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Introduction

An important manifestation of the BFKL [I] dynamics at hadron colliders
such as TEVATRON and LHC is the so called Mueller-Navelet process [2]. It is
an inclusive production at high energies of two forward high-kr jets in proton-

proton collision:

p(p1) + p(p2) — jet(kr) +jet(ke) + X, (1)

which are detected in the fragmentation regions of two colliding protons p(p;)
and p(ps).

If the rapidity gap between the two produced jets is large in the center of
mass (CM) frame, at large energy /s the BFKL resummation comes into play,
since large logarithms of the energy compensate the small QCD coupling and
must be resummed to all orders in perturbation theory. On the other side,
the process is started by two hadrons each emitting one parton, according to
its parton distribution function (PDF), and collinear factorization allows to
systematically resum the logarithms of the hard scale, calculating the standard
DGLAP evolution [3] of the PDFs.

The BFKL approach provides a general framework for the resummation
of energy logarithms in the leading logarithmic approximation (LLA), which
means resummation of all terms (asIn(s))™, and in the next-to-leading logarith-
mic approximation (NLA), which means resummation of all terms (o In(s))™.
Indipendently from the process, the interaction of two Reggeized gluons implies
a resummation which leads to consider a Green’s function determined through
the BFKL equation. The BFKL equation is an iterative integral equation,
whose kernel is known at the next-to-leading order (NLO) both for forward

scattering [4, 5] and for any momentum transfer ¢ (not growing with energy)



Figure 1: Diagrammatical representation of jets production process

and any possible two-gluons color state in the ¢-channel [6].
The other components for a complete description of a process in the BFKL
approach are the impact factors; among these, those calculated with NLO ac-
curacy are those for colliding quark and gluons |10} 1], 12, [13], for forward jet
production [7, [§], for the v* — ~* transition [14] and for the v* to light vector
meson transition at leading twist [15].

On the other hand the full NLO Green’s function was implemented [16, [17,
18] and effects related with QQCD running coupling were studied in |19, 20].
These improvements brought to a better description of the results of the DO
collaboration at TEVATRON [2I]. In fact these results revealed a stronger
rise of the Mueller-Navelet jet cross section with energy than predicted by LLA
BFKL calculations. A complete analysis of the process was made [22], which
incorporates NLO correction to both the BFKL Green’s function and the jet
impact factors, calculated in |7, [8]. One of the results of this paper is that for
kinematics typical of the LHC experiment the effect of NLO corrections to the
jet impact factor is very important, of the same order as the one obtained from
the NLO corrections to Green’s function.

This observation is similar to one obtained earlier in the NLA analysis of
the diffractive double p-electroproduction [23]. Another important conclusion
of [22] is that the results for Mueller-Navelet jet observables obtained within



complete NLA BFKL analysis appeared to be very close to the one calculated
in the conventional collinear factorization at the NLO, with the only exception
of the ratio between the azimuthal angular moments (cos(2¢))/(cos¢). It is
important to have an independent calculation of Mueller-Navelet jet observables
in NLA. The aim of the present thesis is the calculation of NLO correction to the
jet impact factor in order to have an independent check of the results of |7, [§].
This will be developed in the second chapter, where the results obtained in
collaboration with F. Caporale, D.Yu. Ivanov, B. Murdaca and A. Papa [24]
will be presented. Here there will be the advantage of starting from the general
definition for the impact factors at NLO, see [25], which allows to come to the

results more shortly than in |7, [§] and in a more general way.



Chapter 1
The BFKL approach

In perturbative QCD for a scattering process in a dynamical regime with
large energy /s and fixed squared momentum transfer ¢ (i.e. not growing with
s), the BFKL theory prescribes that if the process happens with the exchange
of quantum numbers of gluon in ¢-channels we have an amplitude that goes
like 57", This effect is called "Reggeization" of the gluon. The function j(t)
is the Regge trajectory of the particle. Further, and this is characteristic of
QCD, the Reggeon gives the leading contribution in each order of perturbation
theory. If we consider the elastic process (see, for instance, Ref. [26]) A+ B —
A’+ B’ with exchange of gluon quantum numbers in the ¢-channel, i.e. for octet
color representation in the ¢-channel and negative signature, gluon Reggeization
means that, in the Regge kinematical region s ~ —u — oo,t fixed (i.e. not

growing with s), the amplitude of this process takes the form

o LI NI

Here c is a color index and T'%, , are the particle-particle-Reggeon vertices, not
depending on s. They can be written as I'¢,, = g(P'|T¢|P)I'pp, where g
is the QCD coupling constant and 7° are the color group generators in the
fundamental (adjoint) representation for quarks (gluons). This form of the
amplitude has been proved rigorously [27] to all orders of perturbation theory
in the leading-logarithmic approximation (LLA), which means resummation
of the terms afIn"s. In this approximation I'pp is given simply by dx,,xp,

where Ap is the helicity of the particle P, and w gives for the Reggeized gluon
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trajectory (which enters with 1-loop accuracy) the following result [28§],

1 B gt N dP—2k, B g*NT'(1 —¢€) T%(e) 9 e
PO=Gnrrz | Bamnr - anpr e 4"

Here D = 4 + 2¢ has been introduced in order to regularize the infrared diver-
gences and the integration is performed in the space transverse to the momenta

of the initial colliding particles.

1.1 BFKL in the LLA

Through the use of unitarity relation the BEFKL approach allows to obtain
amplitudes in t—channel with quantum numbers different from the gluon ones.
In the LLA, the main contributions to the unitarity relations from inelastic
amplitudes come from the multi-Regge kinematics, i.e. when rapidities of the
produced particles are strongly ordered and their transverse momenta do not
grow with s. In the multi-Regge kinematics, the real part of the production

amplitudes takes a simple factorized form, due to gluon Reggeization,

AB+n c1 - P; S; Y1 1 Sn41 et Cnt1
AAB = QSFAA H 70¢Ci+1(qi7 qi + 1) - t_ FBB ’
i=1 !

SR lny1 \ SR
(1.2)

where sp is an energy scale, irrelevant in the LLA, 75"@ +1(qi, ¢;+1) is the effective

vertex for the production of the particles P; with momenta k; = ¢; — ¢;11 in the

collisions of Reggeons with momenta ¢; and —¢; 1 and color indices ¢; and ¢; 41,

A A
+ q1
g1
:+ qi
75(/;,1+1(QiaQi+l> — éwa’ww gi
U1 Qi1

Figure 1.1: Diagrammatical representation of inelastic amplitude in LLA



Figure 1.2: Diagrammatical representation of a BFKL process, the ovals are the im-
pact factors of particle A and B the circle is the Green’s function of the
Reggeon-Reggeon scattering

Qo = P, Gui1 = —DB, Si = (ki1 + k)%, ko = p4, kny1 = pp and w; stands for
w(t;), with t; = ¢?. A schematic view of this amplitude is in Fig. . In the
LLA, P, can be only the state of a single gluon. By using s-channel unitarity
and the previous expression for the production amplitudes, the amplitude of

the elastic scattering process A+ B — A’+ B’ at high energies can be written

as
. . dP=2q, [ dP2qy [PV dw R
B is / / / _ W N Bz
ab om0 7277 7372 Js i sin(rw) ; aa (@13 G 50)
—S @ S Y — — — R7l/ — —
8 {(8_0) -7 (5_0) } GL(UR)(QMQ%C])(DSB’B)(_QQ; —{; 50)- (1.3)

The term @}1?’”) is the so-called impact factor in the ¢-channel color state (R, v)
of which a particular case will be the object of this thesis and GP s the
Mellin transform of the Green’s functions for Reggeon-Reggeon scattering. Here
41 = ¢; — q,q ~ q1 is the momentum transfer in the process, the sum is over
the irreducible representations R of the color group contained in the product of
two adjoint representations and over the states v of these representations, 7 is
the signature equal +1(—1) for symmetric (antisymmetric) representations and

So is an energy scale. The dependence on s is determined by GEJR), which obeys



o lg—q
QI*§ bai—q , -
:q1+§ §+Q1q—|—ql* i

42* +(I2—q
Q2+ +q27q

Figure 1.3: BFKL equation in LLA in schematical representation

the equation
WG G @, @) = 0 T6P (G~ @)

dD72q R "

rirTr

whose integral kernel is
KM (G, ¢ 7) = [w(=01) + w(=qD0" 2 (a — @) + K@, 6 7).
is composed by a “virtual” part
w(=q7%) +w(=q7)]
related to the gluon trajectory, and by a “real” part

KB (G, )

(1.5)

related to particle production in Reggeon-Reggeon collisions. In the LLA, the

“virtual” part of the kernel takes contribution from the gluon Regge trajectory

with 1-loop accuracy, wM, while the “real” part takes contribution from the

B)

production of one gluon in the Reggeon-Reggeon collision at Born level, KI(%RG.
The BFKL equation is the one given in Eq. (1.4) and is valid for t = 0 and
singlet quantum numbers in the ¢-channel; it can be schematized as in Fig. ([1.3)).
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Figure 1.4: Diagrammatical representations of replacements F(;,(,iom) — Ff;(,;,_loo‘p )(a)

Gi(Born) N Gi(1—loop) (b)

and Teici+1 Teicitl

1.2 BFKL in the NLA

In the NLA, the Regge form of the elastic amplitude and of the pro-
duction amplitudes , implied by gluon Reggeization, has been checked only
in the first three orders of perturbation theory [29].

