

Alla mia famiglia

Abstract

In this thesis, I designed and implemented three new web applications tai-

lored for the Cellular Automata (CA) simulation models SCIDDICA-k1,

SCIARA-fv3 and ABBAMPAU, making use of the Google Web Toolkit frame-

work and WebGL.

Moreover, I have contributed to the optimizations of the numerical models

mentioned above and I also developed part of a library, called OpenCAL, for

developing CA simulation models in C/C++. In this case, my most signifi-

cant contribution regarded the support given to the parallelization through

the OpenCL standard, in order to facilitate with a few lines of codes, the par-

allelization for the execution on any device, especially on General Purpose

Computation with Graphics Processing Units (GPGPU).

The development of the web applications involved the implementation of

strategies so that optimizing the server load in the connections’ management

and enhancing the real time visualization of maps on devices of any kind,

even mobile.

As regards the OpenCAL library, the tests performed on a test models has

shown significant performance improvements in terms of speedup, thanks also

to the use of some new optimization strategies. In this way, the validity of the

use of graphics processing units as alternative to more expensive hardware

solutions for the parallelization of CA models has been confirmed.

3

Sommario

In questo lavoro di tesi ho progettato e implementato tre web application per

i modelli di simulazione ad Automi Cellulari SCIDDICA-k1, SCIARA-fv3 e

ABBAMPAU, utilizzando il framework Google Web Toolkit e WebGL.

Inoltre, ho contribuito ad alcune ottimizzazioni dei modelli numerici so-

pra citati e ho sviluppato parte di una libreria, chiamata OpenCAL, per lo

sviluppo di modelli di simulazione ad Automi Cellulari in C/C++. Il mio

contributo piú significativo ha riguardato la parallelizzazione della libreria in

OpenCL per consentire una parallelizzazione semplificata dell’automa cellu-

lare rispetto all’impoego diretto di OpenCL e l’esecuzione su device etero-

genei, in particolar modo su schede grafiche per il calcolo general-purpose

(General Purpose Computation with Graphics Processing Units - GPGPU).

Lo sviluppo delle web application ha coinvolto l’applicazione di strate-

gie per ottimizzare il carico dei server nella gestione delle connessioni e per

rendere piú performante la visualizzazione in tempo reale delle mappe su

qualsiasi tipo di dispositivo, anche mobile.

Per quanto riguarda la libreria OpenCAL, gli esperimenti effettuati su al-

cuni modelli base mostrano significativi miglioramenti nelle performance in

termini di speedup, grazie anche all’utilizzo di alcune strategie d’ottimizzazio-

ne nuove, confermando la validitá dell’uso di processori grafici come alterna-

tiva a soluzioni hardware classiche, generalemente piu‘ costose, per la paral-

lelizzazione di modelli ad Automi Cellulari.

4

Contents

1 Introduction 1

2 A brief overview of Cellular Automata, GPGPU and Web
2.0 4
2.1 Cellular Automata . 4

2.1.1 Informal Definition . 6
2.1.1.1 Cellular space dimension and geometry 6
2.1.1.2 Neighborhood 7
2.1.1.3 Transition Function 8

2.1.2 Formal Definition . 8
2.1.2.1 Finite State Automaton 8

2.1.3 Homogeneous Cellular Automata 10
2.1.4 Theories and studies 12

2.1.4.1 Elementary cellular automata 12
2.1.4.2 Wolfram’s classification 13
2.1.4.3 At the edge of Chaos 14
2.1.4.4 Game of life 17

2.1.5 Extension of the Cellular automata model 19
2.1.5.1 Probabilistic CA 19

2.2 GPGPU Technologies . 21
2.2.1 Why GPU computing? 21
2.2.2 From Graphics to General Purpose Computing 23

2.2.2.1 Traditional Graphics Pipeline 24
2.2.3 CUDA . 27

2.2.3.1 CUDA Programming model 28
2.2.3.2 CUDA Threads and Kernels 29
2.2.3.3 Memory hierarchy 31
2.2.3.4 Programming with CUDA C 32

2.2.4 OpenCL . 33
2.2.4.1 Model Architecture 33

2.2.5 OpenACC . 37

5

CONTENTS 6

2.2.5.1 Wait Directive 39
2.2.5.2 Kernel Directive 39
2.2.5.3 Data Construct 39

2.3 WEB 2.0 . 39
2.3.1 The dawn of the Web 40
2.3.2 The Web 2.0 . 43

2.4 AJAX . 44
2.4.1 AJAX rich applications 46

2.4.1.1 Benefits and Drawbacks 48

3 Simulation of complex macroscopic natural phenomena and
Scientific Web applications 52
3.1 Cellular Automata application Models 52

3.1.1 SCIDDICA K1: a cellular automata model to simulate
landslides and debris flows. 52
3.1.1.1 Applications of the model SCIDDICA K1. . . 59

3.1.2 SCIARA-fv3 - Model Formalization 63
3.1.2.1 Model Overview 63
3.1.2.2 Elementary process 64

3.1.3 ABBAMPAU a CA for Wildfire Simulation and Risk
Assessment . 71

3.2 Web applications . 76
3.2.1 Swii2 . 77

3.2.1.1 The system architecture 77
3.2.1.2 The Swii2 GUI and the visualization system . 79
3.2.1.3 Swii2 preliminary analysis 80
3.2.1.4 Cooperative Aspects in Scientific Simulation . 80

3.2.2 SciaraWii: the SCIARA-fv3 Web User Interface 82
3.2.2.1 System architecture 82
3.2.2.2 Visualization system, Rendering And Deci-

mation . 82
3.2.2.3 Performance analysis 83

3.2.3 Awii . 84
3.2.3.1 System architecture 85
3.2.3.2 Performance analysis 87

4 OpenCAL 88
4.1 A brief description of OpenCAL 89

4.1.1 An OpenCAL implementation of Conway’s Game of Life 89
4.1.2 An OpenCAL implementation of the SCIDDICA-T de-

bris flows model . 94

CONTENTS 7

4.2 A brief description of the OpenCAL parallel OpenCL version . 101
4.2.1 OpenCAL improvement to OpenCL programming . . . 102
4.2.2 A simple OpenCAL parallel example of application:

The Game of Life . 107
4.2.3 A more complex OpenCAL parallel example of appli-

cation: SCIDDICA-T 110
4.3 OpenCAL parallel computational performance 116

5 Conclusions 120

Acknowledgments 123

Bibliography 124

List of Figures 131

List of Tables 134

1
Introduction

From the early days of Computer Science, one of the most important purposes
of computers was the simulation of the natural phenomena. With these
simulations, man has the total control of the reproduced “world” [37] and
he can test his theories and assumptions by comparing it to the reality.
Indeed, the execution speed of computers has allowed the use of numerical
simulation as an instrument to solve complex equations systems, with which
scientists can “model” the complex phenomena of reality. Nowadays, these
simulations gain a particular importance because they are not only used to
test theories and assumptions, but also to prevent, in medium and long-term,
the evolution over time of a complex system; in this context the prevention
of natural disasters, weather forecasts, evaluations of financial trends and
so on are placed. The application fields of simulations are countless; for
example, they can be used for the vocational education of those professionals
for which the training in a real environment would lead to safety problems
or costs (such as in pilots’ training).

However, many real systems are not suitable for an immediate and natu-
ral “classical” modeling, based on a first analytical and deductive phase, fol-
lowed by a later resolution through numerical methods. In complex systems’
simulation the computational paradigm of Cellular Automata [71] is widely
adopted, which represent, in some contexts, an alternative method to sys-
tems in which are used differential equations, especially employed in Physics
to describe the laws that rule the evolution of a phenomenon. According to
the Cellular Automata modeling approach, a system can be considered as

1

2

composed of several simple elements, each one evolves following purely local
laws. The global evolution of the system then “emerges” from the evolution
of all constituent elements. Cellular Automata are successfully used to sim-
ulate complex systems in several fields, like Computational Fluid Dynamics,
Artificial Life, Molecular Dynamics, Biology, Genetics, Chemistry, Geology,
Cryptography, Financial world,Territorial Analysis, modeling of road traffics,
image processing.

In the execution of the simulations it is often necessary to perform a
considerable quantity of computations. It may then happen that, in some
contexts, computers take excessively long processing times, making the simu-
lations useless for practical purposes. For this reason, it is required to speed
up the simulations; therefore, it is useful to resort on parallel computers,
composed by many processing units able to run many programs simultane-
ously, in order to solve different problems or execute a single problem taking
less time.

However, the use of high-performance parallel computers (supercomput-
ers) is not always possible for who needs to simulate complex phenomena
such as certain geological phenomena that are of particular interest in order
to prevent disasters. In Italy, for example, it would be desirable to be able
to simulate in advance the effects of landslides that could hit the territory,
which is particularly exposed to this kind of phenomena.

Usually, softwares allow an interactive simulation and integrate a 2D
and/or 3D visualization system. In most cases, however it is sequential soft-
ware, despite the current technological development can permit to have access
to parallel systems with high computational capacity at low cost (compared
to the past). This is true especially in the case of General-Purpose Compu-
tation with Graphics Processing Units (GPGPU), which uses the graphics
cards for computational purposes. Generally, for Desktop Applications com-
putation and visualization are combined in a single software. In some cases,
however, it is possible to find examples of client-server applications where
the computational part is independent from the graphical interface and the
visualization system; the computation can therefore be performed remotely,
possibly on supercomputers. A further development is given by the most
recent Web technologies, thanks to which it is possible to realize on one
hand graphical interfaces comparable, if not better, to classical ones, and on
the other hand complete and functional interactive systems for 2D and 3D
scientific visualization. Furthermore, web applications improve the level of
usability of the applications itself and remove those problems related to soft-
ware download. Besides, the end user does not have to worry about where the
computation is executed, nor the details of the computational model used.

The work done in this dissertation is placed in this latter context, where

3

supercomputing and Web 2.0 converge in order to realize new applications
for computational models for the simulation of complex systems. For this
purpose, three Cellular Automata numerical models and three respective
web applications have been implemented, each one with an interactive 3D
visualization system, implemented using WebGL. The implemented models
are: SCIDDICA-k1 with the Swii2 web application for debris flows simula-
tion, SCIARA-fv3 with SciaraWii for lava flows and ABBAMPAU with Awii
to display and control the evolution of wildfire. Instead, as regards the as-
pects related to the increase of performance, a significant contribution to the
development of a new library for Cellular Automata has been carried out,
especially to its parallelization in OpenCL for the execution on GPUs.

The thesis is organized as described below. The second Chapter focuses
on different theoretical arguments and the presentation of some simulation
models: the Cellular Automata with their most important theoretical results
and some common applications; their specifically application for modelling
and simulating some natural complex phenomena; the algorithm for the min-
imisation of differences [19]; there is also an overview on GPGPU techniques
like CUDA, OpenCL and OpenACC; a general description of the innovations
introduced by the WEB 2.0; finally, the AJAX development method, its
applications and the resultant innovative effects. The third Chapter shows
our latest release on lava flows simulations, debris flow simulations and wild-
fire simulations, SCIARA-fv3, SCIDDICA-k1 and ABBAMPAU, respectively
and the structures of SCIDDICA, SCIARA and ABBAMPAU Web Interac-
tive Interfaces are described, with some applications and the main differences
among them. Software architecture is described, as well as the 3D visualiza-
tions systems based on WebGL. The fourth Chapter focuses on the descrip-
tion of the OpenCAL library and the advantages by using its OpenCL sup-
port. Then, some implementations and performance analysis are reported.
The last Chapter concludes with general discussions and directions for future
work.

2
A brief overview of Cellular Automata,

GPGPU and Web 2.0

2.1 Cellular Automata

Nowadays most of natural phenomena are well described and known, thanks
to the effort of scientists that studied the basic physic’s laws for centuries;
for example, the freezing of water or the conduction that are well know and
qualitative analyzed. Natural systems are usually composed by many parts
that interact in a complex net of causes/consequences that is at least very
difficult but most of the times impossible to track and to describe. Even if the
single components are each very simple, extremely complex behavior emerge
naturally due to the cooperative effect of many components. Much has been
discovered about the nature of the components in natural systems, but lit-
tle is known about the interactions that these components have in order to
give the overall complexity observed. Classical theoretical investigations of
physical system have been based on mathematical models, like differential
equations, that use calculus as tool to solve them, which are able to describe
and allow to understand the phenomena, in particular for those that can be
described by which are linear differential equation1 that are easy solvable
with calculus. Problems arise when non-linear differential equations come

1Some electro-magnetism phenomena, for instance, can be described by linear differ-
ential equations.

4

2.1. CELLULAR AUTOMATA 5

out from the modellation of the phenomena, like fluid turbulence2. Classical
approaches usually fails to handle these kind of equations due to the elevated
number of components, that make the problem intractable even for a com-
puter based numerical approach. Another approach to describe such systems
is to distill only the fundamental and essential mathematical mechanism that
yield to the complex behavior and at the same time capture the essence of
each component process.

Figure 2.1: A 3D cellular automaton with toroidal cellular space.

Cellular Automata (CA) are a candidate class of such systems and are
well suitable for the modellation and simulation of a wide class of systems, in
particular those ones constructed from many identical components, each
(ideally) simple, but together capable of complex behaviour [65] [66]. In liter-
ature there are lots applications of Cellular Automata in a wide rage of class
problems from gas [25] and fluid turbulence [62] simulation to macroscopic
phenomena [30] like epidemic spread [59], snowflakes and lava flow [15] [60].
CA were first investigated by S. Ulam working on growth of crystals using
lattice network and at the same time by Von Neumann in order to study
self-reproduction [70]; it was not very popular until the 1970 and the famous
Conway’s game of life [13], then was widely studied on the theoretical view-
point, computational universality were proved3 [64] and then mainly utilised,
after 1980’s, as a parallel model due to its intrinsically parallel nature imple-
mented on parallel computers [46].

2Conventionally described by Navier-Stokes differential equations.
3CA is capable of simulating a Turing machine, i.e. is capable of computing every

computable problems (Church-Turing thesis). For instance, Game of life was proved to be
capable of simulating logical gates (with special patterns as gliders and guns).

2.1. CELLULAR AUTOMATA 6

2.1.1 Informal Definition

Informally, a cellular automaton is a mathematical model that consists of a
discrete lattice of sites and a value, the state, that is updated in a sequence
of discrete timestamps (steps) according to some logical rules that depend
on a neighbor sites of the cell. Hence CA describe systems whose the overall
behavior and evolution of the system may be exclusively described on the
basis of local interactions [75]. The most stringent and typical characteristic
of the CA-model is the restriction that the local function does not depend on
the time t or the place i: a cellular automaton has homogeneous space/time
behavior. It is for this reason that CA are sometimes referred to as shift-
dynamical or translation invariant systems. From another point of view we
can say that in each lattice site resides a finite state automaton4 that take
as input only the states of the cells in its neighborhood (see figure 2.4).

2.1.1.1 Cellular space dimension and geometry

The cellular space is a discrete d-dimensional lattice of sites (see figure
2.2). For 1-D automaton the only way to discretize the space is in a one-
dimensional grid. For automaton with dimensionality higher than 1 the shape
of each cell can be different than squared. In 2D tessellation for example
each cell can be hexagonal or triangular instead of squared. Each tessella-
tion present advantages and disadvantages. For instance the squared one
does not give any graphical representation problem5, but present problems
of anisotropy for some kind of simulations6 [25]. An hexagonal tessellation
can solve the anisotropy problem [73] but presents obvious graphical issues.
Often, to avoid complications due to a boundary, periodic boundary condi-
tions are used, so that a two-dimensional grid is the surface of a torus (see
picture 2.1).

4A simple and well know computational model. It has inputs, outputs and a finite
number of states (hence a finite amount of memory); An automata changes state at regular
time-steps.

5Each cell could be easily mapped onto a pixel.
6The HPP model for fluid simulation was highly anisotropic due to the squared tessel-

lation.

2.1. CELLULAR AUTOMATA 7

Figure 2.2: Examples of cellular spaces. (a) 1-D, (b) 2-D squared cells, (c)
2-D hexagonal cells, (d) 3-D cubic cells.

2.1.1.2 Neighborhood

The evolution of a cell’s state is function of the states of the neighborhood’s
cells. The geometry and the number of cells that are part of the neighbor-
hood depends on the tessellation type, but it has to have three fundamental
properties:

1. Locality. It should involve only a “limited” number of cells.

2. Invariance. It should not be changed during the evolution.

3. Homogeneity. It has to be the same for each cell of the automaton.

Typically neighborhood “surrounds” the central cell. For 1-D cellular au-
tomata its borders are identified with a number r called radius [74]. A r = 2
identify n = 2r+1 cells in a 1D lattice: the central cell plus the right and left
cells. Typical 2D cellular space neighborhood are the those of Moore and von
Neumann neighborhood. The number of cells in the Moore neighborhood of
range r is the odd squares (2r + 1)2, the first few of which are 1, 9, 25, 49,
81, and so on as r is increased. Von Neumann’s one consist of the central cell
plus the cell at north, south, east, and west of the central cell itself. Moore’s
(r = 1) one add the farther cells at north-east, south-east, south-west and
north-west (see figure 2.3).

2.1. CELLULAR AUTOMATA 8

Figure 2.3: Examples of different kind of neighborhood with different radius
values.

2.1.1.3 Transition Function

The evolution of the cell’s state is decided by the transition function that is
applied at the same time and on each cell. Usually the transition function is
deterministic and defined by a look-up table only when the total number of
state for each cell is small7 otherwise is defined by an algorithmic procedure.
It may be probabilistic, in the case of stochastic cellular automata.

2.1.2 Formal Definition

Cellular automata are dynamic models that are discrete in time, space and
state. A simple cellular automaton A is defined by a lattice of cells each
containing a finite state automaton, so we briefly give its definition.

2.1.2.1 Finite State Automaton

Also known as deterministic finite automata (DFAs) or as deterministic finite
state machines, ther are one of the most studied and simple known compu-
tational models . It is a theoretical model of computation8 that can be in a
finite number of states, only one at a time, the current state. Its state can
change in response of inputs taken by a transition function that describe the
state change given the current state and the received input of the automata.
They are much more restrictive in their capabilities than a Turing machines
9, but they are still capable to solve simpler problems, and hence to recog-

7Otherwise the dimension of that table would be enormous because the number of
entries is exponential in the number of states.

8Language recognition problem solvers.
9For example we can show that is not possible for an automaton to determine whether

the input consist of a prime number of symbols.

2.1. CELLULAR AUTOMATA 9

nize simpler languages, like well parenthesized string; More in general they
are capable to recognize the so called Regular languages10, but they fail for
example in parsing context-free languages. More formally a DFA is a 5-tuple:

M =< Q,Σ, δ, q0, F >

• Q is a finite, nonempty, set of states.

• Σ is the alphabet

• δ : Q × Σ 7−→ Q is the transition function (also called next-state
function, may be represented in tabular form (see table 2.1)

• q0 is the initial (or starting) state : q0 ∈ Q

• F is the set, possibly empty, of final states : F ⊆ Q

δ a b c d e
q0 q0 q0 q2 q1 q1
q1 q1 q3 q1 q1 q1
q2 q3 q2 q2 q0 q1
q3 q0 q1 q1 q0 q1

Table 2.1: Tabular representation
of a DFM’s next-state function

A run of DFA on a input string u =
a0, a1, . . . , an is a sequence of states
q0, q1, . . . , qn s.t. qi

ai7−→ qi+1, 0 ≤ i ≤ n.
It means that for each couple of state and
input the transition function determinis-
tically return the next DFA’s state
qi = δ(qi−1, ai). For a given word w ∈ Σ∗

the DFA has a unique run (it is determin-
istic), and we say that it accepts w if the
last state qn ∈ F . A DFA recognizes the
language L(M) consisting of all accepted
strings.

Figure 2.4 is an example of DFA11. It accepts the language made up of
strings with a number N s.t N mod 3 = 0

• Σ = {a, b}

• Q = {t0, t1, t2}

• q0 = t0

10Languages defined by regular expressions and generated by regular grammar, Class
3 in Chomsky classification. We can prove that for each language L accepted by a DFA
exists a grammar LG s.t. L = LG

11Graph representation is the most common way to define and design DFA. Nodes are
the states, and the labelled edges are the possible states transition from a state u to a
state w given a certain input. Note that, because the automaton is deterministic is not
possible for two edges to point to two different nodes if same labelled.

2.1. CELLULAR AUTOMATA 10

• F = {t0}

If we execute the DFA on an input string S={aaabba} we can see that at
time t=0 the DFA is in the initial state t0 and the first symbol of S is read.
The transition function is applied once per each symbol is S (i.e. |S|). The
only rule that match the current state and input is δ = (t0, a) = t1 hence
the new state is t1. The DFA accept the string only if there is not any input
left and the current state is the final state qf

12. S is not accepted by the
DFA defined in the example 2.4 because at the end of the computation the
reached state is t1 that is not a final state.

t0
δ(t0,a)7−→ t1

δ(t1,a)7−→ t2
δ(t2,a)7−→ t0

δ(t0,b)7−→ t0
δ(t0,b)7−→ t0

δ(t0,a)7−→ t1

On the input S1 = {abababb} the DFA accept:

t0
δ(t0,a)7−→ t1

δ(t1,b)7−→ t1
δ(t1,a)7−→ t2

δ(t2,b)7−→ t2
δ(t2,a)7−→ t0

δ(t0,b)7−→ t0
δ(t0,b)7−→ t0

Figure 2.4: Graph representation of a DFA

2.1.3 Homogeneous Cellular Automata

Formally a CA A is a quadruple A =< Zd, X,Q, σ > where:

• Zd = {i = (i1, i1, . . . , id) | ik ∈ Z,∀k = 1, 2, . . . , d} is the set of cells of
the d-dimensional Euclidean space.

12Previously we stated that F was a set but we can assume that there is only one final
state (|F | = 1), because it is easy prove that exist a DFA with only one final state given
a generic DFA (|F | ≥ 1). We add one more state qf and for each final state qi ∈ F we
define new rules of the type δ(qi, ∗) = qf , ∗ ∈ I.

2.1. CELLULAR AUTOMATA 11

• X is the neighborhood, or neighborhood template; a set of m d-dimensio-
nal vectors (one for each neighbor)

ξj = {ξj1, ξj2, . . . , ξjd} , 1 ≤ j ≤ m

that defines the set of the neighbors cells of a generic cell i = (i1, i1, . . . , id)

N(X, i) = {i+ ξ0, i+ ξ2, . . . , i+ ξd}

where ξ0 is the null vector. It means that the cell i is always in its
neighborhood and we refer to it cell as central cell (see example below).

• Q is the finite set of states of the elementary automaton EA.

• σ = Qm → Q is the transition function of the EA. σ must specify
qk ∈ Q as successor state of the central cell. If there are m cells in the
neighborhood of the central cell including itself, then there are |Q|m
possible neighborhood’s state configuration. It means that there are
|Q||Q|

m

possible transition functions. Plus we can see that the tabular
definition of the next-state function is unsuitable for practical purpose.
It should have |σ| = |Q|m entries, an exceedingly large number.

• τ = C −→ C 7−→ σ(c(N(X, i))) where C = ∗cc : Zd → Q is called the
set of the possible configuration and C(N(X, i))) is the set of states of
the neighborhood of i.

For example consider a 2D cellular automata with Moore neighborhood
and a generic cell c=(10,10) and |Q| = 5 possible state for each cell .

X = {ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8} =

= {(0, 0), (−1, 0), (0,−1), (1, 0), (0, 1), (−1,−1), (1,−1), (1, 1), (−1, 1)}

Hence the set of the cells belonging to the neighborhood(defined by X) of
c=(10,10) is: V (X, c) = {(0, 0) + c, (−1, 0) + c, (0,−1) + c, (1, 0) + c, (0, 1) +
c, (−1,−1) + c, (1,−1) + c, (1, 1) + c, (−1, 1) + c}

= {(10, 10), (9, 10), (10, 9), (11, 10), (10, 11), (9, 9), (11, 9), (11, 11), (9, 11)}

and the total number of entries for the tabular definition of the transition-
function is |Q||X| = 59 = 1953125 and the total number of possible transition

functions is |Q||Q|
|X|

= 559 = 51953125.

2.1. CELLULAR AUTOMATA 12

Table 2.2: Encoding of a transition function for a generic elementary CA.
On the right the instance 110.

F (1, 1, 1) = {0, 1}
F (1, 1, 0) = {0, 1}
F (1, 0, 1) = {0, 1}
F (1, 0, 0) = {0, 1}
F (0, 1, 1) = {0, 1}
F (0, 1, 0) = {0, 1}
F (0, 0, 1) = {0, 1}
F (0, 0, 0) = {0, 1}

instance−→

F (1, 1, 1) = 0
F (1, 1, 0) = 1
F (1, 0, 1) = 1
F (1, 0, 0) = 0
F (0, 1, 1) = 1
F (0, 1, 0) = 1
F (0, 0, 1) = 1
F (0, 0, 0) = 0

2.1.4 Theories and studies

2.1.4.1 Elementary cellular automata

The most simple AC we can imagine is elementary cellular automata [74].
They are one-dimensional periodic N cells array {Ci | 1 ≤ i ≤ N,Ci ∈
{0, 1}} each with 2 possible state (0,1), and rules that depend only on nearest
neighbor value hence a radius r=1 neighborhood with a total number of
involved cell 2r+ 1 = 2× 1 + 1 = 3 (central, right and left cells). Since there
are only 2× 2× 2× = 22r+1 = 23 = 8 possible states for the neighborhood of
a given cell there are a total of 223 = 28 = 256 possible elementary automata
(each of which may be identified with a 8-bit binary number [76]).

Wolfram’s code
The transition function is F (Ci−1, Ci, Ci+1) is defined by a look-up table

of the form stated in table 2.2, and an example of an instance of a function
is given (rule 110, an important rule on which [14] proved universal com-
putational power, as Wolfram had conjectured in 1985, and is arguably the
simplest Turing complete system [76]) in table 2.2.

More generally Wolfram’s code [74, 76] can be calculated conventionally
of neighborhoods that are sorted in non-decreasing order , (111=7), (110=6),
(101=5) etc., and the may be interpreted as a 8-digit number

01101110 = 20×0+21×1+22×1+2×1+24×0+25×1+26×1+27×0 = 110

1. List and sort in decreasing numerical (if interpreted as number) order
all the possible configuration of the neighborhood of a given cell.

2. For each configuration, list the state which the given cell will have,

2.1. CELLULAR AUTOMATA 13

according to this rule, on the next iteration.

3. Interprets the resulting list as binary number and convert it to decimal.
That is the Wolfram’s code.

Note that it is not possible to understand from a code which is the size or
the shape of the neighborhood. It is tacit to suppose that this information
is already known.

2.1.4.2 Wolfram’s classification

Mathematical analysis of CA may be not so straightforward despite their
simple definition. A first attempt to classify CA was attempted by Wolfram
[76]. He proposed a set of four classes for CA classification that are the
most popular method of CA classification, but they suffer from a degree
of subjectivity. Classification is based only on visual valuations, that are
obviously subjective. A more rigorous definition of these classes is given in
13 [36]. Here the four Wolfram’s classes.

1. these CA have the simplest behavior; almost all initial conditions result
in the same uniform initial state (homogeneous state).

2. different initial conditions yield different final patterns, but these dif-
ferent patterns consist of an arrangement of a certain set of structures,
which stays the same forever or repeats itself within a few steps(periodic
structures).

3. behavior is more complicated and appears random, but some repeated
patterns are usually present (often in the form of triangles)(chaotic
pattern).

4. in some respects these are the most complicated class; these behave
in a manner somewhere in between Class II and III, exhibiting sec-
tions both of predictable patterns and of randomness in their pattern
formation(complex structures).

He observed that the behavior of a meaningful class of Cellular Automata by
performing computer simulations of the evolution of the automata starting
from random configurations. Wolfram suggested that the different behavior

13They prove that decide the class(from the wolfram’s four one) of membership of a
generic CA is an undecidable problem. Is not possible to design an algorithm that solve
this problem.

