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Abstract

The purpose of the work presented in this thesis is to implement two in-
novative approaches in order to analyze elastic instability problems both in
statical and in dynamical �eld. The proposed formulations have their main
feature in the possibility of describing large rotations without the use of
rotation matrices in order to overcome complex manipulations required to
obtain conservative descriptions and well-posed transformation matrices.

The basis is a total Lagrangian description, where the rigid body motions
(translations and rotations) are separated from the total deformation that
consequently can be treated using the small-deformation linearized theory.

The principal di�erence between the suggested two models concerns the
chosen parameterization of �nite rotations, with distances applied to two-
and three-dimensional �nite elements in the �rst and slopes applied to two
node �nite element beams in the second one.

The theoretical features of the the approaches are presented and their
main items are discussed referring to some implementations to planar and
spatial beam and thin plate models. An incursion into dynamics has also
been performed.

The present approach is featured by the fact that the formulation is
simple, the expressions in the equations of the nonlinear system are explicit
and computationally e�cient, and the analysis is robust and economical.

A large amount of numerical analysis is performed and the good agree-
ment with the results reported in the literature shows the accuracy and
capability of the proposed approaches for numerical implementations.
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Chapter 1

Introduction

1.1 General remarks

In such cases, linear �nite element models are not able to predict the struc-
tural response accurately. Hence, the development of e�cient and accurate
nonlinear �nite element models becomes crucial. In fact buckling and post-
buckling phenomena exist widely in slender elastic structures, and this always
leads structures to experience large displacements and large rotations.

The so-called geometrically exact structural theory, capable of represent-
ing �nite rotations and �nite displacements, has been examined in numerous
studies. In this theory, geometrical approximations, such as the linearization
of rotation parameters, are not employed.

1.2 Background and literature review

In the computational mechanics community, initial interest in the �nite ro-
tations was stirred by the work of Argyris. However, it is only with the
development of the so called geometrically exact structural theories which
make use of �nite rotations, that the urgent need has arisen to address the
pertinent computational issues.

There exist various formulations for the description of large translations
and large rotations in nonlinear �nite element analysis. These formulations
had been separated into three categories: the total Lagrangian formulation,
updated Lagrangian formulation or corotational formulation. In the total
Lagrangian formulation, the motion of a body is de�ned with respect to
the initial con�guration, whereas in the updated Lagrangian formulation the
motion is de�ned with respect to the latest con�guration. About the coro-
tational formulation, it is motivated by the fact that provides a framework
in which standard linear structural elements can be utilized, and therefore,
it has become popular in many practical applications. The evolution of the
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corotational approach can be traced by referring to the works of Belytschko
and Hsieh [8], Argyris [3], Rankin and Nour-Omid [68], Cardona and Geradin
[16], Cris�eld [19], Peng and Cris�eld [67] and Pacoste [66], Ibrahimbegovi¢
et al [35].

The origin of the corotational description of motion has its roots in the
polar decomposition theorem. According to this theorem, the total defor-
mation of a continuous body can be decomposed into rigid body motion and
relative deformation. In the derivation of the �nite element, this decompo-
sition is achieved by attaching a local coordinate system to each element so
that it rotates with the average rigid body rotation of the element. In this
way, the �nite rigid body motion part is eliminated from the total displace-
ments. The remaining relative deformation, which is assumed to be small
with respect to the local frame, is used for the calculation of strains and ele-
ment internal nodal forces. As a consequence, the linear beam theory can be
used for describing the relative deformation. The geometrical non-linearity
induced by the large rigid-body motion is introduced in the transformation
matrices relating local and global quantities.

These techniques, however, have to be supported by a robust and eco-
nomical de�nition of the rotated local reference system. Basically, the co-
rotational approach su�ers from the singularities in the transformation ma-
trices for several angles and requires complex manipulations to overcome
nonconservative descriptions due to the noncommutativity of rotations. The
interpolation of rotations to measure deformations then requires the use of
incremental solution procedures when large rotations are considered. In ef-
fect, small rotation increments are hypothesized for the linearization of the
con�guration space. Consequently, small steps in the continuation process
are allowed and a slow convergence is intrinsic to the formulation.

1.3 Finite rotations in 3D space

One of the central issues in the development of a non-linear structural el-
ement is the treatment of �nite 3D rotations. A general three-dimensional
non-linear formulation is not a simple extension of a two-dimensional formu-
lation because fully three-dimensional �nite rotations, that are not vector
quantities, have to be accounted for .

Plane rotations are easy. A rotation in, say, the {x1, x2} plane, is de�ned
by just a scalar: the rotation angle θ about x3. Plane rotations commute:
θ1 + θ2 = θ2 + θ1, because the θs are numbers.

The study of spatial 3D rotations is more di�cult. The subject is dom-
inated by a fundamental theorem of Euler: The general displacement of a

rigid body with one point �xed is a rotation about some axis which passes
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through that point.
A consequence of the Euler theorem is that: any rotation θ of a rigid

body with a �xed point O about a �xed axis ω⃗ can be decomposed into three
rotations about three given non-coplanar axes. On the contrary, the �nal
orientation of the rigid body after a �nite number of rotations is equivalent
to a unique rotation about a unique axis. Determination of the angle and
axis is called the orientation kinematics of rigid bodies.

Thus spatial rotations have both magnitude (the angle of rotation), and
direction (the axis of rotation). These are nominally the same two attributes
that categorize vectors. Finite 3D rotations, however, do not obey the laws
of vector calculus, although in�nitesimal rotations do. Most striking is com-
mutation failure: switching two successive rotations does not yield the same
answer unless the rotation axis is kept �xed.

Various possibilities for selecting the parameters for �nite rotation repre-
sentation are placed in practical implementations of computational schemes
involving large rotations (direction cosine matrices or orthogonal matrices,
Euler angles, quaternions or Euler parameters, Rodrigues' parameters or
Gibbs vectors, conformal rotation vectors and rotation vectors); however,
only a few of them are fundamentally distinct. Detailed accounts of most
used of these parametrizations are presented in the following.

Rotation matrix representation

Generally, the applied rotation analysis of rigid bodies is done by matrix cal-
culus. As we said there are two inherent problems in representing rotations,
both related to incontrovertible properties of rotations:

• rigid-body rotations do not commute;

• rigid-body rotations cannot map smoothly in three-dimensional Eu-
clidean space.

The noncommutativity of rotations force us to obey the order of rotations.
The lack of a smooth mapping in three-dimensional Euclidean space means
we cannot smoothly represent every kind of rotation by using only one set
of three numbers. Any set of three rotational coordinates contains at least
one geometric orientation where the coordinates are singular, at which at
least two coordinates are unde�ned or not unique. This is the reason why we
sometimes describe rotations by using four numbers. We may only use three-
number systems and expect to see singularities or use other numbers and cope
with the redundancy. The choice depends on the application and method of
calculation. For computer applications, the redundancy is not a problem, so
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most algorithms use representations with extra numbers. However, engineers
prefer to work with the minimum set of numbers.

Within the framework of matrix algebra, �nite rotations can be repre-
sented in two ways:

• As 3x3 real orthogonal matrices R called rotators. (An abbreviation
for rotation tensor.

• As 3x3 real skew-symmetric matrices W called spinors. (An abbrevi-
ation for spin tensor.

Following the notations according to which superscript on a vector de-
notes the frame in which the vector is expressed, we can indicate as rG the
position vector expressed in frame G(OXY Z) and rP the position vector
expressed in frame P (Oxyz).
In this context a rotator R is a linear operator that transforms rP to rG

when the directional cosines of the axes of the coordinate frames P and G

are known:

rG = RrP . (1.1)

The spinor W corresponds to the vector ω⃗, which, along with angle θ,
can be utilized to describe a rotator:

R[θ] = Icosθ + ω⃗ω⃗T versθ +Wsinθ. (1.2)

where

versθ = versinθ = 1− cosθ = 2sin2(θ/2) (1.3)

and W is the skew-symmetric matrix associated to the vector ω⃗

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


In other words, let the body frame P (Oxyz) rotate θ about a �xed line

in the global frame G(OXY Z) that is indicated by a unit vector ω⃗ with
directional cosines ω1, ω2, ω3, so that ω = ω1⃗i+ω2j⃗+ω3k⃗. This is called the
axis-angle representation of a rotation. Two parameters are needed to de�ne
the axis of rotation that goes through O and one parameter is needed to
de�ne the amount of rotation about the axis. So, an angle-axis rotation needs
three independent parameters to be de�ned. The angle-axis transformation
matrix R that transforms the coordinates of the body frame P (Oxyz) to the
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associated coordinates in the global frame G(OXY Z) is expressed by the
done relation (1.2).

The angle-axis rotation equation (1.2) is also called the Rodriguez rotation
formula or the Euler-Lexell-Rodriguez formula. It is sometimes reported in
the literature as the following equivalent forms:

I +Wsinθ + 2W 2sin2(θ/2),

I + 2Wsin(θ/2)[Icos(θ/2) +Wsin(θ/2)],

I +Wsinθ +W 2versθ,

[I − ω⃗ω⃗T ]cosθ +Wsinθ + ω⃗ω⃗T ,

I +W 2 +Wsinθ −W 2cosθ,

(1.4)

A rotator is a function of a spinor, so R can be expanded in a Taylor
series of W :

R = I + c1W + c2W
2 + c3W

3 + ... (1.5)

However, because of Cayley-Hamilton theorem ([26]), all powers of order
3 or higher can be eliminated. Therefore, R is a quadratic function of W :

R[θ] = I + a(λW ) + b(λW )2. (1.6)

where λ is the spinor normalization factor and a = a(θ) and b = b(θ) are
scalar functions of the rotation angle θ.
Table 1.3 presents some representations of rotator R as a function of the
coe�cients a, b and the spinor λW used by di�erent author.

a b λ R

sinθ sin2(θ/2) 1 I + sinθW + 2sin2(θ/2)W 2

2cos2(θ/2)) 2cos2(θ/2) tan(θ/2) I + 2cos2(θ/2)[tan(θ/2)W + tan2(θ/2)W 2]

2cos(θ/2) 2 sin(θ/2) I + cos(θ/2)sin(θ/2)W + 2sin2(θ/2)W 2]

1/θsinθ 1/(θ2)sin2(θ/2) θ I + sinθW + 2sin2(θ/2)W 2

Tab. 1.1: Rotator R as a function of Spinor W .

In conclusion we can summarize that for many purposes the rotation
matrix representation, based on directional cosines, is the most useful repre-
sentation method of rigid-body rotations; however the primary disadvantage
of rotation matrices is that there are so many numbers, which often make
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rotation matrices hard to interpret. As an alternative we have the axis-
angle representation, described by the Rodriguez formula, where a rotation
is expressed by the magnitude of rotation, θ, with the positive right-hand
direction about the axis of rotation ω⃗. Angle-axis representation has also
some shortcomings. First, the rotation axis is indeterminate when θ = 0.
Second, the angle-axis rotation represents a two-to-one mapping system be-
cause R−ω,−θ = Rω,θ. Third, it is redundant because for any integer k we
have Rω,θ+2kΠ = Rω,θ. However, all of these problems can be improved
to some extent by restricting θ to some suitable range such as [0,Π] or
[−Π/2,Π/2]. The angle-axis representation is also not an e�cient method
to �nd the composition of rotations and determine the equivalent angle-axis
of rotations.

Euler Parameters and Quaternion

As we said in the previous section any orientation of a local frame P (0xyz)

relative to a global frame G(0XY Z) can be achieved by a rotation θ about
an axis ω. An e�ective way to �nd the angle θ and the axis ω⃗ is the Euler
parameters e0, e1, e2, e3 such that e0 is a scalar and e1, e2, e3 are component
of a vector e⃗:

e0 = cos(θ/2),

e⃗ = e1⃗i+ e2j⃗ + e3k⃗ = ω⃗sin(θ/2), (1.7)

so

e21 + e22 + e23 + e20 = e20 + e⃗T e⃗ = 1 (1.8)

Using the Euler parameters, the transformation matrix R to satisfy the
equation rG = RrP is

R = Rω⃗,θ = (e20 − e⃗2)I + 2e⃗e⃗T + 2e0ẽ (1.9)

where ẽ is the skew-symmetric matrix associated with e⃗.
Euler parameters provide a well-suited, redundant, and nonsingular ro-

tation description for arbitrary and large rotations. It is redundant because
there are four parameters and a constraint equation to de�ne the required
three parameters of angle-axis rotation.

Quaternions, with special rules for addition and multiplication, use four
numbers to represent rotations. A rotation quaternion is a unit quaternion
that may be expressed by Euler parameters or the angle and axis of rotations:

e(θ, ω⃗) = e0 + e⃗ = e0 + e1⃗i+ e2j⃗ + e3k⃗ = cos(θ/2) + sin(θ/2)ω⃗. (1.10)
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Euler parameters are the elements of rotation quaternions. There is a
direct conversion between rotation quaternions and Euler parameters, which
in turn are related to angle-axis parameters. We can obtain the angle θ and
axis ω⃗ of rotation from Euler parameters or rotation quaternion e(θ, ω⃗) by

θ = 2tan−1(|e⃗|/eO),
ω = e⃗/ |e⃗| , (1.11)

Unit quaternions provide a suitable base for describing rigid-body ro-
tations, although they need normalization. In general, quaternions o�er
superior computational e�ciency in most applications.

It is interesting to know that Leonhard Euler (1707-1783) was the �rst
to derive the Rodriguez formula, while Benjamin Rodriguez (1795-1851) was
the �rst to discover the Euler parameters. William Hamilton (1805-1865) in-
troduced quaternions, although Friedrich Gauss (1777-1855) discovered them
but never published.

1.4 Objectives, scope and outline

In this thesis we suggest an alternative to the standard parametrization of
�nite rotations by means of two di�erent approaches based on a total La-
grangian description. We con�ne our attention to the case in which the
material behavior stays within the linear elastic range, thus implying small
deformational strains but arbitrarily large rotations. In both of these for-
mulations we avoid the use of rotation matrices and angle measures in order
to overcome all described di�culties in their management while preserving
robustness, simplicity and inexpensiveness of the analysis.

In a �rst alternative, called lengths based method and applied to low or-
der �nite element, attention is given to the possibility of drawing out only
the contributions due to the deformations from the complete nonlinear strain
tensor. In the context of decoupling the rigid boby motion from the elastic re-
sponse, the aim is to �nd for each deformative mode a characteristic measure
that is an invariant to the rotations. In such a way the linear deformation
modes become reciprocally independent and then they can be summed up
in the strain tensor de�nition. The invariant measures have been computed,
then, by requiring for each of them the following two features: not zero for
the examined defomative mode and equal to zero for the other modes in the
initial con�guration; independent of the rigid kinematics value. Therefore a
selective based de�nition of the strain tensor, used in order to avoid shear-
locking problems, is e�ected by the linear de�nition of deformations because
it is element reference system independent.
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In the second proposed approach, called projectors based method and
based on the Euler-Bernoulli beam theory, rigid and deformative modes are
referred to the nodes of the element. The nonlinear rigid motion is recov-
ered by referring to three unit and mutually orthogonal vectors attached
to the nodes of the beam element. All nine components of such vectors in
the global inertial frame of reference are assumed as unknown. As will be
demonstrated, the rotational degree of freedom of the element is reduced
to only three by six well-posed constraint conditions. Afterward, as above,
for each deformative mode, a characteristic measure that is an invariant of
the rotations is de�ned. We note that, boundary conditions on rotations are
simply imposed by assuming as known the related nodal slopes while applied
moments are modelled as forces following the motions.

To get an overview of the general structure of this thesis, the contents of
the chapters are presented in the following. In Chapter 2 and 3 we describe
the theoretical features of the lengths and projectors method respectively.
We underline the methodology and the appropriacy of the proposed ap-
proaches as well as their limitations. In Chapter 4 we discuss the application
of both methods to the dynamical �eld. Finally in Section 5 and 6 several
numerical examples are presented to validate the proposed formulations both
in statical and in dynamical �eld.
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Chapter 2

Lengths based method

In the geometrically nonlinear structural mechanics context, the aim of this
chapter is to present an alternative small strains - �nite displacements de-
scription by a potential energy based �nite element formulation without the
use of rotation matrices. In particular the proposed approach is based on
de�nitions of only relative lengths (hence the name Lengths based method)
applied to low-order elements while the robustness and inexpensiveness of
the analysis and the possibility to study the �nite element in the linear �eld
are preserved.

