




Abstract

Nowdays the numerical simulation of mechanical and structural problems in
engineering is the method of analysis and design more widespread. Compared
to the use of analytical solutions, the numerical simulation is characterized by
a great flexibility, due to the possibility to analyze complex geometries and
models.

The possibility of finding exact solutions are limited to one-dimensional
problems or problems with multiple variables with special symmetries. In the
context of the problems of linear elasticity, the situation of isotropic material
simplifies the analysis in closed form for the presence of only two elastic coef-
ficients in the constitutive equations. Recently, the interest for the analysis of
problems with non-isotropic constitutive equations has been renewed by the
availability of new materials suitable for the production of structural elements.
In particular, the technical interest in the case of materials with orthotropic
constitutive equations.

This work is about the analytical solution of the plane problem for or-
thotropic materials using a model based on the discretization of the boundary.
In order to define the context of the model developed, there is a brief intro-
duction about the method of boundary elements and some considerations on
the use of orthotropic materials in structural elements.
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Introduction

The boundary element method

In recent decades, along with the strengthening of the means of calculation,
there are well developed methods aimed to construct approximate solutions
to complex problems. The common goal of numerical methods is to transform
the continuous formulation of the problem in an algebraic form, on the ba-
sis of approximate representations of the unknown fields. The discretization
methods are classified into domain methods and contour methods, based on
the location of the main variables.

Methods belong to the domain methods are the finite difference method,
based on direct discretization of the differential quantity, and the finite ele-
ment method, which today is the most reliable and used means for structural
analysis. This method consists in a subdivision of the whole domain into
simple elements within which the unknown functions are described through
interpolation functions and nodal parameters. Creating a network domain it
is often a difficult step in the whole process of solution. It should also be noted
that in these methods the variables are distributed over the entire domain,
even in the simple case in which it is wanted to know the solution only at one
point.

Some of the typical drawbacks of the domain methods are absent in models
based on the discretization of the boundary. The basis of these methods is
the research work on the boundary integral formulation, which began in the
1800s, when, in the problems of electromagnetism, Green drew the domain
information from what was happening on the border of it. His singularities
method has been applied to problems involving elasticity of the subsequent
work of many researchers, including Betti and Somigliana.

After more than a century of research and theoretical developments of an-
alytical solutions, in the 60s of the last century it is started the first numerical
applications of this approach with the work of Symm, Rizzo and Shippy [1].
In those same years, the finite element method was developed very quickly,
perhaps because of its greater simplicity.
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The current name of this method (Boundary Element Method) is due in
Brebbia, which since the 70s has contributed to the spread of the method.

The positive characteristics that make this method competitive in com-
parison to domain methods are:

� The domain is discretized only in cases where data require it.

� The use of the variables is optimized, both because the formulation on the
contour reduces size of the problem and because it is possible to concen-
trate the computational resources only in the area of interest.

� The input stage is very simple, where the finite element method requires a
costly and often subjective generation network, which directly influences
the accuracy of the solution.

The standard form of the method is based on the location of points on
the contour in which resets the residue. Consequently, the method generates
algebraic problems governed by non-symmetric matrices.

Anisotropic materials

The elastic isotropy is a possibility of constitutive law that rarely is confirmed
by the behavior of real materials. Typically, the behavior of materials depends
on their internal structure, whether natural or not artificially induced. Many
of the materials found in nature have an anisotropic behavior. These are gener-
ally materials that nature produces in time, by overlapping of different layers,
which have a determining influence on the blobal mechanical behavior. The
ring structure with which the wood grows produces a different behavior along
the fibers compared with the behavior detected orthogonally to them. Simi-
larly, the layered structure of the land, with different physical characteristics
between each layer, requires the use of an anisotropic models in mechanics of
soil and rock. Another type of strong anisotropy is the case of the crystals,
which can be categorized according to their directional properties.

In addition to these cases existing in nature, the anisotropy is found in the
materials produced artificially, and in particular in materials formed by several
components, called composite materials, designed to exploit the characteristics
of each component. The different mechanical properties of the components and
the manner in which they are combined are the causes of the anisotropy of the
composite. The coupling between resistant but brittle materials and ductile
but less resistant materials, is a technique revived in time in different forms.
An example is the bricks of clay and straw, or iron chains embedded in the
walls, to the reinforced concrete to modern fiber-reinforced.

Many composite materials are made up of continuous matrices and discon-
tinuous reinforcements embedded in them. The reinforcements can take many
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forms: foils, fibers, flakes, etc. The orientation and geometry of the reinforce-
ment govern the mechanical behavior of the system in different directions.

The laminated materials are a apart category and they are made of over-
lapping plates that differ in the type or material, or more frequently in the
orientation of the fibers. The orientation of the fibers, the material which con-
stitutes them and the material used for adhesive, contribute to determining
the characteristics of the product. The laminated wood is an example of how
this technique can lead to better quality than the original material.

In the context of the problem treated in this work, it should be noted that
the assumption of homogeneity of the body requires to make a homogeniza-
tion of the mechanical properties. Among the various types of composites are
of interest those that are used in the construction of shells in the aerospace
industry such as aircraft, missiles and launcher that have an orthotropic be-
havior.

Objectives and contents of the thesis

The problem of plane orthotropy has been treated in recent years by many
researchers with a BEM approach. The work that marked the beginning of
this research is the article of Rizzo and Shippy [1] which was also one of the
first works where the fundamental solutions for the anisotropic materials were
introduced. Recently the fundamental solutions for orthotopic plane problems
were improved by Szeidl and Huang [2, 3]. In these works it is used a numerical
integration to compute the boundary coefficients.

An analytical evaluation of the boundary coefficients it is used in the 2-D
isotropic plane and bending problem by Aristodemo and Turco [4, 5].

The mechanical problem that this thesis deals with is the plane orthotropy.
The aim is to furnish an accurate evaluation of the stress field at low compu-
tational cost. Numerical efficiency is achieved by refining the boundary inter-
polation and the integration process. The boundary mechanical quantities are
described by means of macro-elements on which a quadratic HC-spline ap-
proximation ensures a C1 continuity using few control points. By considering
linear piecewise boundaries, the analytical integration of coefficients is carried
out. The exact evaluation of integrals is decisive for an accurate computation
of the inner stress field from the boundary solution.....
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Composite Materials

Nowdays the orthotropic materials (e.g. composite materials) are extensively
used in modern industries. The theory of elasticity for orthotropic bodies is
well established [6, 7, 8], and subsequently more complicated elastic problems
of orthotropic bodies have also been studied with numerical methods, such
as the Finite Element Method (FEM) [9] and the Boundary Element Method
(BEM).

In the following chapter is briefly resumed the theory which is the basis of
the composite materials.

1.1 Types and property

Composite materials are materials made from two or more constituent ma-
terials with significantly different physical or chemical properties, that when
combined, produce a material with characteristics different from the indi-
vidual components. The individual components remain separate and distinct
within the finished structure. The new material may be preferred for many
reasons: common examples include materials which are stronger, lighter or
less expensive when compared to traditional materials.

Usually a composite is made by immersing a discontinuous phase in a con-
tinuous phase. the continuous phases is called matrice, the discontinuous one
is called reinforcement. The matrice is the phase that gives to the composite
the shape and its scope is to inglobe the reinforcement material that confers
to the composite the main structural behavior. Usually, the reinforcement has
these shape: fiber, particle, flakes, laminae.

A lot of materials are made for increasing both the mechanical charac-
teristics and the resistance and the stiffness, as well as the thermal charac-
teristics. The resistance mechanism depends on the geometry and the type
of the reinforcement, so, it is common to classify the materials depending on
the geometry and the used reinforcement material. So, we have the following
composite material



6 1 Composite Materials

� Composites made by fibers, where the reinforcement is made by one or
more types of fiber, with or without matrice

� Composites made by flakes

� Composites made by particle

� Laminates, composed by assembling, with various way, of layers of reduced
thickness called lamine.

The characteristic of the composite material depends

� from the nature of the material that composes the reinforcement

� from the shape and the structural distribution of the reinforcement

� from the interaction between the constituents.

