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Firma

Direttore Prof. Nicola Leone

Firma

Dottoranda Maria Rita Iacò
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Abstract

The main topic of this present thesis is the study of the asymptotic be-
haviour of sequences modulo 1.
In particular, by using ergodic and dynamical methods, a new insight to
problems concerning the asymptotic behaviour of multidimensional sequences
can be given, and a criterion to construct new multidimensional uniformly
distributed sequences is provided.

More precisely, one considers a uniformly distributed sequence (u.d.)
(xn)n∈N in the unit interval, i.e. a sequence satisfying the relation

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x)dx ,

for every continuous function f defined on [0, 1].
This relation suggests the possibility of a numerical approximation of the
integral on the right-hand side by means of u.d. sequences, even if it does
not give any information on the quality of the estimator.
The following quantity

D∗N = D∗N (x1, . . . , xN ) = sup
a∈[0,1[

∣∣∣∣∣
∑N

n=1 1[0,a[(xn)

N
− λ([0, a[)

∣∣∣∣∣ ,
called the star discrepancy, has been introduced in order to have a quanti-
tative insight on the rate of convergence.
One of the most important results about the integration error of this approx-
imation technique is given by the Koksma-Hlawka inequality which states
that the error can be bounded by the product of the variation of f (in the
sense of Hardy and Krause), denoted by V (f), and the star-discrepancy D∗N
of the point sequence (xn)n∈N:∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ V (f)D∗N (xn) .

Thus in order to minimize the integration error we have to use point se-
quences with small discrepancy, that is, sequences which achieve a star-
discrepancy of orderO(N−1(logN)). These sequences are called low-discrepancy
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sequences and they turn out to be very useful especially for the approxima-
tion of multidimensional integrals. In this context, the error in the ap-
proximation is smaller than the probabilistic one of the standard Monte
Carlo method, where a sequence of random points instead of determinis-
tic points, is used. Methods using low-discrepancy sequences, often called
quasi-random sequences, are called Quasi-Monte Carlo methods (QMC).

However, to construct low-discrepancy sequences, especially multidimen-
sional ones, and to compute the discrepancy of a given sequence are in gen-
eral not easy tasks.

The aim of this thesis is to provide a full description of these problems
as well as the methods used to handle them. The idea was to consider tools
from ergodic theory in order to produce new low-discrepancy sequences. The
starting point to do this, is to look at the orbit, i.e. the sequence of iterates,
of a continuous transformation T defined on the unit interval which has the
property of being uniquely ergodic.
The unique ergodicity of the transformation has the following consequence:

If T : [0, 1]→ [0, 1] is uniquely ergodic, then for every f ∈ L1(X)

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
X
f(x)dµ(x) ,

for every x ∈ X.
So the orbit of x under T is a uniformly distributed sequence.

In this respect, we devoted the first chapter entirely on classical topics
in uniform distribution theory and ergodic theory.
This provides the basic requirements for a complete understanding of the
following chapters, even to a reader who is not familiar with the subject.

Chapter 2 deals with a countable family of low-discrepancy sequences,
namely the LS-sequences of points. In particular, one of these sequences
will be considered in full detail in Chapter 3.

The content of Chapters 3, 4 and 5 is based on three published papers
that I co-authored.

In Chapter 3, the method used to construct the transformation T is the
so-called “cutting-stacking” technique. In particular, we were able to prove
the ergodicity of T (a weaker property than unique ergodicity), and that
the orbit of the origin under this map coincides with an LS-sequence which
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turns out to be a low-discrepancy one.

In Chapter 4, another approach from ergodic theory is used. This ap-
proach is based on the study of dynamical systems arising from numeration
systems defined by linear recurrences. In this way we could not only prove
that the transformation T defined in Chapter 3 is uniquely ergodic, but we
could also construct multidimensional uniformly distributed sequences.

Finally, we go back to the problem of finding an approximation for inte-
grals. In Chapter 5 we tried to find bounds for integrals of two-dimensional,
piecewise constant functions with respect to copulas. Copulas are func-
tions that can be viewed as asymptotic distribution functions with uniform
margins. To solve this problem, we had to draw a connection to linear as-
signment problems, which can be solved efficiently in polynomial time. The
approximation technique was applied to problems in financial mathematics
and uniform distribution theory.
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Sommario

Il tema principale di questa tesi è lo studio del comportamento asintotico di
successioni modulo 1.
In particolare, usando metodi dalla teoria ergodica e dalla teoria dei sistemi
dinamici, è possibile ottenere una nuova prospettiva su problemi riguardanti
il comportamento asintotico di successioni multidimensionali, e fornire un
criterio per costruire successioni multidimensionali uniformemente distribuite.

Più precisamente, si considera una successione uniformemente distribuita
(u.d.) (xn)n∈N, ossia una successione che soddisfa la relazione

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x)dx ,

per ogni funzione continua f definita su [0, 1].
Questa relazione suggerisce la possibilità di un’approssimazione numerica
dell’integrale al secondo membro utilizzando successioni u.d., anche se essa
non fornisce alcuna informazione sulla qualità dell’approssimazione stessa.
La seguente quantità

D∗N = D∗N (x1, . . . , xN ) = sup
a∈[0,1[

∣∣∣∣∣
∑N

n=1 1[0,a[(xn)

N
− λ([0, a[)

∣∣∣∣∣ ,
chiamata star discrepanza, è stata introdotta per quantificare il tasso di
convergenza della successione empirica alla distributione uniforme.
Uno dei risultati più importanti riguardanti l’errore nell’approssimazione
dell’integrale attraverso successioni uniformemente distribuite è fornito dalla
disuguaglianza di Koksma-Hlawka, la quale afferma che l’errore può essere
limitato dal prodotto della variazione di f (nel senso di Hardy e Krause),
denotata da V (f), e dalla star-discrepanza D∗N della successione (xn)n∈N:∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ V (f)D∗N (xn) .

Perciò per minimizzare l’errore di approssimazione si scelgono successioni
aventi bassa discrepanza, ossia successione che raggiungono una star dis-
crepanza dell’ordine O(N−1(logN)). Queste successioni sono dette a bassa
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discrepanza e risultano molto efficaci soprattutto nell’approssimazione di in-
tegrali multidimensionali. In questo contesto, l’errore di approssimazione è
pi piccolo di quello probabilistico ottenuto nel metodo Monte Carlo, dove si
usa una successione di numeri casuali invece di una deterministica. Metodi
che usano successioni a bassa discrepanza, anche dette successioni quasi-
random, sono detti metodi Quasi-Monte Carlo(QMC).

Tuttavia, costruire successioni a bassa discrepanza, soprattutto se mul-
tidimensionali, e calcolare la discrepanza di una successione di punti data,
non sono in generale compiti semplici.

Lo scopo di questa tesi è quello di fornire una descrizione completa dei
problemi sopracitati cos̀ı come dei metodi usati per attaccarli. L’idea era
quella di considerare strumenti di teoria ergodica per produrre nuove suc-
cessioni a bassa discrepanza. Il punto d’inizio affinchè questo sia possibile è
quello di osservare l’orbita, ossia la successione delle iterate, di una trasfor-
mazione T definita sull’intervallo unitario che gode della proprietà di essere
unicamente ergodica.
Dall’unica ergodicità della trasformazione segue:

Se T : [0, 1]→ [0, 1] è unicamente ergodica, allora per ogni f ∈ L1(X)

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
X
f(x)dµ(x) ,

per ogni x ∈ X.
In questo modo, l’orbita di x rispetto a T è una successione uniformemente
distribuita.

Per questa ragione, si è scelto di dedicare il primo capitolo interamente
agli argomenti classici nella teoria della distribuzione uniforme e della teoria
ergodica.
Questo fornisce i requisiti di base per una completa comprensione dei capi-
toli successivi, anche per un lettore che non è familiare con la materia.

Il Capitolo 2 si occupa di una famiglia numerabile di successioni a bassa
discrepanza, le cosiddette LS-successioni di punti. In particolare, una di
queste successioni verrà trattata in dettaglio nel Capitolo 3. Il contenuto dei
capitoli 3, 4 and 5 è basato su tre articoli pubblicati di cui io sono co-autrice.

Nel Capitolo 3, il metodo usato per costruire la trasformazione T è la
cosidetta tecnica di “cutting-stacking”İn particolare, siamo riusciti a di-
mostrare l’ergodicità della T (una proprietà più debole rispetto all’unica
ergodicità), e che l’orbita dello zero rispetto a questa mappa coincide con
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una delle LS-successioni a bassa discrepanza.

Nel Capitolo 4, si preferisce usare un altro approccio dalla teoria er-
godica. Questo approccio è basato sullo studio dei sistemi dinamici che
derivano da sistemi di numerazione definiti da ricorrenze lineari. In questo
modo siamo riusciti non solo a dimostrare che la trasformazione T definita
nel Capitolo 3 è unicamente ergodica, ma anche costruire successioni multi-
dimensionali u.d..

Infine, siamo ritornati al problema iniziale di trovare un’approssimazione
per degli integrali. Nel Capitolo 5 abbiamo cercato limiti per integrali di
funzioni bidimensionali e costanti a tratti rispetto ad una copula. Le copule
sono funzioni che posso essere viste come funzioni di distribuzione asintotica
con margini uniformi. Per risolvere questo problema, abbiamo trovato una
connessione con i problemi di assegnamento lineare. Questi problemi pos-
sono essere risolti efficaciemente in tempo polinomiale. Abbiamo applicato
questo metodo di approssimazione a problemi in matematica finanziaria e
teoria della distribuzione uniforme.
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Chapter 1

Preliminary topics

In this chapter we collect classical results about uniform distribution, dis-
crepancy and ergodic theory, which are the essential background for the
following chapters.

1.1 Uniform distribution and discrepancy of se-
quences

In this first section we recall definitions and basic properties of uniform dis-
tribution and discrepancy of sequences. For a full treatment of the subject
and for proofs we refer to [29, 57, 67, 94].
The structure of the section is the following: a first part is devoted to the
definition of uniformly distributed (u.d.) sequences of points in the unit
interval.
Furthermore we provide some historical examples constructed in [0, 1[, such
as Kronecker and van der Corput sequences.
Then we introduce the notion of uniform distribution and discrepancy for
sequences of partitions defined on [0, 1[, showing how to get associated uni-
formly distributed sequences of points from them.
Finally we extend the definitions and the results to the multidimensional
unit cube [0, 1[s and we see how this theory can be applied to Quasi-Monte
Carlo methods to find numerical approximation of integrals.

1.1.1 Preliminary definitions and results in [0, 1[

The starting point of uniform distribution is given by the following definition
introduced by H. Weyl [105, 106].

Definition 1.1.1. A sequence (xn)n∈N of points in [0, 1[ is said to be uni-
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formly distributed (u.d.) if for every interval [a, b[ ⊆ [0, 1[ we have

lim
N→∞

1

N

N∑
n=1

1[a,b[(xn) = b− a , (1.1)

where 1[a,b[ is the characteristic function of [a, b[.

Observing that λ([a, b[) =
∫ 1

0 1[a,b[(x) dx, (1.1) can be written in the
equivalent form

lim
N→∞

1

N

N∑
n=1

1[a,b[(xn) =

∫ 1

0
1[a,b[(x) dx . (1.2)

This remark together with a classical approximation process of continuous
functions by means of step functions led to the following criterion that can
be also found in [105, 106].

Theorem 1.1.2 (Weyl’s Theorem). A sequence (xn)n∈N of points in [0, 1[
is u.d. if and only if for every real-valued continuous function f defined on
[0, 1]

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0
f(x) dx (1.3)

holds.

As it will appear clear at the end of the chapter, Theorem 1.1.2 suggests
a numerical approximation of integrals by means of averages over uniformly
distributed sequences.

Two more general results can be found as corollaries of the previous
theorem. The first one is a generalization to Riemann-integrable functions,
while the second one to complex-valued continuous functions.

Corollary 1.1.3. A sequence (xn)n∈N of points in [0, 1[ is u.d. if and only
if for every Riemann-integrable function f defined on [0, 1] equation (1.3)
holds.

Corollary 1.1.4. A sequence (xn)n∈N of points in [0, 1[ is u.d. if and only
if for every complex-valued continuous function f defined on R with period
1 equation (1.3) holds.

This second corollary is particularly important since funtions of the type
f(x) = e2πihx, where h is a non-zero integer, satisfy its assumptions. Hence,
these functions give a criterion to determine if a sequence of points is u.d..
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Theorem 1.1.5 (Weyl’s Criterion). A sequence (xn)n∈N of points in [0, 1[
is u.d. if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 (1.4)

for every integer h 6= 0.

The first proof of this theorem has been given by Weyl [105, 106], but
several proofs can be found in literature. As we will see later, Weyl applied
this theorem to show that Kronecker’s sequence ({nθ})n∈N, where θ is ir-
rational and {x} is the fractional part of x, is u.d. in [0, 1[. This criterion
is of particular interest since it emphasizes the connection between uniform
distribution theory and the estimation of exponential sums.

Now we would like to introduce a quantity, the discrepancy, which mea-
sures the maximal deviation between the empirical distribution of a sequence
and the uniform distribution. This term has been introduced by van der Cor-
put and the first intensive study of discrepancy is due to van der Corput
and Pisot [98].
For a detailed survey about discrepancy of sequences and applications we
refer to [29].

Definition 1.1.6 (Discrepancy). Let ω = {x1, . . . , xN} be a finite set of real
numbers in [0, 1[. The quantity

DN (ω) = sup
0≤a<b≤1

∣∣∣∣∣ 1

N

N∑
n=1

1[a,b[(xn)− (b− a)

∣∣∣∣∣ (1.5)

is called the discrepancy of the given set ω.

If (xn)n∈N is an infinite sequence of points in [0, 1[, we associate to it the
sequence of positive real numbers DN ({x1, x2, . . . , xN}). So, the notation
DN (xn) denotes the discrepancy of the initial segment {x1, x2, . . . , xN} of
the infinite sequence.
The following result shows how discrepancy is related to uniform distribu-
tion.

Theorem 1.1.7. A sequence (xn)n∈N of points in [0, 1[ is u.d. if and only
if

lim
N→∞

DN (xn) = 0 . (1.6)

Sometimes it is useful to restrict the family of intervals considered in the
definition of discrepancy to intervals of the form [0, a[ with 0 < a ≤ 1. This
leads to the following definition of star-discrepancy.
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Definition 1.1.8 (Star discrepancy). Let ω = {x1, . . . , xN} be a finite set
of real numbers in [0, 1[. We define star discrepancy of ω the quantity

D∗N (ω) = sup
0<a≤1

∣∣∣∣∣ 1

N

N∑
n=1

1[0,a[(xn)− a

∣∣∣∣∣ . (1.7)

This definition extends to an infinite sequence in the same way as it has
been done for the discrepancy.
Moreover, discrepancy and star discrepancy are related by the following
relation.

Theorem 1.1.9. For any sequence (xn)n∈N of points in [0, 1[ we have that

D∗N (xn) ≤ DN (xn) ≤ 2D∗N (xn) . (1.8)

As a consequence, it follows that Theorem 1.1.7 holds also for star dis-
crepancy, i.e. limN→∞D

∗
N (xn) = 0 if and only if (xn)n∈N is u.d..

The most well-known problem in the theory of irregularities of distribu-
tions is to determine the optimal lower bound for the discrepancy DN (xn).
Discrepancy bounds from below are essentially quantitative measures for the
irregularity of point distributions.
A very easy observation gives the following trivial lower bound.

Proposition 1.1.10. For any finite point set ω = {x1, . . . , xN} in [0, 1[ we
have that

1

N
≤ DN (ω) ≤ 1 .

The finite sequence (xn) =
(
n
N

)
with n = 0, . . . , N−1 satisfies DN (xn) =

1
N . But sequences of this kind, i.e. showing a discrepancy of this order, can
only exist in the one-dimensional case, as it will be clear in §1.1.3 as direct
consequence of Roth’s Theorem (Theorem 1.1.51).
According to the previous Proposition, one could ask whether the lower
bound is really attained by an infinite sequence in the unit interval. Van
der Corput conjectured that such a sequence does not exist, i.e. there is no
real sequence (xn)n∈N satisfying DN (xn) = O

(
1
N

)
as N →∞.

Although this problem was first solved by van Aardenne-Ehrenfest [95, 96],
the conjecture was completely proved from a quantitative point of view as
shown in the following important result due to Schmidt [86].

Theorem 1.1.11 (Schmidt’s Theorem). For any sequence (xn)n∈N in [0, 1[
we have

DN (xn) ≥ C logN

N

for infinitely many N , where C > 0 is an absolute constant.
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Sequences having discrepancy of the order O
(

logN
N

)
are called low dis-

crepancy sequences or quasi random sequences. As we will see in the last
section, they play an important role in applications and they are especially
used in the implementation of Quasi-Monte Carlo methods.
In particular, when dealing with the implementation of an algorithm, one
actually considers point sets instead of infinite sequences. We now state two
results which turn out to be useful for estimating the discrepancy of a given
point set.

Theorem 1.1.12. If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN < 1, then

DN (x1, . . . , xN ) =
1

N
+ max

1≤n≤N

( n
N
− xn

)
− min

1≤n≤N

( n
N
− xn

)
.

Theorem 1.1.13. Let ω = {x1, . . . , xN} be a finite set of N points in [0, 1[.
For 1 ≤ j ≤ r let ωj be a subset of ω consisting of Nj elements such that its
discrepancy is DNj (ωj), its star discrepancy is D∗Nj (ωj), with ωj ∩ ωi = ∅
for all j 6= i and N = N1 + . . .+Nr. Then

DN (ω) ≤
r∑
j=1

Nj

N
DNj (ωj)

and also

D∗N (ω) ≤
r∑
j=1

Nj

N
D∗Nj (ωj).

Now we would like to show two classical examples of low discrepancy
sequences.

The two sequences that we are going to present got considerable attention
since their introduction at the beginning of 1900.

Example 1.1.14 (Kronecker sequence). Let θ be an irrational number.
Then the sequence ({nθ})n∈N is known as Kronecker sequence. It is an
easy application of Weyl’s criterion to show that it is u.d..
In fact,∣∣∣∣∣ 1

N

N∑
n=1

e2πihnθ

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

(
N∑
n=0

e2πihnθ − 1

)∣∣∣∣∣ =

∣∣∣∣ 1

N

(
1− (e2πihθ)N+1

1− e2πihθ
− 1

)∣∣∣∣
=

1

N

∣∣∣∣∣1− e2πihθ(N+1) − 1 + e2πihθ

1− e2πihθ

∣∣∣∣∣ =
1

N

∣∣∣e2πihθ
∣∣∣ ∣∣∣∣1− e2πihNθ

1− e2πihθ

∣∣∣∣ =

=
1

N

∣∣∣∣1− e2πihNθ

1− e2πihθ

∣∣∣∣ .
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Now if we let α = πhθ, we can observe that

|1− e2iα| = |1− cos(2α)− i sin(2α)| =
√

(1− cos(2α))2 + sin2(2α)

=
√

2(1− cos(2α)) =

√
2(1− cos2 α+ sin2 α) = 2| sinα| .

This is enough to see that (1.4) holds since∣∣∣∣∣ 1

N

N∑
n=1

e2πihnθ

∣∣∣∣∣ =
1

N

∣∣∣∣1− e2πihNθ

2 sin(πhθ)

∣∣∣∣ ≤ 1

N | sin(πhθ)|

which tends to zero when N tends to infinity for an integer h 6= 0.

This result has been found independently by Bohl [13], Sierpiński [89]
and Weyl [106] in 1909-1910.
The sequence takes the name of Kronecker since this results refines a the-
orem due to Kronecker showing that the points einθ are dense in the unit
circle, whenever θ is an irrational multiple of π (Kronecker’s approximation
theorem).
The following result shows that bounds for the discrepancy of the Kronecker
sequence are strictly connected with the partial quotients of the continued
fraction expansion of θ and therefore with the Ostrowski expansion. The
proof requires some basics about continued fractions and the related Os-
trowski expansion and so we do not provide it. We refer to [67] for a proof.

Theorem 1.1.15. The discrepancy DN (xn) of the Kronecker sequence sat-
isfies

DN (xn) <
1

N

m∑
k=0
ck 6=0

(ck + 1) ≤ 1

N

m+1∑
k=1

ai , (1.9)

where the ai’s are the partial quotiens of the continued fraction expansion of
θ and the cn’s are the integers in the Ostrowski expansion of N .

Corollary 1.1.16. If θ is an irrational number such that
∑m

k=1 ak = O(m),
then

DN (xn) = O
(

log(N)

N

)
for all N ≥ 2 (1.10)

Example 1.1.17 (Van der Corput sequence). The van der Corput sequence
has been introduced by van der Corput [97] in 1935. The main idea to
provide bounds for the discrepancy of this sequence is to introduce a suitable
numeration system, as the Ostrowski numeration system for the Kronecker
sequence. There is one natural numeration system arising from the definition
of the van der Corput sequence, namely, the classical system of numeration
in base b, where b ≥ 2 is apositive integer.
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Proposition 1.1.18 (b-ary expansion). Let b ≥ 2 be a positive integer and
denote by Zb = {0, 1, . . . , b− 1} the least residue system mod b. Then every
positive integer n ≥ 0 has a unique expansion

n =
r∑

k=1

ak(n)bk (1.11)

in base b, where ak(n) ∈ Zb for all j ≥ 0 and r = blogb nc, where bxc is the
largest integer not greater than x.

Definition 1.1.19 (Radical inverse function). For an integer b ≥ 2, con-
sider the b-ary expansion in (1.11) of n ∈ N. The function ϕb : N −→ [0, 1[
defined as

ϕb(n) =

r∑
k=0

ak(n)b−k−1 (1.12)

is called radical inverse function in base b.

In other words, ϕb(n) is obtained from n by a symmetric reflection of
the expansion (1.11) with respect to the decimal point.

Definition 1.1.20. The sequence (xn)n∈N of general term xn = ϕ2(n) is
called van der Corput sequence.

Remark 1.1.21. It is common use to call van der Corput sequences in base
b, sequences (xn)n∈N of general term xn = ϕb(n), where b is a fixed prime
number greater than 1.

Theorem 1.1.22. The discrepancy DN (xn) of the van der Corput sequence
(ϕb(n))n∈N satisfies

DN (xn) ≤ cb
(

log(N + 1)

N

)
where cb > 0 is an absolute constant.

In particular, Faure [31, Theorem 6] established the following bounds for
arbitrary b ≥ 2:

lim sup
N→∞

NDN (ϕb(n))

logN
=

{
b2

4(b+1) log b for even b
b−1

4 log b for odd b .

An immediate consequence of this result is the fact that the van der Corput
sequence which has the best asymptotic behaviour is the one in base 3.
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Another generalization of the van der Corput sequence, called generalized
van der Corput sequence in base b, which improves the asymptotic behaviour
of the discrepancy, has been introduced in [31]. This new family of sequences
is defined as the sequence of general term

xn =
m∑
k=0

σ(ak(n))b−k−1 for all n ≥ 0,

where σ is a permutation of Zb.
In particular, if we denote by (ϕσb (n))n∈N a generalized van der Corput se-
quence in base b, the following result says that the discrepancy is smaller
compared to that of the classical van der Corput sequence (ϕb(n)) in base b.

Theorem 1.1.23 (Corollaire 3, [31]). For every sequence ϕσb we have

D∗N (ϕσb (n)) ≤ DN (ϕσb (n)) ≤ DN (ϕb(n))

1.1.2 Uniform distribution of sequences of partitions of [0, 1[

In this section we consider a method to obtain u.d. sequences of points
in the unit interval as sequences of points associated to a special family of
sequences of partitions. We present new sequences of partitions recently
introduced and studied by Volčič [102], which are a generalization of the
sequences introduced by Kakutani [54] in 1976.

Definition 1.1.24. Let (πn)n∈N be a sequence of partitions of [0, 1[, with

πn = {[tni , tni+1[ : 1 ≤ i ≤ k(n)} .

Then (πn)n∈N is uniformly distributed (u.d.) if for any continuous function
f on [0, 1]

lim
n→∞

1

k(n)

k(n)∑
i=1

f(tni ) =

∫ 1

0
f(t) dt . (1.13)

Remark 1.1.25. Given a sequence of partitions (πn)n∈N, it is possible to
associate to it a sequence of measures (µn)n∈N by

µn =
1

k(n)

k(n)∑
i=1

δtni , (1.14)

where we denote by δt the Dirac measure concentrated at t.
We note that the uniform distribution property of the sequence of partitions
(πn)n∈N is equivalent to the weak convergence of (µn)n∈N to the Lebesgue
measure λ on [0, 1].

This observation allows us to give the following equivalent definition.
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Definition 1.1.26. A sequence of partitions (πn)n∈N is u.d. if and only if
for every interval [a, b] ⊂ [0, 1]

lim
n→∞

1

k(n)

k(n)∑
i=1

1[a,b[(t
n
i ) = b− a (1.15)

Equivalently, (πn)n∈N is u.d. if the sequence of discrepancies

Dn = sup
0≤a<b≤1

∣∣∣∣ 1

k(n)

k(n)∑
i=1

1[a,b[(t
(n)
i )− (b− a)

∣∣∣∣ (1.16)

tends to 0 as n→∞.