Continuum based beam and plate elements in two- and three-dimensional
applications are proposed. In our context, the actual con�guration of the
element results rigidly translated and rotated and deformed according to
the selected linear modes. The aim is to �nd, for each deformative mode,
a characteristic measure that is an invariant to the rotations (the so called
Deformative Invariant). In such a way the linear deformation modes become
reciprocally independent and then they can be summed up in the strain
tensor de�nition. Besides, in order to avoid shear-locking phenomena, a
selectively based de�nition of the strain tensor is carried out; for example, the
contribution of the hourglass modes to the shearing strains can be omitted.

The main feature of the proposed technique, then, is represented by an
e�ective description of the �nite kinematics without the use of rotation pa-
rameterizations keeping the possibility of obtaining good elemental perfor-
mances by a selective choice of the mode contributions.

In this chapter we �rst describe the chosen linear deformative basis for
the analyzed bilinear 4-node and trilinear 8-node elements, afterwards we
discuss the suggested approach to identify the deformative invariants and to
simplify the strain tensor de�nition. Finally the description of the statical
equilibrium equations and of the related solution algorithms is presented.
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2.1 Linear kinematical basis in the 4-node and 8-

node elements

In this section we describe the used kinematical basis for the considered 4-
node and 8-node elements. We consider in the element the referential coordi-
nates ξ, η, ζ and the displacements vector uT = {u(ξ, η, ζ), v(ξ, η, ζ), w(ξ, η, ζ)}.

2.1.1 Two-dimensional 4-node element

We refer to a rectangular 2hξ, 2hη 4-node element centered in the origin
O = (0, 0) of the (ξ, η) reference system (see Figure 2.1).

Fig. 2.1: Two-dimensional 4-node element: de�nition.

By using the classical bilinear interpolation

u(ξ, η) = a0 + a1ξ + a2η + a3ξη,

v(ξ, η) = b0 + b1ξ + b2η + b3ξη,
(2.1)

we obtain the following strain expressions:

εξξ = u,ξ(ξ, η) = a1 + a3η,

εηη = v,η(ξ, η) = b2 + b3ξ,

εξη = 1
2 [u,η(ξ, η) + v,ξ(ξ, η)] =

1
2 [a2 + a3ξ + b1 + b3η] .

(2.2)

Now, we express the strains (2.2) into a basis of the three rigid and of �ve
deformative motions. By following the order of the polynomial expansion,
the strains are connected with the classical parameters:

e1 = a1,

e2 = b2,

e3 = a2 + b1,

e4 = a3,

e5 = b3,

(2.3)

11



by the position:


u,ξ
v,η

1
2(u,η + v,ξ)

 =

 1 0 0 η 0

0 1 0 0 ξ

0 0 1
2

1
2ξ

1
2η




e1
e2
e3
e4
e5


. (2.4)

We constrain the rigid motions by the following conditions in O:

u(0, 0) = a0 = 0,

v(0, 0) = b0 = 0,

ω(0, 0) = 1
2(u,η − v,ξ)

∣∣∣
(0,0)

= 1
2(a2 − b1) = 0,

(2.5)

where ω(0, 0) is the rotation of the element around the center O.
For each chosen ei ̸= 0 and with ej = 0 ∀j ̸= i we can compute the displace-
ments �eld (2.1) related to the i-th mode by imposing equations (2.5).

The �rst mode is here linked to the value e1 = Eξ. Then, the deforma-
tive parameter Eξ is a constant that de�nes the linear expansion in the ξ

direction. It follows that the correspondent strains are:
u,ξ = Eξ

v,η = 0
1

2
[u,η + v,ξ] = 0

(2.6)

and the consecutive displacements �eld is represented by:

u(ξ, η) = Eξξ,

v(ξ, η) = 0.
(2.7)

Similarly to the previous case, we can obtain the other modes by referring
to the deformative parameters Eη, S, Hξ, Hη as we can see below.

The second deformative mode, that is the expansion motion along the
η direction, described by the deformative parameter Eη, is obtained by the
position e2 = Eη which leads to the system:

u,ξ = 0

v,η = Eη
1

2
[u,η + v,ξ] = 0

whose solution is:

u(ξ, η) = 0

v(ξ, η) = Eηη.
(2.8)
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The third deformative mode, that is the shearing motion in the ξη plan,
is obtained by referring to the deformative parameters S by the position
e3 = S, dove S. So we obtain the following strain expressions:

u,ξ = 0

v,η = 0
1

2
[u,η + v,ξ] = S

The resulting displacement �eld is:

u(ξ, η) = Sη

v(ξ, η) = Sξ.
(2.9)

The fourth and �fth deformative modes, linked to the value e4 = Hξ

e e5 = Hη, de�ne the hourglass motion in the plan ξη along the ξ and
η direction respectively. The corresponding systems and solutions are as
follows: {

u,ξ = Hξη v,η = 0
1

2
[u,η + v,ξ] = Hξξ

u(ξ, η) = Hξξη

v(ξ, η) = 0,
(2.10)


u,ξ = 0

v,η = Hηξ
1

2
[u,η + v,ξ] = Hηη

u(ξ, η) = 0

v(ξ, η) = Hηξη.
(2.11)

Mechanical and kinematics description of the motions is summarized in
Table 2.1.1 while the related deformative modes are shown in Figure 2.2.

2.1.2 Three-dimensional 8-node element

We refer now to a 2hξ, 2hη, 2hζ 8-node element still centered in the origin
O = (0, 0, 0) of the (ξ, η, ζ) reference system (see Figure 2.3) and to the
classical trilinear interpolation

u(ξ, η, ζ) = a0 + a1ξ + a2η + a3ζ + a4ξη + a5ξζ + a6ηζ + a7ξηζ,

v(ξ, η, ζ) = b0 + b1ξ + b2η + b3ζ + b4ξη + b5ξζ + b6ηζ + b7ξηζ,

w(ξ, η, ζ) = c0 + c1ξ + c2η + c3ζ + c4ξη + c5ξζ + c6ηζ + c7ξηζ.

(2.12)
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e1 = Eξ expansion motion along the ξ direction
u(ξ, η) = Eξξ, v(ξ, η) = 0

e2 = Eη expansion motion along the η direction
u(ξ, η) = 0, v(ξ, η) = Eηη

e3 = Sξη shearing motion in the ξη plan
u(ξ, η) = Sη, v(ξ, η) = Sξ

e4 = Hξ hourglass motion in the plan ξη along the ξ direction
u(ξ, η) = Hξξη, v(ξ, η) = 0

e5 = Hη hourglass motion in the plan ξη along the η direction
u(ξ, η) = 0, v(ξ, η) = Hηξη

Tab. 2.1: Four-node element: de�nitions of the deformative modes.

The following strain expressions are obtained:

εξξ = u,ξ(ξ, η, ζ) = a1 + a4η + a5ζ + a7ηζ,

εξη =
1

2
[u,η(ξ, η, ζ) + v,ξ(ξ, η, ζ)]

=
1

2
[(a2 + b1) + a4ξ + b4η + (a6 + b5)ζ + a7ξζ + b7ηζ] ,

εξζ =
1

2
[u,ζ(ξ, η, ζ) + w,ξ(ξ, η, ζ)]

=
1

2
[(a3 + c1) + a5ξ + c6ζ + (c4 + a6)η + a7ξη + c7ηζ] , (2.13)

εηη = v,η(ξ, η, ζ) = b2 + b4ξ + b6ζ + b7ξζ,

εηζ =
1

2
[v,ζ(ξ, η, ζ) + w,η(ξ, η, ζ)]

=
1

2
[(b3 + c2) + b6η + c6ζ + (b5 + c4)ξ + b7ξη + c7ξζ] ,

εζζ = w,ζ(ξ, η, ζ) = c3 + c5ξ + c6η + c7ξη.

Similarly to the two-dimensional case see in the previous section, the
strains (2.13) are referred to the basis of the six rigid and eighteen deforma-
tive motions. These latter are obtained by the position

ε = Le, (2.14)

where
εT = {εξξ, εξη, εξζ , εηη, εηζ , εζζ}, (2.15)
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Fig. 2.2: Four-node element: representations of the linear deformative
modes.

L =



1 0 0 0 0 0 η 0 0 0 0 ζ 0 0 0 ηζ 0 0

0 0 0 1
2 0 0 1

2ξ 0 0 1
2η 0 0 0 0 1

2ζ
1
2ξζ

1
2ηζ 0

0 0 0 0 0 1
2 0 0 1

2ζ 0 0 1
2ξ 0 1

2η 0 1
2ξη 0 1

2ηζ

0 1 0 0 0 0 0 ζ 0 ξ 0 0 0 0 0 0 ξζ 0

0 0 0 0 1
2 0 0 1

2η 0 0 1
2ζ 0 1

2ξ 0 0 0 1
2ξη

1
2ξζ

0 0 1 0 0 0 0 0 ξ 0 η 0 0 0 0 0 0 ξη


(2.16)

and

eT ={a1 b2 c3 a2 + b1 a3 + c1 b3 + c2 a4 b6 c5 b4

c6 a5 b5 + c4 c4 + a6 a6 + b5 a7 b7 c7}.
(2.17)

By constraining the rigid motions we have the following conditions in the O
center point:

u(0, 0, 0) = a0 = 0,

v(0, 0, 0) = b0 = 0,

w(0, 0, 0) = c0 = 0,

ωξη(0, 0, 0) =
1
2(u,η − v,ξ)

∣∣∣
(0,0,0)

= 1
2(a2 − b1) = 0,

ωηζ(0, 0, 0) =
1
2(v,ζ − w,η)

∣∣∣
(0,0,0)

= 1
2(b3 − c2) = 0,

ωζξ(0, 0, 0) =
1
2(w,ξ − u,ζ)

∣∣∣
(0,0,0)

= 1
2(c1 − a3) = 0,

(2.18)

where ωξη, ωηζ and ωζξ are the rotations around to the ζ, ξ and η axes, re-
spectively. Here the eighteen deformative mode of three-dimensional element
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Fig. 2.3: Three-dimensional 8-node element: de�nition.

can be summarized: for each deformative mode we list the associated defor-
mative parameter, the corresponding deformation, the system of di�erential
equations in terms of strains and the connected displacement �eld.

• e1 = Eξ: expansion motion along the ξ direction

� associated strain system

u,ξ = Eξ
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld
u(ξ, η, ζ) = Eξξ

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = 0;

(2.19)

• e2 = Eη: expansion motion along the η direction
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� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = Eη
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld
u(ξ, η, ζ) = 0

v(ξ, η, ζ) = Eηη

w(ξ, η, ζ) = 0;

(2.20)

• e3 = Eζ : expansion motion along the ζ direction

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = Eζ

� displacement �eld
u(ξ, η, ζ) = 0

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = Eζζ;

(2.21)

• e4 = Sξη: shearing motion in the ξη plan

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = Sξη

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0
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� displacement �eld

u(ξ, η, ζ) =
1

2
Sξηη

v(ξ, η, ζ) =
1

2
Sξηξ

w(ξ, η, ζ) = 0;

(2.22)

• e5 = Sξζ : shearing motion in the ξζ plan

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = Sξζ

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) =
1

2
Sξζζ

v(ξ, η, ζ) = 0

w(ξ, η, ζ) =
1

2
Sξζξ;

(2.23)

• e6 = Sηζ : shearing motion in the ηζ plan

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = Sηζ

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) =
1

2
Sηζζ

w(ξ, η, ζ) =
1

2
Sηζη;

(2.24)
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• e10 = Hξη: hourglass motion in the plan ξη along the ξ direction

� associated strain system

u,ξ = Hξηη
1

2
[u,η + v,ξ] =

1

2
Hξηξ

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = Hξηξη

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = 0;

(2.25)

• e11 = Hηξ: hourglass motion in the plan ξη along the η direction

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] =

1

2
Hηξη

1

2
[u,ζ + w,ξ] = 0

v,η = Hηξη
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld
u(ξ, η, ζ) = 0

v(ξ, η, ζ) = Hηξξη

w(ξ, η, ζ) = 0;

(2.26)

• e12 = Hξζ : hourglass motion in the plan ξζ along the ξ direction

� associated strain system

u,ξ = Hξζζ
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] =

1

2
Hξζξ

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0
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� displacement �eld
u(ξ, η, ζ) = Hξζξζ

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = 0;

(2.27)

• e13 = Hζξ: hourglass motion in the plan ξζ along the ζ direction

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] =

1

2
Hζξζ

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = Hζξξ

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = Hζξξζ;

(2.28)

• e14 = Hηζ : hourglass motion in the plan ηζ along the η direction

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = Hηζζ
1

2
[v,ζ + w,η] =

1

2
Hηζη

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) = Hηζηζ

w(ξ, η, ζ) = 0;

(2.29)

• e15 = Hζη: hourglass motion in the plan ηζ along the ζ direction
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� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] =

1

2
Hζηζ

w,ζ = Hζηη

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = Hζηηζ;

(2.30)

• e7 = Tζ : torsional motion around the ζ axis

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] =

1

2
Tζζ

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) =
1

2
Tζηζ

v(ξ, η, ζ) =
1

2
Tζξζ

w(ξ, η, ζ) = −1

2
Tζξη;

(2.31)

• e8 = Tη: torsional motion around the η axis

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] =

1

2
Tηη

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0
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� displacement �eld

u(ξ, η, ζ) =
1

2
Tηηζ

v(ξ, η, ζ) = −1

2
Tηξζ

w(ξ, η, ζ) =
1

2
Tηξ;

(2.32)

• e9 = Tξ: torsional motion around the ξ axis

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] = 0

v,η = 0
1

2
[v,ζ + w,η] =

1

2
Tξξ

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = −1

2
Tξηζ

v(ξ, η, ζ) =
1

2
Tξξζ

w(ξ, η, ζ) =
1

2
Tξξη;

(2.33)

• e16 = Nξ: non-physical motion around the ξ axis

� associated strain system

u,ξ = Nξηζ
1

2
[u,η + v,ξ] =

1

2
Nξξζ

1

2
[u,ζ + w,ξ] =

1

2
Nξξη

v,η = 0
1

2
[v,ζ + w,η] = 0

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = Nξξηζ

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = 0;

(2.34)
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• e17 = Nη: non-physical motion around the η axis

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] =

1

2
Nηηζ

1

2
[u,ζ + w,ξ] = 0

v,η = Nηξζ
1

2
[v,ζ + w,η] =

1

2
Nηξη

w,ζ = 0

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) = Nηξηζ

w(ξ, η, ζ) = 0;

(2.35)

• e18 = Nζ : non-physical motion around the ζ axis

� associated strain system

u,ξ = 0
1

2
[u,η + v,ξ] = 0

1

2
[u,ζ + w,ξ] =

1

2
Nζηζ

v,η = 0
1

2
[v,ζ + w,η] =

1

2
Nζξζ

w,ζ = Nζξη

� displacement �eld

u(ξ, η, ζ) = 0

v(ξ, η, ζ) = 0

w(ξ, η, ζ) = Nζξηζ;

(2.36)

In the Tables 2.1.2-2.1.2 we summarize,for each referred base mode, the
deformative parameter and the displacements �eld. Representations of these
modes are shown in the Figures 2.4-2.8.
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e1 = Eξ expansion motion along the ξ direction
u(ξ, η) = Eξξ, v(ξ, η) = 0

e2 = Eη expansion motion along the η direction
u(ξ, η) = 0, v(ξ, η) = Eηη

e3 = Sξη shearing motion in the ξη plan
u(ξ, η) = Sη, v(ξ, η) = Sξ

e4 = Hξ hourglass motion in the plan ξη along the ξ direction
u(ξ, η) = Hξξη, v(ξ, η) = 0

e5 = Hη hourglass motion in the plan ξη along the η direction
u(ξ, η) = 0, v(ξ, η) = Hηξη

Tab. 2.2: Four-node element: de�nitions of the deformative modes.

Fig. 2.4: Eight-node element: representations of the expansion modes.

e4 = Sξη shearing motion in the ξη plan
u(ξ, η, ζ) = 1

2Sξηη, v(ξ, η, ζ) = 1
2Sξηξ, w(ξ, η, ζ) = 0

e5 = Sηζ shearing motion in the ηζ plan
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = 1

2Sηζζ, w(ξ, η, ζ) = 1
2Sηζη

e6 = Sζξ shearing motion in the ζξ plan
u(ξ, η, ζ) = 1

2Sζξζ, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = 1
2Sζξξ

Tab. 2.3: Eight-node element: de�nitions of the shearing modes.

