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Preface

This thesis is fruit of one’s labours developed during my experience as
Ph.D. student in physics of complex systems to Physics Department of Uni-
versity of Calabria and in collaboration with the British Antarctic Survey,
one of the world’s leading environmental research centres, where I spent six
months of my life in the head office in Cambridge UK.

I am grateful to Professor Vincenzo Carbone for his steadfast attention
to me. He was an excellent teacher and many discussion with him were an
essential stimulus in a bad (scientific and not) moments. A special thanks to
Dr. Antonio Vecchio for his many teachings, having endless patience to me.

The main topic of this thesis is a climate and its aspects as paradigmatic
example of complex phenomena. Moreover related to global warming problem,
climate dynamics turn out to be a field of research extended with remarkable
implications on future of human life. Our approach at the problem was to in-
vestigate different climate effects (e.g.periodicity, randomness, trend) through
analysis of historical geophysical parameters. The thesis is arranged as follow:
in the introduction a short overview about the complexity and climate, in each
chapter we describe and analyse a climate aspect separately. For this reason a
section with general conclusion is not created, but in every chapter starts with
a short introduction about the physical problem and it ends with a discussion
and summary of obtained results
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Introduction

The study of complex systems in a unified framework has become recog-
nized in recent years as a new scientific discipline, the ultimate of interdis-
ciplinary fields; in fact the field of study of complex systems holds that the
dynamics of complex systems are founded on universal principles that may be
used to de scribe disparate problems ranging from particle physics to the eco-
nomics of societies (Bar-Yam, 1997). A dictionary definition of the word ”com-
plex” is: ”consisting of interconnected or interwoven parts”. To explain the
difference between simple and complex systems, the terms ”interconnected”
or ”interwoven” are somehow essential. Qualitatively, to understand the be-
haviour of a complex system we must understand not only the behaviour of
the parts but how they act together to form the behaviour of the whole. It
is because we cannot describe the whole without describing each part, and
because each part must be described in relation to other parts, that complex
systems are difficult to understand. This is relevant to another definition of
”complex”: ”not easy to understand or analyse”.
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Introduction

Climate system

In this thesis we focus our attention on the paradigmatic example related
to complexity: the climate system.
Climate is a broad composite of the average condition of a region, measured
by its temperature, amount of rainfall or snowfall, snow and ice cover, wind
direction and strength, as well as other factors. Climate specifically applies
to longer-term changes (years and longer), in contrast to the shorter fluctu-
ations that last hours, days, or weeks and are referred to as weather. The
Earth’s climate system is a interconnected system formed by the atmosphere,
the oceans and other bodies of water (the hydrosphere), land surface (the
lithosphere), snow and ice cover (the cryosphere) as well as all living organ-
isms (the biosphere), and powered by solar radiation. Beside its own internal
dynamics, the system is affected by changes in external factors, which include
natural phenomena such as solar variations and volcanic eruptions, as well as
human-induced changes in atmospheric composition. At the most basic level,
changes in these components through time are analysed in terms of cause and
effect, or, in the words used by climate scientists, forcing and response. The
term ”forcing” refers to factors that drive or cause change; the responses are
the climatic changes that result (Bar-Yam, 1997). Figure 1 provides an initial
impression of the vast array of factors involved in studies of Earth’s climate. It
shows the major processes at work within the climate system, such as precipi-
tation, evaporation, and winds. These processes extend from the warm tropics
to the cold polar regions and from the Sun in outer space down into Earth’s
atmosphere, deep into its oceans, and even beneath its bedrock surface.

The complexity of the top part of Figure 1 is simplified in the bottom
part to provide an idea of how the climate system works. The relatively small
number of external factors shown on the bottom left force (or drive) changes
in the climate system, and the internal components of the climate system re-
spond by changing and interacting in many ways (bottom centre). The result
of all these interactions is a number of observed variations in climate that can
be measured (bottom right). A further factor capable of influencing climate,
but not in a strict sense part of the natural climate system, is the effect of
humans on climate, referred to as anthropogenic forcing. This forcing is an
unintended by product of agricultural, industrial, and other human activities,
and it occurs mainly by way of additions to the atmosphere of materials such
as carbon dioxide (CO2) and other greenhouse gases.
From a physics point of view, climate dynamics is inherently complicated.
The circulation of the atmosphere and oceans interact between phenomena on
scales from centimetres to the globe and time-scales from seconds to millennia.
As mathematical tool to study the climate dynamics we have the fluids me-
chanical principles with complicated differential equations with the presence
of non-linear terms with observed phenomena of air turbulence.

4



Figure 1: Earth’s climate system and interactions of its components.
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Introduction

Climate change and global warming

Climate change is likely to be the predominant scientific, economic, polit-
ical and moral issue of the 21st century (Hansen and Sato, 2012). By 2006,
global climate had warmed by 0.7oC above the level in the late 1800s. Cli-
mate scientists agree that the atmospheric concentrations of CO2 and other
greenhouse gases produced by human activities have increased markedly in
the last century, and they agree that the gas increases have caused climate to
warm. The major disagreement over global warming has focused on whether
the greenhouse-gas increases explain some, all, or little of the observed warm-
ing. During the several hundred years in which humans have been making
scientific observations of climate, actual changes have been relatively small.
Even so, climatic changes significant to human life have occurred. One strik-
ing example is the advances of valley glaciers that overran mountain farms and
even some small villages in the European Alps and the mountains of Norway a
few centuries ago because of a small cooling of climate. Scientific studies reveal
that these historical changes in climate are tiny in comparison with the much
larger changes that happened earlier in Earth’s history. For these reasons in
the last years a new line from Earth science was created, namely the Palaeo-
climatology. It is the study of changes in climate taken on the scale of the
entire history of Earth. It uses a variety of proxy methods from the Earth and
life sciences to obtain data previously preserved within (e.g. rocks, sediments,
ice sheets, tree rings, corals, shells and microfossils); Palaeoclimatology then
uses these records to determine the past states of the Earth’s various climate
regions and its atmospheric system.

The debate about climate change and global warming related to human
activity is still open, remembering that the fate of humanity and nature may
depend upon early recognition and understanding of human-made effects on
Earth’s climate.

How to study the climate

Climate science moves forward by an interactive mix of observation and
theory. Climate scientists gather and analyse data from the kinds of climatic
archives and the results of this research are written up and published. Progress
in science depends on the free exchange of ideas, and climate researchers pub-
lish in order to tell the scientific community what they have discovered.

These scientists interpret their research results and occasionally come up
with a new hypothesis, an idea proposed as an explanation for observed data.
A hypothesis that succeeds in explaining a wide array of observations over
a period of time becomes a theory. Scientists continue to test theories by
making additional observations, developing new techniques to analyse data,
and devising models to simulate the operation of the climate system. Only
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a few theories survive years of repeated testing. These are sometimes called
”unifying theories” and are generally regarded as close approximations to ”the
truth,” but the testing still continues.

Our Approach at the problem will be to study and investigate different
climate phenomena through data analysis of historical geophysical parameters
(e.g. temperature). Before we touched on the concept of complexity, namely a
system with many interconnected or interwoven parts that interact together.
In every chapter of this thesis we will be dealing of phenomenon with differ-
ent characteristics between them. We start to observe and study in the first
chapter the periodic dynamics of seasonality due to variation of temperature
during the calendar year. In the second chapter we will be dealing about long-
range predictably and random effects in a temperature records. The problem
of trend and its definition will be discussed on third chapter using a spatio-
temporal analysis of temperature trend rate in the last century. In the last
chapter we will have two other geophysics complex phenomena, the first one
related to Sun-Earth interaction and the second one the tidal level oscillation
in Mediterranean sea.

7



Introduction

8



Chapter 1

The dynamics of seasonality

The dynamics of the climate system has been investigated by analysing
the complex seasonal oscillation of monthly averaged temperatures recorded
at 1167 stations covering the whole USA. We found the presence of an orbit-
climate relationship on time scales remarkably shorter than the Milankovitch
period related to the nutational forcing. The relationship manifests itself
through occasional destabilization of the phase of the seasonal component
due to the local changing of balance between direct insolation and the net
energy received by the Earth. Quite surprisingly, we found that the local in-
termittent dynamics is modulated by a periodic component of about 18.6 yr
due to the nutation of the Earth, which represents the main modulation of the
Earth’s precession. The global effect in the last century results in a cumulative
phase-shift of about 1.74 days towards earlier seasons, in agreement with the
phase shift expected from the Earth’s precession. The climate dynamics of
the seasonal cycle can be described through a nonlinear circle-map, indicating
that the destabilization process can be associated to intermittent transitions
from quasi-periodicity to chaos.

1.1 Introduction

The annual rotation of the Earth around the Sun provides a quasi-periodic
solar forcing that continuously synchronizes the terrestrial climate. The re-
sulting seasons observed on Earth represent the complex nonlinear response of
atmosphere, land and oceans to this forcing and are one of the most important
source of variability for the climate system. In fact, even if climate changes
are usually referred to trends in the average temperature records (Alley et al.,
2003; Karl and Trenberth, 2003), many studies have shown that the analysis
on the seasonal cycle of the Earth temperature could improve our knowledge
about climate changes (Thomson, 1995, 1997; Huybers and Curry , 2006; Pez-
zulli et al., 2005; Stine et al., 2009). Unlike the external solar forcing, which is
almost constant from year to year, there is no guarantee that climatic seasons
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The dynamics of seasonality

have to be the same each year. Actually seasonal variations cause more than
90% of the variance of a temperature record and represent one of the basic
examples of the complex atmospheric response to external forcing (Thomson,
1995, 1997; Mann and Park , 1996; Wallace and Osborn, 2002; Jones et al.,
2003; Stine et al., 2009).

At a given latitude the seasonal cycle is generated by the balance be-
tween two main components: i) the direct insolation component, which varies
with the tropical year (the time from equinox to equinox) τtr'365.2422 days;
ii) a mean energy transport effect related to the net radiation received by
the Earth, which follows the anomalistic year (the time from perihelion to
perihelion) τan'365.2596 days (Thomson, 1995). The seasonal cycle can be
characterized by two quantities, namely amplitude and phase. While changes
in amplitude are commonly interpreted as caused by stochastic climate fluc-
tuations (Huybers and Curry , 2006) the phase of the seasonal cycle, namely
the synchronization of each season during time, is yet poorly investigated.
The variability of the seasons is not something new in climate research. For
example, (Cook et al., 2000) pointed out that El Niño–Southern Oscillation
(ENSO) has exhibited large changes in the amplitude and phase of the annual
cycle as well as in the frequency/intensity of warm/cold events in the past cen-
tury leading to inter-annual oscillations with multiple periods (Jin et al., 1994;
Jiang et al., 1995). Previous studies about the phase of the global seasonality
have underlined the presence of a phase shift.

Thompson showed that, after 1940, the phase behaviour started to change
at an unprecedented rate with respect to the past 300 years (Thomson, 1995).
Other authors indicated a global phase-shift towards earlier seasons (Mann
and Park , 1996; Wallace and Osborn, 2002; Jones et al., 2003). A recent
estimate (Stine et al., 2009) yields a global phase shift of the annual cycle
of surface temperatures, over extra-tropical land between 1954 and 2007, of
about ∆ ' 1.7 days. Even in this case the result seems to be highly anomalous
with respect to the phase-shift of earlier periods.

The phase shift phenomenon has been attributed either to an increased
temperature sensitivity to the anomalistic year forcing relative to the trop-
ical year forcing due to Earth’s precession (Thomson, 1995), or changes in
albedo, soil moisture and short-wave forcing, also involved in changing modes
of atmospheric circulation (Stine et al., 2009). The anomalous phase shift
recorded after 1940 has been attributed to the increasing presence of CO2

in atmosphere (Thomson, 1995; Stine et al., 2009). The phase shift is not
predicted by the current Intergovernmental Panel on Climate Change models
(Stine et al., 2009), thus representing a yet rather obscure physical effect of
the climate system. The role and exact extent of natural and anthropogenic
forcing for the climate evolution has been under much debate (Thomson, 1997;
Keeling et al., 1996; Hasselmann, 1997; Rind , 2002; Alley et al., 2003; Karl
and Trenberth, 2003; Scafetta and West , 2008), and any attempt to point out
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1.2 Data Analysis

hidden aspects of climate dynamics is of considerable interest.

1.2 Data Analysis

In this section we focused on the phase of the seasonal oscillation by using
an ensemble of temperature time series T (t) from the United State Historical
Climatology Network (the HCN data set is available at http://cdiac.ornl.
gov/epubs/ndp/ushcn/ushcn.html). The data set covers 111 yr from 1898
up to 2008 and is recorded by N=1167 different stations distributed on the
whole USA. The seasonal component has been identified through the Empirical
Mode Decomposition (EMD) (see appendix). EMD decomposes the variance
of each temperature record into a finite number of intrinsic mode functions
(IMFs) and a residue, namely:

T (t) =

m−1∑
j=0

θj(t) + rm(t). (1.1)

The intrinsic mode functions yield instantaneous phases Φj(t) and, after
a time derivative, the instantaneous frequencies ωj(t). For all records, the
highest frequency IMF (j=0) represents the inter-seasonal stochastic compo-
nent of the signal. High-order modes describe modulations of increasingly long
periods, while the residue rm(t) represents the monotonically increasing local
trend of temperature, commonly attributed to large scale warming since the
urbanization contribution is smaller (see Peterson, 2003; Parker , 2006; Jones
et al., 2008). The seasonal oscillation is described by the mode j=1 with a
typical timescale of about ∆τ1'1 year. The statistical significance of informa-
tion content for each IMF with respect to a white noise has been checked by
applying the test developed by (Wu and Huang , 2004).