Let us describe Kakutani’s splitting procedure [54], known as Kakutani’s
α-refinement, which allows to construct a whole class of u.d. sequences of
partitions of [0, 1[.

Definition 1.1.27 (Kakutani splitting procedure). Let α ∈ ]0, 1[ and π =
{[ti, ti+1[ : 1 ≤ i ≤ k} be any partition of [0, 1[, then Kakutani’s α-refinement
of π (which will be denoted by απ) is obtained by splitting only the intervals
of π having maximal length in two parts, proportionally to α and 1 − α
respectively.

If we denote by αnπ the α-refinement of αn−1π for every n ∈ N, the
so-called Kakutani’s sequence of partitions (κn)n∈N = (αnω)n∈N is obtained
by successive α-refinements of the trivial partition ω = {[0, 1]}.

Observe that for α = 1
2 Kakutani’s sequence of partitions coincides with

the binary sequence of partitions.
Kakutani proved the following result.

Theorem 1.1.28. For every α ∈ ]0, 1[ the sequence of partitions (κn)n∈N is
u.d..

The sequence (αnω)n∈N and its properties have been investigated by
many authors. For example, see [15] and [99] for a modification of the
splitting procedure where the intervals of maximal length are split randomly.
For a generalization of Kakutani’s splitting procedure in higher dimensions
see Carbone and Volčič [22]. Another further generalization of Kakutani’s
splitting procedure, that we now describe, was introduced by Volčič [102].

Definition 1.1.29 (ρ-refinement). Let ρ be a non-trivial finite partition of
[0, 1[. The ρ-refinement of a partition π of [0, 1[ (denoted by ρπ) is the
partition obtained by subdividing all intervals of π having maximal length
positively homotetically to ρ.
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Remark 1.1.30. If ρ = {[0, α[, [α, 1[} and π = ω, then its ρ-refinement
coincides with Kakutani’s α-refinement.
As in the case of Kakutani’s splitting procedure, we can consider the ρ-
refinement ρ2π of ρπ and so on in order to obtain the sequence of partitions
(ρnπ)n∈N defined as follows.

Definition 1.1.31. Given a non-trivial finite partition ρ of [0, 1[, the se-
quence of ρ-refinements (ρnπ)n∈N of π is defined as the sequence of partitions
obtained by successive ρ-refinements of π.

By using arguments from ergodic theory, Volčič [102] proved that the
sequence (ρnω)n∈N is u.d. for every finite partition ρ.

A natural problem is to estimate the asymptotic behaviour of the dis-
crepancy of (ρnπ)n∈N.
A first result in this direction has been obtained by Carbone [19], who con-
sidered the so-called LS-sequences for ρ consisting of L intervals of length
α and S intervals of length α2, such that αL+ α2S = 1.
We will provide a complete description of this class of sequences in Chapter
2.
The first general results providing upper bounds for the discrepancy of se-
quences of arbitrary ρ-refinements of ω have been found by Drmota and
Infusino [28]. The authors consider a new approach based on the analysis of
a tree evolution process, namely the Khodak algorithm, where the genera-
tion of successive nodes has the same structure as the ρ-refinement process.
Let us state the results found in [28].

Definition 1.1.32. Let p1, . . . , pm be positive integers. We say that

log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related if there exists a positive number

Λ such that log
(

1
p1

)
, . . . , log

(
1
pm

)
are integer multiples of Λ, that is

log

(
1

pj

)
= njΛ , with nj ∈ Z for j = 1, . . . ,m

Without loss of generality, we can assume that Λ is as large as possible which
is equivalent to assume that gcd(n1, . . . , nm) = 1.

We say that log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related if they are not

rationally related.

Theorem 1.1.33. Suppose that the lengths of the intervals of a partition

ρ of [0, 1[ are p1, . . . , pm and that log
(

1
pj

)
for j = 1, . . . ,m are rationally

related. Then there exist a real number η > 0 and an integer d ≥ 0 such
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that the discrepancy Dn of (ρnω)n∈N is bounded by

Dn =


O
(

(log k(n))d

k(n)η

)
if 0 < η < 1 ,

O
(

(log k(n))d+1

k(n)η

)
if η = 1 ,

O
(

1
k(n)

)
if η > 1 .

The next theorem requires the following

Definition 1.1.34. Every irrational number x has an approximation con-
stant c(x) defined by

c(x) = lim inf
q→∞

q|qx− p| ,

where p is the nearest integer to qx.
Moreover x is said to be badly approximable if c(x) > 0.

Theorem 1.1.35. Suppose that the lengths of the intervals of a partition ρ
of [0, 1[ are p and q = 1 − p. If log p

log q /∈ Q is badly approximable, then the
discrepancy Dn of (ρnω) is bounded by

Dn = O

((
log log(k(n))

log(k(n))

) 1
4

)
, n→∞ .

Furthermore, if p, q are algebraic numbers then

Dn = O
((

log log(k(n))

log(k(n))

)κ)
, n→∞,

where κ is an effectively computable positive real constant.

In this second case, we can observe that weaker upper bounds for the
discrepancy are obtained, since they depend heavily on Diophantine approx-
imation properties of the ratio log p

log q .
Finally, the authors proved bounds for the elementary discrepancy of the
sequences of partitions constructed for a certain class of fractals.

A second interesting problem arising in this context concerns the uniform
distribution of sequences of partitions, when the starting partition π is not
the trivial partition ω.
As pointed out in [102], if we start from an arbitrary initial partition π, then
the sequence of partitions (ρnπ)n∈N is in general not u.d..

Remark 1.1.36. Let us consider

π =

{[
0,

2

5

[
,

[
2

5
, 1

[}
and ρ =

{[
0,

1

2

[
,

[
1

2
, 1

[}
.
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It is clear that the ρ−refinement operates alternatively on
[

2
5 , 1
[

and
[
0, 2

5

[
.

So, if we consider the sequence of measures (µn)n∈N associated to (ρnπ)n∈N,
then for any measurable set E ⊂ [0, 1[ the subsequence (µ2n)n∈N converges
to

λ2n(E) =
5

4
· λ
(
E ∩

[
0,

2

5

[)
+

5

6
· λ
(
E ∩

[
2

5
, 1

[)
,

while the subsequence (µ2n+1)n∈N converges to

λ2n+1(E) =
5

6
· λ
(
E ∩

[
0,

2

5

[)
+

10

9
· λ
(
E ∩

[
2

5
, 1

[)
.

Hence, (µn)n∈N does not converge and consequently (ρnπ)n∈N is not u.d..
It is worthwhile noticing that the same problem arises even in the simplest
case of Kakutani’s splitting procedure.
So, it is essential to find sufficient conditions on π in order to guarantee the
uniform distribution of (αnπ)n∈N or more in general of (ρnπ)n∈N.

The solution to this problem has been found by Aistleitner and Hofer
[2], who gave necessary and sufficient conditions on π and ρ under which
the sequence (ρnπ)n∈N is uniformly distributed.
The authors proved the following result, using methods introduced in [28].

Theorem 1.1.37. Let ρ be a partition of [0, 1[ consisting of m ≥ 2 intervals
of lengths p1, . . . , pm, and let π be an initial partition of [0, 1[ consisting
of l ≥ 2 intervals of lengths α1, . . . , αl. Then the sequence (ρnπ)n∈N is
uniformly distributed if and only if one of the following conditions is satisfied:

1. the real numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are irrationally related

2. the real numbers log
(

1
p1

)
, . . . , log

(
1
pm

)
are rationally related with pa-

rameter Λ and

αi = ceviΛ, c ∈ R+, vi ∈ Z, i = 1 . . . l .

Remark 1.1.38. Condition 2. includes the special case when the initial
partition π consists of intervals having the same length, and in particular the
case when the initial partition is the trivial partition ω and the corresponding
sequence of partition is a Kakutani sequence.

In particular, the following corollary gives conditions under which the
Kakutani sequence of partitions of a particular initial sequence π is u.d..

Corollary 1.1.39. Let ρ = {[0, p[, [p, 1[} and π = {[0, α[, [α, 1[}. Then
(ρnπ)n∈N is u.d. if and only if one of the following conditions is satisfied:

1. log(p)
log(1−p) is irrational
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2. log
(

1
p

)
and log

(
1

1−p

)
are rationally related with parameter Λ and

α = 1
ekΛ+1

for k ∈ Z.

Furthermore, in [2] a description of the general asymptotic behaviour of
a sequence of partitions, even in cases not covered by Theorem 1.1.37, is
given. More precisely, the authors proved the following

Theorem 1.1.40. Assume that neither condition 1. nor condition 2. of
Theorem 1.1.37 is satisfied. Then for any interval A = [a, b] ⊂ [0, 1] which
is completely contained in the i-th interval of the initial partition π for some
i, 1 ≤ i ≤ l, we have

lim sup
n→∞

1

k(n)

k(n)∑
j=1

1[a,b](t
n
j ) = c1(b− a) ,

lim inf
n→∞

1

k(n)

k(n)∑
j=1

1[a,b](t
n
j ) = c2(b− a) ,

where

c1 =

 l∑
j=1

αjexp

(
−Λ

{
logαj − logαi

Λ

})−1

> 1 ,

c2 =

 l∑
j=1

αjexp

(
Λ

{
logαi − logαj

Λ

})−1

< 1 ,

are constants depending on i.

Hence, if either condition 1. or 2. does not hold, then the sequence
(ρnπ)n∈N is not u.d..
Now we would like to discuss how to associate to a u.d. sequence of parti-
tions a u.d. sequence of points.
The problem is the following: Assume that (πn)n∈N is a u.d. sequence of
partitions of [0, 1[. Is it possible to rearrange the points tni determining the
partitions πn, for 1 ≤ i ≤ k(n), in order to get a u.d. sequence of points?
Clearly, we can reorder points in several different ways and a natural restric-
tion is that we first reorder all the points determining π1 then those defining
π2, and so on. A reordering of this kind is called sequential reordering.
We introduce a result proved by Volčič in [102], where a probabilistic answer
to this problem is given.

Definition 1.1.41. If (πn)n∈N is a u.d. sequence of partitions of [0, 1[ with

πn = {[tni−1, t
n
i [: 1 ≤ i ≤ k(n)} ,
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the sequential random reordering of the points tni is a sequence (ϕm)m∈N
of consecutive blocks of random variables. The n-th block consists of k(n)
random variables which have the same law and represent the drawing, with-

out replacement, from the sample space Wn =
{
tn1 , . . . , t

n
k(n)

}
where each

singleton has probability 1
k(n) .

Denote by Sn the set of all permutations on Wn, endowed with the
probability P (τn) = 1

k(n)! with τn ∈ Sn.

Any sequential random reordering of (πn)n∈N corresponds to a random
selection of τn ∈ Sn for each n ∈ N. The permutation τn ∈ Sn identifies
the reordered k(n)-tuple of random variables ϕi with K(n− 1) ≤ i ≤ K(n),

where K(n) =
n∑
i=1

k(i). Therefore, the set of all sequential random reorder-

ings can be endowed with the natural product probability on the space

S =
∞∏
n=1

Sn.

Theorem 1.1.42. If (πn)n∈N is a u.d. sequence of partitions of [0, 1[, then
the sequential random reordering of the points tni defining them is almost
surely a u.d. sequence of points in [0, 1[.

1.1.3 Multidimensional case

In this section we collect results about uniform distribution and discrepancy
in the multidimensional case. We will see that some of the results stated
in the first subsection can be naturally extended in the s-dimensional unit
cube [0, 1[s, while some others require a deeper analysis, as in the case of
the estimation of the discrepancy.
In fact, apart from the case s = 1, it is in general very difficult to give
good quantitative estimates concerning the distribution of multidimensional
sequences and several problems are still open.

Let s be an integer with s ≥ 2. We use the following notation: for
two points a,b ∈ [0, 1[s we write a ≤ b and a < b if the corresponding
inequalities hold in each coordinate; furthermore, we write [a,b[ for the set
{x ∈ [0, 1[s: a ≤ x < b}, and we call such a set an s-dimensional interval.
Moreover we denote by 1J the indicator function of the set J ⊆ [0, 1[s and
by λs the s-dimensional Lebesgue measure (for short we write λ instead of
λ1). Note that vectors will be written in bold fonts and we write 0 for the
s-dimensional vector (0, . . . , 0).

Definition 1.1.43. A sequence (xn)n∈N of points in [0, 1[s is called uni-
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formly distributed (u.d.) if

lim
N→∞

1

N

N∑
n=1

1[a,b[(xn) = λs([a,b[) (1.17)

for all s-dimensional intervals [a,b[⊆ [0, 1)s.

In particular, we can introduce the following function

g(x, y) = lim
N→∞

1

N

N∑
n=1

1[0,x[×[0,y[(xn, yn), (1.18)

which will be extensively used in the last chapter. We call g the asymptotic
distribution function (a.d.f.) of a sequence (xn, yn)n∈N in [0, 1[2 if (1.18)
holds for every point (x, y) of continuity of g. Moreover, in [33] Fialová and
Strauch consider

lim sup
N→∞

1

N

N∑
n=1

f(xn, yn),

where (xn)n>1, (yn)n>1 are u.d. sequences in the unit interval and f is a con-
tinuous function on [0, 1[2, see also [94]. In this case the a.d.f. g of (xn, yn)n>1

is called copula.

Weyl was the first who extended the uniform distribution property to
the multidimensional case. His classical results [106, 105] have the following
multidimensional version.

Theorem 1.1.44 (Weyl’s Theorem). A sequence (xn)n∈N of points in [0, 1[s

is u.d. if and only if for every (real or complex-valued) continuous function
f on [0, 1[s the relation

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1]s

f(x)dx

holds.

In particular, if g is a copula, then we can write

lim
N→∞

1

N

N∑
n=1

f(xn, yn) =

∫ 1

0

∫ 1

0
f(x, y)dg(x, y). (1.19)

Let x,y ∈ Rs and let us denote by x·y the usual inner product in Rs, i.e.

x·y =
s∑
i=1

xiyi. Then we can give the generalization of the Weyl’s Criterion

presented in the first section.
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Theorem 1.1.45 (Weyl’s Criterion). The sequence (xn)n∈N in [0, 1[s is u.d.
if and only if

lim
N→∞

1

N

N∑
n=1

e2πih·xn = 0

for all non-zero integer lattice points h ∈ Zs \ 0.

As in the one-dimensional case, a measure for the quality of the uniform
distribution of a sequence is given by the discrepancy.

Definition 1.1.46 (Discrepancy). Let ω = {x1, . . . ,xN} be a finite set of
points in [0, 1[s. Then the discrepancy of ω is defined as

DN (ω) = sup
J∈[0,1[s

∣∣∣∣∣ 1

N

N∑
n=1

1J(xn)− λs(J)

∣∣∣∣∣. (1.20)

If (xn)n∈N is an infinite sequence of points, we associate to it the sequence
of discrepancies DN ({x1,x2, . . . ,xN}). So, the symbol DN (xn) denotes the
discrepancy of the initial segment {x1,x2, . . . ,xN} of the sequence.

Theorem 1.1.47. A sequence (xn)n∈N of points in [0, 1[s is u.d. if and only
if

lim
N→∞

DN (xn) = 0 . (1.21)

If we restrict to subintervals of the form J = [0, a1[× · · ·× [0, as[ with 0 <
ai ≤ 1, we get the obvious definition of multidimensional star discrepancy.

Definition 1.1.48 (Star discrepancy). Let ω = {x1, . . . ,xN} be a finite set
of points in [0, 1[s. Then the star discrepancy of ω is defined as

D∗N (ω) = sup
J

∣∣∣∣∣ 1

N

N∑
n=1

1J(xn)− λs(J)

∣∣∣∣∣, (1.22)

where the supremum is taken over all subintervals J ⊂ [0, 1[s of the form
J = [0, a1[× · · · × [0, as[ with 0 < ai ≤ 1.

The relation between discrepancy DN and star discrepancy D∗N in several
dimensions is very much similar to the one presented for s = 1.

Theorem 1.1.49. For any sequence (xn)n∈N of points in [0, 1[s we have

D∗N (xn) ≤ DN (xn) ≤ 2sD∗N (xn) .

In higher dimensions it is possible to define other forms of discrepancies.
One of the most used to quantify the convergence in (1.17) is the isotropic
discrepancy, where the supremum is taken over all convex sets in the unit
cube [0, 1[s (see e.g. [23] for estimates of the discrepancy of point sets with



Preliminary topics 17

respect to closed convex polygons). The origin of this new definition is
strictly related to the integration domain in the right hand side of (1.17).
We refer to [63] for a complete introduction to geometric discrepancy, i.e.
discrepancy studied for classes of geometric figures other than the axis-
parallel rectangles, such as the set of all balls, or the set of all polygons or
polytopes, and so on.

In the sequel we will present known lower bounds for the discrepancy.

Proposition 1.1.50. For any finite set ω = {x1, . . . ,xN} of points in [0, 1[s

we have that
1

N
≤ DN (ω) ≤ 1 . (1.23)

As we have already pointed out, the lower bound is exactly attained only
in the one-dimensional case. In fact, the following theorem, due to Roth [81],
illustrates that in the higher-dimensional case examples of sequences having
discrepancy equal to 1

N cannot exist.

Theorem 1.1.51 (Roth’s Theorem). Let s ≥ 2. Then the discrepancy
DN (ω) of the point set ω = {x1, . . . ,xN} ⊂ [0, 1[s is bounded from below by

DN (ω) ≥ cs

(
(logN)

s−1
2

N

)
, (1.24)

where cs > 0 is an absolute constant given by cs = 1

24s((s−1) log 2)
s−1

2
.

This bound is the best known result for s > 3 and for s = 3 it has been
slightly sharpened by Beck [10].
The first finite sequence of N ≥ 2 points in [0, 1[s showing asymptotic be-

haviour of the discrepancy of order O
(

(logN)s−1

N

)
has been the Hammersley

point set [44], for which the constant depends only on the dimension s.
We will show how to construct this point set in the next paragraph.
A stronger form of Roth’s Theorem, but with a worse constant, is the fol-
lowing theorem proved by Beck and Chen [11].

Theorem 1.1.52. Let s ≥ 2 and ω = {x1, . . . ,xN} an arbitrary finite
sequence of N > 1 points in Rs. Then there exists an s-dimensional cube
Q ⊂ [0, 1[s with sides parallel to the axes satisfying∣∣∣∣∣ 1

N

N∑
i=1

1(xi)− λs(Q)

∣∣∣∣∣ ≥ cs(logN)
s−1

2 − ds
N

,

where

cs =
(log 2)

2−s
4 2−

7
2 3

s
2π−

s
4

((s− 1)!)
1
2 s

s
4 (2s+ 1)

s−1
2 (6s+ 1)

s
2
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and
ds = s

1
2 2s+23

s−1
2 .

It is clear that Roth’s Theorem follows from this one and it is an inter-
esting question whether the converse is also true. This has been proved only
in the 2-dimensional case by Ruzsa [82], but in general only weaker results
have been found.

For infinite sequences in [0, 1[s we only have a long-standing conjecture,
stating that for every dimension s there exists a constant cs such that for
any infinite sequence (xn)n∈N in [0, 1[s

DN (xn) ≥ cs
(

(logN)s

N

)
(1.25)

holds, for infinitely many N and with a positive constant depending only on
the dimension s.
It is a widely held belief that the orders of magnitude in (1.24) and (1.25)
are best possible even if this is only known for (1.24) in the case s = 1, 2
and for (1.25) in the case s = 1 (see Theorem 1.1.11).

Sequences of points in [0, 1[s having discrepancy of order O
(

(logN)s

N

)
are

called low discrepancy sequences.
In the last part of this section we will highlight the important role played
by low-discrepancy sequences in Quasi-Monte Carlo integration and other
applications to numerical analysis.

In the following paragraph we show some of the most well-known exam-
ples of multidimensional low discrepancy sequences and point sets, namely
Kronecker sequence, Hammersley point set and Halton sequence. The first
one is the obvious generalization of the one-dimensional Kronecker sequence,
while the second and the third are a finite and infinite generalization of the
van der Corput sequence.

Example 1.1.53 (Kronecker sequence). Let θ1, . . . , θs be distinct irrational
numbers. The s-dimensional sequence

(xn)n∈N = ({nθ1}, . . . , {nθs})n∈N

is called Kronecker sequence.
It has been proved by Weyl [105] that this sequence is uniformly distributed
if and only if 1, θ1, . . . , θs are linearly independent over Q. Indeed it is a
direct application of Weyl’s criterion (1.4) and the proof is exactly the same
as in the one-dimensional case.
Concerning the problem of estimating the discrepancy of this sequence, the
approach used is completely different from that in the one-dimensional case,
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since there is no canonical generalization of Ostrowski numeration system to
higher dimensions. This is essetially due to the fact that there is no canon-
ical generalization of the Euclidian algorithm. To cope with the lack of a
satisfactory tool replacing continued fractions, several approaches are possi-
ble, for instance a classical one is that of best simultaneous approximations,
introduced by Lagarias [58, 59] in 1982.

So almost every Kronecker sequence is an “almost” low-discrepancy se-
quence.

Example 1.1.54 (Hammersley point set). For a given N ∈ N, an s-
dimensional Hammersley point set (xn) of size N in [0, 1[s is defined by

xn =
( n
N
,ϕb1(n), . . . , ϕbs−1(n)

)
n = 0, 1, . . . , N − 1 ,

where b1, . . . , bs−1 are given coprime positive integers and ϕbi is the radical
inverse function in base bi defined in Definition 1.1.19.

It is immediate to see that this is an s-dimensional generalization of the
van der Corput sequence. It has been introduced by Hammersley [44] in his
survey paper on Monte Carlo methods in order to achieve a smaller error
bound in the estimate of multidimensional integrals by means of finite sums.
This problem will be discussed in detail in the next section.

Halton [43] proved that the Hammersley sequence has a discrepancy of

order O
(

(logN)s−1

N

)
. We will see in the next paragraph that this result di-

rectly follows from the following lemma applied to the (s − 1)-dimensional
Halton sequence.
The following lemma turns out to be a very useful result to contruct differ-
ent low-discrepancy point sets in the s-dimensional unit cube, as soon as we
know that the sequence (xn)n∈N is low-discrepancy in [0, 1[s−1.

Lemma 1.1.55. For s ≥ 2, let ω be an arbitrary sequence of points (xn)n∈N
in [0, 1[s−1. For N ≥ 1, let P be the point set consisting of

(
n
N ,xn

)
∈ [0, 1[s

for n = 0, 1, . . . , N − 1. Then

ND∗N (P ) ≤ max
1≤M≤N

MD∗M (ω) + 1 .

Remark 1.1.56. A Hammersley point set is a finite set of size N which
cannot be extended to an infinite sequence. In fact, if we want to increase
the number of points by one we have to compute again all the N point of the
form n

N , losing the previously calculated values.
It is evident that this is a quite tedious work, especially for applications.
So now we introduce the second generalization to higher dimension of the
van der Corput sequence. This new construction gives rise to an infinite
sequence of points in the unit cube [0, 1[s.
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Example 1.1.57 (Halton sequence). Let b1, . . . , bs ≥ 2 be pairwise coprime
integers. Then the s−dimensional Halton sequence (xn)n∈N in [0, 1[s is the
sequence of points of general term

xn = (ϕb1(n), . . . , ϕbs(n)) ,

where ϕbi is the radical inverse function in base bi defined in 1.1.19.

For s = 1 and b1 = 2 we just get the van der Corput sequence.
The following result is due to Halton [43] and shows that the Halton sequence
has low-discrepancy.

Theorem 1.1.58. Let (xn)n∈N be the Halton sequence in the pairwise rel-
atively prime bases b1, . . . , bs. Then

D∗N (xn) <
s

N
+

1

N

s∏
i=1

(
bi − 1

2 log bi
logN +

bi + 1

2

)
for all N ≥ 1 .

From this theorem and Lemma 1.1.55, we get the following result.

Corollary 1.1.59. If P is the s-dimensional Hammersley point set of size
N in Is, then

D∗N (P ) <
s

N
+

1

N

s∏
i=1

(
bi − 1

2 log bi
logN +

bi + 1

2

)
.

We end this paragraph with two important remarks concerning the dis-
crepancy of the Halton sequences.

Remark 1.1.60. Apart from the requirement of coprimality in the choice of
the bases b1, . . . , bs in the definition of the Halton sequence, it is also possible
to optimize this choice in order to get a better discrepancy bound.
In fact, as we have shown in Theorem 1.1.58, an upper bound for the dis-
crepancy of the Halton sequence is given by

D∗N (xn) ≤ A(b1, . . . , bs)N
−1(logN)s +O(N−1(logN)s−1) ,

where the coefficient of the main term is

A(b1, . . . , bs) =
s∏
i=1

bi − 1

2 log bi
.

So in order to get a better upper bound, we need to minimize this coefficient.
It is evident that it is minimal if we let b1, . . . , bs be the first s primes p1 =
2, p2 = 3, . . . , ps.
Of course the same assumption can be made in the case of the Hammersley
point set and it gives again a better bound for the discrepancy.
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If we denote by As the term A(p1, . . . , ps) and consider the Prime Number
Theorem, we obtain

lim
s→∞

logAs
s log s

= 1 .

