
Università della Calabria

Dipartimento di Elettronica, Informatica e Sistemistica

Dottorato di Ricerca in

Ingegneria dei Sistemi e Informatica

XXIV Ciclo

Tesi di Dottorato

A Domain-Specific Approach for

Programming Wireless

Body Sensor Network Systems

Raffaele Gravina

Acknowledgments

Getting a PhD is not only an academic achievement, but the completion of a
maturation process both at professional and personal level. Many things have
contributed to this process, some of which I learned at my Department, some
important others I learned during the time spent in the unforgettable and
diverse environment called Berkeley.

This PhD thesis would not have been possible without the support of many
people.

First and foremost, I would like to thank my advisor Professor Giancarlo
Fortino. His vision, the precious suggestions, the commitment to research, and
his invaluable support determined the success of most of my research work.
He helped me understanding strengths and weakness of my contributions,
providing key ingredients to make my efforts more focused and robust.

A special thank goes to the professors I met at U.C. Berkeley, Ruzena
Bajcsy, Roozbeh Jafari, and Edmund Seto. Their great intuition and collab-
oration had a significant impact on my research path and results.

A very important factor to the development of my research was played by
the relationship with industry. During my visit at the Telecom Italia WSN Lab
at Berkeley, I met great people to whom I am thankful for the freedom they left
me in exploring new research directions; Marco Sgroi and Fabio Bellifemine
also gave me fundamental insights for finding practical applications to my
research work, without which it would have been less valuable and pleasant.
I also would like to thank Roberta Giannantonio and Alessia Salmeri for the
uncountable technical discussions, and the great time we had in Berkeley
together.

I would like to thank my PhD colleague, but most of all, my friend Antonio
Guerrieri, who shared with me many moments of joy (both at a professional
and personal level), and the times of frustration (that necessarily happen
during the years of a PhD).

A special thank also goes to the many students of our research group,
and the ones visiting the WSN Lab. In particular I would like to mention
Francesco Aiello, Alessandro Andreoli, Andrea Caligiuri, Stefano Galzarano,

i

Vitali Loseu, Philip Kuryloski, and Ville-Pekka Seppä. Their precious help
in many projects, their support, and collaboration is something I will never
forget.

I would like to thank my mother Mariella, my father Gianni, and all my
family for their immense support and love.

Finally, I thank my wife Marianna, who most of all knows how many
sacrifices my PhD required, especially when thousands of kilometers of land
and water keep a family separated.

ii

To my wife, and our lovely daughter

Abstract

The progress of science and medicine during the last years has contributed
to significantly increase the average life expectancy. The increase of elderly
population will have a large impact especially on the health care system. Fur-
thermore, especially in more developed countries, there is an always growing
interest in maintaining, and improving the quality of life.

Wireless Body Sensor Networks (BSNs) can contribute to improve the
quality of health care services. BSNs involve wireless wearable physiologi-
cal sensors applied to the human body for strictly medical and non medical
purposes. They can enhance many human-centered application domains such
as e-Health, sport and wellness, and even social applications such as physi-
cal/virtual social interactions.

However, there are still open issues that limit their wide diffusion in real
life; primarily, the programming complexity of these systems, due to lack of
high-level software abstractions, and to hardware constraints of wearable de-
vices. In contrast to low-level programming and general-purpose middleware,
domain-specific frameworks are an emerging programming paradigm designed
to fulfill the lack of suitable BSN programming support.

With this aim, this thesis proposes a novel domain-specific approach for
programming signal-processing intensive BSN applications. The definition of
this approach resulted in a domain-specific programming framework named
SPINE (Signal Processing in Node Environment) which is one important con-
tribution of this thesis, along with other interesting contributions derived from
enhancements and variants to the main proposal. Additionally, to provide
validation and performance evaluation of the proposed approach, a number
of BSN applications (including human activity monitoring, physical energy
expenditure estimation, emotional stress detection, and step-counting) have
been developed atop SPINE. These research prototypes showed the effective-
ness and efficiency of the proposed approach and improved their respective
state-of-the-art. Finally, a Platform-Based Design (PBD) methodology, which
is widely adopted for the design of traditional embedded systems, is proposed
for the design of BSN systems.

v

Riassunto

Il progresso della scienza e della medicina ha contribuito negli ultimi anni a
incrementare significativamente l’aspettativa di vita media. L’aumento della
popolazione anziana avrà un forte impatto specialmente sul sistema di assis-
tenza sanitaria. Inoltre, soprattutto nei paesi più sviluppati, si sta assistendo
ad un interesse sempre più crescente verso il mantenimento ed il miglioramento
della propria qualità di vita.

Le Reti di Sensori Wireless Indossabili (BSN) possono contribuire a
migliorare la qualità dei servizi sanitari. Le WBSN consistono di sensori fisi-
ologici wireless indossabili applicati al corpo umano. Questa tecnologia può
migliorare diversi domini applicativi quali l’e-Health, lo sport ed il fitness, ma
anche applicazioni di interazione sociale (fisica e virtuale).

Purtroppo alcuni problemi tutt’ora aperti stanno limitando una capil-
lare diffusione delle BSN nella vita quotidiana; uno dei più critici riguarda
la complessità di programmazione di questi sistemi, sia a causa della man-
canza di appropriate astrazioni software di alto livello che per le forti limi-
tazioni delle risorse fisiche dei dispositivi sensoristici indossabili. Per affrontare
questo problema recentemente sta emergendo un nuovo paradigma di pro-
grammazione basato sul concetto di framework domain-specific, che si con-
trappone alle tecniche di programmazione più tradizionali basate su sviluppo
ad-hoc o su middleware general-purpose.

Seguendo questa linea di ricerca, questa tesi propone un innovativo approc-
cio domain-specific per la programmazione di applicazioni su BSN. Questo
approccio ha portato alla realizzazione di un framework di programmazione
domain-specific chiamato SPINE (Signal Processing in Node Environment)
che rappresenta un importante contributo, insieme ad altri contributi derivati
da estensioni e varianti della proposta principale. Per ottenere una validazione
ed una valutazione di performance dell’approccio proposto, sono state svilup-
pate, utilizzando SPINE, diverse applicazioni BSN (tra cui un sistema di mon-
itoraggio di attività fisiche, un’applicazione per la stima del consumo calorico,
un sistema per il rilevamento di stati di stress emotivo ed un conta passi in-
telligente). Questi prototipi di ricerca hanno dimostrato l’effiacia ed efficienza

vii

dell’approccio proposto ed hanno contribuito a migliorare lo stato dell’arte.
Infine, per supportare la progettazione di sistemi BSN viene proposta una
metodologia di tipo Platform-Based Design (PBD), già ampiamente diffusa
per la progettazione di sistemi embedded tradizionali.

viii

Contents

List of Figures . xiii

List of Tables .xvii

List of Abbreviations . xix

1 Motivation, Objectives and Organization of the Thesis 1
1.1 Motivation . 1
1.2 Objectives of the Thesis . 3
1.3 Structure of the Thesis . 4

2 Related Work . 7
2.1 Introduction . 7
2.2 State-of-the-art on BSNs . 9

2.2.1 Hardware . 9
2.2.1.1 Physical architecture of a sensor node 9
2.2.1.2 Sensors . 9
2.2.1.3 Commercial Platforms . 10

2.2.2 Communication . 10
2.2.2.1 IEEE 802.15.4 / ZigBee . 10
2.2.2.2 Bluetooth / Bluetooth Low Energy 12
2.2.2.3 ANT . 13
2.2.2.4 IEEE 802.15 WPAN Task Group 6 (TG6) -

Body Area Networks . 13
2.2.2.5 Network Topologies . 14

2.2.3 Operating systems . 15
2.2.3.1 TinyOS / nesC . 15
2.2.3.2 Contiki . 16
2.2.3.3 MantisOS . 16
2.2.3.4 NanoRK . 16
2.2.3.5 Java Squawk VM . 17

ix

Contents

2.2.3.6 Z-Stack . 18
2.2.4 Applications . 18

2.3 Development tools and middlewares . 19
2.3.1 Classification of BSN programming approaches 19
2.3.2 BSN Systems implemented with the Application-

Specific approach . 20
2.3.2.1 Real-time Arousal Monitor 20
2.3.2.2 LifeGuard . 22
2.3.2.3 FitBit . 22
2.3.2.4 VitalSense . 23

2.3.3 Domain-specific frameworks for BSNs 24
2.3.3.1 CodeBlue . 24
2.3.3.2 RehabSPOT . 25

2.3.4 General-purpose frameworks for WSNs applied to BSNs 26
2.3.4.1 TITAN . 26
2.3.4.2 AFME . 27
2.3.4.3 MiLAN . 28

2.3.5 Requirements, techniques and properties for BSN
programming frameworks . 29

2.3.6 Comparison of the WSN/BSN programming frameworks 33
2.3.7 Summary. 33

3 The SPINE Framework . 35
3.1 Introduction . 35
3.2 Network Architecture . 36
3.3 High-Level software Architecture . 37
3.4 Main tunable parameters . 40
3.5 SPINE application-level communication protocol 40
3.6 Multi-platform Support . 45
3.7 The Node-Side module . 46

3.7.1 Software-architecture in TinyOS . 46
3.7.1.1 Sensing . 47
3.7.1.2 Processing . 48
3.7.1.3 Communication . 50

3.8 Performance Evaluation . 52
3.8.1 Function Execution Time . 52
3.8.2 Memory Requirements . 54
3.8.3 Energy Consumption . 54
3.8.4 Communication Bandwidth . 55
3.8.5 An Analysis of the Development Effectiveness and

Performance . 57
3.9 The Coordinator-Side module . 58

3.9.1 Software-architecture in Java . 58
3.9.2 BSN runtime configuration APIs . 59
3.9.3 BSN event handlers . 60

x

Contents

3.9.4 High-Level Data Processing . 60
3.10 SPINE enhancements and variants . 62

3.10.1 C-SPINE . 62
3.10.1.1 Novel Interaction Models 62
3.10.1.2 Collaborative BSNs . 63
3.10.1.3 Collaborative SPINE . 65

3.10.2 An Agent-oriented design of SPINE: A-SPINE 68
3.10.2.1 The A-SPINE Architecture 68
3.10.2.2 A MAPS-based design of A-SPINE 69

3.10.3 SPINE2 . 72
3.10.3.1 The task-oriented approach 74
3.10.3.2 Main characteristics of SPINE2 75
3.10.3.3 SPINE2 Tasks . 77

3.11 Virtual Sensors based on SPINE. 77
3.11.1 BSN-oriented Virtual Sensor Architecture 78

3.11.1.1 Virtual Sensor Definition 79
3.11.1.2 Virtual Sensor Manager . 80
3.11.1.3 Buffer Manager . 82
3.11.1.4 SPINE2-based Virtual Sensors 82

3.12 Summary . 84

4 BSN Research prototypes implemented using SPINE 85
4.1 Physical Activity Recognition . 85
4.2 Step-counter . 87
4.3 Real-time Physical Energy Expenditure . 91
4.4 Emotional Stress Detection . 93

4.4.1 Hardware . 93
4.4.2 Software . 93
4.4.3 Stress analysis engine . 94

4.5 Summary . 95

5 Platform-Based Design methodology for BSNs 97
5.1 Introduction . 97
5.2 Platform-Based Design . 98
5.3 PBD for BSNs . 100

5.3.1 The Sensor Network Service Platform 101
5.3.2 The Sensor Network Implementation Platform 102
5.3.3 The Sensor Network Ad-hoc Protocol Platform 103

5.4 A case study: Activity Recognition based on Template
Matching . 104
5.4.1 Problem Formulation . 106
5.4.2 Applying the PDB methodology . 108
5.4.3 Summary. 110

xi

Contents

6 Conclusions, Publications and Future Work 111
6.1 Conclusions . 111
6.2 Publications Related with this Thesis . 113

6.2.1 SPINE . 113
6.2.2 SPINE enhancements and variants 114
6.2.3 MAPS and agent-based WSN programming frameworks 116
6.2.4 BSN Applications . 117

6.3 Future Work . 119

A MAPS . 121
A.1 Requirements . 121
A.2 Agent server architecture . 122
A.3 Agent programming model . 123
A.4 Implementation . 124
A.5 An agent-based system for monitoring human activity 126

A.5.1 Design and Implementation . 126
A.5.2 Performance evaluation . 129

A.5.2.1 Recognition accuracy . 133

References . 135

xii

List of Figures

2.1 Typical hardware architecture of a sensor node. 10
2.2 Common BSN topologies. 14

3.1 SPINE Network architecture. 36
3.2 The SPINE high-level Functional Architecture. 38
3.3 Structure of the general SPINE message. 41
3.4 Example of communication between User application,

Coordinator and Sensor Node. 44
3.5 Class diagram of the sensing logical block. 47
3.6 Sequence diagram of the sensing process. 48
3.7 Class diagram of the processing logical block. 49
3.8 Sequence diagram of a feature processing. 50
3.9 Class diagram of the communication logical block. 51
3.10 Sequence diagram of a message reception and handling. 51
3.11 Sequence diagram of a data message transmission. 52
3.12 Execution time of selected in-node functions computed on

different sensor platforms using Sampling Time = 20Hz,
Window = 40 samples, Shift = 20 samples. 53

3.13 Development efforts for typical BSN applications at sensor
node-side and base station-side. 57

3.14 Simplified Package Diagram of the SPINE Coordinator. 59
3.15 Data processing chain supported by the SPINE High-level

Data Processing module. 61
3.16 Logical network architectures of BSN systems: (a) single body

- single BS, (b) single body - multiple BS, (c) multiple body -
single BS, (d) multiple body - multiple BS. 63

3.17 Reference network architecture of CBSNs. 64
3.18 High-level interaction among CBSNs. 65
3.19 CBSN software architecture layers. 66
3.20 C-SPINE Architecture. 67
3.21 C-SPINE Communication Layer. 67

xiii

List of Figures

3.22 The A-SPINE Architecture. 69
3.23 The SensorManagerAgent behavior. 70
3.24 The SensorAgent behavior. 70
3.25 The ProcessingManagerAgent behavior. 71
3.26 The ProcessingAgent behavior. 71
3.27 The CommunicationManagerAgent behavior. 72
3.28 Example of a task-oriented application. 72
3.29 Application example having tasks instantiated on different

nodes. 74
3.30 The Software Layering approach for developing the framework. 76
3.31 Multi-layer Signal Processing . 78
3.32 BVS Architecture . 79
3.33 Example of Input Modification in Virtual Sensors 81
3.34 Example of Input/Output Dependency in Virtual Sensors 81
3.35 Buffer Manager Overview . 82
3.36 Translation of Virtual Sensors into SPINE2 task-oriented

models . 83

4.1 Block diagram of the step-counter algorithm. 90
4.2 Raw Data of the frontal (horizontal) acceleration of the waist

during normal walking. 90
4.3 Result of the Gaussian filtering of the data shown in Figure 4.2. 90

5.1 Architecture and function platforms. 99
5.2 Mapping of function and architecture. 100
5.3 Template matching for classification. 105
5.4 Learning algorithm and classifier combiner during training

and test. 106

A.1 The architecture of MAPS. 122
A.2 MAPS agent model. 124
A.3 Architecture of the real-time activity monitoring system. 127
A.4 Agents interaction of the real-time activity monitoring system. . 128
A.5 1-plane behavior of the WaistSensorAgent. 128
A.6 Analysis of the synchronization of the MAPS sensor agents:

PPAT and SPP for P=25% and P=5% by varying W. 131
A.7 Comparison of the synchronization between MAPS and

SPINE sensor agents: PPAT and SPP for P=25% and P=5%
and W=20, S=10. 132

A.8 Comparison of the synchronization between MAPS and
SPINE sensor agents: PPAT and SPP for P=25% and P=5%
and W=40, S=20. 133

A.9 State machine of the pre-defined sequence of
postures/movements. 134

xiv

List of Figures

A.10 Percentage of mismatches vs. transitory time computed with
ST=100 ms, W=20, P=25%. 134

xv

List of Tables

2.1 List of commercial sensor node platforms. 11
2.2 Summary of some well-known BSN systems. 21
2.3 Common tasks of BSN applications. 30
2.4 Requirements for BSN frameworks. 31
2.5 Comparison of the WSN/BSN programming frameworks. 34

3.1 Functionalities exposed by SPINE at the coordinator station. . . 39
3.2 Standard messages of the SPINE Protocol exchanged between

Coordinator (C) and Node (N). 41
3.3 Default services and alarms which can be activated in the

SPINE node . 42
3.4 Memory requirements of a SPINE configuration (motion

sensor board with feature extractors and threshold-based
alarms) on different sensor node platforms. 55

3.5 Energy consumption of the application profile (motion sensor
board with feature extractors and threshold-based alarms) on
different platforms. 56

3.6 Bandwidth of a SPINE configuration (motion sensor board
with feature extractors and threshold-based alarms) on
different platforms. 56

3.7 Average transmission delay for sending 28 bytes on different
platforms. 57

4.1 Posture/Movement recognition accuracy. 86
4.2 Stress threshold for HRV parameters. 95

xvii

List of Abbreviations

A-SPINE Agent-SPINE
ADC Analog Digital Converter
ADMR Adaptive Demand-Driven Multicast Routing
AFME Agent Factory Micro Edition
ANS Autonomic Nervous System
API Application Programming Interface
BDI Belief, Desire, and Intention
BLE Bluetooth Low Power
BM Buffer Manager
BPM Beat Per Minute
BS Base-Station
BSN Body Sensor Network
C-SPINE Collaborative-SPINE
CBQ CodeBlue Query
CBSN Collaborative BSN
CIBO C-SPINE Inter-BSN Over-The-Air
CLDC Constrained Limited Device Configuration
CPOD Crew Physiologic Observation Device
CSMA Carrier Sense Multiple Access
CSMA/CA CSMA / Collision Avoidance
ECA Event-Condition-Action
ECAA ECA-based Automata
ECG Electrocardiogram
ED Event Dispatcher
EEG Electroencephalogram
EIP Electrical Impedance Plethysmography
EMG Electromyogram
FIFO First In First Out
FIR Finite Input Response
GF Global Functions
GPL General Public License

xix

List of Abbreviations

GSR Galvanic Skin Response
GV Global Variables
HRV Heart Rate Variability
HW Hardware
IDE Integrated Development Environment
ISM Industrial Scientific and Medical
KNN K-Nearest Neighbor
LF Local Functions
LV Local Variables
MA Mobile Agent
MAC Medium Access Control
MACC Mobile Agent Communication Channel
MAEE Mobile Agent Execution Engine
MAMM Mobile Agent Migration Manager
MAN Mobile Agent Naming
MAPS Mobile Agent Platform for Sun SPOTs
MiLAN Middleware Linking Applications and Networks
MPSM Multi-Plane State Machine
NesC Network Embedded Systems C
OLED Organic Light-Emitting Diode
OS Operating System
OTA Over-The-Air
P2P Peer-to-Peer
PBD Platform-Based Design
PDA Personal Digital Assistant
QoS Quality of Service
RAM Random Access Memory
RK Resource Kernel
RM Resource Manager
RMS Root Mean Square
ROM Read Only Memory
RPC Remote Procedure Call
RRi (Heart) R-peak to R-peak intervals
RX Reception
SNAPP Sensor Network Implementation Platform
SNIP Sensor Network Ad-hoc Protocol Platform
SNR Signal-to-Noise Ratio
SNSP Sensor Network Service Platform
SPI Serial Port Interface
SPINE Signal Processing in Node Environment
SW Software
TDMA Time Division Multiple Access
TITAN Tiny Task Network
TM Timer Manager
TX Transmission

xx

List of Abbreviations

UML Unified Modeling Language
VM Virtual Machine
VS Virtual Sensor
VSM Virtual Sensor Manager
WPAN Wireless Personal Area Network
WS Wireless Sensor
WSN Wireless Sensor Network
ZDO ZigBee Device Object

xxi

1

Motivation, Objectives and Organization of the
Thesis

1.1 Motivation

The progress of science and medicine during the last years has contributed to
significantly increase the average life expectancy. According to recent studies,
in 2050 life expectancy will be 80 and 85 years respectively for men and
women and the worldwide population over 65 is projected to increase from
500 million to one billion in 2030. The increase of elderly population will
have a large impact especially on the health care system. At the same time,
especially in the more developed countries, there is an always growing interest
in maintaining, and improving the quality of life, and consequently health and
wellness.

ICT technologies and, in particular, Wireless Body Sensor Networks(BSNs)
possess enormous potential for changing people’s daily lives. This technology
has gained much interest world-wide, and in Europe in particular. For in-
stance, inside the European Community FP7 - Challenge 5 “ICT for Health,
Ageing Well, Inclusion and Governance” there is a specific section on Personal
Health Systems.

A BSN is a collection of wearable (and programmable) sensor nodes com-
municating with a local personal device. The sensor nodes have computation,
storage, and wireless transmission capabilities, a limited energy source (i.e.
battery), and different sensing capabilities depending on the physical trans-
ducer(s) they are equipped with. Common physiological sensing dimensions
include body motion, skin temperature, heart rate, muscular tension, breath-
ing rate and volume, skin conductivity, and brain activity. The local personal
device is typically a smart-phone or a PC, and allows for real-time monitoring
as well as long-term remote storage and off-line analysis.

BSNs, therefore, involve wireless wearable physiological sensors applied
to the human body for strictly medical and non medical purposes. BSNs
allow for continuous and non-invasive measurement of body movements and
physiological parameters during the daily life, as these tiny wireless sensors
are placed on the skin, and sometimes in the garments.

1

Chapter 1. Motivation, Objectives and Organization of the Thesis

BSNs can enhance many human-centered application domains such as
early detection or prevention of diseases (heart attacks, Parkinson, diabetes,
etc.), elderly assistance at home, e-fitness, post-trauma rehabilitation after
surgeries, motion and gestures detection, cognitive and emotional recogni-
tion, medical assistance in disaster events, etc. Furthermore, BSNs are great
enablers for many other application domains such as e-Sport, e-Fitness, and
e-Wellness, where the objective is not specifically related to disease detection
and/or monitoring, but rather to help people maintain physical and mental
wellness. e-Factory is also an emerging domain in which BSNs have a central
relevance; applications in such domain aim at monitoring employees’ activ-
ities, such as in production chains, to both help ensure safety and to guide
proper assembly of the product. BSNs can play an important role for social
physical/virtual interactions as they could monitor emotional states of people
while they meet, and enable certain services depending on (mutual) emotion
reactions.

However, although several BSN-based research prototypes have been pro-
posed so far, none of them have reached the market yet. One of the biggest
driving factors for this delay is due to their design and implementation ap-
proaches. It is clear that to fully exploit the potential of BSNs in these do-
mains and enable a broader range of advanced assisted living and health-care
services, additional research is needed, in particular focusing on two main
directions:

1. conceiving new programming abstractions, techniques, and methodologies
for improving system design and prototyping;

2. implementing real-time, power efficient distributed signal processing al-
gorithms for data interpretation on wireless nodes that are very resource
limited and have to meet hard requirements in terms of wearability and
battery duration as well as computational and storage resources.

Implementing real-time, power efficient distributed signal processing algo-
rithms on wireless nodes remains, indeed, extremely challenging and complex.
Such algorithms are the basis for the end-user applications of these devices.
Yet, the software abstractions provided natively by the current sensor node
operating systems and development environments suffer a lack of pre-defined,
customizable and easy-to-use sensing, signal processing, communication, and
storage functionalities. Consequently, BSN developers must devote significant
development time to what would be considered low-level programming de-
tails, rather than focus on new and unique core application functionality and
features.

To date, almost all the BSN applications have been developed following
two main approaches: low-level programming and general-purpose middleware
for Wireless Sensor Networks (WSNs). The most common approach consists of
developing prototype applications on BSN nodes as a monolithic block inter-
twining low-level services, reusable components and application-specific logic.
As a result, the developed software is poorly reusable and difficult to modify.

2

1.2. Objectives of the Thesis

Moreover, the risk of implementation errors is significant, and debugging can
be a very time-consuming process. Depending on individual developer skill,
the main advantage is represented by manual code optimization and efficiency.
The second approach is based on general-purpose frameworks for wireless sen-
sor networks. Such a framework is a software layer consisting of a set of services
implemented across a network. It hides the complexity of low-level system and
network layers and provides proper abstractions and interfaces to the upper
layers. Application developers can then focus on application logic without
dealing with the implementation details of the underlying services, and devel-
opment time is generally shortened. However, as general-purpose frameworks
for WSNs are designed to support a wide variety of application scenarios,
they are either too general (lacking of abstractions typically needed for BSN
systems), or demand too many resources to realize efficient BSN-specific ap-
plications.

To this perspective, an emerging research topic is devoted to the design of
novel BSN programming approaches based on the concept of domain-specific
frameworks. The research contributions proposed in this thesis are founded on
this concept, with the aim of fulfilling some of the key issues that are currently
limiting the full exploitation of the BSN technology.

1.2 Objectives of the Thesis

This thesis proposes a novel domain-specific approach for programming signal-
processing intensive BSN applications.

The definition of this approach resulted in a domain-specific programming
framework named SPINE (Signal Processing in Node Environment) which
represents the first contribution of the thesis. Additional interesting research
works which are the result of enhancements and variant to the original frame-
work, are discussed in this thesis as well. They include a task-oriented re-
design of SPINE, an enhancement for supporting collaborative BSNs, a multi-
agent model for BSN programming, and a programming paradigm based on
the concept of Virtual Sensors.

Although a number of surveys and review works in the context of BSNs
have been published so far, this thesis required a novel analysis of the state-of-
the-art which focuses on development tools and middlewares for programming
BSN applications, along with a systematic identification of the fundamental
requirements and properties which should be satisfied by an effective and
efficient BSN programming framework. To the best of our knowledge, such
analytic review work was lacking in the literature, and, therefore, it can be
considered as the second contribution of this thesis.

The third contribution is represented by a number of case studies de-
veloped through the proposed framework. These research prototypes showed
the effectiveness and efficiency of the proposed approach and improved their
respective state-of-the-art. Specifically, the case studies are: (a) a physical

3

Chapter 1. Motivation, Objectives and Organization of the Thesis

activity monitoring system, (b) a step-counter, (c) a physical energy expen-
diture system, and (d) an emotional stress detector. The physical activity
monitoring system reaches very high recognition accuracy with fewer wear-
able sensor nodes than other works. The step-counter application relies on a
novel algorithm which is the only one able to correctly recognize the steps
taken during walking from healthy, elderly and people affected by walking
disabilities. The physical energy expenditure system is able to estimate the
calories burnt during daily activities in real-time, without any assumption
on the orientation of the worn motion sensor. Finally, the emotional stress
detection relies on a wireless system, and a monitoring application that, by
means of time-domain heart-rate analysis, provides a stress index using only
ten minutes of observations.

The fourth contribution is the definition of a Platform-Based Design
(PBD) methodology specifically tailored for the BSN domain. PBD has shown
to be very effective in traditional embedded system design, both at academic
and industrial level. An application of the PBD to the WSN domain has been
proposed in the past, providing case studies for building and industrial moni-
toring. However, this is the first time that PBD is shown to properly address
also the system level design of BSNs.

1.3 Structure of the Thesis

This thesis is organized as follows.
Chapter 2 contains a review of the BSN domain. It includes a brief overview

of its current hardware technologies, common physical sensors, wearable sensor
node platforms, communication protocol standards, and embedded operating
systems. The discussion is focused, however, on a review of the state-of-the-
art development tools and middlewares for programming BSN applications.
A detailed analysis of the requirements and properties for an effective BSN
programming framework is also reported, and used as an objective reference
for the comparison of the state-of-the-art middlewares.

In Chapter 3, SPINE, a novel domain-specific framework for rapid proto-
typing of BSN applications is presented. The most important contributions
of this framework are presented, and analyzed. The design choices and the
architecture of both node-side and coordinator-side components of SPINE
are described in detail. Furthermore, an in-depth performance evaluation has
been carried out, and the main results reported. Finally, the most relevant en-
hancements and variants to the core branch of the framework are overviewed,
including (i) C-SPINE, an enhancements for supporting Collaborative BSNs,
(ii) A-SPINE, an agent-based variant of SPINE, (iii) SPINE2, a task-oriented
re-design of SPINE, and (iv) the concept of Virtual Sensors based on SPINE.

Chapter 4 describes some interesting research case studies of SPINE which
include (i) human activity recognition, (ii) step-counter, (iii) physical energy
expenditure, and (iv) emotional stress detection. The proposed systems are

4

1.3. Structure of the Thesis

based on wireless wearable sensor nodes, and programmed atop the SPINE
framework.

In Chapter 5, a Platform-Based Design methodology specifically focused
on the BSN domain is introduced. The proposed methodology is exemplified
through a case study for physical activity recognition based on a Template
Matching approach.

Finally, Chapter 6 includes a summary of the main results of this thesis,
along with some concluding remarks, and comments on possible future re-
search directions that can derive from the work here presented. For the sake
of completeness, a list of the publications related to the thesis is also reported.

5

2

Related Work

Body Sensor Networks (BSNs) possess an enormous potential for changing
people’s daily lives as they can enhance many human-centered application
domains.

This chapter presents an overview of the current state-of-the-art and exam-
ines the concepts and the hardware/software technologies behind the BSNs,
focusing, in particular, on the software frameworks for programming BSN
applications that have been proposed so far.

2.1 Introduction

BSNs systems involve wireless wearable physiological sensors applied to the
human body for strictly medical or non medical purposes. This area is par-
ticularly dense of interest because foreseen real-world applications of BSNs
aim to improve the quality of life by enabling at low cost continuous and
real-time non-invasive medical assistance. Applications where BSNs could be
greatly useful include early detection or prevention of diseases (e.g. heart
attacks, Parkinson, diabetes, asthma), elderly assistance at home (e.g. fall
detection, pills reminder), e-fitness, rehabilitation after surgeries (e.g. knee
or elbow rehabilitation), motion and gestures detection (e.g. for interactive
gaming), cognitive and emotional recognition (e.g. for driving assistance or
social interactions), medical assistance in disaster events (e.g. terrorist at-
tacks, earthquakes, wild fires), etc.

The design and programming of applications based on BSNs are complex
tasks. That is mainly due to the challenge of implementing signal processing
intensive algorithms for data interpretation on wireless nodes that are very re-
source limited and have to meet hard requirements in terms of wearability and
battery duration as well as computational, and storage resources. This is chal-
lenging because BSNs applications usually require high sensor data sampling
rates which endangers real-time data processing and transmission capabilities
as computational power and available bandwidth of the BSN infrastructure

7

Chapter 2. Related Work

is generally scarce. Indeed, efficient implementation of BSN applications re-
quires appropriate allocation of the limited resources on the nodes in terms of
power, memory and processing. This is especially critical in signal processing
systems, which usually have large amounts of data to process and transmit.

Current embedded operating systems do not address such high level and
complex requirements as they mainly focus on hardware abstraction, power
management, routing, security and synchronization algorithms, and some-
times on general-purpose data structures, dynamic memory management, and
multi-tasking. That being said, new programming abstractions, methodolo-
gies, and tools are needed to support application developers during design
space exploration, and prototyping.

This chapter provides a survey on the current hardware/software archi-
tectures of the BSN domain. In particular, a classification of the main BSN
programming approaches will be given, and the different strategies will be
compared on the basis of a novel taxonomy that is proposed in this thesis.

It is worth noting that, to the best of our knowledge, this is a completely
novel state-of-the-art work in the BSN domain.

A few survey and review works on wearable sensor-based systems have
been published to date. For example, in [1] the focus of the survey is on the
functional perspective of the analyzed systems (i.e. what kind of applications
they target) as well as on the hardware architecture. In this survey, systems
are classified in commercial products and research projects, and also grouped
by different approaches on the hardware platforms: wired electrodes-based,
smart textiles, wireless mote-based, based on commercial smart-phones and
sensors. A comprehensive review of the sensors and their application use is
also provided. Another frequently cited survey work on BSNs is [2]. The focus
is again on the hardware components (antennas, in particular) and the appli-
cation scenarios. Described projects are classified in (i) in-body (implantable),
(ii) on-body medical and (iii) on-body non medical systems.

However, none of the aforementioned works take deeply into account the
software design and the programming approaches of such technologies. From
a software standpoint, just the communication protocols and the embedded
operating systems have been taken in consideration. Rather, they focus on
the hardware and the application use cases. Nevertheless, a significant issue
in this field is related to the programming of the embedded devices, due to
their resource constraints and the limited availability of software abstractions
and tools.

Therefore, the purposes of this chapter are to:

� identify what are the approaches that best fit the complex task of pro-
gramming BSN-based systems;

� analyze actual implementations to evaluate their development level ac-
cording to their potentials;

8

2.2. State-of-the-art on BSNs

� provide possible direction for further research in the fields that these sys-
tems show a lack of performance.

2.2 State-of-the-art on BSNs

2.2.1 Hardware

In this section, a brief overview on the hardware aspects (physical architecture,
sensors, and commercial platforms) of a typical wearable sensor node will be
given.

2.2.1.1 Physical architecture of a sensor node

A sensor node is capable of gathering sensory information, performing some
processing, and communicating with other connected nodes in the network.
To perform these functionalities, sensor nodes require a specific hardware
architecture (see Figure 2.1). In particular, the main hardware components
are:

� a microcontroller, for local processing (it also contains a limited amount
of RAM memory);

� a transceiver, to communicate with other nodes;
� external memory, for local persistent storage of sensor data;
� power source (typically a battery or a solar panel), to provide energy to

the circuitry;
� one or more transducers (physical sensors), to acquire raw data from the

surrounding environment.

2.2.1.2 Sensors

BSNs support many application domains. As a consequence, extremely diverse
physical sensors can be found in BSN systems. The most widely used sensors
are:

� skin/chest electrodes for electrocardiogram (ECG) and electrical imped-
ance plethysmography (EIP) to monitor, respectively, heart rate and res-
piration rate;

� arm cuffs for blood pressure;
� pulse oximeters for oxygen saturation and heart rate monitoring;
� galvanic skin response (GSR) for perspiration (sweating) and emotional

recognition;
� microphones for voice, ambient, and heart sounds (placed on the chest or

earlobe);
� strip-base glucose meters for blood glucose level monitoring;

9

Chapter 2. Related Work

Transceiver

Micro-controller

External Memory

ADC

Sensor 1

Sensor 2

P
o

w
er S

o
u

rce

Fig. 2.1. Typical hardware architecture of a sensor node.

� skin electrodes for electromyogram (EMG) to monitor muscle activity;
� scalp-placed electrodes for electroencephalogram (EEG) to monitor brain

activity;
� accelerometer, gyroscope, pressure sensors for body movements and ap-

plied forces.

2.2.1.3 Commercial Platforms

A comprehensive analysis on the commercial sensor platforms used for BSN
applications is out of the scope of this section. However, to provide a gen-
eral idea on the current status, a brief list is summarized in Table 2.1. An
interesting survey on sensor network platforms can be found in [3].

2.2.2 Communication

This section briefly introduces the most popular communication protocols in
the BSN domain, and its typical network topologies.