2.2 Deformative invariants de�nitions

We consider a generic con�guration of the element. This con�guration, there-
fore, results rigidly translated, rotated and deformed according to the modes
described in the previous section. Now, for each deformative mode, we iden-
tify a measure with the following two features: not zero for the examined
mode and equal to zero for the other modes in the initial con�guration; in-
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Fig. 2.5: Eight-node element: representations of the shearing modes.

e7 = Hξη hourglass motion in the ξη plan along the ξ direction
u(ξ, η, ζ) = Hξηξη, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = 0

e8 = Hηζ hourglass motion in the ηζ plan along the η direction
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = Hηζηζ, w(ξ, η, ζ) = 0

e9 = Hζξ hourglass motion in the ζξ plan along the ζ direction
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = Hζξξζ

e10 = Hηξ hourglass motion in the ξη plan along the η direction
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = Hηξξη, w(ξ, η, ζ) = 0

e11 = Hζη hourglass motion in the ηζ plan along the ζ direction
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = Hζηηζ

e12 = Hξζ hourglass motion in the ζξ plan along the ξ direction
u(ξ, η, ζ) = Hξζξζ, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = 0

Tab. 2.4: Eight-node element: de�nitions of the hourglass modes.

e13 = Tξ torsional motion around the ξ axis
u(ξ, η, ζ) = −1

2Tξηζ, v(ξ, η, ζ) = 1
2Tξξζ, w(ξ, η, ζ) = 1

2Tξξη

e14 = Tη torsional motion around the η axis
u(ξ, η, ζ) = 1

2Tηηζ, v(ξ, η, ζ) = −1
2Tηξζ, w(ξ, η, ζ) = 1

2Tηξη

e15 = Tζ torsional motion around the ζ axis
u(ξ, η, ζ) = 1

2Tζηζ, v(ξ, η, ζ) = 1
2Tζξζ, w(ξ, η, ζ) = −1

2Tζξη

Tab. 2.5: Eight-node element: de�nitions of the torsional modes.

dependent of the rigid kinematics value. Then, such a measure uniquely
describes the deformation associated with the mode itself in the generic con-
�guration. So, these de�nitions make the deformative modes reciprocally
independent and then, they can be summed up in the strain tensor de�ni-
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Fig. 2.6: Eight-node element: representations of the hourglass modes.

Fig. 2.7: Eight-node element: representations of the torsional modes.

e16 = Nξ non-physical motion around the ξ axis
u(ξ, η, ζ) = Nξξηζ, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = 0

e17 = Nη non-physical motion around the η axis
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = Nηξηζ, w(ξ, η, ζ) = 0

e18 = Nζ non-physical motion around the ζ axis
u(ξ, η, ζ) = 0, v(ξ, η, ζ) = 0, w(ξ, η, ζ) = Nζξηζ

Tab. 2.6: Eight-node element: de�nitions of the non-physical modes.

tions.
The measures just described, denoted in the following as deformative

invariants, represent here relative distances between points of the generic
con�guration and they are in function of the unknown elemental parameters.
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Fig. 2.8: Eight-node element: representations of the non-physical modes.

We refer to the Euclidean distance D(pi, pj) between the points pi, pj of
the element in the generic con�guration:

D(pi, pj) =

√[
ξpi + upi − ξpj − upj

]2
+

[
ηpi + vpi − ηpj − vpj

]2
+

[
ζpi + wp

i − ζpj − wp
j

]2
.

(2.37)
In (3.8) ξpi , η

p
i and ζpi are, respectively, the initial ξ, η and ζ coordinates of

the point pi while upi , v
p
i and wp

i are the respective displacements.

2.2.1 Two-dimensional 4-node element

In this section we de�ne the deformative invariant for two-dimensional 4-
node elements. As an example, we refer to the two-dimensional ξ extensional
mode. In particular we underline how to describe the related characteristic
measure and that it represents an invariant in respect to the deformation
�elds.

x

h

Fig. 2.9: Two-dimensional 4-node element: reference points de�nition.

We consider (see Figure 2.9) the distance D(m13,m24) between the mid-
dle points m13 and m24 of the segments n1-n3 and n2-n4 connecting the ni

nodes of the element. We note that this distance is an invariant, in the �rst
order approximation, in respect to the remaining η extensional, shearing,
ξ and η hourglass modes as shown in Figures 2.10(a), 2.10(b), 2.10(c) and
2.10(d), respectively. As we can verify, the examined D(m13,m24) distance
changes only if the actual con�guration of the element involves also the ξ
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extensional deformation (see Figure 2.10(e)) In the following we de�ne the
invariants by basing our measures only on nodal distances.

Then, a possible choice for the invariant IEξ related to the deformative
parameter Eξ is:

IEξ = D(m13,m24)− 2hξ. (2.38)

This invariant, therefore, represents the di�erence between the actual
D(m13,m24) and the initial 2hξ distances. Of course, this di�erence is equal
to the ξ expansion of the element. So, the following relation is valid:

IEξ = 2Eξhξ. (2.39)

By equating the two invariant representations (2.38) e (2.39) we can
determine the deformative parameter as a function of the kinematic param-
eters.

Similarly to the expansion mode we can de�ne the invariant expression
for the other deformative mode too. As a result the used de�nitions of the
invariants and their dependence on the related deformative parameters are
given. In particular, the already seen extensional, shearing and hourglass
modes was considered:

• expansion motion along the ξ direction:

IEξ = D(m13,m24)− 2hξ, Eξ =
IEξ

2hξ
;

• expansion motion along the η direction:

IEη = D(m12,m34)− 2hη, Eη =
IEη

2hη
;

• shearing motion in the ξη plan:

IS = D(n1, n4)−D(n2, n3), S =
IS

√
(hξ)2 + (hη)2

8hηhξ
;

• hourglass motion in the plan ξη along the ξ direction:

IHξ = D(n1, n2)−D(n3, n4), Hξ =
IHξ

4hξhη
;

• hourglass motion in the plan ξη along the η direction:

IHη = D(n1, n3)−D(n2, n4), Hη =
IHη

4hηhξ
;
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Fig. 2.10: Two-dimensional 4-node element: examination of the IEξ invari-
ant.

2.2.2 Three-dimensional 8-node element

We extend, at present, the formulation obtained in the previous two-dimensional
case to the three-dimensional 8-node element. The deformative parameters
are the ones de�ned in Section . The de�nitions of the numbering of the
nodes are referred to the Figure 2.11 where gi is the central point of the i

face. In the following we summarize the de�nitions of the invariants and
their dependence on the related deformative parameters.

• Deformative invariants related to extensional modes:

IEξ = D(g1, g2)− 2hξ, Eξ =
IEξ

2hξ
;

IEη = D(g3, g4)− 2hη, Eη =
IEη

2hη
;

IEζ = D(g5, g6)− 2hζ , Eζ =
IEζ

2hζ
.
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x

h

z

Fig. 2.11: Three-dimensional 8-node element: reference points de�nition.

• Deformative invariants related to shearing modes:

ISξη = D(n1, n4) +D(n5, n8)−D(n2, n3)−D(n6, n7), Sξη =
ISξη

√
(hξ)2 + (hη)2

16hξhη
;

ISξζ = D(n1, n6) +D(n3, n8)−D(n2, n5)−D(n4, n7), Sξζ =
ISξζ

√
(hξ)2 + (hζ)2

16hξhζ
;

ISηζ = D(n2, n8) +D(n1, n7)−D(n4, n6)−D(n3, n5), Sηζ =
ISηζ

√
(hη)2 + (hζ)2

16hηhζ
.

• Deformative invariants related to torsion modes:

ITζ = D(n2, n3) +D(n5, n8)−D(n1, n4)−D(n6, n7), Tζ =
ITζ

√
(hξ)2 + (hη)2)

16hξhηhζ
;

ITη = D(n2, n5) +D(n3, n8)−D(n1, n6)−D(n4, n7), Tη =
ITη

√
(hξ)2 + (hζ)2

16hξhηhζ
;

ITξ = D(n2, n8) +D(n3, n5)−D(n1, n7)−D(n4, n6), Tξ =
ITξ

√
(hη)2 + (hζ)2

16hξhηhζ
.

• Deformative invariants related to hourglass modes:

IHξη = D(n3, n4) +D(n7, n8)−D(n1, n2)−D(n5, n6), Hξη =
IHξη

8hξhη
;

IHηξ = D(n2, n4) +D(n6, n8)−D(n1, n3)−D(n5, n7), Hηξ =
IHηξ

8hξhη
;

IHξζ = D(n5, n6) +D(n7, n8)−D(n1, n2)−D(n3, n4), Hξζ =
IHξζ

8hξhζ
;

IHζξ = D(n2, n6) +D(n4, n8)−D(n1, n5)−D(n3, n7), Hζξ =
IHζξ

8hξhζ
;

IHηζ = D(n5, n7) +D(n6, n8)−D(n1, n3)−D(n2, n4), Hηζ =
IHηζ

8hηhζ
;

IHζη = D(n3, n7) +D(n4, n8)−D(n1, n5)−D(n2, n6), Hζη =
IHζη

8hηhζ
.

• Deformative invariants related to non-physical modes:

INξ = D(n1, n2) +D(n7, n8)−D(n3, n4)−D(n5, n6), Nξ =
INξ

8hξhηhζ
;

INη = D(n1, n3) +D(n6, n8)−D(n2, n4)−D(n5, n7), Nη =
INη

8hξhηhζ
;

INζ = D(n1, n5) +D(n4, n8)−D(n2, n6)−D(n3, n7), Nζ =
INζ

8hξhηhζ
.
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We note that, the de�nition of the invariant for each deformative mode
has been found by inspection of some characteristic distances between points
of the element. However, an inverse process is also practicable. In e�ect, the
expressions of the invariants can be de�ned a priori in function of the nodal
displacements. To compute these unknown displacements, we de�ne a linear
algebraic system for each invariant. The equations of the linear system are
obtained by imposing zero value for all invariant expressions except the value
of the considered one. In this way, by constraining also the rigid motions
of the element, the kinematics related to the invariant mode is completely
determined by the computed nodal displacements. In this sense, as we will
see in details in the next section, the approach arises systematically and it
acquires generality in the isoparametric elements �eld.

2.3 Quadrilateral and hexahedral geometries

For generic quadrilateral and hexahedral elements, we refer to the same
measures of the invariants given in the previously section. This assumption,
however, is consistent if the invariant de�nition requirements are satis�ed.
Here we proceed in such a way that the requirements are satis�ed in a con-
structive manner. In e�ect, in respect to the invariants speci�cation of the
previous section carried out by inspection of the modes, here we adopt the
related general inverse procedure. In the following, Greek subscript denotes
the deformative component with range 1..5 for the two-dimensional and 1..18

for the three-dimensional case, respectively. Latin subscript, instead, denotes
the elemental kinematical parameter qi that can assume 1..8 and 1..24 values.
The m subscript, �nally, is used to identify the node.

Fig. 2.12: Quadrilateral and hexahedral elements: topological de�nition.
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Let the nodal distances based measures Mα = Dα(nm) for the assumed
invariants given. The distances are then computed in function of the ξm,
ηm and ζm local nodal coordinates and of the um, vm and wm local nodal
displacements. Topological de�nitions are given in Figure 2.12(a) and Figure
2.12(b) for the four-node and eight-node element, respectively. In particular,
for the three-dimensional space, η axis was placed in the plane de�ned by
n1, n2 and n3 nodes.

Having obtained the expressionMα(um, vm, wm), the following elemental
kinematics

u(ξ, η) = a1ξ + a3η + a4ξη, v(ξ, η) = a3ξ + a2η + a5ξη, (2.40)

and

u(ξ, η, ζ) = a1ξ + a4η + a6ζ + a7ξη + a14ξζ + a12ηζ + a16ξηζ,

v(ξ, η, ζ) = a4ξ + a2η + a5ζ + a10ξη + a8ξζ + a15ηζ + a17ξηζ,

w(ξ, η, ζ) = a6ξ + a5η + a3ζ + a13ξη + a11ξζ + a9ηζ + a18ξηζ,

(2.41)

are considered for the 4-node and 8-node cases, respectively. Expressions
(2.40) and (2.41) are obtained from the (2.1) and (2.12) displacement in-
terpolations by depriving them of the rigid motions and represent, there-
fore, only the deformative kinematics. Nodal displacements um(aα), vm(aα),
wm(aα), then, are in function of the aα unknown parameters. By insertion
of such nodal displacements in the de�nitions of the distances, the nonlinear
Mα(aβ) measures are obtained. Of course, being in the linear deformative
assumptions,

LMα(aβ) = La =
∑
β

∂Mα

∂aβ
(0) aβ (2.42)

represent the desired de�nitions of the assumed invariants in the linearized
kinematic.

Now, we note that measures LMα in (2.42) are independent of the rigid
kinematics. Furthermore, for each measure LMβ , we can compute a poste-
riori the related mode mβ by solving the system

Lmβ = iβMβ, (2.43)

where iβ is the unit vector in the β-th direction. In this way, the mβ mode
produces the Mβ value for the LMβ measure and zero value for the other
LMα, α ̸= β, considered measures. Then, the required connection between
the deformative modes (mα) and the deformative parameters (Mα) has been
accomplished. LMα(mβ) = LMα(Mβ) are the researched de�nitions of
the invariants in the linear �eld while u(mα) = u(Mα), v(mα) = v(Mα),
w(mα) = w(Mα), are the related kinematics.
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As a result of such a procedure, linear strain components are expressed
in function of the deformative parameters Mα by spatial di�erentation of the
computed u(Mα), v(Mα), w(Mα) kinematics while the nonlinear invariants
de�nitions Mα(um, vm, wm) = Mα(qi) are initially given in dependence on
the kinematics parameters qi in the xyz global reference system.

For the elemental internal forces and sti�ness matrix evaluation we pro-
ceed by the chain rule di�erentiation of the V (ε(M(q))) potential expression.
We note that non-linearities are present only in the M(q) operator. In the
linear ε(M) dependence, besides, for each component of the strain tensor
ε, the desired Mα deformative contribution can be activated by the user
through a simple switch operation.

2.4 Geometrically nonlinear statical analysis

In this section, after giving the de�nition of the involved energetic quantities,
we describe the system of the statical motion equation and the corresponding
adopted solution scheme.

2.4.1 Energetic quantities de�nition

The energetic quantities involved in the statical analysis are the V (u) internal
potential and the L(u) external work:

V (u) =
1

2

∫
Ω
εTA εdΩ, L(u) =

∫
Ω
pTu dΩ. (2.44)

A is the material coe�cients matrix, Ω is the domain of body and p is the
vector of external loads.

We focus, now, on the description of the strain tensor in (2.44). We
refer to the linear approximation of the tensor components, being, as above-
mentioned, the geometrical nonlinearity taken in to account by the de�nition
of the deformative invariants. The tensor, then, is expressed as a linear
function of the deformative parameters:

εξξ = εξξ(Eξ, Eη,Hξ,Hη)

εξη = εξη(Sξη)

εηη = εηη(Eξ, Eη,Hξ, Hη)

(2.45)
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for the two-dimensional case, while

εξξ = εξξ(Eξ, Eη, Eζ , Hξη,Hηζ ,Hζξ,Hηξ,Hζη,Hξζ , Nξ, Nη, Nζ)

εξη = εξη(Sξη, Sηζ , Sζξ, Tξ, Tη, Tζ)

εξζ = εξζ(Sξη, Sηζ , Sζξ, Tξ, Tη, Tζ)

εηη = εηη(Eξ, Eη, Eζ ,Hξη, Hηζ , Hζξ,Hηξ, Hζη,Hξζ , Nξ, Nη, Nζ)

εηζ = εηζ(Sξη, Sηζ , Sζξ, Tξ, Tη, Tζ)

εζζ = εζζ(Eξ, Eη, Eζ , Hξη,Hηζ ,Hζξ, Hηξ,Hζη,Hξζ , Nξ, Nη, Nζ)

(2.46)

for the three-dimensional case. Locking e�ects are overcome by a selective
choice of the modes in the (2.45) and (2.46) expressions. This selective
reduction of the strain components, as said before, can be carried out by
a simple zeroing of the undesired deformative parameters. In particular,
in (2.45) and (2.46) we have omitted the shearing and torsional terms in
the normal strain components while extension, hourglass and non-physical
modes have been cancelled in the shear strain components.

We note that, the eigenvalues problem solution shows that spurious zero
energy modes are not contained in the element sti�ness matrix. In e�ect,
this situation is veri�ed because all the deformative parameters appear at
least once in the strain tensor de�nitions.

The potential V , then, results de�ned by the deformative parameters
that are in function of the unknown nodal displacements. As we said, by
chain rule we can compute the element internal forces vector and sti�ness
matrix. The computational cost required by the storage and evalutation of
this vectorial quantities results small. In e�ect, we observe that this is about
equal to one-third of the computational cost required by the formulation
with classical nonlinear deformations tensor.