The 66% of the stations show an anomalous seasonal oscillation character-
ized by intermittent local decreases of the amplitude of the j=1 mode. For
these stations the seasonal oscillation is spread over two EMD modes, namely
the regular season is rediscovered when θ1(t) and θ2(t) are summed up. The
remaining 34% of the stations shows a regular seasonal oscillation just iso-
lated in the j=1 mode. An example from Evanston WY and Smithfield NC
stations, characterized by regular and anomalous seasonal oscillation, respec-
tively, is shown in Fig. 1.1 where the temperature records (panel a, b), the
dynamics of θ1(t) (panels c, d), the instantaneous Φ1 (panels e, f) and un-
wrapped (panels g, h) phase, and the instantaneous frequency (panel i, j) are
reported in a time interval of 30 yr. Each anomaly is associated with a strong
variation of the instantaneous frequency and with an increasing phase-shift of
the seasons, originating a destabilization of the phase Φ1 of seasonal oscilla-
tion. This phase shift is marked by steps in the unwrapped phase plot (panel
h). All these features are not observed for the “regular” station (left column
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The dynamics of seasonality

of Fig. 1.1). We have to remark that the amplitudes of the modes θ1 are all
above the 99% confidence level with respect to a white noise (Wu and Huang ,
2004).

Figure 1.1: Examples of EMD results from Evanston WY record, characterized
by regular seasonal oscillations, (left column) and from Smithfield NC, showing
season anomalies (right column) in a 30 yr time interval. (a, b) refer to the
rough data sets. The anomaly is underlined, in the right column, by the time
evolution of: the IMF mode θ1(t) (d), the phase Φ1(t) (f), the unwrapped
phase (h) and the instantaneous frequency (j). These quantities have been
calculated by using the first EMD mode j=1.

In Fig. 1.2 the time evolution of the EMD modes j=1 and j=2 (panel a,
b) and their sum (panel c) for the Smithfield NC temperature record is shown.
The time behaviour of θ1(t) is typical of the mode mixing effect, which makes
a single IMF consist of signals of widely separated scales (Huang et al., 1998).
This feature of EMD is troublesome in signal processing where the main pur-
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1.2 Data Analysis

pose is the signal cleanliness. In this framework, to effectively separate IMFs
without mixed scales, the noise-assisted method named Ensemble EMD (Wu
and Huang , 2009) has been developed. This approach consists in sifting an
ensemble of white noise-added signal and treats the ensemble mean as the fi-
nal true result. White noise series should cancel out in the averaging process,
when a sufficient number of different realizations is used, thus reducing the
chance of mode mixing. By using the EEMD (Wu et al., 2008) showed that
the seasonal component of the analysed temperature record is also spread over
two modes. Our analysis indicates a correspondence between phase anomalies
and spreading of seasonal oscillations over two modes. Hence it seems very
interesting to investigate the role of the phase intermittency in the temper-
ature records and to relate it to the physics of the system. To this purpose
the EEMD approach does not seem suitable, since it represents an ad hoc
mechanism to cancel the intermittency from IMFs. On the contrary, if the
goal of the research is to study the intermittency phenomenon in the analysed
signals, then we need to analyse the IMFs as they are obtained by EMD. In
this way an IMF, although affected by mode mixing, can be useful to iden-
tify when intermittency present. Moreover, because of their orthogonality,
IMFs, differently from EEMD modes, can be given some more direct physi-
cal interpretation. The EMD is a technique developed to be highly sensitive
to the local frequency (or phase, being ω = dφ/dt) fluctuations. For records
showing irregular seasonal oscillations the frequency is slightly different form
the expected one during an anomaly. In these cases, the detection of two
IMFs, necessary to describe the full contribution of the season, results from
the properties of the EMD decomposition for which each mode is associated
to a well defined time scale. If a given time scale is present only during a
small portion of the signal, namely ∆t∗, the IMF describing this oscillation
will be significantly different from zero only during ∆t∗. The mode j = 2 sim-
ply provides the value of the ”anomalous” frequency and the time intervals in
which it occurs. The meaningful quantity is the sum θ1+θ2 describing the full
contribution of the seasonal cycle to the temperature record. In this applica-
tion, the usefulness of EMD resides in its ability to highlight the periods in
which the frequency of the season is anomalous. We have to remark that the
EMD represents a powerful tool to deseasonalize the temperature record (see
e.g. Vecchio and Carbone, 2010) by subtracting the reconstructed seasonality
θ1 + θ2 from the raw record. This kind of approach is more efficient than
the classical deseasonalization procedures involving time averages, since the
temperature records are far to be stationary.
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The dynamics of seasonality

Figure 1.2: Time evolution of the EMD modes j=1 and j=2 (a, b) and their
sum (c) for the temperature record in panel (b) of Fig. 1.1.

The analysis of the statistical properties of phase-shift events represents
an important tool to characterize the nature of this outstanding phenomenon.
By considering the anomaly occurrence as a point like process, that is, each
of them is supposed to occur at its starting time ti, we calculate the waiting
time distribution (WTD), namely the probability density of the time intervals
between two consecutive events P (∆t). Quite interestingly the detected phase-
shift events are strongly correlated in time. Two independent procedures have
been developed to recognize the time of occurrence of a season anomaly:

1. since an anomaly corresponds to a strong local variation of the instan-
taneous frequency of the seasonal IMF, it can be identified with the
formation of a spike in the local frequency (see Fig. 1.1 panel j). Since
in principle positive and negative excursions in frequency can occur, the
time of occurrence of each season anomaly corresponds to the local max-
imum in the range where the absolute value of instantaneous frequency
is greater than two standard deviations of its average

2. anomaly occurrence is detected from the j = 2 IMF characterized by a
temporal behaviour like those shown in Fig. 1.2 panel b. For this mode,
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1.2 Data Analysis

the amplitude increases in correspondence of the season anomalies. The
points of each interval where the absolute value of the amplitude exceeds
two standard deviations of the chosen IMF are identified. For each
interval the distance between extreme points, satisfying the previous
threshold, defines the duration of the anomaly and identifies it.

The WTD calculated with the two different methods to identify anoma-
lies, is shown in Fig. 1.3. An exponential shape of WTD corresponds to
Poisson processes. In our case roughly equispaced peaks, superimposed to the
exponential decay, can be recognized, thus indicating that the WTD is not
associated to a stochastic process but there is a dominant periodicity. This is
clear by looking at the binned occurrence of seasonal anomalies as a function
of time (Fig. 1.4): phase-shift events show an oscillating behaviour. The main
period P of the anomaly occurrence has been calculated through a sinusoidal
fit over the red and black curve of Fig. 1.4, and by identifying the dominant
peak in the Fourier periodogram (Fig. 1.5). The results are shown in table
1.1. The uncertainties have been calculated from the fitting procedure and
from the Fourier period resolution at the found peak.

Table 1.1: Main period P of the anomalies occurrence calculated through
a sinusoidal fit (first column) and from the dominant peak in the Fourier
periodogram (second column).

sin fit Fourier

Method A 18.8± 0.4 20± 5
Method B 18.7± 0.2 18.5± 3.5

Figure 1.3: Waiting time distribution for the anomalies of seasonality for all
the 1167 stations. Red and black curves refer to the different methods A. and
B., described in the text, used to identify the anomalies.
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The dynamics of seasonality

Figure 1.4: Anomaly occurrence detected in our dataset. Red and black curves
refer to the methods A. and B., described in the text, used to identify the
anomalies. The period of modulation, calculated for both curves, is reported in
Table 1.1. The blue curve refers to the cycle of the changing inclination of the
Moon’s orbit with respect to the equatorial plane due to nutation, modelled by
ψ=23◦27′+5◦09′ sin(ΩN t+π), where ΩN=2π/18.6134 yr (cf. Yndestad , 2006).

The value of the period P is remarkably close to the 18.6-year period of the
Earth’s nutation, which represents the stronger modulation to the Earth’s pre-
cession. The same periodicity can be found in different geophysical phenom-
ena connected with the Earth’s nutation (Imbrie and Imbrie, 1980; Yndestad ,
2006). Figure 1.4 shows that, even if weak differences (e.g. the double peaked
maxima around 1955 and 1990), the general trend of the periodic modulation
of the anomaly’s occurrence is remarkably in phase with the inclination of the
Moon’s orbit with respect to the Earth’s equatorial plane, all over the obser-
vation period, that is over at least six cycles. The linear Pearson’s correlation
coefficient between occurrence of seasonal anomalies (black curve in Fig. 1.4)
and the inclination of the Moon’s orbit (blue curve) assumes the value 0.57.

Since the phase-shift anomalies cannot be considered as purely stochastic
events, we are going to discuss the origin of the above periodicity. We think
this is a strong evidence of nutational forcing on temperature records proba-
bly due to an influence of the anomalistic year variability on seasonal timing
variability (see Thomson, 1995). The amplitude and phase variability of cli-
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1.2 Data Analysis

Figure 1.5: Fourier power spectra for the anomaly occurrence detected in our
dataset. Red and black curves refer to the methods A. and B.

mate, which we call ”season”, is determined by the competing action of the
direct insolation, having its maximum at the perihelion, and the net radiation
received by the Earth, having its maximum at the summer solstice. In the
Northern Hemisphere, summer solstice and perihelion are about 180◦ out of
phase. Consequently, slight perturbation on either component can destabilize
the system by changing the resultant proportionality. We can conjecture that
the motion of the Earth’s axis due to the nutation, by affecting the insolation,
can continuously perturb the climate system. Due to strong nonlinearities in
the atmospheric system, the climate response to the annual cycle of the solar
forcing can be surprisingly abrupt, for example as it happens in the case of
the rapid onset of the Asian monsoon (Pezzulli et al., 2005). This coupling
can generate impulsive destabilization of the phase which results in a global
phase shift modulated by the nutation component. Being the temperature
records strongly dependent on the local conditions, the nutation signal is de-
tected only when a statistical analysis, over a significant number of stations, is
performed. The above orbit-climate relation is amplified by the EMD, which
is a technique extremely sensitive to the signal’s phase shifts.

Three peaks, at low energy with respect to P , can be identified from the
Fourier spectra of Fig. 1.5. They correspond to the periods P1 = 13.9±0.6 yr,
P2 = 10.1 ± 0.8 yr, P3 = 8.5 ± 2.1 yr. Similar periodicities have been found
in previous works. In detail, P1 is consistent with the ∼ 15 yr periodicity in
coastal surface air temperature in the Gulf of Alaska (GOA) (Wilson et al.,
2007) attributed to large-scale coherent Pacific climate variability. P2 could be
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The dynamics of seasonality

related to the∼ 11 yr periodicity in ice core sequences (Royer , 1993) attributed
to solar cycle effects. P3 might be attributed to changing tidal current speeds
due to interannual variability of the lunar orbit, in particular to the 8.85
yr period of rotation of the lunar perigee around the Earth (McKinnell and
Crawford , 2007). It must be remarked that a periodicity of about 7.8 yr has
been also found in drought data (Cook et al., 1997).

1.3 A simple model

To investigate the system response to the perturbation due to the nutation,
the dynamics of the seasonal cycle has been described by the Phase Transition
Curve (PTC), that is a basic tool to investigate recurrent dynamics as the
time evolution of an oscillating system (e.g. Arnold , 1965; Glass and Mackey ,
1979; Croisier et al., 2009; Glass, 2001). The PTC is a map describing the
dynamics of an angular variable αn, such that αn+1=f(αn) where f is a given
function. In our case the variable αn is identified with Φ1(tn), namely the
phase at a discrete time tn (n=0, 1, . . . ). A regular season is described by
a linear map αn+1=(αn+ω0)mod(2π), where ω0 is the intrinsic frequency of
the cycle. In Fig. 1.6 empirical PTCs are reported for the two stations of
Fig. 1.1 (Evanston WY in panel a and Smithfield NC in panel b). In both
cases, the dynamics of the PTC locally deviate from the linear behavior. For
both maps the points are spread around the straight line, corresponding to the
linear PTC, because of weak stochastic fluctuations due to random vagaries
of the weather at monthly scales. Moreover, large excursions away from the
linear dynamics are observed in panel b) in correspondence of the anomalies.
The graphic iteration of this PTC map around a detected anomaly, from 1972
to 1975, is shown in panel c). Nonlinearities of the climate system, that is
the occurrence of fluctuations which occasionally destabilize the system, cause
significant deviations from the linear dynamics.

The observed PTC, including the effect of anomalies, can be reproduced
by a so-called circle map (Ott , 2002), that describes the dynamics of a system
characterized by two competing forcing with different frequencies. According
to the general theory of dynamical systems (Ott , 2002), the circle map, in
presence of two forcing oscillations, can be expressed in a linear form

φn+1 = (φn + w)mod(2π) (1.2)

where the winding number w corresponds to the ratio between the two com-
peting frequencies. In our case w=τtr/τan is the ratio between tropic and
anomalistic year. When w is irrational the dynamics of the map is quasi-
periodic, namely the orbit obtained from the iteration densely fills the circle
as time goes to infinity (Ott , 2002). A nonlinear coupling between the external
periodic forces is described by adding a function f(φn) to the right hand side
of Eq. (1.2). The most famous example is the sine-circle map investigated by
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Figure 1.6: Phase Transition Curve αn+1 = f(αn) calculated using the data
from Evanston WY (a) and from Smithfield NC (b) stations. An example of
iteration of the panel (b) map around a given seasonal anomaly is reported in
panel (c).
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Arnolds
φn+1 = (φn + w + k sinφn)mod(2π) (1.3)

where k is a constant (Arnold , 1965; Ott , 2002). The presence of the nonlinear
term destroys the quasi-periodicity in favour of the frequency locking because
of the coupling thus generating an interesting transition to a chaotic state.
Roughly speaking, the set of periodic points, which is of zero measure for
k=0, increases as k 6=0. For a fixed value of k, the rotation number

r =
1

2π
lim
N→∞

N∑
n=1

(w + k sinφn) (1.4)

as a function of w is an intricate sequence of periodic and quasi-periodic re-
gions (Ott , 2002). Since in our case w changes because of the precession and
nutation, the system moves into the net of periodic and quasi-periodic states
and is continuously destabilized.

