases. This can be shown by

slightly modifying ?-InfiniteDerivation in such a way that, instead of starting

from Dstd(Σ), where Σ ∈ WG is the given set of TGDs, starts from the

critical database Dc(Σ). After applying this modification, it is easy to see

that Σ admits an infinite ?-chase derivation (that starts from an arbitrary,

not necessarily standard database) iff ?-InfiniteDerivation(Σ) accepts, and we

immediately get the following result for arbitrary databases:

Theorem 4.46. Consider a set Σ ∈ WG. The problem of deciding whether

Σ ∈ CT?, where ? ∈ {obl, sobl}, is in 2exptime, and in exptime for predi-

cates of bounded arity. 2

The exact complexity of the Chase termination problem in case of arbitrary

(not necessarily standard databases) is still open.
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4.4 Dealing with EGDs

Most of the work in the literature has focused on the problem of checking if

all Chase sequences (for some variation of the Chase) are terminating, inde-

pendently of the considered database. However, since in many applications

the ultimate goal is to compute a universal model, checking for the existence

of a terminating Chase sequence and constructing it suffices for the purpose.

In this regard, a universal model might be computed using the core

Chase [33], which is a variant of the standard Chase where all applicable Chase

steps are fired “in parallel”, rather than picking one non-deterministically as

in the standard Chase. One consequence of the parallel application is that

nondeterminism is eliminated. Another important property of the core Chase

is that it is complete for finding universal models, that is, whenever a univer-

sal model exists, the core Chase terminates and finds such a model. Thus, if

we know that there exists a terminating standard Chase sequence (and thus

a universal model), then we can use the core Chase to compute a universal

model.

Furthermore, the weaker requirement of checking for the existence of a

terminating Chase sequence, rather than ensuring that every Chase sequence

is terminating, can be profitably leveraged to identify more sets of depen-

dencies for which we can compute a universal model. For instance, the set of

dependencies Σ1.2 of Example 1.2 might be identified by a criterion ensuring

termination of at least one Chase sequence. However, every criterion requir-

ing all Chase sequences to be terminating will not recognize Σ1.2, thereby

providing no information about whether we can compute a universal model.

Despite the significant body of work in this area, there are still large classes

of dependencies for which the Chase is not applicable as termination cannot

be statically established.

One weakness of current approaches is that the analysis of EGDs is

limited or absent altogether. In fact, more general approaches, such as

super-weak acyclicity [63], semi-dynamic approaches [50], and rewriting ap-

proaches [54, 55, 56], were meant to guarantee termination of TGDs only.

Other approaches, such as weak acyclicity [38] and safety [66], guarantee the

termination of a set of TGDs and EGDs, but do not analyze EGDs at all,

which leads them to impose strong conditions on TGDs to guarantee ter-

mination. Firing relations among dependences used in stratification-based

approaches [33, 66, 55] consider EGDs in a limited way. To mitigate the

aforementioned issues, an “indirect” way of dealing with EGDs was proposed
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in [48, 63], where a set Σ of TGDs and EGDs is rewritten into a set Σ′ con-

taining only TGDs, and termination analysis is carried out on Σ′. The aim

is to “simulate” the behavior of the EGDs by means of TGDs. While these

preprocessing steps ensure soundness, i.e., if all Chase sequences of Σ′ are

terminating then all Chase sequences of Σ are terminating, they are not com-

plete, i.e., the implication in the opposite direction does not hold. The first

approach of this kind, known as natural simulation, has been proposed in [48],

and further refined by the substitution-free simulation in [63].

Treating EGDs as first-class citizens is very important, as they are among

the most popular classes of dependencies in real applications, playing a crit-

ical role in maintaining data integrity, query optimization and indexing, and

schema design [37]. For instance, functional dependencies can be expressed by

EGDs. In very simple scenarios, such as Example 1.2 above, current termi-

nation criteria are not able to say whether a universal model can be found.

As a further scenario, Example 4.48 shows a simple set of dependencies for

which all Chase sequences are terminating, but there is no terminating Chase

sequence for the set of dependencies obtained from the EGD simulation.

In this section, we propose new sufficient conditions ensuring that a set of

dependencies (possibly containing both TGDs and EGDs) admits at least one

terminating Chase sequence, independently of the database. This approach

performs an explicit analysis of EGDs and identifies sets of dependencies that

are not captured by any of the current techniques. To the best of our knowl-

edge, sufficient conditions ensuring termination of at least one Chase sequence

was studied only in [65, 66].

We start by shedding light on the relationships between the classes CT?q,

where q ∈ {∀,∃} and ? ∈ {obl, sobl, std, core}, when arbitrary sets of TGDs and

EGDs are considered. Recall that a hierarchy for sets consisting only of TGDs

has been presented in this chapter, but the relationships in the presence of

both TGDs and EGDs have not been studied so far. We also discuss different

issues arising in the presence of EGDs.

Given two sets C1 and C2, we write C1 ∦ C2 iff C1 6⊆ C2 and C2 6⊆ C1.

Theorem 4.47. For general dependencies (including TGDs and EGDs), the

following relations hold:

1. CT?∀ ( CT?∃ for ? ∈ {obl, sobl, std}, and CTcore
∀ = CTcore

∃ ;

2. CTobl
q ( CTsobl

q ( CTstd
q ( CTcore

q for q ∈ {∀,∃};
3. CTobl

∃ ∦ CTsobl
∀ , CTsobl

∃ ∦ CTstd
∀ , and CTobl

∃ ∦ CTstd
∀ . 2
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TGDs TGDs and EGDs
CTobl
∀ = CTobl

∃ CTobl
∀ ( CTobl

∃

CTsobl
∀ = CTsobl

∃ CTsobl
∀ ( CTsobl

∃
CTobl
∃ ( CTsobl

∀ CTobl
∃ ∦ CTsobl

∀
CTsobl
∃ ( CTstd

∀ CTsobl
∃ ∦ CTstd

∀
CTobl
∃ ∦ CTstd

∀

CTstd
∀ ( CTstd

∃ CTstd
∀ ( CTstd

∃

CTcore
∀ = CTcore

∃ CTcore
∀ = CTcore

∃

Table 4.1: Relationships among the CT?q ’s classes.

The relationships between the classes CT?q, where q ∈ {∀,∃} and ? ∈
{std, obl, sobl, core}, are shown in Table 4.1, for the case of TGDs only and in

the presence of both TGDs and EGDs.

As discussed above, Chase termination criteria proposed in the literature

focus on TGDs considering EGDs in a very limited way. More general ap-

proaches (including SwA,LS ,MFA,MSA) as well as rewriting techniques were

meant to guarantee termination of TGDs only.

The use of the substitution-free simulation allows to deal with EGDs in

an indirect way, but as we are going to show, this is not enough to properly

analyse the role of EGDs during the execution of the Chase. Below is an

example showing how the substitution-free simulation works.

Example 4.48. Consider the following set of dependencies Σ4.48 (containing

both TGDs and EGDs):

r1 : a(X), b(X)→ c(X)

r2 : c(X) → ∃Y a(X) ∧ b(Y )

r3 : c(X) → ∃Y a(Y ) ∧ b(X)

r4 : a(X), a(Y ) → X = Y

r5 : b(X), b(Y ) → X = Y

The substitution-free simulation works as follows:

1. The TGDs below (equality-axioms) are added to Σ4.48:

a1 : eq(X,Y ) → eq(Y,X)

a2 : eq(X,Y ), eq(Y,Z)→ eq(X,Z)

a3.1 : a(X) → eq(X,X)

a3.2 : b(X) → eq(X,X)

a3.3 : c(X) → eq(X,X)
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2. Every occurrence of X = Y in Σ4.48 is replaced with eq(X,Y ). In our

case, this affects r4 and r5 only, which are replaced with:

r′4 : a(X), a(Y )→ eq(X,Y )

r′5 : b(X), b(Y ) → eq(X,Y )

3. Dependency r1, which contains multiple occurrences of X in the body, is

(non-deterministically) replaced with one of the following two dependen-

cies, where one of the two occurrences of X is replaced with X2, and the

atom eq(X,X2) is added to the body:

r′1 : a(X2), b(X), eq(X,X2)→ c(X)

r′′1 : a(X), b(X2), eq(X,X2)→ c(X)

Notice that the only dependencies that remain unchanged are r2 and r3.

Also, notice that there are no EGDs anymore in the resulting set of depen-

dencies (their role is “simulated” by the rewriting). 2

Although not explicitly stated, but somehow left implicit in [48, 63], the

natural simulation and the substitution-free simulation ensure the desirable

soundness property: if, for every database D, all ?-chase sequences of D with

Σ′ are terminating, then for every database D, all ?-chase sequences of D

with Σ are terminating, for ? ∈ {obl, sobl, std}. The natural question now is

whether these simulations are also complete, that is, if the implication in the

opposite direction holds. The answer is negative for both approaches, as stated

in the following theorem. Furthermore, we show that the same properties hold

when checking for the existence of at least one terminating ?-chase sequence.

We focus on the substitution-free simulation only, as it is a refinement of the

natural simulation.

Theorem 4.49. Let Σ be a set of TGDs and EGDs and Σ′ be a set of TGDs

obtained from Σ by applying the substitution-free simulation. For every ? ∈
{obl, sobl, std} and every q ∈ {∀,∃},

1. if Σ′ ∈ CT?q then Σ ∈ CT?q.
2. Σ ∈ CT?q does not imply Σ′ ∈ CT?q. 2

The theorem above says that there are sets Σ of TGDs and EGDs such

that Σ ∈ CT?q but their substitution-free simulation Σ′ does not belong to

CT?q, and thus it is not possible to realize that Σ ∈ CT?q with an analysis

of Σ′. The set of dependencies Σ4.48 of Example 4.48 above is one of such
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cases: Σ4.48 belongs to CT?∀ (and thus belongs to CT?∃ too), but any of its

substitution-free simulations is not even in CT?∃, for every ? ∈ {obl, sobl, std}.
The problem is that the simulation of EGDs by means of TGDs is not able to

fully capture the specific behavior of EGDs, which replace null values (with

constants and other null values). This aspect is not faithfully modeled by

storing the information that a null value is equal to a constant or to another

null value.

In Sections 4.4.1 and 4.4.2, we propose approaches that perform a direct

analysis of EGDs. However, dealing with EGDs needs some care. In some

cases the presence of EGDs allows us to have a terminating ?-chase sequence

when the set consisting only of the TGDs does not have one; at the same

time, the opposite case can occur, that is, in the presence of EGDs there is no

terminating ?-chase sequence while the set consisting only of the TGDs does

have one, where ? can be one of {obl, sobl, std}. The following two examples

show such cases.

Example 4.50. Consider the set of dependencies Σ1.2 of Example 1.2 and the

database D = {n(a)}. There is no terminating ?-chase sequence of D1.2 with

the set of TGDs Σ′1.2 = {r1, r2}, for every ? ∈ {obl, sobl, std}. In fact, it is easy

to see that an infinite number of facts is introduced: e(a, z1), n(z1), e(z1, z2), ....

However, the addition of the EGD r3 allows us to have a terminating ?-chase

sequence, obtained by enforcing first r1 and then r3, and whose result is the

universal model {n(a), e(a, a)}. 2

Example 4.51. Consider the set of dependencies Σ4.51 below:

r1 : n(X)→ ∃Y ∃Z e(X,Y, Z)

r2 : e(X,Y, Y )→ n(Y )

r3 : e(X,Y, Z)→ Y = Z

For every database D, every ?-chase sequence of D with the set of TGDs

Σ′4.51 = {r1, r2} is terminating, for every ? ∈ {obl, sobl, std}. On the other

hand, there is no terminating ?-chase sequence of D = {n(a)} with Σ4.51,

as an infinite number of facts is introduced: e(a, z1, z1), n(z1), e(z1, z2, z2),

n(z2), .... 2

In the following, given a set of dependencies Σ, we use Σtgd and Σegd

to denote the sets of all TGDs and all EGDs in Σ, respectively (obviously,

Σ = Σtgd ∪ Σegd). Furthermore, we use Σ∀ and Σ∃ to denote the set of

all full dependencies in Σ (these include full TGDs and all EGDs) and the
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set of all existentially quantified dependencies in Σ, respectively (obviously,

Σ = Σ∀ ∪Σ∃).
For a class C of sets of TGDs defined by some criterion (e.g., SwA and

LS), we assume to also extend such class to TGDs and EGDs by applying the

substitution-free simulation to the given set Σ of TGDs and EGDs, obtaining

Σ′ and then verifying whether Σ′ ∈ C.

4.4.1 Semi-Stratification

In this section, we introduce a new sufficient condition for checking if a set of

dependencies belongs to CTstd
∃ . Our condition strictly generalizes stratification.

First of all, we recall the notion of stratification proposed in [33]. Given

two dependencies r1 and r2, we write r1 ≺ r2 iff there exist an instance K, an

instance J , a homomorphism h1 from body(r1) to K, and a homomorphism

h2 from body(r2) to J , such that:

• K |= h2(r2),

• K
r1,h1,γ1−→ J is a standard Chase step (for some γ1), and

• J 6|= h2(r2).

The Chase graph G(Σ) of a set of dependencies Σ is a directed graph (Σ,E)

containing an edge (r1, r2) iff r1 ≺ r2. Then, Σ is stratified (Str) iff every

cycle of G(Σ) is weakly acyclic.

We now introduce a new relation between dependencies along with the

corresponding graph it induces—they are used to define our criterion, allowing

us to extend stratification.