2.4.2 Statical motion equation and adopted solution scheme

By referring to (2.44) de�nitions, the internalN(u) and the external P forces
are expressed by:

N(u) =
∂V(u)

∂u
, P =

∂L(u)

∂u
, (2.47)

In the �nite element approach the displacements in the body are de-
scribed by the q vector of the global parameters. With this spatial dis-
cretization and by including the boundary conditions, we obtain the follow-
ing statical equilibrium equation:

N(u)− λP = 0, (2.48)

where λ is the external force parameter.
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A predictor-corrector scheme as described in[48],[49] for the equilibrium
path individualization is used in the statical analysis. It is characterized by
a predictor step obtained by an asymptotic extrapolation and by a corrector
scheme Newton's method based with minimization of the distance between
approximate and equilibrium points as a constraint equation. Here we adopt
a �rst order asymptotic extrapolation in the predictor phase. The length µ(k)

of the extrapolation parameter in the k-th predictor-corrector step is chosen
as a function of the iterations N

(k−1)
it performed in the previous corrector

step:

µ(k) = µ(k−1) N̄it

N
(k−1)
it

, (2.49)

where N̄it = 3 is taken as target iteration count. The corrector process
computes the i-th approximation of the force parameter λ(k)

(i) and vector of

discretization parametes q(k)
(i) . It is stopped when the convergence criterion

∥q(k)(i) − q
(k)
(i−1)∥

∥q(k)(i) ∥
< 10−8 (2.50)

is satis�ed.

35



Chapter 3

Projectors based method

Existing �nite element formulations for �nite rotation problems are solely
based on various types of rotational parameters, inevitably used as kine-
matic variables. These techniques, however, su�er from the singularities in
the transformation matrices for several angles and requires complex manip-
ulations to overcome nonconservative descriptions due to the noncommuta-
tivity of rotations. The interpolation of rotations to measure deformations
then requires the use of incremental solution procedures when large rota-
tions are considered. In e�ect, small rotation increments are hypothesized
for the linearization of the con�guration space. Consequently, small steps
in the continuation process are allowed and a slow convergence is intrinsic
to the formulation. To overcome these limitations, a completely di�erent
approach is taken in this chapter. The suggested formulation, based on the
total Lagrangian description, abandons the classical assumption because the
use of the rotation parameters is bypassed. Projectors are used instead of
rotation parameters to compute the nonlinear representations of the strain
measures in the inertial frame of reference.

In particular, based on the Euler-Bernoulli beam theory, the actual con-
�guration of the element is rigidly translated and rotated, and deformed
according to the selected linear modes. Rigid and deformative modes are
referred to the nodes of the element. The nonlinear rigid motion is recov-
ered by referring to three unit and mutually orthogonal vectors attached
to the nodes of the beam element. All nine components of such vectors in
the global inertial frame of reference are assumed as unknown. As will be
demonstrated, the rotational degree of freedom of the element is reduced to
only three by six well-posed constraint conditions.

Afterward, for each deformative mode, a characteristic measure that is
an invariant of the rotations is de�ned. As the deformation modes are recip-
rocally independent, they can be summed up in the strain tensor de�nition.
The invariant measures are then computed by requiring the following two
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features for each of them: not zero for the examined deformative mode and
equal to zero for the other modes in the initial con�guration; independent of
the rigid kinematics value. We note that, boundary conditions on rotations
are simply imposed by assuming as known the related nodal slopes while
applied moments are modeled as forces following the motions, as will be
discussed later.

In the chapter we �rst describe the kinematics of the beam element and
related deformative energy. Subsequently we discuss the constraint condi-
tions imposed on the unknown components of vectors representative of the
rigid rotations and �nally we describe the nonlinear equilibrium equations
and of the related solution algorithm.

3.1 Kinematics and strain energy of the beam ele-

ment

We refer to the referential coordinate ξ along the element beam centerline
−h ≤ ξ ≤ +h. In the following, we denote with n and m the nodes respec-
tively in ξ = −h and ξ = +h, Latin indices i, j and k have the values [1,...,3]
while δij is the Kronecker delta. In the global inertial frame of reference (xi)
and for each n node we de�ne three unknown displacement components uni
and three unknown vectors

En
1 = {En

1,1, E
n
1,2, E

n
1,3},

En
2 = {En

2,1, E
n
2,2, E

n
2,3},

En
3 = {En

3,1, E
n
3,2, E

n
3,3}, (3.1)

or in a compact form En
i = {En

i,j} (see Fig.3.2). Even though the components
of such vectors are unknowns, at the solution points vector En

1 is in the ξ

direction while vectors En
2 and En

3 are along the principal axes of inertia of
the cross-section.

In the beam element, global displacement vector u(ξ) = {ui(ξ)} is com-
posed of rigid and deformative components.
In particular we refer to the deformative ũ(ξ) = {ũi(ξ)} displacement vec-
tors de�ned in the local rigidly rotated frame of reference. The deformative
kinematics is assumed by the simplest interpolations

ũ1(ξ) = e1ξ/h,

ũ2(ξ) = f12ξ
2/2h+ s12ξ

3/2h2,

ũ3(ξ) = f13ξ
2/2h+ s13ξ

3/2h2. (3.2)

Based on the assumptions (3.2), constant axial and shear stress resultants
and linear bending moments are expected. Unknowns e1, f12, s12, f13, s13
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Fig. 3.1: generical unknown three nodal vectors.

in (3.2) are local deformative components. The kinematics of the element is
then completed by de�ning the local θ rotation about the beam centerline

θ̃(ξ) = t1ξ/h, (3.3)

where t1 is the related deformative component. Constant torsional stress
resultant is expected here.
We note that rigid kinematics will be implicitly represented by the nodal dis-
placement components and the degrees of freedom of the vectors Ei attached
to the beam element.

As the beam element kinematics is de�ned, in order to formulate the
equilibrium equations using matrix formulation, the following stress {S} and
deformation {γ} vectors are introduced:

{S}t = {N M2 M3 Msv MR},

{γ}t = {ε(ξ) − k2(ξ) − k3(ξ) θ̃
′
(ξ)

1

2
θ̃
′
(ξ)2}.

where {}t denotes the transpose operator and the prime (′) the derivative
with respect to the ξ coordinate. By referring to stress quantities, N is the
axial force, M2 and M3 are the bending moments, Msv is the St-Venant tor-
sion moment and MR is the Wagner's moment. By referring to deformation
quantities, ε(ξ) = ũ

′
1(ξ) denotes the membrane component, k2(ξ) = ũ

′′
2(ξ)

and k3(ξ) = ũ
′′
3(ξ) are the beam curvatures about the main axis while θ̃

′
(ξ),

sometimes called shortening term, is a rotation per unit length.
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The relationships between the stress vector components in terms of de-
formation vector components are the following in the principal axes:

N =
∫
AEε11dA = EAε(ξ) + 1

2EAJoθ̃
′
(ξ)2,

M2 =
∫
AEε11ξ3dA = −EJ2k2(ξ),

M3 =
∫
AEε11ξ2dA = −EJ3k3(ξ),

Msv = 2
∫
A(Gε13(ξ2 − ξc2)−Gε12(ξ3 − ξc3))dA = GJ1θ̃

′
(ξ),

MR = EAJoε(ξ) +
1
2EJpθ̃

′
(ξ)2,

(3.4)

where εij denotes the strain tensor components and ξci are the shear centre
coordinates. The above relationships (3.4) are also functions of elastic and
geometric characteristics. E and G are the Young and shear moduli, A de-
notes the section area, J2 and J3 are the second moments of area about the
principal axes of inertia, J1 is the St-Venant torsion constant while Jo and
Jp are the polar moment and the fourth moment of the area about the shear
centre, respectively. We note that the warping e�ect, further nonlinear cou-
pling terms and the Wagner coe�cients are not taken into account because
only rectangular section was analyzed. Di�erent section shapes, however,
can also be introduced (Mohri et al. [56], [57], can be referred for details of
this).

These equilibrium equations written in matrix formulation lead to

{S} =



N

M2

M3

Msv

MR


=


EA 0 0 0 EAJo
0 EJ2 0 0 0

0 0 EJ3 0 0

0 0 0 GJ1 0

EAJo 0 0 0 EJp





ũ
′
1(ξ)

−ũ
′′
2(ξ)

−ũ
′′
3(ξ)

ϑ̃
′
(ξ)

1
2 ϑ̃

′
(ξ)2


= [D]{γ}.

where [D] is the material matrix behaviour. Using relations (3.4), the ex-
pression of the strain energy is easy to obtain. To this end the �exural strain
energy of the element is de�ned as

Πf =
1

2

∫ +h

−h
{M2ũ

′′
2(ξ) +M3ũ

′′
3(ξ)}dξ

=
1

2

∫ +h

−h
{EJ2ũ

′′
2(ξ)

2 + EJ3ũ
′′
3(ξ)

2}dξ. (3.5)
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The pure torsional strain energy is written as

Πt =
1

2

∫ +h

−h
Msv θ̃

′
(ξ)dξ

=
1

2

∫ +h

−h
GJ1θ̃

′
(ξ)2dξ. (3.6)

In addition, the axial and torsional strain energies were coupled in the non-
linear form

Πat =
1

2

∫ +h

−h
{Nũ

′
1(ξ) +MRθ̃

′
(ξ)2/2}dξ

=
1

2

∫ +h

−h
{[EAũ

′
1(ξ) + EAJoθ̃

′
(ξ)2/2]ũ

′
1(ξ)+

+[EAJoũ
′
1(ξ) + EJpθ̃

′
(ξ)2/2]θ̃

′
(ξ)2/2}dξ. (3.7)

Finally, the total strain energy of the beam element is obtained by the sum

Π = Πf +Πt +Πat.

To compute the deformative components we refer to the beam element
centered in the origin of the (ξi) reference system (see Fig. 3.2) where ξ1
represents the ξ beam centerline. The deformative modes have been com-
puted by the interpolations in (3.2)-(3.3) and are shown in Fig. 3.3. In
particular we refer to: e1 expansion mode along the ξ1 direction; f12 and
s12, respectively, �exural and shearing modes in the ξ1ξ2 plain; f13 and s12,
respectively, �exural and shearing modes in the ξ1ξ3 plain; t1 torsional mode
around the ξ1 axis.

Fig. 3.2: beam element de�nition.
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Fig. 3.3: selected points for the linear deformative modes representation.

3.2 Deformative components in the global refer-

ence system

As stated, for each deformative mode, we identify a measure with the follow-
ing two features: not zero for the examined mode and equal to zero for the
other modes in the initial con�guration; independent of the rigid kinematics
value. Such a measure uniquely describes the deformation associated with
the mode itself in the generic con�guration, so, these de�nitions make the
deformative modes reciprocally independent and, then, they can be summed
up in the strain tensor de�nitions.

The measures just described, denoted in the following as deformative
invariants I, represent here relative distances between points of the generic
con�guration and they are a function of the unknown elemental parameters.
We refer to the D2(Pn

α , P
m
β ) square of the Euclidean distance between the
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Fig. 3.4: selected points for the nonlinear deformative modes representation.

points Pn
α , P

m
β of the element (see Fig. 3.4) in the generic con�guration:

D2(Pn
α , P

m
β ) =

3∑
i=1

[
ξi(P

n
α ) + ui(P

n
α )− ξi(P

m
β )− ui(P

m
β )

]2
. (3.8)

In (3.8) ξi(P
n
α ) are the initial ξi coordinates of the point Pn

α while ui(P
n
α )

are the respective displacements.
For each deformative parameter, we list the assumed invariants by:

Ie1 = D2(Pn
0 , P

m
0 )− (2h)2,

If12 = D2(Pn
3 , P

m
3 )−D2(Pn

1 , P
m
1 ),

Is12 = D2(Pn
1 , P

m
3 )−D2(Pn

3 , P
m
1 ),

If13 = D2(Pn
4 , P

m
4 )−D2(Pn

2 , P
m
2 ),

Is13 = D2(Pn
2 , P

m
4 )−D2(Pn

4 , P
m
2 ),

It1 = [D2(Pn
1 , P

m
4 ) +D2(Pn

2 , P
m
1 ) +D2(Pn

3 , P
m
2 ) +D2(Pn

4 , P
m
3 )]/(2h)2.

Now, we denote with IL and INL the deformative invariant de�nitions
in the local (linear) and global (nonlinear) representation, respectively. By
using the above de�nitions, for each deformative parameter, we compute the
explicit expressions of the invariant representations summarized below:

ILe1 = (2h+ 2e1)
2 − (2h)2 ≈ 8he1,

INLe1 = (un1 − um1 − 2h)2 + (un2 − um2 )2 + (un3 − um3 )2 − (2h)2
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ILf12 = (2h+ 2d2f12)
2 − (2h− 2d2f12)

2 = 16hd2f12

INLf12 = 4d2[(u
n
1 − um1 − 2h)(En

2,1 − Em
2,1) + (un2 − um2 )(En

2,2 − Em
2,2)+

+(un3 − um3 )(En
2,3 − Em

2,3)]

ILs12 = (2h+ 2d2s12)
2 − (2h− 2d2s12)

2 = 16hd2s12

INLs12 = 4d2[(u
n
1 − um1 − 2h)(En

2,1 + Em
2,1) + (un2 − um2 )(En

2,2 +Em
2,2)+

+(un3 − um3 )(En
2,3 + Em

2,3)]

ILf13 = (2h+ 2d3f13)
2 − (2h− 2d3f13)

2 = 16hd3f13

INLf13 = 4d3[(u
n
1 − um1 − 2h)(En

3,1 − Em
3,1) + (un2 − um2 )(En

3,2 − Em
3,2)+

(un3 − um3 )(En
3,3 − Em

3,3)]

ILs13 = (2h+ 2d3s13)
2 − (2h− 2d3s13)

2 = 16hd3s13

INLs13 = 4d3[(u
n
1 − um1 − 2h)(En

3,1 + Em
3,1) + (un2 − um2 )(En

3,2 +Em
3,2)+

+(un3 − um3 )(En
3,3 + Em

3,3)]

ILt1 = [16h2 + 2d22 + 2d23 + 2(d2 + t1d3)
2 + 2(d3 + t1d2)

2]/(2h)2 ≈

(4h2 + d22 + d23 + 2t1d2d3)/h
2

INLt1 = [d22 + d23 + (un1 − um1 − 2h)2 + (un2 − um2 )2 + (un3 − um3 )2+

(En
2,1E

m
3,1 +En

2,2E
m
3,2 +En

2,3E
m
3,3 −En

3,1E
m
2,1 −En

3,2E
m
2,2 −En

3,3E
m
2,3)d2d3]/h

2 ≈

[4h2 + d22 + d23 + (En
2,1E

m
3,1 + En

2,2E
m
3,2+

+En
2,3E

m
3,3 − En

3,1E
m
2,1 − En

3,2E
m
2,2 − En

3,3E
m
2,3)d2d3]/h

2

In the INLt1 evaluation, simpli�cations deriving from the Ei
TEi = 1 and

[D2(Pn
0 , P

m
0 ) − (2h)2]/(2h)2 ≈ 0 estimates have been carried out. Finally,

by equating IL expressions with the related INL we compute the global
representations of the deformative parameters used in (3.2)-(3.3):

e1 = [(un1 − um1 − 2h)2 + (un2 − um2 )2 + (un3 − um3 )2 − (2h)2]/8h,

f12 = [(un1 − um1 − 2h)(En
2,1 − Em

2,1)
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+(un2 − um2 )(En
2,2 − Em

2,2) + (un3 − um3 )(En
2,3 − Em

2,3)]/4h,

s12 = [(un1 − um1 − 2h)(En
2,1 + Em

2,1)

+(un2 − um2 )(En
2,2 + Em

2,2) + (un3 − um3 )(En
2,3 + Em

2,3)]/4h,

f13 = [(un1 − um1 − 2h)(En
3,1 − Em

3,1)

+(un2 − um2 )(En
3,2 − Em

3,2) + (un3 − um3 )(En
3,3 − Em

3,3)]/4h,

s13 = [(un1 − um1 − 2h)(En
3,1 + Em

3,1)

+(un2 − um2 )(En
3,2 + Em

3,2) + (un3 − um3 )(En
3,3 + Em

3,3)]/4h,

t1 = [En
2,1E

m
3,1 + En

2,2E
m
3,2 +En

2,3E
m
3,3 − En

3,1E
m
2,1 − En

3,2E
m
2,2 − En

3,3E
m
2,3]/2.

We note that, as it should be, these representations are independent of the
transversal lengths d2 and d3.