The empirical PTC (panel b in Fig. 1.6) indicates that during the seasonal
anomalies the regular dynamics of the seasonal oscillation is destabilized. This
can be described by conjecturing that the frequency locking phenomenon de-
pends on the nonlinear coupling with the atmosphere. In order to reproduce
our result we modify the sine-circle map by adding a periodic perturbation of
the winding number and a variable coupling parameter k,

φn+1 = [φn + w +Rn + kn(Rn) sinφn]mod(2π) (1.5)

where the periodic term related to the nutation is Rn=R0 cos(ΩN tn) and the
parameter k(Rn) is not kept constant and represents the response to this
perturbation. In particular, we conjecture that the response of climate to the
orbit perturbation is a threshold phenomenon, so that the behavior of k can
be described by the following map

kn+1 =

{
kn if Rn ≤ Rth

znkn(1− kn) if Rn > Rth
(1.6)

where Rth is a threshold value. When the inclination of the Earth’s axis is
greater than a critical value, the frequency locking of the seasonal cycle occurs
abruptly. This can be reproduced for example by a simple on-off intermittent
process (Platt et al., 1993). In this framework the parameter zn is suitably
chosen to assume two values, say zn=1/2 or zn=4 with probability p and (1−p),
respectively. When 1/3≤p≤0.47 the sequence of kn behaves as a typical on-off
intermittency (Loreto et al., 1996). Results of the model Eqs. (1.5) and (1.6),
reported in Fig. 1.7, reproduce the observed behavior.
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1.4 Summary

In this chapter we have shown the results of EMD to analyse the tempera-
ture records of 1167 stations, covering 111 yr, over the whole USA. Our results
confirm that a complete study of the phase of the seasonal component of tem-
perature records is fundamental to investigate climate changes. These are not
simply related to trends in temperature records since even phase-shifts of the
seasonal component seem to play an important role. We identify intermittent
periods in most temperature records causing local events of phase shift. We
assume that the climate system, usually lying in a quasi-periodic state, can
be occasionally destabilized, due to unbalances between direct insolation and
radiation received by the Earth generated by the nutation, re-synchronizing
itself in a relatively small time. In other words, an increased sensitivity to the
anomalistic year variability influences the seasonal variability. The phase shift
occurrence, in fact, is modulated by an oscillating component whose period
and phase are remarkably close to the Earth’s nutation. The occurrence of
local phase shifts causes significant deviations of the system from the linear
dynamics since the response of the system to this kind of perturbations is
highly nonlinear. Our findings represent an indication that the phase of the
season is influenced by the Earth’s nutation. The global phase shift, under-
lined by different authors in the past (Thomson, 1995; Mann and Park , 1996;
Wallace and Osborn, 2002; Jones et al., 2003; Stine et al., 2009), could be re-
lated to the global effect of the local dynamics of impulsive phase-shift events.
EMD results indicate that each anomaly of the seasonal cycle of temperature
corresponds to a local phase shift well identified by steps in the unwrapped
phase plots. By making use of simple statistical arguments we investigate if
the combined effect of the anomalies could result in a global phase shift of the
temperatures as detected by some authors (Thomson, 1995; Mann and Park ,
1996; Wallace and Osborn, 2002; Jones et al., 2003; Stine et al., 2009). This
can be quantified by looking at the probability distribution P (Ω) of Ω=w/ω0

(Fig. 1.8), where w= limn→∞ [(φn−φ0)/2πn] is the theoretical winding num-
ber. Ω represents the phase shift with respect to the initial phase and it is
normalized to the intrinsic frequency ω0=2π/12 months−1, detected for each
station from 1898 to 2008. Ω values different from 1 indicate a phase shift
toward earlier, if Ω>1, or later, if Ω<1, seasons.

The Ω distribution is asymmetrical towards values greater than one, thus
indicating an average shift towards earlier seasons. The maximum is found
around the value Ω'1.03 corresponding to a phase shift of about ∆φ=|(1−Ω)/ω0|'1.74
days with a standard deviation of about 0.08 days. This result is in close
agreement with the global shift estimated by (Stine et al., 2009). Thus the
combined effect of the single phase shift on each station gives rise to a weak
global phase shift of the seasonal cycle of surface temperatures of 1.74 days
towards earlier seasons over 111 yr in agreement with past results.

We have to remark that the 18.6 yr periodicity has been found in other
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Figure 1.7: Results of the modified sine-circle map Eqs. (1.5) and (1.6)
obtained with the following set of parameters (see text): R0=3×10−4,
Rth=2.6×10−4, and p=0.43. In the upper panel we report the behavior of
φn around a given anomaly, while in the lower panel we report the Phase
Transition Curve φn+1=f(φn). Dashed line corresponds to φn+1=φn.

Figure 1.8: Probability of occurrence of the global phase-shift Ω normalized
to the yearly seasonal frequency, calculated for all 111 yr of our dataset.
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climatic time series like e.g, the air temperature and coastal sea surface tem-
perature in the northeastern Pacific (Royer , 1993; McKinnell and Crawford ,
2007), GOA coastal surface air temperatures (Wilson et al., 2007), drought
occurrence (Currie, 1984; Cook et al., 1997), North Pacific Index and Pa-
cific Decadal Oscillation Index (Yasuda et al., 2006) and have been commonly
attributed to the external forcing of the lunar tides. Namely, the 18.6 yr luni-
solar nodal cycle causes the long-term fluctuations of oceanic tides especially
for the diurnal components. The high values of the tidal flow amplitude mod-
ulation, ∼ 20%, could affect the intermediate waters and large-scale oceanic
circulation in the North Pacific. The coupling between bi-decadal variations
in climatic data of northeast Pacific with the 18.6 yr nodal cycle has been
modelled in terms of dissipation arising from local modulations of diapycnal
mixing produced by the variable magnitude of diurnal tidal currents in the rel-
atively shallow coastal ocean (Yasuda et al., 2006; McKinnell and Crawford ,
2007). In other models, the bi-decadal fluctuation, interpreted by mid-latitude
air-sea interactions with oceanic Rossby waves, has been obtained in a cou-
pled ocean-atmosphere model and without the need for any external forcing
(Yasuda et al., 2006).

It must be remarked that our model represents just a simple example to
explain the observed behavior of the USA’s temperature records, in terms of
the variation of the insolation due to the nutation of the Earth. Previous
papers, analysing different climatic datasets, do not clearly indicate whether
the bi-decadal periodicity is related to the variation of the insolation due to
the nutation of the Earth and/or lunar tidal forcing. This interesting topic
will be the object of future investigations.
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Chapter 2

Long-range persistence

Due to the nonlinear and nonstationary character of temperature time se-
ries, the seasonal cycle suffers for both phase and amplitude modulations, not
properly removed by the classical definition of temperature anomaly. In order
to properly filter out the seasonal component and the monotonic trends, we
define in a new way the temperature anomalies by using the empirical mode
decomposition (EMD). The original signal is decomposed into a collection of a
finite and small number of intrinsic mode functions (IMF) and a residual, de-
scribing the mean trend (see appendix). The sum of all the IMF components
as well as the residual reconstructs the original signal. Partial reconstruction
can be achieved by selectively choosing IMFs in order to remove trivial trends
and noise. The EMD description in terms of time-dependent amplitude and
phase functions, overcomes one of the major limitation of the Fourier analy-
sis, namely a correct description of nonlinearities and nonstationarities. By
using the EMD definition of temperature anomalies we found persistence of
fluctuations, with a different degree according to the geographical locations,
on time scales in the range 3 − 15 years. The spatial distribution of the de-
trended fluctuation analysis exponent, used to quantify the degree of memory,
indicates that the long term persistence could be related to to the presence of
climatic regions, which are more sensitive to climatic phenomena such as El
Niño Southern Oscillation.

2.1 Introduction

The short term memory of many atmospheric parameters, due to the
stochastic dynamics of atmosphere, is a well known phenomenon. This allows
the predictability of the meteorological parameters over weekly time scales.
The variability at low time scales has been traditionally described by low-
order autoregressive processes whose paradigm is the first-order autoregressive
process (AR1):
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xi = axi−1 + εi (2.1)

where xi is the meteorological variable at time ti, a the first-order autocor-
relation coefficient, and εi represents a Gaussian white noise. In particular, the
parameter a introduces a rapid correlation decay so that the asymptotic be-
haviour, xi ∼ εi, becomes uncorrelated and unpredictable starting from weekly
scales. However, persistence has been found also at larger scales related to the
occurrence of ”red” noise in the power spectra of long-time meteorological
records (Ditlevsen et al., 1996; Koscielny-Bunde et al., 1998; Eichner et al.,
2003; Fraedrich and Blender , 2003; Govindan et al., 2002; Syroka and Toumi ,
2001; Király et al., 2006; Vecchio and Carbone, 2010). At these scales the
presence of memory could be related to the slow response of e.g. oceans and
ice cover or to climatic phenomena. For example, the weather is persistent
when a very stable high pressure system is established over a particular region
remaining in place for several weeks, the so called ”blocking” (Charney and
Devore, 1979). Persistence on monthly time scales has been related to slowly
varying external forcing such as the sea surface temperature or intermittent
phenomena in the solar-terrestrial system (Eichner et al., 2003; Scafetta and
West , 2003). The presence of memory in the system has been inferred by using
the usual Detrended Fluctuation Analysis (DFA), obtained by investigating
the scaling laws of fluctuations of detrended temperature anomalies, and in
particular through a scaling exponent which indicate departures from a simple
uncorrelated stochastic Brownian process (Peng et al., 1994).

The Earth surface temperature represents one of the most analysed vari-
able used to investigate the climatic system. Regarding the discussion of long
range correlation in temperature time series some aspects remain still open.
Firstly, Koscielny-Bunde et al. (Koscielny-Bunde et al., 1998) proposed that
the correlations should be universal, namely not dependent on the geographic
location of the analysed station. The coupling of atmospheric and oceanic
processes could be involved in setting of long-range persistence with the same
exponent for the weather stations in different climatic zones and time regimes
(from weeks to decades of years) (Koscielny-Bunde et al., 1998). The effects
of this coupling, in the context of interdecadal and century-scale climate os-
cillations (Mann and Park , 1996), is one of the core matter in climatology.
More recently, the universality has been questioned since a wide range of ex-
ponent values seems to be present over continental lands (Eichner et al., 2003;
Fraedrich and Blender , 2003; Kurnaz , 2004) and marked differences seem to
exist between land and sea surface temperature (Fraedrich and Blender , 2003;
Monetti et al., 2003; Fraedrich et al., 2004). The latter has been attributed to
slowly varying external forcing such as the presence of ocean or even big reser-
voirs of water (Fraedrich and Blender , 2003). On the basis of some detailed
data analysis, it has been emphasized that the value of asymptotic power-law
correlation exponent, obtained from usual datasets, is not constant but instead
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depends on the scale (Lanfredi et al., 2009). This apparent scale invariance
has been described through a simple bivariate Markov model accounting for
the fractal behaviour of the exponent (Lanfredi et al., 2009). Because of these
discordant evaluations, the claimed universality of persistence yet represents a
matter of scientific debate (Bunde et al., 2004; Fraedrich and Blender , 2010).

Another aspect depends on whether the universality is valid or not and
concerns the geographic distribution of the correlation. In this regard, the
analysis of Australian temperatures indicates that the intensity of the asymp-
totic correlation seems to decrease with the distance from the equator (Király
and Jánosi , 2005). Analysis of more extended data set, acquired over the
whole Earth, showed that correlations are grouped in large geographic areas
which cannot be explained though a simple parametric dependence. In par-
ticular, the search for systematic dependence on the distance from the oceans
gave negative results (Eichner et al., 2003; Király and Jánosi , 2005; Király
et al., 2006), while controversial results have been obtained for a dependence
on elevation for which both increase (Efstathiou and Varotsos, 2010), decrease
(Liu and Avissar , 1999) and absence (Király and Jánosi , 2005) of correla-
tion with the height have been found. Also, comparisons with global climate
models lead to contrasting results. Seven state-of-the-art global models failed
to reproduce the scaling behaviour of long temperature records by underesti-
mating the long range correlation (Govindan et al., 2002; Syroka and Toumi ,
2001). A better model performance, regarding the possibility to reproduce
long range correlations, can be obtained by properly taking into account the
atmosphere-ocean coupling (Fraedrich and Blender , 2003) or by including vol-
canic forcing (Vyushin et al., 2004).

We remark that the presence or absence of persistence represents a very
useful test for the competing global climate models and to verify the basic
assumptions underlying them (Koscielny-Bunde et al., 1998) given that their
reproductive power is an important request to interpret climate change predic-
tions. Moreover investigation about the presence of memory in temperature
records can contribute to the current debate over the global warming to dis-
tinguish the anthropogenic signal from the fluctuations due to the natural
variability of the geophysical system (Houghton, 1995).

A key point in the calculation of the persistence concerns the presence
of trends or trivial correlations in the raw temperature signal. In fact trivial
correlations are introduced by the annual seasonal cycle, while long-term corre-
lations can be masked by trends that can be generated by anthropic processes,
e.g. the well-known urban warming, the increase of concentration of gases in
atmosphere, etc. For these effect even uncorrelated data in the presence of
long-term trends may look like correlated ones, and, on the other hand, long-
term correlated data may look like uncorrelated data influenced by a trend.
Usually, to remove trends and seasonal cycle the temperature anomalies are
calculated. These are defined with respect to the seasonally varying mean
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value. Namely, given a sequence of daily temperatures Ti, the anomalies ∆Ti
are defined as the differences

∆Ti = Ti − 〈Ti〉 (2.2)

where 〈Ti〉 represents the temperature mean value for the i-th calendar
day, averaged over a significantly large sample of data. Finally ∆Ti should
account for the effect of long term climate change that should also be included
in the definition of anomaly. The implicit assumption that the seasonal annual
cycle is constant and is generated by a set of stationary processes underlies the
definition (2.2). The validity of the previous assumption is often questionable
due to the nonlinear response of the climate system to external forcing. Both
trends or irregularities in the seasonal cycle have been observed as changes
of both amplitude (Wallace and Osborn, 2002) and phases (Thomson, 1995;
Stine et al., 2009; Vecchio et al., 2010) in the annual cycle of surface tem-
perature. These effects are related to the complex nonlinear response of the
atmosphere, land and oceans, to the periodic forcing provided by the annual
motion of the Earth around the Sun (Thomson, 1995; Vecchio et al., 2010) or
to changes in albedo, soil moisture and short-wave forcing (Stine et al., 2009).
The presence of irregularities of the seasonal cycle, if not suitably filtered,
can introduce a fictitious statistical randomization thus causing an artificial
decrease of the persistence degree. Hence, because of the complex physics of
the climatic system, the classical definition (2.2) average based of tempera-
ture anomaly could not be adequate and, as claimed by Thomson (Thomson,
1995) ”Anomaly series used in climate research that have been deseasonalized
by subtracting monthly averages need to be recomputed. The best method
for doing this is not obvious”. As a consequence, the persistence estimation
calculated starting from the definition (2.2) might be misleading and might
lead to introduce erroneous conclusions.