Thus As increases superexponentially as s → ∞ and this means that Hal-
ton sequences and Hammersley point sets are actually useful for applications
only for small dimensions s.
This phenomenon, generically referred to as “curse of dimensionality”, es-
sentially implies that when the dimension increases, the Halton sequence
does not show a good asymptotic behaviour.
To cope with this problem, it has been introduced, first by Spanier [92] and
later considered by several authors (see e.g. [1, 45, 48, 49, 69, 71]), the
notion of hybrid sequences. Roughly speaking, they are s-dimensional se-
quences obtained by concatenating d-dimensional low-discrepancy sequences
with s − d-dimensional random sequences. We will discuss the advantages
of considering these new sequences in the last part of this section.

Remark 1.1.61. As we have already pointed out, choosing the first s primes
instead of arbitrary coprime bases improves the bound for the discrepancy of
the Halton sequence. Nevertheless, numerical calculations showed strong cor-
relation between components. Correlations between radical inverse functions
with different bases used for different dimensions reflect on poorly distributed
two-dimensional projections. The first investigations on this problem are due
to Braaten and Weller [14].
For instance, if we consider the eight-dimensional Halton sequence, we know
that the last two coordinates are defined by the digit espansion in base 17 and
19, respectively. As the following picture taken from [100] shows, there is a
strong correlation between the seventh and eighth coordinate.

The poor two-dimensional projections can be explained by the fact that the
difference between the two primes bases 17 and 19 corresponding to the di-
mensions 7 and 8 is very small compared to the base size and so the first 18
points in the two bases have the same expression.
One could think that one way to avoid this problem is to drop the first 20
entries, but this is not very convenient since the same problem appears also
for bigger twin primes. In order to break correlations, the most convenient
solution is given by a scramble of the original Halton sequence. It is a ran-
domized version of the Halton sequence, in the same way as it has been done
to obtain the generalized van der Corput sequence in one dimension, based
on digit permutations.
An alternative approach suggested in [24] is to find an optimal Halton se-
quence within a family of scrambled sequences.
Other methods are considered in literature to randomize the Halton sequence
and they make use of the description of the sequence by means of the von
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Figure 1.1: Projection of the first 100 points of the Halton sequence onto
the seventh and the eighth coordinates

Neumann-Kakutani transformation, see e.g. [72, 83, 104]. We will analyze
this transformation and its connection with u.d. sequences in the next chap-
ter.
As discussed above, even if Halton sequences are low-discrepancy and there-
fore suitable for applications, it is sometimes better to consider point sets
and sequences whose discrepancy bounds have much smaller constants.
In view of this consideration, point sets called (t,m, s)-nets and sequences
called (t, s)-sequences have been introduced by Niederreiter [66].

1.1.4 Quasi-Monte Carlo methods

We end this section by presenting the most interesting application of low-
discrepancy sequences.
Roughly speaking, quasi-Monte Carlo methods are deterministic versions of
Monte Carlo methods.
This last technique consists in the numerical approximation of integrals of
a function f defined on the s-dimensional unit cube [0, 1]s by the average
function value at the N quadrature points belonging to [0, 1[s. More pre-
cisely, the crude Monte Carlo approximation for the integral of a function
f(x) on the unit interval [0, 1]s is∫

[0,1]s
f(x)dx ≈ 1

N

N∑
n=1

f(xn) ,

where x1, . . . ,xN are random points from [0, 1[s obtained by performing N
independent and uniformly distributed trials.
The first important question arising when implementing an approximation
technique concernes the type of convergence and the speed of convergence.
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For the crude Monte Carlo method, the strong law of large numbers guar-
antees that the numerical integration procedure converges almost surely.
Moreover, it follows from the central limit theorem that the integration error
is ∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1]s
f(x)dx

∣∣∣∣∣ = O
(
N−1/2

)
.

It is important to note that this order of magnitude does not depend on the
dimension s, as it happens for classical numerical integration where the er-
ror bound is of order O

(
N−2/s

)
. So the Monte Carlo method for numerical

integration allows us to overcome the curse of dimensionality.
It is evident that for the practical implementation of the Monte Carlo
method the fundamental question is how to produce a random sample. Even
if there are some techniques such as tables of “random” numbers or physical
devices for generating random numbers such as white noise, there are some
deficiencies in the Monte Carlo method minating is usefulness. As remarked
in [67], the main deficiencies of the Monte Carlo method are:

• there are only probabilistic error bounds,

• the regularity of the integrand is not reflected,

• generating random samples is difficult.

To cope with these three problems one should select the sample points ac-
cording to a deterministic scheme that is well suited for the problem at hand.
The quasi-Monte Carlo method is based on this idea.
Recall that Weyl’s Theorem 1.1.44 suggests the possibility of a numerical
approximation of the integral of a continuous function f defined on [0, 1]s

by the average function value at N u.d. points in [0, 1[s, i.e.

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫
[0,1[s

f(x)dx ,

where x1, . . . ,xN are u.d. in [0, 1[s.
Therefore, it is very interesting to get information on the order of this con-
vergence.
Referring to this problem, a very useful estimate is provided by the Koksma-
Hlawka inequality which is strictly related to the discrepancy of the se-
quence.
Before we can present this result, we need to define the variation of a func-
tion f : [0, 1]s → R.

By a partition π of [0, 1]s we mean a set of s finite sequences (η
(0)
i , . . . , η

(mi)
i )

for i = 1, . . . , s with 0 = η
(0)
i ≤ η

(1)
i ≤ · · · ≤ η

(mi)
i = 1. In connection with
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such a partition we define for each i = 1, . . . , s an operator ∆i by

∆if(x1, . . . , xi−1, η
(j)
i , xi+1, . . . , xs) = f(x1, . . . , xi−1, η

(j+1)
i , xi+1, . . . , xs)

− f(x1, . . . , xi−1, η
(j)
i , xi+1, . . . , xs)

for 0 ≤ j < mi. Operators with different indices obviously commute and
∆i1,...,ik stands for ∆i1 · · ·∆ik . Such an operator commutes with summation
over variables on which it does not act.

Definition 1.1.62 (Function of bounded variation in the sense of Vitali).
For a function f : [0, 1]s → R we set

V (s)(f) = sup
P

m1−1∑
j1=0

· · ·
ms−1∑
js=0

∣∣∣∆1,...,sf(η
(j1)
1 , . . . , η(js)

s )
∣∣∣ ,

where the supremum is extended over all partitions P of [0, 1]s.
If V (s)(f) is finite then f is said to be of bounded variation on [0, 1]s in the
sense of Vitali.

Definition 1.1.63 (Function of bounded variation in the sense of Hardy
and Krause). Let f : [0, 1]s → R and assume that f is of bounded variation
in the sense of Vitali. If the restriction f (F ) of f to each face F of [0, 1]s of
dimension 1, 2, . . . , s− 1 is of bounded variation on F in the sense of Vitali,
then f is said to be of bounded variation on [0, 1]s in the sense of Hardy and
Krause.

So we can state the following theorem.

Theorem 1.1.64 (Koksma-Hlawka’s Inequality).
Let f be a function of bounded variation on [0, 1]s in the sense of Hardy
and Krause. Let ω = (x1, . . . ,xN ) be a finite set of points in [0, 1]s. Let us
denote by ωl the projection of ω on the (s− l)−dimensional face Fl of [0, 1]s

defined by Fl = {(u1, . . . , us) ∈ [0, 1]s : ui1 = · · · · · · = uil = 1}. Then we
have∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1]s
f(x)dx

∣∣∣∣∣ ≤
s−1∑
l=0

∑
Fl

D∗N (ωl)V
(s−l)(f (Fl)), (1.26)

where the second sum is extended over all (s − l)−dimensional faces Fl of
the form ui1 = · · · = uil = 1. The discrepancy D∗N (ωl) is clearly computed
on the face of [0, 1]s in which ωl is contained.

Hence, the Koksma-Hlawka’s inequality assures that considering a low
discrepancy s-dimensional sequence in the Quasi-Monte Carlo integration
leads to an improvement on the Monte Carlo error bound.
However, in high dimensions the quasi-Monte Carlo method starts losing its
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effectiveness over the Monte Carlo method.
Since the error bound in the Monte Carlo approximation does not depend
on the dimension, several authors found worthwhile to combine the advan-
tages of Monte Carlo and Quasi-Monte Carlo methods, i.e., statistical error
estimation and faster convergence. As we have already pointed out in the
section about the convergence rate of the Halton sequence the basic idea is
to consider the so-called hybrid sequences.

For a mixed s-dimensional sequence, whose elements are vectors obtained
by concatenating d-dimensional vectors from a low-discrepancy sequence
with (s− d)-dimensional random vectors, probabilistic upper bounds for its
star discrepancy have been provided by several authors, e.g. [1, 71, 73, 39].
The first deterministic bounds have been shown by Niederreiter [68] and
since then other results have been found, see e.g. [69, 40].

1.2 Ergodic Theory

In this section we recall basic definitions and results on the theory of dynam-
ical systems. Our main references for this section will be [25, 27, 30, 77, 103].
The structure of the section is the following: a first part deals with measure-
theoretic aspects of the theory, namely measure-preserving transformations,
property of mixing and ergodicity and examples.
A second part is concerned with topological aspects, such as invariant mea-
sures for continuous transformations, with a particular attention to dynam-
ical systems associated to a numeration system.

1.2.1 Preliminary definitions and results

Before giving formal definitions of the mathematical objects in ergodic the-
ory, it is worthwhile to understand what is ergodic theory about. Roughly
speaking, it is a part of the theory of dynamical systems. In its simplest
form, a dynamical system is a function T defined on a set X. The aim
of the theory is to describe the asymptotic behavior of the iterates of this
map in a certain point x ∈ X, defined by induction in the following way:
x = T 0(x), T 1(x) = T (x), T 2(x) = T (T (x)), . . . , Tn = Tn−1(T (x)).
This sequence is called orbit of x under T .

According to the different structure which X and T may have, the theory
of dynamical systems splits into subfields:

• Differentiable dynamics deals with actions by differentiable maps on
smooth manifolds;

• Ergodic theory deals with measure preserving actions of measurable
maps on a measure space, usually assumed to be finite;
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• Topological dynamics deals with actions of continuous maps on topo-
logical spaces, usually compact metric spaces.

Our dissertation will focus only on the last two aspects of the theory.

Definition 1.2.1. A measure preserving transformation is a transformation
T defined on a measure space (X,A, µ), such that

1. T is measurable: E ∈ A ⇒ T−1E ∈ A;

2. µ is T -invariant: µ(T−1E) = µ(E) for all E ∈ A.

A classic problem in ergodic theory is to find a suitable measure on X
which is preserved by T .
We now provide some examples of transformations and the corresponding
preserved measures.

Rotations on a circle Let X = [0, 1[ , let B be the Borel σ-algebra
and λ be the Lebesgue measure on X. Fix α ∈ R. Define Tα : X → X
by T (x) = x + α mod 1. Tα is called a circle rotation, because the map
R(x) = e2πix is an isomorphism between Tα and the rotation by the angle
2πα on the unit circle S1.
In fact, it is well-known that an alternative way to describe the circle S1, that
is often more convenient, is to cut and open the circle to obtain an interval.
Let I/ ∼ denote the unit interval [0, 1] with the endpoints identified: the
symbol ∼ recalls that 0 and 1 are glued together. Then I/ ∼ is equivalent
to a circle.
More formally, consider R/Z, i.e. the space whose points are equivalence
classes x+Z of real numbers x up to integers: two reals x1, x2 ∈ R are in the
same equivalence class if and only if there exists k ∈ Z such that x1 = x2 +k.
Then R/Z = I/ ∼ since [0, 1] contains exactly one representative for each
equivalence class with the only exception of 0 and 1, which belong to the
same equivalence class, but are identifyed.
All these spaces can be considered to describe a rotation on a circle.

Lemma 1.2.2. Tα is measure preserving on X with respect to the Lebesgue
measure λ.

Doubling map Consider now X = [0, 1] equipped with the Lebesgue
measure λ, and define T2 : X → X by T2(x) = 2x mod 1. T2 is is called the
doubling map. It is an easy exercise to prove the following

Lemma 1.2.3. T2 preserves the Lebesgue measure λ on [0, 1].

Remark 1.2.4. The dynamical system associated to this map yields the
binary expansion of points in [0, 1[ in the following way. We define the
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function a1 by

a1(x) =

{
0, 0 ≤ x < 1/2

1, 1/2 ≤ x < 1 ,

then T2x = 2x− a1(x). Now, for n ≥ 1 set an(x) = a1(Tn−1
2 x). Fix x ∈ X,

rewriting we get x = a1(x)
2 + T2x

2 , where T2x = a2(x)
2 +

T 2
2 x
2 . Continuing in

this manner, we see that for each n ≥ 1,

x =
a1(x)

2
+
a2(x)

22
+ · · ·+ an(x)

2n
+
Tn2 x

2n
.

Since 0 < Tn2 x < 1, we get

x−
n∑
i=1

ai(x)

2i
=
Tn2 x

2n
→ 0 as n→∞.

Thus, x =
∑n

i=1
ai(x)

2i
.

We now present an example of a transformation which does not preserve
the Lebesgue measure λ.

β-transformations Let X = [0, 1[ and β > 1 be real. Define the trans-
formation Tβ : X → X by

Tβx = βx mod 1 =

{
βx, if 0 ≤ x < 1

β

βx− 1, if 1
β ≤ x < 1 .

(1.27)

Figure 1.2 illustrates the most well-known β-transformation, obtained with

β =
√

5+1
2 .

This family of transformations got a considerable interest since its intro-
duction by Rényi [79] in 1957. He showed that for every β > 1 there exists
a unique normalized measure µβ, equivalent to the Lebesgue measure and
invariant under Tβ, such that for every element E in the Borel σ-algebra of
[0, 1[

µβ(E) =

∫
E
hβ(x)dx ,

whose density hβ is a measurable function satisfying

1− 1

β
≤ hβ(x) ≤ 1

1− 1
β

.

Few years later, Gelfond [38] and Parry [75] independently found the fol-
lowing explicit form for the density hβ defining the measure µβ, where for
convenience one defines T 0

β (x) = x and inductively Tnβ (1) = Tn−1
β ({β}):

hβ(x) =
1

C(β)

∞∑
n=0

1

βn
1[0,Tnβ 1[(x) for x ∈ [0, 1[ , (1.28)
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0 1
β

a

b

a
β

b
β

a+1
β

Figure 1.2: Preimage of the interval [a, b[ under the β-transformation with

β =
√

5+1
2

where C(β) is the normalizing constant defined by

C(β) =

∫ 1

0

∞∑
n=0

1

βn
1[0,Tnβ 1[(x)dx .

Remark 1.2.5. By iterating Tβ, one can show that every x ∈ X has a series
expansion of the form

x =
∞∑
i=1

di(x)

βi
,

where the digits di(x) are all elements of the set {0, 1, . . . , bβ− 1c}. In fact,
if we define the function d1 by

d1(x) =

{
0, 0 ≤ x < 1/β

1, 1/β ≤ x < 1 ,

then Tβx = βx − d1(x). For n ≥ 1, set dn(x) = d1(Tn−1
β x). Fix x ∈ X,

rewriting we get x = d1(x)
β +

Tβx
β , where Tβx = d2(x)

β +
T 2
βx

β . Continuing in
this manner, we see that for each n ≥ 1,

x =
d1(x)

β
+
d2(x)

β2
+ · · ·+ dn(x)

βn
+
Tnβ x

βn
.

Since 0 < Tnβ x < 1, we get

x−
n∑
i=1

di(x)

βi
=
Tnβ x

βn
→ 0 as n→∞.
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Thus, x =
∑n

i=1
di(x)
βi

.

Rényi [79] was the first to define the representation of real numbers in
base β, generalising expansions in integer bases.
New generalizations, such as (α, β)-expansions [26] and (−β)-expansion [61]
have been recently introduced. We will talk more about β-expansions of real
numbers in the next subsection in relation to low-discrepancy sequences.

Remark 1.2.6. A reasonable question about the density defining the Tβ-
invariant measure concerns the sum involved in the definition. More pre-
cisely one can ask under which conditions the sum is finite. The answer to
this question has been given by Parry [75] and is related to the β-expansion
of β, i.e. if β has a recurrent tail in its β-expansion, then hβ is a step
function with a finite number of steps.

Definition 1.2.7. Let T : X → X be a measure preserving transformation
on a probability space (X,A, µ). The map T is said to be ergodic if for every
A ∈ A satisfying T−1(A) = A, we have µ(A) = 0 or µ(A) = 1.

We will use later an equivalent property: T is ergodic if and only if
for any measurable set B with µ(B) > 0, the set BT =

⋃+∞
i=−∞ T

i(B) has
measure 1.
A useful characterization of ergodic transformations is given by the following
lemma.

Lemma 1.2.8. Let (X,A, µ) be a probability space and let T : X → X be
a measure-preserving transformation. Then T is ergodic if and only if the
only T -invariant measurable functions f , i.e. satisfying f ◦ T = f (up to
sets of measure 0), are constant almost everywhere.

For the straightforward proof, we notice that if the condition in the
lemma holds and A is an invariant set, then 1A ◦T = 1A almost everywhere,
so that 1A is an a.e. constant function and so A or X \ A is of measure 0.
Conversely, if f is an invariant function, we see that {x : f(x) < α} is an
invariant set for each α and hence of measure 0 or 1. It follows that f is
constant almost everywhere.

A basic problem in ergodic theory is to determine whether two measure
preserving transformations are measure theoretically isomorphic.
To answer to this question it seems natural to introduce the unitary operator
UT associated to T on L2

µ(X).
Given a a measure-preserving map T on a function space the associated
induced operator UT : L2

µ → L2
µ is defined by

UT (f) = f ◦ T .
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Since L2
µ is a Hilbert space, then for any two functions f1, f2 ∈ L2

µ

〈UT f1, UT f2〉 =

∫
f1 ◦ T · f2 ◦ Tdµ

=

∫
f1f2dµ

= 〈f1, f2〉 .

where the second equality holds since µ is T -invariant.
Thus UT is an isometry mapping L2

µ into L2
µ whenever (X,B, µ, T ) is a

measure-preserving system.
If U : H1 → H2 is a continuous linear operator between Hilbert spaces, then
the relation

〈Uf, g〉 = 〈f, U∗g〉

defines an associated operator U∗ : H2 → H1 called the adjoint of U . The
operator U is an isometry, i.e. ||Uh||H2 = ||h|| for all h ∈ H1, if and only if

U∗U = IdH1 ,

where IdH1 is the identity operator on H1 and

UU∗ = πImU ,

where πImU is the projection operator onto Im U .
Finally, an invertible linear operator U is called unitary if U−1 = U , or
equivalently if U is invertible and

|〈Uh1, Uh2〉| = |〈h1, h2〉|

for all h1, h2 ∈ H1. If U : H1 → H2 satisfies this last relation then U is an
isometry (even if it is not invertible).
Thus for any measure-preserving transformation T , the associated operator
UT is an isometry, and if T is invertible then the associated operator UT is
a unitary operator, called the associated unitary operator of T or Koopman
operator of T.
Properties of T that are preserved under unitary equivalence of the as-
sociated unitary operators are called spectral properties. T1 and T2 are
called spectrally isomorphic if their associated unitary operators are unitar-
ily equivalent.
The following lemma shows that ergodicity is a spectral property and it is
a direct corollary of Lemma 1.2.8.

Lemma 1.2.9. A measure-preserving transformation T is ergodic if and
only if 1 is a simple eigenvalue of the associated operator UT .
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For a concise treatment of the spectral theory relevant to ergodic theory,
we refer to Parry’s book [76].
All examples of measure preserving transformations considered above are
also examples of ergodic transformations. In particular, it is an easy appli-
cation of Lemma 1.2.8 to show that Tα : X → X defined by T (x) = x + α
mod 1 and T2 : X → X defined by T2(x) = 2x mod 1 are ergodic.

The proof of the ergodicity of Tβ is a bit more involved. A proof can be
found in Renyi [79] and it makes use of the following

Lemma 1.2.10 (Knopp’s Lemma). Let B be a Lebesgue set and C be a class
of subintervals of [0, 1[ such that

1. every open subinterval of [0, 1[ is at most a countable union of disjoint
elements from C

2. ∀A ∈ C λ(A ∩B) ≥ γλ(A) with γ > 0 independent of A.

Then λ(B) = 1.

In general, checking that a given measure-preserving transformation is
ergodic is a non-trivial task. We will discuss other stronger properties that
a measure-preserving transformation may enjoy, and that in some cases are
easier to check.
If T is ergodic with respect to µ, then the following result due to Birkhoff
[12] holds.

Theorem 1.2.11 (Birkhoff’s Theorem). Let (X,A, µ, T ) be a measure the-
oretical dynamical system. Then, for every f ∈ L1

µ(X), the limit

lim
N→∞

1

N

N−1∑
n=0

f(Tnx)

exists for µ-almost every x ∈ X (here T 0x = x). If T : X → X is ergodic,
then for every f ∈ L1(X) we have

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) =

∫
X
f(x)dµ(x) , (1.29)

for µ-almost every x ∈ X.

In particular, an immediate consequence of the previous theorem is that
the orbit (Tnx)n∈N of x under T is a u.d. sequence for almost every x ∈ X
whenever T is ergodic.

The following lemma follows easily from Birkhoff’s Theorem.



Preliminary topics 32

Lemma 1.2.12. Let T be a measure-preserving transformation on the prob-
ability space (X,A, µ). Then T is ergodic if and only if for all A,B ∈ A we
have

lim
N→∞

1

N

N−1∑
n=0

µ(T−nA ∩B) = µ(A)µ(B) . (1.30)

Recall from abstract probability theory that two events A,B are inde-
pendent if µ(A ∩ B) = µ(A)µ(B). Also recall that a sequence cn is said to
Cesàro converge to a if

lim
N→∞

1

N

N−1∑
j=0

cn = a .

Thus T is ergodic if and only if the Cesàro averages of the sequence µ(T−nA∩
B) converge to µ(A)µ(B). That is, given two sets A,B ∈ A, the sets
T−nA,B approach independence as n tends to infinity in some appropriate
sense.

1.2.2 Classical constructions of dynamical systems

In this section we discuss several standard methods for creating new mea-
sure preserving transformations from old ones. These constructions appear
quite frequently in applications.
Before giving explicit examples of constructions of dynamical systems, we
provid some useful relations between measure-preserving transformations.
For instance, one interesting notion is that of isomorphism for measure-
preserving transformations, i.e. when two measure-preserving transforma-
tions can be considered to be the same or equivalent.

Definition 1.2.13. Let (Xi,Ai, µi, Ti) for (i = 1, 2) be two measure-preser-
ving systems over a probability space. We say that T1 is isomorphic to T2 if
there exist A ∈ A1 and B ∈ A2 with µ1(A) = 1, µ2(B) = 1 such that

1. T1A ⊂ A, T2B ⊂ B

2. there exists an invertible measure-preserving transformation

φ : A→ B

with
φT1(x) = T2(φ(x))

for all x ∈ A, where A and B are assumed to be equipped with the
σ-algebras A∩A1 and B ∩A2, respectively, and the restrictions of the
measures µi to these σ-algebras.
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In this case we write T1 ' T2.

We have already seen that the map φ(x) = e2πix is an isomorphism be-
tween Tα and the rotation by the angle 2πα on the unit circle S1 and that
the map φ(x) = e2πix is an isomorphism between the doubling map T2 and
the map eiθ → e2iθ on S1.

This definition will be particularly useful in Chapter 4 when we will con-
struct new ergodic systems with a prescribed property via an isomorphism
with a system that has the desired property. In particular, we will refer to
the following example that can be found in [42, Example 2.4].

Example 1.2.14. Let Zb be the compact group of b-adic integers and τ :
Zb −→ Zb the addition-by-one map (called odometer). Our goal is to find
an isomorphism φb between τ and a transformation T on [0, 1[, such that
T = φb ◦ τ ◦ φ−1

b .
For an integer b ≥ 2, every z ∈ Zb has a unique expansion of the form

z =
∑
j≥0

zjb
j

with digits zj ∈ {0, 1, . . . , b − 1}. For z ∈ Zb we define the b-adic Monna
map φb : Zb −→ [0, 1[ by

φb

∑
j≥0

zjb
j

 =
∑
j≥0

zjb
−j−1.

The restriction of φb to N0 is the radical-inverse function in base b (see Def-
inition 1.1.19) that gives rise to the van der Corput sequence in base b.

The Monna map is continuous and surjective but not injective. In order
to make it an isomorphism we only consider the so-called regular representa-
tions, i.e. representations with infinitely many digits zj different from b− 1.
The Monna map restricted to these regular representations admits an inverse
(called pseudo-inverse) φ−1

b : [0, 1) −→ Zb, defined by

φ−1
b

∑
j≥0

zjb
−j−1

 =
∑
j≥0

zjb
j ,

where
∑

j≥0 zjb
−j−1 is a b-adic rational in [0, 1).

Moreover φb is measure preserving from Zb onto [0, 1[ and T = φb ◦ τ ◦
φ−1
b : [0, 1[→ [0, 1[. Hence φb and T are isomorphic.
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Remark 1.2.15. For an isomorphism between two measure-preserving trans-
formations, the following properties hold.