2.2.2.1 IEEE 802.15.4 / ZigBee

IEEE 802.15.4 [4] is to date the most widely adopted standard in the wire-
less sensor network domain. Indeed, it is intended to offer the fundamental
lower network layers (physical and MAC) of Wireless Personal Area Networks
(WPANs) focusing on low-cost, low-speed ubiquitous communication between

10

2.2. State-of-the-art on BSNs

Table 2.1. List of commercial sensor node platforms.

Sensor
Platform

MCU Tranceiver
Code/Data
Memory

External
Memory

Language

BTnode
ATmega

128L
CC1000,

Bluetooth
180/64KB 128 KB

C, nesC/
TinyOS

Epic mote
TI

MSP430
CC2420 48/10 KB

2 MB
Flash

nesC/
TinyOS

MicaZ
ATmega

128
CC2420 128/4 KB 512 KB

nesC/
TinyOS

Shimmer
TI

MSP430
CC2420,

Bluetooth
48/10 KB

2 GB
microSD

nesC/
TinyOS

SunSPOT
ARM
920T

CC2420 512 KB
4 MB
Flash

JavaME

TelosB
Tmote

Sky

TI
MSP430

CC2420 48/10 KB
1 MB
Flash

C, nesC/
TinyOS

Waspmote
ATmega

1281
ZigBee 128/8 KB

2 GB
microSD

C

devices. The emphasis is on very low cost communication of nearby devices
with little to no underlying infrastructure.

The basic protocol conceives a 10-meter communications range with a
transfer rate of 250 kbit/s. Tradeoffs are possible to favor more radically em-
bedded devices with even lower power requirements, through the definition of
several physical layers. Lower transfer rates of 20 and 40 kbit/s were initially
defined, with the 100 kbit/s rate being added in the current revision. Even
lower rates can be considered with the resulting effect on power consumption.

As aforementioned, the main identifying feature of 802.15.4 is the im-
portance of achieving extremely low manufacturing and operation costs and
technological simplicity, without sacrificing flexibility or generality. Impor-
tant features include real-time suitability by reservation of guaranteed time
slots, collision avoidance through CSMA/CA and integrated support for se-
cure communications. Devices also include power management functions such
as link quality and energy detection. 802.15.4 operates on one of three possible
unlicensed frequency bands:

� 868.0-868.6 MHz: Europe, allows one communication channel (2003, 2006);
� 902-928 MHz: North America, up to ten channels (2003), extended to

thirty (2006);
� 2400-2483.5 MHz: worldwide use, up to sixteen channels (2003, 2006).

11

Chapter 2. Related Work

To complete the IEEE 802.15.4 standard, the ZigBee [5] protocol has been
realized. ZigBee is a low-cost, low-power, wireless mesh network standard built
upon the physical layer and medium access control defined in the 802.15.4.
It is intended to be simpler and less expensive than other WPANs such as
Bluetooth. ZigBee chip vendors typically sell integrated radios and microcon-
trollers with between 60 KB and 256 KB flash memory.

The ZigBee network layer natively supports both star and tree typical net-
works, and generic mesh networks. Every network must have one coordinator
device. In particular, within star networks, the coordinator must be the cen-
tral node. Both trees and meshes allows the use of ZigBee routers to extend
communication at the network level.

The ZigBee specification completes the 802.15.4 standard by adding four
main components:

1. network layer;
2. application layer;
3. ZigBee device objects (ZDO’s);
4. manufacturer-defined application objects which allow for customization

and favor total integration.

Besides adding two high-level network layers to the underlying structure,
the most significant improvement is the introduction of ZDO’s. These are
responsible for a number of tasks, which include keeping of device roles, man-
agement of requests to join a network, device discovery and security.

2.2.2.2 Bluetooth / Bluetooth Low Energy

Bluetooth [6] is a proprietary open wireless technology standard for exchang-
ing data over short distances (using short wavelength radio transmissions in
the ISM band from 2400-2480 MHz) from fixed and mobile devices, creating
WPANs with high levels of security.

Bluetooth uses a radio technology called frequency-hopping spread spec-
trum, which chops up the data being sent and transmits chunks of it on up
to 79 bands (1 MHz each; centered from 2402 to 2480 MHz) in the range
2,400-2,483.5 MHz (allowing for guard bands).

Bluetooth is a packet-based protocol with a master-slave structure. One
master may communicate with up to 7 slaves in a piconet ; all devices share
the master’s clock. Packet exchange is based on the basic clock, defined by
the master.

The Bluetooth Core Specification also provides for the connection of two
or more piconets to form a scatternet, in which certain devices simultaneously
play the master role in one piconet and the slave role in another.

Although being designed for WPANs, the first versions of Bluetooth are
actually suitable only for BSN systems that do not require long battery life
before recharging. This is because the power consumption profile of Bluetooth

12

2.2. State-of-the-art on BSNs

is significantly higher compared with 802.15.4. Other factors limiting the use of
Bluetooth in the BSN domain are the high communication latency (typically
around 100ms), and the long set-up time (that can reach 6s).

To overcome these limitation, Bluetooth recently released the 4.0 version
that has been called Bluetooth Low Energy (BLE) [7]. One of the BLE de-
sign driving factors is the specific support for applications such as healthcare,
sport, and fitness. Promoter for such applications is the Bluetooth Special
Interest Group in cooperation with the Continua Health Alliance.

BLE operates in the same spectrum range (2402-2480 MHz) as classic
bluetooth, but uses a different set of channels. Instead of 79 1 MHz wide
channels, BLE has 40 2 MHz wide channels.

BLE is designed with two equally important implementation alternatives:
single-mode and dual-mode. Small devices like watches, and sports sensors
based on a single-mode BLE implementation will take advantage of the low-
power consumption, and low-production costs. However, pure BLE is not
backward compatible with the classic Bluetooth protocol. In dual-mode imple-
mentations, instead, the new low energy functionality is integrated into Classic
Bluetooth circuitry. The architecture will share Classic Bluetooth technology
radio and antenna, enhancing currently chips with the new low energy stack.

2.2.2.3 ANT

ANT [8] is an ultra-low power wireless communications protocol stack operat-
ing in the 2.4 GHz band. A typical ANT protocol transceiver comes pre-loaded
with the protocol software and must be controlled by an application proces-
sor. It is characterized by a low computational overhead, and high efficiency
resulting in low power consumption by the radios supporting the protocol.

Similarly to BLE, ANT, among other WSN application scenarios, has been
targeted for sport, wellness, and home health monitoring. To date, indeed,
ANT has been adopted in a number of commercial wrist-mounted instrumen-
tation, heart rate monitoring, speed and distance monitoring, bike computers,
health and wellness monitoring devices.

2.2.2.4 IEEE 802.15 WPAN Task Group 6 (TG6) - Body Area
Networks

The IEEE 802.15 Task Group 6 (BAN) [9] is developing a communication stan-
dard specifically optimized for low power devices operating on, in or around
the human body to serve a variety of applications including medical, consumer
electronics, personal entertainment, and others.

Compared to IEEE 802.15.4, IEEE 802.15.6 focuses specifically on BSNs,
addressing their identifying characteristics such as shorter communication
range (the standard supports a range of 2-5 meters), and larger data rate
(up to 10Mbps), which helps decreasing power consumption, and meeting
safety and bio-friendly requirements, since the working environment is related
to human health.

13

Chapter 2. Related Work

2.2.2.5 Network Topologies

The most common network topologies adopted in the BSN domain are the
following:

� peer-to-peer;
� star;
� mesh;
� clustered.

Fig. 2.2. Common BSN topologies.

The peer-to-peer (P2P) topology (Figure 2.2(a)) reflects BSN systems that
do not rely on coordinator station to operate. It is worth noting that a pure
P2P topology is never used in practice today. In fact, even for systems in which
the sensor nodes interacts directly, adopting a decentralized communication
paradigm to reach a certain shared goal, there is always one node (at least)
that plays the role of interfacing with the user, to receive commands, and
provide some sort of feedback for the events generated by the BSN.

The most common topology for a BSN system is actually the star (Figure
2.2(b)). Here, the base-station (BS) (i.e. the coordinator device such as a
smart-phone, a PDA or also a PC) acts as the center of the star and it is
in charge of configuring the remote sensor nodes (which do not communicate
among each other directly), and gathering the sensory information.

14

2.2. State-of-the-art on BSNs

These topologies are used for personal BSN applications (e.g. health mon-
itoring, wellness, or sport) that do not need to interact with other BSNs.

The mesh topology (Figure 2.2(c)) is an extension of the star, where mul-
tiple BSNs may interact, and even collaborate, through the existence of an
underlying infrastructure consisting of gateway nodes necessary to enable the
communication among BSs.

A somewhat similar topology is the clustered (Figure 2.2(d)). Here, how-
ever, different BSNs may communicate without relying necessarily on a fixed
infrastructure. In other words, the BSs are able to communicate directly, typ-
ically in a peer-to-peer fashion.

Mesh and clustered topologies are adopted in complex systems which in-
volve different BSNs to communicate among each other. Depending on the
specific application, they are often referred as Collaborative BSNs, and are
discussed in more details in Section 3.10.1.1.

2.2.3 Operating systems

The design of operating systems for WSNs deviates from traditional operat-
ing system design due to significant and specific characteristics of WSNs like
constrained resources, high dynamics and inaccessible deployment.

This section provides a brief overview of the most popular operating sys-
tems for WSN nodes. A comprehensive survey can be found in [10].

2.2.3.1 TinyOS / nesC

TinyOS [11] is an event-driven operating system which provides a program-
ming environment for embedded systems. It has a component-based execution
model implemented in the nesC language [12] which has a very low memory
footprint.

TinyOS concurrency model is based on commands, asynchronous events,
deferred computation called tasks and split-phase interfaces. The function
invocation (as command) and its completion (as event) are separated into
two phases in interfaces provided by TinyOS. Application user has to write
the handler which should be invoked on triggering of an event. Commands
and Event handlers may post a task, which is executed by the TinyOS FIFO
scheduler. These tasks are non preemptive and run to completion. However
tasks can be preempted by events but not by other tasks. Data race conflicts
that arise due to preemption can be solved using atomic sections.

Radio communication in TinyOS follows the Active Messages [13] model,
in which each packet on the network specifies a handler ID that will be invoked
on recipient nodes. The handler ID as an integer that is carried in the header
of the message. When a message is received, the receive event associated with
that handler ID is signaled. Different sensor nodes can associate different
receive events with the same handler ID.

15

Chapter 2. Related Work

2.2.3.2 Contiki

Contiki [14] is an operating systems which combines the advantages of both
events and threads. It has primarily an event-driven model but supports multi-
threading as an optional application level library. Application can link this
library if it needs multi-threading. Events are classified as asynchronous and
synchronous in Contiki. Synchronous events are scheduled immediately and
asynchronous events are scheduled later. A polling mechanism is used to avoid
race conditions.

In Contiki device drivers and sensors data handling are implemented as
service. Communication is also implemented as a service in order to enable
run-time replacement. Implementing communication as a service also provides
for multiple communication stacks to be loaded simultaneously. Each service
has an interface and implementation components. Applications are aware of
only the interfaces. This way, the service implementation can be changed also
at run time. This is done by stub library which is linked with the application
for accessing services.

2.2.3.3 MantisOS

MantisOS [15] is a thread-driven operating system model for sensor networks.
Thread-driven model gives flexibility in writing applications as the developer
is not concerned about task size which is mandatory in event-driven model.
Execution of an application involves spawning multiple threads. Network stack
and scheduler are also implemented as threads just like an application. Apart
from these threads, there is an idle thread which runs when all other threads
are blocked. Idle thread invokes the required power management routines.
To maintain threads, kernel maintains a thread table that consists of thread
priority, pointer to thread handler and other information about the thread.
Scheduling between the threads is done by means of scheduler that follows
priority based scheduling algorithm with round-robin semantics. Race con-
ditions are avoided by using binary and counting semaphores. In MantisOS,
communication is realized as a layered network stack. The stack is designed
to minimize memory buffer allocation through layers; it supports layer three
and above, i.e. network layer routing, transport layer, and application layer,
while MAC protocol support is performed by another communication layer,
which is located in a separate lower layer of the OS, distinct from and below
the user-level networking stack.

One of the main drawbacks of adopting a thread-driven model leads Man-
tisOS to suffer from the overheads of context switching and the memory allo-
cated (in the form of stack) per each thread.

2.2.3.4 NanoRK

Nano-RK [16] is a reservation-based, multi-tasking, energy-aware real-time
operating system for WSNs, and it is implemented as an extension of the

16

2.2. State-of-the-art on BSNs

Resource-Kernel (RK) [17] paradigm. Tasks are associated with priorities, and
higher-priority tasks always preempt the lower priority ones. For time sensitive
tasks in applications, it implements rate-monotonic scheduling algorithm for
the tasks, so that the deadlines of the tasks are fulfilled. Applications can
define their resource requirements and deadlines to meet.

Nano-RK contains a lightweight network protocol stack that allows for
port-based communication. Since the network stack is tightly integrated with
the OS and execution/communication information is available, optimizations
using global application knowledge such as automatic packet aggregation, net-
work reservations, and buffer management are possible. An incoming data
packet triggers an interrupt that handles the arrival of the packet. Packet
transmissions are handled by a periodic network task responsible for servicing
all outgoing packets of all tasks.

2.2.3.5 Java Squawk VM

Squawk is a Java micro edition virtual machine (VM) for embedded system
and small devices [18]. It is different from most of the other virtual machines
for the Java platform (which are written in low level native languages such as
C/C++ and assembler) because Squawk’s core is mostly written in Java. A
Java implementation provides ease of portability, and a seamless integration
of virtual machine and application resources such as objects, threads, and
operating-system interfaces.

The Squawk VM targets small, resource constrained devices, and enables
Java for micro-embedded development. The SunSPOT [19] is, probably, the
most popular sensor platform built on this VM.

The fundamental programming paradigm is based on the concept of Iso-
late. An isolate is a mechanism by which an application is represented as
an object. In Squawk, one or more applications can run in the single VM
completely isolated from each other.

In addition to the standard semantics of isolates, the Squawk implemen-
tation has one very unique extra feature among the WSN operating systems:
the isolate migration. An isolate running on one Squawk VM instance can
be paused, serialized to a file or over a network connection and restarted in
another Squawk VM instance.

The current version of the Sun SPOT SDK uses the GCF (Generic Connec-
tion Framework) to provide radio communication between SPOTs, routed via
multiple hops if necessary. In particular, two protocols, implemented on top of
the MAC layer of the 802.15.4 implementation, are available: the radiostream
protocol and the radiogram protocol. The radiostream protocol provides reli-
able, buffered, stream-based communication between two devices. The radio-
gram protocol provides datagram-based communication between two devices
and broadcast communications. This protocol provides no guarantees about
delivery or ordering.

17

Chapter 2. Related Work

2.2.3.6 Z-Stack

Z-Stack [20] is the Texas Instrument ZigBee compliant protocol stack for a
growing portfolio of IEEE 802.15.4 products and platforms. Z-Stack supports
both ZigBee and ZigBee PRO feature sets on the CC2530 System-on-Chip,
and MSP430+CC2520 platforms. In particular, it supports the Smart Energy
and Home Automation profiles. A very interesting feature of this environment
is the support for over-the-air sensor node programming.

2.2.4 Applications

As aforementioned, BSNs enable a very wide range of application scenarios.
We can categorize them into different application domains:

� e-Health;
� e-Emergency;
� e-Entertainment;
� e-Sport;
� e-Factory;
� e-Sociality.

e-Health applications include physical activity recognition, gait analysis,
post-trauma rehabilitation after surgeries, cardiac and respiratory diseases
prevention and early detection, remote elderly assistance and monitoring,
sleep quality monitoring and sleep apnea detection, and emotion recognition
[21].

e-Emergency applications include BSN systems to support firefighters, re-
sponse teams in large scale disasters due to earthquakes, landslides, terrorist
attacks, etc. [22].

e-Entertainment domain refers to human-computer interaction systems
typically based of BSNs for real-time motion and gesture recognition [23].

e-Sport applications are related to the e-Health domain, although they
have a non-medical focus. Specifically, this domain includes personal e-fitness
applications for amateur and professional athletes, as well as enterprise sys-
tems for fitness clubs and sport teams offering advanced performance moni-
toring services for their athletes [24].

e-Factory is an emerging and very promising domain involving industrial
process management and monitoring, and workers safety and collaboration
support [25].

Finally, e-Sociality applications may use BSN technologies to recognize
user emotions and cognitive states to enable new forms of social interactions
with friends and colleagues. An interesting example is given by a system that
involves the interaction between two people’s BSNs to detect handshakes and,
subsequently monitor their social and emotional interactions [26].

18

2.3. Development tools and middlewares

2.3 Development tools and middlewares

This section describes the main methodologies and tools for developing BSN
applications.

A novel contribution of this thesis is related to the identification of the
key requirements, techniques, and properties that should be satisfied by an
effective middleware for the development of BSN systems. This classification
has been helpful to provide a detailed taxonomy of the state-of-the-art mid-
dlewares for BSNs.

2.3.1 Classification of BSN programming approaches

Programming BSN applications is a complex task mainly due to the hard
resource constraints of wearable devices and to the lack of proper and easy to
use software abstractions.

Three main programming methodologies are adopted for the development
of BSN applications; they are based on:

1. application-specific approach;
2. general-purpose middleware for WSN;
3. domain-specific frameworks for BSN.

The application-specific approach consists of developing prototype appli-
cations on BSN nodes as a monolithic block assembling low level services,
reusable components and application-specific logic. As a result, the software
is poorly reusable and difficult to extend. Moreover, the risk of introducing
bugs is significantly high and the debugging can be a very time-consuming
process.

The second approach is based on general-purpose middleware. A middle-
ware is a software layer consisting of a set of services implemented on the
sensor platform and sometimes across a network. It hides the complexity of
low system and network layers and provides proper abstractions and interfaces
to the application layers. In this way application developers can focus on the
application logic without dealing with the implementation details of the un-
derlying services. As a consequence, development time is generally shortened.
Furthermore, if the middleware is well optimized, the overall system could
even reach higher performance. While in traditional distributed systems a
number of general-purpose middlewares such as CORBA, DCOM and RMI
have been widely used thanks to their ability to work well for very different
applications, current general-purpose middlewares for WSN (e.g. Agilla [27],
DFuse [28], TAG [29], Mires [30]) are usually too general to be effective or
demand too many resources to be implemented on sensor node platforms.

The third programming approach combines the best characteristics of the
other two: it is based on frameworks that include domain-specific libraries
and tools that can be easily reused for multiple applications of a selected
domain. This approach, named domain-specific, allows reducing design time

19

Chapter 2. Related Work

through modularity and reuse, while offering solutions that are optimized for
the target domain. For example, most BSN systems need signal processing
intensive tasks such as signal filtering, feature extraction, decision support
tools. Security and data encryption must be taken into account as most of the
communication involves sensible medical data of the user, such as his heart
condition, the glucose level, the physical activity being performed, or simply
his location. Device discovery and advertising are considered very useful, due
to the variety of physical sensors and functionalities supported by the wearable
devices. Scalability and flexibility are also important, to allow higher perfor-
mance (e.g. more accurate event classification having availability of more data
sources) and easier updates in the system requirements. Last but not least,
many BSN applications need to handle multiple sensor signals at the same
time, which is sometime referred as sensor data fusion and context awareness
(e.g. accelerometer, electrocardiogram and location data to identify physical
activity).

The prototyping of BSN applications can be significantly facilitated by a
domain-specific framework with libraries and protocols that allow to imple-
ment signal processing tasks efficiently and that address the aforementioned
features.

In the following, for each of the identified categories, a brief description of
some of the most relevant examples is provided.

2.3.2 BSN Systems implemented with the Application- Specific
approach

Most of the literature on BSN systems focus on the functional and system
perspective, and a few details are typically given on the software design and
architecture; sometime the software side of the system is completely left un-
covered. In the absence of a systematic description of such aspects, we have to
assume that the software engineering has not been given enough importance
while developing the system. Hence, we can definitely state that currently
most of the BSN implementations are based on application-specific code.

In the following, two recent BSN research projects and two BSN-inspired
commercial products will be briefly introduced. A summary of some literature
BSN systems is reported in Table 2.2. A comprehensive overview of several
BSN applications can be found in [1][31].

2.3.2.1 Real-time Arousal Monitor

An interesting research work regarding the design of a real-time arousal mon-
itor has been presented in [32]. Arousal is a physiological and psychological
state of being awake or reactive to stimuli. The goal of the study aims to
monitor the level of arousal on a continuous scale, and continuously in time.
It is different from other works in that it focuses on light-weight algorithms

20

2.3. Development tools and middlewares

Table 2.2. Summary of some well-known BSN systems.

Project Title Application Domain Sensors Involved Hardware Description
Node

Platform

Communication

Protocol

OS / Programing

Language

Real-time Arousal

Monitor
Emotion recognition

ECG, Respiration,

Temp., GSR

Chest-belt, skin

electrodes, wearable

monitor station, USB

dongle

custom
Sensors connected

through wires
n.a. / C-like

LifeGuard

Medical monitoring in

space and extreme

environments

ECG, Blood

Pressure,

Respiration, Temp.,

Accelerometer,

SpO2

Custom microcontroller

device, commercial

bio-sensors

XPod signal

conditioning

unit

Bluetooth n.a.

Fitbit®
Physical activity, sleep

quality
Accelerometer

Waist/wrist-worn

device, PC USB dongle
Fitbit® node RF proprietary n.a.

VitalSense®

In-and on-body

Temperature, Physical

Activity, Heart

monitoring

Temp., ECG,

Respiration,

Accelerometer

Custom wearable

monitor station,

wireless sensors, skin

electrodes, ingestible

capsule

VitalSense®

monitor
RF proprietary Windows Mobile

LiveNet

Parkinson symptom,

epilepsy seizure

detection

ECG, Blood

Pressure,

Respiration, Temp.,

EMG, GSR, SpO2

PDA, microcontroller

board

custom

physiological

sensing board

wires, 2.4GHz

radio, GPRS
Linux (on PDA)

AMON
Cardiac-respiratory

diseases

ECG, Blood

Pressure, Tem.,

Accel., SpO2

Wrist-worn device
custom wrist-

worn device

Sensors connected

through wires -

GSM/UMTS

C-like / JAVA

(on the server

station)

MyHeart

Prevention and

detection of cardio

vascular diseases

ECG, Respiration,

Accelerometer

PDA, Textile sensors,

chest-belt

Proprietary

monitoring

station

conductive yarns,

Bluetooth, GSM

Windows Mobile

(on the PDA)

Human++
General health

monitoring
ECG, EMG, EEG Low-power BSN nodes ASIC

2.4GHz radio /

UWB modulation
n.a.

HealthGear Sleep apnea detection Heart Rate, SpO2

Custom sensing board,

commercial sensors,

cellphone

custom

wearable

station

Bluetooth

Windows Mobile

(on the mobile

phone)

TeleMuse®
Medical care and

research
ECG, EMG, GSR Zigbee wireless motes proprietary

IEEE 802.15.4 /

Zigbee
C-like

Polar® Heart Rate

Monitor
Fitness and exercise

Heart Rate,

altimeter

Wireless chest-belt,

watch monitor

proprietary

watch monitor

Polar OwnCode®

(5 kHz) – coded

transmission

n.a.

that yield a continuous estimation of the non-discretized arousal level, having
the potential of being integrated as a part of the BSN.

The system detects four signals that are known to be directly influenced by
a subject’s state of arousal through the activation of the Autonomic Nervous
System (ANS) - being ECG, respiration, skin conductance, and skin tem-
perature. ECG is recorded through a proprietary chest belt for bio-potential
read-out. Also integrated in the belt is a piezoelectric film sensor used to mea-
sure respiration. Skin conductance is measured at the base of two fingers, by
measuring the electrical current that flows as a result of applying a constant
voltage. Skin temperature is measured at the wrist, by using a commercially
available digital infrared thermometer module.

Data is received wireless by the basestation that is connected to a PC
via USB. An interface to Matlab has been realized to enable a platform for
quick development and verification of real-time physiological signal processing
algorithms. Interpolation of missing data is also present.

The main weakness of this proposal is the lack of a good reference which
makes difficult to quantify the quality of the analysis. Furthermore, all experi-
ments have been performed in a controlled environment. Further experiments

21

Chapter 2. Related Work

are needed before conclusions can be drawn about the extension of the results
to non-controlled environments.

2.3.2.2 LifeGuard

Another research work that is worth mentioning is LifeGuard [33]. The goal
of this effort was to design a small, light weight, wearable, ergonomic device
for a NASA research that not only records and streams a comprehensive set of
diagnostic-quality physiologic parameters, but can also record body position
and orientation, acceleration in three axes, and can be used to mark events.
This feature set, combined with wearability, alarm indicators, fault detections,
and the ability to stream data to hand-held Bluetooth-enabled devices, forms
a compact and reliable system.

The LifeGuard system consists of the “Crew Physiologic Observation De-
vice” (CPOD) and a portable basestation computer. The CPOD device, the
core component of the system, is a custom-made, small, lightweight, easy-
to-use device that is worn on the body along with the physiologic sensors
described below. It is capable of logging physiologic data as well as trans-
mitting data to a portable basestation computer for display purposes and
further processing. Most physiologic parameters (ambient and skin temper-
ature, ECG, respiration rate, pulse oximetry, blood pressure) supported by
LifeGuard are measured with sensors that are external to the CPOD wear-
able device, and that can be connected to it via wired plugs. The only sensors
that are integrated into the CPOD are the accelerometers.

The user cannot change the basic operational mode of the CPOD. The
authors motivate this design choice as an additional security that the system
meets the high reliability standards of medical monitoring devices. However,
the 6 hours streaming (or 20 hours logging) battery lifetime make LifeGuard
hardly usable in non-critical environments. Additionally, as the system cannot
be re-configured easily, re-programming is necessary every time some of the
tunable system properties (the sensors to enable, or the sensor sampling rate
to name a few) need to be modified.

2.3.2.3 FitBit

Fitbit [34] is a promising commercial product thanks to its relatively low cost,
the various supported features, and its graceful cosmetic design.

Fitbit consists of a wearable small sensor device, a basestation connected
to a PC, and a web-based application used to record, visualize and analyze
collected data. Through an embedded accelerometer, Fitbit allows the esti-
mation of number of steps taken during walking or running, the distance
traveled, the calories burned during physical activities such as walking, jog-
ging, and other daily life activities. It provides statistics about daily levels of
activity (sedentary, lightly active, fairy active, very active). All these informa-
tion are available in real-time on a tiny OLED display placed on one side of

22

2.3. Development tools and middlewares

the wearable device. Fitbit also gives information about the quality of sleep
(e.g. how long did it take to fall asleep, how long was the sleep, how many
times the user has awakened).

To work properly, it must be worn on the waist or the chest, or, while
sleeping, with the provided wristband. Recorded data are temporarily stored
locally up to 7 days, and transmitted via wireless to the basestation auto-
matically as soon as the wearable device comes in the range of 15 feet. The
declared battery lifetime is 5-10 days of continuous use. Because each device
has an unique ID, a single basestation can be used to gather information from
multiple Fitbit devices in the nearby. An Internet connection is needed to
send the recorded data to a dedicated server. An intuitive and user-friendly
web-based application allows the user tracking historical statistics, and visu-
alizing graphically his/her personal progress from time to time. Although the
system does not provide any way to dump data to the PC, the website will
have an extensive XML and JSON API to access most of stored data.

2.3.2.4 VitalSense

Another commercially available physiologic monitoring system is VitalSense
[35]. The VitalSense system includes different types of wireless sensors, a small
monitor equipped with control buttons and a graphical display, and a software
running on the PC.

VitalSense is designed to monitor temperature, in active or inactive sub-
jects and in indoor and outdoor environments. Each VitalSense monitor can
receive transmissions from up to 10 miniature, wireless, temperature sensors.
Core temperature is sensed by small ingestible capsules. Dermal temperatures
are recorded from hypoallergenic adhesive dermal patches. Both sensor types
are disposable, but designed for multi-day use under demanding physical and
environmental conditions. In addition, the VitalSense telemetric physiolog-
ical monitoring system can be interfaced to the so called VitalSense-XHR
sensor: a compact device that transmits over the air Heart Rate and Respi-
ration Rate (which is derived from the ECG). This sensor enables researchers
to monitor heart rate and respiratory rate on moving subjects. The XHR is
a chest-worn wireless water-resistant physiological monitor that incorporates
an ECG-signal processor. The rechargeable battery in the XHR provides four
days of battery life on a full charge.

Furthermore, VitalSense can also be interconnected with the Actical de-
vice. Caloric expenditure, and counting of the steps taken during walking are
calculated from movement recorded by the Actical device worn on the waist.

VitalSense is supported by a software utility that communicates with the
portable monitor station via an RS-232 cable. The software enables to setup
the monitor and initialize the sensors. It also allows real-time temperature
data monitoring as well as retrieval - and offline visualization - of recorded
data from the monitor.

23

Chapter 2. Related Work

2.3.3 Domain-specific frameworks for BSNs

Domain-specific frameworks are novel software systems following an approach
in the middle between application-specific code and general-purpose middle-
ware. They specifically address and standardize the core challenges of WSN
design within a particular application domain. While maintaining high effi-
ciency, such frameworks allow for a more effective development of customized
applications with little or no additional hardware configuration and with the
provision of high-level programming abstractions tailored for the reference
application domain.

2.3.3.1 CodeBlue

One of the most relevant, and probably the first attempt to define a general
platform able to support various BSN applications is CodeBlue [36]. CodeBlue
consists of a set of hardware wearable medical sensor nodes (pulse oximeter,
ECG, EMG, accelerometer, gyroscope) based on the Telos and MicaZ motes
and a software framework running on TinyOS specifically designed for inte-
grating these wireless medical sensor nodes and other devices, such as PDAs
and PCs. The CodeBlue Framework allows these devices to discover each
other, report events, and establish communications. CodeBlue is based on a
publish/subscribe-based data routing framework in which sensors publish rel-
evant data to a specific channel and end-user devices subscribe to channels of
interest. It includes a naming scheme, a multi-hop communication protocol,
authentication and encryption capabilities, location tracking and in-network
filtering and aggregation. CodeBlue provides end-user devices with a query
interface for retrieving data from previously discovered sensor nodes.

The focus of the framework is to address a wide range of medical scenarios,
such as monitoring patients in hospitals or victims of a disaster scene, where
both patients/victims and doctors/rescuers may move and not necessarily be
in direct radio range all the time. That explains the relevance given to the use
of a multi-hop routing protocol.

Because publishers and subscribers are not necessarily within radio range,
the CodeBlue routing layer uses the Adaptive Demand-Driven Multicast Rout-
ing (ADMR) protocol [37]. In order for CodeBlue nodes to discover each other
and determine the capabilities of each sensor device, a simple discovery pro-
tocol is layered on top of the ADMR framework. Each CodeBlue node peri-
odically publishes metadata about itself, including node ID and sensor types
that it supports, to the broadcast channel. Receiving devices that wish to learn
about other nodes in the network can subscribe to the broadcast channel to
receive this information. The CodeBlue Query (CBQ) layer allows receiving
devices to establish communication pathways by specifying the sensors, data
rates, and optional filter conditions that should be used for data transfer. A
CBQ query is generated by an end-user device and instructs CodeBlue nodes
to publish data that meets the query conditions on a specific ADMR channel.

24

2.3. Development tools and middlewares

Queries can be issued using the provided end-user GUI. A Query is specified
by a set of node IDs that should report data for this query, the sensor type
representing a specific physiological sensor, the sampling grate, an optional
count of the total number of samples to retrieve from each node, and an op-
tional filter predicate which can be used to suppress transmission of sensor
data when the predicate condition is not met. It must be noted, however, that
no more than two sub expressions can be included in the predicate.

A GenericSensor interface is used to abstract the details of acquiring data
from each sensor type. Like the standard TinyOS ADC interface, GenericSen-
sor provides a simple split-phase interface. The set of sensor types supported
by CBQ on a particular device is configured at compile time with a set of
programmer-s flags. These flags cause the appropriate sensor modules to be
automatically wired to the CBQ component and included in the sensor meta-
data advertisements. In this way the binary for a sensor node will only include
the components necessary for the sensors actually present. CodeBlue also pro-
vides a Java-based GUI that is intended to be easy for medical personnel to use
and which provides enough details on patient status and location to identify
trends.

Although CodeBlue provides a sensor driver abstraction architecture al-
lowing an easy integration of new sensors within the system, selection of sensor
types or physical node identifiers as data sources, tuning of the data rate and
definition of threshold-based filters to avoid unnecessary data being transmit-
ted, it does not allow inserting complex signal processing functionalities into
the sensor nodes. It supports just simple threshold-based triggers on the sen-
sor readings that do not give enough flexibility for the variety of requirements
of the BSN applications.

2.3.3.2 RehabSPOT

RehabSPOT [38] is a customizable wireless networked body sensor platform
for physical rehabilitation. RehabSPOT is built on top of the SunSPOT sen-
sor platform [19] from Sun Microsystems. The platform consists of a number
of SunSPOT nodes attached to various parts of human body, and a SunSPOT
basestation connected to a PC. To enforce a high degree of system configura-
bility and reliability, both the wearable nodes and basestation are powered
by a flexible software architecture. The RehabSPOT software architecture
includes the following features:

� A sensor management module enabling sensor addition/removal and ad-
justable sampling rate for each sensor during runtime;

� An exception handler inside each SunSPOT node for sensor failure detec-
tion;

� A device discovery manager installed in both remote nodes and basestation
for dynamic network construction during runtime;

� Use of the on-board flash memory for multi-hop routing and local data
storage;

25

Chapter 2. Related Work

� Adaptive data collection and display according to the number of remote
nodes and the types of active sensors.

The fundamental idea behind RehabSPOT is that instead of downloading
different programs onto different sensor nodes, RehabSPOT-based BSNs run
a uniform program on all wearable nodes although they may perform different
functions during runtime.

RehabSPOT is organized in a three-tier architecture. The first tier consists
of all the remote nodes that are organized as a standalone mesh network. A
basestation connected to PC along with remote nodes in its neighborhood
compose the second tier. This tier forms a star network where the basestation
acts as the master node. The basestation streams the data to the program
running on the PC for real-time display and on-line processing. The third tier
relies on the established Internet infrastructure. In this tier, data stored inside
the PC can be transmitted to a remote server for further processing.

The system hardware includes a custom-designed signal conditioning ac-
cessory board to facilitate interfacing external sensors with the wearable
SunSPOT nodes. The system software is based on client-server architecture.

The server program is installed and running on the PC while the client pro-
gram is installed in the remote nodes. The communication between client and
server programs follows the message-passing distributed computing paradigm
by leveraging the computation power embedded inside the remote nodes.