A different definition of temperature anomaly, based on the Empirical
Mode Decomposition (EMD), should be more suitable to take into account
the non-stationarities related to changes of amplitude and phase of the sea-
sonal cycle (Wu et al., 2008; Vecchio and Carbone, 2010). In particular, when
the DFA has been applied to very long European temperature records from
Prague and Milan, very similar degree of persistence has been found, over a
reduced range of scales (3− 10 yr), by using a different definition of anomaly
(Vecchio and Carbone, 2010).

In the present chapter we investigate the spatial distribution of the per-
sistence degree of surface temperature in USA in order to discuss the claimed
universality and for a better understanding of the physical processes responsi-
ble for long-term persistence in climate. In particular we compare the DFA re-
sults for temperature anomalies defined in the classical way (2.2) and through
the EMD.
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Figure 2.1: Spatial distribution of the stations.

2.2 Data and methods

We analyse the temperature records T (t) from the United State Historical
Climatology Network. The data set covers 111 years from 1898 up to 2008 and
is recorded by N = 1167 different stations distributed on the whole USA. The
N stations have been selected among other, in order to have homogeneous
records characterized by the same duration and without gap. The spatial
distribution of the N station over the USA is reported in figure 2.1.

2.2.1 Definition of temperature anomalies

The EMD approach is more appropriate when dealing with non-stationary
and nonlinear data as temperature records. In these cases average operation,
that critically depends on the chosen number of points, could cancel some
of the relevant features in the original signal thus reducing temporal resolu-
tion. In the EMD framework (see appendix) a temperature record T (t) is
decomposed into a finite number n of Intrinsic Mode Functions (IMFs) as

T (t) =

n−1∑
j=0

θj(t) + rn(t) (2.3)

The statistical significance of information content for each IMF, with respect to
a white noise, can be checked by applying a specific test based on the following
argument (Wu and Huang , 2004). When EMD is applied to a white noise se-
ries, the constancy of the product between the energy density of each IMF and
its corresponding averaged period can be deduced. This relation can be used
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to derive the analytical energy density spread function of each IMF as a func-
tion of different confidence levels. Thus, by comparing the energy density of
the IMFs extracted from the actual data with the theoretical spread function,
one can distinguish IMFs containing information at the selected confidence
level from purely noisy modes. The temperature record filtered for trends and
for the seasonal cycle, can be obtained by exploiting the orthogonality of EMD
modes and reconstructing the signal through partial sums in (2.3) (Huang et
al., 1998; Wu et al., 2008; Vecchio et al., 2010). The orthogonality of IMFs
guarantees that each j-mode captures a single aspect of the complex dynamics
of the system. Thus it is meaningful to split the temperature signal in three
part, namely a seasonal contribution S(t), the anomaly ∆T (t) and the residual
rn(t)

T (t) = S(t) + ∆T (t) + rn(t) (2.4)

For the analysed data set the residue rn(t) represents the monotonically in-
creasing local trend of temperature, commonly attributed to large scale warm-
ing since the urbanization contribution is smaller.

By looking at the IMFs, identified by the index j = 0, 1, ..., n− 1, we can
define two mutually orthogonal sets of indices s and r, such that each j ∈ s⊕r.
Then, by partial sums, we can reconstruct the seasonal contribution by using
only the subset s, that is:

S(t) =
∑
j∈s

θj(t) (2.5)

while the remaining IMFs, belonging to the set r, are used to define temper-
ature anomalies (Vecchio and Carbone, 2010)

∆T (t) =
∑
j∈r

θj(t) . (2.6)

Due to the complexity of the system, the sets r and s cannot be defined a
priori rather they are suitably chosen by looking at the time behaviour of the
various IMFs.

The EMD analysis on the monthly historical Prague and Milan tempera-
ture records (Vecchio and Carbone, 2010; Vecchio et al., 2010) indicates that
the the first IMF, θ0(t), is associated to the weather vagaries at monthly scales,
and the seasonal cycle for the Milan dataset is captured by the mode θ1(t),
characterized by a typical timescale of ∆τ1 ' 1 yr. On the other hand, the
seasonal cycle of the Prague dataset presents an irregular behaviour. In fact
θ1(t) show a regular seasonal oscillation interrupted by few intermittent local
decreases of the amplitude and the full seasonal cycle is obtained when θ1(t)
and θ2(t) are summed up. The same features are observed in the HCN USA
data set analysed in this paper. Almost 66% of the stations presents an irreg-
ular seasonal cycle, while the remaining 34% of the stations shows a regular
seasonal oscillation whose contribution is isolated in θ1(t). As an example we
report in Fig.2.2 the time behaviour of the mode θ1(t) from both Holly CO
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and Covington LA stations, which are characterized by regular and anomalous
seasonal oscillations, respectively. In figure 2.3 the time evolution of θ1(t) and
θ2(t) (panels a, b) and their sum (panel c), for the Covington LA temperature
record, are shown over a restricted time interval of about 25 yr. As discussed
in Ref. (Vecchio et al., 2010) the seasonal irregularities, found in temperature
records, do not occur randomly in time but their occurrence regularly oscil-
lates with a period of 18.6 yr. Moreover, a strong phase coherence between the
irregularity occurrence and the inclination of the Moon’s orbit, with respect
to the equatorial plane due to nutation, has been reported (Vecchio et al.,
2010). These observations indicate a possible connection between the Earth’s
nutation and the irregularities occurrence by means of modulation in the iso-
lation and/or tides effects. We verified that the seasonal irregularities cannot
be fully eliminated and the main results of this paper remain unchanged when
the noise-assisted method named Ensemble EMD (EEMD) (Wu and Huang ,
2009) is used. The latter has been developed, in signal processing, to achieve
the signal cleanliness by removing irregularities thus obtaining regular modes.
We remark that. in the case discussed in this paper, the EEMD approach does
not seem suitable since the cancellation of the irregularities from IMFs could
mask important physical aspects of the phenomenon at hand.

Figure 2.2: Time evolution of the EMD mode j = 1 and j = 2 for the tem-
perature records Holly CO (a) and Covington LA (b).
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Figure 2.3: Time evolution of the EMD modes j = 1 and j = 2 (a, b) and
their sum (c) for the temperature record Covington LA.

As far as the definition of temperature anomaly is concerned, the presence
of irregularities in the seasonal cycle enforces the need for a new definition of
anomaly. In fact non stationary periods, present in the temperature records,
could affect the regular seasonal oscillation. Taking care of the above consid-
erations, the most natural way to define temperature anomalies is to consider
the contribution of all EMD modes but the properly defined seasonal oscilla-
tion. The latter contribution, as we said before, can be different according to
the analysed record. Thus the set r in (2.6) represents the collection of EMD
modes such that r = {j| 0 ≤ j ≤ n− 1}� {j = 1} in case of regular seasonal
cycle (as for example in Holly CO), while r = {j| 0 ≤ j ≤ n− 1}� {j = 1, 2}
in case of irregular seasonal cycle (as for example in Covington LA). With this
choice the seasonal cycle, that could present amplitude and phase variations,
is more properly excluded by the definition of temperature anomalies.

Fourier power spectra of S(t) from Holly CO [Fig. 2.4 (c)] and Covington
LA [Fig. 2.4 (d)] show the seasonal cycle isolated by the EMD. The Fourier
spectra of ∆T (t) for both Holly CO and Covington LA records are reported
in Figs. 2.4 (e) and 2.4 (f). Note that temperature anomalies defined through
the EMD can be considered as deseasonalized at very good approximation.
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Figure 2.4: Upper panels report the Fourier power spectra of (a) Holly CO (a)
and (b) Covington LA temperature records. Middle panels report the Fourier
spectra of seasonal oscillation given by (c) the EMD mode j = 1 for Holly CO
and (d) he sum of modes j = 1 and j = 2 for Covington LA. Lower panels
represent the Fourier spectra of the temperature anomalies for both (e) and
Holly CO (f) and (b) Covington LA. The numbers over the peaks indicate the
corresponding periodicity in months.
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2.2.2 Analysis of persistence

To investigate the persistence in the analysed records, we used the De-
trended Fluctuation Analysis (DFA) which consists of some standard steps.
First of all from a sequence of anomalies of length N we extract yk defined as:

yk =

k∑
i=1

∆Ti . (2.7)

yk is then divided into boxes of equal time-length tn and in each box a poly-
nomial curve of order p is fitted, thus obtaining the local trend ypk(tn). The

detrended signal s
(p)
k (tn) = yk−ypk(tn) is calculated for each box and the usual

measure of fluctuation is given by the standard deviation of the detrended
segment averaged over all the boxes

Fp(tn) =

√√√√ 1

N

N∑
k=1

[s
(p)
k (tn)]2 (2.8)

A scaling exponent δp is then defined through the power law relationship

Fp(tn) ∼ tδpn . It can be shown that a process for which the power law relation-
ship exists has also a power-law autocorrelation function C(τ) = 〈∆Ti∆Ti+τ 〉 ∼
τ−α (where 0 < α < 1), and frequency spectrum given by S(f) ∼ f−β (where
0 < β < 1). The scaling exponents are related to the DFA index through
α = 2(1 − δp) and β = 2δp − 1 (Koscielny-Bunde et al., 1998; Talkner and
Weber , 2000). Thus, a scaling exponent δp = 1/2 is associated to uncorre-
lated Brownian-like stochastic processes, and separates a persistent process
where δp > 1/2 from an anti-persistent process where δp < 1/2. According to
previous analysis (Bunde et al., 2004; Fraedrich and Blender , 2010; Király and
Jánosi , 2005; Lanfredi et al., 2009) we use the DFA2, namely p = 2 in (2.8).
To reduce the noise level the standard ”sliding window” technique, where lo-
cal trend removal and variance computation were performed by choosing each
possible starting values for a given box of length tn, has been applied (Király
and Jánosi , 2005).

2.3 Results

Since the stations we investigate cover the whole USA in a rather uniform
way, we will focus on the spatial properties of the persistence and we discuss
the differences obtained when the anomalies are defined in the classical way or
through the EMD. The asymptotic DFA2 exponent can be used as a proxy for
the presence of long-range effects not attributable to the intrinsic atmospheric
fluctuations. In particular we fit the scaling relation F2(tn) ∼ tδ2n in the range
of scales 3 ≤ tn ≤ 15 years. Such range has been chosen in order to directly
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compare our results with the cases studied in previous papers (Fraedrich and
Blender , 2010; Király and Jánosi , 2005; Vecchio and Carbone, 2010). The

uncertainties δFp(tn) can be estimated from the uncertainties on δs
(p)
k , using

definition (2.8), as

δFp(tn) =
δs

(p)
k

2
√
Fp(tn)

(2.9)

where δs
(p)
k has been evaluated as the standard deviation of [s

(p)
k (tn)]2 over

the boxes. When the anomalies are defined in the standard way (2.2), the
χ2 probability of the fit results below 0.6 for about 16% of stations, while
this number increases to 37% when anomalies are calculated according to our
definition through EMD. This means that, for some record, the accuracy of
the fit is insufficient in the chosen range of scales, that is the persistence does
not extend to longer periods. For these stations the accuracy level of the fit
has been increased by reducing the upper value of tn up to 7 years in order to
reach an acceptably high accuracy (χ2 probability ≥ 0.6) for all records. An
example of the DFA2 curves for both Holly CO and Covington LA stations
are shown in figure 2.5 where black and red lines refer to EMD and classically
defined temperature anomaly, respectively.

The statistics of the DFA2 exponent is shown in figure 2.6, where the his-
tograms of δ2 (panel a) and its uncertainty ∆δ2 (panel b) are reported for both
definitions of anomalies. The values of δ2, for classical anomalies, are shifted
toward lower values with respect to the persistence obtained when anomalies
are defined through EMD. In particular, δ2 values lower than 0.6 were detected
for the 40% of stations, when anomalies are defined according to (2.2), while
these values are detected in 16% of stations when EMD is used. The previ-
ous result indicates that the EMD reveals a long range positive correlation in
the majority of USA. This means that the classical definition of temperature
anomaly underestimates the degree of persistence, due to the randomization
caused by stochastic fluctuations in the seasonal cycle which are not suitably
filtered by the assumed constant seasonality in the classical definition. Both
distribution of the uncertainties are sharply peaked around ∆δ2 ' 0.01. We
remark that this value is slightly lower than the error estimates performed by
in the past (Fraedrich and Blender , 2003; Király and Jánosi , 2005) by using
different approaches in the uncertainty evaluation.
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Figure 2.5: The scaling function F2(n) as a function of the temporal scale n for
Holly CO (a) and Covington LA (b) stations. Black (upper) and red (lower)
lines refer to EMD and classically defined temperature anomaly, respectively.
Straight lines correspond to linear fits.