1. Isomorphism is an equivalence relation;

2. If T1 ' T2, then Tn1 ' Tn2 for every n > 0 .

Isomorphism is actually a relation which is in many cases too strong. A
weaker and useful condition is conjugacy.

Definition 1.2.16. Let (X,A, µ) be a probability space. Define an equiva-
lence relation on A by saying that A and B are equivalent (A ∼ B) if and
only if µ(A 4 B) = 0. Let Ã denote the collection of equivalence classes.
Then Ã is a Boolean σ-algebra under the operations of complementation,
union and intersection inherited from A. The measure µ induces a measure
µ̃ on Ã by µ̃(B̃) = µ(B). The pair (Ã, µ̃) is called a measure algebra.
A map Φ : (Ã2, µ̃2)→ (Ã1, µ̃1) is called an isomorphism of measure-algebras
if it is a bijection that preserves complements, countable unions and satisfies
µ̃1(Φ(B̃)) = µ̃2(B̃) for every B̃ ∈ Ã2.

Let (Xi,Ai, µi) for (i = 1, 2) be two probability spaces with correspond-
ing measure algebras (Ãi, µ̃i). If φ : X1 → X2 is measure-preserving, then

we have a map φ̃−1 : (Ã2, µ̃2) → (Ã1, µ̃1) defined by φ̃−1(B̃) = φ̃−1(B).
This map is well-defined since φ is measure-preserving. The map φ̃−1 pre-
serves complements and countable unions (and hence countable intersec-
tions). Also µ̃1(φ̃−1(B̃)) = µ̃2(B̃) for every B̃ ∈ Ã2. Therefore φ̃−1 can be
considered a homomorphism of measure algebras. Note that φ̃−1 is injective.

Definition 1.2.17. Let Ti be a measure-preserving transformation on the
probability space (Xi,Ai, µi), i = 1, 2. We say that T1 is conjugate to T2

if there exists a measure-algebra isomorphism Φ : (Ã2, µ̃2) → (Ã1, µ̃1) such

that ΦT̃2
−1

= T̃1
−1

Φ.

Conjugacy is also an equivalence relation and all isomorphic measure-
preserving transformations are conjugate, as stated by the following

Theorem 1.2.18. Let Ti be a measure-preserving transformation on the
probability space (Xi,Ai, µi), i = 1, 2. If T1 is isomorphic to T2, then T1 is
conjugate to T2.

In some cases, conjugacy can also imply isomorphism.
We have already seen that another way to compare two measure-preser-

ving transformations is to consider the associated unitary operator. We re-
call briefly that T1 and T2 are called spectrally isomorphic if their associated
unitary operators are unitarily equivalent.
We briefly remind what is an eigenvalue of a measure-preserving transfor-
mation.
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Definition 1.2.19. Let T be a measure-preserving transformation T on a
probability space (X,A, µ), and let UT be the induced linear isometry of L2

µ.
The eigenvalues and eigenfunctions of UT are called the eigenvalues and
eigenfunctions of T . So a complex number λ is called an eigenvalue of T if
there exists a non-zero function f ∈ L2

µ, satisfying UT f = λf . The function
f is called an eigenfunction of T corresponding to the eigenvalue λ.

Definition 1.2.20. An ergodic measure-preserving transformation T on a
probability space (X,A, µ) is said to have discrete spectrum (or pure point
spectrum) if there exists an orthonormal basis for L2

µ consisting of eigen-
functions of T .

The following result shows that spectral isomorphism is weaker than
conjugacy.

Theorem 1.2.21. Let Ti be a measure-preserving transformation on the
probability space (Xi,Ai, µi), i = 1, 2. If T1 and T2 are conjugate, then they
are spectrally isomorphic.

There are instances when spectral isomorphism implies conjugacy.
Then, summarising, we have the following definition.

Definition 1.2.22. A property P of a measure-preserving transformation
is an isomorphism, or conjugacy or spectral invariant if the following holds:
Given T1 has P and T2 is isomorphic, or conjugate or spectrally isomorphic,
to T1 then T2 has property P .

Now, since isomorphism implies conjugacy and conjugacy implies spec-
tral isomorphism, a spectral invariant is a conjugacy invariant and a conju-
gacy invariant is an isomorphism invariant.

As we have already pointed out, any two measure-preserving transfor-
mations that are conjugate are also spectrally isomorphic. Now, if two spec-
trally isomorphic measure-preserving transformations have discrete spec-
trum, then they are conjugate. Thus, the property of discrete spectrum is
very important and depends upon the eigenvalues of the measure-preserving
transformation. Note the if two measure-preserving transformations are
spectrally isomorphic then they have the same eigenvalues.

The following theorem proved by Halmos and von Neumann in 1942
shows that the eigenvalues determine completely whether two transforma-
tions with discrete spectrum are conjugate or not.

Theorem 1.2.23 (Discrete Spectrum Theorem). Let T1 and T2 be ergodic
measure-preserving transformations with discrete spectrum of the probability
spaces (Xi,Ai, µi) for (i = 1, 2). Then the following are equivalent:
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1. T1 and T2 are spectrally isomorphic;

2. T1 and T2 have the same eigenvalues;

3. T1 and T2 are conjugate.

Corollary 1.2.24. If T is an invertible ergodic measure-preserving trans-
formation with discrete spectrum, then T and T−1 are conjugate.

Remark 1.2.25. If the spaces (Xi,Ai, µi) for (i = 1, 2) are both complete
separable spaces, then the statements of Theorem 1.2.23 are equivalent to T1

being isomorphic to T2.

Let us now turn our attention to a collection of ergodic measure-preserving
transformations which have discrete spectrum (see [103, §3.3] for details).

Example 1.2.26. Let S1 be the complex unit circle and suppose T : S1 → S1

is defined by T (z) = az where a is not a root of unity. We know that T
is ergodic and is a rotation of a compact group. Consider the sequence of
functions fn : S1 → C defined by fn(z) = zn. Then fn is an eigenfunction of
T corresponding to the eigenvalue an. Since (fn) forms a basis for L2

µ(S1),
we see that T has discrete spectrum.

The following two theorems completely solve the conjugacy problem for
ergodic rotations with discrete spectrum.
They can be found in [103, Theorem 3.6, Theorem 3.7] and we provide a
proof for the second one since it does not appear in the reference and it
seemed to be of some interest for the reader.

Theorem 1.2.27 (Representation Theorem). An ergodic measure-preserving
transformation T with discrete spectrum on a probability space (X,A, µ) is
conjugate to an ergodic rotation on some compact abelian group. The group
is metrisable if and only if (X,A, µ) has a countable basis.

Theorem 1.2.28 (Existence Theorem). Every subgroup K of S1 is the
group of eigenvalues of an ergodic measure-preserving transformation with
discrete spectrum.

Proof. Let K be a subgroup of S1 and consider the following family indexed
by K

Gt = {nt|n ∈ Z} t ∈ K .

Then consider the infinite product

G =
∏
t∈K

Gt .

This is a compact group and the Haar measure µ is defined on it. The
following functions gt : G→ C defined by

gt((xs)s∈K) = e2πixt
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are characters of G.
We want to show that there exists an ergodic measure-preserving transfor-
mation S with pure discrete spectrum K, such that these characters are the
eigenfunctions of S associated to the eigenvalues in K.
Define S : G → G to be the map (xt)t∈K 7→ (xt + t)t∈K . Then it follows
that

gt(S(xs)s∈K) = gt((xs + s)s∈K) = e2πi(xt+t)

= e2πitgt((xs)s∈K) .

Hence the characters gt are eigenfunctions of S. Moreover, since G is com-
pact, the characters gt form an orthonormal basis for L2(µ). Finally, S is
ergodic since for every non-empty open subset U of G we have ∪∞n=−∞S

nU =
G.

Products

The product of two measure spaces (Xi,Ai, µi) for (i = 1, 2) is the measure
space (X1×X2,A1⊗A2, µ1×µ2) whereA1×A2 is the smallest σalgebra which
contains all set of the form A1×A2 where Ai ∈ Ai , and µ1×µ2 is the unique
measure such that (µ1 × µ2)(A1 × A2) = µ1(A1)µ2(A2). This construction
captures the idea of independence from probability theory: if (Xi,Ai, µi) are
the probability models of two random experiments, and these experiments
are “independent”, then (X1×X2,A1⊗A2, µ1×µ2) is the probability model
of the pair of experiments.

Definition 1.2.29. The product of two measure preserving systems (Xi,Ai,
µi, Ti) for (i = 1, 2) is the measure preserving system (X1×X2,A1⊗A2, µ1×
µ2, T1 × T2), where (T1 × T2)(x1, x2) = (T1x1, T2x2).

We now show that the product of two ergodic measure preserving trans-
formations is not always ergodic.

Theorem 1.2.30. Let (Xi,Ai, µi, Ti) for (i = 1, 2) be two ergodic systems.
Then T1 × T2 is ergodic if and only if UT1 and UT2 have no common eigen-
values other than 1.

Induced transformations

A central problem in ergodic theory is that of recurrence, concerning how
points in measurable dynamical systems return close to themselves under
iteration. The first and most important result is due to Poincaré [78] in 1890
who proved it in the context of a natural invariant measure in the three-
body problem of planetary orbits, before the creation of abstract measure
theory. Poincaré recurrence is the pigeon-hole principle for ergodic theory;
indeed on a finite measure space it is exactly the pigeon-hole principle.
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Theorem 1.2.31. Let T : X → X be a measure-preserving transformation
on a probability space (X,A, µ), and let E ⊂ X be a measurable set. Then
almost every point x ∈ E returns to E infinitely often. That is, there exists
a measurable set F ⊂ E with µ(F ) = µ(E) with the property that for every
x ∈ F there exist positive integers n1 < n2 < . . . with Tnix ∈ E for all
i ≥ 1.

In the following example we show that the Poincaré recurrence does not
necessarily hold if the measure space is not of finite measure.

Example 1.2.32. The map T : R → R defined by T (x) = x + 1 preserves
the Lebesgue measure λ on R. For any bounded set E ⊂ R and any x ∈ E,
the set

{n ≥ 1 : Tnx ∈ E}

is finite. Thus the map T exhibits no recurrence.

Now let A be a measurable set with µ(A) > 0. By the Poincaré recur-
rence, the first return time to A, defined by

nA(x) = inf
n≥1
{n : Tn(x) ∈ A}

exists, i.e. is finite, almost everywhere.

Definition 1.2.33. The map TA : A→ A defined (almost everywhere) by

TA(x) = TnA(x)(x)

is called the transformation induced by T on the set A.

Observe that both nA : X → N and TA : A → A are measurable, since
for every n ≥ 1, we can write An = {x ∈ A : na(x) = n}. Then the sets

A1 = A ∩ T−1A ,

A2 = A ∩ T−2A \A1 ,

...

An = A ∩ T−nA \
⋃
i<n

Ai

are all measurable, as it is

TnAn = A ∩ TnA \ (TA ∪ T 2A ∪ · · · ∪ Tn−1A) ,

since T is invertible by assumption.

Proposition 1.2.34. The induced transformation TA is a measure-preser-
ving transformation on the space (A,B(A), µA, TA), where B(A) = {E ∩A :
E ∈ B}, µA is the measure µA(E) = µ(E|A) = µ(E ∩ A)/µ(A). If T is
ergodic with respect to µ then TA is ergodic with respect to µA.
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A

T (A) \A

T 2(A) \ (A ∪ T (A))
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A1 A2 A3 . . .

Figure 1.3: The induced transformation TA

As pointed out in [30], the effect of TA can be seen in the situation
described by Figure 1.3, called the Kakutani skyscraper.

The original transformation T sends any point with a floor above it to
the point immediately above on the next floor, and any point on a top floor
is moved somewhere to the base floor A. The induced transformation TA
is the map defined almost everywhere on the bottom floor by sending each
point to the point obtained by going through all the floors above it and
returning to A.

The Poincaré recurrence says that for any measure-preserving system
(X,B, µ, T ) and any set A of positive measure, almost every point on the
ground floor of the associated Kakutani skyscraper returns to the ground
floor at some point. Ergodicity strengthens this statement to say that al-
most every point of the entire space X lies on some floor of the skyscraper.
However, the Poincaré recurrence does not tell us how long we should have
to wait for this to happen. One would expect that return times to sets of
large measure are small, and that return times to sets of small measure are
large. This is indeed the case, and forms the content of Kac’s Lemma [53]

Theorem 1.2.35 (Kac’s Lemma). Let (X,B, µ, T ) be an ergodic measure-
preserving probability system and let A ∈ B have strictly positive measure.
Then the expected return time to A is 1

µ(A) ; equivalently∫
A
nAdµ = 1 .

As it will appear clear in Chapter 3, Kakutani skyscrapers are a powerful
tool in ergodic theory. From the Kakutani skycraper construction we can
deduce a very useful lemma of Kakutani [55] and Rokhlin [80] often called
Rokhlin’s lemma.
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Lemma 1.2.36. Let T : X → X be an ergodic measure preserving transfor-
mation on a non-atomic probability space (X,B, µ). Then for any n ≥ 1 and
ε > 0 there exists a measurable set B ⊂ X such that B, TB, . . . , Tn−1B are
pairwise disjoint and µ

(
∪n−1
i=0 T

i(B)
)
> 1 − ε. The collection {B, TB, . . . ,

Tn−1B} is referred to as a Rokhlin tower of height n for the transformation
T .

Interval exchange

The class of interval exchange transformations was introduced by Sinai [90].
An interval exchange transformation is the map obtained by cutting the
interval into a finite number of pieces and permuting them in such a way
that the resulting map is invertible, and restricted to each interval is an
order-preserving isometry. More formally, we have the following definition.

Definition 1.2.37. Let d ≥ 2 be a natural number and let π be an irreducible
permutation of {1, . . . , d}, that is, π{1, . . . , k} 6= {1, . . . , k}, for any 1 ≤
k < d. Moreover, let Λd be the set of vectors (λ1, . . . , λd) in Rd such that
0 ≤ λi ≤ 1 for all i and

∑d
i=1 λi = 1.

An interval exchange on [0, 1[ is a map Tλ,π : [0, 1[ → [0, 1[ such that it
is the piecewise translation defined by partitioning the interval [0, 1[ into d
sub-intervals of lengths λ1, λ2, . . . , λr and rearranging them according to the
permutation π; formally

Tλ,π(x) = x+
∑
j<i

λπ(j) −
∑
j<i

λj ,

when x is in the interval

Ii =

∑
j<i

λj ,
∑
j≤i

λj

 .

It is easy to see that an interval exchange is a map of [0, 1[ into itself
which is one-to-one, preserves the Lebesgue measure λ and is continuous λ-
almost everywhere. Masur [62] and Veech [101] independently showed that
for almost all values of the sequence of lengths λi, 1 ≤ i ≤ d, the interval
exchange transformation is ergodic. In fact they proved unique ergodicity,
which we will discuss in the last part of this section.

Cutting-stacking

The cutting-stacking method is a useful tool to construct interval exchanges.
Its first fomulation is due to von Neumann and Kakutani and then gener-
alised by Friedman [36].
We refer to the description made in [42] where it is used to build sequences
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in the unit interval with good discrepancy.
Before starting with the description of the method, we need to fix the nota-
tion.
We will call columns and denote them by C = (I1, . . . , Ih) (also called tow-
ers) a set of disjoint subintervals Ij = [cj , dj [ of [0, 1[ having the same length.
The length of the interval Ij is called the width of C and denoted by l(C).
The interval I1 is called the bottom of C, the interval Ih is called the top
of C, the union supp(C) = ∪hi=jIj is the support of C and the integer h its
height. With the column C is associated a translation map

TC : supp(C) \ Ih → supp(C) \ I1

defined by
TC(x) = x+ (cj+1 − cj)

if x ∈ Ij , 1 ≤ j < h. We represent a column C = (I1, . . . , Ih) by drawing
each interval Ij+1, 1 ≤ j < d above the interval Ij .
Consider now a given finite set of columns S = {C1, . . . , Cs} with disjoint
supports. We associate to S the map TS which coincides with TCi for 1 ≤
i ≤ s. By extending the above notation, we have supp(S) = ∪si=1supp(Ci)
is the support of S and w(S) =

∑s
i=1 l(Ci) is the width of S. In the sequel,

we usually assume that the columns Ci of S are indexed according to the
order of their bottoms, the one induced by the natural order of [0, 1[.
A cutting of a column C = (I1, . . . , Ih) in t columns is the set of columns
Ci = {Ii,1, . . . , Ii,h} such that ∪ti=1Ii,1 = I1 and each map T|Ci is the restric-
tion of TC on Ci. More generally, a cutting of a set S of columns is obtained
by collecting all columns resulting by cutting part or all columns from S
and then producing a new set of columns S′ = {C ′1, . . . , C ′s′}.
Now, a stacking of a column C ′ = (I ′1, . . . , I

′
h′) above a column C = (I1, . . . ,

Ih) having same width and disjoint support is by definition the column
C ∗ C ′ = (I1, . . . , Ih, I

′
1, . . . , I

′
h′).

The map TC∗C′ extends both TC and T ′C and TC∗C′ translates Ih onto I ′1.
One can also introduce the empty column () of height 0 to set by definition
C ∗ () = () ∗ C = C for any column C.
A sequence Σ = (Sm)m≥0 of sets Sm of columns is said to be complete if
supp(S0) = [0, 1[, limm→∞w(Sm) = 0 and for each m ≥ 1, Sm+1 is built
from Sm by performing cutting and stacking but a finite number of times.
By construction TSm+1 extends TSm . We denote by top(Sm) (resp. bot(Sm))
the union of top (resp. bottom) intervals of columns in Sm.
Clearly top(Sm+1) ⊂ top(Sm), bot(Sm+1) ⊂ bot(Sm) and the intersections
top(Σ) = ∩m≥0top(Sm), bot(Σ) = ∩m≥0bot(Sm) are at most countable and
finite if the numbers of columns in infinitely many Sn are bounded. Clearly,
the map TSm is not defined on top(Σ) but it is easy to prove that for a com-
plete sequence Σ there is a unique transformation T : [0, 1[\top(Σ) → [0, 1[
which extends all the TSm ’s.
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Moreover, T is a measure-preserving map of ([0, 1[, λ), well defined on [0, 1[\
top(Σ) and invertible on [0, 1[\bot(Σ).

The transformations obtained in this manner are called staircase trans-
formations. A transformation created by a cutting and stacking with a single
column resulting from each iteration is a rank-one transformation. We refer
to [32] and [35] for more details. Rank-one transformations are measurable
and measure-preserving under Lebesgue measure.

We now present the simplest example of rank-one transformation ob-
tained by means of the cutting-stacking technique.

The von Neumann-Kakutani odometer Let us consider the unit in-
terval as a column and let us denote it by S0 = {[0, 1[}. Let us split S0 into
two subintervals, [0, 1/2[ and [1/2, 1[ and stack them one on the other in or-
der to form the column S1 = {[0, 1/2[, [1/2, 1[}. The heigh of S1 is h(S1) = 2
and its width is w(S1) = 1/2. We define the map T|[0,1/2[

(x) = x + 1
2 as

the translation of the first subinterval of S1 onto the second one. At the
second step we cut each interval of S1 into equal parts, take the right half
and stack it onto the top of the left half. So we get the column S2 =
{[0, 1/4[, [1/2, 3/4[, [1/4, 1/2[, [3/4, 1[}, with h(S2) = 4 and w(S2) = 1/4. To
this second step we associate the map T|[1/2,3/4[

(x) = x+ 1
4 . We can visualize

the above steps of the cutting-stacking procedure in Figure 2.
The procedure goes on this way, splitting each interval of the column

Sn−1 in half and stacking the right column of intervals onto the left column.
So we obtain the sequence of columns

Sn = {[φ2(0), φ2(0) + 2−n[, [φ2(1), φ2(1) + 2−n[, . . . , [φ2(n− 1), 1[} ,

with h(Sn) = 2n−1 and w(Sn) = 1
2n−1 . It is worthwhile to note that the left

endpoints of the intervals are exactly φ2(n), the radical inverse function of
n in base 2.

Let us recall that the associated sequence (φ2(n))n≥0 is the already de-
scribed van der Corput sequence.

Inductively, the transformation T associated to this construction and
called Kakutani-von Neumann odometer is defined on the countable sequence
of intervals considered above by

Tk(x) = x− 1 + 2−k + 2−k−1 for x ∈ [1− 2−k, 1− 2−k−1[ and k ≥ 0 .

Figure 3 shows the transformation T on [0, 1/2[∪[1/2, 3/4[∪[3/4, 7/8[.
Lambert [60] proved that the sequence obtained as the orbit of 0 un-

der the von Neumann-Kakutani transformation T is the van der Corput
sequence, (φ2(n))n≥0.
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Figure 1.4: Partial graph of the dyadic odometer
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Figure 1.5: Partial graph of the von Neumann-Kakutani transformation

The von Neumann-Kakutani odometer is one of the simplest examples of
a rank one transformation and, consequently, it is ergodic, even if ergodicity
can be proved directly. We now consider a slightly different variation of the
cutting-stacking technique according to a substitution σ.

Let A be a non empty set, called alphabet, of s elements, called letters.
Usually we take A = {1, . . . , s}. A word w of length |w| = n on A is an
ordered string w1 . . . wn of n letters wj in A. A word of length 0 is called
empty word and denoted by ∧. For any letter a, the number of occurrences
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of a in w is denoted |w|a. Hence |w| =
∑

a∈A |w|a.
We denote by A∗ the set of words over the alphabet A, equipped with the
concatenation law (v1 . . . vm)(w1 . . . wn) = (v1 . . . vmw1 . . . wn). A∗ is the
free monoid generated by A, where the empty word is the neutral element.

Definition 1.2.38. A monoid endomorphism σ : A∗ → A∗ is called a sub-
stitution if |σ(a)| ≥ 1 for all letters a ∈ A. If σ(a) = ∧ for at least one
letter, we say that σ is a pseudo-substitution.

If A = {1, . . . , s}, then the following matrix M(σ)

M(σ) =

|σ(1)|1 · · · |σ(s)|1
...

. . .
...

|σ(1)|s · · · |σ(s)|s


is called the companion matrix of σ. It will play a fundamental role. Let Ps
be the set of positive column vectors l ∈ Rs, i.e. such that all entries li of
l are positive. For any couple (l, l′) of vectors in Ps, we say that l′ derives
from l by σ, and we write lσ → l′, if the relation

l = M(σ)l′

holds.

Now let us consider the cutting-stacking process introduced in [42], where
starting from a set of columns S = {C1, . . . , Cs} we can build another set of
columns S′ = {C ′1, . . . , C ′s}, according to σ.
To do so, let l be the column vector in Ps with entries li = l(Ci) and assume
that there exists l′ ∈ Ps such that l′ derives from l by σ. Now cut each
column Cj in order to create a set of |σ|j =

∑s
k=1 |σ(k)|j (sum of entries of

the j-th line of M(σ)) sub-columns Sj = {Cj,1, . . . , Cj,|σ|j} such that |σ(k)|j
of them have width l′k. Then, for each k, build the column C ′k by stacking∑s

k=1 |σ(k)|j sub-columns such that

• |σ(k)|j sub-columns come from the sub-columns of width l′k in Sj ;

• from the bottom to the top the column C ′k is built according to the
word σ(k) = σk,1 . . . σk,|σ(k)|

C ′k = T (1)
σk,1
∗ T (2)

σk,2
∗ . . . T (|σ(k)|)

σk,|σ(k)|
,

where T
(j)
σk,j is a column from Sσk,j not used yet. In the standard

construction, we select the successive T
(j)
σk,j in C ′k from left to right.

This construction is not unique but at least a standard one exists due
to l = M(σ)l′. When we use a standard construction we say that the
couple (S′, l′) derives from (S, l) by taking into account the derivation
l = M(σ)l′.
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At this point we want to define the transformation Tσ obtained by the itera-
tion of the above derivation process. To make it possible we need to consider
a particular class of substitutions on A, namely adapted substitutions and
introduce some definitions.

Definition 1.2.39. A letter a ∈ A is said to be expansive for the substitution
σ if the increasing sequence n 7→ |σn(a)| is unbounded.
We denote by E(σ) the set of all expansive letters for σ in A.

Definition 1.2.40. A substitution σ is called adapted if E(σ) 6= ∅ and for
all expansive letters a and all letters x ∈ A, there exists an integer k ≥ 1
such that |σk(a)|x ≥ 1.

Definition 1.2.41. Let σ be an adapted substitution. The period h of σ is
the period of the companion matrix of σE(σ). Therefore, h is given from any
expansive letter a by

h = gcd{k ≥ 1; |σkE(a)|a ≥ 1} .

Now we can state a useful theorem that can be seen as a generalization of
the Perron-Frobenius Theorem, already considered at the beginning of this
section.

Theorem 1.2.42. Let σ be an adapted substitution with companion matrix
M = M(σ). Then

1. M has an eigenvalue θ > 1 and θ ≥ |λ| for all eigenvalues λ of M ,

2. θ has an eigenvector with positive entries,

3. θ is simple.