2.1. CELLULAR AUTOMATA 14

of automata in his classes seems to be related to the presence of different
types of attractors.

In figures 2.5 and 2.6 some elementary automata divided in their classes.14

Figure 2.5: Class 1 (a,b) and 2 (c,d) elementary cellular automata

(a) Rule 250 (b) Rule 254 (c) Rule 4 (d) Rule 108

We can well see from these examples that automata from class 1 have
all cells ending up very quickly with the same value, in a homogeneous state
and automata from class 2 with a simple final periodic patterns. Class 3
appear to be chaotic and non-periodic and automata from class 4 have a
mixed behaviour, complex-chaotic structures are locally propagated.

2.1.4.3 At the edge of Chaos

Class 4 automata are at the edge of chaos and give a good metaphor for
the idea that the interesting complexity (like the one exhibit by biological
entities and their interactions or analogous to the phase transition between
solid and fluid state of the matter, is in equilibrium between stability and
chaos [41].

Perhaps the most exciting implication (of CA representation
of biological phenomena) is the possibility that life had its origin
in the vicinity of a phase transition and that evolution reflects the
process by which life has gained local control over a successively
greater number of environmental parameters affecting its ability

14Images courtesy of http://plato.stanford.edu/entries/cellular-automata/

http://plato.stanford.edu/entries/cellular-automata/

2.1. CELLULAR AUTOMATA 15

to maintain itself at a critical balance point between order and
chaos.
(Chris Langton - Computation at the edge of chaos. Phase
transition and emergent computation - pag.13).

Figure 2.6: Class 3 (a,b) and 4 (c,d) elementary cellular automata

(a) Rule 30 (b) Rule 90 (c) Rule 54 (d) Rule 110

Langton in his famous paper, Computation at the edge of chaos: phase
transition and emergent computation [41], was able to identify, by simply
parametrizing the rule space, the various AC classes, the relation between
them and to “couple” them with the classical complexity classes. He intro-
duced the parameter λ [40] that, informally, is simply the fraction of the
entries in the transition rule table that are mapped the not-quiescent state.

λ =
KN − nq
KN

where:

• K is the number of the cell states

• N the arity of the neighborhood

• nq the number of rules mapped to the quiescent state qq

Langton’s major finding was that a simple measure is correlated with the
system behavior: as it goes from 0 to 1 − 1

K
(respectively the most homoge-

neous and the most heterogeneous rules table scenario), the average behavior

2.1. CELLULAR AUTOMATA 16

Figure 2.7: Relation between lambda parameter and the CA behaviors-
Wolfram’s classes.

of the system goes from freezing to periodic patterns to chaos and functions
with an average value of λ (see [41] for a more general discussion) are being
on on the edge(see figure 2.7).

He studied a entire family of totalistic CA with k = 4 and N = 5 with
λ varying in [0, 0.75]. He was able to determine that values of λ ≈ 0.45
raise up to class 4 cellular automata. A computational system must provide
fundamental properties if it is to support computation. Only CA on the edge
show these properties on manipulating and store information data. Here are
the properties that a computational system as to provide:

Storage
Storage is the ability of the system of preserving information for arbi-
trarily long times

Transmission
Transmission is the propagation of the information in the form of signals
over arbitrarily long distance

Modification
Stored and transmitted information is the mutual possible modification
of two signals.

Storage is coupled with less entropy of the system, but transmission and
modification are not. Few entropy is associated with CA of Class 1 and 2 and
high entropy with class 3. Class 4 is something in between, the cells cooperate
and are correlate each other, but not too much otherwise they would be overly
dependent with one mimicking the other supporting computation in all its
aspects and requirements. Moreover class 4 CA are very dependent from the
initial configuration opening to the possibility to encode programs in it.

2.1. CELLULAR AUTOMATA 17

2.1.4.4 Game of life

CA are suitable for representing many physical, biological, social and other
human phenomena. But they are a good tool to study under which condi-
tion a physical system supports the basic operation constituting the capacity
to support computation. The Game of life is a famous 2D cellular automa-
ton of ’70s early studied (and perhaps proved) for its universal computation
capacity.

Game of life - brief definition
The Game of Life (see figure 2.8) (GOL) [13] is a totalistic CA15 defined

by :

• a 2-D lattice of square cells in an orthogonal grid, ideally infinite

• Q = {0, 1} 2 states, and we can picture 1 as meaning alive and 0
dead (those interpretation come from the behaviour of the next-state
function).

• X is the Moore neighborhood template.

• σ is the transition function and can be summarized :

– Birth: If the cell is in the state dead and the number of alive
neighbors is 3 , then the cell state becomes alive (1).

– Survival : If the cell is in the state alive and the number of alive
neighbors is 2 or 3 , then the cell state is still alive (1).

– Dead : If the cell is in the state alive and the number of alive
neighbors is less than 2 or higher than 3 , then the cell state
becomes dead (0).

GOL is a class 4 Wolfram’s taxonomy, rich complex structures, stable
blocks and moving patterns come into existence even starting from a com-
pletely random configuration.

15A totalistic cellular automaton is a cellular automata in which the rules depend only
on the total (or equivalently, the average) of the values of the cells in a neighborhood.

2.1. CELLULAR AUTOMATA 18

Figure 2.8: GOL execution example.

A famous example block is the glider (see picture 2.9) that is a 5-step-
period pattern that is capable of moving into the cellular space.

Game of life as a Turing machine
Every CA can be considered a device capable of supporting computation

and the initial configuration can encode an input string (a program for ex-
ample). At some point the current configuration can be interpreted as the
result of the computation and decoded in a output string. But as we stated
before in subsection 2.1.2.1 not all the computational device have the same
computational power. So which is the one of the game of life? Life was
proved can compute everything a universal Turing machine can, and under
Turing-Church’s thesis, everything can be computed by a computer [9].

Figure 2.9: Glider in Conway’s game of life.

This raises a computational issue; given the Halting Theorem16 the evolu-
tion of Life is unpredictable (as all the universal computational systems) so

16There can not be any algorithm to decide whether, given an input, a Turing machine
will accept or not.

2.1. CELLULAR AUTOMATA 19

it means that is not possible to use any algorithmically shortcut to anticipate
the resulting configuration given an initial input. The most efficient way is
to let the system run.

Life, like all computationally universal systems, defines the
most efficient simulation of its own behavior [33]

2.1.5 Extension of the Cellular automata model

It is possible to relax some of the assumptions in the general characterization
of CA provided in the ordinary CA definitions and get interesting results.
Asynchronous updating of the cell, non homogenous lattice with different
neighborhood or transition functions.

2.1.5.1 Probabilistic CA

Probabilist CA is are an extension of the common CA paradigm. They share
all the basic concept of an ordinary homogeneous CA with an important
difference in the transition function. σ is a stochastic-function that choose
the next-state according to some probability distributions. They are used in a
wide class of problems like in modelling ferromagnetism, statistical mechanics
[26] or the cellular Potts model17

Cellular Automata as Markov process
Another approach in studying CA, even if it is probably not a practical

way to study the CA is to see CA as a Markov process18. A Markov process,
is a stochastic process that exhibits memorylessness 19 and it means that the
future state is conditionally independent20 of the past. This property of the
process means that future probabilities of an event may be determined from
the probabilities of events at the current time. More formally if a process
has this property following equation holds:

P (X(tn) = x |X (t1) = x1, X(t2) = x2, . . . , X(tn−1) = xn−1)

= P (X(tn) = x|X(tn−1 = xn−1)

17Is a computational lattice-based model to simulate the collective behavior of cellular
structures.

18Name for the Russian mathematician Andrey Markov best known for his work on
stochastic processes.

19Also called Markov property.
20Two event A and B are independent if P (AB) = P (A)P (B) or in other words that

the conditional probability P (A|B) = P (A).

2.1. CELLULAR AUTOMATA 20

In PCA analysis we are more interested in Markov chain because each cell
has a discrete set of possible value for the status variable. In terms of chain
a CA is a process that starts in one of these states and moves successively
from one state to another. If the chain is currently in state si, than it evolve
to state sj at the next step with probability pij.The changes of state of the
system are called transitions, and the probabilities associated with various
state changes are called transition probabilities usually represented in the
Markov chain transition matrix :

M =

p11 p12 p13 · · ·
p21 p12 p23 · · ·
p31 p32 p33 · · ·
...

...
...

. . .

This could seems to be a good way to analyze a probabilistic CA but, a

10×10 small grid (common models model use grid 100×100 or larger) identify
210×10 possible states and the resulting matrix dimension is 210×10 × 210×10,
an indeed very large number.

2.2. GPGPU TECHNOLOGIES 21

2.2 GPGPU Technologies

GPGPU, acronym for General-purpose computing on graphics processing
units, is a recent phenomenon wich consist in the utilization of a graph-
ics processing unit (GPU21), which typically handles computation only for
computer graphics and was optimized for a small set of graphic operation,
to perform computation in applications traditionally handled by the cen-
tral processing unit (CPU). Those operations (generation of 3D images) are
intrinsically parallel, so, is not surprising if the underlying hardware has
evolved into a highly parallel, multithreaded, and many-core processor. The
GPU excels at fine grained, data-parallel workloads consisting of thousands
of independent threads executing vertex, geometry, and pixel-shader program
threads concurrently. Nowadays, the GPUs are not limited to its use as a
graphics engine; there is a rapidly growing interest in using these units as
parallel computing architecture due to the tremendous performance available
in them. Currently, GPUs outperform CPUs on floating point performance
and memory bandwidth, both by a factor of roughly 100 [48], easily reaching
computational powers in the order of teraFLOPS. GPU works alongside the
CPU providing an heterogeneous computation, simply offloading compute-
data-intensive portion of program on GPU using it as co-processor highly
specialized in parallel tasks. Plus since 2006, date when Nvidia has intro-
duced CUDA, is extremely simple to program these kind of devices for general
purpose tasks, although before that date this goal was achieved dealing di-
rectly with the graphic API using shaders with all the related constraints
such as lack of integers or bit operations.

2.2.1 Why GPU computing?

Traditionally performance improvements in computer architecture have come
from cramming ever more functional units onto silicon, increasing clock
speeds and transistors number. Moores law [28] states that the number
of transistors that can be placed inexpensively on an integrated circuit will
double approximately every two years.

21Graphic processing unit, term conied by Nvidia in the mid-nineties, and now the most
common acronym used.

2.2. GPGPU TECHNOLOGIES 22

Figure 2.10: Moore’s Law and intel family CPU transistors number history.

Coupled with increasing clock speeds CPU performance has until recently
scaled likewise. But this trend cannot be sustained indefinitely or forever.
Increased clock speed and transistor number require more power and generate
more heat. Although the trend for transistor densities has continued to
steadily increase, clock speeds began slowing circa 2003 at 3 GHz. If we apply
Moore’s law type thinking to clock-speed performance, we should be able to
buy at least 10 GHz CPUs. However, the fastest CPU available today is 3.80
GHz At same point the performance increase fails to increase proportionally
with the added effort in terms of transistors or clock speed because efficient
heat dissipation and increasing transistor resolution on a wafer becomes more
important and challenging (there will be still the physical limit of dimension
for each transistor, the atom). The heat emitted from the modern processor,
measured in power density (W

cm2) rivals the heat of a nuclear reactor core [27].

2.2. GPGPU TECHNOLOGIES 23

Figure 2.11: Temperature CPUs

But the power demand did not stop in these year, here the necessity of
switching on parallel architectures, so today the dominating trend in com-
modity CPU architectures is multiple processing cores mounted on a single
die operating at reduced clock speeds and sharing some resources. Today is
normal to use the so-called multi-core (2,4,8,12) CPUs on a desktop PC at
home.

2.2.2 From Graphics to General Purpose Computing

The concept of many processor working together in concert in not new in
the graphic field of the computer science. Since the demand generated by
entertainment started to growth multi-core hardware emerged in order to
take advantage of the high parallel task of generating 3D image. In computer
graphics, the process of generating a 3D images consist of refreshing pixels at
rate of sixty or more Hz. Each pixel to be processed goes through a number
of stages, and this process is commonly referred to as the graphic processing
pipeline. The peculiarity of this task is that the computation each pixel is
independent of the other’s so this work is perfectly suitable for distribution
over parallel processing elements. To support extremely fast processing of
large graphics data sets (vertices and fragments), modern GPUs employ a
stream processing model with parallelism. The game industry boosted the
development of the GPU, that offer now greater performance than CPUs and
are improving faster too (see Figure 2.13 and 2.12). The reason behind the
discrepancy in floating-point capability between CPU and GPU is that GPU
is designed such that more transistors are devoted to data processing rather
than caching and flow control.

2.2. GPGPU TECHNOLOGIES 24

The today’s Top 500 Supercomputers22 ranking is dominated by mas-
sively parallel computer, built on top of superfast networks and millions of
sequential CPUs working in concert but as the industry is developing even
more powerful, programmable and capable GPUs in term of GFlops we see
that they begin to offer advantages over traditional cluster of computers in
terms of economicity and scalability.

Figure 2.12: Intel CPUs and Nvidia GPUs memory bandwidth chart

2.2.2.1 Traditional Graphics Pipeline

A graphics task such as rendering a 3D scene on the GPU involves a sequence
of processing stages (i.e. shaders) that run in parallel and in a prefixed order,
known as the graphics hardware pipeline23 (see Figure 2.14).

The first stage of the pipeline is the vertex processing. The input to this
stage is a 3D polygonal mesh. The 3D world coordinates of each vertex of

22http://www.top500.org/statistics/list/
23http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-

Graphics-Pipeline.html

http://www.top500.org/statistics/list/

2.2. GPGPU TECHNOLOGIES 25

Figure 2.13: Intel CPUs and Nvidia GPUs (single and double precision) Peak
G/FLOPS chart

the mesh are transformed to a 2D screen position. Color and texture coor-
dinates associated with each vertex are also evaluated. In the second stage,
the transformed vertices are grouped into rendering primitives, such as tri-
angles. Each primitive is scan-converted, generating a set of fragments in
screen space. Each fragment stores the state information needed to update
a pixel. In the third stage, called the fragment processing, the texture co-
ordinates of each fragment are used to fetch colors of the appropriate texels
(texture pixels) from one or more textures. Mathematical operations may
also be performed to determine the ultimate color for the fragment. Finally,
various tests (e.g., depth and alpha) are conducted to determine whether the
fragment should be used to update a pixel in the frame buffer. Each shader
in the pipeline performs a basic but specialised operation on the vertices as
it passes. In a shader based architecture the individual shader processors
exhibit very limited capabilities beyond their specific purpose. Before the
advent of CUDA in 2006 most of the techniques for non-graphics computa-
tion on the GPU took advantages of the programmable fragment processing
stage. The steps involved in mapping a computation on the GPU are as
follows:

2.2. GPGPU TECHNOLOGIES 26

Figure 2.14: Typical graphic pipeline

1. The data are laid out as texel colors in textures;

2. Each computation step is implemented with a user-defined fragment
program. The results are encoded as pixel colors and rendered into a
pixel-buffer24;

3. Results that are to be used in subsequent calculations are copied to
textures for temporary storage.

The year 2006 marked a significant turning point in GPU architecture.
The G80 was the first NVidia GPU to have a unified architecture whereby
the different shader processors were combined into unified stream processors.
The resulting stream processors had to be more complex so as to provide
all of the functionality of the shader processors they replaced. Although
research had been carried out into general purpose programming for GPUs
previously, this architectural change opened the door to a far wider range
of applications and practitioners. More in detail GPU are well-suited for
problems highly data-parallel in wich the same code is executed on many
data elements at the same time (SIMD paradigm25 or more generally as a
CRCW PRAM machine26).

24 A buffer in GPU memory which is similar to a frame-buffer.
25Single Instruction, Multiple Data: elements of short vectors are processed in parallel.

To be clear CUDA paradigm is SIMT: Single Instruction, Multiple Threads
26Parallel random-access machine in which each thread can read or write a memory cell.

2.2. GPGPU TECHNOLOGIES 27

2.2.3 CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing plat-
form and programming model created by NVIDIA and implemented by the
graphics processing units (GPUs) that they produce. A platform that al-
low the developers to use an high-level programming language to exploit the
parallel power of the hardware in order to solve complex computational prob-
lems in a more efficient way than on a CPU. CUDA is attractive because is
a complete system(software and hardware model map well onto each other
aiding the developer comprehension), from silicon to high-level libraries and
a growing experience exists providing a valuable resource to developers.

Figure 2.15: Cuda Software Stack

CUDA expose three level of components to an application (See figure
2.15):

1. Cuda Driver :

• Distinct from graphics driver. The only purpose of this component
is to provide the access to the GPU’s general purpose functional-
ities.

2. CUDA Runtime :

• Built on top of the CUDA Driver, provide an higher level of ab-
straction making the code less cumbersome especially as far as the
complexity of host code for kernel launches is concerned.

2.2. GPGPU TECHNOLOGIES 28

3. CUDA Libraries :

• Built on top of the CUDA Runtime, Is a collection of Libraries
(CUBLAS, CUSP, CUFFT, Thrust etc.)27 providing full-suitable
state of the art implementation of algorithms for a wide range of
applications.

2.2.3.1 CUDA Programming model

CUDA programming model is designed to fully expose parallel capabilities
of NVIDIA GPUs. Even though the language is devoted to general purpose
computing, it still requires the programmer to follow a set of paradigms aris-
ing from the GPU architecture. CUDA provides a few easily understood
abstractions that allow the programmer to focus on algorithmic efficiency
and develop scalable parallel applications by expressing the parallelism ex-
plicitly. It provides three key abstractions as hierarchy of thread groups,
shared memories, and synchronization barrier that provide a clear parallel
structure to conventional C code for one thread of the hierarchy.

Figure 2.16: Automatic Scalability

The abstractions guide the programmer to partition the problem into
coarse sub-problems that can be solved independently in parallel, and then

27For example CUFFT provides an interface for computing Fast Fourier Transform up to
10x faster than CPU (https://developer.nvidia.com/gpu-accelerated-libraries).

https://developer.nvidia.com/gpu-accelerated-libraries

2.2. GPGPU TECHNOLOGIES 29

Figure 2.17: Grid of thread blocks

into finer pieces that can be solved cooperatively in parallel. The program-
ming model scales transparently to large numbers of processor cores: a com-
piled CUDA program executes on any number of processors, and only the
runtime system needs to know the physical processor count (See figure 2.16).

2.2.3.2 CUDA Threads and Kernels

A GPU can be seen as a computing device that is capable of executing an
elevated number of independent threads in parallel. In addition, it can be
thought of as an additional coprocessor of the main CPU (called in the CUDA
context Host). In a typical GPU application, data parallel-like portions of the
main application are carried out on the device by calling a function (called
kernel) that is executed by many threads. Host and device have their own
separate DRAM memories, and data is usually copied from one DRAM to
the other by means of optimized API calls.

CUDA threads can cooperate together by sharing a common fast shared-
memory, implemented using fast DRAM memory similar to first level cache,
eventually synchronizing in some points of the kernel, within a so-called
thread-block, where each thread is identified by its thread ID as illustrated
by Figure 2.17. In order to better exploit the GPU, a thread block usually
contains from 64 up to 1024 threads, defined as a three-dimensional array

2.2. GPGPU TECHNOLOGIES 30

of type dim3 (containing three integers defining each dimension). A thread
can be referred to within a block by means of the built-in global variable
threadIdx. While the number of threads within a block is limited, it is pos-
sible to launch kernels with a larger total number of threads by batching
together blocks of threads by means of a grid of blocks, usually defined as a
two-dimensional array, which is also of type dim3 (with the third component
set to 1). In this case, however, thread cooperation is reduced since threads
that belong to different blocks do not share the same memory and thus can-
not synchronize and communicate with each other. As for threads, a built-in
global variable, blockIdx, can be used for accessing the block index within
the grid. Threads in a block are synchronized by calling the syncthreads()
function: once all threads have reached this point, execution is resumed nor-
mally. As previously reported, one of the fundamental concepts in CUDA
is the kernel. This is nothing but a C function, which once invoked is per-
formed in parallel by all threads that the programmer has defined. To define
a kernel, the programmer uses the global qualifier before the definition
of the function. This function can be executed only by the device and can
be only called by the host. To define the dimension of the grid and blocks
on which the kernel will be launched on, the user must specify an expression
of the form <<< Grid Size, Block Size >>>, placed between the kernel
name and the argument list, such as in the following simple example:

1 // Kernel definition

2 __global__ void VecAdd(float* A, float* B, float* C)

3 {

4 int i = threadIdx.x;

5 C[i] = A[i] + B[i];

6 }

7 int main()

8 {

9 ...

10 // Kernel invocation with N threads

11 VecAdd<<<1, N>>>(A, B, C);

12 }

The above code first defines a kernel called VectAdd which will run on
all N threads, with the aim to compute in the i-th position of the vector C,
the sum of vectors A and B. Assuming that all three vectors have dimension
N, each thread in parallel will be the sum of a position. For example, the
thread with ID = 2 will calculate the sum of A[2] +B[2] and store the result
in C[2].

2.2. GPGPU TECHNOLOGIES 31

2.2.3.3 Memory hierarchy

In CUDA, threads can access different memory locations during execution.
Each thread has its own private memory, each block has a (limited) shared
memory that is visible to all threads in the same block and finally all threads
have access to global memory. In addition to these memory types, two other
read-only, fast on-chip memory types can be defined: texture memory and
constant memory. In CUDA, memory usage is crucial for the performance.
For example, the shared memory is much faster than the global memory
and the use of one rather than the other can dramatically increase or de-
crease performance. By adopting variable type qualifiers, the programmer
can define variables that reside in the global memory space of the device
(with device) or variables that reside in the shared memory space (with
shared) that are accessible only from threads within a block. Typical

latency for accessing global memory variables is 200-300 clock cycles, com-
pared with only 2-3 clock cycles for shared memory locations. In addition,
global memory suffers from coalesced access problems, meaning that access
to data should be performed in a particular fashion in order to fetch (or
store) the data in the fewest number of transactions [49]. For these reasons,
global memory access should be replaced by shared memory access when-
ever possible. A CUDA C program can allocate global memory of the device
in two different ways: through the linear memory or by means of CUDA
arrays. CUDA arrays are types of memory optimized for texture manage-
ment and were not exploited in this work. The more common adopted linear
memory type is allocated using the cudaMalloc() function for allocating and
cudaFree() function for memory de-allocation. Once allocated, it is possi-
ble to transfer data from the Host memory to the global device memory,
and vice-versa, by means of a special call to the cudaMemcpy() function.
Specifically, cudaMemcpy() takes as parameters four kinds of memory type
transfers: Host to Host, Host to Device, Device to Host and Device to De-
vice. Note that all of the previous functions can only be called on the host.
Figure 2.18 illustrates the GPU typical memory architecture. As shown, the
fast on-chip shared memory is shared by all threads of a block.

As expected, to improve performance, variable access should be carried
out in the shared memory rather than global memory, wherever possible. Un-
fortunately, as Figure 2.18 shows, each variable or data structure allocated in
shared memory must first be initialized in the global memory, and afterwards
transferred in the shared one. This means that to copy data in the shared
memory, global memory access must be first performed. So, the more this
type of data is accessed, the more convenient is to use this type of memory,
while for few accesses it is evident that shared memory might be somewhat

2.2. GPGPU TECHNOLOGIES 32

Figure 2.18: Typical memory architecture of a Graphic Processing Unit

degrading. As a consequence, a preliminary analysis of data access of the
considered algorithm should be performed in order to evaluate the tradeoff
and thus, convenience of using shared memory and how. As reported later
in this work, the implementation with a hybrid allocation of variables results
in an optimal performance, despite a total shared-memory version as it may
be expected.

2.2.3.4 Programming with CUDA C

CUDA C is an extension of C language that permits to write programs for
NVIDIA GPUs. With additional constructs and API functions, the program-
mer is able to allocate and de-allocate memory on the video card (the device),
transfer the data from the host device (host), launch kernels, etc. The CUDA
C extension is built on the basis of the CUDA API driver, a low-level library
that allows one to perform all the above steps, but which of course is much
less user-friendly. On the other hand, the CUDA API driver offers a higher
degree of control and is independent of the particular language (e.g., C, For-
tran, Java), being written in assembly language. A typical CUDA program
can exploit the computing power of both the host (CPU and RAM) and the
device (the GPU and memory devices). What follows is a classic pattern of
a CUDA application:

2.2. GPGPU TECHNOLOGIES 33

1. Allocation and initialization of data structures in RAM memory;

2. Allocation of data structures in the device and transfer of data from
RAM to the memory of the device;

3. Definition of the block and thread grids;

4. Performing one or more kernel;

5. Transfer of data from the device memory to Host memory.

In addition, a CUDA application has parts that are normally performed in
a serial fashion, and other parts that are performed in parallel.

2.2.4 OpenCL

Released on December 2008 by the Kronos Group28 OpenCL is an open
standard for programming heterogeneous computers built from CPUs, GPUs
and other processors that includes a framework to define the platform in
terms of a host, one or more compute devices, and a C-based programming
language for writing programs for the compute devices (see figure 2.19). One
of the first advantages of OpenCL is that it is not restricted to the use of
GPUs but it take each resource in the system as computational peer unit,
easing the programmer by interfacing with them. Another big advantage is
that it is open and free standard and it permit cross-vendor portability29.

2.2.4.1 Model Architecture

The architecture programming model’s follows the CUDA’s one but with
different names.

28A standards consortium.
29One of the most important supporter of OpenCL is ATI

2.2. GPGPU TECHNOLOGIES 34

Figure 2.19: OpenCL heterogeneous computing.

Work-items:
are equivalent to the CUDA threads and are the smallest execution
entity of the hierarchy. Every time a Kernel is launched, lots of work-
items (a number specified by the programmer) are launched, each one
executing the same code. Each work-item has an ID, which is acces-
sible from the kernel, and which is used to distinguish the data to be
processed by each work-item.

Work-group:
equivalents to CUDA blocks, and their purpose is to permit commu-
nication between groups of work-items and reflect how the work is or-
ganized (usually organized as N-dimensional grid of work-groups with
N ∈ {1, 2, 3}). As work-items, they are provided by a unique ID within
a kernel. Also the memory model is similar to the CUDA’s one. The
host has to orchestrate the memory copy to/from the device and ex-
plicit;y call the kernel.

A big difference is in how a kernel is queued to execution on the accelerator.
Kernels are usually listed in separate files the OpenCL runtime take that
source code to create kernel object that can be first decorated with the pa-
rameters on which it is going to be executed and then effectively enqueued
for execution onto device. Here a brief description of the typical flow of an
OpenCL application.

1. Contexts creation: The first step in every OpenCL application is to
create a context and associate to it a number of devices, an available

2.2. GPGPU TECHNOLOGIES 35

OpenCL platform (there might be present more than one implementa-
tion), and then each operation (memory management, kernel compiling
and running) is performed within this context. In the example 2.2 a
context associated with the CPU device and the first finded platform
is created.

2. Memory buffers creation: OpenCL buffer Object are created. Those
buffer are used to hold data to be computed onto devices.

3. Load and build program: we need to load and build the compute pro-
gram (the program we intend to run on devices). The purpose of this
phase is to create an object cl::Program that is associable with a
context and then proceed building for a particular subset of context’s
devices. We first query the runtime for the available devices and then
load directly source code as string in a cl::Program:Source OpenCL
object (see listing1 2.4).

4. In order a kernel to be executed a kernel object must be created. For
a given Program there would exists more than one entry point (identi-
fied by the keyword kernel 30). We choose one of them for execution
specifying in the kernel object constructor

5. We effectively execute the kernel putting it into a cl::CommandQueue.
Given a cl::CommandQueue queue, kernels can be queued using queue.-
enqueuNDRangeKernel that queues a kernel on the associated device.
Launching a kernel need some parameters (similar to launch configu-
ration in CUDA, see section 2.2.3.2) to specify the work distribution
among work-groups and their dimensionality and size of each dimension
(see listing 2.1). We can test the status of the execution by querying
the associated event.

Listing 2.1: OpenCL Queue command, kernel execution

1 cl_int err;

2 cl::vector< cl::Platform > platformList;

3 cl::Platform::get(&platformList);

30Obviously in the same source code one can define more than on kernel.