Figure 2.6: Normalized histogram of (a) DFA2 exponents and (b) their uncer-
tainty calculated through the classical (thin red line) and EMD (thick black
line) definition of temperature anomaly.
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A comparison between the geographic distribution of the DFA2 exponents
is shown in figure 2.7 where the δ2 maps are reported for both the anomalies
defined in the classical way (panel a) and through the EMD (panel b). The
maps has been built by computing the Voronoi polygon of each station, namely
the polygon containing the region closer to that point than to any other point.
Figure 2.7 clearly indicates that the correlation exponent is far from being
universal in continental locations. For both maps the strength of long range
correlation is distributed in large geographic patches, with substantial differ-
ences. In particular, panel a) shows two opposite patches of high and low
degree of persistence. The first one is concentrated in the Rocky Mountains
area where the height of the stations exceeds 1200 m. This results, however,
should be not consistent with a linear dependence on the elevation since the
correlation drops at the sea level while its maximum is located in a region
where the average height of the stations is about 240 m (Király and Jánosi ,
2005). The map reported in panel b) shows a more uniform distribution of
the persistence index with higher values in two large areas, the first enclosed
by the Atlantic ocean and the gulf of Mexico, namely the southeastern United
States, and the second in the north-west part of the USA. We remark that the
EMD identifies large values of persistence in the coastal areas, an expected
results given the ocean’s inertia. As in the map a), lower values of δ2 are
concentrated in the region of the Rocky Mountains. The latter result is in
agreement with the findings of Ref. (Weber and Talkner , 2001) which show
that the decorrelation of climate records is much stronger for the mountain
stations. This effect could be due to the influence of the free atmospheric
dynamic such as low-lying clouds and/or latent heat exchange of the surface
(Weber and Talkner , 2001).

Figure 2.7: Geographic distribution of the DFA2 exponent δ of (a) classical
and (b) EMD definition of temperature anomaly. Solid, dotted and dashed
lines refer to levels 0.5, 0.6 and 0.7 respectively.

The pattern of persistence obtained from the classical anomaly is quite
complex, it does not allow any simple correlation with long-term climatic
phenomena and does not show a parameter dependence (e.g. distance from
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oceans and/or elevation). On the other hand, the map obtained from the
EMD anomaly allows an easier interpretation. In fact, we can recognize
climatic regions through iso-δ2 surfaces. In particular the observed spatial
pattern suggests that the observed correlations in the temperatures could be
induced by climatic phenomena. For example, it is well known that El Ninõ
Southern Oscillation (ENSO) influences surface temperature at regional scales
(Ropelewski and Halpert , 1989; Halpert and Ropelewski , 1992). The areas of
high persistence values in the panel b) of figure 2.7, roughly correspond to the
USA’s regions showing a clearly defined (at the 99% significance level) ENSO-
temperature relationship (see figure 8 from (Ropelewski and Halpert , 1989),
figure 6 from (Halpert and Ropelewski , 1992)). The latter regions can be iden-
tified by using the method designed by Refs (Ropelewski and Halpert , 1989;
Halpert and Ropelewski , 1992). In detail, monthly temperature composed,
covering a two year interval including an ENSO episode, have been computed
for all stations. For each temperature record 27 ENSO events, as identified
from Refs (Rasmusson and Carpenter , 1983(@), have been considered. The
first harmonic has been extracted from the 2 years temperature composed and
its amplitude and phase have been calculated. Both these quantities, when
plotted on the USA’s map, indicate the magnitude and the phase of the re-
sponse to the ENSO episode. A coherence map can be also built in order to
underline the areas having a coherent response to the ENSO events. Figure
2.8 represents the normalized amplitude of the 24-months harmonic fit to the
ENSO-temperature composed events. We remark that in the areas of high
amplitude the coherence is greater than 0.9.

Figure 2.8: Normalized amplitude of the 24-month harmonic fit to the ENSO-
temperature composed events (see the text for details). Solid, dotted and
dashed lines refer to levels 0.5, 0.7 and 0.9 respectively.
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Roughly speaking, figure 2.8 indicates the geographic areas in which the
temperature records have a stronger and coherent ENSO response (Ropelewski
and Halpert , 1989; Halpert and Ropelewski , 1992). A comparison between
panel b) of figure 2.7 and figure 2.8 indicates that the areas of higher persis-
tence values and higher temperature-ENSO response are similarly distributed
in the southeastern and, mainly, in the northwestern United States. The tem-
perature response to ENSO in North America can be related to the presence
of tropical forcing of circulation pattern, in particular to the Pacific/North
American (PNA) circulation pattern, induced by the forcing of the midlat-
itude circulation (Ropelewski and Halpert , 1989). Our result indicate that
long-term persistence could be induced by ENSO on the surface tempera-
tures, similarly to the relation between ENSO and sea surface temperature
(Monetti et al., 2003). We remark that the presence of a persistence patch on
the east-side in a narrow area enclosed between the Atlantic Ocean and the
Great Lakes region not observed in the ENSO-temperature response map (fig-
ure 2.8). It could be related to the North Atlantic Oscillation (NAO), which
represents one of the most prominent and recurrent patterns of atmospheric
circulation variability driving decadal climate variability and trends from the
eastern seaboard of USA to all Europe (Hurrell et al., 2010), and/or to the
simultaneous neighbourly of the water reservoirs of the Great Lakes and At-
lantic Ocean. The possibility to highlight a meaningful persistence pattern,
possibly related to long-term climatic phenomena which induces correlations
in the system, seems to be a prerogative of the EMD defined temperature
anomalies. This could depends on the inadequacy of the classical definition
of temperature anomaly in presence of quasiperiodic climate pattern, as the
ENSO, whose signal could be aliased by the averages over the calendar day
(Halpert and Ropelewski , 1992).

Other information are provided by the map in figure (2.9) showing the spa-
tial distribution of the upper value of tn chosen for the DFA fit so that the χ2

probability exceeds 0.6, in the case of temperature anomaly defined through
the EMD. Lower values are concentrated in a large area in the north-west
and in smaller patches distributed in the south-east USA. The high values of
persistence in the north-west are found in a narrow range of scales, namely
3 ≤ tn ≤ 7 yr, which also corresponds to the typical periods of the ENSO phe-
nomenon. This represents a further indication that in this area the persistence
could be related to the correlations induced by the ENSO. The south-east
region, also characterized by high temperature-ENSO response, shows high
persistence in a slightly large range of time-scales, namely 3 ≤ tn ≤ 15 years.
This could indicate that the found correlations are related to other effects,
such as the NAO or water reservoir due to the lakes and ocean, acting with
the ENSO in this area.
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Figure 2.9: Geographic distribution of the upper tn value, in year, used for
the DFA fit, for temperature anomalies defined through the EMD.

2.4 Summary

In the present chapter we investigated the persistence of surface tempera-
ture anomalies within the USA. We introduced a different definition of tem-
perature anomaly, based on the EMD orthogonal expansion of temperature
records in empirical IMFs.

In fact, due to the presence of trends in the temperature records and phase-
amplitude fluctuations in the seasonal component, the latter is badly filtered
out when using the usual definition (2.2) of temperature anomalies (Wu et al.,
2008; Vecchio et al., 2010; Vecchio and Carbone, 2010). On the other hand,
the introduced temperature anomalies properly filter out a seasonal component
which varies both in amplitude and phases. Spurious stochasticity introduced
in the system by this effect is filtered out from temperature anomalies so that
persistence can be properly calculated. The latter has been estimated through
the DFA2 scaling exponent δ2 which indicates departure from a Brownian
memoryless stochastic process.

Temperature anomalies, defined through the EMD, show higher values
with respect to δ2 calculated through the classical definition of anomaly. We
found that, long-term persistence clearly exists at timescales in the range
3 ≤ tn ≤ 15 years with a different degree of persistence according to the
geographical locations. The proper definition of anomalies allows to a better
estimate of errors in the calculation of persistence. In fact, the uncertainty
associated to the scaling exponents δ2, calculated in a statistical way during
the DFA computation, is lower than the error estimates discussed in literature
(Fraedrich and Blender , 2003; Király and Jánosi , 2005).
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Our analysis indicates that the long term persistence can be related to the
regional effect of climatic phenomena. In fact, the spatial pattern of the scaling
exponents, obtained by using the EMD definition of temperature anomalies,
reflects the areas showing stronger ENSO-temperature relationship. By re-
versing the point of view, the spatial distribution of the persistence degree
provides a quantitative way to discriminate among the different climatic re-
gions. To this purpose, the areas of higher persistence in panel b of figure
2.7, appear similar to the climate zones of the USA (lower map at http:

//www.eia.gov/consumption/residential/methodology/index.cfm). It is
well known that decadal climatic phenomena, as the ENSO, influence surface
temperatures in the south-east and north-west part (Ropelewski and Halpert ,
1989; Halpert and Ropelewski , 1992) of USA. We found that the north-west
region manifests a strong persistence in the range of scales 3 ≤ tn ≤ 7 years,
namely the typical time scales of the ENSO. The south-east regions manifest
persistence over a slightly greater range of scales, namely at 3 ≤ tn ≤ 15 years.
This indicates that in the latter regions other effects, such as the NAO or water
reservoir, could operate with the ENSO in inducing correlations. The results
obtained when EMD-defined temperature anomalies are used, e.g the pres-
ence of a meaningful persistence spatial pattern, depends on the estimate of
the temperature anomalies, where amplitude-phase modulated seasonal com-
ponent and the local trends can be suitably removed, thus not masking the
presence of long-term climatic phenomena which induces persistence.
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Chapter 3

Temperature trends

This chapter presents a nonlinear spatio-temporal analysis of 1167 station
temperature trend covering the period from 1898 through 2008. We use the
Empirical Mode Decomposition (EMD) method (see appendix) to extract the
generally nonlinear trends of each station. The statistical significance of each
trend is assessed against three null models of the background climate vari-
ability, represented by stochastic processes of increasing temporal correlation
length. We find strong evidence that more than 50 percent of all stations ex-
perienced a significant trend over the last century with respect to all three null
models. A spatio-temporal analysis reveals a significant cooling trend in the
South-East and significant warming trends in the rest of the contiguous US. It
also shows that the warming trend appears to have migrated equatorward and
possibly also in altitude. This shows the complex spatio-temporal evolution
of climate change at local scales.

3.1 Introduction

Changes in climate have significant implications for societies, future gen-
erations, the economy, ecosystems and agriculture. Consequently, climate
change, and especially its anthropogenic forcing, has been, and continues to
be, the subject of intensive scientific research and public debate (The Royal
Society , 2010). Due to the complex nature of climate dynamics, understand-
ing the response of the climate system to different forcings is a challenging
problem, involving analysis of the variations and trends in long time series of
atmospheric measurements and proxy records. The global mean surface air
temperature is one of the most important and most discussed indicators of
global change. It has risen by about 0.5◦C during the 20th century and been
attributed (mostly) to a rise in greenhouse gases (IPCC , 2001).

While global mean temperature is a useful indicator of global climate
change, many policy makers and the general public are more interested in
whether they already feel the effects of global warming where they live. Be-
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cause the background climate variability plays a much larger role on smaller
spatial scales than for the global mean (Hawkins and Sutton, 2009), local and
regional temperature trends are easily masked by natural temperature fluctu-
ations and their identification is further complicated by the fact that climate
change is not happening in general in a monotonic and uniform way (Wu et
al., 2007).

The term trend is frequently encountered in data analysis and is one of the
most critical quantities in global change research. For example, in a casual
Internet search, there are presently more than 12 million items related to trend
and detrending (Wu et al., 2007). Thus, different techniques have been used
to identify a trend because there is no general definition of what a trend should
be (Wu et al., 2007; Franzke, 2009) and so in general a trend depends on the
method one is using to identify it. The simplest definition of a trend, and the
one most often used in climate research, is a straight line fitted to the data.
But this may be illogical and physically meaningless in the real nonlinear and
non-stationary world (Wu et al., 2007; Franzke, 2009). Another definition of
trend is a running mean of the data, which requires a predetermined time
scale to carry out the smoothing operation. This has little rational basis,
since in a stochastic or chaotic non-stationary process the local time scale
is unknown a priori (Wu et al., 2007). More complicated trend extraction
methods, such as regression analysis or Fourier-based filtering, are often based
on stationarity and linearity assumptions and thus face a similar difficulty in
justifying their usage (Wu et al., 2007). Since the trend of the data should
be an intrinsic property of the data, the processes of determining the trend
have to be adaptive to accommodate data from non-stationary and nonlinear
processes. The recently developed Empirical Mode Decomposition (EMD)
method (see appendix) fits these requirements.

Fundamentally, climate change science concerns the identification and un-
derstanding of climate trends caused by changing external physical processes.
However, it is complicated by the fact that the climate system is a complex
system in which a large number of processes nonlinearly interact with each
other to produce variations over vastly different time and space scales. Thus
even a stationary climate system will create apparent, so-called stochastic,
trends over rather long periods of time, which need to be distinguished from
that of a non-stationary external influence (Fatichi et al., 2009; Barbosa, 2011;
Franzke, 2009, 2010, 2012).

In order to do this, it is usual to compare the observed trend with the
statistical distribution of possible trends from a simple stochastic null model.
The most widely used null models in climatic trend analysis are Gaussian white
noise (e.g., (Wu et al., 2007)) or an autoregressive process of first order (AR(1),
e.g., (Santer et al., 2000, 2008; Franzke, 2009)). These two are so-called short-
range dependent processes. However, there is increasing evidence that the
climate system is long-range serially correlated, unlike white noise, and over
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Figure 3.1: Geographic distribution of the 1167 stations.

a longer range than AR(1) (e.g. (Huybers and Curry , 2006; Koscielny-Bunde
et al., 1998; Franzke, 2010)). For this reason we will also use a long-range
dependent process in our trend analysis.

In the present chapter we study the statistical properties of nonlinear an-
nual mean local temperature trends from 1167 stations covering the 48 geo-
graphically contiguous states of the USA for the period 1898 through 2008.
A previous study by (Lu et al., 2005) analysed an earlier version of this data
set covering a shorter time period and less stations. They also tested the sig-
nificance of the linear trends against a periodic autoregressive moving average
process. Here we will use the updated version of this data set and test the
significance of the trends against three different null models of varying corre-
lation length and also use a nonlinear and non-stationary method to identify
the trends.

3.2 Methods

3.2.1 Temperature Data

In this study we analyse the trends of temperature times series at individual
stations from the United States Historical Climatology Network (Menne et al.,
2009) (the data are available at http://cdiac.ornl.gov/epubs/ndp/ushcn/
ushcn.html). The data set covers 111 yr from 1898 up to 2008 and consists of
1167 different stations in the 48 contiguous states of the USA (Fig. 3.1). The
data are homogenized, have no breaks, and the urbanization effect is likely
small (Menne et al., 2009).

