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Chapter 1

Introduction

We consider the problem 
−∆u =

f

uβ
+ g(x, u) a.e. in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN , β > 0 and g is a Carathéodory function fulfilling suitable
assumptions that will be specified later. We will assume that the function f(·) is nonnegative
and belongs to L∞(Ω) and bounded away from zero in some preliminary results. In our main
applications we will only assume that f(·) is a nonnegative L1(Ω)-function if β > 1, while f(·) is

a nonnegative Lm(Ω)-function with m = 2N
N+2+β(N−2)

=
(

2∗

1−β

)′
if 0 < β ≤ 1.

Singular problems like (1.1) where first considered in the seminal paper [11]. The literature on
this topic is now wide and the interest on singular elliptic equations is growing up. Let us refer
the interested readers to the papers [6, 7, 8, 16, 18, 19].

Note that the equation −∆u = f
uβ

+ g(x, u) has to be understood in the weak distributional
meaning as follows:∫

Ω
(Du , Dϕ) dx =

∫
Ω

(
f

uβ
+ g(x, u)

)
ϕdx ∀ϕ ∈ C1

c (Ω) ,

so that each term make sense, being u positive in the interior of the domain.
In order to state our main results let us consider u0 ∈ C(Ω) ∩ C2(Ω) the unique solution to the
problem: 

−∆u0 =
f

u0
β

in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(1.2)

We will prove the existence of u0 exploiting two different approaches. The first one is based on the
the scheme used in [4] which exploits a truncation argument. Actually, in a slightly more general
setting, for n ∈ N, we set

fn(x) = min{f, n}

and we consider the truncated regularized problem:
−div(M(x)Dun) =

fn(
un + 1

n

)β in Ω,

un = 0 on ∂Ω.

(1.3)

Obtaining uniform bounds for un and passing to the limit the existence result follows.

The second approach we use is based on a sub-supersolution method as in [8]. We will describe
this technique later, let us only mention that a very refined analysis is needed to take care about
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the singular nature of the problem near the boundary. In fact, the sub-supersolutions method
that we use is based on minimization arguments and comparison principles that can not be proved
in a standard way because of the lack of regularity of the solution up to the boundary and the
singularity of the nonlinearity.

It is worthwhile to mention that it is needed to our purpose to present both the approaches.
In fact, by the first one we can deduce important summability properties of the solution. On
the other hand, the second approach allows us to prove that the solution is continuous up to the
boundary under suitable assumptions. Both these information will be used in the applications.

A crucial point in all the thesis will be the fact that a solution u to (1.1) is generally not in
H1

0 (Ω) but can be decomposed as
u = u0 + w

where w ∈ H1
0 (Ω) and u0 is defined in (1.2).

Note that by the Lazer-McKenna result [19], recalled in Chapter 2, we know that u0 does not
belong to H1

0 (Ω) when β ≥ 3.
It also follows by [19] that a standard variational approach can not be carried out in our setting,
since the energy functional might be identically infinity in H1

0 (Ω).

Under suitable assumptions, following the variational characterization in [8], we will prove
that problem (1.1) can be reduced to find u ∈ H1

loc(Ω) fulfilling the variational inequality:



u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω),∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω

f

uβ
(v − u) dx+

∫
Ω
g(x, u)(v − u) dx

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω,

u ≤ 0 on ∂Ω,

(1.4)

where, as customary, we say that u ≤ 0 on ∂Ω if, for every ε > 0, it follows that (u−ε)+ ∈ H1
0 (Ω).

Let now G0 : Ω× R→ [0,+∞] be defined as

G0(x, s) = φ(u0(x) + s)− φ(u0(x)) +
s

uβ0 (x)

where

φ(s) =

−
∫ s

1

1

tβ
dt if s ≥ 0,

+∞ if s < 0 .

We also set g1(x, s) = g(x, u0(x) + s),

G1(x, s) =

∫ s

0
g1(x, t) dt

and F : H1
0 (Ω)→ (−∞,+∞] defined as

F (w) = F̃0(w) + γ(w),

where

F̃0(w) =
1

2

∫
Ω
|Dw|2 dx+

∫
Ω
f G0(x,w) dx

and

γ(w) = −
∫

Ω
G1(x,w) dx.

Then we have the following result:

Theorem 1.0.1. Assume that f is a bounded positive function which is bounded away form zero.
Then the following assertions are equivalent:
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(a) u ∈ H1
loc(Ω) ∩ L

2N
N−2 (Ω) and


−∆u =

f

uβ
+ g(x, u) in D′(Ω),

u > 0 a.e. in Ω, and u−β ∈ L1
loc(Ω),

u ≤ 0 on ∂Ω.

(1.5)

(b) u ∈ u0 +H1
0 (Ω) and w = u− u0 is a critical point of F .

The variational characterization provided by Theorem 1.0.1 allows to exploit variational meth-
ods in order to prove existence of solutions in u0 +H1

0 (Ω). For example, in [6] a jumping problem
in the spirit of [1] is considered in the setting of singular semilinear elliptic equations. In particular,
the main ingredients in [6] are the variational characterization of [8] and the use of a generalized
version (see [22]) of the celebrated Mountain Pass Theorem of Ambrosetti and Rabinowitz [2].

In this setting we consider the following jumping problem.
Let β > 0 and t ∈ R and denote by λ1 the first eigenvalue of −∆ with zero homogeneous Dirichlet
boundary condition and consider ϕ1 an associated first eigenfunction chosen such that ϕ1 > 0 in
Ω. We study the existence of solutions to the problem


−∆u =

f

uβ
+ g(x, u)− t ϕ1 a.e. in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.6)

where Ω is a bounded smooth domain and we assume that g : Ω × R → R is a Carathéodory
function which satisfies the following:

(g1) there exist a and b such that

|g(x, s)| ≤ a(x) + b(x) |s| for a.e. x ∈ Ω and every s ∈ R,

with a ∈ L
2N
N+2 (Ω) and b ∈ L

N
2 (Ω) if n ≥ 3; a, b ∈ Lp(Ω) for some p > 1 if n = 2; a,

b ∈ L1(Ω) if n = 1;

(g2) there exists α ∈ R such that

lim
s→+∞

g(x, s)

s
= α for a.e. x ∈ Ω.

As showed above, problem (1.6) is equivalent to find u ∈ H1
loc(Ω) fulfilling the variational inequal-

ity: 

u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω),∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω

f

uβ
(v − u) dx

+

∫
Ω

(g(x, u)− t ϕ1) (v − u) dx.

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω,

u ≤ 0 on ∂Ω.

(1.7)
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Our main result, see also [9], is the following:

Theorem 1.0.2. Let β > 0 and assume that g(x, s) satisfies assumptions (g1)-(g2) with α > λ1

and a(x), b(x) ∈ L∞(Ω). Assume that f is a nonnegative L1(Ω)-function if β > 1, while f is a
nonnegative Lm(Ω)-function with m = 2N

N+2+β(N−2)
if 0 < β ≤ 1. Moreover assume that, given

any compact set C ⊂ Ω, there exists a constant θ = θ(C) > 0 with

f ≥ θ a.e. in C .

Then there exists t̄ ∈ R such that, for any t ≥ t̄ there exist u1 , u2 ∈ H1
loc(Ω) solutions to (1.6).

Furthermore
ui := u0 + wi for i = 1, 2,

where u0 ∈ H1
loc(Ω) is defined in (1.2) and wi ∈ H1

0 (Ω). Moreover ui are strictly bounded away
from zero in the interior of Ω.

The idea of the proof of Theorem 1.0.2 is the following.
We define the truncated function of f as follows

fn := max
{ 1

n
, min

{
n , f

}}
.

Following [6], we are able to prove that there exists t̄ ∈ R, not depending on n ∈ N, such that, for
any t ≥ t̄, there exist two solutions of the truncated problem involving fn, namely

−∆un =
fn

unβ
+ g(x, un)− tϕ1 in Ω,

un > 0 in Ω,

un = 0 for x ∈ ∂Ω ,

(1.8)

where β > 0 and un ∈ C(Ω) ∩ C2(Ω).
As above,

un = u0n + wn (1.9)

with wn ∈ H1
0 (Ω) ∩ C(Ω) ∩ C2(Ω) and u0n ∈ H1

loc(Ω) ∩ C(Ω) ∩ C2(Ω) is the unique solution to
the problem: 

−∆u0n =
fn

u0n
β

in Ω,

u0n > 0 in Ω,

u0n = 0 on ∂Ω.

(1.10)

To deduce Theorem 1.0.2, we prove that wn is uniformly bounded in H1
0 (Ω) and then pass to the

limit. It is a crucial ingredient here to prove that the solutions un are strictly uniformly bounded
away from zero in the interior of Ω, as proved in Lemma 6.1.2. This is needed in order to pass to
the limit in the equation, since the nonlinearity is singular.

In the second part of the thesis, we prove a symmetry (and monotonicity) result, exploiting
the moving plane method of James Serrin.
We consider the problem 

−∆u =
1

uβ
+ g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.11)

where β > 0, Ω is a bounded smooth domain and u ∈ C(Ω) ∩ C2(Ω).
Our main results will be proved under the following assumption

(Hp) g(·) is locally Lipschitz continuous, positive (g(s) > 0 for s > 0 and g(0) ≥ 0) and non-
decreasing.

As mentioned above, the proof of our symmetry result is based on the well known Moving Plane
Method [20], that was used in a clever way in the celebrated paper [13] in the semilinear non-
degenerate case. Actually our proof is more similar to the one of [3] and is based on the weak
comparison principle in small domains.
Because of the singular nature of our problem, we have to take care of two difficulties, namely:
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◦ generally u does not belong to H1
0 (Ω),

◦ 1
sβ

+ g(s) is not Lipschitz continuous at zero.

In fact, as follows by the variational characterization described here above, the solution u can be
decomposed as u = u0 + w where w ∈ H1

0 (Ω) and u0 ∈ C(Ω) ∩ C2(Ω) is the unique solution to
problem (1.2) with f = 1, namely:


−∆u0 =

1

u0
β

in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(1.12)

Let us state our symmetry result (see [10]):

Theorem 1.0.3. Let u ∈ C(Ω)∩C2(Ω) be a solution to (1.11) (u = u0 +w) with g(·) satisfying
(Hp). Assume that the domain Ω is strictly convex w.r.t. the ν−direction (ν ∈ SN−1) and
symmetric w.r.t. T ν0 , where

T ν0 = {x ∈ RN : x · ν = 0}.

Then u is symmetric w.r.t. T ν0 and non-decreasing w.r.t. the ν−direction in Ων0 , where

Ωνλ = {x ∈ Ω : x · ν < λ} .

Moreover, if Ω is a ball, then u is radially symmetric with ∂u
∂r

(r) < 0 for r 6= 0.

For the reader’s convenience, we describe here below the scheme of the proof of Theorem 1.0.3.

(i) We first remark that, by [4] (see Chapter 3), we get that u0 is the limit of a sequence {un}
of solutions to a truncated problem. We exploit this to deduce symmetry and monotonicity
properties of {un} and, consequently, of u0, since the moving plane procedure applies in a
standard way to the truncated problem.

(ii) By (i), recalling the decomposition u = u0 + w, we are reduced to prove symmetry and
monotonicity properties of w. To do this we prove some comparison principles for w needed
in the application of the moving plane procedure.

(iii) In Section 7.6, we give some details about the adaptation of the moving plane procedure
to the study of the monotonicity and symmetry of w. It is worth emphasizing that the
moving plane procedure is applied in our approach only to the H1

0 (Ω) part of u.
Note also that Theorem 1.0.3 is proved in Section 7.7, as a consequence of a more general
result proved in Proposition 7.6.1.

The thesis is organized as follows. In Chapter 2 we present the Lazer-Mckenna result (see
[19]), showing that the solution to problem (1.2) generally does not belong to H1

0 (Ω) if β ≥ 3
and, therefore, a standard variational approach fails. In Chapter 3 we consider the equation
−∆u = f u−β : at first we present the results of existence and regularity due to Boccardo and
Orsina (see [4]) while, in the second part, we extablish a result of existence and uniqueness for the
problem, by improving an idea due to Canino and Degiovanni (see [8]). In Chapter 4 we present
a variational approach to our problem, following the idea in [8]. In Chapter 5 we study a jumping
problem for the equation −∆u = f u−β + g(x, u) − t ϕ1 with bounded f and in Chapter 6 we
consider a more general setting, with nonnegative unbounded f in L1(Ω). In Chapter 7 we prove
a symmetry and monotonicity result, exploiting the the moving plane method of James Serrin for
positive solutions to the equation −∆u = u−β + g(u).
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1.1 Introduzione
Consideriamo il problema 

−∆u =
f

uβ
+ g(x, u) a.e. in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.13)

dove Ω è un dominio limitato in RN , β > 0 e g è una funzione di Carathéodory che soddisfa
alcune opportune condizioni che verranno specificate in seguito. Supporremo che la funzione f(·)
sia non negativa, appartenente a L∞(Ω) e staccata dallo zero in alcuni risultati preliminari. Nel
principale risultato, invece, assumeremo solo che f(·) sia una funzione non negativa in L1(Ω) se

β > 1, mentre che f(·) sia una funzione non negativa di Lm(Ω) con m = 2N
N+2+β(N−2)

=
(

2∗

1−β

)′
se 0 < β ≤ 1.
Problemi singolari come (1.13) furono considerati per la prima volta nel lavoro [11]. La letteratura
su quest’argomento è ampia e l’interesse verso le equazioni singolari ellittiche sta crescendo. Ai
lettori interessati suggeriamo [6, 7, 8, 16, 18, 19].

L’equazione −∆u = f
uβ

+ g(x, u) deve intendersi nel weak distributional sense, come segue:

∫
Ω

(Du , Dϕ) dx =

∫
Ω

(
f

uβ
+ g(x, u)

)
ϕdx ∀ϕ ∈ C1

c (Ω) ,

in modo che ogni termine abbia senso, poiché u è positiva nell’interno del dominio.
Per enunciare il nostro principale risultato, consideriamo u0 ∈ C(Ω)∩C2(Ω) l’unica soluzione del
problema: 

−∆u0 =
f

u0
β

in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(1.14)

L’esistenza di u0 sarà dimostrata utilizzando due approcci differenti. Il primo è basato sullo
schema usato in [4], dove è presente un argomento di troncamento. Più precisamente, in uno
scenario leggermente diverso, per n ∈ N, poniamo

fn(x) = min{f, n}

e consideriamo il problema troncato generalizzato:
−div(M(x)Dun) =

fn(
un + 1

n

)β in Ω,

un = 0 on ∂Ω.

(1.15)

Il risultato di esistenza segue ottenendo limiti uniformi su un e passando al limite.

Il secondo approccio che utilizziamo è basato su un metodo di sotto-soprasoluzione come in
[8]. Descriveremo questa tecnica nei dettagli dopo, per il momento mettiamo in evidenza solo
come sia necessaria un’analisi molto raffinata a causa della natura singolare del problema vicino
al bordo. Infatti, il metodo di sotto-soprasoluzione che utilizziamo, è basato su argomenti di
minimizzazione e principi di confronto che non possono essere dimostrati in maniera standard, a
causa della perdita di regolarità della soluzione vicino al bordo e poiché la non-linearità è singolare.
Vale la pena sottolineare che entrambi gli approcci sono necessari alla nostra trattazione. Infatti,
dal primo deduciamo importanti proprietà di sommabilità della soluzione. D’altra parte, il sec-
ondo metodo ci permette di dimostrare che, sotto opportune ipotesi, la soluzione è continua fino
al bordo.

Un punto cruciale in tutta la tesi sarà il fatto che una soluzione u di (1.13) in genere non
appartiene a H1

0 (Ω), ma può essere decomposta come

u = u0 + w
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dove w ∈ H1
0 (Ω) e u0 è definita in (1.14).

Osserviamo che da un risultato di Lazer e McKenna [19], richiamato in 2, sappiamo che u0 non
appartiene a H1

0 (Ω) quando β ≥ 3.
Inoltre, da [19] segue anche che non è possibile utilizzare un approccio variazionale standard nel
nostro caso, poiché il funzionale energia può essere identicamente uguale a infinito in H1

0 (Ω).

Sotto opportune ipotesi, seguendo la caratterizzazione variazionale utilizzata in [8], dimostr-
eremo che il problema (1.13) è equivalente a trovare u ∈ H1

loc(Ω) che soddisfi la disuguaglianza
variazionale: 

u > 0 a.e. in Ω e u−β ∈ L1
loc(Ω),∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω

f

uβ
(v − u) dx+

∫
Ω
g(x, u)(v − u) dx

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) con v ≥ 0 a.e. in Ω,

u ≤ 0 on ∂Ω,

(1.16)

dove, come usuale, diciamo che u ≤ 0 su ∂Ω se, per ogni ε > 0, si ha che (u− ε)+ ∈ H1
0 (Ω).

Sia ora G0 : Ω× R→ [0,+∞] definita come

G0(x, s) = φ(u0(x) + s)− φ(u0(x)) +
s

uβ0 (x)

dove

φ(s) =

−
∫ s

1

1

tβ
dt if s ≥ 0,

+∞ if s < 0 .

Poniamo inoltre g1(x, s) = g(x, u0(x) + s),

G1(x, s) =

∫ s

0
g1(x, t) dt

e F : H1
0 (Ω)→ (−∞,+∞] definito come

F (w) = F̃0(w) + γ(w),

dove

F̃0(w) =
1

2

∫
Ω
|Dw|2 dx+

∫
Ω
f G0(x,w) dx,

γ(w) = −
∫

Ω
G1(x,w) dx.

Allora abbiamo il seguente risultato:

Theorem 1.1.1. Supponiamo che f sia una funzione positiva limitata e staccata da zero. Allora
le seguenti affermazioni sono equivalenti:

(a) u ∈ H1
loc(Ω) ∩ L

2N
N−2 (Ω) e


−∆u =

f

uβ
+ g(x, u) in D′(Ω),

u > 0 a.e. in Ω, and u−β ∈ L1
loc(Ω),

u ≤ 0 on ∂Ω.

(1.17)

(b) u ∈ u0 +H1
0 (Ω) e w = u− u0 è un punto critico di F .
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La caratterizzazione variazionale dimostrata nel Theorem 1.1.1 ci permette di utilizzare
metodi variazionali per dimostrare l’esistenza di soluzioni in u0 + H1

0 (Ω). Per esempio, in [6]
viene considerato un problema di jumping nello spirito di [1] nell’ambiente delle equazioni ellit-
tiche semilineari singolari. In particolare gli ingredienti principali in [6] sono la caratterizzazione
variazionale di [8] e l’uso di una versione generalizzata (vedi [22]) del famoso Mountain Pass The-
orem di Ambrosetti e Rabinowitz [2].

Consideriamo il seguente problema di jumping.
Sia β > 0 e t ∈ R e indichiamo con λ1 il primo autovalore di −∆ con condizione di Dirichlet sul
bordo nulla e consideriamo ϕ1 una prima autofunzione associata tale che ϕ1 > 0 in Ω. Studiamo
l’esistenza di soluzioni del problema

−∆u =
f

uβ
+ g(x, u)− t ϕ1 a.e. in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.18)

dove Ω è un dominio liscio limitato e assumiamo che g : Ω × R → R sia una funzione di
Carathéodory che soddisfa le seguenti condizioni:

(g1) esistono a e b tali che

|g(x, s)| ≤ a(x) + b(x) |s| per a.e. x ∈ Ω e ogni s ∈ R

con a ∈ L
2N
N+2 (Ω) e b ∈ L

N
2 (Ω) se n ≥ 3; a, b ∈ Lp(Ω) per qualche p > 1 se n = 2; a,

b ∈ L1(Ω) se n = 1.

(g2) esiste α ∈ R tale che

lim
s→+∞

g(x, s)

s
= α for a.e. x ∈ Ω.

Come detto prima, il problema (1.18) è equivalente a determinare u ∈ H1
loc(Ω) che soddisfi la

disuguaglianza variazionale:



u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω),∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω

f

uβ
(v − u) dx

+

∫
Ω

(g(x, u)− t ϕ1) (v − u) dx.

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω,

u ≤ 0 on ∂Ω.

(1.19)

Il nostro principale risultato, vedi anche [9], è il seguente:

Theorem 1.1.2. Sia β > 0 e supponiamo che g(x , s) soddisfi le condizioni (g1)-(g2) con α > λ1

e a(x), b(x) ∈ L∞(Ω). Supponiamo che f sia una funzione non negativa in L1(Ω) se β > 1,
mentre f sia una funzione non negativa in Lm(Ω) con m = 2N

N+2+β(N−2)
se 0 < β ≤ 1. Inoltre

supponiamo che, dato un qualsiasi insieme compatto C ⊂ Ω, esista una costante θ = θ(C) > 0
con

f ≥ θ a.e. in C .

Allora esiste t̄ ∈ R tale che, per ogni t ≥ t̄ esistono u1 , u2 ∈ H1
loc(Ω) soluzioni di (1.18). Inoltre

ui := u0 + wi for i = 1, 2,

dove u0 ∈ H1
loc(Ω) è definita in (1.14) e wi ∈ H1

0 (Ω). Inoltre ui sono strettamente staccate dallo
zero nell’interno di Ω.
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L’idea della dimostrazione del Theorem 1.1.2 è la seguente.
Definiamo la funzione troncata di f come segue

fn := max
{ 1

n
, min

{
n , f

}}
.

Seguendo l’idea in [6] è possibile dimostrare che esiste t̄ ∈ R, non dipendente da n ∈ N, tale che,
per ogni t ≥ t̄, esistono due soluzioni del problema che riguarda fn, cioè

−∆un =
fn

unβ
+ g(x, un)− tϕ1 in Ω,

un > 0 in Ω,

un = 0 for x ∈ ∂Ω ,

(1.20)

dove β > 0, un ∈ C(Ω) ∩ C2(Ω). Come prima,

un = u0n + wn (1.21)

con wn ∈ H1
0 (Ω)∩C(Ω)∩C2(Ω) e u0n ∈ H1

loc(Ω)∩ C(Ω)∩C2(Ω) è l’unica soluzione del problema:
−∆u0n =

fn

u0n
β

in Ω,

u0n > 0 in Ω,

u0n = 0 on ∂Ω.