2.2. GPGPU TECHNOLOGIES 36

4 checkErr(platformList.size()!=0 ? \\

5 CL_SUCCESS:-1,"cl::Platform::get");

6 cl_context_properties cprops[3] =

7 {CL_CONTEXT_PLATFORM, (cl_context_properties)(

platformList[0])(), 0};

8 cl::Context context(CL_DEVICE_TYPE_CPU,cprops,NULL,

NULL,&err);

9 checkErr(err, "Conext::Context()");

Listing 2.2: OpenCL context creation

1 cl::Buffer outCL(context,CL_MEM_WRITE_ONLY |

2 CL_MEM_USE_HOST_PTR,hw.

length()+1,outH,&err);

3 checkErr(err, "Buffer::Buffer()");

Listing 2.3: OpenCL program load and build

1 std::ifstream file("pathToSourceCode.cl");

2 checkErr(file.is_open() ? CL_SUCCESS:-1, "

pathToSourceCode.cl");std::string

3 prog(std::istreambuf_iterator<char>(file),

4 (std::istreambuf_iterator<char>()));

5 cl::Program::Sources source(1,std::make_pair(prog.

c_str(), prog.length()+1));

6 cl::Program program(context, source);

7 err = program.build(devices,"");

8 checkErr(err, "Program::build()");

Listing 2.4: OpenCL program load and build

1 cl::CommandQueue queue(context, devices[0], 0, &err);

2 checkErr(err, "CommandQueue::CommandQueue()");cl::

Event event;

3 err = queue.enqueueNDRangeKernel(kernel,cl::NullRange,

4 cl::NDRange(hw.length()+1), cl::NDRange(1, 1),NULL,&

event);

5 checkErr(err, "ComamndQueue::enqueueNDRangeKernel()");

2.2. GPGPU TECHNOLOGIES 37

2.2.5 OpenACC

OpenACC is a new31 open parallel programming standard designed to en-
able to easily to utilize massively parallel coprocessors. It consist of a series
of pragma32 pre-compiler annotation that identifies the succeeding block of
code or structured loop as a good candidate for parallelization exactly like
OpenMP 33 developed by a consortium of companies34. The biggest advan-
tage offered by openACC is that the programmer doesn’t need to learn a
new language as CUDA or OpenCL require and doesn’t require a complete
transformation of existing code. Pragmas and high-level APIs are designed
to provide software functionality. They hide many details of the underlying
implementation to free a programmer’s attention for other tasks. The com-
piler is free to ignore any pragma for any reason including: it doesn’t support
the pragma, syntax errors, code complexity etc. and at the same time it has
to provide profiling tool and information about the parallelization(even if it is
possible). OpenACC is available both for C/C++ and Fortran. In this docu-
ment we will concentrate only on C/C++ version. An OpenACC pragma can
be identified from the string ”#pragma acc” just like an OpenMP pragma
can be identified from ”#pragma omp”. The base concept behind openACC
is the offloading on the accelerator device. Like CUDA or openCL the ex-
ecution model is host-directed where the bulk of the application execute on
CPU and just the compute intensive region are effectively offloaded on ac-
celerator35. The parallel regions or kernel regions, which typically contains
work sharing work such as loops are executed as kernel (concept described
in section 2.2.3.2 at page 29). The typical flow of an openACC application
is orchestrated by the host that in sequence has to:

• Allocate memory on device.

• Initiate transfer.

• Passing arguments and start kernel execution(a sequence of kernels can
be queued).

• Waiting for completion.

31Release 1.0 in November 2011.
32 A pragma is a form of code annotation that informs the compiler of something about

the code.
33The is a well-known and widely supported standard, born in 1997, that defines pragmas

programmers have used since 1997 to parallelize applications on shared memory multicore
processor

34PGI, Cray, and NVIDIA with support from CAPS
35We don’t talk of GPU because here, accelerator is referred to the category of acceler-

ating co-processors in general, which the GPU certainly belong to.

2.2. GPGPU TECHNOLOGIES 38

• Transfer the result back to the host.

• Deallocate memory.

For each of the action above there is one or more directive that actually
implements the directives and a complete set of option permit to tune the
parallelization across different kind of accelerators. For instance the parallel
directive starts a parallel execution of the code above it on the accelerator,
constricting gangs of workers (once started the execution the number of gangs
and workers inside the gangs remain constant for the duration of the parallel
execution.) The analogy between the CUDA blocks and between workers
and cuda threads is clear and permit to easily understand how the work is
effectively executed and organized. It has a number of options that permits
to for example copy an array on gpu to work on and to copy back the result
on the host side.

The syntax of a OpenACC directive is :

• C/C++ : #pragma acc directive-name [clause [[,] clause]...] new-line.

• Fortran : !$acc directive-name [clause [[,] clause]...]

Each clause can be coupled with a number of clauses that modify the
behavior of the directive. For example:

• copy(list)Allocates the data in list on the accelerator and copies the
data from the host to the accelerator when entering the region, and
copies the data from the accelerator to the host when exiting the region.

• copyin(list) Allocates the data in list on the accelerator and copies
the data from the host to the accelerator when entering the region.

• copyout(list) Allocates the data in list on the accelerator and copies
the data from the accelerator to the host when exiting the region.

• create(list) Allocates the data in list on the accelerator, but doesn’t
copy data between the host and device.

• present(list) The data in list must be already present on the acceler-
ator, from some containing data region; that accelerator copy is found
and used.

2.3. WEB 2.0 39

2.2.5.1 Wait Directive

The wait directive causes the host program to wait for completion of asyn-
chronous accelerator activities. With no expression, it will wait for all out-
standing asynchronous activities.

• C/C++ : #pragma acc wait [(expression)] new-line

• Fortran : !$acc wait [(expression)]

2.2.5.2 Kernel Directive

This construct defines a region of the program that is to be compiled into a
sequence of kernels for execution on the accelerator device.

C/C++:
#pragma kernels [clause [[,] clause]...] new-line { structured block }

Fortran:
!$acc kernels [clause [[,] clause]...]
structured block
!$acc end kernels

2.2.5.3 Data Construct

An accelerator data construct defines a region of the program within which
data is accessible by the accelerator. It’s very useful in order to avoid multiple
transfers from host to accelerator or viceversa. If the same pointers are
used by multiple directives, a good practice is to declare and allocate those
pointers in a data construct and use them in parallel or kernel construct with
the clause present [57].

Description of the clause are taken from the official documentation36.

2.3 WEB 2.0

In 2001 one of the most important companies of the time in the Internet
world went bankrupt, the Webvan company. Webvan was intended to sell
anything to anyone and everywhere; even though it was a company that was
born from a business model quite inconsistent, it managed to collect 400
million dollars from venture capitals and following its founder was able to

36For a complete list of directive, constructs and pragmas consult the official documen-
tation here : http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

2.3. WEB 2.0 40

place it on the Nasdaq, the American technology stock market. Subsequently,
the company was closed almost suddenly.

Webvan is the symbol of the famous Internet Bubble of 2000, which later
influenced the development of the whole network.

Since then, there have been many important changes in the world of the
Internet and among them the birth of “Web 2.0 ”

This technology has led to the creation of many new companies, some of
these are the most important today as Flickr or Youtube and therefore the
mass access has transformed them in business models.

From the social point of view, the “Web 2.0 ” is entering the lives of
many people, changing their habits, the way in which to search, consume
and especially share information. Many people use YouTube to share and
view videos, Wikipedia for school research, publish their photo album using
Flickr or Instagram, manage and read people’s Blog and more.

Therefore, Web 2.0 is the environment where sites and applications that
enable the control of the content in the hands of the user were born and
continue to emerge. In order to define the Web 2.0 it is necessary to analyze
what the web was, and how it has come to the concept of Web 2.0.

2.3.1 The dawn of the Web

The first idea of the Web poses its basis on the concept of hypertext accessible
by any person through the network. It is formed by simple static HTML
pages, articles related to each other or classical form and a small group of
publishers who create web pages for a wide audience. The result is that many
people can get the information by going directly to the source.

However, in a first stage users do not have great possibilities to insert
their own content. This phase can be identified with the name of Web 1.0,
the first “version ” of the Web.

2.3. WEB 2.0 41

Figure 2.20: Web 1.0 Interaction model.

From this simple picture one can well understand how, client side, you
do not have any particular type of processing beyond the simple graphics
rendering related to the display of the pages. Likewise, the server side is in
front of simple collections of pages written in HTML without any element
dynamically generated. Thus, a pattern of interaction that is purely static
and with limited potentialities emerges, in which the user makes a request
via the browser and the server responds by simply sending the document as
it was created by the author. In fact, the initial aim was only to apply the
concept of hypertext accessible from the network; therefore, at least at first,
there were no other needs over the scenario presented.

However, the real success of dot-com occurred later, with the introduction
of a more dynamic Web. The evolution of technology has in fact led to
having content management systems and HTML pages with dynamic content
created on the fly from database content that is constantly updated. These
changes allowed on one hand the more active participation of the users and
on the other promoted the displacement of many activities on the Web,
that were not possible previously. In this way, more and more people have
acquired the skills and abilities necessary to be able to write on the Web,
and not just to read.

In this case, we can talk of “Web 1.5 ”, a first important development
of what was the original Web. In this second “version” of the Web, there
is an important evolution in the interaction model; for the first time, in
fact, we can speak of dynamic content and pages that are created on the fly
without any content attached in the pages and in the code. This was mainly
a server-side revolution since begin to emerge languages specifically created
(Cold-Fusion, PHP, JSP, ASP, etc.) together with the so-called Web Server
(Apache, Tomcat, IIS, etc.). Now it is possible to create real applications

2.3. WEB 2.0 42

that can be uploaded to specific servers and can interact with other entities,
which can be other server-side applications or database of various types.

The interaction model is not so revolutionized than before; in fact, facing
a client request, the server always responds by sending an HTML page. The
difference is the way in which is obtained this HTML page. While previously,
in what had been called “Web 1.0 ”, the HTML page was always physically
present in the server memory, now it is no longer a certainty.

In its place there can in fact be an application, more or less complex,
which in response to a request sent by the client, it processes a well defined
information (maybe contained in a database constantly updated), generates
one or more pages containing the information required by the client and sends
them in a form “understandable” to it, i.e. mainly in HTML.

Figure 2.21: Web 1.5 Interaction model.

As you can see from the figure, on the client side you have the possibility
to process data through a scripting language specifically created: JavaScript.

The fundamental difference between server-side programming languages
and JavaScript is that the processing done on the client side with the latter
is typically limited to local level (form control, etc.), so do not go beyond
the client itself, and without involving external entities. Even if the scenario
was very simplified, the great power of a model of this type is easy to under-
stand and, at this point, many people have thought that the Web was fully
mature, hence seeing in the Web-Applications and Web Services the highest
expression of its potential.

2.3. WEB 2.0 43

2.3.2 The Web 2.0

With the use of client-side languages that add interactivity to the site and
of style sheets that allow you to format the content as best as you want, you
can create real Web applications that sometimes have nothing inferior to the
classic Desktop Applications.

The increase in the version of the Web, as mentioned above, does not
refer to an update of the technical specifications of the World Wide Web,
but to a different use of the Web by developers. Web 2.0 is thus a term used
to indicate a state of evolution of the Web. Since 2004 we have witnessed
this evolution with the birth of new services and applications which are now
integral part of the habit of many people. The term Web 2.0 was coined
at a conference held at O’Reilly Media where the Vice-President of O’Reilly
pointed out that the network was going through a period of renewal and
growth that could not be ignored.

Giving a clear and concise definition of what is Web 2.0, as repeatedly
mentioned, is very difficult for the simple fact that not everyone agrees that
it is an innovation but a normal evolution of the Web.

Tim O’Reilly tried to give a compact definition:

Web 2.0 is the business revolution in the computer industry caused
by the move to the Internet as platform, and an attempt to un-
derstand the rules for success on that new platform. Chief among
those rules is this: build applications that harness network effects
to get better the more people use them.

From this definition we can understand the heart of the Web 2.0, that is to
see the Web as a platform exploiting it as much as possible.

With these words is meant the progressive use of web applications which,
in turn, always bring a greater continuing presence online of users.

Many claim that the business revolution is the result of a consumer rev-
olution that is, the user does not want to be passive in front of this means
of communication, but want to actively participate in its growth.

Users do not just want to use the Web, but do it.
The Web 2.0 leads to technologies capable of increasing the opportunities

for participation; it is a new point of view, namely the willingness to become
entrepreneurs conscious of their own opportunities, a community conscious
of their power and potential. Seeing this innovation only from the technical
point of view is thus a mistake. Russell Shaw has a very critical view about
it:

[...] But Web 2.0 does not exist.

2.4. AJAX 44

First of all, Web 2.0 is a marketing slogan.

In support of this, we can not go beyond the definition of Wikipedia:

The term “Web 2.0” refers to what some people see as a second
phase of develpment of the World Wide Web, including its ar-
chitecture and its applications. It was coined by Dale Dougherty
during a meeting between O’Reilly and Associates (a computer
book publisher) and MediaLive International (an event organizer)
as a marketable term for a series of conferences.

Skeptics argue that the term Web 2.0 does not have a real meaning, as
this depends solely on what the proponents agree that it should mean to try
to convince the media and investors who are creating something new and
better, rather than continue to develop existing technologies (so purely for
marketing reasons).

If for them the concept of Web 2.0 does not exist or does not have a
proper meaning, what is it? Many are of the idea that it is the awareness
of users and developers to exploit at best an innovative communication tool
like the Internet through the active involvement of users, information sharing,
and much more.

In this way we can change the concept of use of the network by breaking
the hierarchical system formed by administrator and user and innovating the
rules in the production of communication patterns.

Users’ participation appears to be the core of this innovation on the Web,
followed by the possibility of being able to manipulate and transform data
from other sites and by the introduction of new technologies such as AJAX
(Asynchronous JavaScript and XML), that have contributed to make the
user interfaces faster and more interactive.

In the following, we will see specifically what is AJAX and what it allows
to create.

2.4 AJAX

All desktop applications have strengths as wealth, speed and sensitivity,
which until a few years ago, seemed to be their prerogative and hence out-
side of the capabilities and possibilities of the Web. The rapid growth made
by the Web in recent years, however, has highlighted the need for web ap-
plications to come as close as possible to the desktop applications in terms
of efficiency and effectiveness, so as to be able to offer its users the same
capabilities provided by desktop applications.

2.4. AJAX 45

In most cases, all the Web rich internet applications in recent years have
been linked to the technologies Macromedia (Flash) or Java (Applet), unfor-
tunately not always interpretable by all clients and too often used inappro-
priately for the sole purpose of impressing, without taking care of efficiency
and above all of the speed of the application.

In ’97, as an alternative to these techniques of client-server interaction,
was introduced the “iframe”. Many developers took advantage of this, by
changing the source attribute of the page enclosed, thereby simulating a
transparent “refresh” of part of the contents, although in a rather dirty
manner; in practice, there was an asynchronous interaction.

In ’98 the Remote Scripting appeared, a technology developed by Mi-
crosoft with the intent to create a more elegant technique to retrieve different
content. After various changes, improvements, and with the aid of an ob-
ject known as XMLHttpRequest, developed by Microsoft itself, this technique
became what is now known by the name of AJAX

The acronym AJAX means Asynchronous JavaScript And XML; it was
coined and used on February 18, 2005 by Jesse Garrett, as the title of a post
in his blog.

Today, referring to AJAX we refer to the XMLHttpRequest object.
Depending on the browser we use, it takes different names or is invoked in a
different way.

This object allows you to make a request for a resource to a web server
independently from the browser you are using. In the request, information
may be sent in the form of variables of type GET or POST to send data in
a similar way to a traditional form.

The methodology of AJAX is partially expressed by the acronym chosen,
that is the union of different Web technologies already known, which are used
in a completely new way compared to the past. So we are not dealing with
a completely new technology to learn, but rather there is a need to rethink
the use of certain technologies.

Here is a list of technologies that joined together set up AJAX :

• JavaScript, which constitutes the connecting point between the various
technologies;

• DOM (Document Object Model) for visualization and dynamic inter-
actions;

• XML and XSLT for the exchange and manipulation of data;

• XMLHttpRequest for asynchronous retrieval of information;

• CSS e XHTML for standard-based presentation of content. of content.

2.4. AJAX 46

The main feature is that the request is asynchronous, meaning you
do not necessarily have to wait until it has been completed before you can
perform other operations.

2.4.1 AJAX rich applications

The term “Rich application” refers to the type of interaction that character-
izes an application. A rich interaction model must be able to support several
input methods and be able to respond quickly and simply. This feature is at
the basis of every desktop application.

There was much discussion about the possibility of providing web users
with “rich internet application” with features comparable to those of the
desktop applications. Through AJAX this is possible.

Currently, the web-based services are becoming more robust and powerful
but at the same time even heavier and more complicated, thus the traditional
web applications are beginning no longer to be able to manage all services
offered.

Now we can describe how “classic” web applications work, trying to figure
out what’s wrong with them.

Generally, the data flow is contained in two steps at a time: user request
(link, form, refresh) and server response, then moving on to a new request
from the user if necessary.

Figure 2.22: Details of a “Classic” Web request.

This is fine for hypertext, but unfortunately does not go as well for soft-
ware applications. The classical model indeed creates many problems, such
as:

2.4. AJAX 47

• bad performances due to the cycle ”click - wait - refresh”;

• loss of the operating context during the refresh of each page;

• excessive use of available bandwidth due to the continuous updating of
redundant elements and pages.

In conclusion, everything turns into Web applications that are slow, un-
reliable, inefficient and with a low productivity. So the goal we are aiming
at with AJAX is to bring the model of interaction through the desktop ap-
plications on the Web, that is a spread context.

By using AJAX we lose the linearity present in the requests, but while
the user is on the same page, the requests to the server can be numerous and
completely independent.

Theoretically, nothing prevents us to perform a multitude of simultaneous
requests to a server for doing different operations, with or without any control
by the user.

AJAX gives the possibility to communicate with the server asynchronously,
eliminating the so far inevitable request-response cycle. In fact, with AJAX
it is possible to use JavaScript and DHTML to update the page graphics on
the fly, and make a request to the server asynchronously. Immediately after
having got the response from the server,JavaScript can be used again, with
the support of CSS to redraw the entire page without reloading it.

In particular, AJAX introduces in Web applications a layer, called AJAX-
Engine. Instead of loading a webpage, at the beginning of the session the
browser loads an engine written in JavaScript, that is hidden to the user.
This engine is responsible both for the management of the interface rendering,
displayed by user, and for client-server communications. The AJAX-Engine
makes possible the interaction between the client and the application asyn-
chronously. This means that every click made by the user sends a JavaScript
request to the AJAX engine which will then decide if an http request to the
server is needed or if it is possible to satisfy the request locally.

2.4. AJAX 48

Figure 2.23: Interaction between AJAX application components.

Thus, the waiting time recedes in background and in various types of
interaction is almost imperceptible. However, it is necessary to be careful
because this time is also one of the biggest problems when AJAX is used,
both for developers and for users; the former could be in trouble if the asyn-
chronous operation would be forced to wait for a response to complete a
series of tasks, while the latter may not have any idea of what is happening
to the page, closing it being unaware that they had requested information.

Another consideration is about the type of response that the object ex-
pects after a call; indeed, it does not necessarily need to be of type XML,
but can be simply text, in contrast with the acronym itself but not for this
unusual.

2.4.1.1 Benefits and Drawbacks

Although AJAX represents a huge innovation for the development of web
applications, it must be said that he has limitations.

Starting from the server-side you can list a number of very significant
advantages.

As we know, the use of external CSS files (Cascading Style Sheets), allows
the user to save a lot of bandwidth. Indeed, using the AJAX the server does
not need to transfer the entire page at each interaction, but only the portion
needed for the requested operation. This makes the interaction faster for the
user and facilitates the bandwidth savings.

2.4. AJAX 49

A further advantage is related to the calculations to be made. For exam-
ple, consider an Internet portal full of information. Finding all the informa-
tion to deal with a traditional interaction may require an excessive workload
(interaction with database, web services, etc), while using AJAX the requests
are punctual and the server can respond much more efficiently. Sites with a
large number of simultaneously connected users, no longer have to operate
on all parts of the application, in this way improving the ability to manage
a huge number of users.

An important point to emphasize is that a part of calculations can be
loaded to the browser, in order to exploit the power of the client-pc and
distribute the workload across all the various users, rather than only on the
server. How it can be easily understood, we should not “charge clients too
much”, if we do not want to get a slowdown on the server with a consequent
slowdown on the client.

Figure 2.24: Server load without AJAX.

Figure 2.25: Server load using AJAX.

After talking about some of the benefits resulting from the use of AJAX,
we can analyze some disadvantages. Filling a page with too many interactions
is the first thing that should be avoided for a good use of AJAX. Besides,
if you do not monitor the transactions on the client, the server is likely to
find itself full of requests most likely unnecessary. For example, consider a
“suggest”, which is very useful to every internet user who seeks something;
if it is implemented in the wrong way, it becomes a non-trivial problem for
the server.

2.4. AJAX 50

In short, we need to work as much as possible in the economy, in terms
of communication with the server. The only solution then is to find the right
balance between the need to update something and calculations to be made
for the update.

Finally, we can say that the applications must pass many tests to ensure
compatibility on different browsers and on different platforms; this aspect
is not negligible, especially if we note that practically every browser intends
JavaScript in its way. More generally we can say that debugging AJAX ap-
plications is much more complicated than debugging traditional applications.

With AJAX unsafe coding potentially becomes easier, that is code that
transmits sensitive information without safety precautions. So it is necessary
to examine carefully the traffic generated by an AJAX application to verify
that safety is not compromised.

However, these last two mentioned problems are not lacks of AJAX, but
only difficulties faced by programmers during the development of a good
application.

We can now proceed to analyze “Client-Side” benefits and drawbacks.
An immediate aspect that we can note on the client side is the impression

to see professional web pages, dynamic and more interactive with a smooth
flow of work and without unnecessary interruptions or waitings; of course,
this does not mean that the load times are magically eliminated.

To support AJAX, there are many libraries, easily integrated, able to
impress the users in a way very similar to the graphic plugin of Adobe-
Macromedia, but with a very considerable saving of resources.

The exchange of information is done in background, in an absolutely trans-
parent way to the user who hence does not notice anything. This means that
the applications give the user the feeling of completely being local and not
being distributed, as they are in reality.

Another worthy note is its almost total compatibility with the most pop-
ular modern browsers, and the native or integrable support of the object
XMLHttpRequest contributes further to the development of Rich Internet
Applications.

Of course there is also a downside: the development of applications for
those users who require assistive technology is not very simple using this
approach. The difficulties in implementing usability is probably the biggest
flaw of the AJAX approach.

So, AJAX applications must also prevent these situations by providing
users the same functionalities in an alternative way (e.g. through the only use
of HTML without JavaScript), still allowing a proper use of the application.

Another disadvantage is for users with slow connections, which will have
to charge a good amount of data represented by the various JavaScript files

2.4. AJAX 51

needed by the web application or website. Besides, at worst you may not be
able to take advantage of what has been loaded (in case you do not have an
updated browser, or in cases of JavaScript disabled).

All these minor technical problems can be solved easily, but still a purely
practical problem remains, probably the best known and most annoying: the
use of the keys “Next” and “Previous” of any browser.

Any asynchronous operation gives the feeling of having changed the page
and in most cases, if the expected result should not be the one desired by the
user, he/she has a habit to go back by pressing the corresponding button in
the browser.

Having access to a page with asynchronous operations means that we
no longer have the ability to click on the button “backward ” to return
to the previous state. In fact, by doing this you will be redirected to the
previous page, which causes many drawbacks. Even refreshing the page is
not necessary to return to the previous state, but only to the initial state.

Therefore, this is a constraint for navigation and also implies a constraint
for the indexing or the possibility to notify others of the displayed page. The
reason for all this is due to the command managed by JavaScript that is
not portable like a link. Notifying another user of the page To recommend
to another user the page you visited is not possible if not giving precise
instructions on what to do to get to the page in question.

A very similar problem is that related to bookmarks. Even in that case,
in fact, if the programmer does not take necessary precautions, it may not
be possible for the user to perform the bookmark of a page.

The solution to these problems is not simple and the reasons are different.
First, creating an event handler that can add changes to the browser’s history
can be a complex task because of different standards or functions present in
different browsers. Secondly, the indexing of a single link, for anyone who
does not have JavaScript or may not make use of this technology, it would
become more or less impossible.

As one can see from this quick treatise, also AJAX has obvious flaws
and limitations with which we must confront. But the efforts made by the
developers to overcome these barriers is greatly rewarded by the experience
that users may have using the application.

3
Simulation of complex macroscopic

natural phenomena and Scientific Web
applications

3.1 Cellular Automata application Models

3.1.1 SCIDDICA K1: a cellular automata model to
simulate landslides and debris flows.

Cellular Automata (CA) represent a formal frame for dynamical systems,
which evolve on the base of local interactions. Some types of landslide, such
as debris flows, match well this requirement.

The model SCIDDICA was originally developed for simulating simple
cases of flow-like landslides. In its successive releases, higher complexity was
essentially managed by progressively adding new local interactions and/or in-
ternal transformations to the previous ones: therefore, it could be considered
as an “incremental” CA-model.

For CA simulation purposes, landslides can be viewed as a dynamical
system, subdivided into elementary parts, whose state evolves as a conse-
quence of local interactions. The cellular space is constituted by squared
cells, whose attributes indicated as “substates” describe physical character-
istics. For computational reasons, the natural phenomenon is “decomposed”

52

3.1. CELLULAR AUTOMATA APPLICATION MODELS 53

Figure 3.1: Cellular space with squared cells and Moore neighborhood. The
central cell (dark grey) has index 0; indexes from 1 to 8 indicate the other
adjacent cells (light grey).

into a number of elementary processes, whose proper composition makes up
the “transition function” of the CA. By simultaneously applying this func-
tion to all the cells, the evolution of the phenomenon can be simulated in
terms of modifications of the substates.

Formally, the model SCIDDICA K1 can be defined as:

SCIDDICA K1 =< R,E,X,Q, P, τ, γ >

where:

R = {(x, y) ∈ Z2| − lx < x < lx, −ly < y < ly} identifies the bi-dimensional
cellular space with squared cells; Z is the set of the integer numbers,
while lx and ly correspond to the limit of the area in which the consid-
ered phenomenon evolves.

E ⊂ L is the set of the cells where landslides are triggered. They can be
considered as source cells.

X = {(0, 0), (0,−1), (−1, 0), (1, 0), (0,−1), (−1, 1), (−1,−1), (1,−1), (1, 1)} is
the relationship of Moore closeness that defines the neighborhood, given
by the central cell and its eight adjacent cells; neighboring cells are in-
dexed from 0 to 8, as shown in 3.1, in order to specify the rules of the
transition function;

3.1. CELLULAR AUTOMATA APPLICATION MODELS 54

S = Qz ×Qh ×Qhk ×Qd ×Q9
f is the finite set of cell states, given by the

Cartesian product of the sets of the considered substates:

• Qz is the cell altitude;

• Qh is the thickness of landslide debris;

• Qhk is the kinetic altitude (or kinetic load) of landslide debris;

• Qd is the depth of erodible soil cover;

• Q9
f represents the six debris outflows from the central cell to the

adjacent cells, considered in terms of thickness.

P = {pc, phcθ0 , pdQ, pmt, ppef} is the set of the parameters:

• pc is the cell side;

• phcθ0 is the altitude threshold, beyond which a debris column sit-
uated on a horizontal plane becomes unstable and starts moving;

• pdQ rules the speed loss following a quadratic mechanism;

• pmt is the energy threshold to trigger the mobilization of the erodi-
ble soil cover;

• ppef is the parameter of progressive erosion of the soil cover.