3.2.2 Trend Identification

The trends are identified through the Empirical Mode Decomposition (EMD)
technique, developed to process nonlinear and non-stationary data (Huang et
al., 1998) and successfully applied in many different fields (Loh et al., 2001;
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Echeverria et al., 2001; Coughlin et al., 2004; Vecchio et al., 2010; Laurenza et
al., 2012; Capparelli et al., 2011). EMD decomposes a time series into a finite
number of intrinsic mode functions (IMFs) and a residual (see appendix):

T (t) =
m−1∑
j=0

θj(t) + rm(t). (3.1)

In this study we define this residual as the EMD trend.
As shown by (Wu et al., 2007), the IMFs and the residual obtained by

using EMD can depend on the stopping criterion for the sifting process. The
ambiguity depends on the dataset and in particular on the sampling rate. In
a temperature record the main modulations are the daily oscillation (due to
the difference of temperature from day to night) and the annual oscillation
(due to seasonality). If we apply the EMD decomposition on temperature
time series with a sampling rate less than one year then a single IMF mode
will turn out to be dominant compared to the rest of the IMF modes (Vecchio
et al., 2010), making the iteration to identify the EMD residual very sensitive
to the sifting conditions. For this reason we decided to use the annual mean
of the temperature time series for each station. Using these data we verified
that for all stations the shape of the residuals rm(t) does not depend on the
value of σthr selected.

The complexity of the definition of a trend can be seen in fig. 3.2, where we
show an example of the annual mean temperature time series of the station
Highland (Alabama). A linear least square fit to the raw data reveals an
overall secular decrease with a slope of mraw =(−0.986 ± 0.172)◦C/century,
which is statistically significant with respect to the null hypothesis of a white
noise times series with no trend. However, the residual rm(t) of the EMD
analysis is a nonlinear function of time, implying the existence of a ”nonlinear
trend”. While a linear fit of the residual function rm(t) gives the linear slope
mEMD =(−1.185 ± 0.046)◦C/century, which is compatible with mraw, the
occurrence of a nonlinear trend function implies different physical and practical
interpretations with respect to the linear model, with local acceleration and
deceleration of the average mean temperature.
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Figure 3.2: Annual mean temperature record for the station of Highland,
Alabama. The EMD trend is the solid red line, while the dashed lines denote
the linear least square fits to the raw data (black) and the EMD trend (red).

3.2.3 Statistical Significance Test

In order to illustrate the fact that the stations experienced significant vari-
ability on many time scales we first consider the variance of each IMF with
respect to a simple white noise model. Following the arguments of (Wu and
Huang , 2004), Figure 3.3 shows the theoretical spread function (dashed line)
of the logarithm of the variance and the logarithm of the averaged period
obtained from a white noise process using a 95% confidence level. This is
compared with (diamonds) the relationship associated with each θj(t) and
rm(t) for the representative station of Highland (Alabama). This analysis
shows that this station experiences variability on many time scales which are
different from the simple uncorrelated noise model because the variances of
the IMFs are well above of the 95% spread function curve. In addition, note
that the observed trend is significant at the 95% level and thus unlikely to be
due to the intrinsic fluctuations of this simple null model of the background
climate variability.

Thus, we use three different paradigmatic null models with increasing cor-
relation length to test the significance of the observed trends: (i) Gaussian
white noise, (ii) short-range dependent (SRD) and (iii) long-range dependent
(LRD). As the SRD model we use an AR(1) process (von Storch and Zwiers,
1999). As the LRD model we use an autoregressive fractional integrated mov-
ing average process (ARFIMA (Hosking , 1981; Robinson, 2003; Stoev and
Taqqu, 2004; Franzke et al., 2012)).

To systematically assess the significance of trends we use the following
approach for each station:
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Figure 3.3: Statistical significance test for the annual mean temperature record
for the Highland, Alabama, station. The dashed line shows the 95% confidence
interval of the spread function of white noise variance. Diamonds show the
variance as a function of the mean period for each IMF and the residual from
the EMD decomposition of the annual mean temperature time series.

1. Estimate the slope of the residual of the empirical annually-averaged
temperature record obtained by EMD decomposition with σthr=0.3.

2. Estimate the parameters of the null model from the monthly temperature
station anomalies.

3. Generate ensembles of 1000 surrogate monthly temperature records, by
taking into account the parameter uncertainties for each null model
(Franzke, 2010, 2012).

4. Appropriately average the surrogate data so that they correspond to
annual mean data.

5. Estimate the slopes of the surrogate data by EMD decomposition with
σthr=0.3, i.e., in the same way as for the empirical data in step 1.

6. Compare the slope of the empirical trend with the distribution of sur-
rogate slopes. If the empirical trend is outside the 2.5th or 97.5th per-
centiles of the surrogate distribution then we identify that this station
has a trend that is unlikely to have arisen from the background climate
variability described by the corresponding null model.

Here we use a standard approach to estimate the AR(1) parameters (Hosk-
ing , 1981; Franzke, 2010). The parameters of the FARIMA(0, d, 0) model,
which is a particular case of the standard FARIMA(p, d, q) processes are esti-
mated by a semi-parametric estimator (Geweke and Porter-Hudak , 1983; Hur-
vich and Deo, 1999) from detrended monthly temperature anomalies. Note
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that the surrogate data are generated on monthly time scales, which is less
than the annual averaging period used for the empirical data. This is in order
to include the effect of so-called climate noise, in which the averaging of rapid
fluctuations produces variability on much longer time scales and apparent
trends (Leith, 1973; Feldstein, 2000; Franzke, 2009).

3.3 Results

3.3.1 Statistical significance of linear slopes

The results of the Monte Carlo trend analysis described above is sum-
marised in fig. 3.4 and table 3.1. As expected, stations with a linear slope
close to zero were preferentially excluded by the null model tests, correspond-
ing to a flat trend or an oscillating residual rm(t), as illustrated in fig. 3.5.
(Compare with the significant trend shown in fig. 3.2.) Out of all 1167 sta-
tions, 900 (77%) have a significant trend against the white noise null model,
616 (52.8% ) against the SRD model and 751 (64.5%) against the LRD model.
Thus, interestingly, whilst all stations which are significant against the SRD
model are also significant against the white noise model, the number of sig-
nificant trends does not simply depend on the correlation range of the null
model.

Null model # of stations % of dataset Trend (◦C/century)

white noise 900 77.1 0.667± 0.711
SRD 616 52.8 0.876± 0.730
LRD 751 64.5 0.778± 0.713
all 593 50.8 0.898± 0.731

Table 3.1: Number and percentage of statistically significant annual mean
temperature trends, and the spatially-averaged trend slope, as a function of
the different null models.
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Figure 3.4: Distribution of annual mean temperature trend slopes for stations
with a significant trend against: white noise (panel a), SRD (panel b), LRD
(panel c) and all null models (panel d). Trend slopes for all stations from raw
data (dotted line) and from EMD trend (dashed line).

Figure 3.5: Annual mean temperature time series for Fairhope, Alabama,
station. EMD trend is the solid red line and the dashed line is linear least
square fit of the EMD trend.
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Overall, 593 stations (50.8% of all stations) show a significant trend against
all three null models. This provides strong evidence (Franzke, 2012) for large-
scale temperature change of the contiguous US over the last century, confirm-
ing and extending the results of previous studies (Jones et al., 1999; Hansen
et al., 2001; Lund et al., 2001; Lu et al., 2005) which tested trends against
only white noise or SRD models.

The average significant trend corresponds to an increase of temperature
during the last century over the USA. However, the trend distributions display
both significant cooling trends (negative slope) as well as significant warming
trends (positive slope). These vary in location as shown in fig. 3.6 for signifi-
cant EMD trends against all null models, and in fig. 3.7 for trends obtained by
a linear least square of the raw station data. In figure 3.6 we show that both
the widespread significant warming trends and the smaller region of significant
cooling trends (in the south-east of the USA close to the southern Appalachian
Mountains) reported by others (Lu et al., 2005) are robust to the correlation
structure of the null model, including the LRD model not previously tested.

To gain insight into the likelihood of finding significant trends in a region
we subdivided the US into grid cells of the same size (about 400 km2) and
then computed the ratio of stations with significant trends against all three
null models and the total number of stations in the grid cell. Figure 3.8 shows
the geographic variation of this probability. There is a large region covering
the South-East US and states like Pennsylvania and Ohio as well as regions
in the North-West (parts of Washington State and Montana) which have a
low probability of significant trends against all three null models, although
note that these are generally greater than the assumed 5% critical probability.
Furthermore, large parts of the contiguous US have probabilities of 50% or
higher of significant trends against all three null models.
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Figure 3.6: Geographical distribution of the slopes of the EMD annual mean
temperature trend for the 593 stations with a significant trend against all null
models.

Figure 3.7: Geographical distribution of the slopes of the linear least-squares
fit to the raw annual mean temperature data.
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Figure 3.8: Geographical distribution of the probability to have a significant
temperature trend against all three null models.

3.3.2 Nonlinear trend and local geographic parameters

The advantage of EMD is to obtain the residual as a time dependent
nonlinear function without any a priori assumption about its structural form
(see eq. 3.1). For each station at a given time t we have the trend slope and
its derivative. This information allows us to investigate the climate trends
from a point of view that is local in time. In figure 3.9 we show a map which
displays the temporal evolution of the time derivative of the EMD trends.
The derivative is obtained numerically through second order finite differences
for each station. The stations are sorted according to the latitude (panel a)
and longitude (panel b). Coherent structures are evident, suggesting robust
relationships. As regard to the latitude we can see an increase of temperatures
starting around 1920, but with a lag of about 30 years for the stations situated
below of 35◦N. For the longitude we can note a homogeneity in the onset time
of warming, except for a middle strip from −90◦ to −80◦ where it is not
possible to detect any positive (warming) trend, and including the region of
significant cooling in the south-east US seen in fig. 3.7.

A similar plot was also made using altitude as a parameter (fig. 3.10).
A positive trend seems to begin around 1920 at high and low altitudes and
appears to descend and ascend respectively towards 800 − 900 m altitude in
the following years.
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Figure 3.9: Contours of the derivative of EMD trends in a space-time plane
for the 593 USA stations with a significant trend against all three null models.
The y-axis represents the latitude (panel a) and longitude (panel b).

Figure 3.10: Contours of the derivative of EMD trends in a space-time plane
for the 593 USA stations with a significant trend against all three null models.
The y-axis represents the altitude.
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3.4 Summary

In this study we discussed the spatio-temporal distribution of station tem-
perature trends over the contiguous USA covering the period 1898 through
2008. We use the EMD decomposition to extract trends in a non-stationary
situation (Wu et al., 2007). Our main results can be summarized as follows:

1. We defined temperature trends as the residual of an EMD analysis. The
most commonly used definition of a trend, which is a straight line fit-
ted to the raw data, has been compared with the straight line fitting
of the residual EMD function rm(t). The EMD analysis additionally
reveals deviations from linear temperature trends. Our results extend
the previous works about the temperature trends (Jones et al., 1999;
Hansen et al., 2001; Lund et al., 2001; Lu et al., 2005) providing a more
detailed view of the geographic distribution of the positive (warming)
and negative (cooling) slopes.

2. By comparing these trends against three different null models for the
background climate variability, we have increased confidence in the sig-
nificance of the observed trends. About 50% of all stations are found
to be significant against all three null models. This provides strong evi-
dence that the US has experienced climate change over the last century,
irrespective of the assumed correlation structure of the null model.

3. The region spanning the South-East US up to the states of Ohio and
Illinois have seen a significant cooling trend while most other regions
experienced a significant warming trend.

4. Using the time derivative of the residual EMD function rm(t), we can
define the instantaneous changing slope of temperatures. We found that
the changing slope is well ordered by the geographical longitude, latitude
and altitude of the place where measurements are taken, and suggests
that the onset of warming migrated in latitude and altitude.

5. Our results show that some care must be taken as far as detrending of
climatic data records are concerned, as well as for the extrapolation of
future climate change from trends.

Taken together, using an updated data set covering an extended period
than previous studies (Lund et al., 2001; Lu et al., 2005), our results strengthen,
support, and extend the evidence of a significant cooling in the South-East US
and of a dominant significant warming over most of the contiguous US during
the last century.
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Chapter 4

Sun and oceans

In this chapter we report a study about two other complex phenomena
related to climate: solar magnetic activity and ocean circulation and propa-
gation.

The Earth receives almost all of its energy from the Sun, so the climate is
strongly affected by solar power variation. Many scientists have observed cor-
relations between the solar magnetic activity, which is reflected in the sunspot
frequency, and climate parameters at the Earth. But sunspots are only the
largest and by far the rarest of the broad range of magnetic features (magnetic
flux tubes) in the solar photosphere. The smaller flux tubes forming the Bright
Points and the network are bright. Like sunspots they also inhibit convection
in their interiors, but they are sufficiently narrow that radiation flowing in
from the sides into the highly evacuated flux tubes more than compensates for
this loss. We studied pair dispersion of photospheric bright points to under-
stand diffusion and transport of magnetic fields within the turbulent motions
in the solar convection zone.

As the Sun also the oceans play a important role in climate influence the
climate by transporting heat, with the atmosphere form the most dynamic
component of the climate system. The ocean’s waters are constantly being
moved about by powerful currents that influence the climate by transporting
heat. We investigated the oceanic propagation through the possibility that
the tsunami, generated as a consequence of the large Tohoku-Oki earthquake
of March 11th 2011, could be recorded by the tide gauge stations located in
the Mediterranean sea.

4.1 Pair dispersion of photospheric bright points

Understanding the diffusion and transport of magnetic fields within the
turbulent motions in the solar convection zone and atmosphere is of funda-
mental importance for several solar physics problems, such as dynamo, magne-
toconvection, and energy release processes in the atmosphere. In this context,
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the motions of local magnetic flux concentrations and magnetic bright points
(BPs) represent one of the main sources of information.