(1.22)

Per dimostrare il Theorem 1.1.2, mostriamo che wn è uniformemente limitata in H1
0 (Ω) e quindi

passiamo al limite. Un punto cruciale è mostrare che le soluzioni un sono uniformemente stretta-
mente staccate da zero nell’interno di Ω, come mostrato in Lemma 6.1.2. Questo è necessario per
passare al limite nell’equazione, poiché la non-linearità è singolare.

Nella seconda parte della tesi, dimostriamo un risultato di simmetria (e monotonia), utiliz-
zando il metodo del moving plane di James Serrin.
Consideriamo il problema 

−∆u =
1

uβ
+ g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.23)

dove β > 0, Ω è un dominio liscio limitato e u ∈ C(Ω) ∩ C2(Ω).
I nostri risultati principali saranno dimostrati sotto la seguente ipotesi:

(Hp) g(·) è locally Lipschitz continuous, positiva (g(s) > 0 for s > 0 and g(0) ≥ 0) e non
decrescente.

Come accennato prima, la dimostrazione del nostro risultato di simmetria è basata sul famoso
metodo del moving plane, vedi [20], che fu usato nel celebre lavoro [13] nel caso semilineare non
degenere. In realtà, la nostra dimostrazione è più simile a quella utilizzata in [3] (vedi Section
7.1) ed è basata sul principio del confronto debole in piccoli domini.
A causa della natura singolare del nostro problema, dobbiamo tener conto di due difficoltà, ovvero:

◦ generalmente u non appartiene a H1
0 (Ω),

◦ 1
sβ

+ g(s) non è Lipschitz continuous in zero.

Infatti, come segue dalla caratterizzazione variazionale descritta precedentemente, la soluzione u
può essere decomposta come u = u0 + w dove w ∈ H1

0 (Ω) e u0 ∈ C(Ω)∩C2(Ω) è l’unica soluzione
del problema (1.14) con f = 1, cioè:

−∆u0 =
1

u0
β

in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(1.24)

Enunciamo ora il nostro risultato di simmetria (vedi [10]):
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Theorem 1.1.3. Sia u ∈ C(Ω)∩C2(Ω) una soluzione di (1.23) (u = u0+w) con g(·) che soddisfa
(Hp). Supponiamo che il dominio Ω sia strettamente convesso nella direzione ν (ν ∈ SN−1) e
simmetrico rispetto a T ν0 , dove

T ν0 = {x ∈ RN : x · ν = 0}.

Allora u è simmetrica rispetto a T ν0 e non decrescente nella direzione ν in Ων0 , dove

Ωνλ = {x ∈ Ω : x · ν < λ} .

Inoltre, se Ω è una palla, allora u è radiale con ∂u
∂r

(r) < 0 per r 6= 0.

Per semplicità di lettura, descriviamo lo schema della dimostrazione del Theorem 1.1.3.

(i) Osserviamo innanzitutto che, da [4] (vedi Chapter 3), sappiamo che u0 è il limite di una
successione {un} di soluzioni di un problema troncato. Utilizziamo ciò per dedurre pro-
prietà di simmetria e monotonia di {un} e, conseguentemente, di u0, poiché la procedura
di moving plane si applica in maniera standard al problema troncato.

(ii) Da (i), ricordando la decomposizione u = u0 +w, segue che è necessario dimostrare solo la
simmetria e la monotonia di w. Per fare ciò dimostriamo alcuni principi di confronto per
w che sono necessari per applicare il moving plane.

(iii) In Section 7.6, diamo alcuni dettagli sull’adattamento del moving plane allo studio della
simmetria e della monotonia di w. Vale la pena di evidenziare che il metodo del moving
plane è applicato nel nostro caso solo alla parte H1

0 (Ω) di u.
Osserviamo anche che Theorem 1.1.3 è dimostrato in Section 7.7, come conseguenza di un
risultato più generale dimostrato in 7.6.1.

La tesi è organizzata come segue. In Chapter 2 presentiamo il risultato di Lazer e Mckenna
(vedi [19]), mostrando che la soluzione del problema (1.14) generalmente non appartiene a H1

0 (Ω)
se β ≥ 3 e, conseguentemente, un approccio variazionale standard fallisce. In Chapter 3 con-
sideriamo l’equazione −∆u = f u−β ; all’inizio del capitolo presentiamo il risultato di esistenza
e regolarità dovuto a Boccardo e Orsina (vedi [4]) mentre, nella seconda parte, dimostriamo un
risultato di esistenza e unicità, sulla linea di un’idea di Canino e Degiovanni (vedi [8]). In Chapter
4 presentiamo un approccio variazionale al nostro problema, seguendo l’idea in [8]. In Chapter 5
studiamo un problema di jumping per l’equazione −∆u = f u−β + g(x, u)− t ϕ1 con f limitata
e in Chapter 6 consideriamo una situazione più generale, con f in L1(Ω) non negativa e non
limitata. In Chapter 7 dimostriamo un risultato di simmetria e monotonia, utilizzando il metodo
del moving plane di James Serrin per soluzioni positive dell’equazione −∆u = u−β + g(u)



Chapter 2

The Lazer-McKenna result

In this chapter we recall the Lazer-McKenna result [19], which states that positive solutions to

−∆u = f
uβ

, under zero Dirichlet boundary condition, belongs to W 1,2(Ω) if and only if β < 3.
This is important to deduce that a standard variational approach to the existence of solutions
fails in this case. In fact the associated energy functional might be identically +∞ in H1

0 (Ω).

2.1 Introduction
Let Ω be a bounded smooth domain in RN with N ≥ 1, f be a positive function defined in Ω,
β > 0 a real number and let us consider the problem

−∆u =
f

uβ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(2.1)

Problem (2.1) has been studied in [11] for general regions and in [12] under the assumption that
Ω is the open unit ball of RN and f(x) = q(|x|), where q is a continuous function which is defined
continuous and nonnegative on [0, 1). In [11] it is shown that solutions exist under the assumption
that Ω is C3 and estimates are given for the behavior of the solutions as x approaches the boundary
of Ω. In particular, if β > 1, it is shown that solutions fail to be in C1(Ω).
Actually, in [11] the authors prove more general results for the existence of solutions, but β > 1
is the case where behavior near the boundary is studied. In [19] the authors show that if Ω has
regular boundary, f is regular on Ω and β is any positive number, it is possible to prove that there
is a unique solution of (2.1) which is positive on Ω and in C2+α(Ω) ∩ C(Ω). The proof does not
involve in any sense the shape of Ω. In the paper a necessary and sufficient condition that this
solution have a finite Dirichlet integral is also given.
The proof is based on the choice of suitable upper and lower solutions and, in particular, it is
proved that problem (2.1) can have a classical solution but not a weak solution.
We have the following:

Theorem 2.1.1. Let Ω ⊂ RN , N ≥ 1, be a bounded domain with smooth boundary ∂Ω (of class
C2+α with 0 < α < 1). If f ∈ Cα(Ω), f(x) > 0 for all x ∈ Ω and β > 0, then there exists
a unique u ∈ C2+α(Ω) ∩ C(Ω) solution of problem (2.1). Moreover, denoting by λ1 the first
eigenvalue of −∆ with homogeneous Dirichlet condition and by ϕ1 an associated eigenfunction
with ϕ1 > 0 in Ω and considering the case β > 1, then there exist positive constants b1 and b2
such that

b1 ϕ
2

1+β

1 ≤ u ≤ b2 ϕ
2

1+β

1

in Ω.

Theorem 2.1.2. The solution u founded in Theorem (2.1.1) is in W 1,2(Ω) if and only if β < 3.
If β > 1, then u is not in C1(Ω).
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2.2 Proof of Theorem 2.1.1
Assume β > 1 and consider Ψ(x) = bϕ1(x)t where b > 0 is a constant and t = 2

1+β
. By direct

calculation we have that

−∆ Ψ =
q(x, b)

Ψβ
∀x ∈ Ω (2.2)

where q(x, b) = b1+β(t(1− t)|Dϕ1|2 + tλ1ϕ2
1). Since 0 < t < 1, it is possible to choose b1 and b2

with 0 < b1 < b2, such that

q(x, b1) < u(x) < q(x, b2) ∀x ∈ Ω. (2.3)

For k = 1, 2 let uk = bkϕ
t
1. Since by (2.2) we have

−∆u1 =
q(x, b1)

uβ
,

it follows that

−∆u1 −
f

uβ1
=
q(x, b1)− f

uβ1
(2.4)

and by (2.3)

−∆u1 −
f

uβ1
< 0.

By similar considerations it follows that

−∆u2 −
f

uβ2
> 0.

If u ∈ C2+α(Ω) ∩ C(Ω) and satisfies (2.1), then

u1(x) ≤ u(x) ≤ u2(x) ∀x ∈ Ω.

By contradiction, let us assume that there exists x0 ∈ Ω such that 0 < u(x0) < u1(x0) and that
the minimum of the function u−u1 in Ω is assumed at x0. Since u satisfies problem (2.1), by the
hypothesis on x0 and by (2.4) it follows that

−∆ (u− u1)(x0) = −∆u(x0) + ∆u1(x0) =
f(x0)

uβ
+ ∆u1(x0)

> f(x0)

(
1

uβ(x0)
−

1

uβ1 (x0)

)
> 0

which contradicts the fact that x0 is the minimum of the function u − u1. A similar argument
shows that u(x) ≤ u2(x) for all x ∈ Ω.
For β > 0, let u∗ = εϕ1, where ε is a positive number sufficiently small. If δ > 0, then

−∆u∗ −
f

(u∗ + δ)β
= −

f

(εϕ1 + δ)β
+ ε λ1 ϕ1.

Therefore, since ϕ1 = 0 on ∂Ω, it is possible to choose ε > 0 and δ0 > 0 such that if 0 < δ ≤ δ0,
then

−∆u∗ −
f

(u∗ + δ)β
< 0 ∀x ∈ Ω. (2.5)

If β > 1, let u∗ = u2 = b2 ϕt1. If δ0 is as above, it follows that

−∆u∗ −
f

(u∗ + δ)β
> 0 ∀x ∈ Ω. (2.6)
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If β > 1 we also suppose that ε > 0 is chosen so that u∗ = εϕ1 < u2 = u∗.
If 0 < β ≤ 1, let s be chosen such that {

0 < s < 1

s(1 + β) < 2.
(2.7)

Let u∗ = c ϕs1 where c is a suitable large constant. Then it turns out that

−∆u∗ = −c s(s− 1)ϕs−2
1 |Dϕ1|2 − c s ϕs−1

1 ∆ϕ1

= −c s (s− 1)ϕs−2
1 |Dϕ1|2 + c s λ1ϕ

s
1.

The last equation can be rewritten as

−∆u∗ −
f

(u∗)β
=

− ϕs−2
1

(
c s (s− 1) |Dϕ1|2 +

f

cβ ϕ
2−s(1+β)
1

)
+ c s λ1 ϕ

s
1.

(2.8)

From (2.7) it follows that c can be chosen so large that −∆u∗− f
(u∗)β

> 0 for all x ∈ Ω. Therefore

if δ0 is as above, then (2.6) holds for 0 < δ ≤ δ0.
Since 0 < s < 1 and ϕ1 = 0 on ∂Ω, we can assume c to be so large that

εϕ1 < c εϕs1.

It follows that both in the case β > 1 and in the case 0 < β ≤ 1

0 < u∗(x) < u∗(x) ∀x ∈ Ω

holds true.
Let δ be a fixed number, with 0 < δ < δ0 and let k > 0 be so large that the function

h(x, ξ) = k ξ +
f

(δ + ξ)β

is strictly increasing in ξ for 0 ≤ ξ ≤ M = max{u∗(x) : x ∈ Ω} and x ∈ Ω. Let w a smooth
function such that {

−∆w + k w = h(x, u∗) in Ω

w = 0 on ∂Ω
(2.9)

Since, according to (2.6), −∆u∗ + k u∗ > h(x, u∗) in Ω, it follows that

−∆ (u∗ − w) + k (u∗ − w) > 0 in Ω.

Therefore, since u∗ −w = 0 on ∂Ω and u∗ −w ∈ C(Ω)∩C2(Ω), it follows that u∗ −w > 0 for all
x in Ω. Hence it follows from (2.9) and from the hypothesis on h that{

−∆w + k w > h(x,w) in Ω

w = 0 on ∂Ω
(2.10)

On the other hand, by (2.5) it follows that{
−∆u∗ + k w < h(x, u∗) in Ω

u∗ = 0 on ∂Ω.

By the same type of argument given above, it follows that if v is a smooth function such that{
−∆ v + k v < h(x, v) in Ω

v = 0 on ∂Ω
(2.11)
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then u∗ < v in Ω and therefore {
−∆ v + k v < h(x, v) in Ω

v = 0 on ∂Ω.

Since
−∆ (w − v) + k (w − v) = h(x, u∗)− h(x, u∗) > 0,

we have
v(x) < w(x) ∀x ∈ Ω.

Since u and w are both smooth on Ω, it follows from the last inequality, (2.10), (2.11) and the
basic result on the method of subsolutions and supersolutions (sse [14]) that there exists a smooth
function z defined in Ω which satisfies{

−∆ z + k z = h(x, z) in Ω

z = 0 on ∂Ω

and
u∗(x) < v(x) ≤ z(x) ≤ w(x) < u∗(x) ∀x ∈ Ω,

namely {
−∆ z + f

(z+δ)β
= 0 in Ω

z = 0 on ∂Ω.
(2.12)

For n ≥ 1, let {δn} be a sequence of numbers such that 0 < δn+1 < δn < δ0 and Zn(x) be a
smooth positive solution of (2.12) when δ = δn such that u∗ < Zn < u∗ in Ω. From (2.12) and
from the hypothesis on {δn} it follows that

−∆Zn −
f

(δn+1 + Zn)β
< −∆Zn −

f

(δn + Zn)β
= 0.

Let us show now that Zn+1(x) > Zn(x) for all x ∈ Ω. By contradiction, assuming the contrary it
follows, since Zn − Zn−1 = 0 in ∂Ω, that there exists a point x0 ∈ Ω where Zn − Zn+1 assumes
a nonnegative maximum. But from the above arguments

−∆(Zn + Zn+1)(x0) < f(x0)

(
1

(δn+1 + Zn(x0))β
−

1

(δn+1 + Zn+1(x0))β

)
≤ 0

which contradicts the fact that x0 is a maximum for Zn − Zn+1.
Since Zn(x) < Zn+1(x) < u∗(x) for all x ∈ Ω, it follows that

lim
n−→+∞

Zn(x) = u∗(x)

exists for all x ∈ Ω and
u∗(x) < u(x) < u∗(x) ∀x ∈ Ω. (2.13)

The last point is to prove that u satisfies

−∆u−
f

uβ
= 0 ∀x ∈ Ω (2.14)

and u ∈ C2+α(Ω) ∩ C(Ω).

Let x0 ∈ Ω and r > 0 to be chosen so that B(x0, r) ⊂ Ω, where B(x0, r) is the open ball of radius

r centered at x0. Let Ψ be a C∞ function which is equal to 1 on B(x0,
r
2

) and equal to 0 off
B(x0, r). Then

∆ (ΨZn) = 2DΨDZn + pn

for n ≥ 1, where pn = ∆ΨZn− f
(Zn+δn)β

is a term whose L∞ norm does is bounded independently

on n. Therefore

ΨZn∆(ΨZn) =

n∑
j=1

bn j
∂ (ΨZn)

∂xj
+ qn
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where bn j = 2Ψ ∂Zn
∂xj

and qn =
∑n
j=1 2

(
∂
∂xj

Ψ
)2

Z2
n are terms bounded independently of n.

Integrating the above equation, one gets

∫
B(x0,r)

|D(ΨZn)|2 dx ≤ c1

(∫
B(x0,r)

|DΨZn|2 dx
) 1

2

+ c2

where c1, c2 are two nonnegative constant not depending on n.
Therefore it follows that the L2(B(x0, r))-norm of |DΨZn| is bounded independently of n and,
consequently, the L2(B(x0,

r
2

))-norm of |DZn| is bounded independently of n. Let now Ψ1 be a

C∞ function which is equal to 1 on B(x0,
r
4

) and equal to 0 off B(x0,
r
2

). For n ≥ 1 one has

∆(Ψ1Zn) = 2DΨ1DZn + p1n,

where p1n is a term whose L∞(B
(
x0,

r
2

)
)
-norm is bounded independently of n. From standard el-

liptic theory, the W 2,2(B(x0,
r
2

))-norm of Ψ1Zn is bounded independently of n and, consequently,

the W 2,2(B(x0,
r
4

))-norm of Zn is bounded independently of n. Since the W 1,2(B(x0,
r
4

))-norms
of the components of DZn are bounded independently of n, it follows from the Sobolev embedding
Theorem that, if {

q = 2N
N−2

> 2 if N > 2

q > 2 arbitary if N ≤ 2,

then the Lq(B(x0,
r
4

))-norm of DZn is bounded independently of n.

Let now Ψ2 be a C∞ function which is equal to 1 on B(x0,
r
8

). As above one gets

∆(Ψ2Zn) = 2DΨ2DZn + p2n,

where p2n is bounded independently of n in L∞(B(x0,
r
4

)). Since the righthand side of the above

equation is bounded in Lq(B(x0,
r
4

)) independently of n, the W 2,q(B(x0,
r
8

))-norm of Ψ2Zn is also

bounded independently of n. Hence, the W 2,q(B(x0,
r
8

))-norm of Zn is bounded independently

of n. Iterating this process, after a finite number of steps, we find r1 > 0 and q1 > N
1−α such

that the W 2,q1 (B(x0, r1))-norm of Zn is bounded independently of n. Hence, up to subsequence,

{Zn} converges in C1+α(B(x0, r1)). If θ is a C∞ function which is equal to 1 on B(x0,
r1
2

) and
equal to 0 off B(x0, r1), then

∆(θZn) = 2DθDZn + p̂n

where p̂n = θ∆Zn + Zn∆θ.
Since the righthand side of the above equation converges in Cα(B(x0, r1)), by Schauder theory,

the sequence {θZn} converges in C2+α(B(x0, r1)) and hence {Zn} converges in C2+α(B(x0,
r1
2

)).

From the arbitrariness of x0 it follows that u ∈ C2+α(Ω). Clearly (2.14) holds.
Since u∗(x) < u(x) < u∗(x) for x ∈ Ω and both u∗ and u∗ vanish on the boundary of Ω, if
x1 ∈ ∂Ω, then

lim
x−→x1

u(x) = 0 = u(x1),

namely u ∈ C(Ω).
To prove the uniqueness of u, suppose that û is also a function in C2+α(Ω) ∩ C(Ω) which is
positive in Ω and which satisfies (2.14). If u 6= û, we may assume that û − u assumes a positive
value somewhere in Ω. This implies that û − u attains a positive maximum at a point x0 ∈ Ω.
But

−∆(û− u)(x0) = −
f

u(x0)β − û(x0)β
< 0,

which contradicts the fact that x0 is a maximum for the function.
Hence û = u and this concludes the proof of Theorem 2.1.1.
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2.3 Proof of Theorem 2.1.2
To prove Theorem 2.1.2, we need the following

Lemma 2.3.1. The integral ∫
Ω
ϕr1 dx < +∞

if and only if r > −1.

Proof. Let x0 ∈ ∂Ω. By the smoothness of ∂Ω, it is not restrictive to assume that x0 = 0 and
that there exists a neighborhood U of x0 such that if V = U ∩ Ω, then

◦ V consists of points x = (x1, ..., xN ) such that |xj | < r for 1 ≤ j ≤ N − 1 and 0 < xN < r;

◦ U ∩ ∂Ω the set of points x with |xj | < r for 1 ≤ j ≤ N − 1 and xN = 0.

Since ϕ1 = 0 on ∂Ω and ∂ϕ1
∂xN

(x) > 0 on ∂Ω, we may assume that r is so small that there exist

two positive constants c1 and c2 such that

c1x
N < ϕ1 < c2x

N in V. (2.15)

Since ϕ1 is bounded from below by a positive constant on a compact subset of Ω, the thesis follows
from (2.15) and from a partition of unity argument.

In the following a proof of Theorem 2.1.2 is given.
First of all, we modify the definition of u∗ as follows:

u∗ =

{
εϕ1 if 0 < β ≤ 1

u1 = b1ϕt1 if β > 1,

with ε > 0 and u1 defined in the previous section. It follows from what was shown above that, if
u is the unique solution of (2.1) positive on Ω, then (2.13) holds true for every x ∈ Ω even with
the new definition of u∗.
Suppose that 1 < β < 3, so u∗ = b1ϕt1 with t = 2

1+β
and let {δn} and {Zn} be defined as above.