τ : Q9 → Q is the deterministic transition function of the cell, formed by the
following elementary processes that are applied in the same order as
they are listed below:

1. internal transformation T1: activation of triggering sources;

2. internal transformation T2: soil erosion;

3. local interaction I1: calculation of debris outflows and their kinetic
load;

4. local interaction I2: update of landslide debris thickness and ki-
netic altitude;

5. internal transformation T3: speed loss and decrease in kinetic load;

6. internal transformation T4: calculation of maximum speed and
time steps of the cellular automaton.

γ : E × N×Qd ×Qh ×Qhk → Qz ×Qd ×Qh ×Qhk is the activation sources
function for landslides triggering at set steps of the cellular automaton.
The main sources are triggered at the first step; other sources can be
triggered later. N is the set of the natural numbers that correspond to
the cellular automaton steps.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 55

At the beginning of each simulation (step t = 0), the initial configuration
of the system is specified by the states of all the cells. In particular, initial
values are assigned as follows:

• z ∈ Qz is set equal to the altitude (bedrock elevation plus thickness of
erodible bed);

• d ∈ Qd is the thickness of the soil cover, which can be eroded by the
landslide (in source cells d = 0);

• h ∈ Qh is zero everywhere, except for the triggering area, where it is
equal to d;

• hk ∈ Qhk is zero everywhere;

• qf ∈ Qf is zero everywhere.

The transition function is then applied, step by step, to all the cells and
the CA configuration changes: in this way, the evolution of the simulation is
obtained.

General considerations
It is important to stress that the CA approach does not explicit velocity

in the local context of the cell, since an amount of material (e.g., debris)
“moves” from the central cell to an adjacent cell in a CA step, that is a
constant time; that implies a constant “velocity”. Nevertheless, velocity can
be deduced through an analysis of the global behavior of the system. If we
look at Hydrodynamics, we can deduce velocity and energy in a CA context.

In Hydrodynamics [43,56] the kinetic load is defined as

hk =
v2

2g

where v is the speed of the flow and g constant of gravity acceleration.
Accordingly, if the thickness of the flow is set to h, the height that can be
reached by the flow, indicated as the run-up H, can be defined as:

H = h+ hk

The transition function of SCIDDICA K1
In the following sections, a description of the elementary processes which

constitute the transition function of SCIDDICA K1 is presented.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 56

Internal transformation T1: activation of triggering sources
The internal transformation T1 causes the activation of triggering sources

in E. In fact, for each cell in E is valid:

nz = z − d
nh = h+ d

nd = 0

Internal transformation T2: soil erosion
Determines the soil erosion and its effects. Let p = vh be the product

between the debris thickness, h, and its speed, v, this latter calculated as
v =
√

2ghk. The condition so that the erosion of the erodible substrate takes
place is: p > pmt. In this case, indicating as ∆t the time corresponding to
the CA current calculating step, the amount of eroded soil is:

∆d = p · ppef ·∆t

If ∆d > d, then ∆d = d. These new values allow to update, respectively,
the substates altitude, depth of erodible soil cover, landslide debris thickness
and kinetic load:

nz = z −∆d

nd = d−∆d

nh = h+ ∆d

nhk =
h · hk
h+ ∆d

Local interaction I1: calculation of debris outflows and their
kinetic load

The local interaction I1 determines the debris outflows from the central cell
towards its adjacent cells, f [0, i] i = 0, 1, ..., 8, and the relative kinetic load,
hk[0, i]. It is based on an opportune minimization algorithm, derived from
the “minimization of the differences” proposed by Di Gregorio and Serra
(1999) [29]. First of all, from the maximum run-up, Hmax, the damping
factor, r, is calculated:

3.1. CELLULAR AUTOMATA APPLICATION MODELS 57

r =
h[0] + hk[0]

Hmax

Moreover, for the 8 adjacent cells are set these following values:

Z[i] = z[i]

r[i] = r

w[i] = pc

for cells indexed from 1 to 4, while

Z[i] = z[i]− z[0]− z[i]√
2

r[i] = r/
√

2

w[i] = pc ·
√

2

for cells indexed from 5 to 8 to consider that these latter are located along
diagonal directions of the cellular space, so being at greater distance from
the central cell (see figure 3.1). Moreover, for the central cell is imposed:

Z[0] = z[0] + hk[0]

Then, follows a phase in which the adjacent cells are eliminated, so they
will not able to receive outflows from the central cell. The only cells that will
not be eliminated are those cells that satisfy one of these following require-
ments:

Case 1) (Z[0] + h[0] > z[i] + h[i]) ∧ (Z[0] > z[i])
Case 2) (Z[0] + h[0] > z[i] + h[i])∧q(Z[0] > z[i])
In case 2) we set:

Z[i] = z[i] + h[i]

For both cases is finally calculated the slope between the central cell and
the neighbor cell and the relative angle as:

θ[i] = arctan
Z[0] + h[0]− Z[i]

w[i]

3.1. CELLULAR AUTOMATA APPLICATION MODELS 58

The Minimization Algorithm is then applied to the following quantities:

• q(0) = Z[0] = h[0] + hk[0];

• m = h[0];

• q(i) = Z[i] (i = 1, 2, . . . , 8);

The Minimization Algorithm eliminates those cells that cannot receive
outflows and determines the average altitude, a, of the cells are not elimi-
nated. For cells not eliminated, for which also applies the condition h[0] >
phcθ0 cos θ[i], are calculated outflows and their kinetic loads as follows:

f [0, i] = r[i] ∗ (a− Z[i])

hk[0, i] = (Z[0] + h[0]− f [0, i])− Z[i]

Local interaction I2: update of landslide debris thickness and
kinetic altitude

The local interaction I2 determines the update f landslide debris thickness
and kinetic altitude.

nh[0] = h[0]−
8∑
i=1

f [0, i] +
8∑
i=1

f [i, 0]

nhk[0] =

∑8
i=0 f [i, 0] · hk[i, 0]

nh[0]

The new value of landslide debris thickness is obtained by considering
debris thickness variations, due to outflows and inflows from/into the central
cell.

Internal transformation T3: speed loss and decrease in kinetic
load

The internal transformation T3 determines the speed loss following a quadratic
mechanism and the consequent decrease in kinetic load as:

v =
√

2ghk

nv = v2PdQ∆t

nhk =
v2

2g

3.1. CELLULAR AUTOMATA APPLICATION MODELS 59

Internal transformation T4: calculation of maximum speed and
time steps of the cellular automaton

Finally, the internal transformation T4 calculates the maximum speed and
the time steps of the cellular automaton as follows:

Hmax = max
R
{hk + h}

vmax =
√

2gHmax

∆t = pc/vmax

3.1.1.1 Applications of the model SCIDDICA K1.

The real event of May 1998 in the Pizzo d’Alvano area
Over the past decades, several studies have attempted to characterize [4,38,

72] and model [5,34,44] debris flows. Debris flows are a mixture of water and
sediments that move gaining speed and channeling along the river courses;
as a consequence, they can have a destructive strength.

Generally, debris flows developed during intense storms as a result of
prolonged rainfall. The mobilization of debris can also occur as a result of
dynamic stress, such as those caused by impact, vibration, earthquakes, or
in conjunction with volcanic eruptions [47]. Before the event, debris are in
a (precarious) balance condition on a side or along a river bank. After the
collapse, debris propagate downstream and assume the character of a debris
flow also cause of significant values of slope relative to the morphological
characters and water availability. In most cases, debris flows originate as
slipping surface of soil [39], but they can also be originated for mobilization
of sediment previously accumulated along the drainage grating (for rapid
erosion along the gullies) or collapse of overlap (natural or artificial) [22,63].
Usually, the development of debris flows is quick and not always preceded
by remarkable signals; for this reason, they have often surprised unprepared
people. These landslides can reach very high speed (up to tens of meters per
second). In correspondence of the end of the path, debris flows decrease in
speed quickly and distribute the debris to the mouth of the basin.

A real event occurred on 5 and 6 May 1998: on the side of the massif of
Pizzo d’Alvano (Campania, Southern Italy), have been triggered thousands
of landslides and debris flows [18]. The flow of the material deeply eroded
the debris layer (ranging from a few centimeters to several meters) along the
path toward downstream, while the impact with urban areas has caused huge
damage and, unfortunately, 161 victims.

In figures 3.2 and 3.3 we can see some of the main landslides occurred on
the southern slope of Pizzo d’Alvano. The debris flow of Chiappe di Sarno

3.1. CELLULAR AUTOMATA APPLICATION MODELS 60

(figure 3.2a) initially propagated along a plain-convex slope, then divided
itself into two sections, joined in a successive phase at the base of the massif
causing serious damage in the Curti area. Pestello Storto landslide (figure
3.3a) is an example of a well-channeled landslide, even if the flow impacts
against a wall downstream, partially reducing its advance.

Simulations of the cases described so far, have been performed for SCID-
DICA K1 model calibration purposes.

Application of the model to the real cases of Chiappe di Sarno and
Pestello Storto

A preliminary calibration of the CA has allowed to simulate with a well
approximation the cases studies considered. The figures 3.2b and 3.3b il-
lustrate the results of the best simulations and comparison with real events,
also performed in GIS1 environment. From a qualitative point of view, the
main features of the phenomenon have been played.

1GIS (Geographic Information System): a computerized information system composed
of a set of software tools to capture, store, extract, transform, analyze and display spatial
data from the real world, associating with each geographic feature one or more alphanu-
meric descriptions.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 61

Figure 3.2: (a) The landslide of Chiappe di Sarno: (1) identifies the area
affected by the landslide; (2) identifies the limit of the areas with a constant
thickness of erodible soil (indicated in italics); (3) identifies the border of the
analysis performed in GIS environment. (b) Comparison between real and
simulated landslide: (1) identifies the areas affected by the real landslide;
(2) identifies the areas affected by the simulated landslide; (3) identifies the
areas affected by both landslides; (4) identifies the border of the analysis
performed in GIS environment.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 62

Figure 3.3: (a) The landslide of Pestello Storto: (1) identifies the area affected
by the landslide; (2) identifies the limit of the areas with a constant thickness
of the erodible soil (indicated in italic); (3) identifies the border of the analysis
performed in GIS environment; (4) identifies the sites of secondary ignition;
(5) identifies natural or artificial barriers. (b) Comparison between real and
simulated landslide: (1) identifies the areas affected by the real landslide;
(2) identifies the areas affected by the simulated landslide; (3) identifies the
areas affected by both landslides; (4) identifies the border of the analysis
performed in GIS environment; (5) identifies the sites of secondary ignition;
(6) identifies natural or artificial barriers.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 63

3.1.2 SCIARA-fv3 - Model Formalization

3.1.2.1 Model Overview

SCIARA-fv3 is the latest release of the SCIARA family of Complex Cellu-
lar Automata Models for simulating basaltic lava flows. As its predecessor,
SCIARA-fv2, it is based on a Bingham-like rheology. However, unlike fv2, it
explicitly computes the flow momentum and the time corresponding to the
computational step (CA clock). In formal terms, it is defined as:

SCIARA− fv3 =< R,X,Q, P, τ, L, γ >

where:

1. R is the cellular space, the set of square cells that define the bi-
dimensional finite region where the phenomenon evolves.

2. X is the pattern of cells belonging to the Moore neighborhood that
influence the cell state change (see fig. 3.4)

3. Q = Qz×Qh×QT×Q−→p ×Q9
f×Q9−→

vf
is the finite set of states, considered

as Cartesian product of substates. Their meanings are: cell altitude
a.s.l., cell lava thickness, cell lava temperature, momentum (both x and
y components), lava thickness outflows (from the central cell toward the
adjacent cells) and flows velocities (both x and y components), respec-
tively;

4. P = w, t0, PT , Pd, Phc, δ, ρ, ε, σ, cv is the finite set of parameters (invari-
ant in time and space), whose meaning is illustrated in Tab. 3.1; note
that PT , Pd , and Phc are set of parameters;

5. τ : Q9 7−→ Q is the cell deterministic transition function; it is splitted
in “elementary processes” which, are described in subsection 3.1.2.2;

6. L ⊆ R specifies the emitted lava thickness from the source cells (i.e.
craters);

7. γ : Qh ×N 7−→ Qh specifies the emitted lava thickness from the source
cells at each step k ∈ N

3.1. CELLULAR AUTOMATA APPLICATION MODELS 64

Figure 3.4: Example of Moore neighborhood and decomposition of momen-
tum along the cellular space directions. Cells are indexes from 0 (the central
cell, in grey) to 8. Cells integer coordinates are omitted for a better read-
ability.

3.1.2.2 Elementary process

Elementary process τ1: lava flows computation
The elementary process τ1 computes lava outflows and their velocities. It

is formally defined as:

τ1 : Q9
z ×Q9

h ×Q−→p → Q9
f ×Q9−→vf

Lava flows are computed by a two-step process: the first computes the
CA clock, t, i.e. the physical time corresponding to a CA computational step,
while the second the effective lava outflows, h(0,i), their velocities vf(0,i) and
displacements s(0,i) (i = 0, 1, ..., 8). The elementary process τ1 is thus exe-
cuted two times, the first one in “time evaluation mode”, the second in “flow
computing mode”. Both modes compute the so called “minimizing outflows”,
φ(0,i), i.e. those which minimize the unbalance conditions within the neigh-
borhood, besides their final velocities and displacements. In “time evaluation
mode”, t is preliminary set to a large value, tmax, and the computed displace-
ment, s(0,i), is compared with the maximum allowed value, d(0,i), which is set
to the distance between the central cell and the neighbor that receives the
flow. In case of over-displacement, the time t must be opportunely reduced
in order to avoid the overflow condition. In case no over-displacement are
obtained, t remains unchanged. Eventually, in “flow computing mode”, ef-
fective lava outflows, h(0,i), are computed by adopting the CA clock obtained

3.1. CELLULAR AUTOMATA APPLICATION MODELS 65

Table 3.1: List of parameters of SCIARA-fv3 with values considered for the
simulation of the 2006 Etnean lava flow.

Parameter Meaning Unit Best value

w Cell side [m] 10

t0 Initial CA clock [s] 1

tmax Upper value for the CA clock [s] 120

PT

Tsol Temperature of solidification [K] 1143

Tvent Temperature of extrusion [K] 1360

Pd

dPTsol Dissipation factor at solidification - 0.5

dPTvent Dissipation at extrusion - 0.315

Phc

hcTsol Critical height at solidification [m] 23.066

hcTvent Critical height at extrusion [m] 1.014

r Relaxation rate - 0.5

δ Cooling parameter - 1.5070

ρ Lava density [Kg m−3] 2600

ε Lava emissivity - 0.9

cv Specific heat [J kg−1 K−1] 1150

in “time evaluation mode”, by guarantying no overflow condition.

Computation of the minimizing outflows φ(0,i)

The initial velocity of the lava inside the cell, −→v0 (0)
, is obtained from the

momentum components. In turn, it is decomposed in two components laying
over the two directions of the CA cellular space which are the nearest with
respect to −→v0 (0)

itself. These latter directions, which will be indicated by e	

and e�, can be found by moving in counterclockwise and clockwise directions
starting from the direction of −→v0 (0)

, respectively, as shown in Fig. 3.4. Thus,
if i denotes the i-th direction of the cellular space, v	0(0) and v�0(0) the modules

of the components of −→v0 (0)
along the directions e	 and e�, respectively, then

the modules of the components of −→v0 (0)
along the directions of the cellular

3.1. CELLULAR AUTOMATA APPLICATION MODELS 66

space can be expressed as:

v0(0,i) =

v	0(0) , if i = e	

v�0(0) , if i = e�

0, otherwise

Moreover, let hk(0,i) = v0
2
(0,i)/2g denote the kinetic head associated to the

i-th component of velocity.
Viscosity effects are modeled in terms of velocity dissipation mechanism,

by means of the function dP . It depends on temperature and vary according
to a power law of the type log dP = a + bT , where T ∈ QT is the lava
temperature and a and b are coefficients determined by solving the system
(cf. Tab. 3.1): {

log dPTsol = a+ bTsol

log dPTvent = a+ bTvent

Similarly, the relation between critical height and lava temperature can be
described by a power law of the kind log hc = c + dT whose coefficients are
obtained by solving the system (cf. Tab. 3.1):{

log hcTsol = c+ dTsol

log hcTvent = c+ dTvent

Before applying the minimization algorithm of the differences for comput-
ing the minimizing outflows, a preliminary control was performed to eliminat-
ing cells that cannot receive lava due to their energy conditions. As in [60], a
topographic correction is considered for flow symmetry reason. In addition,
in SCIARA-fv3 the concepts of effective height, he(0,i) , and apparent height,
ha(0,i) , was introduced. The first is the part of h(0) that can really flow out of
the cell toward its i-th neighborhood, while the second one is the part which
is constrained inside the cell due to energy conditions. There are three cases
(see Fig. 3.5):

1. if z(0) + hk(0,i) + h(0) ≤ z(i) + h(i), then{
he(0,i) = 0

ha(0,i) = h(0)

2. if z(0) + hk(0,i) < z(i) + h(i) < z(0) + hk(0,i) + h(0), then{
he(0,i) = (z(0) + hk(0,i) + h(0))− (z(i) + h(i))

ha(0,i) = h(0) − he(0,i)

3.1. CELLULAR AUTOMATA APPLICATION MODELS 67

3. if z(i) + h(i) ≤ z(0) + hk(0,i) , then{
he(0,i) = h(0)

ha(0,i) = 0

Thus, if denoting with θ(0,i) = arctan((z(0) + ha(0,i) + he(0,i)/2)− (z(i) + h(i)))
the slope angle between the central cell and its i-th neighbor (see Fig. 3.5),
according to the concept of critical height, the cells for which

he(0,i) ≤ hc cos θi

are eliminated and cannot receive flow.
The minimization algorithm of the differences is therefore applied to the

following quantities, in order to compute the minimizing outflows:
u(0) = z(0)
m = h(0)
u(i) = z(i) + h(i)

The application of the algorithm determines the computation of the min-
imizing flows, φ(0,i), from the central cell to the i-th neighbor, where φ(0,0)

represents the residual flow which does not leave the cell. Eventually, final
velocities and displacements are computed. As a first step, final velocities
are computed for each outflow φ(0,i) (i = 1, 2, . . . , 8), by taking into account
dissipation:

vf(0,i) = (v0(0,i) + at)(1− dP)

Here, a = g sin θ is the acceleration of gravity, and does not take into account
dissipation, which is modeled by the function dP . Instead, the final velocity
of φ(0,0) is computed as:

vf(0,0) = v0(0)(1− dP)

In order to compute the displacement, a mean acceleration is computed,
which also takes into account dissipation effects: a = (vf(0,i)−v0(0,i))/t. There-
fore, the displacements s(0,i) (i = 1, 2, . . . , 9) are computed as:

s(0,i) = v0(0,i)t+
1

2
at2

while, a null displacement is assigned to φ(0,0):

s(0,0) = 0

since, even if in the real case a movement can occur, inside the discrete
context of the cellular space, it is always located at the center of the cell.

3.1. CELLULAR AUTOMATA APPLICATION MODELS 68

Figure 3.5: Cases in which the generic neighbor (cell i) is eliminated or not
eliminated by the minimization algorithm of the difference. If the neighbor
is eliminated (Case 1), the overall amount of debris inside the central cell is
considered as apparent (h = ha), and can not generate an outflow. If the
neighbor is not eliminated (Case 2 and 3), a part (Case 2) or the entire
amount of debris (Case 3) on the central cell is considered effective (h ≥ he)
and can generate outflows. Note that the slope angle θ, considered in the
critical height computation, is also shown.

This is a model simplification which is much more correct as the smaller the
size of the cell is.

Time evaluation
Once the minimizing outflows are computed, the CA clock can be deter-

mined. As stated above, when τ1 is executed in “time evaluation mode”, t
is preliminary set to a large value, tmax. As a consequence, the computed
displacements, s(0,i), can overcome the maximum allowed distance, w, i.e.
the distance between the central cell and the neighbor that receive the flow.
In case of over-displacement, i.e. s(0,i) > w, the time t must be opportunely
reduced in order to avoid the overflow. The new value of t is determined as
follows:

• for each minimizing flow, φ(0,i), a new time, t(0,i), is computed by im-
posing s(0,i) = w and by solving the equation with respect to t:

t(0,i) = t =
−v0(0,i) +

√
v20(0,i) + 2aw

a

so that overflow is avoided between the central cell and its i-th neighbor;

3.1. CELLULAR AUTOMATA APPLICATION MODELS 69

• a new time, tj, is computed in order to avoid overflow conditions along
all the neighborhood as:

tc = min
i=1,2,...,8

t(0,i)

so that overflow is avoided in all the neighborhood;

• a new minimal time, topt, is computed as:

topt = min
c∈R

tc

in order to avoid overflow conditions over all the cellular space R;

• topt is multiplied by a relaxation rate factor, 0 < r ≤ 1, for smoothing
the phenomenon, and the new CA clock, t, is obtained:

t = toptr

Outflows computation
In “flow computing mode”, minimizing outflows, φ(0,i), are re-computed by

considering the new CA clock t. Subsequently, lava outflows, h(0,i), are com-
puted proportionally to the displacement, by simply multiplying the minimiz-
ing outflow by the ratio between the actual displacement and the maximum
allowed:

h(0,i) = φ(0,i)

s(0,i)
w

Final velocity and displacement are computed as in subsection 3.1.2.2.

Elementary process τ2: updating of mass and momentum
The elementary process updates lava thickness and momentum. It is for-

mally defined as:
τ2 : Q9

f ×Q9−→vf → Qh ×Q−→p
Once the outflows h(0,i) are known for each cell c ∈ R, the new lava thickness
inside the cell can be obtained by considering the mass balance between
inflows and outflows:

h(0) =
9∑
i=0

(h(i,0) − h(0,i))

Moreover, also the new value for the momentum can be updated by ac-

3.1. CELLULAR AUTOMATA APPLICATION MODELS 70

cumulating the contributions given by the inflows:

−→p (0) =
9∑
i=0

h(i,0)
−→vf (i,0)

Elementary process τ3: temperature variation and lava solidifica-
tion

τ3 : Q9
f ×Q9

T → QT ×Qh

As in the elementary process τ1, a two step process determines the new cell
lava temperature. In the first one, the temperature is obtained as weighted
average of residual lava inside the cell and lava inflows from neighboring ones:

T =

∑8
i=0 h(i,0)Ti∑8
i=0 h(i,0)

A further step updates the calculated temperature by considering thermal
energy loss due to lava surface radiation [51]:

T =
T

3

√
1 + 3T

3
εσtδ

ρcvw2h

where ε, σ, t, δ, ρ, cv, w and h are the lava emissivity, the Stephan-Boltzmann
constant, the CA clock, the cooling parameter, the lava density, the specific
heat, the cell side and the debris thickness, respectively (see Tab. 3.1).
When the lava temperature drops below the threshold Tsol, lava solidifies.
Consequently, the cell altitude increases by an amount equal to lava thickness
and new lava thickness is set to zero.

Lava flows are computed by a two-step process: the first computes the
CA clock, t, i.e. the physical time corresponding to a CA computational step,
while the second the effective lava outflows, h(0,i), their velocities vf(0,i) and
displacements s(0,i) (i = 0, 1, ..., 8). The elementary process τ1 is thus exe-
cuted two times, the first one in “time evaluation mode”, the second in “flow
computing mode”. Both modes compute the so called “minimizing outflows”,
φ(0,i), i.e. those which minimize the unbalance conditions within the neigh-
borhood, besides their final velocities and displacements. In “time evaluation
mode”, t is preliminary set to a large value, tmax, and the computed displace-
ment, s(0,i), is compared with the maximum allowed value, d(0,i), which is set
to the distance between the central cell and the neighbor that receives the
flow. In case of over-displacement, the time t must be opportunely reduced

3.1. CELLULAR AUTOMATA APPLICATION MODELS 71

in order to avoid the overflow condition. In case no over-displacement are
obtained, t remains unchanged. Eventually, in “flow computing mode”, ef-
fective lava outflows, h(0,i), are computed by adopting the CA clock obtained
in “time evaluation mode”, by guarantying no overflow condition.

3.1.3 ABBAMPAU a CA for Wildfire Simulation and
Risk Assessment

A classical homogeneous CA can be viewed as a uniform lattice of cells repre-
senting identical finite automata, hence endowed with a state and a transition
function. Each cell takes as input its state and the states of a set of neigh-
bouring cells defined by a geometrical pattern which is invariant in time and
space. Starting from an initial condition, the CA evolves activating on a step
by step basis all the identical transition functions simultaneously.

In order to effectively use the CA dynamics for the simulation of spa-
tially complex systems, many extensions of its original definition have been
proposed in literature. Typically, the classical CA paradigm was modified
to overcome some implicit limits, such as having few states, look-up table
transition functions and invariant neighbourhoods [10–12,20,67]. The model
described in the following, as well as the used formalism, are based on one of
such extended CA notions, namely on the Macroscopic Cellular Automata
approach introduced in [20] and already exploited for the simulation of many
macroscopic phenomena [6, 16,21,53,60,68].

As in most wildfire spread simulators [23, 32, 42, 52, 69], the approach
adopted in this study is based on the Rothermel’s fire model [54, 55], which
provides the heading rate and direction of spread given the local landscape
and wind characteristics. An additional constituent is the commonly assumed
elliptical description of the spread under homogeneous conditions (i.e. spa-
tially and temporally constant fuels, wind and topography) [1].

In order to mitigate the accuracy problems that affects most raster-based
wildfire simulators [23, 24, 35, 52], the CA adopted in this paper extends the
size of the commonly used Moore’s neighbourhood and adopts an initial
randomization of the spread directions. As shown in [7], such an approach,
which does not alter the deterministic nature of the model, provides relevant
beneficial effects on the overall accuracy.

More in details, the two-dimensional fire propagation is locally obtained
by a growing ellipse having the semi-major axis along the direction of maxi-
mum spread, the eccentricity related to the intensity of the so-called effective
wind and one focus acting as a ‘fire source’ [52, 68]. At each CA step, the
ellipse’s size is increased according to both the duration of the time step and

3.1. CELLULAR AUTOMATA APPLICATION MODELS 72

Figure 3.6: Growth of the ellipse γ locally representing the fire front. The
symbol ρ denotes the forward spread which is incremented by ∆ρ at the i-th
time step.

maximum rate of spread (see Figure 3.6). Afterwards, a neighbouring cell
invaded by the growing ellipse is considered as a candidate to be ignited by
the spreading fire. In case of ignition, a new ellipse is generated according to
the amount of overlapping between the invading ellipse and the ignited cell.
Formally, the model is a two-dimensional CA with square cells defined as:

CA = 〈K, Q, N , S, P , η, ψ, φ〉 (3.1)

where:

– K is the set of points in the finite region where the phenomenon evolves.
Each point represents the centre of a square cell;

– Q is a set of randomized local sources (RLSs) [7], one point for each cell;
they are randomly generated at the beginning of the simulation within
an assigned small radius from each of the centres in K. As detailed
later, a new ignition in a cell consists of a new ellipse having its rear
focus on the local source q ∈ Q;

– N is the set that identifies the pattern of cells influencing the cell state
change (i.e. the neighbourhood);

– S is the finite set of the states of the cell, defined as the Cartesian
product of the sets of all the cell’s substates;

– P is the finite set of global parameters, including those that define the
fuel bed characteristics according to the standard fuel models used in
BEHAVE [3];

– η : S |N | → S is the transition function accounting for the fire ignition,
spread and extinction mechanisms;

3.1. CELLULAR AUTOMATA APPLICATION MODELS 73

– ψ : S |K| → R is a function that determines the size ∆t of each time
step according to both the digital terrain model and maximum spread
rate among the cells on the current fire front. The value of ∆t is then
used by the function φ : R → R, for keeping the current time t up to
date.

The cell’s substates include all the local quantities used by the transition
function for modelling the local interactions between the cells (i.e. the fire
propagation to neighbouring cells) as well as its internal dynamics (i.e. the
fire ignition and growth). In particular, among the substates that define the
state of each cell, there are:

– the altitude z ∈ R of the cell;

– the fuel model µ ∈ N, which is an index referring to one of the men-
tioned standard models that specify the characteristics of vegetation
relevant to Rothermel’s equations;

– the combustion state σ ∈ Sσ, which takes one of the values ‘unburn-
able’, ‘burnable’, ‘ignited ’ and ‘burnt ’.