The eigenvalue θ in the theorem above is called the dominant eigenvalue
of M(σ) or of σ and the unique eigenvector associated with θ such that the
sum of its entries is equal to 1 is called the unitary dominant eigenvector of
M(σ). If σ has p expansive letters we may assume that they form the set
E = {1, . . . , p} so that the matrix M(σ) takes the form

M =

(
M(σE) 0
B C

)
.

The dominant eigenvalue θ of M is also the dominant eigenvalue of M(σE)
and the first p entries of the dominant eigenvector l of M , after normalisa-
tion is the dominant eigenvector of M(σE).

So with this notation at hand we can define the interval exchange Tσ :
[0, 1[→ [0, 1[ by a cutting-stacking process associated to an adapted substi-
tution σ with dominating eigenvalue θ.
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The positive vector l ∈ Ps will be exactly the unitary dominant eigenvector
of M(σ).
Then the required transformation will be

Tσ : [0, 1[\top(Σ)→ [0, 1[ ,

where Σ = (Sn)n≥0.

We now analyze the example given in [42, §3.7.4].

Example 1.2.43 (The Fibonacci transformation). The Fibonacci substitu-
tion σFib on the alphabet A = {0, 1} is defined as

σFib(0) = 01 σFib(1) = 0 .

Since the iteration of each letter gives rise to an infinite sequence, the sub-
stitution is adapted and the associated companion matrix is

M(σFib) =

(
1 1
1 0

)
.

The dominant eigenvalue is θ = 1+
√

5
2 , the golden ratio, and the correspond-

ing normalized dominant eigenvector is l =
(
α

1−α
)
, where α = θ−1 = θ− 1 =

√
5−1
2 .

Moreover, one can notice that the following relation

1 = Fn+1α
n+1 + Fnα

n+2

where (Fn)n≥0 is the usual Fibonacci sequence, holds. So, by induction we
also have that

αn+1 = (1)n(Fnα− Fn−1) = ||Fnα|| .

Now we want to get a transformation TFib, called the Fibonacci transforma-
tion, by means of the cutting-stacking derivations

(Sn, l
(n))

σFib−−−→ (Sn+1, l
(n+1)) .

According to the general procedure defined above, we have that our first
set of columns is

S0 =
{
C

(0)
1 , C

(0)
2

}
= {[1− α, 1[, [0, 1− α[} ,

with C
(0)
1 , C

(0)
2 of width α and 1− α, respectively.

At this point, applying the cutting-stacking derivation to l = M(σ)l(1) we

get l(1) =
(
α2

α3

)
. Then each new column C

(0)′

1 = C
(1)
1 , C

(0)′

2 = C
(1)
2 will be

obtained by stacking respectively

|σFib(1)|1 + |σFib(2)|1 = 2
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and
|σFib(1)|2 + |σFib(2)|2 = 1

sub-columns such that w
(
C

(1)
1

)
= l

(1)
1 = α2 and w

(
C

(1)
2

)
= l

(1)
2 = α3.

Therefore

S1 =
{
C

(1)
1 , C

(1)
2

}
=

{
[0, 1− α[

[1− α, 2− 2α[ [2− 2α, 1[

}
.

Let us produce one more step before giving the general description of the
cutting-stacking process.

Applying again the standard derivation we get l(2) =
(
α3

α4

)
. Then each new

column C
(1)′

1 = C
(2)
1 , C

(1)′

2 = C
(2)
2 will be obtained by stacking respectively

|σFib(1)|1 + |σFib(2)|1 = 2

and
|σFib(1)|2 + |σFib(2)|2 = 1

sub-columns such that w
(
C

(2)
1

)
= l

(2)
1 = α3 and w

(
C

(2)
2

)
= l

(2)
2 = α4.

Therefore

S1 =
{
C

(1)
1 , C

(1)
2

}
=


[2− 2α, 1[

[2− 3α, 1− α[ [0, 2− 3α[
[3− 4α, 2− 2α[ [1− α, 3− 4α[

 .

In general, the standard derivation depends on the parity of n and at every

step we have that Sn is composed of two columns C
(n)
1 and C

(n)
2 of height

respectively Fn+1 and Fn and width w
(
C

(n)
1

)
= αn+1 and w

(
C

(n)
2

)
= αn+2,

respectively.
Since the position of the intervals in the columns depends on the parity of

n, we have to describe top(C
(n)
1 ) and topC

(n)
1 for n = 2m and n = 2m+ 1.

If we denote by {x} the fractional part of x, we get that

top
(
C

(2m)
1

)
= [{−F2mα}, 1[ top

(
C

(2m)
2

)
= [0, {−F2m+1α}[

and

top
(
C

(2m+1)
1

)
= [0, {−F2m+1α}[ top

(
C

(2m+1)
2

)
= [{−F2m+2α}, 1[ .

The transformation TFib obtained in this way is not defined at the point 0.
Moreover it is not difficult to see that its explicit expression is defined by
two families of transformations

TFib2k : top
(
C

(2k)
1

)
−→ bot

(
C

(2k)
2

)
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TFib2k(x) = x+ α

and
TFib2k+1

: top
(
C

(2k+1)
2

)
−→ bot

(
C

(2k+1)
1

)
TFib2k+1

(x) = x− α2 .

Extending it by continuity to 0, the graph of TFib is shown in the following
picture. As we have already pointed out, this construction is not the only

0 α2

α

Figure 1.6: Fibonacci transformation

one possible, starting from the Fibonacci substitution, but is the standard
one in the sense that it is obtained via the standard derivation.
It is worth considering that this transformation is nothing else but the Tα,

for α =
√

5−1
2 defined after Definition 1.2.1.

Topological dynamics

So far, we have been studying a measurable map T defined on a probability
space (X,A, µ). We have asked whether the given measure µ is invariant
or ergodic. Now we focus on the space MT (X) of all probability measures
on the compact metric space X, which are invariant under a continuous
transformation T : X → X.
Any continuous map T : X → X induces a continuous map

T∗ :M(X)→M(X)

defined by T(µ)(A) = µ(T−1A) for any Borel set A ⊂ X. Each point x ∈ X
defines a measure δx (called the Dirac measure) by

δx(A) =

{
1 if x ∈ A
0 if x /∈ A .
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We claim that T(δx) = δT (x) for any x ∈ X. To see this, let A ⊂ X be any
measurable set, and notice that

(Tδx)(A) = δx(T−1A) = δT (x)(A) .

This suggests that we should think of the space of measures M(X) as gen-
eralized points, and the transformation T : M(X) → M(X) as a natural
extension of the map T from the copy {δx|x ∈ X} of X to the larger set
M(X). For f ∈ C(X) and µ ∈M(X),∫

X
fd(T∗µ) =

∫
X
f ◦ Tdµ ,

and this property characterizes T.
The map T is continuous and affine, so the set MT (X) of T -invariant mea-
sures is a closed convex subset of M(X).
Given a continuous mapping T : X → X on a compact metric space, a nat-
ural question, is whether invariant measures necessarily exist, i.e. whether
MT (X) 6= ∅. The next result and its corollary show that this is indeed the
case.

Theorem 1.2.44. Let T : X → X be a continuous map of a compact metric
space, and let (νn)n∈N be any sequence in M(X). Then any weak*-limit of
the sequence (µn)n∈N defined by

µn =
1

n

n−1∑
j=0

T j∗ νn

is a member of MT (X).

Corollary 1.2.45 (Krylov-Bogolioubov). Under the hypotheses of the pre-
vious Theorem, MT (X) is non-empty.

Thus MT (X) is a non-empty compact convex set, since convex combi-
nations of elements of MT (X) belong to MT (X). It follows that MT (X)
is an infinite set unless it is a singleton.
In general, it is difficult to identify measures with specific properties, but
the ergodic measures are readily characterized in terms of the geometry of
the space of invariant measures.
We denote by E(X,T ) ⊂MT (X) the set of ergodic T -invariant probability
measures on X.
The next result will allow us to show that ergodic measures for continuous
transformations on compact metric spaces always exist.

Theorem 1.2.46. Let T be a continuous transformation of a compact met-
ric space X equipped with the Borel σ-algebra B. The following are equivalent
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1. a T -invariant probability measure µ is ergodic;

2. µ is an extremal point of MT (X).

A natural distinguished class of transformations is formed by those for
which there is only one invariant Borel measure. This measure is auto-
matically ergodic, and the uniqueness of this measure has several powerful
consequences.

Definition 1.2.47. Let X be a compact metric space and let T : X −→ X be
a continuous map. Then T is said to be uniquely ergodic if MT (X) = {µ}.
The dynamical system (X,A, µ, T ) is said to be uniquely ergodic.

Theorem 1.2.48. For a continuous map T : X −→ X on a compact metric
space, the following properties are equivalent

1. T is uniquely ergodic.

2. |E(X,T )| = 1.

3. For every continuous function f : X −→ X,

lim
N→∞

1

N

N−1∑
n=0

f(Tnx) = Cf , (1.31)

where Cf is a constant independent of x.

4. For every continuous function f : X −→ X, the convergence (1.31) is
uniform across X.

5. The convergence (1.31) holds for every f in a dense subset of C(X).

Under any of these assumptions, the constant Cf in (1.31) is
∫
X fdµ, where

µ is the unique invariant measure.

An immediate consequence of the previous theorem is that the orbit
(Tnx)n∈N of x under T is uniformly distributed for every x ∈ X.

Let X = S1 and Tα : X −→ X be the irrational rotation on the unit
circle. We have already proved that the Lebesgue measure λ is an ergodic Tα-
invariant measure. Furthermore the following result says that the Lebesgue
measure is the only invariant measure, i.e. Tα is uniquely ergodic.

Lemma 1.2.49. An irrational rotation of a circle Tα is uniquely ergodic
and the only Tα-invariant measure is the Lebesgue measure.
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One important question concerns the unique ergodicity of the cartesian
product of uniquely ergodic systems, that is under which conditions the
product of uniquely ergodic systems is uniquely ergodic. As for the product
of ergodic systems, it turns out that the spectral analysis of the associated
operators is very useful. More precisely, again we need to require that the
spectra of the associated operators intersect only at 1, as explained by the
following

Theorem 1.2.50. Let Ti = (Xi, Ti), i = 1, . . . , s, be uniquely ergodic dy-
namical systems. Then the dynamical system T1×. . .×Ts is uniquely ergodic
if and only if for all i, j ∈ {1, . . . , s}, i 6= j, the discrete parts of the spectra
of Ti and Tj intersect only at 1.

1.2.3 Systems of numeration

We have already considered some examples of numeration systems, such
as the Ostrowski expansion or the b-adic and β-adic expansions. Roughly
speaking, a numeration system is a coding of the elements of a set with a
(finite or infinite) sequence of digits. The result of the coding, the sequence
of digits, is a representation of the element.
In this paragraph we give a formal and general definition. For a complete
survey on numeration systems from a dynamical viewpoint we refer to [9].

Definition 1.2.51. A numeration system (resp. a finite numeration sys-
tem) is a triple (X, I, ϕ), where X is a set, I a finite or countable set, and
ϕ an injective map ϕ : X → IN

∗
, defined by

ϕ(x) = (εn(x))n≥0

The map ϕ is the representation map, and ϕ(x) is the representation of
x ∈ X.

Given a numeration system (X, I, ϕ), one can define an expansion as a
map ψ : IN

∗ → X such that ψ ◦ϕ(x) = x for all x ∈ X. An expansion of an
element x ∈ X is an equality x = ψ(y); it is a proper expansion if y = ϕ(x),
and an improper expansion otherwise.
However this definition is still unsatisfactory since for instance it is not
clear how the digits εi are produced and how the representation map is
constructed.
The dynamical point of view on numeration systems lies precisely in these
requirements. So we need to find a map whose iteration gives the sequences
of digits of the representation. In order to define this map in a precise way
we need to introduce the concept of fibred system introduced by Schweiger
[87].

Definition 1.2.52. A fibred system is a set X and a transformation T :
X → X for which there exist a finite or countable set I and a partition
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X =
⊔
i∈I Xi of X such that the restriction Ti of T on Xi is injective, for

any i ∈ I. This yields a well defined map ε : X → I that associates the
index i with x ∈ X such that x ∈ Xi.

Now it is easy to see that the definition of numeration system given
above can have a dynamical description by means of a fibred system. The
new definition of numeration system will be called fibred numeration system.
Briefly, assume that (X,T ) is a fibred system as above. Let ϕ : X → IN

∗

be defined by ϕ(x) = (ε(Tnx))n≥0. We will write εn = ε ◦ Tn−1 for short.
Let σ be the (right-sided) shift operator on IN

∗
. Then we get the following

commutative diagram

X X

IN
∗

IN
∗

T

ϕ ϕ

σ

Formally, we have the following

Definition 1.2.53. Let (X,T ) be a fibred system and ϕ : X → IN
∗

be defined
by ϕ(x) = (ε(Tnx))n≥0. If the function ϕ is injective (i.e., if (X, I, ϕ)
is a numeration system), we call the quadruple N = (X,T, I, ϕ) a fibred
numeration system. Then I is the set of digits of the numeration system;
the map ϕ is the representation map and ϕ(x) the N -representation of x.
In general, the representation map is not surjective. The set of prefixes of
N -representations is called the language L = L(N ) of the fibred numeration
system, and its elements are said to be admissible. The admissible sequences
are defined as the elements y ∈ IN∗ for which y = ϕ(x) for some x ∈ X.

The representation map transports cylinders from the product space IN
∗

to X, and for (i0, i1, . . . , in−1) ∈ In, one may define the cylinder

X ⊃ C(i0, i1, . . . , in−1) =
n−1⋂
j=0

T−j(Xij ) = ϕ−1[i0, i1, . . . , in−1] .

Moreover, the assumption that the restriction of T to Xi is injective says
that the application x 7→ (ε(x), T (x)) is itself injective. It is a necessary
condition for ϕ to be injective, and N is a fibred numeration system if and
only if

∀x ∈ X
⋂
n≥0

C(ε1(x), ε2(x), . . . , εn(x)) = {x}

In the case when X is a metric space, this last condition is satisfied if for
any admissible sequence (i1, i2, . . . , in, . . . ), the diameter of the cylinders
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[i1, i2, . . . , in] tends to zero when n tends to infinity. In this case, every
closed subset F of X can be expressed as

F =

∞⋂
n=1

⋃
(i1,...,in)∈L

[i1,...,in]∩F 6=∅

C(i1, . . . , in) ,

which proves that the σ-algebra A generated by the cylinders is the Borel
algebra. In general, T is A-measurable.
We can also define a topological structure on the fibred numeration system
in the following way.

Definition 1.2.54. For a fibred numeration system N = (X,T, I, ϕ), with a
Hausdorff topological space I as digit set, the associated N -compactification
XN is defined as the closure of ϕ(X) in the product space IN

∗
.

Now we can see that some of the examples of numeration systems already
mentioned in the section can be obtained with a particular choice of X, I, T .

Example 1.2.55 (b-adic representation). Let X = N, I = {0, 1, . . . , b− 1},
Xi = i+ qN. Then, according to the definition of fibred system we have

ε(n) ≡ n(mod q) .

Let T : X → X be defined by

T (n) =
n− ε(n)

q
.

So we have a fibred numeration system with language, set of representations
and compactification given by

Lb =
⋃
n≥0

{0, 1, . . . , b− 1}n ,

ϕ(X) = I(N) = {(i0, . . . , in−1, 0, 0, . . . );n ∈ N, ij ∈ {0, 1, . . . , b− 1}} ,

XN = {0, 1, . . . , b− 1}N .

On the same set I of digits we can also consider the space X = [0, 1[ with
partition given by

[0, 1[=
⊔
i∈I

Xi =
⊔
i∈I

[
i

b
,
i+ 1

b

[
and with transformation

T (x) = qx− bqxc .

The language is again Lb and the compactification Zb, the compact group of
b-adic integers. The set of representations is the whole product space without
the sequences ultimately equal to b− 1.
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In the last part of this section we want to describe a popular extension
of this method. It consists in changing the base b at any step: this method
is called Cantor expansion.
In this way, the b-adic expansion can also be obtained beginning with the
most significant digit, using the so called greedy algorithm.
This procedure still gives rise to a numeration system, but not to a fibred one.
Moreover, this way of producing expansions of nonnegative integers yields
a more general concept than the Cantor expansion, the G-scale, which is
the most general possible way of representing nonnegative integers based on
the greedy algorithm. As we have seen, given a fibred numeration system
N , we can consider its associated N -compactification. For a G-scale, a
compactification can be also built, but it is not possible in general to extend
the addition from N to it in a reasonable way. Nevertheless, the addition by
1 on N extends naturally and gives a dynamical system called odometer.

Example 1.2.56 (β-expansions and β-adic van der Corput sequences). The
basic idea to obtain β-expansions is to replace b by any real number β > 1.
Then let X = [0, 1[ and Tβ : [0, 1[→ [0, 1[ be the β-transformation defined by
Tβ(x) = βx mod 1. Moreover, let I = {0, 1, . . . , dβe − 1}. The we have the
following fibred system ([0, 1[, Tβ)

[0, 1[ [0, 1[

IN
∗

IN
∗

Tβ

ϕ ϕ

σ

where the representation map ϕ of the fibred system is defined by

x =

∞∑
n=0

εn
βn
⇔ ϕ(x) = (ε0, ε1, . . . ) ∈ I(N) .

Parry [75] proved that the set of admissible sequences ϕ(X) is charac-
terised in terms of one particular β-expansion. For x ∈ [0, 1[, set dβ(x) =
ϕ(X). In particular, let dβ(1) = (tn)n≥1. We then set d∗β(1) = dβ(1), if
dβ(1) is infinite, and

d∗β(1) = (t1 . . . tm−1, (tm − 1))ω ,

if dβ(1) = t1 . . . tm−1tm0ω is finite, with tm 6= 0. The set ϕ(X) of β-
expansions of real numbers in [0, 1[ is exactly

ϕ(X) = {y ∈ I(N) : ∀k ≥ 1, σky ≺ d∗β(1) .
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where ω ≺ ψ in the sense of the lexicographical order.
The set XN = ϕ([0, 1[) is called one-sided β-shift.
Numbers β such that dβ(1) is ultimately periodic are called Parry numbers
and those such that dβ(1) is finite are called simple Parry numbers.
Then simple Parry numbers are those which produce improper expansions.
To any element in XN , we can associate the number

ψβ(x) =

∞∑
n=0

εnβ
−n−1 .

Then ψβ(x) ∈ [0, 1[ and numbers with two expansions are exactly those with
finite expansion

ψβ(ε1 . . . εk−1εk0
ω) = ψβ((ε1 . . . εk−1(εk − 1)d∗β(1)) .

If β is a Pisot number, that is it is a real algebraic integer greater than 1
such that all its Galois conjugates are less than 1 in absolute value, then
every element of Q(β) ∩ [0, 1[ admits a ultimately periodic expansion (see
e.g. [84]). Hence β is either a Parry number or a simple Parry number.

Now we can see how to construct β-adic van der Corput sequences. These
sequences, denoted by Nβ, were introduced for the first time by Ninomiya [70]
in 1997. Their construction is based on the β-adic transformation and the
fibred numeration system just defined.
In order to define them we need to consider the following sets:

• Xβ(n) is the set of admissible sequences of length n,

• Yβ(n) =
⋃n
i=0Xβ(i),

• Fβ(n) = #Xβ(n),

• Gβ(n) =
∑n

i=0 Fβ(i) = #Yβ(n).

Now for an arbitrary positive integer n, define ln to satisfy Gβ(ln) ≤ n <
Gβ(ln+1). Then, reverse the lexicographical order on the digits of Xβ(ln+1)
for every n. Then the sequence Nβ is defined as follows:

Nβ =
{
ψβ(ωln+1

n−Gβ(ln)+1)
}∞
n=1

,

where ωln+1 ∈ Xβ(ln + 1).

In [70], the following example with β =
√

5+1
2 is given explictly. Let us derive

the first elements of the sequence Nβ by means of this method.

When β is the golden mean
√

5+1
2 , we have that I = {0, 1} and dβ(1) = 110ω.

Hence the set ϕ(X) of admissible sequences is given by all sequences on the
alphabet I such that no two consecutive digits of the form εiεi+1 = 11 can
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exist, for every i ≥ 0.
Now fix n = 4. By writing down the sequence of admissible digits in the
right-to-left order

1

01

001

101

0001

1001

0101

00001
...

we can see that Gβ(3) ≤ 4 < Gβ(4). Then the first elements of Nβ with
respect to n = 4 are

Nβ(1) = β−1

Nβ(2) = β−2

Nβ(3) = β−3

Nβ(4) = β−1 + β−3

Nβ(5) = β−4

Nβ(6) = β−1 + β−4

Nβ(7) = β−2 + β−4

Ninomiya [70, Theorem 3.1] also proved that when β is a Pisot number and
all its conjugates belong to {z ∈ C : |z| < 1}, then the β-adic van der Corput
sequence Nβ is low-discrepancy.
Steiner [93] gave an explicit formula for the discrepancy function of these
sequences. In particular he showed that for Pisot numbers β with irreducible
polynomial, the discrepancy function D(N, [0, y[) is bounded if and only if
the β-expansion of y is finite or its tail is the same as that of the expansion
of 1. Moreover, if β is a Parry number, then he showed that the discrepancy
function is unbounded for all intervals of length y /∈ Q(β).

Definition 1.2.57. Let G = (Gn)n≥0 be an increasing sequence of positive
integers with G0 = 1. Then every positive integer can be expanded in the
following way

n =
∞∑
k=0

εk(n)Gk1 ,

where εk(n) ∈ {0, . . . , dGk+1/Gke − 1} and dxe denotes the smallest inte-
ger not less than x ∈ R. This expansion (called G-expansion) is uniquely
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determined and finite, provided that for every K

K−1∑
k=0

εk(n)Gk < GK . (1.32)

For short we write εk for the k-th digit of the G-expansion.

G = (Gn)n≥0 is called numeration system and the digits εk can be com-
puted by the following greedy algorithm (for details see for instance [34]).

Given a positive integer n, its greedy G-expansion is obtained in the
following way: let i be the largest index such that Gi ≤ n < Gi+1. Set

εi =

⌊
n

Gi

⌋
.

Then n can be written as
n = εiGi+ ni ,

with 0 ≤ ni < Gi. By iterating this procedure with ni the expansion we
obtain that the greedy representation for n is the string εiεi−1 . . . ε1ε0 and
we say n is greedily representable.

It is easy to see that every non-negative integer is greedily representable
if and only if G0 = 1. If G0 6= 1, it is possible for a number to be repre-
sentable, but not greedily representable. For example, consider expressing
12 in the numeration system G where (Gn)n≥0 is the sequence of prime num-
bers (G0, G1, G2, . . . ) = (2, 3, 5, . . . ). In this case we have that the largest
index such that Gi ≤ 12 < Gi+1 is 4, with corresponding G4 = 11, but the
procedure cannot go on.
Note that if G0 = 1, then the greedy representation is in fact the lexico-
graphically greatest representation. A desirable property of any numeration
system is that the mapping that sends an integer n to its representation
is order-preserving. For more properties enjoyed by digits and numeration
systems we refer to [6, 88].

We denote by KG the subset of sequences that satisfy (1.32), i.e. KG is
the set of sequences ε = ε0ε1 . . . belonging to the infinite product

Π(G) =

∞∏
m=0

{0, 1, . . . , bGk+1/Gkc − 1} ,

satisfying (1.32) . The elements of KG are called G-admissible.
Although the G-scale is not fibred, one may consider its compactification,
in the sense of the closure of the language in the product space Π(G). The
set of nonnegative integers N is embedded in KG by the canonical injection
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n 7→ ε0(n)ε1(n) . . . εL(n)0∞.
Obviously KG is compact and it will be called the G-compactification of N.
In order to extend the addition-by-one map defined on N to KG we introduce
the set K0

G ⊆ KG

K0
G =

{
x ∈ KG : ∃Mx, ∀j ≥Mx,

j∑
k=0

εkGk < Gj+1 − 1

}
. (1.33)

Put x(j) =
∑j

k=0 εkGk, and set

τ(x) = (ε0(x(j) + 1) . . . εj(x(j) + 1))εj+1(x)εj+2(x) . . . , (1.34)

for every x ∈ K0
G and j ≥Mx. This definition does not depend on the choice

of j ≥Mx. In fact, let l be the greatest integer such that x(l − 1) + 1 = Gl
provided that such an l exists; otherwise there is no carry and we just add
one to the first digit. Then for all j ≥ l we have

(x(j) + 1) = (ε0(x(l) + 1) . . . εl(x(l) + 1))xl+1 . . . xj

= 0l(xl + 1)xl+1 . . . xj .

So we can extended the definition of τ to sequences x in KG \ K0
G by

τ(x) = 0 = (0∞). In this way the transformation τ is defined on KG and it
is called G-odometer. We refer to [41] for a complete survey on odometers
related to general numeration systems.
In particular, the authors in [41] focus their attention to a particular family
of G-odometers, namely G-odometers where the base sequence is a linear
recurrence. In this case they can show that the map τ is continuous and
(KG, τ) is uniquely ergodic.
In the sequel we summarise the important steps of this result, that will be
necessary in the proofs of Chapter 4.

In the sequel we will consider sequences (Gn)n∈N generated by a finite
linear recurrence of order d+ 1, where d+ 1 is the period length:

Gn+d+1 = a0Gn+d + a1Gn+d−1 + · · ·+ (ad + 1)Gn, n ≥ 0 . (1.35)

and the initial values are given by G0 = 1 and

Gn+1 =

n∑
k=0

an−kGk + 1 .