Since u∗(x) ≤ Zn(x) for x ∈ Ω, it follows that

f
Zn

(Zn + δn)β
≤

f

(Zn + δn)β−1
≤

f

(u∗ + δn)β−1
< Muβ−1

∗ (2.16)

where M is the maximum of f in Ω. If r =
2(1−β)

1+β
, then r > −1 and therefore, by the Lemma

2.3.1, ∫
Ω

1

uβ−1
∗

dx <∞. (2.17)

Since for n ≥ 1 ∫
Ω
|DZn|2 dx =

∫
Ω
f

Zn

(Zn + δn)β
dx, (2.18)

it follows from (2.16) and (2.17) that the W 1,2-norm of Zn is bounded independently of n. There-

fore, {Zn} converges weakly in W 1,2(Ω), up to subsequence, to a function Z̃ in W 1,2(Ω). Since
{Zn} converges pointwise to u in Ω, it follows that Z = u and hence u ∈W 1,2(Ω).
If 0 < β < 1, then for every x ∈ Ω

f(x)
Zn(x)

(Zn(x) + δn)β
≤

f(x)

(Zn + δn)β−1
≤

f(x)

(u∗(x) + δn)β−1

with u∗ = cϕs1 and s is a positive number satisfying the inequalities (2.7). This, together with
(2.18), gives that the sequence {Zn} is bounded in W 1,2(Ω), and it follows that u ∈W 1,2(Ω).
Consider now the case β ≥ 3. In this case u∗ = b2ϕt1, where t = 2

1+β
so that t(β + 1) ≥ 1. Since
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u(x) ≥ u∗(x) for every x ∈ Ω and f(x) ≥ m > 0 for every x ∈ Ω, it follows from Lemma 2.3.1
that ∫

Ω

f

uβ+1
dx = +∞. (2.19)

Suppose, contrary to the assertion of the Theorem, that u ∈W 1,2(Ω). Since u ∈ C(Ω) and u = 0
on ∂Ω, it follows that u ∈ H1

0 (Ω). Therefore, there exists a sequence {wn} in C∞c (Ω) such that

wn −→
n→+∞

u in W 1,2(Ω). If for each n we set w+
n = max{wn, 0}, then w+

n ∈ H1
0 (Ω), Dw+

n = Dwn

where wn > 0 and Dw+
n = 0 where wn < 0. From this it follows that {w+

n } converges to u in

W 1,2(Ω). Since
w+
n (x)f(x)

u(x)β
≥ 0 for every x ∈ Ω and, up to subsequence, {w+

n } converges to u

almost everywhere in Ω, by (2.19) and Fatou’s lemma it follows that

lim
n→+∞

∫
Ω

w+
n f

uβ
dx = +∞.

Since −∆u = f
uβ

in Ω and w+
n ∈ H1

0 (Ω), it follows that

∫
Ω

(Du,Dw+
n ) dx = −

∫
Ω
w+
n ∆u dx =

∫
Ω

w+
n f

uβ
dx,

hence, passing to the limit as n tends to +∞∫
Ω
|Du|2 dx = lim

n→+∞

∫
Ω

(Du,Dw+
n ) dx = +∞,

which contradicts the assumption that u ∈W 1,2(Ω).
To prove the final statement, we note that if x0 ∈ ∂Ω and −→n denotes the inner normal to ∂Ω at
x0, then ϕ1(x0) = 0 and

lim
s→0+

ϕ1(x0 + s−→n )

s
= lim
s→0+

ϕ1(x0 +−→n )− ϕ1(x0)

s
= Dϕ1(x0) · −→n .

If β > 1, then t = 2
1+β

< 1 and, as showed before, u(x) ≥ b1ϕ1(x)t for every x ∈ Ω, where b1 > 0.

Since u(x0) = 0, it follows that, for s > 0,

u(x0 + s−→n )− u(x0)

s
≥

b1

ϕ1(x0 + s−→n )1−t
ϕ1(x0 +−→n )

s
.

Therefore

lim
s→0+

u(x0 + s−→n )− u(x0)

s
= +∞,

so that u does not belong to C1(Ω).
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Chapter 3

On the equation −∆u = f u−β

Let Ω be a bounded open subset of RN with N ≥ 3, β ≥ 0, g a Carathéodory function and f a
function such that there exist γ > 0 and Γ < +∞ with γ < f < Γ. We are interested in the study
of 

−∆u =
f

uβ
+ g(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3.1)

In spite of the fact that (3.1) is formally the Euler equation of the functional

E(u) =
1

2

∫
Ω
|Du|2 dx+

∫
Ω
φ(u) dx−

∫
Ω

∫ u(x)

0
g(x, s) ds dx u ∈ H1

0 (Ω),

where

φ(s) =

−
∫ s

1

1

tβ
dt if s ≥ 0,

+∞ if s < 0,
(3.2)

few existence and multiplicity results for (3.1) have been obtained through a direct variational
approach, only in the case β < 3. This restriction is due to the fact that, according to Theorem
2.1.2 (see [19]), the functional E is identically +∞ if β ≥ 3. First of all, we provide a variational
approach to the problem 

−∆u =
f

uβ
+ µ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3.3)

with µ ∈W−1,2(Ω). To do this, let us consider first the case µ = 0. Our state is that problem
−∆u =

f

uβ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(3.4)

admits one and only one solution u0 ∈ C∞(Ω).

3.1 Existence and regularity for a singular prob-
lem. The result of Boccardo and Orsina

In this chapter we recall the result of Boccardo and Orsina [4]. More precisely the problem

of existence of positive solutions to the equation −div(M(x)Du) = f
uβ

, under zero Dirichlet
boundary condition, is considered. The approach is based on a truncation argument.
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3.1.1 Preliminaries
Let Ω be a bounded subset of RN , N ≥ 2, β > 0 a real number and f a nonnegative function on
Ω, belonging to some Lebesgue space specified later.
Let us consider the problem 

−div(M(x)Du) =
f

uβ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(3.5)

where M is a bounded elliptic matrix, namely there exist 0 < a ≤ b such that

a|ξ|2 ≤M(x) ξ × ξ, |M(x)| ≤ b (3.6)

for every ξ ∈ RN , for almost every x ∈ Ω. A solution of (3.5) is a function u ∈W 1,1
0 (Ω) such that

∀Ω′ ⊂⊂ Ω ∃cΩ′ such that u ≥ cΩ′ > 0 in Ω′, (3.7)

and such that ∫
Ω

(M(x)Du,Dϕ) dx =

∫
Ω

f ϕ

uβ
dx ∀ϕ ∈ C1

c (Ω). (3.8)

The righthand side in (3.8) is well defined, since ϕ has compact support.

In order to study problem (3.5), the authors work by approximation, truncating the singular
term 1

uβ
and studying the behavior of a sequence {un} of solution of the approximated problems.

Let f be a nonnegative measurable function (not identically zero), n ∈ N,

fn(x) = min{f, n} (3.9)

and consider the following problem:
−div(M(x)Dun) =

fn(
un + 1

n

)β in Ω,

un = 0 for x ∈ ∂Ω,

(3.10)

Lemma 3.1.1. Let M be a bounded elliptic matrix, β > 0 a real number, fn defined in (3.9).
Then problem (3.10) has a nonnegative solution un ∈ H1

0 (Ω) ∩ L∞(Ω).

Proof. Let n ∈ N be fixed, v ∈ L2(Ω) and define w = S(v) the unique solution of
−div(M(x)Dw) =

fn(
|v|+ 1

n

)β in Ω,

w = 0 on ∂Ω.

Taking w as test function and using (3.6), we get

a

∫
Ω
|Dw|2 dx ≤

∫
Ω

(M(x)Dw,Dw) dx =

∫
Ω

fn w(
|v|+ 1

n

)β dx
≤ nβ+1

∫
Ω
|w| dx.

By using Poincaré and Hölder inequalities we get

∫
Ω
|w|2 dx ≤ C nβ+1

(∫
Ω
|w|2 dx

) 1
2
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for some constant C independent on v. This means

‖w‖L2(Ω) ≤ C n
β+1,

so that the ball of L2(Ω) of radius C nβ+1 is invariant for S. Using the Sobolev embedding, it is
possible to prove that S is both continuous and compact on L2(Ω), so that by Schauder’s fixed
point Theorem there exists un such that un = S(un), namely un solves

−div(M(x)Dun) =
fn(

|un|+ 1
n

)β in Ω,

un = 0 on ∂Ω.

Since fn(
|un|+ 1

n

)β ≥ 0, the maximum principle implies that un ≥ 0, so that un solves (3.10).

Since the righthand side of (3.10) belongs to L∞(Ω), by [21], Theorem 4.2, it follows that un ∈
L∞(Ω) (and its norm in L∞(Ω) may depend on n).

Lemma 3.1.2. The sequence {un} defined in (3.10) is increasing with respect to n, un > 0 in
Ω and for every Ω′ ⊂⊂ Ω there exists cΩ′ > 0 (independent on n) such that

un(x) ≥ cΩ′ > 0 for every x ∈ Ω, for every n ∈ N. (3.11)

Proof. Since 0 ≤ fn ≤ fn+1 and β > 0, it follows that

−div(M(x)Dun) =
fn(

un + 1
n

)β ≤ fn+1(
un + 1

n+1

)β .
Combining this with

−div(M(x)Dun+1) =
fn+1(

un+1 + 1
n+1

)β
we get

−div(M(x)D(un − un+1) ≤ fn+1

 1(
un + 1

n+1

)β − 1(
un+1 + 1

n+1

)β


= fn+1

(
un+1 + 1

n+1

)β
−
(
un + 1

n+1

)β
(
un + 1

n+1

)β(
un+1 + 1

n+1

)β .

Choosing (un − un+1)+ as test function and observing that((
un+1 +

1

n+ 1

)β
−
(
un +

1

n+ 1

)β)
(un − un+1)+ ≤ 0,

we get, using (3.6),

0 ≤ a
∫

Ω
|D(un − un+1)+|2 dx ≤ 0.

Hence (un − un+1)+ = 0 almost everywhere in Ω, namely un ≤ un+1.
By Lemma 3.1.1 it follows that u1 ∈ L∞(Ω) and there exists a constant (only depending on Ω
and N) such that

‖u1‖L∞(Ω) ≤ C‖f1‖L∞(Ω) ≤ C,

therefore

−div(M(x)Du1) =
f1

(u1 + 1)β
≥

f1

(‖u1‖L∞(Ω) + 1)β
≥

f1

(C + 1)β
.

Since f1
(C+1)β

is not identically zero, the strong maximum principles implies that u1 > 0 in Ω and

that (3.11) holds for u1, with cΩ′ depending on ω,N, f1 and β. Since un ≥ u1 for every n ∈ N, it
follows that (3.11) holds for {un}, with the same constant cΩ′ which is independent on n.
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Remark 3.1.1. If un and vn are two solution of problem (3.10), the first part of the proof of
Lemma 3.1.2 shows that un ≤ vn. By symmetry this implies that the solution of (3.10) is unique.

Since {un} is increasing in n, it is possible to define u as the pointwise limit of {un}, and
since u ≥ un, (3.11) holds for u, too. To get some a priori estimates on un, is useful to consider
three different cases, depending on β.

3.1.2 The case β = 1

Lemma 3.1.3. Let un be the solution of (3.10) with β = 1, and suppose that f ∈ L1(Ω). Then
{un} is bounded in H1

0 (Ω).

Proof. Choosing un as test function in (3.10), using (3.6) and the fact that 0 ≤ fn ≤ f , we get

a

∫
Ω
|Dun|2 dx ≤

∫
Ω

(M(x)Dun, Dun) dx =

∫
Ω

fn un

un + 1
n

≤
∫

Ω
fn dx

≤
∫

Ω
f dx

as desired.

Theorem 3.1.4. Let β = 1 and let f be a nonnegative function in L1(Ω) (not identically zero).
Then there exists a solution u ∈ H1

0 (Ω) of (3.5) in the following sense:

∫
Ω

(M(x)Du,Dϕ) dx =

∫
Ω

f ϕ

u
dx ∀ϕ ∈ C1

c (Ω).

Proof. Since {un} is bounded in H1
0 (Ω) by Lemma 3.1.2, hence, up to subsequences, weakly

convergent, and since {un} converges pointwise to u in Ω, then {un} weakly converges to u in
H1

0 (Ω), and therefore

lim
n→+∞

∫
Ω

(M(x)Dun, Dϕ) dx =

∫
Ω

(M(x)Du,Dϕ) dx, (3.12)

for every ϕ ∈ C1
c (Ω). Moreover, since {un} satisfies (3.1.2), if we denote by Ω′ the set {ϕ 6= 0},

it follows that

0 ≤

∣∣∣∣∣ fn ϕ

un + 1
n

∣∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)

cΩ′
f,

for every ϕ ∈ C1
c (Ω).

Whence, by Lebesgue Theorem it follows that

lim
n→+∞

∫
Ω

fn ϕ

un + 1
n

dx =

∫
Ω

f ϕ

u
dx,

which, together with (3.12), yields the thesis.

The summability of u depends on the summability of f , how the following Lemma shows.

Lemma 3.1.5. Let β = 1 and let f ∈ Lm(Ω) with m ≥ 1. Then the solution u of (3.5), given
by Theorem 3.1.4 satisfies the following:

(a) if m > N
2

, then u belongs to L∞(Ω);

(b) if 1 ≤ m < N
2

, then u belongs to Ls(Ω), where s = 2Nm
N−2m

.
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Proof. (a) Let k > 1 and define Gk(s) = (s− k)+. Taking Gk(un) as test function in (3.10) and

denoting by Ω̂ the set {un − k ≥ 0}, we get

a

∫
Ω
|DGk(un)|2 dx ≤

∫
Ω

(M(x)DGk(un), Gk(un)) dx =

∫
Ω

fnGk(un)

un + 1
n

dx

=

∫
Ω̂

fnGk(un)

un + 1
n

dx ≤
∫

Ω̂
f Gk(un) dx =

∫
Ω
f Gk(un) dx,

because un + 1
n
≥ k ≥ 1 in Ω̂. Arguing as in [21], it follows that there exists a constant C,

independent on n, such that

‖un‖L∞(Ω) ≤ C ‖f‖Lm(Ω).

Since {un} is bounded in L∞(Ω), u belongs to L∞(Ω) as well.

(b) If m = 1, then s = 2N
N−2

= 2∗, so that the thesis is true by Sobolev embedding.

If 1 < m < N
2

, let δ > 1 and choose u2δ−1
n as test function in (3.10). It is possible to choose a

such test function since un ∈ L∞(Ω) for every n by Lemma 3.1.1, obtaining

a(2δ − 1)

∫
Ω
|Dun|2u2δ−2

n dx ≤
∫

Ω

fn u
2δ−1
n

un + 1
n

dx ≤
∫

Ω
f u2δ−2

n dx

≤ ‖f‖Lm(Ω)

(∫
Ω
u

(2δ−2)m′
n dx

) 1
m′

.

(3.13)

On the other hand, by Sobolev inequality it follows that

∫
Ω
|Dun|2 u2δ−2

n dx =

∫
Ω
|Dun uδ−1

n |2 dx =

∫
Ω

|Duδn|2

δ2
dx

≥
S
δ2

(∫
Ω
u2∗δ
n dx

)
,

that, together with (3.1.10) yields

a

(∫
Ω
u2∗δ
n dx

) 2
2∗
≤

δ2

S(2δ − 1)
‖f‖Lm(Ω)

(∫
Ω
u

(2δ−2)m′
n

) 1
m′

. (3.14)

If δ is such that 2∗δ = (2δ − 2)m′, namely δ =
m (N−2)
N−2m

, then δ > 1 if and only if m > 1 and

2∗δ = 2N m
N−2m

= s, so that (3.14) becomes

(∫
Ω
usn dx

) 2
2∗
≤ C(N,m)‖f‖Lm(Ω)

(∫
Ω
usn dx

) 1
m′

.

Since 2
2∗ > 1

m′ , we deduce from the previous inequality that {un} is bounded in Ls(Ω) and
therefore u belongs to Ls(Ω) as well.

3.1.3 The case β > 1

The case β > 1 has many analogies with the case β = 1, even if in this case it is only possible to
show that a positive power of un is bounded in H1

0 (Ω), while un is bounded only in H1
loc(Ω).

Lemma 3.1.6. Let un be the solution of (3.10), with β > 1, and f ∈ L1(Ω).

Then {u
β+1
2

n } is bounded in H1
0 (Ω), while {un} is bounded in H1

loc(Ω) and in Ls(Ω) with s =
N(β+1)
N−2

.
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Proof. Taking uβn as test function in (3.10), recalling (3.6), one gets

a β

∫
Ω
|Dun|2 uβ−1

n dx ≤
∫

Ω

fn u
β
n(

un + 1
n

)β dx ≤ ∫
Ω
fn dx ≤

∫
Ω
f dx

and, since ∫
Ω
|Dun|2 uβ−1

n dx =
4

(β + 1)2

∫
Ω
|Du

β+1
2

n |2 dx,

it follows that {u
β+1
2

n } is uniformly bounded in H1
0 (Ω).

Since s =
2∗(β+1)

2
, from Sobolev embedding, it follows that {un} is bounded in Ls(Ω).

To prove that {un} is bounded in H1
loc(Ω), let Ω′ ⊂⊂ Ω and ϕ ∈ C1

c (Ω) identically zero outside
Ω′. Choosing un ϕ2 as test function in (3.10), using (3.6) and (3.7), one obtains

a

∫
Ω
|Dun|2ϕ2 dx+ 2

∫
Ω

(M(x)Dun, un ϕDϕ) dx ≤
∫

Ω

fn un ϕ2

(un + 1
n

)β
dx

≤
1

cβ−1
Ω′

∫
Ω
fn ϕdx.

Since, by Young inequality

2 b

∫
Ω

(Dun, un ϕDϕ) dx ≤
a

2

∫
Ω
|Dun|2 ϕ2 dx+

2 b2

a

∫
Ω
|Dϕ|2u2

n dx,

using the fact that {un} is bounded in Ls(Ω), with s ≥ 2, it follows that

a

2

∫
Ω
|Dun|2ϕ2 dx ≤

1

cβ−1
Ω′

∫
Ω
fn ϕ

2 dx+
2 b2

a

∫
Ω
|Dϕ|2 u2

n dx

≤
‖ϕ‖2

L∞(Ω)

cβ−1
Ω′

∫
Ω
f dx+

2 b2

a
‖Dϕ‖2L∞(Ω)

∫
Ω
u2
n dx

≤ C(f, ϕ),

namely {un} is bounded in H1
loc(Ω).

Once that Lemma 3.1.6 has been proved, passing to the limit, it is easy to deduce the following

Theorem 3.1.7. Let β > 1 and f be a nonnegative function in L1(Ω) (not identically zero).

Then there exists a solution in H1
loc(Ω) of (3.5). Furthermore, u

β+1
2 belongs to H1

0 (Ω).

Lemma 3.1.8. Let β > 1 and f ∈ Lm(Ω), with m ≥ 1. Then the solution of (3.5) given by
Theorem 3.1.7 is such that

(a) if m > N
2

, then u ∈ L∞(Ω);

(b) if 1 ≤ m < N
2

, then u ∈ Ls(Ω), with s =
Nm(β+1)
N−2m

.

Proof. (a) The proof of this part is the same as the corresponding one for Lemma 3.1.7.
(b) If m = 1, then s = 2N

N−2
= 2∗, so that the thesis is true by Sobolev embedding.

If 1 < m < N
2

, let δ > β+1
2

and consider u2δ−1
n as test function in 3.10. Arguing as in the proof

of Lemma 3.1.7 and using the fact that δ > β+1
2

> 1, one gets

a

(∫
Ω
u2∗δ
n dx

) 2
2∗
≤

δ2

S(2δ − 1)
‖f‖Lm(Ω)

(∫
Ω
u

(2δ−1−β)m′
n

) 1
m′

.

Choosing δ in such a way that 2∗δ = (2δ − 1 − β)m′, namely δ =
m (N−2) (1+β)

2 (N−2m)
, yields that

δ > β+1
2

if and only if m > 1 and that 2∗δ = s. Therefore, since from m < N
2

it follows that
2
2∗ >

1
m′ , the norm of un in Ls(Ω) is bounded with respect to n, and so u ∈ Ls(Ω).



3.1 Existence and regularity for a singular problem. The result
of Boccardo and Orsina 25

3.1.4 The case β < 1
If β < 1, an a priori estimate of un in H1

0 (Ω) will be obtained assuming that f is more regular
than L1(Ω), as the following theorem shows.

Theorem 3.1.9. Let β < 1, un be the solution of (3.10) and f ∈ Lm(Ω), with m = 2N
N+β(N−2)+2

=(
2∗

1−β

)′
. Then {un} is bounded in H1

0 (Ω).

Proof. Recalling (3.6) and using un as test function in (3.10), one gets

a

∫
Ω
|Dun|2 dx ≤

∫
Ω

fn un(
un + 1

n

)β dx ≤ ∫
Ω
f uβ−1

n dx

≤ ‖f‖Lm(Ω)

(∫
Ω
u

(1−β)m′
n dx

) 1
m′

.

Since m = 2N
N+β(N−2)+2

, it follow that (β − 1)m′ = 2∗, therefore, by Sobolev embedding

aS
(∫

Ω
u2∗
n dx

) 2
2∗
≤ a

∫
Ω
|Dun|2 dx ≤ ‖f‖Lm(Ω)

(∫
Ω
u2∗
n dx

) 1
m′

. (3.15)

¿From m < N
2

it follows that 2
2∗ >

1
m′ , therefore {un} is bounded in L2∗ (Ω); this, together with

(3.15), yields the thesis.

Passing to the limit it is now possible to obtain the following

Theorem 3.1.10. Let β < 1, f ∈ Lm(Ω) not identically zero, with m = 2N
N+β(N−2)+2

=
(

2∗

1−β

)′
.

Then there exists a solution u ∈ H1
0 (Ω).

The summability of the solution given by Theorem 3.1.10 depends once again on the summa-
bility of f .

Theorem 3.1.11. Let β < 1 and f ∈ Lm(Ω), with m ≥ 2N
N+β(N−2)+2

. Then the solution given

by Theorem 3.15 is such that

(a) if m > N
2

, then u ∈ L∞(Ω),

(b) if 2N
N+β(N−2)+2

≤ m < N
2

, then u ∈ Ls(Ω), with s =
Nm(β+1)
N−2m

.

Proof. (a) This part is identical to the corresponding in Lemma 3.1.5.
(b) The case m = 2N

N+β(N−2)+2
is true by Sobolev embedding, since in this case s = 2∗.

If 2N
N+β(N−2)+2

< m < N
2

, let δ > 1 and use u2δ−1
n as test function in (3.10). Arguing as in

Lemma 3.1.5, one gets

a

(∫
Ω
u2∗δ
n dx

) 2
2∗
≤

δ2

S(2δ − 1)
‖f‖Lm(Ω)

(∫
Ω
u

(2δ−β−1)m′
n

) 1
m′

.