Definition 4.52 (Activation graph). Let Σ be a set of dependencies. Given

two dependencies r1, r2 ∈ Σ, we write r1 < r2 iff there exist instances K and

J , a homomorphism h1 from body(r1) to K, and a homomorphism h2 from

body(r2) to J , such that:

• K |= h2(r2),

• K
r1,h1,γ1−→ J is a standard Chase step (for some γ1),

• J 6|= h2(r2), and

• if r2 ∈ Σ∃, then @r3 ∈ Σ∀ such that K
r3,h3,γ3−→ J ′ and J ′ |= h2(r2) (for

some h3, γ3).

The activation graph Gf (Σ) of Σ is a directed graph (Σ,Ef ) containing a

directed edge (r1, r2) iff r1 < r2.

We say that a dependency r1 ∈ Σ is fireable with respect to Σ if there

exists a dependency r2 ∈ Σ such that r2 < r1. 2
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Fig. 4.5: Chase graph (left) and firing graph (right) of Σ4.54.

Definition 4.53 (Semi-stratified dependencies). A set of dependencies

Σ is semi-stratified ( S-Str) iff every strongly connected component of Gf (Σ)

is weakly acyclic. 2

Example 4.54. Consider the following set of TGDs Σ4.54:

r1 : n(X)→ ∃Y e(X,Y )

r2 : e(X,Y )→ n(Y )

r3 : e(X,Y )→ e(Y,X)

The Chase and the firing graphs are depicted in Figure 4.5. Notice that,

since r2 and r3 are full TGDs, their incoming edges are the same in the two

graphs. On the other hand, the edge in G(Σ4.54) from r2 to r1 does not belong

to Gf (Σ4.54), as the firing of r1 because of r2 is blocked by first enforcing r3.

It can be easily verified that Σ4.54 is semi-stratified, but not stratified.

Consider now the database D = {n(a)}. The standard Chase sequence

consisting of the iterative application of r1 followed by r2 is non-terminating.

However, if we apply r3 before r1, we obtain a terminating standard Chase

sequence producing the instance K = {n(a), e(a, z1), n(z1), e(z1, a)}. Such a

standard Chase sequence is terminating as no more standard Chase steps can

be added. 2

Theorem 4.55. For every semi-stratified set of dependencies Σ and for every

database D, there exists a terminating standard Chase sequence of D with Σ

whose length is polynomial in the size of D. 2

As the following theorem states, it can be decided in co-NP whether a set

of dependencies is semi-stratified.

Theorem 4.56. Deciding if a set of dependencies is semi-stratified is in

co-NP. 2

The following theorem shows the relative expressivity of S-Str and other

classes of dependencies previously proposed.
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Theorem 4.57.

1. Str ( S-Str.
2. S-Str ∦ C for C ∈ {SC,AC,MFA}. 2

Notice that SC, AC, and MFA guarantee that all standard Chase se-

quences are terminating, while Str and S-Str guarantee the existence of at

least one terminating standard Chase sequence.

We recall that SC ( AC, and thus the incomparability of S-Str with SC
and AC implies that S-Str is incomparable also with any other class included

by AC and containing SC (e.g., SwA, SR, and IR)—see [56] for a complete

picture.

4.4.2 Adornment Algorithm

In this section, we propose another decidable sufficient condition for a set of

dependencies to be in CTstd
∃ .

Specifically, we propose an algorithm which takes as input a set of de-

pendencies, and gives as output a set of adorned dependencies and a boolean

value. The aim of the algorithm is twofold: (i) it defines a termination crite-

rion on its own—on the basis of the boolean value returned by the algorithm;

and (ii) it can be combined with other termination criteria to enhance them,

in that (strictly) more sets of dependencies in CTstd
∃ can be identified by using

our algorithm in conjunction with a termination criterion—this is achieved by

analyzing the set of adorned dependencies returned by the algorithm. Before

presenting our approach, we introduce additional terminology and notation.

Adornments. An adornment symbol is an element of the alphabet Λ =

{b} ∪ {fi | i ∈ N}, where b is called “bound” symbol and the fi’s are called

“free” symbols. Consider an n-ary predicate p. An adornment of p is a string

α of length n built from adornment symbols; we call pα an adorned predicate.

An adorned atom is of the form pα(t), where p(t) is an atom and α is an

adornment of p. An adorned conjunction is a conjunction of adorned atoms.

An adorned dependency is a dependency containing adorned atoms. Given an

adorned formula (i.e., atom, conjunction of atoms, dependency, etc.) or set of

adorned formulas F , we use src(F ) to denote the formula or set of formulas

derived from F by deleting all adornments. We also say that F is an adorned

version of src(F ).

Given a set of adorned predicates AP , the set of the adorned versions of

an atom p(t) w.r.t. AP is defined as follows:
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A(p(t), AP ) = {pα(t) | pα ∈ AP}

The set of the adorned versions of a conjunction of atoms conj = A1∧· · ·∧Ak
w.r.t. AP is defined as follows:

A(conj , AP )={Aα1
1 ∧ · · · ∧A

αk
k | A

αi
i ∈ A(Ai, AP ) for 1 ≤ i ≤ k}

If conj is the empty conjunction, then A(conj , AP ) contains only the empty

conjunction.

Given an adorned atom Rα1...αn(t1, ..., tn), we say that ti is adorned with

αi. An adorned atom or conjunction is coherent if every variable occurring

in it is always adorned with the same adornment symbol and constants are

adorned with b. For instance, the adorned conjunction nb(X), ef1b(X,Y ) is

not coherent because X is adorned with b in the first atom and with f1 in the

second atom. On the other hand, nf1(X), ef1b(X,Y ) is coherent.

An adornment definition is an expression of the form fi = frZ(α) where fi

is an adornment symbol, r is a TGD of the form ϕ(X,Y) → ∃Zψ(X,Z), Z

is in Z, and α is a string of n adornment symbols with n being the number

of variables in X. The role of adornment definitions will be explained shortly.

Head adornment. One important step of our adornment algorithm is the

propagation of adornments from the body to the head of dependencies, which

is defined as follows. Given a set AD of adornment definitions, a dependency

r : body → head , and a coherent adorned version bodyµ of body , we define

HeadAdn(r, bodyµ, AD) as the procedure that updates AD and returns an

adorned version headµ of head() as follows:

1. if r is an EGD, then headµ = head , and AD is not modified.
2. Otherwise, r is a TGD ϕ(X,Y)→ ∃Zψ(X,Z) and headµ is obtained from

∃Zψ(X,Z) as follows:
• every universally quantified variable (i.e., every X ∈ X) is adorned

with the same adornment symbol the variable is adorned with in bodyµ

(notice that such an adornment symbol is unique as bodyµ is coherent);

• constants are adorned with b;
• every (existentially quantified) variable z ∈ Z is adorned as follows.1

Let frZ(α) be the Skolem term where if X = X1, ..., Xn then α =

1 It is assumed that the existentially quantified variables are considered one at a
time following the order they appear in Z. Also, an arbitrary but fixed ordering
of the variables in X is assumed.
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α1, ..., αn is the string of adornment symbols such that every Xj is

adorned with αj in bodyµ, for 1 ≤ j ≤ n. If an adornment definition

of the form fi = frZ(α) is already in AD, then Z is adorned with

fi and AD is not modified. Otherwise, Z is adorned with fj , where

j = 1 + max{k | fk appears in AD}, and fj = frZ(α) is added to AD.

For instance, assuming AD = ∅ and given a TGD r : r(X,Y ) →
∃Z r(X,Z) we have that HeadAdn(r, rbb(X,Y ), AD) gives the adorned for-

mula ∃Z rbf1(X,Z) and f1 = frZ(b) is added to AD.

Cyclic adornment symbol. Given a set of adornment definitions AD, we

use Ω(AD) to denote the labeled directed graph whose vertices are the adorn-

ment symbols appearing in AD, and where there is a directed edge from fi

to fj labeled with frZ iff there are fi = frZ(· · · fj · · · ) and fj = fsW (· · · )
in AD with r, s ∈ Σ∃ and there are r1, ..., rn ∈ Σ∀ (n ≥ 0) such that

s < r1 < · · · < rn < r.

An adornment symbol fi is cyclic w.r.t. AD if there is a path in Ω(AD)

departing from fi where (at least) two edges have the same label. We say that

an adorned head ∃Zψµ(X,Z) is cyclic (w.r.t. AD) if there is a variable z in

Z adorned with a cyclic adornment symbol.

Adornment Substitution. An adornment substitution θ is a set of pairs of

the form fi/fj (whose intuitive meaning is that fi is replaced by fj), where fi

and fj are adornment symbols such that if fi/fj ∈ θ then there is no fj/fk in

θ (that is, a symbol fj used to replace a symbol fi cannot be substituted by

a symbol fk). The result of applying θ to an adornment α, denoted αθ, is the

adornment obtained from α by simultaneously replacing every occurrence in

α of an adornment symbol fi with fj iff fi/fj ∈ θ. This is extended to adorned

atoms, adorned dependencies, adornment definitions, etc., in the obvious way.

Given a set of adornment definitions AD, an adornment substitution θ

is valid (w.r.t. AD) if for every fi/fj in θ, it is the case that AD contains

adornment definitions of the form fi = frZ(α) and fj = frZ(α′).

Given a set of adorned dependencies Σµ and a dependency r, we define:

AP (Σµ) = {pα | pα(t) appears in Σµ}
Dµ(Σµ) = {p(α1, ..., αn) | pα1...αn ∈ AP (Σµ)}
Bµ(r,Σµ) = {bodyµ | rµ : bodyµ → headµ ∈ Σµ ∧ src(rµ)=r}

We are now ready to introduce the Adn∃ algorithm (Algorithm Adn∃).

The input is a set of dependencies Σ, while the output is a set of adorned
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Input: Set of dependencies Σ over schema R.
Output: Set of adorned dependencies Σµ, Boolean value Acyc.
1: Acyc = true;
2: Σµ={p(X1, ..., Xn)→pb...b(X1, ..., Xn) | p ∈ R and arity(p) = n};
3: AD = ∅;
4: repeat
5: Σµold = Σµ;

6: if ∃r ∈Σ∀ s.t. 〈b, rµ〉 = adorn(r) and b = true then
7: Σµ = Σµ ∪ {rµ};
8: if r ∈ Σegd s.t. Dµ(Σµ) 6|= r then
9: τ = {fi/s} = ChaseStep(r,Dµ(Σµ));
10: Σµ = Σµτ ; AD = AD \ {fi=fsZ(α) ∈ AD}; AD = ADτ ;
11: else if ∃r ∈ Σ∃ s.t. 〈b, rµ〉 = adorn(r) and b = true then
12: Σµ = Σµ ∪ {rµ};
13: if ∃ rυ ∈ Σµ ∧ ∃valid subst. θ 6=∅ s.t. rµθ = rυ ∧ src(rυ) = r then
14: Σµ = Σµθ; AD = ADθ;
15: if headµθ is cyclic then
16: Acyc = false;
17: until Σµ = Σµold
18: return 〈Σµ,Acyc〉;

Fig. 4.6: Algorithm Adn∃

dependencies Σµ along with a boolean value Acyc. As mentioned before, the

aim of the algorithm is twofold: it defines a termination criterion on its own,

and it can be combined with other termination criteria.

More specifically, if Acyc is false, then a form of cyclicity has been de-

tected; otherwise, for every database D, there is a terminating standard Chase

sequence of D with Σ.

As for the second aim of the algorithm, the adorned set of dependencies

Σµ given as output can be used as follows: a sufficient condition for checking

membership in CTstd
∃ is applied to Σµ rather than Σ. If Σµ satisfies the

condition, then the original set of dependencies Σ is in CTstd
∃ .

The basic idea of the algorithm is to produce adorned dependencies from

the original ones by keeping track of what facts can be derived by a Chase

execution and how terms are derived. When adorning dependencies, the algo-

rithm’s strategy is to adorn first full dependencies, and to adorn existentially

quantified dependencies only when no further full dependency can be adorned.

This is iterated as long as new adorned dependencies can be derived. EGDs

are leveraged to see if free symbols can be changed.

The algorithm maintains two sets Σµ and AD, containing the adorned

dependencies and the adornment definitions currently derived, respectively.

These two sets are also used by Function adorn, which is called by Algo-

rithm Adn∃ to verify whether a dependency r can be adorned, on the basis of

Σµ and AD (these are not explicitly passed to Function adorn, but are treated

as “global variables”). Specifically, to see if a dependency r = body → head
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can be adorned, function adorn proceeds as follows. It checks if there is

a coherent adorned version bodyµ of body (obtained using adorned predi-

cates in AP (Σµ)) such that there is no dependency in Σµ having bodyµ

as body. If such a coherent adorned version bodyµ exists, the adorned head

headµ = HeadAdn(r, bodyµ, AD(Σµ)) is computed, by propagating adorn-

ments from bodyµ. If rµ = bodyµ → headµ is fireable w.r.t. Σµ, then rµ can

be added to Σµ, and thus is returned along with the boolean value true.

Otherwise, the input dependency r is returned along with the boolean value

false.

We now go into the details of Algorithm Adn∃. Initially, Acyc is true, AD

is empty, and Σµ contains a dependency p(X1, ..., Xn)→ pb...b(X1, ..., Xn) for

each p ∈ R (lines 1–3). As the algorithm proceeds, Σµ and AD are extended

and modified; in the case a form of cyclicity is detected the value of Acyc is

changed to false. Specifically, the algorithm proceeds as follows (until Σµ does

not change).