– the accumulated forward spread ρ ∈ R≥0, that is the current distance
between the focus f of the local ellipse and the farthest point on the
semi-major axis (see Figure 3.6);

– the angle θ ∈ R (see Figure 3.6), giving the direction of the maximum
rate of spread, obtained through the composition of two vectors, namely
the so-called wind effect and slope effect [54];

– the maximum rate of spread r ∈ R≥0, also provided by Rothermel’s
equations on the basis of the relevant local characteristics [54];

– the eccentricity ε ∈ [0, 1] of the ellipse γ representing the local fire
front, which is obtained as a function of both the wind and terrain
slope through the empirical relation proposed in [2, 23].

In brief, the scheduling of each CA step is organized as follows:

1. first, the global function ψ computes the current duration of the time
step ∆t and the function φ updates the current time t;

2. afterwards, the transition function η is executed for each cell of the
automaton. This involves spreading the fire to the neighbouring cells,
during the time interval ∆t, according to the algorithm described be-
low;

3.1. CELLULAR AUTOMATA APPLICATION MODELS 74

Figure 3.7: The i-th neighbouring cell intersected by the ellipse γ locally
representing the fire front.

3. finally, if t is less than a final time tf a new step is executed, otherwise
the simulation ends.

According to the transition function η outlined in Algorithm 1, if the cells
are not in the ‘burning ’ state no further calculation is performed. Otherwise,
in case of burning cell, the first step of η consists of checking the condition
that triggers the transition to the ‘burnt ’ state. The latter is verified when
none of the neighbouring cells are in the ‘burnable’ state, that is when the
cell’s contribution is no longer necessary to the fire spread mechanism. Then,
if the cell still belongs to the fire front, η updates the size of the local ellipse

Algorithm 1: Cell’s transition function η.

1 if σ = ‘burning’ then
2 if none of the neighbours are in the ‘burnable’ state then
3 σ ← ‘burned ’;
4 return;

5 ρ ← ρ + r∆t;
6 foreach cell ci in the neighbourhood do
7 if the substate σi of ci is ‘burnable’ then
8 if the cell ci is reached by γ then
9 Compute ri and θi;

10 if ri > 0 then
11 σi ← ‘ignited ’;
12 Compute εi;
13 Compute the current local spread ρi;

3.1. CELLULAR AUTOMATA APPLICATION MODELS 75

γ (line 5).
The next statement of η consists of testing if the fire is spreading towards

other cells ci of the neighbourhood that are in the ‘burnable’ state (lines 6-8).
Such a spread test is carried out by checking if γ includes the RLS qi of the
cell ci (see Figure 3.7). If qi is inside γ, then a new ellipse γi is generated
for the cell ci, having the RLS qi assumed as rear focus and ri, θi and εi
computed through the proper model equations [23, 45, 54]. Further details
of the model, including some of the relevant model equations, can be found
in [7].

As mentioned above, the CA model is based on the extended Moore’s
neighbourhood composed of 25 cells represented in Figure 3.8. Also, the use
of the RLSs inside each cell allows for obtaining a high number of different
spread direction during the fire propagation in a landscape, thus significantly
improving the accuracy of the results [7]. However, it is important to note
that since the RLSs are generated only once before the beginning of the
simulation, the adopted CA model is deterministic.

Clearly a higher number of neighbouring cells corresponds to a higher
computational cost of the CA step. Nevertheless, the model can also be used
with the standard Moore’s neighbourhood composed of 9 cells, still obtaining
acceptable accuracies thanks to the adopted RSLs [7].

As stated before, the size ∆t of each time-step is determined on a non-
local basis by the global function ψ. In general, large values of ∆t speed up
the simulation because a lower number of steps are required for reaching the
final time. However, small values of ∆t help to decrease the accumulation of
errors during the spread mechanism. Therefore, the main aims of ψ are: (i)
to ensure that at least a new ignition will take place during the next step; (ii)
to guarantee that the ellipse from the cell having the highest rate of spread
does not go beyond any of its neighbouring cells. In practice, at each CA step
the function ψ operates as follows. For each burning cell c (i.e. belonging
to the current fire front) and for each of its neighbours ci in the ‘burnable’
state, the time required by the fire to reach the RLS qi of ci is computed as:

∆ti =
| qi − q | −ρi

r
(3.2)

where q and r are the RLS and the rate of spread of c, respectively, and ρi
is the current spread along the vector qi − q. Then, to generate at least an
ignition at the next step, the value of ∆t can be defined as the minimum
among all the ∆ti defined by Equation 3.2 [42,52]. However, the model also
allows slightly higher values so that to speed up the simulations with a low
impact on the overall accuracy.

3.2. WEB APPLICATIONS 76

Figure 3.8: The adopted extended neighbourhood N composed of 25 cells
together with an example of RLSs inside each cell.

Note that, to account for a sloping terrain, in Equation 3.2 as well as in
Algorithm 1 the altitude of each cell must be considered (i.e. when computing
distances, all the involved vectors must be viewed in the three-dimensional
Cartesian space).

Many important optimizations of the procedure outlined above can be
implemented. The most typical consists of using a suitable dynamic data
structure that allows to operate only on the cells belonging to the current fire
front (i.e. for which σ = ‘burning ’). Moreover, in case of repeated simulations
with stationary weather conditions and different points of ignition, many
substates could be precomputed once (e.g. lines 9 and 12 of the Algorithm
1). Other optimizations could regard the memory usage: for example, it is
easy to combine σ and ρ into a single substate. Nevertheless, as shown later
in the paper, the same enhancements can be effectively adopted also in the
parallel implementation.

3.2 Web applications

In this work, I developed three new scientific Web applications for the simu-
lation of complex macroscopic natural phenomena, namely debris flows, lava
flows, and wildfire evolution. The applications are presented below and are
called Swii2, SciaraWii and Awii, respectively. The description of all of them
is fully complete, even if some repetitions are present. This was done for al-
lowing the reader to jump to the description of a given application without
the need to read the other ones.

A Web application is a software that runs in a web browser. It is cre-
ated in a browser-supported programming language, such as the combination

3.2. WEB APPLICATIONS 77

of JavaScript, HTML and CSS, and relies on a web browser to render the
application. The applications here presented were implemented by means
of the Google Web Toolkit (GWT), an open source set of tools that al-
lows web developers to create and maintain complex JavaScript front-end
applications by means of the Java programming language. Using GWT, de-
velopers can develop and debug Ajax applications in Java, by adopting the
development environment and tools of their choice. When the application is
deployed, the GWT cross-compiler translates the Java application to stan-
dalone JavaScript files that are optionally obfuscated and deeply optimized.
When needed, JavaScript can also be embedded directly into Java code, using
Java comments.

3.2.1 Swii2

Swii2 [50] (SCIDDICA Web Interactive Interface 2) is a web application for
debris flows simulation. It is based on the SCIDDICA-k1 CA model, the
latest release of the SCIDDICA debris flow Cellular Automata family.

3.2.1.1 The system architecture

As stated above, Swii2 was implemented by means GWT. Following the
GWT development approach, the interaction between the user interface and
the SCIDDICA-k1 computational model is guarantied by a set of client-side
services which are implemented on the server (see e.g. [31]). Multi-client
connections are also guarantied. Whenever a user logs in, an asynchronous
request is sent to the server in order to establish a connection; here, a servlet
binds the client to an individual connection-handler, which allows multiple
unambiguous communications through HTTP requests and responses.

3.2. WEB APPLICATIONS 78

Server

Browser Client

Sciddica K1 Static Library

Sciddica Dynamic Library

Java Application Server

GUI
WebGL

3D Engine

AJAX Engine

Http Request Data

JNI Request Data

User Interaction Interface Update

Figure 3.9: The Swii2 system architecture.

Figure 3.9 shows the Swii2 system architecture. Server-side, SCIDDICA-
k1 is implemented as a static library, developed in C++ for efficiency reasons.
A dynamic-link library (DLL), specifically developed in C++ for permitting
the interaction between the simulation model and the Web application, re-
ceives requests by Java Native Interface (JNI) methods and provides simu-
lation data to the application server. Data is therefore sent to the client via
HTTP and stored into the Web browser cache memory. SCIDDICA-k1 pa-
rameters are displayed in GUI controls (in which they can also be modified),
while simulation data (e.g. the topographic surface or the simulated debris
flow) are visualized by means of the 3D WebGL rendering engine, which
runs on a HTML5 <Canvas>. Thus, whenever the SCIDDICA-k1 simulation
produces a debris flow, it is displayed over the surface and its dynamical
behavior can be observed. All the client-server communications are managed
by means of asynchronous JavaScript calls, which are able to provide the
same usability level of desktop applications to Swii2.

3.2. WEB APPLICATIONS 79

Figure 3.10: A screenshot of Swii2 during a simulation performed by the
SCIDDICA-k1 debris flow molel. The left panel allows to view/set both
SCIDDICA-k1 and simulation parameters (e.g. current and visualization
step).

3.2.1.2 The Swii2 GUI and the visualization system

As previously stated, the Swii2 GUI was mainly written in JavaScript by
means of GWT. The graphic layout of some elements has however been mod-
ified by means of cascade stile sheets (CSS). Figure 3.10 shows a screenshot
of Swii2.

On the upper part of the GUI, a horizontal panel shows the application
name/logo and contains the controls which permit to interact with the simu-
lation. A notification area is also present on the right side of the panel. The
remaining client area is subdivided in two panels. The left one contains the
controls which permits to show the current simulation step, set the graphic
update interval and show/edit the SCIDDICA-k1 parameters. The right one
contains the graphic output of the simulation. The graphic panel also con-
tains additional controls (in Google Maps style), which allows the user to
interact with the 3D model in a very simple way. Buttons have been devel-
oped for users which also adopt touch-screen devices. Moreover, application
interaction is also possible through mouse based movements. In fact, like
most 3D modeling applications, users can move or rotate by dragging the
3D model and zoom it by mouse wheeling. However, as the application is
currently under development, the GUI is still oversimplified and some func-
tionalities of the SCIDDICA-k1 simulation model cannot be used through the
Swii2 user interface. For instance, it is not possible to upload configuration
data to the server directly from Swii2 and the operation must be performed

3.2. WEB APPLICATIONS 80

externally, e.g. through a FTP application, where data must be placed in a
specific directory.

As regards the rendering engine, it has been developed by means of the
gwt-g3d library2, which makes easy the integration in GWT. As a matter
of fact, it simplifies many development aspects like projection, matrix oper-
ations or shader binding. Data meshing has been based on triangle strips.
For performance reasons, the function drawArrays has been used. In fact,
as it represents the vertices following the order in which they appear in the
vertices buffer, drawArrays guaranties better performance with respect to
the alternative WebGL function drawElements, which represents the ver-
tices by following the order of a supplementary array of indexes pointing to
the vertices.

3.2.1.3 Swii2 preliminary analysis

So far, Swii2 was preliminary tested on a Local Area Network by only con-
sidering standard laptops, one acting as a Web server and a maximum of 3 as
remote clients accessing simultaneously the former. The level of usability of
the GUI resulted more than satisfactory, mainly thanks to the asynchronous
communications between client and server. In fact, the activation response of
any element of the user interface was practically immediate and comparable
with that of desktop applications. Moreover, also data exchange between
clients and server, in particular simulation data did not cause a significant
slow down. Therefore, the 3D visualization system resulted to be surpris-
ingly efficient, especially if compared with that of the first release of Swii.
Moreover, thanks to the low computational requirements of the SCIDDICA-
k1 simulation model, also the computational efficiency resulted more than
acceptable on the considered server, making Swii2 comparable to standard
desktop applications in terms of both efficiency and usability.

3.2.1.4 Cooperative Aspects in Scientific Simulation

As mentioned in Section 3.2.1.1, SCIDDICA-k1 depends on a set of param-
eters which rule the system evolution. Different sets of parameters are gen-
erally needed in order to simulate different types of debris flows. Therefore,
if a new debris flow must be simulated, which is different for instance, in
rheological terms, with respect to all the other simulated before, SCIDDICA
could require a calibration phase, in order to determine a new proper set of
parameters to be employed. This phase can be accomplished manually or by
means of an automated optimization technique (e.g. by Genetic Algorithms

2gwt-g3d homepage: http://code.google.com/p/gwt-g3d/

3.2. WEB APPLICATIONS 81

- see e.g. [17]). However, in both cases, calibration generally requires a large
number of trials and thus great computational resources and time. While
this could not be an issue in case of a desktop application, it may represent a
serious limitation for a client-server system, as the server could not be able to
satisfy multiple calibration requests. In addition, the problem could become
as greater as the user’s community increases. On the other hand, an adequate
solution, which does not require high computational resources, is advisable.
Without such a solution, the level of the web application’s usability could
result strongly penalized.

A possible solution could be inspired from the cooperative philosophy
of Web 2.0. For instance, depending on some policies and on the compu-
tational power of the server(s), calibration experiments could be permitted
to a restricted number of users, who are invited to share their results with
the community by providing information about the performed experiment,
mainly regarding debris flows technical description and calibrated parame-
ters. Such information could then be stored in a intelligent database system
for future usage.

After a transition phase, the database should reach a critical size and
contain a significant number of SCIDDICA sets of parameters, linked to
both the simulated phenomena and the obtained results. In this way, if
a new event must be simulated without having a precise idea concerning
parameters to be used, the user could query the intelligent database to get a
useful starting point. For example, the user could execute a query by using
some knowledge on the phenomenon to be simulated as search criterion, and
obtain a list of sets of parameters employed in similar cases. A measure of
the correspondence between the new case to be simulated and the events in
the returned records should be provided, together with information about
obtained fitness values.

Such kind of cooperative approach could represent an interesting innova-
tion in the global panorama of scientific applications that, once consolidated,
could significantly reduce the employment of optimization techniques. In
fact, if the user is facilitated in finding immediately a good set of parameters
for the simulation, which can be subsequently further refined, the calibration
phase could even become unnecessary. Moreover, this feature should become
the more rich and reliable, as its employment increases.

The ideas here just outlined, which can be also applied in the web ap-
plication contexts presented in the following, will be better formalized and
considered in the next release of Swii, as we conjecture that they could repre-
sent the basis for a different and innovative way to exploit scientific simulation
models.

3.2. WEB APPLICATIONS 82

3.2.2 SciaraWii: the SCIARA-fv3 Web User Interface

Like Swii2, SciaraWii (SCIARA Web Interactive Interactive Interface) is a
Web 2.0 application for the SCIARA-fv3 lava flow CA simulation model.
SciaraWii allows the user to controls and visualize a SCIARA-fv3 simulation
running server-side. The graphical user interface is based on HTML5 and
JavaScript, which permits to have a fully portable application. The client is
able to control the basic SCIARA-fv3 functionalities thanks to asynchronous
callbacks to the server.

SciaraWii was implemented by means GWT, where the interaction be-
tween the user interface and the SCIARA-fv3 computational model is per-
formed by a set of client-side services which are implemented on the server
(see e.g. [31]). Multi-client connections are also possible: whenever a user
logs in, an asynchronous request is sent to the server in order to establish
a connection. Here, a servlet binds the client to an individual connection-
handler, which allows multiple unambiguous communications through HTTP
requests and responses.

3.2.2.1 System architecture

The SciaraWii system architecture is the same as Swii2. The computational
model, SCIARA-fv3, is implemented on the server in C++ (for efficiency
reasons) as a static library. A dynamic-link library (DLL) receives requests
by Java Native Interface (JNI) methods and provides simulation data to the
application server. Data is therefore sent to the client via HTTP and stored
into the Web browser cache memory. SCIARA-fv3 parameters are displayed
in GUI controls (in which they can also be modified), while simulation data
such as the topographic surface or the simulated lava flow, are visualized
by means of the 3D WebGL rendering engine, which runs on a HTML5
<Canvas>. Whenever the simulation produces a lava flow, it is displayed over
the surface and its dynamical behavior can be observed. All the client-server
communications are managed by means of asynchronous JavaScript calls,
which are able to provide the same usability level of desktop applications to
SciaraWii. Figure 3.11 shows a screenshot of SciaraWii.

3.2.2.2 Visualization system, Rendering And Decimation

Like Swii2 the rendering engine has been developed by means of the gwt-g3d
library, which makes easy the integration in GWT. Data meshing has been
based on triangle strips and the function drawArrays has been used.

One of the main new features of SciaraWii over Swii2 is the use of dec-
imation [58] of triangle meshes. The goal of the decimation algorithm is

3.2. WEB APPLICATIONS 83

to reduce the total number of triangles in a triangle mesh, preserving the
original topology and a good approximation to the original geometry.

The decimation algorithm is simple. Multiple passes are made over all
vertexes in the mesh. During a pass, each vertex is a candidate for removal
and, if it meets the specified decimation criteria, the vertex and all triangles
that use the vertex are deleted. The resulting hole in the mesh is patched by
forming a local triangulation. The vertex removal process repeats, with pos-
sible adjustment of the decimation criteria, until some termination condition
is met. Usually the termination criterion is specified as a percent reduction
of the original mesh (or equivalent), or as some maximum decimation value.
The three steps of the algorithm are:

• characterize the local vertex geometry and topology,

• evaluate the decimation criteria, and

• triangulate the resulting hole.

In SciaraWii the decimation criteria is straightforward. Since maps are
generally rectangular and the vertexes are ordered into a matrix, the candi-
dates for removal are individuated by their index. Those with odd index will
be updated, their value in the z-axis changed to the average of the values of
their neighborhood and those with even index will be removed.

The use of technique has greatly improved the performance of the visu-
alization with large maps.

3.2.2.3 Performance analysis

In order to stress the system’s reliability, SciaraWii was tested on a Local
Area Network by only considering laptops, with one acting as a Web server
and a maximum of 4 as remote clients accessing simultaneously the former.
The level of usability of the GUI resulted more than satisfactory, mainly
thanks to the asynchronous communications between client and server. Also
the 3D visualization system resulted to be surprisingly efficient, especially if
compared with that of the first release of SciaraWii, by making SciaraWii
comparable to standard desktop applications in terms of both efficiency and
usability.

3.2. WEB APPLICATIONS 84

Figure 3.11: A screenshot of the Web user interface for SCIARA-fv3 showing
simulation of the 2006 Valle del Bole Etnean lava flow. On the upper part
of the application, a horizontal panel shows the name/logo and contains
the controls which permit to interact with the simulation. A notification
area is also present on the right side of the panel. The remaining client
area is subdivided in two panels. The left one contains the controls which
permits to show the current simulation step, set the graphic update interval
and show/edit SCIARA-fv3 parameters. The right one contains the graphic
output of the simulation.

3.2.3 Awii

Like the previous examples, Awii (ABBAMPAU Web Interactive Interface)
is a Web 2.0 application used to control and interactively visualize wildfire
simulations.

3.2. WEB APPLICATIONS 85

Figure 3.12: 3D simulation of a fire near San Giovanni in Fiore (Italy). On
the upper part of the application, a horizontal panel shows the name/logo
and contains the controls which permit to interact with the simulation. A
notification area is also present on the right side of the panel. The remaining
client area is subdivided in two panels. The left one contains the controls
which permits to show the current simulation step, set the graphic update
interval and set ABBAMPAU simulation computational steps. The right one
contains the graphic output of the simulation.

3.2.3.1 System architecture

The graphical user interface is similar to that previously described 3.2.1.2,
based on HTML5 and JavaScript (implemented by means GWT), which per-
mits to have a fully portable application. Multi-client connections are still
possible: whenever a user logs in, an asynchronous request is sent to the
server in order to establish a connection. Here, a servlet binds the client to
an individual connection-handler, which allows multiple unambiguous com-
munications through HTTP requests and responses.

The main difference of this application is the simulation model that is
not natively integrated, but is present in the form of executable file. This
feature increases the independence of the individual simulations.

3.2. WEB APPLICATIONS 86

Server

Browser Client

Java Application Server

GUI
WebGL

3D Engine

AJAX Engine

Http Request Data

Execute Output Files

User Interaction Interface Update

ABBAMPAU Numerical

 Model

Figure 3.13: The Awii system architecture.

Command Wrapper
As mentioned in subsection 3.2.3.1, the simulation model is contained in

an executable file inside the application. This file takes as input the dataset
in GIS format and outputs a file of type dataset STATE.asc where the status
of the fire is kept. A wrapper in Java has been developed that takes care to
integrate this file and all others containing the parameters of the model. The
executable is called via the Java method Runtime.getRuntime().Exec(com-

mand); where there are also specified parameters that change depending on
the state in which is located the simulation.

3D Visualization
The application allows 2 ways of viewing the 3D model, related to the

coloring of the cells:

1. Representation of soil with colors related to the standard codes of the
CORINE program;

2. Representation of soil and fire with orange for the flames and gray 75%
for the burnt soil

3.2. WEB APPLICATIONS 87

3.2.3.2 Performance analysis

In order to stress the system’s reliabilty, Awii was tested on a Local Area
Network by only considering laptops, with one acting as a Web server and
a maximum of 10 as remote clients accessing simultaneously the former.
Compared to SciaraWii the simultaneous run is more performing because
the execution of the simulation is run in a separate process each time, so
there is a greater distribution of work for the management of various clients.
The level of usability of the GUI resulted is however more than satisfactory.

4
OpenCAL

As mentioned in Chapter 2, Macroscopic Cellular Automata (MCA) rep-
resent a parallel computing methodology based on the Cellular Automata
paradigm for modelling complex systems at a macroscopic level of descrip-
tion. Well known examples of applications include the simulation of natural
phenomena such as lava and debris flows, forest fires, agent based social pro-
cesses such as pedestrian evacuation and highway traffic problems, besides
many others.

Many Cellular Automata software environments and libraries exist. How-
ever, when non-trivial modelling is needed, only not open source software
are generally available. This is particularly true for Macroscopic Cellular
Automata, for which only a significant example of non free software exists,
namely the CAMELot Cellular Automata Simulation Environment [61].

In order to fill this deficiency in the world of free software, the OpenCAL

(Open Cellular Automata Library) software C library has been developed.
Currently, only the 2D part of the library has been completed, while the
3D is under development and will not be discussed here. Accordingly, only
2D CA models can be implemented in OpenCAL, among which we can find
those considered in this Thesis for the simulation of macroscopic complex
natural phenomena.

Similarly to CAMELot, OpenCAL allows for a simple and concise def-
inition of both the transition function and the other characteristics of the
cellular automaton definition. Moreover, it allows for both CPU sequential
and GPU parallel execution, thanks to the adoption of the Open Computing

88

4.1. A BRIEF DESCRIPTION OF OPENCAL 89

Language (OpenCL), one of the most important frameworks for writing pro-
grams that can be executed across heterogeneous platforms. It was designed
with the aim of greatly simplifying the parallelization of Celluar Automata
applications and, for this reason, is capable of hiding the complexity behind
the GPU programming. The programmer has only to write the elementary
processes that compose the transition function, register substates and set up
some parameters (for example, the number of steps). Memory management
is completely behind the scene, letting the programmer to concentrate to the
modeling processes.

In the following sections, both the sequential and parallel version of the
OpenCAL CA library are described by considering some examples of applica-
tion and by commenting the source code. Moreover, speed-up measurements
of the OpenCL parallel implementation are reported, based on the evalua-
tion of the computational times recorded by considering a test debris flow
simulation model, namely the SCIDDICA-T CA.

4.1 A brief description of OpenCAL

In order to describe the OpenCAL CA software library, let’s start with a
simple example of application: Conway’s Game of Life. It is one of the
most simple yet powerful examples of Cellular Automata, devised by the
mathematician John Horton Conway in 1970. Subsequently, a more com-
plex example is presented, concerning a simplified CA numerical model for
simulating debris flows, called SCIDDICA-T, which is a former version of
SCIDDICA-k1, used for the development of the Swii2 Web 2.0 application.

4.1.1 An OpenCAL implementation of Conway’s Game
of Life

The Game of Life can be thought as an infinite two-dimensional orthogonal
grid of square cells (the cellular space), each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors, which are
the cells that are directly horizontally, vertically, or diagonally adjacent to it
(the Moore neighborhood). At each time step, one of the following transitions
occurs:

1. Any live cell with fewer than two alive neighbors dies, as if by loneliness.

2. Any live cell with more than three alive neighbors dies, as if by over-
crowding.

4.1. A BRIEF DESCRIPTION OF OPENCAL 90

3. Any live cell with two or three alive neighbors lives, unchanged, to the
next generation.

4. Any dead cell with exactly three live neighbors comes to life.

The initial configuration of the system specifies the state (dead or alive) of
each cell into the cellular space. The evolution of the system is thus obtained
by applying the above rules (the CA transition function) simultaneously to
every cell in the cellular space, so that each new configuration is a pure
function of the previous. The rules continue to be applied repeatedly to
create further generations.

The program below shows a simple Game of Life sequential implementa-
tion in OpenCAL.

Listing 4.1: Example of OpenCAL sequential implementation of the Con-
way’s game of Life.

1 //---

2 // THE LIFE CELLULAR AUTOMATON

3 //---

4

5 #include <cal2D.h>

6 #include <cal2DIO.h>

7 #include <cal2DRun.h>

8 #include <stdlib.h>

9

10 //Substate declaration

11 struct CALSubstate2Di *Q;

12

13 void life_transition_function(struct CALModel2D* life, int i, int j)

14 {

15 int sum = 0, n;

16 for (n=1; n<life->sizeof_X; n++)

17 sum += calGetX2Di(life, Q, i, j, n);

18

19 if ((sum == 3) || (sum == 2 && calGet2Di(life, Q, i, j) == 1))

20 calSet2Di(life, Q, i, j, 1);

21 else

22 calSet2Di(life, Q, i, j, 0);

23 }

24

25 void life_init(struct CALModel2D* life)

26 {

27 //set the whole substate to 0

28 calInitSubstate2Di(life, Q, 0);

29

30 //set a glider

31 calInit2Di(life, Q, 0, 2, 1);

32 calInit2Di(life, Q, 1, 0, 1);

33 calInit2Di(life, Q, 1, 2, 1);

34 calInit2Di(life, Q, 2, 1, 1);

35 calInit2Di(life, Q, 2, 2, 1);

36 }

37

4.1. A BRIEF DESCRIPTION OF OPENCAL 91

38 void life_finalize(struct CALModel2D* life)

39 {

40 //add cells to the set of active ones

41 calRemoveActiveCell2D(life, 0, 0);

42 calRemoveActiveCell2D(life, 0, 1);

43

44 //this is needed only if one or more cells are added or eliminated from the

computationally active cells

45 calUpdateActiveCells2D(life);

46 }

47

48 //---

49

50 int main()

51 {

52 //cadef and rundef

53 struct CALModel2D* life = calCADef2D (100, 100, CAL_CUSTOM_NEIGHBORHOOD_2D,

CAL_SPACE_TOROIDAL, CAL_NO_OPT);

54 struct CALRun2D* life_simulation = calRunDef2D(life, 1, 1,

CAL_UPDATE_IMPLICIT);

55

56 //add transition function’s elementary processes.

57 calAddElementaryProcess2D(life, life_transition_function);

58

59 //add neighbors of the Moore neighborhood

60 calAddNeighbor2D(life, 0, 0); //this is the neighbor 0 (central cell)

61 calAddNeighbor2D(life, - 1, 0); //this is the neighbor 1

62 calAddNeighbor2D(life, 0, - 1); //this is the neighbor 2

63 calAddNeighbor2D(life, 0, + 1); //this is the neighbor 3

64 calAddNeighbor2D(life, + 1, 0); //this is the neighbor 4

65 calAddNeighbor2D(life, - 1, - 1); //this is the neighbor 5

66 calAddNeighbor2D(life, + 1, - 1); //this is the neighbor 6

67 calAddNeighbor2D(life, + 1, + 1); //this is the neighbor 7

68 calAddNeighbor2D(life, - 1, + 1); //this is the neighbor 8

69

70 //add substates

71 Q = calAddSubstate2Di(life);

72

73 //saving configuration

74 calSaveSubstate2Di(life, Q, "./data/life_0000.txt");

75

76 //simulation run

77 calRunAddInitFunc2D(life_simulation, life_init);

78 calRun2D(life_simulation);

79 calRunFinalize2D(life_simulation);

80

81

82 //saving configuration

83 calSaveSubstate2Di(life, Q, "./data/life_LAST.txt");

84

85 //finalization

86 calFinalize2D(life);

87

88 return 0;

89 }

90

91 //---

All programs that exploit the sequential version of OpenCAL must in-
clude the header files cal2D.h and cal2DRun.h. The first one allows to

4.1. A BRIEF DESCRIPTION OF OPENCAL 92

define the CA model, while the second to execute a simulation. The header
cal2DIO.h can be also included in case I/O operation are needed, which is
the case of the above example program.