Choosing δ in such a way that 2∗δ = (2δ−β−1)m′, namely δ =
m (N−2) (1+β)

2 (N−2m)
, yields that δ > 1

if and only if m > 2N
N+β(N−2)+2

and 2∗δ = s. Therefore, since m < N
2

implies 2
2∗ >

1
m′ , it follows

that the norm of un is bounded in Ls(Ω) with respect to n, and so the limit u ∈ Ls(Ω).

If m <
(

2∗

1−β

)′
, the solution does not belong to H1

0 (Ω), but to a larger Sobolev space,

depending on m.

Theorem 3.1.12. Let β < 1 and f ∈ Lm(Ω), with 1 ≤ m < 2N
N+β(N−2)+2

. Then there exists a

solution u of (3.5), with u ∈W 1,q
0 (Ω) and q =

Nm(β+1)
N−m(1−β)

.
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Proof. The thesis follows by proving an a priori estimate on {un} in W 1,q
0 (Ω), with q as in the

statement, since the existence of a solution u ∈W 1,q(Ω) of (3.5) can be proved by passing to the
limit in (3.10) as in the proof of Theorem 3.1.4.

Since the gradient of the function u2δ−1
n , with β+1

2
≤ δ < 1, is singular where un = 0, this

function is not admissible as test function in (3.10). Therefore, for n fixed, let ε < 1
n

and consider

(un + ε)2δ−1 − ε2δ−1. Using (3.6) one gets

a(2δ − 1)

∫
Ω
|Dun|2(un + ε)2δ−2 dx ≤

∫
Ω

fn((un + ε)2δ−1 − ε2δ−1)(
un + 1

n

)β dx

≤
∫

Ω
f (un + ε)2δ−β−1 dx,

(3.16)

where the last inequality follows since fn ≤ f and ε is such that ε < 1
n

.
On the other hand, by Sobolev inequality∫

Ω
|Dun|2 (un + ε)2δ−2 dx =

∫
Ω

|D((un + ε)δ − εδ)|2

δ2
dx

≥
S
δ2

(∫
Ω

((unn + ε)δ − εδ)2∗ dx

) 2
2∗

which, combining with (3.16), yields

a

(∫
Ω

((un + ε)δ − εδ)2∗ dx

) 2
2∗
≤

δ2

S (2δ − 1)

∫
Ω
f (un + ε)2δ−β−1 dx.

Letting ε tend to zero, one obtains

a

(∫
Ω
u2∗δ
n dx

) 2
2∗
≤

δ2

S (2δ − 1)

∫
Ω
f u2δ−β−1

n dx. (3.17)

If m = 1, the thesis follows by choosing δ = β+1
2

, in order to obtain by (3.17) that {un} is

bounded in L
N (β+1)
N−2 , which is the value of s when m = 1.

If m > 1, from (3.17), arguing as in Lemma 3.1.8, it follows that {un} is bounded in Ls(Ω), with

s =
Nm (β+1)
N−2m

. Therefore, from the choice of δ, it follows that the righthand side of (3.16) is

bounded with respect to n and ε. Since δ < 1∫
Ω

|Dun|2

(un + ε)2−2δ
dx =

∫
Ω
|Dun|2 (un + ε)2δ−2 ≤ C.

If q =
Nm(β+1)
N−m(1−β)

, since q < 2, by Hölder inequality it follows that∫
Ω
|Dun|q dx =

∫
Ω

|Dun|q

(un + ε)(1−δ) q dx ≤ C
(∫

Ω
(un + ε)

(2−2δ) q
2−q dx

)1− q
2

.

A simple computation shows that the choices of δ and q are such that s =
(2−2δ)q

2−q , so that the

righthand side of the previous inequality is bounded with respect to both n and ε, hence {un} is

bounded in W 1,q
0 (Ω).

3.2 Existence and uniqueness for a singular prob-
lem. An improvement of the construction of
u0 by Canino-Degiovanni

In this chapter, following closely [8], we study the equation −∆u = f u−β . Actually in [8] the
case f = 1 was considered.
In all this section we will assume that there exist constants γ,Γ ∈ R such that

0 < γ ≤ f ≤ Γ.
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3.2.1 Comparison principles
Let Ω be a bounded open subset of RN and let β > 0.

Definition 3.2.1. Let u ∈ H1
loc(Ω). We say that u ≤ 0 on ∂Ω if, for every ε > 0, the function

(u− ε)+ ∈ H1
0 (Ω).

It is readly seen that, if u ∈ H1
0 (Ω), then u ≤ 0 on ∂Ω.

Definition 3.2.2. Let g : Ω × R → R be a Carathéodory function, µ ∈ W−1,2(Ω) and ϕ ∈
H1
loc(Ω). Let us consider the equation

−∆u = g(x, u) + µ. (3.18)

We say that ϕ is a local subsolution of (3.18) if g(x, ϕ) ∈ L1
loc(Ω) and∫

Ω
(Dϕ,Dv) dx ≤

∫
Ω
g(x, ϕ) v dx+ 〈µ, v〉

∀v ∈ H1
0 (Ω) ∩ L∞c (Ω) with v ≥ 0 a.e. in Ω.

We say that ϕ is a local supersolution of (3.18) if g(x, ϕ) ∈ L1
loc(Ω) and∫

Ω
(Dϕ,Dv) dx ≥

∫
Ω
g(x, ϕ) v dx+ 〈µ, v〉

∀v ∈ H1
0 (Ω) ∩ L∞c (Ω) with v ≥ 0 a.e. in Ω.

Definition 3.2.3. Let µ ∈W−1,2(Ω) and ϕ ∈ H1
loc(Ω). Let us consider the variational inequality∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω

f

uβ
(v − u) dx+ 〈µ, v − u〉 ∀v ≥ 0. (3.19)

We say that ϕ is a local subsolution of (3.19) if ϕ > 0 a.e. in Ω, ϕ−β ∈ L1
loc(Ω) and∫

Ω
(Dϕ,Dv) ≤

∫
Ω

f

ϕβ
v dx+ 〈µ, v〉 ∀v ∈ H1

0 (Ω) ∩ L∞c (Ω)

with 0 ≤ v ≤ ϕ a.e. in Ω.

We say that ϕ is a supersolution of (3.19) if ϕ > 0 a.e. in Ω, ϕ−β ∈ L1
loc(Ω) and∫

Ω
(Dϕ,Dv) dx ≤

∫
Ω

f

ϕβ
dx+ 〈µ, v〉 ∀v ∈ H1

0 (Ω) ∩ L∞c (Ω)

with v ≥ 0 a.e. in Ω.

Let us recall from [8] the following

Lemma 3.2.4. Let g : Ω× R→ R be a Carathéodory function satisfying

∀S > 0 : sup
|s|≤S

|g(·, s)| ∈ L1
loc(Ω),

let µ ∈ W−1,2(Ω) and let ϕ, u, ψ ∈ H1
loc(Ω). Assume that ϕ is a subsolution of (3.18), ψ is a

supersolution of (3.18), ϕ ≤ u ≤ ψ a.e. in Ω, g(x, u) ∈ L1
loc(Ω) and∫

Ω
(Du,D(v − u)) dx ≥

∫
Ω
g(x, u)(v − u) dx+ 〈µ, v − u〉

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with ϕ ≤ v ≤ ψ a.e. in Ω.

Then −∆u = g(x, u) + µ in D′(Ω).
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Let us denote by φk : R→ R the primitive of the function{
max{−s−β ,−k} if s > 0,

−k if s ≤ 0,

such that φk(1) = 0.

Lemma 3.2.5. Let µ ∈ W−1,2(Ω) and assume that ϕ,ψ ∈ H1
loc(Ω) are, respectively, a subsolu-

tion and a supersolution of (3.19), with ϕ ≤ 0 on ∂Ω.
Then ϕ ≤ ψ a.e. in Ω.

Proof. Note that ψ is a supersolution also of the equation −∆u = −φ′k(u) + µ. In fact, since ψ
is supersolution of (3.19) we have∫

Ω
(Dψ,Dv) dx ≥

∫
Ω

f

ψβ
v dx+ 〈µ, v〉 ≥

∫
Ω
−f ϕ′k(ψ) v dx+ 〈µ, v〉,

since ψ−β ≥ −φ′k(ψ) by definition.

Let ε > 0, k > ε−β and φk and fµ,k defined as above. Let u be the minimum of the functional
fµ,k in the set

K = {u ∈ H1
0 (Ω) : 0 ≤ u ≤ ψ a.e. in Ω}.

According to [17], we have∫
Ω

(Du,D(v − u)) dx ≥ −
∫

Ω
f φ′k(u) (v − u) dx+ 〈µ, v − u〉 ∀v ∈ K.

In particular, if v ∈ C∞c (Ω) with v ≥ 0 and t > 0, we can choose as test function vt = min{u +
tv, ψ} and, arguing as in Lemma 3.2.4, we find that∫

Ω
(Du,Dv) dx ≥ −

∫
Ω
f φ′k(u) v dx+ 〈µ, v〉. (3.20)

Actually, (3.20) holds for every v ∈ H1
0 (Ω) with v ≥ 0 a.e. in Ω. In fact, let v ∈ H1

0 (Ω); then
there exists vn ∈ C∞c (Ω) with vn ≥ 0 and vn → v in H1

0 (Ω).
Then we have ∫

Ω
(Du,Dvn) dx ≥ −

∫
Ω
f φ′k(u) vn dx+ 〈µ, vn〉.

Going to the limit as n→ +∞ we get∫
Ω

(Du,Dv) dx ≥ −
∫

Ω
f φ′k(u) v dx+ 〈µ, v〉.

In fact:

◦
∣∣∣ ∫

Ω
(Du,Dvn) dx−

∫
Ω

(Du,Dv) dx
∣∣∣ ≤ ∫

Ω
|(Du,D(vn − v))| dx

≤ ‖u‖H1
0 (Ω)‖vn − v‖H1

0 (Ω) −→
n→+∞

0;

◦
∣∣∣ ∫

Ω
f φ′k(u) (vn − v) dx

∣∣∣ ≤ ‖f‖∞‖φ′k‖∞‖vn − v‖L2(Ω) −→
n→+∞

0;

◦ 〈µ, vn〉 → 〈µ, v〉 by definition.

In particular, since u ≥ 0, we have (ϕ− u− ε)+ ∈ H1
0 (Ω), so that∫

Ω
(Du,D(ϕ− u− ε)+) dx ≥−

∫
Ω
f φ′k(u) (ϕ− u− ε)+ dx

+ 〈µ, (ϕ− u− ε)+〉.
(3.21)
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Let now v ∈ H1
0 (Ω) such that 0 ≤ v ≤ ϕ a.e. in Ω and Dϕ ∈ L2(v > 0). Let {v̂n} a sequence in

C∞c (Ω) which converges to v in H1
0 (Ω) and let vn = min{v̂+

n , v}. Then, since ϕ is subsolution,

∫
Ω

(Dv,Dvn) dx ≤
∫

Ω

f

ϕβ
vn dx+ 〈µ, vn〉. (3.22)

If ϕ−βv ∈ L1(Ω), going to the limit as n→ +∞, we get

∫
Ω

(Dϕ,Dv) dx ≤
∫

Ω

f

ϕβ
v dx+ 〈µ, v〉. (3.23)

In fact

◦
∣∣∣ ∫

Ω
(Dϕ,D(vn − v) dx

∣∣∣ ≤ ‖Dϕ‖L2(Ω)‖vn − v‖H1
0 (Ω) dx −→

n→+∞
0;

◦
∫

Ω

f

ϕβ
vn dx→

∫
Ω

f

ϕβ
v dx by the Dominated Convergence Theorem.

On the other hand, if ϕ−βv 6∈ L1(Ω), formula (3.23) is obviously true.
In particular we have∫

Ω
(Dϕ,D(ϕ− u− ε)+) dx ≤

∫
Ω
f ϕ−β(ϕ− u− ε)+ dx

+ 〈µ, (ϕ− u− ε)+〉.
(3.24)

Since ε < k, from (3.21) and (3.24) we deduce that∫
Ω
|D(ϕ− u− ε)+|2 dx =

∫
Ω

(D(ϕ− u), D(ϕ− u− ε)+) dx

≤
∫

Ω
f(ϕ−β + φ′k(u))(ϕ− u− ε)+ dx

=

∫
Ω
f(−φ′k(ϕ) + φ′k(u))(ϕ− u− ε)+ dx

≤ 0,

whence (ϕ− u− ε)+ = 0, so that ϕ ≤ u+ ε ≤ ψ+ ε. The assertion follows from the arbitrariness
of ε.

3.2.2 Construction of the solution

We are now ready to prove the existence and uniqueness of the solution of (3.4).

Theorem 3.2.6. Let 0 < γ ≤ f ≤ Γ. There exists one and only one u0 ∈ C2(Ω) solution of


−∆u =

f

uβ
in Ω,

u > 0 in Ω,

u ≤ 0 on ∂Ω.

Moreover, if u1 ∈ H1
0 (Ω) ∩ C∞(Ω) satisfies −∆u1 = 1 in Ω, then

γβ+1‖u1‖∞u1 ≤ u0 ≤ (Γ(β + 1)u1)
1

β+1 .

Proof. Let us set ϕ = γβ+1‖u1‖∞u1 and ψ = (Γ(β + 1)u1)
1

β+1 . Then it turns out that ϕ ≤ ψ
and ϕ and ψ are, respectively, a subsolution and a supersolution of −∆u = −fφ′k(u), for any
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k ≥ ‖u1‖
−β
β+1
∞ . Let us show that ϕ is a subsolution.

Let u0,k ∈ H1
0 (Ω) be the minimum of f0,k, namely the weak solution of

{
−∆u = −φ′k(u) in Ω,

u = 0 on Ω.
(3.25)

Of course, f0,k admits one and only one minimum also on the convex set

{u ∈ H1
0 (Ω) : ϕ ≤ u ≤ ψ a.e in Ω}

and such minimum is a solution of (3.25). It follows that ϕ ≤ u0,k ≤ ψ a.e. in Ω. Since u0,k is a
subsolution of −∆u = −f φ′k+1(u) (−φ′k is decreasing w.r.t. the parameter k), it turns out that

u0,k ≤ u0,k+1. In fact, let w = (u0,k − u0,k+1)+. Then we have

∫
Ω

(Du0,k, Dw) dx ≤ −
∫

Ω
f φ′k+1(u0,k)w dx

and ∫
Ω

(Du0,k+1, Dw) dx = −
∫

Ω
fφ′k+1(u0,k+1)w dx.

Subtracting we get

∫
Ω
|Dw|2 dx ≤ −

∫
Ω
f(φ′k+1(u0,k)− φ′k+1(u0,k+1))w dx

=

∫
Ω
f(φ′k(u0,k)− φ′k+1(u0,k+1))(u0,k − u0,k+1)+ dx ≤ 0.

So we have w = (u0,k − u0,k+1)+ = 0 and, consequently, u0,k ≤ u0,k+1 a.e. in Ω. On the other

hand, for every ε > 0 there exists k̄ > ε−β and for k > k̄ we have

−∆(u0,k̄) = −φ′
k̄
((u0,k̄ + ε)− ε) ≥ −φ′k(u0,k̄ + ε),

namely u0,k̄ is a supersolution of −∆u = −φ′k(u). Therefore u0,k < u0,k̄ + ε, namely {u0,k} is a
Cauchy sequence in L∞(Ω).
Therefore {u0,k} is decreasing and convergent to some u0 ∈ L∞(Ω). Moreover, since ϕ ≤ u0 ≤ ψ
and u1 > 0 in Ω, it follows that u−β0 ∈ L∞loc(Ω).
Given ε > 0, we have

∫
Ω
|D(u0,k − ε)+|2 dx = −

∫
Ω
f φ′k(u0,k) (u0,k − ε)+ dx ≤ ε−β

∫
Ω

(u0,k − ε)+ dx,

so that (u0,k − ε)+ is bounded in H1
0 (Ω) as k → +∞ and then

∀ε > 0, (u0 − ε)+ ∈ H1
0 (Ω),

namely u ≤ 0 on ∂Ω. Since u0,k ≥ ϕ, we deduce that u0 ∈ H1
loc(Ω). In fact, let K be a compact

set of Ω. We have u0 ≥ ϕ ≥ c > 0 on Ω. It is sufficiently to choose ε < c to get u0 ≥ c > ε in
K and consequently u0 − ε > 0 in K. Then it turns out that (u0 − ε)+ ≡ u0 − ε in K and since
(u0 − ε)+ ∈ H1(K), u0 − ε ∈ H1(K) too and, then, u0 ∈ H1

loc(Ω). On the other hand, it turns
out that {Du0,k} is weakly convergent to Du0 in L2

loc(Ω). In fact, if K is a compact set in Ω,
D(u0,k − ε)+ → D(u0 − ε)+ and the the assertion follows from a suitable choice of ε.

¿From (3.25) it follows that −∆u0 = fu−β0 in D′(Ω). In fact, let ϕ ∈ C∞c (Ω). Then

∫
Ω

(Du0,k, Dϕ) dx→
∫

Ω
(Du,Dϕ) dx
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because Du0,k is weakly convergent to Du0.
On the other hand∣∣∣ ∫

Ω
f(−φ′k(u0,k))ϕdx−

∫
Ω

f

uβ0
ϕdx

∣∣∣
≤
∫

Ω
|f | |u−β0 + φ′k(u0,k)| |ϕ| dx ≤ ΓC

∫
{suppϕ}

|u−β0 + φ′k(u0,k)| dx

≤ ΓC

∫
{suppϕ}

∣∣∣ 1

uβ0,k

−
1

uβ0

∣∣∣ dx −→
k→∞

0.

¿From interior regularity theory, it follows that u0 ∈ C∞(Ω). The uniqueness of u0 follows from
Lemma 3.2.5.

Corollary 3.2.7. There exists one and only one u0 ∈ C(Ω) ∩ C∞(Ω) solution of
−∆u =

f

uβ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

if and only if each x ∈ ∂Ω satisfies the Wiener criterion.

Proof. The proof is the same as in [8, Corollary 2.4].
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Chapter 4

The variational
carachterization and C1

perturbations

In this chapter we provide a variational approach to our problem, expliting the arguments in [8].

4.1 A variational characterization

Let u0 be the solution of (3.4), µ ∈W−1,2(Ω), φ : R→ (−∞,+∞] defined as in (3.2).
Let G0 : Ω× R→ [0,+∞] be defined as

G0(x, s) = φ(u0(x) + s)− φ(u0(x)) +
s

uβ0 (x)
.

Then G0(x, 0) = 0 and G0(x, ·) is convex and lower semicontinuous for any x ∈ Ω. Moreover,
G0(x, ·) ∈ C1((−u0(x),+∞)) with

DsG0(x, s) =
1

uβ0 (x)
−

1

(u0(x) + s)β
.

Define a functional Fµ : L2(Ω)→ (−∞,+∞] by

Fµ(u) =


1

2

∫
Ω
|D(u− u0)|2 dx+

∫
Ω
fG0(x, u− u0) dx

− 〈µ, u− u0〉 if u ∈ u0 +H1
0 (Ω)

+∞ otherwise.

Then Fµ is strictly convex, lower semicontinuous and coercive, with Fµ(u0) = 0. Moreover, the
effective domain of Fµ is

{u ∈ H1
0 (Ω) : G0(x, u− u0) ∈ L1(Ω)} ⊆ H1

loc(Ω).

In the case µ = 0, u0 is just the minimum of F0.

Theorem 4.1.1. The following facts hold:
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(a) for every µ ∈ W−1,2(Ω) and u ∈ H1
loc(Ω) we have that u is the minimum of Fµ if and

only if u satisfies



u > 0 a.e. in Ω and
1

uβ
∈ L1

loc(Ω),∫
Ω

(Du,D(v − u)) dx−
∫

Ω

f

uβ
(v − u) dx ≥ 〈µ, v − u〉

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω,

u ≤ 0 on ∂Ω;

(4.1)

in particular, for every µ ∈ W−1,2(Ω) problem (4.1) admits one and only one solution
u ∈ H1

loc(Ω);

(b) if µ1, µ2 ∈ W−1,2(Ω) and u1, u2 ∈ H1
loc(Ω) are the corresponding solutions of (4.1), we

have u1 − u2 ∈ H1
0 (Ω) and

‖D(u1 − u2)‖L2(Ω) ≤ ‖µ1 − µ2‖W−1,2(Ω).

Proof. (a) Let µ ∈ W−1,2(Ω). If u ∈ u0 + H1
0 (Ω) is the only minimum of Fµ, it follows that

f G0(x, u− u0) ∈ L1(Ω) and then, since γ ≤ f ≤ Γ, we have that g0(x, u− u0) ∈ L1(Ω). Hence,
by the definition of G0(x, s), it turns out that u ≥ 0 a.e. in Ω. Moreover


∫

Ω
(D(u− u0), D(v − u) dx+

∫
Ω
f
( 1

uβ0
−

1

uβ

)
(v − u) dx ≥ 〈µ, v − u〉,( 1

uβ0
−

1

uβ

)
(v − u) ∈ L1(Ω),

(4.2)

for every v ∈ u0 +H1
0 (Ω) with G0(x, v − u0) ∈ L1(Ω).

In order to prove (4.2), let vε = u + ε (v − u). Since u is the minimum of Fµ, we have Fµ(vε) −
Fµ(u) ≥ 0. Namely

Fµ(vε)− Fµ(u) =
1

2

∫
Ω
|D(vε − u0)|2 dx+

∫
Ω
f G0(x, vε − u0) dx

− 〈µ, vε − u0〉 −
1

2

∫
Ω
|D(u− u0)|2 dx

+

∫
Ω
f G0(x, u− u0) dx+ 〈µ, u− u0〉

=
1

2
ε2
∫

Ω
|D(v − u)|2 dx+ ε

∫
Ω

(D(u− u0), D(v − u)) dx

+

∫
Ω
f (G0(x, u− u0 + ε (v − u))−G0(x, u− u0)) dx

− ε〈µ, v − u〉 ≥ 0,

namely

1

2
ε

∫
Ω
|D(v − u)|2 dx+

∫
Ω

(D(u− u0), D(v − u)) dx

+

∫
Ω

G0(x, u− u0 + ε(v − u))−G0(x, u− u0)

ε
dx

≥ 〈µ, v − u〉.