3.3 Constraint conditions

The nine Ei,j unknown components of the Ei vectors are subject to six
constraint conditions. We demonstrate here that the rotational degrees of
freedom are reduced just to three. Of course, six conditions being imposed,
the degrees of freedom are at least three. To show also that the degrees of
freedom are at most three we refer to the de�nitions i− = i−1 and i+ = i+1

for the cyclic sequence of the Latin indices.
The constraint equations are

E2 ·E2 − 1 = 0,

E3 ·E3 − 1 = 0,

E2 ·E3 = 0,

E2 ×E3 = E1, (3.9)

where the related Jacobian matrix is denoted byG. We show that nullity(G)
is at most three in the solution point. The open mapping theorem then gives
the result. The Jacobian matrix of the system (4.12) is

G =



0 0 0 E2,1 E2,2 E2,3 0 0 0

0 0 0 0 0 0 E3,1 E3,2 E3,3

0 0 0 E3,1 E3,2 E3,3 E2,1 E2,2 E2,3

1 0 0 0 −E3,3 E3,2 0 E2,3 −E2,2

0 1 0 E3,3 0 −E3,1 −E2,3 0 E2,1

0 0 1 −E3,2 E3,1 0 E2,2 −E2,1 0


. (3.10)
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Then, in the solution point and for a given known vector z, we must verify
that six of the nine yi,j components of the unknown vector y are uniquely
determinable from the system Gy = z.

From the last three rows of the system, as we can see in (3.10), the y1,i
unknowns are easy to calculate. Therefore the system is reduced to the form

 E2,1 E2,2 E2,3 0 0 0

0 0 0 E3,1 E3,2 E3,3

E3,1 E3,2 E3,3 E2,1 E2,2 E2,3




y2,1
y2,2
y2,3
y3,1
y3,2
y3,3


=


z2
z3
z2,3

 . (3.11)

For at least one i and one j is E2,i ̸= 0 and E3,j ̸= 0, respectively. Then,
from the �rst two rows of (3.11) we obtain

y2,i =
1

E2,i
(z2 − E2,i−y2,i− − E2,i+y2,i+), (3.12)

y3,i =
1

E3,j
(z3 − E3,j−y3,j− − E3,j+y3,j+). (3.13)

By inserting (3.12) and (3.13) in the third row of system (3.11) and multi-
plying by E2,iE3,j it follows that

[E2,iE3,i− − E2,i−E3,i]E3,jy2,i− + [E2,iE3,i+ − E2,i+E3,i]E3,jy2,i+

+[E2,j−E3,j − E2,jE3,j−]E2,iy3,j− + [E2,j+E3,j − E2,jE3,j+]E2,iy3,j+

= c1E3,jy2,i− + c2E3,jy2,i+ + c3E2,iy3,j− + c4E2,iy3,j+ = z̄, (3.14)

with coe�cients c1, ..., c4 and z̄.
At the solution, the last three equations in (4.12) give

E2,kE3,k+ − E2,k+E3,k = E1,k−. (3.15)

In particular, (3.15) with

k = i− ⇒ E2,i−E3,i − E2,iE3,i− = E1,i+ ⇒ c1 = −E1,i+;

k = i ⇒ E2,iE3,i+ − E2,i+E3,i = E1,i− ⇒ c2 = E1,i−;

k = j− ⇒ E2,j−E3,j − E2,jE3,j− = E1,j+ ⇒ c3 = E1,j+;

k = j ⇒ E2,jE3,j+ − E2,j+E3,j = E1,j− ⇒ c4 = −E1,j−;
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so (3.14) becomes

−E1,i+E3,jy2,i− +E1,i−E3,jy2,i+ + E1,j+E2,iy3,j− − E1,j−E2,iy3,j+ = z̄.

(3.16)
In the case of i ̸= j, as all components of E1 are present at least one coe�-
cient in (3.16) is not zero and an unknown is de�nite.

The case i = j implies that if E1,i− ̸= 0 or E1,i+ ̸= 0, as before, an
unknown is de�nite. Otherwise, if E1,i− = E1,i+ = 0 we have that E1,i ̸= 0.
Then, from (3.15) with k = i+ we have

E2,i+E3,i− −E2,i−E3,i+ = E1,i ̸= 0, (3.17)

while with k = i and k = i− is

E2,iE3,i+ − E2,i+E3,i = E1,i− = 0 (3.18)

and
E2,i−E3,i − E2,iE3,i− = E1,i+ = 0, (3.19)

respectively. But, by computing E3,i+ and E3,i− from (3.18) and (3.19)
respectively, and inserting this in (3.17) we have

E2,i+
E2,i−E3,i

E2,i
− E2,i−

E2,i+E3,i

E2,i
̸= 0,

that is, the false condition

E3,i(E2,i+E2,i− − E2,i−E2,i+) ̸= 0.

3.4 Geometrically nonlinear statical analysis

In this section, after giving the de�nition of the involved energetic functional,
we describe the system of the nonlinear equations. The treatment of the
external loads and the adopted solution scheme are also discussed.

The formulation is based on the stationary problem for the functional Π
de�ned in Section 1. We denote with HE = 0 the constraint conditions in
(4.12). These conditions are added to the stationary problem by Lagrange
multiplier vector ΛE. In particular, we refer to the extended functional

W (u,Ei,ΛE) = Π(u,Ei) +ΛE ·HE(Ei), (3.20)

where u is the displacement parameter vector.
The variation of the functional W in (3.20), then, leads to a system of

nonlinear equations in the displacement parameters, the components of the
cross-section vectors and the Lagrange multipliers. After discretization and
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inclusion of the boundary conditions, we group these unknowns in the vector
q. Therefore, by denoting with N(q) the internal force vector, the nonlinear
equations are expressed by

N(q)− λP =
∂W (q)

∂q
− λ

∂L(q)

∂q
= 0. (3.21)

In (3.21), L(q) is external work while P and λ are the external force vector
and the external force parameter, respectively.

We outlined that external force vector P can be a linear function of the
unknown vector q. In e�ect, because no rotations are used in the present
formulation, moments are modelled as forces following the motion of the Ei

vectors. As an example, an applied pure bending moment M around the x2
global axis can be modelled with

L = P3E1,3 − P1E1,1, (3.22)

where P3 and P1 will be de�ned respectively as ME1,1 and ME1,3 after
di�erentiation in (3.21). The modelling was obtained by considering an ϵ

line segment of the element subject to an M/ϵ force couple applied at the
end points. Such a force couple is multiplied by related global displacements
to give the external work. (3.22) and linked P1 and P3 expressions are then
found by the limit of external work as ϵ approaches zero and by following
the motion of the line segment.

A predictor-corrector scheme as described in [48], [49] for the equilib-
rium path individualization is used in the analysis. It is characterized by a
predictor step obtained by a �rst order asymptotic extrapolation and by a
Newton's method based corrector scheme with minimization of the distance
between approximate and equilibrium points as a constraint equation. The
length µ(k) of the extrapolation parameter in the k-th predictor-corrector
step is chosen as a function of the iterations N

(k−1)
it performed in the pre-

vious corrector step by µ(k) = µ(k−1)N̄it/N
(k−1)
it , where N̄it = 3 is taken as

a target iteration count. The corrector process computes the increments of
the approximation of the force parameter ∆λ(k) and vector of discretization
parameters ∆q(k). It is stopped when the convergence criterion

∥∆q(k)∥
∥q(k)∥

< 10−8 (3.23)

is satis�ed.

3.5 Comparison with other formulations

In this section we compare the suggested formulation and a corotational ap-
proach to show the e�ectivenees of the proposed approach in terms of quality
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of results and computing time. The comparison was realised developing a
corotational analysis of the three dimensional elastic beams motion. The
analysis was based on a Total Lagrangian description of motion for both
formulations. According to the corotational approach, the motion of the
continuous medium is decomposed into a rigid body motion followed by a
pure deformation performed in a local corotational frame that rotates and
translates with each element.

We brie�y focus now on the kinematics and strain energy of the beam
element in the conducted corotational analysis based on the Euler-Bernoulli
beam theory, pointing out the di�erent description of �nite rotations. While
in the proposed approach the description of motion is a function of the nine
{Ei,j} unknown component of the Ei vectors that substitute rotation param-
eters, in the corotational approach these Ei vectors are obtained by rotating
the corresponding known vectors ei of the initial con�guration. In this way
the main di�culty is the presence of �nite rotations in �nite kinematics that
noticeably complicates the algebra for obtaining kinematics expressions. In
particular �nite 3D rotations must be described through rotation matrices
which lie in a nonlinear manifold. In fact to de�ne the used rotation tensor
R we refer to the Rodrigues formula which allows R to be expressed in terms
of the quantities lying in a vector space:

R[θ] = I +
sin(θ)

θ
W [θ] +

1− cos(θ)

θ2
W [θ]2 (3.24)

which used the rotation vector θ = [θ1, θ2, θ3]. Eq.(3.24) is equivalent to the
exponential map:

Rθ = I +Wθ +
W 2

θ

2!
+ . . . =

∞∑
n

Wn
θ

n!
= exp(Wθ) (3.25)

Then, the displacements of the element in the frame of reference is rep-
resented by

u1 = ū1 + ũ1E1,1 + ũ2E2,1 + ũ3E3,1,

u2 = ū2 + ũ1E1,2 + ũ2E2,2 + ũ3E3,2,

u3 = ū3 + ũ1E1,3 + ũ2E2,3 + ũ3E3,3, (3.26)

where ūi and ũi refer to rigid and deformative kinematics respectively. In
particular, in a reference system centered in the origin of the element, rigid
kinematics of the beam element is represented by

ū1 = uo1 + xE1,1 − x,

ū2 = uo2 + xE1,2,

ū3 = uo3 + xE1,3, (3.27)
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while with regard to deformative kinematics we can assume the same simple
interpolation (3.2) and (3.3) of the proposed formulation.

Through simple algebraic manipulations and using the orthonormality of
the Ei vectors it is possible to de�ne the rigid and deformative displacement
of the beam element centered in the origin as a function of nodal displace-
ments. In particular by denoting with n and m the left and right element
node, respectively, deformative measures e1, f12, s12, f13, s13, t1 in (3.2) and
(3.3) are evaluated as

e1 =
1

2h
[(um−un+h)(En

1,1+Em
1,1)+(vm−vn)(E

n
1,2+Em

1,2)+(wm−wn)(E
n
1,3+Em

1,3)]−1,

f12 =
1

4h
(E2

n ·E1
m −E1

n ·E2
m),

f13 =
1

4h
(E3

n ·E1
m −E1

n ·E3
m),

s12 = − 1

h3
[(um−un+h)(En

2,1+Em
2,1)+(vm−vn)(E

n
2,2+Em

2,2)+(wm−wn)(E
n
2,3+Em

2,3)],

s13 = − 1

h3
[(um−un+h)(En

3,1+Em
3,1)+(vm−vn)(E

n
3,2+Em

3,2)+(wm−wn)(E
n
3,3+Em

3,3)],

t1 =
1

2h
(E3

n ·E2
m −E2

n ·E3
m), (3.28)

Finally with regard to the total strain energy of the beam element we refer
to the description given in Section 2. Now we show a classical benchmark
to illustrate the results obtained using the described corotational approach
and the new proposed approach.

The narrow cantilever beam shown in Fig. 3.5 was analysed. The numer-
ical results obtained in Battini and Pacoste[7] can be taken as reference (◦).
The λ − wc vertical load parameter - lateral tip displacement curves have
been computed for the proposed approach and for the corotational approach
in the case of expansion series, in Rodrigues formula, stopped at the second
and third order. Load parameter and lateral displacement are displayed with
normalizing values Po =

√
EJ2GJ1/L

2 and L, respectively. Meshes with 8,
12 and 16 elements are used and displayed in Fig. 3.6 - 3.7 - 3.8 respectively.
The analyses were stopped when the value λ = 12 was reached.

It should be emphasized that the computation time between the two
approaches is comparable if we stop the exponential map, in the Rodrigues
formula, at the second order. In this case, as we can see in the numerical
results, the accuracy of corotational approach results is very poor. To obtain
more acceptable results it is necessary to extend the expansion series at
least up to third order with much more extensive computing time. On the
contrary, the new approach converges rapidly and its curves show its close
agreement with results in the literature.
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Fig. 3.5: Example 1: model problem de�nitions.

Fig. 3.6: Statical solution curves: mesh with 8 elements
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Fig. 3.7: Statical solution curves: mesh with 12 elements

Fig. 3.8: Statical solution curves: mesh with 16 elements
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Chapter 4

Dynamical analysis

Non-linear elastodynamics is an important �eld in structural analysis, and
in the last 30 years, there has been extensive research into time-integration
algorithms. In particular, stability is a dominant topic because, while un-
conditionally stable schemes can be recovered in linear dynamics, numerical
instability frequently appears in non-linear regimes.

In order to obtain stable solutions schemes which demand the conserva-
tion or decrease in the total energy of the Hamiltonian system within each
time step are extensively used. Energy-conserving algorithms in elastody-
namics have already appeared in the works of Belytschko and Schoeberle [10]
and Hughes et al. [33]. The energy-momentum method introduced by Simo
and Tarnow [71], [72] preserves energy, as well as linear and angular mo-
mentum, in the time interval. Conservation properties are enforced into the
equation of motion via Lagrange multipliers. Armero and Pet¨ocz [1] have in-
troduced a modi�cation of the energy-momentum method which allows us to
include numerical dissipation. The application of this unconditionally stable
energy decaying algorithm to the non-linear dynamics of three-dimensional
beams was presented by Cris�eld et al.[21]. Adaptive time-stepping proce-
dures (Kuhl and Ramm [42]) and controllable numerical dissipation (Ho� and
Pahl [30], Chung and Hulbert [18]) can also be introduced to permit larger
time steps and, consequently, to obtain better computational e�ciency. Al-
though �nite di�erence methods appear to prevail in the literature on the
numerical treatment of initial value problems, a number of alternative �nite-
element methods have been developed for the temporal discretization pro-
cess. Weighted residual statement and the Galerkin �nite-element approach
for the numerical solution of the equations of motion has been employed by
Zienkiewicz et al. [77], and by Lasaint and Raviart [44]. More recently, time
�nite elements, where the Newmark family formulas can be recovered by the
choice of representative constants and the algorithmic energy conservation is
implicitly preserved, have been carried out (see Betsch and Steinmann [11]
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and related bibliography). In all cases, it seems that an appropriate repre-
sentation and discretization of the motion equation leads to an appreciable
di�erence in the time-integration schemes with regard to stability. Argyris
et al. [4], in particular, noted a signi�cant increase in the range of stability of
the classical Newmark method if the natural mode �nite-element discretiza-
tion and lumped mass matrices are used. Of course, all the above mentioned
time-stepping algorithms can take additional advantage of these opportune
representations.

In this chapter we consider the behaviour of the average acceleration
Newmark scheme in the application to motion equations obtained by two
di�erent descriptions. In particular we present the extension to the dynam-
ical case of the lengths based method and projectors based method already
described in Chapters 2 and 3 respectively.

4.1 The dynamical problem and the Newmark in-

tegration algorithm

The topics arise the study of the evolution of a structure submitted as to
forces inherent the deformations as to forces involved the temporal evolution
of the same body, like to the strengths of inertia. We schematize the steps
to get the solution of the system of the motion equations. We consider
the vector of the displacements u of three spatial-components u, v, w that
depend from the original position of the body x = (x, y, z) and from the
time x = (x, y, z).

The principal involved energetic quantities are:
the potential energy:

V (u) =
1

2

∫
Ω
εTA ε dΩ, (4.1)

in which ε = ε(u) is the deformations vector of the body and A is the
bidimensional domain of body;
the kinetic energy:

T (u̇) =
1

2

∫
Ω
ρ u̇2 dΩ, (4.2)

that through the mass density ρ is tied to the derivative of the displacements
with respect to the time t (the velocities);
the external energy:

L(u) =

∫
Ω
pTu dΩ, (4.3)

to which the external loads p and the displacements u appear.
By means an approach to �nite element the displacements of the body are
located in n displacements in discreet form. With this spatial discretization
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and including the boundary conditions, we get to the following semi-discrete
formulation of the equations of the motion:

Mü(t) +N(u(t))−P(t) = 0

u(0) = u0

u̇(0) = u̇0

(4.4)

in which ü denote the accelerations, u0 and u̇0 represent the initial dis-
placements and initial velocities respectively. The inertia forces Mü(t), the
internal forces Mü(t) and the external forces P(t) are de�ned as follows:

Mü(t) =
∂

∂t

(
∂T (u̇(t))

∂u̇

)
,

N(u(t)) =
∂V (u(t))

∂u
,

P(t) =
∂L(u(t))

∂u
.