The dependence from the nature of the reinforcement is obvious. the struc-
tural characteristic, how the reinforcement is distributed in the matrix, and
geometrical, in other words the geometrical shape, they play a essential role
in the global behavior of the composite. The orientation of the reinforcement
governs the isotropy of the system. When the reinforcement has the shape of
particle or it is composed by fibers with a reduced length and random orienta-
tion, the composite behaves like a isotropic material. Instead, the composites
that have an oriented distribution of the fibers show an evidently anisotropic
behavior linked to the orientation of the reinforcement. The mechanical prop-
erties of the composite in one direction, stiffness and strength, are linked to
the amount of fibers oriented in that direction.

In many cases the anisotropy is, linked to the used to a material is intended,
a desirable characteristic for the composite. The advantages are linked to
the fact that the anisotropy is controlled. So, depending on the constituent
characteristics and to the production process, it is possible to regulate the
level of the desired anisotropy.

Since the bigger level of anisotropy is represented by the fiber-reinforced
composites and by the laminates, it is useful to show detailing these types of
composites.

1.2 Fiber-reinforced composites

They are used different kinds of fibers depending on to the requisites required
by the composite. Below, it is made a list of the different kind of fibers that
are generally used in the building of the structural materials.

� Glass fibers. They are usually coupled with a polymer matrice. The ad-
vantages are the low cost and the high strength of the material. However,
they have a low abrasion resistance and a poor attitude accession with
matrices of polymer resins.
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� Carbon and Graphite fibers. The graphite fibers are mainly used for the
production of composites with high performances produced by their high
mechanical characteristics, both in stiffness and in strength. The word
”carbon fibers” and ”graphite fibers” is used to indicate the same chemical
structure but with different amount of fibers.

� Aramid fibers. These kind of fibers have a high tensile strength but a low
compression strength.

� Boron fibers. they are used as a reinforcement in the polymer and metal
matrices. There are two types of fibers: with tungsten and with carbon.

The role of the matrice is to link the fibers each other, and to transert to
them the tensions and to protect them from the aggressive agents. The role of
the matrice, in term of strength and stiffness, depends on the orientation and
the sign of the stresses. In the transverse direction to the fibers it produces
an important role both for the compression stress and for the tensile stress,
while in the fiber direction it essentially induces on the compressive stiffness
and strength. They are used the following types of matrice

� Polymeric matrices. The polymers are the more popular materials for the
realization of matrices for fiber composites. Their advantages are low costs,
simplicity of the process, resistance against chemical attacks, low weight.
They are downsides the poor stiffness and strength and the rapid degrada-
tion caused by exposure of UVA and some solvents. Some kind of polymers
used are the polyester resins and epoxy resins.

� Metal matrices. They are commonly used for their high strength and
stiffness, and also for their high impact resistance and for their non-
insensitivity to thermal gradients. The use is limited for their weight and
for their complicated production process.

1.3 The laminates

A laminate is a collection of laminae stacked to achieve the desired stiff-
ness and thickness. The sequence of various orientations of a fiber-reinforced
composite layer in a laminate is termed the lamination scheme or stacking se-
quence. The layers are usually bonded together with the same matrix material
as that in a lamina. The lamination scheme and material properties of indi-
vidual lamina provide an added flexibility to designers to tailor the stiffness
and strength of the laminate to match the structural stiffness and strength re-
quirements. Laminates made of fiber-reinforced composite materials also have
disadvantages. Because of the mismatch of material properties between layers,
the shear stresses produced between the layers, especially at the edges of a
laminate, may cause delamination. Similarly, because of the mismatch of ma-
terial properties between matrix and fiber, fiber debonding may take place.



8 1 Composite Materials

Also, during manufacturing of laminates, material defects such as interlami-
nar voids, delamination, incorrect orientation, damaged fibers, and variation
in thickness may be introduced. It is impossible to eliminate manufacturing
defects altogether; therefore, analysis and design methodologies must account
for various mechanisms of failure.

1.4 Elastic costants based on micromechanics

The aim is to predict the material constants of a composite material by study-
ing the micromechanics of the problem, i.e. by studying how the matrix and
fibers interact. Computing the stresses within the matrix, within the fiber,
and at the interface of the matrix and fiber is very important for understand-
ing some of the underlying failure mechanisms. In considering the fibers and
surrounding matrix, we have the following assumptions

1. Both the matrix and fibers are linearly elastic

2. The fibers are infinitely long

3. The fibers are spaced periodically in square-packed or hexagonal packed
arrays.

There are three different approaches that are used to determine the elastic
constants for the composite material based on micromechanics. These three
approaches are

1. Using numerical models such as the finite element method

2. Using models based on the theory of elasticity

3. Using rule-of-mixtures models based on a strength-of-materials approach.

Consider a unit cell in either a square-packed array (see Fig. 1.1) or a
hexagonal-packed array (see Fig. 1.2). The ratio of the cross-sectional area of
the fiber to the total cross-sectional area of the unit cell is called the fiber
volume fraction and is denoted by V f . The fiber volume fraction satisfies the
relation 0 < V f < 1 and is usually 0.5 or greater. Similarly, the matrix volume
fraction V m is the ratio of the cross-sectional area of the matrix to the total
cross-sectional area of the unit cell. Note that V m also satisfies 0 < V m < 1.
The following relation can be shown to exist between V f and V m
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Fig. 1.1. A unit cell in a square-packed array of fiber-reinforced composite material

V f + V m = 1 (1.1)

In the above, we use the notation that a superscript m indicates a matrix
quantity while a superscript f indicates a fiber quantity. In addition, the matrix
material is assumed to be isotropic so that Em1 = Em2 = Em and νm12 = νm.
However, the fiber material is assumed to be only transversely isotropic such
that Ef3 = Ef2 , νf13 = νf12 and νf23 = νf32 = νf .

Using the strength-of-materials approach and the simple rule of mixtures,
we have the following relations for the elastic constants of the composite ma-
terial. For Youngs modulus in the 1-direction (also called the longitudinal
stiffness), we have the following relation

E1 = Ef1 V
f + Em1 V

m (1.2)

where Ef is Youngs modulus of the fiber in the 1-direction while Em is
Youngs modulus of the matrix. For Poissons ratio ν12, we have the following
relation

νf12 = νf12V
f + νmV m (1.3)
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Fig. 1.2. A unit cell in a hexagonal-packed array of fiber-reinforced composite
material

where νf12 and νm are Poissons ratios for the fiber and matrix, respectively.
For Youngs modulus in the 2-direction (also called the transverse stiffness),
we have the following relation

1

E2
=
V f

Ef2
+
V m

Em
(1.4)

where Ef2 is Youngs modulus of the fiber in the 2-direction while Em

is Youngs modulus of the matrix. For the shear modulus G12, we have the
following relation

1

G12
=

V f

Gf12

+
V m

Gm
(1.5)

where Gf12 and Gm are the shear moduli of the fiber and matrix, respec-
tively.

For the coefficients of thermal expansion α1 and α2, we have the following
relations

α1 =
αf1E

f
1 V

f
1 + αmEmV m

Ef1 V
f
1 + EmV m

(1.6)

α2 =

[
αf2 −

(
Em

E1

)
νf1

(
αm − αf1

)
V m
]
V f

+

[
αm +

(
Ef1
E1

)
νm
(
αm − αf1

)
V f

]
V m

(1.7)
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where αf1 and αf2 are the coefficients of thermal expansion for the fiber in
the 1- and 2-directions, respectively, and αm is the coefficient of thermal ex-
pansion for the matrix. However, we can use a simple rule-of-mixtures relation
for αf2 as follows

α2 = αf2V
f + αmV m (1.8)

A similar simple rule-of-mixtures relation for α1 cannot be used simply
because the matrix and fiber must expand or contract the same amount in
the 1-direction when the temperature is changed.

While the simple rule-of-mixtures models used above give accurate results
for E1 and ν12, the results obtained for E2 and G12 do not agree well with
finite element analysis and elasticity theory results. Therefore, we need to
modify the simple rule-of-mixtures models shown above. For E2, we have the
following modified rule-of-mixtures formula:

1

E2
=

V f

Ef2
+
ηV m

Em

V f + ηV m
(1.9)

where η is the stress-partitioning factor (related to the stress σ2). This
factor satisfies the relation 0η < 1 and is usually taken between 0.4 and 0.6.