Since G0(x, ·) is convex ∀x ∈ Ω, passing to the limit as ε→ 0+, we get

∫
Ω

(D(u− u0), D(v − u)) dx+

∫
Ω

(
1

uβ0
−

1

uβ

)
dx ≥ 〈µ, v − u〉
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which yields the fist part of (4.2). In order to prove the second part, we recall that Fµ is strictly
convex so, if vε and u are such as above, we have

Fµ(vε) = Fµ(ε v + (1− ε)u) < εFµ(v) + (1− ε)Fµ(u)

namely
Fµ(vε)− Fµ(u)

ε
< Fµ(v)− Fµ(u)

and the righthand term is finite, since u is the minimum of Fµ and v ∈ u0 +H1
0 (Ω).

On the other hand, for any v ∈ u0 +H1
0 (Ω), namely v = u0 + ϕ for some ϕ ∈ H1

0 (Ω) we have

∣∣∣ ∫
Ω

(D(u− u0), D(v − u)) dx
∣∣∣ =

∣∣∣ ∫
Ω

(D(u− u0), D(u0 + ϕ− u)) dx
∣∣∣

≤
∫

Ω
|D(u− u0)|2 dx

+

∫
Ω
|(D(u− u0), Dϕ)| dx

≤
∫

Ω
|D(u− u0)|2 dx+

1

2

∫
Ω
|D(u− u0)|2 dx

+
1

2

∫
Ω
|Dϕ|2 dx < +∞.

Where in the last inequality we use Young inequality.
Therefore

0 ≤
1

2
ε

∫
Ω
|D(v − u)|2 dx+

∫
Ω

(D(u− u0), D(v − u)) dx

+

∫
Ω
f

(G0(x, u− u0 + ε (v − u))−G0(x, u− u0))

ε
dx

− 〈µ, v − u〉 =
Fµ(vε)− Fµ(u)

ε
< Fµ(v)− Fµ(u)

,

which yields (4.2).
In particular from (4.2) we have

( 1

uβ0
−

1

uβ

)
v ∈ L1(Ω) for every v ∈ C∞c (Ω) with v ≥ 0. (4.3)

In fact, let v ∈ C∞c (Ω) with v ≥ 0 and let us consider v′ = v+u. Then v′ ≥ 0 and v′ ∈ u0+H1
0 (Ω).

Moreover

0 ≤ G0(x, v′ − u0) = G0(x, v + u− u0) = φ(v + u)− φ(u0) + (v + u− u0)
1

uβ0

≤ φ(u)− φ(u0) + (u− u0)
1

uβ0
+ v

1

uβ0
= G0(x, u− u0) + v

1

uβ0
.

Both the last two terms belong to L1(Ω), the first one because u is the minimum of Fµ and the
second one because v has compact support and u0 > 0 in Ω.
Whence G0(x, v′ − u0) ∈ L1(Ω) and we can use v′ in (4.2). It follows that u > 0 a.e. in Ω and
u−β ∈ L1

loc(Ω).
Let now ε, σ > 0 and let v = min {u− u0, ε− (u0 − σ)+}. Clearly v ∈ H1

0 (Ω) and


v = u− u0 if u− u0 < ε− (u0 − σ)+

v = ε− (u0 − σ)+ otherwise

{
v = ε− u0 + σ if u0 ≥ σ
v = ε ≤ u− u0 otherwise
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It follows that G0(x, v) ∈ L1(Ω), hence, by (4.2) with v = v + u0,



∫
Ω

(D(u− u0), D(v + u0 − u)) dx+

∫
Ω
f
( 1

uβ0
−

1

uβ

)
(v + u0 − u) dx

≥ 〈µ, v + u0 − u〉,( 1

uβ0
−

1

uβ

)
(v + u0 − u) ∈ L1(Ω).

(4.4)

In particular, both u−β(u− u0 − v) and u−β0 (u− u0 − v) belong to L1(Ω).
In order to prove this, let us note that

((u0 − σ) + u− u0 − ε)+ = u− u0 − v ∈ H1
0 (Ω).

Let us consider the two possible cases:

◦ ((u0 − σ)+ + u− u0 − ε)+ = 0, this implies (u0 − σ)+ + u− u0 − ε ≤ 0, whence u− u0 ≤
ε− (u0 − σ)+ and then v = u− u0;

◦ if (u0 − σ)+ + u − u0 − ε ≥ 0, then u − u0 ≥ ε − (u0 − σ)+ = v, whence u − u0 − v =
u− u0 − ε+ (u0 − σ)+.

If u− u0 − v = 0, of course both u−β(u− u0 − v) and u−β0 (u− u0 − v) belong to L1(Ω).

When u−u0− v 6= 0, since this implies u > ε, we have that u−β(u−u0− v) and u−β0 (u−u0− v)
belong to L1(Ω) also in this case.
On the other hand we have∫

Ω
(D(u0 − σ), Dϕ) dx ≤

∫
Ω

f

uβ0
ϕdx ∀ϕ ∈ C∞c (Ω) with ϕ ≥ 0.

In fact, if we denote by Ω+ the support of (u0 − σ)+, we get∫
Ω+

(D(u0 − σ), Dϕ) dx−
∫

Ω+
〈ϕD(u0 − σ), η〉 dx =

∫
Ω+

f

uβ0
ϕdx

and then ∫
Ω

(D(u0 − σ)+, Dϕ) dx ≤
∫

Ω+

f

uβ0
ϕdx ≤

∫
Ω

f

uβ0
ϕdx ∀ϕ ∈ C∞c (Ω)

with ϕ ≥ 0.
Actually we can write∫

Ω
(D(u0 − σ), Dϕ) dx ≤

∫
Ω

f

uβ0
ϕdx

∀ϕ ∈ H1
0 (Ω) with ϕ ≥ 0 a.e. in Ω.

(4.5)

In fact let ϕn ∈ C∞c (Ω), ϕ ≥ 0 and ϕ → ϕ in H1
0 (Ω). We can choose {ϕn} such that ϕn < ϕ.

Then we have

∣∣∣ ∫
Ω

(D(u0 − σ)+, Dϕn) dx−
∫

Ω
(D(u0 − σ)+, Dϕ) dx

∣∣∣
≤
∫

Ω
|((D(u0 − σ)+, D(ϕn − ϕ))| dx

≤ ‖(u0 − σ)+‖H1
0 (Ω)‖ϕn − ϕ‖H1

0 (Ω) −→n→∞ 0

∫
Ω

f

uβ0
ϕn dx −→

n→∞

∫
Ω

f

uβ0
ϕdx by the Dominated Convergence Theorem

if
f

uβ0
∈ L1(Ω).
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If f

u
β
0

6∈ L1(Ω), formula (4.5) is obviously true.

In particular, chosen ϕ = u− u0 − v, from (4.4) and (4.5) we get∫
Ω
|D(u− u0 − v)|2 dx =

∫
Ω

(D((u− u0)+ + u− u0 − ε), D(u− u0 − v)) dx

=

∫
Ω

(D(u− u0)+, D(u− u0 − v)) dx

+

∫
Ω

(D(u− u0 − ε), D(u− u0 − v)) dx

≤
∫

Ω

f

uβ
(u− u0 − v) dx+ 〈µ, u− u0 − v〉

≤ ε−β
∫

Ω
f (u− u0 − v) dx+ 〈µ, u− u0 − v〉.

Therefore, for any ε > 0, ((u0 − σ)+ + u − u0 − ε)+ is bounded in H1
0 (Ω) as σ → 0+. On the

other hand, since ((u0 − σ)+ + u− u0 − ε)+ −→
σ→0+

(u− ε)+ a.e. and therefore (u− ε)+ ∈ H1
0 (Ω),

namely u ≤ 0 on ∂Ω.
Let now v ∈ u+ (H1

0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω and let v0 ∈ C∞c (Ω) with v0 ≥ 0 a.e. in
Ω and v0 = 1 when v 6= u. Then, for every ε > 0, G0(x, v + εv0 − u0) ∈ L1(Ω). In fact

◦ near the boundary, v0 = 0 and v = u, therefore

G0(x, v + εv0 − u0) = G0(x, u− u0) ∈ L1(Ω);

◦ in the interior of Ω v = u+ ϕ, with ϕ ∈ H1
0 (Ω) ∩ L∞c (Ω), therefore

G0(x, v + εv0 − u0) = G0(x, u+ ϕ+ ε− u0)

= φ(u+ ϕ+ ε)− φ(u0) + (u+ ϕ+ ε− u0)
1

uβ0
,

which is in L1(Ω) since in the interior of Ω we have u+ ϕ ≥ 0 and u0 > 0.

It follows by (4.2) that∫
Ω

(D(u− u0), D(v + εv0 − u)) dx+

∫
Ω
f
( 1

uβ0
−

1

uβ

)
(v + εv0 − u) dx

≥ 〈µ, v + εv0 − u〉.

¿From the arbitrariness of ε it follows∫
Ω

(D(u− u0), D(v − u)) dx+

∫
Ω
f
( 1

uβ0
−

1

uβ

)
(v − u) dx ≥ 〈µ, v − u〉.

In fact, in the interior of Ω u0 is bounded away from 0 and u−β ∈ L1
loc(Ω), and therefore

◦
∣∣∣ ∫

Ω

f

uβ0
(v − εv0 − u) dx−

∫
Ω

f

uβ0
(v − u) dx

∣∣∣ −→
ε→0+

0;

◦
∣∣∣ ∫

Ω

f

uβ
(v − εv0 − u) dx−

∫
Ω

f

uβ
(v − u) dx

∣∣∣ −→
ε→0+

0.

Since u0 is solution of (3.4), it follows that∫
Ω

(Du,D(v − u)) dx−
∫

Ω

f

uβ
(v − u) dx ≥ 〈µ, v − u〉.
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Conversely, let u be a solution of (4.1) and let û ∈ H1
loc(Ω) be the minimum of Fµ. Then û

is a solution of (4.1) too. In particular, u and û are both a subsolution and a supersolution of
(3.19) and from Lemma 3.2.5 it follows that u = û, namely u is the minimum of Fµ.

(b) Let µ1, µ2 ∈ W−1,2(Ω) and let u1, u2 ∈ H1
0 (Ω) be the corresponding minima of fµ1 and

fµ2 . Then, from (4.1) it follows that

∫
Ω

(D(u1 − u0), D(v − u1)) dx+

∫
Ω
f

(
1

uβ0
−

1

uβ1

)
(v − u1) ≥ 〈µ1, v − u1〉, (4.6)

and ∫
Ω

(D(u2 − u0), D(v − u2)) dx+

∫
Ω
f

(
1

uβ0
−

1

uβ2

)
(v − u2) ≥ 〈µ2, v − u2〉. (4.7)

Since u1, u2 ∈ u0 +H1
0 (Ω) and G0(x, u1 − u0), G0(x, u2 − u0) ∈ L1(Ω), we can take u1 and u2 as

v in (4.6) and (4.7) respectively and summing we get

∫
Ω
|D(u1 − u2)|2 dx ≤

∫
Ω
f

(
1

uβ1
−

1

uβ2

)
(u1 − u2) dx+ 〈µ1 − µ2, u1 − u2〉

≤ 〈µ1 − µ2, u1 − u2〉
≤ ‖µ1 − µ2‖W−1,2(Ω) ‖u1 − u2‖H1

0 (Ω),

and therefore
‖D(u1 − u2)‖L2(Ω) ≤ ‖µ1 − µ2‖W−1,2(Ω).

Theorem 4.1.2. Let µ ∈W−1,2(Ω) and u ∈W 1,2
loc (Ω). If u satisfies

−∆u =
f

uβ
+ g(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4.8)

then u is solution of (4.1).
If µ ∈ L1

loc(Ω) ∩W 1,2(Ω) then (4.1) and (4.8) are equivalent.

Proof. Let u ∈W 1,2
loc (Ω) be solution of (4.8). Our goal is to prove that∫

Ω
(Du,D(v − u)) dx−

∫
Ω

f

uβ
(v − u) dx ≥ 〈µ, v − u〉

∀v ∈ u+ (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ 0 a.e. in Ω.

In order to prove this, let ϕ ∈ H1
0 (Ω) ∩ L∞c (Ω) and let ϕn ∈ C∞c (Ω) with ϕn −→

n→+∞
ϕ in H1

0 (Ω).

Then ∫
Ω

(Du,Dϕn) dx−
∫

Ω

f

uβ
ϕn dx ≥ 〈µ, ϕn〉.

Consider now Ω′ such that Ω′ ⊇ {supp(ϕn)} we get

◦
∣∣∣ ∫

Ω
(Du,D(ϕn − ϕ)) dx

∣∣∣ ≤ ∫
Ω
|D(u)| |D(ϕn − ϕ)| dx

≤ ‖u‖H1
0 (Ω′) ‖ϕn − ϕ‖H1

0 (Ω′) −→
n→+∞

0;

◦
∫

Ω

f

uβ
ϕn dx→

∫
Ω

f

uβ
ϕdx by the Dominated convergence Theorem.

◦ 〈µ, ϕn〉 → 〈µ, ϕ〉 by definition.
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Then (4.1) holds.
Assume now µ ∈W−1,2(Ω) ∩ L1

loc(Ω) and that u is the solution of (4.1). Let us denote by µ̄ the
L1-function representing µ ∈ W−1,2(Ω). Then for every v ∈ C∞c (Ω) with v ≥ 0, we have that
v′ = v + u satisfies (4.1) and then∫

Ω
(Du,Dv) dx−

∫
Ω

f

uβ
v dx ≥

∫
Ω
µ̄ v dx (4.9)

Let now v ∈ C∞c (Ω) with v ≤ 0, t > 0 and vt = (u+ tv)+. Since |vt − u| ≤ t|v|, we get from
4.1 ∫

Ω
(Du,D(vt − u)) dx−

∫
Ω

f

uβ
(vt − u) dx ≥

∫
Ω
µ̄ (vt − u) dx.

Dividing by t we get∫
Ω

f

uβ
vt − u
t

dx+

∫
Ω
µ̄
vt − u
t

dx ≤
∫

Ω

(
Du,D

vt − u
t

)
dx

=

∫
{u+vt≤0}

(
Du,D

vt − u
t

)
dx+

∫
{u+vt>0}

(
Du,D

vt − u
t

)
dx

= −
1

t

∫
Ω
|Du|2 dx+

∫
Ω

(Du,Dv) dx ≤
∫
{u+vt>0}

(
Du,D

vt − u
t

)
dx,

namely ∫
{u+vt>0}

(
Du,D

vt − u
t

)
dx ≥

∫
Ω

f

uβ
vt − u
t

dx+

∫
Ω
µ̄
vt − u
t

dx.

Letting t→ 0+ we get

◦ {u+ tv > 0} → Ω since u > 0 in Ω;

◦ vt−u
t
→ v pointwise. Moreover, since v ∈ C∞c (Ω) and

∣∣∣ vt−ut ∣∣∣ ≤ |v|, by the Dominated

convergence Theorem we get ∫
Ω

f

uβ
vt − u
t

dx→
∫

Ω

f

uβ
v dx;

◦
∫

Ω
µ̄
vt − u
t

dx→
∫

Ω
µ̄ v dx by the Dominated Convergence Theorem;

therefore ∫
Ω

(Du,Dv) dx−
∫

Ω

f

uβ
v dx ≥

∫
Ω
µ̄ v dx (4.10)

also in this case.
¿From (4.9) and (4.10) it follows that, ∀v ∈ C∞c (Ω) with v ≥ 0 or v ≤ 0 we have∫

Ω
(Du,Dv) dx−

∫
Ω

f

uβ
v dx =

∫
Ω
µ̄ v dx. (4.11)

Let now v ∈ C∞c (Ω). The thesis follows immediately from (4.11) by considering v+ and v−.

Corollary 4.1.3. Assume that each x ∈ ∂Ω satisfies the Wiener criterion (for istance, Ω has

Lipschitz boundary) and that µ ∈ L∞(Ω). Let u ∈ W 1,2
loc (Ω) be the solution of (4.8). Then

u ∈ C(Ω) ∩W 2,p
loc (Ω) for any p <∞ and satisfies

−∆u =
f

uβ
+ µ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4.12)

Moreover, we have
tµu0 ≤ u ≤ Tµu0 in Ω

for some 0 < tµ ≤ Tµ < +∞.
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Proof. For tµ and Tµ sufficiently small and big respectively, tµ u0 and Tµ u0 are a subsolution and
a supersolution of (3.19). Therefore, from Lemma 3.2.5 we deduce that tµ u0 ≤ u ≤ Tµ u0 a.e. in
Ω. Since, according to Corollary 3.2.7, u0 ∈ C(Ω), also u ∈ C(Ω). Moreover, for any compact set
K ⊂ Ω, we have u ≥ tµ u0 > c > 0 and therefore u−β ∈ L∞loc(Ω) which yields u ∈ W 2,p(K) for
any p <∞.

4.2 C1 perturbations

Let u0 ∈ L∞(Ω) ∩ C2(Ω) be the solution of (3.4) and let F̃0 : H1
0 (Ω)→ (−∞,+∞] be the lower,

semicountinuous, convex functional defined as

F̃0(v) =
1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx ∀v ∈ H1

0 (Ω). (4.13)

Moreover, let g : Ω× R→ R be a Carathéodory function and assume that∃a ∈ L
2N
N+2 (Ω), b ∈ R s.t.

|g(x, s)| ≤ a(x) + b|s|
N+2
N−2 a.e. in Ω and ∀s ∈ R.

(4.14)

Define a new Carathéodory function g1 : Ω× R→ R by

g1(x, s) = g(x, u0(x) + s), (4.15)

which also satisfies (4.14), since u0 ∈ L∞(Ω).

Let G1(x, s) =
∫ s
0 g1(x, t) dt and F : H1

0 (Ω) → (−∞,+∞] be defined as F (u) = F̃0(u) + γ(u),

where γ is the C1 functional defined as γ(u) = −
∫
Ω G1(x, u) dx.

Definition 4.2.1. We say that u ∈ H1
0 (Ω) is a critical point of the functional F if F̃0(u) < +∞

and
∀v ∈ H1

0 (Ω) we have 〈γ′(u), v − u〉+ F̃0(v)− F̃0(u) ≥ 0.

Theorem 4.2.2. For every u, the following assertions are equivalent:

(a) u ∈ H1
loc(Ω) ∩ L

2N
N−2 (Ω) and

−∆u =
f

uβ
+ g(x, u) in D′(Ω),

u > 0 a.e. in Ω, and u−β ∈ L1
loc(Ω),

u ≤ 0 on ∂Ω.

(4.16)

(b) u ∈ u0 +H1
0 (Ω) and u− u0 is a critical point of F.

Proof. (a) =⇒ (b). Let µ = g(x, u) = g1(x− u0) and ϕ ∈ H1
0 (Ω).

By (4.14) we get ∫
Ω
|g(x, u)|

2N
N+2 dx ≤ α

∫
Ω
|a(x)|

2N
N+2 dx+ β

∫
Ω
|u(x)|

2N
N−2 dx,

then µ ∈ W−1,2(Ω) ∩ L1
loc(Ω) by the hypothesis on a(x) and u(x). By Theorems 4.1.1 and 4.1.2

it follows that u is solution of (4.1) and therefore u ∈ u0 +H1
0 (Ω) and minimizes Fµ. This means

that u− u0 is a critical point of F .
In fact, ∀u′ ∈ u0 +H1

0 (Ω), we have Fµ(u′) ≥ Fµ(u). This means that ∀u′ = u0 +v with v ∈ H1
0 (Ω)

we have

1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx− 〈µ, v〉 ≥

1

2

∫
Ω
|D(u− u0)|2 dx

+

∫
Ω
f G0(x, u− u0) dx− 〈µ, u− u0〉,
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namely

1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx ≥

1

2

∫
Ω
|D(u− u0)|2 dx

+

∫
Ω
f G0(x, u− u0) dx−

∫
Ω
g(x, u) (u− u0 − v) dx,

which means
F̃0(v) ≥ F̃0(u− u0)− 〈γ′(u), u0 + v − u〉.

(b) =⇒ (a). Conversely, assume that (b) holds. Then u−u0 is a critical point of F , namely u
is the minimum of Fµ. By Theorem 4.1.1 it follows that u satisfies (4.1) and by Theorem 4.1.2 it

follows that u satisfies (4.8) and therefore satisfies (4.16), since from (4.1) we get u ∈ L
2N
N−2 (Ω).

Corollary 4.2.3. Assume that each x ∈ ∂Ω satisfies the Wiener criterion, that{
∃b ∈ R s.t.

|g(x, s)| ≤ b(1 + |s|
N+2
N−2 ) for a.e. x ∈ Ω and every s ∈ R,

and that u ∈ H1
loc(Ω) ∩ L

2N
N−2 (Ω) is a solution of (4.16).

Then u ∈ C(Ω) ∩W 2,p
loc (Ω) for any p < +∞ and satisfies


−∆u =

f

uβ
+ g(x, u) a.e. in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4.17)

Proof. The thesis follows by Corollary 4.1.3 by proving that u ∈ L∞(Ω) and, consequently,
g(x, u) ∈ L∞(Ω).
Let z = (u− 1)+. Then z ∈ H1

0 (Ω) and is a subsolution of the equation

−∆ v = ĝ(x, v) + µ̂

where ĝ(x, s) = g(x, s+ 1)χ{u>1} and µ̂ =
f

uβ
χ{u>1} ∈ L∞(Ω).