In OpenCAL, a substate is a data structure containing two buffers: the
current buffer and the next buffer. Both buffers are represented by linear
arrays, even if they correspond to a 2D cellular space. The current buffer is
used for reading cell’s state values, while the next one for writing the new
ones. In order to define a substate, which in the current version of OpenCAL
can be of type CALbyte (corresponding to the char type in C), CALint (cor-
responding to the int type in C), or CALreal (corresponding to the double

type in C), it is necessary to declare a pointer to CALSubstate2D[b,i,r],
where the letters in brackets refer to the above cited basic types, respectively.
For instance, the statement struct CALSubstate2Di *Q at line 12 declares
a CALint substate, i.e. a substate in which each cell can contain values of
type CALint.

In order to create a CA, an object of type CALModel2D* must be defined
(line 55), being CALModel2D a C structure containing the following data:

• the CA dimension (number of rows and columns of the 2D cellular
space);

• the space boundary condition (if toroidal or not);

• the type of optimization considered (active cells or no optimization);

• the cell’s neighboring relation (von Neumann, Moore or custom)

• the three arrays of pointers to 2D substates of type CALbyte, CALint,
and CALreal;

• the array of function pointers to the transition function’s elementary
processes.

The function calCADef2D (line 55) is used to initialize some CA object
data: CA dimension, neighborhood, toroidality of the cellular space, and the
optimization used (if any). In order to complete the CA definition, further
functions are used. In particular, the arrays of pointers to the CA substates,
which are handles to the defined substates (so that they can be automatically
updated by OpenCAL after each elementary process has been computed), are
updated by means of the function calAddSubstate2D[b,i,r]. In fact, the
function registers the substate provided as argument to the corresponding
array. The letters in brackets still refer to the OpenCAL basic types CALbyte,
CALint, and CALreal, respectively.

4.1. A BRIEF DESCRIPTION OF OPENCAL 93

Similarly, CA elementary processes, constituting the CA transition func-
tion, are registered by the function calAddElementaryProcess2D (line 59).
In case more than one elementary process is registered, the order of exe-
cution corresponds to the order of registration. The statement at line 59
defines the only callback function life_transition_function of the CA,
which therefore corresponds to the whole CA transition function. Each el-
ementary process must return void and have the same parameters of the
function life_transition_function (line 15): a pointer to the CA ob-
ject and the coordinates of a generic cell of the cellular space. OpenCAL
will therefore apply the elementary process to each cell of the cellular space
transparently to the user.

The elementary process callback function’s body contains further calls
to OpenCAL functions. In particular, the function calGetX2Di at line 19
returns the value of the substate Q of the n-th neighbor of the cell (i, j)

of the CA life. Similarly, the function calGet2Di returns the value of the
substate Q of the cell (i, j) of the CA. Eventually, calSet2Di updates the
value of the substate Q of the cell (i, j) of the CA.

In the considered example, the CA neighboring relation is set to the con-
stant CAL_CUSTOM_NEIGHBORHOOD_2D (line 55). In this case, the neighbor-
hood must be explicitly defining by calling the function calAddNeighbor2D,
as many times as the number of neighbors are (lines 62-70). The func-
tion requires the relative coordinates of the neighbor with respect the cen-
tral cell, which has relative coordinates (0,0). OpenCAL also offers prede-
fined neighborhoods, which can be set by the specifying the following con-
stants in the CA definition function: CAL_VON_NEUMANN_NEIGHBORHOOD_2D

and CAL_MOORE_NEIGHBORHOOD_2D, for the von Neuman and Moore neigh-
borhood, respectively.

At line 76 the function calSaveSubstate2Di saves the initial state of the
CA, which correspond to the configuration of the only defined substate Q, on
file located at the path ./data/life_0000.txt. Such initial configuration
has been defined by means of the life_init callback function. It belongs
to the simulation object and is registered to this object by the function
calRunAddInitFunc2D (line 79).

At line 80 the function calRun2D executes the simulation. The number
of computational steps is defined inside the simulation object at the moment
of its initialization. In the present example, the simulation will start with
the step 1 and will terminate at the step 10 (line 56). The function makes
completely transparent the main loop of the simulation, as well as all the
updating operation involving the substates’s structures.

The call to the function calRunFinalize2D (line 81) releases all the mem-
ory implicitly allocated by the life_simulation object, while the call to the

4.1. A BRIEF DESCRIPTION OF OPENCAL 94

function calSaveSubstate2Di saves the final CA configuration on a file lo-
cated at the path ./data/life_LAST.txt (line 85). Eventually, the call to
the function calFinalize2D releases all the memory implicitly allocated by
the life CA object.

4.1.2 An OpenCAL implementation of the SCIDDICA-
T debris flows model

As already mentioned, SCIDDICA-T is a former, simplified version of the
CA SCIDDICA-k1. Therefore, it is an example of Macroscopic Complex
Cellular Automata since it requires more than one substate and the cell can
assume a great number of different values. Moreover, it depends of some
global parameters, which influence the dynamics of the system.

The implementation here presented has a minimal user interface devel-
oped in GLUT and a simple visualization system written in OpenGL. Differ-
ently to the previous example, the program is organized in three source files,
whose content is illustrated below in the listings 4.2, 4.3, and 4.4.

Listing 4.2: An OpenCAL sequential implementation of the SCIDDICA-T
CA debris flow model: The source file sciddicaT.h.

1 #ifndef sciddicaT_h

2 #define sciddicaT_h

3

4 #include <cal2D.h>

5 #include <cal2DIO.h>

6 #include <cal2DRun.h>

7

8

9 #define ROWS 610

10 #define COLS 496

11 #define P_R 0.5

12 #define P_EPSILON 0.001

13 #define STEPS 4000

14 #define DEM_PATH "./data/dem.txt"

15 #define SOURCE_PATH "./data/source.txt"

16 #define OUTPUT_PATH "./data/width_final.txt"

17

18 //cadef and rundef

19 extern struct CALModel2D* sciddicaT;

20 extern struct CALRun2D* sciddicaTsimulation;

21

22 #define NUMBER_OF_OUTFLOWS 4

23

24 struct sciddicaTSubstates {

25 struct CALSubstate2Dr *z;

26 struct CALSubstate2Dr *h;

27 struct CALSubstate2Dr *f[NUMBER_OF_OUTFLOWS];

28 };

29

4.1. A BRIEF DESCRIPTION OF OPENCAL 95

30 struct sciddicaTParameters {

31 CALParameterr epsilon;

32 CALParameterr r;

33 };

34

35 extern struct sciddicaTSubstates Q;

36 extern struct sciddicaTParameters P;

37

38 void sciddicaTCADef();

39 void sciddicaTLoadConfig();

40 void sciddicaTSaveConfig();

41 void sciddicaTExit();

42

43 #endif

The header file in listing 4.2 is very simple and contains some definitions
and function prototypes, besides two new data structure for aggregating sub-
states and parameters, respectively. By inspecting such data structures, it
is simple to observe that SCIDDICA-T substates are Q.z, representing the
topographic altitude of the cell, Q.h, representing the debris thickness, and
Q.f[i] (i=1,...,4), representing the 4 debris outflows from the central cell
to the neighbors (lines 21-27). Similarly, its possible to observe that model’s
parameter are P.epsilon and P.r (lines 29-32).

Listing 4.3: An OpenCAL sequential implementation of the SCIDDICA-T
CA debris flow model: The source file sciddicaT.c.

1 #include "sciddicaT.h"

2 #include <stdlib.h>

3

4 //---

5 // The sciddicaT cellular automaton definition section

6 //---

7

8 //global objects declaration

9 struct CALModel2D* sciddicaT; //the cellular automaton

10 struct sciddicaTSubstates Q; //the substates

11 struct sciddicaTParameters P; //the parameters

12 struct CALRun2D* sciddicaTsimulation; //the simulation run

13

14

15 //--

16 // sciddicaT transition function

17 //--

18

19 //first elementary process

20 void sciddicaT_flows_computation(struct CALModel2D* sciddicaT, int i, int j)

21 {

22 CALbyte eliminated_cells[5]={CAL_FALSE,CAL_FALSE,CAL_FALSE,CAL_FALSE,

CAL_FALSE};

23 CALbyte again;

24 CALint cells_count;

25 CALreal average;

26 CALreal m;

4.1. A BRIEF DESCRIPTION OF OPENCAL 96

27 CALreal u[5];

28 CALint n;

29 CALreal z, h;

30

31

32 if (calGet2Dr(sciddicaT, Q.h, i, j) <= P.epsilon)

33 return;

34

35 m = calGet2Dr(sciddicaT, Q.h, i, j) - P.epsilon;

36 u[0] = calGet2Dr(sciddicaT, Q.z, i, j) + P.epsilon;

37 for (n=1; n<sciddicaT->sizeof_X; n++)

38 {

39 z = calGetX2Dr(sciddicaT, Q.z, i, j, n);

40 h = calGetX2Dr(sciddicaT, Q.h, i, j, n);

41 u[n] = z + h;

42 }

43

44 //computes outflows

45 do{

46 again = CAL_FALSE;

47 average = m;

48 cells_count = 0;

49

50 for (n=0; n<sciddicaT->sizeof_X; n++)

51 if (!eliminated_cells[n]){

52 average += u[n];

53 cells_count++;

54 }

55

56 if (cells_count != 0)

57 average /= cells_count;

58

59 for (n=0; n<sciddicaT->sizeof_X; n++)

60 if((average<=u[n]) && (!eliminated_cells[n])){

61 eliminated_cells[n]=CAL_TRUE;

62 again=CAL_TRUE;

63 }

64

65 }while (again);

66

67 for (n=1; n<sciddicaT->sizeof_X; n++)

68 if (eliminated_cells[n])

69 calSet2Dr(sciddicaT, Q.f[n-1], i, j, 0.0);

70 else

71 calSet2Dr(sciddicaT, Q.f[n-1], i, j, (average-u[n])*P.r);

72 }

73

74 //second (and last) elementary process

75 void sciddicaT_width_update(struct CALModel2D* sciddicaT, int i, int j)

76 {

77 CALreal h_next;

78 CALint n;

79

80 h_next = calGet2Dr(sciddicaT, Q.h, i, j);

81 for(n=1; n<sciddicaT->sizeof_X; n++)

82 h_next += calGetX2Dr(sciddicaT, Q.f[NUMBER_OF_OUTFLOWS - n], i, j, n)

- calGet2Dr(sciddicaT, Q.f[n-1], i, j);

83

84 calSet2Dr(sciddicaT, Q.h, i, j, h_next);

85 }

86

87 //--

4.1. A BRIEF DESCRIPTION OF OPENCAL 97

88 // sciddicaT simulation functions

89 //--

90

91 void sciddicaTSimulationInit(struct CALModel2D* sciddicaT)

92 {

93 CALreal z, h;

94 CALint i, j;

95

96 //initializing substates to 0

97 calInitSubstate2Dr(sciddicaT, Q.f[0], 0);

98 calInitSubstate2Dr(sciddicaT, Q.f[1], 0);

99 calInitSubstate2Dr(sciddicaT, Q.f[2], 0);

100 calInitSubstate2Dr(sciddicaT, Q.f[3], 0);

101

102 //sciddicaT parameters setting

103 P.r = P_R;

104 P.epsilon = P_EPSILON;

105

106 //sciddicaT source initialization

107 for (i=0; i<sciddicaT->rows; i++)

108 for (j=0; j<sciddicaT->columns; j++)

109 {

110 h = calGet2Dr(sciddicaT, Q.h, i, j);

111

112 if (h > 0.0) {

113 z = calGet2Dr(sciddicaT, Q.z, i, j);

114 calSet2Dr(sciddicaT, Q.z, i, j, z-h);

115 }

116 }

117 }

118

119 void sciddicaTSteering(struct CALModel2D* sciddicaT)

120 {

121 //initializing substates to 0

122 calInitSubstate2Dr(sciddicaT, Q.f[0], 0);

123 calInitSubstate2Dr(sciddicaT, Q.f[1], 0);

124 calInitSubstate2Dr(sciddicaT, Q.f[2], 0);

125 calInitSubstate2Dr(sciddicaT, Q.f[3], 0);

126 }

127

128 CALbyte sciddicaTSimulationStopCondition(struct CALModel2D* sciddicaT)

129 {

130 if (sciddicaTsimulation->step >= STEPS)

131 return CAL_TRUE;

132 return CAL_FALSE;

133 }

134

135

136 //--

137 // sciddicaT CADef and runDef

138 //--

139

140 void sciddicaTCADef()

141 {

142 //cadef and rundef

143 sciddicaT = calCADef2D (ROWS, COLS, CAL_VON_NEUMANN_NEIGHBORHOOD_2D,

CAL_SPACE_TOROIDAL, CAL_NO_OPT);

144 sciddicaTsimulation = calRunDef2D(sciddicaT, 1, CAL_RUN_LOOP,

CAL_UPDATE_IMPLICIT);

145

146 //add transition function’s elementary processes

147 calAddElementaryProcess2D(sciddicaT, sciddicaT_flows_computation);

4.1. A BRIEF DESCRIPTION OF OPENCAL 98

148 calAddElementaryProcess2D(sciddicaT, sciddicaT_width_update);

149

150 //add substates

151 Q.z = calAddSubstate2Dr(sciddicaT);

152 Q.h = calAddSubstate2Dr(sciddicaT);

153 Q.f[0] = calAddSubstate2Dr(sciddicaT);

154 Q.f[1] = calAddSubstate2Dr(sciddicaT);

155 Q.f[2] = calAddSubstate2Dr(sciddicaT);

156 Q.f[3] = calAddSubstate2Dr(sciddicaT);

157

158 //simulation run setup

159 calRunAddInitFunc2D(sciddicaTsimulation, sciddicaTSimulationInit);

160 calRunAddSteeringFunc2D(sciddicaTsimulation, sciddicaTSteering);

161 calRunAddStopConditionFunc2D(sciddicaTsimulation,

sciddicaTSimulationStopCondition);

162 }

163

164 //--

165 // sciddicaT I/O functions

166 //--

167

168 //Omissis...

Listings 4.3 contains the SCIDDICA-T definition. At the top of the
file (lines 9-12), the CA object sciddicaT, the set of substates Q, the set
of parameters P, and the CA simulation object sciddicaTsimulation are
declared. The function sciddicaTCADef is used to initialize the above ob-
jects and to register substates and elementary processes to the CA object
sciddicaT (lines 140-162).

Specifically, as regards the initialization of sciddicaT, the CA dimen-
sions are provided by some constants defined in the header file sciddicaT.h,
while the von Neumann neighborhood, a toroidal cellular space and no op-
timizations are adopted. The simulation object sciddicaTsimulation is
also initialized with the constant CAL_RUN_LOOP as the last computational
step specification. In such a case, the simulation does not terminate, un-
less a given termination criterion is met. This is precisely the case of the
considered implementation of SCIDDICA-T, since the OpenCAL function
calRunAddStopConditionFunc2D (line 161) registers a callback function by
means of which a termination criterion is defined. In this case, this termi-
nation function was introduced to show how non-trivial termination criteria
can be defined in OpenCAL. However, the defined termination criterion is
still the same of the previous example of implementation of the Conway’s
Game of Life (lines 128-133).

Regarding the transition function’s elementary processes, they are defined
by the callback functions sciddicaT_flows_computation (lines 20-72) and
sciddicaT_width_update (lines 75-85). The first one computes the debris
outflows from the central cell towards its neighbors by applying the Mini-
mization Algorithm of the Differences [29], while the second performs the

4.1. A BRIEF DESCRIPTION OF OPENCAL 99

mass balance by distributing the above computed flows.
Besides the termination function, the initialization and steering callbacks

are registered (lines 159-160). Specifically, the sciddicaTSimulationInit

callback is the simulation initialization function (lines 91-117) and is equiv-
alent to that in the Game of Life example. However, note that here an
explicit access to each cell of the cellular space (global operation) was per-
formed by simply considering a double for loop (lines 107-116). Differently
from sciddicaTSimulationInit, the sciddicaTSteering steering callback
is executed automatically and transparently to the user at the end of each
computational step and allows to execute global operations. It is used to re-
set each substates cell to the value zero, by means of the OpenCAL function
calInitSubstate2Dr (lines 119-126).

Listing 4.4: An OpenCAL sequential implementation of the SCIDDICA-T
CA debris flow model: The source file sciddicaTgui.c.

1 #include "sciddicaT.h"

2 #include <stdlib.h>

3

4 //Omissis...

5

6 void simulationRun(void)

7 {

8 CALbyte again;

9

10 //simulation main loop

11 sciddicaTsimulation->step++;

12

13 //exectutes the global transition function, the steering function and check for

the stop condition.

14 again = calRunCAStep2D(sciddicaTsimulation);

15

16 //graphic rendering

17 printf("step: %d; \tactive cells: %d\r", sciddicaTsimulation->step,

sciddicaTsimulation->ca2D->A.size_current);

18 glutPostRedisplay();

19

20 //check for the stop condition

21 if (!again)

22 {

23 //breaking the simulation

24 end_time = time(NULL);

25 glutIdleFunc(NULL);

26 printf("\n");

27 printf("Simulation terminated\n");

28 printf("Elapsed time: %ds\n", end_time - start_time);

29

30 //saving configuration

31 printf("Saving final state to %s\n", OUTPUT_PATH);

32 sciddicaTSaveConfig();

33 }

34 }

35

4.1. A BRIEF DESCRIPTION OF OPENCAL 100

36 int main(int argc, char** argv)

37 {

38 sciddicaTCADef();

39 sciddicaTLoadConfig();

40 sciddicaTComputeExtremes(sciddicaT, Q.z, &z_min, &z_Max);

41

42 glutInit(&argc, argv);

43 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

44 glutInitWindowSize(640, 480);

45 glutInitWindowPosition(100, 100);

46 glutCreateWindow(argv[0]);

47 glutReshapeFunc(reshape);

48 glutDisplayFunc(display);

49

50 //Omissis...

51

52 glutIdleFunc(simulationRun);

53 glutMainLoop();

54

55 sciddicaTExit();

56 return 0;

57 }

Differently form the Conway’s Game of Life example, the simulation loop
is managed by a GLUT application, partially shown in listing 4.4. In particu-
lar, the single step of the simulation can be found inside the simulationRun

GLUT idle callback function, which is a function that GLUT calls auto-
matically each time rendering operations are not in execution. Thus, in
simulationRun the OpenCAL function calRunCAStep2D is called, which
performs a single simulation step. It returns a CALbyte value that can
be CAL_TRUE (true) or CAL_FALSE (false). In the case the return value is
CAL_FALSE, that occurs when the stopping criterion is met, the idle callback
is set to NULL, so that the function is no longer called, and the simulation
terminates.

Figure 4.1 shows the graphical output of the simulation of the Tessina
(Italy) landslide by means of the SCIDDICA-T debris flow model, as im-
plemented in OpenCAL. Simulation results are in accordance with those
obtained by the original implementation of the model, as described in [8].

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 101

Figure 4.1: Graphical output of the simulation of the Tessina (Italy) land-
slide by means of the SCIDDICA-T debris flow model, as implemented in
OpenCAL.

4.2 A brief description of the OpenCAL par-

allel OpenCL version

OpenCL programs are composed by two different sections: the host one
and the device one. As a consequence, the OpenCL code generally require
many lines of code with respect to the equivalent sequential code. In fact,
host-side, it is necessary to set up the computing devices to be used (for
instance the GPU) and, subsequently, write the so called device-side kernels
in order to exploit the computational power of the configured computing de-
vices. OpenCAL simplifies considerably both of the host and device OpenCL
programming in the case of Cellular Automata development. The following
sections show the great advantages in using OpenCAL and two examples of

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 102

application, namely Conway’s Game of Life and SCIDDICA-T.

4.2.1 OpenCAL improvement to OpenCL programming

In order to show the OpenCAL advantages in terms of compactness of source
code with respect to the direct programming with OpenCL, the following list
shows the “additional procedures” needed in most of OpenCL programs:

1. Initialize structures for OpenCL platforms and devices;

2. Find the installed platforms and devices and store those you need;

3. Create a OpenCL context and a program;

4. Load all the files where kernels have been stored;

5. Create structures to store kernels and data buffers;

6. Link all objects to the own buffer;

7. Set buffers as arguments for each kernel;

8. Choose and set the number of workgroups and the dimensions for each
of them:

9. Create command queues and launch the kernels;

10. Eventually, handle any error generated by the OpenCL functions.

Some of these features are not particularly hard to implement, but others
can heavily enlarge the program’s dimensions. To prevent this, OpenCAL
provides some methods that are able to avoid the need of writing a consid-
erable amount of source code. In the following, some comparative examples
are provided in order to evidence the advantage of using OpenCAL for the
parallel Cellular Automata implementation instead of OpenCL.

Listing 4.5: Example of OpenCL Platform/Device Initialization

1 int main()

2 {

3 cl_platform_id * platform = NULL;

4 cl_platform_id * platforms;

5 cl_device_id **devices, *all_devices;

6 cl_uint err, allPlatSize, allDevicesSize, devicesSize = 0, platVendorLength,

devNameLength;

7 char* platVendor, devName;

8

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 103

9 //Get all platform

10 err = clGetPlatformIDs(0, NULL, &allPlatSize);

11 platforms = (cl_platform_id*) malloc(sizeof(cl_platform_id) * allPlatSize);

12 err = clGetPlatformIDs(allPlatSize, platforms, NULL);

13

14 //Select platform by vendor

15 for (int i = 0; i < allPlatSize; i++) {

16 err = clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, 0, NULL, &

platVendorLength);

17 platVendor = (char*) malloc(platVendorLength * sizeof(char));

18 err = clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, sizeof(char) *

platVendorLength, platVendor, NULL);

19 if (strstr(platVendor, "NVIDIA") != NULL) {

20 *platform = platforms[i];

21 }

22 }

23 if(platform == NULL){

24 printf("No platform found");

25 return -1;

26 }

27

28 //Get all platform devices

29 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, allDevicesSize);

30 *all_devices = (cl_device_id*) malloc(sizeof(cl_device_id) * (*allDevicesSize));

31 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, *allDevicesSize, *all_devices,

NULL);

32

33 //Select devices by name

34 for (int i = 0; i < allDevicesSize; i++){

35 err = clGetDeviceInfo(all_devices[i], CL_DEVICE_NAME, 0, NULL, &devNameLength

);

36 char* devName = (char*) malloc(devNameLength * sizeof(char));

37 err = clGetDeviceInfo(all_devices[i], CL_DEVICE_NAME, sizeof(char) *

devNameLength, devName, NULL);

38

39 if (strstr(devName, "Tesla") != NULL)

40 devicesSize++;

41 }

42 int k = 0;

43 *devices = (cl_device_id*) malloc(sizeof(cl_device_id) * devicesSize);

44 for (int i = 0; i < allDevicesSize; i++){

45 err = clGetDeviceInfo(all_devices[i], CL_DEVICE_NAME, 0, NULL, &devNameLength

);

46 char* devName = (char*) malloc(devNameLength * sizeof(char));

47 err = clGetDeviceInfo(all_devices[i], CL_DEVICE_NAME, sizeof(char) *

devNameLength, devName, NULL);

48 if (strstr(devName), "Tesla") != NULL) {

49 *devices[k] = all_devices[i];

50 k++;

51 }

52 }

53

54 if(err<1){

55 printf("History! Something went wrong");

56 return -1;

57 }

58

59 return 0;

60 }

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 104

Usually, OpenCL development requires a preliminary phase in which
available platforms (vendors, e.g. nVidia, AMD or Intel) and devices are
identified. To each of them a specific identifier (id) is automatically assigned
by OpenCL. Obviously, platforms and devices can vary from machine to ma-
chine and therefore the application must be designed in order to be able
to select the proper platforms and computational devices to be used. In
listing 4.5 available platforms and devices are analyzed and a Nvidia Tesla
device selected, if present (otherwise, the program terminates). As it can be
seen, the developer is forced to call the same methods multiple times (e.g.
clGetDeviceInfo at lines 35, 37 and 45) in order to retrieve different plat-
form and device information. As a result, source code can result confused
and the developer frustrated. In order to reduce this drawbacks, OpenCAL
provides many functions that allows the developer to simplify the platform
and devices selection. Listing 4.6 shows exactly the same program of that
proposed in Listing 4.5 by using OpenCAL. It is considerably shorter and
clearer that of the corresponding version in which OpenCL functions were
used directly.

Listing 4.6: Example of OpenCL Platform/Device initialization using
OpenCAL

1 int main(){

2 CALCLplatform platform;

3 CALCLuint num_devices;

4 CALCLdevice* nvidiaDevices;

5

6 calclGetPlatformByVendor(platform, "NVIDIA");

7 getDevicesByName(platform, nvidiaDevices, num_devices, "Tesla");

8 return 0;

9 }

Once one or more computational devices have been chosen, the host must
select one or more functions, called kernels, to be placed in a command queue
and sent to the devices. Kernel code, unlike serial host code, is executed in
parallel and is able to exploit high performance capabilities of the selected
computational devices. In order to accomplish such preliminary activities,
OpenCL applications must deal with many data structures and operations.
For instance, it is necessary to create a program by using the defined kernels,
and build it. In this way, developers have to deal with strings and files
containing kernels code and then use OpenCL functions to build the program.
Moreover, a memory buffer has to be created for each kernel parameter and
bound to objects or variables needed for host-device communication.

Listing 4.7: Example of OpenCL kernel load

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 105

1 //missing code

2 //...

3

4 cl_program program;

5 cl_double argOne, cl_double argTwo;

6 cl_int err;

7 cl_uint num_devices = 1;

8 cl_device_id *devices;

9 .

10 . (get devices)

11 .

12 cl_context context clCreateContext(NULL, num_devices, devices, NULL, NULL, &err)

13

14 //create kernel build command and arguments

15 char* buildArgs = ""; //additional arguments

16 char* build_command;

17 build_command = (char*) malloc(sizeof(char) * (strlen(KERNEL_INCLUDE_DIR) + strlen("

 -I ") + strlen(buildArgs) + 1));

18 strcpy(build_command, " -I ");

19 strcat(build_command, KERNEL_DIR);

20 strcat(build_command, buildArgs);

21

22 //load file names

23 int num_files = 0;

24 char** filesNames;

25 DIR *dir = opendir(KERNEL_DIR);

26 struct dirent *ent;

27

28 while ((ent = readdir(dir)) != NULL)

29 if (ent->d_name[0] != ’.’)