Another alternative rule-of-mixtures formula for E2 is given by

1

E2
=
ηfV f

Ef2
+
ηmV m

Em
(1.10)

where the factors ηf and ηm are given by

ηf =
Ef1 V

f +
[(

1− νf12ν
f
21

)
Em + νmνf12E

f
1

]
V m

Ef1 V
f + EmV m

(1.11)

ηm =

[(
1− νm2

)
Ef1 −

(
1− νmνf12

)
Em
]
V f + EmV m

Ef1 V
f + EmV m

(1.12)

The above alternative model for E2 gives accurate results and is used
whenever the modified rule-of-mixtures model of 1.9 cannot be applied, i.e.
when the factor η is not known.

The modified rule-of-mixtures model for G12 is given by the following
formula

1

G12
=

V f

Gf12

+
η′V m

Gm

V f + η′V m
(1.13)
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where η′ is the shear stress-partitioning factor. Note that η′ satisfies the
relation 0 < η′ < 1 but using η′ = 0.6 gives results that correlate with the
elasticity solution.

Finally, the elasticity solution gives the following formula for G12

G12 = Gm

[(
Gm +Gf12

)
− V f

(
Gm −Gf12

)]
[(
Gm +Gf12

)
+ V f

(
Gm −Gf12

)] (1.14)



2

Plane Elasticity

2.1 Plane stress

If a thin plate is loaded by forces applied at the boundary, parallel to the
plane of the plate and distributed uniformly over the thickness (see Fig. 2.1),
the stress components σzz, τxz and τyz are zero on both faces of the plate,
and it may be assumed, tentatively, that they are zero also within the plate.
The state of stress is then specified by σxx, σyy and τxy only, and it is called
plane stress. It also be assumed that these three components are independent
of z, i.e., they do not vary through the thickness. They are function of x and
y only.

Fig. 2.1. Plane stress
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In a reference system (x, y) it is considered a body which occupies a domain
Ω surrounded by a border Γ . The body is subject to the actions t̄i on the
portion of the free boundary Γt, to the conditions on the displacement ūi on
the portion of bound contour Γu and to the volume actions bi in the domain
Ω. The solution must verify the following equations

� Equilibrium Equation

σij,j + bi = 0 in Ω (2.1a)

σijnj = t̄i on Γt (2.1b)

� Kinematic Equations

εij =
1

2
(ui,j + uj,i) in Ω (2.2a)

ui = ūi on Γt (2.2b)

� Hooke’s Law

σij = Cijhkεhk (2.3)

2.2 Othotropic plane stress

Considering an orthotropic elastic body, which is described by a rectangular
Cartesian coordinates [x1, x2]. The behavior of the body is described by the
two-dimensional fields of displacement, stress and strain. So, the equations
written above become

� Equilibrium Equation

σij,j + bi = 0 (2.4)

� Kinematic Equations

εij =
1

2
(ui,j + uj,i) (2.5)

� Hooke’s Law

σ11 = C11ε11 + C12ε22

σ22 = C12ε11 + C22ε22

σ12 = C33ε12 + C66ε66

(2.6)
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where Cij are the components of the stiffness matrix

C11 = S22/d C12 = C21 = −S12/d C22 = S11/d

C66 = 1/S66 d = S11S22 − S2
12

(2.7)

and Sij are the components of the compliance matrix.

2.3 Fundamental Solutions

The formulation of the boundary integral equations requires knowledge of
the exact solution of the problem on an infinite elastic domain loaded in a
punctual way. Rizzo and Shippy [1] have derived the fundamental solution
for an anisotropic body from the Navier’s equations. Later, this solution was
improved and extended to a orthotropic body by Szeild, Huang and all. [2, 3].

So, it’s considered an elastic orthotropic plane problem on an infinite do-
main, under a concentrated force f∗ applied in an its point. The fundamental
solutions of this problem it is obtained integrating the equations that are
rewritten in the Navier’s equilibrium form

Lu+ b = 0 (2.8)

where L is the differential operator in Navier’s form

[
L
]

=

 C11∂
2
1 + C66∂

2
2 (C11 + C66) ∂1∂2

(C11 + C66) ∂1∂2 C22∂
2
2 + C66∂

2
1

 (2.9)

solving the system (2.9) it’s possible to obtain the fundamental solutions.

u11 (ξ, x) = D
[√
λ1A

2
2 ln z1 −

√
λ2A

2
1 ln z2

]
u12 (ξ, x) = DA1A2

[
arctan

(
r2√
λ2r1

)
− arctan

(
r2√
λ1r1

)]
u21 (ξ, x) = u12 (ξ, x)

u22 (ξ, x) = −D
[
A2

1√
λ1

ln z1 −
A2

2√
λ2

ln z2

]
(2.10)

Using the constitution law stress-strain you have
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σ111 = D

[√
λ2A1

r1

z2
2

−
√
λ1A2

r1

z2
1

]
σ122 = D

[
λ1

√
λ1A2

r1

z2
1

− λ2

√
λ2A1

r1

z2
2

]
σ121 = D

[√
λ2A1

r2

z2
2

−
√
λ1A2

r2

z2
1

]
σ112 = σ121

σ211 = D

[
A2√
λ2

r2

z2
2

− A1√
λ1

r2

z2
1

]
σ222 = D

[√
λ1A1

r2

z2
1

−
√
λ2A2

r2

z2
2

]
σ212 = D

[√
λ1A1

r1

z2
1

−
√
λ2A2

r1

z2
2

]
σ212 = σ221

(2.11)

So, from the equation (2.1b) you can obtain the tractions

t11 (ξ, x) = D

[√
λ2A1

z2
2

−
√
λ1A2

z2
1

]
(r1n1 + r2n2)

t12 (ξ, x) = D

{(√
λ1A1

z2
1

−
√
λ2A2

z2
2

)
r1n2 −

(√
λ1

λ1

A1

z2
1

−
√
λ2

λ2

A2

z2
2

)
r2n1

}
t21 (ξ, x) = D

{(
λ1

√
λ1A2

z2
1

− λ2

√
λ2A1

z2
2

)
r1n2 −

(√
λ1A2

z2
1

−
√
λ2A1

z2
2

)
r2n1

}
t22 (ξ, x) = D

[√
λ1A1

z2
1

−
√
λ2A2

z2
2

]
(r1n1 + r2n2)

(2.12)
nk represent the components of the unit normal at the field point.

The generic term u∗αi (ξ, x) of the fundamental solution represents the com-
ponent of the displacement of the field point x in xi direction due to the
application at the source point ξ of a unit force directed along xα. A similar
rule applies to the generic component t∗αi (ξ, x).

The coordinate difference between the field point and the source ξ and the
field point x is rk.

rk (ξ, x) = xk − ξk (2.13)

and
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λ1 + λ2 =
2S12 + S66

S22
(2.14)

λ1λ2 =
S11

S22
(2.15)

Ak = S11 − λkS22 (2.16)

z2
k = λkr

2
1 + r2

2 (2.17)

D =
1

2π (λ1 − λ2)S22
(2.18)

The equation (2.14) and (2.15) imply

λ1,2 =
2S21 + S66

2S22
±

√(
2S21 + S66

2S22

)2

−
(
S11

S22

)
(2.19)





3

Integral formulation of the elastic boundary
problems

The search for approximate solutions using numerical techniques is based on
a weak formulation of the problem, in which less continuity to the unknown
functions is required respect to the differential formulation. In this chapter,
the differential form is brought back to an integral form on the contour, within
a plane problem of elasticity. It also derived the expression of the tensions in
the interior points. The transfer of all the variables and integral terms on the
boundary is only the starting point to build a model to boundary elements [10,
11, 12, 13, 14]. The first numerical implementation of the integral equations
in elasticity level is due to Rizzo [15].

3.1 Integral weak forms

The equations of the contour is obtained starting from the differential form of
the equilibrium equations, these are weighed by an appropriate test functions
and integrated on the domain on which is defined the problem. Through a se-
ries of Gauss’s transformation, integrals domain are then transferred, without
introducing approximations, on the boundary, ultimately providing a form
with variables defined only on contour.