In [41, Theorem 5], the authors show that the odometer on an admissible
numeration system G is uniquely ergodic, providing an explicit formula for
the unique invariant measure µ.
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Theorem 1.2.58. The odometer τ is a uniquely ergodic transformation,
i.e. there is a unique invariant measure µ given by

µ(Z) = (1.36)

FK,0β
d−1 + (FK,1 − a0FK,0)βd−2 + . . .+ (FK,d−1 − a0FK,d−2 − . . .− ad−2FK,0)

βK(βd−1 + βd−2 + . . .+ 1)
,

where Fk,r := #{n < Gk+r : (ε0(n), ε1(n), . . .) ∈ Z} and Z is a cylinder
with length k.

Note that the formula in [41, Theorem 5] included a misprint and was
stated in corrected form in [8].

In [41] the author also prove that under a certain hypothesis the odome-
ter has purely discrete spectrum. An analogous result was proved by Solo-
myak [91] for linear recurrences with decreasing coefficients.

Hypothesis 1.2.59 (Grabner, Tichy and Liardet [41]). There exists an
integer b > 0 such that for all k and

N =
k∑
i=0

εiGi +
∞∑

j=k+b+2

εjGj ,

the addition of Gm to N , where m ≥ k + b + 2, does not change the digits
ε0, . . . , εk, in the greedy representation i.e.

N +Gm =
k∑
i=0

εiGi +
∞∑

j=k+1

ε′jGj .

Theorem 1.2.60. KG is (measure-theoretically) isomorphic to a group ro-
tation with purely discrete spectrum given by the countable group

Γ := {z ∈ C : lim
n→∞

zGn = 1}. (1.37)

provided that the above Hypothesis holds.

This analysis of the spectrum will be very useful in Chapter 4 when we
will consider the product of systems of the form (KGi , τ). We will prove that
the product of these uniquely ergodic systems is uniquely ergodic, too.

There are only a few results concerning this hypothesis. In [41] the au-
thors remark that the Multinacci sequence, i.e. a0 = . . . = ad−1 = 1, fulfills
Hypothesis 1.2.59. Furthermore Bruin et al. [16] show that the numerations
systems with coefficients (a0, a1, a2) = (1, 0, 1) fulfills Hypothesis 1.
Sometimes it seems easier to consider the following hypothesis introduced
by Frougny and Solomyak [37].
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Hypothesis 1.2.61 (Frougny and Solomyak [37]). The characteristic root
β of the numeration system G is a Pisot number such that all elements of
the set Z[β−1] have finite β-expansions.

Remark 1.2.62. Several researchers worked on algebraic characterizations
of Pisot numbers β which satisfy Hypothesis 1.2.61. Solomyak [91, Main
Theorem] showed that numeration systems defined by linear recurrences with
decreasing coefficients fullfill Hypothesis 1.2.61, proving an analogous of
Theorem 1.2.60 for this case.

Furthermore Hollander [50] states another sufficient condition for Hy-
pothesis 1.2.61 and Akiyama [5] characterizes all Pisot units of degree three
satisfying Hypothesis 1.2.61.
However there exists no complete algebraic characterization for Pisot num-
bers satisfying Hypothesis 1.2.61 of degree greater than two. Note that both
hypotheses can be satisfied by the same numeration system but, to the best
of the author of this thesis knowledge, it is unknown if the two hypotheses
are equivalent, see [41].



Chapter 2

LS sequences

In the first chapter we mentioned that the concept of uniform distribution
and discrepancy applies also to sequences of sets and partitions.
We presented the Kakutani splitting procedure and its generalization, the
ρ-splitting, which produce uniformly distributed sequences of partitions.
In this chapter we want to introduce the constrction of LS-sequences of par-
titions. This is a countable family corresponding to pair of natural numbers
L and S such that S ≥ 0 and L+S ≥ 2. For S = 0 and L ≥ 2 the procedure
reduces to the well-known sequences of partitions into bn equal parts, with
b = L. These sequences of partitions have been introduced by Carbone [19].
She proved that these sequences of partitions are low-discrepancy if and only
if L ≥ S and computed explicit asymptotic behaviour of the discrepancy of
the sequences for L < S.
What is more interesting is that she presented an algorithm (improved in
[18]) which associates to any LS-sequence of partitions a sequence (called
LS-sequence) of points and that for L ≥ S they are low-discrepancy. For
S = 0 and L ≥ 2 the algorithm provides the well-known van der Corput
sequence of base b = L.

2.1 LS-sequences in the unit interval

In this section we first give a description of the LS-sequences of partitions,
obtained as subsequent ρ-refinements of the trivial partition ω. Then we
describe the LS-sequence of points associated to the sequences of partitions.

Definition 2.1.1. Let us fix two positive integers L and S, with L+ S ≥ 2
and S ≥ 0 and let 0 < α < 1 be the real number such that Lα + Sα2 = 1.
Denote by ρL,S the partition defined by L long intervals having length α and
by S short intervals having length α2. By (ρnL,S)n∈N we denote the sequence
of successive ρL,S-refinements of the trivial partition ω. This will be called
the LS-sequence of partitions.
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Example 2.1.2. Let us consider L = S = 1 and the corresponding 1, 1-
sequence of partitions (ρn1,1)n∈N whose characteristic polynomial is α+α2 =

1. Its solution in [0, 1[ is α =
√

5−1
2 , the inverse of the golden ratio. The

first partition consists only of two intervals of length α and α2, respectively,
i.e.

ρ1
1,1 = {[0, α[, [α, 1[} .

In order to construct the second partition, we divide the interval of maximal
length proportionally to α and α2. Therefore

ρ2
1,1 = {[0, α2[, [α2, α[, [α, 1[} .

At this point we have two intervals of maximal length, the first and the third,
and we proceed by splitting them. Then we get

ρ3
1,1 = {[0, α3[, [α3, α2[, [α2, α[, [α, α+ α3[, [α+ α3, 1[} ,

and so on.

0 1α

0 1αα2

0 1αα2α3 α+ α3

Example 2.1.3. Let us consider the sequence of partitions (ρn2,1)n∈N corre-

sponding to 2α+ α2 = 1. At the first step we have a subdivision of the unit
interval into two long intervals and a short one, and we get the following
partition

ρ1
2,1 = {[0, α[, [α, 2α[, [2α, 1[} .

In order to obtain the second partition we split the first two intervals, as
follows

ρ2
2,1 = {[0, α2[, [α2, 2α2[, [2α2, α[, [α, α+ α2[,

[α+ α2, α+ 2α2[, [α+ 2α2, 2α[, [2α, 1[} ,

and so on.
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0 1α 2α

0 1α 2αα2 2α2 α+ α2 α+ 2α2

Let us note that every partition ρnL,S produces only intervals of length

αn (long) and of length αn+1 (short), respectively. If we denote by tn the
total number of intervals of ρnL,S , then the following linear recurrence holds

tn = Ltn−1 + Stn−2 , (2.1)

with initial conditions t0 = 1 and t1 = L+ S.
In fact, if we denote by ln the total number of long intervals of ρnL,S and by
sn the total number of short intervals, then the following relations hold:

tn = ln + sn , ln = Lln−1 + sn−1 , sn = Sln−1 .

This is beacause the n-th partition is obtained splitting the long intervals
of the (n − 1)-th partition into L long and S short intervals. The short
intervals of the (n − 1)-th partition remain untouched and hence become
long intervals of the n-th partition. Formally:

tn = ln + sn = Lln−1 + sn−1 + Sln−1 =

= Lln−1 + Sln−2 + SLln−2 + Ssn−2 =

= L(ln−1 + sn−1) + S(ln−2 + sn−2) =

= Ltn−1 + Stn−2.

From (2.1) immediately follows that the sequence (tn)n∈N, in the case
L = S = 1, is the Fibonacci sequence. On the other hand we have seen that
in this case (ρn1,1)n∈N is a Kakutani sequence. For these reasons, the cor-
responding 1, 1-sequence of partitions has been called in [19] the Kakutani-
Fibonacci sequence of partitions.

The following theorem shows that the LS-sequences of partitions are
low-discrepancy if L ≥ S.

Theorem 2.1.4 (Theorem 2.2, [19]). i) If S ≤ L there exist c1, c
′
1 > 0

such that
c′1 ≤ tnD(ρnL,S) ≤ c1 for any n ∈ N .

ii) If S = L+ 1 there exist c2, c
′
2 > 0 such that

c′2 log tn ≤ tnD(ρnL,S) ≤ c2 log tn for any n ∈ N.
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iii) If S ≥ L+ 2 there exist c3, c
′
3 > 0 such that

c′3t
1−τ
n ≤ tnD(ρnL,S) ≤ c3t

1−τ
n for any n ∈ N ,

where τ = 1 + log(Sα)
logα > 0.

Observe that the same estimates for the discrepancy of the LS-sequences
of partitions have been reobtained by Drmota and Infusino [28], by applying
Theorems 1.1.33 and 1.1.35 to this particular class of ρ-refinements.
Let us now explain how to get the associated sequences of points of the
corresponding LS-sequence of partitions, also introduced in [19].

Definition 2.1.5. Given the sequence of partition
(
ρnL,S

)
n∈N

, we define the

LS-sequence of points (ξnL,S)n∈N as follows.

The first t1 points are just the left endpoints of the intervals of ρ1
L,S ordered

by magnitude. This set of points will be denoted by Λ1
L,S and its points will

be denoted by ξ
(1)
1 , . . . , ξ

(1)
t1

. For n > 1 and if ΛnL,S =
(
ξ

(n)
1 , . . . , ξ

(n)
tn

)
is the

set of the tn points (written in their order) of ρnL,S, then the tn+1 points of

ρn+1
L,S are recursively ordered as follows:

Λn+1
L,S =

(
ξ

(n)
1 , . . . , ξ

(n)
tn ,

ϕ
(n+1)
1 (ξ

(n)
1 ), . . . , ϕ

(n+1)
1 (ξ

(n)
ln

), . . . , ϕ
(n+1)
L (ξ

(n)
1 ), . . . , ϕ

(n+1)
L (ξ

(n)
ln

),

ϕ
(n+1)
L,1 (ξ

(n)
1 ), . . . , ϕ

(n+1)
L,1 (ξ

(n)
ln

), . . . , ϕ
(n+1)
L,S−1(ξ

(n)
1 ), . . . , ϕ

(n+1)
L,S−1(ξ

(n)
ln

)
)
.

Here, ln is the number of long intervals of ρnL,S, and the two families of
functions are

ϕ
(n+1)
i (x) = x+ iαn+1 and ϕ

(n+1)
L,j (x) = x+ Lαn+1 + jβn+2

for 1 ≤ i ≤ L and 1 ≤ j ≤ S − 1 .

In [19] it has been shown that, if L ≥ S D(ξ1
L,S , . . . , ξ

N
L,S) = O

(
logN
N

)
for

n→∞ and that to sequences of partitions (ρnL,S)n∈N with low-discrepancy
correspond sequences of points (ξnL,S)n∈N with low-discrepancy.

Theorem 2.1.6 (Theorem 3.9, [19]). i) If S ≤ L there exist k1, k
′
1 > 0 such

that for every N ∈ N

k′1
1

N
≤ DN (ξ1

L,S , ξ
2
L,S , . . . , ξ

N
L,S) ≤ k1

logN

N
.

ii) If S = L+ 1 there exist k2, k
′
2 > 0 such that for every N ∈ N

k′2
logN

N
≤ DN (ξ1

L,S , ξ
2
L,S , . . . , ξ

N
L,S) ≤ k2

log2N

N
.
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iii) If S > L+ 1 there exist k3, k
′
3 > 0 such that for every N ∈ N

k′3
1

N τ−1
≤ DN (ξ1

L,S , ξ
2
L,S , . . . , ξ

N
L,S) ≤ k3

logN

N τ−1
,

where τ = 1 + logSα
logα < 1.

As an example we show how to get the sequence of points associated to
the sequences of partitions considered in the above examples.

Example 2.1.7. We want to consider the Kakutani-Fibonacci sequence
(ξn1,1)n∈N. The set of points corresponding to the sequence of partitions ρ1

1,1

contains exactly the left endpoints of the two intervals [0, α[, [α, 1[, i.e.

Λ1
1,1 =

(
0, α

)
=
(
ξ1

1,1, ξ
2
1,1

)
.

We can observe that since we have only one short interval, then j = 0
and therefore there are no functions of the type ϕn+1

L,j , but only the function

ϕ
(n+1)
1 . Since l1 = 1, applying the function ϕ

(2)
1 to the point zero we have

Λ2
1,1 =

(
0, α, ϕ

(2)
1 (0)

)
=
(

0, α, α2
)

=
(
ξ1

1,1, ξ
2
1,1, ξ

3
1,1

)
.

and also

Λ3
1,1 =

(
0, α, α2, ϕ

(3)
1 (0), ϕ

(3)
1 (α)

)
=

(
0, α, α2, α3, α+ α3

)
=
(
ξ1

1,1, ξ
2
1,1, ξ

3
1,1, ξ

4
1,1, ξ

5
1,1

)
.

Going on in this way and applying the function ϕ
(4)
1 to the first three points

(since l3 = 3), we get Λ4
1,1 as represented in the following figure.

0

ξ1

1α

ξ2

α2

ξ3

α3

ξ4

α+ α3

ξ5

α4

ξ6

α+ α4

ξ7

α2 + α4

ξ8

Figure 2.1: First 8 points of (ξn1,1)n≥1

By iterating this procedure we get the sequence of points (ξn1,1)n∈N associated
to (ρn1,1)n∈N.
This sequence has been called Kakutani-Fibonacci in [19] and [21] and it will
be of particular interest in the next chapter, where we will consider a method
to get this sequence as orbit of an ergodic transformation.
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Example 2.1.8. Let us now consider the sequence of points (ξn2,1)n∈N. Also

in this case we do not have functions of the type ϕ
(n+1)
L,j , but only of type

ϕ
(n+1)
i , with i = 1, 2, to apply to the first ln points of the set Λn2,1. The first

set of points is

Λ1
2,1 =

(
0, α, 2α

)
=
(
ξ1

2,1, ξ
2
2,1, ξ

3
2,1

)
.

Then, since l1 = 2, if we apply the two functions ϕ
(2)
1 and ϕ

(2)
2 to the first

two points of Λ1
2,1 we have

Λ2
2,1 =

(
0, α, ϕ

(2)
1 (0), ϕ

(2)
1 (α), ϕ

(2)
2 (0), ϕ

(2)
2 (α)

)
=

(
0, α, 2α, α2, α+ α2, 2α2, α+ 2α2

)
=

(
ξ1

2,1, ξ
2
2,1, ξ

3
2,1, ξ

4
2,1, ξ

5
2,1, ξ

6
2,1, ξ

7
2,1

)
.

Let us now compute the set of points of ρ3
2,1.

Applying the functions ϕ
(3)
1 and ϕ

(3)
2 to the first five points of Λ2

2,1 (since
l2 = 5), we have

Λ3
2,1 =

(
0, α, 2α, α2, α+ α2, 2α2, α+ 2α2,

ϕ
(3)
1 (0), ϕ

(3)
1 (α), ϕ

(3)
1 (2α), ϕ

(3)
1 (α2), ϕ

(3)
1 (α+ α2),

ϕ
(3)
2 (0), ϕ

(3)
2 (α), ϕ

(3)
2 (2α), ϕ

(3)
2 (α2), ϕ

(3)
2 (α+ α2)

)
=

(
0, α, 2α, α2, α+ α2, 2α2, α+ 2α2,

α3, α+ α3, 2α+ α3, α2 + α3, α+ α2 + α3,

2α3, α+ 2α3, 2α+ 2α3, α2 + 2α3, α+ α2 + 2α3
)

=
(
ξ1

2,1, ξ
2
2,1, ξ

3
2,1, ξ

4
2,1, ξ

5
2,1, ξ

6
2,1, ξ

7
2,1, ξ

8
2,1,

= ξ9
2,1, ξ

10
2,1, ξ

11
2,1, ξ

12
2,1, ξ

13
2,1, ξ

14
2,1, ξ

15
2,1, ξ

16
2,1, ξ

17
2,1

)
.

The first points of this point set are shown in the following picture

0

ξ1

1α

ξ2

2α

ξ3

α2

ξ4

α+ α2

ξ5

2α2

ξ6

α+ 2α2

ξ7

α3

ξ8

α+ α3

ξ9

Figure 2.2: First 9 points of (ξn2,1)n≥1

More efficient ways of constructing the LS-sequences of points have been
recently introduced in [4] and [18].
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2.2 LS-sequence in higher dimension

We now consider two possible bidimensional extensions of the LS-sequences
of points, namely the LS-point set à la van der Corput and the LS-sequences
à la Halton. These extensions have been proposed to me by I. Carbone and
A. Volčič as the main object of my master thesis [51] and are contained in
the unpublished paper [20].

Definition 2.2.1. An LS-point set à la van der Corput of order N ∈ N in
[0, 1[2 is defined as

xn =
( n
N
, ξnL,S

)
n = 1, . . . , N , (2.2)

where (ξnL,S)n∈N is an LS-sequence of points.

Remark 2.2.2. By Lemma 1.1.55, it follows immediately that if we choose
a low-discrepancy LS-sequence (ξnL,S), then the corresponding LS-point set

à la van der Corput is low-discrepancy in [0, 1[2.

Definition 2.2.3. An LS-sequence of points à la Halton in [0, 1[2 is the se-
quence ((ξnL1S1

, ξnL2S2
))n∈N, where (ξnL1S1

)n∈N and (ξnL2S2
)n∈N are two distinct

LS-sequences of points.

Both definitions can be extended to an s-dimensional sequence in two
possible ways. The first one is to consider s-tuples of LS-sequences, while
the second one is to consider s-tuples where the first coordinate is

(
n
N

)
, and

the remaining s− 1 are LS-sequences.
Of course, like for classical sequences already encountered in the first chap-
ter of the thesis, such as the multidimensional Kronecker sequence and the
Halton sequences, the main problem is to provide a condition (often alge-
braic) to assure the uniform distribution property in the multidimensional
setting.
In fact, even pairing low-discrepancy LS-sequences, in general, does not
guarantee uniform distribution in the unit square. The following two figures
show how the behaviour of the bidimensional sequence can indeed be very
erratic.

A partial answer to this problem has been given by Aistleitner et al.
in [4], where the authors show that if the roots α1, α2 of the polynomials
S1x

2 +L1x−1 = 0 and S2x
2 +L2x−1 = 0 do not fulfill a precise condition,

then the sequence ((ξnL1S1
, ξnL2S2

))n∈N is not dense in [0, 1[2.
In the sequel we will denote by B = ((L1, S1), . . . , (Ls, Ss)) an s-tuple of
pairs, each of them defining an LS-sequence of points and by (ξnB)n∈N the
corresponding multidimensional LS-sequence, obtained by combining them
componentwise.
More precisely, they proved the following
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Figure 2.3: ((ξn1,1, ξ
n
5,1))n∈N for 1 ≤

n ≤ 5000
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Figure 2.4: ((ξn3,1, ξ
n
4,1))n∈N for 1 ≤

n ≤ 5000

Theorem 2.2.4. Let B = ((L1, S1), (L2, S2)) with Li > Si − 1 ≥ 0 and

assume that there exist integers m and k such that
αk+1

1

αm+1
2

∈ Q. Then the

two-dimensional LS-sequence (ξnB)n∈N is not uniformly distributed, and not
even dense in [0, 1[2.

For instance, in the case (L1, S1) = (1, 1) and (L2, S2) = (4, 1) (see Fig-
ure 2.3) we have α2 = α3

1 and so the sequence is not even dense in [0, 1[2.

This theorem can also be applied to the multidimensional case, since for
any multidimensional sequence of points, which is uniformly distributed, all
lower-dimensional projections also have to be uniformly distributed. More
precisely, one has the following

Corollary 2.2.5. Let B = ((L1, S1), . . . , (Ls, Ss)) with Li > Si − 1 ≥ 0
and assume that there exist numbers u,w ∈ {1, . . . , s} and integers m and

k such that αk+1
u

αm+1
w
∈ Q. Then the s-dimensional LS-sequence (ξnB)n∈N is not

uniformly distributed, and not even dense in [0, 1]s.

However, no positive results, proving uniform distribution of a bidimen-
sional LS-sequence for an appropriate choice of L1, S1 and L2, S2, are known
so far.



Chapter 3

A dynamical system
approach to the
Kakutani-Fibonacci sequence

In this chapter we show how to obtain the Kakutani-Fibonacci sequence of
points, introduced in Chapter 2, as orbit of an ergodic transformation. More
precisely, we consider the Kakutani-Fibonacci sequence of partitions and as-
sociate to it an ergodic interval exchange, which will be called the Kakutani-
Fibonacci transformation. The construction of the interval exchange makes
use of the cutting-stacking technique, that we already considered in Chap-
ter 1. Moreover, we will prove that the orbit of the origin under this map
coincides with the low discrepancy Kakutani-Fibonacci sequence of points,
defined in Example 2.1.7.
The content of this chapter is presented in [21].

Definition 3.1.1 (Cutting-stacking technique for the Kakutani-Fibonacci
sequence). For every fixed n, the intervals of the n-th Kakutani-Fibonacci
partition αnω are represented by two columns Cn = {Ln, Sn} constructed as
follows.

Let us start with two columns C1 = {L1, S1}, where L1 = [0, α[, S1 =
[α, 1[. If we divide L1 proportionally to α and α2, we can write L1 =
{L0

1, L
1
1}, where L0

1 = [0, α2[ and L1
1 = [α2, α[. Now we stack the interval S1

over L0
1 (and use the common notation L0

1∗S1) as they have the same width,
namely w(L0

1) = w(S1) = α2. So we get two new columns C2 = {L2, S2},
where L2 = L0

1 ∗ S1 and S2 = L1
1. We denote by b(L2) = [0, α2[ the bottom

of L2 and by h(L2) = 2 = l2 its height.
If we continue this way, at the n-th step we get two columns denoted by
Cn = {Ln, Sn}, with h(Ln) = ln and h(Sn) = sn. We divide Ln into two
columns, say L0

n and L1
n, where w(L0

n) = αn+1 and w(L1
n) = αn+2, and



A dynamical system approach to the Kakutani-Fibonacci sequence 70

stack Sn over L0
n, obtaining

Cn+1 = {Ln+1, Sn+1},

where
Ln+1 = L0

n ∗ Sn and Sn+1 = L1
n ,

with

w(Ln+1) = αn+1 , h(Ln+1) = ln+1 , b(Ln+1) = [0, αn+1[

and

w(Sn+1) = αn+2 , h(Sn+1) = sn+1 , b(Cn+1) = [αn+1, αn[ .

The first steps of the procedure are visualized in Figure 3.1.

0 α

C1

L1 S1

α 1α2 0 α2

α 1

α2 α
α3

α+ α3

C2L2

S2

0 α3

α α+ α3

α2 α

α3 α2

α+ α3 1

C3L3

S3

Figure 3.1: Partial graph of the cutting-stacking method for (αnω)n≥1

To the above cutting-stacking construction it is naturally associated an
interval exchange, whose explicit expression is given by the following result.

Proposition 3.1.2. The interval exchange corresponding to the cutting-
stacking procedure described in Definition 3.1.1 is the map T : [0, 1[→ [0, 1[
whose restriction to Ik is Tk, where

T1(x) = x+ α if x ∈ I1 = [0, α2[

and, for every k ≥ 1,

T2k(x) = x+ α2k −
k−1∑
j=0

α2j+1 if x ∈ I2k =

k−1∑
j=0

α2j+1,
k∑
j=0

α2j+1
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and

T2k+1(x) = x+α2k+1−
k−1∑
j=0

α2(j+1) if x ∈ I2k+1 =

k−1∑
j=0

α2(j+1),
k∑
j=0

α2(j+1)

 .
Proof. If we write T (x) = x + ck whenever x ∈ Ik for any k ≥ 1, we
simply observe that Ik + ck = [αk, αk + αk+1[ for all k ≥ 1. Therefore,
λ(∪k≥0(Ik + ck)) = 1 and (Ih + ch) ∩ (Ik + ck) = ∅ whenever h 6= k, which
proves that T is an interval exchange.

Now we show how the map T acts in the cutting-stacking procedure,
proving that in each column Cn = {Ln, Sn} the transformation T maps
each interval of Ln (respectively, Sn) onto the interval above it and the top
interval of L0

n, denoted as usual by top(L0
n), onto the bottom interval of Sn.

Let us start with C1 = {L1, S1}. When we divide the column L1 into
two sub-columns L0

1 and L1
1, made by one interval each, we notice that

top(L0
1) = I1 and b(S1) = T (I1). Therefore, we stack S1 onto L0

1 using T1,
which maps I1 onto b(S1) and gives birth to the columns C2 = {L2, S2},
where L2 = L0

1 ∗ S1 and S2 = L1
1.