(4.5)

We procede now at the time-integration of the non-linear semi-discrete
initial value problem (4.4). In the following, we assume that the time step
∆t = tn+1 − tn = is constant and that the displacement, velocity and accel-
eration vectors at the time tn, denoted by un,u̇n,ün, respectively, are known.
The time-integration is restricted to the successive solution of the state vari-
ables at the end for each step un+1,u̇n+1,ün+1. In order to realize this step
by step integration, the set of variables is reduced to the displacement un+1

alone by the Newmark approximations:

u̇n+1 =
γ

β∆t
(un+1 − un) +

(
1− γ

β

)
u̇n +

(
1− γ

2β

)
∆tün,

ün+1 =
1

β∆t2
(un+1 − un)−

1

β∆t
u̇n +

(
1− 1

2β

)
ün.

(4.6)

So this method relies on the interpolations (4.6) that relate positions,
velocities, and accelerations from step n to n + 1. γ and β are parameters
that de�ne the method.

4.2 Geometrically nonlinear dynamical analysis in

lengths based method

In Chapter 2 we presented a lengths-based description of the small strains in
the �nite displacements regime. As we have seen in this approach, applied to
low order elements and based on the total Lagrangian kinematic description,
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the use of the rotation matrices is bypassed. In this Chapter we present an
extension of the described approach to the dynamic range.

We refer to the semi-discrete formulation of the equations of the motion
(4.4), where we suppose we have determined the inertia,internal and exter-
nal forces as de�ned in (4.5). In the time-integration scheme of the (4.4),
we assume that the time step ∆t = tn+1 − tn = is constant and that the
displacement, velocity and acceleration vectors at the time tn, denoted by
un,u̇n,ün, respectively, are known.

We use the Newmark average acceleration for which β = 1/4 and γ = 1/2.
This case also corresponds to the assumption that the acceleration is constant
over the time interval [tn, tn+1] and equal to (ün + ün+1)/2. method:

u̇n+1 =
2

∆t
(un+1 − un)− u̇n,

ün+1 =
4

∆t2
(un+1 − un)−

4

∆t
u̇n − ün.

(4.7)

where the successive solution points are the unknown state variables at the
end of each step un+1,u̇n+1,ün+1.

By replacing relations (4.7) in the initial value problem (4.4), we obtain
the nonlinear system of algebraic equations de�ned at the time tn+1 with
unknown vector un+1:

M

(
4

∆t2
(un+1 − un)−

4

∆t
u̇n − ün

)
+N(un+1)−Pn+1 = 0. (4.8)

More concisely, the system (4.8) can be placed in the following form:

F(un+1) = 0. (4.9)

We use the Newton-like iteration scheme for the solution of nonlinear
equations (4.9) by linearization:

F(u
(k+1)
n+1 ) ≈ F(u

(k)
n+1) +

∂F(u
(k)
n+1)

∂un+1
(u

(k+1)
n+1 − u

(k)
n+1). (4.10)

As predictor points u(0)
n+1 we choose the linear extrapolation of the pre-

viously computed un and un−1 vectors when n > 0, while the formula
u
(0)
1 = u0 + ∆tu̇0 is used when n = 0. The iteration is stopped when

the convergence criterion

∥u(k+1)
n+1 − u

(k)
n+1∥

∥u(k+1)
n+1 − un∥

≤ 10−8. (4.11)

is satis�ed.
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4.3 Geometrically nonlinear dynamical analysis in

projectors based method

In Chapter 3 a vectorial approach for the rotation parameterizations and
linear strain de�nitions based on slope unknowns has been suggested. The
analyzed models do not use angle measures because slopes are used instead of
rotation parameters to compute the nonlinear representations of the strain
measures in the inertial frame of reference. In particular for each n node
we de�ne three unknown vectors En

i = {En
i,j} where the nine Ei,j unknown

components of the Ei vectors are subject to six constraint conditions:

E2 ·E2 − 1 = 0,

E3 ·E3 − 1 = 0,

E2 ·E3 = 0,

E2 ×E3 = E1, (4.12)

to reduce the rotational degrees of freedom just to three.
So these constraint equations represent the nonlinear de�nition of the

internal strains as a function of the rotational descriptors and they are es-
tablished by the use of Lagrangian multipliers.

In this section our aim is to extend this approach to the dynamical �eld.
As we refer here to the Timoshenko beam theory (unlike the static case in
which we referred to the Benoulli model), again we need to describe the
kinematics and to evaluate the energetic quantities of the beam element to
�nally write the dynamical solution scheme.

4.3.1 Kinematics of the beam element

We refer to the referential coordinate ξ along the element beam center-
line −hξ/2 ≤ ξ ≤ +hξ/2. In the following, we denote with i, j and o

the nodes respectively in ξ = −hξ/2, ξ = +hξ/2 and ξ = 0. Along the
beam centerline we de�ne the displacement vector u(ξ) = {u(ξ), v(ξ), w(ξ)}
and three mutually orthogonal vectors E1(ξ) = {E1,1(ξ), E1,2(ξ), E1,3(ξ)},
E2(ξ) = {E2,1(ξ), E2,2(ξ), E2,3(ξ)}, E3(ξ) = {E3,1(ξ), E3,2(ξ), E3,3(ξ)}, in
the global inertial frame of reference (x, y, z). Director vectors E2 and E3

are along the principal axes of inertia of the cross-section. Let E1, E2 and
E3 vectors be the columns of the matrix E(ξ):

E(ξ) =

 E1(ξ) E2(ξ) E3(ξ)

 . (4.13)
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The E(ξ) orthonormal matrix is obtained by using director vectors at the i,
j and o nodes and constrained to the (4.12) conditions. In particular, we will
use unknown Eo = E(0) to represent the large three-dimensional rotations
of the local frame of reference of the beam element. As mentioned, the initial
unit vector in the ξ, η and ζ element direction, �nally, will be denoted by
e1, e2 and e3 respectively.

In the beam element, global displacement vector u(ξ) is composed of
rigid and deformation components. In particular, we refer to the ū =

(ū(ξ), v̄(ξ), w̄(ξ)) rigid displacements de�ned in the initial frame of refer-
ence while the deformation ũ(ξ) = (ũ(ξ), ṽ(ξ), w̃(ξ)) displacements and θ̃ =

(θ̃1(ξ), θ̃2(ξ), θ̃3(ξ)) rotations are de�ned in the local rigidly rotated frame of
reference. The deformation kinematics is assumed by the linear interpola-
tions

ũ = εoξ, ṽ = φo
2ξ, w̃ = φo

3ξ, (4.14)

for displacements and the quadratic interpolations

θ̃2 =
θj2 − θi2

hξ
ξ + 2

θi2 + θj2
h2ξ

ξ2, θ̃3 =
θj3 − θi3

hξ
ξ + 2

θi3 + θj3
h2ξ

ξ2, (4.15)

for �exural rotations. The kinematics of the element is then completed by
de�ning the local θ̃1 torque rotation about the beam centerline. As in (4.15),
we assume

θ̃1 =
θj1 − θi1

hξ
ξ + 2

θi1 + θj1
h2ξ

ξ2. (4.16)

Note that zero local rotations at the center of the element are assumed. Rigid
kinematics, then, will be represented by the nodal displacement components
and the degrees of freedom of the vectors Eo

1 attached to the central node.
Based on the above de�nitions, local rotations and director components

are now linked by the �eld vector operations

E1(ξ) = Eo
1 + θ̃2(ξ)E

o
2 + θ̃3(ξ)E

o
3,

E2(ξ) = −θ̃2(ξ)E
o
1 +Eo

2 + θ̃1(ξ)E
o
3,

E3(ξ) = −θ̃3(ξ)E
o
1 − θ̃1(ξ)E

o
2 +Eo

3.

(4.17)

As proven, vectors Eo
1, E

o
2 and Eo

3 are unit and mutually orthogonal at the
solution points. Then, at the �rst order, E1(ξ), E2(ξ) and E3(ξ) there are
also three unit and mutually orthogonal vectors and they completely de�ne
the global orientation of the cross-section. We note that the �rst order
accuracy of the (4.17) representations leads to local evaluations consistent
with the small strains hypotheses.

By evaluating (4.17) relations for ξ = −hξ/2 and ξ = hξ/2, respectively
in the i and j nodes, and by using orthonormality of the directors, we can
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write
θj1 − θi1 =

1
2(E

i
3 ·E

j
2 −Ei

2 ·E
j
3),

θj2 − θi2 =
1
2(E

i
2 ·E

j
1 −Ei

1 ·E
j
2),

θj3 − θi3 =
1
2(E

i
3 ·E

j
1 −Ei

1 ·E
j
3),

(4.18)

and
θj1 + θi1 =

1
2 [E

o
3 · (Ei

2 +Ej
2)−Eo

2 · (Ei
3 +Ej

3)],

θj2 + θi2 =
1
2 [E

o
2 · (Ei

1 +Ej
1)−Eo

1 · (Ei
2 +Ej

2)],

θj3 + θi3 =
1
2 [E

o
3 · (Ei

1 +Ej
1)−Eo

1 · (Ei
3 +Ej

3)].

(4.19)

Furthermore, by referring to the centerline points, we now de�ne rigid and
deformation components in the initial frame of reference by

ū(ξ) = uo + ξEo
1,1 − ξ, v̄ = vo + ξEo

2,1, w̄ = wo + ξEo
3,1, (4.20)

and
û(ξ) = εoξEo

1,1 + φo
2ξE

o
2,1 + φo

3ξE
o
3,1,

v̂(ξ) = εoξEo
1,2 + φo

2ξE
o
2,2 + φo

3ξE
o
3,2,

ŵ(ξ) = εoξEo
1,3 + φo

2ξE
o
2,3 + φo

3ξE
o
3,3,

(4.21)

respectively. Then, in the vectorial notation, the motion of the ξ point is
described as

u = uo + ξEo
1 − ξe1 + εoξEo

1 + φo
2ξE

o
2 + φo

3ξE
o
3. (4.22)

Also here, by evaluating (4.22) relations for nodal coordinates ξ = −hξ/2,
ξ = hξ/2, and by using orthonormality of the directors, we deduce that

uo =
1

2
(ui + uj) (4.23)

is the central point displacement and

εo = 1
hξ
[Eo

1 · (uj − ui)− hξ + hξE
o
1,1],

φo
2 =

1
hξ
[Eo

2 · (uj − ui) + hξE
o
2,1],

φo
3 =

1
hξ
[Eo

3 · (uj − ui) + hξE
o
3,1],

(4.24)

are the expressions of the axial and shear deformations as a function of nodal
displacement and director components.

As can be seen, unknown nodal components completely de�ne the (4.14)-
(4.16) linearized deformation kinematics of the beam element by (4.18)-(4.19)
and (4.24) expressions. Nonlinear rigid kinematics, instead, is described by
the displacement vector in (4.23) and the unknown director vectors Eo at
the central node. The remaining unknown components of the element are
the displacements ui, uj and the director vectors Ei, Ej at the boundary
nodes.
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4.3.2 Evaluation of energetic quantities of the beam element

We consider the referential coordinates (ξ, η, ζ) in the element, where η and
ζ are the thickness coordinates in the e2 and e3 directions, respectively. By
denoting with uP (ξ, η, ζ) = {uP (ξ, η, ζ), vP (ξ, η, ζ), wP (ξ, η, ζ)} the displace-
ment of the generic point P in the element represented in the global reference
frame, we can refer respectively to the expression

ūP = uo + ξ(Eo
1 − e1) + η(Eo

2 − e2) + ζ(Eo
3 − e3) (4.25)

for the rigid and to expression

ûP = ũEo
1 + ṽEo

2 + w̃Eo
3 − (θ̃3η + θ̃2ζ)E

o
1 + θ̃1(ηE

o
3 − ζEo

2) (4.26)

for the deformation components of the motion uP = ūP + ûP .
The principal energetic quantities involved are the kinetic, potential and

external energy:

T =
1

2

∫
V
ρu̇P · u̇PdV, U =

1

2

∫
V
εP : σPdV, W =

∫
V
p ·uPdV, (4.27)

respectively. In (4.27) the dot denotes derivatives with respect to time t, V
the volume of beam, p the vector of external loads and ρ the mass density.
Furthermore, εP and σP are the in�nitesimal strain and stress tensors in
the body, respectively.

Kinetic energy is now evaluated by referring to the following expression
of the velocity vector:

u̇P = u̇o+ξĖo
1+ηĖo

2+ζĖo
3+ ˙̃uEo

1+ ˙̃vEo
2+ ˙̃wEo

3−(
˙̃
θ3η+

˙̃
θ2ζ)E

o
1+

˙̃
θ1(ηE

o
3−ζEo

2),

(4.28)
obtained by time di�erentiation of uP and by truncation of the deformation
measures to the zero order. The integration over the section area A of the
square of the velocity in (4.28) leads to:∫

A u̇P · u̇PdA = Au̇o · u̇o + ξ2AĖo
1 · Ėo

1 + J3Ė
o
2 · Ėo

2 + J2Ė
o
3 · Ėo

3 + 2ξAu̇o · Ėo
1

+A ˙̃u · ˙̃u+ Jo
˙̃2
1θ + J2

˙̃2
2θ + J3

˙̃2
3θ + 2A( ˙̃uEo

1 +
˙̃vEo

2 +
˙̃wEo

3) · (u̇o + ξĖo
1)

+2
˙̃
θ1(J3Ė

o
2 ·Eo

3 − J2Ė
o
3 ·Eo

2)− 2(J2
˙̃
θ2Ė

o
3 + J3

˙̃
θ3Ė

o
2) ·Eo

1,
(4.29)

where J2 and J3 are the second moments of area about the related principal
axes while Jo is the polar moment. By de�ning the vector γ = (εo, φo

2, φ
o
3),

kinetic energy is now computed by further integration over the beam center-
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line:

1
2

∫ hξ/2

−hξ/2

∫
A ρu̇P · u̇PdAdξ =

1
2ρ{hξAu̇

o · u̇o +AJ1Ė
o
1 · Ėo

1 + hξJ3Ė
o
2 · Ėo

2 + hξJ2Ė
o
3 · Ėo

3

+AJ1γ̇ · γ̇ + 2AJ1E
o
1 ·Eo · γ̇

+
hξ

12 (Jo
˙Dθ21 + J2

˙Dθ22 + J3
˙Dθ23) +

hξ

20 (Jo
˙Sθ21 + J2

˙Sθ22 + J3
˙Sθ23)

+
hξ

3 [Ṡθ1(J3Ė
o
2 ·Eo

3 − J2Ė
o
3 ·Eo

2)− (J2Ṡθ2Ė
o
3 + J3Ṡθ3Ė

o
2) ·Eo

1]},
(4.30)

with the positions J1 = h3ξ/12, Dθ = (θj1 − θi1, θ
j
2 − θi2, θ

j
3 − θi3) and Sθ =

(θi1 + θj1, θ
i
2 + θj2, θ

i
3 + θj3).

Finally, by introducing the geometrical coe�cient matrices JA = diag(Jo, J2, J3)
and JV = diag(AJ1, hξJ2, hξJ3) we can write:

T = 1
2ρ{V u̇o · u̇o + Ėo · JV · Ėo

+AJ1(γ̇ + 2Ėo
1 · Ėo) · γ̇ +

hξ

12Ḋθ · JA · Ḋθ +
hξ

20 Ṡθ · JA · Ṡθ
+

hξ

3 [Ṡθ1(J3Ė
o
2 ·Eo

3 − J2Ė
o
3 ·Eo

2)− (J2Ṡθ2Ė
o
3 + J3Ṡθ3Ė

o
2) ·Eo

1]}.
(4.31)

In (4.31) the rigid, deformation and mixed kinetic terms can be recognized.
In particular note how the term Ėo · JV · Ėo reproduces the rigid inertial
components of the angular momentum of the element.

The estimation of the potential energy can be carried out by extract-
ing the contributions due to the deformation from the uP motion. Then,
the projection of ûP in (4.26) in the Eo

1, E
o
2 and Eo

3 directions gives the
in�nitesimal displacements:

ũ = ûP ·Eo
1 = εoξ − θ̃3η − θ̃2ζ,

ṽ = ûP ·Eo
2 = φo

2ξ − θ̃1ζ,

w̃ = ûP ·Eo
3 = φo

3ξ + θ̃1η.