30 num_files++;

31 closedir(dir);

32

33 files_names = (char**) malloc(sizeof(char*) * (*num_files));

34 int count = 0;

35

36 dir = opendir(KERNEL_DIR);

37 while ((ent = readdir(dir)) != NULL) {

38 if (ent->d_name[0] != ’.’) {

39 files_names[count] = (char*) malloc(1 + sizeof(char) * (strlen(

KERNEL_DIR) + strlen(ent->d_name)));

40 strcpy((*files_names)[count],KERNEL_DIR);

41 strcat((*files_names)[count], ent->d_name);

42 count++;

43 }

44 }

45 closedir(dir);

46

47 //load files

48 char ** programBuffers = (char**) malloc(sizeof(char*) * num_files);

49 size_t * program_size = (size_t*) malloc(sizeof(size_t) * num_files);

50 for (int i = 0; i < num_files; i++){

51 FILE * file = fopen(filesNames[i], "r");

52 fseek(file, 0, SEEK_END);

53 long fileSize = ftell(file);

54 rewind(file);

55 programBuffers[i] = (char*) malloc(fileSize * sizeof(char));

56 fread(programBuffers[i], sizeof(char), fileSize, file);

57 fclose(file);

58 program_size[i] = fileSize;

59 }

60

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 106

61

62 //loading & building program

63 program = clCreateProgramWithSource(context, num_files, (const char**)

programBuffers, program_size, &err);

64 err = clBuildProgram(program, num_devices, devices, build_command, NULL, NULL);

65 if (err < 0)

66 ... //print error log

67

68 for (int i = 0; i < num_files; i++)

69 free(filesNames[i]);

70 free(filesNames);

71 free(build_command);

72

73 cl_command_queue queue = clCreateCommandQueue(context, devices[0], (

cl_command_queue_properties)NULL, &err);

74

75 cl_kernel kernel_one = clCreateKernel(*program, KERNEL_ONE, &err);

76

77 cl_mem bufferArg1 = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR

, sizeof(cl_double), &argOne, &err);

78 cl_mem bufferArg2 = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR

, sizeof(cl_double), &argTwo, &err);

79 clSetKernelArg(kernel_one, 0 , sizeof(cl_mem), &bufferArg1);

80 clSetKernelArg(kernel_one, 1 , sizeof(cl_mem), &bufferArg2);

81

82 //missing code

83 //...

Listing 4.7 shows a typical OpenCL source code needed in order to allow
kernels to run on the device. Without entering in details, it can be seen that
it is necessary to create a cl context, which is used by the OpenCL runtime
for managing objects like programs, kernels and command queues. Moreover,
it is necessary to load kernels code from files and bind them to a cl program.
Therefore, the program is built for the specified device and a command queue
created. Furthermore, a cl kernel object is defined and bound to the right
kernel by means of its function name, which is defined in the kernel code. In
most cases, a kernel need some arguments either for input (write) and output
(read); in these situations it is necessary to bind the objects that must be
passed to the kernel to cl mem objects (generally buffers). Eventually, a
buffer is used as kernel argument by means of clSetKernelArg.

The set of such operations can be heavily boring for the developer who,
however, can still take advantage of using OpenCAL inspite of OpenCL in
order to reduce code complexity in the case of Cellular Automata develop-
ment.

Listing 4.8: Example of OpenCL kernel load using OpenCAL

1 //missing code

2 //...

3

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 107

4 struct CALModel2D* model;

5 CALParameterr argOne, argTwo;

6 .

7 . (init model)

8 .

9 CALCLcontext context = calclcreateContext(&device, 1);

10 CALCLprogram program = calclLoadProgramLib2D(context, device, kernelSrc, kernelInc);

11 CALCLToolkit2D * toolkit = calclCreateToolkit2D(model, context, program, device,

OPTIMIZATION);

12 CALCLkernel kernel_one = calclGetKernelFromProgram(&program, KERNEL_ONE);

13

14 CALCLmem * buffersKernelOne = (CALCLmem *) malloc(sizeof(CALCLmem) * 2);

15 CALCLmem bufferArg1 = calclCreateBuffer(context, &argOne, sizeof(CALParameterr));

16 CALCLmem bufferArg2 = calclCreateBuffer(context, &argTwo, sizeof(CALParameterr));

17 buffersKernelOne[0] = bufferArg1;

18 buffersKernelOne[1] = bufferArg2;

19 calclSetCALKernelArgs2D(&kernel_one, buffersKernelOne, 2);

20

21 calclAddElementaryProcessKernel2D(toolkit, model, &kernel_one);

22

23 //missing code

24 //...

In order to show the impact of the new Cellular Automata library here
presented on code length and quality, listing 4.8 shows an OpenCAL-based
application that is equivalent to that shown in listing 4.7. As it can be seen,
the code is significantly more compact (ten lines of code in spite of more than
fifty) and readable. One of the main improvements consists in files loading
and kernels building, which are now quite transparent to developer thanks to
the the adoption of the calclLoadProgramLib2D OpenCAL function. More-
over, in listing 4.8 the OpenCAL function calclCreateToolkit2D allows to
create all the needed structures and buffers.

4.2.2 A simple OpenCAL parallel example of applica-
tion: The Game of Life

In this section, an example of OpenCAL parallel implementation of a simple
cellular automaton is presented by considering the well known Conway’s
Game of Life, already discussed in this Chapter.

Listing 4.9: Example of OpenCAL usage

1 //missing code

2 //...

3 int main()

4 {

5 / ************ OPENCL INIT ******** /

6 CALOpenCL * calOpenCL = calclCreateCALOpenCL();

7 calclInitializePlatforms(calOpenCL);

8 calclInitializeDevices(calOpenCL);

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 108

9

10 // get the first device of the first platform

11 cl_device_id device = calOpenCL->devices[0][0];

12

13 cl_context context = calclcreateContext(1, &device);

14 cl_program program = calclLoadProgramLib(context, device,KERNEL_SRC, NULL);

15

16 / ************ OPENCAL MODEL CREATION AND INIT ******** /

17 CALModel2D * model = calCADef2D(ROWS, COLS, CAL_MOORE_NEIGHBORHOOD_2D,

CAL_SPACE_TOROIDAL, CAL_NO_OPT);

18

19 // Global CALSubstate2Di pointer used in host-side function

20 CALSubstate2Di * lifeSubstate = calAddSubstate2Di(model);

21 calInitSubstate2Di(model,lifeSubstate,0);

22 calInit2Di(model, lifeSubstate, 0, 2, 1);

23 calInit2Di(model, lifeSubstate, 1, 0, 1);

24 calInit2Di(model, lifeSubstate, 1, 2, 1);

25 calInit2Di(model, lifeSubstate, 2, 1, 1);

26 calInit2Di(model, lifeSubstate, 2, 2, 1);

27

28 / ************ KERNEL INIT AND RUN ******** /

29 CALCLToolkit2D * toolkit = calclCreateToolkit2D();

30 calclInitBuffers2D(toolkit, Model, context, program, CALCL_NO_OPT);

31 cl_kernel elementaryProcess = calclGetKernelFromProgram(program,

TRANSITION_FUNCTION_KERNEL);

32 calclAddElementaryProcessKernel2D(elementaryProcess, toolkit);

33 cl_command_queue queue = calclCreateCommandQueue(context, device);

34 calclRun2D(toolkit, model, queue, STEPS);

35

36 / ************ FINALIZATION ******** /

37 calSaveSubstate2Di(model, lifeSubstate, SAVE_PATH);

38 calclFinalizeCALOpencl(calOpenCL);

39 calclFinalizeToolkit(toolkit);

40 calFinalize2D(model);

41

42 return 0;

43 }

The host-side OpenCAL parallel implementation of the Game of Life is
shown in listing 4.9. The first instructions initialize the CALOpenCL’s struc-
ture, where all platforms and devices installed in the running machine are
stored. Subsequently, the device is chosen and the OpenCL context and pro-
gram are registered. The calclLoadProgramLib OpenCAL function takes in
input the kernel’s directory path. Then, as in the sequential version, the CA
model is defined and a substate added. All the structures necessary for the
data-transfer between host and device are created and initialized by means
of the calclCreateToolkit2D function. Eventually, all the kernel transfer
buffers are prepared by means of the function calclInitBuffers2D.

Similarly to the sequential version, illustrated and discussed in section
4.1.1, only one elementary process is needed in order to define the finite au-
tomaton transition function. The elementary process is registered by means
of the OpenCAL calclAddElementaryProcessKernel2D function. In case
more than one elementary process is needed, their execution order is defined

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 109

by the order of registration. After the registration of the elementary process,
the OpenCL command queue is created and the simulation executed for a
total of STEPS iterations by means of the calclRun2D OpenCAL function.
Eventually, the host-side source code ends with self-explanatory finalization
functions.

Listing 4.10: Definition of the Game Of Life transition function using the
OpenCAL library and OpenCL.

1 __kernel void transitionFunction(MODEL_DEFINITION2D) {

2

3 initThreads();

4

5 int i = getX();

6 int j = getY();

7

8 int sum = 0, n;

9

10 for (n = 1; n < get_neighborhoods_size(); n++)

11 sum += calGetX2Di(MODEL2D, i, j, n, 0);

12

13 if ((sum == 3) || (sum == 2 && calGet2Di(MODEL2D, i, j, 0) == 1))

14 calSet2Di(MODEL2D, 1, i, j, 0);

15 else

16 calSet2Di(MODEL2D, 0, i, j, 0);

17 }

As regards the device-side code of the OpenCAL implementation of the
Game of Life, the transition function is specified in a separate OpenCL kernel
file, shown in listing 4.10. Note that the transitionFunction kernel takes
MODEL DEFINITION2D as argument. This is a name defined in OpenCAL by
means of the #define directive of the C pre-compiler, corresponding to a
comma-separated list of couples type-variable which defines the link between
the CA model and the kernel. Most of these data are those defined by the
calclCreateToolkit2D initialization function, shown in listing 4.8. Being
this data the same for each cellular automaton, the MODEL DEFINITION2D

can be used for considerably simplifying the specification of the kernels’ pa-
rameters. This code, as previously reported, is executed in parallel by each
thread of the device. In this version of OpenCAL, each thread refers to a
single cell. Accordingly, the statement initThreads verifies that a thread is
defined for each cell of the cellular automaton, while the getX() and getY()

macros return the global identifiers of the running thread. Finally, the tran-
sition function is specified by using OpenCAL functions, like calGetX2Di or
calSet2Di.

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 110

4.2.3 A more complex OpenCAL parallel example of
application: SCIDDICA-T

In this section, a parallel OpenCAL implementation of the SCIDDICA-T cel-
lular automaton is presented. Similarly to the case of the sequential version,
shown in section 4.1.2, source code is illustrated and commented. Specifi-
cally, as regards the host-side, the application is subdivided in three source
files, while device-side a single file is used for the kernels implementation.

Listing 4.11: An OpenCAL parallel implementation of the SCIDDICA-T CA
debris flow model: sciddicaT.h

1 //missing code

2 //...

3

4 #define KERNEL_SRC ROOT_DATA_DIR"/kernel/source/"

5 #define KERNEL_INC ROOT_DATA_DIR"/kernel/include/"

6

7 struct SciddicaTMain

8 {

9 struct CALModel2D* M;

10 struct sciddicaTSubstates Q;

11 struct sciddicaTParameters P;

12 };

13

14 void explicitInit(struct SciddicaTMain *);

15

16 //missing code

17 //...

The sciddicaT.h header file is quite similar to that of the sequential
version of SCIDDICA-T, shown in listing 4.2. The only differences are evi-
denced in listing 4.11, where the definitions of kernels paths and an explicit
initialization function were added. Moreover, the SciddicaTMain support
structure was defined in order to have references to the CA model, substates
and parameters.

Listing 4.12: An OpenCAL parallel implementation of the SCIDDICA-T CA
debris flow model: sciddicaT.c parallel additions.

1 //missing code

2 //...

3

4 //--

5 // sciddicaT explicit CADef function

6 //--

7

8 void explicitInit(struct SciddicaTMain* s)

9 {

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 111

10 //cadef and rundef

11 s->M = calCADef2D (ROWS, COLS, CAL_VON_NEUMANN_NEIGHBORHOOD_2D,

CAL_SPACE_TOROIDAL, CAL_OPT_ACTIVE_CELLS);

12

13 //add substates

14 s->Q.z = calAddSubstate2Dr(s->M);

15 s->Q.h = calAddSubstate2Dr(s->M);

16 s->Q.f[0] = calAddSubstate2Dr(s->M);

17 s->Q.f[1] = calAddSubstate2Dr(s->M);

18 s->Q.f[2] = calAddSubstate2Dr(s->M);

19 s->Q.f[3] = calAddSubstate2Dr(s->M);

20

21

22 /****** Only for sequential *******/

23 calAddElementaryProcess2D(s->M, sciddicaT_flows_computation);

24 calAddElementaryProcess2D(s->M, sciddicaT_width_update);

25 calAddElementaryProcess2D(s->M, sciddicaT_remove_inactive_cells);

26

27

28 //cadef and rundef

29 struct CALRun2D* sciddicaTsimulation2 = calRunDef2D(s->M, 1, CAL_RUN_LOOP,

CAL_UPDATE_IMPLICIT);

30 //simulation run setup

31 calRunAddInitFunc2D(sciddicaTsimulation2, sciddicaTSimulationInit);

32 calRunAddSteeringFunc2D(sciddicaTsimulation2, sciddicaTSteering);

33 calRunAddStopConditionFunc2D(sciddicaTsimulation2,

sciddicaTSimulationStopCondition);

34 /***********************************/

35

36

37 calLoadSubstate2Dr(s->M, s->Q.z, DEM_PATH);

38 calLoadSubstate2Dr(s->M, s->Q.h, SOURCE_PATH);

39

40 CALreal z, h;

41 CALint i, j;

42

43 //initializing substates to 0

44 calInitSubstate2Dr(s->M, s->Q.f[0], 0);

45 calInitSubstate2Dr(s->M, s->Q.f[1], 0);

46 calInitSubstate2Dr(s->M, s->Q.f[2], 0);

47 calInitSubstate2Dr(s->M, s->Q.f[3], 0);

48

49 //sciddicaT parameters setting

50 s->P.r = P_R;

51 s->P.epsilon = P_EPSILON;

52

53 //sciddicaT source initialization

54 for (i=0; i<s->M->rows; i++)

55 for (j=0; j<s->M->columns; j++)

56 {

57 h = calGet2Dr(s->M, s->Q.h, i, j);

58

59 if (h > 0.0) {

60 z = calGet2Dr(s->M, s->Q.z, i, j);

61 calSet2Dr(s->M, s->Q.z, i, j, z-h);

62 #ifdef ACTIVE_CELLS

63 //adds the cell (i, j) to the set of active ones

64 calAddActiveCell2D(s->M, i, j);

65 calUpdateActiveCells2D(s->M);

66 #endif

67 }

68 }

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 112

69

70 calUpdate2D(s->M);

71 }

The initialization function is shown in listing 4.12 and plays the role of the
sciddicaTCADef and sciddicaTSimulationInit functions of the sequential
version, shown in listing 4.3. In fact, it defines the CA model and registers
substates and elementary processes. Moreover it defines simulation object
and the related callback functions. Eventually, it manages data input (the
CA configuration), sets CA parameters and performs the initialization of the
debris flow source. The remaining part of the file is the same of that of the
sequential version, and therefore is omitted.

Listing 4.13: An OpenCAL parallel implementation of the SCIDDICA-T CA
debris flow model: The source file kernel user.c

1 #include <cal2D.h>

2

3 #define Z 0

4 #define H 1

5 #define NUMBER_OF_OUTFLOWS 4

6

7 __kernel void sciddicaT_flows_computation(MODEL_DEFINITION2D, __global CALParameterr

* epsilon, __global CALParameterr * r) {

8 initThreads2D();

9 __global CALbyte * activeCellsFlags = get_active_cells_flags();

10 CALint cols_ = get_columns();

11

12 int i = getX();

13 int j = getY();

14

15 if (calGetBufferElement2D(activeCellsFlags, cols_, i, j) == CAL_FALSE)

16 return;

17

18 CALbyte eliminated_cells[5] = { CAL_FALSE, CAL_FALSE, CAL_FALSE, CAL_FALSE,

CAL_FALSE };

19 CALbyte again;

20 CALint cells_count;

21 CALreal average;

22 CALreal m;

23 CALreal u[5];

24 CALint n;

25 CALreal z, h;

26 CALint sizeOfX_ = get_neighborhoods_size();

27 CALParameterr eps = *epsilon;

28

29 if (calGet2Dr(MODEL2D, i, j, H) <= eps)

30 return;

31 m = calGet2Dr(MODEL2D, i, j, H) - eps;

32 u[0] = calGet2Dr(MODEL2D , i, j, Z) + eps;

33 for (n = 1; n < sizeOfX_; n++) {

34 z = calGetX2Dr(MODEL2D, i, j, n,Z);

35 h = calGetX2Dr(MODEL2D , i, j, n, H);

36 u[n] = z + h;

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 113

37 }

38 do {

39 again = CAL_FALSE;

40 average = m;

41 cells_count = 0;

42 for (n = 0; n < sizeOfX_; n++)

43 if (!eliminated_cells[n]) {

44 average += u[n];

45 cells_count++;

46 }

47 if (cells_count != 0)

48 average /= cells_count;

49 for (n = 0; n < sizeOfX_; n++)

50 if ((average <= u[n]) && (!eliminated_cells[n])) {

51 eliminated_cells[n] = CAL_TRUE;

52 again = CAL_TRUE;

53 }

54 } while (again);

55 for (n = 1; n < sizeOfX_; n++) {

56 if (eliminated_cells[n])

57 calSet2Dr(MODEL2D , 0.0, i, j, (n - 1)+2);

58 else {

59 calSet2Dr(MODEL2D , (average - u[n]) * (*r), i, j, (n - 1)+2);

60 calAddActiveCellX2D(MODEL2D,i,j,n);

61 }

62 }

63 }

64

65 __kernel void sciddicaT_width_update(MODEL_DEFINITION2D) {

66 initThreads2D();

67 __global CALbyte * activeCellsFlags = get_active_cells_flags();

68 CALint cols_ = get_columns();

69

70 int i = getX();

71 int j = getY();

72

73 if (calGetBufferElement2D(activeCellsFlags, cols_, i, j) == CAL_FALSE)

74 return;

75

76 CALreal h_next;

77 CALint n;

78 h_next = calGet2Dr(MODEL2D, i, j, H);

79

80 for (n = 1; n < get_neighborhoods_size(); n++) {

81 h_next += (calGetX2Dr(MODEL2D, i, j, n, (NUMBER_OF_OUTFLOWS - n)+2) -

calGet2Dr(MODEL2D, i, j, (n-1) +2));

82 }

83 calSet2Dr(MODEL2D, h_next, i, j, H);

84 }

85

86 __kernel void sciddicaTSteering(MODEL_DEFINITION2D) {

87 initThreads2D();

88 __global CALbyte * activeCellsFlags = get_active_cells_flags();

89 CALint cols_ = get_columns();

90 CALint rows_ = get_rows();

91

92 int i = getX();

93 int j = getY();

94

95 if (calGetBufferElement2D(activeCellsFlags, cols_, i, j) == CAL_FALSE)

96 return;

97

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 114

98 int dim = cols_ * rows_;

99 int s;

100 for (s = 2; s < get_real_substates_num(); ++s)

101 calInitSubstate2Dr(MODEL2D, 0, i, j, s);

102

103 }

As for the Game of Life (see listing 4.10), the device-side of the SCIDDICA-
T application is specified in a separate OpenCL kernel file, shown in listing
4.13. In this file, the two elementary processes and the steering function,
already present in the sequential version (listing 4.3), are defined.

As for the case of Game of Life, kernels take MODEL DEFINITION2D as
first argument, which allows for a great simplification of the function pro-
totype (see section 4.2.2 for further details). Thanks to the adoption of the
OpenCAL functions, kernels’ source code is almost identical to that of the
sequential version. However, kernels are executed in parallel. In particu-
lar, the one thread per cell strategy has been adopted. Accordingly, the
statement initThreads verifies that a thread is defined for each cell of the
cellular automaton, while the getX() and getY() macros return the global
identifications of the running thread.

Listing 4.14: An OpenCAL parallel implementation of the SCIDDICA-T CA
debris flow model: sciddicaTmain.c parallel additions.

1 //missing code

2 //...

3

4 int main(int argc, char** argv) {

5

6 int steps = 4000;

7 char * outputPath = "./result";

8 int platformNum = 0;

9 int deviceNum = 0;

10

11 //---------OPENCL INIT-------/

12

13 CALOpenCL * calOpenCL = calclCreateCALOpenCL();

14 calclInitializePlatforms(calOpenCL);

15 calclInitializeDevices(calOpenCL);

16

17 CALCLdevice device = calclGetDevice(calOpenCL, platformNum, deviceNum);

18 CALCLcontext context = calclcreateContext(&device, 1);

19 CALCLprogram program = calclLoadProgramLib2D(context, device, KERNEL_SRC,

KERNEL_INC);

20

21 //--Parallel CA DEF & INIT---/

22

23 sciddicaTCADef();

24 sciddicaTLoadConfig();

25 sciddicaTComputeExtremes(sciddicaT, Q.z, &z_min, &z_Max);

26 sciddicaTsimulation->init(sciddicaT);

27 calUpdate2D(sciddicaT);

4.2. A BRIEF DESCRIPTION OF THE OPENCAL PARALLEL OPENCL VERSION 115

28

29 CALCLToolkit2D * sciddicaToolkit = NULL;

30

31

32 sciddicaToolkit = calclCreateToolkit2D(sciddicaT, context, program, device,

CALCL_NO_OPT);

33

34

35 CALCLkernel kernel_elementary_process_one = calclGetKernelFromProgram(&

program, KER_SCIDDICA_ELEMENTARY_PROCESS_ONE);

36 CALCLkernel kernel_elementary_process_two = calclGetKernelFromProgram(&

program, KER_SCIDDICA_ELEMENTARY_PROCESS_TWO);

37 CALCLkernel kernel_steering = calclGetKernelFromProgram(&program,

KER_SCIDDICA_STEERING);

38

39 CALCLmem * buffersKernelOne = (CALCLmem *) malloc(sizeof(CALCLmem) * 2);

40 CALCLmem bufferEpsilonParameter = calclCreateBuffer(context, &P.epsilon,

sizeof(CALParameterr));

41 CALCLmem bufferRParameter = calclCreateBuffer(context, &P.r, sizeof(

CALParameterr));

42 buffersKernelOne[0] = bufferEpsilonParameter;

43 buffersKernelOne[1] = bufferRParameter;

44 calclSetCALKernelArgs2D(&kernel_elementary_process_one, buffersKernelOne,2);

45

46 calclAddElementaryProcessKernel2D(sciddicaToolkit, sciddicaT, &

kernel_elementary_process_one);

47 calclAddElementaryProcessKernel2D(sciddicaToolkit, sciddicaT, &

kernel_elementary_process_two);

48

49 calclSetSteeringKernel2D(sciddicaToolkit, sciddicaT, &kernel_steering);

50

51 calclRun2D(sciddicaToolkit, sciddicaT, steps);

52

53 sciddicaTSaveConfig(outputPath);

54 sciddicaTExit();

55 calclFinalizeCALOpencl(calOpenCL);

56 calclFinalizeToolkit2D(sciddicaToolkit);

57

58 return 0;

59 }

In listing 4.14 the host-side main file of the SCIDDICA-T implementa-
tion is shown. Most of this code is equal to that of the examples presented
in section 4.2.1, the only difference being that platform and device are cho-
sen by using indexes (cf. platformNum and deviceNum at line 17). The
OpenCL context and program definition, together with source file loading,
model initialization, kernels and buffers declaration, are really similar to
that in listings 4.6 and 4.8. Note that only the bufferEpsilonParameter

and the bufferRParameter are used as kernels arguments, while nor the
MODEL DEFINITION2D name, neither the corresponding parameters, appear
explicitly in the source code. As already discussed, the use of the name
MODEL DEFINITION2D allows for a considerable reduction of complexity ker-
nels parameters, by also making source code more readable. Eventually,
kernels and steering function are registered and the simulation executed by

4.3. OPENCAL PARALLEL COMPUTATIONAL PERFORMANCE 116

means of the calclRun2D OpenCAL function. Finally, the CA configuration
is saved and finalizing functions called.

4.3 OpenCAL parallel computational perfor-

mance

In order to evaluate the computational performance of the OpenCL par-
allel implementation of OpenCAL, various experiments were carried out by
considering two different GPUs and a 4-core CPU system. A nVidia Tesla
K20c, having 2496 cuda cores and a total of 5 GB of GDDR5 RAM, and an
AMD SAPPHIRE VAPOR-X R9 280X, having 2048 stream processors and
a total of 3 GB of GDDR5 RAM, were used as GPUs accelerators, while a
2.83 GHz dual quad core Xeon E5440 system having 8 GB of RAM chosen as
CPU accelerator. This choice was suggested by the fact that a workstation
equipped with the above mentioned hardware was available at the time ex-
periments were executed. Table 4.1 lists details of the adopted computational
devices.

Device Specs Intel Xeon E5440 AMD R9 280X nVidia Tesla K20c

Clock 2.83 GHz 1.07 GHz 0.706 GHz
Cores 4 2048 2496
L1 Cache 128 KB 16 KB 16 KB
L2 Cache 12 MB 2048 KB 1536 KB
Memory Size 8 GB 3.072 GB 5.120 GB
Memory Clock - 6200 MHz 5200 MHz
Memory Type - GDDR5 GDDR5
Memory Bus - 384 bit 320 bit
Bandwidth - 298 GB/s 208 GB/s
Peak Performance - 3,891 GFLOPS 3,524 GFLOPS

Table 4.1: Characteristics of the accelerators used for evaluating the com-
putational performance of the SCIDDICA-T cellular automaton implemen-
tation in OpenCAL.

The parallel implementation of SCIDDICA-T, presented in the previous
section, was chosen as reference test case and the simulation of the Tessina
(Italy) landslide (shown in Figure 4.1) considered for evaluating the differ-
ent performances among serial and parallel executions. The simulation con-

4.3. OPENCAL PARALLEL COMPUTATIONAL PERFORMANCE 117

sisted in a total of 15,000 computational steps, while the dimension of the
bi-dimensional cellular space was 610 rows times 496 columns. Serial code
was executed on a single core of the E5440 Xeon processor, while different
parallel executions were launched on both the dual quad core Xeon CPU and
the nVidia and AMD GPUs. Figures 4.2 and 4.3 summarize the obtained
results.

0 5000 10000 15000
0

100

200

300

400

500

600

700

800

900

Iterations

S
e
c
o
n
d
s

Sequential Time

K20 parallel time

Xeon E5440 parallel time

AMD R9 parallel time

Figure 4.2: Computational performance in terms of elapsed time of the
SCIDDICA-T simulation of the Tessina (Italy) landslide.

As reported, a sufficient improvement is obtained in the case of the par-
allel execution on the CPU based system, which corresponds to about a
speedup of 2 (instead of 4) with respect the serial execution on the single
core. This is probably due to the overhead coming with the adopted strategy
of one thread per cell, which leads to total of 302,560 thread to be processed
by 4 cores at each one of the 15,000 computational steps needed to perform
the simulation. At the contrary, considerable speedup is obtained by consid-
ering the two GPUs. In fact a speedup of about 30 was obtained for the case
of the AMD R9 280X, while a speedup of about 40 for the case of the nVidia

4.3. OPENCAL PARALLEL COMPUTATIONAL PERFORMANCE 118

Tesla K20c. It seems evident that the high number of threads used greatly
favors the computation on the considered GPUs.

0 5000 10000 15000
0

5

10

15

20

25

30

35

40

45

Iterations

S
p
e
e
d
U

p

K20

Xeon E5440

AMD R9

Figure 4.3: Computational performance in terms of speedup of the
SCIDDICA-T simulation of the Tessina (Italy) landslide.

As regards the comparison of the adopted GPUs, results of the AMD de-
vice overcame the nVidia K20c for about the first 1,000 computational steps,
while the nVidia device was faster for all the remaining computational steps.
This behavior can be explained by considering the characteristics of the two
devices, shown in Table 4.1. In fact, the AMD R9 280X GPU is basically
a graphic card used by videogamers, with higher GPU and memory clock
and a faster bus. At the contrary, nVidia Tesla K20c has different target:
it is a high performance (indeed more expensive) graphic card, specifically
designed for high performance computing. As a confirm, it has a greater
memory size and more processing units (CUDA cores). Therefore, it is not
surprisingly that the AMD GPU was able to go faster in the first computa-
tional steps, thanks to its higher single processing unit performance, while
the nVidia K20c was able to overcome the performance of the first GPU

4.3. OPENCAL PARALLEL COMPUTATIONAL PERFORMANCE 119

when the computational request grew; this is, indeed, exactly the case of the
considered simulation, where the number of active cells (i.e. of those cells
which are really involved in the computation, having a non null amount of
landslide debris to be distributed to its neighbors) grew step by step.