In order to derive the BFKL equation in the NLA, gluon Reggeization is
assumed to be valid to all orders of perturbation theory. Recently it has been
shown that Reggeization is fulfilled also in the NLA, through the study of the
so-called “bootstrap” conditions [30].

In the NLA it is necessary to include into the unitarity relations contribu-
tions which differ from those in the LLA by having one additional power of
as or one power less in Ins. The first set of corrections is realized by per-
forming, only in one place, one of the following replacements in the production
amplitudes entering the s-channel unitarity relation:

Wl ) Ffj(lf;orn) Ffj([l];loop), CGC(E;)m) . Szf;loop)
the last two replacements are diagrammatically shown in Figs. (1.4[(a), [L.4(b)).

The second set of corrections consists in allowing the production in the s-
channel intermediate state of one pair of particles with rapidities of the same
order of magnitude, both in the central or in the fragmentation region (quasi-
multi-Regge kinematics). This implies one replacement among the following in

the production amplitudes (1.2)) entering the s-channel unitarity relation:

C(Born) C(Born) Gi(Born) QQ(Born) Gi(Born) GG(Born)
FP’P F{f}P ’ ,ycici—i—l — 7C7jci+1 i 7Cjci+1 — ,Ycici-l—l .
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Born

a
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—

(c)

Figure 1.5: Diagrammatical representations of replacements I' P(,?;OM) I‘fﬁgm)( ),
G;(Born) QQ(Born) G;(Born) GG(Born)
cici+1 rYCZ'CrFl (b) and ’YC c;i+1 ’yciciJrl (C)

Here I'{ s, p stands for the production of a state containing an extra-particle
in the fragmentation region of the particle P in the scattering off the Reggeon,
ﬁ?f{”m and fychGsrBlom) are the effective vertices for the production of a quark-
antiquark pair and of a two-gluon pair, respectively, in the collision of two

Reggeons. This second set of replacements is shown in Figs. (1.5a), [1.5(b)

and [L3]c))



Chapter 2

The next-to-leading order jet
vertex for Mueller-Navelet and
forward jets

Let us consider the production of Mueller-Navelet jets in proton-proton col-
lisions:
p(p1) + p(p2) = jet(ky,) +jet(ky,) + X (2.1)

where the jets are described by their rapidities y; » and transverse momenta Ej,l

and Eﬂ and are characterized by conditions
k?],l ~ k?I,Z > AggCD (2-2)

and large separation in rapidity; p; and p, are taken as Sudakov vectors satis-
fying p? = p3 = 0 and 2(p1p2) = s with the following decomposition for a jet in
fragmentation region of the proton with momentum py,

—

ka1 -
kji1=z51p1 + x—’Pz + ki, k?},u = _k?m . (2.3)
J1

In QCD collinear factorization the cross section of the process reads

do o
T Z / / dxydzy fi(xy, 1)
drjada j2d?ky e 2% Jo Jo (2.4)

do; j(x1x98, p
X fi(xa, 1) (1 2 >q
d.xJ’lde]’2d2k'J’1d2kJ72

10



where the indices i, j specify parton types (quarks ¢—u, d, s; antiquarks =, d,s
or gluon g), f;(x, p) is the parton distribution function (PDF), 4 5 are the lon-
gitudinal fractions of the parton involved in the hard subprocess, p is the factor-
ization scale and do; j(z1x2s, 1) is the partonic cross section for the production
of jets.

According to what has been stated in the previous chapter, due to the optical
theorem, the cross section is related to the imaginary part of the forward proton-

proton scattering amplitude:
ImgA

~ 9

S

(2.5)

o=

In the BFKL approach in the kinematical limit s > k2 the forward amplitude

may be presented in D dimension as follows:

§ dD_2 — ~ dD_2 pog .
ImsA = D2 / =5 o Dpy (Ch, 30) / - &2 (I)P,Q(—C]% 50)
(271') q1 43 (2 6)

d+ioo dw E w
X — | — Gw _)a 2 )
/5ioo 2mi (SO) (QI Q2)

where the Green’s function obeys the BFKL equation

WG (G @) = P2 — @) + / PG G GGG . (27)

The energy scale parameter sy is arbitrary within NLA accuracy, but in the
following we will see that it plays an important role in numerical computa-
tions through terms beyond the NLA which unavoidably appear in the NLA
prediction. The impact factors ®; and ®, are fundamental ingredients in the

description of the inclusive production of the two jets.

11



2.1 Parton impact factor

Both the kernel of the equation for the Green’s function and the parton

impact factors can be expressed in terms of the gluon Regge trajectory,

Jjt) =1+ w(t) (2.8)

and the effective vertices for the Reggeon-parton interaction.

To be more specific, let us consider the formulae for the case of forward
quark impact factor. Starting with the LO, the quark impact factors are give
by

o)=Y |4 Ma 10 ()00 (@) dpa (2.9

where ¢ is the Reggeon transverse momentum, and F((I%) denotes the Reggeon-
quark vertices in the LO or Born approximation. The sum a is over all inter-
mediate states a which contribute to the ¢ — ¢ transition. The phase space
element dp a of a state a, consisting of particles with momenta ¢, is (p, is

initial quark momentum)

dP-1¢,
_ D s(D)
dpa = (2m)"0 (pq+q >t ) [ ] (27D 12E, ’ (2.10)

nea n€a

while the remaining integration in (2.9)) is over the squared invariant mass of

the state a,

M? = (pg+q)°

In the LO the only intermediate state which contributes is a one-quark state,
a = q. The integration in Eq. 1} with the known Reggeon-quark vertices I' ,(]2)

is trivial and the quark impact factor reads

dO(7) = Y =~ Ne -1 (2.11)

2N,

where g is QCD coupling, oy = g’ 1, N. = 3 is the number of QCD colors.

12



In the NLO the expression (2.9) for the quark impact factor has to be
changed in two ways. First, one has to take into account the radiative correc-

tions to the vertices,
Féq) — Ly = Ft(zq) + F(l) :

Second, in the sum over {a} in , we have to include more complicated
states which appear in the next order of perturbative theory. For the quark
impact factor this is a state with an additional gluon, a = qg. However, the
integral over M? becomes divergent when an extra gluon appears in the final
state. The divergence arises because the gluon may be emitted not only in the
fragmentation region of initial quark, but also in the central rapidity region.
The contribution of the central region must be subtracted from the impact
factor, since it is to be assigned in the BFKL approach to the Green’s function.

Therefore the result for the forward quark impact factor, see [11], reads

o () = (iﬂ)w( Z/dw 7)[Caq(q)] dpat(sa — M?)

1 . . 2
/dD 24 <I>° BCOF, @)n [ —A | |
2 2 (k —q)%s0

where the intermediate parameter s, should go to infinity. The second term

(2.12)

in the r.h.s. of (2.12)) is the subtraction of the gluon emission in the central
rapidity region. The dependence on s, vanishes because of the cancellation
between the first and second terms. K.” is the part of LO BFKL kernel related

to real gluon production

2g°N, 1

(L 7) —

(2.13)

The factor in (2.12)) which involves the Regge trajectory arises from the change
of energy scale (72 — s¢) in the vertices I'. The trajectory function w(t) can

be taken here in the one-loop approximation (t = —¢?),
2 D—2 2
gt N, d” 2k (1 —e)*(e),
t —_ = = = —_ — N N € . 2.14
w( ) (27T)D_1 2 k?2((?— ]{7)2 g (4 )D/21—\(26) (q ) ( )

13



In Eqs. (2.9) and (2.12) we suppress for shortness the color indices (for the
explicit form of the vertices see [10, I1]). The gluon impact factor CDE,O)(J ) is
defined similarly. In the gluon case only the single-gluon intermediate state

contributes in the LO, a = ¢, which results in
0) (7 _ 0)(
(7)) = ~2P(T) , (2.15)

here C4 = N, and Cr = (N? — 1)/(2N.). Whereas in NLO additional two-
gluon, a = gg, and quark-antiquark, a = ¢q¢g, intermediate states have to be

taken into account in the calculation of the gluon impact factor.

2.2 Jet impact factor

Similarly to the parton-parton scattering (2.6) one can represent the re-

summed jet cross section in the form

do _ 1 /dD_Qq_i d®;1(q1, so) / dP=2G d® j9(— o, S0)
dJldJQ (27T)D72 Cj% dJl q_g dJ2

d+i00 dw g w
X —— | — Gw _'7 12 )
/(S—ioo 2mi <30) (ql q2)

where we introduce jet impact factors differential with respect to the variables

(2.16)

parameterizing the jet phase space,
dJi = d$J71dD_2kJ71, dJy = dl’]deD_2k‘J72 .