It first checks if there is a universally quantified dependency r that can be

adorned (line 6), using function adorn. If this is the case, the corresponding

adorned dependency rµ is added to Σµ (line 7). Moreover, if r is an EGD and

is not satisfied by Dµ(Σµ), then the ChaseStep function executes a Chase step

over Dµ(Σµ) with r (line 9). Notice that facts in Dµ(Σµ) contains bound (i.e.,

b’s) and free (i.e., fi’s) symbols: the former is treated as a constant while the

latter are treated as labeled nulls. If the Chase step replaces fi with s, where s

is either b or an fj with i 6= j, then τ = {fi/s}.2 Finally, τ is applied to Σµ, all

the definitions of fi are deleted from AD, and τ is applied to AD—to replace

occurrences of fi in the right-hand side of adornment definitions (line 10).

When there are no full dependencies that can be adorned, the algorithm

checks if there is an existentially quantified dependency that can be adorned

(line 11), and if so, a corresponding adorned dependency rµ is added to Σµ

(line 12).

After a dependency is adorned into rµ, the algorithm checks if there exists

a non-empty valid substitution θ s.t. rµθ is equal to rυ for some rυ in Σµ

(line 13). If this is the case, then θ is applied to Σµ and AD (line 14). This

ensures termination of Adn∃. Moreover, if headµθ is cyclic, then a form of

cyclicity that may lead to non-termination is detected and Acyc is set to false

(line 16).

2 With a slight abuse of notation, here we allow adornment substitutions containing
fi/b.
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Input: Dependency r = body→ head.
Output: Pair 〈bool, r′〉, where bool is a Boolean value and r′ is a possibly adorned dependency.
1: if ∃bodyµ ∈ A(body,AP (Σµ)) s.t.

a) bodyµ is coherent,
b) bodyµ /∈ Bµ(r,Σµ), and
c) rµ = bodyµ → headµ is fireable w.r.t. Σµ,
where headµ = HeadAdn(r, bodyµ, AD) then

2: return 〈true, rµ〉;
3: else
4: return 〈false, r〉;

Fig. 4.7: Function adorn

The overall process described so far is iterated as long as Σµ changes.

Example 4.58. Consider the set of dependencies Σ1.2 of Example 1.2. Initially,

the following two adorned dependencies, mapping unadorned atoms to atoms

adorned with strings of b’s, are added to Σµ
1.2:

s1 : n(X) → nb(X)

s2 : e(X,Y )→ ebb(X,Y )

The algorithm then proceeds by adorning full dependencies and adds the

following adorned dependencies to Σµ
1.2:

s3 : ebb(X,Y )→ X = Y

s4 : ebb(X,Y )→ nb(X)

Notice that Dµ(Σµ
1.2) = {n(b), e(b, b)} and thus the EGD r3 in Σ1.2 is

satisfied by Dµ(Σµ
1.2). Next, the existentially quantified dependency (namely,

r1) is adorned and the following adorned dependency is added to Σµ
1.2:

s5 : nb(X) → ∃Y ebf1(X,Y )

Moreover, AD = {f1 = fr1Y (b)}. After that, the algorithm starts consider-

ing full dependencies again. By adorning the EGD r3, the following adorned

dependency is obtained, which is added to Σµ
1.2:

s6 : ebf1(X,Y )→ X = Y

Notice that Dµ(Σµ
1.2) = {n(b), e(b, b), e(b, f1)} and thus Dµ(Σµ

1.2) 6|= r3.

Thus, function ChaseStep is executed with Dµ(Σµ
1.2) and r3, returning the

substitution θ = {f1/b}, which is applied to Σµ
1.2, whereas AD becomes empty.
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After the application of θ, we have that Σµ
1.2 = {s1, s2, s3, s4, s

′
5}, where s′5 is

derived from s5 by replacing f1 with b, that is, s′5 : nb(X)→ ∃Y Ebb(X,Y ).

At this point, no further dependencies can be adorned and the algorithm

terminates by returning the value Acyc = true along with Σµ
1.2. Notice that

there is no dependency (of any kind) that can be adorned because AP (Σµ
1.2) =

{nb, ebb} and the body of the dependencies in Σ1.2 have already been adorned

using these adorned predicates. 2

Example 4.59. Consider the set of dependencies Σ4.51 of Example 4.51. Ini-

tially, the following adorned dependencies are added to Σµ
4.51:

s1 : n(X)→ nb(X)

s2 : e(X,Y, Z)→ ebbb(X,Y, Z)

Then, full dependencies are adorned and the following adorned dependen-

cies are added to Σµ
4.51:

s3 : ebbb(X,Y, Z)→ Y = Z

s4 : ebbb(X,Y, Y )→ nb(Y )

Notice that Dµ(Σµ
4.51) = {n(b), e(b, b, b)} and thus the EGD r3 in Σ4.51 is

satisfied by Dµ(Σµ
4.51). Next, the existentially quantified dependency (namely,

r1) is adorned and the following adorned dependency is added to Σµ
4.51:

s5 : nb(X)→ ∃Y ∃Z ebf1f2(X,Y, Z)

with AD = {f1 = fr1Y (b), f2 = fr1Z (b)}. Now universally quantified dependen-

cies are considered again to see if they can be adorned. Suppose r3 is chosen.

Then, the following adorned dependency is added to Σµ
4.51:

s6 : ebf1f2(X,Y, Z)→ Y = Z

Now, Dµ(Σµ
4.51) = {n(b), e(b, b, b), e(b, f1, f2)}, which does not satisfy the

EGD r3. By executing the ChaseStep function onDµ(Σµ
4.51) and r3, the substi-

tution τ = {f2/f1} is obtained (alternatively, f1/f2 might have been chosen,

but the choice is immaterial). Then, the adornment definition f2 = fr1Z (b)

is removed from AD, and the substitution τ is applied to both Σµ
4.51 and

AD, replacing f2 with f1. Thus, AD becomes {f1 = fr1Y (b)}, while s5 and s6

become:
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s′5 : nb(X)→ ∃Y ∃Z ebf1f1(X,Y, Z)

s′6 : ebf1f1(X,Y, Z)→ Y = Z

By proceeding as discussed above, the following adorned dependencies are

added to Σµ
4.51:

s7 : ebf1f1(X,Y, Y )→ nf1(Y )

s8 : nf1(X)→ ∃Y ∃Z ef1f3f3(X,Y, Z)

s9 : ef1f3f3(X,Y, Z)→ Y = Z

s10 : ef1f3f3(X,Y, Y )→ nf3(Y )

s11 : nf3(X)→ ∃Y ∃Z ef3f5f5(X,Y, Z)

s12 : ef3f5f5(X,Y, Z)→ Y = Z

s13 : ef3f5f5(X,Y, Z)→ nf5(Y )

s14 : nf5(X)→ ∃Y ∃z ef5f7f7(X,Y, Z)

s15 : ef5f7f7(X,Y, Z)→ Y = Z

with AD = {f1 = fr1Y (b), f3 = fr1Y (f1), f5 = fr1Y (f3), f7 = fr1Y (f5)}. When

s15 is introduced, a valid substitution θ = {f5/f1, f7/f3} mapping s15 to s9

is found. Thus, θ is applied to both Σµ
4.51 and AD, replacing all occurrences

of adornment symbols f5 and f7 with f1 and f3, respectively. Notice that

dependencies s11 − s14 become:

s′11 : nf3(X)→ ∃y ∃z ef3f1f1(X,Y, Z)

s′12 : ef3f1f1(X,Y, Z)→ Y = Z

s′13 : ef3f1f1(X,Y, Y )→ nf1(Y )

s′14 : nf1(X)→ ∃Y ∃z ef1f3f3(X,Y, Z)

while s15 becomes equal to s9. Moreover, AD = {f1 = fr1Y (b), f3 = fr1Y (f1),

f1 = fr1Y (f3)}. Since Ω(Σµ
4.51) is cyclic (after the application of θ), as it

contains the edges (f1, f3) and (f3, f1), variable Acyc is set to false.

At this point, no further dependencies can be adorned and the algorithm

terminates by returning the value Acyc = false along with Σµ
4.51. 2

Theorem 4.60. Algorithm Adn∃ terminates for every set of dependencies. 2

Thus, given an input set of dependencies Σ, Algorithm Adn∃ always re-

turns a pair consisting of a set Σµ of adorned dependencies and a boolean

value Acyc giving information about the detection of a form of cyclicity—we

use Adn∃(Σ)[1] to refer to Σµ and Adn∃(Σ)[2] to refer to Acyc.
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PPPPPPP|Σ∃|
|Σegd | [1, 10] [11, 100]

#tests |Σ| #tests |Σ|
[1, 10] 50 86 7 451

[11, 100] 15 406 26 1,210

[101, 1000] 51 3,113 13 3,176

[1001, 5000] 9 9,117 7 19,587

(a) Ontologies’ Size

[1, 10] [11, 100]

|Σµ|/|Σ| Time |Σµ|/|Σ| Time

2.38 84 3.15 125

2.45 141 2.83 275

2.97 787 6.16 22,819

2.82 712 2.82 1,495

(b) Complexity

[1, 10] [11, 100]

A+NT FN A+NT FN

50[44+6] 0 7[6+1] 0

15[6+9] 0 26[13+13] 0

51[4+47] 0 11[1+10] 2

9[0+9] 0 7[0+7] 0

(c) Expressivity

Table 4.2: Experimental Results.

Another important property of Algorithm Adn∃ is stated in the next the-

orem. It says that, given a set of dependencies Σ and a database D, some of

the canonical models of (D,Σ) can be obtained from the canonical models of

(D,Σµ) by dropping adornments, where Σµ = Adn∃(Σ)[1]. Moreover, when-

ever (D,Σ) has canonical models, (D,Σµ) admits canonical models as well.

These two properties imply that if (D,Σ) has canonical models, then we can

construct one from (D,Σµ) (e.g., by using the core Chase).

Theorem 4.61. Consider a set of dependencies Σ and let Σµ = Adn∃(Σ)[1].

For every database D,

1. src(CMod(D,Σµ)) ⊆ CMod(D,Σ), and
2. CMod(D,Σµ) 6= ∅ iff CMod(D,Σ) 6= ∅. 2

On the basis of the boolean value returned by Algorithm Adn∃, below we

define semi-acyclic dependencies.

Definition 4.62 (Semi-acyclic dependencies). A set of dependencies Σ

is semi-acyclic (SAC) if Adn∃(Σ)[2] is true. 2

Every semi-acyclic set of dependencies belongs to CTstd
∃ .

Theorem 4.63. For every semi-acyclic set of dependencies Σ and for every

database D, there is a terminating standard Chase sequence of D with Σ whose

length is polynomial in the size of D. 2
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4.4.3 Expressivity, Complexity and Experimental Evaluation

As Algorithm Adn∃ embeds the fireable condition of semi-stratification, we

have that semi-acyclicity strictly generalizes semi-stratification. It also gener-

alizes acyclicity.

Theorem 4.64. S-Str ( SAC and AC ( SAC. 2

As SAC includes sets of dependencies which are not in CTstd
∀ , it follows

that SAC 6⊆ MFA; it is an open problem whether MFA ⊆ SAC.
We now turn our attention to the second aim of Algorithm Adn∃: providing

a set of adorned dependencies Σµ which can be used in place of the original

set of dependencies Σ for termination analysis. As shown in the following, Σµ

turns out to be better than Σ for the purpose of checking termination (see

Theorem 4.66 below).

Given a termination criterion C, we use Adn∃-C to denote the class of sets

of dependencies Σ such that Adn∃(Σ)[1] belongs to C. Moreover, we define C
as the set containing C for every criterion C discussed in Section 4.2.

The following theorem states that by combining Algorithm Adn∃ with cur-

rent termination criteria (including those for checking if a set of dependencies

belongs to CTstd
∀ ), we can check (via a sufficient condition) if a set of depen-

dencies belongs to CTstd
∃ . Theorem 4.66 below says that by proceeding in this

way we can identify strictly more sets of dependencies in CTstd
∃ .

Theorem 4.65. Let Σ be a set of dependencies. If Σ ∈ Adn∃-C then Σ ∈
CTstd
∃ , for C ∈ C. 2

Theorem 4.66. C ( Adn∃-C, for C ∈ C. 2

The previous theorem follows from the fact that if a set of dependencies

satisfies a termination condition, then its adorned version has the same (or

weaker) structural properties and thus it satisfies the termination condition

too.

We point out that if Σ ∈ Adn∃-C then Σ ∈ CTstd
∃ , but it can be the case

that Σ 6∈ CTstd
∀ even if C is a criterion for checking if a set of dependencies is

in CTstd
∀ .

The following theorem states the complexity of Algorithm Adn∃.

Theorem 4.67. For any set of dependencies Σ, the size of Adn∃(Σ)[1] and

the time complexity of computing it using Algorithm Adn∃ are exponential and

double exponential in the size of Σ, respectively. 2



144 4 Termination of the Chase

Despite of the theorem above, as shown in our experimental evaluation,

the size of Σµ and the time to compute it are reasonable in practice.

Experimental Evaluation. We now report on an experimental evaluation

we performed to assess our approach. We have implemented Algorithm Adn∃

in Java. The implementation, as well as the datasets we used, can be found

at http://si.deis.unical.it/~calautti/chase/. We used sets of depen-

dencies taken from the repository [1], which includes ontologies in a variety of

domains: a large subset of the Gardiner ontology corpus [42], the LUBM ontol-

ogy [57], several Phenoscape ontologies [3], and a number of ontologies from

two versions of the Open Biomedical Ontology corpus [2]. All experiments

were run on an Intel i7-3770 3.40 Ghz, 16 GB of memory.