In fact, if we set Ω̂ = {u > 1}, ∀ϕ ∈ H1
0 (Ω) ∩ L∞c (Ω) with ϕ ≥ 0 a.e. in Ω, we get∫

Ω
(Dz,Dϕ) dx−

∫
Ω
ĝ(x, z)ϕdx− 〈µ̂, ϕ〉

=

∫
Ω̂

(Du,Dϕ) dx−
∫

Ω̂
g(u, u)ϕdx−

∫
Ω̂

f

uβ
ϕdx

=

∫
Ω̂

(−∆u)ϕdx+

∫
Ω̂
ϕ
∂u

∂η
dx−

∫
Ω̂
g(x, u)ϕdx

−
∫

Ω̂

f

uβ
ϕdx =

∫
Ω̂
ϕ
∂u

∂η
dx ≤ 0.

Therefore, by [5] that z ∈ L∞(Ω), whence u ∈ L∞(Ω) and g(x, u) ∈ L∞(Ω), which yields the
thesis.
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Chapter 5

A jumping problem

In this chapter we study a jumping problem in the spirit of [1]. Actually we consider the problem


−∆u =

f

uβ
+ g(x, u)− t ϕ1 a.e. x ∈ Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

assuming that there exist constants γ , Γ ∈ R such that

0 < γ ≤ f ≤ Γ .

We prove existence of two solutions for large values of the parameter t, following the approach in
[6] and exploiting the variational characterization developed in the thesis.

5.1 The problem

Suppose that g : Ω× R→ R is a Carathéodory function which satisfies the following:

(g1) there exist a and b such that

|g(x, s)| ≤ a(x) + b(x) |s| for a.e. x ∈ Ω and every s ∈ R;

with a ∈ L
2N
N+2 (Ω) and b ∈ L

N
2 (Ω) if n ≥ 3; a, b ∈ Lp(Ω) for some p > 1 if n = 2; a,

b ∈ L1(Ω) if n = 1.

(g2) there exists α ∈ R such that

lim
s→+∞

g(x, s)

s
= α for a.e. x ∈ Ω.

Denote by λ1 the first eigenvalue of −∆ with homogeneous Dirichlet condition and by ϕ1 an
associated eigenfunction with ϕ1 > 0 in Ω and let us consider the problem, in dependence on
t ∈ R, 

−∆u =
f

uβ
+ g(x, u)− t ϕ1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(5.1)
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5.2 A nonsmooth version of the Mountain Pass
Theorem

In order to study problem (5.1), we recall from [22] an extension of the Mountain pass theorem
of Ambrosetti and Rabinowitz [2].
Let X be a real Banach space and F : X → (−∞,+∞] a function. Assume that F = Ψ + Φ,
where Ψ : X → (−∞,+∞] is convex, proper and lower semicontinuous and Ψ : X → R is of class
C1.

Definition 5.2.1. We say that u ∈ X is a critical point for F if

Ψ(v) ≥ Ψ(u)− 〈Φ′(u), v − u〉 ∀v ∈ X.

Definition 5.2.2. We say that F satisfies the Palais-Smale (PS) condition if, for every sequence
{un} in X and {µn} in X∗ such that suph |F (un)| < +∞, ‖µn‖W−1,2(Ω) → 0 and

Ψ(v) ≥ Ψ(un)− 〈Φ′(un), v − un〉+ 〈µn, v − un〉 ∀v ∈ X

the sequence {un} admits a convergent subsequence in X.

Theorem 5.2.3. Assume that F satisfies (PS) and that there exist r > 0 and σ > F (0) such
that

F (u) ≥ σ ∀u ∈ X with ‖u‖ = r,

F (u1) ≤ F (0) for some u1 ∈ X with ‖u1‖ > r.

Then there exists a critical point u for F with F (u) ≥ σ.

For the proof of Theorem 5.2.3 we refer the reader to [22].

5.3 Jumping for a class of singular variational in-
equalities

For every t ∈ R, let Ft : H1
0 (Ω)→ (−∞,+∞] be the functional defined as

Ft(w) = F̃0(w) + γt(w), (5.2)

where

F̃0(w) =
1

2

∫
Ω
|Dw|2 dx+

∫
Ω
f G0(x,w) dx,

γt(w) = −
∫

Ω
G1(x,w) dx+ t

∫
Ω
ϕ1 w dx− 〈µ,w〉,

µ ∈W−1,2(Ω) and F̃0(w) defined in (4.13).

Theorem 5.3.1. Let w ∈ H1
0 (Ω) such that

F̃0(v) ≥ F̃0(w)− 〈γ′t(w) , v − w〉 ∀v ∈ H1
0 (Ω).

Then we have 

u0 + w > 0 a.e. in Ω and (u0 + w)−β ∈ L1
loc(Ω),∫

Ω
(Dw,D(v − w)) dx ≥

∫
Ω
f ( (u0 + w)−β − u−β0 ) (v − w) dx

+

∫
Ω

(g(x, u0 + w)− t ϕ1) (v − w) dx+ 〈µ, v − w〉.

∀v ∈ w + (H1
0 (Ω) ∩ L∞c (Ω)) with v ≥ −u0 a.e. in Ω,

u0 + w ≤ 0 on ∂Ω;

(5.3)
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Proof. The thesis follows by Theorem 4.1.1, by observing that g(x, u0 +u)−t ϕ1 +µ ∈W−1,2(Ω).

Lemma 5.3.2. Let {wn} be a sequence in H1
0 (Ω) and {ηn} a sequence in W−1,2(Ω). If ηn is

strongly convergent in W−1,2(Ω) and

1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx ≥

1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx

+ 〈ηn, v − wn〉
(5.4)

for every v ∈ H1
0 (Ω).

Then {wn} is strongly convergent in H1
0 (Ω).

Proof. Setting v = 0 in (5.4), we get

〈ηn, wn〉 ≥
1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx,

whence

0 ≤
1

2

∫
Ω
|Dwn|2 dx ≤

1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx

≤ 〈ηn, wn〉 ≤ C‖wn‖,

which jelds that {wn} is bounded in H1
0 (Ω), hence weakly convergent up to a subsequence, to

some w ∈ H1
0 (Ω). Also G0(x,w) ∈ L1(Ω). In fact, since

∫
Ω
f G0(x,wn) < ∞ is bounded, by

Fatou’s Lemma also f G0(x,w) ∈ L1(Ω) and, since γ < f < Γ, G0(x,w) ∈ L1(Ω).
If we set v = w in (5.4) we get

1

2

∫
Ω
|Dw|2 dx+

∫
Ω
f G0(x,w) dx ≥

1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx

+ 〈ηn, w − wn〉.

Note now that

◦ lim sup
n→+∞

∫
Ω
f G0(x,wn) dx ≤

∫
Ω
f G0(v, w) dx by Fatou’s Lemma,

◦ 〈ηn, w −wn〉 = 〈ηn − η, w −wn〉+ 〈η, w −wn〉, where η ∈W−1,2(Ω) is the limit of {ηn}.
Since wn ⇀ w in H1

0 (Ω), the second term converges to zero, while for the first term we
have:

〈ηn − η, w − wn〉 ≤ ‖ηn − η‖W−1,2(Ω)‖w − wn‖H1
0 (Ω) → 0.

Letting n→ +∞ we therefore obtain

lim sup
n→+∞

∫
Ω
|Dwn|2 dx ≤

∫
Ω
|Dw|2 dx. (5.5)

Since wn weakly converges to w, it follows now that lim inf
n→+∞

‖wn‖H1
0 (Ω) ≥ ‖w‖H1

0 (Ω) which

yields, together with (5.5), wn → w in H1
0 (Ω) up to subsequence. Actually, all the sequence wn

converges to w in H1
0 (Ω). In fact passing to the limit in (5.4) we get

lim
n→+∞

(1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx

)
≥ lim
n→+∞

(1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx

+ 〈ηn, v − wn〉
)
∀v ∈ H1

0 (Ω),
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namely

1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) dx

≥
1

2

∫
Ω
|Dw|2 dx+

∫
Ω
f G0(x,w) dx

+ 〈η, v − w〉 ∀v ∈ H1
0 (Ω),

which means that w is the minimum of the strictly convex functional F̃0 − η.
Therefore, the whole sequence {wn} converges to w in H1

0 (Ω). In fact, suppose that {wnj } is a
subsequence of wn which converges to ŵ 6= w. We can replay the entire proof with wnj instead

of wn, obtaining that ŵ is another minimum of F̃0 − η, which contradicts the uniqueness of the
minimum of the functional.

Theorem 5.3.3. Assume that α > λ1 and assume that there exist γ , Γ ∈ R such that

0 < γ ≤ f ≤ Γ .

Then, for every t ∈ R, the functional Ft = F̃0 + γt satisfies (PS).

Proof. Let {wn} be a sequence in H1
0 (Ω) and {ηn} a sequence in W−1,2(Ω) with sup

n
|Ft(wn)| <

+∞, ηn → 0 and

1

2

∫
Ω
|Dv|2 dx+

∫
Ω
f G0(x, v) ≥

1

2

∫
Ω
|Dwn|2 dx+

∫
Ω
f G0(x,wn) dx

+

∫
Ω

(g1(x,wn)− t ϕ1) (v − wn) dx

+ 〈µ+ ηn, v − wn〉

(5.6)

for all v ∈ H1
0 (Ω). Hence, by Theorem 5.3.1, it follows that wn satisfies (5.3). In particular a

translation argument gives∫
Ω

(Dwn, Dv) dx ≥
∫

Ω
f ( (u0 + wn)−β − u−β0 ) v dx

+

∫
Ω

(g1(x,wn)− t ϕ1) v dx+ 〈µ+ ηn, v〉.
(5.7)

for every v ∈ H1
0 (Ω) ∩ L∞c (Ω) with v ≥ −u0 − un a.e. in Ω.

We claim that {wn} is bounded in H1
0 (Ω). Assume by contradiction that ‖wn‖H1

0 (Ω) → +∞ and

set σn = ‖wn‖ and zn =
wn

σn
. Since ‖zn‖H1

0 (Ω) = 1, up to subsequence {zn} is convergent to

some z ∈ H1
0 (Ω), with z ≥ 0 a.e. in Ω. To prove that z ≥ 0 a.e. in Ω just use the fact that

wn ≥ −u0.
By an approximation argument we can choose v = −wn in (5.7), obtaining

−
∫

Ω
|Dwn|2 dx ≥

∫
Ω
f ((u0 + wn)−β − u−β0 ) (−wn) dx

+

∫
Ω

(g1(x,wn)− t ϕ1) (−wn) dx+ 〈µ+ ηn,−wn〉,

hence ∫
Ω
|Dwn|2 dx ≤

∫
Ω
f((u0 + wn)−β − u−β0 )wn dx

+

∫
Ω

(g1(x,wn)− t ϕ1)wn dx+ 〈µ+ ηn, wn〉.

Dividing by σ2
n we get

1 =

∫
Ω
|Dzn|2 dx ≤

∫
Ω

g1(x, σn zn)

σn
zn dx−

t

σn

∫
Ω
ϕ1 zn dx+

1

σn
〈µ+ ηn, zn〉.
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Letting n→ +∞ we get 
∫

Ω
|Dz|2 dx ≤ α

∫
Ω
z2 dx

1 ≤ α
∫

Ω
z2 dx ,

(5.8)

so that in particular, z 6= 0. To prove this we use the fact that∣∣∣ t
σn

∫
Ω
ϕ1 zn dx

∣∣∣ ≤ |t|
σn
‖ϕ1‖L2(Ω)‖zn‖L2(Ω) ≤ C

|t|
σn
‖ϕ1‖L2(Ω)‖zn‖H1

0 (Ω) −→
n→+∞

0,

and ∣∣∣ 1

σn
〈µ+ ηn, zn〉

∣∣∣ ≤ 1

σn
‖w + ηn‖W−1,2(Ω)‖zn‖H1

0 (Ω) ≤
1

σn
(‖µ‖W−1,2(Ω) + ‖ηn‖W−1,2(Ω)) −→

n→+∞
0 .

Furthermore ∫
Ω

g1(x, σn zn)

σn
zn dx −→

n→+∞

∫
Ω
α z2 dx ,

since by [7] we know that

lim
k→+∞

g1(x, σn zn)

σn
= α z strongly in W−1,2(Ω) .

On the other hand, if we take v ∈ C∞c (Ω) with v ≥ 0 in (5.7), we get∫
Ω

(Dzn, Dv) dx ≥
1

σn

∫
Ω
f
( 1

(u0 + wn)β
−

1

uβ0

)
v dx+

∫
Ω

g1(x, σn zn)

σn
v dx

−
t

σn

∫
Ω
ϕ1 v dx+

1

σn
〈µ+ ηn, v〉.

Hence, taking into account the fact that (u0 + wn)−β − u−β0 > 0 where wn < 0 ,∫
Ω

(Dzn, Dv) dx ≥
1

σn

∫
{wn≥0}

f
( 1

(u0 + wn)β
−

1

uβ0

)
v dx

+

∫
Ω

g1(x, σn zn)

σn
v dx−

t

σn

∫
Ω
ϕ1 v dx+

1

σn
〈µ+ ηn, v〉.

As v has compact support and u0 is positive in the interior of Ω, we can pass to the limit as
n→ +∞, obtaining∫

Ω
(Dz,Dv) dx ≥ α

∫
Ω
z v dx ∀v ∈ C∞c (Ω) with v ≥ 0.

Combining this last relation with (5.8) and arguing by density we get∫
Ω

(Dz,D(v − z)) dx ≥ α
∫

Ω
z (v − z) dx ∀v ∈ H1

0 (Ω) with v ≥ 0 a.e. in Ω.

It follows by [8] that z is a positive nontrivial solution of −∆ z = α z, but this contradicts the
assumption that α > λ1.
It follows therefore that {wn} is bounded in H1

0 (Ω) and therefore weakly convergent, up to subse-
quence, to some w ∈ H1

0 (Ω) and therefore, by (g1), {g1(x,wn)} is strongly convergent to g1(x,w)
in W−1,2(Ω).
The thesis follows now by Lemma 5.3.2 and (5.6).

Theorem 5.3.4. Let α > λ1 and assume that there exist γ , Γ ∈ R such that

0 < γ ≤ f ≤ Γ .

Then the following hold:
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(a) there exist r, t̄, σ > 0 such that Ft(w) ≥ σ t2 for every t > t̄ and every w ∈ H1
0 (Ω) with

‖w‖ = t r;

(b) there exists v ∈ H1
0 (Ω) ∩ L∞c (Ω) such that v ≥ 0 a.e. in Ω and

lim
s→+∞

Ft(s v) = −∞ ∀t ∈ R.

Remarkably r, t̄, σ > 0 do not depend on f .

Proof. (a) Let us set

F ft (w) := Ft(w)

defined in (5.2), where we emphasize the dependence on f of the functional for future use. Let
also set

F̃t(w) := F̃ ft (w) =
F ft (w)

t2
for t > 0

and let

F̃∞(w) =


1

2

∫
Ω
|Dw|2 dx−

α

2

∫
Ω
w2 dx+

∫
Ω
ϕ1 w dx if w ≥ 0 a.e. in Ω

+∞ otherwise

By [15] we know that there exists r > 0 such that

F̃∞(w) > 0 ∀w ∈ H1
0 (Ω) such that 0 < ‖w‖H1

0 (Ω) ≤ r. (5.9)

To prove the result assume by contradiction that there exist:

◦ a sequence {wn} in H1
0 (Ω) with ‖wn‖H1

0 (Ω) = r,

◦ a sequence {tn} ∈ R with tn → +∞,

◦ a sequence of functions fn such that 0 < γn ≤ fn ≤ Γn ,

such that
lim sup
k→+∞

F̃ fntn (tn wn) ≤ 0.

Therefore

0 ≥ lim sup
n→+∞

F̃tn (tn wn) = lim sup
n→+∞

(1

2

∫
Ω
|Dwn|2 dx+

∫
Ω

fn(x)G0(x, tn wn)

t2n
dx

−
∫

Ω

G1(x, tn wn)

t2n
dx+

∫
Ω
ϕ1 wn dx−

1

tn
〈µ,wn〉

)
≥ lim sup
n→+∞

(1

2

∫
Ω
|Dwn|2 dx−

∫
Ω

G1(x, tn wn)

t2n
dx

+

∫
Ω
ϕ1 wn dx−

1

tn
〈µ,wn〉

)
.

Since ‖wn‖H1
0 (Ω) = r, the sequence {wn} weakly converges, up to subsequence, to some w ∈

H1
0 (Ω) with ‖w‖H1

0 (Ω) ≤ lim sup
n→+∞

‖wn‖H1
0 (Ω) = r. Also by [7] we know that

lim
n→+∞

G1(x, tn wn)

t2n
=
α

2
w2 strongly in L1(Ω),

and it follows that w 6= 0 and

1

2

∫
Ω
|Dw|2 dx−

α

2

∫
Ω
w2 dx+

∫
Ω
ϕ1 w dx ≤ 0. (5.10)

To prove this just use the fact that:
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◦
1

2

∫
Ω
|Dw|2 dx ≤

1

2
lim inf
n→+∞

∫
Ω
|Dwn|2 dx ≤

1

2
lim sup
n→+∞

∫
Ω
|Dwn|2 dx,

◦
∫

Ω
ϕ1 wn dx −→

n→+∞

∫
Ω
ϕ1 w dx by the definition of weak convergence,

◦
1

tn
〈µ,wn〉 ≤

1

tn
‖µ‖W−1,2(Ω) r −→

n→+∞
0.

In order to exploit the results in [15] ending the proof, we need now to prove that w ≥ 0 almost
everywhere in Ω.
Actually, since F̃tn (tnwn) < +∞, from the definition of G0(x, s) it follows that u0 + tn wn ≥ 0
(and un ≥ −u0

tn
). Then, since tn →∞, it follows that u ≥ 0 almost everywhere in Ω.

This fact, with (5.10), contradicts (5.9) and therefore (a) holds.
(b) Let v ∈ H1

0 (Ω) ∩ L∞c (Ω), with v ≥ 0. Then

Ft(s v) =
1

2

∫
Ω
|D(s v)|2 dx+

∫
Ω
f G0(x, s v) dx−

∫
Ω
G1(x, s v) dx

+ t

∫
Ω
ϕ1 s v dx− 〈µ, s v〉 = s2

(1

2

∫
Ω
|Dv|2 dx+

1

s2

∫
Ω
f G0(x, s v) dx

−
1

s2

∫
Ω
G1(x, s v) dx+

t

s

∫
Ω
ϕ1 v dx−

1

s
〈µ, v〉

)
.

Letting s → +∞ and taking into account the fact that both f and u0 are bounded away from
zero in the support of v, we get

◦
1

s2

∫
Ω
f G0(x, s v) −→

s→+∞
0,

◦
1

s2
G1(x, s v) −→

s→+∞

α

2
v2 strongly in L1(Ω),

◦
t

s

∣∣∣ ∫
Ω
ϕ1 v dx

∣∣∣ ≤ t

s
‖ϕ1‖L2(Ω)‖v‖L2(Ω) −→s→+∞

0

◦
1

s
〈µ, v〉 ≤

1

s
‖µ‖W−1,2(Ω)‖v‖H1

0 (Ω) −→s→+∞
0

Since −∆ϕ1 = λ1ϕ1 with α > λ1, it follows that

∫
Ω
|Dϕ1|2 dx < α

∫
Ω
ϕ2

1 dx. An approximation

argument gives therefore that we can take v ∈ H1
0 (Ω) ∩ L∞c (Ω) such that

∫
Ω
|Dv|2 dx < α

∫
Ω
v2 dx. (5.11)

For such a v (as in (5.11)) we get

lim
s→+∞

Ft(s v) ∼ lim
s→+∞

s2
(1

2

∫
Ω
|Dv|2 dx−

α

2

∫
Ω
v2 dx

)
= −∞ ,

that concludes the proof.

Theorem 5.3.5. Let α > λ1 and assume that there exist γ , Γ ∈ R such that

0 < γ ≤ f ≤ Γ .

Then there exists t̄ ∈ R such that, for every t > t̄, there exist w1 ∈ H1
0 (Ω) and w2 ∈ H1

0 (Ω) that
fulfils the variational inequality (5.3).
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Proof. Let σ , t̄ , r > 0 be as in assertion (a) of Theorem 5.3.4 and take t > t̄. Since Ft(0) = 0,
from Theorems 5.3.3 and 5.3.4, it follows that Ft satisfies the assumptions of Theorem 5.2.3,
namely there exists w1 ∈ H1

0 (Ω) critical point of Ft, with Ft(w1) > σ.
On the other hand, since Ft is weakly lower semicontinuous and bounded from below, it admits
a minimum w2 ∈ {w ∈ H1

0 (Ω) : ‖w‖ ≤ t r}, with Ft(w2) ≤ 0, which means that w1 6= w2. From
‖w2‖H1

0 (Ω) < tr it follows that w2 is a free local minimum of ft, hence another critical point of

Ft.
The conclusion follows now by Theorem 5.3.1.

Theorem 5.3.6. Let α > λ1 and assume that there exist γ , Γ ∈ R such that

0 < γ ≤ f ≤ Γ .

Consider u1 , u2 ∈ H1
loc(Ω) given by

u1 := u0 + w1 and u2 := u0 + w2

with w1 and w2 given by Theorem 5.3.5 and assume that g(x, s) satisfies (g1)-(g2) with a(x) , b(x) ∈
L∞(Ω).
Then u1 , u2 ∈ L∞(Ω) and

−∆u =
f

uβ
+ g(x, u)− t ϕ1 in D′(Ω). (5.12)

Moreover, if Ω is smooth with smooth boundary and (g1) is fulfilled with a(x) , b(x) ∈ L∞(Ω),
then

u1 , u2 ∈ C(Ω) ∩
( ⋂

1≤p<∞
W 2,p
loc (Ω)

)
, (5.13)

and the equation is fulfilled a.e. in the classical sense.