Following [7], we consider our process in the frame of a generic and infrared-
safe jet algorithm. In practice, this is done by introducing into the integration
over the partonic phase space a suitably defined function which identifies the
jet momentum with the momentum of one parton or with the sum of the two
or more parton momenta when the jet is originated from the a multi-parton
intermediate state. In our accuracy the jet can be formed by one parton in
LO and by one or two partons when the process is considered in NLO. In the
simplest case, the jet momentum is identified with the momentum of the parton

in the intermediate state k by the following jet function [31]:

— —

SP (k) = 8(a — 2)0 P2 (k — k) . (2.17)

14



In the more complicated case when the jet originates from a state of two partons
with momenta k; and ko, we need another function SL(,S), whose explicit form
is specific for the chosen jet algorithm. An example of jet selection function in

the case of the cone algorithm is the following [31]:

S (kb absw) = 55 (R e(1 = 1) (2.18)

]E1| + |/Z2|
max(|k1|, |k2|)

cone

x0 [ [Ay* + Ag?] — [

]]2:1’ + |/Z2‘
max(|k1|, |k2|)

cone

+5P (ky; 28)0 | [Ay? + Ag?] — [

‘E1| + |/;2|
max (||, [k2])

2
+SS2)(E1 + ];2; $)6 cone - [AyQ + A¢2] )

where the Sudakov decomposition of the parton momenta

1.2

k
ky = azfipr + xﬁllsm thi,, k=0, (2.19)
ko = xBop1 + £ +k k3 =0 (2.20)
2 = TP2P1 :L'BgSpQ 20 5 = .

is used, with g; + g2 = 1 and El + EQ = ¢, owing to momentum conservation
in the partonic subprocess. Regne in (2.19) is the cone-size parameter, Ay and
A¢ are the difference of rapidity and azimuthal angle in the two parton state,

respectively:

Ay =1In <1 —h @> : A¢ = arccos (2.21)

Bi ks

3,cone)

The three terms in SS '

parton ko or the parton k; or both, respectively.

represent the case in which the jet is formed by the

15



In the generic case, the following relations for the jet function must be

fulfilled in order the jet algorithm be infrared safe:

S (kg by, 2B x) —  SP (kg ), ki — 0,8 — 0,

S§3 (ké quﬁh x) — 552)(7;1 + E2;$)7 E151 — 752517 (2.22)
SOk, ky, 2By ) = S (Ka; (1 — By)), Ky — 0, '
SO (ky, by, 2By ) — S (Ky; 261), foy — 0.

Such reduction of 553) — S§2) is required in order that the singular contributions
generated by the real emission be proportional to the lowest order cross section.
These contributions are canceled with the soft and collinear singularities arising
from the virtual corrections and the collinear counterterms coming from the
PDFs’ renormalization. Besides, we assume that the jet selection function SL(]B)
is symmetric under the exchange of the final state parton kinematic variables,
B <+ (2 and E1 & E2,

S (1 ke xfrx) = SPO Ky, Ky, 1y ) (2.23)

The collinear counterterms appear due to the replacement of the bare PDFs by
the renormalized physical quantities which obey DGLAP evolution equations,

in the factorization MS scheme:

2
fo() = fo(, “F)_;—;(é+lnu—F>/ dz

2 z

Poa(2)fy (Sonr)

16



where £ =1 4 g —In(4m) = LU= and the DGLAP splitting functions are:

=(4m)

Pye(2) = Cr (11t22)+ = Cp [% + 25(1 - z)} : (2.25)

Poy(z) =Tg [2* + (1 — 2)?], with T = % (2.26)

P(2) = 204 ((1 _zz)+ L a - 2) . Z>) L (G, —64NFTR>5<1 _2)
(2.27)

Py(2) = CFM; (2.28)

here the plus-prescription is defined by

Y Pt F@) =Rt F()
/adl'm—/adfﬁ 11— /Od 1—r (229)

The other counterterm is related with QCD charge renormalization, in the MS

as(ur) (11C4  2Npg 1 0
1 — —+In—= : 2.
T ( 3 3 )\ e (2:30)

Having the results for the lowest order parton impact factors (2.11)) and (2.15)),

scheme:

Qs = O‘S(NR)

we get the jet impact factor at the LO level as

(0) /N2 _
dCI)J (Q) _ N: / da (CAfg Z fzz > 7I) 7 (2'31)

dJ
a=q,q

given as the sum of the gluon and all possible quark and antiquark PDFs con-
tributions. Substituting here the bare QCD coupling and bare PDFs by the

renormalized ones, we obtain the following expressions for the counterterms:

dq)J(J)’charge ct. Qs 1 1 ,UR 11C4 B & 3O
dJ ~ o 2 6 3 )

. (2.32)
x / de (C—?fg(x) + Z_Mx)) SY(d )

a=q,q

17



for the charge renormalization, and

bd . 1
d(I)J(q ) |colhnear et Oés (1 +1In MF) (I) / diL‘S ( ) —dZ
0 x

dJ Com p? z
T @ ren®)  em

& (st no 24 6))

for the collinear counterterm. The latter can be rewritten in the form

dq)J(q_') ‘collinear c.t. Qg (1 2 ) 0 /1 ' 2) (=
— + Il 9O dﬁ/ dxSy'(q; fx
dJ 27'(' [L q 0 0 J ( )

x Z_(qu(ﬁ) fa() + Pog(B) fo(2)) (2.34)
+%<P (8) fo() + Poa(B) D" fule )]
Cr g9 g gq = a

Besides, we present the expression for the BFKL counterterm which, in accor-
dance to the second line of Eq. (2.12)), provides the subtraction of the gluon

radiation in the central rapidity region:

dq) FKL c.t. 0 04(72 ! CA r E f
J(q)|§ L _ —q)( )()—1/ dl’ (CF 9(37) a($)>

a:q7q

. q—*2 52 @) .
x/dD‘%q _ ln( Q)SJ (§— k; ) .
k2(k — @)% \sok?

Now we have all the necessary ingredients to perform our calculation of the NLO

corrections to the jet impact factor. As a starting point for our consideration
we will use the results of [I0, 1] for the partonic amplitudes obtained in the
calculation of partonic impact factors, introducing there the appropriate jet
functions: 852) for the amplitudes with one-parton state in the case of one-loop
virtual corrections and SSS) for the cases with two partons in the final state
(real emission), in order to define the corresponding contribution to jet cross

sections.
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For shortness we will present intermediate results for V' structures defined

always as

(7)) _ o
—L ) = 20y (q) . 2.36
L0 = L2000V (q) (2:30)
We will consider separately the subprocesses initiated by the quark and the

gluon PDFs and denote
V=V,+V, (2.37)

2.3 NLA jet impact factor: the quark contribu-
tion
We start with the case of incoming quark.

2.3.1 Virtual correction

Virtual corrections are the same as in the case of the inclusive quark impact
factor |10, 111, 12]:

Vo F[1—€]F2(1+€
Vi @) =~ e(4m)e F(1—|—2£ /dxazqqfa z)

2 4 1+e¢
ol [ 2 - 1| -N
8 F{<g 1+25+) P11 29)(3 + 20)

+0A(1nq—+w<1—5>—2w< )+ (1)

(2.38)

1 2 7 1
Ti0 1293120 1+20) 112 5)} ‘
Here and in what follows we put the arbitrary scale of dimensional regularization
equal to unity, p = 1. We expand (2.38) in & and get

v = -L AT S [0 S wsPa

e(4m)s T(1+ 2¢) =

2 NF 30 11
R - — + In — .

5Ng 85 72
{8CF+—9 —CA<18 + 7)}
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2.3.2 Real correction

For the incoming quark case, real corrections originate from the quark-gluon
intermediate state. We denote the momentum of the gluon by &, then the mo-
mentum of the quark is ¢ — k; the longitudinal fraction of the gluon momentum
is denoted by fz. Thus, the real contribution has the form |10, 1T} 12} 32]

dP=2j;
/ / dBP,,(e, B)
a=q,q

){ CrBHG—F)?+Ca(l— Bk - (k — Bq)} (2.40)

V() =

kQ( - /5)2(75 — Bq)?
5(3 (q - E) vaﬁax) 3
where .
k> 14+ (1—pB)2+¢ep?
Bo = —, qu<57ﬁ) = ( ) .
SA B
The low limit in the S-integration appears due to the restriction on the invariant
mass of intermediate state, which enters the definition (2.12) of NLO impact

factor. Since

R @k
2 -2 2
ng F_I_ 1_ﬁ —-q, ngSSAa

and assuming sy — 0o, we obtain that 8 > f,.
We consider separately the term proportional to Cr and to Cy. The Cpg-

term is not singular for 5§ — 0, therefore the limit sy — oo, or By — 0, can be

/dD 2k/ dfPyy(e, B)

. =00 (2.41)
x #5(3)( R B, ) .
k2(k — Bq)?