Table 4.2 resumes (a) the main characteristics of the dependency sets used

in our experiments, (b) the complexity of analyzing a set of dependencies in

terms of the number of generated adorned rules and the time to compute them,

and (c) the expressive power in terms of the number of sets of dependencies

recognized as terminating or not.

More specifically, we considered a collection of 178 ontologies and parti-

tioned it into eight classes depending on the number of existentially quantified

TGDs and the number of EGDs. For the former we considered four intervals,

namely [1, 10], [11, 100], [101, 1000] and [1001, 5000], while for the latter we

considered two intervals, namely [1, 10] and [11, 100]. For each class, we have

considered ontologies with different ratios |Σ∀|/|Σ∃|.
Table 4.2a reports, for each class, the number of ontologies belonging to

the class (column #tests) along with the average number of dependencies for

the ontologies in the class (column |Σ|).
Table 4.2b shows, for each class, the average ratio of the number of adorned

dependencies to the number of dependencies in the original ontology (col-

umn |Σµ|/|Σ|), along with the average time (in milliseconds) to compute the

adorned set (column Time). It is worth noting that the set of adorned depen-

dencies in not much larger than the original set of dependencies, and running

times are lower than 1 second in most of the cases.

Table 4.2c reports, for each class, (i) the number of semi-acyclic ontologies

+ the number of ontologies that are not semi-acyclic and the standard Chase

did not halt within 24 hours (column A+NT ), and (ii) the number of ontolo-

gies that are not semi-acyclic and the standard Chase terminated within 24

hours (column FN , “false negatives”). Notice that, among the 76 ontologies

for which the Chase terminated, only 2 were not semi-acyclic.
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Conclusions

The termination of programs has proven to be an appealing and challenging

problem for the Computer Science community, and has seen a very impor-

tant advancement in the field of logic programming and database integrity

constraints satisfaction. In particular, the Chase has proven to be a central

tool in many current applications. Its importance is due to the fact that sev-

eral problems can be solved by exhibiting a universal model, and the Chase

computes a universal model, when it terminates.

This thesis studied the termination problem for logic programming with

function symbols and for database dependencies by presenting the state of the

art and discussed new approaches in these fields with the aim to overcome the

limitations of current works.

For logic programs with function symbols, a new approach that exploits

the presence of different function symbols in order to understand whether a

logic program terminates was discussed, along with another approach that

characterizes the termination of logic programs via acyclicity notions over

particular graph constructed from the given programs. Finally, multiple ap-

proaches based on linear constraints solving have been proposed.

For the case of database dependencies, it has been shown that the (semi-

)oblivious Chase termination problem for guarded-based TGDs is decidable,

and precise complexity bounds are obtained as well. Furthermore, a novel ap-

proach for directly dealing with the ∃-sequence Chase termination problem in

the presence of both TGDs and EGDs is discussed.

Interesting directions for future work regarding the termination of logic

programs are to plug current approaches in the framework proposed in [34]
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and study their combination in such a framework, and analyze the relation-

ships between the notions of safety of [34] and the notions of limitedness of

termination techniques.

Desirable advancements in the context of Chase termination are to close

the picture for guarded-based TGDs by also considering the standard Chase,

provide similar results for other well-known classes of TGDs, like sticky TGDs

[25] and study a new adornment algorithm for dealing with the ∀-sequence

Chase termination problem in the presence of both TGDs and EGDs.
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Appendix

Proofs of Section 4.3

Proof of Lemma 4.16

By hypothesis, there exists a cycle in EDG(Σ) that contains a special edge; let

(v0, v1), (v1, v2), . . . , (vn−1, vn) be such a cycle (v0 = vn) with λ((vi, vi+1)) =

(ri, ki), for each 0 6 i < n. Assuming that the above cycle is one of the

shortest cycles in EDG(Σ) that contains a special edge, we can show that

there exist sequences I0, I1, . . . and (ρ0, h0), (ρ1, h1), . . ., where, for k ∈ N0,

k · n 6 i < (k + 1) · n implies ρi = ri−k·n, such that:

1. for each i > 0, Ii〈ρi, hi〉Ii+1; and

2. for each i 6= j > 0, ρi = ρj implies hi 6= hj .

This immediately implies that Σ admits an infinite obl-chase derivation, as

needed. The proof for the existence of the above sequences is by induction on

i > 0.

Base Step. Let I0 = {p(t)}, where p/n is the predicate of body(r0) and

t = {c}n, where c ∈ C. Clearly, the homomorphism h0 = {X → c | X ∈
var(body(r0))} is such that h0(body(r0)) ∈ I0. Since ρ0 = r0, we conclude

that (ρ0, h0) is a trigger for Σ on I0, and claim (1) follows. Since I0〈ρ0, h0〉I1
involves only one trigger, claim (2) holds trivially.

Inductive Step. By induction hypothesis, (ρi, hi) is a trigger for Σ on Ii,

and Ii〈ρi, hi〉Ii+1, where Ii+1 = Ii ∪ {h′i(head(ρi))} with h′i ⊇ hi. Observe

that on π there exist edges (v, u) and (u,w) such that λ((v, u)) = (ρi, k) and



148 6 Appendix

λ((u,w)) = (ρi+1, k
′). This implies that pred(Aki ) = pred(body(ρi+1)), where

Aki is the k-th atom of head(ρi). Since ρi+1 is a simple linear TGD, there exists

a homomorphism µ such that µ(body(ρi+1)) = h′i(A
k
i ). Since h′i(A

k
i ) ∈ Ii+1,

with hi+1 = µ, (ρi+1, hi+1) is a trigger for Σ on Ii+1, and claim (1) follows.

We proceed to establish claim (2). By induction hypothesis, it suffices to

show that, for each 0 6 j 6 i, ρj = ρi+1 implies hj 6= hi+1. Assuming that

ρi+1 = r(i+1)−k·n, for some k ∈ N0, we consider the cases where 0 6 j 6 k · n
and k · n < j 6 i.

Case 1. Assume first that 0 6 j 6 k · n. For each 0 6 j 6 k · n such

that ρj 6= ρi+1, the claim follows immediately. Consider now an arbitrary

j ∈ {0, . . . , k ·n} such that ρj = ρi+1. Due to the occurrence of a special edge

in π — w.l.o.g., we assume that is the first edge of π — we can conclude that

hi+1 maps var(body(ρi+1), {u}) to a null z ∈ N that was invented during or

after the trigger application Ik·n〈ρk·n, hk·n〉Ik·n+1. Therefore, z does not occur

in Ij , which in turn implies that hj maps var(body(ρj), {u}) to a term other

than z. Thus, hj 6= hi+1, and the claim follows.

Case 2. Towards a contradiction, assume that there exists j ∈ {k · n +

1, . . . , i} such that ρj = ρi+1 and hj = hi+1, i.e., (ρj , hj) = (ρi+1, hi+1).

Thus, the application of the trigger (ρi+1, hi+1) can be avoided, and obtain a

shorter Chase sequence. This implies that in EDG(Σ) there exists a cycle that

contains a special edge with length less that n. But this contradicts the fact

that (v0, v1), (v1, v2), . . . , (vn−1, vn) is one of the shortest cycles that contains

a special edge, and the claim follows. 2

Proof of Lemma 4.27

Let us first show that ri+2 is active. Towards a contradiction, assume that

R(ri+2) = ⊥. This implies that R(ri+1) is not compatible with r. By definition

of compatibility, we conclude that there exists a variable X ∈ var(body(r)),

with Π = pos(body(r), {X}), such that there exist two distinct variables

Z,W ∈ var(head(R(ri+1)), Π), and at least one of them is an existentially

quantified variable; assume that Z ∈ ex(R(ri+1),). For technical clarity, as-

sume that |Π| = 2; our argument can be extended to the general case. Let

πZ = pos(head(R(ri+1)), {Z}) ∩Π and πW = pos(head(R(ri+1)), {W}) ∩Π.

Since Z 6= W , for each j < i + 1, var(head(R(rj)), {πZ}) ∈ fr(R(rj)); other-

wise, R(ri+1) = ⊥, which contradicts our hypothesis. Regarding the position

πW , we consider the two cases where var(head(R(ri+1)), {πW }) either be-

longs to fr(R(ri+1)), or to ex(R(ri+1),). In both cases, for each j < i + 1,
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var(head(R(rj)), {πW }) ∈ fr(R(rj)). From the above discussion, we conclude

that, during the construction of R(R(ri), r), the two distinct frontier variables

var(head(R(ri)), {πZ}) and var(head(R(ri)), {πW }) must be unified, which in

turn implies that eqtype(R(ri)) 6= eqtype(R(ri+1)). But this contradicts our

hypothesis, and therefore ri+2 is active, as needed.

It remains to show that eqtype(R(ri+1)) = eqtype(R(ri+2)). First, observe

that eqtype(R(ri+1)) ⊆ eqtype(R(ri+2)), since, during the construction of

R(ri+2), we only unify symbols in body(R(ri+1)), and thus add equalities

among positions to eqtype(R(ri+1)). We proceed to show the other direc-

tion. Towards a contradiction, assume that eqtype(R(ri+2)) 6⊆ eqtype(R(ri+1)).

Since eqtype(R(ri+1)) ⊆ eqtype(R(ri+2)), we get that eqtype(R(ri+1)) (
eqtype(R(ri+2)). This implies that there exist two positions π1 and π2 in

head(R(ri+1)) such that var(head(R(ri+1)), {π1}) = X 6=
var(head(R(ri+1)), {π2}) = Y , and also X,Y ∈ fr(R(ri+1)). Therefore, during

the construction of R(R(ri+1), r), X and Y must be unified. Hence, the same

positions π1 and π2 in head(R(ri)) also contain two distinct frontier variables

of fr(R(ri)), that were forced to unify during the construction of R(R(ri), r).

Consequently, eqtype(R(ri)) 6= eqtype(R(ri+1)). But this contradicts our hy-

pothesis, and therefore eqtype(R(ri+1)) = eqtype(R(ri+2)), as needed. This

completes our proof. 2

Proof of Lemma 4.29

The proof is along the lines of the proof for Lemma 4.16, where an analo-

gous result is established for simple linear TGDs. However, in the inductive

step of the proof for Lemma 4.16, we rely on the fact that the given set of

linear TGDs is simple. More precisely, due to the fact that ρi+1 is simple lin-

ear, we immediately conclude that there exists a homomorphism µ such that

µ(body(ρi+1)) = h′i(Ak) (see the third line of the inductive step in the proof

of Lemma 4.16). However, if ρi+1 is a (non-simple) linear TGD, then the exis-

tence of µ is not immediate; in fact, to show that µ exists is a non-trivial task.

The rest of the proof is devoted to establish the existence of µ. Before we pro-

ceed further, let us first show the following auxiliary lemma, which, roughly

speaking, states that the resolvent of an active sequence of single-head linear

TGDs mimics the behavior of the sequence during the Chase.

Lemma 6.1. Let I0 = {p(c, . . . , c)}, I1, . . . , In, where n > 0, be a sequence

of instances such that Ii〈ri, hi〉Ii+1, for each 0 6 i < n, with r0, . . . , rn−1 be
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an active sequence of single-head linear TGDs. Moreover, we assume that, for

every 1 6 i 6 n−1, hi(body(ri)) ∈ (Ii \Ii−1)1. The atom obtained by applying

(rn−1, hn−1) to In−1 coincides (modulo null renaming) with the atom obtained

by applying (ρ, µ) to I0, where ρ = R(r0, . . . , rn−1) and µ = {X → c | X ∈
var(body(ρ))}.

Proof. The proof is by induction on n > 0.

Base Step. The claim holds trivially, since r0 = R(r0) = ρ.

Inductive Step. By induction hypothesis, the atom obtained by applying

(rn−2, hn−2) to In−2 coincides, modulo null renaming, with the atom obtained

by applying (ρ̂, g) to I0, where ρ̂ = R(r0, . . . , rn−2) and g = {X → c | X ∈
var(body(ρ̂))}. Therefore, hn−1(body(rn−1)) = g′(head(ρ̂)), where g′ ⊇ g maps

each variable X ∈ ex(ρ̂,) to a “fresh” null. By construction, ρ is the TGD

θ(body(ρ̂))→ θ(head(rn−1)). Assuming that h′n−1(head(rn−1)), where h′n−1 ⊇
hn−1, is the atom obtained by applying (rn−1, hn−1) to In−1, it is clear that

(g′ ∪ h′n−1) is a unifier for head(ρ̂) and body(rn−1). By definition of the most

general unifier, there exists a substitution λ such that (λ ◦ θ) = (g′ ∪ h′n−1).

Observe that

λ(body(ρ)) = λ(θ(body(ρ̂))) = (g′∪h′n−1)(body(ρ̂)) = g(body(ρ̂)) = p(c, . . . , c),

and

λ(head(ρ)) = λ(θ(head(rn−1))) = (g′∪h′n−1)(head(rn−1)) = h′n−1(head(rn−1)).

Since λ|fr(ρ) = µ, the claim follows.