The differential form equilibrium equations of the elastic plane state (2.1a)
is weighted by a function u∗ and integrated in the domain∫

Ω

(σij,j + bi)u
∗dΩ = 0 (3.1)

The equation obtained (3.1) can be transferred to the boundary Γ of the
domain Ω through successive Gauss’s transformations. In particular, after the
first transforming the integral equation becomes∫

Γ

σijnju
∗
i dΓ−

∫
Ω

σiju
∗
i,jdΩ = −

∫
Ω

biu
∗
i dΩ (3.2)
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A further Gauss’s transformation transforms the previous equation in the
form

∫
Γ

σijnju
∗
i dΓ−

∫
Γ

σ∗ijnjuidΓ +

∫
Ω

σ∗ij,ju
∗
i dΩ = −

∫
Ω

biu
∗
i dΩ (3.3)

3.2 Somigliana’s equation

In equation 3.3 still has two integrals of the domain. However, considering
that the volume forces are known functions, the integral on the right-hand
side in the equation 3.3 does not introduce any new unknowns. The third
integral, however, introduces the displacement variable within the domain, so
it is still necessary to work on it. The objective of a contour formulation is to
eliminate each domain variable, so, it is appropriate to choose as the weight
function the function associated with a concentrated load, represented by a
Dirac’s delta function ∆ which acts on a unlimited domain.∫

Ω

σ∗ij,juidΩ = −
∫

Ω

∆ [ξ, x] eiuidΩ = −ui [ξ] ei (3.4)

where ξ indicates the source point, x is the field point where the effect
is measured and −ui [ξ] indicates the displacement components in the point
of application of the Dirac’s delta function. The solution associated with this
concentrated load, called the fundamental solution, has been previously in-
troduced in Section 2.3

The stress state on the contour could be represented through the compo-
nents of the traction vector

σijnj = ti (3.5a)

σijnj = t∗i (3.5b)

so, the equation 3.3 can be rewritten as

−ui +

∫
Γ

tiu
∗
i dΓ−

∫
Γ

t∗i uidΓ = −
∫

Ω

biu
∗
i dΩ (3.6)

known as Somigliana’s equation.
Expressing the fundamental solution in the following form

u∗j = u∗ijei (3.7a)

t∗j = t∗ijei (3.7b)
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the Somigliana’s equation can be rewritten as

ui [ξ] =

∫
Γ

u∗ij [ξ, x] tj [x] dΓ−
∫

Γ

t∗ij [ξ, x]uj [x] dΓ = −
∫

Ω

u∗ij [ξ, x] bjdΩ (3.8)

The equation (3.8) provides a contour integral expression for the displace-
ment field within the domain. To get a model with only contour variables,there
is the necessity to particularize this expression bringing to the limit the source
point ξ on the boundary.

Fig. 3.1. Limit process when the source point is on the boundary

This operation causes the onset of some singularities in the integrals co-
efficients, that can be evaluate with some simple precautions. You consider
the domain extended by a semicircle of radius ε centered on the source as
shown in Figure 3.1. Then, the radius ε is brought to zero and it is evaluated
separately every single limit of every integrals.

The first integrals doen’t have particulary singularity and can be evaluated
easily. The second one can be write as

∫
Γ

t∗ij [ξ, x]uj [x] dΓ = lim
ε→0

[∫
Γ−Γε

t∗ij [ξ, x]uj [x] d (Γ− Γε) +

∫
Γε

t∗ij [ξ, x]uj [x] dΓ

]
(3.9)

reaching to the form
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lim
ε→0

[∫
Γ−Γε

t∗ij [ξ, x]uj [x] d (Γ− Γε)

]
=

∫
Γ

t∗ij [ξ, x]uj [x] dΓ (3.10a)

∫
Γε

t∗ij [ξ, x]uj [x] dΓ = cij (3.10b)

Evaluated the contribution from the singular integral, the rest of the inte-
gral, evaluated on the whole boundary except the singular point, then it is to
be understood in the sense of the principal value Cauchy. So, the expression
of the displacements in a contour point

cijui [ξ] =

∫
Γ

u∗ij [ξ, x] tj [x] dΓ−
∫

Γ

t∗ij [ξ, x]uj [x] dΓ = −
∫

Ω

u∗ij [ξ, x] bjdΩ

(3.11)
where the coefficient cij [ξ] depends on the geometrical characteristics of

the boundary in ξ. The coefficient can be specially obtained in closed form. If
the tangent is continuous so

cij =
(A1 −A2)

2 (λ1 − λ2)S22
(3.12)

The equation 3.11 provides the general equation of the displacement in the
domain, it can be also derived to obtain the strain field. Using the constitutive
law can eventually be derived stress in interior points

σij [ξ] =

=

∫
Γ

D∗ijk [ξ, x] tk [x] dΓ−
∫
Γ

S∗ijk [ξ, x]uk [x] dΓ +

∫
Ω

D∗ijk [ξ, x] bk [x] dΩ

(3.13)

where the terms concerning the fundamental solution are obtained through
the following relations
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D111 = D

[√
λ2A1

r1

z2
2

−
√
λ1A2

r1

z2
1

]
D122 = D

[
λ1

√
λ1A2

r1

z2
1

− λ2

√
λ2A1

r1

z2
2

]
D121 = D

[√
λ2A1

r2

z2
2

−
√
λ1A2

r2

z2
1

]
D112 = D121

D211 = D

[
A2√
λ2

r2

z2
2

− A1√
λ1

r2

z2
1

]
D222 = D

[√
λ1A1

r2

z2
1

−
√
λ2A2

r2

z2
2

]
D212 = D

[√
λ1A1

r1

z2
1

−
√
λ2A2

r1

z2
2

]
D212 = D221

(3.14)

S111 = D

{[
1√
λ2z2

2

− 1√
λ1z2

1

− 2

(√
λ2r

2
1

z4
2

−
√
λ1r

2
1

z4
1

)]
n1 − 2

[√
λ2r1r2

z4
2

−
√
λ1r1r2

z4
1

]
n2

}
S112 = D

{
−2

[√
λ2r1r2

z4
2

−
√
λ1r1r2

z4
1

]
n1 +

[√
λ2

z2
2

−
√
λ1

z2
1

− 2

(√
λ2r

2
2

z4
2

−
√
λ1r

2
2

z4
1

)]
n2

}
S121 = S211 = S112

S122 = D

{[√
λ1

z2
1

−
√
λ2

z2
2

+ 2

(
λ2

√
λ2r

2
1

z4
2

− λ1

√
λ1r

2
1

z4
1

)]
n1 + 2

[
λ2

√
λ2r1r2

z4
2

− λ1

√
λ1r1r2

z4
1

]
n2

}
S212 = S221 = S122

S222 = D

{
2

[
λ2

√
λ2r1r2

z4
2

− λ1

√
λ1r1r2

z4
1

]
n1 +

[
λ1

√
λ1

z2
1

− λ2

√
λ2

z2
2

+ 2

(
λ2

√
λ2r

2
2

z4
2

− λ1

√
λ1r

2
2

z4
1

)]
n2

}
(3.15)

To generate a discrete model on the basis of the equations (3.11) it is
necessary to assume a distribution of the field of displacements and tractions
on the contour, taking interpolation functions. By positioning the source at
various points along the contour and exploiting more equations of this type,
you can obtain a not symmetrical system. On the contuor yo have generally
mixed conditions, both on the displacement and on the tractions. So, the
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integrals on Γ need to be separated into integrals on Γu and into integrals on
Γt. The vector of unknowns on the contour contains terms of displacement and
traction, for which the method has in itself a mixed formulation type. This
characteristic has the advantage to lead to accuracies generally comparable,
in the calculation of displacements and stresses.



4

Discrete model derived from the integral
collocation method

The standard form of the boundary elements method identifies the solution on
the boundary of the domain where the problem is defined, through a system of
linear algebraic equations, where the associated matrix is not symmetric. The
equations of the system, resulting from the formulation, in discrete terms,
of the integral equation of the displacements are generated placing on the
boundary a number of point sources point equal to the number of interpolation
variables. This requires an adequate description boundary geometry, as well as
the representation of the mechanical variables of the problem by interpolation
functions.