Proof. The proof is the same as in [7, Theorem 3.7], that goes back to [8, Corollary 4.2].

Remark 5.3.7. Note that by construction the solutions u1 and u2 given by Theorem 5.3.6 are
positive a.e. in Ω. Actually the regularity of the solutions in (5.13) and the fact that f is
nonnegative, allow us to use the Strong Maximum Principle and get that actually u is strictly
positive in the interior of the domain. Consequently, standard regularity estimates apply and
one can deduce more regularity of the solutions in the interior of the domain, depending on the
regularity of f .



Chapter 6

A jumping problem for more
general equations

In this chapter we study a more general jumping problem considering


−∆u =

f

uβ
+ g(x, u)− t ϕ1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(6.1)

assuming that f is a nonnegative L1(Ω)-function if β > 1, while f is a nonnegative Lm(Ω)-function

with m = 2N
N+2+β(N−2)

=
(

2∗

1−β

)′
if 0 < β ≤ 1. The main idea is to consider a truncated problem

and then to obtain uniform bounds in order to pass to the limit.

6.1 A-priori estimates for the truncated problem

Let us consider f ≥ 0 a.e. in Ω such that

{
f ∈ L1(Ω) if β > 1;

f ∈ Lm(Ω) with m = 2N
N+2+β(N−2)

if 0 < β ≤ 1.
(6.2)

and define the truncated function of f as follows

fn := max
{ 1

n
, min

{
n , f

}}
.

By Theorem 5.3.6 we have that there exists t̄ ∈ R (given by Theorem 5.3.4) not depending on
n ∈ N such that, for any t ≥ t̄, there exist two solutions of the truncated problem involving fn.
Let un one of these two solutions, so that


−∆un =

fn

unβ
+ g(x, un)− tϕ1 in Ω,

un > 0 in Ω,

un = 0 on ∂Ω ,

(6.3)

where β > 0 and un ∈ C(Ω) ∩ C2(Ω). Let us recall that generally un does not belong to H1
0 (Ω),

and can be decomposed as

un = u0n + wn (6.4)
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where wn ∈ H1
0 (Ω)∩C(Ω)∩C2(Ω) and u0n ∈ H1

loc(Ω)∩ C(Ω)∩C2(Ω) is the unique solution to
the problem: 

−∆u0n =
fn

u0n
β

in Ω,

u0n > 0 in Ω,

u0n = 0 on ∂Ω.

(6.5)

The equation has to be understood in the following sense:∫
Ω

(Du0n, Dϕ) dx =

∫
Ω

fn ϕ

u0n
β
dx ∀ϕ ∈ C1

c (Ω). (6.6)

Actually the solution is fulfilled in the classical sense in the interior of Ω by standard regularity
results, since u0n is strictly positive in the interior of the domain.

Lemma 6.1.1. The sequence wn defined in (7.5) is uniformly bounded in H1
0 (Ω). More precisely

there exists a constant C, not depending on n, such that

‖wn‖H1
0 (Ω) ≤ C .

Proof. Let us fix n ∈ N consider φj ∈ C∞c (Ω) such that

φj −→
j→∞

wn in H1
0 (Ω) .

It is not restrictive to assume that φj is positive where wn is positive, and φj is negative where

wn is negative. To do this just recall that wn ∈ H1
0 (Ω) ∩ C(Ω) ∩ C2(Ω) and consider

wn = w+
n − w−n .

Then let, for t ≥ 0, Gε(t) := t · χ{t≥2ε} + (2t − 2ε) · χ{ε≤t≤2ε}, and approximate in H1
0 (Ω)

Gε(w+
n ) and Gε(w−n ). The details are left to the reader.
Plugging φj as test function into (6.3), and exploiting the splitting in (7.5) and equation

(7.7), we get∫
Ω

(DwnDφj) dx =

∫
Ω
fn
( 1

(u0n + wn)β
−

1

(u0n)β

)
φj dx

+

∫
Ω

(g(x, un)φj − tϕ1φj) dx ≤
∫

Ω
(g(x, un)φj − tϕ1φj) dx .

We now let j → +∞ and get∫
Ω
|Dwn|2 dx ≤

∫
Ω

(g(x, un)wn − tϕ1wn) dx .

Assume now by contradiction that, up to subsequences, ‖wn‖H1
0 (Ω) tends to infinity, and set

σn := ‖wn‖H1
0 (Ω) and zn :=

wn

σn
.

Since ‖zn‖H1
0 (Ω) = 1. it follows that zn weakly converges in H1

0 (Ω) to some z ∈ H1
0 (Ω). It is easy

to see that z ≥ 0 a.e. in Ω since u0n + wn ≥ 0.
On the other hand we have

1 =

∫
Ω
|Dzn|2 dx ≤

∫
Ω

g1(x, σnzn)

σn
zn dx−

t

σn

∫
Ω
ϕ1zn dx
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g1 defined in (4.15). Arguing as in Theorem 5.3.3 we get

1 =

∫
Ω
|Dz|2 dx ≤ α

∫
Ω
z2 dx ,

so that in particular z 6= 0.
Take now v ∈ C∞c (Ω) with v ≥ 0 in Ω, and put it as test function in (6.3), obtaining∫

Ω
(DznDv) dx =

1

σn

∫
Ω
fn
( 1

(u0n + wn)β
−

1

(u0n)β

)
v dx

+

∫
Ω

(g1(x, σnzn)

σn
v −

t

σn
ϕ1v

)
dx

≥
1

σn

∫
{wn≥0}

fn
( 1

(u0n + wn)β
−

1

(u0n)β

)
v dx

+

∫
Ω

(
g1(x, σnzn)

σn
v −

t

σn
ϕ1v

)
dx

Note now that, since u0n is bounded away from zero in the interior of Ω, we get

∣∣∣ 1

σn

∫
{wn≥0}

fn

(
1

(u0n + wn)β
−

1

(u0n)β

)
v dx

∣∣∣ ≤ C

σn
‖f‖L1(Ω) −→

n→+∞
0 .

Therefore, arguing as above, we get∫
Ω

(Dz , Dv) dx ≥ α
∫

Ω
z v dx ,

and consequently ∫
Ω

(Dz , D(v − z)) dx ≥ α
∫

Ω
z (v − z) dx .

It follows that z is a nonnegative solution to −∆z = αz, which is not possible since we assumed
α > λ1. Therefore the result is proved.

In what follows we will consider the further assumption:

Given any compact set C ⊂ Ω there exists a constant θ = θ(C) > 0 such that

f ≥ θ a.e. in C . (6.7)

Lemma 6.1.2. Let un ∈ C(Ω) ∩ C2(Ω) be a solution to (6.3) and assume that f fulfills (6.7).
Then, given any compact set C ⊂ Ω, there exists a constant µ = µ(C) > 0 such that

un ≥ µ a.e. in C ,

uniformly in n ∈ N.

Proof. Fix a compact set C′ ⊂ Ω and consider υ ∈ C2(C′) positive solution to
−∆ υ = 1 for x ∈ C′,
υ > 0 for x ∈ C′,
υ = 0 for x ∈ ∂C′ ,

and set
υλ := λυ ,

so that −∆υλ = λ in C′.
We shall prove the thesis, showing that, for λ sufficiently small, we have that un ≥ υλ in C′. To
prove this let us set

Wλ := (υλ − un)+
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consider φj ∈ C∞c (Ω) such that

φj −→
j→∞

Wλ in H1
0 (Ω) .

It is not restrictive to assume that φj is positive and that supp φj ⊆ supp Wλ.

By (6.3) we have

∫
supp φj

(Dun , Dφj) dx =

∫
supp φj

( fn
uβn

+ g(x, un)− tϕ1

)
φj dx

Recall now that supp φj ⊆ supp Wλ ⊆ C′, and that

un ≤ υλ ≤ C λ in the support of Wλ ,

for some constant C ∈ R.
Consequently, since g(x, s) is bounded from above w.r.t. the variable s, and ϕ1 ∈ L∞(Ω) and t is
fixed, we can take λ small such that

( fn
uβn

+ g(x, un)− tϕ1

)
≥ λ in the support of Wλ ,

and therefore we have∫
supp Wλ

(Dun , Dφj) dx ≥
∫

supp Wλ

λφj dx =

∫
supp Wλ

(Dυλ , Dφj) dx

that is ∫
supp Wλ

(DWλ , Dφj) dx ≤ 0 .

Letting now j →∞, we get that

∫
supp Wλ

|DWλ|2 dx ≤ 0 which shows that Wλ = 0 and therefore

that

un ≥ υλ in C′ .

The thesis follows now by the arbitrariness of the compact set C′ (to get a bound on a compact
set, just consider a bigger one).

6.2 Ending the proof of Theorem 1.0.2

We prove in this section Theorem 1.0.2. For the readers convenience we recall the statement.

Theorem 6.2.1. Let β > 0 and assume that g(x, s) satisfies assumptions (g1)-(g2) with α > λ1

and a(x), b(x) ∈ L∞(Ω). Let f satisfying (6.2) and (6.7) 1. Then there exists t̄ ∈ R such that,
for any t ≥ t̄ there exist u1 , u2 ∈ H1

loc(Ω) solutions to (1.6). Moreover

ui := u0 + wi for i = 1, 2,

where u0 ∈ H1
loc(Ω) is defined in (1.2) and wi ∈ H1

0 (Ω). Moreover ui are strictly bounded away
from zero in the interior of Ω.

1Recall that f fulfills (6.7) if, given any compact set C ⊂ Ω there exists a constant
θ = θ(C) > 0 such that f ≥ θ a.e. in C.
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Proof. We showed in Lemma 6.1.1 that the sequence {wn} ∈ H1
0 (Ω) defined in (7.5) is uniformly

bounded in H1
0 (Ω), so that we can assume that

wn ⇀ w in H1
0 (Ω)

By [4], see also Section 3.1 in Chapter 3, taking into account (6.2), we also have that

◦ {u0n} is bounded in H1
loc(Ω) for any β > 0,

◦ {u0n} is bounded in H1
0 (Ω) if 0 < β ≤ 1,

◦ {u0

β+1
2

n } is bounded in H1
0 (Ω).

Therefore we can assume that there exists u0 such that

◦ u0n weakly (and a.e.) converges to u0 in H1
loc(Ω),

◦ u0 ∈ H1
0 (Ω) if 0 < β ≤ 1, while u

β+1
2

0 ∈ H1
0 (Ω) if β > 1,

◦ u0 is strictly bounded away from zero in the interior of Ω.

Note now that, for any compact set C ⊂ Ω, we have

un ⇀ u := u0 + w in H1(C) ,

and therefore un → u in Lq(C) for q < 2N
N−2

and a.e. in Ω.

Given ϕ ∈ C∞c (Ω), we have

∫
Ω

(Dun , Dϕ) dx =

∫
Ω

fn

uβn
ϕdx +

∫
Ω

(g(x, un)ϕ− tϕ1ϕ) dx .

By the definition of weak convergence, we have∫
Ω

(Dun , Dϕ) dx −→
∫

Ω
(Du , Dϕ) dx .

Note also that, on the support of ϕ, un is dominated by a function h ∈ Lq (for q < 2N
N−2

). There-

fore, recalling the assumption on g(x , s), we can exploit the Dominated Convergence Theorem
and get ∫

Ω
g(x, un)ϕdx→

∫
Ω
g(x, u)ϕdx .

Moreover ∫
Ω

fn

uβn
ϕdx→

∫
Ω

f

uβ
ϕdx ,

by the Dominated Convergence Theorem that applies thanks to Lemma 6.1.2. Therefore, passing
to the limit for n → +∞, we get that u ∈ H1

loc(Ω) is a weak solution to (5.1). Finally we note
that u is strictly bounded away from zero on compact set of Ω, by Lemma 6.1.2.
To end the proof and get the existence of two distinct solutions, consider

u1
n = u0n + w1

n and u2
n = u0n + w2

n,

the two different sequences of solutions given by Theorem 5.3.6. Arguing as above for the two
sequences {u1

n} and {u2
n} we get that

u1
n → u1 and u2

n → u2,

where u1 and u2 are solutions to (6.1). In particular

w1
n → w1 and w2

n → w2.
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It is now easy to deduce that actually u1 6= u2, that is w1 6= w2. To show this we argue by
contradiction and assume that w1 = w2.
Recall that by Theorem 5.3.4 we have that

Ft(w
1
n) = f̃0(w1

n) + γt(w
1
n) ≥ σ > 0 ≥ Ft(w2

n) = f̃0(w2
n) + γt(w

2
n) , (6.8)

where σ does not depend on n. On the other hand, since w1
n , w

2
n are critical points (and are

bounded sequences of H1
0 (Ω)), we get∣∣∣f̃0(w2

n)− f̃0(w1
n)
∣∣∣ ≤ ∣∣∣〈γ′t(w2

n) , w1
n − w2

n〉
∣∣∣ +

∣∣∣〈γ′t(w1
n) , w2

n − w1
n〉
∣∣∣ ,

and it is easy to see that∣∣∣〈γ′t(w2
n) , w1

n − w2
n〉
∣∣∣ +

∣∣∣〈γ′t(w1
n) , w2

n − w1
n〉
∣∣∣ →
n→∞

0 ,

so that
∣∣∣f̃0(w2

n)− f̃0(w1
n)
∣∣∣ →
n→∞

0. It is also easy to check that, if we assume that w1 = w2, then

∣∣∣γt(w1
n)− γt(w2

n)
∣∣∣ →
n→∞

0.

This is a contradiction because of (6.8) and therefore w1 6= w2, so that u1 6= u2.



Chapter 7

Symmetry results via the
moving plane method

In this chapter we consider the problem
−∆u =

1

uβ
+ g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where β > 0, Ω is a bounded smooth domain and u ∈ C(Ω)∩C2(Ω). We prove a symmetry (and
monotonicity) result exploiting the Moving Plane Method of James Serrin.
The adaptation of this procedure is not straightforward since the problem is singular and solutions
are not in H1

0 (Ω). We start with a description of the moving plane procedure in the standard (not
singular) case.

7.1 The moving plane method
The moving plane method goes back to James Serrin [20] in a paper regarding overdetermined
boundary value problems. Here below we recall the result obtained in the celebrated paper [13],
where the moving plane method is exploited to obtain symmetry and monotonicity results of the
solutions to semilinear elliptic problems.

Theorem 7.1.1. Let Ω be the open ball of radius R in RN , u ∈ C2(Ω) be a solution to
−∆u = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with g of class C1. Then u is radially symmetric and the radial derivative satisfies

∂u

∂r
(x) < 0, for 0 < r < R.

A more general result is the following (see [13]):

Theorem 7.1.2. Let Ω be a domain of RN of class C2 which is convex in the x1 direction and
symmetric w.r.t. the hyperplane x1 = 0. Let u ∈ C2(Ω) be a solution to

−∆u = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,
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with g of class C1.
Then u is symmetric w.r.t. x1 and

∂u

∂x1
(x) < 0, for x1 > 0.

We provide here the proof of an improved result from [3] where the authors present a new approach
to the problem: it is important to remark that no assumptions on the smoothness of the domain
are needed and the function only has to be locally Lipschitz continuous. In particular we have
the following

Theorem 7.1.3. Let Ω be a bounded domain in RN which is convex in the x1 direction and
symmetric w.r.t. the hyperplane x1 = 0. Let u ∈W 2,n

loc (Ω) ∩ C(Ω) be a solution to
−∆u = g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where g is locally Lipschitz continuous.
Then u is symmetric w.r.t. x1 and

∂u

∂x1
(x) < 0, for x1 > 0.

This new approach enables to avoid careful study of the boundary, by using an improved version
of the maximum principle in narrow domains.

7.1.1 Maximum principle in narrow domains
Consider a second order elliptic operator in a bounded domain Ω in RN :

L = M + c = aij(x)∂ij + bi(x)∂i + c(x)

with L∞ coefficients and which is uniformly elliptic, namely:

c0|ξ|2 ≤ aij(x)ξiξj ≤ C0|ξ|2, c0, C0 > 0, ∀ξ ∈ RN

and satisfying √∑
b2i < b̃, |c| < b̃

for some b̃ ∈ R. The functions on which L will be applied will always be assumed to belong to
W 2,n
loc (Ω).

Definition 7.1.4. We say that the maximum principle holds for L in Ω if{
Lz ≥ 0 in Ω

lim supx→∂Ω z(x) ≤ 0
=⇒ z ≤ 0 in Ω. (7.1)

It is well known in the literature (see [14], for example) that the following conditions are
sufficient for the validity of the Maximum Principle:

◦ c ≤ 0;

◦ there exists a continuous positive function h ∈ W 2,∞(Ω) ∩ C(Ω) satisfying Lh ≤ 0.
Therefore, z�h satisfies a new elliptic inequality with a new coefficient c ≤ 0;

◦ Ω lies in a narrow strip α < x < α+ ε, with ε small.
In this case, it is possible to construct a function g(x1) satisfying the conditions of the
previous point.

In the general case we have the following proposition:
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Proposition 7.1.1. Let Ω ⊂ RN be a bounded domain with diamΩ ≤ d. Then there exists
δ = δ(N, d, c0, b̃) > 0 such that the maximum principle holds for L in Ω provided L(Ω) < δ.

Proof. In the proof only c ≤ b̃ is required, instead of |c| ≤ b̃.
The proof of this proposition is based on the theorem of Alexandroff, Bakelman and Pucci, which
is used in the following form:
If c ≤ 0 and z satisfies Lz ≥ g and lim supx→∂Ω z(x) ≤ 0, then

sup
Ω
z ≤ C ‖g‖LN (Ω), (7.2)

with C depending only on N, c0, b̃ and d. For a proof of this result in a more general form, we
refer to [14].
Let us consider z satisfying (7.1), that we can write as

(M − c−) z ≥ −c+ z+

where c = c+ − c−. We can apply (7.2), which yields

sup
Ω
z+ ≤ C‖c+ z+‖LN (Ω) ≤ C

(∫
Ω

(b sup
Ω
z)N dx

) 1
N

≤ C b̃ sup
Ω
z+ (L(Ω))

1
N

and therefore supΩ z
+ ≤ 0 if C b̃ δ

1
N < 1, namely the thesis holds.

7.1.2 Proof of Theorem 7.1.3
Proposition 7.1.1 allow to prove Theorem 7.1.3.
Let us denote a generic point of RN by (x1, y) and use the short hand notation ux1 := ∂u

∂x1
. Our

goal is to prove that u is symmetric w.r.t. x1 and

ux1 (x) < 0, for x1 > 0.

If we denote by uλ(x1, y) = u(2λ − x1, y), since we may replace x1 by −x1 and use u(−x1, y),
the symmetry follows by proving that

u(x1, y) ≤ uλ(x1, y),

for every λ < 0. In what follows, let
a = inf

x∈Ω
x1

and, for a < λ < 0, let Tλ be the hyperplane x1 = 0,

Ωλ = {x ∈ Ω : x1 < λ}

and
v(x, λ) = uλ(x)− u(x).

Since g is Lipschitz, it follows that v satisfies the following problem{
−∆ v = c(x, λ) v in Ωλ,

u ≥ 0 on ∂Ωλ,

and v not identically zero on ∂Ωλ, for some bounded function c(x, λ), with |c| < b̃ and b̃ not
depending on x ∈ Ω and λ. For λ − a > 0 sufficiently small, the domain Ωλ is narrow in the x1

direction and it follows from Proposition 7.1.1 that v(x, λ) ≥ 0. Actually

v(x, λ) > 0 (7.3)

in Ωλ by the Strong Maximum Principle (see [14]). Let (a, λ0) be the largest open interval of
values of λ such that (7.3) holds.
We want to prove that λ0 = 0 and in order to do this we suppose that λ0 < 0 and argue
by contradiction. By continuity, v(x, λ0) ≥ 0 in Ωλ0

and, taking into account the boundary
condition on Ωλ0

, it follows by the Strong Maximum Principle that v(x, λ0) > 0 in Ωλ0
.

Let now δ > 0 and K be a compact set in Ωλ0
such that L(Ωλ0

\ K) < δ
2

. By compactness, it is
possible to find σ > 0 such that v(x, λ0) > 2σ > 0 in K.
Let now ε̄ > 0 sufficiently small so that for any 0 < ε ≤ ε̄ we have
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◦ L(Ωλ0+ε̄) < δ;

◦ v(x, λ0 + ε) > σ > 0 in K.

In Ωλ0+ε \ K, if we set v = v(x, λ0 + ε) and c = c(x, λ0 + ε), it follows that v satisfies{
−∆ v = c(x, λ) v in Ωλ0+ε \ K,

v ≥ 0 on ∂(Ωλ+ε \ K),

Therefore, by Proposition 7.1.1, it follows that v ≥ 0 in Ωλ0+ε \ K. Actually, by the Strong
Maximum Principle (see [14]), it follows that v > 0 in Ωλ0+ε \ K, namely v > 0 in Ωλ0+ε, which
contradicts the maximality of the interval (a, λ0).
Finally, in order to show that ux1 > 0 if x1 > 0, let only observe that since v(x, λ) > 0 in Ωλ
and v(x, λ) = 0 on the hyperplane Tλ, it follows by the Hopf Lemma applied at the hyperplane
Tλ = 0, that vx1 < 0 on Tλ, namely wx1 = −2ux1 < 0, which concludes the proof.

7.2 The problem
We study symmetry and monotonicity properties of the solutions to the problem

−∆u =
1

uβ
+ g(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(7.4)

where β > 0, Ω is a bounded smooth domain and u ∈ C(Ω) ∩ C2(Ω).
Our main results will be proved under the following assumption:

(Hp) g(·) is locally Lipschitz continuous, positive (g(s) > 0 for s > 0 and g(0) ≥ 0) and non-
decreasing.

The proof of our symmetry result is based on the well known Moving Plane Method ([13, 20]).
Actually our proof is more similar to the one in [3], that we recalled in Section 7.1 and is based
on the weak comparison principle in small domains that, we prove in our section in Section 7.5.
Because of the singular nature of our problem, we have to take care of the fact that generally u
does not belong to H1

0 (Ω), and 1
sβ

+ g(s) is not Locally Lipschitz continuous at zero.