Let us now establish the existence of µ. By hypothesis, there exists a

critical cycle in EDG(Σ) that contains a special edge; let π = (v0, v1),

(v1, v2), . . . , (vn−1, vn) be such a cycle (v0 = vn) with λ((vi, vi+1)) = (ri, ki),

for each 0 6 i < n. Since (r0, k0), . . . , (rn−1, kn−1) is a critical sequence,

Lemma 4.28 implies that the sequence (ρ0, j0), (ρ1, j1), . . . , (ρi, ji), where,

for k ∈ N0, k · n 6 ` < (k + 1) · n implies ρ` = ri−k·n, is active, i.e.,

R((ρ0, j0), (ρ1, j1), . . . , (ρi, ji)) 6= ⊥; the j′is refer to the head-atoms of ρ′is

that appear on the critical cycle. By Lemma 6.1, it suffices to show that there

exists a homomorphism that maps body(ρi+1) to the atom obtained by ap-

plying (τ, g) to {p(c, . . . , c)}, where τ = R((ρ0, j0), (ρ1, j1), . . . , (ρi, ji)) and

1 This additional assumption simply says that the TGD ri is triggered by the atom
obtained after applying ri−1.
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g = {X → c | X ∈ var(body(τ))}. Let µ be the substitution that maps the

variables of var(body(ρi+1), Π), where Π are the frontier positions of τ , to the

constant c, and all the other variables of var(body(ρi+1)) to nulls, according

to the atom obtained after the application of (τ, g) to {p(c, . . . , c)}. The fact

that τ is compatible with ρi+1 implies that µ is well-defined, and the claim

follows. 2

Proof of Lemma 4.37

Consider a directed graph G = (N,E), and two nodes s, t ∈ N . We are going

to construct a database D, a set Σ ∈ (SL∩CT?), where ? ∈ {obl, sobl}, and a

propositional predicate q, such that D ∪Σ |= q iff t is reachable from s. The

idea is to construct Σ in such a way that its predicate graph coincides with

G, while D stores the node s, and q represents the node t. More precisely,

D = {ps(c)} and Σ = {pv(X)→ pu(X) | (v, u) ∈ E} ∪ {pt(X)→ q}.

It is clear that the above set of simple linear TGDs belongs to CT? since it

does not contain existentially quantified variables, and the claim follows. 2

Proof of Lemma 4.39

It suffices to show that the complement of our problem is in NSPACE(ω log(ω ·
|sch(Σ)|) + ω log(ω · |Σ|)). To this end, by definition of critical-rich-acyclicity

(resp., critical-weak-acyclicity), we need to show that the problem of deciding

whether a critical cycle in EDG(Σ) (resp., DG(Σ)) that contains a special

edge exists, is in NSPACE(ω log(ω · |sch(Σ)|) + ω log(ω · |Σ|)). In the rest of

the proof, let G = (N,E, λ) be either EDG(Σ) or DG(Σ).

The problem under consideration can be conceived as an extended version

of graph reachability. More precisely, we need to decide whether there exists

a node v ∈ N that is reachable from itself via a cycle π = (v, v1), (v1, v2), . . . ,

(vn−1, v), and the following hold: (i) π is critical, or, equivalently, λ((v, v1)),

λ((v1, v2)), . . . , λ((vn−1, v)) is critical; and (ii) (v, v1) is special, or (vn−1, v)

is special, or (vi, vi+1) is special, for some i ∈ [n− 2]. This can be achieved by

applying the following nondeterministic procedure:

1. Guess an edge e1 = (v1, v2) ∈ E.

2. If e1 is special, then flag := 1; otherwise, flag := 0.

3. r1 := λ(e1) and origin := v1.
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4. Repeat

If there is no edge (u,w) ∈ E such that u = v2, then reject ; otherwise,

guess an edge e2 = (v2, v3) ∈ E.

If e2 is special, then flag := 1.

r2 := λ(e2).

If r1 is not compatible with r2, then reject ; otherwise, e1 = (v1, v2) :=

e2 = (v2, v3) and r1 := R(r1, r2).

Until (v3 = origin).

5. If flag = 0, then reject .

6. If R

r1, . . . , r1︸ ︷︷ ︸
k

 6= ⊥, for each k ∈ [ω+1], then accept ; otherwise, reject .

It is not difficult to verify that the above procedure is correct. In fact, the

repeat-until statement seeks for an active cycle π in G, and if it exists, the

resolvent of the TGDs that label the edges of π is stored in r1. If such an active

cycle does not exist, then the algorithm rejects. Finally, the algorithm returns

accept iff π contains a special edge (i.e., if flag = 1), and π is critical (i.e., the

resolvent of the sequence r1, . . . , r1 of length k, for each k ∈ [ω + 1], exists).

The rest of the proof is devoted to show that the above nondeterministic

procedure runs in space O(ω log(ω · |sch(Σ)|) + ω log(ω · |Σ|)).
First, observe that encoding a position of sch(Σ) requires log (ω · |sch(Σ)|)

space, encoding a predicate of sch(Σ) requires log (|sch(Σ)|) space, and en-

coding a variable occurring in Σ requires O(log(ω · |Σ|)) space – we assume

that the TGDs of Σ do not share variables, and thus O(ω · |Σ|) variables

may occur in Σ. Therefore, we can maintain an edge of G, that is, a pair

of positions, in O(log (ω · |sch(Σ)|)) space, and a single-head linear TGD in

O(log(|sch(Σ)|) +ω log (ω · |Σ|)), that is, the space needed to store two pred-

icates and 2ω variables.

It is easy to verify that, during the execution of the above procedure, we

need to remember two edges (e1 and e2), two single-head linear TGDs (r1 and

r2), and some auxiliary values (flag and origin). Clearly, the above elements

can be maintained in O(log(ω · |sch(Σ)|) + ω log(ω · |Σ|)) space. However,

it should not be forgotten that we need to consider also the space needed

to construct R(r1, r2), and to check that, for each k ∈ [ω + 1], the sequence

r1, . . . , r1 of length k is active.

To construct R(r1, r2), we first need to check whether r1 is compatible with

r2 (see Definition 4.21). This can be easily done in O(ω log(ω ·|sch(Σ)|)) space,

which is actually the space needed to store the positions of pos(body(r2), {X}),
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for some X ∈ var(body(r2)). Notice that, to check whether head(r1) and

body(r2) unify, it suffices to check whether they have the same predicate sym-

bol; this holds since we consider constant-free TGDs. Once we confirm that

r1 is compatible with r2, we proceed with the construction of R(r1, r2). To

this end, we need to construct θ = MGU(head(r1), body(r2)). Since θ consists

of at most ω mappings X → Y , where X and Y are variables occurring in

Σ, it can be maintained in O(ω log(ω · |Σ|)) space. Now, to explicitly con-

struct θ, we rely on a simplified version of the classical unification algorithm

by Robinson.This algorithm constructs θ in an incremental way by scanning

from left to right the variables of head(r1) and body(r2), and unify them when-

ever a disagreement is observed. Assuming that head(r1) = p(X1, . . . , Xn) and

body(r2) = p(Y1, . . . , Yn), the unification algorithm proceeds as follows:

1. θ :=
(
{Xi → Xi}i∈[n] ∪ {Yi → Yi}i∈[n]

)
.

2. ctr := 1.

3. Repeat

V := Xctr and U := Yctr .

V := θ(V ) and U := θ(U).

If V 6= U , then θ := ({U → V } ◦ θ).
ctr := ctr + 1.

Until (ctr = n+ 1).

4. Return θ.

The above algorithm runs in O(ω log(ω · |Σ|)) space, i.e., the space needed

to maintain θ, V and U . Consequently, R(r1, r2) can be constructed using

O(ω log(ω · |sch(Σ)|) +ω log(ω · |Σ|)) space. By providing similar analysis, we

can show that the criticality check can be done using the same amount of

space. Summing up, we get that the above nondeterministic procedure runs

in O(ω log(ω · |sch(Σ)|) +ω log(ω · |Σ|)) space, as needed. This completes our

proof. 2

Proof of Lemma 4.40

It suffices to show that the complement of our problem is pspace-hard. The

proof is by reduction from the acceptance problem of a deterministic polyno-

mial space Turing machine M on an input I = a1 . . . am. Let M = (S,Λ, δ, s0),

where S is a finite set of states, Λ = {0, 1,t} is the tape alphabet with t be the

blank symbol, δ : S×Λ→ (S×Λ×{←,−,→}) is the transition function, and

s0 ∈ S is the initial state. We assume that M is well-behaved and never tries
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to read beyond its tape boundaries, always halts, and uses exactly n = mk

tape cells, where k > 0. We represent configurations using a string Λ?SΛ+,

i.e., the state of the configuration is placed to the immediate left of the cursor

position; in this notation, the initial configuration is s0a1 . . . amtn−m. Finally,

we assume that in the accepting configuration the cursor points at the first

tape cell.

Our goal is to construct a database D, a set Σ ∈ (CT? ∩ L), where ? ∈
{obl, sobl}, and a propositional predicate accept , such that M accepts on input

I iff D∪Σ |= accept . In our construction we use the (n+ |S|+4)-ary predicate

config to represent the configurations of M . In the datbase D we store the

initial configuration of M , while with Σ we simulate the transition function

of M . Let us now formalize the above intuitive description. We assume the

order s0 < s1 < . . . < s|S|−1 on the states of S, and we also assume that s1 is

the accepting state.

The database D consists of the single atom

config(s0, a1, . . . , am,t, . . . ,t︸ ︷︷ ︸
n−m

, s0, . . . , s|S|−1, 0, 1,t),

where the tuple s0, a1, . . . , am,t, . . . ,t︸ ︷︷ ︸
n−m

represents the initial configuration of

M , the tuple s0, . . . , s|S|−1 encodes the states of M , and the tuple 0, 1,t en-

codes the tape alphabet of M . The reason why we explicitly add the constants

for the states and the tape symbols of M in the above atom, is to be able to

access those constants without explicitly mention them in the TGDs.

The set Σ of linear TGDs is defined as follows:

• First, we simulate the transition function of M . We consider the three

different cases where the cursor moves left, right, or stays at the same

position.

Left: For each transition rule δ(si, a) = (sj , b,←), we introduce, for each

` ∈ [n− 1], the linear TGD:

conf (C1, . . . , C`−1, Ti, Aa, C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At) →

conf (C1, . . . , C`−2, Tj , C`−1, Ab, C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At).

Right: For each transition rule of the form δ(si, a) = (sj , b,→), we intro-

duce, for each ` ∈ [n− 1], the linear TGD:
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conf (C1, . . . , C`−1, Ti, Aa, C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At) →

conf (C1, . . . , C`−1, Ab, Tj , C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At).

Stay: For each transition rule of the form δ(si, a) = (sj , b,−), we intro-

duce, for each ` ∈ [n− 1], the linear TGD:

conf (C1, . . . , C`−1, Ti, Aa, C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At) →

conf (C1, . . . , C`−1, Tj , Ab, C`+1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At).

• Finally, once the accepting configuration is reached, the propositional atom

accept is generated:

conf (T1, C1, . . . , Cn, T0, . . . , T|S|−1, A0, A1, At) → accept .

Recall that, by assumption, in the accepting configuration the cursor

points at the first cell; thus, once the accepting configuration is reached,

the above TGD will be triggered. In other words, we do not need to intro-

duce TGDs where the body-variable T1 appears in a position other than

the first one.

Our construction is now complete. It is not difficult to show that M accepts

on input I iff D∪Σ |= accept . Since Σ does not contain existentially quantified

variables, we immediately get that Σ ∈ CT?, and the claim follows. 2

Proof of Lemma 4.44

It suffices to show that ?-InfiniteDerivation runs in exponential space, in gen-

eral, and in polynomial space, in the case of predicates of bounded arity; recall

that aexpspace = 2exptime and apspace = exptime. To this end, we show

that the space required for the following tasks is exponential in the maximum

arity ω of sch(Σ), and polynomial in all the other parameters of the input:

(1) maintain the cloud of an atom; (2) maintain the set Hr, where r ∈ Σ;

(3) maintain the integer value of ctr ; and (4) verify that the guessed cloud is

valid. Let us analyze the above tasks:

1. In the cloud of an atom A, by definition, we have only predicates of sch(Σ)

and terms of (dom(A)∪{c}). Since |(dom(A)∪{c})| 6 (ω+1), we conclude

that |cloud(A,D,Σ)| 6 |sch(Σ)| · (ω+ 1)ω, and thus it can be maintained

in exponential space in ω.
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2. Hr may contain all the possible homomorphisms from var(guard(r)) to

dom(A), where A is the last atom generated by the algorithm. Since

|var(guard(r))| 6 ω and |dom(A)| 6 ω, we get that |Hr| 6 ωω, and

thus it can be maintained in exponential space in ω.

3. Recall that δ is double-exponential in ω, and only ω appears in the second

exponent. Hence, the integer value of ctr , which is at most (2 · δ), can be

represented in binary form using space O(log δ).

4. Finally, it is known that the task of verifying whether the guessed cloud is

valid, can be carried out by an alternating procedure that uses exponential

space in ω. The rather involved algorithm is thoroughly explained in [22],

where the main problem is query answering.

This completes our proof. 2

Proof of Lemma 4.45

Here we focus on the 2exptime-hardness. The exptime-hardness can be

established in a similar way. For technical reasons, we focus on standard

databases, that is, databases that have at least two constants, let say 0 and

1, that are available via the unary predicates 0(·) and 1(·), respectively. Our

proof is obtained by a significant modification of the second part of the proof of

Theorem 6.2 in [22], which shows the 2exptime-hardness of checking whether

D ∪ Σ |= q, where D is a database, Σ is a set of guarded TGDs, and q is a

propositional predicate. There, this is shown using a fixed database consisting

of the single atom zeroone(0, 1) that, in essence, just defines the distinct 0 and

1 constants. We use the same database D in the present proof, with the addi-

tional assumption that D is standard. The presentation here is self-contained.