Now we consider n = 2k and C2k = {L2k, S2k}. When we divide L2k

proportionally to α and α2, obtaining therefore L0
2k and L1

2k, we notice that
b(S2k) = T2k(I2k) = [α2k, α2k+1[ and, consequently, top(L0

2k) = I2k because
T2k is a bijection. In other words, T2k stacks the bottom of S2k onto the top
of L0

2k because T2k(top(L
0
2k)) = b(S2k) = [α2k, α2k−1[ .

A simple calculation shows that if we consider the case n = 2k + 1 we
have T2k+1(I2k+1) = b(S2k+1) = [α2k+1, α2k[ and, therefore, top(L0

2k+1) =
I2k+1.

This completes the proof of the proposition.

Definition 3.1.3. The map T : [0, 1[→ [0, 1[, whose expression is given in
Proposition 3.1.2, is called the Kakutani-Fibonacci transformation.

Figure 3.2 shows the graph of the maps Tk, with 1 ≤ k ≤ 4.

It is worthwhile to compare the Fibonacci transformation TFib intro-
duced in [42] (that we have already considered in the first chapter) and the
Kakutani-Fibonacci transformation just defined. Both transformations are
obtained by means of a cutting-stacking technique and at each step of the
cutting-stacking procedure, the two columns obtained by means of the Fi-
bonacci transformation have the same height and width as the two columns
obtained by means of the Kakutani-Fibonacci transformation T . Neverthe-
less, the bottoms are different as well as the order of the intervals in each
column. Moreover, as we have already pointed out, the Fibonacci transfor-
mation is not defined in 0, while the Kakutani-Fibonacci transformation is
defined in 0 and, as we will show later, its iteration in 0 gives rise to the
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Figure 3.2: Partial graph of the Kakutani-Fibonacci transformation T

Kakutani-Fibonacci sequence.
If we extend, as we did in Chapter 1, TFib to 0 by continuity letting TFib(0) =
α, we see that the extension of TFib coincides with the rotation on [0, 1[ mod

1 by
√

5−1
2 .

Theorem 3.1.4. The Kakutani-Fibonacci transformation T is ergodic.

Proof. The arguments we use are inspired by [36].
Let us denote by C∗m the stack made by Lm ∗ Sm and let us define the

mapping τm : [0, 1[→ [0, 1[ as follows. For 1 ≤ i ≤ lm−1 it is the translation
of the interval Ji of Lm onto Ji+1, the interval just above Ji, and hence it
coincides with T . If i = lm, it is a contraction by parameter α of top(Lm)
onto b(Sm). For 1 ≤ i ≤ sm − 1 it is the translation of the interval J̃i of Sm
onto J̃i+1, the interval just above J̃i, and hence it coincides with T again.

Now we fix a measurable set B in [0, 1[ with λ(B) > 0, such that
T−1(B) = B, and we prove that λ(BT ) = 1, where BT =

⋃+∞
i=−∞ T

i(B).
From Lebesgue density theorem, there exists a point x0 having density

1 for B. This implies that for every fixed ε > 0 there exists δ > 0 such that
if I is any interval containing x0 with λ(I) < δ, we have

λ(B ∩ I) > (1− ε)λ(I). (3.1)

Due to the fact that the diameter of the Kakutani-Fibonacci sequence of
partition (αmω)m≥1 tends to 0 when m→∞, there exists m > 0 such that
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αm < δ and, therefore, there exists an interval of C∗m for which (3.1) holds.
For sake of brevity, we will denote it by I.

As C∗m = Lm ∗ Sm, the interval I could belong to the column Lm or to
the column Sm. If I ∈ Sm, it is equivalent to say that I ∈ Lm+1. For this
reason, without any loss of generality we may suppose that I ∈ Lm.

Suppose now that I is the r-th interval from below in the column Lm
and observe that

λ

(
tm−r⋃
i=−r+1

τ im(I)

)
= 1.

Taking the above identity and (3.1) into account, we have the following
inequalities:

λ(BT ) ≥ λ
(
(B ∩ I)T

)
≥ λ

(
lm−r⋃
i=1−r

T i(B ∩ I)

)
+ λ

sm−1⋃
j=0

(
T j (B ∩ b(Sm))

)
= λ

(
lm−r⋃
i=1−r

τ im(B ∩ I)

)
+ λ

 tm−r⋃
j=lm+1−r

τ jm(B ∩ I)


=

lm−r∑
i=1−r

λ
(
τ im(B ∩ I)

)
+

tm−r∑
j=lm+1−r

λ
(
τ jm(B ∩ I)

)
> (1− ε) lm αm + (1− ε) sm αm+1 = 1− ε.

As ε is arbitrary, we conclude that λ(B) = 1. Therefore, T is ergodic and
the theorem is proved.

A direct consequence of the above theorem and Birkhoff’s Theorem (The-
orem 1.2.11) is the following

Theorem 3.1.5. The sequence (Tn(x))n≥0 is u.d. for almost every x ∈
[0, 1[.

We now show how to get the points of the Kakutani-Fibonacci sequence
by means of the Kakutani-Fibonacci transformation.

Theorem 3.1.6. The Kakutani-Fibonacci sequence of points (ξn1,1)n≥1 co-
incides with (Tn(0))n≥0.

Proof. We want to show by induction on n ≥ 1 that(
ξ1, ξ2, . . . , ξtn) =

(
0, T (0), T 2(0), . . . , T tn−1(0)

)
. (3.2)

If n = 1, (3.2) is obviously verified.
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We suppose that (3.2) is true for n and prove that(
ξ1, ξ2, . . . , ξtn , φn+1(ξ1), . . . , φn+1(ξln))

=
(
0, T (0), T 2(0), . . . , T tn−1(0), T tn(0), T tn+1(0), . . . , T tn+ln−1(0)

)
.

Due to the definition of the set Λn1,1 of points of the n+ 1-th Kakutani-
Fibonacci sequence of partitions (see Example 2.1.7) and the inductive as-
sumption, it is sufficient to prove that(

φn+1(0), φn+1(T (0)), . . . , φn+1(T tn−1(0))
)

=
(
T tn(0), T tn+1(0), . . . , T tn+ln−1(0)

)
.

As φn+1(x) = x+ αn+1, the above identity is equivalent to(
α(n+1), T (0) + α(n+1), . . . , T tn−1(0) + α(n+1)

)
=
(
T tn(0), T tn+1(0), . . . , T tn+ln−1(0)

)
. (3.3)

In order to prove (3.3), we focus our attention on the intervals of the
column Sn+1 and on their left endpoints.

We note that, due to the cutting-stacking procedure described in Def-
inition 3.1.1 and to the nature of T described in the proof of Proposi-
tion 3.1.2, and specifically to the fact that b(Sn+1) = T (top(Ln+1)) =
T (T ln+sn−1( [0, αn+1[ )), the columns Cn+1 = {Ln+1, Sn+1} can be writ-
ten as follows:

Ln+1 = L0
n ∗ Sn =

(
b(L0

n) ∗ · · · ∗ top(L0
n)
)
∗
(
b(Sn) ∗ · · · ∗ top(Sn)

)
=
(

[0, αn+1[ ∗ · · · ∗ T ln−1( [0, αn+1[ )
)
∗

∗
(
T ln( [0, αn+1[ ) ∗ · · · ∗ T ln+sn−1( [0, αn+1[ )

)
and

Sn+1 = L1
n = b(L1

n) ∗ · · · ∗ top(L1
n)

=
(

[αn+1, αn[ ∗ · · · ∗ T ln−1
(

[αn+1, αn[
) )

=
(
T tn( [0, αn+1[ ) ∗ · · · ∗ T tn+ln−1

(
[0, αn+1[

) )
.

Therefore, as T is an interval exchange, the tn left endpoints of Ln+1 are
0, T (0), · · · , T tn−1(0) and the left endpoints of Sn+1, which are a right shift
by the constant αn+1 of the left endpoints of Ln+1, are T tn(0), T tn+1(0),
· · · , T tn+sn−1(0), which proves (3.3).

The theorem is now completely proved.
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Remark 3.1.7. As we have already pointed out, the Kakutani-Fibonacci
sequence of points (ξn1,1)n≥1 is an example of uniformly distributed sequence
(in fact low-discrepancy). Unfortunately, this property can not be detected
by this ergodic approach, since Birkhoff’s Theorem (Theorem 1.2.11) implies
the uniform distribution of the orbit (Tnx)n∈N only for almost every point
x ∈ [0, 1[ and not for every x ∈ [0, 1[.

We will see in the next chapter that the Kakutani-Fibonacci transfor-
mation is not only ergodic, but in fact uniquely ergodic and therefore we
can prove the uniform distribution not only of the Kakutani-Fibonacci se-
quence, that was already known to be so, but of all orbits (Tnx)n∈N, for
every x ∈ [0, 1[.



Chapter 4

Ergodic properties of β-adic
Halton sequences

In this chapter we will construct a parametric extension of the classical s-
dimensional Halton sequence, where the bases are special Pisot numbers.
We use methods from ergodic theory in order to investigate the distribu-
tion behavior of such sequences constructed as orbits of uniquely ergodic
transformations. As a consequence of the main result, we show that the
Kakutani-Fibonacci transformation, introduced in the previous chapter, is
uniquely ergodic.
The content of this chapter is presented in [47].

Our first goal is to prove that the product of systems of the type (KG, τ)
considered in Chapter 1 is uniquely ergodic.

Theorem 4.1.1. Let G1, . . . , Gs be numeration systems given by (1.35)
and let the coefficients of the linear recurrences be given as aij = bi, j =
0, . . . , (di − 1), i = 1, . . . , s, with pairwise coprime positive integers bi, i =

1, . . . , s. Furthermore let
βki
βlj

/∈ Q, for all l, k ∈ N, where β1, . . . , βs denote

the characteristic roots of the numerations systems. Then the dynamical
system which is constructed as the s-dimensional Cartesian product of the
odometers, i.e. ((KG1 , τ1)× . . .× (KGs , τs)), is uniquely ergodic.

Proof. It follows by Remark 1.2.62 that each numeration system Gj , j =
1, . . . , s fulfills Hypothesis 1.2.61, thus the components of the s-dimensional
dynamical system are uniquely ergodic. By Theorem 1.2.50, we derive that
the Cartesian product is uniquely ergodic if and only if Γj ∩ Γk = {1} for
all 1 ≤ j < k ≤ s, where we denote by Γi the spectrum of τi. As noted in
[41], we have

lim
n→∞

Gjn
βnj

= Cj , (4.1)
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where the constant Cj can be computed by residue calculus. Using the
standard notation ∼ for asymptotic equality (if n→∞) we obtain for fixed
l ∈ N

exp

(
2πi

Gjn

βlj

)
∼ exp

(
2πiCjβ

n−l
i

)
∼ exp

(
2πiGjn−l

)
,

and thus

lim
n→∞

exp

(
2πi

Gjn

βlj

)
= lim

n→∞
exp

(
2πiGjn−l

)
= 1,

where Cj is given by (4.1). Furthermore, it is easy to see that for every

k ∈ N there exists an n0 with bkj | G
j
n for all n ≥ n0 and there exist no

b′, n′0 ∈ N with gcd(b′, bj) = 1 such that b′ | Gjn for all n ≥ n′0. Then Γj can
be written as

Γj =

{
exp

(
2πi

c

bmj β
l
j

)
: m, l, c ∈ N ∪ {0}

}
.

This completes the proof since Γj ∩ Γk = {1}.

Now we want to construct an isomorphism between (KG, τ) and ([0, 1[, T ),
where T is conjugate to τ , i.e. T = φβ ◦ τ ◦ φ−1

β . The construction recalls
the one considered for (Zb, τ) in Example 1.2.14.
The first step consists in extending the definition of the Monna map to
irrational bases β > 1. Let

n =
∑
j≥0

εj(n)Gj

be the G-expansion of an integer n. For short we write εj and define the
β-adic Monna map φβ : KG → R+ as

φβ(n) = φβ

∑
j≥0

εj(n)Gj

 =
∑
j≥0

εj(n)β−j−1 .

Furthermore, we define the radical inverse function as the restriction of φβ
on K0

G and similarly we define the pseudo-inverse φ−1
β . In this context the

β-adic Halton sequence is given as (φβ(n))n∈N = (φβ1(n), . . . , φβs(n))n∈N,
where β = (β1, . . . , βs) and the βi are characteristic roots of the numeration
systems Gi, respectively.

Note that even if one of the Hypotheses 1.2.59 or 1.2.61 holds, this does
not imply that the image of K0

G under φβ is contained in [0, 1[ and dense in
it.
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Lemma 4.1.2. Let a = (a0, . . . , ad−1), where the integers a0, . . . , ad−1 ≥ 0
are the coefficients defining the numeration system G and assume that the
corresponding characteristic root β satisfies

β = a0 +
a1

β
+ . . .+

ad−1

βd−1
, (4.2)

where a0 = bβc. Furthermore, assume that there is no b = (b0, . . . , bk−1)
with k < d such that β is the characteristic root of the polynomial defined
by b. Then φβ(N) ⊂ [0, 1[ and φβ(N) 6⊂ [0, x[ for all 0 < x < 1 if and only
if a can be written either as

a = (a0, . . . , a0) or as (4.3)

a = (a0, a0 − 1, . . . , a0 − 1, a0), (4.4)

where a0 > 0.

Proof. It follows from (4.2) that

a0

β
+ . . .+

ad−1

βd
= 1. (4.5)

Furthermore for all admissible representations (ε0, ε1, ε2, . . . ) we have

(εk, εk−1, . . . , ε0, 0
∞) < (a0, a1, . . . , ad−1)∞ (4.6)

for every k, when < denotes the lexicographic order.

We consider a representation given by c = (c0, . . . , ck−1)∞ for k > 0
and assume that there are no positive integers c′i and m < k such that
c = (c′0, . . . , c

′
m−1)∞. We obtain

φβ(c) =
∞∑
i=0

(
c0

β
+ . . .+

ck−1

βk

)(
1

βk

)i
=

(
c0

β
+ . . .+

ck−1

βk

)
1

1− 1
βk

=

(
c0

β
+ . . .+

ck−1

βk

)
βk

βk − 1
.

To finish the proof of the lemma, the following will be shown: the maximum
of φβ(c) (extended over all representations c) is 1, provided that (4.3) or
(4.4) are satisfied, i.e.

c0

β
+ . . .+

ck−2

βk−1
+
ck−1 + 1

βk
= 1. (4.7)
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We have that k ≥ d since a is by assumption the minimal representation
of β. In the case k = d we get

c0

β
+ . . .+

cd−2

βd−1
+
cd−1 + 1

βd
=
a0

β
+ . . .+

ad−1

βd
= 1,

thus c0 = a0, . . . , cd−2 = ad−2 and cd−1 + 1 = ad−1. Moreover, by (4.6),
we have maxi=0,...,d−1 ci ≤ a0 and thus a0 = max(maxi=0,...,d−2 ai, ad−1− 1).
Let m ≥ 0 be the maximal integer such that ai = a0 for i ≤ m. Then,
if ad−1 = a0 + 1 we obtain that c = (a0, a1, . . . , ad−2, a0)∞ contains m + 1
successive a0’s, thus c is not admissible and a0 = maxi=0,...,d−1 ai. Similar
arguments yield k ≤ d since by assumption c 6= (c′0, . . . , c

′
m−1)∞ for m < k.

Assume now that k = d, a0 = maxi=0,...,d−1 ai and let m ≥ 0 be defined
as above. By (4.5) and (4.6) c∗ = (a0, . . . , am, (a0 − 1, a0, . . . , am)∞) is
admissible and

φβ(c∗) ≥ 1,

where equality holds if m is either 0 or d − 1 which are the cases (4.3)
and (4.4). This yields the assertion (4.7), thus the proof of the lemma is
complete.

If we drop the condition that d has to be minimal, we obtain the following
additional cases for which the above lemma is satisfied:

a = (a0, . . . , a0, a0 + 1) (4.8)

and
a = (a′, . . . ,a′,a′′), (4.9)

where a0 > 0, a′,a′′ are of equal length and of the form

a′ = (a0, . . . , a0, a0 − 1), a′′ = (a0, . . . , a0) or

a′ = (a0, a0 − 1, . . . , a0 − 1), a′′ = (a0, a0 − 1, . . . , a0 − 1, a0).

Note that (4.8) is another way to represent the (a0 +1)-adic number system,
which is a special case of (4.3) and obviously fulfills the lemma. Furthermore,
condition (4.9) is a reformulation of (4.3) and (4.4), thus in the sequel we
only consider numeration systems which satisfy (4.3) or (4.4).

Lemma 4.1.3. Let G be a numeration system of the form (1.35), assume
that the coefficients of the linear recurrence are given by aj = a, j =
0, . . . , (d − 1), for a positive integer a and let β denote the corresponding
characteristic root. Then µ(Z) = λ(φβ(Z)) for every cylinder set Z.

Proof. Let the cylinder set Z be defined by the fixed digits ε0, . . . , εk−1.
Assume first that εk−1 < a, then Fk+r = (a + 1)r for 0 ≤ r < d. Thus, by
(1.36), we obtain that

µ(Z) = β−k.
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Consider the β-adic Monna map of n ∈ N, i.e.

φβ(n) =
∞∑
i=0

εi
βi+1

.

If εk−1 < a we easily see that φβ(Z) is dense in

I =

[
k−1∑
i=0

εi
βi+1

,

k−2∑
i=0

εi
βi+1

+
(εk−1 + 1)

βk

[
and that φβ(x′) /∈ I if x′ /∈ Z. Thus φβ(Z) is λ-measurable and λ(φβ(Z)) =
λ(I) = β−k.

Assume now that Z is defined by the fixed digits ε0, . . . , εk−2 and εk−1 =
a. By the above argument we derive that a cylinder with fixed digits
ε0, . . . , εk−2, and εk−2 < a, has measure β−(k−1).

Now compute the measure of Z:

µ(Z) = β−(k−1) − (a− 1)β−k .

Next we consider φβ(Z), hence

φβ(Z) =

[
k−1∑
i=0

εi
βi+1

,
k−3∑
i=0

εi
βi+1

+
(εk−2 + 1)

βk

[
and thus λ(φβ(Z)) = µ(Z).

Let 2 ≤ h ≤ min(k, d − 1) and consider a cylinder set Z with fixed
digits ε0, . . . , εk−h−1 < a and εk−l = a for l = 1, . . . , h. Then, the cylinder
with fixed digits ε0, . . . , εk−h−1 has measure β−(k−h) and every cylinder with
digits ε0, . . . , εk−h+1 has measure β−(k−h+2). Thus it follows

µ(Z) = β−(k−h+1) − (a− 1)β−(k−h+2).

Considering φβ(Z) we have

φβ(Z) =

[
k−h+1∑
i=0

εi
βi+1

,

k−h∑
i=0

εi
βi+1

+
(εk−h−1 + 1)

βk−h+2

[
,

and therefore λ(φβ(Z)) = µ(Z).

As mentioned above, a result of Frougny and Solomyak [37, Lemma 3]
implies that the dominant root of

x2 − a0x− a1, a0, a1 ≥ 1,

is a Pisot number if and only if a0 ≥ a1. Lemma 4.1.2 shows that the image
of K0

G under φβ is not a subset of [0, 1[, when a0 > a1. It follows that Lemma
4.1.3 characterizes all van der Corput-type constructions for d = 2.
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Theorem 4.1.4. Let G1, . . . , Gs be numeration systems as in Theorem 4.1.1
and let β1, . . . , βs denote the roots of the corresponding characteristic equa-
tions. Then the s-dimensional β-adic Halton sequence (φβ(n))n∈N is u.d. in
[0, 1[s.

Proof. By Lemma 4.1.3 and the definition of the Monna map we obtain an
isometry between the dynamical systems ((KG1 , τ1) × . . . × (KGs , τs)) and
(([0, 1[, T1)× . . .× ([0, 1[, Ts)) where

Ti : [0, 1[→ [0, 1[, Ti(x) := φβi ◦ τi ◦ φ
−1
βi

(x).

Let Tx = (T1x1, . . . , Tsxs) for x = (x1, . . . , xs) ∈ [0, 1[s. Hence by Birkhoff’s
ergodic theorem, (Tnx)n∈N is u.d. in [0, 1[s for all x ∈ [0, 1[s. In particular,
(φβ(n))n∈N = (Tn0)n∈N is u.d.

Note that the classical b-adic Halton sequence with pairwise coprime
integer bases b1, . . . , bs ≥ 2, is a special case of Theorem 4.1.4.

Theorem 4.1.5. Let the numeration system G be defined by the coefficients
(a0, a1, a2) = (1, 0, 1), let β be its characteristic root and τ the odome-
ter on G. Then µ(Z) = λ(φβ(Z)) for all cylinder sets Z. Thus T (x) =
φβ ◦ τ ◦ φ−1

β (x) is uniquely ergodic and (Tnx)n∈N is u.d. for all x in [0, 1[.
Furthermore the spectrum of T is given by

Γ =

{
exp

(
2πi

c

βl

)
: m, l, c ∈ N ∪ {0}

}
. (4.10)

Proof. It is well known that β is a Pisot number and equation (4.2) holds
since bβc = 1 = a0. Hypothesis 1.2.59 was proved for this case in [16, The-
orem 4]. The proof that Hypothesis 1.2.61 is fulfilled can be found in [5,
Theorem 3]. Equation (4.10) follows from the proof of Theorem 4.1.1.

Now we have to prove that φβ transports the measure µ to the Lebesgue
measure on [0, 1[. First we assume k ≥ 3. Let the cylinder Z be defined by
the fixed digits ε0, . . . , εk−1. We consider four different cases. Suppose first
εk−3 = εk−2 = εk−1 = 0. Then Fk,0 = 1, Fk,1 = 2, Fk,2 = 3 and we get by
(1.36) that

µ(Z) = β−k.

Furthermore, by the same argument as in the first part of the proof of
Theorem 4.1.4 we obtain

φβ(Z) =

[
k−1∑
i=0

εi
βi+1

,
k−2∑
i=0

εi
βi+1

+
(εk−1 + 1)

βk

[
,

and thus λ(φβ(Z)) = β−k.
Now let εk−3 = 1, εk−2 = εk−1 = 0. Hence Fk,0 = 1, Fk,1 = 2, Fk,2 = 3 and
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µ(Z) = β−k. We have

φβ(Z) =

[
k−1∑
i=0

εi
βi+1

,

k−1∑
i=0

εi
βi+1

+ β−k
∞∑
i=0

β−(3i+1)

[

=

[
k−1∑
i=0

εi
βi+1

,
k−1∑
i=0

εi
βi+1

+ β−k

[
,

thus again λ(φβ(Z)) = β−k. Now assume εk−2 = 1, εk−1 = 0. Hence
Fk,0 = 1, Fk,1 = 1, Fk,2 = 2 and

µ(Z) = β−k
β−2 + 1

β−2 + β−1 + 1
.

Similarly as above we obtain

φβ(Z) =

[
k−1∑
i=0

εi
βi+1

,

k−1∑
i=0

εi
βi+1

+ β−(k+1)
∞∑
i=0

β−(3i+1)

[

=

[
k−1∑
i=0

εi
βi+1

,

k−1∑
i=0

εi
βi+1

+ β−(k+1)

[
,

thus λ(φβ(Z)) = β−(k+1). Now we have

β−(k+1) = β−k
β−2 + 1

β−2 + β−1 + 1

which is equivalent to β−3 + β−2 + β−1 = β−2 + 1 and holds since β is the
characteristic root of the polynomial x3 − x− 1 = 0.
In the last case we assume εk−1 = 1, thus Fk,0 = Fk,1 = Fk,2 = 1 and

µ(Z) = β−k
1

β−2 + β−1 + 1
.

As above we get λ(φβ(Z)) = β−(k+2) and the result follows since

β−(k+2) = β−k
1

β−2 + β−1 + 1

is equivalent to β−3 + β−1 = 1. The cases where k < 3, follow by the same
arguments.

As a consequence of Theorem 1.2.50 we can construct uniformly dis-
tributed two-dimensional sequences (φβ1(n), φβ2(n))n∈N, where β1 is the
characteristic root as in Theorem 4.1.5, β2 is the characteristic root of a

numeration system as in Theorem 4.1.1 and
βk1
βl2

/∈ Q for all integers k, l > 0.
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Theorem 4.1.5 extends the examples given in [7, Proposition 13,14],
where the authors consider G-additive functions which lead to u.d. point
sequences in the unit interval. Furthermore, it is possible to show that the
one-dimensional point sequence in the previous theorem is a low-discrepancy
sequence by mimicking the proof for the b-adic van der Corput sequence, see
e.g. [7, 19, 57].

In the last part of this chapter we want to show that the Kakutani-
Fibonacci transformation (see Definition 3.1.3) is in fact uniquely ergodic.
Hence, with this different approach we can show that the orbit of x under
the transformation is u.d. for every x ∈ [0, 1[.

For proving unique ergodicity of the Kakutani-Fibonacci transformation
we need the following lemma.

Lemma 4.1.6. Let β be the golden ratio
√

5+1
2 . Then we have Tx = φβ ◦

τ ◦ φ−1
β x for all β-adic rationals

x =

k∑
i=1

εi
βi

with coefficients εi ∈ {0, 1}.