In order to isolate all divergences, it is convenient to perform the change of

safely taken. We get

V(R CF q—’

variable k = ﬁf and to present the integral in the form

1
VIBEC) () / dBP,,(c, B)B* (2.42)

q

a=q,q

dD—2f 7 1 1| e -
— > + = | S, (d— 6L AL x)
/7r1+£ 12+ (I— )2 [(l—cf)Q 2|77 ( )




The soft divergence appears for 5 — 0; in this region we can introduce the

/ 2
B1-2¢ 2¢e
a=4q,q 5

lef 72 1 1
X 14e — = R = - +—;_
TR (-9)? 12

counterterm

R)(C ft
Vq( )(Cr, soft)

which equals

20Tl - T2(1+ )
(R)(CF,soft) F d
Vi) = 2 e R @ [ s @)

(2.44)
Collinear divergences arise for - ¢ = 0 and for [ = 0; in these regions we can

isolate the two following counterterms:

V(R(Crocoll) (7)) — Cr a2l ON2 = (I— 7)) (2.45)
q (q - (471')8 ﬂ_H_E(l—’_ (7)2 ( Q) .

x /dw% Pyq(e, B) — ]/ d:vZfa ),

C P2l
VORI = / O - / de " fula
X e (2.46)
2¢ | 0@ (= 2)/ =
< / a8 8 [sJ (q,x(l—ﬁ))qu(é,B)—BSJ <q,x>].
0

In both these expressions we have introduced an arbitrary cutoff parameter A

and subtracted the soft divergence. After a simple calculation we obtain

F[l—e] F2(1—|—5 Z
(R)(CF,Coﬂl) v — (2)
(2.47)
x Cp —g+4€ +O(e) .
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The term V}I(R)(CF <) can be rewritten in the following form:

ll2) ( = P[1—efI* ne [
Y RCrcolla) (7) = 5[247r)i]r(§1++23 (A?) /O deZfa(x)

a:q7q

" {‘g%sﬁ”@ z) + / 48| P(8) + 2:(1 + 6
x (%)fﬁeml—m]
x s§2><@;x5>}+0<e>, (2.48)

where we performed the change of variable 5 — 1—(, used the plus-prescription

([2.29) and the expansion

e v (R e e IS ey

Finally, we can define the term

Y R)(Crsfnite) _ 1/ (R)(Cr) _ 1/ (R)(Crsoft) _ 1/ (R)(Crocolly) _ y/(B)(Crycolla) (9 49)
q q q q q ’ :

which can be calculated at e = 0. We remark that V(€7 0i) gy 4 1, (F)(Crcolli2)
depend on the cutoff A, but in the total expression Vq(R)(CF’) this dependence
disappears. The part proportional to Cy in the r.h.s. of Eq. (2.40) reads

1 1 dD_2E 1

The collinear singularity appears at k— ¢ — 0; in this region we can introduce
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the counterterm

ol C dP%k -
Vq(R)(cA, D7) = (47;‘)5/ - E)2@<A2_(k_Q)2> (2.51)

7r1+€(q

1
< [ Y ) [ 5Pt )P

a=q,q

[[1—¢e] T%(1 + 5)
@ TO 2 20) /d$zf“

a=q,q

x/d@[ <ﬁ>+scﬁ} 3 2B) + O(E) |

where 3y has been set equal to zero since the expression is finite in the g — 0
limit and, again, the cutoff A was introduced. Another singularity appears
when  — 0, actually at any value of gluon transverse momentum k. In this

region 553) <cf— k. k,zp; m) — 552)(5— k; x) and it is convenient to introduce

/dD Zk/dﬁ—

qu B)f: q{ Bq)S (—kx)
k2( k) (k—Bq)?
dP=2k (12
o e | S [
526[(1—6)| k| = Bl7— Kl qe (7
" e A

the counterterm

R)(Ca,soft
Vq( )(ASO)

(2.52)

where the averaging over the relative angle between the vectors k and q— k

has been performed. The integration over 3 gives the following result for the

counterterm:
O 1 dD—zlg (j’2
V(R)(CA,soft) 7\ — / d , / _ _
D = Ty ), 4 2 ) | S G
, =4 (2.53)
S 2) /o -
= n D7 ki)
SRR+ 17— Ry

The finite part of the real corrections proportional to Cy is therefore defined by
Y (R(Casfiaie) _ y(RCa) _ (RYCarcoll) _ /7 (R)Cassot) (2.54)
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When the quark part of BEKL counterterm, given in ([2.35)),

VOn = [ Y e [ 'k in(5) s ().
! a=q,q it 50k2 k’2<‘j_ k)Q

(2.55)

is combined with V R)(Ca, soft) given in , we see that the dependence on sy

disappears, as expected, and we get

‘/:](R)(CA soft( )+V ( ) /1 Z fa
= (2.56)

dD—2]g ) .
X/ I+e 7 ! S ln< > 83 = >S§2) (7~ kiz) .
T R (k=) \(lk]+[7—k])?

2.3.3 Final result for the quark in the initial state

We collect first the contributions given in (2.39), (2.44), (2.47), (2.48]) and
2.52):

1) /=) — |4 R)(Cp,soft R)(Cp,colly R)(Cp,colly R)(Cy,coll -
‘/:1()<q):(vq()_|_v( )(Cr )—i—V( )(CF )+V( NCr )‘f‘Vq( )(Ca ))(q)
C1—€IP(1+e)
~ e(4n)F T(1+2¢) / azqqf“
Np S0 11Cy 85 2 )
Lyl - C —)-=N
o (5 -om(®) 7)ol 5) -5

—*2
+Cp (3 n 5 — 4))] S (7 z)

2 [ 48| Pul5) + G| S d05) (257)

+e /01 dB {2(1 + %) (M>+CF +Cr(1=5)+ CAB]

7
«52(q xm} L o).

Then, we collect the finite contributions, given in Eqs. and (2.54),
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transforming them to the form used in [7]:

V(Q)( ) (V(R)(CF , finite) + V )(Ca, ﬁmte))(q—»)

/‘”Zf“ fer [ o=y ﬁ>+(”52>/:zlz{z2+<qT52
xSV~ (1= B)L (1= B)l (1 — B);)
+SP(@8 + (1= B (1= B)(T— 1), 2(1 - B);2)}
e - (8P d08) + 57 )} (2.59)

B

Besides, we define
V@) = (VPO L VO ),

given in Eq. (2.56) Another contribution originates from the collinear and charge
renormalization counterterms, see Eqs. and -,

VO(g) = F[ /0 da ;q:qfa { (1160A - %)S‘(Jm@ " (2.59)

s / 5| Pul3) + G20 5P :05)|

Finally, the quark part of the jet impact factor is given by the sum of the above

four contributions and can be presented as the sum of two terms:

dD—QIZ =2
70 /defa {A/Hqﬂ n——2
p— TRk —q)? (k[ 4 |q— k[)?
2) /7. - S_O ) EF[l—S] F2(1+€) (2)/ - 9
xS} (k;x) — Caln ((72) (7*) EPTE F(1+2€)SJ (¢, x) (2.60)
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and

Np 110A> 7>

1
[ a8|Put8) + G (8| iy 8P 08) (261
0 F

- s {2 (%) (1+ B)Cr + Cr(1 - B) +CA5} s xﬁ)} -

2.4 NLA jet impact factor: the gluon contribu-
tion

We consider now the case of incoming gluon.

2.4.1 Vitual corrections
Virtual corrections are the same as in the case of the inclusive gluon impact

factor |10} 111, 12]:

Fl—e (A +e) 5. (', Ca

T (@) 120 ) /o eyt
s 2 11+ 9¢

X [CA In (ﬁ) +Ca (g ©2(14 2¢)(3 4 2) (2.62)

Np (1+¢)2+¢) -1
T i@ 2 YW Hed—e) —2¢(1+a)>

(2)SY(q: x)

14 —
VI(q) =

+C < <1 + NF) ! }

e—— | ——|.
YA+ o) (1+20)(3 + 2¢) Cy) (1+¢)
The e-expansion has the form

Vi) = —2[34;;] 5(?:23 (q°)° / dxg—?fg(x)552>(¢ z)

so\ 2 11\ Ng
m(2)+2-—)+2E 2.63
<lea(m(®)+2-5) 3 (263

N EN RSN )
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2.4.2 Real corrections: ¢¢ intermediate state

In the NLO gluon impact factor real corrections come from intermediate
states of two particles, which can be quark-antiquark or gluon-gluon. In this
Subsection we consider the former. The real contribution from the quark-
antiquark case is [10], 111 12| 32]:

N dD 2]{7 -2
(Rqq) (7 — F q
‘/9 (q ) (47’1’)5 /(; dr =~ / 6 / mlte ];:’2 )2

X TrPy,(e, B) gi +8a } ) ;;—7 )] SOG— Kk aBz),  (2.64)
o Pyyle,B) =1— 2801 -5) (2.65)
A l+e '

Below we discuss separately the first and the second contributions in the r.h.s.
of Eq. 1) which we denote V%) and V,{fe0(©4) The first contribution

is
N dD 2]{3 -2
(Rea)(CF) () — _F dp 22 4
v = o [ angta [ oo [ S m

< TPy, /3)—5(3)(q — k, k,xp; )

_ (iVTF) /O 1 daf,(z) / dBTR Py e, ) / dDik

72 1 1 - o
+(7—k)° (7 —F)?

(2.66)

k.2

Here we have collinear divergences for k=0 and q— k = 0. The contribution
in these kinematical regions is the same, as can be easily seen after the changes
of variables k — q— kand 8 — 1 — 6, since qu(e B) = Pyle,1 — ) and
taking into account the property (2 that the S'¥ 7 jet selection function has

to possess. Therefore we can write

INp [ 1
(47r)5/0 dmfg(x)/o dBTRrP.(e, B)

dP—2F -2 B .
< [ S SR - Fasia)
TR K2 4 (7 — F)?