4.1 Discretization of the boundary

As regards the boundary, its geometry can be approximated through the use
of curvilinear or linear elements. The first element type ensure a more gen-
eral modeling, but require, in most cases, the numerical carrying out of the
integrals present. The analytical integration is in fact impassable for the com-
plexity of the functions integrands, due to the presence of terms related to
the transformations of variables. Linear elements permit an exact descrip-
tion of polygonal contours and, at least in general, they make possible, in a
fully analytical way, the development of the integrals involved in the search
for a solution on the boundary and in the domain, when the involved ker-
nels are described analytically. It follows a more accurate results and a lower
computational time. For these reasons, in what follows reference is made to
the discretization of the boundary by straight elements. The process involves
the subdivision of the contour in the linear segments (macroelements). These
macroelements are also internally divided into several elements (Figure 4.1).
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Fig. 4.1. Representation of the contour in straight elements

4.2 Discretization of the mechanical variables

The representation in the discrete form of mechanical variables such as dis-
placement and traction in this case, requires the introduction of the interpo-
lation functions. Within the interpolation functions of polynomial type, it is
evident the convenience of obtaining the maximum continuity of the represen-
tation using, at the same time, the minimun number of possible parameters.

An interpolation that is proven to help achieve this goal is the so-called
interpolation High Continuity (HC) [16], [5]. It is of polynomial functions of
B-spline type with C1 continuity. They are constructed by requiring com-
pliance with the continuity conditions both of the variables and their first
derivatives at the ends of adjacent elements. This produces the elimination of
variables relating to these conditions. Setting to n the number of parameters
of piecewise interpolation constant, the HC interpolation needs of a number
of parameters equal to n+ 2. So, the i-th components of a vector amount can
be described as following

fi [ξ] =

3∑
k=1

φ(k) [ξ] f
(k)
i =

3∑
k=1

(
2∑

h=0

chk

(
ξ(h)

))
f

(k)
i (4.1)

where ξ is an adimensional abscissa on the element, which varies between

-1 and 1, φ(k) [ξ] is the associated function to the i-th parameter f
(k)
i , in

the node k considered, while, chk indicates the coefficient of degree h of the
polynomial depending by ξ, related to the nodal parameter k.

The general expression of the these functions is
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φ1 [ξ] =
1

4 (s+ 1)

(
1− 2ξ + ξ2

)
φ2 [ξ] =

1

4 (s+ 1) (d+ 1)

(
(2 + 3 (s+ d) + 4sd) + 2 (d− s) ξ − (d+ s+ 2) ξ2

)
φ3 [ξ] =

1

4 (d+ 1)

(
1 + 2ξ + ξ2

)
(4.2)

Note the geometric relationships s and d, you can get the three shape
functions. When the element of the left or the right one are terminal elements,
you insert null values in the expressions for s or d. In this work it will be used
only one type of element obtained by setting s = 1 and d = 1. So, the shape
functions for this case are

φ1 [ξ] =
1

8
− 1

8
ξ +

1

8
ξ2

φ2 [ξ] =
3

4
− 1

4
ξ2

φ3 [ξ] =
1

8
+

1

8
ξ +

1

8
ξ2

(4.3)

Fig. 4.2. HC element for case s=1 and d=1

4.3 Boundary solution

The discrete form of the equation (3.11) leads to the generation of the system
in the contour variables. In particular, using HC interpolation, the displace-
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ment and traction fields are represented inside each element by the following
relations

u [x] = φueue uTe =

u(i−1)
1 u

(i)
1 u

(i+1)
1

u
(i−1)
2 u

(i)
2 u

(i+1)
2



t [x] = φteue tTe =

t(i−1)
1 t

(i)
1 t

(i+1)
1

t
(i−1)
2 t

(i)
2 t

(i+1)
2

 (4.4)

Finally, taking into account the equation (3.11), it’s possible to write the
discrete form of the integral equation of the displacement

ciju
(
ξ̄
)

+

ne∑
e=1

∫
Γe

t∗
T

(ξ, x)φeue dΓe =

=

ne∑
e=1

∫
Γe

u∗
T

(ξ, x)φete dΓe +

nc∑
c=1

∫
Ωc

u∗
T

(ξ, x) b (x) dΩc (4.5)

where ξ̄ denotes the position of the source, ne the number of elements in
which the contour is divided and nc is the number of cells in which the domain
is divided.

4.4 Research of the solution in the domain

After obtaining the solution on the boundary, it’s possible to compute the
solution in the interior points of the domain. In particular, to define the dis-
placements field is given from the equation (3.11), but now, the coefficient
cij = 1

ui [ξ] =

∫
Γ

u∗ij [ξ, x] tj [x] dΓ−
∫

Γ

t∗ij [ξ, x]uj [x] dΓ = −
∫

Ω

u∗ij [ξ, x] bjdΩ (4.6)

which its discrete form is

u (ξ) =

ne∑
e=1

∫
Γe

u∗
T

(ξ, x)φete dΓe −

−
ne∑
e=1

∫
Γe

t∗
T

(ξ, x)φeue dΓe +

nc∑
c=1

∫
Ωc

u∗
T

(ξ, x) b (x) dΩc (4.7)
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The stresses fields is given using the equation 3.13.Its discrete form is

σ (ξ) =

ne∑
e=1

∫
Γe

Dφete dΓe −
ne∑
e=1

∫
Γe

Sφeue dΓe +

nc∑
c=1

∫
Ωc

Dbc (x) dΩc (4.8)

where

DT =

D111 D121 D211 D221

D112 D122 D212 D222

 ST =

S111 S121 S211 S221

S112 S122 S212 S222


(4.9)

which the terms D and S are provided by equation 3.14 and equation 3.15

4.5 Analytical integration of the boundary coefficients

Integral coefficients contained in the equation (4.5) involve the products be-
tween the shape functions and the fundamental solutions (2.10) and (2.12).
The typical term of integral equations is in the form∫

Γ

f∗φ(k) [x] dΓ =

2∑
h=0

chk

∫ a

−a
f∗i ξ

(h)dx (4.10)

where the abscissa x is taken in local system centered on the field element,
and a indicates the half-length of the field element (see Figure 4.3).

Fig. 4.3. Coordinates of the source point S(x̄, ȳ) in the local system placed on the
element effect
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We will make reference to x̄, ȳ which are the coordinates of the source
point in the local system placed on the field element.

So, the integrals to be computed have the following typical forms

E(k)
(h)
j =

∫ x2

x1

xh

(z2
k)j

dx

G(k)
(h)
j =

∫ x2

x1

ln zkx
hdx

A(k)
(h)
j =

∫ x2

x1

arctan

(
ȳ√

λk (x− x̄)

)
dx

(4.11)

For the integrals shown in equation (4.11) it is possible to obtain a closed
form of the solution. In the calculation of the solution of these integrals you
can discern two cases.

4.5.1 Case 1: n1 = 0

The analytical solutions of the indefinite integrals E(k)
(h)
j for this case can be

posed in the form

E(k)
(h)
j =

1

2j − h− 1

{[
xh−1

(z2
k)
j−1

]x2

x1

+ 2x̄ (j − h)E(k)
(h−1)
j + (h− 1)

(
λkx̄

2 + ȳ2
)
E(k)

(h−2)
j

}
(4.12)

in particular, when k = 2j−1, it is necessary to use the following equation

E(k)
(h)
j = E(k)

(h−2)
j−1 −

(
λkx̄

2 + ȳ2
)
E(k)

(h−2)
j + 2x̄E(k)

(h−1)
j (4.13)

The integrals needed to initialize the recursive process when ȳ 6= 0 are



4.5 Analytical integration of the boundary coefficients 31

E(k)
(0)
1 =

1√
λkȳ

[
arctan

(√
λk (x− x̄)

ȳ

)]x2

x1

(4.14a)

E(k)
(1)
1 =

1√
λk

[
ln (zk)

]x2

x1

+ x̄E(k)
(0)
1 (4.14b)

E(k)
(h)
0 =

[
xh+1

h+ 1

]x2

x1

(4.14c)

E(k)
(0)
j+1 =

1

2ȳ2j

{[
(x− x̄)

(z2
k)
j

]x2

x1

+ (2j − 1)E(k)
(0)
j

}
(4.14d)

For ȳ = 0 some of these expressions degenerate, and must be replaced with
the following

E(k)
(0)
j =

[
1

(x− x̄)
2j−1

]x2

x1

1

λk (1− 2j)
(4.15)

Integrals of type G(k)
(h)
j can be represented in closed form. In problem

treated is required only the evaluation of integrals G(k)
(h)
0 , which for ȳ 6= 0

become

G(k)
(h)
0 =

1

h+ 1

{[
ln (zk)xh+1

]x2

x1

− λk
(
E(k)