A lightweight protocol for device discovery at both remote nodes and bases-
tation to support dynamic BSN construction has been introduced. Each mes-
sage contains a source address, a message type-code, and data payload. The
size of payload varies among different message types. The communication secu-
rity is enforced by utilizing an efficient pure Java cryptographic library which
supports key exchange and digital signatures based on the Elliptic Curve
Cryptography (ECC).

2.3.4 General-purpose frameworks for WSNs applied to BSNs

A number of frameworks for generic WSNs have been proposed so far. The
goal of such frameworks is to raise the abstraction level given by the cur-
rent operating systems for WSNs by providing developers with programming
models and paradigms (e.g. based on agents or tasks), and general-purpose
libraries and APIs to reduce the application development and testing time.

This section describes the general-purpose frameworks for WSNs that have
been customized and used to develop BSN-based applications.

2.3.4.1 TITAN

Titan (Tiny Task Network) [39] is a general-purpose middleware that supports
implementation and execution of context recognition algorithms in dynamic

26

2.3. Development tools and middlewares

WSN environments. Titan represents data processing by a data flow from sen-
sors to recognition result. The data is processed by tasks, which implement
computations like classifiers or filters. The tasks and their data flow intercon-
nections define a task network, which runs on the sensor network as a whole.
The tasks are mapped onto the single sensor nodes according to the sensors
and the processing resources they provide.

Titan dynamically reprograms the sensor network to exchange context
recognition algorithms, handle defective nodes, variations in available pro-
cessing power, or broken communication links. It has been designed to run on
resource constrained sensor nodes and implemented in TinyOS on Tmote Sky
motes.

The goal of Titan is to provide a mechanism to dynamically configure a
data processing task network on a wireless sensor node network. Titan pro-
vides a set of tasks, of which each implements some signal processing func-
tion. Connections transport the data from one task to another. Together, the
tasks and connections form a task network, which describes the application to
be run on the wireless sensor network. Programming data processing in this
abstraction is likely to be more intuitive and less error prone than writing
sequential code. The inner working of every processing task have to be thor-
oughly checked only once. This can be done in an isolated way and reduces
the complexity of debugging. Tasks have a set of input ports, from which they
read data, and a set of output ports to which task processing results are de-
livered. Connections deliver data from a task output port to a task input port
and store the data as packets in FIFO queues. The application is issued by a
master node. It analyzes the task network and splits it into task sub-networks,
which are to be executed on the individual nodes. The connections between
tasks on different nodes is maintained by sending the packets in messages via
a wireless link protocol.

2.3.4.2 AFME

AFME (Agent Factory Micro Edition) [40] is a minimized footprint intelligent
agent platform for ubiquitous devices, originally developed for use with 3G
mobile phones, and recently deployed for SunSPOT sensor nodes.

AFME is based on the Belief, Desire, and Intention (BDI) constructs
[41], and on a declarative agent programming language in conjunction with
imperative components. AFME agents are imbued with mechanisms that en-
able them to interact with their environment. Agents perceive and act upon
the environment through perceptors (software sensor components) and actu-
ators respectively. Perceptors and actuators represent the interface between
the agent and the environment and are implemented in Java.

AFME also supports a form of agent migration. Migration refers to the
process of transferring an agent from one platform to another. Agent migration
is often classified as either strong or weak. This classification is related to the
amount of information transferred when an agent moves. The strongest form

27

Chapter 2. Related Work

of migration possible requires the transfer of the entire internal stack of the
process in question. This is not possible in heterogeneous environments, where
the internal stacks are implemented differently. In such environments, weaker
forms of mobility are necessary.

Truly strong migration is not possible in Java, since much of an applica-
tion state is under the control of the JVM. Within AFME, support is only
provided for the transfer of the agent mental state. Any classes required by
the agent must already be present at the destination. This is because the
Constrained Limited Device Configuration (CLDC) does not contain an API
for dynamically loading foreign objects. In the Squawk JVM, it is possible
to migrate an application to another Squawk enabled device. Squawk imple-
ments an isolate mechanism, which can be used for a type of code migration.
However, Isolate migration is not used in AFME as with isolates, it would
be necessary to migrate the entire application or platform, rather than just a
single agent.

AFME has been used for the development of an activity monitoring system
based on BSNs [42].

2.3.4.3 MiLAN

MiLAN (Middleware Linking Applications and Networks) [43] is a middle-
ware for sensor networks whose goal is maximizing application lifetime while
providing application QoS by controlling and optimizing network as well as
sensors.

One of the application scenarios where the authors believe it can be useful
is the medical monitoring. Early studies involved the introduction of MiLAN
in the University of Rochester - Center for Future Health’s Smart Medical
Home project, particularly for heart monitoring.

The distinctive feature of its approach is the integration of network control
into the middleware, enabling application-directed network reconfiguration.
From the application, Milan receives a set of performance specifications with
respect to different system components as well as information specifying how
different applications should interact. From the network, Milan monitors for
available components and overall resources such as power consumption and
bandwidth. Combining this information in some optimal manner, Milan con-
tinuously adapts the network configuration to best meet the application needs
and balance performance for cost.

The fundamental concept of MiLAN is that while the policy of how to
manage and control the dynamic network should be left to the application,
the mechanisms for implementing the policy should reside at the middleware.
Indeed, the aim of this generic middleware is to provide this type of pol-
icy/mechanism split by allowing the application to specify its low-level data
needs, how these needs vary over time, and how its performance is affected by
different sets of input data. Knowing this information allows the middleware

28

2.3. Development tools and middlewares

to manipulate the network configuration, taking into account the trade-offs
between application performance, data availability, and energy consumption.

An implementation of MiLAN has been provided for Bluetooth and IEEE
802.11 wireless networks. However, although the aim of the framework is to
manage QoS in distributed sensor networks, the framework implementation
runs in a centralized fashion.

2.3.5 Requirements, techniques and properties for BSN
programming frameworks

A software framework designed for supporting fast prototyping of BSN ap-
plications should meet specific requirements in terms of effectiveness, effi-
ciency, and usability. Adopting a BSN-specific framework should result, with
less efforts in terms of development time and application-level programming
complexity, in accurate and efficient applications, whose source code is more
modular and easier to maintain.

Typically, BSN applications share several common tasks on top of which
specific application components can be developed at both sensor-node-side
and coordinator-side. Table 2.3 describes such common tasks that we have
identified by examining in depth the state-of-the-art of BSN applications: sen-
sor sampling, in-node data (pre)processing, sensor (re)configuration at run-
time, node synchronization, duty-cycling mechanisms, application-level com-
munication protocols, and high-level processing at the coordinator-side.

Thus, a framework for the development of BSN applications should provide
suitable programming abstractions and tools to effectively and efficiently sup-
port the identified common tasks. Moreover, a software framework designed
for supporting fast prototyping of efficient BSN applications should meet spe-
cific (functional and non-functional) requirements in terms of effectiveness,
efficiency, and usability. In particular, such a BSN-oriented framework should
facilitate the development of well-structured and resource-efficient applica-
tions with less effort in terms of development time and application program-
ming complexity. Resulting developed code should be more modular and easier
to maintain, and with usable tools for sensor-node-side and coordinator-side
application management. A system interoperability requirement is desirable,
which allows the integrated use of heterogeneous sensor platforms in the same
BSN application. Finally, privacy is a very important non-functional require-
ment in the context of BSN applications, as they usually involve processing
and communication of data acquired from the human body. Such data is in-
herently personally identifiable, and may be medically relevant and therefore
highly privacy sensitive.

In the following, such requirements are extensively discussed. Table 2.4
summarizes the main identified requirements for a BSN-oriented application
development framework along with key techniques/mechanisms, which the
framework should incorporate, capable of fulfilling them.

29

Chapter 2. Related Work

Table 2.3. Common tasks of BSN applications.

TASK DESCRIPTION

SENSOR

SAMPLING

The sensor sampling process represents the first step for developing

a BSN application. Selecting the appropriate sampling time to sat-

isfy the application requirements is important, as it determines the

amount of raw data generated and processed (and to a certain degree,

energy consumed). The proper execution of the application may de-

pend on this parameter; often, a minimum sampling time is required

to allow a sensor to accurately capture a particular phenomena.

IN-NODE DATA

(PRE)PROCESSING

Classifier algorithms very rarely use raw data. Instead, attributes

(or features) are extracted on sample data windows and used to

detect events and classify activities. Extracting features directly on

the wireless nodes allows for reduction of radio usage, as resulting

summary data are sent instead of raw data values.

SENSOR

CONFIGURATION

AT RUN-TIME

Support for runtime configuration (enabling, disabling, setting the

sampling rate) on the available sensors of a node is often very useful.

Application requirements can change over time; for instance, under

certain circumstances, a sensor may be sampled at a lower rate, or

its data not needed at all. Therefore, supporting runtime sensor con-

figuration allows dynamic application behavior.

NODE

SYNCHRONIZATION

Many BSN-oriented signal-processing algorithms require sensors on

multiple nodes to be sampled in unified time intervals, to ensure

consensus of time in observing underlying events. Nodes are often

kept synchronized to in turn allow synchronized sampling of sensors

and joint processing data at the coordinator.

DUTY-CYCLING

Duty cycling is a mechanism for controlling radio power, to reduce

power consumption of a sensor node, thus increasing its battery life-

time. Radio duty cycling must be tuned very carefully in order to

minimize energy use, but allow sufficient transmission of data.

APPLICATION-LEVEL

COMMUNICATION

PROTOCOL

A specific application level communication protocol is needed to sup-

port the interaction among sensor nodes (if needed) and between sen-

sor nodes and the coordinator. The communication involves sensor

node discovery and service advertisement, requests for sensing and

signal processing, raw and preprocessed sensor data transmission,

and event delivery.

HIGH-LEVEL

PROCESSING

Often, the end-user BSN applications do much more than plotting

sensor data into graphs. They require the interpretation of asyn-

chronous events and periodic data coming from sensors in high-level

knowledge. This implies decision support (classification) algorithms

that extract meaningful information from such events and data.

Programming Effectiveness refers to the ability of the software framework
to provide effective and specific support for the programming, debugging,
and testing of BSNs applications. It is enabled by suitable programming ab-
stractions, software engineering methods, and debugging and testing tools. In
particular:

30

2.3. Development tools and middlewares

Table 2.4. Requirements for BSN frameworks.

Requirement High-Level Techniques

Programming Effectiveness
Programming Abstractions, Software En-
gineering Methods, Debugging and Test-
ing Tools

System Efficiency Resource Management Optimization

System Interoperability
Application-Level Communication Proto-
col and Adapter for Heterogeneous Sensor
Inclusion

System Usability
GUI-based flexible management of the
BSN system, PC and smartphone-based
Coordinator

Privacy Support Data encryption and authentication

� Programming abstractions refer to development paradigms, programming
interfaces, and built-in functionalities that provide easier access to the
platform physical resources (e.g. sensing, storage, and communication),
and higher-level functionalities that help developers focus on core applica-
tion aspects. In particular, the following BSN programming abstractions
should be made available: (i) tunable sensor drivers, as it is often necessary
to adjust (sometimes during run-time) the sampling rate, sensitivity, and
range, or to enable a subset of channels of a multi-channel sensor (e.g. only
some of the axes of a three-axial accelerometer or gyroscope); (ii) flexible
data structures to easily accommodate different data types (e.g. short, int,
long values), so that, for instance, the same buffer might be configured for
storing data from sensors that produce samples with different word-length;
(iii) flexible communication API, as different applications may require dif-
ferent data payload structure and length; (iv) parameterized processing
functions, to set the inputs of the functions without hard-coding their val-
ues (e.g. to allow run-time configuration of feature extractions on variable
signal windows). Finally, built-in tunable power management schemes to
allow customized trade-off between performance, reliability, and system
lifetime. They are often intended to improve the lifetime of the sensor
node, and allow, for instance, the radio duty-cycling (that may drastically
reduce energy consumption), reducing the sensor/s sampling and process-
ing (which typically reduce energy consumption at the cost of lower per-
formance), or disabling data transmission over-the-air and enabling local
storage.

� Software engineering methods aim at supporting rapid prototyping of BSN
applications through the use of component-based approaches. They in-
clude properties such as robust isolation among software modules that

31

Chapter 2. Related Work

enhances code reusability, and testing of individual modules. In particu-
lar, the availability of predefined (ready to use) software components that
are common to most of the BSN applications, along with well-defined tech-
niques through which assemble them, is critical to obtain prototypes in a
short period of time. The main components often used in BSN applica-
tions are: signal filters (e.g. FIR filters) to clean or amplify a signal, feature
extractors (e.g. average, variance, zero crossing, and signal slope) to re-
duce the amount of data to be transmitted, classification algorithms (e.g.
K-NN, decision trees) useful as decision support tools, and an application-
level communication protocol (that includes e.g. nodes/services discovery,
failure notification, user data transmission).

� Debugging and Testing tools allow for compile and run-time assessment
of the functional correctness of the BSN application under-development.
They are both extremely useful to help developers find errors that can
be revealed only during run-time. Debugger tools are useful to locate the
cause of a known erroneous application behavior, while testing tools are
used to help verify the correctness of software components, as well as find
specific situations in which the program crash or executes unexpectedly.
Such tools may be offered by the development environment and can be
based on simulators or step-by-step debuggers that are able to track the
state of the application at each instruction.

System Efficiency refers the quality with which energy, memory and com-
putational resources in the system are managed, particularly with respect to
the resource limited wearable sensor nodes. It is important to optimize the
code footprint (i.e. reduced code segment memory needs) and reduce RAM
usage for sensor node binaries, as common BSN nodes use a microcontroller
as their CPU. Thus, optimizing the signal processing algorithms that run on
the sensor node is essential.

System Interoperability refers to the ability of using and making collab-
orate devices based on different hardware/software technologies. It includes
the possibility of communication between different nodes of the same software
platform (e.g. Telosb and Micaz motes on TinyOS), the ability of the system to
allow heterogeneous network formation of nodes that are programmable using
the same language, the interoperability among homogeneous BSN coordina-
tors, and finally, the ability of the system to interoperate with heterogeneous
networks (e.g. Internet through sockets or XML RPC). It can be enabled
by an application-level communication protocol and communication adapters
for heterogeneous sensor inclusion that jointly allow the simultaneous use of
devices based heterogeneous hardware/software technologies.

System Usability indicates the property of a system to be user-friendly for
both end-users, and developers/designers. It is typically supported by GUI-
based flexible management of the BSN along with a coordinator running ei-
ther on PC or smart-phone, so that the BSN can be (re)configured remotely

32

2.3. Development tools and middlewares

without manually coding the instructions, but through intuitive graphical in-
terfaces.

Privacy Support refers to the ability of a system to protect a user’s confi-
dential information (such as physiological signals). Encryption and authenti-
cation mechanisms allow the system to maintain the secrecy of such informa-
tion, and in turn ensure that it is released only to authorized entities. Privacy
protection is critical in real-life scenarios and can only be achieved when sup-
ported by all sources and channels of privacy sensitive information. As the
source of privacy sensitive information, BSNs should adopt strong privacy
protection features and controls.

2.3.6 Comparison of the WSN/BSN programming frameworks

The in depth analysis of the requirements, properties, and techniques that are
absolutely necessary for a framework to be effective and efficient in supporting
BSN applications programming, has been helpful for providing an accurate
comparison of the current state-of-the-art on the WSN/BSN programming
frameworks. To the best of our knowledge, this is a novel research contribution
in this context.

The result of the comparison is reported in Table 2.5.

2.3.7 Summary

This chapter provided an overview of the current state-of-the-art of the BSN
domain. Most popular hardware architectures, communication protocols and
standards, and operating systems have been briefly introduced. Furthermore,
a classification of the current BSN programming approaches has been de-
scribed, and the most relevant research projects of each approach have been
analyzed. Particular emphasis has been given to the domain-specific frame-
works for BSNs and to general-purpose frameworks for WSNs applied to the
BSN domain. Results of an in-depth analysis of these frameworks is reported
and a taxonomy of key requirements, techniques and properties that emerged
to be of fundamental importance during the design of an effective and effi-
cient BSN programming framework have been described in detail. Finally, the
analyzed frameworks have been compared on the basis of such identified key
parameters.

33

Chapter 2. Related Work

Table 2.5. Comparison of the WSN/BSN programming frameworks.

 CodeBlue RehabSPOT TITAN AFME MiLAN

Programming abstractions

Tunable Sensor Drivers � � � � n.a.

Data Structures flexibility n.a.

Flexible Communication API � � n.a.

Parameterized Processing functions � �

Tunable power management �

Software engineering methods

Predefined in-node signal filters � �

Predefined in-node feature extractors � �

Embedded support for classification

algorithms
 �

Built-in Application level communication

protocol (messages format, encoding,

decoding)
� � � � �

Encryption and authentication �

Debugging mechanisms

Simulators � � � � �

Debugger tools �

Resource Optimization

Optimized Code footprint � � n.a.

Reduced memory usage � � n.a.

Optimized Processing time � � n.a.

Communication

Communication among different nodes of the

same SW platform (e.g. TelosB and MicaZ

on TinyOS) and radio standard
� � � �

Heterogeneous network formation of nodes

programmable with the same language (e.g.

C language)

Interoperability among homogeneous BSN

coordinators

Interoperability among heterogeneous

networks (e.g. Internet through sockets)
 �

34

3

The SPINE Framework

This chapter describes the SPINE Framework, a novel domain-specific frame-
work for supporting rapid development of BSN applications, along with its
enhancements, and variants proposed so far.

3.1 Introduction

The analysis of the state-of-the-art on the BSN domain has highlighted that
the development of BSN applications is to date a complex task also due to
the lack of programming frameworks with dedicated support to the distinctive
requirements of BSN systems.

To support the programming of optimized BSN applications while mini-
mizing the development time and effort, we have designed and realized SPINE
(Signal Processing In Node Environment) [44]: an open-source domain-specific
programming framework [45] for BSNs.

SPINE has been designed around the requirements defined in Section
2.3.5 to maximize its effectiveness for the development of applications in the
BSN domain. In particular, SPINE provides support for distributed signal-
processing intensive BSN applications by a wide set of pre-defined physio-
logical sensors, in-node and on-coordinator signal-processing utilities, flexible
data transmission, and optimized network/resource management. SPINE has
a powerful and well-designed modular structure that allows easy integration
of new custom-designed sensor drivers and processing functions, as well as
flexible tailoring and customization of its built in features as developers deem
necessary.

One fundamental idea behind SPINE is the reuse of software components
to allow different end-user applications to configure sensor nodes at run-time
based on the application-specific requirements, so that the same embedded
code can be used for several applications without re-programming off-line the
sensor nodes before switching from an application to another.

35

Chapter 3. The SPINE Framework

SPINE natively supports logical star-topology sensor networks, where the
edges are represented by the wearable sensor nodes, and the center is a
smart coordinator station. However, it is worth noting that as SPINE uses an
application-level protocol, it may rely on an underlying network layer which
supports multi-hop, so that the physical network can actually involve com-
munication between the coordinator and nodes that are more than one hop
away.

3.2 Network Architecture

The BSN architecture supported by SPINE includes multiple sensor nodes and
one coordinator node (see Figure 3.1). The coordinator manages the network,
collects and analyzes the data received from the sensor nodes, and acts as a
gateway to connect the BSN with wide area networks for remote data access.
Sensor nodes measure local physical parameters and send raw or processed
data to the coordinator. Currently SPINE supports BSNs with star topology,
which is a requirement for BSN applications, where sensor nodes communicate
only with the coordinator. However, the framework can be easily extended to
support also direct and multi-hop communications among sensor nodes.

In the current version of SPINE (version 1.3) a sensor node can only be
associated with a single coordinator; a possible extension is to allow nodes
to be associated and communicate with multiple coordinators. A scenario
where such architecture could be used is when a patient wearing body sensors
moves across locations; in this case such sensors should connect to a different
coordinator at each different location.

Fig. 3.1. SPINE Network architecture.

36

3.3. High-Level software Architecture

3.3 High-Level software Architecture

The SPINE framework consists of two main components:

1. SPINE Node, and
2. SPINE Coordinator.

The former is implemented in the sensor platform-specific embedded pro-
gramming language and runs on the sensor nodes; the latter is implemented
in Java and runs on the coordinator station. The functional architecture of
SPINE is shown in Figure 3.2.

The SPINE Node is organized in five interacting macro functional compo-
nents:

� The “Sensor Node Manager” is responsible for the general interactions
among the Sensing Management, Signal Processing, and Communication
components, and dispatches requests coming from the remote coordinator
to the appropriate block.

� The “Communication” block handles reception and transmission of mes-
sages over-the-air, and managing radio duty cycling.

� The “Sensing Management” block acts as a general interface to the phys-
ical sensors of the platform, setting up timers when periodical sensing is
requested by the remote coordinator, or simply performing one-shot read-
ing to the requested sensors. It interacts with the “Buffering” block to
store the sensor readings. It also contains a sensor registry where com-
piled sensor drivers self-register at boot-time, to allow other components
to retrieve the available sensor list.

� The “Buffering” block consists of a set of circular buffers dedicated to store
the sensor sample data. It provides two mechanisms to access the sensor
data: (i) upon requests using getter functions, and (ii) using listeners that
are notified when new data from sensor/s of interest is available.

� The “Signal Processing” block involves a flexible, customizable and ex-
pansible set of signal processing functionalities such as math aggregators,
filters, and threshold-based alarms that can be applied to any sensor data
streams. This block retrieves the data to be processed from the sensor
buffers, and report the results back over-the-air to the coordinator.

The SPINE Coordinator is organized in five components:

� The “Communication” block has similar functionalities of the correspond-
ing block in the sensor node, and it has been designed to load the proper
radio module adapter (e.g. for TinyOS motes or SunSPOT devices) dy-
namically. This component has the important function of abstracting the
logical interactions between the coordinator and the BSN from the low
level transmissions that depend on the actual platform technology being
used.

37

Chapter 3. The SPINE Framework

Fig. 3.2. The SPINE high-level Functional Architecture.

� The “Sensor Nodes Control APIs” is an interface exposed to the end-user
application developers to manage the underlying BSN (e.g. to activate
sensor sampling and on-node signal processing to certain nodes).

38

3.3. High-Level software Architecture

Table 3.1. Functionalities exposed by SPINE at the coordinator station.

FUNCTIONALITY DESCRIPTION

DISCOVERY Allows for the discovery of nodes and their supported

sensors and processing capabilities.

SENSING SETUP For each node, allows independent specification of sam-

pling rates for multiple sensors.

RAW SENSOR READING

REQUEST

Enables periodical or one-shot transmission of raw

readings from one or multiple sensors. To avoid wasted

bandwidth and energy, readings are grouped before be-

ing transmitted.

ON-NODE SIGNAL

PROCESSING ACTIVATION

For each node, enables one or multiple in-node (peri-

odic or trigger-based) signal processing functionalities

independently. The specific processing functions may

be set up over-the-air via additional parameters.

HIGH-LEVEL
DATA PROCESSING

Offers a wide set of feature selection and classification

algorithms, and specific data structures to process the

received data.

� The “Event Dispatcher” forwards various events (e.g. new nodes discov-
ered, alarm or user data messages) to the set of registered listeners.

� The “High-Level Data Processing”, which is described in more details
in paragraph 3.9.4, enables signal processing and pattern recognition on
the coordinator node. Using the SPINE distributed computing architec-
ture, this important module supports the design and implementation of
new applications by providing highly generalized interfaces for data pre-
processing, feature extraction and selection, signal processing, and pattern
classification. It is designed to simplify the integration of SPINE in sig-
nal processing or data mining environments, providing functionality such
as automatic network configuration, aggregate data collection, and graph-
ical configuration. It also includes a bridge to the popular WEKA [46]
Data Mining toolkit to allow the use of its feature selection and pattern
classification algorithms from within SPINE.

� The “SPINE Management GUI ” is a graphical add-on tool that allow
configuration of remote sensor nodes using a user-friendly interface (rather
than programmatically). It contains a simple textual logging function for
events generated by remote nodes and received by the underlying SPINE
coordinator (e.g. discovery advertisement packets, data messages).

From a programming point of view, SPINE provides abstraction layers for
the node discovery, sensing, signal processing, and data transmission over-the-
air. Apart from providing built-in support for given sensors and processing,
particular care has been given to simplify the extension and customization of
the framework itself. In particular, it is very straightforward to add software
support for new, custom-defined sensor drivers and developers can easily inter-

39

Chapter 3. The SPINE Framework

act with the sensor nodes through a simple Java API. The main functionalities
exposed by this API are summarized in Table 3.1.

3.4 Main tunable parameters

At compile time, SPINE allows developers to tune a number of parameters of
the sensor node. In particular, it is possible to specify which sensor drivers and
processing functions must be included in the compilation, how many buffers
must be allocated for the sensors, and which size such buffers must have.

At run-time, SPINE allows to tune several parameters of the sensor nodes
and activate and deactivate (periodic, and threshold-based) processing func-
tions.

Each available sensor of a remote node, is initially idle, but it can be set
remotely to start sampling at any time. Sampling time and time scale (e.g.
ms, sec, min) are, hence, tunable parameters.

Any computable processing function (e.g. feature extractors or alarms) is
active by default, but it can be started or stopped remotely. Typical tunable
processing parameters include data window size, type of feature extractors to
compute on a given sensor, type and value of a threshold that would trigger
alarms on given sensed data. It is also possible to enable/disable a simple
TDMA (Time Division Multiple Access) communication protocol, and a “ra-
dio low power” mode through a duty cycle mechanism.

SPINE also introduces an optional encryption service that enables the
remote motes to communicate securely with the base-station node.

3.5 SPINE application-level communication protocol

The SPINE framework includes an application-level communication protocol
to manage the bidirectional communication between nodes and the coordina-
tor. The SPINE communication protocol works at the application-level and
is independent from the underlying network and data-link layers. The current
architecture includes an optional TDMA scheme and a radio duty cycling
mechanism.

A general communication scheme has been defined and is supported by a
set of standard messages summarized in Table 3.2 whereas the structure of the
general SPINE message is reported in Figure 3.3. Messages can be directed
from the coordinator to a node (C → N) or from a node to the coordinator
(N → C). While service messages have a fixed format, user messages can be
easily customized to better fit application needs. Moreover, developers have
also the possibility to extend the framework with new user-defined messages.

The communication scheme is usually initiated by a Node Discovery phase.
Several discovery techniques can be adopted. For example, the coordinator can

40

3.5. SPINE application-level communication protocol

Table 3.2. Standard messages of the SPINE Protocol exchanged between Coordi-
nator (C) and Node (N).

Direction

Parameters

C → N N → C

Service Discovery • NONE

Service Advertisement • < sensors list, services list >

Set-Up Sensor • < sensor code, sensor parameters >

Set-Up Service • < service code, service parameters >

Activate Service • < service code >

De-activate Service • < service code >

Data (raw or processed) •
< service code, data >

Start processing • < radio configuration >

Reset (node / network) • NONE

System notification • < notification type, notification details >

32 bits

Bits

V E Type GroupID SourceNodeID

DestNodeID SequenceNr TotalFragment

s

FragmentOffset

≈ Payload (0 or more words) ≈

V = Version of the protocol

E = Extension flag signalling an extension of the message

Type = Type of SPINE message

GroupID = Identifier of the group

SourceNodeID = Identifier of the transmitting node

DestNodeID = Identifier of the receiving node

SequenceNr = Sequence number of the messages

Total Fragments = Number of total fragments of the SPINE message

Fragment Offset = Offset of the fragment with respect to the

 reference message

Fig. 3.3. Structure of the general SPINE message.

broadcast a service request (Service Discovery message) and wait for adver-
tisements from active nodes within range. To keep the network information
updated, service requests can be sent on a periodical basis. A Service Adver-
tisement, sent from a sensor node upon reception of a Service Discovery mes-
sage, includes information about the node hardware, in particular regarding
the available sensors, and the node services which can be processing functions
(e.g. mean, max, min, variance, total energy, entropy) and/or alarms (sensed

41

Chapter 3. The SPINE Framework

Table 3.3. Default services and alarms which can be activated in the SPINE node

FEATURE DESCRIPTION

Max Maximum value computed on a sample window.
Min Minimum value computed on a sample window.
Range Maximum displacement value computed on a sample window.
Mean Average value computed on a sample window.
Amplitude (Maximum-Mean) value computed on a sample window.
RMS RMS value computed on a sample window.
St. Deviation Standard Deviation value computed on a sample window.
Total Energy Cross-axial magnitude computed on a sample window. It takes into

account multiple sensor channels, if any..
Variance Variance value computed on a sample window.
Mode Most frequent value computed on a sample window.
Median Median value computed on a sample window (central value of the

ordered window buffer).
Vector
Magnitude

Magnitude of a sample window (sum of the squares of the window
elements).

Entropy Entropy computed on a sample window.

ALARM

Above Triggers when a given sensor signal (or a computed feature) exceeds
the specified threshold.

Below Triggers when a given sensor signal (or a computed feature) goes
below the specified threshold.

Within Triggers when a given sensor signal (or a computed feature) is
within the range of the specified thresholds (min, max).

Outside Triggers when a given sensor signal (or a computed feature) exceeds
the range specified by the thresholds (min, max).

OTHER

Buffered
Raw Data

Buffers into a single over-the-air message a given number of sensor
readings. Useful to reduce radio usage and bandwidth consumption
when collecting raw data.

Kcal Computes activity counts every second. The final physical energy
expenditure estimation must, however, be computed at the coor-
dinator (see Section 4.3). It can be computed only if the node is
equipped with an accelerometer sensor.

Pitch Pitch angle estimation computed on a sample window. It can be
computed only if the node is equipped with an accelerometer sensor.

Roll Roll angle estimation computed on a sample window. It can be
computed only if the node is equipped with an accelerometer sensor.

data exceeding thresholds). Table 3.3 reports the services and alarms that
SPINE provides by default.

It is worth noting that many services can be set-up to process periodically,
on-demand only, or even on event basis. Hence, the data flow generated by
the service is dependent on the service itself and on the specific dynamic
configuration requested by the application on that service. For instance, a raw
data service can be set-up to transmit sensor data periodically, one-shot, or

42

3.5. SPINE application-level communication protocol

only when a given threshold has been exceeded. According to the information
collected, the user application on the coordinator must first set-up the sensors
of interest by specifying: sensor identification code, sampling time, and time
scale. Once sensors have been set-up, the user application will typically set-up
the desired services (if the service requires a preliminary set-up phase) and
subsequently will activate them. Services can be dynamically activated and,
if necessary, de-activation is also supported.

Set-up, activation and de-activation of a service involve the specification
of certain parameters which usually vary from service to service. Thus, corre-
sponding messages have been structured with a dynamic and partly service-
specific format. As aforementioned, the SPINE framework provides native
services whereas new services can be easily integrated. In this case, the de-
veloper must enhance the framework with a specific format for the set-up,
activation and de-activation request messages.

Once each node is fully set-up, the user application is finally ready to start
working by broadcasting a start message. From this time on, the nodes will
start sensing and processing according to the activated services. The data pro-
duced by the running services of each node are transmitted in data messages to
the coordinator which in turn forwards the message content to the user appli-
cation. The data message has a well defined format, but its payload semantic
is clearly dependent from the service that generated that data and, again, if it
is a user-defined service, coding and decoding of the payload content is up to
the developer. To notify the coordinator of system events such as low battery
warnings, processing overhead errors or bad requests, nodes can issue defined
system event notification messages. Single nodes or the whole network can be
reset by the coordinator if requested by the user application. Information such
as sensor and service advertisements, error and warning types and details, are
all exchanged in form of numerical codes which must be shared between nodes
and coordinator.

To provide a concrete example of a typical messages exchange between
the coordinator and a node, Figure 3.4 shows the sequence of transmission
within a scenario where a user application is looking for a node equipped with
a given sensor to request some in-node processing of the data sensed by that
sensor. The user application, through the coordinator side of SPINE, broad-
casts a Service Discovery to check if a node with the required sensor is found
in the nearby. An active node replies to the service discovery with a Service
Advertisement. The information contained in the advertisement message is
sufficient to the user application to understand if that node has the sensor(s)
and the signal processing functionalities required. In that case, the applica-
tion can proceed by first setting-up the sensor with the desired sampling rate.
Then, the application will set-up the specific function(s) and subsequently will
activate them. The node configuration phase is now complete and the applica-
tion issues a Start message which includes configuration for radio behaviors of
the sensor nodes (enabling/disabling of TDMA, number of nodes for TDMA
initialization, and radio activity of type always on or duty cycle). Upon re-

43

Chapter 3. The SPINE Framework

ception of the start message, the node reacts by starting the sampling timer
on the sensor and the processing mechanism, and transmitting the results as
they are available.

Fig. 3.4. Example of communication between User application, Coordinator and
Sensor Node.

An important mechanism of SPINE is the radio duty cycling, a simple
runtime mechanism to help reducing the power consumption due to the radio
usage. When enabled by the coordinator, the sensor nodes turn on the radio
only when they need to transmit data over the air. In order to receive messages,
before turning off the radio after the successful transmission of a message, the
radio is kept listening to incoming messages for a given period of time (duty

44

3.6. Multi-platform Support

cycling timer), which can be set at compile time (usually in the order of a few
milliseconds). If a message is received, then the timer is reset. The coordinator,
which keeps a queue of the messages to be sent to each node, sequentially sends
each message for a given node immediately after receiving a packet. If an ack
is received for a sent message, the coordinator removes that message from the
queue of messages ready to be sent.

3.6 Multi-platform Support

The variety of hardware platforms, sensors, programming languages and op-
erating systems supported by SPINE enables a great degree of heterogeneity.
This allows for a very flexible and usable framework in different BSN appli-
cation scenarios (e.g. e-Health, e-Fitness/Wellness, e-Factory), where, due to
specific requirements, only certain platforms or operating systems might be
used.

At the sensor node level, SPINE supports the most diffused wireless sensor
platforms. The TinyOS implementation runs on Telosb/Tmote Sky, MicaZ,
and Shimmer (both the IEEE 802.15.4 radio and Bluetooth radio are sup-
ported on Shimmer). This implementation also provides an optional security
function that is based on hardware AES-128 encryption of the CC2420 radio
(used on the Telosb/Tmote Sky, MicaZ, and Shimmer platforms). In addi-
tion, SPINE implementations for ZigBee devices using the Texas Instruments
Z-Stack, and for the Java-based SunSPOT nodes are also available.

Many physical sensors (accelerometers, gyroscopes, Electrocardiogram,
Electro impedance plethysmography, Temperature, Humidity, and light) are
supported by default as their drivers are distributed along with the core frame-
work components, and simple signal processing operations (e.g. mathematical
aggregation functions such as max, min, average, and standard deviation) are
implemented directly at the sensor node level.

As previously mentioned, the set of predefined sensing and processing func-
tionalities can be easily extended. For instance, for the Shimmer platform,
while the driver for the accelerometer is available by default, developers may
integrate drivers for further sensors (e.g. the gyroscope, ECG, EMG, or the
magnetometer). In addition to the built-in processing functions, others may
be implemented and integrated into the SPINE framework depending on spe-
cific application needs; for instance, it is very simple to integrate additional
feature extractors such as the zero crossing or the first derivative, and even
simple classifier algorithms such as a small decision trees.