These magnetic elements represent the photospheric signature of strong,
i.e., kilogauss, magnetic flux tubes and undergo random walk motions driven
by turbulent convection. These motions have been studied extensively as a
diffusion process and in this framework they have been investigated through
the analysis of scaling properties of mean-square displacements 〈(∆l)2〉 with
time. For normal diffusion (in two dimensions),〈(∆l)2〉 = 4Kt where K is
the diffusion coefficient. When〈(∆l)2〉 ∼ tγ , with γ 6= 1, the diffusion is
called anomalous. The cases γ < 1 and γ > 1 are called sub-diffusion and
super-diffusion, respectively.

Previous studies of the diffusion properties of magnetic elements and pho-
tospheric G-band BPs have shown significant discrepancies. In some cases,
normal diffusion has been reported, but with different values of the diffusion
coefficient. In a recent paper, Abramenko et al.(Abramenko et al., 2011) used
the very high resolution data on solar granulation obtained with the New So-
lar Telescope (NST; Goode et al. (Goode et al., 2010)) of the Big Bear Solar
Observatory (BBSO) to study diffusion properties of BPs. They reported
super-diffusion with γ = 1.48 in the AR plage area, γ = 1.53 in the quiet-Sun
(QS) area, and γ = 1.67 in the coronal hole (CH).

The aim of this work is to study the pair dispersion of BPs by using the
same NST observations as in Abramenko et al. (Abramenko et al., 2011),
allowing us to access more direct information about turbulence properties of
the solar photosphere

4.1.1 Observations, analysis and results

Solar granulation data were obtained with the NST of BBSO in 2010
August-September. Series of speckle-reconstructed images taken with a TiO
filter (centered at a wavelength of 705.7 nm, with a bandpass of 1 nm) for
three magnetic environments on the Sun were utilized. Namely, we analysed
(1) the quiet-Sun internetwork/network area, (2) CH area and (3) plage area
inside an AR.

Bright features, apparent inside dark inter-granule lanes, are called BPs
and they are thought to be footpoints of magnetic flux tubes (Muller et al.,
2000; Berger and Title, 2001; Ishikawa et al., 2007). Therefore, studying BPs-
makes it possible for us to measure the dynamics of the photospheric magnetic
flux tubes. BPs were automatically detected in all images and then tracked
from one image to the next. We used the detection and tracking code pre-
viously described in Abramenko et al. (Abramenko et al., 2010). BPs are
first enhanced in the images and then selected by applying thresholding and
masking. When two elements merged, the tracking of the smallest one was
terminated.

A common approach used to study the dynamics of magnetic elements
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Figure 4.1: Trajectories of a pair of BPs separating from their initial positions,
marked with the blue circles.

consists in considering the diffusion process of these elements as a result of
the turbulent fluid motions occurring in the convection zone and in the pho-
tosphere. In other words, it is assumed that magnetic flux concentrations are
transported by turbulent flows and that they can be treated as Lagrangian
”fluid particle”. Following this idea, we utilize here the Lagrangian approach
to investigate the turbulent pair dispersion of BPs in the solar photosphere.

Our first step is to compute the pair separations rij = Xi(t) − Xj(t)
of two BPs as a function of time interval, t, measured in seconds, where
Xi(t) = (xi(t), yi(t)) and Xj(t) = (xj(t), yj(t)) are the coordinates of the
ith and jth BPs at the time instant t. Figure 4.1 shows a typical example of
a pair of BP trajectories separating with time.We then calculate the averages
(over all pairs) ∆2 = 〈[r(t) − r0]

2〉 as a function of time, where r0 are the
initial pair separations.

This procedure is repeated for the QS, CH, and ARP data in order to
compare the pair dispersion properties in these different areas (Figure 4.2). A
power law ∆2(t) ∼ tη is found for the mean-squared separation in the range
10s < t < 400s with η = 1.469 ± 0.006 for QS areas, η = 1.469 ± 0.009 for
CH areas, and η = 1.487 for ARP areas. This result can be compared with
the analysis of the mean separation of randomly selected BP pairs performed
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Figure 4.2: Mean-square BP separation ∆2(t) determined for the CH data
(green), QS area (blue), and AR plage area (red). The dashed lines represent
power laws ∆2(t) ∼ tη, with the values of the power-law index η obtained from
best fits in the range 10s < t < 400s and shown in the inset.

by Berger et al. (Berger and Title, 2001). For t > 400s it can be seen that
the statistics is not sufficient to identify breaks and other scalings, such as the
Richardson law. The ARP data show the smallest BP separations as expected,
since the BP surface density is larger in ARP areas compared to CH and QS
(Abramenko et al., 2011).

This result is shown to be consistent with scaling laws of turbulent pair
dispersion obtained in a non-asymptotic regime in which the Lagrangian trac-
ers keep memory of their initial separations. Due to the lack of sufficient
statistics of tracked BPs it is currently not possible with the observations at
our disposal to know if the observed scaling extends also for t > 400s or if
other scaling regimes are present in the asymptotic range.

Further studies of BP pair dispersion can provide information about the
magnetic field transport in the photosphere. Moreover, the transport proper-
ties of local magnetic field concentrations are closely related to the dynamics of
solar atmosphere turbulence. The physical processes analysed in the present
work represent one of the possible ways to investigate the efficiency of the
turbulent energy transfer to small scales, which may play an important role
in the energy dissipation processes occurring in the upper atmospheric layers.
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4.2 Tsunami effects on Mediterranean

On March 11, 2011 at 05 : 46 : 23 UTC the NE coast of Honshu island
(Japan) was struck by one of the largest earthquakes never occurred in the
world since historical times. The Mw 9.0 event released accumulated tec-
tonic stress over the last 700 years (Iinuma et al., 2011) and triggered a giant
tsunami that caused an estimated losses of 200-300 billion US dollars and
killed more than 10,000 people living along the coasts of Japan and elsewhere
in the Pacific region (Hayes, 2011; Hirose et al., 2011; Iinuma et al., 2011).
The period of the tsunami waves ranges from few minutes to several tenths
of minutes and generally it depends on the geographic location. At the same
time, its amplitude is large enough to be identified within the normal tidal
and non-tidal spectrum of sea-level variability processes (Gill , 1982; Lambeck ,
1988; Cartwright , 1999). Recent studies showed that large tsunamis can prop-
agates through the oceans even up to very distant regions (Merrifield et al.,
2005; Titov et al., 2005; Joseph et al., 2005; Woodworth et al., 2005, 2010).
Small amplitude sea level oscillations, superimposed to the normal tides, were
recorded in connection with the eastern Indian ocean tsunami of December
26 2004, even along the coasts of the British Isles, at thousand of km away
from the Mw 9.3 earthquake epicentre, even up the West coast of Africa. This
results could explain the findings of an overall tendency of giant earthquakes
to produce a global relative sea level variation (Melini and Piersanti , 2006).

The propagation of tsunami in oceans is a topic largely investigated by
means of fluid numerical simulations in shallow water approximation (see e.g.
(Geist , 2009; Titov et al., 2005) and references therein). This approach allowed
to understand many properties of the propagation, such as the role of the ori-
entation and intensity of the offshore seismic line source and the trapping
effect of mid-ocean ridge topographic wave guides that influences wave ampli-
tude, directionality, and global propagation patterns (see e.g Ref. (Titov et al.,
2005)). On the other hand, the possibility that a tsunami wave, produced by a
far seismic event, could affect in some way the Mediterranean sea, has received
less attention. This is mainly attributable to the irregular bathymetry of the
Gibraltar strait, that is believed to produce a strong damping and multiple
reflections of the wave thus decreasing the probability of penetration in the
Mediterranean basin. After the large 2004 Indian Ocean tsunami, additional
improvements to global tide gauge systems were performed for the monitoring
of both tsunamis (Titov et al., 2005) and variations in sea level (Woodworth et
al., 2010). This allowed to achieve, also in the Mediterranean, real time data
with a quite homogeneous spatial coverage and high time resolutions, needed
to reveal possible low amplitude fluctuations due to the far field destabilizing
effect of tsunamis in this basin.
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4.2.1 Data analysis and results

We focused on 31 sea level data in the period 9-15 march 2011. The sea
level signals, having a time sampling of 10 minutes and an accuracy of better
than 1 cm, have been retrieved from the IOC sea level station monitoring1,
from the Institute for Environmental Protection and Research (ISPRA)2 and
from the Permanent Service for Mean Sea Level (PSMSL)3. The geographic
distribution of the tide gauge stations is reported in fig.4.3. During the con-
sidered time window the weather situation around the stations was favourable
(mainly calm sea, low and constant wind velocity), thus not inducing critical
conditions of the sea surface for the quality of the sea level data set. Moreover,
our analysis was restricted to the tidal stations located in sheltered positions;
namely, the effects of both intensity and direction of the wind on the sea level
recordings, based on the length of the fetch and the subsurface topography
for the location, were negligible (Gill , 1982). Sea level observations were first
reduced for atmospheric pressure variations by applying an inverse barometric
correction to the data (Wunsch and Stammer , 1997).

Figure 4.3: Map of the tide gauge stations, in the Mediterranean, used in this study.
Numbers refer to the following stations: 1. Gibraltar, 2. Ceuta, 3. Melilla, 4. Palma de
Mallorca, 5. Cagliari, 6. Carloforte, 7. Civitavecchia, 8. Gaeta, 9. Genova, 10. Ginostra,
11. Imperia, 12. La Spezia, 13. Livorno, 14. Napoli, 15. Palinuro, 16. Porto Empedocle,
17. Porto Torres, 18. Salerno, 19. Catania, 20. Crotone, 21. Taranto, 22. Otranto, 23.
Bari, 24. Vieste, 25. Ortona, 26. San Benedetto, 27. Ancona, 28. Ravenna, 29. Venezia,
30. Trieste, 31. Hadera.

1www.ioc-sealevelmonitoring.org
2www.mareografico.it
3www.pol.ac.uk
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Figure 4.4: Time evolution of the sea levels (line A), contribution of the high
amplitude components S(t) (line B), instantaneous frequency of the highest
amplitude IMF (line C), low frequency contribution G(t) (line D) for the sta-
tions of Palma de Mallorca (4), Cagliari (5), Porto Empedocle (16) and Hadera
(31). Time is counted from the origin time of the Tohoku-Oki earthquake. The
dashed line corresponds to (2π)/12 hour−1 for Cagliari, Porto Empedocle and
Hadera and (2π)/24 hour−1 for Palma.

As an example raw data, in fig. 4.4 (row A) we show the sea level time
series L(t) at four stations. Time is measured as the lag from the earthquake
occurrence. A sudden change of regime can be identified in all the signals
after the earthquake. In fact, the regular tidal oscillation is broken, more
frequencies appear, and the time behaviour becomes more complex and highly
nonstationary. This kind of dynamical behaviour is common to all the records
we investigated. In fig. 4.5 we report the sea level time series L(t) for the
Cagliari station (panel a), along with the 12-hours return map L(t + ∆) vs.
L(t), for ∆ = 12 hours (panel b). The figure roughly provides evidences that
after the main shock the Mediterranean sea felt a strong phase and amplitude
perturbation of the tidal oscillation. In fact, for t ≤ 0 (blue line), the points of
the return map are approximately sorted along a straight line, indicating that
the oscillation amplitude and phase remain almost constant. On the contrary
for t > 0 (red line), the points are distributed on irregular ellipses, indicating
that the phase and amplitude are no more constant but change with time.

In order to characterize the observed change of dynamical behaviour, we
use the Empirical Mode Decomposition (EMD) (see appendix). Each sea
level time series L(t) is decomposed into a finite number n of Intrinsic Mode
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Figure 4.5: Time evolution of the sea level L(t) (panel a) and the 12-hours
return map L(t + ∆) vs. L(t) (panel b) for the Cagliari station (∆ = 12
hours). Time is counted from the origin time of the Tohoku-Oki earthquake.
Blue dashed line refers to times t ≤ 0, red full line refers to times t > 0.

Functions (IMF) θj(t) as

L(t) =

n−1∑
j=0

θj(t) + rn(t) . (4.1)

The IMFs, contaning information about the local properties of the signal are
empirical, i.e.not given a priori but obtained from the data by following the
”sifting” method (?). At the end of the procedure n empirical modes, ordered
with increasing characteristic time scale, and a residue rn(t), which describes
the mean trend if any, are obtained. The orthogonality of EMD decomposition
ensures that each IMF captures the empirical dynamical behaviour of a single
independent mode of the system, namely each j-mode describes a single phe-
nomenon within the complex dynamics. This allows to filter and reconstruct
the signal through partial sums in Equation (4.1) in order to obtain indepen-
dent contributions to the signal in different ranges of time scales (Huang et
al., 1998; Terradas et al., 2004; Vecchio et al., 2010).