Vg(qu)(CF)(q’) —

(2.67)
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and isolate the collinearly divergent part given by

2NF 1 1
(47?)5/0 da:fg(x)/o dBTRrPy(e, B)

P2k 2 72y @)=,
X O(A° = £°)S;7(q =)

7r1+ak2

[l —e]T2(1+¢), 0. [
@ ta sz M) /0 dzfs(@)

< / AB[P,y(8) + £B(1 — B)SP (G 26) + O) |

V;](qu)(CF, coll) (7) =

= 2Np

(2.68)

where we have introduced, as before, the cutoff parameter A. The finite part is

therefore defined by
1V (Raq)(Cr, finite) _ V;J(Rq‘?)(CF) _ Vg(qu)(CF,coll) 7

g =

where one can take ¢ — 0 limit and get
. 1 1
Vg(qu—)(cF,ﬁmte) — 2NF/ dxfg(x)/ dﬁqu(ﬁ)
0 0

&k q G (7~ T
X/ [E2+ SJ (kvq_kaxﬁv'r)

k2

_e(N’ - )5 (g xm] L o).

The second contribution in (2.64)) is

N 1 C 1 dDﬁE q—»z
VB(Ca) gy — P /dx_A - / J / _ _
’ D= Gy Jy Tl ), P k2 4 (G- k)?

BAU-Bk-(T—F) o~ 77 o
X TrPq(e, ) a7y SYNG— K, k,xB;x) .
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Here the collinear divergence appears for k— B¢ = 0 and the integral in this

region can be identified with

, S Ne o C 1
‘/g(qu)(CAv coll) (q ) = r / dZL'_Afg<x) / dﬁTRqu (8’ 6)
0 0

(47T)E OF
dP2k -
. O(A* — (k- BD*)SP(q,
< | oW - a0 ) -

Tl =€) T?(1+¢) €
=Ne e ta s ( +6)

1
C —
X / dm—Afg(m)SJ2 (¢;z) + O(e) .
o Cr
Then, the finite part can be written as

Vg(qu)(Cmﬁnite) _ V‘g(thi)(CA) _ Vg(qu)(CA,Coﬂ) ) (2'73)

After the change of variable k — ¢ — k in d?.?lb and (]2.72[) we have

e, ! d*k
(Rqq)(Ca, finite) _A
vy @)= [ argtie [ aspuo) [

P81 =Bk (T—Kk) @), - =
> = S k? _kv 7
P S g Feia)

~6( (- (1= ) 0)| + 0. (2.74)

2.4.3 Real corrections: gg intermediate state

The real contribution from the gluon-gluon case is [10, 1T}, 12} B32]:

(Rgg) (7} — A CA P2k ‘727399(5)
@) = >/ RS / w/ Ty gy
x {Bk—q)+ (1~ k- (G- F)}

x SONG—Fk ka8 ) (2.75)

where

Pyy(8)=P(B)+ P(1—p), with P(B)= (l + é) (1-75).
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We note that here the lower integration limit in 3 is fy = k2 /sa, whereas the
upper limit is 1 — . This comes from the © function in the impact factor
definition (2.12)), which restricts the radiation of either of the two gluons into
the central region of rapidity.

Using the symmetry of the integrand under the change of variables describ-

ing the two gluons, § — 1— /3 and k— q— k (thanks to the symmetry property

(2.23) of the jet function), we get
Ca Cy dD_2k‘
Vo) (7) = 2( Iy / fg / v / dpP(B
2

7 AP E- 0=k G- ap) O
(k — Bq)?k? ( 7)?
% 553)< k IB .I') (Rgg)( )(q’) + V’g(Rgg)(B)(q’) .
In this form the upper limit of 5 integration can be put to unity. In Vg(Rgg)(A)

the lower integration limit 3y can be put equal to zero. Then, after the change

of variable k = 6ﬁ we obtain

C 1 C 1 dD—zl“
(Rgg)(A) (7 — _A _A 2e
Vi) =2 [t [ aspes [

x o SP(7— Bl Bl 2 )

gy -
5, Ca [, Ca ! o [dP72 '
_2<47T)5/0 d‘IC—ng(fE)/O‘ dﬁp(ﬁ)ﬁ / ite

S S I S PP )

In this expression one has both soft and collinear divergences. The soft diver-

gence can be isolated in the counterterm

dD 2l =2
Vg(Rgg)(A,soft)(J) — 2&/ / — / - qﬁ
(4m)e pr=2e | wlte 2y (- q)2

1 1 .
[ Tt l—} SO (2.75)

X

which equals

o =€ T2(1+¢), 5,204 (1, Ca ,
(Rgg) (A, soft) — 2\e dr=2 (2) - .
Vg (@) c(dm)s T(1 1 20) ()= /0 v, 1) S (@ )
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After the subtraction of the soft divergence, collinear divergences still appear

for [ =0 and [ — ¢ = 0 and can be isolated by the following two counterterms:

. C 1 P21 o
VBa)(Areoll) (7)) = 924 / dmc_ﬁfg(@ / ————=0O(A? — (7 )?)
0

(4m)e mlte(7 — )2
1 1 )
X / dpp* <P(/@)—B> SP () . (2.80)
0
and
Cs ', C dP-2r -
(Rgg)(A, collz) ( = — A “A - 272
Vs () 2(4@6/0 dxCng(x)/Wmﬁ@(A : )
1 . (2.81)
< [ ass (PSPt - ) - 5P @)
These counterterms equal
. I[1—¢|T?*(1 +¢) ooy 9
(Rgg)(A, colly) — 2\e A @)~
Vo (7) e(4m)s T(1+ 2¢) (%) /o dxCng(m)SJ (@) (2.82)

11 67
X CA (—E +€1—8) +0(€) R

) gy — LEZ A9 o) / dr A f () / aB(1 = B)P(1 = )

e(4m)e I'(1+ 2¢) Cr
x2C'y {ﬁ + 2¢ (%)_ﬂ 552)((.7; zfB) + O(e) , (2.83)

where to obtain the last equation we made the change of variable § — 1 — (3
and expanded the term (1 — 3)*71. The finite part is therefore defined by

(Ra)(Asfinite) 1 (Ryg)(4) _ 1/ (Rag)(A,5010) _ 1 (Ryg)(A,coll) _ 7 (Rog)(Avcolla) (2 84)

The Vg(Rgg)(B) term, defined in 1} has a collinear divergence for k— qg=0.

It can be isolated in the following integral:

C L ¢ !
(Rgg)(B,coll) ( = — A _A

dDiZE 2 o2\ @)=
[ E o - (F- )sP @)

7T1+6<k- _ (j’)Q

TR =€ (1 +e), o, [, Ca
= (@ Ta o) ) /0 du o)

1
y / 4320, P(3)SP (3 28) + O(e)

(2.85)
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where [y has been put equal to zero thanks to the property of lowest order jet

function (2.17). Another singularity appears when 5 — 0; in this region we can
isolate the term

V;J(Rgg)(B, soft) <q—»> _

Cu (' C dP=2k (Y dB ., (1—B)k - (k— Bq) L7

:2(4:)6/0 dmc—ﬁfg(m)/ v /,3 _QQEZ : 2532)(q—k;x)
Ca Loy

ZQW/O dxC—ng(x)/

Ca (', Ca ar-2g g2 2 o, -
— (47r)5/0 d:I:C—ng(l’)/ Y In —— — SPN(G—k;z) .

(2.86)
The finite part of V},(Rgg)(B) is therefore defined by
‘/g(Rgg)(B,ﬁnite) — V'g(Rgg)(B) _ V'g(Rgg)(BvCOH) _ ‘/;](Rgg)(Bv soft) . (287)

When the gluon part of BEKL counterterm, given in (2.35)), is combined with

VQ(R”)(B’SOft) given in 1} we see that the dependence on s, disappears and
we obtain

VB2 () + VIO(g) = (2.88)

NG, dP=2k 2 .
= —CAE/ da:—Afg(a:)/ e 4 —In— Sﬂ e
(4m)* Jo — Cr Tk k—q)? (k] + |7 k])?
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2.4.4 Final result for the gluon in the initial state

We collect first the contributions which contain singularities given in ([2.63]),
(2.68), (2.72), (2.80)), (2.82), (2.83) and ([2.85)) and get

Vg(l)(q_’) = (Vg(V) + Vg(qu)(CF,Coﬂ) + Vg(Rqa)(CA,Coﬂ)Vg(Rgg)(A, soft)

+V(Rgg)(A,c0111) + ‘/g(Rgg)(A, collp) + ‘/g(Rgg)(Bcoll )(q»)

g
T —erP0+e) (1) Ca o (1104 Ni 5
(4 F(1—|—28)/0 dwC_ng(w){{(q% (T_?—CAIH (?>)
() (e )

+2) [ a5 (Bl5) 4 280 G P9)) 50

+2g/01 a8 {NFg—j(l _B)8 (2.89)
+2C% <%)+ (1-38)P(1— ﬁ)} Sff’(qj 1:)} + O(e) .
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Then, we collect the contributions given in (2.70)), (2.74), (2.84), (2.87)), and

get (transforming to the form used in [§])

‘/9(2) (q‘) = (‘/'g(Rqé)(CF:ﬁnite) + ‘/g(qu)(CA,ﬁnite) + ‘/g(Rgg)(CA,ﬁnite) + ‘/g(Rgg)(Bvﬁnite))((j‘)

B 1 1 42k q?
_/0 dxfg(q;)/o dﬁ{zNFqu(ﬁ>/7TE2{E2+(q_’— E)Q

xS (k. q — k., xp0) — O(A* — B SP (g xﬂ)}

N Pul®) [ i /3) )2{@2B<1—/3>k~ a-h
(

(1- (k-

' /Oldxchg—ﬁfgm[/; B ia-pra-py) [ L

(1-08)+ 2

q’ O (7 (1 BT (1 — B 21— B): 2

S (P a-aa-piien - sy
+SPGTH (=P (- G- Dol = g5} (290

—0 (42 =12) (sP(@x8) + SP (@ 2)) }
VR 20— BF- (- 7 -
+/0 dﬁ/7{P<ﬁ>(q(f Ok (k= BT) g0) (7 . F, 2 )
1

(k—q)?