At the coordinator level, SPINE supports heterogeneous devices, spanning
from smartphones and PDAs to personal computers/work-stations. Windows
and Linux based PCs/workstations are widely supported through the Java
SE implementation of the framework, and the availability of the lower level
components for communicating with the remote sensor nodes. A Java ME
porting has also been carried out, so that many Java powered smartphones

45

Chapter 3. The SPINE Framework

and PDAs can be used as SPINE coordinators. More recently, an Android [47]
implementation of SPINE has been developed. It has been tested on several
smartphones based on Android 2.2 or above, communicating with Shimmer
nodes over Bluetooth. Furthermore, an implementation with limited function-
alities using the QT development environment has been realized. It runs on
Symbian and Windows, and enables Bluetooth communication with Shimmer
nodes using the third-party QBluetooth library. Bluetooth communication is
also supported by the main SPINE version, using the open-source BlueCove
API [48] on PCs (Windows, and Linux only), and the Android Bluetooth API
[49] on devices running Android 2.0 or above.

Finally, SPINE has been also ported on an emulator tool that virtualizes
SPINE-enabled sensor nodes. The tool allows emulation of a set of nodes
forming a BSN and requires a dataset for each node. The data set can be
built using a provided data collector tool which records data from real sensor
nodes. Hence, a particular emulated node is virtually equipped with sensors
determined by the given dataset.

There are several advantages of using a SPINE emulator. For instance,
processing functionality can be tested in the emulated environment first, to
simplify the debug process. Furthermore, data sets from real sensors can be
used to objectively validate and compare different processing algorithms or
hardware set-ups. Finally, the emulator and a standard dataset can be used
by interested developers to investigate the potential of the SPINE framework
itself, even if they do not have suitable physical sensor nodes.

3.7 The Node-Side module

The node side of the SPINE functional architecture presented in section 3.3
is described in the following, by detailing the developed TinyOS-based archi-
tecture, and discussing the performance evaluation results.

3.7.1 Software-architecture in TinyOS

The flexible and effective TinyOS software architecture of SPINE is presented
in the following. The presentation of the static architecture is aided by UML
class diagrams, while UML sequence diagrams are used to show key dynamic
interactions among software components. The whole architecture has been
graphically shown in three separate class diagrams (see Figures 3.5, 3.7, and
3.9). For the sake of clarity, logical components are reported as single blocks,
when they are self explaining. The stereotype �component� has been used
to represent TinyOS entities which typically consist of three components: an
interface for publishing the component commands and events, a configuration
for wiring external components and a module which implements the compo-
nent commands and that can generate the defined events of the component
interface. The stereotype �is wired to� indicates the TinyOS wiring operation
“->”.

46

3.7. The Node-Side module

3.7.1.1 Sensing

The class diagram in Figure 3.5 shows the architecture of the SPINE Sen-
sor Controller (or sensing functional block). To enhance extendibility, ac-
cess to the sensors drivers has been decoupled by the introduction of the
SensorBoard Controller and the Sensor interface. Thus, actual sensors are
addressed by unique codes representing their abstraction. In particular, by
using parameterized Sensor interfaces, the SensorBoard Controller module is
itself independent of the actual sensors; wiring the actual sensor drivers (e.g.
HilAccelerometerSensorC) to the parameterized Sensor interface is left to
the SensorBoard Controller configuration component, which is much easier to
edit or extend. Each sensor driver module (e.g. HilAccelerometerSensorP)
must register its unique sensor code to the Sensor Registry in orded to be in-
serted into the Service Advertisement message. The SensorBoard Controller
module uses timers for the sampling operations of the available sensors.

Fig. 3.5. Class diagram of the sensing logical block.

In TinyOS sensor data are typically gathered in “split-phase”, which means
that an operation request and its correlated response are separated with a call-
back mechanism. Hence, as shown in the sequence diagram of Figure 3.6, when
a given sensor timer fires, the SensorBoard Controller requests the correspond-
ing sensor to start data acquisition. When the data is ready, the sensor driver
notifies the SensorBoard Controller which, in turn, can get the new reading.

47

Chapter 3. The SPINE Framework

Finally, to decouple data sources (the sensors) by data consumers (the pro-
cessing services), sensor readings are stored by the SensorBoard Controller
in an ad-hoc Buffer Pool. The Buffer Pool is internally implemented as a set
of circular buffers. Mappings between buffers and sensors are stored in the
Sensor Registry.

Fig. 3.6. Sequence diagram of the sensing process.

3.7.1.2 Processing

The SPINE Processing Manager (or processing block) (see Figure 3.7) relies
on a similar schema adopted for the sensing block to support fast extensions
of the processing functions provided by the framework. In fact, the Function
Manager handles the actual implemented functions through the parameter-
ized interface Function. Features are particular types of processing functions
which are applied on windows of sensed data. In particular, they are charac-
terized by the following parameters: Window, which is the number of buffered
data samples on which the function is applied, and Sliding%, which is the
percentage of shift on the buffered data samples with respect to the Window.
For instance, if Window=40 and Sliding%=50, the function is computed on
40 acquired samples composed of the last 20 previously acquired samples and
the first 20 newly acquired samples.

A specific type of function is the FeatureEngine which handles particular
math functions named features (e.g., max, min, standard deviation, etc). In
particular, the FeatureEngine acts as a dispatcher for accessing the various
feature extractors components and as an aggregator if multiple features are
requested to be computed on the same data. Functions are invoked through
the Function Manager by unique codes.

48

3.7. The Node-Side module

Fig. 3.7. Class diagram of the processing logical block.

Besides centralizing the access to the various functions, the Function Man-
ager mainly provides a data transmission command which masks the presence
of lower level transmission services to the functions. This choice is motivated
by standardization issues of data messages: to guarantee the creation of stan-
dard messages, function data are encapsulated by the Function Manager as
the payload of a new SPINE data message. It should be noted that the Func-
tion interface is strictly part of the framework core and is used to generalize
the concept of processing function, such as feature extractors, alarms, sensor
data filters and pre-processors, and even simple on-line classifiers. The Fea-
ture interface, instead, has the solely scope of decoupling the actual feature
extractors from the FeatureEngine.

Figure 3.8 shows the complete sequence of steps from buffer data fetching
to features extraction computation. As aforementioned, processing functions
are completely decoupled from the sensor data generation; to get the proper
data frames, a function, as soon as a new computation is required, accesses
the Sensor Registry to get the buffer ID associated to the sensor of interest;

49

Chapter 3. The SPINE Framework

then, it obtains the desired data amount on that buffer through the BufferPool
component and computes the processing.

Fig. 3.8. Sequence diagram of a feature processing.

3.7.1.3 Communication

The SPINE Node Communication Manager (or communication block) is pre-
sented in Figure 3.9 to explain how messages transmission and reception are
handled at the SPINE node side. At the lowest level, the RadioController

masks the TinyOS components for controlling the physical radio states (e.g.
turn on/switch off) and handling packets transmission and reception.

The RadioController exposes the send command to transmit a stream of
bytes, which are not further manipulated. Users of the RadioController are
not aware of the current state of the radio module, which is transparently
managed by the RadioController.

Additionally, the RadioController signals the event of the reception of a
new packet. Such events are captured by the Packet Manager which verifies
whether the received packet is a SPINE message and, if that is the case, gen-
erates a new spineMsgReceived event. SPINE messages are decoded and en-
coded by different components one for each message type defined. The Packet
Manager, after having recognized the type, which is contained into the SPINE
header of each message, dispatches the encoding (if it is an outgoing message)
or the decoding (if it is an incoming message) to the proper codec component.
The dispatching is implemented through parameterized interfaces: InPacket
for incoming messages and OutPacket for outgoing messages.

The sequence diagram in Figure 3.10 shows how the reception of a new
message is captured and processed by SPINE. In the example, a user appli-
cation sends over-the-air a Set-Up Sensor request. The packet is received by
the RadioController which forwards it “as is” to the Packet Manager. The
Packet Manager checks, by processing the packet header, that it is a valid
SPINE message and requests the message decoding to the proper decoder;

50

3.7. The Node-Side module

Fig. 3.9. Class diagram of the communication logical block.

then it generates a spineMsgReceived event, notifying the SPINE Node Man-
ager with the message type. The SPINE Node Manager handles this event
by invoking an internal procedure to process the message parameters coming
from the SetUp Sensor decoder component. Finally, it invokes the Sensor-
Board Controller to set-up the sampling timer needed to drive the sensing
operation of the given sensor.

Fig. 3.10. Sequence diagram of a message reception and handling.

An example of message transmission is shown in Figure 3.11. After having
computed the activated features, the FeatureEngine sends back the results
by invoking the sendFunctionData command of the Function Manager; the
Function Manager generates a new data transmission request to the Packet

51

Chapter 3. The SPINE Framework

Manager which, in turn, encodes this request into a Data message and invokes
the Radio Controller to transmit it over-the-air.

Fig. 3.11. Sequence diagram of a data message transmission.

3.8 Performance Evaluation

An extensive performance evaluation of the SPINE framework was carried
out, which included all the supported sensor node platforms. It included:

a. measurement of the execution time of signal processing functionalities;
b. memory usage of the framework;
c. communication bandwidth usage;
d. energy consumption under a given application profile.

In addition, some of the significant functionalities of SPINE have been
re-implemented in specific ad-hoc applications in TinyOS to evaluate how
much overhead in terms of computation, memory, bandwidth, and energy
requirements is added by SPINE.

This analysis is important as it provides the quantitative cost that paid for
the advantage of drastically reduced development time of BSN applications.
As highlighted in the following subsections, results from the performance eval-
uation are a crucial support for SPINE developers that need to achieve high
system efficiency.

3.8.1 Function Execution Time

Measuring the execution time of some key operations of SPINE running on the
supported sensor platforms is important not only to compare the platforms
themselves, but also for identifying the upper bound of the sampling rate and
transmission rate considering the time needed to process the sensor readings
and transmitting the results over-the-air. To ensure the reliability of in-node
processing, developers must ensure that the execution time for calculating the
most computational-intensive feature is shorter than the sampling period of

52

3.8. Performance Evaluation

the associated sensor. This is necessary to avoid potential sampling inconsis-
tencies or overwrites of sensor data before they can be processed. Especially
while using TinyOS, sensor sampling and buffering may be blocked until a
feature processing is completed, leading to an inconstant sampling rate.

To provide a practical example, a simple physical activity recognition sys-
tem has been implemented on Shimmer motes [50] (that natively embed a
3-axial accelerometer) placed on the human body. Most of the basic human
movements and postures, such as walking or sitting, have loose requirements in
terms of sensor sampling rate and feature processing. Accelerometer sampling
rate between 20 and 40 Hz, and processing of features such as the average,
max, and min value over sensor data windows of 40-100 samples with 25-50
% overlap are more than sufficient to enable the classification of simple activ-
ities. Calculating such features over 100 samples using the SPINE framework
on the Shimmer platform takes much less than the sampling period of 25 ms
if the sensor is sampled at 40 Hz (see Figure 3.12). Therefore, for this class
of applications, it is actually more convenient to enable in-node processing
as constant and continuous sensor sampling is always achieved. However, a
similar analysis may lead the application designer to choose slower sampling
rate requirements, or perform the sensor data processing entirely at the coor-
dinator if in-node processing will interfere with the sensor sampling.

Fig. 3.12. Execution time of selected in-node functions computed on different sensor
platforms using Sampling Time = 20Hz, Window = 40 samples, Shift = 20 samples.

To boost framework performance, SPINE implements an advanced ex-
ecution mode that can be enabled for certain features. While features are
normally computed upon arrival of the last sample in the window associated
with that feature, some features such as maximum, minimum, and average
can be computed incrementally with each sample. For instance, it is possi-
ble to use an average feature implementation that splits the computation in
elementary processing steps consisting of a simple summation of a new sen-

53

Chapter 3. The SPINE Framework

sor reading to a total, and a single division of the total by the window size
when the data window must slide. Many other features may be split in partial
processing steps that are distributed during the sensor sampling and that are
individually faster than equivalent monolithic implementation, hence allowing
for higher sampling rates.

In addition, the comparison of SPINE processing operations with appli-
cations implemented ad-hoc to execute them without any other overhead (to
achieve highest performance), provides an estimation of the overhead intro-
duced by SPINE.

Figure 3.12 summarize some relevant time measurements. Z-Stack and
SunSPOT platforms are based on a more powerful microcontroller which al-
lows for faster execution times on the feature calculations. However, signif-
icant packet transmission overhead, caused by a tall network stack, can be
observed on the SunSPOT. TelosB and Shimmer show identical results as
they are based on a very similar hardware/software architecture (they have
the same microcontroller and 802.15.4 radio, and both run TinyOS). As ex-
pected, the ad-hoc implementation on the TelosB performs better because
the modularity of SPINE adds some overhead incurred by the communication
among its components.

3.8.2 Memory Requirements

The memory footprint of SPINE has been analyzed on different platforms. In
particular, the drivers for a motion sensor board (which mounts an accelerom-
eter sensor) have been wired to the core framework, and have been plugged
the feature extractors and the threshold-based alarms signal processing units.

Results summarized in Table 3.4 show that the framework is very opti-
mized and provides enough free memory for custom-developed extensions to
the framework, and for different tradeoffs while dimensioning the size of the
sensor data buffers, which affects, in particular, the RAM usage. It is worth
noting that complex extensions of the framework, configured to compile with
the standard built-in functionalities, may not be installed on selected plat-
forms if the required binary code resulting from the compilation process is
greater than the available ROM size. The modular architecture of SPINE,
however, helps developers reducing the ROM footprint by reconfiguring the
framework very easily to remove from the compilation all the standard sensing,
and processing functionalities that are not needed for specific applications.

3.8.3 Energy Consumption

To evaluate energy consumption, an application profile that was supported
both by SPINE and implemented with hard-coded logic in TinyOS has been
defined. In particular, a three-axis accelerometer sensor (attached to the node

54

3.8. Performance Evaluation

Table 3.4. Memory requirements of a SPINE configuration (motion sensor board
with feature extractors and threshold-based alarms) on different sensor node plat-
forms.

Application Profile RAM
(Kb used/available)

ROM
(Kb used/available)

SPINE on TelosB 3.7 / 10 33.5 / 48

SPINE on Shimmer 4.4 / 10 40 / 48

SPINE on Shimmer using BT 4.3 / 10 34.4 / 48

SPINE on Z-Stack 3.9 / 8 95.9 / 128

SPINE on SunSPOT 79 / 512 75 / 4096

Ad-hoc appl. on TelosB 1.3 / 10 16.1 / 48

platform) is sampled at 20 Hz and a sequence of 20 sensor readings is transmit-
ted to the coordinator by using a single message, so that the radio is actively
used to transmit one message every second.

It is worth noting that while SPINE provides a built-in low power radio
mode for TinyOS sensor platforms with IEEE 802.15.4 radio, it is not available
if using the Shimmer Bluetooth radio. The low power radio mode was not
implemented on the hard-coded logic application.

To obtain the actual power consumption of the whole platform, a pro-
fessional oscilloscope connected to the motes was used. The average power
consumption is computed as the weighted average consumption between the
radio usage (message transmission and listening for incoming packets) time
and the sensing/processing time during one cycle (that is, in this case, one
second, as the sensor is sampled at 20Hz, and the system waits 20 samples
before packing them into a message that is eventually transmitted).

Results show that the lowest average power consumption is achieved with
SPINE running on the TelosB platform, which also results in the longest life-
time since the available Li-Ion battery (the TelosB, which normally use two
AA alkaline batteries, has been opportunely modified) has the greatest ca-
pacity among the selected platforms (see Table 3.5). Although TelosB and
Shimmer platforms are both based on the same microcontroller (the Texas
Instrument MSP430F1611) and radio (the Chipcon CC2420), there is a sig-
nificant difference in the power consumption among the two platforms. This
is due to the accelerometer used by the Shimmer, which consumes about six
times more than the one mounted on the custom motion board of the TelosB.

3.8.4 Communication Bandwidth

To analyze the bandwidth usage, we refer to the same application profile used
for the energy consumption evaluation. Hence, it is supposed to send over-the-
air, once a second, 20 readings of a three-axis accelerometer, where each single
axis sample takes 2 bytes. On platforms using the IEEE 802.15.4 CC2420
radio, SPINE automatically fragments this message as the total number of

55

Chapter 3. The SPINE Framework

Table 3.5. Energy consumption of the application profile (motion sensor board
with feature extractors and threshold-based alarms) on different platforms.

Application Profile Average Power

Consumption

Battery Lifetime

SPINE on TelosB 6.6 mW/s 650mAh 101 h

SPINE on Shimmer 13.9 mW/s 280mAh 21 h

SPINE on Shimmer using BT 87.8 mW/s 280mAh 3 h

SPINE on Z-Stack 11.2 mW/s 650mAh 60 h

SPINE on SunSPOT 84.2 mW/s 720mAh 9 h

Ad-hoc appl. on TelosB 73.7 mW/s 650mAh 9 h

bytes to send is greater than the TX buffer (which is 128 bytes). Results are
summarized in Table 3.6. This includes the TelosB, Shimmer, and SunSPOT.
Using the Z-Stack platform, is possible to transmit the whole message into a
single packet, resulting in a lower bitrate. With the Shimmer, it is possible to
use the Bluetooth radio, and decrease the overhead incurred by fragmentation.
Finally, as expected, an ad-hoc implementation of the application allows for
a significantly reduced number of bytes transmitted with respect of a SPINE-
based implementation because the framework must add to each packet generic,
and a packet-specific headers.

Table 3.6. Bandwidth of a SPINE configuration (motion sensor board with feature
extractors and threshold-based alarms) on different platforms.

Application Profile Bitrate

SPINE on TelosB 178 byte/s

SPINE on Shimmer 178 byte/s

SPINE on Shimmer using BT 150 byte/s

SPINE on Z-Stack 160 byte/s

SPINE on SunSPOT 168 byte/s

Ad-hoc appl. on TelosB 152 byte/s

Table 3.7 reports the average time to transmit over-the-air a packet of 28
bytes using different sensor platforms.

Results show that SPINE does not introduce a relevant overhead with re-
spect to the application-specific implementation on TinyOS. On the SunSPOT,
instead, the underlying VM components and a more sophisticated low-level
communication model cause a significantly longer transmission time. Finally,
as expected, the measurements confirm that using Bluetooth on the Shimmer
allows for shorter delays (3 times shorter than transmitting the same packet
using the 802.15.4 radio).

56

3.8. Performance Evaluation

Table 3.7. Average transmission delay for sending 28 bytes on different platforms.

Radio

Type

SPINE

TelosB

SPINE

Shimmer

SPINE

Z-Stack

SPINE

SunSPOT

NO SPINE

TelosB

IEEE 802.15.4 10,07 ms 10,04 ms 0,61 ms 67,2 ms 9,98 ms

BLUETOOTH N/A 3,05 ms N/A N/A N/A

3.8.5 An Analysis of the Development Effectiveness and
Performance

This section is devoted to provide an analysis of the development effectiveness
and performance of the proposed framework. In particular, the analysis is
carried out with respect to an application developed without any high-level
framework and centered on an approach based on the processing of sensed
data at the base station side only.

The development effectiveness of SPINE have been evaluated by means
of a simple case study which is represented by a human activity recognition
system. The application has been implemented atop SPINE (see Section 4.1),
and another application with the same functionalities has been implemented
following an application-specific approach.

The basic components as well as the ones specifically related to the de-
veloped human activity monitoring system were analyzed. The critical devel-
opment points have been identified by defining the percentage of efforts for
developing each component (both at node and coordinator level (see Figure
3.13).

Fig. 3.13. Development efforts for typical BSN applications at sensor node-side and
base station-side.

As can be seen, without SPINE, all the components had to be implemented
from scratch, whereas using SPINE, only what is strictly specific to the ap-
plication had to be programmed, since most of the required services (e.g. for
sensing, and communicating) are already available in the libraries and easily

57

Chapter 3. The SPINE Framework

configurable. The saved development efforts are 100% at the node side, and
80% at the base-station side. This consideration shows that a notable im-
provement can be obtained by adopting SPINE for the development of BSN
applications.

3.9 The Coordinator-Side module

3.9.1 Software-architecture in Java

As aforementioned, the SPINE architecture consists of two entities, one on
the sensor nodes and the other on a coordinator station. Such coordinator
can be a desktop computer, a laptop but even a PDA or a smart-phone.
The coordinator provides the end-user application with an access point to
the wireless BSN. Thus, its main tasks are controlling the remote nodes and
capturing the various messages and events generated, according to the user-
application needs.

The design of the SPINE coordinator is driven by principles of lightweight,
ease of use and portability. The idea is to provide a small set of high-level op-
erations by which the BSN can be controlled and an effective set of events to
let the application be notified of information coming from the BSN. To en-
hance portability, the Java language was adopted. Java is supported PCs, and
by most of the current PDAs and smart-phones. Hence, a careful use of Java
libraries and paradigms allows fast porting, e.g. from a PC implementation
of the SPINE coordinator to a mobile phone. In particular, the implementa-
tion is based on the 1.4 version of Java and makes use of data structures and
libraries which are available both for desktop and mobile edition of the Java
Virtual Machine.

Before discussing a simplified architecture of the coordinator-side of SPINE,
it is important to observe that none of the existing computers and mobile
phones have a native wireless interface for communicating with most of the
sensor node platforms as they are typically based on the IEEE 802.15.4 com-
munication protocol, rather than Wi-Fi or Bluetooth. Hence, a portion of the
implementation is dependent to the particular base-station module attached
to the coordinator node for allowing the physical communication with the
BSN nodes.

Figure 3.14 shows a simplified Package Diagram of the SPINE Coordinator.
The SPINE Core package includes the SPINE Manager class contained in the
Commands API and used by end-user applications for issuing commands to
the BSN. Moreover the SPINE manager is responsible of capturing low-level
messages and nodes events through the Event Listener to notify registered
applications with higher-level events and messages content. Additionally, the
SPINE Core package contains tables of constants codes, such as sensors and
functions codes, which must be aligned with the ones present on the nodes.

58

3.9. The Coordinator-Side module

Fig. 3.14. Simplified Package Diagram of the SPINE Coordinator.

The SPINE Datamodel package contains classes which represent the high-
level, platform independent SPINE Messages as well as abstractions of BSN
nodes and sensor itself (e.g. a Node object will be characterized by attributes
as its type and ID and built-in sensors lists and available processing functions
lists).

End-user applications are only aware of the SPINE Core and Datamodel
packages and hence are completely decoupled by specific implementation of
the SPINE Messages and communication procedures of the currently available
sensor node platform.

The SPINE Communication package is composed of a send/receive in-
terface and some components implementing that interface according to the
specific base-station platform and that represent the high-level SPINE Mes-
sages in platform-specific messages. Thus, most of the work for porting an
implementation of the SPINE Coordinator on a different platform is to be
carried out in this package.

3.9.2 BSN runtime configuration APIs

SPINE provides, on the Coordinator, a set of simple Java APIs to effectively
support the development of BSN applications. In summary, the main exposed
functionalities are the following:

� discovery request for the surrounding sensor nodes;

59

Chapter 3. The SPINE Framework

� configuration of a function of a given node (a function-dependent param-
eter set is passed along with the request);

� configuration of a specific sensor (e.g. to set the sampling rate) of a given
node;

� request for an “immediate one-shot” sampling on a given sensor node;
� activation of a function (or even function sub-routine) on a given sensor

node;
� de-activation of a function (or even function sub-routine) on a given sensor

node;
� request for starting the configured, and activated sensing and processing

functionalities (this is a broadcast request to “start” the entire network at
the same time);

� software reset (i.e. re-boot) of the entire connected sensor network.

3.9.3 BSN event handlers

The SPINE Coordinator notifies the applications of the various events gener-
ated by the BSN nodes through a classic mechanisms based on the Listener
design pattern. Applications using SPINE, therefore, have to register their
interest to be notified of the discovery of sensor nodes, the reception of data
messages, and so on. In particular, the most important events that may be
forwarded to registered applications are the following:

� discovery of a new sensor node (it is generated when an advertisement
message from a BSN node is received, and contains information on its
sensing and processing capabilities);

� end of the sensor network discovery procedure (it provides a list of all the
sensor nodes discovered so far);

� reception of new data (either raw sensor readings or processed information)
from a specific node;

� reception of a service message (e.g. notification of warning or error situa-
tions) from a specific node.

3.9.4 High-Level Data Processing

This module has been organized as an optional SPINE plug-in and represents
a powerful extension to the core framework as it provides more complex sig-
nal processing and decision support functionalities (e.g. pattern recognition,
classification, etc.) that are intended to be performed at the coordinator. It
provides Signal Processing and Pattern Recognition with flexible and reusable
Java code.

It is designed to simplify the integration of SPINE in Signal Processing or
Data Mining environments providing more application-oriented functions such
as automatic network configuration, aggregate data collection and graphical
configuration. The module provides complete support during all the steps,

60

3.9. The Coordinator-Side module

from sensor data acquisition up to classification, as shown in Figure 3.15.
Each of them provides a number of default implementations the developer may
choose. In addition, a very modular architecture allows for easy integration of
further custom-defined components.

Fig. 3.15. Data processing chain supported by the SPINE High-level Data Process-
ing module.

Sensor data are retrieved using the core functionality of SPINE, and then
converted into more convenient data structures that reflect the concepts of
signals and datasets. Optionally, developers may apply filtering and segmen-
tation to the collected signals. Feature Extraction algorithms have also been
provided, as they become useful when the application developers do not choose
to perform in-node feature extraction. Furthermore, several feature selection
techniques are also available to identify optimal subsets of the extracted fea-
tures that are later used for the classification phase.

The classification phase is widely supported, also allowing for classifier
algorithm training. A few algorithms have been implemented, and, if needed,
the developer may easily integrate further classifiers. Moreover, the proposed
module is also integrated with the WEKA Data Mining toolkit [46]. This
brings great advantages to SPINE as developing such algorithms is extremely
time consuming. The choice of WEKA is motivated by its very wide academic
and industrial community, and because it is freely distributed under the GPL
license.

61

Chapter 3. The SPINE Framework

3.10 SPINE enhancements and variants

The research efforts conducted for the development of the SPINE framework,
also founded the basis for interesting enhancements and variants of SPINE
that are relevant from both a research, and a technical point of view. These en-
hancements and variants cover additional relevant aspects of the development
of BSN applications.

This section describes the essential concepts of these research results.

3.10.1 C-SPINE

BSNs are being mainly applied to monitor single assisted livings so the systems
proposed so far are typically based on a star topology composed of a set of
wireless sensors coordinated by a base station (usually a PDA/smartphone).
Such systems efficiently support programming of sensor nodes and communi-
cation between sensor nodes and the base station to develop remote monitor-
ing applications.

However, different kinds of BSN architectures can be envisaged in dif-
ferent application domains in which monitoring of single assisted livings is
not enough to fulfill the application requirements. Such application domains
include e-Health, e-Emergency, e-Entertainment, e-Sport, e-Factory, and e-
Social.

Collaborative Body Sensor Networks (CBSNs), a new type of BSN archi-
tecture, can be therefore defined to allow BSNs to interact with each other to
support the development of collaborative applications, where not only single
assisted living monitoring is needed, but also data exchange and cooperative
processing among BSNs can be triggered and managed.

3.10.1.1 Novel Interaction Models

To support the many requirements of the diverse BSN scenario, different logi-
cal network architectures of BSN systems can be designed. We refer to logical
architectures as the focus of this thesis is in fact related to the final actors
of the system that generate and consume data, although the actual low-level
data flow may require intermediate transmissions (e.g. via multi-hop routing).

As a consequence, common interaction models in the BSN domain have
been identified; some of them are actually novel, in the sense that they have
not been formally described before. Figure 3.16 depicts the most important
ones.

Figure 3.16(a) represents the “single body - single base station (BS)” in-
teraction model, where a single BSN worn by a user interacts with one BS,
typically represented by his personal smart-phone or computer. This logi-
cal topology is very common for a very wide range of applications, such as
e-Health and e-Fitness, where user health conditions are locally processed,
stored, visualized, and possibly forwarded remotely for further analysis.

62

3.10. SPINE enhancements and variants

Figure 3.16(b) refers to the “single body - multiple BSs” model that is
realized for applications where a single BSN communicates with multiple BSs.
This could be the case of a complex in-building application where the BSN of
the user interacts with different BSs with regards to the specific context, e.g.
with a smart-phone for health monitoring and (possibly concurrently) with a
game console for high interactive game controls.

Figure 3.16(c) represents the “multiple body - single BS” model. This is
typical in mobile medical applications e.g. for family doctors that use their
personal computer for monitoring patients wearing a BSN as they come to
the doctor office. Another application that requires this particular interaction
model may be an e-Entertainment scenario where a group of friends, wearing
specific body wireless sensors, interact with a game console or a TV for some
kind of enhanced social interaction.

Finally, Figure 3.16(d) is referred to the “multiple body - multiple BSs”
interaction model, which is related to complex BSN systems involving com-
munications among many BSs and BSNs. Application scenarios include emer-
gency response to disasters such as earthquakes, terrorist attacks, wild fires,
or big car accidents, where the rescue team(s) may place medical wireless
sensors to the victims to monitor their conditions. Another example is given
by e-Factory applications, where collaborative BSNs aids a group of workers
collaborating to a shared goal.

Fig. 3.16. Logical network architectures of BSN systems: (a) single body - single
BS, (b) single body - multiple BS, (c) multiple body - single BS, (d) multiple body -
multiple BS.

3.10.1.2 Collaborative BSNs

We have identified a reference architecture of CBSN which consists of two
parts: the network architecture and the software architecture. While the for-
mer includes the communication layer (basic and application-specific interac-
tion protocols), the latter defines types and tasks of the functional components
that carry out system management and execute application-specific activities.

63

Chapter 3. The SPINE Framework

The network architecture of CBSNs is portrayed in Figure 3.17. Each BSN
is composed of a base station (BS) and a set of wireless sensors (WSs). The
BS communicates with its WSs through an intra-BSN over-the-air (OTA)
protocol and with the BSs of other BSNs through a set of inter-BSN OTA
protocols.

Fig. 3.17. Reference network architecture of CBSNs.

The intra-BSN OTA protocol supports discovery, configuration and control
of WSs as well as data transmission from WSs to BS. The discovery function
discovers the WS belonging to the BSN and retrieves the services (sensing,
actuating, computing, communication, storing) that each WS offers. The con-
figuration function allows setting up the services of the discovered WSs. The
control function enables activation, monitoring and control of the configured
WS services. Finally, the data transmission function allows WSs to send raw
data and/or pre-processed data to the BS and/or to other WSs of the same
BSN.

The inter-BSN OTA protocols are divided into two categories: basic and
application-specific. The basic protocols include:

� the proximity detection protocol;
� the service description protocol;
� the service activation protocol.

The proximity detection protocol allows for detection of neighbor BSNs and
management of the detected BSNs. The service description protocol provides
on-demand information about the available services and/or applications that
BSNs can offer to each other. The service activation protocol supports col-
laborative service selection and activation. The application-specific protocols
support interaction between specific applications running on CBSNs.

Figure 3.18 shows a high-level interaction diagram involving proximity
detection, service description and generic service activation and execution be-
tween two CBSNs. In particular, as soon as a CBSN detects a neighbor CBSN
(proximity detection phase), a service description request is sent (service dis-
covery phase) and a manually or automatically selected service is activated

64

3.10. SPINE enhancements and variants

(service selection and activation phase), and then executed (service execution
phase).

Fig. 3.18. High-level interaction among CBSNs.

The functional architecture of CBSNs (see Figure 3.19) is inherently
service-oriented even though its actual implementation depends on the chosen
paradigm and technology. In particular, Figure 3.19 shows the collaborative
layer, installed at the BS-side, which consists of the following main compo-
nents:

� CBSN Manager, which manages the proximity detection, the service dis-
covery and the service activation phases. Service activation can be either
automatic (i.e. a service is activated as soon as it is discovered) or on-
demand (i.e. a discovered service is activated only if the owner of the
CBSN agrees to). Automatic activation can be based on service classifica-
tion and mutual acquaintance relations among CBSN owners.

� Service-specific Managers (SS Managers), which manage the specific ser-
vices through inter-BSN service-specific protocols and the intra-BSN pro-
tocol for WS interaction.

3.10.1.3 Collaborative SPINE

The CBSN reference architectures have been integrated within the SPINE
framework to define a SPINE-based CBSN middleware, named Collaborative
SPINE (C-SPINE) [51].

65

Chapter 3. The SPINE Framework

Fig. 3.19. CBSN software architecture layers.

The architecture of C-SPINE, which is portrayed in Figure 3.20, integrates
the SPINE WS, SPINE BS, and CBSN architectural components. The SPINE
WS and BS architectural components have been detailed in Section 3.7 and
3.9.

The SPINE BS-BS Communication component implements and manages
the C-SPINE Inter-BSN OTA (CIBO) Protocol to provide an effective com-
munication layer to the basic and applicationspecific services. This commu-
nication layer abstracts away the specific lower-level communication protocol
that can be actually used (see Figure 3.21) through adapters. The commu-
nication layer is designed around the concepts of Message, Communication
Provider and Message Handler. The Communication Provider exports meth-
ods that allow configuring the BS to receive packets of a certain message
type and discard other types. During the configuration, one or more Message
Handlers are passed to the Communication Provider so that it can notify the
reception of a packet corresponding to the defined message ones. To send a
packet, the Communication Provider exports the send method, which also
permits to specify the packet recipients and is independent of the message
type. This mechanism allows high-level client components to handle incom-
ing packets with separate routines. According to this layer, the basic steps to
define an interaction protocol are:

� Creation of a new message type that is associated to the protocol;
� Creation of a new set of packets belonging to this message type (i.e. the

protocol messages);

66

3.10. SPINE enhancements and variants

Fig. 3.20. C-SPINE Architecture.

� Creation of a new Handler for handling this message type (i.e. all packets
of this message type);

� Registration of the defined Handler with the Communication Provider to
handle the packets of the defined protocol.

The CIBO protocol has been defined according to this process and specif-
ically supports the basic services of C-SPINE: BSN proximity detection, BSN
service discovery, and BSN service selection and activation.

Fig. 3.21. C-SPINE Communication Layer.

67

Chapter 3. The SPINE Framework

3.10.2 An Agent-oriented design of SPINE: A-SPINE

In this section, an agent-oriented redesign of SPINE (A-SPINE), partially
based on MAPS (Mobile Agent Platform for Sun SPOTs), is proposed [42].
The MAPS frameworks [52, 53] is briefly described in Appendix A).

We believe that the exploitation of the agent-oriented programming para-
digm to develop BSN applications is certainly promising, as demonstrated by
the application of agent technology in several other key application domains
[54].

The coordinator of A-SPINE is composed on a JADE-based [55] enhance-
ment of the SPINE coordinator. It allows configuring the sensing process, and
receiving sensed data features. The sensor node software is based on MAPS.