(h+2)
1 − x̄E(k)

(h+1)
1

)}
(4.16)

when ȳ = 0 it becomes

G(k)
(h)
0 =

1

h+ 1

{[
xh
(

(x− x̄) ln (zk)− x

h+ 1

)]x2

x1

+ hx̄G(k)
(h−1)
j

}
(4.17)

where the first integral of the recursive process is

G(k)
(0)
0 =

[
(x− x̄) ln (zk)− x

]x2

x1

(4.18)

Even the integrals of type A(k)
(h)
j can be represented in closed form. In

problem treated is required only the evaluation of integrals A(k)
(h)
0
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A(k)
(h)
0 =

=

[
− h

h+ 1

(
x̄ȳ(h−1)

√
λk

)
+

ȳ

2
√
λk
ln (zk)x(h) +

(h− 1)

6

ȳ3√
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+
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2

ȳ2
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)
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ȳ
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(4.19)

where the first integral of the recursive process is

A(k)
(0)
0 =

[
ȳ

2
√
λk
ln (zk)− arctan

(
ȳ

λk (x− x̄)

)
(x− x̄)

]x2

x1

(4.20)

The expressions necessary to assemble the system of the boundary equa-
tions, depending of the integrals just exposed, are the following

U
(h)
11 = D

[√
λ1A

2
2G(1)

(h)
0 −

√
λ2A

2
1G(2)

(h)
0

]
(4.21a)

U
(h)
12 = DA1A2

[
A(2)

(h)
0 −A(1)

(h)
0

]
(4.21b)

U
(h)
21 = U

(h)
12 (4.21c)

U
(h)
22 = −D

[
A2

1√
λ1

G(1)
(h)
0 − A2

2√
λ2

G(2)
(h)
0

]
(4.21d)

T
(h)
11 = ȳD

[√
λ2A1E(2)

(h)
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√
λ1A2E(1)

(h)
1

]
(4.21e)

T
(h)
12 = D

[√
λ1A1Ẽ(1)

(h)
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(h)
1

]
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T
(h)
21 = D
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]
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T
(h)
22 = ȳD

[√
λ1A1E(1)

(h)
1 −

√
λ2A2E(2)

(h)
1

]
(4.21h)

where there were inducted

Ẽ(k)
(h)
j = E(k)

(h+1)
j − x̄E(k)

(h)
j (4.22)
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As regards the evaluation of the tensions in the interior points, the integral
terms of the type Dh

ijl, written as a function of the recurring integrals, have
the following expressions

D
(h)
111 = D

[√
λ2A1Ẽ(2)

(h)
1 −

√
λ1A2Ẽ(1)

(h)
1

]
(4.23a)

D
(h)
122 = D

[
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√
λ1A2Ẽ(1)

(h)
1 − λ2

√
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(h)
1

]
(4.23b)

D
(h)
121 = ȳD

[√
λ2A1E(2)

(h)
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√
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(h)
1

]
(4.23c)

D
(h)
112 = D

(h)
121 (4.23d)

D
(h)
211 = ȳD

[
A2√
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E(2)
(h)
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(h)
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(4.23e)
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[√
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(4.23f)
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[√
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√
λ2A2Ẽ(2)

(h)
1

]
(4.23g)

D
(h)
212 = D

(h)
221 (4.23h)

while the integral of the type Shijl can be written as
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S
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√
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√
λ1E(2)
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(4.24f)

4.5.2 Case 2: n2 = 0

The analytical solutions of the indefinite integrals E(k)
(h)
j for this case can be

posed in the form

E(k)
(h)
j =

1

2j − h− 1

{[
xh−1

(z2
k)
j−1

]x2

x1

+ 2x̄ (j − h)E(k)
(h−1)
j + (h− 1)
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2
)
E(k)

(h−2)
j

}
(4.25)

in particular, when k = 2j−1, it is necessary to use the following equation

E(k)
(h)
j = E(k)

(h−2)
j−1 −

(
x̄2 + λkȳ

2
)
E(k)

(h−2)
j + 2x̄E(k)

(h−1)
j (4.26)

The integrals needed to initialize the recursive process when ȳ 6= 0 are
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2λkȳ2j

{[
(x− x̄)
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+ (2j − 1)E(k)
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j
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For ȳ = 0 some of these expressions degenerate, and must be replaced with
the following

E(k)
(0)
j =

[
1

(x− x̄)
2j−1

]x2

x1

1

(1− 2j)
(4.28)

Integrals of type G(k)
(h)
j can be represented in closed form. In problem

treated is required only the evaluation of integrals G(k)
(h)
0 , which for ȳ 6= 0

become

G(k)
(h)
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h+ 1

{[
ln (zk)xh+1

]x2
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(4.29)

when ȳ = 0 it becomes

G(k)
(h)
0 =

1

h+ 1
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xh
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(x− x̄) ln (zk)− x

h+ 1

)]x2

x1

+ hx̄G(k)
(h−1)
j

}
(4.30)

where the first integral of the recursive process is

G(k)
(0)
0 =

[
(x− x̄) ln (zk)− x

]x2

x1

(4.31)

Even the integrals of type A(k)
(h)
j can be represented in closed form. In

problem treated is required only the evaluation of integrals A(k)
(h)
0



36 4 Discrete model derived from the integral collocation method
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where the first integral of the recursive process is
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(4.33)

The expressions necessary to assemble the system of the boundary equa-
tions, depending of the integrals just exposed, are the following
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where there were inducted

Ẽ(k)
(h)
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j − x̄E(k)

(h)
j (4.35)
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As regards the evaluation of the tensions in the interior points, the integral
terms of the type Dh

ijl, written as a function of the recurring integrals, have
the following expressions
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while the integral of the type Shijl can be written as
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4.6 Discrete equation

Fig. 4.4. Arrangment of the source points and of HC parameters

Arranging on the discretized contour a number of sources point equal to the
number of parameters used in approximate representation 4.4, the expression
4.5 leads to following system of equations∑

e

Heue =
∑
e

Gete + b (4.38)

where, the contribution of each elements Γe to coefficients of the matrices
H and G are defined by following the relations
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He =

∫
Γe

t∗
T

(ξ, x)φeue dΓe

Ge =

∫
Γe

u∗
T

(ξ, x)φete dΓe

(4.39)

the system (4.38) can be re-write as following

Hu = Gt+ b (4.40)

in u and t were collected thr parameters of displacement and traction on
the boundary. Basing on the boundary conditions the system can be written
in the form

Ax = f (4.41)

where the matrix A and the vector of known terms f are obtained by
rearranging H, G and b, the vector x contains the the unknown quantities
of boundary. The system as written can be solved in the unknowns mixed
quantities of boundary. It is to be noted that the coefficients matrix compared
to the numerical methods of domain discretization is very small and is all full
and non-symmetrical. In the previous section has been treated in detail the
calculation of integral coefficients that requires special attention, given the
presence of singularities in the fundamental solutions.
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Implementation details

This chapter examines in detail the algorithm implemented in the MATLAB
environment. After an introduction to the global quantities, there are reviewed
procedures for reading of data, pre-analysis, assembly of the coefficient ma-
trix and boundary solution, domain solution, output by plotting the results.
This code provides, for a given geometry of a laminated composite shell, the
distribution on the boundary of the tractions and of the displacements. It is
also possible to calculate the stresses and the displacements in an individual
points of the domain, or in a grid of points, so as to represent globally the
results by maps, or level curves.

5.1 Code structure

The structure of the program consists of a series of procedure calls and it is
shown in Figure 5.1. After a process of reading data from input via file, first
of all it is calculated the compliance and stiffness matrix of the composite and
the roots of the characteristic equation and all the quantities involved (Sis-
temSolution). Subsequently, a procedure for pre-analysis imposes boundary
conditions and transfers the problem on the working plane. Then, it is assem-
bled the integral coefficient matrix, and the algebraic system is solved within
the procedure boundary solution. After getting the boundary solution it is
calculated the domain solution on a individual point or on a grid points. The
final step consists in management and visualization of the results obtained.
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Fig. 5.1. Code structure

5.2 Procedures Organization

After introducing the variables involved and after bringing back the calls
contained in MAIN, all the phases in which is articulated the algorithm are
examined.