] R2(q — k)2
Besides, we define

VE(q) = (v Reo) Brsolt) 1 (@) (7 (2.91)

(—-\

1 dD—QE -9 .

o [t [T s )
(dm)eJo — Cr T Rk =) (k[ +[7—k])?

given in Eq. (2.89).
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Another contribution originates from the collinear and charge renormaliza-

tion counterterms, see Eqs. and ( -,

vy = L= [ s o[y (B9 - Ar) Cagorg
e(dm)E Jo 6 3 Cr

ity [ s [oney () + g—ﬁngw)} 9@ a9)]

(2.92)

Finally, the gluon part of the jet impact factor is given by the sum of the above

four contributions and can be presented as a sum of two terms:

1 dD—QE =2 .
vi(q) = / dxc—fgw{@/ =t P ()
0 F

(m)= ) 7 Rk - )2 (k| + |7 k)2
50\ (e TIL= ] P21+ )
— Caln (ﬁ) (@) e(4m)e (1+2£) ( )} (2:93)
and
1
C
VD (7) = VIO(7) + /0 A1)
— 2 2
{KH(?A - %)1 LR+ Cas + EN } SP(g: )
! Cr A? (2) /=
+ [ a3 (o) + 230 SRy () 10 o5 08) (294)

o[l PR a-ppa-s)cs

+2Ne B0 - 5) 5P o) |

2.4.5 Infrared finiteness of the jet impact factor

The NLO correction to the jet vertex (impact factor) has the form

d25(@) _ s g0y Dy 4 D (o
—7 = 5,20 V@), VIQ) =V + V) (2.95)

where each part is the sum of the quark and gluon contributions,

V(@) =vI(g)+VID(g),  VUD(g) =vID(g)+ V()
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given in Eqgs. , and in Egs. , , respectively. Vq(H)(cf)

and V() are manifestly finite. For V() we have

vI(7) = /0 dx (Z fa(w) + %fg(@)

a=q,q
D—27. 2
y { Ca /deﬁ q % Sﬁz)(k;az) (2.96)
(dm)= ) m= B2k — )2 (k| + |7 — k)2

2
(3 A ]

Having the explicit form of the lowest order jet function , it is easy to see

that the integration of V() over ¢ with any function, regular at § = ky

will give some finite result. In particular, the finite result will be obtained after

the convolution of V) (7) with BFKL Green’s function, see Eq. , which

is required for the calculation of the jet cross section.

The divergence in (2.96)) arises from virtual corrections and, precisely, from
the factor (so/q2)*@") entering the definition of the impact factor. In the com-
putation of physical impact factors this divergence is cancelled by the one arising
from the integration in the first term of Eq. (2.96), which is related with real
emission. In the calculation of the jet vertex the ¢ integration is “opened” and,
therefore, there is no way to get the divergence needed to balance the one aris-
ing from virtual corrections. However, in the construction of any physical cross
section, the jet vertex is to be convoluted with the BFKL Green’s function,
which implies the integration over the Reggeon transverse momentum ¢ and it

is after this integration that the divergence cancels.
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2.4.6 Energy scale

In our approach the energy scale sy, remains untouched and need not be
fixed at any definite scale. The dependence on sy will disappear in the next-
to-leading logarithmic approximation in any physical cross section in which jet
vertices are used. However, the dependence on this energy scale will survive in
terms beyond this approximation and will provide a parameter to be optimized
with the method adopted in Refs. [23] B3].

In order to compare our results with the ones of [7, [§], we need to perform
the transition from the standard BFKL scheme with arbitrary energy scale sq
to the one used in [7, [8], where the scale of energy depends on the Reggeon
momentum. The change to the scheme where the energy scale sq is replaced
to any factorizable scale v/ f1(q?) f2(q3) leads to the following modification of

each impact factor (i = 1,2), see [34],

(12 . -2
BE HT) = 0@ 50) + 5 [ @ FEO @) <M> KOED L
S0
(2.97)

where CIDZ(»O) and K'© are the lowest order impact factor and BFKL kernel. There-
fore changing from sy to \/¢?¢% we obtain the following replacement in our

result for the jet impact

VO(g) = VI(g) = /0 dz (Z fa() + %fg(x))

a=q,q
D—27. -9 7.2
" [ Ca /d 1+/€_) q S k _ S§2)(k;x)1.
(dm)e ) 7w k2(k— )2 (k| + |- k)2

Note that V)(7) is not singular at ¢ — ¢ and, therefore, it can be calculated at

(2.98)

D = 4. Such contribution to the jet impact factors, V) (g), in the considered
scheme with sq = \/m produces a completely equivalent effect on the physical
jet cross section as the factors H; and Hpr which enter Eq. (76) of |8] (see
Egs. (101), (102) in [7] for the definition of Hy, Hg).

Therefore, for the final comparison one needs to consider our results for
VII(H)(cj' ) and Vg(H)(cj’ ) (modulo the appropriate normalization factor) with the
ones given in Eq. (105) of [7] and Eq. (67) of [§] for the quark and gluon
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contributions, respectively. For this purpose we identify, following [7, ], the A
parameter with the collinear factorization scale pp. In the gluon contribution

we found a complete agreement.

2.5 Summary

Eventually we have recalculated the jet vertices for the cases of quark and
gluon in the initial state, first found in the papers by Bartels et al. [7, §]. Our
approach is more straightforward and more general, since the starting point of
our calculation is the known general expression for NLO BFKL impact factors,

given in Ref. [25], applied to the special case of partons in the initial state.
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Chapter 3

Further Developments

3.1 Small-cone approximation

Another approach to obtain the NLO impact factor for the production of
forward jets is the small-cone approximation (SCA) [37, B8] and is developed
in [39]. In this paper the authors starting from the totally inclusive NLO parton
impact factors calculated in [10] [IT] used SCA to obtain an expression for small
jet cone aperture in the rapidity azimuthal angle plane.

At LO the totally inclusive parton impact factor takes contribution from a
one-particle intermediate state; this leads to fix the kinematics of the produced
parton by the jet kinematics.

So inserting into the inclusive impact factor the delta function which depends
on the jet variables transverse momentum k and longitudinal fraction «, they

get

d(I)J _C/daﬂdxé k— cf) d(a—x) (g—ﬁfg(x) + Z fa(x)> . (3.1)

a:q’q
with

dd = cm( (@) + Y falz) ) C = 2man | 2CF (3.2)

Ca
a=q,q

At NLO there are both the virtual correction and also two-particle production

in the parton-Reggeon collision.
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For the two particle production the jet can be either produced by one of the
two partons or by both together. If the produced parton are ¢ and b there can

be the following contributions:

e Only the parton a generates the jet, while the parton b can have arbitrary

kinematics, provided that it lies outside the jet cone;
e the same but a <> b;
e the two parton a and b both generate the jet.

Introducing the relative rapidity and azimuthal angle between the two partons:

—q)?
2)2

1
1

,  A¢ = arccos qﬁﬁ—_
k[l —

ot
S

L (=1-¢ (33

I
ol

If the parton with momentum k and longitudinal fraction ¢ generate the jet,
and if

—

A=g- (3.4)

NIy

the condition of cone aperture smaller than R in the rapidity-azimuthal angle

plane becomes

A¢® + Ay® < R? (3.5)
and then _
Al < %y%m. (3.6)
If the jet is formed by both partons the jet momentum and jet longitudinal
fraction:
k=k +ky 1=C+C. (3.7)
The relative rapidity and azimuthal angle between the jet and the first (second)
parton are:
1,k k- k)
Ay, = —In—%-, A¢; = arccos — , (3.8)
20 ¢ [ [[ ]
1. (k) — k) k- (k—k
Ay = —In Q, A¢py = arccos — <ﬁ ﬁl) : (3.9)
20 K[|k = K
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Introducing now the vector A as
k= Ck+ A (3.10)
the requirement that both partons are inside the cone:
&] < RF|min(¢,C) - (3.11)
The result of the paper is that working in
D =4+42¢ (3.12)

dimensions and calculating the NLO impact factor in the (v, n)-representation,

the authors found the following results for an incoming quark:

L= () (E.f>n/:%a¥qfa (%)

Ca k2 _—
X {{qu(o ‘*‘C_Fpgq(O}lnM_z —2¢"71 R{qu(C) +qu(C)}

F
Bo k2 50
- Elnu—%j(l — () + Cad(1 — (){X(n,’y) lnﬁ + =+ =

+%(¢/ (1+7+3) —w'(g —7> —XQ(”’V))} (3.13)

e LR o (2059

(o) ettt (0 )

2
+6(1-20) (CF (31n2—%—g> —5%) +CuC

) _
+CpC + 1+¢ {C’Agll +2C ln% + Cr¢? (x(n, ) — 21n()}] .
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and for an incoming gluon:

L= 207 [ ()8

C 2
X {{P (C)"’anCF qg(O}lnﬂ__QghlnR{ng( )+2an (Q)}
F
50 k2 1 72
— 2 4,LLR6<1_<)+CA61_ { 1H—+E+E

3 v (o)) o

1

1-¢
~2
+ Cy |:% + m -2+ <<:| ((1 + C_2FY)X(7’L,’)/) —2In¢ + %[2)
_C . [(C C 1
b oy [20GE 4 @+ ) (St + E1) - o) } .