The main research contribution of this work is, therefore, the design, im-
plementation and evaluation of a novel agent-oriented system based on MAPS
and a opportunely modified version of SPINE.

3.10.2.1 The A-SPINE Architecture

Figure 3.22 shows the architecture of A-SPINE through a class diagram. In
particular, the core agents are defined in the following.

Base station-side:

� The CoordinatorAgent is responsible for managing the set of nodes of
the sensor network under control. Management involves configuring and
monitoring nodes;

� The ApplicationAgents are agents implementing application-specific or
domain-specific logics;

� The CommunicatorAgent allows the CoordinatorAgent and the Applica-
tionAgents to interact with the sensor nodes through an efficient over-the-
air application-level protocol.

Sensor node-side:

� The SensorManagerAgent manages the sensor/actuator resources of the
node through specific SensorAgents able to interact with specific sensors
(temperature, light, accelerometer, etc);

� The CommunicationManagerAgent manages the communication with the
CommunicatorAgent and among the CommunicationManagerAgents, lo-
cated at different sensor nodes, by means of specific CommunicationA-
gents;

� The ProcessingManagerAgent supports one or more local processing tasks
or parts of global processing tasks through ProcessingAgents. They are
able to perform computation on sensed data (e.g. feature extraction) and
data aggregation.

68

3.10. SPINE enhancements and variants

Fig. 3.22. The A-SPINE Architecture.

3.10.2.2 A MAPS-based design of A-SPINE

This paragraph describes the behaviors of the sensor node-side agents of A-
SPINE designed through MAPS.

The behavior of the SensorManagerAgent consists of the state machine
shown in Figure 3.23. It basically handles two events: SensingRequest and
SensorAgentDiscovery. A SensingRequest can be admissible or not depend-
ing on the requested sensors: whether or not it is already in use (see action
a1). In the former case, the SensorManagerAgent creates a SensorAgent with
the sensing configuration parameters passed in the SensingRequest event (see
action a2). A DiscoverySensorAgent event requests the identifier of the Sen-
sorAgent, if existing, attached to a given sensor type (see action a3).

The behavior of the SensorAgent is described by the state machine de-
picted in Figure 3.24. In particular, the Sense event is driven by a timer set
according to the sensing sampling rate (see action a0). When the Sense is re-
ceived, the sense operation is issued (see action a1) and, after data acquisition,
sensed data are buffered into the data acquisition buffer/s of the SensorAgent
(see action a2).

69

Chapter 3. The SPINE Framework

Fig. 3.23. The SensorManagerAgent behavior.

Fig. 3.24. The SensorAgent behavior.

The behavior of the ProcessingManagerAgent is described by the state ma-
chine depicted in Figure 3.25. When the ProcessingTaskActivationRequest
arrives, the ProcessingManagerAgent interprets the request and, if the request
is admissible, creates a ProcessingAgent and links it to its input and output

70

3.10. SPINE enhancements and variants

agents (i.e. agents providing data input to and receiving data output from the
created ProcessingAgent).

Fig. 3.25. The ProcessingManagerAgent behavior.

The state machine of the behavior of the ProcessingAgent is reported in
Figure 3.26. After initialization (see action a0), the ProcessingAgent is able
to receive DataInput events from its input agents and process them (see ac-
tion a1). After processing, the output is sent to the attached data output
ProcessingAgents.

Fig. 3.26. The ProcessingAgent behavior.

The basic behavior of the CommunicationManagerAgent is described by
the state machine depicted in Figure 3.27. The ProtocolRequest event encap-
sulates the packet of the interaction protocol with the CommunicatorAgent at
the base-station; once the event is received the CommunicationManagerAgent
processes it according to the protocol (see action a1) or routes it to the target
manager agent, if it is not able to handle it. A ProtocolRequest involving data

71

Chapter 3. The SPINE Framework

transmission from the node to the base station or to another node can also
be requested by a SenderAgent.

Fig. 3.27. The CommunicationManagerAgent behavior.

3.10.3 SPINE2

SPINE2 [56, 57] represents a significant variant to the original framework.
While retaining the same fundamental goals and concepts, SPINE2 has been,
instead, designed around a task-oriented paradigm.

This paradigm provides a way to conceive a graphical high-level behavior of
the application, like the one shown in Figure 3.28. In this particular example,
the max, mean and min values of a series of temperature data coming from
a sensor are evaluated, and the results are transmitted to another node or to
the coordinator.

As a consequence to the simple definition, this choice implies the design
and the implementation of an appropriate runtime system for interpreting and
executing these applications specifications.

Sensing
(Temperature) TransmissionMean

Min

Max

Split Aggr

Fig. 3.28. Example of a task-oriented application.

The task-oriented paradigm adopted by this variant of SPINE comes along
with a high-level language, which exposes a set of constructs expressly defined
for supporting such a approach. These constructs represent the elementary
concepts through which users specify the behavior of the applications. This

72

3.10. SPINE enhancements and variants

modeling language is shown to be simple, yet expressive enough for becoming
the preferred method used for describing a typical distributed application
aimed to data and signal processing. Moreover, its intrinsic nature allows the
required reusability and reconfigurability of the application to be satisfied. The
details and the benefits in using the task-oriented paradigm are described in
the following section.

The main motivation that has led to a task-oriented architecture is that
most of the current middlewares provide high-level services for data collection
and querying but they do not allow to define an explicit data flow processing
which is very useful in many application domains, such as context recognition,
health monitoring and medical assistance. Furthermore, differently from many
others middleware, this new framework is conceived to support an application
definition method that avoid users the burden of writing any programming
code.

With respect to this methodology, an application can be simply specified
as a set of tasks connected together. Each task represents a particular activity,
such as a sensing operation, a processing function or a radio data transmission.
The user has only to select a certain number of tasks from a set of available
ones on the basis of the application requirements. Afterwards, the user has
to link together pairs of tasks with a connection if necessary, so that the
output result of the one correspond to the data input of the other. In this
way, the set of connected tasks form a direct graph which defines the work
flows performing a series of operations on the sensor data and so represents
the high-level description of the whole application.

Typically, a data processing application supported by the framework con-
sists in (1) accomplishing the needed sensor readings, (2) passing the sensed
data to processing functions which carry out some signal processing operation,
and (3) sending result to other nodes of the network (eventually for further
data elaboration).

It is worth noting that, as the framework supports a distributed data pro-
cessing, users can decide where every task forming the application is allocated
over the sensor network. This is shown in Figure 3.29. Each single task is
performed on a particular node, guaranteeing that the execution of the ap-
plication is maintained well balanced. Depending on the different features of
the nodes constituting the network, the user can allocate the tasks requiring
more resources to node providing more computational capabilities.

For what concern the software architecture, the framework is composed
of two components, one is implemented on the coordinator of the WSN, the
other is implemented on the sensor nodes. The former is a Java application
running on a laptop or a hand-held device through which the user configures
and manages the sensor network and the task-application to be deployed on
it. The latter represents the middleware engine running on top of the sensor
node operating system. It is responsible of handling the messages coming from
the coordinator which are used, among the other things, for configuring the

73

Chapter 3. The SPINE Framework

Sensing
(Temperature)

TransmissionMean

Intensive-
computing

task

Split

AggrNODE 1

NODE 2
(more processing
capabilities)

NODE 3

Fig. 3.29. Application example having tasks instantiated on different nodes.

portion of the user application assigned to the node. It is also in charge of
managing and executing the tasks that are instantiated on the node.

Currently, the node-side part of the framework has been implemented and
tested on the TelosB sensor platform running TinyOS 2.x, and on a Z-Stack
compliant sensor platform. However, one of the distinctive characteristics of
SPINE2 is its platform independence that allows for fast porting to others
C-like software architectures.

3.10.3.1 The task-oriented approach

The way of modeling a sensor network application through a task-oriented
methodology aims at providing an abstract description of the actual appli-
cation running on the nodes by omitting low-level details and thus reducing
complexity which is usually inherent in such a distributed software.

The basic blocks contained in this formalism are:

� tasks, and
� task-connections.

A task represents a well defined node activity which can consist, for in-
stance, in a processing operation rather than a data transmission or a sensor
reading. Tasks execute atomically among each other. However, asynchronous
events, such as a radio message reception or a timer expiration, may preempt
a running task.

A task-connection represents a relationship between tasks which generally
consists in having some kind of dependency, such as temporal and data de-
pendency. Furthermore, these tasks relationships are semantically consistent
thanks to the well-defined input and output interfaces.

74

3.10. SPINE enhancements and variants

Such a system representation, which capture both data and control flow,
allows for a better application definition that in turn will lead to effective
scheduling activities and in general to a more efficient system implementa-
tions. Designing an application as a composition of elementary blocks with
fixed interfaces enables rapid application reconfiguration as well as more sim-
ple application maintenance.

Moreover, a system adopting a task-oriented approach can easily be en-
hanced in functionality, by simply adding new task definitions which represent
further computing capabilities. Most important, adding these new blocks will
not imply the need of changing definition of any others, neither it needs the
underlying task management software to be modified. This is achieved be-
cause tasks are decoupled among each other, and the only relation point is
through their input/output interfaces (i.e. data they need/provide).

3.10.3.2 Main characteristics of SPINE2

This section describes the main aspects characterizing SPINE2.

Platform independence and quick portability: these are two very im-
portant factors to consider because the success and the wide diffusion of
a middleware depend on how many platforms it can support. And this is
particularly true for sensor networks, considering that at the present low-
cost mass production has permitted the development of a wide variety
of sensors platforms, and also it is not unusual that a single application
may be deployed on a WSN including different sensor architectures (het-
erogeneous sensor network). So, one of the requirement for an application
development tool is that of being predisposed, since its design phase, for a
rapid and simple portability process towards different sensor architectures
(considering both hardware and software).
At the present most of the sensor platforms (and their operating systems)
supports the C programming language. However, simply using C to im-
plement framework is not enough for reaching the platform independence
and for enhancing its portability. Therefore, the node-side software archi-
tecture is conceived for decoupling the task runtime logic from all what
is concerned with services and features provided by the operating system
of a particular platform. For this purpose, the software layering approach
has been adopted (see Figure 3.30).
According to such approach, the node-side framework is designed so that
a set of “core modules”, developed in C and representing the actual run-
time system, constitutes the part of the software which can be used on
every C-like sensor platform without the need for any changes. Along with
these modules, other components constitute the platform-dependent part
of the architecture, and they represent the adaptation interfaces between
the core runtime system and the services and resources (sensors, timers,
communications) provided by the underlying environment system of a par-
ticular target sensor platform (such as TinyOS, or Z-Stack). To make a

75

Chapter 3. The SPINE Framework

TinyOS
Adaptation
Modules

CORE FRAMEWORK

Task-oriented Application Description

TinyOS
(TelosB,MicaZ) EmberZNet Z-Stack

EmberZNet
Adaptation
Modules

Z-Stack
Adaptation
Modules

Interpretation and execution

PLATFORM-DEPENDENT
CODE

NODE-SIDE
FRAMEWORK

Fig. 3.30. The Software Layering approach for developing the framework.

porting of the framework to a new sensor platform, the latter components
are the only software that a developer has to provide.

Extensibility: a middleware should provide a way for allowing developers
to easily improve it with possible enhancements because a constraint in
this sense may limit its use in the future. The chosen task-oriented design
methodology is a perfect example of how is possible a straightforward
approach for adding new functionalities beside to the existing ones. This
is done by simply defining new tasks which represent further computing
capabilities and developers do not have to change the underlying runtime
logic or the other task definitions, thanks to the fact that the runtime does
not care about what tasks do whereas every task is decoupled with each
other. The framework also allows a convenient mechanism for supporting
new hardware resources such as sensor types or actuators.

Modularity: concerning the design of complex software systems, it is al-
ways useful to conceive an architecture composed by several modules,
each of them devoted to a particular purpose and interacting each others
through well-defined interfaces. The approach of defining a modular en-
tity constituted by different and independent functional blocks allows a
more rapid implementation time, a more effective software maintenance,
and improvement of functionalities. For example, it may be possible that
future requirements need a different way for managing the memory or the
tasks execution. Thanks to the modularity, the modifications made by
the framework developers affects only the correspondent modules without
interfering with the rest of the architecture.

Flexibility for the final user: the success of a development tool also de-
pends on the flexibility that it provides to the application developer by
avoiding, as much as possible, constraints, and limitations during design,
and implementation. In the particular case of SPINE2, a user can define
how many tasks he needs, setting values for their parameters with a wide
freedom of choice and maintaining a high abstraction on the real capabil-

76

3.11. Virtual Sensors based on SPINE

ities of the node. The only limitation is dictated by the actual amount of
physical resources on the node.

3.10.3.3 SPINE2 Tasks

The various typologies of task represent the fundamental elements of the lan-
guage. They can be subdivided into two main categories: data-processing tasks
and data-routing tasks. The former tasks perform functions related to data
processing and execution control, whereas the latter ones provide store-and-
forward and data replication functionalities.

The hierarchy of the different types of task defined so far are shown, along
with their purposes.

� TimedTask, is the super-category that includes every temporized task:
TimingTask : allows to define timers for timing other tasks.
SensingTask : defines sensing operations on a sensor node and include a

timer for setting the sampling time.
� FunctionalTask, includes tasks for data manipulation:

ProcessingTask : performs data processing functions and algorithms, al-
lowing to specify the type of operation to accomplish; particular operations
are the so called “feature extractions” which are mathematical function
applied to a data series, such as Mean, Variance, etc.

TransmissionTask : allows an explicit transmission of data generated by
other tasks, sending them to a specific addressee node. Generally it is
used for sending data and information to the coordinator whereas, implicit
data transmissions take place in the case of connected tasks located into
different nodes.

� FlashingTask, this category allows to use the on-board flash memory:
StoringTask : stores data coming from its input on the flash memory.
LoadingTask : retrieves data from the flash for being used by other tasks

of the application.
� DataRoutingTask, comprises:

SplitTask : duplicates data of its input to every output links for making
them available to other tasks.

AggregationTask : collects data coming from its multiple inputs carrying
them to output.

HistoricalAggregationTask : similar to the previous task but supporting a
series of aggregation operations over the time, before bring them to output.

3.11 Virtual Sensors based on SPINE

This section presents a multi-layer task model based on the concept of Virtual
Sensors to improve architecture modularity and design reusability [56].

77

Chapter 3. The SPINE Framework

Virtual Sensors (VSs) are abstractions of components of BSN systems
that include sensor sampling and processing tasks and provide data upon
external requests. The Virtual Sensor model implementation relies on SPINE2,
presented in Section 3.10.3.

3.11.1 BSN-oriented Virtual Sensor Architecture

Physical sensors map an observed physical quantity, such as temperature, ac-
celeration, or sound, onto a data value and produce an output. The output is
generated when inputs change, as the result of an event, or in response to a
(timed) request. Physical sensors are transducers converting values from one
form to another using physical processes. Signal processing algorithms con-
vert values using digital processes. This observed similarity is the motivation
behind the virtual sensor abstraction.

Every processing task can be represented as a virtual sensor. Therefore,
considering a complete BSN system, its data processing part can be modeled
as a multi-level hierarchy of virtual sensors, as shown in Figure 3.31. Moreover,
virtual sensors may be implemented directly in a programming language, or
as networks of already existing virtual sensors.

Raw Data

Levels of Data

Abstraction
Computational

Components

Fig. 3.31. Multi-layer Signal Processing

Figure 3.32 shows the defined BSN-oriented virtual sensor system archi-
tecture. A user requests certain outputs given specified inputs. This request is
handled by the Virtual Sensor Manager, which configures a set of virtual sen-
sors to handle the computational task. Virtual sensors use the Buffer Manager
to setup communication through the use of efficient buffers. Once configured,
the system is activated, and virtual sensors cooperate to produce the final
outputs.

Virtual sensors are defined in the following section. Details of the virtual
sensor manager operation are described in Section 3.11.1.2. Finally, buffer
manager operation is described in Section 3.11.1.3.

78

3.11. Virtual Sensors based on SPINE

Virtual Sensor

Manager

VS1 VS2 VSN

Configure Virtual

Sensors

Buffer Allocation

Buffer

Manager

User

Fig. 3.32. BVS Architecture

3.11.1.1 Virtual Sensor Definition

Software frameworks are usually introduced to provide programmers with
abstractions to isolate them from low-level implementation details. Virtual
sensors provide a new level of abstraction at the software level by allowing
signal processing tasks to be defined and composed easily. Furthermore, VS
abstractions allow signal processing tasks to be modified or changed at design
or runtime without affecting the rest of the system. In Figure 3.31 every
component represents a processing task applied to a stream of data originated
from physical sensors and can be modeled as a virtual sensor. The output of
each virtual sensor is defined by a set of inputs and its configuration. More
formally, a virtual sensor i, denoted as V Si, is defined as:

V Si = {Ii, Oi, Ci} (3.1)

where Ii denotes the set of inputs, Oi denotes the set of outputs, and Ci de-
notes the configuration of V Si. The configuration of each virtual sensor defines
the type of its inputs and outputs, the particular implementation used for a
given computational task, and a set of parameters required for a particular
implementation. In particular, Ci is defined as:

Ci = {~tin,~tout, d, p} (3.2)

where ~tin is a vector that describes the types of inputs Ii, ~tout is defined
similarly for the outputs Oi, d represents the specific VS implementation, and
p denotes the VS configuration parameters. In particular, if the user does
not specify d, the Virtual Sensor Manager (described below) will select the
implementation.

79

Chapter 3. The SPINE Framework

This definition provides high modularity for application design. In fact,
different configurations of the same virtual sensor can be easily substituted
without requiring changes in the rest of the design. This property therefore
enables a component-based approach for application development in which
an application is assembled out of well defined components appositely inter-
connected. Moreover, it can be used when environmental changes require a
new implementation of a particular signal processing component for a given
application. Alternative implementations do not need to be loaded into main
memory at all times. They can be stored in flash memory, or transferred over
the air upon request.

VSs can be further composed to create higher-level VSs. This allows to
define multiple abstraction levels that capture the successive processing and
interpretation of sensor data and system components that perform data fusion.
High-level VS identify abstractions that are useful to support code modularity
and reusability. In fact, if an implementation of a VS is replaced with another
one, where one or more VS components are changed but the interface is the
same, there is no need to change the rest of the system.

More formally, the composition of n Virtual Sensors to form a higher-level
VSs can be defined as follows:

V S∗ =< V S1, V S2, ...V Sn >= {I∗, O∗, C∗, L} (3.3)

where I∗ ⊆ I1 ∪ I2... ∪ In, O∗ ⊆ O1 ∪O2... ∪On, C∗ = {C1, C2, ...Cn}, and L
is the set of links connecting outputs and inputs of {V S1,...,V Sn}

3.11.1.2 Virtual Sensor Manager

Once all virtual sensors are configured, no additional control is required dur-
ing execution. However, configuration requires significant support from the
Virtual Sensor Manager (VSM). The VSM is responsible for creating and
configuring virtual sensors and connections among virtual sensors. The main
functionalities of the VSM are the virtual sensor configuration and the overall
system configuration.

The current configuration of a virtual sensor may be invalidated by changes
in its inputs or connections with other virtual sensors, therefore reinitialization
could happen at any time. For example, Figure 3.33(a) describes a system
that takes a temperature reading in Fahrenheit, and a heart rate in beats
per minute. In Figure 3.33(b) a new thermometer, that produces output in
Celsius, is introduced. V S1 has to be reconfigured to handle such change. To
be able to configure/reconfigure the system at run time, the VSM manages
a table that maps each available combination of possible inputs and outputs
to the appropriate virtual sensor implementation. This can be represented by
the set A. Each entry a ∈ A is defined as:

a =
{
~tin,~tout, ψ

}
(3.4)

80

3.11. Virtual Sensors based on SPINE

where ψ is a particular virtual sensor implementation.
If the modification is not drastic enough to require changing the virtual

sensor implementation, reconfiguration can alter parameters of a given im-
plementation. During the configuration of a virtual sensor, VSM includes the
address of the selected virtual sensor implementation and the required con-
figuration parameters.

VS1

VS3

VS2

Temperature

(F)

Heartbeat

(bpm)

Temperature

(C)

Heartbeat

(bpm)

(a) (b)

VS1

VS3

VS2

Fig. 3.33. Example of Input Modification in Virtual Sensors

While individual virtual sensors do not hold any information about other
virtual sensors, the overall system relies on their cooperation. At the beginning
of the system execution, the VSM receives the VS topology configuration
graph. Based on the requirements of the topology configuration, the VSM
initializes the appropriate VSs and connects them as required. Input and
output types are a property of each virtual sensor. An output of one of the
virtual sensors can also be an input of another virtual sensor. For example, in
Figure 3.34, configuration of V S3 and V S4 depends on the input they receive
from V S1. To simplify the configuration and reconfiguration process, the VSM
initializes VSs in a specific order, to meet the requirement that each virtual
sensor cannot be created until all inputs are configured. This ordering can be
determined with a topographical sort of the topology configuration graph.

VS
5

VS
3

VS
4

VS
2

VS
1

Fig. 3.34. Example of Input/Output Dependency in Virtual Sensors

81

Chapter 3. The SPINE Framework

3.11.1.3 Buffer Manager

Signal processing for BSNs often relies on combining data from multiple
sources and locations. As a result, virtual sensors can have multiple inputs
from different sensor nodes. To avoid synchronization issues, virtual sensors
implicitly use buffers for communication. The Buffer Manager (BM) controls
dynamic buffer allocation and manages data flow in the system.

When a virtual sensor is created and configured, it initiates a data buffer
for its output. The virtual sensor contacts the BM and requests the creation
of a buffer sufficient to hold its output. The BM allocates a circular buffer of
the required size and returns the bufferID. This bufferID is propagated by
the VSM to other virtual sensors that are interested in data of this particular
buffer. To read from a buffer, a virtual sensor must register with the buffer as
a reader, specifying the number of samples it can consume at a time. Every
time the producer writes to the buffer, the BM checks if the buffer has enough
information for any of the readers, and signals them when they can access
the data. Figure 3.35 shows an overview of the BM operation. In particular,
it shows that BM keeps track of buffers by ID, tracking the point where the
producer (e.g. W) is writing to, and where each individual reader (e.g. R1, R2)
is reading from. If the producer VS is reconfigured, and its output is changed,
the BM removes the buffer that is associated with the previous output and
initiates a new buffer, based on the new configuration information.

Buffer

Manager

Buffer1

Bufferm

.

.

.

WR1R2

Fig. 3.35. Buffer Manager Overview

3.11.1.4 SPINE2-based Virtual Sensors

The Virtual Sensor architecture described in Section 3.11.1 is straightfor-
wardly implemented through the SPINE2 framework. In Figure 3.36 basic
conversion schemas for the translation of Virtual Sensors into SPINE2 task-
oriented applications are shown. In particular, only simple (flat) virtual sen-
sors have been taken into consideration as it is quite intuitive to translate a
virtual sensor defined as composition of flat virtual sensors.

In the most simple case, a virtual sensor defined as a basic functional block
incorporating some kind of operation on its single input can be translated into

82

3.11. Virtual Sensors based on SPINE

VSflat
Raw Data

Sensing

VSflat dpTask

dpTask

(a)

(b)

(c)

VSflat
i1
in

o1

om

.

.

.

.

.

.

dpTask

dpTask

.

.

.

i1

in

Task
Graph

o1

om

.

.

.

Merge

i1

in

.

.

. dpTask Task
Graph

o1

om

.

.

.

Fig. 3.36. Translation of Virtual Sensors into SPINE2 task-oriented models

a SPINE2 data-processing task (see Figure 3.36(a)). In fact, a generic SPINE2
data-processing task (such as dpTask) is defined as a functional component
having a single input and a single output, differently from the data-routing
task. Obviously, the operations that have to be performed by the task (spec-
ified by its configuration) depend on the actual functionalities of the virtual
sensor. If the virtual sensor does not have a generic input but raw data (such
as data coming form a hardware sensor on a wireless node), the corresponding
translation includes the introduction of a SensingTask, specifically configured
for representing the digital data source (see Figure 3.36(b)). Finally, Figure
3.36(c) shows the translation of a simple virtual sensor having multiple inputs
and outputs. In this case, the corresponding SPINE2 tasks can be configured
in several ways on the basis of the actual definition of the virtual sensor and of
the type description of its inputs/outputs. In particular, two different trans-
lations are shown. In the first one, there is a single data-processing task for
each input. These tasks, along with the not-specified Task Graph, carry out
the overall computational operation performed by the virtual sensor. Con-
versely, in the other translation, inputs are merged by a single data-routing
task (namely, the MergeTask) and provided to a generic task graph. In ei-
ther case, the more complex the function defined for the virtual sensor gets,
the more complex the set of actual interconnected tasks would be. Of course,
there could exist a more generic SPINE2 translation in which some of the

83

Chapter 3. The SPINE Framework

inputs merge on an AggregationTask, the other ones become inputs of data-
processing tasks.

It is worth noting that the two application modeling abstractions, vir-
tual sensors and tasks, have strong similarities. In fact, both of them enables
creation of applications in a modular and easily reconfigurable way by using
elementary functional blocks (virtual sensors or tasks) which do not have any
functional couplings with each others. This is due to the fact that they have
no knowledge of the provenance of their inputs nor the destination of their
outputs.

3.12 Summary

In this Chapter, SPINE, a domain-specific programming framework, has been
presented. One of the main achievements of SPINE is the reuse of software
components to allow different end-user applications to configure sensor nodes
at run-time based on the application-specific requirements without off-line re-
programming before switching from an application to another. Furthermore,
thanks to its modular component-based design approach, SPINE enables a
great degree of heterogeneity, and a wide variety of hardware platforms, sen-
sors, programming languages and operating systems are supported. This al-
lows for a very flexible and usable framework in different BSN application
scenarios, where, due to specific requirements, only certain platforms or op-
erating systems might be used.

Additionally, other interesting contributions which are the result of en-
hancements and variants to the original proposed framework, have presented
here. They include a task-oriented framework re-design of SPINE (SPINE2),
an enhancement for supporting collaborating BSNs (C-SPINE), a multi-agent
model for BSN programming (A-SPINE), and a programming paradigm based
on the concept of Virtual Sensors. Particularly relevant is the task-oriented
re-design in which we achieved the significant result of platform-independence
for most of the framework components, and the multi-agent model as we
showed that, at least when implemented on more powerful sensor nodes, it
allows for even more flexibility, also thanks to the code mobility which can be
more naturally enabled by means of the mobile agent concept.

84

4

BSN Research prototypes implemented using
SPINE

This chapter emphasizes how the proposed SPINE framework is actually able
to support the development of heterogeneous health-care applications based
on reusable subsystems. Indeed, one of the main goal of SPINE is to provide a
flexible architecture that can support variety of practical applications without
the need for costly redeployment of the code running on sensor nodes.

This chapter therefore introduces some interesting research BSN systems
that have been developed atop SPINE. Furthermore, each of the proposed ap-
plications improves the current state-of-the-art, as described in the following.

4.1 Physical Activity Recognition

The human activity monitoring system prototype here presented is able to
recognize postures (lying, sitting, and standing still) and a few movements
(walking, and jumping) of a person; furthermore it can detect if the assisted
living has fallen and is unable to stand-up.

The wearable nodes are based on the Tmote Sky platform to which is
attached a custom sensor-board (SPINE sensor-board) including a 3-axis ac-
celerometer and two 2-axis gyroscopes. The nodes are powered by a standard
3.7V, 600mAh Li-Ion battery). The end-user application is implemented in
the Java language and runs on top of a SPINE coordinator laptop to which
is attached a Tmote Sky, acting as a base-station bridge, connected via USB
port.

The activity recognition system prototype relies on a classifier that takes
accelerometer data measured by sensors placed on the waist and on the thigh
of the monitored subject and recognizes the movements defined in a training
phase. Among the classification algorithms available in the literature, a K-
Nearest Neighbor [58] (KNN)-based classifier has been selected.

The prototype provides a default training set and a graphical wizard to
let the user build his own training set to enhance recognition accuracy. The
significant features, that will be eventually activated on the sensor nodes to

85

Chapter 4. BSN Research prototypes implemented using SPINE

Table 4.1. Posture/Movement recognition accuracy.

Sitting Standing Lying Walking Falling

96% 92% 98% 94% 100%

classify the movements, are selected using an offline sequential forward floating
selection (SFFS) [59] algorithm. Experimental results have shown that, given
a certain training set, the classification accuracy is not significantly affected by
the K value nor by the distance metric used by the classifier. This is because,
thanks to the accurate selection of the signal features, the activities instances
form clusters that are internally very dense, and well separated among each
other. Therefore, the classfier parameters have been selected as follows:

� K = 1;
� Metric distance: Manhattan.

For the feature selection, the accuracy has been calculated with a shift of
50% of the data window, using half of the dataset for training and half to test
the classifier.

The resultant most significant features are:

� waist node: mean on the accelerometer axes XYZ, min value and max
value on the accelerometer axis X;

� leg node: min value on the accelerometer axis X.

As previously mentioned, the proposed system also includes a fall detec-
tion module which is implemented on the waist sensor node and can be ac-
tivated/deactivated at run-time. When the fall detector is active, every time
that new accelerometer data are acquired, one of the threshold-based func-
tions checks if the total energy (as defined in Table 3.3) of the accelerometer
signals, exceeds an empirically-evaluated threshold. If so, it sends an alarm
message back to the coordinator to inform the user application. False alarms
are drastically reduced by a simple mechanism implemented directly at the
end-user application: as soon as it receives a fall-detected message, the sys-
tem waits the recognition of the next seven postures of the person; only if it
evaluates 4 out of 7 lying positions, an emergency message is reported to the
user attention.

An interesting functionality of the prototype is a simple tool for adding
new, user-defined activities among the default ones. The tool drives the user
through a simple procedure for acquiring the necessary training data which
are then stored in the global data set.

Although the objective of this prototype concerned mainly in testing the
SPINE framework in a semi-realistic use case, the overall performance (see
Table 4.1) reached by the recognition system is considerably high, with an
average posture/movement classification accuracy of 97%. The fall detection

86

4.2. Step-counter

algorithm is quite accurate as well, as it is able to detected almost every falls,
and reaching a low percentage of false alarms.

4.2 Step-counter

This section describes an innovative step-counter algorithm, whose main de-
sign requirements are the followings:

� Use of accelerometer data;
� Energy and computation efficient design to support embedded implemen-

tations;
� Use of a single sensor node, placed on the waist (below the navel);
� General-purpose algorithm, to be used by healthy people as well as elderly

and/or people with disabilities;
� No need for “ad-personam” calibration;
� High average accuracy (robustness).

Several real walk data on different subjects have been collected and studied
before starting the algorithm design. The subjects were asked to walk natu-
rally, and to increase/decrease the walking speed occasionally. In particular,
a single three-axis accelerometer sensor node was placed on the waist while
recording. The sensor has been sampled at 40Hz.

In summary, the preliminary conclusions from this analysis are:

� An off-line downsampling to 20Hz showed that the signal is still well char-
acterized;

� The lateral acceleration presents a poor SNR (Signal-to-Noise Ratio) as
the waist swing during walking is heavily influenced by noise;

� Frontal (horizontal) and vertical acceleration present both very useful sig-
nals; for both, it looks roughly sinusoidal, because the waist is interested
by vertical accelerations/decelerations when the feet hit the ground, and
by horizontal accelerations/decelerations when the body swings frontally
while walking;

� Interestingly, the horizontal acceleration signal looks generally cleaner than
the vertical acceleration signal.

A number of approaches have been considered and evaluated, eventually
converging to the proposed solution. To simplify the development, debug-
ging, and evaluation, the implementations have been initially programmed in
Matlab. Only integer-math computations were used, so allowing for a more
straightforward embedded implementation (as the target embedded platform
is based on a microcontroller with no hardware support for floating point
operations).

A very simple “fixed threshold-range” technique has been studied at the
beginning. The thresholds were empirically determined by observing several
real walk data on different subjects. In this approach, a step is detected if the

87

Chapter 4. BSN Research prototypes implemented using SPINE

instantaneous raw acceleration stays within the defined range. To remove mul-
tiple detections of the same step, the algorithm sleeps for the shortest “step-
time”, measured from the available observations. Although the algorithm is
very simple, it showed high precision (> 90% in lab experiments) while applied
to healthy people, regardless the gender, weight, height, and walking speed.
However, when applied to elderly people, it behaves very poorly, with almost
no steps detected. Intuitively, that is due to less pronounced movements of
walking elderly people that lead to lower accelerations of the waist.

An enhanced algorithm followed a different approach. Rather than defin-
ing a priori the threshold range, it is possible to determine the best thresh-
old for the monitored subject by running a search algorithm that requires a
set of walking data of that subject, the number of steps inside that record-
ing, and the required accuracy. The threshold search is performed iterating
the step-counter algorithm previously described on the walking data, trying
a decreasing threshold (initially set to the upper accelerometer scale value)
and comparing the number of detected steps against the actual number. The
search stops when the required accuracy has been reached or the number of
detected steps exceeds the actual number, and the threshold found is returned.
This implementation performs overall better than the first one, but requires
a training phase and the manual counting of the steps during the training. If
the counting is incorrect and/or during the recording a significant number of
data packets get lost, the threshold search can be compromised.

The first algorithm does not recognize effectively the steps of elderly peo-
ple. On the other hand, the second algorithm needs a preliminary training
phase. Furthermore, they both work on the raw accelerometer data.

To overcome these limitations, a third algorithm has been defined, bor-
rowing some ideas from the previous ones. At the same time, additional real
walk data have been recorded from hospitalized subjects (elderly and people
with walk disabilities).

It is worth reminding that the frontal acceleration of the waist presents
a signal roughly sinusoidal while walking. In few words, the new algorithm
attempts at detecting steps by identifying the decreasing segment (falling
edge) which corresponds to the last fraction of a step movement.

A step is characterized by time constraints (it cannot be “too” fast or
“too” slow). However, walk patterns change from people to people and even
for the same person it might change from time to time; hence, the amplitude
of the acquired signal can vary significantly.

To simplify the pattern recognition, the raw acceleration is first processed
with a smoothing filter which removes the high frequency components. Then,
it looks for local maximums. When a local max is found, it looks for a local
minimum. After the local min is also found, the candidate segment is identified
as well. Two features are then extracted and used to determine whether the
candidate belongs to a real step or not. The candidate is classified as step (i) if
it has an acceleration drop within a certain range (specified by a “tolerance”
parameter around a threshold), and (ii) if the time it lasted is within a certain

88

4.2. Step-counter

interval. More specifically, the pre-processing is a 9-point windowed smoothing
filter which uses gaussian kernels. Because they are applied to a digital signal,
the sum of the kernels must be 1. Furthermore, because the algorithm work
on integer-math, they are scaled so that decimal factors are removed.

The following Gaussian kernels have been selected:

� { 5, 30, 104, 220, 282, 220, 104, 30, 5 }

The threshold is coarsely initialized, but it is automatically adapted while
steps are recognized. In particular, it is continuously updated with the average
of the last 10 acceleration drops that were classified as steps.