(4.32)

By using this deformation kinematics, we de�ne the following in�nitesimal
strain components of the εP tensor:

ε11 = εo−θ̃3,1η−θ̃2,1ζ, ε12 =
1

2
(φo

2−θ̃3−ω3θ̃1,1), ε13 =
1

2
(φo

3−θ̃2+ω2θ̃1,1),

(4.33)
and ε23 = 0. In (4.33) shearing contributions due to the torsional mode
are modelled by the ω2(η, ζ) and ω3(η, ζ) functions. Here, because hη × hζ
rectangular sections were analyzed, we assume the distributions:

ω2 =
η3

(hη/2)2
(1− ζ2

(hζ/2)2
), ω3 =

ζ3

(hζ/2)2
(1− η2

(hη/2)2
), (4.34)

where ε12 = 0 and ε13 = 0 is realized on the boundaries |ζ| = hζ/2 and
|η| = hη/2 of the cross section, respectively.
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Extensional components ε22 and ε33 are then obtained by imposing the
statical assumptions σ22 = σ33 = 0 on the σP stress tensor. Then we have

ε22 = ε33 = − λ

2(λ+ µ)
ε11, (4.35)

where λ and µ are the Lamé coe�cients. By using the (4.35) expressions,
the remaining stress components are:

σ11 = 2µε11 + λ(ε11 + ε22 + ε33) =
2µ+3λ
λ+µ µε11 = Eε11,

σ12 = 2µε12 = 2Gε12,

σ13 = 2µε13 = 2Gε13

(4.36)

and σ23 = 0. In (4.36), E and G are the Young and shear moduli, respec-
tively.

By integrating over the section area the potential energy contribution we
have:∫

A εP : σPdA =
∫
A(Eε211 + 4Gε212 + 4Gε213)dA =

E(Aεo2 + J2θ̃
2
2,1 + J3θ̃

2
3,1)

+G[A(φo
2 − θ̃o3)

2 + θ̃21,1
∫
A ω2

3dA− 2(φo
2 − θ̃o3)θ̃1,1

∫
A ω3dA]

+G[A(φo
3 − θ̃o2)

2 + θ̃21,1
∫
A ω2

2dA+ 2(φo
3 − θ̃o2)θ̃1,1

∫
A ω2dA].

(4.37)

Note that in (4.37), to overcome locking e�ects, the central value of the θ̃2(ξ)
and θ̃3(ξ) interpolations are used in the shear energy computation. Besides,
assuming this,

∫
A ω2dA =

∫
A ω3dA = 0 is obtained. Then, by de�ning

Jω2 =
∫
A ω2

2dA and Jω3 =
∫
A ω2

3dA, we can write:∫
A
εP : σPdA = E(Aεo2+J2θ̃

2
2,1+J3θ̃

2
3,1)+G[A(φo

2
2+φo

3
2)+(Jω2+Jω3)θ̃

2
1,1],

(4.38)
with θ̃o2 = θ̃o3 = 0. Then, the potential energy is computed by further
integration over the beam centerline:

U = 1
2

∫ hξ/2

−hξ/2

∫
A εP : σPdAdξ =

1
2E[V εo2 + 1

hξ
J2(Dθ̃22 +

4
3Sθ̃

2
2) +

1
hξ
J3(Dθ̃23 +

4
3Sθ̃

2
3)]

1
2G[+V (φo

2
2 + φo

3
2) + 1

hξ
(Jω2 + Jω3)(Dθ̃21 +

4
3Sθ̃

2
1)].

(4.39)

External work W , �nally, is de�ned in (4.27) by the (4.25) and (4.26)
expressions of the displacement vector. Note that, kinematics of the element
being modelled as a three dimensional body, only external forces must be
assigned. Besides, because �nite rotations are replaced by products θ̃Eo in
the present formulation, we can see from (4.26) that the external force vector
is a linear function of the assumed unknowns.
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4.3.3 Multibody systems

By referring to the previous beam element model, we can study the dynam-
ical behaviour of multibody systems. In particular, prismatic bodies linked
by spherical joints and free mass particles are analyzed.

A prismatic hξ × hη × hζ element is assumed such that only the ξ axial
deformation ε is present. Springs in the joint point between elements pro-
duce, furthermore, restraint moments proportional to the relative rotations.
In particular, we refer now to the En and Em directors attached to the cen-
tral points of the n and m elements and we denote with Dθ1, Dθ2 and Dθ3
the small relative rotations. We have:

Em
1 = En

1 +Dθ2E
n
2 +Dθ3E

n
3 ,

Em
2 = −Dθ2E

n
1 +En

2 +Dθ1E
n
3 ,

Em
3 = −Dθ3E

n
1 −Dθ1E

n
2 +En

3 .

(4.40)

Then, by the usual manipulations, we obtain

Dθ1 =
1
2(E

n
3 ·Em

2 −En
2 ·Em

3 ),

Dθ2 =
1
2(E

n
2 ·Em

1 −En
1 ·Em

2 ),

Dθ3 =
1
2(E

n
3 ·Em

1 −En
1 ·Em

3 ).

(4.41)

With the expression of the rigid component (4.25) and by zeroing the absent
deformation measures in (4.26), the motion of the body is de�ned as

uP = u+ ξ(E1 − e1) + η(E2 − e2) + ζ(E3 − e3) + ξεE1, (4.42)

where u is the central point displacement vector computed by the nodal
values as in (4.23).

As before, the integration over the section area of the square of the
velocity leads to∫

A u̇P · u̇PdA = Au̇ · u̇+ ξ2AĖ1 · Ė1 + J3Ė2 · Ė2 + JηĖ3 · Ė3 + 2ξAu̇ · Ė1

+ξ2Aε̇2 + 2ξAε̇E1 · (u̇+ ξĖ1)
(4.43)

and, then, to the kinetic energy evaluation by further integration on the ξ

elemental domain

T = 1
2ρ[V u̇ · u̇+ Ė · JV · Ė+AJ1(ε̇

2 + 2ε̇E1 · Ė1)]. (4.44)

In the potential energy de�nition we refer to the EV axial rigidity and to
the like type k2, k3 �exural and k1 torque sti�ness:

U =
1

2
(EV ε2 + k1Dθ21 + k2Dθ22 + k3Dθ23), (4.45)
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where the relative rotations are de�ned in (4.41) while axial deformation is
de�ned in the �rst of (4.24) expressions:

ε =
1

hξ
[E1 · (uj − ui)− hξ + hξE1]. (4.46)

Finally, external energy W can be computed by the expression (4.42) of the
displacement vector of the body.

In the three-dimensional mass particles motion we refer to the ith particle
ofmi mass. Potential energy of interaction of the particles i and j depends on
the interbody distance hij = (1+εij)h, where h is the initial distance and εij
is the related elongation. Then, by denoting with ui the displacement vector
of the particle and with ka the interaction rigidity, kinetic and potential
energy are computed by referring to

T =
1

2
miu̇

i · u̇i, U =
1

2
kaε

2
ij . (4.47)

4.3.4 Nonlinear dynamical analysis

We refer to dynamical systems with L(q̇(t),q(t)) Lagrangian function ob-
tained by summing the described energetic contributions, where q is the
vector of the unknown components of the element. We denote with gE = 0

the constraint conditions in (4.12) relating the unknown components of the
E1, E2 and E3 vectors. Related Lagrange multiplier vectors are denoted
with λE .

Then we obtain the extended functional

LS(q, q̇,λ) = T (q̇,q)− U(q) +W (q) + λE · gE(q). (4.48)

In particular, for the beam element model we refer to the contributions given
in (4.31) and (4.39)Unknown vector q is composed of the three ui, vi, wi, dis-
placements and the nine components of the directors Ei

1,E
i
2,E

i
3, at the nodes

plus the nine components of the directors Eo
1,E

o
2,E

o
3, for each element. Six

λE values for each Ei and Eo orthonormal system complete the group of the
unknowns. For the prismatic element model we use the expressions (4.44).
The unknown vector is composed of the three ui, vi, wi, nodal displacements
and the nine components of the directors E1,E2,E3, at the center of the
element. As multipliers, then, we have six λE unknown components. Mass
particles motion, �nally, is described by the three ui, vj , wi, displacements
of the ith mass and the three Eij components for each i-j connection. The
semidiscrete formulation of the motion can be written in the form:

∂L

∂q
− ∂

∂t

∂L

∂q̇
= 0,

∂L

∂λ
= 0, q(0) = q∗, q̇(0) = q̇∗, (4.49)
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where q∗ and q̇∗ represent the initial values and velocities, respectively.
For the time integration of the semidiscrete initial value problem (4.49)

we refer to the constant time step ∆t = tn+1 − tn. Unknown components of
the q and λ vectors also collected in the d vector. By assuming the state
variables dn, ḋn, d̈n, as known at the time tn and making the external forces
p(t) for all t, the time integration is restricted to the subsequent solution
of the state variables at the end of each step dn+1, ḋn+1, d̈n+1. In order
to realize this step by step integration, the set of variables is reduced to the
unknowns dn+1 only by the Newmark approximations

ḋn+1 =
γ

β∆t
(dn+1 − dn) + (1− γ

β
)ḋn + (1− γ

2β
)∆td̈n, (4.50)

d̈n+1 =
1

β∆t2
(dn+1 − dn)−

1

β∆t
ḋn + (1− 1

2β
)d̈n. (4.51)

In the following we use the average acceleration scheme by adopting γ = 1/2

and β = 1/4.
By inserting relations (4.50) and (4.51) in equations (4.49), we arrive at

the nonlinear equation of the form:

F(dn+1) = 0. (4.52)

This represents the nonlinear system of algebraic equations de�ned at the
tn+1 time with the dn+1 unknown vector. The velocities and accelerations at
the end of the time step can then be obtained by relations (4.50) and (4.51),
respectively. Newton like iterative methods can be used to solve system
(4.52) by linearization

F(d
(k+1)
n+1 ) = F(d

(k)
n+1) +

∂F(d
(k)
n+1)

∂dn+1
(d

(k+1)
n+1 − d

(k)
n+1) +O(∆t2) = 0. (4.53)

The iterative process is here initialized by choosing d
(0)
n+1 as the linear ex-

trapolation of the previously computed dn and dn−1 vectors when n > 0,
while the formula d

(0)
1 = d∗ + ∆tḋ∗ is used when n = 0. By choosing the

�xed tolerance η = 10−8, the formula

∥ d
(k+1)
n+1 − d

(k)
n+1 ∥ / ∥ d

(k+1)
n+1 − dn ∥≤ η (4.54)

is adopted as convergence criterion.
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Chapter 5

Numerical results in lengths based method

As we learn in Chapter 2 the lengths based method is an alternative approach
to formulate models for two or three-dimensional elastic structures in the case
of small strains in the large displacements regime. It's based on de�nitions
of only relative lengths in order to avoid the use of rotation measures and to
overcome all the di�culties connected with the management of the rotation
matrices in 3D space. In this chapter a set of examples is examined to
illustrate the features of this approach. In particular, the tests analyze plane
and spatial kinematics by modelling the body with the described two and
three-dimensional low-order elements. Tests have been carried out both in
the statical and in the dynamical context.

5.1 Statical, quasi statical and dynamical analysis

In this section we include a set of tests which have been carried out both in
the statical and quasi-statical or dynamical context. We refer to quasi stati-
cal rather than dynamical analysis when the dynamics a�ects only the zone
of mode jumping of the structure. In fact, the inertial forces of the structure
are active only in the transient response of the structure from an unstable
bifurcation point, on a postbuckled equilibrium path, to a second stable equi-
librium state, on a new equilibrium path. In particular, the tests analyze
plane and spatial kinematics by modelling the body with the described two
and three-dimensional elements.

5.1.1 Clamped right angle frame

A right angled frame shown in Figure 5.1, fully restrained at one end, is
analyzed both in statical and dynamical cases. Equilibrium states were com-
puted by the three-dimensional �nite element formulation. It is worth noting
that the motion of the system involves large torsion and bending.
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Fig. 5.1: Clamped right angle frame: geometry and loading de�nitions.

Statical analysis

In the statical case, the analysed frame is loaded at the free end B by fu
B = λ

in the x1 direction. An imperfection load fw
B = 10−4λ in the x3 direction

is set to initiate lateral buckling along the fundamental equilibrium path.
The geometrical and mechanical properties are de�ned by: length L = 255,
width b = 30, thickness t = 0.6, Poisson coe�cient ν = 0.31 and Young's
modulus E = 7.124× 104. The entire frame was modelled by 68 elements to
test the convergence to the reference analysis.

Fig. 5.2: Clamped right angle frame: statical solution curves.
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Fig. 5.3: Right angle frame: statical deformative con�gurations at marked
solution points.

The λ − wB load parameter - out of plane free end displacement curve
(△) was computed and displayed in Figure 5.2 where a good agreement is
observed in respect to the predictions of Izzuddin[36] (�) and Yang et al.[75]
(◦). Figure 5.3 shows deformed shapes of the presented structure at the
marked equilibrium points.

Dynamical analysis

In the dynamical case the studied frame is loaded by an out of plane force
fw
A = λ at the elbow point A. The geometry and material properties are:
L = 10, b = h = 1, ν = 0.2, E = 5.0 × 104 and mass density ρ = 0.1. The
frame is modelled using overall 160 elements.

Figure 5.4 shows the time history of the x3 direction displacements in the
tip B and elbow A points. Indications about the shape and duration of the
applied load are also indicated. A good agreement was found between the
calculated results with those of Mata et al.[55] (◦). Deformed con�gurations
of the structures at the marked equilibrium points are depicted in Figure
5.5.

5.1.2 Deep circular arch under vertical load

Equilibrium states for the deep circular arch shown in Figure 5.6 were com-
puted by the two-dimensional �nite element formulation. Several authors,
Simo and Vu-Quoc[73], Kouhia and Mikkola[40], Cardona and Huespe[17],
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Fig. 5.4: Clamped right angle frame: dynamical solution curves.

have analyzed the equilibrium paths for such a structure by using a one-
dimensional �nite element in the geometrically nonlinear regime.

A 32 equally-spaced element mesh for the whole arch is employed. Here
we refer to the Young modulus E = 6× 106 and to the Poisson ratio ν = 0

while the normal area is squared with the edge equal to
√
2. Modejumping

analysis is carried out by assuming ρ = 0.0025 mass density and λ = 25t

load history.
Note that, to compare the results, simply support boundary condition

requires a suitable treatment because quadrilateral two-dimensional elements
are used. In particular, here Lagrangian multipliers are adopted to impose
zero values for the displacements at the central point of the elemental edge
and for the related nodal internal forces.

The λ − wc vertical load parameter - de�ection of the apex curve was
computed for both the statical and quasi-statical analysis. The analyzes
are stopped when the value λ = 1000 is traversed. For the statical case, the
primary path traced in Figure 5.7 is in agreement with the results reported in
the cited literature. Deformed con�gurations of the structure at the marked
equilibrium points are depicted in Figure 5.8. For the dynamical case, again
in Figure 5.7 the modejump at the �rst limit point can be observed while in
Figure 5.9 the deformed con�gurations at the marked instants are reported.

5.1.3 Cylindrical shell

A cylindrical shell of constant thickness and deformed by an applied com-
pressive load is analyzed. We consider vanishing radial and tangential dis-

68



Fig. 5.5: Clamped right angle frame: dynamical deformative con�gurations
at marked solution points.

placements on both ends and E = 3103, ν = 0.3, as material parameters.
Geometric parameters and problem de�nitions are given in Figure 5.10. An
8×8 mesh for the symmetric quarter of the shell was considered. Here, v = 0

for the nodes along the symmetric circumferential edge and u = 0 for the
nodes along the symmetric longitudinal edge. As before, suitable treatment
of the central points of the elemental edge at the boundaries is carried out.
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Fig. 5.6: Deep arch: geometry and loading de�nitions.

Fig. 5.7: Deep arch: statical (⃝) and modejumping (△) solution curves.
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Fig. 5.8: Deep arch: statical deformative con�gurations at marked solution
points.

Fig. 5.9: Deep arch: dynamical deformative con�gurations at marked solu-
tion points.

Two cases, which di�er for the values of radius R, thickness h and mass
density ρ, were analyzed. The computed equilibrium curves are displayed by
external load parameter λ and vertical de�ection at the central point of the
shell wc. λ = 0.1t is the load history employed in the quasi-static version.
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Fig. 5.10: Cylindrical shell: geometry and loading de�nitions.

Fig. 5.11: Cylindrical shell, case I: statical (⃝) and modejumping (△) solution
curves.

Case I.

In the case, studied in Eriksson[24],[25] by two-dimensional thin shell ele-
ments, we make R = 2540 and h = 6.35, while we assume ρ = 1 for the
dynamical analysis. Figure 5.11 shows the load parameter - central point
de�ection behavior for both the statical and quasi-statical solutions when
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Fig. 5.12: Cylindrical shell, case I: statical deformative con�gurations at
marked solution points.