5.2.1 Input

At this early stage an m file is built and it will be invoked at the time of reading
data. This phase is managed by the procedure ReadInput, which has the task
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to read the data contained in a file and store them by variables declared. First
of all you provide the four independent elastic characteristics: the Young’s
modulus in the two direction (1=axis aligned with the fiber direction, 2=axis
perpendicular with the fiber direction), the shear modulus and the Poisson’s
ratio. Then it is provided the number of layers and their orientation respect
to the global sistem.

Subsequently it is provided the total number of sides that make up the
contour of the shell, the number of internal points where you want to calculate
the solution and values the two boundary conditions (assigned traction or
displacement). The data provided in subsequent lines identify the coordinates
of the vertices of the macroelements. For each vertex is assigned an order
number, which serves later, when for every macroelement must indicate the
start and end node, as well as the number of elements in which you want to
break it. The normal boundary is always considered leaving the domain. For
each node are stored both coordinates, while for each macroelement are stored
the order numbers of the initial node and the final one, as well as the number
of elements in which the user wants to divide. The procedure also stores the
coordinates of the internal points where you want to calculate the solution.

5.2.2 Build Laminate - Sistem Solution

In these two procedure, taking in account of elastic characteristics and layers
that compose the laminate, it is calculated the complience and stiffness matrix
and than you calculate the roots of the characteristic equation and all the
quantities involved the fundamental solution.

5.2.3 Pre-Analisys

This phase is mainly engaged to transfer the problem in the plan of calculating.
You calculate the length of the macroelements and of their microelements, the
normals to the macro and micro elements and the coordinates of every nodes.

5.2.4 Sorce Element

The procedure elemetS receives as input the i-th of the macroelement and
the i-th element. This calculates the cosines direction of the outward normal,
the number of sources present and their coordinates. All data is stored in
the variable eles. For each macroelement there are a number of source points
equal to the number of HC parameters involved. This number is equal to the
number of microelements plus 2 (ne + 2). Their location changes depending
on the element type. For the elements that are placed at the extremity there
are two source point, one placed at α distance and the other placed β distance
(see Figure 4.4). For the other elements the source point is unique and it is
placed in the center of the microelement.
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5.2.5 Field Element

Also this procedure elemetF takes as input the i-th of the macroelement and
the i-th element. It calculates the direction cosines of the outward normal, the
number of field point present and their coordinates. All data is stored in the
variable elee. For each macroelement there are a number of field points equal
to the number of microelemts. The field points are placed in the midpoind of
every microelemets.

5.2.6 Post-Analisys

This phase is mainly engaged to transfer the boundary conditions.

5.2.7 Boundary Solution

This phase is the core of the code. It is in this phase that it is assembled
the system of equations that define the solution of the elastic problem on the
contour. The construction of the coefficient matrix is developed through the
contributions of all the macroelements and for each of them the contributions
of the microelements that constitute it. It is observed that the generation of
the equations of the system is developed taking into account that the com-
ponents of the variables on the contour most convenient to assign the data
are normal and tangential and that the evaluation of the integrals is, as al-
ready seen, facilitated by the use of a system local reference. This procedure
evaluates the effects that the various source points produce in the different
field points. The procedure is so divided: a source point that points, counter-
clockwise, to the field points, you evaluate, referring to the local system of the
i-th field point, the distances x̄ and ȳ, the direction cosines (see Figure 4.3).
Then, there is another procedure within Boundary Solution: IntegraliCoeff.
It calculates the integral coefficients, in analitical way as treated in Section
4.5, to assemble in the system. Each source point fills two rows of the matrix,
one for the normal direction and one for the tangential direction. The matrix,
that comes out, it is not symmetric a square matrix.

5.2.8 Domain Solution

This phase has the task of deducing the solution in the interior points of the
domain as a function of the solution, now known, on the contour. At this
stage, in developing the solution on the domain, it is used another procedure
that calculate the integral coefficients in the domain: IntegraliCoeff-Domain.
This procedure is organized in the same way of the procedure used on the
contour.
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5.2.9 Plot

These final procedures are needed for a graphics processing of the results.
Through them are plotted graph of the displacements, of the stresses and
deformed mesh.





6

Numerical Results

A number of cases are presented here to demonstrate the application of the
proposed methodology to elastic analysis of 2-D orthotropic medium by the
analytical integration of the kernels. The principal material direction are
aligned with the Cartesian coordinate directions.

6.1 Test 1: Square plate under uniform load parallel to
the fibers

In the first example, an orthotropic square plate is considered, which is sub-
jected to a uniformly distributed load along the principal material direction
(see Figure 6.1), and the material properties are listed in Table (6.7). The
plate has lenght 100mm, thickness 1.2mm and distribuited load q = 1MPa.

The results obtained with the present BEM are compared with the results
obtained by Abaqus. In the tables below the comparison of the results between
the BEM and Abaqus is presented.

Fig. 6.1. Square plate under uniform load
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In the tables (6.1) and (6.2) the comparison of the displacements in the
point A, B, C and D is presented. Both the tables refer to the same dof showed
in the table (6.1).

Table 6.1. Comparison of the displacements in point A and B between BEM and
Abaqus

BEM Abaqus
Nel L/Nel dof UA

x UB
y Nel L/Nel dof UA

x UB
y

12 3.33e−1 40 1.2616 8.2920 9 3.33e−1 120 1.1671 6.9620
20 2.00e−1 56 1.2226 8.1992 25 2.00e−1 288 1.1447 7.4820

132 3.03e−2 280 1.1554 8.1722 144 8.33e−2 1446 1.1539 7.9279
220 1.81e−2 456 1.1555 8.1743 225 6.66e−2 2208 1.1557 7.9892
308 1.29e−2 632 1.1558 8.1752 400 5.00e−2 3843 1.1573 8.0497
396 1.01e−2 808 1.1560 8.1756 1089 3.03e−2 10200 1.1587 8.1094
484 8.26e−3 984 1.1561 8.1759 1600 2.50e−2 14888 1.1592 8.1390
604 6.62e−3 1224 1.1562 8.1761 4356 1.51e−2 39999 1.1598 8.1737
684 5.84e−3 1384 1.1563 8.1762 6400 1.25e−2 58563 1.1599 8.1830
764 5.23e−3 1544 1.1563 8.1763 10000 1.00e−2 91203 1.1600 8.1917
844 4.73e−3 1704 1.1564 8.1772 12321 1.00e−2 112224 1.1600 8.1952
884 4.52e−3 1784 1.1565 8.1778 15625 1.00e−2 142128 1.1601 8.1987

Table 6.2. Comparison of the displacements in point C between BEM and Abaqus

BEM Abaqus
UC

x UC
y UD

x UD
y UC

x UC
y UD

x UD
y

−0.2306 3.9991 −0.2707 6.1332 −0.1108 2.4435 −0.1820 4.9246
−0.2202 3.9599 −0.2582 6.0814 −0.1950 3.3046 −0.2401 5.3541
−0.2126 3.9427 −0.2511 6.0614 −0.2093 3.6716 −0.2475 5.8051
−0.2125 3.9431 −0.2510 6.0624 −0.2102 3.7300 −0.2487 5.8649
−0.2125 3.9433 −0.2510 6.0628 −0.2116 3.7886 −0.2497 5.9242
−0.2124 3.9434 −0.2510 6.0631 −0.2128 3.8571 −0.2509 5.9936
−0.2124 3.9435 −0.2510 6.0632 −0.2131 3.8754 −0.2512 6.0121
−0.2124 3.9436 −0.2510 6.0634 −0.2136 3.9093 −0.2516 6.0464
−0.2124 3.9436 −0.2510 6.0634 −0.2137 3.9184 −0.2518 6.0555
−0.2124 3.9437 −0.2510 6.0635 −0.2139 3.9269 −0.2519 6.0642
−0.2124 3.9437 −0.2510 6.0635 −0.2139 3.9303 −0.2519 6.0676
−0.2124 3.9437 −0.2510 6.0635 −0.2139 3.9337 −0.2520 6.0711
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In the tables (6.3) and (6.4) the comparison of the stresses in the point C
and D is presented. Both the tables refer to the same dof showed in the table
(6.1).