Since the threshold is just coarsely initialized at the beginning and because
even following steps can occasionally present significant variance in their vigor,
the updated threshold is adjusted with parametric coefficients to specify the
amplitude range in which a candidate must fall.

Finally, to reduce “false positive” recognitions, e.g. due to sudden shocks
or slow tilts of the sensor, the time elapsed between the local max and min
(which it is simply determined as the product between the number of samples
of the segment and the sampling time) must be longer than the “minimun
step time” and shorter than the “maximum step time”. Both values have
been determined empirically from the available observations. In particular,
based on the available walking data available, the following values have been
identified:

� mininum step time = 350ms
� maximun step time = 2000ms.

Figure 4.1 shows the block diagram of the proposed algorithm.
The proposed algorithm has been initially evaluated on the computer,

and finally implemented on a wireless sensor node running SPINE. For this
application, the node-side of SPINE has been extended with the proposed
algorithm. Every time the node detects a step, it communicates to its coor-
dinator the total numer of steps taken so far (this to avoid mis-counting due
to lost packets). On the coordinator, very minor additions have been made to
the core framework, and a simple graphical application shows in real time the
number of steps.

As a running example of the algorithm, Figure 4.2 shows the raw data
of the frontal acceleration of the waist during normal walking of a healthy
subject, sampled at 20Hz. The “end” of each step (which then brings to the
beginning of the following one with the other foot), corresponds roughly to
the sharp low spikes in the plot.

Figure 4.3 shows the result of the Gaussian filtering of the data in Figure
4.2; the small black dots in Figure 4.3 correspond to where the step-counter
algorithm has detected steps.

Although the strength of the steps sometime change significantly, the al-
gorithm still detects properly all the steps.

89

Chapter 4. BSN Research prototypes implemented using SPINE

NO

YES

NO
YES

NO
Extract frontal (h)
acceleration

9-pt
Gaussian FIR

filter

ah(ti) ≤

ah(ti-1)
YES

Max found

ah(ti) ≥

ah(ti-1)
Min found

max-min
satisfy
criteria?****

- Step detected
- adapt threshold **** (max-min) satisfy threshold range & candidate

step time within step time range?

Fig. 4.1. Block diagram of the step-counter algorithm.

Fig. 4.2. Raw Data of the frontal (horizontal) acceleration of the waist during
normal walking.

Fig. 4.3. Result of the Gaussian filtering of the data shown in Figure 4.2.

The proposed step-counter algorithm has been tested on several subjects,
from healthy young people to elderly and/or with disabilities. Over 40 tests on
8 healthy subjects (both males and females, with different height and weight)
and 6 hospitalized subjects (with post-stroke disabilities, walking using crutch

90

4.3. Real-time Physical Energy Expenditure

or wheels walkers, or simply elderly), have shown overall error (detected steps
vs actual steps) of 12%.

The worst under-estimation was 27%, and the worst over-estimation was
18%. It is worth noting, however, that the subjects were not video recorded
during their walking data collection; hence, it runs out that is sometimes dif-
ficult to validate the number of reported steps (manually counted by direct
observation during walking) in each experiment. Furthermore, some lost pack-
ets caused discrepancy with the number of reported steps against the number
of recorded ones.

In conclusion, the main contribution of the proposed algorithm is the abil-
ity to provide a good estimate of the steps taken by people with disabilities
and/or using crutch or wheels walkers. To the best of our knowledge, this is
the only system being able to work properly for the latter category of users.

4.3 Real-time Physical Energy Expenditure

Accurate measurements of physical activity are important for obesity research
and intervention programs, for fitness and wellness applications, and so on.
Physical activity assessment may be used to establish baselines and changes
that occur over time. Quantitative assessments may be used to gauge whether
recommended levels of regular physical activity are being met, such as 60
and 30 minute guidelines for daily moderate intensity activity established
by the National Academy of Sciences [60] and U.S. Surgeon General [61],
respectively. Conversely, measurements of physical inactivity associated with
sedentary lifestyles can equally be useful in estimating risk for overweight and
obesity.

To provide this quantitative assessment, we developed an energy expen-
diture algorithm based on previous research conducted by Chen and Sun in
which 125 adult subjects wore a 3-axis accelerometer at the waist position
for two 24 hour periods in a controlled air-tight environment, where whole-
room indirect calorimetry was computed based on 1-minute measurements of
O2 consumption and CO2 production [62]. Energy estimates from triaxial ac-
celerometry were found to be well-correlated (Pearson’s r = 0.959) with total
energy expenditure measured from the room. The same study used general-
ized linear and nonlinear models to estimate energy expenditure from the raw
activity counts along the vertical and horizontal axes.

The problem of many accelerometry-based approaches is an assumption
that the sensor is oriented correctly to give accurate activity counts along
the relevant axes. This can be difficult to guarantee, particularly for obese
subjects, where the sensor may tilt on the waist with activity or changes in
posture.

Our Kcal algorithm, instead, improves the current state-of-the-art, by pro-
viding a dynamic compensation of the gravity vector affecting the accelerom-
eter readings. We first applied time-averaging and vector projection to obtain

91

Chapter 4. BSN Research prototypes implemented using SPINE

vertical and horizontal axes regardless of sensor orientation [63]. Briefly, the
approach isolates perturbations around a time-averaged (or smoothed) accel-
eration vector, which indicates the direction of gravity. We compute a vector
projection onto this time-averaged representation of gravity to obtain activity
counts along the vertical axis, and through a vector subtraction obtain the
counts in the horizontal axis. Hence, given the smoothed acceleration vector
v that approximates the gravity vector, and an acceleration vector at a given
time a, the perturbation is:

d = a− v (4.1)

The vertical component of this perturbation is computed through vector
projection as:

p =

(
d · v
v · v

)
· v (4.2)

The horizontal vector is the subtraction of p from the perturbation vector
d :

h = d− p (4.3)

Counts along the vertical and horizontal axes, computed as summations
of vector magnitude over a period of time, were used as input into the Chen
and Sun generalized models described above.

The nonlinear equation accounts for variations due to subject weight and
gender. Briefly, the equation for energy expenditure EE (in KJ) is based
on horizontal and vertical activity counts, H and V for the k -th minute,
respectively:

EE(k) = aHp1 + bV p2 (4.4)

And where a and b are generalized estimates based on the subject’s weight
w (in Kg) (original equation from [63] differentiates by gender):

a = (12.81w + 843.22)/1000 (4.5)

b = (38.9w + 10.06)/1000 (4.6)

p1 = (2.66w + 146.72)/1000 (4.7)

p2 = (−3.85w + 968.28)/1000 (4.8)

We have implemented the proposed algorithm using the SPINE frame-
work. It partially runs on the sensor node, where we added a new processing
functionalities to compute the activity counts, and partially atop the SPINE
coordinator, where a graphical application, using the activity counts received
every seconds by the sensor node, computes the final estimation of the energy
expenditure using the formulas shown above after collecting one minute of
observations.

92

4.4. Emotional Stress Detection

4.4 Emotional Stress Detection

The Heart Rate Variability (HRV) is based on the analysis of the R-peak
to R-peak intervals (RR-intervals - RRi) of the electrocardiogram (ECG)
signal in the time and/or frequency domains. Doctors and psychologists are
increasingly recognizing the importance of HRV.

A number of studies have demonstrated that patients with anxiety, phobias
and post-traumatic stress disorder consistently show lower HRV, even when
not exposed to a trauma related prompt. Importantly, this relationship exists
independently of age, gender, trait anxiety, cardio-respiratory fitness, heart
rate, blood pressure and respiration rate.

This section presents a toolkit based on BSN for the time-domain HRV
analysis, named SPINE-HRV [64]. The SPINE-HRV is composed of a wear-
able heart activity monitoring system which continuously acquires the RR-
intervals, and a processing application developed using the SPINE framework.
The RR-intervals are processed using the SPINE framework at the coordina-
tor through a time-domain analysis of HRV.

The analysis provides seven common parameters known in medical liter-
ature to help cardiologists in the diagnosis related to several heart diseases.
In particular, SPINE-HRV is applied for stress detection of people during
activities in their everyday life.

Monitoring the stress it relevant as many studies show connections between
long-term exposure to stress and risk factors for cardiovascular diseases [65,
66].

The main contribution of the proposed system relies in its comfortable
wearability, robustness to noise due to body movements and its ability to
identify emotional stress in real-time, with no need to rely on off-line analysis.

4.4.1 Hardware

The hardware architecture of our system in composed of a wireless chest band,
a wireless wearable node and a coordinator station. The wireless chest band
detects heart beats and transmits a pulse message over the air each time
a heart beat has been detected. It does not require manual power-on nor
software configuration. The wearable node is a Telosb mote equipped with a
custom board that has a dedicated receiver for the heart beat messages sent
by the chest band. Specifically, the wearable node runs the TinyOS operating
system and is powered by the SPINE framework. The coordinator station is a
PC running a Java application built atop SPINE, which allows bidirectional
communication to setup the wearable node and retrieve the heart beats.

4.4.2 Software

The wearable mote runs the SPINE framework, which has been extended
with a custom defined processing function to support the custom sensor board.

93

Chapter 4. BSN Research prototypes implemented using SPINE

Once enabled by the SPINE coordinator, the processing function on the wear-
able node starts timestamping the heart beat events, to transmits back to the
coordinator the RRi values.

The RRi data is used by a Java application built atop SPINE, to compute
the average heart beat rate expressed in beat per minute (BPM), the maxi-
mum and minimum heart rate, and to analyze the stress level of the monitored
subject.

4.4.3 Stress analysis engine

The heart rate is computed from the RRi values, sent by the wearable node
and expressed in milliseconds. It worth noting that we assume a reliable com-
munication between the wireless chest band and the wearable node. The sys-
tem is able to detect most of the times when heart-beat packets are dropped
due to radio interfence or out-of-range. We decided not to interpolate dropped
RRi messages to avoid further bias while executing the analysis.

We use a 20-point moving average filter over the inter-beat intervals. Max-
imum and minimum heart rate, however, are computed instantaneously by
dividing the current RRi received from the wireless node by one minute.

The stress level of the subject is refreshed every ten minutes (previous
works have shown that this is the minimum collection time to get significant
results [67]). Our approach is based only on a time-domain analysis, which is
fair enough to evaluate the stress condition as demonstrated in [67].

Specifically, RRj (computed by averaging on 15 heartbeats) proportional
to HR, SDNN, RMSSD, and pNN50 are computed as follows:

RRj =
1

15

15∑
j=1

RRj (4.9)

SDNN =

√√√√ 1

N − 1

N∑
j=1

(RRj −RR)2 (4.10)

RMSSD =

√√√√ 1

N − 1

N−1∑
j=1

(RRj+1 −RRj)2 (4.11)

pNN50 =
NN50

N − 1
× 100 (4.12)

where RRj denotes the value of jth RR interval and N is the total num-
ber of successive intervals. SDNN is the primary measure used to quantify
HRV change, since SDNN reflects all the cyclic components responsible for
variability in the period of recording. Under negative emotions, the activa-
tion of Autonomic Nervous System (ANS) is decreased compared to positive
emotions; hence, higher SDNN is often an indicator for ANS activation.

The proposed work focuses on determining whether the monitored subject
is under emotional stress. It is a decision problem that has been solved with

94

4.5. Summary

Table 4.2. Stress threshold for HRV parameters.

Feature Threshold Unit

HR >85 1/min

pNN50 <7 %

SDNN <55 ms

RMSSD <45 ms

a threshold-based approach. Table 4.2 reports the threshold values extracted
from the results found in [67]. The final decision is made on a simple major-
ity vote: if three out of the four features exceed the threshold, the current
emotional condition is classified as stressed.

4.5 Summary

The main goal of SPINE is to provide BSN developers with support for rapid
prototyping of signal-processing applications. In SPINE, sensors and common
processing blocks, such as math aggregators and threshold-based alarms, can
be configured independently and connected together arbitrarily at run-time
based on external controls.

One of the key advantages of SPINE is the ability to satisfy diverse appli-
cation needs at run-time, avoiding, in most situations, the costly redeployment
of the code running on the remote sensing devices.

Such an approach also allows heterogeneous applications to be built atop
the same basic software components, enhancing code reusability and, more
importantly, removes the need for redeploying the node-side code based on a
particular application.

This property is very desirable especially in real world scenarios. For in-
stance, a doctor could use SPINE nodes that are equipped with accelerome-
ters and a suitable coordinator device (e.g. a smartphone), to monitor weekly
energy expenditure of a patient. The same nodes could be used later with an-
other patient, for instance, in a rehabilitation scenario, as long as the proper
application software is available on the doctor’s coordinator device.

In this chapter, the SPINE framework has been showed to support hetero-
geneous health-care applications without redeployment of the code running
on the nodes. The flexibility of SPINE has been demonstrated by describing
four different case studies (physical activity detection, step counting, energy
expenditure estimation, and emotional stress detection) which all exploit the
same sensor node hardware and software. Obvisouly, in the general case, to
support different applications, the wearable sensing node(s) must be equipped
with all the required physical sensors.

95

5

Platform-Based Design methodology for BSNs

5.1 Introduction

In the context of WSN, the design usually follows a “bottom-up” approach such
that these systems are realized choosing the hardware components first, then
the communication protocols, and finally implementing ad-hoc applications
on top of the underlying infrastructure.

In this thesis, a different approach for the development of BSN applications
based on the concept of domain-specific frameworks has been presented. This
can be considered a “top-down” approach as the proposed application-level
framework provides a set of programming abstractions and services without
any intrinsic assumptions on the underlying protocol stacks and hardware
platforms. However, to obtain the final system, which includes obviously both
the hardware (e.g. the physical sensors/transducers) and the software, the
designer is not fully guided during the process of requirement and resource
optimization (such as system lifetime and cost), and must rely on his skills
and expertise in the specific application domain.

A yet different strategy to support rigorous design methodology, reliable
system design, and true interoperability between different applications as well
as between different implementation platforms, based on a Platform Based
Design (PBD) [68] approach, has been recently proposed [69, 70].

PBD is a “meet-in-the-middle” design methodology, where system con-
straints are refined top-down, while implementation characteristics including
performances such as delay and power consumption are abstracted bottom-up.
The two parts are essential for selecting a good implementation via a design
exploration phase that meets the constraints while estimating the performance
of the candidate implementations. PBD relies on a clear identification of layers
of abstraction, on a modeling strategy that captures uniformly functionality
and architecture of the design, and on tools that map two contiguous layers,
verify that the selected architectures satisfy constraints, and identify draw-
backs and strengths of the design.

97

Chapter 5. Platform-Based Design methodology for BSNs

In [69, 70], this methodology has been applied to WSNs, and three layers
of abstraction and relative platforms are identified: a service platform at the
application layer, a protocol platform to describe the protocol stacks, and an
implementation platform for the hardware nodes. The proposed methodology
has been validated using case studies from WSN-based building monitoring
and industrial monitoring applications. However, a specific research on a PBD
approach to design BSN systems has never been faced before.

This Chapter proposes a specialization of the methodology presented in
[69] focused to the context of BSNs.

5.2 Platform-Based Design

According to the PBD, a design is composed by a sequence of steps that
lead the initial high level description all the way down to the implementa-
tion. Each step is a refinement process that takes the design from a higher
level description to a lower level description that is progressively closer to
the final implementation. This refinement step is obtained by replacing each
block of the higher level description, with blocks (or composition of blocks)
from a lower level description. Among the possible lower level implementa-
tions, the methodology selects one that satisfies the constraints coming from
the higher level description, while optimizing according to some cost function.
For each layer of abstraction, these design blocks, together with a description
of their interfaces and performance, are stored in a library, called platform.
The higher the initial level of abstraction, the easier is expressing the func-
tionality and constraints as well as catching design errors early, but the more
difficult is to reach quickly a high-quality implementation due to the semantic
gap between specification and implementation. Differently from classical top-
down or bottom-up approaches, in PBD each step is a combination of both
approaches where application constraints are refined in a top-down fashion,
architecture performance are abstracted in a bottom up fashion, and a “meet-
in-the-middle” phase decides the final implementation solving a constrained
optimization problem. The formalization of the PBD methodology is based
on the Agent Algebra [71].

The Agent algebra can be used to describe formally the process of succes-
sive refinement in a platform-based design methodology. There, refinement is
interpreted as the concretization of a function in terms of the elements of a
platform. The process of design consists of evaluating the performance of dif-
ferent kinds of instances in the platform by mapping the functionality onto its
different elements. The implementation is then chosen on the basis of a cost
function. Three distinct domains of agents are used to characterize the process
of mapping and performance evaluation. The first two are used to represent
the platform and the function, while the third, called the common semantic
domain, is an intermediate domain that is used to map the function onto a
platform instance. A platform, depicted on the right in Figure 5.1, corresponds

98

5.2. Platform-Based Design

Fig. 5.1. Architecture and function platforms.

to the implementation search space. On the other hand, the function, depicted
on the left in Figure 5.1, is represented in an agent algebra called the specifi-
cation domain. Here, the desired function may be represented denotationally
as the collective behavior of a composition of agents, or it may retain its
structure in terms of a particular topology of simpler functions. The denota-
tional representation is typically used at the beginning of the platform-based
design process, when no information on the structure of the implementation
is available. Conversely, after the first mapping, the subsequent refinement
steps are started from the mapped platform instance, which is taken as the
specification. Thus, a common semantic domain, described in the following, is
used as the specification domain. However, contrary to the mapping process
that is used to select one particular instance among several, when viewed as
a representation of a function, the mapped instance is a specification and is
therefore fixed. The function and the platform come together in an interme-
diate representation called the common semantic domain. This domain plays
the role of a common refinement and is used to combine the properties of both
the platform and the specification domain that are relevant to the mapping
process. The domains are related through conservative approximations.

In particular, the inverse of the conservative approximation is defined at
the function to evaluate. The function is therefore mapped onto the common
semantic domain as shown in Figure 5.2. This mapping also includes all the
refinements of the function that are consistent with performance constraints,
which can be interpreted in the semantic domain. If the platform includes
programmable elements, the correspondence between the platform and the
common semantic domain is typically more complex.

In this case, each platform instance may be used to implement a variety
of functions or behaviors. Each of these functions is in turn represented as
one agent in the common semantic domain. A platform instance is therefore
projected onto the common semantic domain by considering the collection of

99

Chapter 5. Platform-Based Design methodology for BSNs

agents that can be implemented by the particular instance. This projection,
represented by the rays that originate from the platform in Figure 5.2, may
or may not have a greatest element. If it does, the greatest element represents
the nondeterministic choice of any of the functions that are implementable by
the instance.

Fig. 5.2. Mapping of function and architecture.

The common semantic domain is partitioned into four different areas. We
are interested in the intersection between the refinements of the function and
the functions that are implementable by the platform instance. This area
is marked “Admissible Refinements” in Figure 5.2. Each of the admissible
refinements encodes a particular mapping of the components of the function
onto the services offered by the selected platform instance. These can often
be seen as the covering of the function through the elements of the platform
library. Of all these agents, those that are closer to the greatest element are
more likely offer the most flexibility in the implementation. Once a suitable
implementation has been chosen (possibly by considering different platform
instances), the same refinement process is iterated to descend to an even
more concrete level of abstraction. The new function is thus the intersection
between the behavior of the original function and the structure imposed by
the platform. The process continues recursively at increasingly detailed levels
of abstraction to reach the final implementation.

5.3 PBD for BSNs

In this section, the different platforms introduced in [69] are specialized for
the BSN domain.

Three layers of abstractions are defined, each of them associated to a
corresponding platform as follows:

1. The Sensor Network Service Platform (SNSP) represents the highest level,
and is used by the end user to describe the application;

100

5.3. PBD for BSNs

2. The Sensor Network Ad-hoc Protocol Platform (SNAPP) is the middle
layer, and is used to describe the different communication protocols;

3. The Sensor Network Implementation Platform (SNIP) represents the low-
est level, and is used to describe the different hardware nodes.

5.3.1 The Sensor Network Service Platform

The goal of the SNSP is to introduce an abstraction layer for the application
description. A properly defined application interface captures all the possible
services that can be used by any BSN application and supported by any
physical sensor network platform. To perform its functionality, a controller
(algorithm) has to be able to read the state of the environment. In a BSN,
controllers do so by relying on communication and coordination among a set
of distinct elements to sense and control the assisted living.

The role of the SNSP is to provide a logical abstraction for these com-
munication and coordination functions. This approach allows the designer to
specify the application while abstracting away the specific details of the com-
munication mechanisms (routing strategies, MAC protocols, physical channel
characteristics) thereby making possible for the application designer to focus
on the task of developing the application-specific control algorithms. In par-
ticular, the SNSP is a collection of data sensing and processing functions that
cooperate to provide the following services:

� query service (QS), used by controllers to get information from other com-
ponents;

� command service (CS), used by controllers to configure functionalities (e.g.
sensing, or processing) of other components;

� timing/synchronization service (TSS), used by components to agree on a
common time;

� location service (LS), used by components to learn their location (e.g. local
position on the body);

� concept repository service (CRS), which maintains a map of the capabilities
of the deployed system and it is used by all the components to maintain a
common consistent definition of the concepts that they agreed upon during
the network operation.

� privacy and security service (PSS), used to protect user confidential in-
formation (such as physiological signals), and to guarantee access to such
information only to authorized entities.

The CRS is essential for enhancing system reconfigurability and interoper-
ability. The repository includes definitions of relevant global concepts such as
the physical quantities that can be acquired (e.g. body movements, heart rate,
skin temperature). Additionally, It allows for collecting information about the
capabilities of the system (i.e. which sensing and processing services it pro-
vides and at which quality and cost). The repository could be dynamically

101

Chapter 5. Platform-Based Design methodology for BSNs

updated during the network operations, depending on the sensor nodes that
might be turned on/off.

Access to the SNSP services is provided to the application through a set
of APIs. Following the Agent Algebra formulation, the SNSP can be charac-
terized by defining a set of agents and how they can be composed to create
an instance. An instance of this platform is also called Application. There are
three types of agents:

1. Services: these are the previously described macro-instructions used to
achieve a specific goal within an algorithm;

2. Conditional Blocks: used to relate time- or data-triggered events to specific
decision on service requests.

3. Directional Links: they abstract the sequentiality of two services or con-
ditional blocks.

Services or conditional statements can be composed only if a directional
link is declared between the two. Consequently, at the highest level of abstrac-
tion, applications can be described using flowcharts.

5.3.2 The Sensor Network Implementation Platform

The Sensor Network Implementation Platform (SNIP) is a library of physi-
cal nodes that can be used to support the application. A physical node is a
collection of physical resources such as:

� sensing devices (i.e. transducers);
� processing units (e.g. micro-controller or dedicated processing chips);
� external memory (typically for local data storage);
� energy sources (i.e. battery);
� communication devices (i.e. the radio);
� LEDs and/or LCD screen (for visual feedbacks to the user);
� clocks.

In particular, the main physical parameters of a node are:

� list of physical sensors attached to node;
� maximum sampling rate for each attached sensor;
� memory available for the application, and for data storage;
� clock frequency range;
� clock accuracy and stability;
� level of available energy;
� cost of sensing (energy);
� cost of computation (memory, time, energy);
� cost of communication (energy);
� transmission rate, and range.

102

5.3. PBD for BSNs

Examples of physical nodes have been given in Section 2.2.
Using the algebraic approach, the SNIP can be defined as a library whose

agents are the hardware nodes, the coordinator devices, and bidirectional
links. The hardware nodes and base stations are characterized by their phys-
ical resources and possibly by their location on the body. An instances of
this platform is called a Topology. In a topology, physical components can be
connected only using links. A link represents the capability of communication
between two physical components. Restrictions on the possibility of linking
directly two components reflect the reachability due to their radio interface
and distance. For example Shimmer motes [50] and commercial smart-phones
can be linked since they both use Bluetooth, while TelosB cannot be directly
linked to a smart-phone, but a path between the two can exist only if there is
also a third component (such as a bridge device) that is able to support both
radio interfaces.

5.3.3 The Sensor Network Ad-hoc Protocol Platform

Choosing the architecture of the SNIP and mapping the functional specifica-
tion of the system onto it are critical steps in sensor network design. To facil-
itate this process, the Sensor Network Ad-hoc Protocol Platform (SNAPP) is
a proper intermediate level of abstraction. The SNAPP is a library of commu-
nication standards and MAC protocols. These are “parametrized protocols”,
meaning that their structure is specified, but their working point is determined
by a set of parameters. In general, these parameters are the free parameters
of the protocol that can be easily tuned by the application developer. For ex-
ample, the access probability in a p-persistent CSMA scheme, or the wake up
rate of the nodes for the un-beaconed version of the IEEE 802.15.4. The value
of these parameters is obtained as the solution of a constrained optimiza-
tion problem, where the constraints are derived from the latency, error rate,
sensing requirements of the application while the cost function is the energy
consumption. The energy consumption is estimated based on an abstraction
of the physical properties of the candidate hardware platform. Any protocol
can be included in the SNAPP as long as the end to end delay distribution
and energy consumption performance of the protocol are characterized.

However, differently from the general WSN systems, most of the BSN
applications require simple one-hop physical sensor networks (tipically, star-
topology; see Section 3.10.1.1). As a consequence, the modeling effort for char-
acterizing the end-to-end (E2E) delay distribution is limited to the analysis
of the single hop performance of the protocol. Specifically, parameters such as
the number of nodes forming the BSN, the wake up rate, and the distribution
of the number of transmission attempts before observing a successful packet
exchange must be evaluated.

The mathematical framework allows for capturing the requirements of the
design functionality and performance as a constrained optimization problem.

103

Chapter 5. Platform-Based Design methodology for BSNs

The solution to this problem provides the parameters to derive the final pro-
tocol implementation. Once the trade-off equations are derived and solved as
an optimization problem, all the protocol parameters are automatically syn-
thesized. The use of parameterized protocols allows to effectively restrict the
large design space to a few parameters. In addition, since the protocols are
developed with a specific mathematical model in mind, it is ease to evaluate
the effects of changing these parameters on the overall network performance.
This predictive ability prevents the need for extensive simulation and allows
for the ease of comparison with other protocols.

5.4 A case study: Activity Recognition based on
Template Matching

Action recognition is a classification problem with the goal of detecting tran-
sitional actions such as “Sit to Stand”, “Walking”, and “Kneeling”. It can be
used for a variety of applications such as activity monitoring, gait analysis, and
diagnosis of many movement disorders such as Parkinson’s and Alzheimer’s
diseases.

Unfortunately, designing power-aware signal processing algorithms for ac-
tion recognition is challenging as special care needs to be taken to maintain
acceptable classification accuracy while minimizing power consumption as well
as improving wearability of the system. As a consequence, trade-offs must be
made between power consumption and classification accuracy while designing
the system.

Reducing the amount of active nodes is a common approach for power op-
timization and wearability enhancement in BSNs. Recognizing more complex
or multitude of actions requires more sensor nodes. However, in most cases,
only a subset of sensors is needed to recognize individual actions. Keeping
those sensors operational whose values are not considered by the system, is
wasteful. Thus, it is beneficial to determine the minimal set of nodes that can
identify a given full action set.

Differently from most of related work, our approach to solve this clas-
sification problem combines two performance criteria: accuracy and power
consumption. Furthermore, while most of the previous works in sensor node
selection minimize the number of active nodes, we examine individual sensors
that are embedded within each sensor node. Specifically, our classification ap-
proach is based on Template Matching. Figure 5.3 shows a high level block
diagram of the classification based on similarity score provided by the tem-
plate matching function. Template matching is a technique most used in image
processing to find portions of an image, called template, which are of interest.
The goal is to find the portions of the image that are most similar to the
template [72]. Instead of using images, we use the signals coming from the
inertial sensors and compare such signals with a previously calculated tem-
plate. There are different ways to calculate the similarity of an incoming signal

104

5.4. A case study: Activity Recognition based on Template Matching

with a predefined template of interest, including Sum of Squared Differences,
Euclidean Distance, and Normalized Cross Correlation (NCC).

Fig. 5.3. Template matching for classification.

In our classification model, results generated by individual sensor nodes are
combined to provide a final classification decision. This classifier combination
is a classic example of ensemble learning. In statistics and machine learning,
the ensemble learning refers to the method of combining multiple learned
models a predictive model that is more accurate that the constituent models.
The basilar assumption is that the resulting classifier is at least as accurate
as the most accurate weak classifier. The most well-known techniques for
ensemble learning include Weighted Majority, Boosting, Bagging and Stacked
Generalization [73]. We use a specific type of boosting adapted from the well-
known AdaBoost algorithm.

Classical AdaBoost learns from a set of weak classifiers and boost classifica-
tion performance by allocating weights to the individual local classifiers. The
weights specify contribution of each sensor to the classification task. There
are two main drawbacks with this approach:

1. AdaBoost examines all classifiers even if they provide less informative
data for classification. Contribution of different sensors to action recog-
nition varies depending on the placement of the sensor, type of inertial
information, and actions of interest. Practically, body-worn sensors can
produce redundant or correlated information when a movement occurs.
For instance, signals from nodes placed on the “upper arm” and “lower
fore arm” correlate during an upper body movement. Also, data provided
by a node placed on the “leg” may not contribute to upper body move-
ments such as “Sit to Stand”. Consequently, a more intelligent learning
algorithm is required to select only those sensors that contribute best to
the classification accuracy.

2. AdaBoost does not take into account the power requirements of the in-
dividual weak classifiers while learning from weak classifiers. In fact, the
weights assigned by the AdaBoost account only for the accuracy of the
classifiers. However, power consumption of the classifiers varies depend-
ing on the type of sensors, computing complexity, and data communica-
tion requirements. For example, gyroscopes generally consume much more
power than accelerometers. Therefore, the optimal subset of the classifiers

105

Chapter 5. Platform-Based Design methodology for BSNs

is selected by making appropriate design trade-off between accuracy and
power consumption.

5.4.1 Problem Formulation

Our system aims to detect a target action of interest, α̂, associated with a
particular template. Therefore, the system consists of several binary weak
classifiers each contributing to detection of the target action using a template
matching approach. To build a classification framework, we assume that there
are a total of m non-target actions, A = {a1, a2, · · · , am}, that may occurs
during the operation of the system.

Definition 1 (Sensor Node). A sensor node, si, is a physical wearable
node that has limited processing power and storage and can communicate
within certain range, and is composed of l sensors that capture inertial data
from human movements. Each sensor node is placed on a specific location on
the body.

Let S = {s1, s2, · · · , sn} be a set of n sensor nodes that are used to dis-
tinguish between the target action and non-target actions.

Definition 2 (Weak Classifier). Each sensor node, si, consists of l weak
classifiers, Ci = {Ci1, Ci2, · · · , Cil}. Each classifier Cik is associated with one
of the sensors available on si, and is a binary classifier that operates based
on template matching and makes a classification decision using the similar-
ity score obtained from NCC. The classifier determines whether or not an
incoming signal is classified as the target action.

Fig. 5.4. Learning algorithm and classifier combiner during training and test.

Given the n nodes and l sensors per node, the system has a total of
T = n × l weak classifiers. Figure 5.4 shows how learning parameters (e.g.
weights α11, · · · , αnl) are generated during training. As shown in the figure,
the learning algorithm can also provide an estimate of the expected accuracy of

106

5.4. A case study: Activity Recognition based on Template Matching

the entire classification, α. The set of sensors/classifiers that are used for learn-
ing would essentially determine the accuracy of the system. To calculate power
consumption of the set of active classifiers, we consider two sources of power
consumption, namely computation and communication costs. We assume that
each classifier is associated with a specific sensor (e.g. x-accelerometer, y-
gyroscope) and therefore has a fixed computation cost depending on whether
or not it is activated.

Definition 3 (Computation Cost). For each classifier Cij , we define
wij as the computation cost associated with power consumption of the cor-
responding sensor. This value is a priori known and has a non-zero value
for active classifiers while it is zero for non-active sensors. Thus, the total
computation costs is given by:

Pcomp =

n∑
i=1

l∑
j=1

xijwij (5.1)

where xij denotes in classifier Cij is active.

xij =

{
1, if classifier Cij is active
0, otherwise

(5.2)

Definition 4 (Communication Cost). For a set of weak classifiers used
for learning, the communication cost is given by:

Pcomm =

n∑
i=1

f

 l∑
j=1

xijbij

 (5.3)

where f(.) denotes the communication cost due to transmission of certain
amount of data, and xij denotes if classifier Cij is activated, and bij repre-
sents the amount of data that is generated by classifier Cij and needs to be
transmitted to the basestation.

We note that the communication costs are calculated for each sensor node
rather than individual sensors/classifiers. This is mainly due to combining
results of all active classifiers at each node prior to transmission to the bases-
tation. In other words, energy cost of communications is calculated collectively
for all active sensors at each node. The power consumption of the system due
to activation of a set of weak classifiers used for learning is then given by:

Z = Pcomp + Pcomm (5.4)

Problem 1. Given a set of T = ∪Ci = {C11, C12, · · · , Cnl} classifiers, and
also data units bij and computation cost wij for each classifier Cij , the problem
of Minimum Cost Classifier Selection (MCCS) is to find a subset of Cij with

107

Chapter 5. Platform-Based Design methodology for BSNs

minimum total cost while a lower bound of α ≥ F on the overall accuracy is
met. Therefore, the optimization problem can be written as follows:

Minimize

n∑
i=1

l∑
j=1

xijwij +

n∑
i=1

f

 l∑
j=1

xijbij

 (5.5)

subject to:

α ≥ F (5.6)

5.4.2 Applying the PDB methodology

To drive the design flow of the case study system, the SNSP, SNIP, and
SNAPP platforms defined in Section 5.3 sre used. The synthesis is composed
by a sequence of successive refinements that starts with a functional descrip-
tion of the application and delivers at the other end a network of programmed
wireless sensor nodes and a coordinator device.

However, to provide a higher abstraction layer for the functional descrip-
tion of the system, a further platform, called the Virtual Connectivity Plat-
form (VCP) is used. A VCP Qvcf is composed of three types of library ele-
ments: the set of Virtual Sensors Sv, Virtual Controllers Cv, and bidirectional
links L. A virtual sensor sv ∈ Sv is an abstraction of a sensing area and will be
later on refined in a set of physical sensor nodes. Similarly, a virtual controller
cv ∈ Cv is an abstraction of a computation capability and in general can be
mapped on physical sensor nodes, on the coordinator device, or partially on
both of them. Virtual components and links can be composed to form more
complex elements. It is not possible to directly connect virtual components,
but links must be used.

During the first step of the design flow, the classification algorithm of the
case study system can be easily described as an instance of VCP. Specifically,
it is possible to use very intuitively the concept of virtual sensor defined in
Section 3.11 as a formal model for both the Virtual Sensors and Virtual Con-
trollers in VCP. Alternatively, the task-oriented model supported by SPINE2
is another natural way to formalize the functional behavior of the system.
Of course, there are many possible refinements which represent the same
functional model. However, among these possible refinements it is chosen the
“highest”, which is the one with the minimum number of virtual components
and looser sensing and communication requirements. This instance is called
rg and this is the starting point for the rest of the synthesis flow.