Given that aexpspace = 2exptime (aexpspace stands for alternating

expspace), our aim is, as in the proof of Theorem 6.2 of [22], to simulate an

aexpspace Turing machine. As already noted there, it is sufficient to simulate

one that uses no more than 2n worktape cells, since the acceptance problem

for such machines is already 2exptime-hard. In fact, by trivial padding argu-

ments, the acceptance problem for every aexpspace machine can be trans-

formed in polynomial time into the acceptance problem for an alternating

linear space (alinspace) machine using at most 2n worktape cells. We will

thus concentrate on such machines. In the present proof, we make, without loss

of generality , an additional assumption: we assume the machine contains a

counter of 2n−1 bits (i.e., the second half of the worktape) that is initialized to
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zero and can count from 0 up to 22n−1−1, and which is regularly incremented

by adding 1 after O(2n) steps until either the machine stops or the counter

reaches the maximal value of 22n−1−1 (which consists of 2n−1 ones), in which

case the machine is forced to stop in a rejecting state. This makes sure that

the machine cannot cycle and always stops within O(22n) steps. Adding such

counters to a Turing machine, giving rise to the concept of clocked Turing

Machine, is a well-known technique2; see also [59, 74]. Given that counting

is in logspace, every alinspace Turing machine with workspace N can be

augmented with a counter with mild overhead only. The problem of deciding

whether an aexpspace machine M equipped with such a counter accepts its

input I is thus still 2exptime-complete. We finally assume, again without loss

of generality, that the counter always occupies the last (i.e., rightmost) 2n−1

bits of M ’s worktape. Finally, we assume, again without loss of generality,

that the alphabet is {0, 1}, and that in the initial configuration, the machine

stores the input string I in the leftmost part of the worktape, and that all

cells to the right of it (including, of course, the counter) contain the value

zero.

To simulate the computation of an alinspace Turing machine M as above

on input I, in the proof of Theorem 6.2 of [22], an infinite binary alternation

tree is generated where the two children Y and Z of a nodeX are the identifiers

of the two successor configurations of configuration X. However, this tree

does not need to be infinite. Its branches can be cut off at a suitable double-

exponential depth, because beyond that depth some earlier configuration of

the same branch must have been repeated, and it is thus useless to pursue the

branch further. We will thus modify the proof of Theorem 6.2 in [22], so that

a node generates children, only if the node does not exceed a certain depth.

For technical reasons, in our present proof, just as in the proof of Theorem 6.2

in [22], the first two arguments of some atoms below will be dummy variables

T0 and T1 that will always be forced to take the values 0 and 1, respectively.

This way, where convenient, we will have the values 0 and 1 available implicitly

in form of variables, and we will not need to use these constants explicitly in

our TGDs.

Our simulation starts by selecting the constant 0 as the identifier for the

initial configuration, which is done by the TGD

0(T0), 1(T1), zeroone(T0, T1) → init(T0, T1, T0).

2 http://cfcul.fc.ul.pt/publicacoes/artigos/BSPM Felix N67.pdf
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The first two arguments of init(T0, T1, T0) just serve, as explained, to carry

the values 0 and 1 along. We also add the TGD

0(T0), 1(T1), init(T0, T1, T0) → config(T0, T1, T0)

to assert that 0 is indeed a configuration. Further below we will continue to

define the initial configuration by generating exponentially many tape cells,

associating them with the identifier “0” of the initial configuration, and initial-

izing their value with the input string I followed by zeroes. Let us, however,

first describe how new configurations are generated from the initial one. In

the proof of Theorem 6.2 in [22], the configuration tree generation rules were

as follows:

0(T0), 1(T1), config(T0, T1, X)→ ∃Y ∃Z next(T0, T1, X, Y, Z),

0(T0), 1(T1),next(T0, T1, X, Y, Z)→ config(T0, T1, Y ),

0(T0), 1(T1),next(T0, T1, X, Y, Z)→ config(T0, T1, Z).

The first TGD generates to each configuration identifier X two children Y

and Z, which are meant to be the identifiers of X’s successor configurations.

The other two TGDs just say that each successor configuration is a configu-

ration. Obviously these rules enforce a non-terminating (infinite) Chase, and

they cannot be used for present purposes. However, to ensure that the Chase

terminates, the following minor modification of the first rule, while keeping

the other two TGDs, will suffice:

0(T0), 1(T1), config(T0, T1, X), valid(X) → ∃Y ∃Z next(T0, T1, X, Y, Z).

Here, the atom valid(X) will ensure that only “valid” configurations give rise

to children, which are those whose counter holds a value smaller than 22n−1−1.

In practice, this means that at least one of the last 2n−1 bits must be zero.

To define the valid(·) predicate via guarded TGDs, we thus just need to check

the latter property. We will do that after we have explained how to encode

the worktape associated with each configuration X.

Towards a suitable representation of the worktape cells, and to access these

cells and put them in relation, we use a number of guarded TGDs to create a

predicate b whose extension shall contain all atoms

b(0, 1,v,u, x, y, z)
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such that v is a vector of n bits, u is an n-bit vector different from v, and x, y, z

are configuration identifiers, as above. For better readability, whenever useful,

we will use superscripts for indicating the arity of vector variables: for instance,

V(r) denotes V1, . . . , Vr. Boldface variable symbols without superscript always

indicate n-ary vectors. Instead, a repeated variable or constant will have the

total number of repetitions as superscript, thus T 3
0 stands for (T0, T0, T0).

To define the predicate b using guarded TGDs, we first define a predicate

b′(0, 1,v,u, x, y, z) which is as b, except that v and u may also be equal, and

then getting b from b′. This goes as follows. We start with the TGD

0(T0), 1(T1),next(T0, T1, X, Y, Z) → b′(T0, T1, T
n
0 , T

n
0 , X, Y, Z),

which defines an atom b′(0, 1, 0n, 0n, x, y, z), for each configuration x with its

next-successors y and z. The following 2n TGDs, for 1 6 i 6 n, generate an

exponential number of new atoms, for each triple X,Y, Z, by swapping 0s to

1s in all possible ways in the bit vectors v and u of b′. Eventually, we obtain

all combinations of possible values for v and u.

0(T0), 1(T1), b′(T0, T1, V1, . . . , Vi−1, T0, Vi+1, . . . , Vn,U, X, Y, Z)→

b′(T0, T1, V1, . . . , Vi−1, T1, Vi+1, . . . , Vn,U, X, Y, Z)

0(T0), 1(T1), b′(T0, T1,V, U1, . . . , Ui−1, T0, Ui+1, . . . , Un, X, Y, Z)→

b′(T0, T1,V, U1, . . . , Ui−1, T1, Ui+1, . . . , Un, X, Y, Z).

It is trivial to define using guarded full TGDs a vectorized 2n-ary neq relation

such that neq(V n, Un) is true iff V n and Un are different bit vectors. Using

this, we define b from b′ as follows:

0(T0), 1(T1), b′(T0, T1,V,U, X, Y, Z), neq(V,U) → b(T0, T1,V,U, X, Y, Z).

In order to simulate the Turing machine M , we will represent each of

the exponentially many worktape cells by an n-ary bit vector. For example,

the fact that at configuration c the head of the machine is over cell i will

be expressed by a predicate head(i, c), where i is an n-ary bit-vector and c a

configuration identifier. We then need to use TGDs to express transitions such

as: (s, 0→ 1Rs′; 0Ls′′) meaning that if the machine M in some configuration

c is in state s and contains 0 in the current cell (say cell i), then obtain the first



160 6 Appendix

successor configuration c1 of c by writing 1 into cell i and move the cursor to

the right (over cell i+1) and switch to state s′, and obtain the second successor

configuration c2 of c by keeping 0 in cell i, moving to the left and switching

to state s′′. To express such transitions with guarded rules, we need a very

powerful guard relation g that at the same time can speak about bit-vector

successors and configuration-successors. The guard-relation g is defined from

b through the following group of guarded rules: For each 0 6 r < n, we add:

0(T0), 1(T1), b(T0, T1,V
(r), T0, T

n−r−1
1 ,U, X, Y, Z) →

g(T0, T1,V
(r), T0, T

n−r−1
1 ,V(r), T1, T

n−r−1
0 ,U, X, Y, Z).

The above n rules define an exponential number of cell-successor pairs for

each triple of configuration identifiers X,Y, Z, where Y and Z are the “next”

configurations following X. In particular, the relation g contains precisely

all tuples g(0, 1,v,w,u, x, y, z), such that v is an n-ary bit vector, w is its

binary successor, u is an n-ary bit-vector different from v, x is a configuration

identifier, y is its first successor via the next relation, and z is its second

successor via the next relation.

We are now ready to simulate an aexpspace Turing machine M over an

input string I by a set Σ of guarded TGDs. This simulation is similar to the

one presented in the proof of Theorem 6.2 of [22]. We first explain the used

predicates:

• state( , X): the state of configuration X is . Here stands for a bit-vector of

length dlog |S|e, where S is the state-set of machine M . When appears in

a TGD, this is just an abbreviation for the explicit binary representation of

state s. For example, if s is the fifth state in a fixed order, then = (101), or,

if one prefers not to use the constants directly, = (T1, T0, T1). (Remember

that T0 and T1 are always bound to 0 and 1, respectively.) We assume,

w.l.o.g., that there is a unique accepting state and denote it by sa.

• cell(V): the extension of this predicate contains all tape cell indexes.

• head(V, X): at configuration X the workhead is over cell V. Here V is a

n-ary list (vector) of variables.

• zero(V, X) and one(V, X): the content of worktape cell V of configuration

X is zero/o ne.

• accepting(X): X is an accepting configuration.

• existential(X) and universal(X): these are predicates that specify whether

a configuration X is existential or universal.
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• Comparison predicates on bit vectors: We assume that, in addition to the

already mentioned 2n-ary predicate neq , we have all usual comparison

predicates on n-ary bit vectors at our disposal, in particular ≤ and <. It

is easy to see that such predicates can be implemented via a polynomially

sized set of full guarded TGDs.

We add to Σ the TGD

state(X, sa) → accepting(X),

which just says that a configuration is accepting if its state is the accepting

state. We also add the following TGD defining the above-mentioned n-ary

predicate cell :

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z)→ cell(V).

Before describing the simulation of M ’s transition function, we show how

the worktape content is initialized to the input value I. For each 0 6 i < 2n,

if the i-th bit of I is zero, then we assert the TGD

0(T0), 1(T1), zeroone(T0, T1)→ zero([j], T0),

where [j] denotes an appropriate sequence of variables from {T0, T1}, which in

turn encodes the binary number of length n corresponding to i− 1 (the tape

starts at position 0). Similarly, we assert

0(T0), 1(T1), zeroone(T0, T1)→ one([j], T0),

in case the i-th bit of I is one. If k (in binary k) is the index of the rightmost

tape cell of I, then all cells to the right of it should be filled with zeroes. This

is done by the following TGD:

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), <([k],V)→ zero(V, T0),

where [k] is the sequence of variables from {T0, T1} corresponding to k. (We

will use this notation in what follows without further explanation.) We ini-

tialize the workhead position for configuration 0 to be on cell with index 0n:

0(T0), 1(T1), zeroone(T0, T1) → head(Tn0 , T0).
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Moreover, for the initial state s0 with binary representation s0, we assert:

0(T0), 1(T1), zeroone(T0, T1) → state([s0], T0).

A configuration is an existential one iff its state is existential; otherwise it is

universal. Thus, for each existential state s (whose binary encoding is s) we

add the TGD:

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), state([s], X)→ existential(X),

and for each universal state s we add the TGD:

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), state([s], X)→ universal(X).

We are now finally ready to describe how the transitions are translated into

guarded rules. We exemplify that on hand of the above described transition

(s, 0→ 1Rs′; 0Ls′′). For this transition, we assert the following TGDs:

0(T0), 1(T1), g(T0, T1,V,W,U, X, Y, Z), state([s], X), head(V, X), zero(V, X)

→ one(V, Y ), state([s′], Y ), head(W, Y )

0(T0), 1(T1), g(T0, T1,V,W,U, X, Y, Z), state([s], X), head(W, X), zero(W, X)

→ zero(W, Z), state([s′′], Z), head(V, Z).

We also need to add the so-called inertia rules, which state that all cells that

are not under the cursor keep their content in the subsequent configurations:

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), head(V, X), zero(U, X) →

zero(U, Y ), zero(U, Z)

0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), head(V, X), one(U, X) →

one(U, Y ), one(U, Z).

These rules altogether precisely simulate transition (s, 0 → 1Rs′; 0Ls′′), and

all other transitions can be simulated by similar TGDs. Let us now show how

the valid predicate is implemented:
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0(T0), 1(T1), b(T0, T1,V,U, X, Y, Z), < (T0, T
n−1
1 ,V), zero(V, X)→ valid(X).

This TGD just states that if in state X there exists a cell among the last 2n−1

cells whose content is zero, then the counter is not at its maximum value,

and the configuration is valid. This makes sure that the Chase always ter-

minates: given that the counter increases monotonically and is periodically

incremented after O(2n) steps, and given that on a branch of the alternation

tree the machine never runs into the same configuration, on each correspond-

ing branch of the guarded Chase forest, only O(22n) nulls are created, and the

Chase eventually stops. What remains to be defined are the acceptance rules

that derive the predicate accept if M accepts I. Basically, this is achieved

by working the alternating configuration tree upwards and propagating an

accepting predicate from the leaves to the root, i.e., to the configuration with

identifier 0:

existential(X),next(X,X1, X2), accepting(X1)→ accepting(X)

existential(X),next(X,X1, X2), accepting(X2)→ accepting(X)

universal(X),next(X,X1, X2), accepting(X1), accepting(X2)→ accepting(X)

0(T0), 1(T1), zeroone(T0, T1), accepting(T0)→ accept .