Table 6.3. Comparison of the stresses (e+1) in point C,between BEM and Abaqus

BEM Abaqus
σC
xx σC

yy τCxy σC
xx σC

yy τCxy

6.2800 −4.4692 −6.1567 4.8108 −4.4279 −8.0257
6.2004 −4.2557 −6.1106 7.0497 −5.2678 −6.5291
6.1959 −4.1623 −6.1400 6.2001 −4.1111 −6.1809
6.1957 −4.1604 −6.1423 6.1914 −4.1919 −6.1827
6.1957 −4.1599 −6.1432 6.1907 −4.1577 −6.1941
6.1957 −4.1597 −6.1437 6.1893 −4.1856 −6.1824
6.1957 −4.1595 −6.1439 6.1904 −4.1802 −6.1856
6.1957 −4.1595 −6.1442 6.1913 −4.1889 −6.1824
6.1957 −4.1594 −6.1443 6.1913 −4.1866 −6.1835
6.1957 −4.1594 −6.1443 6.1915 −4.1875 −6.1833

Table 6.4. Comparison of the stresses (e+1) in point D, between BEM and Abaqus

BEM Abaqus
σD
xx σD

yy τDxy σD
xx σD

yy τDxy

5.9857 −2.0406 −4.0729 6.6521 −3.5807 −4.1363
6.0072 −1.9610 −4.0580 5.9620 −1.8496 −4.2436
6.0054 −1.9088 −4.0885 6.0116 −1.9266 −4.1185
6.0057 −1.9077 −4.0912 6.0134 −1.9255 −4.1221
6.0057 −1.9077 −4.0912 6.0111 −1.9123 −4.1360
6.0058 −1.9076 −4.0916 6.0108 −1.9194 −4.1302
6.0058 −1.9075 −4.0918 6.0110 −1.9194 −4.1310
6.0059 −1.9075 −4.0920 6.0109 −1.9218 −4.1293
6.0059 −1.9075 −4.0921 6.0110 −1.9216 −4.1298
6.0059 −1.9075 −4.0922 6.0110 −1.9219 −4.1297
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(a) Ux (b) Uy

Fig. 6.2. Displacements in direction X fig.(a) and in direction Y fig.(b)

(a) σxx (b) σyy

(c) τxy

Fig. 6.3. Stresses: σxx fig.(a), σyy fig.(b) and τxy fig.(c)
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(a) σC
xx (b) σC

yy

(c) τCxy

Fig. 6.4. Convergence of the stresses at point C for increasing dof , σC
xx fig.(a), σC

yy

fig.(b) and τCxy fig.(c)

(a) UC
x (b) UC

y

Fig. 6.5. Convergence of the displacements at point C for increasing dof
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(a) σD
xx (b) σD

yy

(c) τDxy

Fig. 6.6. Convergence of the stresses at point D for increasing dof , σC
xx fig.(a), σC

yy

fig.(b) and τCxy fig.(c)

(a) UD
x (b) UD

y

Fig. 6.7. Convergence of the displacements at point D for increasing dof
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(a) UA
x (b) UB

y

Fig. 6.8. Convergence of the displacements at point A and B for increasing dof ,
UA

x fig.(a) and UB
y fig.(b)
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6.1.1 Test 2: Cantiliver plate under uniform shear load
perpendicular to the fibers

In the second example, an orthotropic cantilever is considered, which is sub-
jected to a uniformly shear distributed load perpendicular to the fiber direc-
tion (Figure 6.9), and the material properties are listed in Table (6.8). The
plate has lenght L = 200mm, height h = 10mm, thickness t = 1mm and
distribuited shear load q = 0.03MPa.

In this case, to ensure a correct modeling, in dividing the edge in the
boundary element, yo have to take in account of the relationship between the
geometric dimensions. So, the number of elements on the base will be 20 times
higher than that of the height.

The results obtained with the present BEM are compared with the results
obtained by Abaqus. In the in Table (6.5) it is possible to compare the results
of the BEM code and of Abaqus for the points A and B.

Fig. 6.9. Cantilever plate under shear uniform load
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Table 6.5. Comparison of the displacements in point A and B between BEM and
Abaqus

BEM Abaqus
Nel L/Nel dof UA

y UB
x Nel L/Nel dof UA

x UB
y

126 3.33e−1 268 −111.2928 4.1529 180 3.33e−1 2001 −113.3769 4.2317
210 2.00e−1 436 −112.0300 4.1797 500 2.00e−1 5133 −113.4735 4.2343
378 1.11e−1 772 −112.6496 4.2017 1080 1.66e−1 9222 −113.5099 4.2353
462 9.09e−2 940 −112.7832 4.2065 2000 1.00e−1 19263 −113.5457 4.2363
630 6.66e−2 1276 −112.9307 4.2117 2420 9.00e−2 23379 −113.5524 4.2364
798 5.26e−2 1612 −113.0072 4.2144

1050 4.00e−2 2116 −113.0689 4.2166
1302 3.22e−2 2620 −113.1027 4.2178
1638 2.56e−2 3292 −113.1288 4.2188
1890 2.22e−2 3796 −113.1411 4.2192
2310 1.81e−1 4636 −113.1546 4.2197
3234 1.29e−1 6484 −113.1700 4.2202

In the table (6.6) the comparison of the stresses in the point C is presented.
The table refer to the same dof showed in the table (6.2).

Table 6.6. Comparison of the stresses (e+1) in point C,between BEM and Abaqus

BEM Abaqus
σC
xx σC

yy τCxy σC
xx σC

yy τCxy

27.8540 −60.6732 −1.0229 4.8108 1.0380 0.0079
26.9547 −43.6052 −0.8924 3.8224 1.0869 0.0062
23.6634 −26.7278 −0.7609 3.8820 1.1055 0.0059
22.1997 −22.3126 −0.7276 4.0875 1.1646 0.0057
19.8868 −16.7807 −0.6887 4.1347 1.1775 0.0058
18.1981 −13.4720 −0.6685
16.4052 −10.4281 −0.6539
15.1562 −8.5273 −0.6483
13.9865 −6.8753 −0.6470
13.3432 −6.0086 −6.4851874
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(a) Ux

(b) Uy

Fig. 6.10. Displacements in direction X fig.(a) and in direction Y fig.(b)

(a) σxx

(b) σyy

(c) τxy

Fig. 6.11. Stresses: σxx fig.(a), σyy fig.(b) and τxy fig.(c)
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(a) UA
y (b) UB

x

Fig. 6.12. Convergence of the displacement for increasing dof , in point A UA
y fig(a)

and in point B UX
x fig(b)

6.1.2 Material properties

Table 6.7. Material properties

Elastic constants Layer
(MPa) no Orientation

E1 161.00 1 90
E2 90.27
ν12 0.28
G12 7.17

Table 6.8. Material properties

Elastic constants Layer
(MPa) no Orientation

E1 85.0 1 0
E2 84.0
ν12 0.3
G12 10.0





Conclusions

At the conclusion of this thesis highlights some significant aspects of the ex-
perience took place. As regards the formulation of the plane stress problem
in the case of orthotropic constitutive equation, it should be noted that, the
problem is solved taking into account the orthotropic constitutive equation
precisely and then generating of the fundamental solutions specific for this
case. Based on this, the fundamental solutions for the isotropic case may be
obtained by downgrading the orthotropic constitutive equation and making a
passage to the limit.

In reference to the interpolation used were obtained expressions of func-
tions HC. As for the analytical evaluation of the integral coefficients goes high-
lighted the efficiency of the implementation. All contributions are expressed
as a function of a few recurring integrals, defined recursively. The results
presented in the Chapter 6 show the performance obtained with the model
boundary elements developed. The representation of the stress, has proved
an effective tool for immediate visualization of the stress state, as well as the
representation for contour lines. The code shows the limit of the FEM models.
When there are stress concentration the BEM is much more reliable compared
with the FEM. The accuracy of the results was validated by comparison with
the program Abaqus. The accuracy of the code is determined primarily by the
analytic integration of the coefficients and by the interpolation of mechanical
quantities, which is effective even with a few elements.

Another interesting fact is that thanks to the integration of analytical
integral contributions you can evaluate the solution at points very close to
the boundary, without triggering instability in the code. The solution within
the domain can be evaluated pushing closer to the boundary up to an order
of magnitude of e−9 respect to the length of the element.
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