The next step is to refine the requirement graph rg into a networked topol-
ogy nt. The goal is to substitute the virtual components with an adequate
set of physical components. To do this, the Sensor Network Implementation
Platform is used. Selecting an agent in Qsnip and mapping it to Qnt, means
selecting the hardware platform for the sensor node (taking into account the
built-in physical sensors and the ones that may be attached to it) and a lower

108

5.4. A case study: Activity Recognition based on Template Matching

bound on the density of nodes. The mapping gives a set of agents that may
or may not intersect the set of agents obtained by mapping rg to Qnt. This
intersection represents all the topologies with a sufficient number of interop-
erable nodes (equipped with proper physical sensors) that are good enough to
satisfy the sensing requirements. The set of solutions that are unfeasible, e.g.
due to budget and wearability constraints (the overall solution has too many
nodes) must then by removed. Among the remaining solutions, choosing the
right one to propagate down in the synthesis process is not trivial. Given a
number of nodes, the solution with the loosest sensing and communication
requirements is chosen. However it is difficult to understand at this level what
is a good number of nodes. On one hand, using more nodes may improve the
classification accuracy and the system lifetime as nodes can duty cycle e.g.
according to the set of actions that have to be recognized. On the other hand,
more nodes involve a higher cost of the solution and lead to a more inva-
sive system. However, the energy consumption cannot be estimated until the
communication protocol is decided and this happens at the next step of the
design flow. Consequently, we start with a solution that is relatively high in
the space of the possible solutions (i.e. with a low number of nodes), and after
the communication protocol is mapped, evaluate if the energy consumption
per node is satisfactory for a good lifetime of the network. If that is not the
case, go back and select another possible solution with more nodes. This step
consists in mapping the classification algorithm into the hardware platform
of the controller. This can be performed with a mapping tool like Metropolis
[74, 75], which is a design environment that was developed to support Plat-
form Based Design. The advantage of using Metropolis is that it supports any
type of model of computation for the functional description.

The last step is concerned with associating a communication protocol to
the physical components such that the communication requirements are sat-
isfied and the energy consumption minimized. To drive this step the Sensor
Network Ad-Hoc Protocol Platform (SNAPP) Qsnapp is used. The library el-
ements of the SNAPP are MAC protocols. The common semantic domain in
this step is represented by the instantiated network domain Qin. An instan-
tiated network is an operational BSN, i.e. a network of physical nodes with a
communication protocol. By mapping the selected networked topology onto
this common domain all the possible instantiated networks that satisfy the
given requirements on accuracy are obtained. By mapping a SNAPP instance
all the possible instantiated networks that use the selected protocol with all
the feasible combinations of the free parameters are obtained. The intersection
between the two mappings gives all the possible instantiated networks that use
the selected protocol and satisfy the given communication constraints. Among
these solutions, the one that minimizes the energy consumption is selected.
At this point, it is possible to evaluate if the synthesized solution can comply
with the lifetime requirements of the network. If that is the case, the process
ends, otherwise it is necessary to get back to the networked topology domain
and select an instance with more nodes. This final refinement is obtained as

109

Chapter 5. Platform-Based Design methodology for BSNs

the solution of a constrained optimization problem, where the constraint is
the classification accuracy requirement while the cost function to be mini-
mized is the energy consumption that is estimated based on an abstraction of
the physical properties of the candidate hardware platform. This step can be
effectively guided using a specific mapping framework like Rialto [69].

This step maps the communication protocol on the physical nodes. Since
the communication protocols of the SNAPP are already described in a dis-
tributed fashion, the parametrized code for each node can be easily developed
using the software interface of the nodes.

5.4.3 Summary

This chapter introduced a specialization of a PBD methodology for system
level design of BSN applications. First, the PBD approach has been briefly
described. Then, a PBD methology, previously proposed for the design of
WSN systems, has been specialized for the more specific BSN domain. Finally,
the methodology is applied to a case study related to the human activity
recognition problem solved with a technique inspired to a template matching
approach from the image processing domain.

110

6

Conclusions, Publications and Future Work

6.1 Conclusions

Wireless Body Sensor Networks (BSNs) allow for continuous and non-invasive
measurement of human body movements and physiological parameters by
means of tiny wireless physiological sensor devices applied to the skin and
in garments. BSNs possess enormous potential for changing people’s daily
lives as the can significantly enhance many human-centered domains not only
strictly related to medical applications (such as early detection and preven-
tion of diseases, and medical assistance at home) but also to sport, fitness, and
many other scenarios. However, although several BSN-based research proto-
types have been proposed so far, none of them have reached the market yet.
One of the biggest driving factors for this delay is due to their software design
and implementation approaches. This thesis provided innovative and effec-
tive solutions to this issue, particularly focused on programming abstractions,
techniques, and methodologies for improving design and prototyping of BSN
systems.

During the development of this thesis, several contributions have been
provided to the BSN research area.

The first important contribution is the definition of a domain-specific ap-
proach for programming BSN systems, which resulted in a domain-specific
programming framework named SPINE (Signal Processing in Node Envi-
ronment). One of the main achievements of SPINE is the reuse of software
components to allow different end-user applications to configure sensor nodes
at run-time based on the application-specific requirements without off-line re-
programming before switching from an application to another. Furthermore,
thanks to its modular component-based design approach, SPINE enables high
degree of heterogeneity, and a wide variety of hardware platforms, sensors,
programming languages, and operating systems are supported. This allows
for a very flexible and usable framework in different BSN application scenar-

111

Chapter 6. Conclusions, Publications and Future Work

ios, where, due to specific requirements, only certain platforms or operating
systems might be used.

Inside the thesis, Section 2 has been devoted to the review of the current
BSN state-of-the-art, with a specific emphasis on development tools and mid-
dlewares for programming BSN applications, along with a systematic iden-
tification of the fundamental requirement and properties that an effective
and efficient BSN programming framework should satisfy. To the best of our
knowledge, such a review work was missing before, and, therefore, it can be
considered an important contribution of this thesis as well.

To provide quantitative validation and performance evaluation of the pro-
posed framework, a number of BSN research prototypes have been imple-
mented atop SPINE. One of the main outcomes of having used SPINE is a
significant reduction of the development efforts: 100% at the node side, and
80% at the coordinator side. This shows that a notable improvement can be
obtained by adopting SPINE for the development of BSN applications.

Some considerations must be devoted to the proposed case studies as they
improved the current state-of-the-art. The physical activity monitoring sys-
tem reaches an overall average recognition accuracy of 97% using only two
wearable motion sensor nodes, a fewer number than the most relevant works.
The step-counter application relies on a novel algorithm which, to the best of
our knowledge, is the only one able to correctly recognize the steps taken dur-
ing walking from healthy, elderly, and people affected by walking disabilities,
limiting the average step detection error to only 12%. Our physical energy
expenditure system is able to estimate the calories burnt during daily ac-
tivities in real-time without assuming fixed orientation of the worn motion
sensor, which represented an important improvement to the state-of-the-art.
Finally, our emotional stress detection relies on a wireless sensor system, and
a monitoring application that, by means of time-domain heart-rate analysis,
provides a stress index using only ten minutes of observations.

Additional contributions presented in this thesis are the result of enhance-
ments and variants to the original proposed framework SPINE. They include
a task-oriented framework re-design of SPINE, an enhancement for support-
ing Collaborative BSNs, a multi-agent model for BSN programming, and a
programming paradigm based on the concept of Virtual Sensors. Particularly
relevant is the task-oriented re-design of SPINE through which the signifi-
cant result of platform-independence is achieved for most of the framework
components, and the multi-agent model as we showed that, at least when im-
plemented on more powerful sensor nodes, it allows for even more flexibility,
also thanks to the code migration which can be more naturally enabled by
means of the mobile agent concept.

Finally, a further contribution of this thesis is a specialization of the
Platform-Based Design (PBD) methodology for the BSN domain. PBD has
shown to be very effective in traditional embedded system design, both at
academic and industrial level. However, although an application of the PBD
to the WSN domain has been proposed in the past, delivering case studies for

112

6.2. Publications Related with this Thesis

building and industrial monitoring, this is the first time that PBD is shown
to properly address also the design of BSN systems.

6.2 Publications Related with this Thesis

The research work related to this thesis has resulted in 21 publications, in-
cluding:

� 6 journal articles (4 with ISI impact factor);
� 12 conference papers;
� 2 book chapters;
� 1 conference posters.

In the following, the publications are organized according to the section of
the thesis where the contents have been discussed, and a brief description of
each publication is provided.

6.2.1 SPINE

� SPINE: A domain-specific framework for rapid prototyping of
WBSN applications [44]:
F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and M. Sgroi. SPINE:

A domain-specific framework for rapid prototyping of WBSN applications. Software: Prac-

tice & Experience, 41(3):237-265, March 2011.

This paper is a significant extension of [76]. It presents in detail the core
SPINE framework, and describes its unique features through the devel-
opment of a case study which consists of a BSN system for monitoring
human physical activities in real-time.

� SPINE-based application development on heterogeneous Wire-
less Body Sensor Networks [77]:
G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, and A. Guerrieri. SPINE-based appli-

cation development on heterogeneous Wireless Body Sensor Networks. International Journal

of Computing, 9(1):80-89, 2010.

This paper proposes an approach based on the SPINE frameworks (SPINE-
1.x and SPINE2) for the programming of signal processing applications on
heterogeneous wireless sensor platforms. In particular, it presents two in-
tegrable approaches, based on the proposed frameworks, that allow for the
development of applications for BSNs constituted by heterogeneous sensor
nodes.

� DexterNet: An open platform for heterogeneous Body Sensor
Networks and its applications [78] :
P. Kuryloski, A. Giani, R. Giannantonio, K. Gilani, R. Gravina, V. Seppä, E. Seto, V. Shia,

C.Wang, P. Yan, A.Y. Yang, J. Hyttinen, S. Sastry, S.Wicker, and R. Bajcsy. DexterNet: An

113

Chapter 6. Conclusions, Publications and Future Work

open platform for heterogeneous Body Sensor Networks and its applications. In Proceedings

of the International Conference on Body Sensor Networks, BSN 2009, pages 92-97. IEEE

Computer Society, June 2009.

The paper presents an open-source platform for BSNs called DexterNet.
The system supports real-time, persistent human monitoring in both in-
door and outdoor environments. The platform utilizes a three-layer archi-
tecture to control heterogeneous body sensors.

� Performance analysis of an activity monitoring system using the
SPINE framework [79]:
R. Giannantonio, R. Gravina, P. Kuryloski, V. Seppä, F. Bellifemine, J. Hyttinen, and M.

Sgroi. Performance analysis of an activity monitoring system using the SPINE framework.

In Proceedings of the 3rd International Conference on Pervasive Computing Technologies

for Healthcare, Pervasive Health 2009, pages 1-8. IEEE Press, April 2009.

This paper describes important implementation parameters of the SPINE
framework, such as processing time, memory, bandwidth usage and power
consumption that are most relevant for application developers to set tun-
able parameters and analyze system performance. It also presents perfor-
mance and resource usage of a SPINE-based posture recognition system
for elderly health monitoring.

� SPINE: Signal Processing In Node Environment [80]:
R. Giannantonio, F. Bellifemine, R. Gravina, A. Guerrieri, G. Fortino, and M. Sgroi. SPINE:

Signal Processing In Node Environment. In Proceedings of the 1st European TinyOS Tech-

nology Exchange, ETTX 2009, February 2009.

This poster provides a quick overview to some relevant aspects of the
TinyOS implementation of the SPINE framework.

6.2.2 SPINE enhancements and variants

� Collaborative Body Sensor Networks [51]:
A. Augimeri, G. Fortino, S. Galzarano, and R. Gravina. Collaborative Body Sensor Networks.

In Proceedings of the IEEE International Conference on Systems, Man and Cybertnetics,

SMC 2011. IEEE Press, October 2011.

This paper proposes reference architectures and a SPINE-based middle-
ware for Collaborative Body Sensor Networks (CBSNs) that can enable
new smart wearable systems in the context of physical pervasive comput-
ing environments. It also presents a collaborative emotion detection sys-
tem, integrating heart rate sensing with handshake detection, developed
through C-SPINE, and experimentally analyzed.

� An agent-based signal processing in-node environment for real-
time human activity monitoring based on Wireless Body Sensor
Networks [42]:
F. Aiello, F. Bellifemine, G. Fortino, S. Galzarano, and R. Gravina. An agent-based signal

114

6.2. Publications Related with this Thesis

processing in-node environment for real-time human activity monitoring based on Wire-

less Body Sensor Networks. Journal of Engineering Applications of Artificial Intelligence,

24(7):1147-1161, 2011.

This paper proposes an application of the MAPS framework for the devel-
opment of a real-time BSN-based system for human activity monitoring.
The agent-oriented programming abstractions provided by MAPS allow
effective and rapid prototyping of the sensor-side software. The coordina-
tor relies on a JADE-based enhancement of the SPINE coordinator, while
the sensor nodes run the standard MAPS agents.

� Programming signal processing applications on heterogeneous
wireless sensor platforms [81]:
L. Buondonno, G. Fortino, S. Galzarano, R. Giannantonio, A. Giordano, R. Gravina, and

A. Guerrieri. Programming signal processing applications on heterogeneous wireless sensor

platforms. In Proceedings of the 5th IEEE International Workshop on Intelligent Data Ac-

quisition and Advanced Computing Systems: Technology and Applications, IDAACS 2009,

pages 682-687. IEEE Press, September 2009.

This paper presents SPINE2, a framework for the programming of sig-
nal processing applications on heterogeneous wireless sensor platforms.
The approach is exemplified through a human activity recognition system
based on a BSN composed of two types of sensor nodes, heterogeneous
with respect to base software and hardware.

� From modeling to implementation of Virtual Sensors in Body
Sensor Networks [56]:
N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannantonio, M. Sgroi, R.

Jafari, and G. Fortino. From modeling to implementation of Virtual Sensors in Body Sensor

Networks. IEEE Sensors Journal, doi:10.1109/JSEN.2011.2121059, 2011.

This paper presents a multi-layer task model based on the concept of
Virtual Sensors to improve architecture modularity, and design reusabil-
ity. Virtual Sensors are abstractions of components of BSN systems that
include sensor sampling and processing tasks and provide data upon exter-
nal requests. The proposed model is applied in the context of gait analysis
through wearable sensors.

� Implementation of Virtual Sensors in Body Sensor Networks
with the SPINE framework [82]:
N. Raveendranathan, V. Loseu, E. Guenterberg, R. Giannantonio, R. Gravina, M. Sgroi,

and R. Jafari. Implementation of Virtual Sensors in Body Sensor Networks with the SPINE

framework. In Proceedings of the IEEE Symposium on Industrial Embedded Systems, SIES

2009, pages 124-127. IEEE Press, July 2009.

This paper presents an extension of the SPINE Framework based on the
concept of Virtual Sensors (VS) which includes a new buffer management
scheme that facilitates the VS implementation.

115

Chapter 6. Conclusions, Publications and Future Work

6.2.3 MAPS and agent-based WSN programming frameworks

� An analysis of Java-based mobile agent platforms for Wireless
Sensor Networks [83]:
F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. An analysis of Java-based

mobile agent platforms for Wireless Sensor Networks. Multi-Agent and GRID Systems, to

appear:1-30, 2011.

This paper proposes an in-depth analysis of the only two available Java-
based mobile agent platforms for WSNs: Mobile Agent Platform for
SunSPOT (MAPS) and Agent Factory Micro Edition (AFME). In par-
ticular, the architecture, programming model and basic performance of
MAPS and AFME are described and compared. Moreover, a simple yet
effective case study concerning a mobile agent-based monitoring system
for remote sensing and aggregation is proposed.

� A Java-based agent platform for programming Wireless Sensor
Networks [53]:
F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. A Java-based agent platform for pro-

gramming Wireless Sensor Networks. The Computer Journal, 54(3):439-454, 2011.

This paper presents the design, implementation, and experimentation of
MAPS (Mobile Agent Platform for SunSPOT), an innovative Java-based
framework for WSNs based on SunSPOT technology which enables agent-
oriented programming of WSN applications. Agent programming with
MAPS is presented through both a simple example related to mobile agent-
based monitoring of a sensor node and a more complex case study for real-
time human activity recognition based on BSNs. Moreover, a performance
evaluation of MAPS carried out by computing micro-benchmarks, related
to agent communication, creation and migration, is illustrated.

� Agent-based development of Wireless Sensor Network applica-
tions [84]:
G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Agent-based development of Wireless

Sensor Network applications. In Proceedings of the 12th Workshop on Objects and Agents,

WOA 2011. CEUR Workshop Proceedings, July 2011.

This paper promotes the use of the agent paradigm for the development of
WSN applications. It provides motivations about synergies between agents
and WSNs, and a brief overview about agent technology for WSNs. Re-
quirements, and guidelines for the design of full-fledged agent-oriented
methodologies for programming WSN applications are also provided.

� Signal processing in-node frameworks for Wireless Body Sensor
Networks: from low-level to high-level approaches [85]:
F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Wireless Body Area Net-

works: Technology, Implementation and Applications, chapter 5 - Signal processing in-node

frameworks for Wireless Body Sensor Networks: from low-level to high-level approaches,

116

6.2. Publications Related with this Thesis

pages 1-23. Pan Stanford publishing, 2011.

This book chapter proposes a high-level approach based on the agent-
oriented programming model to flexibly design and efficiently implement
signal processing in-node environments supporting WBAN applications.
The approach is exemplified through a case study concerning a real-time
human activity monitoring system which is developed through two dif-
ferent agent-based frameworks: MAPS and AFME. A comparison of the
effectiveness and efficiency of the developed systems is finally presented.

� An agent-based signal processing in-node environment for real-
time human activity monitoring based on Wireless Body Sensor
Networks [86]:
F. Aiello, F. Bellifemine, G. Fortino, R. Gravina, and A. Guerrieri. An agent-based signal

processing in-node environment for real-time human activity monitoring based on Wireless

Body Sensor Networks. In Proceedings of the 1st International Workshop on Infrastruc-

tures and Tools for Multiagent Systems, jointly held with the 9th International Conference

on Autonomous Agents and Multi-Agent Systems, ITMAS 2010, May 2010.

This paper proposes an application of MAPS for the development of a
real-time WBSN-based system for human activity monitoring. The exper-
imentation phase of the prototype is also described, along with a perfor-
mance evaluation analysis.

� MAPS: a mobile agent platform for Java Sun Spots [87]:
F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. MAPS: a mobile agent platform for Java

Sun Spots. In Proceedings of the 3rd Workshop on Agent Technology for Sensor Networks,

jointly held with the 8th International Conference on Autonomous Agents and Multi-Agent

Systems, ATSN 2009, May 2009.

This paper emphasizes the importance of the mobile agents approach in
the WSN domain. Due to their intrinsic characteristics mobile agents may
provide more benefits in the context of WSNs than in conventional dis-
tributed environments. The discussion is supported through the descrip-
tion, analysis, and evaluation of a case study application of the MAPS
framework.

6.2.4 BSN Applications

� Continuous, real-time monitoring of assisted livings through
Wireless Body Sensor Networks [88]:
D.L. Carni’, G. Fortino, D. Grimaldi, R. Gravina, A. Guerrieri, and F. Lamonaca. Con-

tinuous, real-time monitoring of assisted livings through Wireless Body Sensor Networks. In

Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, IDAACS 2011. IEEE Press,

September 2011.

This paper proposes the BSNs as an enabling technology for a rich variety
of application domains, from e-Health to e-Factory. The paper describes

117

Chapter 6. Conclusions, Publications and Future Work

reference network architectures, effective programming frameworks and
novel applications in important application domains for BSNs.

� Enabling multiple BSN applications using the SPINE framework
[21]:
R. Gravina, A. Andreoli, A. Salmeri, L. Buondonno, N. Raveendranathank, V. Loseu, R. Gi-

annantonio, E. Seto, and G. Fortino. Enabling multiple BSN applications using the SPINE

framework. In Proceedings of the International Conference on Body Sensor Networks, BSN

2010, pages 228-233. IEEE Computer Society, June 2010.

This paper describes a number of practical case studies of the SPINE
framework, including gait analysis, physical rehabilitation support system,
human activity recognition, and physical energy expenditure. The paper,
therefore, emphasizes how SPINE is an effective support to the develop-
ment of heterogeneous health-care applications based on reusable software
subsystems. It also presents a SPINE sensor-node emulator that supports
the first phase of the signal processing flow design, when the actual hard-
ware devices may not be available.

� SPINE-HRV: a BSN-based toolkit for heart rate variability anal-
ysis in the time-domain [64]:
A. Andreoli, R. Gravina, R. Giannantonio, P. Pierleoni, and G. Fortino. SPINE-HRV: a

BSN-based toolkit for heart rate variability analysis in the time-domain. Wearable and Au-

tonomous Biomedical Devices and Systems: New issues and Characterization - Lecture

Notes on Electrical Engineering, 75:369-389, 2010.

This book chapter is a significant extension of [89]. It presents a toolkit
based on body sensor networks (BSN) for the time-domain HRV analysis,
named SPINE-HRV. The SPINE-HRV is composed of a wearable heart
activity monitoring system to continuously acquire the RR-intervals, and
a processing application developed using the SPINE framework. The chap-
ter describes an application of SPINE-HRV for stress detection of people
during activities in their everyday life. Experimentations carried out by
monitoring subjects in specific activities have shown the effectiveness of
SPINE-HRV in detecting stress.

� Time-domain heart rate variability analysis with the SPINE-
HRV [89]:
A. Andreoli, R. Gravina, R. Giannantonio, P. Pierleoni, and G. Fortino. Time-domain heart

rate variability analysis with the SPINE-HRV. In Proceedings of the 1st International Work-

shop on SigProcessing (Light-weight Signal Processing for Computationally Intensive BSN

Applications), PETRA 2010. ACM Press, June 2010.

This paper presents SPINE-HRV, a toolkit for time-domain Heart Rate
Variability (HRV) analysis. The toolkit is composed of a wearable Heart
Activity Monitoring System to acquire the R-peak to R-peak intervals,
and a processing application developed using the SPINE framework.

118

6.3. Future Work

� Opportunistic strategies for lightweight signal processing for
BSN [90]:
E. Seto, M. Eladio, A.Y. Yang, P. Yan, R. Gravina, I. Lin, C. Wang, M. Roy, V. Shia, and

R. Bajcsy. Opportunistic strategies for lightweight signal processing for BSN. In Proceedings

of the 1st International Workshop on SigProcessing (Light-weight Signal Processing for

Computationally Intensive BSN Applications), PETRA 2010. ACM Press, June 2010.

This paper presents a mobile platform for BSNs based on a smartphone
for lightweight signal processing of sensor mote data. The platform al-
lows for local processing of data at both the sensor mote and smartphone
levels, reducing the overhead of data transmission to remote services. It
discusses how the smartphone platform not only provides the ability for
wearable signal processing, but it allows for opportunistic sensing strate-
gies, in which many of the onboard sensors and capabilities of modern
smartphones may be collected and fused with body sensor data to provide
environmental and social context.

6.3 Future Work

Some of the research directions related with this thesis deserving further efforts
are still being explored. An interesting research activity is currently devoted
to enhance C-SPINE with proximity algorithms and mechanisms which take
into account users’ physical activities. Another relevant on-going work is fo-
cused on re-investing some of the research contribution presented in this thesis
(especially related to the proposed BSN case studies) into industrial patents.

On the basis of the achieved results and on the on-going research activities,
a number of new research directions have been envisaged.

A promising future work is related with the integration of the proposed
framework with a cloud-based server-side system (e.g. for control and long-
term remote analysis). Furthermore, as in the near future personal data gen-
erated by the BSN will be surely connected to users’ social networks, in ways
that we can’t necessarily anticipate now, it would be interesting to explore
new policy models for BSN-data privacy and publicness.

Another interesting research direction is the application of the Autonomic
Computing in the context of BSNs. In particular, it should be analyzed the
convenience to extend the proposed framework with an autonomic plane, a
way for separating out the provision of self -∗ properties from the BSN ap-
plication logic. The Autonomic Computing is a paradigm born as a response
to the increasingly complexity of managing computing systems. It faces the
problem by introducing a series of self -∗ properties (self-configuration, self-
healing, self-optimization, and self-protection) into complex systems, through
which such systems can be capable of performing several self-management
actions without any human intervention.

119

Chapter 6. Conclusions, Publications and Future Work

Finally, the proposed PBD methodology surely deserves additional re-
search efforts, e.g. devoted at providing a different Service Platform, based
on the concept of software agents rather than on virtual sensors.

120

A

MAPS

MAPS [53, 87, 91] is an innovative Java-based framework purposely devel-
oped on SunSPOT technology [19] for enabling agent-oriented programming
of WSN applications.

In this Appendix, requirements, architecture (at system and agent level),
and programming model of the MAPS Framework are described.

A.1 Requirements

The MAPS framework has been appositely defined for resource-constrained
sensor nodes; in particular its requirements are the following:

� Lightweight agent server architecture. The agent server architecture must
be lightweight, which implies the avoidance of heavy concurrency models
and, therefore, the exploitation of cooperative concurrency to run agents.

� Lightweight agent architecture. The agent architecture must also be light-
weight so that agents can be efficiently executed and migrated.

� Minimal core services. The main core services must be: agent migration,
sensing capability access, agent naming, agent communication and tim-
ing. The agent migration service allows an agent to be moved from one
sensor node to another by retaining the code, data and execution state.
The sensing capability access service allows agents to access the sensing
capabilities of the sensor node and, more generally, its resources (actua-
tors, input signalers, flash memory). The agent naming service provides
a region-based namespace for agent identifiers and agent locations. The
agent communication service allows local and remote one-hop/multi-hop
message-based communications among agents. The timing service allows
agents to set timers for timing their actions.

� Plug-in-based architecture extensions. Any other service must be defined
in terms of one or more dynamically installable components (or plug-ins)
implemented as single mobile agents or cooperating mobile agents.

121

Appendix A. MAPS

� Layer-oriented mobile agents. Mobile agents may be natively characterized
on the basis of the layer to which they belong: application, middleware and
network layer. They should also be able to locally interact to enable cross-
layering.

A.2 Agent server architecture

The designed sensor node architecture is shown in Figure A.1.

Fig. A.1. The architecture of MAPS.

The architecture is based on components that interact through events.
The choice to design the architecture according to a component- and event-

based approach is motivated by the effectiveness that such a kind of archi-
tecture has demonstrated for sensor node programming. In fact, the TinyOS
operating system [11], the de facto standard for wireless sensor node plat-
forms, relies on this kind of architecture. In particular, the main components
are the following:

1. Mobile agent (MA). The MAs are computing components which are differ-
entiated on the basis of the layer (application, middleware and network) at
which they perform tasks. Application layer MAs incorporate application-
level logic performing sensor monitoring, actuator control, data filter-
ing/aggregation, high-level event detection, application-level protocols
etc. Middleware layer MAs perform middleware-level tasks such as dis-
tributed data fusion, discovery protocols for agents, data and sensors,
scope management etc. Network layer MAs mainly implement transport
(e.g. data dissemination) and network (e.g. multi-hop routing) protocols.
Agents at different layers can locally interact to implement cross-layering.

122

A.3. Agent programming model

2. Mobile agent execution engine (MAEE). The MAEE is the component
that supports the execution of agents by means of an event-based sched-
uler enabling cooperative concurrency. The MAEE handles each event
emitted by or to be delivered at MAs through decoupling event queues.
The MAEE interacts with the other core components to fulfill service re-
quests (message transmission, sensor reading, timer setting etc.) issued by
the MAs.

3. Mobile agent migration manager (MAMM). The MAMM component sup-
ports the migration of agents from one sensor node to another. In partic-
ular, the MAMM is able to: (i) serialize an MA into a message and send it
to the target sensor node and (ii) receive a message containing a serialized
MA, de-serialize and activate it. The agent serialization format includes
the code, data and execution state.

4. Mobile agent communication channel (MACC). The MACC component
enables inter-agent communications based on asynchronous messages.
Messages can be unicast, multicast or broadcast.

5. Mobile agent naming (MAN). The MAN component provides agent nam-
ing based on proxies and regions [92] to support the MAMM and MACC
components in their operations. The MAN also manages the (dynamic)
list of the neighbor sensor nodes.

6. Timer manager (TM). The TM component provides the timer service that
allows for the management of timers to be used for timing MA operations.

7. Resource manager (RM). The RM component provides access to the sen-
sor node resources: sensors/actuators, battery and flash memory.

A.3 Agent programming model

The architecture of an MA is modeled as a multi-plane state machine com-
municating through events (see Figure A.2).

This architecture allows exploiting the benefits derived from three pa-
radigms for WSN programming: event-driven programming [12], state-based
programming [93] and agent-based programming [94]. Moreover, it enables
role-based programming, an important paradigm for agents, as agents behave
differently according to the role they can assume during their life cycle [95].
In particular the architecture consists of:

� Global variables (GV). The GV component represents the data of the MA
including the MA identity.

� Global functions (GF). The GF component consists of a set of supporting
functions which can access GV but can invoke neither core primitives nor
other functions.

� Multi-plane state machine (MPSM). The MPSM component consists of
a set of planes. Each plane may represent the behavior of the MA in a
specific role. In particular a plane is composed of:

123

Appendix A. MAPS

Fig. A.2. MAPS agent model.

– Local variables (LV). The LV component represents the local data of a
plane.

– Local functions (LF). The LF component consists of a set of local plane
supporting functions which can access LV but can invoke neither core
primitives nor other functions.

– ECA-based automata (ECAA). The ECAA component represents the
dynamic behavior of the MA in that plane and is composed of states
and mutually exclusive transitions among states. Transitions are la-
beled by ECA rules: E[C]/A, where E is the event name, [C] is a boolean
expression based on the GV and LV variables, and A is the atomic ac-
tion. A transition t is triggered if t originates from the current state
(i.e. the state in which the ECAA component is), the event with the
event name E occurs and [C] holds. When the transition fires, A is first
executed and, then, the state transition takes place. In particular, the
atomic action can use GV, GF, LV and LF for performing computa-
tions and, particularly, invoking the core primitives to asynchronously
emit one or more events. The delivery of an event is asynchronous and
can occur only when the ECAA is idle, i.e. the handling of the last
delivered event (ED) is completed.

� Event dispatcher (ED). The ED component dispatches the event delivered
by the MAEE to one or more planes according to the events that the
planes are able to handle. In particular, if an event must be dispatched to
more than one plane, the event dispatching is appositely serialized.

A.4 Implementation

The implementation of MAPS is a real challenge due to the constrained re-
sources of the current sensor nodes. Nevertheless, an actual implementation

124

A.4. Implementation

could be done in nesC/TinyOS on TelosB motes or in Java on SunSPOT
nodes. Although the implementations of the currently available mobile agent
frameworks for WSN have to date been carried out in nesC/TinyOS (e.g.
through the Mate’ virtual machine [96]), we believe that the object-oriented
features offered by the Sun SPOT technology could provide more flexibility
and extendability as well as easiness of development for an efficient imple-
mentation of the proposed framework. Specifically, the offered features are
the following:

� Java programming language. Sensor node software is programmed in the
Java language by using Java standard libraries and specific Sun SPOT
libraries such as main Sun SPOT board classes, sensor board transducer
classes and Squawk operating environment classes.

� NetBeans IDE for software development. The IDE fully supports code edit-
ing, compilation, deployment and execution for SunSPOTs. This enables
a more rapid software prototyping.

� Single-hop/multi-hop and reliable/unreliable communications. The current
version of the Sun SPOT SDK uses the GCF (Generic Connection Frame-
work) to provide radio communication between SPOTs, routed via mul-
tiple hops if necessary. Two protocols are available: the radiostream pro-
tocol and the radiogram protocol. The radiostream protocol provides reli-
able, buffered, stream-based communication between two devices.The ra-
diogram protocol provides datagram-based communication between two
devices and broadcast communications. This protocol provides no guaran-
tees about delivery or ordering. Datagrams sent over more than one hop
could be silently lost, be delivered more than once and be delivered out
of sequence. Datagrams sent over a single hop will not be silently lost or
delivered out of sequence, but they could be delivered more than once.The
protocols are implemented on top of the MAC layer of the 802.15.4 imple-
mentation.

� Easy access to the sensor node devices (sensors, flash memory, timer,
battery). The Sun SPOT device libraries contains drivers to easily access
and use the following: the on-board LED, the PIO, AIC, USART and
Timer-Counter devices in the AT91 package, the CC2420 radio chip (in
the form of an IEEE 802.15.4 Physical interface), an IEEE 802.15.4 MAC
layer, an SPI interface (used for communication with the CC2420 and
off-board SPI devices) and an interface to the flash memory.

� Code migration support. An Isolate is a mechanism by which an application
is represented as an object. In Squawk, one or more applications can run in
the single JVM. Conceptually, each application is completely isolated from
all other applications. The Squawk implementation has the interesting
feature of Isolate migration, i.e. an Isolate running on one Squawk VM
instance can be paused, serialized to a file or over a network connection
and restarted in another Squawk VM instance.

125

Appendix A. MAPS

A.5 An agent-based system for monitoring human
activity

This section describes a MAPS-based implementation [42] of the real-time
human activity monitoring discussed in Section 4.1. The system is able to
recognize postures (e.g. lying down, sitting and standing still) and movements
(e.g. walking) of assisted livings. It is designed and implemented with MAPS
at the sensor node side and through Java and JADE at the coordinator side.

A.5.1 Design and Implementation

The architecture of the system, shown in Figure A.3, is organized into one
coordinator and two sensor nodes.

The coordinator side (see Figure A.3) is based on a JADE agent that
incorporates two modules of the Java-based SPINE coordinator, which are
the SPINE Manager and the SPINE Listener (see Section 3.9). In particular,
the SPINE Manager is used by end-user applications (e.g. real-time activity
monitoring application) for sending commands to the sensor nodes. Moreover,
the SPINE Manager is responsible of capturing low-level messages and events
sent from the nodes through the SPINE Listener, which integrates several
sensor platform-specific SPINE communication modules (e.g. TinyOS and Z-
Stack), to notify registered applications with higher-level events and message
content. A SPINE communication module is composed of a send/receive in-
terface and additional components which implement such interface according
to the specific sensor platform and that formalize the high-level SPINE mes-
sages in sensor platform-specific messages. In this work, the SPINE Listener
has been enhanced with a new MAPS/Sun SPOT communication module
to configure and communicate with MAPS-based sensor nodes. Such module
translates high-level SPINE messages formatted according to the SPINE com-
munication protocol into lower-level MAPS/Sun SPOT messages through its
transmitter component and vice versa through its receiver component. The
JADE agent coordinator also integrates an application-specific logic for the
synchronization of the two sensors (see below). The SPINE-based real-time
activity monitoring application was thus completely reused as well as the
SPINE Manager, only the SPINE Listener was modified to account for such
enhancement.