Experiments results show significant performance improvements of the
considered cellular automaton with respect the specific case of study, confirm-
ing that GPUs can be fruitfully employed for speeding up Cellular Automata,
by also representing a cheaper alternative to classic high performance hard-
ware solutions. Moreover, GPUs are generally more ecologic as they require
lower power energy with respect to classic high performance computers (e.g.
clusters).

As concerns OpenCAL, it allowed for a easy and straightforward paral-
lelization of the considered cellular automata, by also allowing to have very
similar serial and parallel codes. Obviously, ad hoc and explicit OpenCL im-
plementation can overcome OpenCAL performance, so that programmers has
to evaluate the tradeoff of the advantages of having a considerably simplified
code development is greater than the possible lack of performance. Never-
theless, further analysis should be performed in order better understand this
issue.

5
Conclusions

The work presented in this thesis has concerned the application of Web 2.0
and High-Performance Computing (HPC) technologies for the development
of new scientific applications for the simulation of complex macroscopic nat-
ural phenomena. Specifically, I have developed three software for the simu-
lation of debris flows, lava flows, and wildfire evolution, respectively.

The adopted numerical models are based on the Cellular Automata (CA)
computational paradigm and are already known to the Scientific Community.
Specifically, I considered the CA model SCIDDICA-k1 for simulating debris
flows, the SCIARA-fv3 CA for simulating lava flows, and ABBAMPAU for
simulating wildfire, respectively. The numerical models are based on the
empirical method proposed by Di Gregorio and Serra for the simulation of
complex macroscopic phenomena and can be considered reliable as they were
already successfully applied to the simulation of many real cases of study.

For each of the above cited numerical models, I have developed a novel
Web-based rich Graphical User Interface (GUI), which allows to both interact
with the underlying numerical model and visualize results in real time, thanks
to the adoption of the WebGL application program interface for Web-based
3D interactive computer graphics. Furthermore, with the aim of improving
the performance of the computational models, that is often a key-factor in
Scientific Computing, I contributed to the parallelization of OpenCAL, a new
software library written in the C programming language and developed at
the Department of Mathematics and Computer Science of the University of
Calabria (Italy) for the implementation of Cellular Automata applications.

120

121

At this purpose, the Open Computing Language (OpenCL) was adopted, one
of the most important frameworks for writing programs that can be executed
across heterogeneous platforms, such as central processing units (CPUs) and
graphics processing units (GPUs). OpenCAL allows to implement CA mod-
els in a straightforward manner and to execute the simulations on GPUs
transparently to the programmer.

By combining the above cited technologies, it was possible to obtain soft-
ware characterized by many advantages with respect to the classical desktop-
based counterpart. For instance, the developed new applications are com-
pletely cross-platform and do neither need an installation nor software up-
date process. Starting from Swii, a first and preliminary web application
for the simulation of debris flows, the new Swii2 application has been de-
veloped by introducing the new landslide CA model SCIDDICA-k1 and, for
the first time, WebGL as client-side 3D rendering engine in the specific sci-
entific context. Subsequently, SciaraWii was developed for the simulation
of lava flows by means of the CA lava flow model SCIARA-fv3. Significant
performance improvements of the visualization system, originally developed
for Swii2, were achieved thanks to the introduction of the decimation tech-
nique. In fact, it was possible to visualize and interact in real time with
huge datasets, without the need to resort to expensive hardware. It was also
possible to easily display results on mobile devices such as smartphones and
tablets. Eventually, Awii was developed for the simulation of wildfires evolu-
tion by means of the CA model ABBAMPAU. In Awii, further developments
concerned the server side of the software, where a sharp separation between
the computational model and the rest of the application was achieved. This
contributed to improve the overall efficiency of the system and allowed to
adopt it in advanced applications where the simultaneous execution of mul-
tiple simulations are required. In order to stress the system’s reliability, the
web applications were tested by considering a PC as Web server and a maxi-
mum of ten other PCs as remote clients, accessing simultaneously the former.
Performances results were more than satisfactory, and no system delays ob-
served. The potentialities of the Web 2.0 have therefore been confirmed.

However, in the case of more heavy execution requests, a sensible server
slow down could be observed. Furthermore, a possible degradation could
also arise in the case the execution of the considered computational models
is performed on greater datasets or for longer physical duration (for instance
when a simulation of a real phenomenon lasted years is required). In order
to prevent possible slow down situations, the numerical simulation could be
executed in parallel on more processing elements, for instance on GPUs. At
this purpose, it would be possible to adopt OpenCAL. However, at the cur-
rent stage, OpenCAL has been only used to parallelize test models, such as

122

a simplified landslide CA simulator, named SCIDDICA-T, and preliminary
tests of performance have been executed. Such tests evidenced considerable
speedup on GPUs with respect serial execution on CPU on different graphic
cards, such as the AMD SAPPHIRE VAPOR-X R9 280X with 3GB GDDR5,
2048 Stream Processor units and a 1070 MHz GPU clock, and the nVidia
Tesla K20c with 5GB GDDR5, 2496 CUDA cores and a 706 MHz GPU
Clock, respectively. Nevertheless, tests have regarded OpenCAL executions
by considering an Intel Xeon processor model E5440 at 2.83GHz and 12MB
of second level cache as an OpenCL device (i.e., considering it as a parallel
hardware). A speedup slightly over 2 was also achieved by the parallel exe-
cution on the CPU by using 4 computational cores. This result is probably
due to the fact that the parallel algorithm allocates one thread per each cell
of the cellular space, that in the considered case is composed by more than
300.000 cells, by producing a great overhead in case of only 4 cores are used
for they elaboration. However, a speedup of 30 was obtained by considering
the execution of SCIDDICA-T on the AMD GPU, while even of 40 on the
Tesla K20c GPU, with respect to the serial execution on a single core of the
Xeon processor.

The research presented and discussed in this work cannot certainly be
considered definitive, even if the obtained results can be considered satisfac-
tory. Many improvements and additional features can be added to the devel-
oped applications and the computational models considered reimplemented
by using OpenCAL in order to have the possibility to speed up simulations
on GPUs. Moreover, the work related to the development of OpenCAL can
be extended and new parallel versions in OpenMP or MPI, implemented in
order to exploit multicore processors and cluster of PCs.

Acknowledgments

First of all I would like to express my gratitude to my supervisors Dr. Do-
nato D’Ambrosio and Dr. William Spataro for having given me guid-
ance, encouragement and motivation throughout my research path. I also
wish to express my sincere appreciation to Giuseppe Filippone for his ad-
vice and inspiration for this work. A special thank goes to my co-workers
Davide Spataro, Alessio De Rango, Maurizio Macŕı (especially for
having explained what the steering is). I would like to thank my friends
which have always been close to me in difficult moments. Thanks to the
Dream Team and all the boys of football matches. Thanks to my fam-
ily for their support and love. Finally, a special thanks to Francesca, for
supporting me and for having been close to me all times.

123

Bibliography

[1] M.E. Alexander. Estimating the length-to-breadth ratio of elliptical
forest fire patterns. In Proc. 8th Conf. Fire and Forest Meteorology,
pages 287–304, 1985.

[2] H.E. Anderson. Predicting wind-driven wildland fire size and shape.
Technical Report INT-305, U.S Department of Agriculture, Forest Ser-
vice, 1983.

[3] P.L. Andrews. BEHAVE: fire behavior prediction and fuel modeling
system - burn subsystem, part 1. Technical Report INT-194, U.S De-
partment of Agriculture, Forest Service, 1986.

[4] A. Armanini. On the dynamic impact of debris flows. In A. Armanini
and F. Michiue, editors, Recent development on debris, volume 64 of
LNES, pages 208–226. Springer Verlag, Berlin, 1997.

[5] A. Armanini and L. Fraccarollo. Critical conditions for debris flows. In
C.I. Chen, editor, Debris-flow hazard mitigation: mechanics, prediction,
and assessment, pages 434–443, 1997.

[6] Maria Vittoria Avolio, Gino Mirocle Crisci, Salvatore Di Gregorio,
Rocco Rongo, William Spataro, and Donato D’Ambrosio. Pyroclastic
flows modelling using Cellular Automata. Computers & Geosciences,
32:897–911, 2006.

[7] Maria Vittoria Avolio, Salvatore Di Gregorio, Valeria Lupiano, and
Giuseppe A. Trunfio. Simulation of wildfire spread using cellular au-
tomata with randomized local sources. In ACRI 2012, volume 7495 of
LNCS, pages 279–288. Springer Berlin / Heidelberg, 2012.

[8] M.V. Avolio, S. DiGregorio, F. Mantovani, A. Pasuto, R. Rongo, S. Sil-
vano, and W. Spataro. Simulation of the 1992 Tessina landslide by a cel-
lular automata model and future hazard scenarios. International Journal
of Applied Earth Observation and Geoinformation, 2:41–50, 2000.

124

BIBLIOGRAPHY 125

[9] Conway J. H Berlekamp, E. R. What is life? Winning Ways for Your
Mathematical Plays, Games in Particular, 2, 1982.

[10] Ivan Blecic, Arnaldo Cecchini, and Giuseppe A. Trunfio. A generalized
rapid development environment for cellular automata based simulations.
In Cellular Automata, volume 3305 of LNCS, pages 851–860. Springer
Berlin Heidelberg, 2004.

[11] Ivan Blecic, Arnaldo Cecchini, and Giuseppe A. Trunfio. A general-
purpose geosimulation infrastructure for spatial decision support. Trans-
actions on Computational Science, 6:200–218, 2009.

[12] Claudia Roberta Calidonna, Adele Naddeo, Giuseppe A. Trunfio, and
Salvatore Di Gregorio. From classical infinite space-time ca to a hy-
brid ca model for natural sciences modeling. Applied Mathematics and
Computation, 218(16):8137–8150, 2012.

[13] J. Conway. The game of life. Scientific American, 1970.

[14] Matthew Cook. Universality in elementary cellular automata. Complex
Systems, 15(1):1–40, 2004.

[15] Gino M. Crisci, Rocco Rongo, Salvatore Di Gregorio, and William
Spataro. The simulation model SCIARA: the 1991 and 2001 lava
flows at Mount Etna. Journal of Volcanology and Geothermal Research,
132(23):253 – 267, 2004.

[16] D. D’Ambrosio, G. Filippone, R. Rongo, W. Spataro, and G.A. Trun-
fio. Cellular automata and GPGPU: an application to lava flow model-
ing. International Journal of Grid and High Performance Computing,
4(3):30–47, 2012.

[17] Donato D’Ambrosio, William Spataro, and Giulio Iovine. Parallel ge-
netic algorithms for optimising cellular automata models of natural com-
plex phenomena: An application to debris flows. Computers & Geo-
sciences, 32(7):861–875, 2006.

[18] M. DelPrete, F.M. Guadagno, and A.B. Hawkins. Preliminary report
on the landslides of 5 May 1998, Campania, Southern Italy. Bulletin of
Engineering Geology and the Environment, 57:113–129, 1998.

[19] Salvatore Di Gregorio and Roberto Serra. An empirical method for mod-
elling and simulating some complex macroscopic phenomena by cellular
automata. Future Generation Computer Systems, 16(2-3):259–271, 1999.

BIBLIOGRAPHY 126

[20] Salvatore Di Gregorio and Roberto Serra. An empirical method for mod-
elling and simulating some complex macroscopic phenomena by cellular
automata. Future Generation Comp. Syst., 16(2-3):259–271, 1999.

[21] Salvatore Di Gregorio, Roberto Serra, and Marco Villani. Applying cel-
lular automata to complex environmental problems: The simulation of
the bioremediation of contaminated soils. Theoretical Computer Science,
217(1):131–156, 1999.

[22] G.H. Eisbacher and J.J. Clague. Destructive mass movement in high
mountains: hazard and management, chapter Geological Survey of
Canada, pages 84–16. Ottawa, Canada, 1984.

[23] Mark A. Finney. FARSITE: fire area simulator-model development and
evaluation. Technical Report RMRS-RP-4, U.S Department of Agricul-
ture, Forest Service, 2004 February 2004.

[24] I.A. French, D.H. Anderson, and E.A. Catchpole. Graphical simulation
of bushfire spread. Mathematical Computer Modelling, 13:67–71, 1990.

[25] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the
navier-stokes equation. Phys. Rev. Lett., 56(14):1505–1508, April 1986.

[26] Vichniac G. Simulating physics with cellular automata. Physica, D
10:96–115, 1984.

[27] Pat Gelsinger. Intel spring forum. 2004.

[28] Moore Gordon. Cramming more components onto integrated circuits.
Electronics, 38:114 ff., 1965.

[29] S. Di Gregorio and R. Serra. An empirical method for modelling and
simulating some complex macroscopic phenomena by cellular automata.
Fut. Gener. Comp. Sys., 16:259–271, 1999.

[30] Salvatore Di Gregorio and Roberto Serra. An empirical method for mod-
elling and simulating some complex macroscopic phenomena by cellu-
lar automata. Future Generation Computer Systems, 16(23):259 – 271,
1999.

[31] Tacy A. Hanson, R. GWT in Action. Manning Pubblications Co, 2007.

[32] Xiaolin Hu and Lewis Ntaimo. Integrated simulation and optimization
for wildfire containment. ACM Transactions on Modeling and Computer
Simulation, 19(4):1–29, 2009.

BIBLIOGRAPHY 127

[33] Andrew Ilachinski. Cellular Automata: A Discrete Universe. World
Scientific, Singapore, 2001.

[34] R.M. Iverson. The physics of debris flows. Reviews in Geophysics,
35:245–296, 1997.

[35] P. Johnston, J. Kelso, and G.J. Milne. Efficient simulation of wildfire
spread on an irregular grid. International Journal of Wildland Fire,
17:614–627, 2008.

[36] Sheng Yu Karel Culik. Undecidability of CA Classification Schemes.
1998.

[37] William J. III Kauffmann and Larry L. Smarr. Supercomputing and the
Transformation of Science. Scientific American Library, 1993.

[38] D.K. Keefer, R.C. Wilson, R.K. Mark, E.E. Brabb, W.M. Brown III,
S.D. Ellen, E.L. Harp, G.F. Wieczorek, C.S. Alger, and R.S. Zatkin.
Real-time landslide warning during heavy rainfall. Science, 238:921–
925, 1987.

[39] J.E. Kesseli. Disintegrating soil slips of the coast ranges of central cali-
fornia. Journal of Geology, 51(5):342–352, 1943.

[40] C.G. Langton. Computation at the edge of chaos. Master’s thesis,
Univeristy of Michigan, 1990.

[41] Chris G. Langton. Computation at the edge of chaos: phase transitions
and emergent computation. Physica D, 42(1-3):12–37, 1990.

[42] A. M. G. Lopes, M. G. Cruz, and D. X. Viegas. Firestation - an in-
tegrated software system for the numerical simulation of fire spread on
complex topography. Environmental Modelling and Software, 17(3):269–
285, 2002.

[43] E. Marchi and A. Rubatta. Meccanica dei fluidi. Principi e applicazioni.
UTET, Torino, 1981.

[44] R.K. Mark and S.D. Ellen. Statistical and simulation models for map-
ping debris-flow hazard. In A. Carrara and F. Guzzetti, editors, Geo-
graphical Information Systems in assessing natural hazards, pages 93–
106, 1995.

BIBLIOGRAPHY 128

[45] R.S. McAlpine, B.D. Lawson, and E. Taylor. Fire spread across a slope.
In Proceedings of the 11th Conference on Fire and Forest Meteorology
(Society of American Foresters: Bethesda, MD), pages 218–225, 1991.

[46] G. Vichniac N. Margolus, T. Toffoli. Cellular automata supercomputers
for fluid-dynamics modelling. Phys. Rev. Lett., 56:1694–1696, 1986.

[47] United Nations. Mudflows. Experience and lessons learned from the
management of major disasters. Departiment of Humanitarian Affairs,
Geneva, 1987.

[48] Nvidia. CUDA C Programming Guide. 2012.

[49] NVIDIA Corporation. CUDA C Best Practices Guide. NVIDIA Cor-
poration, 2701 San Tomas Expressway, Santa Clara 95050, USA, 5.0
edition, October 2012.

[50] Roberto Parise, Donato DAmbrosio, Giuseppe Spingola, Giuseppe Filip-
pone, Rocco Rongo, GiuseppeA. Trunfio, and William Spataro. Swii2,
a html5/webgl application for cellular automata debris flows simula-
tion. In GeorgiosCh. Sirakoulis and Stefania Bandini, editors, Cellular
Automata, volume 7495 of Lecture Notes in Computer Science, pages
444–453. Springer Berlin Heidelberg, 2012.

[51] Seung Park and James D. Iversen. Dynamics of lava flow: Thickness
growth characteristics of steady two-dimensional flow. Geophysical Re-
search Letters, 11(7):641–644, 1984.

[52] Seth H. Peterson, Marco E. Morais, Jean M. Carlson, Philip E. Denni-
son, Dar A. Roberts, Max A. Moritz, and David R. Weise. Using HFIRE
for spatial modeling of fire in shrublands. Technical Report PSW-RP-
259, U.S. Department of Agriculture, Forest Service, Pacific Southwest
Research Station, Albany, CA, 2009.

[53] Rocco Rongo, William Spataro, Donato D’Ambrosio, Maria Vittoria
Avolio, Giuseppe A. Trunfio, and Salvatore Di Gregorio. Lava flow
hazard evaluation through cellular automata and genetic algorithms: an
application to Mt Etna volcano. Fundamenta Informaticae, 87(2):247–
267, 2008.

[54] R. C. Rothermel. A mathematical model for predicting fire spread in
wildland fuels. Technical Report INT-115, U.S. Department of Agri-
culture, Forest Service, Intermountain Forest and Range Experiment
Station, Ogden, UT, 1972.

BIBLIOGRAPHY 129

[55] R. C. Rothermel. How to predict the spread and intensity of forest and
range fires. Technical Report INT-143, U.S. Department of Agriculture,
Forest Service, Intermountain Forest and Range Experiment Station,
Ogden, UT, 1983.

[56] H. Rouse. Engineering Hydraulics. John Wiley & Sons, Chichester,
1950.

[57] Barbara Chapman Rungan Xu, Sunita Chandrasekaran. An openacc
code for a c-based heat conduction code. www.openacc.com, 2012.

[58] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshes. In Proceedings of the 19th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH
1992, pages 65–70, 1992.

[59] G.Ch Sirakoulis, I Karafyllidis, and A Thanailakis. A cellular automa-
ton model for the effects of population movement and vaccination on
epidemic propagation. Ecological Modelling, 133(3):209–223, September
2000.

[60] William Spataro, Maria Vittoria Avolio, Valeria Lupiano, Giuseppe A.
Trunfio, Rocco Rongo, and Donato D’Ambrosio. The latest release of
the lava flows simulation model SCIARA: First application to Mt Etna
(Italy) and solution of the anisotropic flow direction problem on an ideal
surface. In International Conference on Computational Science, pages
17–26, 2010.

[61] Giandomenico Spezzano, Domenico Talia, Salvatore Di Gregorio, Rocco
Rongo, and William Spataro. A parallel cellular tool for interactive mod-
eling and simulation. Computing in Science and Engineering, 3(3):33–
43, 1996.

[62] S. Succi. Automi cellulari. Una nuova frontiera del calcolo scientifico.
Collana informatica domani / IBM SEMEA. Franco Angeli, 1991.

[63] T. Takahashi. Initiation and flow of various types of debris flow. In
G.F. Wieczorek and N.D. Naeser, editors, Debris-flow hazards mitiga-
tion: Mechanics, prediction, and assessment, Proceedings 2nd Interna-
tional Conference on debris-flow hazard mitigation, pages 15–25, Taipei,
Taiwan, August 2000.

[64] J.W. Thatcher. Universality in the von neumann cellular mode. A.W.
Burks (Ed.), Essays on Cellular Automata, pages 103–131, 1970.

BIBLIOGRAPHY 130

[65] Tommaso Toffoli. Cellular automata as an alternative to (rather than
an approximation of) differential equations in modeling physics. Physica
D: Nonlinear Phenomena, 10(1-2):117–127, January 1984.

[66] Tommaso Toffoli and Norman Margolus. Cellular automata machines:
a new environment for modeling. MIT Press, Cambridge, MA, USA,
1987.

[67] Paul M. Torrens and Itzhak Benenson. Geographic automata systems.
International Journal of Geographical Information Science, 19(4):385–
412, 2005.

[68] Giuseppe A. Trunfio. Predicting wildfire spreading through a hexagonal
cellular automata model. In Cellular Automata, volume 3305 of LNCS,
pages 385–394. Springer Berlin Heidelberg, 2004.

[69] J.M. Vasconcelos, B.P. Zeigler, and J. Pereira. Simulation of fire growth
in GIS using discrete event hierarchical modular models. Advances in
Remote Sensing, 4(3):54–62, 1995.

[70] John Von Neumann. Theory of Self-Reproducing Automata. University
of Illinois Press, Champaign, IL, USA, 1966.

[71] J. von Neumann (Edited and complete by A. Burks). Theory of self-
reproducing automata. University of Illinois Press, 1966.

[72] G.F. Wieczorek and N.D. Naeser, editors. Debris-flow hazards mitiga-
tion: mechanics, prediction, and assessment, Rotterdam, 2000. Proceed-
ings 2nd International Conference on Debris Flow Hazards Mitigation,
Balkema.

[73] S. Wolfram. Cellular automaton uids 1: Basics theory. Journal of Sta-
tistical Physics, 45:471–526, 1986.

[74] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews
of Modern Physics, 55(3):601–644, 1983.

[75] Stephen Wolfram. Computation theory of cellular automata. Commu-
nications in Mathematical Physics, 96(1):15–57, 1984.

[76] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002.

List of Figures

2.1 A 3D cellular automaton with toroidal cellular space. 5
2.2 Examples of cellular spaces. (a) 1-D, (b) 2-D squared cells,

(c) 2-D hexagonal cells, (d) 3-D cubic cells. 7
2.3 Examples of different kind of neighborhood with different ra-

dius values. 8
2.4 Graph representation of a DFA 10
2.5 Class 1 (a,b) and 2 (c,d) elementary cellular automata 14
2.6 Class 3 (a,b) and 4 (c,d) elementary cellular automata 15
2.7 Relation between lambda parameter and the CA behaviors-

Wolfram’s classes. 16
2.8 GOL execution example. 18
2.9 Glider in Conway’s game of life. 18
2.10 Moore’s Law and intel family CPU transistors number history. 22
2.11 Temperature CPUs . 23
2.12 Intel CPUs and Nvidia GPUs memory bandwidth chart 24
2.13 Intel CPUs and Nvidia GPUs Peak G/FLOPS chart 25
2.14 Typical graphic pipeline . 26
2.15 Cuda Software Stack . 27
2.16 Automatic Scalability . 28
2.17 Grid of thread blocks . 29
2.18 Memory architecture of a GPU 32
2.19 OpenCL heterogeneous computing. 34
2.20 Web 1.0 Interaction model. 41
2.21 Web 1.5 Interaction model. 42
2.22 Details of a “Classic” Web request. 46
2.23 Interaction between AJAX application components. 48
2.24 Server load without AJAX. 49
2.25 Server load using AJAX. 49

3.1 Moore neighborhood . 53
3.2 Chiappe di Sarno landslide . 61

131

LIST OF FIGURES 132

3.3 Pestello Storto landslide . 62
3.4 Example of Moore neighborhood and decomposition of mo-

mentum along the cellular space directions. Cells are indexes
from 0 (the central cell, in grey) to 8. Cells integer coordinates
are omitted for a better readability. 64

3.5 Cases in which the generic neighbor (cell i) is eliminated or not
eliminated by the minimization algorithm of the difference. If
the neighbor is eliminated (Case 1), the overall amount of de-
bris inside the central cell is considered as apparent (h = ha),
and can not generate an outflow. If the neighbor is not elim-
inated (Case 2 and 3), a part (Case 2) or the entire amount
of debris (Case 3) on the central cell is considered effective
(h ≥ he) and can generate outflows. Note that the slope angle
θ, considered in the critical height computation, is also shown. 68

3.6 Growth of the ellipse γ locally representing the fire front. The
symbol ρ denotes the forward spread which is incremented by
∆ρ at the i-th time step. 72

3.7 The i-th neighbouring cell intersected by the ellipse γ locally
representing the fire front. 74

3.8 The adopted extended neighbourhood N composed of 25 cells
together with an example of RLSs inside each cell. 76

3.9 The Swii2 system architecture. 78
3.10 A screenshot of Swii2 during a simulation performed by the

SCIDDICA-k1 debris flow molel. The left panel allows to
view/set both SCIDDICA-k1 and simulation parameters (e.g.
current and visualization step). 79

3.11 A screenshot of the Web user interface for SCIARA-fv3 show-
ing simulation of the 2006 Valle del Bole Etnean lava flow. On
the upper part of the application, a horizontal panel shows the
name/logo and contains the controls which permit to interact
with the simulation. A notification area is also present on the
right side of the panel. The remaining client area is subdi-
vided in two panels. The left one contains the controls which
permits to show the current simulation step, set the graphic
update interval and show/edit SCIARA-fv3 parameters. The
right one contains the graphic output of the simulation. . . . 84

LIST OF FIGURES 133

3.12 3D simulation of a fire near San Giovanni in Fiore (Italy). On
the upper part of the application, a horizontal panel shows the
name/logo and contains the controls which permit to interact
with the simulation. A notification area is also present on the
right side of the panel. The remaining client area is subdivided
in two panels. The left one contains the controls which permits
to show the current simulation step, set the graphic update
interval and set ABBAMPAU simulation computational steps.
The right one contains the graphic output of the simulation. . 85

3.13 The Awii system architecture. 86

4.1 Graphical output of the simulation of the Tessina (Italy) land-
slide by means of the SCIDDICA-T debris flow model, as im-
plemented in OpenCAL. 101

4.2 Computational performance in terms of elapsed time of the
SCIDDICA-T simulation of the Tessina (Italy) landslide. . . . 117

4.3 Computational performance in terms of speedup of the SCIDDICA-
T simulation of the Tessina (Italy) landslide. 118

List of Tables

2.1 Tabular representation of a DFM’s next-state function 9
2.2 Encoding of a transition function for a generic elementary CA.

On the right the instance 110. 12

3.1 List of parameters of SCIARA-fv3 with values considered for
the simulation of the 2006 Etnean lava flow. 65

4.1 Characteristics of the accelerators used for evaluating the com-
putational performance of the SCIDDICA-T cellular automa-
ton implementation in OpenCAL. 116

134

	Introduction
	A brief overview of Cellular Automata, GPGPU and Web 2.0
	Cellular Automata
	Informal Definition
	Formal Definition
	Homogeneous Cellular Automata
	Theories and studies
	Extension of the Cellular automata model

	GPGPU Technologies
	Why GPU computing?
	From Graphics to General Purpose Computing
	CUDA
	OpenCL
	OpenACC

	WEB 2.0
	The dawn of the Web
	The Web 2.0

	AJAX
	AJAX rich applications

	Simulation of complex macroscopic natural phenomena and Scientific Web applications
	Cellular Automata application Models
	SCIDDICA K1: a cellular automata model to simulate landslides and debris flows.
	SCIARA-fv3 - Model Formalization
	ABBAMPAU a CA for Wildfire Simulation and Risk Assessment

	Web applications
	Swii2
	SciaraWii: the SCIARA-fv3 Web User Interface
	Awii

	OpenCAL
	A brief description of OpenCAL
	An OpenCAL implementation of Conway's Game of Life
	An OpenCAL implementation of the SCIDDICA-T debris flows model

	A brief description of the OpenCAL parallel OpenCL version
	OpenCAL improvement to OpenCL programming
	A simple OpenCAL parallel example of application: The Game of Life
	A more complex OpenCAL parallel example of application: SCIDDICA-T

	OpenCAL parallel computational performance

	Conclusions
	Acknowledgments
	Bibliography
	List of Figures
	List of Tables