Fig. 5.13: Cylindrical shell, case I: dynamical deformative con�gurations at
marked solution points.

the algorithm is stopped for the achieved λ = 800 value.
For the statical analysis, deformations in the pre and post-critical phase

are displayed in Figure 5.12. Post modejumping deformations are also shown
in Figure 5.13 for the related dynamical model.

Case II.

By assuming R = 1000 and h = 12, in this second case a greater curvature
and thickness of the shell is considered. The mass density now takes the value
ρ = 1000. The structure, therefore, proves to be sti�er and larger values of
the displacements are attained. The analysis are stopped here when the
algorithm traverses λ = 18000.

In Figures 5.14 and 5.15, for the statical problem, note that shearing
stresses are activated in the post �exural-membranal behavior. Figures 5.14
and 5.16, in the modejumping context, illustrate a higher frequencies domi-
nance in the post-buckling zone.
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Fig. 5.14: Cylindrical shell, case II: statical (⃝) and modejumping (△) solution
curves.

Fig. 5.15: Cylindrical shell, case II: statical deformative con�gurations at
marked solution points.

5.1.4 Spherical cup

A spherical cup of constant thickness with a top hole, studied in Brank et
al.[15], is analyzed and displayed in Figure 5.17. Force per unit area p = 50λ

is applied along the top ring in the vertical direction.
Using symmetry, only one quarter of the structure is considered and
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Fig. 5.16: Cylindrical shell, case II: dynamical deformative con�gurations
at marked solution points.

Fig. 5.17: Spherical cup: geometry and load conditions.

modeled by a 12 × 12 mesh. Vertical displacements are set to zero at the
nodes of the bottom ring. We refer to the Young modulus E = 1000 and to
the Poisson ratio ν = 0.3. Dynamical analysis is carried out by assuming the
ρ = 0.1 mass density, the λ = 0.1t load history and the ∆t = 0.1 time step
for the Newmark scheme. For geometric parameters, we make R = 12.16,
h = 0.4, α1 = 18.594 and α2 = 55.668.

Figure 5.18 shows λ − w̄ vertical load parameter - de�ection of the top
ring points behavior for both the statical and modejumping solutions, re-
spectively. The analysis are stopped when the value λ = 1.5 is traversed.
Deformed con�gurations of the structure at the marked instants are depicted
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Fig. 5.18: Spherical cup: statical (⃝) and modejumping (△) solution curves.

in Figure 5.19 for the statical case and in Figure 5.20 for the quasi-statical
one.

5.2 Dynamical analysis

In this section a set of examples is examined to analyze plane and spatial
dynamical motion of bodies modeled with the presented two- and three-
dimensional elements.

5.2.1 L-shaped block

The plane motion of a two-dimensional L-shaped block is analyzed by the
4-node element. The mesh is made up of 36 �nite elements. The mesh
con�guration, p external load positions and time history are shown in Fig.
5.21.

Two di�erent choices, E = 107 N/m2 and E = 104 N/m2, of the Young
modulus have been adopted to analyze rigid-like and soft like motions, re-
spectively. The Poisson modulus is assumed to be ν = 0.3, while mass
density ρ = 1kg/m3. Starting at the rest, a sequence of con�gurations have
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Fig. 5.19: Spherical cup: statical deformative con�gurations at marked so-
lution points.

been computed by using a t = 0.01s time step for the observation time
t = 0..10s. The con�gurations obtained every single second for the rigid-like
motion are drawn in Fig.5.22. The results are equal to the ones reported in
Betsch and Steinmann [12] and Lopez and Russo [52] obtained by several
models of 4-node �nite elements. Soft-like behavior of the L-shaped block,
by displaying the con�gurations every single second, is shown in Fig.5.23.
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Fig. 5.20: Spherical cup: dynamical deformative con�gurations at marked
solution points.

5.2.2 Toss rule in the plane

The plane movement of a free toss rule is analyzed by the 8-node element.
The spatial discretization is made up of 30 �nite elements. The material
constants are E = 2.06 1011 N/m2, ν = 0 and ρ = 7.8 103 kg/m3. The
geometry and position of distributed loads p and load function of the rule
are described in Fig.5.24. With zero initial conditions, the integration time
scheme computes the con�gurations by using a ∆t = 10−5s time step. In
Fig.5.25 the sequence of deformed shapes in the range t = [0 s, 0.1 s] are
shown. Similar results are obtained in Kuhl and Ramm [41] by using an
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Fig. 5.21: L-shaped block: mesh con�guration, external load positions and
time history.

Fig. 5.22: L-shaped block E = 107 N/m2: sequence of con�gurations.

Fig. 5.23: L-shaped block E = 104 N/m2: sequence of con�gurations.

8-node shell element and in Lopez and Russo [52] by using a 6-node plane
element.

Fig. 5.24: Toss rule nel piano: con�gurazione iniziale, mesh, andamento dei
carichi esterni.
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Fig. 5.25: Toss rule nel piano: sequenza di deformate.

5.2.3 Toss rule in space

The same rule as in the previous Section is now stimulated to �y in the
space. Figure 5.26 describes the position of distributed loads p and load
time function. As before, starting at the rest, the integration time scheme
computes the con�gurations by using a∆t = 10−5s. In Fig.5.27 the sequence
of deformed shapes for t = [0 s, 0.4 s] are shown. The deformed con�gurations
are comparable with the 8-node shell element analysis reported in Kuhl and
Ramm [41, 42].

Fig. 5.26: Toss rule nello spazio: con�gurazione iniziale, mesh, andamento
dei carichi esterni.

5.3 Conclusions

An alternative technique to analyze the motion of geometrically nonlinear
structures is presented. The described formulation is applied to low-order
elements and it does not use rotation measures.

The procedure involves only exact integrations and the kinematical basis
is here de�ned by referring to natural modes. In order to avoid shear-locking
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Fig. 5.27: Toss rule nello spazio: sequenza di deformate.

phenomena, a selective based de�nition of the strain tensor is carried out.
This selection is carried out on the linear de�nition of deformation compo-
nents the element reference system being independent.

In particular, the proposed approach is based on de�nitions of only rela-
tive lengths and it avoids adapting de�nitions of the element reference sys-
tem. In this way:

• the �nite element construction can be carried out completely in the
linear �eld;

• we can select the deformative modes that contribute to the expressions
of the strain tensor components;

• the analysis is robust because the singularities in rotation matrices are
not introduced.

In addition, since the mechanical description is implicitly conservative, we
can note that:

• the analysis is economical as it does not require complex manipulations
to overcome the noncommutativity of rotations.

The numerical tests, �nally, have shown that lower computational time and
storage demand are required.

Additional bene�ts that arise from the aforementioned features include
symmetry of the tangent sti�ness matrix and insensitivity of the large dis-
placement transformations to the size of the incremental step.
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Chapter 6

Numerical results in projectors method

In Chapter 3 an innovative Total Lagrangian formulation of geometrically
nonlinear �nite elements has been proposed. The key concept is that slopes
are used instead of rotation parameters to compute the nonlinear represen-
tations of the strain measures in the inertial frame of reference. So complex
manipulations required to obtain conservative descriptions and well-posed
transformation matrices are avoided. In this chapter numerical tests have
been carried out to validate the developed technique in the frame structures
context both in statical and dynamical �eld.

6.1 Statical analysis

In particular, the tests analyze spatial kinematics to validate the developed
technique in the frame structures context. Equilibrium states were computed
by the predictor-corrector scheme described Chapter 3 and compared to
reference results obtained with similar beam models.

In the examples, meshes of increasing element size are used to test the
convergence to the reference analyses. Numerical tests validate that the
developed technique is well posed for any large rotation. The proposed for-
mulation shows simplicity of the analysis while computational e�ectiveness
and algorithmic reliability are retained.

6.1.1 Lateral buckling of a narrow cantilever beam

The narrow cantilever beam shown in Fig. 6.1 was analyzed. The numerical
results obtained by Battini and Pacoste [7] can be taken as reference. The λ
- wc vertical load parameter - lateral tip displacement curves were computed
and displayed in Fig. 6.2. The analysis were stopped when the value λ = 8

was reached.
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Fig. 6.1: Lateral buckling of a narrow cantilever beam: problem de�nition.

Fig. 6.2: Lateral buckling of a narrow cantilever beam: equilibrium paths.

6.1.2 Cantilever beam subject to a pure bending moment

A cantilever beam subject to a bending moment at the free end was analysed
here (see Fig. 6.3). This is a classical test and the results can be compared
with those obtained by Simo [70]. In Fig. 6.4 the normalized λL/πEJ2 and
(L− uc)/L values are used to show the computed equilibrium path.
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Fig. 6.3: Cantilever beam subject to a pure bending moment: problem def-
inition.

Fig. 6.4: Cantilever beam subject to a pure bending moment: equilibrium
paths.
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6.1.3 Cantilever beam subject to a pure torsional moment

The primary path of a cantilever beam subjected to end torsion, as shown
in Fig. 6.5, was computed in this example. An analytical solution of the
problem can be found in Hsiao and Lin [32]. Fig. 6.6 exhibits the λ -
φc torque - angle of twist curves calculated until the value λ = 16000 is
traversed.

Fig. 6.5: Cantilever beam subject to a pure torsional moment: problem
de�nition.

6.1.4 Right-angled frame under an end load

The nonlinear solution path of the L frame shown in Fig. 6.7 is analysed. The
�nite dimension connection between the members of the frame was modelled
by Battini and Pacoste [7] with both a rigid and disregard connections. The
λ - wc horizontal load parameter - lateral tip displacement of the free end
curves was computed until the λ = 4 value and displayed in Fig. 6.8. The
number of elements indicated in Fig. 6.8 showing solution curves refers to
the total number of used elements.

6.1.5 Right-angled frame under end moments

The last example concerns the right angle frame depicted in Fig. 6.9 where
appreciable large rotations with a signi�cant amount of twist are considered.
The loading is given by a pair of concentrated moments applied at the sup-
ports. Due to the symmetry, only half of the frame is modelled. At the
support only translation along x1 and rotation around x3 are allowed. The
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Fig. 6.6: Cantilever beam subject to a pure torsional moment: equilibrium
paths.

Fig. 6.7: Right-angled frame under an end load: problem de�nition.
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Fig. 6.8: Right-angled frame under an end load: equilibrium paths.

λ - wc moment parameter - apex displacement in the x3 direction diagram
is plotted in Fig. 6.10. The results are in agreement with those found in
Battini and Pacoste [7]. Meshes with 6, 8 and 10 elements are used here for
the half of the frame.

The test is also carried out by removing imperfection load, now de�ned
as 10−5λ, after the �rst buckling phase as in Simo and Vu-Quoc [73]. In the
analysis, therefore, equilibrium curve traverses the negative critical point
and completes a second revolution of the frame about the line connecting
its hinged ends. Applied moment versus lateral displacement curves are
shown in Fig. 6.11 for the �rst and second revolution. Afterward computed
solution points traverse the positive critical point and describe the same �rst
post-buckling behaviour as previously computed. In the formulation, then,
there is no di�culty in subjecting the frame to any number of revolutions.
A symmetrically intersection of the moment axis is, furthermore, obtained
with ±621.8 critical values.

6.2 Dynamical analysis

In the projectors methods context,a set of numerical examples shows the
application of the proposed method for the time integration of the motion
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Fig. 6.9: Right-angled frame under end moments: problem de�nition.

Fig. 6.10: Right-angled frame under end moments: equilibrium paths.
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Fig. 6.11: Right-angled frame under end moments: �rst and second revolu-
tion.

equations.
In particular numerical tests were performed for increasing values of the

∆t time step. Let steps be the number of time steps e�ected by the integra-
tion process to analyze the behaviour for t = 0...T . In the following we refer
to the mean value of the Nwi Newton iterations in the ith step

Nwm =

step∑
i=1

Nwi/steps, (6.1)

carried out, unless it becomes unstable (div), in the process.

6.2.1 Motion of a dumbbell

We investigate the motion of a dumbbell with initial interbody distance h =

1 modeled as a two-particle problem and de�ned in the three-dimensional
ambient space. We assume m1 = m2 = 1 with u = {u1 v1 w1 u2 v2 w2}.
The initial conditions are given by u∗ = 0, u̇∗ = {0 0 2 5 5 10} and Eij =
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{1 0 0} is the director in the x direction. Accordingly εij = 0 and, by time
di�erentiation, ε̇ij = 0 and Ėij = {0 3 5} is obtained.

Fig. 6.12: Dumbbell ∆t = 0.02 for T = 2: sequence of con�gurations ob-
tained.

The interaction of the two bodies is assumed to be governed by a Lennard-
Jones potential U(rij) = A[(σ/rij)

5 − (σ/rij)
3] which is often employed in

molecular dynamic simulations. The distance between the centers of the two
particles is rij = h + εij . We make σ = (3/5)1/2, such that εij = 0 charac-
terizes the internal force free con�guration. Here we consider the quasi-rigid
connection A = 106 that classically has severe instability restrictions. In
such a case, by linearization of U(rij) for rij = 1, ka = 6Aσ3 can be inter-
preted as the spring sti�ness. We can refer to Gonzales and Simo [29] and
Cris�eld and Shi [22] for the numerical instabilities which are introduced in
such dynamic systems. Additional background material on the motion of a
several particle system in a potential �eld can be found in standard books
on classical mechanics, see e.g. Goldstein [28] and Arnold [2].

To illustrate the motion, Fig. 6.12 contains a sequence of con�gurations
with ∆t = 0.02 and t = 0...2. At about t = 1.4 an unphysical motion
indicates the unstable behaviour of the Newmark scheme.
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Tab. 6.1: Dumbbell T = 10: mean value Nwm of the Newton iterations

∆t 0.002 0.005 0.01 0.02

3.000 3.185 3.486 div

6.2.2 Two body system

Here we study the behaviour of a pair of equal pin-jointed elements as de-
scribed in Section 4.3.3. Starting from rest, the dynamics of the two pris-
matic hξ = 0.5, hη = hζ = 0.02, bodies is stimulated by an impulsive force
p(t) acting on the system as illustrated in Fig. 6.13. We assume ρ = 1.5 ·104
and E = 5 · 109, k1 = 103, k2 = 5 · 102, k3 = 2 · 102, for the evaluation of the
(4.44) kinetic and (4.45) potential energy. Time-stepping schemes applied
to N-body problems can be found in Betsch and Steinmann [11].

Fig. 6.13: Two body system: initial con�guration and problem de�nition

The motion of the two body system with ∆t = 0.0002 and T = 0.3 is
shown in Fig. 6.14. The unstable motion of the system can be observed
at about t = 0.21 where chaotic relative rotations in the joint point occur.
Table 6.2 reports the Nwm values performed in the time integation process
for T = 1.

Tab. 6.2: Two body system T = 1: mean value Nwm of the Newton itera-
tions
∆t 0.00002 0.00005 0.0001 0.0002

3.010 3.312 3.665 div
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Fig. 6.14: Two body system ∆t = 0.0002 for T = 0.3: sequence of con�gu-
rations

6.2.3 Toss rule in space

Here there is the example of the three-dimensional movement of a toss rule
(see Kuhl and Ramm [41] for a solution to such a dynamical problem). The
beam, with zero initial displacements and velocities, is discretized by nine
described �nite elements. The geometry, position of loads and load function
of the rule are described in Fig. 6.15. The material is characterized by the
values ρ = 7.8 · 103, E = 2.06 · 1011 and G = E/2.

Tab. 6.3: Toss rule T = 0.1: mean value Nwm of the Newton iterations.

∆t 0.00001 0.00002 0.00005

3.202 3.635 div

An incipient non stable behaviour of the integration scheme at about
t = 0.026 can be observed. Table 6.3 shows the behaviour with respect to
the time integration step for T = 0.1.
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Fig. 6.15: Toss rule: geometry, loads and load function

Fig. 6.16: Toss rule ∆t = 0.00005 : sequence of con�gurations

6.3 Conclusions

In the hypothesis of large displacements and rotations and small strains, a
technique to analyze the behavior of three-dimensional �nite element beam
frames has been presented. A vectorial approach for the rotation parametriza-
tions and linear strain de�nitions based on invariant measures has been used.
The described formulation does not use angle measures and we have demon-
strated that it proves to be well posed for any �nite rotations. Rotation at
the nodal location has been de�ned with two basis vectors along the cross-
section, which creates nine degrees of freedom at the node.

We obtain a Lagrangian and implicitly conservative mechanical descrip-
tion where simple and computationally e�cient expressions in the equations
of the nonlinear system are preserved. Besides numerical results illustrate
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that the present approach produces attractive properties for non-linear prob-
lems involving very large rotations compared to the conventional rotational
parameter approach.
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