The sensor node side (see Figure A.3) is based on two Java Sun SPOTs
sensors respectively positioned on the waist and the thigh of the monitored
person. In particular, MAPS is resident on the sensor nodes and supports the
execution of the WaistSensorAgent and the ThighSensorAgent, which have
the following similar step-wise cyclic behavior:

1. Sensing the 3-axial accelerometer sensor according to a given sampling
time (ST);

126

A.5. An agent-based system for monitoring human activity

Fig. A.3. Architecture of the real-time activity monitoring system.

2. Computation of specific features on the acquired raw data according to
the window (W) and shift (S) parameters. In particular, W is the sample
size on which features are computed whereas S is the percentage of sliding
on W (usually S is set to 50%);

3. Features aggregation and transmission to the coordinator;
4. Goto 1.

The agents differ in the specific computed features even though the W
and S parameters are equally set. In particular, while the WaistSensorAgent
computes the mean values for the accelerometer data sensed on the XYZ axes,
the min and max values for data sensed on the X axis, the ThighSensorAgent
calculates the min value for data sensed on the X axis.

The interaction diagram depicted in Figure A.4 shows the interaction
among the three agents costituting the real-time system: CoordinatorAgent,
WaistSensorAgent and ThighSensorAgent. In particular, the CoordinatorA-
gent first sends one AGN START event for each sensor agent to configure
them with the sensing parameters (W, S and ST); then, it broadcasts the
START event to start the sensing activity of the sensor agents. Sensor agents
sends the DATA event to the CoordinatorAgent as soon as features are com-
puted. If the CoordinatorAgent detects that the agents are not synchronized
anymore, it sends the RESYNCH event to resynchronize them.

The behavior of the WaistSensorAgent is specified through 1-plane re-
ported in Figure A.5 (the behavior of the ThighSensorAgent has the same
structure but the computed features are different as discussed above). In par-
ticular, after an initialization action (A0) driven by the occurrence of the
AGN START event, the sensing plane goes into the WAIT4SENSING state.

127

Appendix A. MAPS

Fig. A.4. Agents interaction of the real-time activity monitoring system.

Fig. A.5. 1-plane behavior of the WaistSensorAgent.

The MSG.START event allows starting the sensing process by the execution
of action A1, which in particular performs the following steps:

1. sensing parameters (W, S, ST), data acquisition buffers for XYZ chan-
nels of the accelerometer sensor (windowX, windowY, windowZ), and
data buffers for feature calculation (windowFE4X, windowFE4Y, win-
dowFE4Z) are initialized (see initSensingParamsAndBuffers function);

2. the timer is set for timing the data acquisition according to the ST param-
eter (see timerSetForSensing function and in particular the highly precise
Sun SPOT timer is used);

3. a data acquisition is requested by submitting the ACC CURRENT ALL-
AXES event through the sense primitive (see doSensing function).

128

A.5. An agent-based system for monitoring human activity

Once the data sample is acquired, the ACC CURRENT ALL AXES event
is sent back with the acquired data and the action A2 is executed; in particular:

1. the buffers are circularly filled with the proper values (see bufferFilling
function);

2. the sampleCounter is incremented and the nextSampleIndex is incre-
mented module W for the next data acquisition;

3. if S samples have been acquired, features are to be calculated, thus sam-
pleCounter is reset, samples in the buffers are copied into the buffers for
computing features, calculation of the features is carried out through the
meanMaxMin function, and the aggregated results are sent to the base
station by means of the MSG TO BASESTATION event appropriately
constructed;

4. the timer is reset;
5. data acquisition is finally requested.

In the ACC SENSED&FEAT COMPUTED state the MSG.RESYNCH
might be received for resynchronization purposes; it brings the sensing plane
into the WAIT4SENSING state. The MSG.RESTART brings the sensing
plane back into the ACC SENSED&FEAT COMPUTED state for (recon-
figuring and) continuing the sensing process. The MSG.STOP eventually ter-
minates the sensing process.

A.5.2 Performance evaluation

Two important issues to deal with are the timing of the sensing process in
terms of admissible sampling rate and the synchronization between the oper-
ations of the two agents which is to be maintained within a maximum skew
for not affecting the real-time monitoring. If such skew is overtaken, the two
agents are to be re-synchronized. Indeed such two aspects are strictly cor-
related. In particular, as the sensor agents compute a different number of
features, when the sampling rate is high, the agent computing more features
(i.e. the WaistSensorAgent) takes more time to complete its operations for
each S sample acquisition than the ThighSensorAgent. Re-synchronization is
driven by the synchronization logic included in the developed MAPS/Sun
SPOT comm module, which sends a resynchronization message (see the
MSG.RESYNCH event in Figure A.5) as soon as it detects that the syn-
chronization skew is greater than a given threshold. Detection is based on
the skew time between the receptions of two messages sent by the agents
that contain features referring to the same interval of S sample acquisition:
if skew>=P*S*ST then synchronize, where P is a percentage, S=0.5W, and
ST is the sampling time. Thus, the evaluation aimed at analyzing the syn-
chronization of the sensor agents and their monitoring continuity. The defined
measurements are:

� The Packet Pair Average Time (PPAT), which is the average reception
time between two consecutive pairs of synchronized packets (same logical

129

Appendix A. MAPS

timestamp, see timestamp variable in Figure A.5) containing the computed
features (see the MSG TO BASESTATION event in Figure A.5) sent by
the sensor agents. PPAT should be ideally equals to ST*S, i.e. the packet
pair arrives each monitoring period and so there is no de-synchronization
in the average.

� The Synchronization Packet Percentage (SPP), which is the percentage of
resynchronization packets (see RESYNCH event in Figure A.5), which are
sent by the coordinator for re-synchronizing the sensor agents, calculated
with respect to the total number of received feature packets. SPP should
be as much as possible close to 0, i.e. a few or no resynchronizations are
carried out and so the monitoring can be continuous as a resynch operation
usually takes 600 ms.

In particular, the experiments were carried out by fixing ST (ms) = [25,
50, 100], W (samples) = [100, 80, 40, 20, 10], and P (%) = [5, 10, 25]. Each
experiment took 15 minutes and 50 tests per experiment were carried out. The
obtained values were averaged over the 50 tests performed (also the standard
deviation is reported). The values of ST and W were chosen to evaluate the
system under different operating conditions: from high (ST=25 ms, W=10,
S=50% –> response time = 125 ms) to slow (ST=100 ms, W=100, S=50%
–> response time = 5 s) system response times. The system response time can
directly affect the accuracy of the human activity recognition as the higher
is the frequency of refreshing the human activity status, the quicker is the
capability of the system to capture human activity changes. Moreover the
variation range of P% accommodates for small to medium skews.

Figure A.6 shows the obtained results for P=25% and P=5% by varying
ST and W in the ranges defined above. As can be noticed, the system cannot
support an ST=25 ms because PPAT is always greater than the ideal value
and SPP is too high. This leads to a non continuous monitoring due to very
frequent resynchronizations (SPP ≥15%). An ST=50 ms can be supported
for P=25% and W≥40 as SPP is maximum 8% so slightly impacting the
monitoring continuity. The best results are obtained with ST=100 ms, P=25%
and W≥20; they guarantee monitoring continuity due to an SPP≈ 0% and
regularity as experimented PPAT ≈ ideal PPAT for W≥20. If P=5% and
W=[10, 20] or P=25% and W=10, an ST=100 ms is not a good value either
because an out-of-limits skew frequently occurs.

It is worth noting that even though a lower ST would allow a more fre-
quent monitoring, the considered human activities can be well captured by
an ST=100 ms and W=20 (which implies a response time = 1 s) as demon-
strated by the experimental results obtained from the carried-out real-time
human activity monitoring.

To compare the efficiency of the MAPS- and SPINE-based implementa-
tions of the system, the experiments were carried out by fixing ST (ms) = [25,
50, 100], W (samples) = [40, 20], and P (%) = [5, 25]. Each experiment took
15 minutes and 50 tests per experiment were carried out. Figures A.7 and

130

A.5. An agent-based system for monitoring human activity

Fig. A.6. Analysis of the synchronization of the MAPS sensor agents: PPAT and
SPP for P=25% and P=5% by varying W.

A.8 show the obtained results, which are the average values of the 50 tests
(also the standard deviation is reported). As can be noticed, all the systems
cannot support an ST=25ms because PPAT is always greater than the ideal
value and SPP is too high. This leads to a non continuous monitoring due
to the very frequent resynchronization (SPP≥20 for W=20 and S=10). The
best results are obtained with ST=100ms, P=25% and W=20; they guaran-
tee monitoring continuity due to an SPP≈0% and regularity as experimented
PPAT≈ideal PPAT for W=20. If W=20 and P=5%, ST=100 ms is not a good

131

Appendix A. MAPS

Fig. A.7. Comparison of the synchronization between MAPS and SPINE sensor
agents: PPAT and SPP for P=25% and P=5% and W=20, S=10.

value either because an out-of-limits skew frequently occurs. SPINE performs
better for the parameters ST=100, W=40, and P=25% whereas it has lower
performance in the other cases. On the basis of the obtained results we can
state that MAPS on Sun SPOT shows comparable performances with SPINE
on TelosB sensors, which is a domain-specific framework for WBSNs, so con-
firming its suitability for supporting efficient WBSN applications.

132

A.5. An agent-based system for monitoring human activity

Fig. A.8. Comparison of the synchronization between MAPS and SPINE sensor
agents: PPAT and SPP for P=25% and P=5% and W=40, S=20.

A.5.2.1 Recognition accuracy

The activity monitoring system integrates a classifier based on the K-Nearest
Neighbor algorithm [58] that is capable of recognizing postures and move-
ments defined in a training phase. The classifier was setup through a train-
ing phase and tested considering the following parameter setting: ST=100ms,
W=20 (S=10), P=25%. Accordingly, the features (Min, Max and Mean) are
computed on 20 sampled data every new 10 samples acquired by the sensors.

133

Appendix A. MAPS

The training phase used a KNN-based classifier parameterized with K=1 and
the Manhattan distance which performs quite well as classes (lying down, sit-
ting, standing still and walking) are rather separate and scarcely affected by
noise. The test phase is carried out by considering the pre-defined sequence
of postures/movements represented by the state machine reported in Figure
A.9.

Fig. A.9. State machine of the pre-defined sequence of postures/movements.

Accordingly, the obtained classification accuracy results are reported in
Figure A.10. As can be noted after a transitory period of 5 s from one state to
another, all the postures/movements are recognized with an accuracy of 100%.
The state transitions more difficult to recognize are STA→SIT, WLK→STA,
and SIT→LYG, whereas the transition STA→WLK is recognized as soon as
it occurs. The obtained results are good and encouraging if compared with
other works in the literature which use more than two sensors on the human
body to recognize activities [97].

Fig. A.10. Percentage of mismatches vs. transitory time computed with ST=100
ms, W=20, P=25%.

134

References

[1] P. Alexandros and B. Nikolaos. A Survey on Wearable Sensor-Based Systems
For Health Monitoring and Prognosis. IEEE Transactions on Systems, Man
and Cybernetics, 40(1):1–12, 2010.

[2] S. Ullah, P. Khan, N. Ullah, S. Saleem, H. Higgins, and K.-S. Kwak. A Review of
Wireless Body Area Networks for Medical Applications. International Journal
of Communications, Network and System Sciences, 2(8):797–803, 2009.

[3] J. Yick, B. Mukherjee, and D. Ghosal. Wireless Sensor Network Survey. Com-
puter Networks, 52(12):2292–2330, 2008.

[4] IEEE 802.15.4 website. http://www.ieee802.org/15/pub/tg4.html, 2011.
[5] ZigBee website. http://www.zigbee.org, 2011.
[6] Bluetooth website. http://www.bluetooth.com, 2011.
[7] Bluetooth Low Energy website.

http://www.bluetooth.com/pages/low-energy.aspx, 2011.
[8] ANT website. http://www.thisisant.com, 2011.
[9] IEEE 802.15 WPAN Task Group 6 website.

http://ieee802.org/15/pub/tg6.html, 2011.
[10] Adi Mallikarjuna V. Reddy, A.V.U. Phani Kumar, D. Janakiram, and G. Ashok

Kumar. Wireless Sensor Network Operating Systems: a Survey. International
Journal of Sensor Networks, 5(4):236–255, August 2009.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. Sys-
tem Architecture Directions for Networked Sensors. ACM SIGPLAN Notices,
35(11), November 2000.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
NesC language: A holistic approach to networked embedded systems. ACM
SIGPLAN Notices, 38(5):1–11, May 2003.

[13] T. Von Eicken, D. Culler, S.-C. Goldstein, and K.-E. Schauser. Active messages:
a mechanism for integrated communication and computation. In Proceedings of
the 19th Annual International Symposium on Computer Architecture, ISCA’92,
pages 256–266. ACM Press, May 1992.

[14] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. In Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks, LCN’04,
pages 455–462. IEEE Computer Society, November 2004.

135

References

[15] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gru-
enwald, A. Torgerson, and R. Han. Mantis OS: An embedded multithreaded
operating system for wireless micro sensor platforms. Mobile Networks and
Applications, 10(4):563–579, January 2005.

[16] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware
Resource-Centric RTOS for Sensor Networks. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium, RTSS 2005, pages 256–265. IEEE
Computer Society, December 2005.

[17] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Readings in multime-
dia computing and networking. chapter Resource kernels: a resource-centric
approach to real-time and multimedia systems, pages 476–490. Morgan Kauf-
mann Publishers Inc., 2001.

[18] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java on the bare
metal of wireless sensor devices: the Squawk Java virtual machine. In Proceed-
ings of the 2nd International Conference on Virtual Execution Environments,
VEE 2006, pages 78–88, June 2006.

[19] SunSPOT website. http://www.sunspotworld.com, 2011.
[20] Z-Stack website. http://www.ti.com/tool/z-stack, 2011.
[21] R. Gravina, A. Andreoli, A. Salmeri, L. Buondonno, N. Raveendranathank,

V. Loseu, R. Giannantonio, E. Seto, and G. Fortino. Enabling Multiple BSN
Applications Using the SPINE Framework. In Proceedings of the International
Conference on Body Sensor Networks, BSN 2010, pages 228–233. IEEE Com-
puter Society, June 2010.

[22] K. Lorincz, D.-J. Malan, T. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton. Sensor Networks for Emergency
Response: Challenges and Opportunities. IEEE Pervasive Computing, 3(4):16–
23, October 2004.

[23] T. Terada and K. Tanaka. A framework for constructing entertainment con-
tents using flash and wearable sensors. In Proceedings of the 9th International
Conference on Entertainment computing, ICEC’10, pages 334–341. Springer-
Verlag, 2010.

[24] S. Coyle, D. Morris, K. Lau, N. Moyna, and D. Diamond. Textile-based wear-
able sensors for assisting sports performance. In Proceedings of the Interna-
tional Conference on Body Sensor Networks, BSN 2009, pages 228–233. IEEE
Computer Society, June 2010.

[25] J.-Y. Huang and C.-H. Tsai. A wearable computing environment for the security
of a large-scale factory. In Proceedings of the 12th International Conference
on Human-computer interaction: interaction platforms and techniques, HCI’07,
pages 1113–1122. Springer-Verlag, July 2007.

[26] A. Augimeri, G. Fortino, M. Rege, V. Handzisky, and A. Wolisz. A Coop-
erative Approach for Handshake Detection based on Body Sensor Networks.
In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2010, pages 281–288. IEEE Press, October 2010.

[27] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile Agent Middleware for Sensor
Networks: An Application Case Study. In Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, IPSN 2005, pages
382–387. IEEE Signal Processing Society, April 2005.

[28] R. Kumar, M. Wolenetz, B. Agarwalla, J.-S., P. Hutto, A. Paul, and U. Ra-
machandran. DFuse: A Framework for Distributed Data Fusion. In Proceedings

136

References

of the 1st International Conference on Embedded networked sensor systems,
SenSys’03, pages 114–125. ACM Press, November 2003.

[29] S. Madden, M.-J. Franklin, J. Hellerstein, and W. Hong. TAG: a Tiny AGgrega-
tion Service for Ad-Hoc Sensor Networks. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, OSDI’02. ACM Press, De-
cember 2002.

[30] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner. Mires: a publish/subscribe middleware for sensor networks. Personal
and Ubiquitous Computing, 10(1):37–44, December 2005.

[31] Y. Hao and R. Foster. Wireless body sensor networks for health-monitoring
applications. Physiological Measurement, 29(11):R27–R56, November 2009.

[32] B. Grundlehner, L. Brown, J. Penders, and G. Gyselinckx. The Design and
Analysis of a Real-Time, Continuous Arousal Monitor. In Proceedings of the 6th
International Workshop on Wearable and Implantable Body Sensor Networks,
BSN 2009, pages 156–161. IEEE Press, June 2009.

[33] C.-W. Mundt, K.-N. Montgomery, U.-E. Udoh, V.-N. Barker, G.-C. Thonier,
A.-M. Tellier, R.-D. Ricks, R.-B. Darling, Y.-D. Cagle, N.-A. Cabrol, S.-J. Ru-
oss, J.-L. Swain, J.-W. Hines, and G.-T. Kovacs. A Multiparameter Wearable
Physiologic Monitoring System for Space and Terrestrial Applications. IEEE
Transactions on Information Technology in Biomedicine, 9(3):382–391, Septem-
ber 2005.

[34] Fitbit website. http://www.fitbit.com, 2011.
[35] Vitalsense website. http://vitalsense.respironics.com, 2011.
[36] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton. CodeBlue: An Ad Hoc

Sensor Network Infrastructure for Emergency Medical Care. In Proceedings
of the MobiSys 2004 Workshop on Applications of Mobile Embedded Systems,
WAMES 2004. ACM Press, June 2004.

[37] J.-G. Jetcheva and D.-B. Johnson. Adaptive Demand-Driven Multicast Routin-
gin Multi-Hop Wireless AdHoc Networks. In Proceedings of the International
Symposium on Mobile AdHoc Networking and Computing, MobiHoc 2001, pages
33–44. ACM Press, October 2001.

[38] M. Zhang and A. Sawchuk. A Customizable Framework of Body Area Sensor
Network for Rehabilitation. In Proceedings of the 2nd International Symposium
on Applied Sciences in Biomedical and Communication Technologies, ISABEL
2009, pages 24–27. IEEE Press, November 2009.

[39] C. Lombriser, D. Roggen, M. Stager, and G. Troster. Titan: A Tiny Task
Network for Dynamically Reconfigurable Heterogeneous Sensor Networks. In
Proceedings of the 15th Fachtagung Kommunikation in Verteilten Systemen,
KiVS 2007, pages 127–138. Springer, February 2007.

[40] C. Muldoon, G.-M.P. O’Hare, M.-J. O’Grady, and R. Tynan. Agent Migration
and Communication in WSNs. In Proceedings of the 9th International Con-
ference on Parallel and Distributed Computing, Applications and Technologies,
PDCAT 2008, pages 425–430. IEEE Computer Society, December 2008.

[41] A. S. Rao and M. P. Georgeff. BDI Agents: from theory to practice. In Proceed-
ings of the 1st International Conference on Multi-Agent Systems, ICMAS’95,
pages 312–319. MIT Press, June 1995.

[42] F. Aiello, F. Bellifemine, G. Fortino, S. Galzarano, and R. Gravina. An agent-
based signal processing in-node environment for real-time human activity mon-
itoring based on wireless body sensor networks. Journal of Engineering Appli-
cations of Artificial Intelligence, 24(7):1147–1161, 2011.

137

References

[43] W.-B. Heinzelman, A.-L. Murphy, H.-S. Carvalho, and M.-A. Perillo. Mid-
dleware to support sensor network applications. IEEE Network, 18(1):6–14,
Jan/Feb 2004.

[44] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and
M. Sgroi. SPINE: A domain-specific framework for rapid prototyping of WBSN
applications. Software: Practice & Experience, 41(3):237–265, March 2011.

[45] SPINE website. http://spine.tilab.com, 2011.
[46] G. Holmes, A. Donkin, and I.H. Witten. Weka: A machine learning workbench.

In Proceedings of the 2nd Australia and New Zealand Conference on Intelligent
Information Systems, ANZIIS’94, pages 1269–1277. IEEE Press, 1994.

[47] Android website. http://www.android.com, 2011.
[48] Bluecove API website. http://bluecove.org, 2011.
[49] Android Bluetooth API.

http://developer.android.com/guide/topics/wireless/bluetooth.html, 2011.
[50] Shimmer website. http://www.shimmer-research.com/, 2011.
[51] A. Augimeri, G. Fortino, S. Galzarano, and R. Gravina. Collaborative Body

Sensor Networks. In Proceedings of the IEEE International Conference on Sys-
tems, Man and Cybertnetics, SMC 2011. IEEE Press, October 2011.

[52] F. Aiello, G. Fortino, and A. Guerrieri. Using Mobile Agents as Enabling
Technology for Wireless Sensor Networks. In Proceedings of the 2nd In-
ternational Conference on Sensor Technologies and Applications, SENSOR-
COMM’08, pages 549–554. IEEE Computer Society, August 2008.

[53] F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. A Java-based Agent
Platform for Programming Wireless Sensor Networks. The Computer Jour-
nal, 54(3):439–454, 2011.

[54] M. Luck, P. McBurney, and C. Preist. A Manifesto for Agent Technology:
Towards Next Generation Computing. Autonomous Agents and Multi-Agent
Systems, 9(3):203–252, 2004.

[55] JADE website. http://jade.tilab.com, 2011.
[56] N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannanto-

nio, M. Sgroi, R. Jafari, and G. Fortino. From Modeling to Implementa-
tion of Virtual Sensors in Body Sensor Networks. IEEE Sensors Journal,
doi:10.1109/JSEN.2011.2121059, 2011.

[57] F. Bellifemine, G. Fortino, R. Giannantonio, and A. Guerrieri. Platform-
independent development of collaborative wireless body sensor network ap-
plications: SPINE2. In Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2009, pages 3144–3150. IEEE Press, Oc-
tober 2009.

[58] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13:21–27, January 1967.

[59] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15(11):1119–1125, November 1994.

[60] Food and National Academy of Sciences Nutrition Board. Dietary reference
intakes for energy, carbohydrates, fiber, fat, protein and amino acids. National
Academy Press, 2002.

[61] U.S. Department of Health & Human Services, Centers for Disease Control
& Prevention, and The National Center for Chronic Disease Prevention &
Health Promotion. Physical activity and health: A report of the Surgeon Gen-
eral, 1996.

138

References

[62] K.Y. Chen and M. Sun. Improving energy expenditure estimation by using a
triaxial accelerometer. Journal of Applied Physiology, 83(6):2112–2122, 1997.

[63] D. Mizell. Using gravity to estimate accelerometer orientation. In Proceedings
of the 7th IEEE International Symposium on Wearable Computers, ISWC’03,
pages 252–253. IEEE Computer Society, October 2003.

[64] A. Andreoli, R. Gravina, R. Giannantonio, P. Pierleoni, and G. Fortino. SPINE-
HRV: a BSN-based Toolkit for Heart Rate Variability Analysis in the Time-
Domain. Wearable and Autonomous Biomedical Devices and Systems: New
issues and Characterization - Lecture Notes on Electrical Engineering, 75:369–
389, 2010.

[65] B.S. McEwen. Protective and Damaging Effects of Stress Mediators. The New
England Journal of Medicine, 338(3):171–179, 1998.

[66] S.-C. Segerstrom and G.-E. Miller. Psychological stress and the human immune
system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin,
130(4):601–630, 2004.

[67] H.-K. Yang, J.-W. Lee, K.-H. Lee, Y.-J. Lee, K.-S. Kim, H.-J. Choi, and D.-J.
Kim. Application for the wearable heart activity monitoring system: Analysis of
the autonomic function of HRV. In Proceedings of the 30th Annual International
Conference on Engineering in Medicine and Biology Society, EMBS 2008, pages
1258–1261. IEEE Press, August 2008.

[68] K. Keutzer, A.-R. Newton, J.-M. Rabaey, and A. Sangiovanni-Vincentelli.
System-level design: Orthogonalization of Concerns and Platform-Based De-
sign. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 9(12):1523–1543, December 2000.

[69] A. Bonivento. Platform Based Design for Wireless Sensor Networks. PhD
thesis, University of California at Berkeley, 2007.

[70] A. Bonivento, L.-P. Carloni, and A. Sangiovanni-Vincentelli. Platform Based
Design for Wireless Sensor Networks. Mobile Networks and Applications,
11(4):469–485, August 2006.

[71] R. Passerone. Semantic Foundations for Heterogeneous Systems. PhD thesis,
University of California at Berkeley, 2004.

[72] L. Ma, Y. Sun, N. Feng, , and Z. Liu. Image Fast Template Matching Algorithm
Based on Projection and Sequential Similarity Detection. In Proceedings of the
Fifth International Conference on Intelligent Information Hiding and Multime-
dia Signal Processing, IIH-MSP 2009, pages 957–960. IEEE, September 2009.

[73] E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine learning, 36(1):105–139,
1999.

[74] F. Balarin, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli. Concur-
rent execution semantics and sequential simulation algorithms for the metropo-
lis meta-model. In Proceedings of the Tenth International Symposium on Hard-
ware/Software Codesign, CODES ’02, pages 13–18. ACM, May 2002.

[75] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous systems. Concurrency
and Hardware Design, Advances in Petri Nets, pages 228–273, 2002.

[76] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri, and
M. Sgroi. Development of Body Sensor Network Applications using SPINE.
In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, SMC 2008, pages 2810–2815. IEEE Press, October 2008.

139

References

[77] G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, and A. Guerrieri.
SPINE-based Application Development on Heterogeneous Wireless Body Sen-
sor Networks. International Journal of Computing, 9(1):80–89, 2010.

[78] P. Kuryloski, A. Giani, R. Giannantonio, K. Gilani, R. Gravina, V.-P. Seppä,
E. Seto, V. Shia, C. Wang, P. Yan, A.-Y. Yang, J. Hyttinen, S. Sastry, S. Wicker,
and R. Bajcsy. DexterNet: An Open Platform for Heterogeneous Body Sensor
Networks and Its Applications. In Proceedings of the International Conference
on Body Sensor Networks, BSN 2009, pages 92–97. IEEE Computer Society,
June 2009.

[79] R. Giannantonio, R. Gravina, P. Kuryloski, V.-P. Seppä, F. Bellifemine, J. Hyt-
tinen, and M. Sgroi. Performance Analysis of an Activity Monitoring System
using the SPINE Framework. In Proceedings of the 3rd International Con-
ference on Pervasive Computing Technologies for Healthcare, Pervasive Health
2009, pages 1–8. IEEE Press, April 2009.

[80] R. Giannantonio, F. Bellifemine, R. Gravina, A. Guerrieri, G. Fortino, and
M. Sgroi. SPINE: Signal Processing In Node Environment. In Proceedings of
the 1st European TinyOS Technology Exchange, ETTX 2009, February 2009.

[81] L. Buondonno, G. Fortino, S. Galzarano, R. Giannantonio, A. Giordano,
R. Gravina, and A. Guerrieri. Programming Signal Processing Applications
on Heterogeneous Wireless Sensor Platforms. In Proceedings of the 5th IEEE
International Workshop on Intelligent Data Acquisition and Advanced Com-
puting Systems: Technology and Applications, IDAACS 2009, pages 682–687.
IEEE Press, September 2009.

[82] N. Raveendranathan, V. Loseu, E. Guenterberg, R. Giannantonio, R. Gravina,
M. Sgroi, and R. Jafari. Implementation of Virtual Sensors in Body Sensor
Networks with the SPINE Framework. In Proceedings of the IEEE Symposium
on Industrial Embedded Systems, SIES 2009, pages 124–127. IEEE Press, July
2009.

[83] F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. An Analysis
of Java-based Mobile Agent Platforms for Wireless Sensor Networks. Multi-
Agent and GRID Systems, to appear:1–30, 2011.

[84] G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Agent-based Devel-
opment of Wireless Sensor Network Applications. In Proceedings of the 12th
Workshop on Objects and Agents, WOA 2011. CEUR Workshop Proceedings,
July 2011.

[85] F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Wireless
Body Area Networks: Technology, Implementation and Applications, chapter 5
- Signal processing in-node frameworks for Wireless Body Sensor Networks:
from low-level to high-level approaches, pages 1–23. Pan Stanford publishing,
2011.

[86] F. Aiello, F. Bellifemine, G. Fortino, R. Gravina, and A. Guerrieri. An agent-
based signal processing in-node environment for real-time human activity mon-
itoring based on wireless body sensor networks. In Proceedings of the 1st Inter-
national Workshop on Infrastructures and Tools for Multiagent Systems, jointly
held with 9th International Conference AAMAS, ITMAS 2010, May 2010.

[87] F. Aiello, G. Fortino, R. Gravina, and A. Guerrieri. MAPS: a Mobile Agent
Platform for Java Sun SPOTs. In Proceedings of the 3rd Workshop on Agent
Technology for Sensor Networks, jointly held with the 8th International Confer-
ence on Autonomous Agents and Multi-Agent Systems, ATSN 2009, May 2009.

140

References

[88] D.L. Carni’, G. Fortino, D. Grimaldi, R. Gravina, A. Guerrieri, and F. Lam-
onaca. Continuous, Real-time Monitoring of Assisted Livings through Wireless
Body Sensor Networks. In Proceedings of the 6th IEEE International Confer-
ence on Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications, IDAACS 2011. IEEE Press, September 2011.

[89] A. Andreoli, R. Gravina, R. Giannantonio, P. Pierleoni, and G. Fortino. Time-
Domain Heart Rate Variability Analysis with the SPINE-HRV. In Proceedings
of the 1st International Workshop on SigProcessing (Light-weight Signal Pro-
cessing for Computationally Intensive BSN Applications), PETRA 2010. ACM
Press, June 2010.

[90] E. Seto, M. Eladio, A.-Y. Yang, P. Yan, R. Gravina, I. Lin, C. Wang, M. Roy,
V. Shia, and R. Bajcsy. Opportunistic Strategies for Lightweight Signal Pro-
cessing for BSN. In Proceedings of the 1st International Workshop on Sig-
Processing (Light-weight Signal Processing for Computationally Intensive BSN
Applications), PETRA 2010. ACM Press, June 2010.

[91] MAPS website. http://maps.deis.unical.it, 2011.
[92] M. Welsh and G. Mainland. Programming Sensor Networks Using Abstract

Regions. In Proceedings of the 1st USENIX/ACM Symposium on Networked
Systems Design and Implementation, NSDI’04, pages 3–16. USENIX Associa-
tion Berkeley, March 2004.

[93] O. Kasten and K. Romer. Beyond Event Handlers: Programming Wireless
Sensors with Attributed State Machines. In Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, IPSN 2005, pages
45–52. IEEE Press, April 2005.

[94] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid Development and Flexible De-
ployment of Adaptive Wireless Sensor Network Applications. In Proceedings of
the 24th International Conference Distributed Computing Systems, ICDCS’05,
pages 653–662. IEEE Computer Society, June 2005.

[95] H. Zhu and R. Alkins. Towards Role-Based Programming. In Proceedings of the
ACM Conference on Computer Supported Cooperative Work, CSCW’06. ACM,
November 2006.

[96] P. Levis and D. Culler. Mate’: A Tiny Virtual Machine for Sensor Networks. In
Proceedings of the 10th International Conference Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS X, pages 85–95. ACM
Press, October 2002.

[97] U. Maurer, A. Smailagic, D.-P. Siewiorek, and M. Deisher. Activity Recognition
and Monitoring Using Multiple Sensors on Different Body Positions. In Pro-
ceedings of the 3rd International Workshop on Wearable and Implantable Body
Sensor Networks, BSN 2006, pages 113–116. IEEE Computer Society, 2006.

141

	List of Figures
	List of Tables
	List of Abbreviations
	Motivation, Objectives and Organization of the Thesis
	Motivation
	Objectives of the Thesis
	Structure of the Thesis

	Related Work
	Introduction
	State-of-the-art on BSNs
	Hardware
	Physical architecture of a sensor node
	Sensors
	Commercial Platforms

	Communication
	IEEE 802.15.4 / ZigBee
	Bluetooth / Bluetooth Low Energy
	ANT
	IEEE 802.15 WPAN Task Group 6 (TG6) - Body Area Networks
	Network Topologies

	Operating systems
	TinyOS / nesC
	Contiki
	MantisOS
	NanoRK
	Java Squawk VM
	Z-Stack

	Applications

	Development tools and middlewares
	Classification of BSN programming approaches
	BSN Systems implemented with the Application- Specific approach
	Real-time Arousal Monitor
	LifeGuard
	FitBit
	VitalSense

	Domain-specific frameworks for BSNs
	CodeBlue
	RehabSPOT

	General-purpose frameworks for WSNs applied to BSNs
	TITAN
	AFME
	MiLAN

	Requirements, techniques and properties for BSN programming frameworks
	Comparison of the WSN/BSN programming frameworks
	Summary

	The SPINE Framework
	Introduction
	Network Architecture
	High-Level software Architecture
	Main tunable parameters
	SPINE application-level communication protocol
	Multi-platform Support
	The Node-Side module
	Software-architecture in TinyOS
	Sensing
	Processing
	Communication

	Performance Evaluation
	Function Execution Time
	Memory Requirements
	Energy Consumption
	Communication Bandwidth
	An Analysis of the Development Effectiveness and Performance

	The Coordinator-Side module
	Software-architecture in Java
	BSN runtime configuration APIs
	BSN event handlers
	 High-Level Data Processing

	SPINE enhancements and variants
	C-SPINE
	 Novel Interaction Models
	Collaborative BSNs
	Collaborative SPINE

	An Agent-oriented design of SPINE: A-SPINE
	The A-SPINE Architecture
	A MAPS-based design of A-SPINE

	SPINE2
	The task-oriented approach
	Main characteristics of SPINE2
	SPINE2 Tasks

	Virtual Sensors based on SPINE
	BSN-oriented Virtual Sensor Architecture
	Virtual Sensor Definition
	Virtual Sensor Manager
	Buffer Manager
	SPINE2-based Virtual Sensors

	Summary

	BSN Research prototypes implemented using SPINE
	Physical Activity Recognition
	Step-counter
	Real-time Physical Energy Expenditure
	Emotional Stress Detection
	Hardware
	Software
	Stress analysis engine

	Summary

	Platform-Based Design methodology for BSNs
	Introduction
	Platform-Based Design
	PBD for BSNs
	The Sensor Network Service Platform
	The Sensor Network Implementation Platform
	The Sensor Network Ad-hoc Protocol Platform

	A case study: Activity Recognition based on Template Matching
	Problem Formulation
	Applying the PDB methodology
	Summary

	Conclusions, Publications and Future Work
	Conclusions
	Publications Related with this Thesis
	SPINE
	SPINE enhancements and variants
	MAPS and agent-based WSN programming frameworks
	BSN Applications

	Future Work

	MAPS
	Requirements
	Agent server architecture
	Agent programming model
	Implementation
	An agent-based system for monitoring human activity
	Design and Implementation
	Performance evaluation
	Recognition accuracy

	References