This completes the description of Σ. Note that Σ ∈ (CT? ∩ G), where

? ∈ {obl, sobl}, if we focus on standard databases. It is also interesting to

observe that |sch(Σ)| is bounded by an integer constant. Moreover, Σ can be

obtained in logspace from I and the machine description of M , and faith-

fully simulates the behavior of the alternating exponential space machine M

on input I via a terminating Chase. Therefore, D ∪Σ |= accept iff M accepts

input I, and the claim follows.

Remark 1: In case of non-standard databases, i.e., databases with only

one constant, the problem is in 2exptime (this follows from Theorem 4.41)

and exptime-hard. The lower bound is obtained by first showing that propo-

sitional atom entailment under guarded Datalog programs is exptime-hard,

and then applying Proposition 4.36.

Remark 2: Regarding the 2exptime (resp., exptime) upper bound in

the case of standard databases, in fact we should start from a database that

contains a bounded number of constants, and not from the critical database

since the critical database is not a standard one. More precisely, given a set
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Σ ∈ WG, we can show the following: for every standard database D, the ?-

chase of D w.r.t. Σ terminates iff for every standard database D′ such that

|dom(D′)| 6 2 · b · ω + 2, the ?-chase of D′ w.r.t. Σ terminates, where b is

the maximum number of body-atoms over all TGDs of Σ. Thus, during the

execution of ?-InfiniteDerivation, we first need to guess a standard database D

with the above property, and the rest of the algorithm is exactly the same.

Notice that D is of exponential size, in general, and of polynomial size in case

of bounded arity.

Proofs of Section 4.4

Before presenting our proofs, we introduce some notions used hereafter.

Let h : dom(A1)→ dom(A2) be a homomorphism from a set of atoms A1

to a set of atoms A2. The restriction of h to a subset X of dom(A1) is denoted

as h|X .

Let S be a (possibly infinite) sequence of Chase steps K0
r0,h0→ K1

r1,h1→ ....

We use Si to denote the sub-sequence consisting of the first i Chase steps of

S. Moreover, given t1, t2 ∈ const ∪ null , we write t1 ≈S t2 iff

• (base case) t1 = t2 or there is a Chase step Ki
ri,hi→ Ki+1 in S s.t. ri is an

EGD ϕ(X,Y)→ X1 = X2, t1, t2 ∈ {hi(X1), hi(X2)}, and Ki+1 6=⊥;

• (iterative case) there exists t3 ∈ const ∪ null such that t1 ≈S t3 and

t3 ≈S t2.

Intuitively, t1 ≈S t2 means that t1 and t2 are equal or have been made equal

(by some EGD) in the sequence S.

We extend the ≈S notation to homomorphisms as follows: given two homo-

morphisms hi : T → Ti and hj : T → Tj , we write hi ≈S hj iff hi(t) ≈S hj(t)
for every t ∈ T .

Please note that, in the light of the definitions above, the notions of obliv-

ious (resp. semi-oblivious) Chase sequence can be equivalently defined as fol-

lows. An oblivious (resp. semi-oblivious) Chase sequence S of D with Σ is an

exhaustive application of Chase steps K0
r0,h0→ K1

r1,h1→ ... such that

• K0 = D,

• every ri ∈ Σ, and

• for every Chase step Ki
ri,hi→ Ki+1, there is no Chase step Kj

rj ,hj→ Kj+1

such that j < i, ri = rj = r, and hj ≈Si hi (resp. hj |fr(r) ≈Si hi|fr(r)).
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Roughly speaking, the last item above says that in order for Ki
r,hi→ Ki+1

to be a Chase step in an oblivious (resp. semi-oblivious) Chase sequence,

another Chase step Kj
r,hj→ Kj+1 with hj ≈Si hi (resp. hj |fr(r) ≈Si hi|fr(r))

must not have been applied before in the sequence—notice that the definitions

of oblivious and semi-oblivious Chase sequence differ only in how hi and hj

are compared.

Lemma 6.2. Let D be a database and Σ a set of dependencies.

1. If S is a standard (resp. semi-oblivious) Chase sequence of D with Σ, then

S is a semi-oblivious (resp. oblivious) Chase sequence of D with Σ.

2. If S is a terminating oblivious (resp. semi-oblivious) Chase sequence of

D with Σ, then there is a subsequence of S which is a terminating semi-

oblivious (resp. standard) Chase sequence of D with Σ.

Proof. 1. Let S be a standard Chase sequence of D with Σ. By contradiction,

assume that S is not a semi-oblivious Chase sequence of D with Σ. Then

there is a pair of Chase steps Ki
ri,hi,γi−→ Ki+1 and Kj

rj ,hj ,γj−→ Kj+1 of S

such that i) j < i, ii) rj = ri = r and iii) hj |fr(r) ≈Si hi|fr(r). Notice

that this means that Kj satisfies the dependency obtained by applying hj

to rj and thus Kj
rj ,hj ,γj−→ Kj+1 is not a standard Chase step, which is a

contradiction. An analogous reasoning can be applied to show that if S is

a semi-oblivious Chase sequence of D with Σ, then it is also an oblivious

one.

2. Let S be a terminating oblivious Chase sequence of D with Σ. By iter-

atively deleting from S each Chase step Ki
ri,hi,γi−→ Ki+1 such that there

is another Chase step Kj
rj ,hj ,γj−→ Kj+1 in S, with j < i, ri = rj = r,

and hj |fr(r) ≈Si hi|fr(r), we obtain a terminating semi-oblivious Chase se-

quence of D with Σ. An analogous reasoning can be applied to show that

if S is a terminating semi-oblivious Chase sequence of D with Σ, then it

is also a terminating standard Chase sequence of D with Σ. 2

Proof of Theorem 4.47

We start with the following two simple properties. Let D be a database and

Σ a set of dependencies.

Property 1. If S is a standard (resp. semi-oblivious) Chase sequence of D

with Σ, then S is a semi-oblivious (resp. oblivious) Chase sequence of D

with Σ.
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Property 2. If S is a terminating oblivious (resp. semi-oblivious) Chase

sequence of D with Σ, then there is a subsequence of S which is a termi-

nating semi-oblivious (resp. standard) Chase sequence of D with Σ.

1. Obviously, CT?∀ ⊆ CT?∃ for every ? ∈ {std, obl, sobl, core}. To prove the

proper containment for ? ∈ {std, obl, sobl}, we show a set of dependencies

Σ such that Σ ∈ CT?∃ and Σ 6∈ CT?∀. To this end, consider the set Σ

consisting of the following two dependencies:

e(X,Y )→ ∃Z e(Y, Z)

e(X,Y ) ∧ e(Y, Z)→ X = Z

For ? ∈ {obl, sobl, std}, Σ 6∈ CT?∀, as starting from the database D =

{e(a, b)}, it is possible to derive a non-terminating ?-chase sequence of D

with Σ by repeatedly applying the TGD in Σ. On the other hand, for

every database D, there exists a terminating ?-chase sequence of D with

Σ, where each Chase step using the TGD is followed by a Chase step

using the EGD.

To show that CTcore
∀ = CTcore

∃ , recall that for every database D and set

Σ of dependencies, all core Chase sequences of D with Σ are isomorphi-

cally equivalent. This implies that all core Chase sequences have the same

number of core Chase steps and thus, if Σ ∈ CTcore
∃ , then Σ ∈ CTcore

∀ .

2. The first item of Lemma 6.2 implies that CTobl
∀ ⊆ CTsobl

∀ ⊆ CTstd
∀ . The

second item of Lemma 6.2 implies that CTobl
∃ ⊆ CTsobl

∃ ⊆ CTstd
∃ .

The relation CTstd
q ⊆ CTcore

q , for q ∈ {∃,∀}, can be proved as follows. If

every (or at least one) standard Chase sequence is terminating, then it

gives a universal model [38]. As the core Chase is a complete procedure

for computing universal models [33], then there must exist a terminating

core Chase sequence constructing a universal model as well. This shows

CTstd
q ⊆ CTcore

∃ , for q ∈ {∃,∀}. Since CTcore
∀ = CTcore

∃ (as shown in point 1

of this proof), then CTstd
q ⊆ CTcore

q , for q ∈ {∃,∀}.
All proper containments follow from the fact that for sets of TGDs only,

the following relations hold: CTobl
∀ = CTobl

∃ ( CTsobl
∀ = CTsobl

∃ ( CTstd
∀ (

CTstd
∃ ( CTcore

∀ =CTcore
∃ .

3. As recalled in Section 4.1, for sets of TGDs, the following proper inclusions

hold: CTobl
∃ ( CTsobl

∀ , CTsobl
∃ ( CTstd

∀ , and CTobl
∃ ( CTstd

∀ . Therefore, it

suffices to show that for dependencies containing also EGDs the following

relations hold: CTobl
∃ 6⊆ CTsobl

∀ , CTsobl
∃ 6⊆ CTstd

∀ , and CTobl
∃ 6⊆ CTstd

∀ . To
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prove these relations, it suffices to consider the set of dependencies Σ

reported in point 1) of this proof: as already discussed, Σ ∈ CT?∃ for

? ∈ {obl, sobl, std}, and Σ 6∈ CT?∀ for ? ∈ {obl, sobl, std}. 2

Proof of Theorem 4.49

1. Let Σ′ = Σax ∪ Σsim , where Σax is the set of the (full) TGDs defining

the equality-axioms of the substitution-free simulation of Σ, whereas Σsim

is the remaining set of TGDs of Σ′. We recall that Σax consists of the

following (full) TGDs:

• eq(X,Y )→ eq(Y,X);

• eq(X,Y ) ∧ Eq(Y, Z)→ eq(X,Z);

• For every p ∈ R with arity(p) = n,

p(X1, ..., Xn)→ Eq(X1, X1) ∧ ... ∧ eq(Xn, Xn)

while Σsim is obtained from Σ as follows:

• every equality X = Y in the head of an EGD is replaced with eq(X,Y );

• n ≥ 2 occurrences of the same variable X in the body of a dependency

are replaced with X,X1, X2, ..., Xn−1 and the conjunction eq(X,X1)∧
eq(X1, X2)∧ ...∧eq(Xn−2, Xn−1) is added to the body, where the Xi’s

are fresh variables;

• all occurrences of a constant c in the body of a dependency are replaced

by a fresh variable Xc and the atom eq(Xc, c) is added to the body

conjunction.

Given a dependency r ∈ Σ, we denote by r′ the dependency in Σsim

obtained from r by applying the aforementioned rewriting.

Note that every dependency in Σax is a full TGD. Thus, given an instance

K, there is no infinite ?-chase sequence of K with Σax and all terminating

?-chase sequences of K with Σax yield the same result instance. In the

following, we denote by KchaseΣax(J,) any of the terminating ?-chase

sequences of K with Σax having J as result; obviously, K ⊆ J .

We now prove that Σ 6∈ CT?∀ implies Σ′ 6∈ CT?∀. Let D be a database such

that there is an infinite ?-chase sequence S of D with Σ. We can build

an infinite ?-chase sequence S′ of D with Σ′ from S by (i) enforcing Σax

at the beginning and after each Chase step of S, and then (ii) deleting

Chase steps that violate the definition of ?-chase sequence. Specifically, S′

is obtained from S as follows.
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(i) Each Chase step Ki
ri,hi,γi−→ Ki+1 (with i = 0, 1, ...) in S is replaced

with the Chase sequence K ′ichaseΣax (J,) i
r′i,h

′
i,γ
′
i−→ K ′i+1, where

a) K ′0 = D,

b) K ′i+1 is defined according to the definition of Chase step,

c) h′i is a homomorphism from body(r′i) to Ji s.t. h′i|dom(body(ri)) ≈Si hi,
d) γ′i is the empty substitution.

Since hi(body(ri)) ⊆ Ki, K
′
i ⊆ Ji, and all replacements made by an EGD

in S are derived as eq-atoms by enforcing Σax, then it can be easily shown

by induction on i that the homomorphisms h′i above always exist.

(ii) Then, every Chase step in S′ violating the condition imposed by the

definition of ?-chase sequence is deleted from S′. Indeed, deletions can only

occur in sequences of the form K ′ichaseΣax (J,) i and thus S′ is infinite. To

show that none of the Chase steps of S′ using TGDs of Σsim is deleted,

we first consider the case where ? = obl (resp. ? = sobl). Note that for

every pair of Chase steps Ki
ri,hi,γi−→ Ki+1, Kj

rj ,hj ,γj−→ Kj+1 in S such that

i < j and ri = rj = r, then hi 6≈Sj hj (resp., hi|fr(r) 6≈Sj hj |fr(r)). Since no

EGD occur in Σ′, then no distinct terms are identified in S′, and thus it is

the case that for every pair of Chase steps Ji
r′i,h

′
i,γ
′
i−→ K ′i+1, Jj

r′j ,h
′
j ,γ
′
j−→ K ′j+1,

with i < j, if r′i = r′j = r′, then h′i 6= h′j (resp. h′i|fr(r′) 6= h′j |fr(r′)). For

? = std, it can be easily seen by induction on i that if there is no extension

gi of hi such that Ki |= gi(head(ri)), then there is no extension g′i of h′i
such that Ji |= g′i(head(r′i)).

To show that Σ′ ∈ CT?∃ implies Σ ∈ CT?∃ we can follow an approach

analogous to the one described above. Thus, given a database D and

terminating ?-chase sequence S′ of D with Σ′, we can build from S′ a

terminating ?-chase sequence of D with Σ. The construction is analogous

to the one discussed above, but it proceeds the other way around.