In fact, by the variational characterization (see Chapter 4), the solution u can be decomposed as

u = u0 + w (7.5)

where w ∈ H1
0 (Ω) and u0 ∈ C(Ω) ∩ C2(Ω) is the unique solution to the problem:

−∆u0 =
1

u0
β

in Ω,

u0 > 0 in Ω,

u0 = 0 on ∂Ω.

(7.6)

The construction of the solution u0 has been discussed in Chapter 3. Let us only recall that the
equation −∆u0 = 1

u0
β has to be understood in the weak distributional sense with test functions

with compact support in Ω. That is∫
Ω

(Du0, Dϕ) dx =

∫
Ω

ϕ

u0
β
dx ∀ϕ ∈ C1

c (Ω). (7.7)

Actually the solution is fulfilled in the classical sense in the interior of Ω by standard regularity
results, since u0 is strictly positive in the interior of the domain.

In any case, by the Lazer-McKenna result [19] (see Chapter 2), for β ≥ 3 we have that u0 does
not belong to H1

0 (Ω), and consequently u does not belong to H1
0 (Ω), too.

Let us state our symmetry result:
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Theorem 7.2.1. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to (7.4) (u = u0 + w) with g(·) satisfying
(Hp). Assume that the domain Ω is strictly convex w.r.t. the ν−direction (ν ∈ SN−1) and
symmetric w.r.t. T ν0 , where

T ν0 = {x ∈ RN : x · ν = 0}.

Then u is symmetric w.r.t. T ν0 and non-decreasing w.r.t. the ν−direction in Ων0 , where

Ωνλ = {x ∈ Ω : x · ν < λ} .

Moreover, if Ω is a ball, then u is radially symmetric with ∂u
∂r

(r) < 0 for r 6= 0.

For the reader’s convenience, we describe here below the scheme of the proof.

(i) We first remark that, by [4] (see Chapter 3), we get that u0 is the limit of a sequence
{un} of solutions to a truncated problem (7.10). We exploit this to deduce symmetry and
monotonicity properties of un and, consequently, of u0. At this step we use the fact that
the moving plane procedure applies in a standard way to the truncated problem (7.10).

(ii) By (i), recalling the decomposition u = u0 + w, we are reduced to prove symmetry and
monotonicity properties of w. To do this, in Section 7.5, we prove some comparison
principles for w needed in the application of the moving plane procedure.

(iii) In Section 7.6, we give some details about the adaptation of the moving plane procedure
to the study of the monotonicity and symmetry of w. It is worth emphasizing that the
moving plane procedure is applied in our approach only to the H1

0 (Ω) part of u.
Note also that Theorem 7.2.1 is proved in Section 7.7, exploiting the more general result
Proposition 7.6.1.

7.3 Notations
To state the next results we need some notations. Let ν be a direction in RN with |ν| = 1. As
customary, for a real number λ we set

T νλ = {x ∈ RN : x · ν = λ}

and
Ωνλ = {x ∈ Ω : x · ν < λ}

and
xνλ = Rνλ(x) = x+ 2(λ− x · ν)ν,

which is the reflection trough the hyperplane T νλ . Moreover

(Ωνλ)′ = Rνλ(Ωνλ)

recalling that in general (Ωνλ)′ may be not contained in Ω. Also let

a(ν) = inf
x∈Ω

x · ν.

When λ > a(ν), since Ωνλ is nonempty, we set

Λ1(ν) = {λ : (Ωνt )′ ⊂ Ω for any a(ν) < t ≤ λ},

and
λ1(ν) = sup Λ1(ν).

Finally, for a(ν) < λ ≤ λ1(ν), we set

uνλ(x) = u(xνλ) .
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7.4 Symmetry properties of u0

Proposition 7.4.1. Let u0 ∈ C(Ω) ∩ C2(Ω) be the solution to (7.6). Then, for any

a(ν) < λ < λ1(ν)

we have

u0(x) < u0
ν
λ(x), ∀x ∈ Ωνλ (7.8)

and
∂u0

∂ν
(x) > 0, ∀x ∈ Ωνλ1(ν). (7.9)

Proof. Let un ∈ H1
0 (Ω) ∩ C(Ω) be the unique solution to


−∆un = 1

(un+ 1
n

)β
in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

(7.10)

The existence of un was proved in [4] and the uniqueness follows by [8]. We refer the reader to
Chapter 3.

Since the problem is no more singular, by standard elliptic estimates it follows that un ∈ C2(Ω).
Therefore we can use the moving plane technique exactly as in [3, 13, 20] (see, for example, Section
7.1), to deduce that the statement of our proposition holds true for each un. By [4] {un} converges
to u0 a.e. as n tends to infinity and therefore (7.8) follows passing to the limit. Finally it follows
in the same way

∂u0

∂ν
(x) ≥ 0, ∀x ∈ Ωνλ1(ν) ,

and therefore (7.9) follows via the strong maximum principle [14].

As a consequence of Proposition 7.4.1, we get

Proposition 7.4.2. Let u0 ∈ C(Ω)∩C2(Ω) be the solution of (7.6) and assume that the domain
Ω is strictly convex w.r.t. the ν−direction (ν ∈ SN−1) and symmetric w.r.t. T ν0 , where

T ν0 = {x ∈ RN : x · ν = 0}.

Then u0 is symmetric w.r.t. T ν0 and non-decreasing w.r.t. the ν−direction in Ων0 . Moreover, if

Ω is a ball, then u0 is radially symmetric with ∂u0
∂r

(r) < 0 for r 6= 0.

7.5 Comparison principles
Let us prove the following

Lemma 7.5.1. Let us consider the function

rβ(x, y, z, h) : = xβ(x+ y)β(z + h)β + xβzβ(z + h)β − zβ(x+ y)β(z + h)β

− xβzβ(x+ y)β

and the domain D ⊂ R4 defined by

D :=
{

(x, y, z, h) | 0 ≤ x ≤ z ; 0 ≤ h ≤ y
}
.

For any β > 0 it follows that rβ ≤ 0 in D.
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Proof. By direct calculation

∂rγ

∂y
(x, y, z, h) = γxγ(x+ y)γ−1(z + h)γ − γzγ(x+ y)γ−1(z + h)γ − γxγzγ(x+ y)γ−1 ≤ 0

since x ≤ z. Therefore we are reduced to prove that rβ ≤ 0 in D ∩ {h = y}, that is

rβ(x, y, z, y) = xγ(x+ y)γ(z + y)γ + xγzγ(z + y)γ − zγ(x+ y)γ(z + y)γ − xγzγ(x+ y)γ ≤ 0 .

For x = 0 the thesis follows at once. For x > 0 we note that

rβ(x, y, z, y) = −
( 1

xγ
−

1

zγ
+

1

(z + y)γ
−

1

(x+ y)γ

)
(xγzγ(z + y)γ(x+ y)γ)

and the conclusion follows exploiting the fact that, for 0 < x ≤ z fixed, the function

rβ(t) := x−γ − z−γ + (z + t)−γ − (x+ t)−γ ,

is increasing in [0,+∞) and rβ(0) = 0.

Lemma 7.5.2. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to problem (7.4), with β > 0. Assume that
Ω is a bounded smooth domain and that g(·) is positive (g(s) > 0 for s > 0 and g(0) ≥ 0) and
locally Lipschitz continuous. Consider the decomposition

u = u0 + w

where u0 is the solution to (7.6) and w ∈ H1
0 (Ω).

Then it follows
w > 0 in Ω .

Proof. Since u ∈ C(Ω) ∩ C2(Ω) and u0 ∈ C(Ω) ∩ C2(Ω) , then w ∈ H1
0 (Ω) ∩ C(Ω) ∩ C2(Ω) .

Since g(·) is non-negative, it follows that u is a super-solution (see Definition 3.2.2) to the equation

−∆v =
1

vβ
.

Therefore, by Lemma 3.2.5 we get that

u ≥ u0 and therefore w ≥ 0 .

Let us now show that w > 0 in the interior of Ω. We will show this via the maximum principle
exploited in regions where the problem is not singular. More precisely let us assume by contra-
diction that there exists a point x0 ∈ Ω such that w(x0) = 0 and let r = r(x0) > 0 such that
Br(x0) ⊂⊂ Ω. We have, in the classical sense, in Br(x0)

−∆w = −∆u + ∆u0 =
1

(u0 + w)β
+ g(u) −

1

uβ0
≥

1

(u0 + w)β
−

1

uβ0
.

Since u0(x0) > 0 we may and do assume that u0 is positive in Br(x0). Recalling that w is
nonnegative we therefore get that

1

(u0 + w)γ
−

1

uγ0
= c(x) (u0 + w − u0) = c(x)w

for some bounded coefficient c(x). Therefore there exists Λ > 0 such that 1
(u0+w)γ

− 1
u
γ
0

+ Λw ≥ 0

in Br(x0), so that
−∆w + Λw ≥ 0 in Br(x0) .

By the strong maximum principle we would get w ≡ 0 in Br(x0), and by a covering argument,
that w ≡ 0 in Ω. Since the case w ≡ 0 in Ω is possible only if f(·) = 0, we get a contradiction
showing that such a point x0 does not exist and that actually w > 0.
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Proposition 7.5.1 (A strong maximum principle). Let λ < 0 and Ω′ a bounded sub-domain of
Ωνλ (say Ω′ ⊂⊂ Ωνλ). Assume that u ∈ C(Ω) ∩ C2(Ω) is a solution to (7.4) with g(·) satisfying
(Hp).
Let w given by (7.5) and assume that

∂ w

∂ν
≥ 0 in Ω′ .

Then it holds the alternative

∂ w

∂ν
> 0 in Ω′ or

∂ w

∂ν
= 0 in Ω′

Proof. Let us use the short hand notation wν := ∂w
∂ν

(and u0ν := ∂u0
∂ν

), so that wν is nonnegative
in Ω′. Differentiating the equation in (7.4) we get that wν solve

−∆wν = −
β

uβ+1
wν + g′(u)(wν + u0ν) + β

( 1

uβ+1
0

−
1

uβ+1

)
u0ν

≥ −
β

uβ+1
wν ,

where we used the fact that g′(·) ≥ 0 a.e.1 by the assumption (Hp), the fact that u0ν ≥ 0 in Ω′

by Proposition 7.4.1, the fact that u ≥ u0 by Lemma 7.5.2 and finally the fact that wν ≥ 0 in Ω′

by assumption.
We recall now that u is bounded away from zero in Ω′, and therefore we find Λ > 0 such that

−∆wν ≥ −
β

uβ+1
wν ≥ −Λwν ,

so that the conclusion follows by the standard strong maximum principle (see [14]).

Proposition 7.5.2 (Weak Comparison Principle in small domains). Let λ < 0 and Ω′ a bounded
sub-domain of Ωνλ. Assume that u ∈ C(Ω) ∩ C2(Ω) is a solution to (7.4) with g(·) satisfying
(Hp).
Assume that

w ≤ wνλ on ∂Ω′ .

Then there exists a positive constant δ = δ (u , g) such that, if we assume L(Ω′) ≤ δ, then it
holds

w ≤ wνλ in Ω′.

Proof. We have

−∆(u0 + w) =
1

(u0 + w)β
+ g(u0 + w) in Ω, (7.11)

−∆(u0
ν
λ + wνλ) =

1

(u0
ν
λ + wνλ)β

+ g(u0
ν
λ + wνλ) in Ω. (7.12)

Since (w − wνλ)+ ∈ H1
0 (Ω′) we can consider a sequence of positive functions ψn such that

ψn ∈ C∞c (Ω′) such that ψn
H1

0 (Ω′)
−→ (w − wνλ)+ .

Also we may and do assume that supp ψn ⊆ supp (w − wνλ)+. We plug ψn into the weak
formulation of (7.11) and (7.12) and subtracting we get

1Note that, even if g′ exist a.e., the term g′(u)(wν + u0ν) make sense in the weak
Sobolev meaning thanks to Stampacchia’s Theorem.
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∫
Ω′

(D(u0 + w)−D(u0
ν
λ + wνλ) , Dψn) dx

=

∫
Ω′

(
1

(u0 + w)β
+ g(u0 + w)−

1

(u0
ν
λ + wνλ)β

− g(u0
ν
λ + wνλ)

)
ψn dx .

(7.13)

Since u0 and u0
ν
λ solve (7.6) we deduce

∫
Ω′

(D(w − wνλ) , Dψn) dx

=

∫
Ω′

(
1

(u0
ν
λ)β
−

1

(u0)β
+

1

(u0 + w)β
−

1

(u0
ν
λ + wνλ)β

)
ψn

+

∫
Ω′

(
g(u0 + w)− g(u0

ν
λ + wνλ)

)
ψn dx

=

∫
Ω′

( (u0)β(u0 + w)β(u0
ν
λ + wνλ)β + (u0)β(u0

ν
λ)β(u0

ν
λ + wνλ)β

(u0)β(u0
ν
λ)β(u0 + w)β(u0

ν
λ + wνλ)β

)
ψn dx

−
∫

Ω′

( (u0
ν
λ)β(u0 + w)β(u0

ν
λ + wνλ)β + (u0)β(u0

ν
λ)β(u0 + w)β

(u0)β(u0
ν
λ)β(u0 + w)β(u0

ν
λ + wνλ)β

)
ψn dx

+

∫
Ω′

(
g(u0 + w)− g(u0

ν
λ + wνλ)

)
ψn dx .

We now use the fact that u0 ≤ u0
ν
λ in Ωνλ and w ≥ wνλ on the support of ψn (since we assumed

supp ψn ⊆ supp (w − wνλ)+) to deduce from Lemma 7.5.12 that

(u0)β(u0 + w)β(u0
ν
λ + wνλ)β + (u0)β(u0

ν
λ)β(u0

ν
λ + wνλ)β

− (u0
ν
λ)β(u0 + w)β(u0

ν
λ + wνλ)β − (u0)β(u0

ν
λ)β(u0 + w)β ≤ 0 ,

so that

∫
Ω′

(D(w − wνλ) , Dψn) dx ≤
∫

Ω′

(
g(u0 + w)− g(u0

ν
λ + wνλ)

)
ψn dx

≤
∫

Ω′

(
g(u0

ν
λ + w)− g(u0

ν
λ + wνλ)

)
ψn dx

≤ C
∫

Ω′
(w − wνλ)ψn dx

for some constant C > 0 since g(·) is locally Lipschitz continuous and non-increasing by assump-
tion. We now pass to the limit for n→∞ and get∫

Ω′
|D(w − wνλ)+|2 dx ≤ C

∫
Ω′
|(w − wνλ)+|2 dx

and by Poincaré inequality∫
Ω′
|D(w − wνλ)+|2 dx ≤ C Cp(Ω′)

∫
Ω′
|D(w − wνλ)+|2 dx .

For δ small it follows that C Cp(Ω′) < 1 which shows that actually

(w − wνλ)+ = 0

and the thesis follows.

2We exploit here Lemma 7.5.1 with u0 = x, w = y, u0
ν
λ = z and wνλ = h.
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Lemma 7.5.3 (Strong Comparison Principle). Let u ∈ C(Ω) ∩ C2(Ω) be a solution to problem
(7.4), with g(·) satisfying (Hp). Consider the decomposition u = u0 + w, where u0 is the solution
to (7.6) and w ∈ H1

0 (Ω).
Assume that, for some a(ν) < λ ≤ λ1(Ω), we have

w ≤ wνλ in Ωνλ .

Then w < wνλ in Ωνλ unless w ≡ wνλ in Ωνλ.

Proof. Let us assume that there exists a point x0 ∈ Ωνλ such that w(x0) = wνλ(x0) and let
r = r(x0) > 0 such that Br(x0) ⊂⊂ Ωνλ. We have, in the classical sense, in Br(x0)

−∆(wνλ − w) = −∆(uνλ − u0
ν
λ) + ∆(u− u0)

=
( 1

uβ0
−

1

(u0
ν
λ)β

+
1

(u0
ν
λ + wνλ)β

−
1

(u0 + w)β

)
+
(
g(u0

ν
λ + wνλ)− g(u0 + w)

)
=
( 1

uβ0
−

1

(u0
ν
λ)β

+
1

(u0
ν
λ + w)β

−
1

(u0 + w)β

)
+
(
g(u0

ν
λ + wνλ)− g(u0 + w)

)
+

1

(u0
ν
λ + wνλ)β

−
1

(u0
ν
λ + w)β

.

(7.14)

We use now the fact that g(·) is increasing by assumption, the fact that u0 ≤ u0
ν
λ in Ωνλ (by

Proposition 7.4.1) and the assumption w ≤ wνλ in Ωνλ to get that

g(u0
ν
λ + wνλ)− g(u0 + w) ≥ 0.

In the same way, since for 0 < a ≤ b the function

h(t) := a−β − b−β + (b+ t)−β − (a+ t)−β

is increasing in [0 , +∞), we also have

(
1

uβ0
−

1

(u0
ν
λ)β

+
1

(u0
ν
λ + w)β

−
1

(u0 + w)β

)
≥ 0 .

Consequently by (7.14)

−∆(wνλ − w) ≥
1

(u0
ν
λ + wνλ)β

−
1

(u0
ν
λ + w)β

.

Since u0
ν
λ(x0) > 0, arguing as in Lemma 7.5.2, we find Λ > 0 such that, eventually reducing r, it

results 1
(u0

ν
λ

+wν
λ

)γ
− 1

(u0
ν
λ

+w)γ
+ Λ (wνλ − w) ≥ 0 in Br(x0), so that

−∆(wνλ − w) + Λ (wνλ − w) ≥ 0 in Br(x0) .

By the strong maximum principle [14] it follows now (wνλ − w) ≡ 0 in Br(x0), and by a covering
argument (wνλ − w) ≡ 0 in Ωνλ, proving the result.
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7.6 Symmetry

Proposition 7.6.1. Let u ∈ C(Ω) ∩ C2(Ω) be a solution to (7.4), decomposed as in (7.5) by

u = u0 + w .

Then, for any
a(ν) < λ < λ1(ν)

we have
w(x) < wνλ(x), ∀x ∈ Ωνλ. (7.15)

Moreover
∂w

∂ν
(x) > 0, ∀x ∈ Ωνλ1(ν). (7.16)

Finally, (7.15) and (7.16) holds true replacing w by u.

Proof. Let λ > a(ν) and note that

w ≤ wνλ on ∂Ωνλ ,

since w > 0 in Ω by Lemma 7.5.2. Therefore, assuming that L(Ωνλ) is sufficiently small (say for
λ− a(ν) sufficiently small) so that the Weak Comparison Principle Proposition 7.5.2 applies, we
get

w ≤ wνλ in Ωνλ ,

and actually w < wνλ in Ωνλ by the Strong Comparison Principle (Lemma 7.5.3).
Lets us now define

Λ0 = {λ > a(ν) : w ≤ wνt in Ωνt for all t ∈ (a(ν), λ]}

and
λ0 = sup Λ0.

To prove our result we have to show that actually λ0 = λ1(ν).
Assume otherwise that λ0 < λ1(ν) and note that, by continuity, we obtain w ≤ wνλ0

in Ωνλ0
.

Therefore, by the Strong Comparison Principle (Lemma (7.5.3)), it follows w < wνλ0
in Ωνλ0

since
, taking into account the zero Dirichlet boundary condition and the fact that w > 0 in the interior
of the domain, it follows that the case w = wνλ0

in Ωνλ0
is not possible if λ0 < λ1(ν).

We can now consider δ given by Proposition 7.5.2, so that the Weak Comparison Principle holds
true in Ω′ if L(Ω′) ≤ δ. Fix a compact set K ⊂⊂ Ωνλ0

so that L(Ωνλ0
\ K) ≤ δ

2
. Since we proved

that w < wνλ0
in Ωνλ0

, by compactness we find σ > 0 such that

wνλ0
− w ≥ 2σ > 0 in K .

Take now ε̄ > 0 sufficiently small so that λ0 + ε̄ < λ1(ν) and, for any 0 < ε ≤ ε̄, we have

a) wνλ0+ε − w ≥ σ > 0 in K ,

b) L(Ωνλ0+ε \ K) ≤ δ .

Taking into account a) it is now easy to check that, for any 0 < ε ≤ ε̄, we have that w ≤ wνλ0+ε

on the boundary of Ωνλ0+ε \K. Consequently, by b), we can apply the Weak Comparison Principle

(Proposition 7.5.2) and deduce that

w ≤ wνλ0+ε in Ωνλ0+ε \ K ,

and therefore w ≤ wνλ0+ε in Ωνλ0+ε. Actually w < wνλ0+ε in Ωνλ0+ε by the Strong Comparison

Principle (Lemma (7.5.3)). We therefore get a contradiction with the definition of λ0 and conclude
that actually λ0 = λ1(ν) and (7.15).
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It follows now directly from simple geometric considerations and by (7.15) that w is monotone
non-decreasing in Ων

λ1(ν)
in the ν−direction. This gives

wν :=
∂w

∂ν
(x) ≥ 0 in Ωνλ1(ν) .

Consequently it is standard to deduce (7.16) from Proposition 7.5.1.
To prove that (7.15) and (7.16) hold true replacing w with u, just recall that

u = u0 + w ,

and exploit Proposition (7.4.1).

7.7 Proof of Theorem 7.2.1
The proof of Theorem 7.2.1 is now a direct consequence of Proposition 7.6.1. Only note that

λ1(ν) = 0 ,

by assumption, and apply Proposition 7.6.1 in the ν−direction to get

u(x) ≤ uνλ1(ν)(x), ∀x ∈ Ων0 .

and in the (−ν)−direction to get

u(x) ≥ uνλ1(ν)(x), ∀x ∈ Ων0 .

and therefore u(x) ≡ uν
λ1(ν)

(x) in Ω. The monotonicity of u follows by (7.16).
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