When applied to the Mediterranean tide gauge data the EMD gives a num-
ber n of modes which in general depends on the station under analysis. As
obtained from the test of significance for the various IMFs (Wu and Huang ,
2004), the first three modes, j ≤ 2, represent high frequency noise while higher
j modes are associated with significant oscillations of the sea level at different
time scales. For the majority of the stations the IMF with the highest ampli-
tude has a period of τ ≈ 12 hours, corresponding to the well known semidiurnal
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oscillation. However, in the analysed data sets, the full semidiurnal component
of the tide is split in two or three IMFs, depending on the station. This means
that one IMF does not suffice to fully describe the temporal behaviour of the
12 hours tidal component. The previous result follows from the high sensi-
tivity of the EMD to local frequency fluctuations. The latters, still persisting
when meteorological effects have been removed, are strong enough as to affect
the regularity of the semidiurnal mode of oscillation. As mentioned before,
since for the properties of the EMD decomposition each IMF is associated to a
well defined time scale of the signal at hand, a regular semidiurnal oscillation
should be isolated in a single IMF. In presence of localized frequency fluctua-
tions new time scales arise and affect the regular oscillation of the high energy
tidal components. In this case, a single IMF is not able to account for the new
timescales and the time evolution of the 12 hour oscillation is split in two or
more IMFs. Of course, the sum of these EMD modes will describe the full con-
tribution of the semidiurnal oscillation to the sea level. For Palma de Mallorca
and the stations in the northern sector of the Adriatic sea (stations 26-30), the
simultaneous presence of both diurnal and semidiurnal components, as main
tidal constituents, has been detected. This is a well know phenomenon and it
should depend, in the Adriatic sea, on the basin characteristics, i.e., the low
sea depth and the semi-closed shape (Janeković and Kuzmić, 2005; Capuano
et al., 2011). For these cases the previous considerations are also valid for the
24 hours component which is split in two IMF. By exploiting the orthogonality
of the EMD decomposition, the signal L(t) has been divided, by partial sum in
equation (4.1), in four contributions namely L(t) = η(t) +S(t) +G(t) + rn(t).
The function η(t) is associated with the high-frequency noise, S(t), obtained
as the sum of of the high amplitude components (semi-diurnal and for some
station also diurnal), represents the basic tidal mode and G(t) describes the
remaining low-frequency contribution. An example of the time behaviour of
S(t) is reported in row B of fig.4.4. Its dynamics is far from being regular and
stationary since the waveforms abruptly change after t = 0. The variation of
the main tidal contribution can be better appreciated by looking at the in-
stantaneous frequency of the highest amplitude IMF (row C of fig. 4.4) which
is abruptly destabilized in correspondence of the change of oscillating regime
in S(t) and departs from the constant value of (2π)/12 hour−1. Note that
for Palma de Mallorca the reference frequency is (2π)/24 hour−1 since, in this
case, the highest amplitude mode is associated with the diurnal component.

EMD modes with longer periods describe low-frequency phenomena. The
function G(t), an example is reported in row D of fig.4.4, is characterized by
the increase of amplitude after t = 0. Figure 4.6 shows the contour plot of
the functions G(t), ordered according to the distance from Gibraltar. The
figure clearly indicates that the time at which the increased amplitude regime
is at its maximum absolute value is function of the distance from the Strait
of Gibraltar. This result is consistent with a travelling perturbation in the
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Figure 4.6: Contours of G(t) in the space-time plane. The x-axis reports the
time counted from the Tohoku-Oki earthquake, while the y-axis reports the
distance in Km from Gibraltar.

whole Mediterranean sea propagating from Gibraltar. The Adriatic stations,
for sake of clarity, have been excluded from fig.4.6. For these stations, due
to the Adriatic basin geographic characteristics, the time-distance relation is
inverted. In fact, the northernmost Adriatic stations are nearer to Gibraltar
but the perturbation has to cover a longer path before reaching them. As
shown in fig.4.6 the majority of stations shows a peak (in red) after t = 0,
which indicates a positive fluctuation of the sea level. On the other hand, some
records, including Hadera and the stations in the Ionian sea, are characterized
by a drop (in blue) followed by the transient increase of the sea level. This
behaviour can induced by the local seafloor topography and/or to the different
paths taken by the tsunami waves and reflection effects (Joseph et al., 2005).
The space-time representation allows to estimate the velocity of propagation of
the perturbation, in the Mediterranean sea, as about Vp ' 60 m/s. Note that,
this perturbation is revealed in the whole Mediterranean sea, being observed
up to Hadera, the easternmost station, about 13 hours after Gibraltar.

We hypothesize that both the indirect perturbation on the tidal frequency
and the direct transfer of small fluctuations beyond the Strait of Gibraltar,
are generated from the tsunami triggered by the March 11th 2011, Tohoku-
Oki earthquake. We remark that the timing of both these effects, varying
between ∼ 45 hours in Gibraltar and ∼ 58 hours in Hadera, are in agreement
with the results of theoretical models of tsunami propagation for which the
perturbation should arrive at Gibraltar in a time of about 38 hours after the
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Figure 4.7: Time evolution of the sea levels (a), semidiurnal IMF (b) and
instantaneous frequency (c) for the Cagliari station. Time is counted from the
origin time of the Tohoku-Oki earthquake.

earthquake4. The obtained results have been tested by looking at the sea level
records during the period 9-15 September 2011, in a time window which cannot
be related with the Tohoku-Oki earthquake. We assume that, in this period,
the possible transient effect of the tsunami is null and the system behaves
according with the usual dynamics. As expected, we found that the principal
tidal components shows a regular behaviour and are detected in a single IMF
by the EMD. This indicates that the splitting of the principal tidal component
in more IMFs along with the instantaneous frequency destabilization could be
plausibly associated with a transient effects, associated with the tsunami. As
an example, the results for the Cagliari station are reported in fig. 4.7. The
raw data are shown in panel a), and panel b) shows the regular semidiurnal
component associated with the largest amplitude IMF, whose characteristic
time scale is 12.27 hours. Panel c) shows the instantaneous frequency of the
IMF reported in panel b). The striking difference with Fig. 4.4 is evident. As
expected, the frequency is centered around the value 2π/12 hour−1 with low
amplitude stochastic fluctuations superimposed.

4http://nctr.pmel.noaa.gov/honshu20110311/honshu2011-globalmaxplot.png
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4.2.2 Summary

In this paper we investigated the anomalous sea level changes for 31 sta-
tions in the Mediterranean basin, due to a transient perturbation in the period
9− 15 March 2011. Once the atmospheric pressure effects have been removed
and the wind intensity and direction have been accounted for, with respect to
the position of the individual tidal stations, we hypothesize that the perturba-
tion is a consequence of the tsunami generated by the March 11th, 2011, Mw
9.0 Tohoku-Oki earthquake. Our analysis shows that the Mediterranean felt
the effect of the tsunami 40 − 50 hours after the main shock thus indicating
that tsunamis generated by strong earthquakes are truly global events. In par-
ticular, we revealed two kind of transient signatures. Firstly, the perturbation
generates strong frequency fluctuations affecting the regular behaviour of the
high amplitude tidal components, usually the semidiurnal and in some cases
also the diurnal one. As a consequence of the perturbation, these components
appear highly nonstationary and several IMFs are needed to reproduce their
full contribution. In addition the instantaneous frequency shows abrupt desta-
bilization after the earthquake occurrence. The physical mechanism causing
these manifestations should be related to a resonant response to the tsunami
at the strait entrance. Tides in enclosed basins, connected to the open sea
by a narrow strait, can manifest amplified or damped response to a forcing
action outside the basin (Maas, 1997). Due to nonlinear effects the basin may
exhibit chaotic modulation of the tidal amplitude and frequency. Since the
Mediterranean sea is similar to a closed basin with respect to the oceans and
is connected to Atlantic Ocean by a narrow strait, it could be affected by the
forcing action of the fluctuations associated with the tsunami and could mani-
fest nonlinear response leading to amplification and frequency destabilization.
The second signature consists in a propagating perturbation manifesting with
a weak increase of amplitude of the low frequency EMD modes, after the oc-
currence of the Tohoku-Oki earthquake. This perturbation, significant with
respect to the noise level, should be an evidence of the direct transmission
of tsunami fluctuations, characterized by long periods, through the Gibraltar
strait. The timing of the detected tidal perturbations at the recording sta-
tions are in agreement with the prediction of the global models of tsunami
propagation, for which the arrival at the straits of Gibraltar is expected about
38 hours after the onset of the earthquake. Effects on sea levels due to post-
seismic deformations (Melini and Piersanti , 2006), capable to cause global sea
level raise of the order of a fraction of mm (http://cires.colorado.edu/

~bilham/Honshu2011/Honshu2011.html) and direct propagation of surface
seismic waves from the epicenter, arriving at the Mediterranean region 20−30
minutes after the mainshock (www.emsc-csem.org), have been excluded since
not consistent with the observed sea level variations. Additionally, it is unlikely
that free oscillations of the Earth, excited by the high magnitude Tohoku-Oki
earthquake, originated the detected fluctuations since the timing and period
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Figure 4.8: Press release of INGV.

of the main mode of oscillation (Aki and Richards, 2002; Kanamori and An-
derson, 1975) are not in agreement with the timing and frequency of sea level
perturbations revealed by our observations. However, based on the available
seismological and geophysical literature (Aki and Richards, 2002) the effects
of free oscillations of the Earth on the sea level have not yet investigated and
the results presented in this paper provide new observational constraints for
these studies. The physical mechanisms briefly described above, need deeper
investigations and will be faced in a future paper.
This work, published on EPL A Letters Journal Exploring the Frontiers of
Physics (Vecchio et al., 2012), after a press release of INGV (figure has been
very successful and relief of many newspapers nations:
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Appendix A

Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) is a new method for analysing
nonlinear and non-stationary data and successfully applied in many different
fields (Loh et al., 2001; Echeverria et al., 2001; Coughlin et al., 2004; Vecchio
et al., 2010; Laurenza et al., 2012; Capparelli et al., 2011). Introduced by
Huang et al. (Huang et al., 1998) it decomposes the variance of signal into
a finite number of intrinsic mode functions (IMFs) and a residue by using an
adaptive basis derived from each data set through a so-called ”sifting” process.
Namely:

x(t) =

m−1∑
j=0

θj(t) + rm(t). (4.2)

where x(t) is a generic signal and each IMF θj(t) and residual rm(t) are
time-dependent. The ”sifting” algorithm works as follows:

1. all local maxima and minima of the time series x(t) were identificated

2. all local minima (maxima) were connected through a cubic spline as a
lower (upper) envelope of the time series

3. the signal h1(t) was calculated as the difference between the raw data
and the mean of lower and upper envelopes m1(t), namely h1(t) = x(t)−
m1(t)

4. h1(t) is a first IMF only if it satisfies two criteria: (i) the number of
extrema and the number of zero-crossing must either be equal or differ
at most by one; (ii) at any point the mean value of the lower and upper
envelope is zero. If h1(t) does not satisfy one of this terms, the step 3
is repeated using h1(t) as a raw data, namely, h11(t) = h1(t) −m11(t),
where m11(t) is a mean of the envelopes derived from h1. This procedure
is iterated k times until h1k satisfies the conditions (i) and (ii).

To guarantee that the IMF components contain enough physical properties
with respect to both amplitude and frequency modulations, a criterion to
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stop the sifting process has been introduced (Huang et al., 1998). Usually as
stopping criterion the Cauchy-type convergence criterion has been used, where
the sifting is carried to the point when the difference between the successive
sifted results is smaller than a given limit (Huang et al., 1998). By introducing
a kind of standard deviation σ defined as:

σ =
N∑
t=0

[
|h1(k)(t)| − |h1(k−1)(t)|

h21(k−1)(t)

]
(4.3)

the ”sifting” process is stopped when σ is smaller then a threshold value
σthr, which generally is fixed as σthr=0.3. By construction, the number of
extrema is decreased when going from one residual to the next (thus guaran-
teeing that the complete decomposition is achieved in a finite number of steps),
and the corresponding spectral supports are expected to decrease accordingly.
While modes and residuals can intuitively be given a ”spectral” interpreta-
tion, it is worth stressing the fact that, in the general case, their high vs. low
frequency discrimination applies only locally and corresponds by no way to a
pre-determined sub band filtering (as, e.g., in a wavelet transform). Selection
of modes rather corresponds to an automatic and adaptive (signal-dependent)
time-variant filtering.

Each IMF has its own timescale, τj , and represents a zero mean oscillation
experiencing amplitude and frequency modulations; namely the j-th IMF can
be written as θj(t) = Aj(t) cos[ωj(t)·t+ϕj ], where Aj(t) and ωj(t) are the time
dependent amplitude and frequency of the j-th mode, respectively. The IMF
timescale is computed as the average time between local maxima and minima.
The EMD allows to define, for each IMF, a meaningful instantaneous frequency
calculated as follows. The Hilbert transform is applied on each IMFs, namely

θ∗j (t) =
1

π
P

∫ ∞
−∞

θj(t
′)

t− t′
dt′ (4.4)

where P indicates the Cauchy principal value. θj(t) and θ∗j (t) form the complex
conjugate pair so that the instantaneous phase can be calculated as φj(t) =
arctan[θ∗j (t)/θj(t)]. The instantaneous frequency follows as ωj(t) = dφj/dt.
This definition of ω(t) is quite general and in principle some limitations on the
data are necessary in order to obtain instantaneous frequency as single value
function of time. The latter property is fulfilled by the EMD basis functions
which allow to obtain meaningful instantaneous frequency consistent with the
physics of the system under study (Huang et al., 1998).

The EMD represents a powerful tool for time-frequency analysis of non-
linear and nonstationary data. Being based on an adaptive basis, it allows
to overcome some disadvantages of the Fourier spectral analysis when applied
to real nonperiodic and nonstationary data, such as the a priori definition of
the Fourier modes, that often are far from being proper eigenfunctions of the
phenomenon at hand. Moreover, when dealing with nonperiodic data, Fourier
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modes are mixed together in order to build up a solution corresponding to
the fictitious periodic boundary conditions imposed by the analysis. On the
other hand, the EMD does not introduce spurious harmonics, as in case of
Fourier analysis, in reproducing non-stationary data and nonlinear waveform
deformations. The EMD frequency is derived by differentiation rather than
convolution, as in case of Fourier, and, therefore, there is not an uncertainty
principle limitation on time or frequency resolution. With the above definition
of ω(t) both inter- and intra-wave frequency modulations, due to waveform
deformation by nonlinear effects and the dispersive propagation of waves re-
spectively, can be detected. Note that the possibility to describe frequency
modulations is completely lost in Fourier analysis, and only the interwave fre-
quency modulation can be roughly recognized through the wavelet analysis
(Huang et al., 1998). We remark that τj cannot be interpreted as the period
of Fourier modes since it provides just an estimate of the timescale character-
izing the IMF for which it is computed. The EMD decomposition is complete
and orthogonal (Huang et al., 1998; Cummings et al., 2004). The latter prop-
erty, even if not theoretically guaranteed, is practically fulfilled (Huang et al.,
1998) and should be checked numerically a posteriori.
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Király, A.,and I. M. Jánosi (2005). Detrended fluctuation analysis of daily tem-
perature records: Geographic dependence over Australia. Meteorol. Atmos.
Phys. , 8 8, 119. 27, 34, 35, 37, 40
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