2. Consider the set of dependencies Σ4.48 of Example 4.48 and the two sets of

TGDs which can be obtained by means of the substitution-free simulation

(see Example 4.48), say Σ′4.48 and Σ′′4.48. It can be easily verified that for

every database D, all ?-chase sequences of D with Σ4.48 are terminating.

Thus, Σ4.48 belongs to both CT?∀ and CT?∃. On the other hand, there is

no terminating ?-chase sequence of the database D = {c(a)} with Σ′4.48

or Σ′′4.48. Hence, Σ′4.48 (resp. Σ′′4.48) belongs to neither CT?∃ nor CT?∀. 2
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Proof of Theorem 4.55

Consider the directed graph G obtained from the activation graph Gf (Σ) by

replacing each strongly connected component by a single vertex. Clearly, G is

acyclic. By definition of semi-stratification, each vertex v in G is associated

with a weakly acyclic set of dependencies, which we denote as Σv.

Notice that since each Σv is weakly acyclic, then for every instance K,

every standard Chase sequence of K with Σv has a length polynomial in the

size of K [38]; for every instance K, every standard Chase sequence of K with

a set of full dependencies has a length that is polynomial in the size of K [38].

From the two aforementioned properties it follows that, for every Σv, for

every instance K, every standard Chase sequence of K with Σv ∪ Σ∀ has a

length that is polynomial in the size of K.

Consider now the standard Chase sequence S defined as follows. Let

v1, ..., vn be a topological ordering of G. We define K0 = D and for 1 ≤ i ≤ n,

Ki is the result of a terminating standard Chase sequence ofKi−1 withΣv∪Σ∀
where Σ∀ is exhaustively enforced before a Chase step with a dependency in

Σvi is performed.

From the observations made before, it follows that the length of S is poly-

nomial in the size of D. Furthermore, S is terminating, because otherwise

there would exists an edge from a dependency of vi to a dependency of vj

with j < i. 2

Proof of Theorem 4.56

First of all, given two dependencies r1 and r2, deciding whether r1 < r2 is

in NP. In fact, we can guess K, J , h1, and h2 as per Definition 4.52 and

verify if the conditions of Definition 4.52 are satisfied. Similar to the proof of

Theorem 3 of [33], K and J are bounded by |r1| and |r2|. Thus, to check if

a set of dependencies Σ is not stratified, we can guess a strongly connected

component of Gf (Σ) and verify that is not weakly acyclic. 2

Proof of Theorem 4.57

1. We start by showing Str ⊆ S-Str. Consider a setΣ of dependencies in Str,
and let G(Σ) = (Σ,E) and Gf (Σ) = (Σ,Ef ). By definition of G and Gf , it

is easy to see that Ef ⊆ E. Thus, every strongly connected component of
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Gf (Σ) is a cycle of G, and since Σ is stratified, then the strongly connected

component is weakly acyclic. Hence, Σ is semi-stratified.

To prove proper containment, it suffices to notice that Σ4.54 of Exam-

ple 4.54 belongs to S-Str but is not in Str.
2. To prove that C 6⊆ S-Str, for C ∈ {SC,AC,MFA}, consider the following

set of dependencies Σ:

N(x)→ ∃y E(x, y)

S(y) ∧ E(x, y)→ N(y)

It can be easily verified that Σ ∈ SC, and thus Σ belongs also to AC and

MFA, but Σ 6∈ S-Str.
To prove that S-Str 6⊆ C, for C ∈ {SC,AC,MFA}, it suffices to notice that

Σ4.54 of Example 4.54 belongs to S-Str but is not in C, as Σ4.54 6∈ CTstd
∀

and C ( CTstd
∀ . 2

Proof of Theorem 4.60

First of all, notice that once a rule body is adorned in a certain way, the

same adorned body is not used again for that rule. Suppose by contradiction

that Algorithm Adn∃ does not terminate for a set of dependencies Σ. Thus

there is an infinite number of adorned dependencies that are added to Σµ.

Since adorned dependencies are derived by adorning dependencies in Σ whose

cardinality is finite, then there must be an infinite number of adorned depen-

dencies derived from a dependency r ∈ Σ. Then, there must be at least one

position where an infinite number of adornment symbols is introduced. Thus,

there must be two adorned dependencies s.t. one can be mapped to the other,

which is a contradiction. 2

Proof of Theorem Equivalence-Theorem-v2

1. We show that for every standard Chase sequence Sµ = Kµ
0

rµ0 ,h0,γ0−→

Kµ
1

rµ1 ,h1,γ1−→ · · · of Kµ
0 with Σµ, where Kµ

0 = D, there is a standard Chase

sequence S = K0
r0,h0,γ0−→ K1

r1,h1,γ1−→ · · · of D with Σ, where K0 = D, such

that for every i ≥ 0 it is the case that Ki = src(Kµ
i ) (modulo renaming

of labeled nulls) and ri = src(rµi ).
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It can be easily verified by induction on i (i ≥ 0) that if Kµ
i

rµi ,hi,γi−→
Kµ
i+1 is a Chase step such that there is no extension h′i of hi such that

Kµ
i |= h′i(head(rµi )), then Ki

ri,hi,γi−→ Ki+1 is a Chase step where there is

no extension h′i of hi such that Ki |= h′i(head(ri)) and, Ki = src(Kµ
i ),

Ki+1 = src(Kµ
i+1) and ri = src(rµi ).

2. From the previous result we have that CMod(D,Σµ) 6= ∅ implies

CMod(D,Σ) 6= ∅. Moreover, if CMod(D,Σ) 6= ∅ there must be a termi-

nating standard Chase sequence S = K0
r0,h0,γ0−→ K1

r1,h1,γ1−→ · · · of D = K0

with Σ, where full dependencies are applied, whenever possible, before ex-

istentially quantified ones. Moreover, this also implies that there must be a

standard Chase sequence Sµ = Kµ
0

rµ0 ,h0,γ0−→ Kµ
1

rµ1 ,h1,γ1−→ · · · of K0 = D with

Σµ (where full dependencies are applied, whenever possible, before exis-

tentially quantified ones) such that src(Kµ
i ) = Ki. Indeed, for any Chase

step Ki
ri,hi,γi−→ Ki+1, if there is an instance Kµ

i such that src(Kµ
i ) = Ki,

then the adorned atoms inKµ
i have been derived by applying dependencies

in Σµ (namely dependencies rµ0 , ..., r
µ
i−1 with homomorphisms h0, ..., hi−1,

respectively). But this means that these dependencies, occurring in Σµ,

have been used to adorn ri obtaining the adorned dependency rµi ; this

dependency can be applied with the same homomorphism hi and, conse-

quently, we derive the instance Kµ
i+1 with src(Kµ

i+1) = Ki+1. 2

Proof of Theorem 4.63

First of all, observe that if the variable Acyc is true, then the adorned program

is not recursive, that is, there is no cyclic sequence of rules which can be

executed indefinitely. This is ensured by the test performed on line 15 of

Algorithm 4.6, which checks if an adornment symbol is cyclic. Therefore, the

number of atoms which can be derived is polynomial in the size of the input

database, as constants can appear only in arguments adorned with b, and it

is linear in the number of free symbols introduced in the adorned program,

which does not depend on the considered database. 2

Proof of Theorem 4.64

(S-Str ( SAC). We show that Σ 6∈ QAC implies Σ 6∈ S-Str, for every set of

dependencies Σ. In fact, Σ 6∈ QAC iff the condition on line 15 of Algorithm 4.6
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is verified. This means that there is an existentially quantified dependency

r whose head is cyclic because of the adornment symbol associated with a

position p[i], that is with the i-th term of a p-atom in the head. By definition of

cyclic adornment symbol, the activation graphGf (Σ) has a strongly connected

component C containing r which is not weakly acyclic because of a cycle

involving p[i] with a special edge (incoming in p[i]). Consequently, Σ 6∈ S-Str.
It can be easily verified that the following set of dependencies is in SAC

but not in S-Str, whence proper containment.

n(X)→ ∃Y e(X,Y )

s(X) ∧ E(x, y)→ n(Y )

(AC ( SAC). We show that if Algorithm 4.6 sets the Acyc variable to

false, so does the algorithm employed by AC. To this end, notice that the

order followed by Algorithm 4.6 when adorning dependencies is a valid order

for the algorithm employed by AC. This is still the case if substitution-free

simulation is applied before calling the algorithm employed by AC. However,

the two algorithms use different activation relations. Nevertheless, notice that,

given two dependencies r1 and r2, if r1 < r2 holds (cf. Definition 4.52), then

r1 fires r2 according to the activation relation of AC (cf. Definition 4 of [56]).

Thus, if Algorithm 4.6 set the Acyc variable to false, the algorithm employed

by AC must do the same.

The set of dependencies Σ1.2 of Example 1.2 shows proper containment:

as shown in Example 4.58, Σ1.2 ∈ SAC, but Σ1.2 cannot belong to AC as

Σ1.2 6∈ CTstd
∀ . 2

Proof of Theorem 4.65

Let Σµ = Adn∃(Σ)[1]. Suppose Σ ∈ Adn∃-C, that is, Σµ ∈ C. Then, Σµ

belongs to CTstd
∃ or CTstd

∀ (depending on criterion C). In both cases, for every

database D, CMod(D,Σµ) 6= ∅. By Theorem 4.61, CMod(D,Σ) 6= ∅. Hence,

Σ ∈ CTstd
∃ . 2

Proof of Theorem 4.66

All the criteria considered in Section 4.2 analyze relations between dependen-

cies and propagation of arguments among positions. These relations are based
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on the structural properties of a set of dependencies. Assume by contradiction

that there exist a set of dependencies Σ and a criterion C ∈ C such that Σ ∈ C
and Σµ = Adn∃∃(Σ)[1] does not belong to C. This means that either (1) there

are two dependencies r, s ∈ Σ, two adorned dependencies rα, sβ ∈ Σµ and a

relation θ, such that rα and sβ satisfy θ, whereas r and s does not, or (2) there

exists a labelled null that can be propagated from a position i of head(rα) to

a position j of head(sβ), whereas a labelled null cannot be propagated from

position i of head(r) to position j of head(s). Clearly, this is not possible by

construction of Σµ.

To show proper containment, we must show that for each C ∈ C, there is a

set of dependencies that belongs to Adn∃-C and do not belong to C. Consider

the set of dependencies Σ4.66 consisting of the following two dependencies:

n(X)→ ∃Y e(X,Y )

s(X) ∧ E(x, y)→ n(Y )

It has been shown that Σ 6∈ LS [56] and Σ 6∈ MFA [50]. As a consequence, Σ

does not belong to any of the classes included in LS orMFA. However, Σµ =

Adn∃(Σ)[1] is not recursive and thus recognized by all methods considered

in Section 4.2. The only criterion that remains to be considered is AC. In

this regard, consider the set of dependencies Σ4.48 of Example 4.48: it is not

recognized as terminating by AC (even considering the set of TGDs obtained

by the substitution-free simulation method); however, Σ4.48 ∈ Adn∃-AC. 2

Proof of Theorem 4.67

Given a set of dependencies Σ and a dependency r ∈ Σ, we denote by

• uv(r) the number of distinct universally quantified variables in r,

• ev(r) the number of distinct existentially quantified variables in r,

• v(r) = uv(r) + ev(r) the number of distinct variables in r,

• muv(Σ) = max{ uv(r) | r ∈ Σ},
• mev(Σ) = max{ ev(r) | r ∈ Σ}.
• mv(Σ) = max{ v(r) | r ∈ Σ}.

We start by computing the cardinality of the set of adorned dependencies.

Such a set satisfies the condition that for each two adorned dependencies

derived from the same dependency r ∈ Σ, say them rα and rβ with α =

α1 . . . αn and β = β1 . . . βn, there is no valid unifier. This can happens because
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there are two adornment definitions αi = fuy (. . .) and βi = fvZ(. . .) with

fuY 6= fvZ , i.e. u 6= v or u = v and Y 6= Z. Let α be an adornment for r, we can

have O(ev(Σ)v(r)) different adornments which could not unify with α, as the

adornments are associated with at most ev(Σ) different function symbols.

Therefore the number of different adornments for r is bounded by

O
(
ev(Σ)v(r)

)
, the global number of existential adorned dependencies is

bounded by

O

(∑
r∈Σ

(
ev(Σ)v(r)

))
= O

(
|Σ| × ev(Σ)mv(Σ)

)
Let F (Σ) be the set of adornment symbols which can be generated by

Algorithm 4.6, the number of free adornment symbols |F (Σ)| is bounded by

|F (Σ)| = O
(
|Σ| × ev(Σ)mv(Σ) ×mev(Σ)

)
= O

(
|Σ| × ev(Σ)mv(Σ)

)
as in each dependency we can introduce at most mev(ΣE) new adornments.

The size of Σγ is bounded by

O
(
|F (Σ)|mv(Σ)

)
= O

((
|Σ| × ev(Σ)mv(Σ)

)mv(Σ)
)

=

O
(
|Σ|mv(Σ) × ev(Σ)mv(Σ)2

)
and, therefore, exponential in the maximal number of variables occurring in

a rule and in the number of rules.

Considering the time complexity, analogous to the stratification checking

problem, the problem of checking whether a dependency is fireable (function

adorn) is in NP . As the NP problem can be solved with a deterministic Turing

machine with exponential time complexity in the size of the adorned set of

dependencies Σµ, the time complexity is double exponential in the size of the

input set of dependencies Σ. 2
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