Proof. First let us observe that α = 1
β . It follows from [4, Lemma 3] spe-

cializing L = S = 1 that every positive integer n has a representation of the
form

n =
N∑
i=0

εiti ,

where ti is the number of total intervals of the i-th partition. This implies
that ξn1,1 =

∑N
i=0

εi
βi+1 . We want to show that Tx = φβ ◦ τ ◦ φ−1

β (x). Then
we need to see if x belongs to I1, I2k or I2k+1.

If x ∈ I1 =
[
0, 1

β2

[
, then x =

∑∞
j=2

εj(x)
βj+1 . In this case

T1(x) = x+
1

β
=

1

β
+
∞∑
j=2

εj(x)

βj+1

and

φβ ◦ τ ◦ φ−1
β (x) = φβ ◦ τ (00ε2ε3 . . . )

= φβ(10ε2ε3 . . . )

=
1

β
+

∞∑
j=2

εj
βj+1

.
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Let us fix k ≥ 1. If x ∈ I2k =
[∑k−1

j=0 α
2j+1,

∑k
j=0 α

2j+1
[
, then x =∑k−1

j=0 α
2j+1 +

∑∞
2k+2 εjα

j+1. Hence

T2k(x) = x+ α2k −
k−1∑
j=0

α2j+1

=

k−1∑
j=0

α2j+1 +

∞∑
2k+2

εjα
j+1α2k −

k−1∑
j=0

α2j+1

=
∞∑

2k+2

εjα
j+1α2k .

and

φβ ◦ τ ◦ φ−1
β (x) = φβ ◦ τ (1010 . . . 0100ε2k+2ε2k+3 . . . )

= φβ(01101 . . . 0100ε2k+2ε2k+3 . . . )

= · · · = φβ(0 . . . 01100ε2k+2ε2k+3 . . . )

= φβ(0 . . . 010ε2k+2ε2k+3 . . . )

=
1

β2k
+

∞∑
j=2k+2

εj
βj+1

= α2k +

∞∑
j=2k+2

εjα
j+1 .

Finally, if x ∈ I2k+1 =
[∑k−1

j=0 α
2(j+1),

∑k
j=0 α

2(j+1)
[
, then x =

∑k−1
j=0 α

2(j+1)

+
∑∞

2k+3 εjα
j+1. Hence

T2k+1(x) = x+ α2k+1 −
k−1∑
j=0

α2(j+1)

=

∞∑
2k+3

εjα
j+1 + α2k+1 .

and

φβ ◦ τ ◦ φ−1
β (x) = φβ ◦ τ (0101 . . . 0100ε2k+3ε2k+4 . . . )

= φβ(1101 . . . 0100ε2k+3ε2k+4 . . . )

= · · · = φβ(0 . . . 01100ε2k+3ε2k+4 . . . )

= φβ(0 . . . 010ε2k+3ε2k+4 . . . )

=
1

β2k+1
+

∞∑
j=2k+3

εj
βj+1

= α2k+1 +

∞∑
j=2k+3

εjα
j+1 .
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So we have proved that the two maps are the same on the set of all β-
adic rationals. Combining this with the ergodicity of the Kakutni-Fibonacci
transformation we complete the proof.

Theorem 4.1.7. The Kakutani-Fibonacci transformation is uniquely er-
godic.

Proof. By Theorem 4.1.4, φβ ◦ τ ◦ φ−1
β is uniquely ergodic, thus by Lemma

4.1.6 and the density of the β-adic rationals T is uniquely ergodic.



Chapter 5

Integration with respect to
copulas

As we have already highlighted in the first chapter, there is a strong connec-
tion between uniformly distributed sequences and the estimate of integrals,
especially of multidimensional ones. In this last chapter we want to fo-
cus on the integration of two-dimensional functions with respect to copulas.
We already know that a copula is the asymptotic distribution function of a
two-dimensional sequence (xn, yn)n∈N, with (xn)n∈N, (yn)n∈N are uniformly
distributed sequences. We now provide the general definition and we want
to give upper and lower bounds for these integrals. This can be done by
drawing a connection to linear assignment problems. These are a family of
problems consisting in how to assign n items to other n items in an optimal
way. We will discuss this kind of problems and the way to solve them, show-
ing how we can apply the solution for these problems to the original problems
of finding bounds for integrals. Of course the second type of problems is dis-
crete, thus this approach gives rise to an approximation technique. Finally,
we apply our approximation technique to problems in financial mathematics
and uniform distribution theory, such as the model-independent pricing of
first-to-default swaps. We refer to [52, 65] for a complete introduction to
copulas and to [17] for a comprehensive treatment of assignment problems.

Definition 5.1.1 (Copula). Let C be a positive function on the unit square.
Then C is called (two)-copula iff for every x, y ∈ [0, 1[

C(x, 0) = C(0, y) = 0,

C(x, 1) = x and C(1, y) = y

and for every x1, x2, y1, y2 ∈ [0, 1[ with x2 ≥ x1 and y2 ≥ y1

C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1) ≥ 0. (5.1)

A function which satisfies (5.1) is called two-increasing or supermodular. In
the sequel we denote by C the set of all two-copulas.
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The word copula was first employed in a mathematical or statistical sense
by Abe Sklar (1959) in the theorem (which now bears his name) describing
the functions that join together one-dimensional distribution functions to
form multivariate distribution functions.
Sklar’s Theorem, which will be stated below, elucidates the role that copulas
play in the relationship between multivariate distribution functions and their
univariate margins.

Theorem 5.1.2 (Sklar’s Theorem). Let H be a joint distribution function
with margins F and G. Then there exists a copula C such that for all
x, y ∈ R,

H(x, y) = C(F (x), G(y)) . (5.2)

If F and G are continuous, then C is unique; otherwise, C is uniquely
determined on Ran F× Ran G, where Ran F is the range of F . Conversely,
if C is a copula and F and G are distribution functions, then the function
H defined by (5.2) is a joint distribution function with margins F and G.

Theorem 5.1.3. For every copula C and every (u, v) ∈ [0, 1]2,

W (u, v) ≤ C(u, v) ≤M(u, v) , (5.3)

where W (x, y) = max(x + y − 1, 0) and M(x, y) = min(x, y) are called
Fréchet-Hoeffding lower and upper bounds, respectively.

It is well known that the Fréchet-Hoeffding lower and upper bounds are
copulas in the two dimensional setting. For higher dimensions an analogon
of (5.3) exists, however the lower bound is in general not a copula.

Our main goal in this chapter is to provide bounds for∫ 1

0

∫ 1

0
f(x, y)dC(x, y) .

Thus, we are interested in bounds of the form∫
[0,1[2

f(x, y)dCmin(x, y) ≤
∫

[0,1[2
f(x, y)dC(x, y) ≤

∫
[0,1[2

f(x, y)dCmax(x, y),

(5.4)
for all C ∈ C, where Cmin, Cmax are copulas.
A particularly interesting subclass of copulas for our problems are the so-
called shuffles of M .

Definition 5.1.4 (Shuffles of M). Let n ≥ 1, s = (s0, . . . , sn) be a par-
tition of the unit interval with 0 = s0 < s1 < . . . < sn = 1, σ be a
permutation of Sn = {1, . . . , n} and ω : Sn → {−1, 1}. We define the
partition t = (t0, . . . , tn), 0 = t0 < t1 < . . . < tn = 1 such that each
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[si−1, si[×[tσ(i)−1, tσ(i)[ is a square. A copula C is called shuffle of M with
parameters {n, s, σ, ω} if it is defined in the following way: for all i ∈
{1, . . . , n} if ω(i) = 1, then C distributes a mass of si − si−1 uniformly
spread along the diagonal of [si−1, si[×[tσ(i)−1, tσ(i)[ and if ω(i) = −1 then
C distributes a mass of si− si−1 uniformly spread along the antidiagonal of
[si−1, si[×[tσ(i)−1, tσ(i)[.

Note that the two Fréchet-Hoeffding bounds W,M are trivial shuffles
of M with parameters {1, (0, 1), (1),−1} and {1, (0, 1), (1), 1}, respectively.
Furthermore, it is well-known that every copula can be approximated arbi-
trarily close with respect to the supremum norm by a shuffle of M ; see e.g.
[65, Theorem 3.2.2]. In the sequel we denote by πn the partition of the unit
interval which consists of n intervals of equal length.

In the next paragraph we want to give a description of the linear assign-
ment problem and of the Hungarian algorithm. Then we will illustrate the
close relation of (5.4) to linear assignment problems.

Description of the linear assignment problem and of the Hungarian
algorithm Assignment problems deal with the question of how to assign
n items (jobs, students) to n other items (machines, tasks). Since there are
in general many assignments possible, we are interested in the best suitable
assignment for the problem under investigation. Therefore, we must state
our goal by specifying an objective function. Given an n × n cost matrix
A = (aij), where aij measures the cost of assigning i to j, we ask for an
assignment with minimum total cost, i.e., the objective function

∑n
i=1 aiσ(i)

is to be minimized. The linear sum assignment problem (LSAP) can then
be stated as

min
σ∈P

n∑
i=1

aiσ(i) , (5.5)

where σ runs through all possible permutations on n elements.
Half a century ago Harold W. Kuhn published a famous article [56] pre-
senting the Hungarian algorithm, the first polynomial-time method for the
assignment problem.
We briefly describe how it works. The following algorithm finds an optimal
assignment to a given n× n matrix.

1. Subtract the smallest entry in each row from all the entries of its row

2. Subtract the smallest entry in each column from all the entries of its
column

3. Draw lines through appropriate rows and columns so that all the zero
entries of the cost matrix are covered and the minimum number of
such lines is used
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4. Test for Optimality: (i) If the minimal number of covering lines is n,
an optimal assignment of zeros is possible and we are finished. (ii)
If the minimum number of covering lines is less than n, an optimal
assignment of zeros is not yet possible. In that case, proceed to Step
5.

5. Determine the smallest entry not covered by any line. Subtract this
entry from each uncovered row, and then add it to each covered col-
umn. Return to Step 3.

Now we see how to apply this algorithm to our problem.

Theorem 5.1.5. Let n ≥ 1, A = {ai,j}i,j=1,...,n be a real-valued n×n matrix
and let the function f be defined as

f(x, y) := ai,j , (x, y) ∈
[
i− 1

n
,
i

n

[
×
[
j − 1

n
,
j

n

[
.

Then the copula Cmax which maximizes

max
C∈C

∫
[0,1[2

f(x, y)dC(x, y) (5.6)

is given as a shuffle of M with parameters {n, πn, σ∗, 1}, where σ∗ is the
permutation which solves the assignment problem

max
σ∈P

n∑
i=1

ai,σ(i).

Moreover the maximal value of (5.6) is given by∫
[0,1[2

f(x, y)dCmax(x, y) =
1

n

n∑
i=1

ai,σ∗(i). (5.7)

Proof. Let {Ck(x, y), k = 1, . . . , n! = N} be the set of all shuffles of M with
parameters of the form {n, πn, σk, 1} and let tk ≥ 0, k = 1, . . . , N , where∑N

k=1 tk = 1. Then C ′(x, y) =
∑N

k=1 tkCk(x, y) is always a copula satisfying∫
[0,1[2

f(x, y)dC ′(x, y) ≤ 1

n

n∑
i=1

ai,σ∗(i),

where σ∗ is given in the statement of the theorem.

For an arbitrary copula C ∈ C we define the matrix BC as

BC(i, j) = n

∫
[ i−1
n
, i
n [×[ j−1

n
, j
n [
dC(x, y).
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It follows by Definition 5.1.1 that BC is doubly stochastic and by Definition
5.1.4 that BCk is a permutation matrix. Furthermore it follows from the
Birkhoff-von Neumann Theorem that the set of doubly stochastic matrices
coincides with the convex hull of the set of permutation matrices, see e.g.
[64]. Thus for every C there exist tk ≥ 0, k = 1, . . . , N with

∑N
k=1 tk = 1

such that

BC(i, j) =
N∑
k=1

tkBCk(i, j), for every i, j,

and hence∫
[0,1[2

f(x, y)dC(x, y) =
N∑
k=1

tk

∫
[0,1[2

f(x, y)dCk(x, y) ≤ 1

n

n∑
i=1

ai,σ∗(i) .

Note that the maximal copula in Theorem 5.1.5 is by no means unique,
since for instance the value of the integral in (5.6) is independent of the
choice of ω.

Obviously, we can derive a lower bound in Theorem 5.1.5 by considering
g(x, y) = −f(x, y). Furthermore it is easy to see that Theorem 5.1.5 applies
to all functions f which are constant on sets of the form

Ii,j = [si, si+1[× [tj , tj+1[ , i = 0, . . . , n− 1, j = 0, . . . ,m− 1,

where 0 = s0 < s1 < . . . < sn = 1 and 0 = t0 < t1 < . . . < tm = 1 are
rational numbers.

The following generalization of our approach applies to a wide class of
functions on the unit square.

Theorem 5.1.6. Let f be a continuous function on [0, 1]2, let the sets Ini,j
be given as

Ini,j =

[
i− 1

2n
,
i

2n

[
×
[
j − 1

2n
,
j

2n

[
for i, j = 1, . . . , 2n,

for every n > 1 and define the functions f
n
, fn as

f
n
(x, y) = min

(x,y)∈Ini,j
f (x, y) , for all (x, y) ∈ Ini,j ,

fn(x, y) = max
(x,y)∈Ini,j

f (x, y) , for all (x, y) ∈ Ini,j . (5.8)

Furthermore let Cnmax, C
n
max be the copulas which maximize

max
C∈C

∫
[0,1[2

f
n
(x, y)dC(x, y) and max

C∈C

∫
[0,1[2

fn(x, y)dC(x, y),
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respectively. Then∫
[0,1[2

f
n
(x, y)dCnmax(x, y) ≤ sup

C∈C

∫
[0,1[2

f(x, y)dC(x, y)

≤
∫

[0,1[2
fn(x, y)dC

n
max(x, y), (5.9)

for every n, and

lim
n→∞

∫
[0,1[2

f
n
(x, y)dCnmax(x, y) = lim

n→∞

∫
[0,1[2

fn(x, y)dC
n
max(x, y)

= sup
C∈C

∫
[0,1[2

f(x, y)dC(x, y). (5.10)

Proof. The inequalities in (5.9) follow immediately from the construction of
f
n
, fn and Theorem 5.1.5. Furthermore since f is continuous on [0, 1]2 we

have that for every ε > 0 there exists an integer n such that

|fn(x, y)− f
n
(x, y)| < ε, for all (x, y) ∈ [0, 1]2. (5.11)

Moreover it follows from Theorem 5.1.5 that for every n we can write∫
[0,1[2

f
n
(x, y)dCn(x, y) =

1

2n

2n∑
i=1

ai,σ∗(i)

for a permutation σ∗ and a real valued matrix A = {ai,j}i,j=1,...,n with

ai,j = min
(x,y)∈Ini,j

f (x, y) , for i, j = 1, . . . , 2n.

Using (5.11), we get that∫
[0,1[2

fn(x, y)dC
n
(x, y) ≤

∫
[0,1[2

(f
n
(x, y)+ ε)dCn(x, y) =

1

2n

2n∑
i=1

(ai,σ∗(i) + ε)

and therefore∣∣∣∣∣
∫

[0,1[2
fn(x, y)dC

n
(x, y)−

∫
[0,1[2

f
n
(x, y)dCn(x, y)

∣∣∣∣∣ < ε.

Combining this with (5.9), we get (5.10).

The assumption that f is continuous can, perhaps, be relaxed to the case
that f is C-continuous a.e. for all C ∈ C. This is required to make sure that∫

[0,1[2
f(x, y)dC(x, y)
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exists for all C ∈ C.

By defining the functions f
n
, fn differently, we might get an approxima-

tion technique which converges faster to the optimal value, for instance we
could use

fn(x, y) = f

(
i

2n
,
j

2n

)
, for all (x, y) ∈ Ini,j .

Furthermore the mini- and maximization steps in (5.8) can be time-consu-
ming, for instance when these problems are not explicitly solvable. However
the advantage of the present approach lies in the fact that we get an upper
and lower bound of the optimal value for every n, which is obviously useful
for numerical applications.

In numerical investigations where (5.8) could not be solved explicitly we
used mini- and maximization over a fixed grid in each Ini,j . This results in a
fast computation, however we obviously lose the property that we get upper
and lower bounds for every n.

By assuming Lipschitz-continuity of f , we can describe the rate of con-
vergence of our method.

Corollary 5.1.7. Let the assumptions of Theorem 5.1.6 hold and, in addi-
tion assume that f is Lipschitz-continuous on [0, 1]2 with constant L. Then∣∣∣∣∣

∫
[0,1[2

fn(x, y)dC
n
(x, y)−

∫
[0,1[2

f(x, y)dC(x, y)

∣∣∣∣∣ ≤ L
√

2

2n
.

Proof. Following the proof of Theorem 5.1.6 and using the Lipschitz-conti-
nuity of f we get

|fn(x, y)− f
n
(x, y)| ≤ L

√
2

2n
, for all (x, y) ∈ [0, 1]2,

and therefore∣∣∣∣∣
∫

[0,1[2
fn(x, y)dC

n
(x, y)−

∫
[0,1[2

f
n
(x, y)dCn(x, y)

∣∣∣∣∣ ≤ L
√

2

2n
.

In this section we present two numerical examples in which we apply the
approximation technique presented in Theorem 5.1.6. We use an implemen-
tation of the Hungarian Algorithm in MatLab, which makes it possible to
derive the solution of the linear assignment problem (5.5) for a given ma-
trix A of size 210 × 210 within seconds. The involved mini- or maximization
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of the integrand function on a given grid can be done efficiently, since the
integrand functions are piecewise smooth.

Now we derive upper bounds for (1.19) by maximizing g over the set of
all copulas. This has already been done in [33] for functions f such that
∂2f
∂x∂y

(x, y) has constant sign for all (x, y) ∈ [0, 1[2. Note that this condition

is equivalent to the two-increasing property of f provided that ∂2f
∂x∂y

(x, y)
exists on the unit square.

As a numerical example, we consider

lim sup
N→∞

1

N

N∑
n=1

sin(π(xn + yn)).

The numerical results are illustrated in Table 5.1. Note that the approxi-
mations of the lower bound can be easily computed using the symmetry of
the sine function.

A further interesting question concerns the sequences (xn)n>1, (yn)n>1

which maximize (1.19). Let (xn)n>1 be a u.d. sequence and C(x, y) a shuffle
of M , then it is easy to see that (f(xn))n>1 is u.d., where f is the support
of C. Thus if C is the shuffle of M which attains the maximum in (1.19), an
optimal two-dimensional sequence is given as (xn, f(xn))n>1, where (xn)n>1

is an arbitrary u.d. sequence. In Figure 5.1, we present the support of the
copula which attains the upper bound for the maximum in our approxima-
tion when n = 7.

We point out that in this context the support of a copula is meant as
the support of the measure µC induced by the copula, i.e.

Supp(C) = {B ∈ B([0, 1]2) : µC(B) > 0} .

Although we are not able to give a rigorous proof, by increasing n it
seems that the copula C ′ which attains the maximum is the shuffle of M
with parameters {2, (0, 0.75, 1), (1), {ω(1) = −1, ω(2) = 1}}. In this case we
have that

supp(C′) =

{
(x, f ′(x)) : x ∈

[
0,

3

4

]
, f ′(x) =

3

4
− x
}
∪
{

(x, x) : x ∈
[

3

4
, 1

]}
and then∫ 1

0

∫ 1

0

sin(π(x+ y))dC ′(x, y) =

∫ 1

0

sin(π(x+ f ′(x)))dx

=

∫ 3
4

0

sin(π(x+ 0.75− x))dx+

∫ 1

3
4

sin(π2x)dx

=
3

4
√

2
− 1

2π
≈ 0.371175 .
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n 5 6 7 8 9 10

UB 0.3933 0.3824 0.377 0.3741 0.3727 0.3712

LB 0.3482 0.3598 0.3655 0.3684 0.3698 0.3711

Table 5.1: Upper and lower bounds for the maximum in (1.19) with respect
to n.
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Figure 5.1: Support of copula which attains upper bound for sin(π(X +Y ))
and n = 7.

A first-to-default swap (FTD) is a contract in which a protection seller
(PS) insures a protection buyer (PB) against the loss caused by the first
default event in a portfolio of risky assets. The PB pays regularly a fixed
constant premium to the PS, the so-called spread, until the maturity T of
the contract or the first default event, whichever occurs first. In exchange,
the PS compensates the loss caused by the default at the time of default.

We assume that the underlying portfolio consists of two risky assets, for
which the marginal default distributions are known, but the joint distribu-
tion is unknown. We want to derive a worst case bound in this setting. For
the valuation of the FTD we follow the paper of Schmidt and Ward [85].
Note that Monte Carlo methods for the evaluation of first-to-default swaps,
where the dependences within the portfolio is modeled by a copula, are e.g.
presented in Aistleitner et al. [3] and Packham and Schmidt [74].

Let τ1, τ2 denote the random default times of the two risky assets, let
the notional be equal to one for both assets and Ri, i = 1, 2, be the so-
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called recovery rates, which are the percental amounts of money that can be
liquidized in case of the default of an asset. We assume that the distribution
of τi is given as

P(τi ≤ t) = 1− e−λit, t > 0,

where the intensity λi can be derived from the credit default swap market
as

λi =
si

1−Ri
,

and si is the premium of an insurance against the default of asset i.

Now denote by τ = min(τ1, τ2) the first default time in the portfolio, let
0 = t0 < t1 < . . . < tn = T be the payment times of the constant spread and
assume that there exists a risk free interest rate r ≥ 0. Then, to guarantee a
fair spread s, we obtain that the expected, discounted premium and default
payments are equal, i.e.

s

n∑
i=0

e−rtiP(τ > ti) =

2∑
i=1

E
[
(1−Ri)e−rτ1{τ<T∧τ=τi}

]
.

By the above assumptions we obtain that

P(τ > ti) =

∫
[0,1[2

1{f(x,λ1)>ti ∧ f(y,λ2)>ti}dC(x, y),

2∑
i=1

E
[
(1−Ri)e−rτ1{τ<T ∧ τ=τi}

]
=∫

[0,1[2
e−rmin(f(x,λ1),f(y,λ2))

(
1{f(x,λ1)≤min(f(y,λ2),T )}(1−R1)

+ 1{f(y,λ2)≤min(f(x,λ1),T )}(1−R2)

)
dC(x, y),

where f(x, λ) = − log(1−x)
λ is the inverse distribution function of an exponen-

tial distribution with parameter λ and 1{(x,y)∈B} denotes the characteristic
function of set B ⊆ [0, 1[2.

Now we want to calculate the maximal spread s by maximizing over all
copulas. We obtain for the spread that

s =

∫
[0,1[2

e−rmin(f(x,λ1),f(y,λ2))∑n
i=0 e

−rti1{f(x,λ1)>ti ∧ f(y,λ2)>ti}

·
(

1{f(x,λ1)≤min(f(y,λ2),T )}(1−R1)

+ 1{f(y,λ2)≤min(f(x,λ1),T )}(1−R2)

)
dC(x, y). (5.12)
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Note that the value of the integral is finite since the first payment is made at
t0 = 0. Furthermore note that the integrand function in this example is not
continuous, thus Theorem 5.1.6 cannot be applied. Nevertheless it is clear
that our technique provides upper and lower bounds for the optimal values,
and since these bounds converge to each other our approach still works.

In Table 5.2 we present numerical results for a concrete example with
three payment times, ti = 0, 1, 2. One can observe that the resulting copulas
(given in Figures 5.2 and 5.3 for n = 7, 8, respectively) are highly irregular
in the left upper quarter of the unit square. However for n = 10 the upper
and lower bounds for the optimal values are almost equal.

λ1 λ2 R1 R2 T r ti
1
3

1
2 0.5 0.7 2 0.05 (0, 1, 2)

n 3 4 5 6 7 8 10

UB 0.3601 0.3355 0.3301 0.326 0.322 0.3202 0.3195

LB 0.2956 0.3031 0.314 0.318 0.3183 0.3189 0.3195

UB 0.1714 0.1674 0.1567 0.1535 0.1519 0.1505 0.1498

LB 0.1453 0.1456 0.1458 0.1480 0.1492 0.1492 0.1495

Table 5.2: Approximation of the maximal spread of a FTD, where UB and
LB and UB and LB denote the values of the upper and the lower bounds
of the maximal and minimal value of the integral, and n the fineness of the
approximation according to Theorem 5.1.6.
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Figure 5.2: Copula which attains the upper bound for the maximal value
with n = 7.

The method just presented can be used to derive sharp bounds for inte-
grals of piecewise constant functions with respect to copulas. This extends
the scientific literature on this topic, which is in general still open.
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Figure 5.3: Copula which attains the upper bound for the maximal value
with n = 8.

The numerical effectiveness of our method was illustrated in the two numer-
ical examples coming from different branches of applied mathematics just
proposed.

However, as pointed out also in the previous chapters, an interesting
problem concerns the extension of the method to the multidimensional case.
This would be of particular interest since finding bounds for multidimen-
sional integrals with respect to copulas has several applications in fields of
mathematics such as number theory and actuarial mathematics.
Unfortunately, at the moment this method fails to be optimal in higher di-
mension, since the so-called multi-index assignment problems are in general
NP-hard. We think that one possible way to tackle this kind of problems is
to investigate them from a heuristic point of view.
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