The final result for the NLO jet vertex is given by

d®’ (v, n) e
do d2+2k 7r\/§l;2

(3.15)

where
I=1,+1,. (3.16)

In these results soft and virtual infrared divergences cancel each other while
infrared collinear divergences are compensated by the PDFs’ renormalization
counter terms. The remaining ultraviolet divergences instead by the renormal-
ization of the QCD coupling.

In this approach the energy scale sq is an arbitrary parameter, that need
not be fixed at any definite scale but the dependence on sy will disappear in

the next-to-leading logarithmic approximation in any physical cross-section.
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3.2 Mueller-Navelet jet process cross section

The small-cone approximation is used in Ref. [40] to obtain prediction for
the Mueller-Navelet jet process cross section and for the azimuthal angle decor-
relation observables in the SCA. According to BFKL approach the cross section

reads:

do
dry, [ d
dty. dz, &k, @hy, Z/ xl/ "

6J=4,3,9 (3.17)

do;j(x1228, pr)
X fi(xlaMF)fi(an/‘LF)dlededelekoJQ )

as already discussed in the previous chapter. Here 7,57 are the parton types,
fi(z, ug) is the initial proton PDFs, the longitudinal fractions of the partons in-
volved in the hard subprocess are x; o, up is the factorization scale, da; ;(z122s, pr)
is the partonic cross section for the production of jets and § = xyx9s is the
squared center-of-mass energy of the parton-parton collision subprocess and
the authors use the MS scheme for the ultraviolet and collinear factorization.
The cross section for the hard subprocess is:

do; j(x1228) 1 /d2q1

B V; _” ’ ;lzl’ 1 3.18
da g dr s,k d2k;, (212 ) G2 (¢1, 50,215 kg, 77, (3.18)

d*q . - 0100 oy [ 21198\ % oL
X/qT;‘G(—Q2,SO,$2;kJ2,$Jz) X/ — (=2 Gu(q1, @) -

5 S—ico 2T So

In NLA accuracy Vi(cfl,so,ml;ngI,xJI) and Vj(—cfg,so,xg;l;h,xb) are the jet
vertices (impact factors) describing the transitions parton i(xip;) — jet(ky,)
and parton j(xepe) — jet(ky,), in the scattering off a Reggeized gluon with
transverse momentum ¢; and ¢, respectively.

The authors work in the transverse momentum representation, defined by
4l3) = ¢ld), (3.19)
@lE) =00 - @) (AIB) = AREB) = [ @raBBE (620
the kernel of the operator K is
K(3, @) = (@] Kd) (3.21)
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The kernel is given as an expansion in the strong coupling,

K = a,K° + a’K*', (3.22)
where N
q, = Sl (3.23)
m

and N, is the number of colors. In Eq. 1) K" is the BFKL kernel in the
LLA, K" represents the NLA correction. With NLA accuracy this solution is

A

. . . . N2
Gy = (w—a,K°) '+ (w—a,K°) ! (5@}(1) (w—a, K" +0 [(diKl) ] :
(3.24)
The basis of eigenfunctions of the LLA kernel,

KOln,v) = x(n,v)|n,v),  x(n,v) = 20(1)—2 (9 +1y w) - (@ L w) 7

2 2 2 2
(3.25)
is given by the following set of functions:
— 1 _oNiv—L 4 é
nv)y=— WTae™m? 3.26
{gln,v) = — \/5(61 ) (3.26)

here ¢ is the azimuthal angle of the vector ¢ counted from some fixed direction
in the transverse space, cos ¢ = ¢,/|¢|. The action of the full NLA BFKL kernel

on these functions may be expressed as follows:

K|n’ V> = ds(:uR)X(nv V)|n7 V> + d?(ﬂR) (X(l)(nv V) + 46{)[6)((”7 V) ln<N2R>> |TL, V>

a2 ) L2, (;) n, 1), (3.27)

where ppg is the renormalization scale of the QCD coupling, the first term rep-
resents the action of LLA kernel, while the second and the third ones stand for

the diagonal and the non-diagonal parts of the NLA kernel and

11N,  2n;
= - — 3.28
/80 3 3 ) ( )
where n; is the number of active quark flavors.
The function Y (n, v)
B 10 . _
W = _8]\07 ’(n,v) — gx(n, v) —ix'(n,v) | + x(n,v), (3.29)
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) = =5 | T3 00) = 66(3) = X(1,0) + 20(0.0) + 2000, )
72 sinh(mv) ny\ 11+ 1202
ety (0 (14 5) o) B
n 1+ 402
(5w .
o(n, Z T (7(1 +1)1)+/2 i [w/(k +n+1) = (k+1)

+ (—1)’““(5 (k+n+1)+p(k+1))

1
_k+(n+1)/2+z'y(w(k+njL )= lk+ >)1

o=t (2) v Q)] = [ abli0

Here and below x/(n,v) = dx(n,v)/dv and X" (n,v) = d*x(n,v)/d*v.
For the quark and the gluon jet vertices in (3.2) the projection onto the

(3.31)

eigenfunctions of LO BFKL kernel, i.e. the transfer to the (v, n)-representation,

is done as follows:

o0 400
Z / dv®y(v,n)(n,v|q),

—» +0o0 “+o00
Z / dv®s (v, n){(G@|n, v),
e (3.32)
V(Ql) 1 -1
di(v,n d2 — (7?2
() = / )
V@) 1 o i1
P V,n:/dz — 2\ —iv Ze mqbz‘
2( ) q% 71_\/—( )

The vertices can be represented as an expansion in o,

O1a(n,v) = as(ur)vi2(n, v) + a2 (up)via(n, v) . (3.33)

The explicit forms of LLA and NLA jet vertices in the (v, n)-representation
both for the quark and gluon cases can be found in (3.23)). In particular for the
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LLA quark vertices one has

/C
vi(n,v) =2 Cj(kh)“/ﬁ "Ny, — 1),
(3.34)
C
ohn,v) =24 G kG,) R e O o g, — )

where Cy = N, Cr = (N.— 1)/2N,. The partonic cross section can be written

with NLA accuracy as follows

d6 (z1225) 1 i‘i /+oo o (@i Ge(ur)x(nv)
= 14
dx g d 5, kg, kg, (27)? n=—o0 / ~ S0

o (n,v)

o (220) | A0
R N B )
+ a?(ug) In <x1;zgs) ()‘((n, V) +
)
dz/ R ’

The differential cross section has the form

x 2 (pr)vi(n, v)va(n, v)

(3.35)

Bo 10
SNCX(na V) [_X<n7 V) + ?

do
dy s, dy |k, ||k, |dé s, d s, (27r>

Co + Z 2 cos(ne)C ] (3.36)

where ¢ = ¢, — ¢4, — 7, and

do
dy g, dy,d|k g, |d| k.1, A, dd g,
(3.37

27 27
G = /0 dé,, /O 4 3, coslm(s, — ds, — )]

In particular, taking into account the Jacobian of the transformation from

the variables EJH xj, to the variables ]EJ , and the v-dependence of LLA

77

46



jet vertices, see (3.34]), we get

_ Tn +o0 " (l’]l.TJQS)aS(“R)X(an) (3.38)
LAY 50
Xag(uR)cl(n’ V’|kJ1|7IJ1)CQ(n7 V7|kJ2|va2)
D |E Wy |T
« 1+as(NR) C (nayatJ1|’xJ1> +02 (nayth2|7IJ2)
Cl(n7 v, |k3J1|7xJ1) CQ(na v, IkJ2|7J7J2)
_ Ty 258 Bo 10 [y
+a? 1n<#) n,v) + —x(n,v) | =x(n,v) + — +1In= :
oy ” X(n,v) SCAX( ) (n,v) + 3 Ny
where
o C 1
cr(m, v, |F] 1) = 24 G ) ( o) + Y file uF> - (339)
a=q,q
ea(n, v, ], ) = [erln, v [, 2)]| (3.40)
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Cgl)<n7 v, |E|7m) _ % gj (]CQ) dg s(r)x(n, l/){ Z fa ( ) (3.41)

a=q,q
<[P+ Eap i —ac i nir 0 + Rt
F MF
]{Z2 2
—%ln M—R(S(l — () + Cad(1 — C){X(n ~)In Z + % + %

)l
e+ e en( gt o (=) )
(-2 )

2
+6(1 = () (CF (31n2— % — g) _ %)

- _
+Ca¢ + Cp( + 1+¢ {C’AEII + ZC'Alng + Cr¢® (x(n, ) — 21116)}}

¢ ¢ ¢
X CA
(0
Cr k2 5
{{P (©)+ 20, Q) Iy =26 0 RP(Q) + 20, Pag(0)
,UF
2 1 2
_% 4%%(5(1—C)+CA(5(1—C){X(n,’y)1 7 +E+%

+% (w (1+7+g> — ) (g —7) —X2(n,7)>}
F204(1 — ¢2) ((% _9 +CC) L Gl C))

1-=¢

1 a o ¢?
+C’A{Z+(1_Q+—2+CC} ((1—|—C M x(n, 7)—21n§+?12>

+ny [2((2—2 + (2 + ) (g—ix(nﬁ) + %]3) — %5(1 - C)] }}

1

v, ], 2) = [V (v, ] 2)]| (3.42)
Here ( =1 —(,y =iv —1/2, P, ;(¢) are leading order DGLAP kernels. For the
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I, 5 3 functions we have results:

; _Q[C(2F1(1,1+fy—g,2+fy—g,g) _2F1(1,1+7+§,2+7+§,C)>
NS 1y 1 2+y+1
+<_27(2F1(1>—’Y—%1—7—%70_2F1(1>_’Y+g>1—7+%a§)>

2+ 277

+(1+¢) (x(n,7) —2In¢) +21n C} (3.43)
_ s )

11—2—2124‘%— [ln(—l—TC(x(n,y)—anC)}, (3.44)
_ | )

]3:2%[2—% [ln§++(x(n,7)—2ln§)] . (3.45)

Considering hadron-hadron scattering in the common parton model for two
jet production at LO one deals with a back-to-back reaction and expects the
azimuthal angles of the two jets always to be m and hence completely corre-
lated. Increasing the rapidity difference between these jets, the phase space
allows more emission leading to a decorrelation between the jets. If the ra-
pidity differences the resummation leads to a description with BFKL theory.
Leading logarithmic approximation overestimates this decorrelation.

In view of the investigation of the azimuthal decorrelation, it is useful to
define:

C(] - /d¢J1d¢J2d0', (346)

the coefficients C,, and the moments of the azimuthal decorrelations, which are
defined as

[ dydoy, cosin(py, — by, —m)|do Cn
(cos(ng)) = T doy, doydo = o

In the remainder of the paper the authors consider the study of the depen-

(3.47)

dence of the C, on Y in the center-of-mass energy /s at LHC reference values.
The value of cone size is R = 0.5.

To take into account the terms in C, depending on the scales ur and s
(subleading in NLA) the authors adopted an adaptation of the principle of
minimal sensitivity (PMS). According to this principle the optimal choices for

ir and sg are those values for which the physical observables under examination
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express the minimal sensitivity to changes of both of these scales. This because
the complete resummation of the perturbative series would not depend on the
scale ugr and sq.

Among the conclusions of the authors there are the following:

e NLA corrections to the impact factors are very important and not be

ignored in a consistent NLA BFKL analysis

e small-cone approximation is a valid approximation because for R — 0 the

dependence of the cross section on the jet cone parameter is
do ~ AlnR+ B+ O(R?) . (3.48)

The pieces of order O(R?) are presumably less important than the uncer-

tainties related with the choice of the scales pg and sq;

e PMS optimization procedure is expected to be a valid tool because it
gives a larger values of energy factorization scale than the scale given
by p% = k7, ||ks,], and this is attributable to the presence of important

contributions subleading to the NLA, especially for higher value of Y;

e For a kinematic scale p% = sy = |k, ||k, and for high value of Y the pre-
diction are not acceptable. This is because NLO correction of jet vertices
are negative and very larger in absolute value. This is an indication of the

need to use PMS procedure, in this case, to obtain plausible prediction;

e PMS approach is not working well in case of asymmetric kinematics.
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3.3 NLA BFKL calculation with jet cone size
treated exactly

Another approach to obtain a complete Mueller-Navelet jets treatment in

next-to-leading BFKL theory is given in [9]. In this paper the authors calculated
cross section and azimuthal decorrelation using jet cone algorithm in (2.19)). The

key points in this approach are the following:

e Energy scale sy viewed as a product of two energy scales

S0 = 4/50,150,2 -

Furthermore respect to that used in [7, 8]

soq = (k| + [kp1 —ki|)? = sp, = 55—

so2 = (k| + [ks2 — k?‘)z — 3672 T2 K2

~

S

S0

~

s Tjilj2s
so |kl - kel

(3.49)
2
Ty
, (3.50)
J,lk?],l
2
Lo
, (3.51)
72K7 0
, (3.52)

This change in Green’s function has to be accompanied by following cor-

rection term to the impact factor:

and the final form used is

V(l)

q; LL subtraction —

V(l)

g; LL subtraction —

1. 50,
Dnrr (kis so,:) = Pre(ki; 0,0) +/d2k'®LL(k§)’CLL(k§;ki)§ln 52’. (3.53)
B — (e — ke)(ke — I - 2k VOK, )

7]-2 Z(k _ k/)2 (k _ k/)2(k _ k/ _ Zk/)g q ) )
(3.54)

Ca_ 1 (k —K)(k — k' — zK') VO, z);

72 2(k—K)2(k-K)2k-—K —zk)2 ¢ L) 3
(3.55)

e As found with SCA method the effect of NLL corrections to the jet vertex

function is very important, of the same order as the one obtained when

passing from LL to NLL Green’s function;
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e The uncertainty due to change in pug, sg is drastically reduced when the

NLL to the vertices are taken into account but is still sizeable;

e It seems that azimuthal decorrelation is almost not enhanced by an in-

creasing rapidity.
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Chapter 4

Comparison of predictions with
CMS data

Recently it has become possible to compare theoretical analysis of Mueller-
Navelet jet production process with first CMS data [41] at center-of-mass en-
ergy of 7 TeV. A first comparison with these experimental data according to
the approach of jet cone algorithm of does not lead to agreement with
experiment [42]. Here the authors used a RG-improved kernel. This means
that the NLA BFKL kernel is improved by imposing its compatibility with the
DGLAP equation, although energy scales where not optimized. Later a similar
analysis whose redone [43] using standard kernel, but energy scales optimized
according to the Brodsky-LePage-McKenzie method (BLM). This method is a
way of absorbing the non-conformal terms of the perturbative series in a redefi-
nition of the coupling constant. To improve the convergence of the perturbative
series, one should extract the Sy-dependent part of the observable and chose the
renormalization scale to make it vanish. The authors found a nice agreement

at the larger values of relative separation of jets Y. They define

do
Co=—— ,
d’kJ,1|d|kJ,2|dyJ,1dyJ,2

(4.1)

and

g—z = (cos(n(¢s1 — g2 — 7))) = (cos(ny)) (42)

analogously to Eqs. (3.34) and (3.35). The comparison with experimental data
are shown in Figs. (4.1] and (4.5). The two evaluations in fig-
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ures are one with factorization scale pup—pgprv and the other with “natural”

=1/ |l_5 Jal - |E s2|. The results first shown are those for the angular correlations
(cos p), (cos2¢) and (cos3¢) as a function of relative rapidity YV (Figs. (4.1}

and (4.3)), respectively).

The conclusion for these three observables is similar: when one uses the
“natural” scale up, the NLA BFKL calculation is always above the data. Data
are much better described when setting the scale according to the BLM pro-
cedure. Instead, the ratios (cos2yp)/(cos ) and (cos3¢)/(cos2¢) are almost
not affected by BLM procedure, see Figs. and . This is because these
observables are very stable with respect to the scales. The same observables are
calculated in [44], where the adopted jet vertices are calculated in the approxi-
mation of small aperture of the jet cone. To improve the stability of perturbative
series several methods have been devised for the optimal choice of the energy
scales, including the BLM method. These new BLM calculations support the
statement that theoretical predictions are in a rather good agreement with CMS
data. The results are obtained in two variants of the BLM method, dubbed (a)
and (b) in Figs. ! and for the same observables (coeffi-
cients C,, are related to C, of Egs. (3.34), (8.39), in particular the ratios C,/Co
are the azimuthal correlations (cosn¢)). For the two BLM methods (a) and (b)
refer to a separate publication for details [45]. Nevertheless the prediction lies
somewhat beyond the range of the theoretical uncertainty bound of [43]. This
difference is related with a “representation uncertainty”, related to the possib-
lity of contructing several different, but equivalent representations of the NLA
BFKL amplitude.
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Figure 4.1: Variation of (cosy) as a function of Y at NLL accuracy compared with
CMS data.
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Figure 4.2: Variation of (cos2¢) as a function of Y at NLL accuracy compared with
CMS data.
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Figure 4.4: Variation of (cos 2¢)/(cos ¢) as a function of Y at NLL accuracy compared
with CMS data.
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Figure 4.5: Variation of (cos3¢)/(cos2¢p) as a function of Y at NLL accuracy com-
pared with CMS data.
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Figure 4.6: Y dependence of azimuthal correlations C;/Cy.
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Figure 4.7: Y dependence of azimuthal correlations Cy/C.
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Figure 4.8: Y dependence of azimuthal correlations C5/Cy.

o8



2~ T T T T T T T

--- LLA
»—» BLM,_

L +—+ BLM, i
09— =—a CMS data|

0.8
0.7
0.6

05—

04—
03 —
02— —

0.1+ ]

0 IR RS AT SN ST SO N S R
3 4 5 6 7 8 9 Y

Figure 4.9: Y dependence of azimuthal correlations ratios Cy/CY.
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Figure 4.10: Y dependence of azimuthal correlations ratios Cs/Cl.
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